diff options
-rw-r--r-- | src/ChangeLog | 7 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 13 | ||||
-rw-r--r-- | src/algebra/Makefile.pamphlet | 13 | ||||
-rw-r--r-- | src/algebra/exposed.lsp.pamphlet | 3 | ||||
-rw-r--r-- | src/algebra/vector.spad.pamphlet | 109 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 3474 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 6732 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1329 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10752 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 32304 |
10 files changed, 27449 insertions, 27287 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index dbb4c351..39cb215e 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,3 +1,10 @@ +2010-07-03 Gabriel Dos Reis <gdr@cs.tamu.edu> + + * algebra/vector.spad.pamphlet (DualBasis): New. + (LinearBasis): Likewise. + (LinearElement): Use them. + (LinearForm): New. + 2010-07-01 Gabriel Dos Reis <gdr@cs.tamu.edu> * interp/define.boot (registerInlinableDomain): New. diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index 5d04110f..690e7630 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -612,7 +612,6 @@ $(OUT)/DIRPROD.$(FASLEXT): $(OUT)/DIRPCAT.$(FASLEXT) $(OUT)/DIRPCAT.$(FASLEXT): $(OUT)/VSPACE.$(FASLEXT) $(OUT)/IVECTOR.$(FASLEXT) $(OUT)/MATRIX.$(FASLEXT): $(OUT)/MATCAT.$(FASLEXT) $(OUT)/BTAGG.$(FASLEXT): $(OUT)/BOOLE.$(FASLEXT) -$(OUT)/LINELT.$(FASLEXT): $(OUT)/VSPACE.$(FASLEXT) $(OUT)/FM.$(FASLEXT) axiom_algebra_layer_10 = \ RESULT BFUNCT BPADIC ANY \ @@ -641,7 +640,7 @@ axiom_algebra_layer_10 = \ FUNDESC XPBWPOLY SMATCAT SMATCAT- \ RMATRIX RMATCAT RMATCAT- DIRPROD \ DIRPCAT DIRPCAT- IVECTOR MATRIX \ - MATCAT MATCAT- IIARRAY2 LINELT + MATCAT MATCAT- IIARRAY2 axiom_algebra_layer_10_nrlibs = \ @@ -983,7 +982,8 @@ axiom_algebra_layer_user = \ ASP78 ASP9 ASP12 ASP55 ASP8 ASP19 \ ASP20 ASP30 ASP31 ASP35 ASP41 ASP42 \ ASP74 ASP77 ASP80 ASP29 IRFORM COMPILER \ - ITFORM ELABOR TALGOP YDIAGRAM + ITFORM ELABOR TALGOP YDIAGRAM LINELT DBASIS \ + LINFORM LINBASIS axiom_algebra_layer_user_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_user)) @@ -1064,6 +1064,13 @@ $(OUT)/ELABOR.$(FASLEXT): $(OUT)/ITFORM.$(FASLEXT) $(OUT)/ENV.$(FASLEXT) \ $(OUT)/IRFORM.$(FASLEXT) +$(OUT)/LINBASIS.$(FASLEXT): $(OUT)/ORDFIN.$(FASLEXT) $(OUT)/OVAR.$(FASLEXT) +$(OUT)/LINELT.$(FASLEXT): $(OUT)/VSPACE.$(FASLEXT) $(OUT)/FM.$(FASLEXT) +$(OUT)/DBASIS.$(FASLEXT): $(OUT)/ORDFIN.$(FASLEXT) $(OUT)/KVTFROM.$(FASLEXT) +$(OUT)/LINFORM.$(FASLEXT): $(OUT)/DBASIS.$(FASLEXT) \ + $(OUT)/VSPACE.$(FASLEXT) $(OUT)/LINELT.$(FASLEXT) + + .PHONY: all all-algebra mkdir-output-directory all: all-ax diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index 2a600ccb..d0d6cc7e 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -619,7 +619,6 @@ $(OUT)/DIRPROD.$(FASLEXT): $(OUT)/DIRPCAT.$(FASLEXT) $(OUT)/DIRPCAT.$(FASLEXT): $(OUT)/VSPACE.$(FASLEXT) $(OUT)/IVECTOR.$(FASLEXT) $(OUT)/MATRIX.$(FASLEXT): $(OUT)/MATCAT.$(FASLEXT) $(OUT)/BTAGG.$(FASLEXT): $(OUT)/BOOLE.$(FASLEXT) -$(OUT)/LINELT.$(FASLEXT): $(OUT)/VSPACE.$(FASLEXT) $(OUT)/FM.$(FASLEXT) axiom_algebra_layer_10 = \ RESULT BFUNCT BPADIC ANY \ @@ -648,7 +647,7 @@ axiom_algebra_layer_10 = \ FUNDESC XPBWPOLY SMATCAT SMATCAT- \ RMATRIX RMATCAT RMATCAT- DIRPROD \ DIRPCAT DIRPCAT- IVECTOR MATRIX \ - MATCAT MATCAT- IIARRAY2 LINELT + MATCAT MATCAT- IIARRAY2 axiom_algebra_layer_10_nrlibs = \ @@ -1062,7 +1061,8 @@ axiom_algebra_layer_user = \ ASP78 ASP9 ASP12 ASP55 ASP8 ASP19 \ ASP20 ASP30 ASP31 ASP35 ASP41 ASP42 \ ASP74 ASP77 ASP80 ASP29 IRFORM COMPILER \ - ITFORM ELABOR TALGOP YDIAGRAM + ITFORM ELABOR TALGOP YDIAGRAM LINELT DBASIS \ + LINFORM LINBASIS axiom_algebra_layer_user_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_user)) @@ -1142,6 +1142,13 @@ $(OUT)/ITFORM.$(FASLEXT): $(OUT)/IRFORM.$(FASLEXT) $(OUT)/ELABOR.$(FASLEXT): $(OUT)/ITFORM.$(FASLEXT) $(OUT)/ENV.$(FASLEXT) \ $(OUT)/IRFORM.$(FASLEXT) + +$(OUT)/LINBASIS.$(FASLEXT): $(OUT)/ORDFIN.$(FASLEXT) $(OUT)/OVAR.$(FASLEXT) +$(OUT)/LINELT.$(FASLEXT): $(OUT)/VSPACE.$(FASLEXT) $(OUT)/FM.$(FASLEXT) +$(OUT)/DBASIS.$(FASLEXT): $(OUT)/ORDFIN.$(FASLEXT) $(OUT)/KVTFROM.$(FASLEXT) +$(OUT)/LINFORM.$(FASLEXT): $(OUT)/DBASIS.$(FASLEXT) \ + $(OUT)/VSPACE.$(FASLEXT) $(OUT)/LINELT.$(FASLEXT) + @ \section{Broken Files} diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet index ba666e3a..3acfbcfe 100644 --- a/src/algebra/exposed.lsp.pamphlet +++ b/src/algebra/exposed.lsp.pamphlet @@ -126,6 +126,7 @@ (|DrawComplex| . DRAWCX) (|DrawNumericHack| . DRAWHACK) (|DrawOption| . DROPT) + (|DualBasis| . DBASIS) (|EigenPackage| . EP) (|ElaboratedExpression| . ELABEXPR) (|ElementaryFunctionDefiniteIntegration| . DEFINTEF) @@ -231,7 +232,9 @@ (|LetAst| . LETAST) (|Library| . LIB) (|LieSquareMatrix| . LSQM) + (|LinearBasis| . LINBASIS) (|LinearElement| . LINELT) + (|LinearForm| . LINFORM) (|LinearOrdinaryDifferentialOperator| . LODO) (|LinearSystemMatrixPackage| . LSMP) (|LinearSystemMatrixPackage1| . LSMP1) diff --git a/src/algebra/vector.spad.pamphlet b/src/algebra/vector.spad.pamphlet index 05474370..a708524a 100644 --- a/src/algebra/vector.spad.pamphlet +++ b/src/algebra/vector.spad.pamphlet @@ -450,11 +450,49 @@ DirectProductFunctions2(dim, A, B): Exports == Implementation where \section{Vector space of finite dimension given by a basis} + +<<domain LINBASIS LinearBasis>>= +++ Author: Gabriel Dos Reis +++ Date Created: July 2, 2010 +++ Date Last Modified: July 2, 2010 +++ Descrption: +++ Representation of a vector space basis, given by symbols. +)abbrev domain LINBASIS LinearBasis +LinearBasis(vars: List Symbol): Public == Private where + Public == Join(OrderedFinite,CoercibleFrom OrderedVariableList vars) with + dual: DualBasis vars -> % + ++ \spad{dual f} constructs the dual vector of a linear form + ++ which is part of a basis. + Private == OrderedVariableList vars add + coerce(s: Rep): % == per s + dual f == index(lookup f)@% + +@ + +<<domain DBASIS DualBasis>>= +++ Author: Gabriel Dos Reis +++ Date Created: July 2, 2010 +++ Date Last Modified: July 2, 2010 +++ Descrption: +++ Representation of a dual vector space basis, given by symbols. +)abbrev domain DBASIS DualBasis +DualBasis(vars: List Symbol): Public == Private where + Public == Join(OrderedFinite) with + dual: LinearBasis vars -> % + ++ \spad{dual x} constructs the dual vector of a linear element + ++ which is part of a basis. + Private == OrderedVariableList vars add + dual v == index(lookup v)@% + coerce(x: %): OutputForm == + superscript(convert(rep x)@Symbol,['_*::OutputForm])::OutputForm + +@ + <<domain LINELT LinearElement>>= )abbrev domain LINELT LinearElement ++ Author: Gabriel Dos Reis ++ Date Created: June 30, 2010 -++ Date Last Modified: June 30, 2010 +++ Date Last Modified: July 2, 2010 ++ Description: ++ A simple data structure for elements that form a ++ vector space of finite dimension over a given field, @@ -462,12 +500,13 @@ DirectProductFunctions2(dim, A, B): Exports == Implementation where LinearElement(K,B): Public == Private where K: Field B: List Symbol - macro Basis == OrderedVariableList B - Public == Join(VectorSpace K,CoercibleFrom Basis) with - linearElement: (List K,List Basis) -> % - ++ \spad{linearElement([x1,..,xn],[b1,..,bn]) constructs - ++ a linear element with coordinates \spad{[x1,..,xn]} with - ++ respect to the basis elements \spad{b1},...\spad{bn}. + macro Basis == LinearBasis B + Public == Join(VectorSpace K,CoercibleFrom Basis,_ + IndexedDirectProductCategory(K,Basis)) with + linearElement: List K -> % + ++ \spad{linearElement [x1,..,xn]} returns a linear element + ++ with coordinates \spad{[x1,..,xn]} with respect to + ++ the basis elements \spad{B}. coordinates: % -> Vector K ++ \spad{coordinates x} returns the coordinates of the linear ++ element with respect to the basis \spad{B}. @@ -478,10 +517,9 @@ LinearElement(K,B): Public == Private where dimension() == size()$Basis::CardinalNumber - linearElement(cs,bs) == - null cs or null bs => per 0$Rep + linearElement cs == reduce(_+@(%,%)->%, - [per monomial(c,b) for c in cs for b in bs]) + [per monomial(c,index(i)$Basis) for c in cs for i in 1..],0) coordinates x == n := #B @@ -496,7 +534,53 @@ LinearElement(K,B): Public == Private where @ +<<domain LINFORM LinearForm>>= +)abbrev domain LINFORM LinearForm +++ Author: Gabriel Dos Reis +++ Date Created: July 2, 2010 +++ Date Last Modified: July 2, 2010 +++ Description: +++ A simple data structure for linear forms on a vector space of +++ finite dimension over a given field, with a given symbolic basis. +LinearForm(K,B): Public == Private where + K: Field + B: List Symbol + macro Basis == DualBasis B + Public == Join(VectorSpace K,Eltable(LinearElement(K,B),K)) with + linearForm: List K -> % + ++ \spad{linearForm [x1,..,xn]} constructs + ++ a linear form with coordinates \spad{[x1,..,xn]} with + ++ respect to the basis elements \spad{DualBasis B}. + coordinates: % -> Vector K + ++ \spad{coordinates x} returns the coordinates of the linear + ++ form with respect to the basis \spad{DualBasis B}. + Private == FreeModule(K,Basis) add + dimension() == + size()$Basis::CardinalNumber + + linearForm cs == + reduce(_+@(%,%)->%, + [per monomial(c,index(i)$Basis) for c in cs for i in 1..],0) + + coordinates f == + n := #B + v: Vector K := new(n,0$K) + ts := terms rep f + for i in 1..n repeat + t := first ts + lookup first t = i => + v.i := second t + ts := rest ts + v + + elt(f,x) == + dot(coordinates f, coordinates x)$Vector(K) + +@ + + \section{License} + <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. @@ -541,7 +625,12 @@ LinearElement(K,B): Public == Private where <<category DIRPCAT DirectProductCategory>> <<domain DIRPROD DirectProduct>> <<package DIRPROD2 DirectProductFunctions2>> + +<<domain LINBASIS LinearBasis>> +<<domain DBASIS DualBasis>> + <<domain LINELT LinearElement>> +<<domain LINFORM LinearForm>> @ \eject diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index f00b171a..1a7910e9 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2294960 . 3486967787) +(2296269 . 3487133927) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4467 . T) (-4466 . T)) +((-4471 . T) (-4470 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4463 . T) (-4461 . T) (-4460 . T) ((-4468 "*") . T) (-4459 . T) (-4464 . T) (-4458 . T)) +((-4467 . T) (-4465 . T) (-4464 . T) ((-4472 "*") . T) (-4463 . T) (-4468 . T) (-4462 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -2022) +(-32 R -2051) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) +((|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4466))) +((|HasAttribute| |#1| (QUOTE -4470))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4466 . T) (-4467 . T)) +((-4470 . T) (-4471 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4460 . T) (-4461 . T) (-4463 . T)) +((-4464 . T) (-4465 . T) (-4467 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -2022 UP UPUP -2948) +(-40 -2051 UP UPUP -2587) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4459 |has| (-419 |#2|) (-374)) (-4464 |has| (-419 |#2|) (-374)) (-4458 |has| (-419 |#2|) (-374)) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-2802 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-2802 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2802 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2802 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-2802 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -652) (QUOTE (-576)))) (-2802 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) -(-41 R -2022) +((-4463 |has| (-420 |#2|) (-375)) (-4468 |has| (-420 |#2|) (-375)) (-4462 |has| (-420 |#2|) (-375)) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| (-420 |#2|) (QUOTE (-146))) (|HasCategory| (-420 |#2|) (QUOTE (-148))) (|HasCategory| (-420 |#2|) (QUOTE (-361))) (-2839 (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-380))) (-2839 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2839 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2839 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-361))))) (-2839 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -654) (QUOTE (-577)))) (-2839 (|HasCategory| (-420 |#2|) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) +(-41 R -2051) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -442) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -443) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -103,34 +103,34 @@ NIL (-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-317)))) +((|HasCategory| |#1| (QUOTE (-318)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4463 |has| |#1| (-568)) (-4461 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) +((-4467 |has| |#1| (-569)) (-4465 . T) (-4464 . T)) +((|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4466 . T) (-4467 . T)) -((-2802 (-12 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4291) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4291) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|))))))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-862))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4291) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|))))))) +((-4470 . T) (-4471 . T)) +((-2839 (-12 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-865))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4295) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4444) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4295) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4444) (|devaluate| |#2|))))))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-865))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-865))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-865))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-865))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4295) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4444) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| $ (QUOTE (-1071))) (|HasCategory| $ (LIST (QUOTE -1060) (QUOTE (-576))))) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| $ (QUOTE (-1074))) (|HasCategory| $ (LIST (QUOTE -1063) (QUOTE (-577))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4463 . T)) +((-4467 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -2022) +(-54 |Base| R -2051) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,7 +158,7 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4466 . T) (-4467 . T)) +((-4470 . T) (-4471 . T)) NIL (-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) @@ -166,65 +166,65 @@ NIL NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4467 . T) (-4466 . T)) -((-2802 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2802 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4471 . T) (-4470 . T)) +((-2839 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2839 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-61 -2676) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-61 -2713) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -2676) +(-62 -2713) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -2676) +(-63 -2713) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -2676) +(-64 -2713) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -2676) +(-65 -2713) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -2676) +(-66 -2713) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -2676) +(-67 -2713) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -2676) +(-68 -2713) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -2676) +(-69 -2713) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -2676) +(-70 -2713) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -2676) +(-71 -2713) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -2676) +(-72 -2713) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -2676) +(-73 -2713) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -2676) +(-74 -2713) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,66 +236,66 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -2676) +(-77 -2713) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -2676) +(-78 -2713) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -2676) +(-79 -2713) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -2676) +(-80 -2713) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -2676) +(-81 -2713) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -2676) +(-82 -2713) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -2676) +(-83 -2713) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -2676) +(-84 -2713) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -2676) +(-85 -2713) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -2676) +(-86 -2713) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -2676) +(-87 -2713) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -2676) +(-88 -2713) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -2676) +(-89 -2713) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-90 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-374)))) +((|HasCategory| |#1| (QUOTE (-375)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4466 . T)) +((-4470 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4466 . T) ((-4468 "*") . T) (-4467 . T) (-4463 . T) (-4461 . T) (-4460 . T) (-4459 . T) (-4464 . T) (-4458 . T) (-4457 . T) (-4456 . T) (-4455 . T) (-4454 . T) (-4462 . T) (-4465 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4453 . T)) +((-4470 . T) ((-4472 "*") . T) (-4471 . T) (-4467 . T) (-4465 . T) (-4464 . T) (-4463 . T) (-4468 . T) (-4462 . T) (-4461 . T) (-4460 . T) (-4459 . T) (-4458 . T) (-4466 . T) (-4469 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4457 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4463 . T)) +((-4467 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4468 "*")))) +((|HasAttribute| |#1| (QUOTE (-4472 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4466 . T)) +((-4470 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,23 +358,23 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4467 . T)) +((-4471 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| (-576) (QUOTE (-929))) (|HasCategory| (-576) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1044))) (|HasCategory| (-576) (QUOTE (-833))) (|HasCategory| (-576) (QUOTE (-862))) (-2802 (|HasCategory| (-576) (QUOTE (-833))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1174))) (|HasCategory| (-576) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1198)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -652) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-929)))) (|HasCategory| (-576) (QUOTE (-146))))) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| (-577) (QUOTE (-932))) (|HasCategory| (-577) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1047))) (|HasCategory| (-577) (QUOTE (-836))) (|HasCategory| (-577) (QUOTE (-865))) (-2839 (|HasCategory| (-577) (QUOTE (-836))) (|HasCategory| (-577) (QUOTE (-865)))) (|HasCategory| (-577) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1177))) (|HasCategory| (-577) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1201)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -654) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-932)))) (|HasCategory| (-577) (QUOTE (-146))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4467 . T) (-4466 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1122))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-112) (QUOTE (-1122))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-112) (QUOTE (-102)))) +((-4471 . T) (-4470 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1125))) (|HasCategory| (-112) (LIST (QUOTE -320) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-112) (QUOTE (-865))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| (-112) (QUOTE (-1125))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-112) (QUOTE (-102)))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4461 . T) (-4460 . T)) +((-4465 . T) (-4464 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) @@ -392,22 +392,22 @@ NIL ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-116 -2022 UP) +(-116 -2051 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL (-118 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| (-117 |#1|) (QUOTE (-929))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-117 |#1|) (QUOTE (-1044))) (|HasCategory| (-117 |#1|) (QUOTE (-833))) (|HasCategory| (-117 |#1|) (QUOTE (-862))) (-2802 (|HasCategory| (-117 |#1|) (QUOTE (-833))) (|HasCategory| (-117 |#1|) (QUOTE (-862)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-1174))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-237))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -526) (QUOTE (-1198)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-317))) (|HasCategory| (-117 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-929)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| (-117 |#1|) (QUOTE (-932))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-117 |#1|) (QUOTE (-1047))) (|HasCategory| (-117 |#1|) (QUOTE (-836))) (|HasCategory| (-117 |#1|) (QUOTE (-865))) (-2839 (|HasCategory| (-117 |#1|) (QUOTE (-836))) (|HasCategory| (-117 |#1|) (QUOTE (-865)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-117 |#1|) (QUOTE (-1177))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-117 |#1|) (QUOTE (-239))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -527) (QUOTE (-1201)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -320) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -297) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-318))) (|HasCategory| (-117 |#1|) (QUOTE (-558))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-932)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) (-119 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4467))) +((|HasAttribute| |#1| (QUOTE -4471))) (-120 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -418,15 +418,15 @@ NIL NIL (-122 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) (-123 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL (-124) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-4467 . T) (-4466 . T)) +((-4471 . T) (-4470 . T)) NIL (-125 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -434,20 +434,20 @@ NIL NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4466 . T) (-4467 . T)) +((-4470 . T) (-4471 . T)) NIL (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) (-128 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) (-129) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4467 . T) (-4466 . T)) -((-2802 (-12 (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1122))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-2802 (-12 (|HasCategory| (-130) (QUOTE (-1122))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-130) (LIST (QUOTE -626) (QUOTE (-548)))) (-2802 (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-130) (QUOTE (-1122)))) (|HasCategory| (-130) (QUOTE (-862))) (-2802 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-130) (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-130) (QUOTE (-1122))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1122))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) +((-4471 . T) (-4470 . T)) +((-2839 (-12 (|HasCategory| (-130) (QUOTE (-865))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1125))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130)))))) (-2839 (-12 (|HasCategory| (-130) (QUOTE (-1125))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-130) (LIST (QUOTE -627) (QUOTE (-549)))) (-2839 (|HasCategory| (-130) (QUOTE (-865))) (|HasCategory| (-130) (QUOTE (-1125)))) (|HasCategory| (-130) (QUOTE (-865))) (-2839 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-865))) (|HasCategory| (-130) (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| (-130) (QUOTE (-1125))) (|HasCategory| (-130) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1125))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130)))))) (-130) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -470,13 +470,13 @@ NIL NIL (-135) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4468 "*") . T)) +(((-4472 "*") . T)) NIL -(-136 |minix| -2755 S T$) +(-136 |minix| -2791 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-137 |minix| -2755 R) +(-137 |minix| -2791 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -498,8 +498,8 @@ NIL NIL (-142) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4466 . T) (-4456 . T) (-4467 . T)) -((-2802 (-12 (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) +((-4470 . T) (-4460 . T) (-4471 . T)) +((-2839 (-12 (|HasCategory| (-145) (QUOTE (-380))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-145) (QUOTE (-380))) (|HasCategory| (-145) (QUOTE (-865))) (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (-143 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -514,7 +514,7 @@ NIL NIL (-146) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4463 . T)) +((-4467 . T)) NIL (-147 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -522,9 +522,9 @@ NIL NIL (-148) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4463 . T)) +((-4467 . T)) NIL -(-149 -2022 UP UPUP) +(-149 -2051 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -535,14 +535,14 @@ NIL (-151 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasAttribute| |#1| (QUOTE -4466))) +((|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasAttribute| |#1| (QUOTE -4470))) (-152 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-153 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4461 . T) (-4460 . T) (-4463 . T)) +((-4465 . T) (-4464 . T) (-4467 . T)) NIL (-154) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -564,7 +564,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-159 R -2022) +(-159 R -2051) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -595,10 +595,10 @@ NIL (-166 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-1224))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4462)) (|HasAttribute| |#2| (QUOTE -4465)) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568)))) +((|HasCategory| |#2| (QUOTE (-932))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1227))) (|HasCategory| |#2| (QUOTE (-1085))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4466)) (|HasAttribute| |#2| (QUOTE -4469)) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-569)))) (-167 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4459 -2802 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4465 |has| |#1| (-6 -4465)) (-4155 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 -2839 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4466 |has| |#1| (-6 -4466)) (-4469 |has| |#1| (-6 -4469)) (-4159 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL (-168 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -614,8 +614,8 @@ NIL NIL (-171 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4459 -2802 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4462 |has| |#1| (-6 -4462)) (-4465 |has| |#1| (-6 -4465)) (-4155 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-2802 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-2802 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-360)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-929))))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-929))))) (-2802 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-1224)))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2802 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-568)))) (-2802 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1082))) (-12 (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-1224)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-929))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-374)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-238))) (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasAttribute| |#1| (QUOTE -4465)) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198))))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-360))))) +((-4463 -2839 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4466 |has| |#1| (-6 -4466)) (-4469 |has| |#1| (-6 -4469)) (-4159 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-361))) (-2839 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-2839 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-361)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-932))))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-932)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-932)))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-932))))) (-2839 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-1227)))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2839 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-569)))) (-2839 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1085))) (-12 (|HasCategory| |#1| (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-1227)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-932))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-375)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-238)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasAttribute| |#1| (QUOTE -4466)) (|HasAttribute| |#1| (QUOTE -4469)) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201))))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-361))))) (-172 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -626,7 +626,7 @@ NIL NIL (-174) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +(((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL (-175) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -634,7 +634,7 @@ NIL NIL (-176 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4468 "*") . T) (-4459 . T) (-4464 . T) (-4458 . T) (-4460 . T) (-4461 . T) (-4463 . T)) +(((-4472 "*") . T) (-4463 . T) (-4468 . T) (-4462 . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL (-177) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -651,7 +651,7 @@ NIL (-180 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-972 |#2|) (LIST (QUOTE -902) (|devaluate| |#1|)))) +((|HasCategory| (-975 |#2|) (LIST (QUOTE -905) (|devaluate| |#1|)))) (-181 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL @@ -688,7 +688,7 @@ NIL ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-190 R -2022) +(-190 R -2051) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -796,4413 +796,4425 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-217 -2022 UP UPUP R) +(-217 |vars|) +((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis."))) +NIL +NIL +(-218 -2051 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-218 -2022 FP) +(-219 -2051 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-219) -((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| (-576) (QUOTE (-929))) (|HasCategory| (-576) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1044))) (|HasCategory| (-576) (QUOTE (-833))) (|HasCategory| (-576) (QUOTE (-862))) (-2802 (|HasCategory| (-576) (QUOTE (-833))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1174))) (|HasCategory| (-576) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1198)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -652) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-929)))) (|HasCategory| (-576) (QUOTE (-146))))) (-220) +((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| (-577) (QUOTE (-932))) (|HasCategory| (-577) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1047))) (|HasCategory| (-577) (QUOTE (-836))) (|HasCategory| (-577) (QUOTE (-865))) (-2839 (|HasCategory| (-577) (QUOTE (-836))) (|HasCategory| (-577) (QUOTE (-865)))) (|HasCategory| (-577) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1177))) (|HasCategory| (-577) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1201)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -654) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-932)))) (|HasCategory| (-577) (QUOTE (-146))))) +(-221) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-221 R -2022) +(-222 R -2051) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-222 R) +(-223 R) ((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-223 R1 R2) +(-224 R1 R2) ((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-224 S) +(-225 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-225 |CoefRing| |listIndVar|) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-226 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4463 . T)) +((-4467 . T)) NIL -(-226 R -2022) +(-227 R -2051) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-227) +(-228) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4144 . T) (-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4148 . T) (-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-228) +(-229) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) NIL NIL -(-229 R) +(-230 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4468 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-230 A S) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4472 "*"))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-231 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-231 S) +(-232 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4467 . T)) +((-4471 . T)) NIL -(-232 R) +(-233 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%."))) -((-4463 . T)) +((-4467 . T)) NIL -(-233 S T$) +(-234 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) NIL NIL -(-234 T$) +(-235 T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#1| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#1| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) NIL NIL -(-235 R) +(-236 R) ((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) -((-4461 . T) (-4460 . T)) +((-4465 . T) (-4464 . T)) NIL -(-236 S) +(-237 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) NIL NIL -(-237) +(-238) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) NIL NIL -(-238) +(-239) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-4463 . T)) +((-4467 . T)) NIL -(-239 A S) +(-240 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4466))) -(-240 S) +((|HasAttribute| |#1| (QUOTE -4470))) +(-241 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4467 . T)) +((-4471 . T)) NIL -(-241) +(-242) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-242 S -2755 R) +(-243 S -2791 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (QUOTE (-862))) (|HasAttribute| |#3| (QUOTE -4463)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (QUOTE (-1122)))) -(-243 -2755 R) +((|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (QUOTE (-865))) (|HasAttribute| |#3| (QUOTE -4467)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (QUOTE (-1125)))) +(-244 -2791 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4460 |has| |#2| (-1071)) (-4461 |has| |#2| (-1071)) (-4463 |has| |#2| (-6 -4463)) (-4466 . T)) +((-4464 |has| |#2| (-1074)) (-4465 |has| |#2| (-1074)) (-4467 |has| |#2| (-6 -4467)) (-4470 . T)) NIL -(-244 -2755 A B) +(-245 -2791 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-245 -2755 R) +(-246 -2791 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4460 |has| |#2| (-1071)) (-4461 |has| |#2| (-1071)) (-4463 |has| |#2| (-6 -4463)) (-4466 . T)) -((-2802 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))))) (-2802 (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1122)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#2| (QUOTE (-374))) (-2802 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2802 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-806))) (-2802 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-379))) (-2802 (-12 (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1071)))) (|HasCategory| |#2| (QUOTE (-238))) (-2802 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1071))))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))))) (|HasCategory| |#2| (QUOTE (-1122))) (-2802 (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-739)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-806)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1122))))) (-2802 (-12 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1071))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-2802 (-12 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198))))) (-2802 (|HasCategory| |#2| (QUOTE (-1071))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1122)))) (|HasAttribute| |#2| (QUOTE -4463)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) -(-246) +((-4464 |has| |#2| (-1074)) (-4465 |has| |#2| (-1074)) (-4467 |has| |#2| (-6 -4467)) (-4470 . T)) +((-2839 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))))) (-2839 (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1125)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#2| (QUOTE (-375))) (-2839 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2839 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-809))) (-2839 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-380))) (-2839 (-12 (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-239))) (-2839 (|HasCategory| |#2| (QUOTE (-239))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1074))))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))))) (|HasCategory| |#2| (QUOTE (-1125))) (-2839 (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-380)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-742)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-809)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-865)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1125))))) (-2839 (-12 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1074))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-2839 (-12 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-865))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201))))) (-2839 (|HasCategory| |#2| (QUOTE (-1074))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1125)))) (|HasAttribute| |#2| (QUOTE -4467)) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))))) +(-247) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-247 S) +(-248 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-248) +(-249) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4459 . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-249 S) +(-250 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) NIL NIL -(-250 S) +(-251 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4467 . T) (-4466 . T)) -((-2802 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2802 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-251 M) +((-4471 . T) (-4470 . T)) +((-2839 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2839 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-252 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-252 R) +(-253 R) ((|constructor| (NIL "Category of modules that extend differential rings. \\blankline"))) -((-4461 . T) (-4460 . T)) +((-4465 . T) (-4464 . T)) NIL -(-253 |vl| R) +(-254 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4468 "*") |has| |#2| (-174)) (-4459 |has| |#2| (-568)) (-4464 |has| |#2| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#2| (QUOTE (-929))) (-2802 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2802 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2802 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2802 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4464)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-254) +(((-4472 "*") |has| |#2| (-174)) (-4463 |has| |#2| (-569)) (-4468 |has| |#2| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#2| (QUOTE (-932))) (-2839 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2839 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2839 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2839 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4468)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-255) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL NIL -(-255) +(-256) ((|constructor| (NIL "This domain provides representations for domains constructors.")) (|functorData| (((|FunctorData|) $) "\\spad{functorData x} returns the functor data associated with the domain constructor \\spad{x}."))) NIL NIL -(-256) +(-257) ((|constructor| (NIL "Represntation of domain templates resulting from compiling a domain constructor")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# x} returns the length of the domain template \\spad{x}."))) NIL NIL -(-257 |n| R M S) +(-258 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4463 -2802 (-2724 (|has| |#4| (-1071)) (|has| |#4| (-238))) (|has| |#4| (-6 -4463)) (-2724 (|has| |#4| (-1071)) (|has| |#4| (-918 (-1198))))) (-4460 |has| |#4| (-1071)) (-4461 |has| |#4| (-1071)) (-4466 . T)) -((-2802 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-739))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-806))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198)))))) (|HasCategory| |#4| (QUOTE (-374))) (-2802 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-1071)))) (-2802 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374)))) (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (QUOTE (-739))) (|HasCategory| |#4| (QUOTE (-806))) (-2802 (|HasCategory| |#4| (QUOTE (-806))) (|HasCategory| |#4| (QUOTE (-862)))) (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (QUOTE (-379))) (-2802 (-12 (|HasCategory| |#4| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (LIST (QUOTE -652) (QUOTE (-576)))))) (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198)))) (-2802 (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1071)))) (|HasCategory| |#4| (QUOTE (-238))) (-2802 (|HasCategory| |#4| (QUOTE (-238))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1071))))) (-2802 (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198)))) (-12 (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (LIST (QUOTE -920) (QUOTE (-1198)))))) (|HasCategory| |#4| (QUOTE (-1122))) (-2802 (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-238)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-374)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-379)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-739)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-806)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-862)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1071)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1122))))) (-2802 (-12 (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-739))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-806))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1071))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-2802 (-12 (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-739))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-806))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (LIST (QUOTE -652) (QUOTE (-576))))) (-2802 (-12 (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (LIST (QUOTE -920) (QUOTE (-1198)))))) (-2802 (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1071)))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1071))))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576))))) (-2802 (|HasCategory| |#4| (QUOTE (-1071))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1122)))) (-2802 (|HasAttribute| |#4| (QUOTE -4463)) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1071)))) (-12 (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (LIST (QUOTE -918) (QUOTE (-1198)))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1071)))) (-12 (|HasCategory| |#4| (QUOTE (-1071))) (|HasCategory| |#4| (LIST (QUOTE -920) (QUOTE (-1198))))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))))) -(-258 |n| R S) +((-4467 -2839 (-2761 (|has| |#4| (-1074)) (|has| |#4| (-239))) (|has| |#4| (-6 -4467)) (-2761 (|has| |#4| (-1074)) (|has| |#4| (-921 (-1201))))) (-4464 |has| |#4| (-1074)) (-4465 |has| |#4| (-1074)) (-4470 . T)) +((-2839 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-742))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-809))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-865))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201)))))) (|HasCategory| |#4| (QUOTE (-375))) (-2839 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (QUOTE (-1074)))) (-2839 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-375)))) (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (QUOTE (-742))) (|HasCategory| |#4| (QUOTE (-809))) (-2839 (|HasCategory| |#4| (QUOTE (-809))) (|HasCategory| |#4| (QUOTE (-865)))) (|HasCategory| |#4| (QUOTE (-865))) (|HasCategory| |#4| (QUOTE (-380))) (-2839 (-12 (|HasCategory| |#4| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -654) (QUOTE (-577)))))) (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201)))) (-2839 (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1074)))) (|HasCategory| |#4| (QUOTE (-239))) (-2839 (|HasCategory| |#4| (QUOTE (-239))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1074))))) (-2839 (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201)))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -923) (QUOTE (-1201)))))) (|HasCategory| |#4| (QUOTE (-1125))) (-2839 (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-239)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-375)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-380)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-742)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-809)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-865)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1074)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1125))))) (-2839 (-12 (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-742))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-809))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-865))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1074))) (-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-2839 (-12 (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-742))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-809))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-865))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-865))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -654) (QUOTE (-577))))) (-2839 (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -923) (QUOTE (-1201)))))) (-2839 (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1074)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1074))))) (-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577))))) (-2839 (|HasCategory| |#4| (QUOTE (-1074))) (-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1125)))) (-2839 (|HasAttribute| |#4| (QUOTE -4467)) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1074)))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -921) (QUOTE (-1201)))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1074)))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -923) (QUOTE (-1201))))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|))))) +(-259 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4463 -2802 (-2724 (|has| |#3| (-1071)) (|has| |#3| (-238))) (|has| |#3| (-6 -4463)) (-2724 (|has| |#3| (-1071)) (|has| |#3| (-918 (-1198))))) (-4460 |has| |#3| (-1071)) (-4461 |has| |#3| (-1071)) (-4466 . T)) -((-2802 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))))) (|HasCategory| |#3| (QUOTE (-374))) (-2802 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1071)))) (-2802 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (QUOTE (-806))) (-2802 (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (QUOTE (-862)))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-379))) (-2802 (-12 (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (-2802 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1071)))) (|HasCategory| |#3| (QUOTE (-238))) (-2802 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1071))))) (-2802 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -920) (QUOTE (-1198)))))) (|HasCategory| |#3| (QUOTE (-1122))) (-2802 (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-739)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-806)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-862)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1071)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1122))))) (-2802 (-12 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1071))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-2802 (-12 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576))))) (-2802 (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -920) (QUOTE (-1198)))))) (-2802 (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1071)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1071))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-2802 (|HasCategory| |#3| (QUOTE (-1071))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1122)))) (-2802 (|HasAttribute| |#3| (QUOTE -4463)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1071)))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1071)))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -920) (QUOTE (-1198))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) -(-259 A R S V E) +((-4467 -2839 (-2761 (|has| |#3| (-1074)) (|has| |#3| (-239))) (|has| |#3| (-6 -4467)) (-2761 (|has| |#3| (-1074)) (|has| |#3| (-921 (-1201))))) (-4464 |has| |#3| (-1074)) (-4465 |has| |#3| (-1074)) (-4470 . T)) +((-2839 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))))) (|HasCategory| |#3| (QUOTE (-375))) (-2839 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1074)))) (-2839 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375)))) (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (QUOTE (-809))) (-2839 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (QUOTE (-865)))) (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (QUOTE (-380))) (-2839 (-12 (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577)))))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (-2839 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-239))) (-2839 (|HasCategory| |#3| (QUOTE (-239))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1074))))) (-2839 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -923) (QUOTE (-1201)))))) (|HasCategory| |#3| (QUOTE (-1125))) (-2839 (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-380)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-742)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-809)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-865)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1074)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1125))))) (-2839 (-12 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1074))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-2839 (-12 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-865))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577))))) (-2839 (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -923) (QUOTE (-1201)))))) (-2839 (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1074)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1074))))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-2839 (|HasCategory| |#3| (QUOTE (-1074))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1125)))) (-2839 (|HasAttribute| |#3| (QUOTE -4467)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1074)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1074)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -923) (QUOTE (-1201))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))))) +(-260 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-238)))) -(-260 R S V E) +((|HasCategory| |#2| (QUOTE (-239)))) +(-261 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) NIL -(-261 S) +(-262 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4466 . T) (-4467 . T)) +((-4470 . T) (-4471 . T)) NIL -(-262) +(-263) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-263 R |Ex|) +(-264 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-264) +(-265) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-265 R) +(-266 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-266 |Ex|) +(-267 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-267) +(-268) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-268) +(-269) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-269 S) +(-270 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-270) +(-271) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-271 S R) +(-272 S R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-237)))) -(-272 R) +((|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-238)))) +(-273 R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL NIL -(-273 R S V) +(-274 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-274 A S) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-932))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#3| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#3| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4468)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-275 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-275 S) +(-276 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-276) +(-277) ((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-277) +(-278) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-278) +(-279) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-279) +(-280) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-280) +(-281) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-281) +(-282) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-282) +(-283) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-283) +(-284) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-284) +(-285) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-285 R -2022) +(-286 R -2051) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-286 R -2022) +(-287 R -2051) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-287 |Coef| UTS ULS) +(-288 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-374)))) -(-288 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-375)))) +(-289 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-374)))) -(-289) +((|HasCategory| |#1| (QUOTE (-375)))) +(-290) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|Syntax|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-290) +(-291) ((|environment| (((|Environment|) $) "\\spad{environment(x)} returns the environment of the elaboration \\spad{x}.")) (|typeForm| (((|InternalTypeForm|) $) "\\spad{typeForm(x)} returns the type form of the elaboration \\spad{x}.")) (|irForm| (((|InternalRepresentationForm|) $) "\\spad{irForm(x)} returns the internal representation form of the elaboration \\spad{x}.")) (|elaboration| (($ (|InternalRepresentationForm|) (|InternalTypeForm|) (|Environment|)) "\\spad{elaboration(ir,ty,env)} construct an elaboration object for for the internal representation form \\spad{ir},{} with type \\spad{ty},{} and environment \\spad{env}."))) NIL NIL -(-291 A S) +(-292 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1122)))) -(-292 S) +((|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1125)))) +(-293 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4467 . T)) +((-4471 . T)) NIL -(-293 S) +(-294 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-294) +(-295) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-295 |Coef| UTS) +(-296 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-296 S T$) +(-297 S T$) ((|constructor| (NIL "An eltable over domains \\spad{S} and \\spad{T} is a structure which can be viewed as a function from \\spad{S} to \\spad{T}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,s)} (also written: \\spad{u.s}) returns the value of \\spad{u} at \\spad{s}. Error: if \\spad{u} is not defined at \\spad{s}."))) NIL NIL -(-297 S |Dom| |Im|) +(-298 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4467))) -(-298 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4471))) +(-299 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-299 S R |Mod| -2921 -3073 |exactQuo|) +(-300 S R |Mod| -3062 -3283 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-300) +(-301) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4459 . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-301) +(-302) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-302 R) +(-303 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-303 S R) +(-304 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-304 S) +(-305 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4463 -2802 (|has| |#1| (-1071)) (|has| |#1| (-485))) (-4460 |has| |#1| (-1071)) (-4461 |has| |#1| (-1071))) -((|HasCategory| |#1| (QUOTE (-374))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1071)))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-1071)))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1071)))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1071)))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1071)))) (-2802 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-739)))) (|HasCategory| |#1| (QUOTE (-485))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (QUOTE (-1134))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#1| (QUOTE (-1134)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-312))) (-2802 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485)))) (-2802 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-739)))) (-2802 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1071)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1134))) (|HasCategory| |#1| (QUOTE (-739)))) -(-305 |Key| |Entry|) +((-4467 -2839 (|has| |#1| (-1074)) (|has| |#1| (-486))) (-4464 |has| |#1| (-1074)) (-4465 |has| |#1| (-1074))) +((|HasCategory| |#1| (QUOTE (-375))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1074)))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-1074)))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1074)))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1074)))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1074)))) (-2839 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-742)))) (|HasCategory| |#1| (QUOTE (-486))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-1137))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#1| (QUOTE (-1137)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-313))) (-2839 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-486)))) (-2839 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-742)))) (-2839 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1137))) (|HasCategory| |#1| (QUOTE (-742)))) +(-306 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4291) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1122))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102)))) -(-306) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4295) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4444) (|devaluate| |#2|)))))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1125))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102)))) +(-307) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-307 -2022 S) +(-308 -2051 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-308 E -2022) +(-309 E -2051) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL -(-309 A B) +(-310 A B) ((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-310) +(-311) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-311 S) +(-312 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1071)))) -(-312) +((|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-1074)))) +(-313) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-313 R1) +(-314 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-314 R1 R2) +(-315 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-315) +(-316) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-316 S) +(-317 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-317) +(-318) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-318 S R) +(-319 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-319 R) +(-320 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-320 -2022) +(-321 -2051) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-321) +(-322) ((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-322) +(-323) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-323 R FE |var| |cen|) +(-324 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-929))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-1044))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-833))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-862))) (-2802 (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-833))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-862)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-1174))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-237))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -526) (QUOTE (-1198)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -319) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (LIST (QUOTE -296) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-317))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-929))) (|HasCategory| $ (QUOTE (-146)))) (-2802 (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-929))) (|HasCategory| $ (QUOTE (-146)))))) -(-324 R S) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-932))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-1047))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-836))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-865))) (-2839 (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-836))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-865)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-1177))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -527) (QUOTE (-1201)) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -320) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (LIST (QUOTE -297) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-318))) (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-558))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-932))) (|HasCategory| $ (QUOTE (-146)))) (-2839 (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3| |#4|) (QUOTE (-932))) (|HasCategory| $ (QUOTE (-146)))))) +(-325 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-325 R FE) +(-326 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-326 R) +(-327 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4463 -2802 (-12 (|has| |#1| (-568)) (-2802 (|has| |#1| (-1071)) (|has| |#1| (-485)))) (|has| |#1| (-1071)) (|has| |#1| (-485))) (-4461 |has| |#1| (-174)) (-4460 |has| |#1| (-174)) ((-4468 "*") |has| |#1| (-568)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-568)) (-4458 |has| |#1| (-568))) -((-2802 (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (-2802 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1071)))) (|HasCategory| |#1| (QUOTE (-21))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1071)))) (|HasCategory| |#1| (QUOTE (-1071))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))))) (-2802 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1134)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2802 (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) (-2802 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1071)))) (-2802 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1071)))) (-2802 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1071)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568)))) (-2802 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576))))) (-2802 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))))) (-2802 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1134)))) (-2802 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))))) (-2802 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1071)))) (-2802 (-12 (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1134))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| $ (QUOTE (-1071))) (|HasCategory| $ (LIST (QUOTE -1060) (QUOTE (-576))))) -(-327 R -2022) +((-4467 -2839 (-12 (|has| |#1| (-569)) (-2839 (|has| |#1| (-1074)) (|has| |#1| (-486)))) (|has| |#1| (-1074)) (|has| |#1| (-486))) (-4465 |has| |#1| (-174)) (-4464 |has| |#1| (-174)) ((-4472 "*") |has| |#1| (-569)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-569)) (-4462 |has| |#1| (-569))) +((-2839 (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (-2839 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-21))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-1074))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))))) (-2839 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-1137)))) (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2839 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) (-2839 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1074)))) (-2839 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1074)))) (-2839 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1074)))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569)))) (-2839 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577))))) (-2839 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))))) (-2839 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-1137)))) (-2839 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))))) (-2839 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-1074)))) (-2839 (-12 (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1137))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| $ (QUOTE (-1074))) (|HasCategory| $ (LIST (QUOTE -1063) (QUOTE (-577))))) +(-328 R -2051) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL -(-328) +(-329) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-329 FE |var| |cen|) +(-330 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1134))) (|HasCategory| |#1| (QUOTE (-374))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2802 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3501) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2802 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4190) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -2029) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|))))))) -(-330 M) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1137))) (|HasCategory| |#1| (QUOTE (-375))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2839 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3544) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2839 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4147) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -2058) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|))))))) +(-331 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-331 E OV R P) +(-332 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-332 S) +(-333 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4461 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-805)))) -(-333 S E) +((-4465 . T) (-4464 . T)) +((|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| (-577) (QUOTE (-808)))) +(-334 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-334 S) +(-335 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-784) (QUOTE (-805)))) -(-335 S R E) +((|HasCategory| (-787) (QUOTE (-808)))) +(-336 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174)))) -(-336 R E) +((|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174)))) +(-337 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-337 S) +(-338 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4467 . T) (-4466 . T)) -((-2802 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2802 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-338 S -2022) +((-4471 . T) (-4470 . T)) +((-2839 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2839 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-339 S -2051) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-379)))) -(-339 -2022) +((|HasCategory| |#2| (QUOTE (-380)))) +(-340 -2051) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-340) +(-341) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) NIL NIL -(-341 E) +(-342 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-342) +(-343) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,b,d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,p,q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,p)} \\undocumented{}"))) NIL NIL -(-343) +(-344) ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-344 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-345 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-345 S -2022 UP UPUP R) +(-346 S -2051 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-346 -2022 UP UPUP R) +(-347 -2051 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-347 -2022 UP UPUP R) +(-348 -2051 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-348 S R) +(-349 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-349 R) +((|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-350 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-350 |basicSymbols| |subscriptedSymbols| R) +(-351 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-390)))) (|HasCategory| $ (QUOTE (-1071))) (|HasCategory| $ (LIST (QUOTE -1060) (QUOTE (-576))))) -(-351 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-391)))) (|HasCategory| $ (QUOTE (-1074))) (|HasCategory| $ (LIST (QUOTE -1063) (QUOTE (-577))))) +(-352 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-352 S -2022 UP UPUP) +(-353 S -2051 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-374)))) -(-353 -2022 UP UPUP) +((|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-375)))) +(-354 -2051 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4459 |has| (-419 |#2|) (-374)) (-4464 |has| (-419 |#2|) (-374)) (-4458 |has| (-419 |#2|) (-374)) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 |has| (-420 |#2|) (-375)) (-4468 |has| (-420 |#2|) (-375)) (-4462 |has| (-420 |#2|) (-375)) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-354 |p| |extdeg|) +(-355 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((-2802 (|HasCategory| (-930 |#1|) (QUOTE (-146))) (|HasCategory| (-930 |#1|) (QUOTE (-379)))) (|HasCategory| (-930 |#1|) (QUOTE (-148))) (|HasCategory| (-930 |#1|) (QUOTE (-379))) (|HasCategory| (-930 |#1|) (QUOTE (-146)))) -(-355 GF |defpol|) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-2839 (|HasCategory| (-933 |#1|) (QUOTE (-146))) (|HasCategory| (-933 |#1|) (QUOTE (-380)))) (|HasCategory| (-933 |#1|) (QUOTE (-148))) (|HasCategory| (-933 |#1|) (QUOTE (-380))) (|HasCategory| (-933 |#1|) (QUOTE (-146)))) +(-356 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((-2802 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) -(-356 GF |extdeg|) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-2839 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) +(-357 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((-2802 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) -(-357 GF) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-2839 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) +(-358 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-358 F1 GF F2) +(-359 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-359 S) +(-360 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-360) +(-361) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-361 R UP -2022) +(-362 R UP -2051) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-362 |p| |extdeg|) +(-363 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((-2802 (|HasCategory| (-930 |#1|) (QUOTE (-146))) (|HasCategory| (-930 |#1|) (QUOTE (-379)))) (|HasCategory| (-930 |#1|) (QUOTE (-148))) (|HasCategory| (-930 |#1|) (QUOTE (-379))) (|HasCategory| (-930 |#1|) (QUOTE (-146)))) -(-363 GF |uni|) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-2839 (|HasCategory| (-933 |#1|) (QUOTE (-146))) (|HasCategory| (-933 |#1|) (QUOTE (-380)))) (|HasCategory| (-933 |#1|) (QUOTE (-148))) (|HasCategory| (-933 |#1|) (QUOTE (-380))) (|HasCategory| (-933 |#1|) (QUOTE (-146)))) +(-364 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((-2802 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) -(-364 GF |extdeg|) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-2839 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) +(-365 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((-2802 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) -(-365 |p| |n|) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-2839 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) +(-366 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((-2802 (|HasCategory| (-930 |#1|) (QUOTE (-146))) (|HasCategory| (-930 |#1|) (QUOTE (-379)))) (|HasCategory| (-930 |#1|) (QUOTE (-148))) (|HasCategory| (-930 |#1|) (QUOTE (-379))) (|HasCategory| (-930 |#1|) (QUOTE (-146)))) -(-366 GF |defpol|) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-2839 (|HasCategory| (-933 |#1|) (QUOTE (-146))) (|HasCategory| (-933 |#1|) (QUOTE (-380)))) (|HasCategory| (-933 |#1|) (QUOTE (-148))) (|HasCategory| (-933 |#1|) (QUOTE (-380))) (|HasCategory| (-933 |#1|) (QUOTE (-146)))) +(-367 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((-2802 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) -(-367 -2022 GF) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-2839 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) +(-368 -2051 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-368 GF) +(-369 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-369 -2022 FP FPP) +(-370 -2051 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-370 GF |n|) +(-371 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((-2802 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) -(-371 R |ls|) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-2839 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) +(-372 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-372 S) +(-373 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4463 . T)) +((-4467 . T)) NIL -(-373 S) +(-374 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-374) +(-375) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-375 |Name| S) +(-376 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-376 S) +(-377 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-377 S R) +(-378 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-568)))) -(-378 R) +((|HasCategory| |#2| (QUOTE (-569)))) +(-379 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4463 |has| |#1| (-568)) (-4461 . T) (-4460 . T)) +((-4467 |has| |#1| (-569)) (-4465 . T) (-4464 . T)) NIL -(-379) +(-380) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-380 S R UP) +(-381 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-374)))) -(-381 R UP) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-375)))) +(-382 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4460 . T) (-4461 . T) (-4463 . T)) +((-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-382 S A R B) +(-383 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-383 A S) +(-384 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4467)) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1122)))) -(-384 S) +((|HasAttribute| |#1| (QUOTE -4471)) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1125)))) +(-385 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4466 . T)) +((-4470 . T)) NIL -(-385 |VarSet| R) +(-386 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4461 . T) (-4460 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4465 . T) (-4464 . T)) NIL -(-386 S V) +(-387 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-387 S R) +(-388 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) -(-388 R) +((|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) +(-389 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL NIL -(-389 |Par|) +(-390 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-390) +(-391) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4449 . T) (-4457 . T) (-4144 . T) (-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4453 . T) (-4461 . T) (-4148 . T) (-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-391 |Par|) +(-392 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-392 R S) +(-393 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4461 . T) (-4460 . T)) +((-4465 . T) (-4464 . T)) ((|HasCategory| |#1| (QUOTE (-174)))) -(-393 R |Basis|) +(-394 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4461 . T) (-4460 . T)) +((-4465 . T) (-4464 . T)) NIL -(-394) +(-395) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-395) +(-396) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-396 R S) +(-397 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4461 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) -(-397 S) +((-4465 . T) (-4464 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125))))) +(-398 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-398 S) +(-399 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-862)))) -(-399) +((|HasCategory| |#1| (QUOTE (-865)))) +(-400) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-400) +(-401) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-401) +(-402) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) NIL NIL -(-402 |n| |class| R) +(-403 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4461 . T) (-4460 . T)) +((-4465 . T) (-4464 . T)) NIL -(-403) +(-404) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-404 -2022 UP UPUP R) +(-405 -2051 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-405 S) +(-406 S) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-406) +(-407) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-407) +(-408) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) NIL NIL -(-408) +(-409) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-409) +(-410) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-410 -2676 |returnType| -1373 |symbols|) +(-411 -2713 |returnType| -1376 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-411 -2022 UP) +(-412 -2051 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-412 R) +(-413 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) NIL NIL -(-413 S) +(-414 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-414) +(-415) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-415 S) +(-416 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4449)) (|HasAttribute| |#1| (QUOTE -4457))) -(-416) +((|HasAttribute| |#1| (QUOTE -4453)) (|HasAttribute| |#1| (QUOTE -4461))) +(-417) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-4144 . T) (-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4148 . T) (-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-417 R S) +(-418 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-418 A B) +(-419 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-419 S) +(-420 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4453 -12 (|has| |#1| (-6 -4464)) (|has| |#1| (-464)) (|has| |#1| (-6 -4453))) (-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-841)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-862))) (-2802 (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-862)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-841)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-841)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-841))))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-841))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-841)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4464)) (|HasAttribute| |#1| (QUOTE -4453)) (|HasCategory| |#1| (QUOTE (-464)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-420 S R UP) +((-4457 -12 (|has| |#1| (-6 -4468)) (|has| |#1| (-465)) (|has| |#1| (-6 -4457))) (-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-865))) (-2839 (|HasCategory| |#1| (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-865)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-844))))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-844))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-558))) (-12 (|HasAttribute| |#1| (QUOTE -4468)) (|HasAttribute| |#1| (QUOTE -4457)) (|HasCategory| |#1| (QUOTE (-465)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-421 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-421 R UP) +(-422 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4460 . T) (-4461 . T) (-4463 . T)) +((-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-422 A S) +(-423 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) -(-423 S) +((|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) +(-424 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-424 R1 F1 U1 A1 R2 F2 U2 A2) +(-425 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-425 R -2022 UP A) +(-426 R -2051 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4463 . T)) +((-4467 . T)) NIL -(-426 R -2022 UP A |ibasis|) +(-427 R -2051 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1060) (|devaluate| |#2|)))) -(-427 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -1063) (|devaluate| |#2|)))) +(-428 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-428 S R) +(-429 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-374)))) -(-429 R) +((|HasCategory| |#2| (QUOTE (-375)))) +(-430 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4463 |has| |#1| (-568)) (-4461 . T) (-4460 . T)) +((-4467 |has| |#1| (-569)) (-4465 . T) (-4464 . T)) NIL -(-430 R) -((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1198)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -319) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -296) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1243))) (-2802 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1243)))) (|HasCategory| |#1| (QUOTE (-1044))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464)))) (-431 R) +((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) +((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1201)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -320) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -297) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1246))) (-2839 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1246)))) (|HasCategory| |#1| (QUOTE (-1047))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-465)))) +(-432 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL NIL -(-432 R FE |x| |cen|) +(-433 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-433 R A S B) +(-434 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-434 R FE |Expon| UPS TRAN |x|) +(-435 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-435 S A R B) +(-436 S A R B) ((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-436 A S) +(-437 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-379)))) -(-437 S) +((|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-380)))) +(-438 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4466 . T) (-4456 . T) (-4467 . T)) +((-4470 . T) (-4460 . T) (-4471 . T)) NIL -(-438 R -2022) +(-439 R -2051) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-439 R E) +(-440 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4453 -12 (|has| |#1| (-6 -4453)) (|has| |#2| (-6 -4453))) (-4460 . T) (-4461 . T) (-4463 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4453)) (|HasAttribute| |#2| (QUOTE -4453)))) -(-440 R -2022) +((-4457 -12 (|has| |#1| (-6 -4457)) (|has| |#2| (-6 -4457))) (-4464 . T) (-4465 . T) (-4467 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4457)) (|HasAttribute| |#2| (QUOTE -4457)))) +(-441 R -2051) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-441 S R) +(-442 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-1134))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) -(-442 R) +((|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-1137))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) +(-443 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4463 -2802 (|has| |#1| (-1071)) (|has| |#1| (-485))) (-4461 |has| |#1| (-174)) (-4460 |has| |#1| (-174)) ((-4468 "*") |has| |#1| (-568)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-568)) (-4458 |has| |#1| (-568))) +((-4467 -2839 (|has| |#1| (-1074)) (|has| |#1| (-486))) (-4465 |has| |#1| (-174)) (-4464 |has| |#1| (-174)) ((-4472 "*") |has| |#1| (-569)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-569)) (-4462 |has| |#1| (-569))) NIL -(-443 R -2022) +(-444 R -2051) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-444 R -2022) +(-445 R -2051) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-445 R -2022) +(-446 R -2051) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-446) +(-447) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-447 R -2022 UP) +(-448 R -2051 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-48))))) -(-448) +((|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-48))))) +(-449) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-449) +(-450) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL -(-450 |f|) +(-451 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-451) +(-452) ((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL -(-452) +(-453) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-453) +(-454) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-454 UP) +(-455 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-455 R UP -2022) +(-456 R UP -2051) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-456 R UP) +(-457 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-457 R) +(-458 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-416)))) -(-458) +((|HasCategory| |#1| (QUOTE (-417)))) +(-459) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-459 |Dom| |Expon| |VarSet| |Dpol|) +(-460 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-460 |Dom| |Expon| |VarSet| |Dpol|) +(-461 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-461 |Dom| |Expon| |VarSet| |Dpol|) +(-462 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-462 |Dom| |Expon| |VarSet| |Dpol|) +(-463 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-374)))) -(-463 S) +((|HasCategory| |#1| (QUOTE (-375)))) +(-464 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-464) +(-465) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-465 R |n| |ls| |gamma|) +(-466 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4463 |has| (-419 (-972 |#1|)) (-568)) (-4461 . T) (-4460 . T)) -((|HasCategory| (-419 (-972 |#1|)) (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-419 (-972 |#1|)) (QUOTE (-568)))) -(-466 |vl| R E) +((-4467 |has| (-420 (-975 |#1|)) (-569)) (-4465 . T) (-4464 . T)) +((|HasCategory| (-420 (-975 |#1|)) (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-420 (-975 |#1|)) (QUOTE (-569)))) +(-467 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4468 "*") |has| |#2| (-174)) (-4459 |has| |#2| (-568)) (-4464 |has| |#2| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#2| (QUOTE (-929))) (-2802 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2802 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2802 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2802 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4464)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-467 R BP) +(((-4472 "*") |has| |#2| (-174)) (-4463 |has| |#2| (-569)) (-4468 |has| |#2| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#2| (QUOTE (-932))) (-2839 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2839 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2839 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2839 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4468)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-468 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-468 OV E S R P) +(-469 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-469 E OV R P) +(-470 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-470 R) +(-471 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-471 R FE) +(-472 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) NIL NIL -(-472 RP TP) +(-473 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-473 |vl| R IS E |ff| P) +(-474 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4461 . T) (-4460 . T)) +((-4465 . T) (-4464 . T)) NIL -(-474 E V R P Q) +(-475 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-475 R E |VarSet| P) +(-476 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4467 . T) (-4466 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-476 S R E) +((-4471 . T) (-4470 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-477 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-477 R E) +(-478 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-478) +(-479) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-479) +(-480) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-480) +(-481) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-481 S R E) +(-482 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-482 R E) +(-483 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-483 |lv| -2022 R) +(-484 |lv| -2051 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-484 S) +(-485 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-485) +(-486) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4463 . T)) +((-4467 . T)) NIL -(-486 |Coef| |var| |cen|) +(-487 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1134))) (|HasCategory| |#1| (QUOTE (-374))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2802 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3501) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2802 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4190) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -2029) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|))))))) -(-487 |Key| |Entry| |Tbl| |dent|) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1137))) (|HasCategory| |#1| (QUOTE (-375))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2839 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3544) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2839 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4147) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -2058) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|))))))) +(-488 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4467 . T)) -((-12 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4291) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-862))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122)))) -(-488 R E V P) +((-4471 . T)) +((-12 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4295) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4444) (|devaluate| |#2|)))))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-865))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125)))) +(-489 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4467 . T) (-4466 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-489) +((-4471 . T) (-4470 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-490) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-490) +(-491) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-491 |Key| |Entry| |hashfn|) +(-492 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4291) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1122))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102)))) -(-492) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4295) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4444) (|devaluate| |#2|)))))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1125))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102)))) +(-493) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-493 |vl| R) +(-494 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4468 "*") |has| |#2| (-174)) (-4459 |has| |#2| (-568)) (-4464 |has| |#2| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#2| (QUOTE (-929))) (-2802 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2802 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2802 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2802 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4464)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-494 -2755 S) +(((-4472 "*") |has| |#2| (-174)) (-4463 |has| |#2| (-569)) (-4468 |has| |#2| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#2| (QUOTE (-932))) (-2839 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2839 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2839 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2839 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4468)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-495 -2791 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4460 |has| |#2| (-1071)) (-4461 |has| |#2| (-1071)) (-4463 |has| |#2| (-6 -4463)) (-4466 . T)) -((-2802 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))))) (-2802 (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1122)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#2| (QUOTE (-374))) (-2802 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2802 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-806))) (-2802 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-379))) (-2802 (-12 (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1071)))) (|HasCategory| |#2| (QUOTE (-238))) (-2802 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1071))))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))))) (|HasCategory| |#2| (QUOTE (-1122))) (-2802 (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-739)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-806)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1122))))) (-2802 (-12 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1071))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-2802 (-12 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198))))) (-2802 (|HasCategory| |#2| (QUOTE (-1071))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1122)))) (|HasAttribute| |#2| (QUOTE -4463)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) -(-495) +((-4464 |has| |#2| (-1074)) (-4465 |has| |#2| (-1074)) (-4467 |has| |#2| (-6 -4467)) (-4470 . T)) +((-2839 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))))) (-2839 (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1125)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#2| (QUOTE (-375))) (-2839 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2839 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-809))) (-2839 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-380))) (-2839 (-12 (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-239))) (-2839 (|HasCategory| |#2| (QUOTE (-239))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1074))))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))))) (|HasCategory| |#2| (QUOTE (-1125))) (-2839 (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-380)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-742)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-809)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-865)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1125))))) (-2839 (-12 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1074))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-2839 (-12 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-865))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201))))) (-2839 (|HasCategory| |#2| (QUOTE (-1074))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1125)))) (|HasAttribute| |#2| (QUOTE -4467)) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))))) +(-496) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL -(-496 S) +(-497 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-497 -2022 UP UPUP R) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-498 -2051 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-498 BP) +(-499 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-499) +(-500) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| (-576) (QUOTE (-929))) (|HasCategory| (-576) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1044))) (|HasCategory| (-576) (QUOTE (-833))) (|HasCategory| (-576) (QUOTE (-862))) (-2802 (|HasCategory| (-576) (QUOTE (-833))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1174))) (|HasCategory| (-576) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1198)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -652) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-929)))) (|HasCategory| (-576) (QUOTE (-146))))) -(-500 A S) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| (-577) (QUOTE (-932))) (|HasCategory| (-577) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1047))) (|HasCategory| (-577) (QUOTE (-836))) (|HasCategory| (-577) (QUOTE (-865))) (-2839 (|HasCategory| (-577) (QUOTE (-836))) (|HasCategory| (-577) (QUOTE (-865)))) (|HasCategory| (-577) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1177))) (|HasCategory| (-577) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1201)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -654) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-932)))) (|HasCategory| (-577) (QUOTE (-146))))) +(-501 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4466)) (|HasAttribute| |#1| (QUOTE -4467)) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) -(-501 S) +((|HasAttribute| |#1| (QUOTE -4470)) (|HasAttribute| |#1| (QUOTE -4471)) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) +(-502 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL -(-502 S) +(-503 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-503) +(-504) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) NIL NIL -(-504 S) +(-505 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-505) +(-506) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-506 -2022 UP |AlExt| |AlPol|) +(-507 -2051 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-507) +(-508) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| $ (QUOTE (-1071))) (|HasCategory| $ (LIST (QUOTE -1060) (QUOTE (-576))))) -(-508 S |mn|) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| $ (QUOTE (-1074))) (|HasCategory| $ (LIST (QUOTE -1063) (QUOTE (-577))))) +(-509 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4467 . T) (-4466 . T)) -((-2802 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2802 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-509 R |mnRow| |mnCol|) +((-4471 . T) (-4470 . T)) +((-2839 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2839 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-510 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-510 K R UP) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-511 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-511 R UP -2022) +(-512 R UP -2051) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-512 |mn|) +(-513 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4467 . T) (-4466 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1122))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-112) (QUOTE (-1122))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-112) (QUOTE (-102)))) -(-513 K R UP L) +((-4471 . T) (-4470 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1125))) (|HasCategory| (-112) (LIST (QUOTE -320) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-112) (QUOTE (-865))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| (-112) (QUOTE (-1125))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-112) (QUOTE (-102)))) +(-514 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-514) +(-515) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-515 R Q A B) +(-516 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-516 -2022 |Expon| |VarSet| |DPoly|) +(-517 -2051 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-1198))))) -(-517 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-1201))))) +(-518 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-518) +(-519) ((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system"))) NIL NIL -(-519 A S) +(-520 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) -(-520 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125))))) +(-521 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) -(-521 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125))))) +(-522 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|Pair| |#2| |#1|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-522 A S) +(-523 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) -(-523 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125))))) +(-524 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) -(-524 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125))))) +(-525 A S) ((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) -(-525 S A B) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125))))) +(-526 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-526 A B) +(-527 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-527 S E |un|) +(-528 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-805)))) -(-528 S |mn|) +((|HasCategory| |#2| (QUOTE (-808)))) +(-529 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4467 . T) (-4466 . T)) -((-2802 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2802 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-529) +((-4471 . T) (-4470 . T)) +((-2839 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2839 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-530) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-530 |p| |n|) +(-531 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((-2802 (|HasCategory| (-593 |#1|) (QUOTE (-146))) (|HasCategory| (-593 |#1|) (QUOTE (-379)))) (|HasCategory| (-593 |#1|) (QUOTE (-148))) (|HasCategory| (-593 |#1|) (QUOTE (-379))) (|HasCategory| (-593 |#1|) (QUOTE (-146)))) -(-531 R |mnRow| |mnCol| |Row| |Col|) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((-2839 (|HasCategory| (-594 |#1|) (QUOTE (-146))) (|HasCategory| (-594 |#1|) (QUOTE (-380)))) (|HasCategory| (-594 |#1|) (QUOTE (-148))) (|HasCategory| (-594 |#1|) (QUOTE (-380))) (|HasCategory| (-594 |#1|) (QUOTE (-146)))) +(-532 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-532 S |mn|) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-533 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4467 . T) (-4466 . T)) -((-2802 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2802 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-533 R |Row| |Col| M) +((-4471 . T) (-4470 . T)) +((-2839 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2839 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-534 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4467))) -(-534 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4471))) +(-535 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4467))) -(-535 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4471))) +(-536 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4468 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-536) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4472 "*"))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-537) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-537) +(-538) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-538 S) +(-539 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-539) +(-540) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-540 GF) +(-541 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-541) +(-542) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-542 R) +(-543 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-543 |Varset|) +(-544 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL -((-12 (|HasCategory| (-784) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-1122))))) -(-544 K -2022 |Par|) +((-12 (|HasCategory| (-787) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-1125))))) +(-545 K -2051 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-545) +(-546) NIL NIL NIL -(-546) +(-547) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-547 R) +(-548 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-548) +(-549) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-549 |Coef| UTS) +(-550 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-550 K -2022 |Par|) +(-551 K -2051 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-551 R BP |pMod| |nextMod|) +(-552 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-552 OV E R P) +(-553 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-553 K UP |Coef| UTS) +(-554 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-554 |Coef| UTS) +(-555 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-555 R UP) +(-556 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL -(-556 S) +(-557 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-557) +(-558) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4464 . T) (-4465 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4468 . T) (-4469 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-558) +(-559) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-559) +(-560) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-560) +(-561) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-561) +(-562) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-562 |Key| |Entry| |addDom|) +(-563 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4291) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1122))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102)))) -(-563 R -2022) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4295) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4444) (|devaluate| |#2|)))))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1125))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102)))) +(-564 R -2051) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-564 R0 -2022 UP UPUP R) +(-565 R0 -2051 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-565) +(-566) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-566 R) +(-567 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-4144 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4148 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-567 S) +(-568 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-568) +(-569) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-569 R -2022) +(-570 R -2051) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-570 I) +(-571 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-571) +(-572) ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-572 R -2022 L) +(-573 R -2051 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -669) (|devaluate| |#2|)))) -(-573) +((|HasCategory| |#3| (LIST (QUOTE -672) (|devaluate| |#2|)))) +(-574) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-574 -2022 UP UPUP R) +(-575 -2051 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-575 -2022 UP) +(-576 -2051 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-576) +(-577) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4448 . T) (-4454 . T) (-4458 . T) (-4453 . T) (-4464 . T) (-4465 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4452 . T) (-4458 . T) (-4462 . T) (-4457 . T) (-4468 . T) (-4469 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-577) +(-578) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-578 R -2022 L) +(-579 R -2051 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -669) (|devaluate| |#2|)))) -(-579 R -2022) +((|HasCategory| |#3| (LIST (QUOTE -672) (|devaluate| |#2|)))) +(-580 R -2051) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1161)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-641))))) -(-580 -2022 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-1164)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-642))))) +(-581 -2051 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-581 S) +(-582 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-582 -2022) +(-583 -2051) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-583 R) +(-584 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-4144 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4148 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-584) +(-585) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-585 R -2022) +(-586 R -2051) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-294))) (|HasCategory| |#2| (QUOTE (-641))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-294)))) (|HasCategory| |#1| (QUOTE (-568)))) -(-586 -2022 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-295))) (|HasCategory| |#2| (QUOTE (-642))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-1201))))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-295)))) (|HasCategory| |#1| (QUOTE (-569)))) +(-587 -2051 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-587 R -2022) +(-588 R -2051) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-588) +(-589) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-589) +(-590) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file."))) NIL NIL -(-590) +(-591) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input."))) NIL NIL -(-591) +(-592) ((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-592 |p| |unBalanced?|) +(-593 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-593 |p|) +(-594 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-379)))) -(-594) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-380)))) +(-595) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-595 R -2022) +(-596 R -2051) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-596 E -2022) +(-597 E -2051) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-597) +(-598) ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-598 -2022) +(-599 -2051) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4461 . T) (-4460 . T)) -((|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-1198))))) -(-599 I) +((-4465 . T) (-4464 . T)) +((|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-1201))))) +(-600 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-600 GF) +(-601 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-601 R) +(-602 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-148)))) -(-602) +(-603) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-603 R E V P TS) +(-604 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-604) +(-605) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-605 |mn|) +(-606 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) -((-4467 . T) (-4466 . T)) -((-2802 (-12 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-2802 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-877)))) (-12 (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-2802 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1122)))) (|HasCategory| (-145) (QUOTE (-862))) (-2802 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) -(-606 E V R P) +((-4471 . T) (-4470 . T)) +((-2839 (-12 (|HasCategory| (-145) (QUOTE (-865))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (-2839 (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-880)))) (-12 (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -627) (QUOTE (-549)))) (-2839 (|HasCategory| (-145) (QUOTE (-865))) (|HasCategory| (-145) (QUOTE (-1125)))) (|HasCategory| (-145) (QUOTE (-865))) (-2839 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-865))) (|HasCategory| (-145) (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) +(-607 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-607 |Coef|) -((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))) (|HasCategory| (-576) (QUOTE (-1134))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3501) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576)))))) (-608 |Coef|) +((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))) (|HasCategory| (-577) (QUOTE (-1137))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3544) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577)))))) +(-609 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4468 "*") |has| |#1| (-568)) (-4459 |has| |#1| (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-568)))) -(-609) +(((-4472 "*") |has| |#1| (-569)) (-4463 |has| |#1| (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-569)))) +(-610) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) NIL NIL -(-610 A B) +(-611 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-611 A B C) +(-612 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-612 R -2022 FG) +(-613 R -2051 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-613 S) +(-614 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-614 R |mn|) +(-615 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4467 . T) (-4466 . T)) -((-2802 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2802 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#1| (QUOTE (-1071))) (-12 (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-1071)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-615 S |Index| |Entry|) +((-4471 . T) (-4470 . T)) +((-2839 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2839 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-616 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4467)) (|HasCategory| |#2| (QUOTE (-862))) (|HasAttribute| |#1| (QUOTE -4466)) (|HasCategory| |#3| (QUOTE (-1122)))) -(-616 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4471)) (|HasCategory| |#2| (QUOTE (-865))) (|HasAttribute| |#1| (QUOTE -4470)) (|HasCategory| |#3| (QUOTE (-1125)))) +(-617 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-617) +(-618) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes."))) NIL NIL -(-618) +(-619) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-619 R A) +(-620 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4463 -2802 (-2724 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4461 . T) (-4460 . T)) -((-2802 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) -(-620 |Entry|) +((-4467 -2839 (-2761 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4465 . T) (-4464 . T)) +((-2839 (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) +(-621 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4291) (QUOTE (-1180))) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| (-1180) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (QUOTE (-102)))) -(-621 S |Key| |Entry|) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4295) (QUOTE (-1183))) (LIST (QUOTE |:|) (QUOTE -4444) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| (-1183) (QUOTE (-865))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (QUOTE (-102)))) +(-622 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-622 |Key| |Entry|) +(-623 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4467 . T)) +((-4471 . T)) NIL -(-623 R S) +(-624 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-624 S) +(-625 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) -(-625 S) +((|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) +(-626 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-626 S) +(-627 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-627 -2022 UP) +(-628 -2051 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-628 S) +(-629 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-629) +(-630) ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-630 S) +(-631 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-631 S R) +(-632 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-632 R) +(-633 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4463 . T)) +((-4467 . T)) NIL -(-633 A R S) +(-634 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-861)))) -(-634 R -2022) +((-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-864)))) +(-635 R -2051) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-635 R UP) +(-636 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4461 . T) (-4460 . T) ((-4468 "*") . T) (-4459 . T) (-4463 . T)) -((|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) -(-636 R E V P TS ST) +((-4465 . T) (-4464 . T) ((-4472 "*") . T) (-4463 . T) (-4467 . T)) +((|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) +(-637 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-637 OV E Z P) +(-638 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-638) +(-639) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-639 |VarSet| R |Order|) +(-640 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4463 . T)) +((-4467 . T)) NIL -(-640 R |ls|) +(-641 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-641) +(-642) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-642 R -2022) +(-643 R -2051) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-643 |lv| -2022) +(-644 |lv| -2051) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-644) +(-645) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4467 . T)) -((-12 (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4291) (QUOTE (-1180))) (LIST (QUOTE |:|) (QUOTE -4440) (QUOTE (-52))))))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-52) (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-52) (QUOTE (-1122))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1122))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-1180) (QUOTE (-862))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-877))))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1122))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (QUOTE (-1122)))) -(-645 S R) +((-4471 . T)) +((-12 (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4295) (QUOTE (-1183))) (LIST (QUOTE |:|) (QUOTE -4444) (QUOTE (-52))))))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (QUOTE (-1125))) (|HasCategory| (-52) (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (QUOTE (-1125))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-52) (QUOTE (-1125))) (|HasCategory| (-52) (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1125))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-1183) (QUOTE (-865))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-52) (LIST (QUOTE -626) (QUOTE (-880))))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1125))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (QUOTE (-1125)))) +(-646 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-374)))) -(-646 R) +((|HasCategory| |#2| (QUOTE (-375)))) +(-647 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4461 . T) (-4460 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4465 . T) (-4464 . T)) NIL -(-647 R A) +(-648 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4463 -2802 (-2724 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4461 . T) (-4460 . T)) -((-2802 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) -(-648 R FE) +((-4467 -2839 (-2761 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4465 . T) (-4464 . T)) +((-2839 (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) +(-649 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-649 R) +(-650 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-650 S R) -((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) +(-651 |vars|) +((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a vector space basis,{} given by symbols.}")) (|dual| (($ (|DualBasis| |#1|)) "\\spad{dual f} constructs the dual vector of a linear form which is part of a basis."))) +NIL NIL -((-2712 (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-374)))) -(-651 K B) -((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|) (|List| (|OrderedVariableList| |#2|))) "\\spad{linearElement([x1,..,xn],[b1,..,bn]) constructs a linear element with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{b1},{}...\\spad{bn}."))) -((-4461 . T) (-4460 . T)) +(-652 S R) +((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -(-652 R) +((-2749 (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-375)))) +(-653 K B) +((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}."))) +((-4465 . T) (-4464 . T)) +((-12 (|HasCategory| (-651 |#2|) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-1125))))) +(-654 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL NIL -(-653 S) +(-655 K B) +((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}."))) +((-4465 . T) (-4464 . T)) +NIL +(-656 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-654 A B) +(-657 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-655 A B) +(-658 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-656 A B C) +(-659 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-657 S) +(-660 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4467 . T) (-4466 . T)) -((-2802 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2802 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-658 T$) +((-4471 . T) (-4470 . T)) +((-2839 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2839 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-661 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-659 S) +(-662 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-660 S) +(-663 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-661 R) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-664 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-662 S E |un|) +(-665 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-663 A S) +(-666 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4467))) -(-664 S) +((|HasAttribute| |#1| (QUOTE -4471))) +(-667 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-665 R -2022 L) +(-668 R -2051 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-666 A) +(-669 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) -(-667 A M) +((-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375)))) +(-670 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) -(-668 S A) +((-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375)))) +(-671 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-374)))) -(-669 A) +((|HasCategory| |#2| (QUOTE (-375)))) +(-672 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4460 . T) (-4461 . T) (-4463 . T)) +((-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-670 -2022 UP) +(-673 -2051 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-671 A -1411) +(-674 A -4382) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) -(-672 A L) +((-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375)))) +(-675 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-673 S) +(-676 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-674) +(-677) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-675 M R S) +(-678 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4461 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-804)))) -(-676 R) +((-4465 . T) (-4464 . T)) +((|HasCategory| |#1| (QUOTE (-807)))) +(-679 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-677 |VarSet| R) +(-680 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4461 . T) (-4460 . T)) -((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-174)))) -(-678 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4465 . T) (-4464 . T)) +((|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-174)))) +(-681 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-679 S) +(-682 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4467 . T) (-4466 . T)) +((-4471 . T) (-4470 . T)) NIL -(-680 -2022) +(-683 -2051) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-681 -2022 |Row| |Col| M) +(-684 -2051 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-682 R E OV P) +(-685 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-683 |n| R) +(-686 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4463 . T) (-4466 . T) (-4460 . T) (-4461 . T)) -((|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4468 "*"))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2802 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568))) (-2802 (|HasAttribute| |#2| (QUOTE (-4468 "*"))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) -(-684) +((-4467 . T) (-4470 . T) (-4464 . T) (-4465 . T)) +((|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE (-4472 "*"))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2839 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-569))) (-2839 (|HasAttribute| |#2| (QUOTE (-4472 "*"))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +(-687) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-685 |VarSet|) +(-688 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-686 A S) +(-689 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-687 S) +(-690 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-688 R) +(-691 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-2802 (-12 (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-689) +((-2839 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-692) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-690 |VarSet|) +(-693 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-691 A) +(-694 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-692 A C) +(-695 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-693 A B C) +(-696 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-694) +(-697) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-695 A) +(-698 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-696 A C) +(-699 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-697 A B C) +(-700 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-698 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-701 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-699 S R |Row| |Col|) +(-702 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4468 "*"))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568)))) -(-700 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4472 "*"))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-569)))) +(-703 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4466 . T) (-4467 . T)) +((-4470 . T) (-4471 . T)) NIL -(-701 R |Row| |Col| M) +(-704 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568)))) -(-702 R) +((|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569)))) +(-705 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4466 . T) (-4467 . T)) -((-2802 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4468 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-703 R) +((-4470 . T) (-4471 . T)) +((-2839 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4472 "*"))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-706 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-704 T$) +(-707 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-705 S -2022 FLAF FLAS) +(-708 S -2051 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-706 R Q) +(-709 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-707) +(-710) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4459 . T) (-4464 |has| (-712) (-374)) (-4458 |has| (-712) (-374)) (-4155 . T) (-4465 |has| (-712) (-6 -4465)) (-4462 |has| (-712) (-6 -4462)) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| (-712) (QUOTE (-148))) (|HasCategory| (-712) (QUOTE (-146))) (|HasCategory| (-712) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-712) (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| (-712) (QUOTE (-379))) (|HasCategory| (-712) (QUOTE (-374))) (-2802 (|HasCategory| (-712) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-712) (QUOTE (-374)))) (|HasCategory| (-712) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-712) (QUOTE (-238))) (|HasCategory| (-712) (QUOTE (-237))) (-2802 (-12 (|HasCategory| (-712) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-712) (QUOTE (-374)))) (|HasCategory| (-712) (LIST (QUOTE -920) (QUOTE (-1198))))) (-2802 (|HasCategory| (-712) (QUOTE (-374))) (|HasCategory| (-712) (QUOTE (-360)))) (|HasCategory| (-712) (QUOTE (-360))) (|HasCategory| (-712) (LIST (QUOTE -296) (QUOTE (-712)) (QUOTE (-712)))) (|HasCategory| (-712) (LIST (QUOTE -319) (QUOTE (-712)))) (|HasCategory| (-712) (LIST (QUOTE -526) (QUOTE (-1198)) (QUOTE (-712)))) (|HasCategory| (-712) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| (-712) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| (-712) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| (-712) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (-2802 (|HasCategory| (-712) (QUOTE (-317))) (|HasCategory| (-712) (QUOTE (-374))) (|HasCategory| (-712) (QUOTE (-360)))) (|HasCategory| (-712) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-712) (QUOTE (-1044))) (|HasCategory| (-712) (QUOTE (-1224))) (-12 (|HasCategory| (-712) (QUOTE (-1024))) (|HasCategory| (-712) (QUOTE (-1224)))) (-2802 (-12 (|HasCategory| (-712) (QUOTE (-317))) (|HasCategory| (-712) (QUOTE (-929)))) (|HasCategory| (-712) (QUOTE (-374))) (-12 (|HasCategory| (-712) (QUOTE (-360))) (|HasCategory| (-712) (QUOTE (-929))))) (-2802 (-12 (|HasCategory| (-712) (QUOTE (-317))) (|HasCategory| (-712) (QUOTE (-929)))) (-12 (|HasCategory| (-712) (QUOTE (-374))) (|HasCategory| (-712) (QUOTE (-929)))) (-12 (|HasCategory| (-712) (QUOTE (-360))) (|HasCategory| (-712) (QUOTE (-929))))) (|HasCategory| (-712) (QUOTE (-557))) (-12 (|HasCategory| (-712) (QUOTE (-1082))) (|HasCategory| (-712) (QUOTE (-1224)))) (|HasCategory| (-712) (QUOTE (-1082))) (|HasCategory| (-712) (QUOTE (-317))) (|HasCategory| (-712) (QUOTE (-929))) (-2802 (-12 (|HasCategory| (-712) (QUOTE (-317))) (|HasCategory| (-712) (QUOTE (-929)))) (|HasCategory| (-712) (QUOTE (-374)))) (-2802 (-12 (|HasCategory| (-712) (QUOTE (-238))) (|HasCategory| (-712) (QUOTE (-374)))) (|HasCategory| (-712) (QUOTE (-237)))) (-2802 (-12 (|HasCategory| (-712) (QUOTE (-317))) (|HasCategory| (-712) (QUOTE (-929)))) (|HasCategory| (-712) (QUOTE (-568)))) (-12 (|HasCategory| (-712) (QUOTE (-237))) (|HasCategory| (-712) (QUOTE (-374)))) (-12 (|HasCategory| (-712) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-712) (QUOTE (-374)))) (-12 (|HasCategory| (-712) (QUOTE (-238))) (|HasCategory| (-712) (QUOTE (-374)))) (-12 (|HasCategory| (-712) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-712) (QUOTE (-374)))) (|HasCategory| (-712) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-712) (QUOTE (-568))) (|HasAttribute| (-712) (QUOTE -4465)) (|HasAttribute| (-712) (QUOTE -4462)) (-12 (|HasCategory| (-712) (QUOTE (-317))) (|HasCategory| (-712) (QUOTE (-929)))) (|HasCategory| (-712) (LIST (QUOTE -920) (QUOTE (-1198)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-712) (QUOTE (-317))) (|HasCategory| (-712) (QUOTE (-929)))) (|HasCategory| (-712) (QUOTE (-146)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-712) (QUOTE (-317))) (|HasCategory| (-712) (QUOTE (-929)))) (|HasCategory| (-712) (QUOTE (-360))))) -(-708 S) +((-4463 . T) (-4468 |has| (-715) (-375)) (-4462 |has| (-715) (-375)) (-4159 . T) (-4469 |has| (-715) (-6 -4469)) (-4466 |has| (-715) (-6 -4466)) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| (-715) (QUOTE (-148))) (|HasCategory| (-715) (QUOTE (-146))) (|HasCategory| (-715) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-715) (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| (-715) (QUOTE (-380))) (|HasCategory| (-715) (QUOTE (-375))) (-2839 (|HasCategory| (-715) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-715) (QUOTE (-375)))) (|HasCategory| (-715) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-715) (QUOTE (-239))) (|HasCategory| (-715) (QUOTE (-238))) (-2839 (-12 (|HasCategory| (-715) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-715) (QUOTE (-375)))) (|HasCategory| (-715) (LIST (QUOTE -923) (QUOTE (-1201))))) (-2839 (|HasCategory| (-715) (QUOTE (-375))) (|HasCategory| (-715) (QUOTE (-361)))) (|HasCategory| (-715) (QUOTE (-361))) (|HasCategory| (-715) (LIST (QUOTE -297) (QUOTE (-715)) (QUOTE (-715)))) (|HasCategory| (-715) (LIST (QUOTE -320) (QUOTE (-715)))) (|HasCategory| (-715) (LIST (QUOTE -527) (QUOTE (-1201)) (QUOTE (-715)))) (|HasCategory| (-715) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| (-715) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| (-715) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| (-715) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (-2839 (|HasCategory| (-715) (QUOTE (-318))) (|HasCategory| (-715) (QUOTE (-375))) (|HasCategory| (-715) (QUOTE (-361)))) (|HasCategory| (-715) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-715) (QUOTE (-1047))) (|HasCategory| (-715) (QUOTE (-1227))) (-12 (|HasCategory| (-715) (QUOTE (-1027))) (|HasCategory| (-715) (QUOTE (-1227)))) (-2839 (-12 (|HasCategory| (-715) (QUOTE (-318))) (|HasCategory| (-715) (QUOTE (-932)))) (|HasCategory| (-715) (QUOTE (-375))) (-12 (|HasCategory| (-715) (QUOTE (-361))) (|HasCategory| (-715) (QUOTE (-932))))) (-2839 (-12 (|HasCategory| (-715) (QUOTE (-318))) (|HasCategory| (-715) (QUOTE (-932)))) (-12 (|HasCategory| (-715) (QUOTE (-375))) (|HasCategory| (-715) (QUOTE (-932)))) (-12 (|HasCategory| (-715) (QUOTE (-361))) (|HasCategory| (-715) (QUOTE (-932))))) (|HasCategory| (-715) (QUOTE (-558))) (-12 (|HasCategory| (-715) (QUOTE (-1085))) (|HasCategory| (-715) (QUOTE (-1227)))) (|HasCategory| (-715) (QUOTE (-1085))) (|HasCategory| (-715) (QUOTE (-318))) (|HasCategory| (-715) (QUOTE (-932))) (-2839 (-12 (|HasCategory| (-715) (QUOTE (-318))) (|HasCategory| (-715) (QUOTE (-932)))) (|HasCategory| (-715) (QUOTE (-375)))) (-2839 (-12 (|HasCategory| (-715) (QUOTE (-239))) (|HasCategory| (-715) (QUOTE (-375)))) (|HasCategory| (-715) (QUOTE (-238)))) (-2839 (-12 (|HasCategory| (-715) (QUOTE (-318))) (|HasCategory| (-715) (QUOTE (-932)))) (|HasCategory| (-715) (QUOTE (-569)))) (-12 (|HasCategory| (-715) (QUOTE (-238))) (|HasCategory| (-715) (QUOTE (-375)))) (-12 (|HasCategory| (-715) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-715) (QUOTE (-375)))) (-12 (|HasCategory| (-715) (QUOTE (-239))) (|HasCategory| (-715) (QUOTE (-375)))) (-12 (|HasCategory| (-715) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-715) (QUOTE (-375)))) (|HasCategory| (-715) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-715) (QUOTE (-569))) (|HasAttribute| (-715) (QUOTE -4469)) (|HasAttribute| (-715) (QUOTE -4466)) (-12 (|HasCategory| (-715) (QUOTE (-318))) (|HasCategory| (-715) (QUOTE (-932)))) (|HasCategory| (-715) (LIST (QUOTE -923) (QUOTE (-1201)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-715) (QUOTE (-318))) (|HasCategory| (-715) (QUOTE (-932)))) (|HasCategory| (-715) (QUOTE (-146)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-715) (QUOTE (-318))) (|HasCategory| (-715) (QUOTE (-932)))) (|HasCategory| (-715) (QUOTE (-361))))) +(-711 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4467 . T)) +((-4471 . T)) NIL -(-709 U) +(-712 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-710) +(-713) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-711 OV E -2022 PG) +(-714 OV E -2051 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-712) +(-715) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-4144 . T) (-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4148 . T) (-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-713 R) +(-716 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-714) +(-717) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4465 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4469 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-715 S D1 D2 I) +(-718 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-716 S) +(-719 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-717 S) +(-720 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-718 S T$) +(-721 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-719 S -2097 I) +(-722 S -2132 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-720 E OV R P) +(-723 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-721 R) +(-724 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4460 . T) (-4461 . T) (-4463 . T)) +((-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-722 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-725 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-723) +(-726) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-724 R |Mod| -2921 -3073 |exactQuo|) +(-727 R |Mod| -3062 -3283 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-725 R |Rep|) +(-728 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-726 IS E |ff|) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4466 |has| |#1| (-375)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4468)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-729 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-727 R M) +(-730 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4461 |has| |#1| (-174)) (-4460 |has| |#1| (-174)) (-4463 . T)) +((-4465 |has| |#1| (-174)) (-4464 |has| |#1| (-174)) (-4467 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-728 R |Mod| -2921 -3073 |exactQuo|) +(-731 R |Mod| -3062 -3283 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4463 . T)) +((-4467 . T)) NIL -(-729 S R) +(-732 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-730 R) +(-733 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4461 . T) (-4460 . T)) +((-4465 . T) (-4464 . T)) NIL -(-731 -2022) +(-734 -2051) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4463 . T)) +((-4467 . T)) NIL -(-732 S) +(-735 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-733) +(-736) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-734 S) +(-737 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-735) +(-738) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-736 S R UP) +(-739 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379)))) -(-737 R UP) +((|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380)))) +(-740 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4459 |has| |#1| (-374)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 |has| |#1| (-375)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-738 S) +(-741 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-739) +(-742) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-740 -2022 UP) +(-743 -2051 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-741 |VarSet| E1 E2 R S PR PS) +(-744 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-742 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-745 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-743 E OV R PPR) +(-746 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-744 |vl| R) +(-747 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4468 "*") |has| |#2| (-174)) (-4459 |has| |#2| (-568)) (-4464 |has| |#2| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#2| (QUOTE (-929))) (-2802 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2802 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2802 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2802 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-879 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4464)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-745 E OV R PRF) +(((-4472 "*") |has| |#2| (-174)) (-4463 |has| |#2| (-569)) (-4468 |has| |#2| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#2| (QUOTE (-932))) (-2839 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2839 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2839 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2839 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-882 |#1|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4468)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-748 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-746 E OV R P) +(-749 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-747 R S M) +(-750 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-748 R M) +(-751 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4461 |has| |#1| (-174)) (-4460 |has| |#1| (-174)) (-4463 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-862)))) -(-749 S) +((-4465 |has| |#1| (-174)) (-4464 |has| |#1| (-174)) (-4467 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-865)))) +(-752 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4456 . T) (-4467 . T)) +((-4460 . T) (-4471 . T)) NIL -(-750 S) +(-753 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4466 . T) (-4456 . T) (-4467 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-751) +((-4470 . T) (-4460 . T) (-4471 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-754) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-752 S) +(-755 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-753 |Coef| |Var|) +(-756 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4461 . T) (-4460 . T) (-4463 . T)) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4465 . T) (-4464 . T) (-4467 . T)) NIL -(-754 OV E R P) +(-757 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-755 E OV R P) +(-758 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-756 S R) +(-759 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-757 R) +(-760 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4461 . T) (-4460 . T)) +((-4465 . T) (-4464 . T)) NIL -(-758) +(-761) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-759) +(-762) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-760) +(-763) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-761) +(-764) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-762) +(-765) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-763) +(-766) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-764) +(-767) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-765) +(-768) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-766) +(-769) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-767) +(-770) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-768) +(-771) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-769) +(-772) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-770) +(-773) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-771) +(-774) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-772) +(-775) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-773 S) +(-776 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-774) +(-777) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-775 S) +(-778 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-776) +(-779) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-777 |Par|) +(-780 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-778 -2022) +(-781 -2051) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-779 P -2022) +(-782 P -2051) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-780 T$) +(-783 T$) NIL NIL NIL -(-781 UP -2022) +(-784 UP -2051) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-782) +(-785) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-783 R) +(-786 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-784) +(-787) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4468 "*") . T)) +(((-4472 "*") . T)) NIL -(-785 R -2022) +(-788 R -2051) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-786 S) +(-789 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-787) +(-790) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-788 R |PolR| E |PolE|) +(-791 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-789 R E V P TS) +(-792 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-790 -2022 |ExtF| |SUEx| |ExtP| |n|) +(-793 -2051 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-791 BP E OV R P) +(-794 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-792 |Par|) +(-795 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-793 R |VarSet|) +(-796 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1198))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1198))))) (-2802 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1198)))) (-2712 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1198)))))) (-2802 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1198)))) (-2712 (|HasCategory| |#1| (QUOTE (-557)))) (-2712 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1198)))) (-2712 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576))))) (-2712 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1198)))) (-2712 (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-576))))))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-794 R S) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-932))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-1201))))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-1201))))) (-2839 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-1201)))) (-2749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-1201)))))) (-2839 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-1201)))) (-2749 (|HasCategory| |#1| (QUOTE (-558)))) (-2749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-1201)))) (-2749 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-577))))) (-2749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-1201)))) (-2749 (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-577))))))) (|HasAttribute| |#1| (QUOTE -4468)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-797 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-795 R) +(-798 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-796 R) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4466 |has| |#1| (-375)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4468)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-799 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) -(-797 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) +(-800 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4467 . T) (-4466 . T)) +((-4471 . T) (-4470 . T)) NIL -(-798 S) +(-801 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1071))) (|HasCategory| |#1| (QUOTE (-174)))) -(-799) +((-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-865)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-174)))) +(-802) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-800) +(-803) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-801) +(-804) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-802) +(-805) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-803 |Curve|) +(-806 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-804) +(-807) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-805) +(-808) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-806) +(-809) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-807) +(-810) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-808) +(-811) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-809 S R) +(-812 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-379)))) -(-810 R) +((|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1085))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-380)))) +(-813 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4460 . T) (-4461 . T) (-4463 . T)) +((-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-811 -2802 R OS S) +(-814 -2839 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-812 R) +(-815 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-2802 (|HasCategory| (-1021 |#1|) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2802 (|HasCategory| (-1021 |#1|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| (-1021 |#1|) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1021 |#1|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) -(-813) +((-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (-2839 (|HasCategory| (-1024 |#1|) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2839 (|HasCategory| (-1024 |#1|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| (-1024 |#1|) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1024 |#1|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) +(-816) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-814 R -2022 L) +(-817 R -2051 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-815 R -2022) +(-818 R -2051) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-816) +(-819) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-817 R -2022) +(-820 R -2051) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-818) +(-821) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-819 -2022 UP UPUP R) +(-822 -2051 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-820 -2022 UP L LQ) +(-823 -2051 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-821) +(-824) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-822 -2022 UP L LQ) +(-825 -2051 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-823 -2022 UP) +(-826 -2051 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-824 -2022 L UP A LO) +(-827 -2051 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-825 -2022 UP) +(-828 -2051 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-826 -2022 LO) +(-829 -2051 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-827 -2022 LODO) +(-830 -2051 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-828 -2755 S |f|) +(-831 -2791 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4460 |has| |#2| (-1071)) (-4461 |has| |#2| (-1071)) (-4463 |has| |#2| (-6 -4463)) (-4466 . T)) -((-2802 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))))) (-2802 (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1122)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#2| (QUOTE (-374))) (-2802 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2802 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-806))) (-2802 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-379))) (-2802 (-12 (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1071)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1071)))) (|HasCategory| |#2| (QUOTE (-238))) (-2802 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1071))))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))))) (|HasCategory| |#2| (QUOTE (-1122))) (-2802 (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-739)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-806)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1122))))) (-2802 (-12 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1071))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-2802 (-12 (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-806))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198))))) (-2802 (|HasCategory| |#2| (QUOTE (-1071))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1122)))) (|HasAttribute| |#2| (QUOTE -4463)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1071)))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) -(-829 R) +((-4464 |has| |#2| (-1074)) (-4465 |has| |#2| (-1074)) (-4467 |has| |#2| (-6 -4467)) (-4470 . T)) +((-2839 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))))) (-2839 (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1125)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#2| (QUOTE (-375))) (-2839 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2839 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-809))) (-2839 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-380))) (-2839 (-12 (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1074)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1074)))) (|HasCategory| |#2| (QUOTE (-239))) (-2839 (|HasCategory| |#2| (QUOTE (-239))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1074))))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))))) (|HasCategory| |#2| (QUOTE (-1125))) (-2839 (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-380)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-742)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-809)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-865)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1125))))) (-2839 (-12 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1074))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-2839 (-12 (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-809))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-865))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201))))) (-2839 (|HasCategory| |#2| (QUOTE (-1074))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1125)))) (|HasAttribute| |#2| (QUOTE -4467)) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1074)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))))) +(-832 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-831 (-1198)) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-831 (-1198)) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-831 (-1198)) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-831 (-1198)) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-831 (-1198)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-830 |Kernels| R |var|) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-932))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-834 (-1201)) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-834 (-1201)) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-834 (-1201)) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-834 (-1201)) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-834 (-1201)) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4468)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-833 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4468 "*") |has| |#2| (-374)) (-4459 |has| |#2| (-374)) (-4464 |has| |#2| (-374)) (-4458 |has| |#2| (-374)) (-4463 . T) (-4461 . T) (-4460 . T)) -((|HasCategory| |#2| (QUOTE (-374)))) -(-831 S) +(((-4472 "*") |has| |#2| (-375)) (-4463 |has| |#2| (-375)) (-4468 |has| |#2| (-375)) (-4462 |has| |#2| (-375)) (-4467 . T) (-4465 . T) (-4464 . T)) +((|HasCategory| |#2| (QUOTE (-375)))) +(-834 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-832 S) +(-835 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-862)))) -(-833) +((|HasCategory| |#1| (QUOTE (-865)))) +(-836) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-834) +(-837) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-835) +(-838) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-836) +(-839) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-837) +(-840) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-838) +(-841) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-839 R) +(-842 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-840 P R) +(-843 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-238)))) -(-841) +((-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-239)))) +(-844) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-842) +(-845) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-843 S) +(-846 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4466 . T) (-4456 . T) (-4467 . T)) +((-4470 . T) (-4460 . T) (-4471 . T)) NIL -(-844) +(-847) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-845 R S) +(-848 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-846 R) +(-849 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4463 |has| |#1| (-861))) -((|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-21))) (-2802 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (-2802 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) -(-847 A S) +((-4467 |has| |#1| (-864))) +((|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-21))) (-2839 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-864)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (-2839 (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-558)))) +(-850 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-848 S) +(-851 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-849 R) +(-852 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4461 |has| |#1| (-174)) (-4460 |has| |#1| (-174)) (-4463 . T)) +((-4465 |has| |#1| (-174)) (-4464 |has| |#1| (-174)) (-4467 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-850) +(-853) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-851) +(-854) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}."))) NIL NIL -(-852) +(-855) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-853) +(-856) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-854) +(-857) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-855 R S) +(-858 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-856 R) +(-859 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4463 |has| |#1| (-861))) -((|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-21))) (-2802 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (-2802 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) -(-857) +((-4467 |has| |#1| (-864))) +((|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-21))) (-2839 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-864)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (-2839 (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-558)))) +(-860) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-858 -2755 S) +(-861 -2791 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-859) +(-862) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-860 S) +(-863 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-861) +(-864) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4463 . T)) +((-4467 . T)) NIL -(-862) +(-865) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}."))) NIL NIL -(-863 T$ |f|) +(-866 T$ |f|) ((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) -(-864 S) +((|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) +(-867 S) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-865) +(-868) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-866 S R) +(-869 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174)))) -(-867 R) +((|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174)))) +(-870 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4460 . T) (-4461 . T) (-4463 . T)) +((-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-868 R C) +(-871 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) -(-869 R |sigma| -4262) +((|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) +(-872 R |sigma| -4267) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) -(-870 |x| R |sigma| -4262) +((-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375)))) +(-873 |x| R |sigma| -4267) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-374)))) -(-871 R) +((-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-375)))) +(-874 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) -(-872) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) +(-875) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-873) +(-876) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-874 S) +(-877 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-875) +(-878) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-876) +(-879) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-877) +(-880) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-878) +(-881) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-879 |VariableList|) +(-882 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-880) +(-883) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-881 R |vl| |wl| |wtlevel|) +(-884 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4461 |has| |#1| (-174)) (-4460 |has| |#1| (-174)) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) -(-882 R PS UP) +((-4465 |has| |#1| (-174)) (-4464 |has| |#1| (-174)) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375)))) +(-885 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-883 R |x| |pt|) +(-886 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-884 |p|) +(-887 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-885 |p|) +(-888 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-886 |p|) +(-889 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| (-885 |#1|) (QUOTE (-929))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| (-885 |#1|) (QUOTE (-146))) (|HasCategory| (-885 |#1|) (QUOTE (-148))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-885 |#1|) (QUOTE (-1044))) (|HasCategory| (-885 |#1|) (QUOTE (-833))) (|HasCategory| (-885 |#1|) (QUOTE (-862))) (-2802 (|HasCategory| (-885 |#1|) (QUOTE (-833))) (|HasCategory| (-885 |#1|) (QUOTE (-862)))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-885 |#1|) (QUOTE (-1174))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| (-885 |#1|) (QUOTE (-237))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-885 |#1|) (QUOTE (-238))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -526) (QUOTE (-1198)) (LIST (QUOTE -885) (|devaluate| |#1|)))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -885) (|devaluate| |#1|)))) (|HasCategory| (-885 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -885) (|devaluate| |#1|)) (LIST (QUOTE -885) (|devaluate| |#1|)))) (|HasCategory| (-885 |#1|) (QUOTE (-317))) (|HasCategory| (-885 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-885 |#1|) (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-885 |#1|) (QUOTE (-929)))) (|HasCategory| (-885 |#1|) (QUOTE (-146))))) -(-887 |p| PADIC) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| (-888 |#1|) (QUOTE (-932))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| (-888 |#1|) (QUOTE (-146))) (|HasCategory| (-888 |#1|) (QUOTE (-148))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-888 |#1|) (QUOTE (-1047))) (|HasCategory| (-888 |#1|) (QUOTE (-836))) (|HasCategory| (-888 |#1|) (QUOTE (-865))) (-2839 (|HasCategory| (-888 |#1|) (QUOTE (-836))) (|HasCategory| (-888 |#1|) (QUOTE (-865)))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-888 |#1|) (QUOTE (-1177))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| (-888 |#1|) (QUOTE (-238))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-888 |#1|) (QUOTE (-239))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -527) (QUOTE (-1201)) (LIST (QUOTE -888) (|devaluate| |#1|)))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -320) (LIST (QUOTE -888) (|devaluate| |#1|)))) (|HasCategory| (-888 |#1|) (LIST (QUOTE -297) (LIST (QUOTE -888) (|devaluate| |#1|)) (LIST (QUOTE -888) (|devaluate| |#1|)))) (|HasCategory| (-888 |#1|) (QUOTE (-318))) (|HasCategory| (-888 |#1|) (QUOTE (-558))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-888 |#1|) (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-888 |#1|) (QUOTE (-932)))) (|HasCategory| (-888 |#1|) (QUOTE (-146))))) +(-890 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-862))) (-2802 (|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1174))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-888 S T$) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#2| (QUOTE (-932))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-865))) (-2839 (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-865)))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-1177))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-558))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-891 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))))) -(-889) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))))) +(-892) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-890) +(-893) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-891) +(-894) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-892 CF1 CF2) +(-895 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-893 |ComponentFunction|) +(-896 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-894 CF1 CF2) +(-897 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-895 |ComponentFunction|) +(-898 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-896) +(-899) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-897 CF1 CF2) +(-900 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-898 |ComponentFunction|) +(-901 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-899) +(-902) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-900 R) +(-903 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-901 R S L) +(-904 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-902 S) +(-905 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-903 |Base| |Subject| |Pat|) +(-906 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2712 (|HasCategory| |#2| (QUOTE (-1071)))) (-2712 (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-1198)))))) (-12 (|HasCategory| |#2| (QUOTE (-1071))) (-2712 (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-1198)))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-1198))))) -(-904 R A B) +((-12 (-2749 (|HasCategory| |#2| (QUOTE (-1074)))) (-2749 (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-1201)))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (-2749 (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-1201)))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-1201))))) +(-907 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-905 R S) +(-908 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-906 R -2097) +(-909 R -2132) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-907 R S) +(-910 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-908 R) +(-911 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-909 |VarSet|) +(-912 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-910 UP R) +(-913 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-911 A T$ S) +(-914 A T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-912 T$ S) +(-915 T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-913) +(-916) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-914 UP -2022) +(-917 UP -2051) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-915) +(-918) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-916) +(-919) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-917 R S) +(-920 R S) ((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4461 . T) (-4460 . T)) +((-4465 . T) (-4464 . T)) NIL -(-918 S) +(-921 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4463 . T)) +((-4467 . T)) NIL -(-919 A S) +(-922 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-920 S) +(-923 S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-921 S) +(-924 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-922 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-925 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-923 S) +(-926 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4463 . T)) +((-4467 . T)) NIL -(-924 S) +(-927 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-925 S) +(-928 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4463 . T)) -((-2802 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-862)))) -(-926 R E |VarSet| S) +((-4467 . T)) +((-2839 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-865)))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-865)))) +(-929 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-927 R S) +(-930 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-928 S) +(-931 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-146)))) -(-929) +(-932) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-930 |p|) +(-933 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-379)))) -(-931 R0 -2022 UP UPUP R) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-380)))) +(-934 R0 -2051 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-932 UP UPUP R) +(-935 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-933 UP UPUP) +(-936 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-934 R) +(-937 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-935 R) +(-938 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-936 E OV R P) +(-939 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-937) +(-940) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-938 -2022) +(-941 -2051) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-939 R) +(-942 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-940) +(-943) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-941) +(-944) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4468 "*") . T)) +(((-4472 "*") . T)) NIL -(-942 -2022 P) +(-945 -2051 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-943 |xx| -2022) +(-946 |xx| -2051) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-944 R |Var| |Expon| GR) +(-947 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-945 S) +(-948 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-946) +(-949) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-947) +(-950) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-948) +(-951) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-949 R -2022) +(-952 R -2051) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-950) +(-953) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-951 S A B) +(-954 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-952 S R -2022) +(-955 S R -2051) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-953 I) +(-956 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-954 S E) +(-957 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-955 S R L) +(-958 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-956 S E V R P) +(-959 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -902) (|devaluate| |#1|)))) -(-957 R -2022 -2097) +((|HasCategory| |#3| (LIST (QUOTE -905) (|devaluate| |#1|)))) +(-960 R -2051 -2132) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-958 -2097) +(-961 -2132) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-959 S R Q) +(-962 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-960 S) +(-963 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-961 S R P) +(-964 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-962) +(-965) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-963 R) +(-966 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4467 . T) (-4466 . T)) -((-2802 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2802 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#1| (QUOTE (-1071))) (-12 (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-1071)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-964 |lv| R) +((-4471 . T) (-4470 . T)) +((-2839 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2839 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-967 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-965 |TheField| |ThePols|) +(-968 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-861)))) -(-966 R S) +((|HasCategory| |#1| (QUOTE (-864)))) +(-969 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-967 |x| R) +(-970 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-968 S R E |VarSet|) +(-971 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-929))) (|HasAttribute| |#2| (QUOTE -4464)) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#4| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) -(-969 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-932))) (|HasAttribute| |#2| (QUOTE -4468)) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#4| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#4| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#4| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) +(-972 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) NIL -(-970 E V R P -2022) +(-973 E V R P -2051) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-971 E |Vars| R P S) +(-974 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-972 R) +(-975 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1198) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-1198) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-1198) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-1198) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-1198) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-973 E V R P -2022) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-932))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1201) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-1201) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-1201) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-1201) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-1201) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4468)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-976 E V R P -2051) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-464)))) -(-974) +((|HasCategory| |#3| (QUOTE (-465)))) +(-977) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-975) +(-978) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-976 R L) +(-979 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-977 A B) +(-980 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-978 S) +(-981 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4467 . T) (-4466 . T)) -((-2802 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2802 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-979) +((-4471 . T) (-4470 . T)) +((-2839 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2839 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-982) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-980 -2022) +(-983 -2051) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-981 I) +(-984 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-982) +(-985) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-983 R E) +(-986 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4464))) -(-984 A B) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4468))) +(-987 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4463 -12 (|has| |#2| (-485)) (|has| |#1| (-485)))) -((-2802 (-12 (|HasCategory| |#1| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-806)))) (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-862))))) (-12 (|HasCategory| |#1| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-806)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-806))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-806))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-739))))) (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-739)))) (-12 (|HasCategory| |#1| (QUOTE (-806))) (|HasCategory| |#2| (QUOTE (-806))))) (-12 (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-739)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-862))))) -(-985) +((-4467 -12 (|has| |#2| (-486)) (|has| |#1| (-486)))) +((-2839 (-12 (|HasCategory| |#1| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-809)))) (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-865))))) (-12 (|HasCategory| |#1| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-809)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-809))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-809))))) (-12 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-486)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-486)))) (-12 (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-742))))) (-12 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-380)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-486)))) (-12 (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-809))) (|HasCategory| |#2| (QUOTE (-809))))) (-12 (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-742)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-865))))) +(-988) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-986 T$) +(-989 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-987 T$) +(-990 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} \\spad{++} returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-988 S T$) +(-991 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-989) +(-992) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-990 S) +(-993 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4466 . T) (-4467 . T)) +((-4470 . T) (-4471 . T)) NIL -(-991 R |polR|) +(-994 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-464)))) -(-992) +((|HasCategory| |#1| (QUOTE (-465)))) +(-995) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-993) +(-996) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-994 S |Coef| |Expon| |Var|) +(-997 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-995 |Coef| |Expon| |Var|) +(-998 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-996) +(-999) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-997 S R E |VarSet| P) +(-1000 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-568)))) -(-998 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-569)))) +(-1001 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4466 . T)) +((-4470 . T)) NIL -(-999 R E V P) +(-1002 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-464)))) -(-1000 K) +((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-465)))) +(-1003 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-1001 |VarSet| E RC P) +(-1004 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-1002 R) +(-1005 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4467 . T) (-4466 . T)) +((-4471 . T) (-4470 . T)) NIL -(-1003 R1 R2) +(-1006 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-1004 R) +(-1007 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-1005 K) +(-1008 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-1006 R E OV PPR) +(-1009 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-1007 K R UP -2022) +(-1010 K R UP -2051) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1008 |vl| |nv|) +(-1011 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-1009 R |Var| |Expon| |Dpoly|) +(-1012 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-317))))) -(-1010 R E V P TS) +((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-318))))) +(-1013 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1011) +(-1014) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-1012 A B R S) +(-1015 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-1013 A S) +(-1016 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1044))) (|HasCategory| |#2| (QUOTE (-833))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1174)))) -(-1014 S) +((|HasCategory| |#2| (QUOTE (-932))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1047))) (|HasCategory| |#2| (QUOTE (-836))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-1177)))) +(-1017 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-1015 |n| K) +(-1018 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-1016) +(-1019) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-1017 S) +(-1020 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4466 . T) (-4467 . T)) +((-4470 . T) (-4471 . T)) NIL -(-1018 S R) +(-1021 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1082))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-300)))) -(-1019 R) +((|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1085))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-301)))) +(-1022 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4459 |has| |#1| (-300)) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 |has| |#1| (-301)) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-1020 QR R QS S) +(-1023 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-1021 R) +(-1024 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4459 |has| |#1| (-300)) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374))) (-2802 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1082))) (|HasCategory| |#1| (QUOTE (-557)))) -(-1022 S) +((-4463 |has| |#1| (-301)) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375))) (-2839 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-558)))) +(-1025 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1023 S) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1026 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1024) +(-1027) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1025 -2022 UP UPUP |radicnd| |n|) +(-1028 -2051 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4459 |has| (-419 |#2|) (-374)) (-4464 |has| (-419 |#2|) (-374)) (-4458 |has| (-419 |#2|) (-374)) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-2802 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-2802 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2802 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2802 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-2802 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -652) (QUOTE (-576)))) (-2802 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) -(-1026 |bb|) +((-4463 |has| (-420 |#2|) (-375)) (-4468 |has| (-420 |#2|) (-375)) (-4462 |has| (-420 |#2|) (-375)) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| (-420 |#2|) (QUOTE (-146))) (|HasCategory| (-420 |#2|) (QUOTE (-148))) (|HasCategory| (-420 |#2|) (QUOTE (-361))) (-2839 (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-380))) (-2839 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2839 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2839 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-361))))) (-2839 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -654) (QUOTE (-577)))) (-2839 (|HasCategory| (-420 |#2|) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) +(-1029 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| (-576) (QUOTE (-929))) (|HasCategory| (-576) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1044))) (|HasCategory| (-576) (QUOTE (-833))) (|HasCategory| (-576) (QUOTE (-862))) (-2802 (|HasCategory| (-576) (QUOTE (-833))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1174))) (|HasCategory| (-576) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1198)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (LIST (QUOTE -652) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-929)))) (|HasCategory| (-576) (QUOTE (-146))))) -(-1027) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| (-577) (QUOTE (-932))) (|HasCategory| (-577) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1047))) (|HasCategory| (-577) (QUOTE (-836))) (|HasCategory| (-577) (QUOTE (-865))) (-2839 (|HasCategory| (-577) (QUOTE (-836))) (|HasCategory| (-577) (QUOTE (-865)))) (|HasCategory| (-577) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1177))) (|HasCategory| (-577) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1201)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -654) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-932)))) (|HasCategory| (-577) (QUOTE (-146))))) +(-1030) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1028) +(-1031) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1029 RP) +(-1032 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1030 S) +(-1033 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1031 A S) +(-1034 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4467)) (|HasCategory| |#2| (QUOTE (-1122)))) -(-1032 S) +((|HasAttribute| |#1| (QUOTE -4471)) (|HasCategory| |#2| (QUOTE (-1125)))) +(-1035 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1033 S) +(-1036 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1034) +(-1037) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4459 . T) (-4464 . T) (-4458 . T) (-4461 . T) (-4460 . T) ((-4468 "*") . T) (-4463 . T)) +((-4463 . T) (-4468 . T) (-4462 . T) (-4465 . T) (-4464 . T) ((-4472 "*") . T) (-4467 . T)) NIL -(-1035 R -2022) +(-1038 R -2051) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1036 R -2022) +(-1039 R -2051) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1037 -2022 UP) +(-1040 -2051 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1038 -2022 UP) +(-1041 -2051 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1039 S) +(-1042 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1040 F1 UP UPUP R F2) +(-1043 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-1041) +(-1044) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1042 |Pol|) +(-1045 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1043 |Pol|) +(-1046 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1044) +(-1047) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1045) +(-1048) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1046 |TheField|) +(-1049 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4459 . T) (-4464 . T) (-4458 . T) (-4461 . T) (-4460 . T) ((-4468 "*") . T) (-4463 . T)) -((-2802 (|HasCategory| (-419 (-576)) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1060) (QUOTE (-576))))) -(-1047 -2022 L) +((-4463 . T) (-4468 . T) (-4462 . T) (-4465 . T) (-4464 . T) ((-4472 "*") . T) (-4467 . T)) +((-2839 (|HasCategory| (-420 (-577)) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-420 (-577)) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 (-577)) (LIST (QUOTE -1063) (QUOTE (-577))))) +(-1050 -2051 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1048 S) +(-1051 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1122)))) -(-1049 R E V P) +((|HasCategory| |#1| (QUOTE (-1125)))) +(-1052 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4467 . T) (-4466 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1050 R) +((-4471 . T) (-4470 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1053 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4468 "*")))) -(-1051 R) +((|HasAttribute| |#1| (QUOTE (-4472 "*")))) +(-1054 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-317)))) -(-1052 S) +((-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-318)))) +(-1055 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1053) +(-1056) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1054 S) +(-1057 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1055 S) +(-1058 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1056 -2022 |Expon| |VarSet| |FPol| |LFPol|) +(-1059 -2051 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +(((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-1057) +(-1060) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4291) (QUOTE (-1198))) (LIST (QUOTE |:|) (QUOTE -4440) (QUOTE (-52))))))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-52) (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-52) (QUOTE (-1122))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1122))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-1198) (QUOTE (-862))) (|HasCategory| (-52) (QUOTE (-1122))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-877))))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (QUOTE (-102)))) -(-1058) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4295) (QUOTE (-1201))) (LIST (QUOTE |:|) (QUOTE -4444) (QUOTE (-52))))))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (QUOTE (-1125))) (|HasCategory| (-52) (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (QUOTE (-1125))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-52) (QUOTE (-1125))) (|HasCategory| (-52) (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1125))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (QUOTE (-1125))) (|HasCategory| (-1201) (QUOTE (-865))) (|HasCategory| (-52) (QUOTE (-1125))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-52) (LIST (QUOTE -626) (QUOTE (-880))))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (QUOTE (-102)))) +(-1061) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1059 A S) +(-1062 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1060 S) +(-1063 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1061 Q R) +(-1064 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1062) +(-1065) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1063 UP) +(-1066 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1064 R) +(-1067 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1065 R) +(-1068 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1066 T$) +(-1069 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1067 T$) +(-1070 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1068 R |ls|) +(-1071 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4467 . T) (-4466 . T)) -((-12 (|HasCategory| (-793 |#1| (-879 |#2|)) (QUOTE (-1122))) (|HasCategory| (-793 |#1| (-879 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -793) (|devaluate| |#1|) (LIST (QUOTE -879) (|devaluate| |#2|)))))) (|HasCategory| (-793 |#1| (-879 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-793 |#1| (-879 |#2|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-879 |#2|) (QUOTE (-379))) (|HasCategory| (-793 |#1| (-879 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-793 |#1| (-879 |#2|)) (QUOTE (-102)))) -(-1069) +((-4471 . T) (-4470 . T)) +((-12 (|HasCategory| (-796 |#1| (-882 |#2|)) (QUOTE (-1125))) (|HasCategory| (-796 |#1| (-882 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -796) (|devaluate| |#1|) (LIST (QUOTE -882) (|devaluate| |#2|)))))) (|HasCategory| (-796 |#1| (-882 |#2|)) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-796 |#1| (-882 |#2|)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-882 |#2|) (QUOTE (-380))) (|HasCategory| (-796 |#1| (-882 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-796 |#1| (-882 |#2|)) (QUOTE (-102)))) +(-1072) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1070 S) +(-1073 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1071) +(-1074) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4463 . T)) +((-4467 . T)) NIL -(-1072 |xx| -2022) +(-1075 |xx| -2051) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1073 S) +(-1076 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-1074 S |m| |n| R |Row| |Col|) +(-1077 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-568))) (|HasCategory| |#4| (QUOTE (-174)))) -(-1075 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-318))) (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (QUOTE (-569))) (|HasCategory| |#4| (QUOTE (-174)))) +(-1078 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4466 . T) (-4461 . T) (-4460 . T)) +((-4470 . T) (-4465 . T) (-4464 . T)) NIL -(-1076 |m| |n| R) +(-1079 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4466 . T) (-4461 . T) (-4460 . T)) -((|HasCategory| |#3| (QUOTE (-174))) (-2802 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548)))) (-2802 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-568))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-877))))) -(-1077 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4470 . T) (-4465 . T) (-4464 . T)) +((|HasCategory| |#3| (QUOTE (-174))) (-2839 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -627) (QUOTE (-549)))) (-2839 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375)))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-569))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-880))))) +(-1080 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1078 R) +(-1081 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-1079 S T$) +(-1082 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1122)))) -(-1080) +((|HasCategory| |#1| (QUOTE (-1125)))) +(-1083) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1081 S) +(-1084 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1082) +(-1085) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-1083 |TheField| |ThePolDom|) +(-1086 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1084) +(-1087) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4454 . T) (-4458 . T) (-4453 . T) (-4464 . T) (-4465 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4458 . T) (-4462 . T) (-4457 . T) (-4468 . T) (-4469 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-1085) +(-1088) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4291) (QUOTE (-1198))) (LIST (QUOTE |:|) (QUOTE -4440) (QUOTE (-52))))))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-52) (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-52) (QUOTE (-1122))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1122))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (QUOTE (-1122))) (|HasCategory| (-1198) (QUOTE (-862))) (|HasCategory| (-52) (QUOTE (-1122))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-877))))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (QUOTE (-102)))) -(-1086 S R E V) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4295) (QUOTE (-1201))) (LIST (QUOTE |:|) (QUOTE -4444) (QUOTE (-52))))))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (QUOTE (-1125))) (|HasCategory| (-52) (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (QUOTE (-1125))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-52) (QUOTE (-1125))) (|HasCategory| (-52) (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1125))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (QUOTE (-1125))) (|HasCategory| (-1201) (QUOTE (-865))) (|HasCategory| (-52) (QUOTE (-1125))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-52) (LIST (QUOTE -626) (QUOTE (-880))))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (QUOTE (-102)))) +(-1089 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-1198))))) -(-1087 R E V) +((|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-1201))))) +(-1090 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) NIL -(-1088) +(-1091) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1089 S |TheField| |ThePols|) +(-1092 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1090 |TheField| |ThePols|) +(-1093 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1091 R E V P TS) +(-1094 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1092 S R E V P) +(-1095 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1093 R E V P) +(-1096 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4467 . T) (-4466 . T)) +((-4471 . T) (-4470 . T)) NIL -(-1094 R E V P TS) +(-1097 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1095) +(-1098) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1096) +(-1099) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1097 |f|) +(-1100 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1098 |Base| R -2022) +(-1101 |Base| R -2051) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1099 |Base| R -2022) +(-1102 |Base| R -2051) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-1100 R |ls|) +(-1103 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1101 UP SAE UPA) +(-1104 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1102 R UP M) +(-1105 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4459 |has| |#1| (-374)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-2802 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))))) -(-1103 UP SAE UPA) +((-4463 |has| |#1| (-375)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-361))) (-2839 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-361)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-361)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-361)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))))) +(-1106 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1104) +(-1107) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1105) +(-1108) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1106 S) +(-1109 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1107) +(-1110) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1108 R) +(-1111 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1109 R) +(-1112 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1110 (-1198)) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-1110 (-1198)) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-1110 (-1198)) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-1110 (-1198)) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-1110 (-1198)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1110 S) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-932))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1113 (-1201)) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-1113 (-1201)) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-1113 (-1201)) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113 (-1201)) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-1113 (-1201)) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4468)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1113 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1111 R S) +(-1114 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-861)))) -(-1112) +((|HasCategory| |#1| (QUOTE (-864)))) +(-1115) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1113 R S) +(-1116 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1114 S) +(-1117 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1116 |#1|) (QUOTE (-1122)))) -(-1115 S) +((|HasCategory| (-1119 |#1|) (QUOTE (-1125)))) +(-1118 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1116 S) +(-1119 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) -(-1117 S L) +((|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1125)))) +(-1120 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1118) +(-1121) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1119 A S) +(-1122 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1120 S) +(-1123 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4456 . T)) +((-4460 . T)) NIL -(-1121 S) +(-1124 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1122) +(-1125) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1123 |m| |n|) +(-1126 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1124 S) +(-1127 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4466 . T) (-4456 . T) (-4467 . T)) -((-2802 (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-1125 |Str| |Sym| |Int| |Flt| |Expr|) +((-4470 . T) (-4460 . T) (-4471 . T)) +((-2839 (-12 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-1128 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL NIL -(-1126) +(-1129) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1127 |Str| |Sym| |Int| |Flt| |Expr|) +(-1130 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1128 R FS) +(-1131 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1129 R E V P TS) +(-1132 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1130 R E V P TS) +(-1133 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1131 R E V P) +(-1134 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4467 . T) (-4466 . T)) +((-4471 . T) (-4470 . T)) NIL -(-1132) +(-1135) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1133 S) +(-1136 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1134) +(-1137) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1135 |dimtot| |dim1| S) +(-1138 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4460 |has| |#3| (-1071)) (-4461 |has| |#3| (-1071)) (-4463 |has| |#3| (-6 -4463)) (-4466 . T)) -((-2802 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))))) (-2802 (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1122)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1071)))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#3| (QUOTE (-374))) (-2802 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1071)))) (-2802 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (QUOTE (-806))) (-2802 (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (QUOTE (-862)))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-379))) (-2802 (-12 (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (-2802 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (QUOTE (-1122)))) (-2802 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (QUOTE (-1122)))) (-2802 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1071)))) (-2802 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1071)))) (-2802 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1071)))) (-2802 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1071)))) (-2802 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1071)))) (|HasCategory| |#3| (QUOTE (-238))) (-2802 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1071))))) (-2802 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -920) (QUOTE (-1198)))))) (|HasCategory| |#3| (QUOTE (-1122))) (-2802 (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-739)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-806)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-862)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1071)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1122))))) (-2802 (-12 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1071))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-2802 (-12 (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-739))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-806))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1071)))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -920) (QUOTE (-1198))))) (-2802 (|HasCategory| |#3| (QUOTE (-1071))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1122)))) (|HasAttribute| |#3| (QUOTE -4463)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1071)))) (-12 (|HasCategory| |#3| (QUOTE (-1071))) (|HasCategory| |#3| (LIST (QUOTE -918) (QUOTE (-1198))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) -(-1136 R |x|) +((-4464 |has| |#3| (-1074)) (-4465 |has| |#3| (-1074)) (-4467 |has| |#3| (-6 -4467)) (-4470 . T)) +((-2839 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))))) (-2839 (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1125)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1074)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#3| (QUOTE (-375))) (-2839 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1074)))) (-2839 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (QUOTE (-809))) (-2839 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (QUOTE (-865)))) (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (QUOTE (-380))) (-2839 (-12 (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577)))))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (-2839 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (QUOTE (-1125)))) (-2839 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (QUOTE (-1125)))) (-2839 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1074)))) (-2839 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1074)))) (-2839 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1074)))) (-2839 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1074)))) (-2839 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1074)))) (|HasCategory| |#3| (QUOTE (-239))) (-2839 (|HasCategory| |#3| (QUOTE (-239))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1074))))) (-2839 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -923) (QUOTE (-1201)))))) (|HasCategory| |#3| (QUOTE (-1125))) (-2839 (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-380)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-742)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-809)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-865)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1074)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1125))))) (-2839 (-12 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1074))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-2839 (-12 (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-742))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-809))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-865))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-865))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1074)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -923) (QUOTE (-1201))))) (-2839 (|HasCategory| |#3| (QUOTE (-1074))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577)))))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1125)))) (|HasAttribute| |#3| (QUOTE -4467)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1074)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -921) (QUOTE (-1201))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1125))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))))) +(-1139 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-464)))) -(-1137) +((|HasCategory| |#1| (QUOTE (-465)))) +(-1140) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1138 R -2022) +(-1141 R -2051) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1139 R) +(-1142 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1140) +(-1143) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1141) +(-1144) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1142) +(-1145) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4454 . T) (-4458 . T) (-4453 . T) (-4464 . T) (-4465 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4458 . T) (-4462 . T) (-4457 . T) (-4468 . T) (-4469 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-1143 S) +(-1146 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4466 . T) (-4467 . T)) +((-4470 . T) (-4471 . T)) NIL -(-1144 S |ndim| R |Row| |Col|) +(-1147 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-374))) (|HasAttribute| |#3| (QUOTE (-4468 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) -(-1145 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-375))) (|HasAttribute| |#3| (QUOTE (-4472 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) +(-1148 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4466 . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4470 . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-1146 R |Row| |Col| M) +(-1149 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1147 R |VarSet|) +(-1150 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1148 |Coef| |Var| SMP) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-932))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4468)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1151 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) -(-1149 R E V P) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-375)))) +(-1152 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4467 . T) (-4466 . T)) +((-4471 . T) (-4470 . T)) NIL -(-1150 UP -2022) +(-1153 UP -2051) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1151 R) +(-1154 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1152 R) +(-1155 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1153 R) +(-1156 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1154 S A) +(-1157 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-862)))) -(-1155 R) +((|HasCategory| |#1| (QUOTE (-865)))) +(-1158 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1156 R) +(-1159 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1157) +(-1160) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1158) +(-1161) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1159) +(-1162) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) NIL NIL -(-1160) +(-1163) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1161) +(-1164) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1162 V C) +(-1165 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1163 V C) +(-1166 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| (-1162 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1162) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1162 |#1| |#2|) (QUOTE (-1122)))) (|HasCategory| (-1162 |#1| |#2|) (QUOTE (-1122))) (-2802 (|HasCategory| (-1162 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1162 |#1| |#2|) (QUOTE (-1122)))) (-2802 (|HasCategory| (-1162 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-877)))) (-12 (|HasCategory| (-1162 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1162) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1162 |#1| |#2|) (QUOTE (-1122))))) (|HasCategory| (-1162 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-1162 |#1| |#2|) (QUOTE (-102)))) -(-1164 |ndim| R) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| (-1165 |#1| |#2|) (LIST (QUOTE -320) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1165 |#1| |#2|) (QUOTE (-1125)))) (|HasCategory| (-1165 |#1| |#2|) (QUOTE (-1125))) (-2839 (|HasCategory| (-1165 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1165 |#1| |#2|) (QUOTE (-1125)))) (-2839 (|HasCategory| (-1165 |#1| |#2|) (LIST (QUOTE -626) (QUOTE (-880)))) (-12 (|HasCategory| (-1165 |#1| |#2|) (LIST (QUOTE -320) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1165 |#1| |#2|) (QUOTE (-1125))))) (|HasCategory| (-1165 |#1| |#2|) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-1165 |#1| |#2|) (QUOTE (-102)))) +(-1167 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4463 . T) (-4455 |has| |#2| (-6 (-4468 "*"))) (-4466 . T) (-4460 . T) (-4461 . T)) -((|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4468 "*"))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2802 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-374))) (-2802 (|HasAttribute| |#2| (QUOTE (-4468 "*"))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) -(-1165 S) +((-4467 . T) (-4459 |has| |#2| (-6 (-4472 "*"))) (-4470 . T) (-4464 . T) (-4465 . T)) +((|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE (-4472 "*"))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2839 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-375))) (-2839 (|HasAttribute| |#2| (QUOTE (-4472 "*"))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +(-1168 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1166) +(-1169) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4467 . T) (-4466 . T)) +((-4471 . T) (-4470 . T)) NIL -(-1167 R E V P TS) +(-1170 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1168 R E V P) +(-1171 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4467 . T) (-4466 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1169 S) +((-4471 . T) (-4470 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1172 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1170 A S) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1173 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1171 S) +(-1174 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1172 |Key| |Ent| |dent|) +(-1175 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4467 . T)) -((-12 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4291) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-862))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122)))) -(-1173) +((-4471 . T)) +((-12 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4295) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4444) (|devaluate| |#2|)))))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-865))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125)))) +(-1176) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1174) +(-1177) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1175 |Coef|) +(-1178 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1176 S) +(-1179 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1177 A B) +(-1180 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1178 A B C) +(-1181 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1179 S) +(-1182 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4467 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1180) +((-4471 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1183) ((|string| (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) -((-4467 . T) (-4466 . T)) -((-2802 (-12 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-2802 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-877)))) (-12 (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-2802 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1122)))) (|HasCategory| (-145) (QUOTE (-862))) (-2802 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1122))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) -(-1181 |Entry|) +((-4471 . T) (-4470 . T)) +((-2839 (-12 (|HasCategory| (-145) (QUOTE (-865))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (-2839 (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-880)))) (-12 (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -627) (QUOTE (-549)))) (-2839 (|HasCategory| (-145) (QUOTE (-865))) (|HasCategory| (-145) (QUOTE (-1125)))) (|HasCategory| (-145) (QUOTE (-865))) (-2839 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-865))) (|HasCategory| (-145) (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1125))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) +(-1184 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4291) (QUOTE (-1180))) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#1|)))))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (QUOTE (-1122))) (|HasCategory| (-1180) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (-2802 (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (QUOTE (-102)))) -(-1182 A) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4295) (QUOTE (-1183))) (LIST (QUOTE |:|) (QUOTE -4444) (|devaluate| |#1|)))))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (QUOTE (-1125))) (|HasCategory| (-1183) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (-2839 (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (QUOTE (-102)))) +(-1185 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) -(-1183 |Coef|) +((|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) +(-1186 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1184 |Coef|) +(-1187 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1185 R UP) +(-1188 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-317)))) -(-1186 |n| R) +((|HasCategory| |#1| (QUOTE (-318)))) +(-1189 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1187 S1 S2) +(-1190 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}"))) NIL NIL -(-1188) +(-1191) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1189 |Coef| |var| |cen|) +(-1192 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4468 "*") -2802 (-2724 (|has| |#1| (-374)) (|has| (-1196 |#1| |#2| |#3|) (-833))) (|has| |#1| (-174)) (-2724 (|has| |#1| (-374)) (|has| (-1196 |#1| |#2| |#3|) (-929)))) (-4459 -2802 (-2724 (|has| |#1| (-374)) (|has| (-1196 |#1| |#2| |#3|) (-833))) (|has| |#1| (-568)) (-2724 (|has| |#1| (-374)) (|has| (-1196 |#1| |#2| |#3|) (-929)))) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) -((-2802 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-1044))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-1174))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1198)) (LIST (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2802 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2802 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2802 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2802 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2802 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2802 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1134))) (-2802 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-1044))) (|HasCategory| |#1| (QUOTE (-374)))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-2802 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-1174))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1198)) (LIST (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3501) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2802 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4190) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -2029) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2802 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2802 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2802 (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1190 R -2022) +(((-4472 "*") -2839 (-2761 (|has| |#1| (-375)) (|has| (-1199 |#1| |#2| |#3|) (-836))) (|has| |#1| (-174)) (-2761 (|has| |#1| (-375)) (|has| (-1199 |#1| |#2| |#3|) (-932)))) (-4463 -2839 (-2761 (|has| |#1| (-375)) (|has| (-1199 |#1| |#2| |#3|) (-836))) (|has| |#1| (-569)) (-2761 (|has| |#1| (-375)) (|has| (-1199 |#1| |#2| |#3|) (-932)))) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) +((-2839 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-1047))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-1177))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1199) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1199) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1199) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1201)) (LIST (QUOTE -1199) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2839 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2839 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2839 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2839 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2839 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2839 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1137))) (-2839 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-1047))) (|HasCategory| |#1| (QUOTE (-375)))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-2839 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-375))))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-1177))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1199) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1199) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1199) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1201)) (LIST (QUOTE -1199) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3544) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2839 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4147) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -2058) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2839 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2839 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2839 (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1199 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1193 R -2051) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1191 R) +(-1194 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1192 R S) +(-1195 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1193 E OV R P) +(-1196 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1194 R) +(-1197 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4464)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1195 |Coef| |var| |cen|) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4466 |has| |#1| (-375)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1177))) (|HasCategory| |#1| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4468)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1198 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1134))) (|HasCategory| |#1| (QUOTE (-374))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2802 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3501) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2802 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4190) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -2029) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|))))))) -(-1196 |Coef| |var| |cen|) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1137))) (|HasCategory| |#1| (QUOTE (-375))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2839 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3544) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2839 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4147) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -2058) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|))))))) +(-1199 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-784)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-784)) (|devaluate| |#1|)))) (|HasCategory| (-784) (QUOTE (-1134))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-784))))) (|HasSignature| |#1| (LIST (QUOTE -3501) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-784))))) (|HasCategory| |#1| (QUOTE (-374))) (-2802 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4190) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -2029) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|))))))) -(-1197) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-787)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-787)) (|devaluate| |#1|)))) (|HasCategory| (-787) (QUOTE (-1137))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-787))))) (|HasSignature| |#1| (LIST (QUOTE -3544) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-787))))) (|HasCategory| |#1| (QUOTE (-375))) (-2839 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4147) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -2058) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|))))))) +(-1200) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1198) +(-1201) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1199 R) +(-1202 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1200 R) +(-1203 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-6 -4464)) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| (-993) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasAttribute| |#1| (QUOTE -4464))) -(-1201) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-6 -4468)) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| (-996) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasAttribute| |#1| (QUOTE -4468))) +(-1204) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1202) +(-1205) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1203) +(-1206) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1204 N) +(-1207 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1205 N) +(-1208 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) NIL NIL -(-1206) +(-1209) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1207 R) +(-1210 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1208) +(-1211) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1209 S) +(-1212 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1210 S) +(-1213 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1211 |Key| |Entry|) +(-1214 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4466 . T) (-4467 . T)) -((-12 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4291) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4440) (|devaluate| |#2|)))))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122)))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1122))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877))))) (-2802 (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (QUOTE (-102)))) -(-1212 S) +((-4470 . T) (-4471 . T)) +((-12 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4295) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4444) (|devaluate| |#2|)))))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1125)))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -627) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1125))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1125))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880))))) (-2839 (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (QUOTE (-102)))) +(-1215 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1213 R) +(-1216 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1214 S |Key| |Entry|) +(-1217 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1215 |Key| |Entry|) +(-1218 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4467 . T)) +((-4471 . T)) NIL -(-1216 |Key| |Entry|) +(-1219 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1217) +(-1220) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1218 S) +(-1221 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1219) +(-1222) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1220) +(-1223) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1221 R) +(-1224 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1222) +(-1225) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1223 S) +(-1226 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1224) +(-1227) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1225 S) +(-1228 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4467 . T) (-4466 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1226 S) +((-4471 . T) (-4470 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1125))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1125)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1229 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1227) +(-1230) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1228 R -2022) +(-1231 R -2051) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1229 R |Row| |Col| M) +(-1232 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1230 R -2022) +(-1233 R -2051) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -908) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -902) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -902) (|devaluate| |#1|))))) -(-1231 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -627) (LIST (QUOTE -911) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -905) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -905) (|devaluate| |#1|))))) +(-1234 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-379)))) -(-1232 R E V P) +((|HasCategory| |#4| (QUOTE (-380)))) +(-1235 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4467 . T) (-4466 . T)) +((-4471 . T) (-4470 . T)) NIL -(-1233 |Coef|) +(-1236 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) -(-1234 |Curve|) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-375)))) +(-1237 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1235) +(-1238) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1236 S) +(-1239 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) -(-1237 -2022) +((|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) +(-1240 -2051) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1238) +(-1241) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1239) +(-1242) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1240 S) +(-1243 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-862)))) -(-1241) +((|HasCategory| |#1| (QUOTE (-865)))) +(-1244) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1242 S) +(-1245 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1243) +(-1246) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-1244) +(-1247) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1245) +(-1248) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1246) +(-1249) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1247) +(-1250) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1248 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1251 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1249 |Coef|) +(-1252 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-1250 S |Coef| UTS) +(-1253 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-374)))) -(-1251 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-375)))) +(-1254 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-1252 |Coef| UTS) +(-1255 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) -((-2802 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1174)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-1198)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2802 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))) (-2802 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-148))))) (-2802 (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))))) (-2802 (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1134))) (-2802 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1044)))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-833)))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862))))) (-2802 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1044)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1174)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-1198)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1174)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3501) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2802 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4190) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -2029) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-929))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2802 (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146)))))) -(-1253 |Coef| |var| |cen|) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) +((-2839 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-836)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-932)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1177)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-1201)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2839 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-146))))) (-2839 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-148))))) (-2839 (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))))) (-2839 (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1137))) (-2839 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-932)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-1201))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1047)))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-836)))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-836)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-865))))) (-2839 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-836)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-865)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-932)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1047)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1177)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-1201)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1177)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1201)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3544) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2839 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4147) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -2058) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-865)))) (|HasCategory| |#2| (QUOTE (-932))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2839 (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-146)))))) +(-1256 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4468 "*") -2802 (-2724 (|has| |#1| (-374)) (|has| (-1281 |#1| |#2| |#3|) (-833))) (|has| |#1| (-174)) (-2724 (|has| |#1| (-374)) (|has| (-1281 |#1| |#2| |#3|) (-929)))) (-4459 -2802 (-2724 (|has| |#1| (-374)) (|has| (-1281 |#1| |#2| |#3|) (-833))) (|has| |#1| (-568)) (-2724 (|has| |#1| (-374)) (|has| (-1281 |#1| |#2| |#3|) (-929)))) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) -((-2802 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-1044))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-1174))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1281) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1281) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1281) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1198)) (LIST (QUOTE -1281) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2802 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2802 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2802 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2802 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2802 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2802 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1134))) (-2802 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-1044))) (|HasCategory| |#1| (QUOTE (-374)))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-2802 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-1174))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1281) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1281) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1281) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1198)) (LIST (QUOTE -1281) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3501) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2802 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4190) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -2029) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2802 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2802 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2802 (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1281 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1254 ZP) +(((-4472 "*") -2839 (-2761 (|has| |#1| (-375)) (|has| (-1284 |#1| |#2| |#3|) (-836))) (|has| |#1| (-174)) (-2761 (|has| |#1| (-375)) (|has| (-1284 |#1| |#2| |#3|) (-932)))) (-4463 -2839 (-2761 (|has| |#1| (-375)) (|has| (-1284 |#1| |#2| |#3|) (-836))) (|has| |#1| (-569)) (-2761 (|has| |#1| (-375)) (|has| (-1284 |#1| |#2| |#3|) (-932)))) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) +((-2839 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-1047))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-1177))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1201)) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2839 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2839 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2839 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2839 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2839 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2839 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1137))) (-2839 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-1047))) (|HasCategory| |#1| (QUOTE (-375)))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-2839 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-375))))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-1177))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1201)) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3544) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2839 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4147) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -2058) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2839 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2839 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2839 (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-836))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-932))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1257 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1255 R S) +(-1258 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-861)))) -(-1256 S) +((|HasCategory| |#1| (QUOTE (-864)))) +(-1259 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) -(-1257 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1125)))) +(-1260 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1258 R Q UP) +(-1261 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1259 R UP) +(-1262 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1260 R UP) +(-1263 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1261 R U) +(-1264 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1262 |x| R) +(-1265 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4468 "*") |has| |#2| (-174)) (-4459 |has| |#2| (-568)) (-4462 |has| |#2| (-374)) (-4464 |has| |#2| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2802 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -902) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-390))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -902) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -902) (QUOTE (-576))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-390)))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -908) (QUOTE (-576)))))) (-12 (|HasCategory| (-1104) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -652) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (QUOTE (-576)))) (-2802 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (-2802 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2802 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-929)))) (-2802 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1174))) (|HasCategory| |#2| (LIST (QUOTE -920) (QUOTE (-1198)))) (|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE -4464)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (-2802 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-1263 R PR S PS) +(((-4472 "*") |has| |#2| (-174)) (-4463 |has| |#2| (-569)) (-4466 |has| |#2| (-375)) (-4468 |has| |#2| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#2| (QUOTE (-932))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2839 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -905) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-391))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -905) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -905) (QUOTE (-577))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-391)))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -627) (LIST (QUOTE -911) (QUOTE (-577)))))) (-12 (|HasCategory| (-1107) (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -627) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -654) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (QUOTE (-577)))) (-2839 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (-2839 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2839 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-932)))) (-2839 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1177))) (|HasCategory| |#2| (LIST (QUOTE -923) (QUOTE (-1201)))) (|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE -4468)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (-2839 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-932)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-1266 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1264 S R) +(-1267 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1174)))) -(-1265 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1177)))) +(-1268 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4462 |has| |#1| (-374)) (-4464 |has| |#1| (-6 -4464)) (-4461 . T) (-4460 . T) (-4463 . T)) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4466 |has| |#1| (-375)) (-4468 |has| |#1| (-6 -4468)) (-4465 . T) (-4464 . T) (-4467 . T)) NIL -(-1266 S |Coef| |Expon|) +(-1269 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1134))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3501) (LIST (|devaluate| |#2|) (QUOTE (-1198)))))) -(-1267 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1137))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3544) (LIST (|devaluate| |#2|) (QUOTE (-1201)))))) +(-1270 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-1268 RC P) +(-1271 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1269 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1272 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1270 |Coef|) +(-1273 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-1271 S |Coef| ULS) +(-1274 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1272 |Coef| ULS) +(-1275 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-1273 |Coef| ULS) +(-1276 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1134))) (|HasCategory| |#1| (QUOTE (-374))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2802 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3501) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2802 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4190) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -2029) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) -(-1274 |Coef| |var| |cen|) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1137))) (|HasCategory| |#1| (QUOTE (-375))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2839 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3544) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2839 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4147) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -2058) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) +(-1277 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4464 |has| |#1| (-374)) (-4458 |has| |#1| (-374)) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1134))) (|HasCategory| |#1| (QUOTE (-374))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2802 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3501) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2802 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4190) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -2029) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|))))))) -(-1275 R FE |var| |cen|) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4468 |has| |#1| (-375)) (-4462 |has| |#1| (-375)) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1137))) (|HasCategory| |#1| (QUOTE (-375))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2839 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3544) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2839 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4147) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -2058) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|))))))) +(-1278 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4468 "*") |has| (-1274 |#2| |#3| |#4|) (-174)) (-4459 |has| (-1274 |#2| |#3| |#4|) (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| (-1274 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1274 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1274 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1274 |#2| |#3| |#4|) (QUOTE (-174))) (-2802 (|HasCategory| (-1274 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1274 |#2| |#3| |#4|) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| (-1274 |#2| |#3| |#4|) (LIST (QUOTE -1060) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1274 |#2| |#3| |#4|) (LIST (QUOTE -1060) (QUOTE (-576)))) (|HasCategory| (-1274 |#2| |#3| |#4|) (QUOTE (-374))) (|HasCategory| (-1274 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1274 |#2| |#3| |#4|) (QUOTE (-568)))) -(-1276 A S) +(((-4472 "*") |has| (-1277 |#2| |#3| |#4|) (-174)) (-4463 |has| (-1277 |#2| |#3| |#4|) (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| (-1277 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1277 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1277 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1277 |#2| |#3| |#4|) (QUOTE (-174))) (-2839 (|HasCategory| (-1277 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1277 |#2| |#3| |#4|) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| (-1277 |#2| |#3| |#4|) (LIST (QUOTE -1063) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1277 |#2| |#3| |#4|) (LIST (QUOTE -1063) (QUOTE (-577)))) (|HasCategory| (-1277 |#2| |#3| |#4|) (QUOTE (-375))) (|HasCategory| (-1277 |#2| |#3| |#4|) (QUOTE (-465))) (|HasCategory| (-1277 |#2| |#3| |#4|) (QUOTE (-569)))) +(-1279 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4467))) -(-1277 S) +((|HasAttribute| |#1| (QUOTE -4471))) +(-1280 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1278 |Coef1| |Coef2| UTS1 UTS2) +(-1281 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1279 S |Coef|) +(-1282 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-979))) (|HasCategory| |#2| (QUOTE (-1224))) (|HasSignature| |#2| (LIST (QUOTE -2029) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4190) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1198))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) -(-1280 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-982))) (|HasCategory| |#2| (QUOTE (-1227))) (|HasSignature| |#2| (LIST (QUOTE -2058) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4147) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1201))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) +(-1283 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-1281 |Coef| |var| |cen|) +(-1284 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4468 "*") |has| |#1| (-174)) (-4459 |has| |#1| (-568)) (-4460 . T) (-4461 . T) (-4463 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2802 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -918) (QUOTE (-1198)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-784)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-784)) (|devaluate| |#1|)))) (|HasCategory| (-784) (QUOTE (-1134))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-784))))) (|HasSignature| |#1| (LIST (QUOTE -3501) (LIST (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-784))))) (|HasCategory| |#1| (QUOTE (-374))) (-2802 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4190) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (LIST (QUOTE -2029) (LIST (LIST (QUOTE -657) (QUOTE (-1198))) (|devaluate| |#1|))))))) -(-1282 |Coef| UTS) +(((-4472 "*") |has| |#1| (-174)) (-4463 |has| |#1| (-569)) (-4464 . T) (-4465 . T) (-4467 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2839 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -921) (QUOTE (-1201)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-787)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-787)) (|devaluate| |#1|)))) (|HasCategory| (-787) (QUOTE (-1137))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-787))))) (|HasSignature| |#1| (LIST (QUOTE -3544) (LIST (|devaluate| |#1|) (QUOTE (-1201)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-787))))) (|HasCategory| |#1| (QUOTE (-375))) (-2839 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-982))) (|HasCategory| |#1| (QUOTE (-1227))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4147) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1201))))) (|HasSignature| |#1| (LIST (QUOTE -2058) (LIST (LIST (QUOTE -660) (QUOTE (-1201))) (|devaluate| |#1|))))))) +(-1285 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1283 -2022 UP L UTS) +(-1286 -2051 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-568)))) -(-1284) +((|HasCategory| |#1| (QUOTE (-569)))) +(-1287) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1285 |sym|) +(-1288 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1286 S R) +(-1289 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-1024))) (|HasCategory| |#2| (QUOTE (-1071))) (|HasCategory| |#2| (QUOTE (-739))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1287 R) +((|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-742))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1290 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4467 . T) (-4466 . T)) +((-4471 . T) (-4470 . T)) NIL -(-1288 A B) +(-1291 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1289 R) +(-1292 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4467 . T) (-4466 . T)) -((-2802 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2802 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2802 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-862))) (-2802 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-739))) (|HasCategory| |#1| (QUOTE (-1071))) (-12 (|HasCategory| |#1| (QUOTE (-1024))) (|HasCategory| |#1| (QUOTE (-1071)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-1290) +((-4471 . T) (-4470 . T)) +((-2839 (-12 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2839 (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880))))) (|HasCategory| |#1| (LIST (QUOTE -627) (QUOTE (-549)))) (-2839 (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| |#1| (QUOTE (-865))) (-2839 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125)))) (|HasCategory| (-577) (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-742))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1125))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-1293) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1291) +(-1294) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1292) +(-1295) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1293) +(-1296) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1294) +(-1297) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1295 A S) +(-1298 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1296 S) +(-1299 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4461 . T) (-4460 . T)) +((-4465 . T) (-4464 . T)) NIL -(-1297 R) +(-1300 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1298 K R UP -2022) +(-1301 K R UP -2051) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1299) +(-1302) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1300) +(-1303) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1301 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1304 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4461 |has| |#1| (-174)) (-4460 |has| |#1| (-174)) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) -(-1302 R E V P) +((-4465 |has| |#1| (-174)) (-4464 |has| |#1| (-174)) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375)))) +(-1305 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4467 . T) (-4466 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-877)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1303 R) +((-4471 . T) (-4470 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -627) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1125))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-880)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1306 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4460 . T) (-4461 . T) (-4463 . T)) +((-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-1304 |vl| R) +(-1307 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4463 . T) (-4459 |has| |#2| (-6 -4459)) (-4461 . T) (-4460 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4459))) -(-1305 R |VarSet| XPOLY) +((-4467 . T) (-4463 |has| |#2| (-6 -4463)) (-4465 . T) (-4464 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4463))) +(-1308 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1306 |vl| R) +(-1309 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4459 |has| |#2| (-6 -4459)) (-4461 . T) (-4460 . T) (-4463 . T)) +((-4463 |has| |#2| (-6 -4463)) (-4465 . T) (-4464 . T) (-4467 . T)) NIL -(-1307 S -2022) +(-1310 S -2051) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) -(-1308 -2022) +((|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) +(-1311 -2051) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4458 . T) (-4464 . T) (-4459 . T) ((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +((-4462 . T) (-4468 . T) (-4463 . T) ((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL -(-1309 |VarSet| R) +(-1312 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4459 |has| |#2| (-6 -4459)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -730) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasAttribute| |#2| (QUOTE -4459))) -(-1310 |vl| R) +((-4463 |has| |#2| (-6 -4463)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -733) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasAttribute| |#2| (QUOTE -4463))) +(-1313 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4459 |has| |#2| (-6 -4459)) (-4461 . T) (-4460 . T) (-4463 . T)) +((-4463 |has| |#2| (-6 -4463)) (-4465 . T) (-4464 . T) (-4467 . T)) NIL -(-1311 R) +(-1314 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4459 |has| |#1| (-6 -4459)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4459))) -(-1312 R E) +((-4463 |has| |#1| (-6 -4463)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4463))) +(-1315 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4463 . T) (-4464 |has| |#1| (-6 -4464)) (-4459 |has| |#1| (-6 -4459)) (-4461 . T) (-4460 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4463)) (|HasAttribute| |#1| (QUOTE -4464)) (|HasAttribute| |#1| (QUOTE -4459))) -(-1313 |VarSet| R) +((-4467 . T) (-4468 |has| |#1| (-6 -4468)) (-4463 |has| |#1| (-6 -4463)) (-4465 . T) (-4464 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4467)) (|HasAttribute| |#1| (QUOTE -4468)) (|HasAttribute| |#1| (QUOTE -4463))) +(-1316 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4459 |has| |#2| (-6 -4459)) (-4461 . T) (-4460 . T) (-4463 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4459))) -(-1314) +((-4463 |has| |#2| (-6 -4463)) (-4465 . T) (-4464 . T) (-4467 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4463))) +(-1317) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1315 A) +(-1318 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1316 R |ls| |ls2|) +(-1319 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1317 R) +(-1320 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1318 |p|) +(-1321 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4468 "*") . T) (-4460 . T) (-4461 . T) (-4463 . T)) +(((-4472 "*") . T) (-4464 . T) (-4465 . T) (-4467 . T)) NIL NIL NIL @@ -5220,4 +5232,4 @@ NIL NIL NIL NIL -((-3 NIL 2294940 2294945 2294950 2294955) (-2 NIL 2294920 2294925 2294930 2294935) (-1 NIL 2294900 2294905 2294910 2294915) (0 NIL 2294880 2294885 2294890 2294895) (-1318 "ZMOD.spad" 2294689 2294702 2294818 2294875) (-1317 "ZLINDEP.spad" 2293755 2293766 2294679 2294684) (-1316 "ZDSOLVE.spad" 2283700 2283722 2293745 2293750) (-1315 "YSTREAM.spad" 2283195 2283206 2283690 2283695) (-1314 "YDIAGRAM.spad" 2282829 2282838 2283185 2283190) (-1313 "XRPOLY.spad" 2282049 2282069 2282685 2282754) (-1312 "XPR.spad" 2279844 2279857 2281767 2281866) (-1311 "XPOLY.spad" 2279399 2279410 2279700 2279769) (-1310 "XPOLYC.spad" 2278718 2278734 2279325 2279394) (-1309 "XPBWPOLY.spad" 2277155 2277175 2278498 2278567) (-1308 "XF.spad" 2275618 2275633 2277057 2277150) (-1307 "XF.spad" 2274061 2274078 2275502 2275507) (-1306 "XFALG.spad" 2271109 2271125 2273987 2274056) (-1305 "XEXPPKG.spad" 2270360 2270386 2271099 2271104) (-1304 "XDPOLY.spad" 2269974 2269990 2270216 2270285) (-1303 "XALG.spad" 2269634 2269645 2269930 2269969) (-1302 "WUTSET.spad" 2265437 2265454 2269244 2269271) (-1301 "WP.spad" 2264636 2264680 2265295 2265362) (-1300 "WHILEAST.spad" 2264434 2264443 2264626 2264631) (-1299 "WHEREAST.spad" 2264105 2264114 2264424 2264429) (-1298 "WFFINTBS.spad" 2261768 2261790 2264095 2264100) (-1297 "WEIER.spad" 2259990 2260001 2261758 2261763) (-1296 "VSPACE.spad" 2259663 2259674 2259958 2259985) (-1295 "VSPACE.spad" 2259356 2259369 2259653 2259658) (-1294 "VOID.spad" 2259033 2259042 2259346 2259351) (-1293 "VIEW.spad" 2256713 2256722 2259023 2259028) (-1292 "VIEWDEF.spad" 2251914 2251923 2256703 2256708) (-1291 "VIEW3D.spad" 2235875 2235884 2251904 2251909) (-1290 "VIEW2D.spad" 2223766 2223775 2235865 2235870) (-1289 "VECTOR.spad" 2222287 2222298 2222538 2222565) (-1288 "VECTOR2.spad" 2220926 2220939 2222277 2222282) (-1287 "VECTCAT.spad" 2218830 2218841 2220894 2220921) (-1286 "VECTCAT.spad" 2216541 2216554 2218607 2218612) (-1285 "VARIABLE.spad" 2216321 2216336 2216531 2216536) (-1284 "UTYPE.spad" 2215965 2215974 2216311 2216316) (-1283 "UTSODETL.spad" 2215260 2215284 2215921 2215926) (-1282 "UTSODE.spad" 2213476 2213496 2215250 2215255) (-1281 "UTS.spad" 2208423 2208451 2211943 2212040) (-1280 "UTSCAT.spad" 2205902 2205918 2208321 2208418) (-1279 "UTSCAT.spad" 2203025 2203043 2205446 2205451) (-1278 "UTS2.spad" 2202620 2202655 2203015 2203020) (-1277 "URAGG.spad" 2197293 2197304 2202610 2202615) (-1276 "URAGG.spad" 2191930 2191943 2197249 2197254) (-1275 "UPXSSING.spad" 2189575 2189601 2191011 2191144) (-1274 "UPXS.spad" 2186871 2186899 2187707 2187856) (-1273 "UPXSCONS.spad" 2184630 2184650 2185003 2185152) (-1272 "UPXSCCA.spad" 2183201 2183221 2184476 2184625) (-1271 "UPXSCCA.spad" 2181914 2181936 2183191 2183196) (-1270 "UPXSCAT.spad" 2180503 2180519 2181760 2181909) (-1269 "UPXS2.spad" 2180046 2180099 2180493 2180498) (-1268 "UPSQFREE.spad" 2178460 2178474 2180036 2180041) (-1267 "UPSCAT.spad" 2176247 2176271 2178358 2178455) (-1266 "UPSCAT.spad" 2173740 2173766 2175853 2175858) (-1265 "UPOLYC.spad" 2168780 2168791 2173582 2173735) (-1264 "UPOLYC.spad" 2163712 2163725 2168516 2168521) (-1263 "UPOLYC2.spad" 2163183 2163202 2163702 2163707) (-1262 "UP.spad" 2160289 2160304 2160676 2160829) (-1261 "UPMP.spad" 2159189 2159202 2160279 2160284) (-1260 "UPDIVP.spad" 2158754 2158768 2159179 2159184) (-1259 "UPDECOMP.spad" 2156999 2157013 2158744 2158749) (-1258 "UPCDEN.spad" 2156208 2156224 2156989 2156994) (-1257 "UP2.spad" 2155572 2155593 2156198 2156203) (-1256 "UNISEG.spad" 2154925 2154936 2155491 2155496) (-1255 "UNISEG2.spad" 2154422 2154435 2154881 2154886) (-1254 "UNIFACT.spad" 2153525 2153537 2154412 2154417) (-1253 "ULS.spad" 2143309 2143337 2144254 2144683) (-1252 "ULSCONS.spad" 2134443 2134463 2134813 2134962) (-1251 "ULSCCAT.spad" 2132180 2132200 2134289 2134438) (-1250 "ULSCCAT.spad" 2130025 2130047 2132136 2132141) (-1249 "ULSCAT.spad" 2128257 2128273 2129871 2130020) (-1248 "ULS2.spad" 2127771 2127824 2128247 2128252) (-1247 "UINT8.spad" 2127648 2127657 2127761 2127766) (-1246 "UINT64.spad" 2127524 2127533 2127638 2127643) (-1245 "UINT32.spad" 2127400 2127409 2127514 2127519) (-1244 "UINT16.spad" 2127276 2127285 2127390 2127395) (-1243 "UFD.spad" 2126341 2126350 2127202 2127271) (-1242 "UFD.spad" 2125468 2125479 2126331 2126336) (-1241 "UDVO.spad" 2124349 2124358 2125458 2125463) (-1240 "UDPO.spad" 2121842 2121853 2124305 2124310) (-1239 "TYPE.spad" 2121774 2121783 2121832 2121837) (-1238 "TYPEAST.spad" 2121693 2121702 2121764 2121769) (-1237 "TWOFACT.spad" 2120345 2120360 2121683 2121688) (-1236 "TUPLE.spad" 2119831 2119842 2120244 2120249) (-1235 "TUBETOOL.spad" 2116698 2116707 2119821 2119826) (-1234 "TUBE.spad" 2115345 2115362 2116688 2116693) (-1233 "TS.spad" 2113944 2113960 2114910 2115007) (-1232 "TSETCAT.spad" 2101071 2101088 2113912 2113939) (-1231 "TSETCAT.spad" 2088184 2088203 2101027 2101032) (-1230 "TRMANIP.spad" 2082550 2082567 2087890 2087895) (-1229 "TRIMAT.spad" 2081513 2081538 2082540 2082545) (-1228 "TRIGMNIP.spad" 2080040 2080057 2081503 2081508) (-1227 "TRIGCAT.spad" 2079552 2079561 2080030 2080035) (-1226 "TRIGCAT.spad" 2079062 2079073 2079542 2079547) (-1225 "TREE.spad" 2077520 2077531 2078552 2078579) (-1224 "TRANFUN.spad" 2077359 2077368 2077510 2077515) (-1223 "TRANFUN.spad" 2077196 2077207 2077349 2077354) (-1222 "TOPSP.spad" 2076870 2076879 2077186 2077191) (-1221 "TOOLSIGN.spad" 2076533 2076544 2076860 2076865) (-1220 "TEXTFILE.spad" 2075094 2075103 2076523 2076528) (-1219 "TEX.spad" 2072240 2072249 2075084 2075089) (-1218 "TEX1.spad" 2071796 2071807 2072230 2072235) (-1217 "TEMUTL.spad" 2071351 2071360 2071786 2071791) (-1216 "TBCMPPK.spad" 2069444 2069467 2071341 2071346) (-1215 "TBAGG.spad" 2068494 2068517 2069424 2069439) (-1214 "TBAGG.spad" 2067552 2067577 2068484 2068489) (-1213 "TANEXP.spad" 2066960 2066971 2067542 2067547) (-1212 "TALGOP.spad" 2066684 2066695 2066950 2066955) (-1211 "TABLE.spad" 2064653 2064676 2064923 2064950) (-1210 "TABLEAU.spad" 2064134 2064145 2064643 2064648) (-1209 "TABLBUMP.spad" 2060937 2060948 2064124 2064129) (-1208 "SYSTEM.spad" 2060165 2060174 2060927 2060932) (-1207 "SYSSOLP.spad" 2057648 2057659 2060155 2060160) (-1206 "SYSPTR.spad" 2057547 2057556 2057638 2057643) (-1205 "SYSNNI.spad" 2056729 2056740 2057537 2057542) (-1204 "SYSINT.spad" 2056133 2056144 2056719 2056724) (-1203 "SYNTAX.spad" 2052339 2052348 2056123 2056128) (-1202 "SYMTAB.spad" 2050407 2050416 2052329 2052334) (-1201 "SYMS.spad" 2046430 2046439 2050397 2050402) (-1200 "SYMPOLY.spad" 2045437 2045448 2045519 2045646) (-1199 "SYMFUNC.spad" 2044938 2044949 2045427 2045432) (-1198 "SYMBOL.spad" 2042441 2042450 2044928 2044933) (-1197 "SWITCH.spad" 2039212 2039221 2042431 2042436) (-1196 "SUTS.spad" 2036260 2036288 2037679 2037776) (-1195 "SUPXS.spad" 2033543 2033571 2034392 2034541) (-1194 "SUP.spad" 2030263 2030274 2031036 2031189) (-1193 "SUPFRACF.spad" 2029368 2029386 2030253 2030258) (-1192 "SUP2.spad" 2028760 2028773 2029358 2029363) (-1191 "SUMRF.spad" 2027734 2027745 2028750 2028755) (-1190 "SUMFS.spad" 2027371 2027388 2027724 2027729) (-1189 "SULS.spad" 2017142 2017170 2018100 2018529) (-1188 "SUCHTAST.spad" 2016911 2016920 2017132 2017137) (-1187 "SUCH.spad" 2016593 2016608 2016901 2016906) (-1186 "SUBSPACE.spad" 2008708 2008723 2016583 2016588) (-1185 "SUBRESP.spad" 2007878 2007892 2008664 2008669) (-1184 "STTF.spad" 2003977 2003993 2007868 2007873) (-1183 "STTFNC.spad" 2000445 2000461 2003967 2003972) (-1182 "STTAYLOR.spad" 1993080 1993091 2000326 2000331) (-1181 "STRTBL.spad" 1991131 1991148 1991280 1991307) (-1180 "STRING.spad" 1989918 1989927 1990139 1990166) (-1179 "STREAM.spad" 1986719 1986730 1989326 1989341) (-1178 "STREAM3.spad" 1986292 1986307 1986709 1986714) (-1177 "STREAM2.spad" 1985420 1985433 1986282 1986287) (-1176 "STREAM1.spad" 1985126 1985137 1985410 1985415) (-1175 "STINPROD.spad" 1984062 1984078 1985116 1985121) (-1174 "STEP.spad" 1983263 1983272 1984052 1984057) (-1173 "STEPAST.spad" 1982497 1982506 1983253 1983258) (-1172 "STBL.spad" 1980581 1980609 1980748 1980763) (-1171 "STAGG.spad" 1979656 1979667 1980571 1980576) (-1170 "STAGG.spad" 1978729 1978742 1979646 1979651) (-1169 "STACK.spad" 1977969 1977980 1978219 1978246) (-1168 "SREGSET.spad" 1975637 1975654 1977579 1977606) (-1167 "SRDCMPK.spad" 1974198 1974218 1975627 1975632) (-1166 "SRAGG.spad" 1969341 1969350 1974166 1974193) (-1165 "SRAGG.spad" 1964504 1964515 1969331 1969336) (-1164 "SQMATRIX.spad" 1962047 1962065 1962963 1963050) (-1163 "SPLTREE.spad" 1956443 1956456 1961327 1961354) (-1162 "SPLNODE.spad" 1953031 1953044 1956433 1956438) (-1161 "SPFCAT.spad" 1951840 1951849 1953021 1953026) (-1160 "SPECOUT.spad" 1950392 1950401 1951830 1951835) (-1159 "SPADXPT.spad" 1941987 1941996 1950382 1950387) (-1158 "spad-parser.spad" 1941452 1941461 1941977 1941982) (-1157 "SPADAST.spad" 1941153 1941162 1941442 1941447) (-1156 "SPACEC.spad" 1925352 1925363 1941143 1941148) (-1155 "SPACE3.spad" 1925128 1925139 1925342 1925347) (-1154 "SORTPAK.spad" 1924677 1924690 1925084 1925089) (-1153 "SOLVETRA.spad" 1922440 1922451 1924667 1924672) (-1152 "SOLVESER.spad" 1920968 1920979 1922430 1922435) (-1151 "SOLVERAD.spad" 1916994 1917005 1920958 1920963) (-1150 "SOLVEFOR.spad" 1915456 1915474 1916984 1916989) (-1149 "SNTSCAT.spad" 1915056 1915073 1915424 1915451) (-1148 "SMTS.spad" 1913328 1913354 1914621 1914718) (-1147 "SMP.spad" 1910803 1910823 1911193 1911320) (-1146 "SMITH.spad" 1909648 1909673 1910793 1910798) (-1145 "SMATCAT.spad" 1907758 1907788 1909592 1909643) (-1144 "SMATCAT.spad" 1905800 1905832 1907636 1907641) (-1143 "SKAGG.spad" 1904763 1904774 1905768 1905795) (-1142 "SINT.spad" 1903703 1903712 1904629 1904758) (-1141 "SIMPAN.spad" 1903431 1903440 1903693 1903698) (-1140 "SIG.spad" 1902761 1902770 1903421 1903426) (-1139 "SIGNRF.spad" 1901879 1901890 1902751 1902756) (-1138 "SIGNEF.spad" 1901158 1901175 1901869 1901874) (-1137 "SIGAST.spad" 1900543 1900552 1901148 1901153) (-1136 "SHP.spad" 1898471 1898486 1900499 1900504) (-1135 "SHDP.spad" 1886149 1886176 1886658 1886757) (-1134 "SGROUP.spad" 1885757 1885766 1886139 1886144) (-1133 "SGROUP.spad" 1885363 1885374 1885747 1885752) (-1132 "SGCF.spad" 1878502 1878511 1885353 1885358) (-1131 "SFRTCAT.spad" 1877432 1877449 1878470 1878497) (-1130 "SFRGCD.spad" 1876495 1876515 1877422 1877427) (-1129 "SFQCMPK.spad" 1871132 1871152 1876485 1876490) (-1128 "SFORT.spad" 1870571 1870585 1871122 1871127) (-1127 "SEXOF.spad" 1870414 1870454 1870561 1870566) (-1126 "SEX.spad" 1870306 1870315 1870404 1870409) (-1125 "SEXCAT.spad" 1868078 1868118 1870296 1870301) (-1124 "SET.spad" 1866366 1866377 1867463 1867502) (-1123 "SETMN.spad" 1864816 1864833 1866356 1866361) (-1122 "SETCAT.spad" 1864301 1864310 1864806 1864811) (-1121 "SETCAT.spad" 1863784 1863795 1864291 1864296) (-1120 "SETAGG.spad" 1860333 1860344 1863764 1863779) (-1119 "SETAGG.spad" 1856890 1856903 1860323 1860328) (-1118 "SEQAST.spad" 1856593 1856602 1856880 1856885) (-1117 "SEGXCAT.spad" 1855749 1855762 1856583 1856588) (-1116 "SEG.spad" 1855562 1855573 1855668 1855673) (-1115 "SEGCAT.spad" 1854487 1854498 1855552 1855557) (-1114 "SEGBIND.spad" 1854245 1854256 1854434 1854439) (-1113 "SEGBIND2.spad" 1853943 1853956 1854235 1854240) (-1112 "SEGAST.spad" 1853657 1853666 1853933 1853938) (-1111 "SEG2.spad" 1853092 1853105 1853613 1853618) (-1110 "SDVAR.spad" 1852368 1852379 1853082 1853087) (-1109 "SDPOL.spad" 1849701 1849712 1849992 1850119) (-1108 "SCPKG.spad" 1847790 1847801 1849691 1849696) (-1107 "SCOPE.spad" 1846943 1846952 1847780 1847785) (-1106 "SCACHE.spad" 1845639 1845650 1846933 1846938) (-1105 "SASTCAT.spad" 1845548 1845557 1845629 1845634) (-1104 "SAOS.spad" 1845420 1845429 1845538 1845543) (-1103 "SAERFFC.spad" 1845133 1845153 1845410 1845415) (-1102 "SAE.spad" 1842603 1842619 1843214 1843349) (-1101 "SAEFACT.spad" 1842304 1842324 1842593 1842598) (-1100 "RURPK.spad" 1839963 1839979 1842294 1842299) (-1099 "RULESET.spad" 1839416 1839440 1839953 1839958) (-1098 "RULE.spad" 1837656 1837680 1839406 1839411) (-1097 "RULECOLD.spad" 1837508 1837521 1837646 1837651) (-1096 "RTVALUE.spad" 1837243 1837252 1837498 1837503) (-1095 "RSTRCAST.spad" 1836960 1836969 1837233 1837238) (-1094 "RSETGCD.spad" 1833338 1833358 1836950 1836955) (-1093 "RSETCAT.spad" 1823274 1823291 1833306 1833333) (-1092 "RSETCAT.spad" 1813230 1813249 1823264 1823269) (-1091 "RSDCMPK.spad" 1811682 1811702 1813220 1813225) (-1090 "RRCC.spad" 1810066 1810096 1811672 1811677) (-1089 "RRCC.spad" 1808448 1808480 1810056 1810061) (-1088 "RPTAST.spad" 1808150 1808159 1808438 1808443) (-1087 "RPOLCAT.spad" 1787510 1787525 1808018 1808145) (-1086 "RPOLCAT.spad" 1766583 1766600 1787093 1787098) (-1085 "ROUTINE.spad" 1762004 1762013 1764768 1764795) (-1084 "ROMAN.spad" 1761332 1761341 1761870 1761999) (-1083 "ROIRC.spad" 1760412 1760444 1761322 1761327) (-1082 "RNS.spad" 1759315 1759324 1760314 1760407) (-1081 "RNS.spad" 1758304 1758315 1759305 1759310) (-1080 "RNG.spad" 1758039 1758048 1758294 1758299) (-1079 "RNGBIND.spad" 1757199 1757213 1757994 1757999) (-1078 "RMODULE.spad" 1756964 1756975 1757189 1757194) (-1077 "RMCAT2.spad" 1756384 1756441 1756954 1756959) (-1076 "RMATRIX.spad" 1755172 1755191 1755515 1755554) (-1075 "RMATCAT.spad" 1750751 1750782 1755128 1755167) (-1074 "RMATCAT.spad" 1746220 1746253 1750599 1750604) (-1073 "RLINSET.spad" 1745924 1745935 1746210 1746215) (-1072 "RINTERP.spad" 1745812 1745832 1745914 1745919) (-1071 "RING.spad" 1745282 1745291 1745792 1745807) (-1070 "RING.spad" 1744760 1744771 1745272 1745277) (-1069 "RIDIST.spad" 1744152 1744161 1744750 1744755) (-1068 "RGCHAIN.spad" 1742680 1742696 1743582 1743609) (-1067 "RGBCSPC.spad" 1742461 1742473 1742670 1742675) (-1066 "RGBCMDL.spad" 1741991 1742003 1742451 1742456) (-1065 "RF.spad" 1739633 1739644 1741981 1741986) (-1064 "RFFACTOR.spad" 1739095 1739106 1739623 1739628) (-1063 "RFFACT.spad" 1738830 1738842 1739085 1739090) (-1062 "RFDIST.spad" 1737826 1737835 1738820 1738825) (-1061 "RETSOL.spad" 1737245 1737258 1737816 1737821) (-1060 "RETRACT.spad" 1736673 1736684 1737235 1737240) (-1059 "RETRACT.spad" 1736099 1736112 1736663 1736668) (-1058 "RETAST.spad" 1735911 1735920 1736089 1736094) (-1057 "RESULT.spad" 1733509 1733518 1734096 1734123) (-1056 "RESRING.spad" 1732856 1732903 1733447 1733504) (-1055 "RESLATC.spad" 1732180 1732191 1732846 1732851) (-1054 "REPSQ.spad" 1731911 1731922 1732170 1732175) (-1053 "REP.spad" 1729465 1729474 1731901 1731906) (-1052 "REPDB.spad" 1729172 1729183 1729455 1729460) (-1051 "REP2.spad" 1718830 1718841 1729014 1729019) (-1050 "REP1.spad" 1713026 1713037 1718780 1718785) (-1049 "REGSET.spad" 1710787 1710804 1712636 1712663) (-1048 "REF.spad" 1710122 1710133 1710742 1710747) (-1047 "REDORDER.spad" 1709328 1709345 1710112 1710117) (-1046 "RECLOS.spad" 1708111 1708131 1708815 1708908) (-1045 "REALSOLV.spad" 1707251 1707260 1708101 1708106) (-1044 "REAL.spad" 1707123 1707132 1707241 1707246) (-1043 "REAL0Q.spad" 1704421 1704436 1707113 1707118) (-1042 "REAL0.spad" 1701265 1701280 1704411 1704416) (-1041 "RDUCEAST.spad" 1700986 1700995 1701255 1701260) (-1040 "RDIV.spad" 1700641 1700666 1700976 1700981) (-1039 "RDIST.spad" 1700208 1700219 1700631 1700636) (-1038 "RDETRS.spad" 1699072 1699090 1700198 1700203) (-1037 "RDETR.spad" 1697211 1697229 1699062 1699067) (-1036 "RDEEFS.spad" 1696310 1696327 1697201 1697206) (-1035 "RDEEF.spad" 1695320 1695337 1696300 1696305) (-1034 "RCFIELD.spad" 1692506 1692515 1695222 1695315) (-1033 "RCFIELD.spad" 1689778 1689789 1692496 1692501) (-1032 "RCAGG.spad" 1687706 1687717 1689768 1689773) (-1031 "RCAGG.spad" 1685561 1685574 1687625 1687630) (-1030 "RATRET.spad" 1684921 1684932 1685551 1685556) (-1029 "RATFACT.spad" 1684613 1684625 1684911 1684916) (-1028 "RANDSRC.spad" 1683932 1683941 1684603 1684608) (-1027 "RADUTIL.spad" 1683688 1683697 1683922 1683927) (-1026 "RADIX.spad" 1680512 1680526 1682058 1682151) (-1025 "RADFF.spad" 1678251 1678288 1678370 1678526) (-1024 "RADCAT.spad" 1677846 1677855 1678241 1678246) (-1023 "RADCAT.spad" 1677439 1677450 1677836 1677841) (-1022 "QUEUE.spad" 1676670 1676681 1676929 1676956) (-1021 "QUAT.spad" 1675158 1675169 1675501 1675566) (-1020 "QUATCT2.spad" 1674778 1674797 1675148 1675153) (-1019 "QUATCAT.spad" 1672948 1672959 1674708 1674773) (-1018 "QUATCAT.spad" 1670869 1670882 1672631 1672636) (-1017 "QUAGG.spad" 1669696 1669707 1670837 1670864) (-1016 "QQUTAST.spad" 1669464 1669473 1669686 1669691) (-1015 "QFORM.spad" 1669082 1669097 1669454 1669459) (-1014 "QFCAT.spad" 1667784 1667795 1668984 1669077) (-1013 "QFCAT.spad" 1666077 1666090 1667279 1667284) (-1012 "QFCAT2.spad" 1665769 1665786 1666067 1666072) (-1011 "QEQUAT.spad" 1665327 1665336 1665759 1665764) (-1010 "QCMPACK.spad" 1660073 1660093 1665317 1665322) (-1009 "QALGSET.spad" 1656151 1656184 1659987 1659992) (-1008 "QALGSET2.spad" 1654146 1654165 1656141 1656146) (-1007 "PWFFINTB.spad" 1651561 1651583 1654136 1654141) (-1006 "PUSHVAR.spad" 1650899 1650919 1651551 1651556) (-1005 "PTRANFN.spad" 1647026 1647037 1650889 1650894) (-1004 "PTPACK.spad" 1644113 1644124 1647016 1647021) (-1003 "PTFUNC2.spad" 1643935 1643950 1644103 1644108) (-1002 "PTCAT.spad" 1643189 1643200 1643903 1643930) (-1001 "PSQFR.spad" 1642495 1642520 1643179 1643184) (-1000 "PSEUDLIN.spad" 1641380 1641391 1642485 1642490) (-999 "PSETPK.spad" 1626813 1626829 1641258 1641263) (-998 "PSETCAT.spad" 1620733 1620756 1626793 1626808) (-997 "PSETCAT.spad" 1614627 1614652 1620689 1620694) (-996 "PSCURVE.spad" 1613610 1613618 1614617 1614622) (-995 "PSCAT.spad" 1612393 1612422 1613508 1613605) (-994 "PSCAT.spad" 1611266 1611297 1612383 1612388) (-993 "PRTITION.spad" 1609964 1609972 1611256 1611261) (-992 "PRTDAST.spad" 1609683 1609691 1609954 1609959) (-991 "PRS.spad" 1599245 1599262 1609639 1609644) (-990 "PRQAGG.spad" 1598680 1598690 1599213 1599240) (-989 "PROPLOG.spad" 1598252 1598260 1598670 1598675) (-988 "PROPFUN2.spad" 1597875 1597888 1598242 1598247) (-987 "PROPFUN1.spad" 1597273 1597284 1597865 1597870) (-986 "PROPFRML.spad" 1595841 1595852 1597263 1597268) (-985 "PROPERTY.spad" 1595329 1595337 1595831 1595836) (-984 "PRODUCT.spad" 1593011 1593023 1593295 1593350) (-983 "PR.spad" 1591403 1591415 1592102 1592229) (-982 "PRINT.spad" 1591155 1591163 1591393 1591398) (-981 "PRIMES.spad" 1589408 1589418 1591145 1591150) (-980 "PRIMELT.spad" 1587489 1587503 1589398 1589403) (-979 "PRIMCAT.spad" 1587116 1587124 1587479 1587484) (-978 "PRIMARR.spad" 1585968 1585978 1586146 1586173) (-977 "PRIMARR2.spad" 1584735 1584747 1585958 1585963) (-976 "PREASSOC.spad" 1584117 1584129 1584725 1584730) (-975 "PPCURVE.spad" 1583254 1583262 1584107 1584112) (-974 "PORTNUM.spad" 1583029 1583037 1583244 1583249) (-973 "POLYROOT.spad" 1581878 1581900 1582985 1582990) (-972 "POLY.spad" 1579213 1579223 1579728 1579855) (-971 "POLYLIFT.spad" 1578478 1578501 1579203 1579208) (-970 "POLYCATQ.spad" 1576596 1576618 1578468 1578473) (-969 "POLYCAT.spad" 1570066 1570087 1576464 1576591) (-968 "POLYCAT.spad" 1562874 1562897 1569274 1569279) (-967 "POLY2UP.spad" 1562326 1562340 1562864 1562869) (-966 "POLY2.spad" 1561923 1561935 1562316 1562321) (-965 "POLUTIL.spad" 1560864 1560893 1561879 1561884) (-964 "POLTOPOL.spad" 1559612 1559627 1560854 1560859) (-963 "POINT.spad" 1558297 1558307 1558384 1558411) (-962 "PNTHEORY.spad" 1554999 1555007 1558287 1558292) (-961 "PMTOOLS.spad" 1553774 1553788 1554989 1554994) (-960 "PMSYM.spad" 1553323 1553333 1553764 1553769) (-959 "PMQFCAT.spad" 1552914 1552928 1553313 1553318) (-958 "PMPRED.spad" 1552393 1552407 1552904 1552909) (-957 "PMPREDFS.spad" 1551847 1551869 1552383 1552388) (-956 "PMPLCAT.spad" 1550927 1550945 1551779 1551784) (-955 "PMLSAGG.spad" 1550512 1550526 1550917 1550922) (-954 "PMKERNEL.spad" 1550091 1550103 1550502 1550507) (-953 "PMINS.spad" 1549671 1549681 1550081 1550086) (-952 "PMFS.spad" 1549248 1549266 1549661 1549666) (-951 "PMDOWN.spad" 1548538 1548552 1549238 1549243) (-950 "PMASS.spad" 1547548 1547556 1548528 1548533) (-949 "PMASSFS.spad" 1546515 1546531 1547538 1547543) (-948 "PLOTTOOL.spad" 1546295 1546303 1546505 1546510) (-947 "PLOT.spad" 1541218 1541226 1546285 1546290) (-946 "PLOT3D.spad" 1537682 1537690 1541208 1541213) (-945 "PLOT1.spad" 1536839 1536849 1537672 1537677) (-944 "PLEQN.spad" 1524129 1524156 1536829 1536834) (-943 "PINTERP.spad" 1523751 1523770 1524119 1524124) (-942 "PINTERPA.spad" 1523535 1523551 1523741 1523746) (-941 "PI.spad" 1523144 1523152 1523509 1523530) (-940 "PID.spad" 1522114 1522122 1523070 1523139) (-939 "PICOERCE.spad" 1521771 1521781 1522104 1522109) (-938 "PGROEB.spad" 1520372 1520386 1521761 1521766) (-937 "PGE.spad" 1511989 1511997 1520362 1520367) (-936 "PGCD.spad" 1510879 1510896 1511979 1511984) (-935 "PFRPAC.spad" 1510028 1510038 1510869 1510874) (-934 "PFR.spad" 1506691 1506701 1509930 1510023) (-933 "PFOTOOLS.spad" 1505949 1505965 1506681 1506686) (-932 "PFOQ.spad" 1505319 1505337 1505939 1505944) (-931 "PFO.spad" 1504738 1504765 1505309 1505314) (-930 "PF.spad" 1504312 1504324 1504543 1504636) (-929 "PFECAT.spad" 1501994 1502002 1504238 1504307) (-928 "PFECAT.spad" 1499704 1499714 1501950 1501955) (-927 "PFBRU.spad" 1497592 1497604 1499694 1499699) (-926 "PFBR.spad" 1495152 1495175 1497582 1497587) (-925 "PERM.spad" 1490959 1490969 1494982 1494997) (-924 "PERMGRP.spad" 1485729 1485739 1490949 1490954) (-923 "PERMCAT.spad" 1484390 1484400 1485709 1485724) (-922 "PERMAN.spad" 1482922 1482936 1484380 1484385) (-921 "PENDTREE.spad" 1482146 1482156 1482434 1482439) (-920 "PDSPC.spad" 1480959 1480969 1482136 1482141) (-919 "PDSPC.spad" 1479770 1479782 1480949 1480954) (-918 "PDRING.spad" 1479612 1479622 1479750 1479765) (-917 "PDMOD.spad" 1479428 1479440 1479580 1479607) (-916 "PDEPROB.spad" 1478443 1478451 1479418 1479423) (-915 "PDEPACK.spad" 1472483 1472491 1478433 1478438) (-914 "PDECOMP.spad" 1471953 1471970 1472473 1472478) (-913 "PDECAT.spad" 1470309 1470317 1471943 1471948) (-912 "PDDOM.spad" 1469747 1469760 1470299 1470304) (-911 "PDDOM.spad" 1469183 1469198 1469737 1469742) (-910 "PCOMP.spad" 1469036 1469049 1469173 1469178) (-909 "PBWLB.spad" 1467624 1467641 1469026 1469031) (-908 "PATTERN.spad" 1462163 1462173 1467614 1467619) (-907 "PATTERN2.spad" 1461901 1461913 1462153 1462158) (-906 "PATTERN1.spad" 1460237 1460253 1461891 1461896) (-905 "PATRES.spad" 1457812 1457824 1460227 1460232) (-904 "PATRES2.spad" 1457484 1457498 1457802 1457807) (-903 "PATMATCH.spad" 1455681 1455712 1457192 1457197) (-902 "PATMAB.spad" 1455110 1455120 1455671 1455676) (-901 "PATLRES.spad" 1454196 1454210 1455100 1455105) (-900 "PATAB.spad" 1453960 1453970 1454186 1454191) (-899 "PARTPERM.spad" 1451968 1451976 1453950 1453955) (-898 "PARSURF.spad" 1451402 1451430 1451958 1451963) (-897 "PARSU2.spad" 1451199 1451215 1451392 1451397) (-896 "script-parser.spad" 1450719 1450727 1451189 1451194) (-895 "PARSCURV.spad" 1450153 1450181 1450709 1450714) (-894 "PARSC2.spad" 1449944 1449960 1450143 1450148) (-893 "PARPCURV.spad" 1449406 1449434 1449934 1449939) (-892 "PARPC2.spad" 1449197 1449213 1449396 1449401) (-891 "PARAMAST.spad" 1448325 1448333 1449187 1449192) (-890 "PAN2EXPR.spad" 1447737 1447745 1448315 1448320) (-889 "PALETTE.spad" 1446707 1446715 1447727 1447732) (-888 "PAIR.spad" 1445694 1445707 1446295 1446300) (-887 "PADICRC.spad" 1442935 1442953 1444106 1444199) (-886 "PADICRAT.spad" 1440843 1440855 1441064 1441157) (-885 "PADIC.spad" 1440538 1440550 1440769 1440838) (-884 "PADICCT.spad" 1439087 1439099 1440464 1440533) (-883 "PADEPAC.spad" 1437776 1437795 1439077 1439082) (-882 "PADE.spad" 1436528 1436544 1437766 1437771) (-881 "OWP.spad" 1435768 1435798 1436386 1436453) (-880 "OVERSET.spad" 1435341 1435349 1435758 1435763) (-879 "OVAR.spad" 1435122 1435145 1435331 1435336) (-878 "OUT.spad" 1434208 1434216 1435112 1435117) (-877 "OUTFORM.spad" 1423600 1423608 1434198 1434203) (-876 "OUTBFILE.spad" 1423018 1423026 1423590 1423595) (-875 "OUTBCON.spad" 1422024 1422032 1423008 1423013) (-874 "OUTBCON.spad" 1421028 1421038 1422014 1422019) (-873 "OSI.spad" 1420503 1420511 1421018 1421023) (-872 "OSGROUP.spad" 1420421 1420429 1420493 1420498) (-871 "ORTHPOL.spad" 1418906 1418916 1420338 1420343) (-870 "OREUP.spad" 1418359 1418387 1418586 1418625) (-869 "ORESUP.spad" 1417660 1417684 1418039 1418078) (-868 "OREPCTO.spad" 1415517 1415529 1417580 1417585) (-867 "OREPCAT.spad" 1409664 1409674 1415473 1415512) (-866 "OREPCAT.spad" 1403701 1403713 1409512 1409517) (-865 "ORDTYPE.spad" 1402938 1402946 1403691 1403696) (-864 "ORDTYPE.spad" 1402173 1402183 1402928 1402933) (-863 "ORDSTRCT.spad" 1401946 1401961 1402109 1402114) (-862 "ORDSET.spad" 1401646 1401654 1401936 1401941) (-861 "ORDRING.spad" 1401036 1401044 1401626 1401641) (-860 "ORDRING.spad" 1400434 1400444 1401026 1401031) (-859 "ORDMON.spad" 1400289 1400297 1400424 1400429) (-858 "ORDFUNS.spad" 1399421 1399437 1400279 1400284) (-857 "ORDFIN.spad" 1399241 1399249 1399411 1399416) (-856 "ORDCOMP.spad" 1397706 1397716 1398788 1398817) (-855 "ORDCOMP2.spad" 1396999 1397011 1397696 1397701) (-854 "OPTPROB.spad" 1395637 1395645 1396989 1396994) (-853 "OPTPACK.spad" 1388046 1388054 1395627 1395632) (-852 "OPTCAT.spad" 1385725 1385733 1388036 1388041) (-851 "OPSIG.spad" 1385379 1385387 1385715 1385720) (-850 "OPQUERY.spad" 1384928 1384936 1385369 1385374) (-849 "OP.spad" 1384670 1384680 1384750 1384817) (-848 "OPERCAT.spad" 1384136 1384146 1384660 1384665) (-847 "OPERCAT.spad" 1383600 1383612 1384126 1384131) (-846 "ONECOMP.spad" 1382345 1382355 1383147 1383176) (-845 "ONECOMP2.spad" 1381769 1381781 1382335 1382340) (-844 "OMSERVER.spad" 1380775 1380783 1381759 1381764) (-843 "OMSAGG.spad" 1380563 1380573 1380731 1380770) (-842 "OMPKG.spad" 1379179 1379187 1380553 1380558) (-841 "OM.spad" 1378152 1378160 1379169 1379174) (-840 "OMLO.spad" 1377577 1377589 1378038 1378077) (-839 "OMEXPR.spad" 1377411 1377421 1377567 1377572) (-838 "OMERR.spad" 1376956 1376964 1377401 1377406) (-837 "OMERRK.spad" 1375990 1375998 1376946 1376951) (-836 "OMENC.spad" 1375334 1375342 1375980 1375985) (-835 "OMDEV.spad" 1369643 1369651 1375324 1375329) (-834 "OMCONN.spad" 1369052 1369060 1369633 1369638) (-833 "OINTDOM.spad" 1368815 1368823 1368978 1369047) (-832 "OFMONOID.spad" 1366938 1366948 1368771 1368776) (-831 "ODVAR.spad" 1366199 1366209 1366928 1366933) (-830 "ODR.spad" 1365843 1365869 1366011 1366160) (-829 "ODPOL.spad" 1363132 1363142 1363472 1363599) (-828 "ODP.spad" 1350946 1350966 1351319 1351418) (-827 "ODETOOLS.spad" 1349595 1349614 1350936 1350941) (-826 "ODESYS.spad" 1347289 1347306 1349585 1349590) (-825 "ODERTRIC.spad" 1343298 1343315 1347246 1347251) (-824 "ODERED.spad" 1342697 1342721 1343288 1343293) (-823 "ODERAT.spad" 1340312 1340329 1342687 1342692) (-822 "ODEPRRIC.spad" 1337349 1337371 1340302 1340307) (-821 "ODEPROB.spad" 1336606 1336614 1337339 1337344) (-820 "ODEPRIM.spad" 1333940 1333962 1336596 1336601) (-819 "ODEPAL.spad" 1333326 1333350 1333930 1333935) (-818 "ODEPACK.spad" 1319992 1320000 1333316 1333321) (-817 "ODEINT.spad" 1319427 1319443 1319982 1319987) (-816 "ODEIFTBL.spad" 1316822 1316830 1319417 1319422) (-815 "ODEEF.spad" 1312313 1312329 1316812 1316817) (-814 "ODECONST.spad" 1311850 1311868 1312303 1312308) (-813 "ODECAT.spad" 1310448 1310456 1311840 1311845) (-812 "OCT.spad" 1308584 1308594 1309298 1309337) (-811 "OCTCT2.spad" 1308230 1308251 1308574 1308579) (-810 "OC.spad" 1306026 1306036 1308186 1308225) (-809 "OC.spad" 1303547 1303559 1305709 1305714) (-808 "OCAMON.spad" 1303395 1303403 1303537 1303542) (-807 "OASGP.spad" 1303210 1303218 1303385 1303390) (-806 "OAMONS.spad" 1302732 1302740 1303200 1303205) (-805 "OAMON.spad" 1302593 1302601 1302722 1302727) (-804 "OAGROUP.spad" 1302455 1302463 1302583 1302588) (-803 "NUMTUBE.spad" 1302046 1302062 1302445 1302450) (-802 "NUMQUAD.spad" 1290022 1290030 1302036 1302041) (-801 "NUMODE.spad" 1281376 1281384 1290012 1290017) (-800 "NUMINT.spad" 1278942 1278950 1281366 1281371) (-799 "NUMFMT.spad" 1277782 1277790 1278932 1278937) (-798 "NUMERIC.spad" 1269896 1269906 1277587 1277592) (-797 "NTSCAT.spad" 1268404 1268420 1269864 1269891) (-796 "NTPOLFN.spad" 1267955 1267965 1268321 1268326) (-795 "NSUP.spad" 1260908 1260918 1265448 1265601) (-794 "NSUP2.spad" 1260300 1260312 1260898 1260903) (-793 "NSMP.spad" 1256530 1256549 1256838 1256965) (-792 "NREP.spad" 1254908 1254922 1256520 1256525) (-791 "NPCOEF.spad" 1254154 1254174 1254898 1254903) (-790 "NORMRETR.spad" 1253752 1253791 1254144 1254149) (-789 "NORMPK.spad" 1251654 1251673 1253742 1253747) (-788 "NORMMA.spad" 1251342 1251368 1251644 1251649) (-787 "NONE.spad" 1251083 1251091 1251332 1251337) (-786 "NONE1.spad" 1250759 1250769 1251073 1251078) (-785 "NODE1.spad" 1250246 1250262 1250749 1250754) (-784 "NNI.spad" 1249141 1249149 1250220 1250241) (-783 "NLINSOL.spad" 1247767 1247777 1249131 1249136) (-782 "NIPROB.spad" 1246308 1246316 1247757 1247762) (-781 "NFINTBAS.spad" 1243868 1243885 1246298 1246303) (-780 "NETCLT.spad" 1243842 1243853 1243858 1243863) (-779 "NCODIV.spad" 1242058 1242074 1243832 1243837) (-778 "NCNTFRAC.spad" 1241700 1241714 1242048 1242053) (-777 "NCEP.spad" 1239866 1239880 1241690 1241695) (-776 "NASRING.spad" 1239462 1239470 1239856 1239861) (-775 "NASRING.spad" 1239056 1239066 1239452 1239457) (-774 "NARNG.spad" 1238408 1238416 1239046 1239051) (-773 "NARNG.spad" 1237758 1237768 1238398 1238403) (-772 "NAGSP.spad" 1236835 1236843 1237748 1237753) (-771 "NAGS.spad" 1226496 1226504 1236825 1236830) (-770 "NAGF07.spad" 1224927 1224935 1226486 1226491) (-769 "NAGF04.spad" 1219329 1219337 1224917 1224922) (-768 "NAGF02.spad" 1213398 1213406 1219319 1219324) (-767 "NAGF01.spad" 1209159 1209167 1213388 1213393) (-766 "NAGE04.spad" 1202859 1202867 1209149 1209154) (-765 "NAGE02.spad" 1193519 1193527 1202849 1202854) (-764 "NAGE01.spad" 1189521 1189529 1193509 1193514) (-763 "NAGD03.spad" 1187525 1187533 1189511 1189516) (-762 "NAGD02.spad" 1180272 1180280 1187515 1187520) (-761 "NAGD01.spad" 1174565 1174573 1180262 1180267) (-760 "NAGC06.spad" 1170440 1170448 1174555 1174560) (-759 "NAGC05.spad" 1168941 1168949 1170430 1170435) (-758 "NAGC02.spad" 1168208 1168216 1168931 1168936) (-757 "NAALG.spad" 1167749 1167759 1168176 1168203) (-756 "NAALG.spad" 1167310 1167322 1167739 1167744) (-755 "MULTSQFR.spad" 1164268 1164285 1167300 1167305) (-754 "MULTFACT.spad" 1163651 1163668 1164258 1164263) (-753 "MTSCAT.spad" 1161745 1161766 1163549 1163646) (-752 "MTHING.spad" 1161404 1161414 1161735 1161740) (-751 "MSYSCMD.spad" 1160838 1160846 1161394 1161399) (-750 "MSET.spad" 1158760 1158770 1160508 1160547) (-749 "MSETAGG.spad" 1158605 1158615 1158728 1158755) (-748 "MRING.spad" 1155582 1155594 1158313 1158380) (-747 "MRF2.spad" 1155152 1155166 1155572 1155577) (-746 "MRATFAC.spad" 1154698 1154715 1155142 1155147) (-745 "MPRFF.spad" 1152738 1152757 1154688 1154693) (-744 "MPOLY.spad" 1150209 1150224 1150568 1150695) (-743 "MPCPF.spad" 1149473 1149492 1150199 1150204) (-742 "MPC3.spad" 1149290 1149330 1149463 1149468) (-741 "MPC2.spad" 1148936 1148969 1149280 1149285) (-740 "MONOTOOL.spad" 1147287 1147304 1148926 1148931) (-739 "MONOID.spad" 1146606 1146614 1147277 1147282) (-738 "MONOID.spad" 1145923 1145933 1146596 1146601) (-737 "MONOGEN.spad" 1144671 1144684 1145783 1145918) (-736 "MONOGEN.spad" 1143441 1143456 1144555 1144560) (-735 "MONADWU.spad" 1141471 1141479 1143431 1143436) (-734 "MONADWU.spad" 1139499 1139509 1141461 1141466) (-733 "MONAD.spad" 1138659 1138667 1139489 1139494) (-732 "MONAD.spad" 1137817 1137827 1138649 1138654) (-731 "MOEBIUS.spad" 1136553 1136567 1137797 1137812) (-730 "MODULE.spad" 1136423 1136433 1136521 1136548) (-729 "MODULE.spad" 1136313 1136325 1136413 1136418) (-728 "MODRING.spad" 1135648 1135687 1136293 1136308) (-727 "MODOP.spad" 1134313 1134325 1135470 1135537) (-726 "MODMONOM.spad" 1134044 1134062 1134303 1134308) (-725 "MODMON.spad" 1130746 1130762 1131465 1131618) (-724 "MODFIELD.spad" 1130108 1130147 1130648 1130741) (-723 "MMLFORM.spad" 1128968 1128976 1130098 1130103) (-722 "MMAP.spad" 1128710 1128744 1128958 1128963) (-721 "MLO.spad" 1127169 1127179 1128666 1128705) (-720 "MLIFT.spad" 1125781 1125798 1127159 1127164) (-719 "MKUCFUNC.spad" 1125316 1125334 1125771 1125776) (-718 "MKRECORD.spad" 1124920 1124933 1125306 1125311) (-717 "MKFUNC.spad" 1124327 1124337 1124910 1124915) (-716 "MKFLCFN.spad" 1123295 1123305 1124317 1124322) (-715 "MKBCFUNC.spad" 1122790 1122808 1123285 1123290) (-714 "MINT.spad" 1122229 1122237 1122692 1122785) (-713 "MHROWRED.spad" 1120740 1120750 1122219 1122224) (-712 "MFLOAT.spad" 1119260 1119268 1120630 1120735) (-711 "MFINFACT.spad" 1118660 1118682 1119250 1119255) (-710 "MESH.spad" 1116442 1116450 1118650 1118655) (-709 "MDDFACT.spad" 1114653 1114663 1116432 1116437) (-708 "MDAGG.spad" 1113944 1113954 1114633 1114648) (-707 "MCMPLX.spad" 1109375 1109383 1109989 1110190) (-706 "MCDEN.spad" 1108585 1108597 1109365 1109370) (-705 "MCALCFN.spad" 1105707 1105733 1108575 1108580) (-704 "MAYBE.spad" 1104991 1105002 1105697 1105702) (-703 "MATSTOR.spad" 1102299 1102309 1104981 1104986) (-702 "MATRIX.spad" 1100886 1100896 1101370 1101397) (-701 "MATLIN.spad" 1098230 1098254 1100770 1100775) (-700 "MATCAT.spad" 1089752 1089774 1098198 1098225) (-699 "MATCAT.spad" 1081146 1081170 1089594 1089599) (-698 "MATCAT2.spad" 1080428 1080476 1081136 1081141) (-697 "MAPPKG3.spad" 1079343 1079357 1080418 1080423) (-696 "MAPPKG2.spad" 1078681 1078693 1079333 1079338) (-695 "MAPPKG1.spad" 1077509 1077519 1078671 1078676) (-694 "MAPPAST.spad" 1076824 1076832 1077499 1077504) (-693 "MAPHACK3.spad" 1076636 1076650 1076814 1076819) (-692 "MAPHACK2.spad" 1076405 1076417 1076626 1076631) (-691 "MAPHACK1.spad" 1076049 1076059 1076395 1076400) (-690 "MAGMA.spad" 1073839 1073856 1076039 1076044) (-689 "MACROAST.spad" 1073418 1073426 1073829 1073834) (-688 "M3D.spad" 1071021 1071031 1072679 1072684) (-687 "LZSTAGG.spad" 1068259 1068269 1071011 1071016) (-686 "LZSTAGG.spad" 1065495 1065507 1068249 1068254) (-685 "LWORD.spad" 1062200 1062217 1065485 1065490) (-684 "LSTAST.spad" 1061984 1061992 1062190 1062195) (-683 "LSQM.spad" 1060141 1060155 1060535 1060586) (-682 "LSPP.spad" 1059676 1059693 1060131 1060136) (-681 "LSMP.spad" 1058526 1058554 1059666 1059671) (-680 "LSMP1.spad" 1056344 1056358 1058516 1058521) (-679 "LSAGG.spad" 1056013 1056023 1056312 1056339) (-678 "LSAGG.spad" 1055702 1055714 1056003 1056008) (-677 "LPOLY.spad" 1054656 1054675 1055558 1055627) (-676 "LPEFRAC.spad" 1053927 1053937 1054646 1054651) (-675 "LO.spad" 1053328 1053342 1053861 1053888) (-674 "LOGIC.spad" 1052930 1052938 1053318 1053323) (-673 "LOGIC.spad" 1052530 1052540 1052920 1052925) (-672 "LODOOPS.spad" 1051460 1051472 1052520 1052525) (-671 "LODO.spad" 1050844 1050860 1051140 1051179) (-670 "LODOF.spad" 1049890 1049907 1050801 1050806) (-669 "LODOCAT.spad" 1048556 1048566 1049846 1049885) (-668 "LODOCAT.spad" 1047220 1047232 1048512 1048517) (-667 "LODO2.spad" 1046493 1046505 1046900 1046939) (-666 "LODO1.spad" 1045893 1045903 1046173 1046212) (-665 "LODEEF.spad" 1044695 1044713 1045883 1045888) (-664 "LNAGG.spad" 1040842 1040852 1044685 1044690) (-663 "LNAGG.spad" 1036953 1036965 1040798 1040803) (-662 "LMOPS.spad" 1033721 1033738 1036943 1036948) (-661 "LMODULE.spad" 1033489 1033499 1033711 1033716) (-660 "LMDICT.spad" 1032659 1032669 1032923 1032950) (-659 "LLINSET.spad" 1032366 1032376 1032649 1032654) (-658 "LITERAL.spad" 1032272 1032283 1032356 1032361) (-657 "LIST.spad" 1029854 1029864 1031266 1031293) (-656 "LIST3.spad" 1029165 1029179 1029844 1029849) (-655 "LIST2.spad" 1027867 1027879 1029155 1029160) (-654 "LIST2MAP.spad" 1024770 1024782 1027857 1027862) (-653 "LINSET.spad" 1024549 1024559 1024760 1024765) (-652 "LINEXP.spad" 1023292 1023302 1024539 1024544) (-651 "LINELT.spad" 1022694 1022706 1023260 1023287) (-650 "LINDEP.spad" 1021503 1021515 1022606 1022611) (-649 "LIMITRF.spad" 1019431 1019441 1021493 1021498) (-648 "LIMITPS.spad" 1018334 1018347 1019421 1019426) (-647 "LIE.spad" 1016350 1016362 1017624 1017769) (-646 "LIECAT.spad" 1015826 1015836 1016276 1016345) (-645 "LIECAT.spad" 1015330 1015342 1015782 1015787) (-644 "LIB.spad" 1013081 1013089 1013527 1013542) (-643 "LGROBP.spad" 1010434 1010453 1013071 1013076) (-642 "LF.spad" 1009389 1009405 1010424 1010429) (-641 "LFCAT.spad" 1008448 1008456 1009379 1009384) (-640 "LEXTRIPK.spad" 1003951 1003966 1008438 1008443) (-639 "LEXP.spad" 1001954 1001981 1003931 1003946) (-638 "LETAST.spad" 1001653 1001661 1001944 1001949) (-637 "LEADCDET.spad" 1000051 1000068 1001643 1001648) (-636 "LAZM3PK.spad" 998755 998777 1000041 1000046) (-635 "LAUPOL.spad" 997355 997368 998255 998324) (-634 "LAPLACE.spad" 996938 996954 997345 997350) (-633 "LA.spad" 996378 996392 996860 996899) (-632 "LALG.spad" 996154 996164 996358 996373) (-631 "LALG.spad" 995938 995950 996144 996149) (-630 "KVTFROM.spad" 995673 995683 995928 995933) (-629 "KTVLOGIC.spad" 995185 995193 995663 995668) (-628 "KRCFROM.spad" 994923 994933 995175 995180) (-627 "KOVACIC.spad" 993646 993663 994913 994918) (-626 "KONVERT.spad" 993368 993378 993636 993641) (-625 "KOERCE.spad" 993105 993115 993358 993363) (-624 "KERNEL.spad" 991760 991770 992889 992894) (-623 "KERNEL2.spad" 991463 991475 991750 991755) (-622 "KDAGG.spad" 990572 990594 991443 991458) (-621 "KDAGG.spad" 989689 989713 990562 990567) (-620 "KAFILE.spad" 988543 988559 988778 988805) (-619 "JORDAN.spad" 986372 986384 987833 987978) (-618 "JOINAST.spad" 986066 986074 986362 986367) (-617 "JAVACODE.spad" 985932 985940 986056 986061) (-616 "IXAGG.spad" 984065 984089 985922 985927) (-615 "IXAGG.spad" 982053 982079 983912 983917) (-614 "IVECTOR.spad" 980670 980685 980825 980852) (-613 "ITUPLE.spad" 979831 979841 980660 980665) (-612 "ITRIGMNP.spad" 978670 978689 979821 979826) (-611 "ITFUN3.spad" 978176 978190 978660 978665) (-610 "ITFUN2.spad" 977920 977932 978166 978171) (-609 "ITFORM.spad" 977275 977283 977910 977915) (-608 "ITAYLOR.spad" 975269 975284 977139 977236) (-607 "ISUPS.spad" 967706 967721 974243 974340) (-606 "ISUMP.spad" 967207 967223 967696 967701) (-605 "ISTRING.spad" 966134 966147 966215 966242) (-604 "ISAST.spad" 965853 965861 966124 966129) (-603 "IRURPK.spad" 964570 964589 965843 965848) (-602 "IRSN.spad" 962542 962550 964560 964565) (-601 "IRRF2F.spad" 961027 961037 962498 962503) (-600 "IRREDFFX.spad" 960628 960639 961017 961022) (-599 "IROOT.spad" 958967 958977 960618 960623) (-598 "IR.spad" 956768 956782 958822 958849) (-597 "IRFORM.spad" 956092 956100 956758 956763) (-596 "IR2.spad" 955120 955136 956082 956087) (-595 "IR2F.spad" 954326 954342 955110 955115) (-594 "IPRNTPK.spad" 954086 954094 954316 954321) (-593 "IPF.spad" 953651 953663 953891 953984) (-592 "IPADIC.spad" 953412 953438 953577 953646) (-591 "IP4ADDR.spad" 952969 952977 953402 953407) (-590 "IOMODE.spad" 952491 952499 952959 952964) (-589 "IOBFILE.spad" 951852 951860 952481 952486) (-588 "IOBCON.spad" 951717 951725 951842 951847) (-587 "INVLAPLA.spad" 951366 951382 951707 951712) (-586 "INTTR.spad" 944748 944765 951356 951361) (-585 "INTTOOLS.spad" 942503 942519 944322 944327) (-584 "INTSLPE.spad" 941823 941831 942493 942498) (-583 "INTRVL.spad" 941389 941399 941737 941818) (-582 "INTRF.spad" 939813 939827 941379 941384) (-581 "INTRET.spad" 939245 939255 939803 939808) (-580 "INTRAT.spad" 937972 937989 939235 939240) (-579 "INTPM.spad" 936357 936373 937615 937620) (-578 "INTPAF.spad" 934221 934239 936289 936294) (-577 "INTPACK.spad" 924595 924603 934211 934216) (-576 "INT.spad" 924043 924051 924449 924590) (-575 "INTHERTR.spad" 923317 923334 924033 924038) (-574 "INTHERAL.spad" 922987 923011 923307 923312) (-573 "INTHEORY.spad" 919426 919434 922977 922982) (-572 "INTG0.spad" 913159 913177 919358 919363) (-571 "INTFTBL.spad" 907188 907196 913149 913154) (-570 "INTFACT.spad" 906247 906257 907178 907183) (-569 "INTEF.spad" 904632 904648 906237 906242) (-568 "INTDOM.spad" 903255 903263 904558 904627) (-567 "INTDOM.spad" 901940 901950 903245 903250) (-566 "INTCAT.spad" 900199 900209 901854 901935) (-565 "INTBIT.spad" 899706 899714 900189 900194) (-564 "INTALG.spad" 898894 898921 899696 899701) (-563 "INTAF.spad" 898394 898410 898884 898889) (-562 "INTABL.spad" 896470 896501 896633 896660) (-561 "INT8.spad" 896350 896358 896460 896465) (-560 "INT64.spad" 896229 896237 896340 896345) (-559 "INT32.spad" 896108 896116 896219 896224) (-558 "INT16.spad" 895987 895995 896098 896103) (-557 "INS.spad" 893490 893498 895889 895982) (-556 "INS.spad" 891079 891089 893480 893485) (-555 "INPSIGN.spad" 890527 890540 891069 891074) (-554 "INPRODPF.spad" 889623 889642 890517 890522) (-553 "INPRODFF.spad" 888711 888735 889613 889618) (-552 "INNMFACT.spad" 887686 887703 888701 888706) (-551 "INMODGCD.spad" 887174 887204 887676 887681) (-550 "INFSP.spad" 885471 885493 887164 887169) (-549 "INFPROD0.spad" 884551 884570 885461 885466) (-548 "INFORM.spad" 881750 881758 884541 884546) (-547 "INFORM1.spad" 881375 881385 881740 881745) (-546 "INFINITY.spad" 880927 880935 881365 881370) (-545 "INETCLTS.spad" 880904 880912 880917 880922) (-544 "INEP.spad" 879442 879464 880894 880899) (-543 "INDE.spad" 879091 879108 879352 879357) (-542 "INCRMAPS.spad" 878512 878522 879081 879086) (-541 "INBFILE.spad" 877584 877592 878502 878507) (-540 "INBFF.spad" 873378 873389 877574 877579) (-539 "INBCON.spad" 871668 871676 873368 873373) (-538 "INBCON.spad" 869956 869966 871658 871663) (-537 "INAST.spad" 869617 869625 869946 869951) (-536 "IMPTAST.spad" 869325 869333 869607 869612) (-535 "IMATRIX.spad" 868153 868179 868665 868692) (-534 "IMATQF.spad" 867247 867291 868109 868114) (-533 "IMATLIN.spad" 865852 865876 867203 867208) (-532 "ILIST.spad" 864357 864372 864882 864909) (-531 "IIARRAY2.spad" 863628 863666 863847 863874) (-530 "IFF.spad" 863038 863054 863309 863402) (-529 "IFAST.spad" 862652 862660 863028 863033) (-528 "IFARRAY.spad" 859992 860007 861682 861709) (-527 "IFAMON.spad" 859854 859871 859948 859953) (-526 "IEVALAB.spad" 859259 859271 859844 859849) (-525 "IEVALAB.spad" 858662 858676 859249 859254) (-524 "IDPO.spad" 858397 858409 858574 858579) (-523 "IDPOAMS.spad" 858075 858087 858309 858314) (-522 "IDPOAM.spad" 857717 857729 857987 857992) (-521 "IDPC.spad" 856446 856458 857707 857712) (-520 "IDPAM.spad" 856113 856125 856358 856363) (-519 "IDPAG.spad" 855782 855794 856025 856030) (-518 "IDENT.spad" 855432 855440 855772 855777) (-517 "IDECOMP.spad" 852671 852689 855422 855427) (-516 "IDEAL.spad" 847620 847659 852606 852611) (-515 "ICDEN.spad" 846809 846825 847610 847615) (-514 "ICARD.spad" 846000 846008 846799 846804) (-513 "IBPTOOLS.spad" 844607 844624 845990 845995) (-512 "IBITS.spad" 843772 843785 844205 844232) (-511 "IBATOOL.spad" 840749 840768 843762 843767) (-510 "IBACHIN.spad" 839256 839271 840739 840744) (-509 "IARRAY2.spad" 838127 838153 838746 838773) (-508 "IARRAY1.spad" 837019 837034 837157 837184) (-507 "IAN.spad" 835242 835250 836835 836928) (-506 "IALGFACT.spad" 834845 834878 835232 835237) (-505 "HYPCAT.spad" 834269 834277 834835 834840) (-504 "HYPCAT.spad" 833691 833701 834259 834264) (-503 "HOSTNAME.spad" 833499 833507 833681 833686) (-502 "HOMOTOP.spad" 833242 833252 833489 833494) (-501 "HOAGG.spad" 830524 830534 833232 833237) (-500 "HOAGG.spad" 827545 827557 830255 830260) (-499 "HEXADEC.spad" 825550 825558 825915 826008) (-498 "HEUGCD.spad" 824585 824596 825540 825545) (-497 "HELLFDIV.spad" 824175 824199 824575 824580) (-496 "HEAP.spad" 823450 823460 823665 823692) (-495 "HEADAST.spad" 822983 822991 823440 823445) (-494 "HDP.spad" 810793 810809 811170 811269) (-493 "HDMP.spad" 808007 808022 808623 808750) (-492 "HB.spad" 806258 806266 807997 808002) (-491 "HASHTBL.spad" 804286 804317 804497 804524) (-490 "HASAST.spad" 804002 804010 804276 804281) (-489 "HACKPI.spad" 803493 803501 803904 803997) (-488 "GTSET.spad" 802396 802412 803103 803130) (-487 "GSTBL.spad" 800473 800508 800647 800662) (-486 "GSERIES.spad" 797786 797813 798605 798754) (-485 "GROUP.spad" 797059 797067 797766 797781) (-484 "GROUP.spad" 796340 796350 797049 797054) (-483 "GROEBSOL.spad" 794834 794855 796330 796335) (-482 "GRMOD.spad" 793405 793417 794824 794829) (-481 "GRMOD.spad" 791974 791988 793395 793400) (-480 "GRIMAGE.spad" 784863 784871 791964 791969) (-479 "GRDEF.spad" 783242 783250 784853 784858) (-478 "GRAY.spad" 781705 781713 783232 783237) (-477 "GRALG.spad" 780782 780794 781695 781700) (-476 "GRALG.spad" 779857 779871 780772 780777) (-475 "GPOLSET.spad" 779275 779298 779503 779530) (-474 "GOSPER.spad" 778544 778562 779265 779270) (-473 "GMODPOL.spad" 777692 777719 778512 778539) (-472 "GHENSEL.spad" 776775 776789 777682 777687) (-471 "GENUPS.spad" 773068 773081 776765 776770) (-470 "GENUFACT.spad" 772645 772655 773058 773063) (-469 "GENPGCD.spad" 772231 772248 772635 772640) (-468 "GENMFACT.spad" 771683 771702 772221 772226) (-467 "GENEEZ.spad" 769634 769647 771673 771678) (-466 "GDMP.spad" 766690 766707 767464 767591) (-465 "GCNAALG.spad" 760613 760640 766484 766551) (-464 "GCDDOM.spad" 759789 759797 760539 760608) (-463 "GCDDOM.spad" 759027 759037 759779 759784) (-462 "GB.spad" 756553 756591 758983 758988) (-461 "GBINTERN.spad" 752573 752611 756543 756548) (-460 "GBF.spad" 748340 748378 752563 752568) (-459 "GBEUCLID.spad" 746222 746260 748330 748335) (-458 "GAUSSFAC.spad" 745535 745543 746212 746217) (-457 "GALUTIL.spad" 743861 743871 745491 745496) (-456 "GALPOLYU.spad" 742315 742328 743851 743856) (-455 "GALFACTU.spad" 740488 740507 742305 742310) (-454 "GALFACT.spad" 730677 730688 740478 740483) (-453 "FVFUN.spad" 727700 727708 730667 730672) (-452 "FVC.spad" 726752 726760 727690 727695) (-451 "FUNDESC.spad" 726430 726438 726742 726747) (-450 "FUNCTION.spad" 726279 726291 726420 726425) (-449 "FT.spad" 724576 724584 726269 726274) (-448 "FTEM.spad" 723741 723749 724566 724571) (-447 "FSUPFACT.spad" 722641 722660 723677 723682) (-446 "FST.spad" 720727 720735 722631 722636) (-445 "FSRED.spad" 720207 720223 720717 720722) (-444 "FSPRMELT.spad" 719089 719105 720164 720169) (-443 "FSPECF.spad" 717180 717196 719079 719084) (-442 "FS.spad" 711448 711458 716955 717175) (-441 "FS.spad" 705494 705506 711003 711008) (-440 "FSINT.spad" 705154 705170 705484 705489) (-439 "FSERIES.spad" 704345 704357 704974 705073) (-438 "FSCINT.spad" 703662 703678 704335 704340) (-437 "FSAGG.spad" 702779 702789 703618 703657) (-436 "FSAGG.spad" 701858 701870 702699 702704) (-435 "FSAGG2.spad" 700601 700617 701848 701853) (-434 "FS2UPS.spad" 695092 695126 700591 700596) (-433 "FS2.spad" 694739 694755 695082 695087) (-432 "FS2EXPXP.spad" 693864 693887 694729 694734) (-431 "FRUTIL.spad" 692818 692828 693854 693859) (-430 "FR.spad" 686441 686451 691749 691818) (-429 "FRNAALG.spad" 681710 681720 686383 686436) (-428 "FRNAALG.spad" 676991 677003 681666 681671) (-427 "FRNAAF2.spad" 676447 676465 676981 676986) (-426 "FRMOD.spad" 675857 675887 676378 676383) (-425 "FRIDEAL.spad" 675082 675103 675837 675852) (-424 "FRIDEAL2.spad" 674686 674718 675072 675077) (-423 "FRETRCT.spad" 674197 674207 674676 674681) (-422 "FRETRCT.spad" 673574 673586 674055 674060) (-421 "FRAMALG.spad" 671922 671935 673530 673569) (-420 "FRAMALG.spad" 670302 670317 671912 671917) (-419 "FRAC.spad" 667308 667318 667711 667884) (-418 "FRAC2.spad" 666913 666925 667298 667303) (-417 "FR2.spad" 666249 666261 666903 666908) (-416 "FPS.spad" 663064 663072 666139 666244) (-415 "FPS.spad" 659907 659917 662984 662989) (-414 "FPC.spad" 658953 658961 659809 659902) (-413 "FPC.spad" 658085 658095 658943 658948) (-412 "FPATMAB.spad" 657847 657857 658075 658080) (-411 "FPARFRAC.spad" 656697 656714 657837 657842) (-410 "FORTRAN.spad" 655203 655246 656687 656692) (-409 "FORT.spad" 654152 654160 655193 655198) (-408 "FORTFN.spad" 651322 651330 654142 654147) (-407 "FORTCAT.spad" 651006 651014 651312 651317) (-406 "FORMULA.spad" 648480 648488 650996 651001) (-405 "FORMULA1.spad" 647959 647969 648470 648475) (-404 "FORDER.spad" 647650 647674 647949 647954) (-403 "FOP.spad" 646851 646859 647640 647645) (-402 "FNLA.spad" 646275 646297 646819 646846) (-401 "FNCAT.spad" 644870 644878 646265 646270) (-400 "FNAME.spad" 644762 644770 644860 644865) (-399 "FMTC.spad" 644560 644568 644688 644757) (-398 "FMONOID.spad" 644225 644235 644516 644521) (-397 "FMONCAT.spad" 641378 641388 644215 644220) (-396 "FM.spad" 640993 641005 641232 641259) (-395 "FMFUN.spad" 638023 638031 640983 640988) (-394 "FMC.spad" 637075 637083 638013 638018) (-393 "FMCAT.spad" 634743 634761 637043 637070) (-392 "FM1.spad" 634100 634112 634677 634704) (-391 "FLOATRP.spad" 631835 631849 634090 634095) (-390 "FLOAT.spad" 625149 625157 631701 631830) (-389 "FLOATCP.spad" 622580 622594 625139 625144) (-388 "FLINEXP.spad" 622302 622312 622570 622575) (-387 "FLINEXP.spad" 621968 621980 622238 622243) (-386 "FLASORT.spad" 621294 621306 621958 621963) (-385 "FLALG.spad" 618940 618959 621220 621289) (-384 "FLAGG.spad" 615982 615992 618920 618935) (-383 "FLAGG.spad" 612925 612937 615865 615870) (-382 "FLAGG2.spad" 611650 611666 612915 612920) (-381 "FINRALG.spad" 609711 609724 611606 611645) (-380 "FINRALG.spad" 607698 607713 609595 609600) (-379 "FINITE.spad" 606850 606858 607688 607693) (-378 "FINAALG.spad" 595971 595981 606792 606845) (-377 "FINAALG.spad" 585104 585116 595927 595932) (-376 "FILE.spad" 584687 584697 585094 585099) (-375 "FILECAT.spad" 583213 583230 584677 584682) (-374 "FIELD.spad" 582619 582627 583115 583208) (-373 "FIELD.spad" 582111 582121 582609 582614) (-372 "FGROUP.spad" 580758 580768 582091 582106) (-371 "FGLMICPK.spad" 579545 579560 580748 580753) (-370 "FFX.spad" 578920 578935 579261 579354) (-369 "FFSLPE.spad" 578423 578444 578910 578915) (-368 "FFPOLY.spad" 569685 569696 578413 578418) (-367 "FFPOLY2.spad" 568745 568762 569675 569680) (-366 "FFP.spad" 568142 568162 568461 568554) (-365 "FF.spad" 567590 567606 567823 567916) (-364 "FFNBX.spad" 566102 566122 567306 567399) (-363 "FFNBP.spad" 564615 564632 565818 565911) (-362 "FFNB.spad" 563080 563101 564296 564389) (-361 "FFINTBAS.spad" 560594 560613 563070 563075) (-360 "FFIELDC.spad" 558171 558179 560496 560589) (-359 "FFIELDC.spad" 555834 555844 558161 558166) (-358 "FFHOM.spad" 554582 554599 555824 555829) (-357 "FFF.spad" 552017 552028 554572 554577) (-356 "FFCGX.spad" 550864 550884 551733 551826) (-355 "FFCGP.spad" 549753 549773 550580 550673) (-354 "FFCG.spad" 548545 548566 549434 549527) (-353 "FFCAT.spad" 541718 541740 548384 548540) (-352 "FFCAT.spad" 534970 534994 541638 541643) (-351 "FFCAT2.spad" 534717 534757 534960 534965) (-350 "FEXPR.spad" 526434 526480 534473 534512) (-349 "FEVALAB.spad" 526142 526152 526424 526429) (-348 "FEVALAB.spad" 525635 525647 525919 525924) (-347 "FDIV.spad" 525077 525101 525625 525630) (-346 "FDIVCAT.spad" 523141 523165 525067 525072) (-345 "FDIVCAT.spad" 521203 521229 523131 523136) (-344 "FDIV2.spad" 520859 520899 521193 521198) (-343 "FCTRDATA.spad" 519867 519875 520849 520854) (-342 "FCPAK1.spad" 518434 518442 519857 519862) (-341 "FCOMP.spad" 517813 517823 518424 518429) (-340 "FC.spad" 507820 507828 517803 517808) (-339 "FAXF.spad" 500791 500805 507722 507815) (-338 "FAXF.spad" 493814 493830 500747 500752) (-337 "FARRAY.spad" 491811 491821 492844 492871) (-336 "FAMR.spad" 489947 489959 491709 491806) (-335 "FAMR.spad" 488067 488081 489831 489836) (-334 "FAMONOID.spad" 487735 487745 488021 488026) (-333 "FAMONC.spad" 486031 486043 487725 487730) (-332 "FAGROUP.spad" 485655 485665 485927 485954) (-331 "FACUTIL.spad" 483859 483876 485645 485650) (-330 "FACTFUNC.spad" 483053 483063 483849 483854) (-329 "EXPUPXS.spad" 479886 479909 481185 481334) (-328 "EXPRTUBE.spad" 477174 477182 479876 479881) (-327 "EXPRODE.spad" 474334 474350 477164 477169) (-326 "EXPR.spad" 469509 469519 470223 470518) (-325 "EXPR2UPS.spad" 465631 465644 469499 469504) (-324 "EXPR2.spad" 465336 465348 465621 465626) (-323 "EXPEXPAN.spad" 462137 462162 462769 462862) (-322 "EXIT.spad" 461808 461816 462127 462132) (-321 "EXITAST.spad" 461544 461552 461798 461803) (-320 "EVALCYC.spad" 461004 461018 461534 461539) (-319 "EVALAB.spad" 460576 460586 460994 460999) (-318 "EVALAB.spad" 460146 460158 460566 460571) (-317 "EUCDOM.spad" 457720 457728 460072 460141) (-316 "EUCDOM.spad" 455356 455366 457710 457715) (-315 "ESTOOLS.spad" 447202 447210 455346 455351) (-314 "ESTOOLS2.spad" 446805 446819 447192 447197) (-313 "ESTOOLS1.spad" 446490 446501 446795 446800) (-312 "ES.spad" 439305 439313 446480 446485) (-311 "ES.spad" 432026 432036 439203 439208) (-310 "ESCONT.spad" 428819 428827 432016 432021) (-309 "ESCONT1.spad" 428568 428580 428809 428814) (-308 "ES2.spad" 428073 428089 428558 428563) (-307 "ES1.spad" 427643 427659 428063 428068) (-306 "ERROR.spad" 424970 424978 427633 427638) (-305 "EQTBL.spad" 423000 423022 423209 423236) (-304 "EQ.spad" 417805 417815 420592 420704) (-303 "EQ2.spad" 417523 417535 417795 417800) (-302 "EP.spad" 413849 413859 417513 417518) (-301 "ENV.spad" 412527 412535 413839 413844) (-300 "ENTIRER.spad" 412195 412203 412471 412522) (-299 "EMR.spad" 411483 411524 412121 412190) (-298 "ELTAGG.spad" 409737 409756 411473 411478) (-297 "ELTAGG.spad" 407955 407976 409693 409698) (-296 "ELTAB.spad" 407430 407443 407945 407950) (-295 "ELFUTS.spad" 406817 406836 407420 407425) (-294 "ELEMFUN.spad" 406506 406514 406807 406812) (-293 "ELEMFUN.spad" 406193 406203 406496 406501) (-292 "ELAGG.spad" 404164 404174 406173 406188) (-291 "ELAGG.spad" 402072 402084 404083 404088) (-290 "ELABOR.spad" 401418 401426 402062 402067) (-289 "ELABEXPR.spad" 400350 400358 401408 401413) (-288 "EFUPXS.spad" 397126 397156 400306 400311) (-287 "EFULS.spad" 393962 393985 397082 397087) (-286 "EFSTRUC.spad" 391977 391993 393952 393957) (-285 "EF.spad" 386753 386769 391967 391972) (-284 "EAB.spad" 385029 385037 386743 386748) (-283 "E04UCFA.spad" 384565 384573 385019 385024) (-282 "E04NAFA.spad" 384142 384150 384555 384560) (-281 "E04MBFA.spad" 383722 383730 384132 384137) (-280 "E04JAFA.spad" 383258 383266 383712 383717) (-279 "E04GCFA.spad" 382794 382802 383248 383253) (-278 "E04FDFA.spad" 382330 382338 382784 382789) (-277 "E04DGFA.spad" 381866 381874 382320 382325) (-276 "E04AGNT.spad" 377716 377724 381856 381861) (-275 "DVARCAT.spad" 374606 374616 377706 377711) (-274 "DVARCAT.spad" 371494 371506 374596 374601) (-273 "DSMP.spad" 368868 368882 369173 369300) (-272 "DSEXT.spad" 368170 368180 368858 368863) (-271 "DSEXT.spad" 367379 367391 368069 368074) (-270 "DROPT.spad" 361338 361346 367369 367374) (-269 "DROPT1.spad" 361003 361013 361328 361333) (-268 "DROPT0.spad" 355860 355868 360993 360998) (-267 "DRAWPT.spad" 354033 354041 355850 355855) (-266 "DRAW.spad" 346909 346922 354023 354028) (-265 "DRAWHACK.spad" 346217 346227 346899 346904) (-264 "DRAWCX.spad" 343687 343695 346207 346212) (-263 "DRAWCURV.spad" 343234 343249 343677 343682) (-262 "DRAWCFUN.spad" 332766 332774 343224 343229) (-261 "DQAGG.spad" 330944 330954 332734 332761) (-260 "DPOLCAT.spad" 326293 326309 330812 330939) (-259 "DPOLCAT.spad" 321728 321746 326249 326254) (-258 "DPMO.spad" 313488 313504 313626 313839) (-257 "DPMM.spad" 305261 305279 305386 305599) (-256 "DOMTMPLT.spad" 305032 305040 305251 305256) (-255 "DOMCTOR.spad" 304787 304795 305022 305027) (-254 "DOMAIN.spad" 303874 303882 304777 304782) (-253 "DMP.spad" 301134 301149 301704 301831) (-252 "DMEXT.spad" 301001 301011 301102 301129) (-251 "DLP.spad" 300353 300363 300991 300996) (-250 "DLIST.spad" 298779 298789 299383 299410) (-249 "DLAGG.spad" 297196 297206 298769 298774) (-248 "DIVRING.spad" 296738 296746 297140 297191) (-247 "DIVRING.spad" 296324 296334 296728 296733) (-246 "DISPLAY.spad" 294514 294522 296314 296319) (-245 "DIRPROD.spad" 282061 282077 282701 282800) (-244 "DIRPROD2.spad" 280879 280897 282051 282056) (-243 "DIRPCAT.spad" 280072 280088 280775 280874) (-242 "DIRPCAT.spad" 278892 278910 279597 279602) (-241 "DIOSP.spad" 277717 277725 278882 278887) (-240 "DIOPS.spad" 276713 276723 277697 277712) (-239 "DIOPS.spad" 275683 275695 276669 276674) (-238 "DIFRING.spad" 275521 275529 275663 275678) (-237 "DIFFSPC.spad" 275100 275108 275511 275516) (-236 "DIFFSPC.spad" 274677 274687 275090 275095) (-235 "DIFFMOD.spad" 274166 274176 274645 274672) (-234 "DIFFDOM.spad" 273331 273342 274156 274161) (-233 "DIFFDOM.spad" 272494 272507 273321 273326) (-232 "DIFEXT.spad" 272313 272323 272474 272489) (-231 "DIAGG.spad" 271943 271953 272293 272308) (-230 "DIAGG.spad" 271581 271593 271933 271938) (-229 "DHMATRIX.spad" 269776 269786 270921 270948) (-228 "DFSFUN.spad" 263416 263424 269766 269771) (-227 "DFLOAT.spad" 260147 260155 263306 263411) (-226 "DFINTTLS.spad" 258378 258394 260137 260142) (-225 "DERHAM.spad" 256292 256324 258358 258373) (-224 "DEQUEUE.spad" 255499 255509 255782 255809) (-223 "DEGRED.spad" 255116 255130 255489 255494) (-222 "DEFINTRF.spad" 252653 252663 255106 255111) (-221 "DEFINTEF.spad" 251163 251179 252643 252648) (-220 "DEFAST.spad" 250531 250539 251153 251158) (-219 "DECIMAL.spad" 248540 248548 248901 248994) (-218 "DDFACT.spad" 246353 246370 248530 248535) (-217 "DBLRESP.spad" 245953 245977 246343 246348) (-216 "DBASE.spad" 244617 244627 245943 245948) (-215 "DATAARY.spad" 244079 244092 244607 244612) (-214 "D03FAFA.spad" 243907 243915 244069 244074) (-213 "D03EEFA.spad" 243727 243735 243897 243902) (-212 "D03AGNT.spad" 242813 242821 243717 243722) (-211 "D02EJFA.spad" 242275 242283 242803 242808) (-210 "D02CJFA.spad" 241753 241761 242265 242270) (-209 "D02BHFA.spad" 241243 241251 241743 241748) (-208 "D02BBFA.spad" 240733 240741 241233 241238) (-207 "D02AGNT.spad" 235547 235555 240723 240728) (-206 "D01WGTS.spad" 233866 233874 235537 235542) (-205 "D01TRNS.spad" 233843 233851 233856 233861) (-204 "D01GBFA.spad" 233365 233373 233833 233838) (-203 "D01FCFA.spad" 232887 232895 233355 233360) (-202 "D01ASFA.spad" 232355 232363 232877 232882) (-201 "D01AQFA.spad" 231801 231809 232345 232350) (-200 "D01APFA.spad" 231225 231233 231791 231796) (-199 "D01ANFA.spad" 230719 230727 231215 231220) (-198 "D01AMFA.spad" 230229 230237 230709 230714) (-197 "D01ALFA.spad" 229769 229777 230219 230224) (-196 "D01AKFA.spad" 229295 229303 229759 229764) (-195 "D01AJFA.spad" 228818 228826 229285 229290) (-194 "D01AGNT.spad" 224885 224893 228808 228813) (-193 "CYCLOTOM.spad" 224391 224399 224875 224880) (-192 "CYCLES.spad" 221183 221191 224381 224386) (-191 "CVMP.spad" 220600 220610 221173 221178) (-190 "CTRIGMNP.spad" 219100 219116 220590 220595) (-189 "CTOR.spad" 218791 218799 219090 219095) (-188 "CTORKIND.spad" 218394 218402 218781 218786) (-187 "CTORCAT.spad" 217643 217651 218384 218389) (-186 "CTORCAT.spad" 216890 216900 217633 217638) (-185 "CTORCALL.spad" 216479 216489 216880 216885) (-184 "CSTTOOLS.spad" 215724 215737 216469 216474) (-183 "CRFP.spad" 209448 209461 215714 215719) (-182 "CRCEAST.spad" 209168 209176 209438 209443) (-181 "CRAPACK.spad" 208219 208229 209158 209163) (-180 "CPMATCH.spad" 207723 207738 208144 208149) (-179 "CPIMA.spad" 207428 207447 207713 207718) (-178 "COORDSYS.spad" 202437 202447 207418 207423) (-177 "CONTOUR.spad" 201848 201856 202427 202432) (-176 "CONTFRAC.spad" 197598 197608 201750 201843) (-175 "CONDUIT.spad" 197356 197364 197588 197593) (-174 "COMRING.spad" 197030 197038 197294 197351) (-173 "COMPPROP.spad" 196548 196556 197020 197025) (-172 "COMPLPAT.spad" 196315 196330 196538 196543) (-171 "COMPLEX.spad" 191692 191702 191936 192197) (-170 "COMPLEX2.spad" 191407 191419 191682 191687) (-169 "COMPILER.spad" 190956 190964 191397 191402) (-168 "COMPFACT.spad" 190558 190572 190946 190951) (-167 "COMPCAT.spad" 188630 188640 190292 190553) (-166 "COMPCAT.spad" 186430 186442 188094 188099) (-165 "COMMUPC.spad" 186178 186196 186420 186425) (-164 "COMMONOP.spad" 185711 185719 186168 186173) (-163 "COMM.spad" 185522 185530 185701 185706) (-162 "COMMAAST.spad" 185285 185293 185512 185517) (-161 "COMBOPC.spad" 184200 184208 185275 185280) (-160 "COMBINAT.spad" 182967 182977 184190 184195) (-159 "COMBF.spad" 180349 180365 182957 182962) (-158 "COLOR.spad" 179186 179194 180339 180344) (-157 "COLONAST.spad" 178852 178860 179176 179181) (-156 "CMPLXRT.spad" 178563 178580 178842 178847) (-155 "CLLCTAST.spad" 178225 178233 178553 178558) (-154 "CLIP.spad" 174333 174341 178215 178220) (-153 "CLIF.spad" 172988 173004 174289 174328) (-152 "CLAGG.spad" 169493 169503 172978 172983) (-151 "CLAGG.spad" 165869 165881 169356 169361) (-150 "CINTSLPE.spad" 165200 165213 165859 165864) (-149 "CHVAR.spad" 163338 163360 165190 165195) (-148 "CHARZ.spad" 163253 163261 163318 163333) (-147 "CHARPOL.spad" 162763 162773 163243 163248) (-146 "CHARNZ.spad" 162516 162524 162743 162758) (-145 "CHAR.spad" 160390 160398 162506 162511) (-144 "CFCAT.spad" 159718 159726 160380 160385) (-143 "CDEN.spad" 158914 158928 159708 159713) (-142 "CCLASS.spad" 157025 157033 158287 158326) (-141 "CATEGORY.spad" 156067 156075 157015 157020) (-140 "CATCTOR.spad" 155958 155966 156057 156062) (-139 "CATAST.spad" 155576 155584 155948 155953) (-138 "CASEAST.spad" 155290 155298 155566 155571) (-137 "CARTEN.spad" 150657 150681 155280 155285) (-136 "CARTEN2.spad" 150047 150074 150647 150652) (-135 "CARD.spad" 147342 147350 150021 150042) (-134 "CAPSLAST.spad" 147116 147124 147332 147337) (-133 "CACHSET.spad" 146740 146748 147106 147111) (-132 "CABMON.spad" 146295 146303 146730 146735) (-131 "BYTEORD.spad" 145970 145978 146285 146290) (-130 "BYTE.spad" 145397 145405 145960 145965) (-129 "BYTEBUF.spad" 143095 143103 144405 144432) (-128 "BTREE.spad" 142051 142061 142585 142612) (-127 "BTOURN.spad" 140939 140949 141541 141568) (-126 "BTCAT.spad" 140331 140341 140907 140934) (-125 "BTCAT.spad" 139743 139755 140321 140326) (-124 "BTAGG.spad" 139209 139217 139711 139738) (-123 "BTAGG.spad" 138695 138705 139199 139204) (-122 "BSTREE.spad" 137319 137329 138185 138212) (-121 "BRILL.spad" 135516 135527 137309 137314) (-120 "BRAGG.spad" 134456 134466 135506 135511) (-119 "BRAGG.spad" 133360 133372 134412 134417) (-118 "BPADICRT.spad" 131234 131246 131489 131582) (-117 "BPADIC.spad" 130898 130910 131160 131229) (-116 "BOUNDZRO.spad" 130554 130571 130888 130893) (-115 "BOP.spad" 125736 125744 130544 130549) (-114 "BOP1.spad" 123202 123212 125726 125731) (-113 "BOOLE.spad" 122852 122860 123192 123197) (-112 "BOOLEAN.spad" 122290 122298 122842 122847) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP8.spad" 97941 97954 98888 98893) (-87 "ASP80.spad" 97263 97276 97931 97936) (-86 "ASP7.spad" 96423 96436 97253 97258) (-85 "ASP78.spad" 95874 95887 96413 96418) (-84 "ASP77.spad" 95243 95256 95864 95869) (-83 "ASP74.spad" 94335 94348 95233 95238) (-82 "ASP73.spad" 93606 93619 94325 94330) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP4.spad" 88094 88107 88789 88794) (-77 "ASP49.spad" 87093 87106 88084 88089) (-76 "ASP42.spad" 85500 85539 87083 87088) (-75 "ASP41.spad" 84079 84118 85490 85495) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP1.spad" 67528 67541 68137 68142) (-63 "ASP19.spad" 62214 62227 67518 67523) (-62 "ASP12.spad" 61628 61641 62204 62209) (-61 "ASP10.spad" 60899 60912 61618 61623) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY1.spad" 58826 58835 59172 59199) (-58 "ARRAY12.spad" 57539 57550 58816 58821) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY.spad" 46217 46224 47348 47353) (-51 "ANY1.spad" 45288 45297 46207 46212) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2296249 2296254 2296259 2296264) (-2 NIL 2296229 2296234 2296239 2296244) (-1 NIL 2296209 2296214 2296219 2296224) (0 NIL 2296189 2296194 2296199 2296204) (-1321 "ZMOD.spad" 2295998 2296011 2296127 2296184) (-1320 "ZLINDEP.spad" 2295064 2295075 2295988 2295993) (-1319 "ZDSOLVE.spad" 2285009 2285031 2295054 2295059) (-1318 "YSTREAM.spad" 2284504 2284515 2284999 2285004) (-1317 "YDIAGRAM.spad" 2284138 2284147 2284494 2284499) (-1316 "XRPOLY.spad" 2283358 2283378 2283994 2284063) (-1315 "XPR.spad" 2281153 2281166 2283076 2283175) (-1314 "XPOLY.spad" 2280708 2280719 2281009 2281078) (-1313 "XPOLYC.spad" 2280027 2280043 2280634 2280703) (-1312 "XPBWPOLY.spad" 2278464 2278484 2279807 2279876) (-1311 "XF.spad" 2276927 2276942 2278366 2278459) (-1310 "XF.spad" 2275370 2275387 2276811 2276816) (-1309 "XFALG.spad" 2272418 2272434 2275296 2275365) (-1308 "XEXPPKG.spad" 2271669 2271695 2272408 2272413) (-1307 "XDPOLY.spad" 2271283 2271299 2271525 2271594) (-1306 "XALG.spad" 2270943 2270954 2271239 2271278) (-1305 "WUTSET.spad" 2266746 2266763 2270553 2270580) (-1304 "WP.spad" 2265945 2265989 2266604 2266671) (-1303 "WHILEAST.spad" 2265743 2265752 2265935 2265940) (-1302 "WHEREAST.spad" 2265414 2265423 2265733 2265738) (-1301 "WFFINTBS.spad" 2263077 2263099 2265404 2265409) (-1300 "WEIER.spad" 2261299 2261310 2263067 2263072) (-1299 "VSPACE.spad" 2260972 2260983 2261267 2261294) (-1298 "VSPACE.spad" 2260665 2260678 2260962 2260967) (-1297 "VOID.spad" 2260342 2260351 2260655 2260660) (-1296 "VIEW.spad" 2258022 2258031 2260332 2260337) (-1295 "VIEWDEF.spad" 2253223 2253232 2258012 2258017) (-1294 "VIEW3D.spad" 2237184 2237193 2253213 2253218) (-1293 "VIEW2D.spad" 2225075 2225084 2237174 2237179) (-1292 "VECTOR.spad" 2223596 2223607 2223847 2223874) (-1291 "VECTOR2.spad" 2222235 2222248 2223586 2223591) (-1290 "VECTCAT.spad" 2220139 2220150 2222203 2222230) (-1289 "VECTCAT.spad" 2217850 2217863 2219916 2219921) (-1288 "VARIABLE.spad" 2217630 2217645 2217840 2217845) (-1287 "UTYPE.spad" 2217274 2217283 2217620 2217625) (-1286 "UTSODETL.spad" 2216569 2216593 2217230 2217235) (-1285 "UTSODE.spad" 2214785 2214805 2216559 2216564) (-1284 "UTS.spad" 2209732 2209760 2213252 2213349) (-1283 "UTSCAT.spad" 2207211 2207227 2209630 2209727) (-1282 "UTSCAT.spad" 2204334 2204352 2206755 2206760) (-1281 "UTS2.spad" 2203929 2203964 2204324 2204329) (-1280 "URAGG.spad" 2198602 2198613 2203919 2203924) (-1279 "URAGG.spad" 2193239 2193252 2198558 2198563) (-1278 "UPXSSING.spad" 2190884 2190910 2192320 2192453) (-1277 "UPXS.spad" 2188180 2188208 2189016 2189165) (-1276 "UPXSCONS.spad" 2185939 2185959 2186312 2186461) (-1275 "UPXSCCA.spad" 2184510 2184530 2185785 2185934) (-1274 "UPXSCCA.spad" 2183223 2183245 2184500 2184505) (-1273 "UPXSCAT.spad" 2181812 2181828 2183069 2183218) (-1272 "UPXS2.spad" 2181355 2181408 2181802 2181807) (-1271 "UPSQFREE.spad" 2179769 2179783 2181345 2181350) (-1270 "UPSCAT.spad" 2177556 2177580 2179667 2179764) (-1269 "UPSCAT.spad" 2175049 2175075 2177162 2177167) (-1268 "UPOLYC.spad" 2170089 2170100 2174891 2175044) (-1267 "UPOLYC.spad" 2165021 2165034 2169825 2169830) (-1266 "UPOLYC2.spad" 2164492 2164511 2165011 2165016) (-1265 "UP.spad" 2161598 2161613 2161985 2162138) (-1264 "UPMP.spad" 2160498 2160511 2161588 2161593) (-1263 "UPDIVP.spad" 2160063 2160077 2160488 2160493) (-1262 "UPDECOMP.spad" 2158308 2158322 2160053 2160058) (-1261 "UPCDEN.spad" 2157517 2157533 2158298 2158303) (-1260 "UP2.spad" 2156881 2156902 2157507 2157512) (-1259 "UNISEG.spad" 2156234 2156245 2156800 2156805) (-1258 "UNISEG2.spad" 2155731 2155744 2156190 2156195) (-1257 "UNIFACT.spad" 2154834 2154846 2155721 2155726) (-1256 "ULS.spad" 2144618 2144646 2145563 2145992) (-1255 "ULSCONS.spad" 2135752 2135772 2136122 2136271) (-1254 "ULSCCAT.spad" 2133489 2133509 2135598 2135747) (-1253 "ULSCCAT.spad" 2131334 2131356 2133445 2133450) (-1252 "ULSCAT.spad" 2129566 2129582 2131180 2131329) (-1251 "ULS2.spad" 2129080 2129133 2129556 2129561) (-1250 "UINT8.spad" 2128957 2128966 2129070 2129075) (-1249 "UINT64.spad" 2128833 2128842 2128947 2128952) (-1248 "UINT32.spad" 2128709 2128718 2128823 2128828) (-1247 "UINT16.spad" 2128585 2128594 2128699 2128704) (-1246 "UFD.spad" 2127650 2127659 2128511 2128580) (-1245 "UFD.spad" 2126777 2126788 2127640 2127645) (-1244 "UDVO.spad" 2125658 2125667 2126767 2126772) (-1243 "UDPO.spad" 2123151 2123162 2125614 2125619) (-1242 "TYPE.spad" 2123083 2123092 2123141 2123146) (-1241 "TYPEAST.spad" 2123002 2123011 2123073 2123078) (-1240 "TWOFACT.spad" 2121654 2121669 2122992 2122997) (-1239 "TUPLE.spad" 2121140 2121151 2121553 2121558) (-1238 "TUBETOOL.spad" 2118007 2118016 2121130 2121135) (-1237 "TUBE.spad" 2116654 2116671 2117997 2118002) (-1236 "TS.spad" 2115253 2115269 2116219 2116316) (-1235 "TSETCAT.spad" 2102380 2102397 2115221 2115248) (-1234 "TSETCAT.spad" 2089493 2089512 2102336 2102341) (-1233 "TRMANIP.spad" 2083859 2083876 2089199 2089204) (-1232 "TRIMAT.spad" 2082822 2082847 2083849 2083854) (-1231 "TRIGMNIP.spad" 2081349 2081366 2082812 2082817) (-1230 "TRIGCAT.spad" 2080861 2080870 2081339 2081344) (-1229 "TRIGCAT.spad" 2080371 2080382 2080851 2080856) (-1228 "TREE.spad" 2078829 2078840 2079861 2079888) (-1227 "TRANFUN.spad" 2078668 2078677 2078819 2078824) (-1226 "TRANFUN.spad" 2078505 2078516 2078658 2078663) (-1225 "TOPSP.spad" 2078179 2078188 2078495 2078500) (-1224 "TOOLSIGN.spad" 2077842 2077853 2078169 2078174) (-1223 "TEXTFILE.spad" 2076403 2076412 2077832 2077837) (-1222 "TEX.spad" 2073549 2073558 2076393 2076398) (-1221 "TEX1.spad" 2073105 2073116 2073539 2073544) (-1220 "TEMUTL.spad" 2072660 2072669 2073095 2073100) (-1219 "TBCMPPK.spad" 2070753 2070776 2072650 2072655) (-1218 "TBAGG.spad" 2069803 2069826 2070733 2070748) (-1217 "TBAGG.spad" 2068861 2068886 2069793 2069798) (-1216 "TANEXP.spad" 2068269 2068280 2068851 2068856) (-1215 "TALGOP.spad" 2067993 2068004 2068259 2068264) (-1214 "TABLE.spad" 2065962 2065985 2066232 2066259) (-1213 "TABLEAU.spad" 2065443 2065454 2065952 2065957) (-1212 "TABLBUMP.spad" 2062246 2062257 2065433 2065438) (-1211 "SYSTEM.spad" 2061474 2061483 2062236 2062241) (-1210 "SYSSOLP.spad" 2058957 2058968 2061464 2061469) (-1209 "SYSPTR.spad" 2058856 2058865 2058947 2058952) (-1208 "SYSNNI.spad" 2058038 2058049 2058846 2058851) (-1207 "SYSINT.spad" 2057442 2057453 2058028 2058033) (-1206 "SYNTAX.spad" 2053648 2053657 2057432 2057437) (-1205 "SYMTAB.spad" 2051716 2051725 2053638 2053643) (-1204 "SYMS.spad" 2047739 2047748 2051706 2051711) (-1203 "SYMPOLY.spad" 2046746 2046757 2046828 2046955) (-1202 "SYMFUNC.spad" 2046247 2046258 2046736 2046741) (-1201 "SYMBOL.spad" 2043750 2043759 2046237 2046242) (-1200 "SWITCH.spad" 2040521 2040530 2043740 2043745) (-1199 "SUTS.spad" 2037569 2037597 2038988 2039085) (-1198 "SUPXS.spad" 2034852 2034880 2035701 2035850) (-1197 "SUP.spad" 2031572 2031583 2032345 2032498) (-1196 "SUPFRACF.spad" 2030677 2030695 2031562 2031567) (-1195 "SUP2.spad" 2030069 2030082 2030667 2030672) (-1194 "SUMRF.spad" 2029043 2029054 2030059 2030064) (-1193 "SUMFS.spad" 2028680 2028697 2029033 2029038) (-1192 "SULS.spad" 2018451 2018479 2019409 2019838) (-1191 "SUCHTAST.spad" 2018220 2018229 2018441 2018446) (-1190 "SUCH.spad" 2017902 2017917 2018210 2018215) (-1189 "SUBSPACE.spad" 2010017 2010032 2017892 2017897) (-1188 "SUBRESP.spad" 2009187 2009201 2009973 2009978) (-1187 "STTF.spad" 2005286 2005302 2009177 2009182) (-1186 "STTFNC.spad" 2001754 2001770 2005276 2005281) (-1185 "STTAYLOR.spad" 1994389 1994400 2001635 2001640) (-1184 "STRTBL.spad" 1992440 1992457 1992589 1992616) (-1183 "STRING.spad" 1991227 1991236 1991448 1991475) (-1182 "STREAM.spad" 1988028 1988039 1990635 1990650) (-1181 "STREAM3.spad" 1987601 1987616 1988018 1988023) (-1180 "STREAM2.spad" 1986729 1986742 1987591 1987596) (-1179 "STREAM1.spad" 1986435 1986446 1986719 1986724) (-1178 "STINPROD.spad" 1985371 1985387 1986425 1986430) (-1177 "STEP.spad" 1984572 1984581 1985361 1985366) (-1176 "STEPAST.spad" 1983806 1983815 1984562 1984567) (-1175 "STBL.spad" 1981890 1981918 1982057 1982072) (-1174 "STAGG.spad" 1980965 1980976 1981880 1981885) (-1173 "STAGG.spad" 1980038 1980051 1980955 1980960) (-1172 "STACK.spad" 1979278 1979289 1979528 1979555) (-1171 "SREGSET.spad" 1976946 1976963 1978888 1978915) (-1170 "SRDCMPK.spad" 1975507 1975527 1976936 1976941) (-1169 "SRAGG.spad" 1970650 1970659 1975475 1975502) (-1168 "SRAGG.spad" 1965813 1965824 1970640 1970645) (-1167 "SQMATRIX.spad" 1963356 1963374 1964272 1964359) (-1166 "SPLTREE.spad" 1957752 1957765 1962636 1962663) (-1165 "SPLNODE.spad" 1954340 1954353 1957742 1957747) (-1164 "SPFCAT.spad" 1953149 1953158 1954330 1954335) (-1163 "SPECOUT.spad" 1951701 1951710 1953139 1953144) (-1162 "SPADXPT.spad" 1943296 1943305 1951691 1951696) (-1161 "spad-parser.spad" 1942761 1942770 1943286 1943291) (-1160 "SPADAST.spad" 1942462 1942471 1942751 1942756) (-1159 "SPACEC.spad" 1926661 1926672 1942452 1942457) (-1158 "SPACE3.spad" 1926437 1926448 1926651 1926656) (-1157 "SORTPAK.spad" 1925986 1925999 1926393 1926398) (-1156 "SOLVETRA.spad" 1923749 1923760 1925976 1925981) (-1155 "SOLVESER.spad" 1922277 1922288 1923739 1923744) (-1154 "SOLVERAD.spad" 1918303 1918314 1922267 1922272) (-1153 "SOLVEFOR.spad" 1916765 1916783 1918293 1918298) (-1152 "SNTSCAT.spad" 1916365 1916382 1916733 1916760) (-1151 "SMTS.spad" 1914637 1914663 1915930 1916027) (-1150 "SMP.spad" 1912112 1912132 1912502 1912629) (-1149 "SMITH.spad" 1910957 1910982 1912102 1912107) (-1148 "SMATCAT.spad" 1909067 1909097 1910901 1910952) (-1147 "SMATCAT.spad" 1907109 1907141 1908945 1908950) (-1146 "SKAGG.spad" 1906072 1906083 1907077 1907104) (-1145 "SINT.spad" 1905012 1905021 1905938 1906067) (-1144 "SIMPAN.spad" 1904740 1904749 1905002 1905007) (-1143 "SIG.spad" 1904070 1904079 1904730 1904735) (-1142 "SIGNRF.spad" 1903188 1903199 1904060 1904065) (-1141 "SIGNEF.spad" 1902467 1902484 1903178 1903183) (-1140 "SIGAST.spad" 1901852 1901861 1902457 1902462) (-1139 "SHP.spad" 1899780 1899795 1901808 1901813) (-1138 "SHDP.spad" 1887458 1887485 1887967 1888066) (-1137 "SGROUP.spad" 1887066 1887075 1887448 1887453) (-1136 "SGROUP.spad" 1886672 1886683 1887056 1887061) (-1135 "SGCF.spad" 1879811 1879820 1886662 1886667) (-1134 "SFRTCAT.spad" 1878741 1878758 1879779 1879806) (-1133 "SFRGCD.spad" 1877804 1877824 1878731 1878736) (-1132 "SFQCMPK.spad" 1872441 1872461 1877794 1877799) (-1131 "SFORT.spad" 1871880 1871894 1872431 1872436) (-1130 "SEXOF.spad" 1871723 1871763 1871870 1871875) (-1129 "SEX.spad" 1871615 1871624 1871713 1871718) (-1128 "SEXCAT.spad" 1869387 1869427 1871605 1871610) (-1127 "SET.spad" 1867675 1867686 1868772 1868811) (-1126 "SETMN.spad" 1866125 1866142 1867665 1867670) (-1125 "SETCAT.spad" 1865610 1865619 1866115 1866120) (-1124 "SETCAT.spad" 1865093 1865104 1865600 1865605) (-1123 "SETAGG.spad" 1861642 1861653 1865073 1865088) (-1122 "SETAGG.spad" 1858199 1858212 1861632 1861637) (-1121 "SEQAST.spad" 1857902 1857911 1858189 1858194) (-1120 "SEGXCAT.spad" 1857058 1857071 1857892 1857897) (-1119 "SEG.spad" 1856871 1856882 1856977 1856982) (-1118 "SEGCAT.spad" 1855796 1855807 1856861 1856866) (-1117 "SEGBIND.spad" 1855554 1855565 1855743 1855748) (-1116 "SEGBIND2.spad" 1855252 1855265 1855544 1855549) (-1115 "SEGAST.spad" 1854966 1854975 1855242 1855247) (-1114 "SEG2.spad" 1854401 1854414 1854922 1854927) (-1113 "SDVAR.spad" 1853677 1853688 1854391 1854396) (-1112 "SDPOL.spad" 1851010 1851021 1851301 1851428) (-1111 "SCPKG.spad" 1849099 1849110 1851000 1851005) (-1110 "SCOPE.spad" 1848252 1848261 1849089 1849094) (-1109 "SCACHE.spad" 1846948 1846959 1848242 1848247) (-1108 "SASTCAT.spad" 1846857 1846866 1846938 1846943) (-1107 "SAOS.spad" 1846729 1846738 1846847 1846852) (-1106 "SAERFFC.spad" 1846442 1846462 1846719 1846724) (-1105 "SAE.spad" 1843912 1843928 1844523 1844658) (-1104 "SAEFACT.spad" 1843613 1843633 1843902 1843907) (-1103 "RURPK.spad" 1841272 1841288 1843603 1843608) (-1102 "RULESET.spad" 1840725 1840749 1841262 1841267) (-1101 "RULE.spad" 1838965 1838989 1840715 1840720) (-1100 "RULECOLD.spad" 1838817 1838830 1838955 1838960) (-1099 "RTVALUE.spad" 1838552 1838561 1838807 1838812) (-1098 "RSTRCAST.spad" 1838269 1838278 1838542 1838547) (-1097 "RSETGCD.spad" 1834647 1834667 1838259 1838264) (-1096 "RSETCAT.spad" 1824583 1824600 1834615 1834642) (-1095 "RSETCAT.spad" 1814539 1814558 1824573 1824578) (-1094 "RSDCMPK.spad" 1812991 1813011 1814529 1814534) (-1093 "RRCC.spad" 1811375 1811405 1812981 1812986) (-1092 "RRCC.spad" 1809757 1809789 1811365 1811370) (-1091 "RPTAST.spad" 1809459 1809468 1809747 1809752) (-1090 "RPOLCAT.spad" 1788819 1788834 1809327 1809454) (-1089 "RPOLCAT.spad" 1767892 1767909 1788402 1788407) (-1088 "ROUTINE.spad" 1763313 1763322 1766077 1766104) (-1087 "ROMAN.spad" 1762641 1762650 1763179 1763308) (-1086 "ROIRC.spad" 1761721 1761753 1762631 1762636) (-1085 "RNS.spad" 1760624 1760633 1761623 1761716) (-1084 "RNS.spad" 1759613 1759624 1760614 1760619) (-1083 "RNG.spad" 1759348 1759357 1759603 1759608) (-1082 "RNGBIND.spad" 1758508 1758522 1759303 1759308) (-1081 "RMODULE.spad" 1758273 1758284 1758498 1758503) (-1080 "RMCAT2.spad" 1757693 1757750 1758263 1758268) (-1079 "RMATRIX.spad" 1756481 1756500 1756824 1756863) (-1078 "RMATCAT.spad" 1752060 1752091 1756437 1756476) (-1077 "RMATCAT.spad" 1747529 1747562 1751908 1751913) (-1076 "RLINSET.spad" 1747233 1747244 1747519 1747524) (-1075 "RINTERP.spad" 1747121 1747141 1747223 1747228) (-1074 "RING.spad" 1746591 1746600 1747101 1747116) (-1073 "RING.spad" 1746069 1746080 1746581 1746586) (-1072 "RIDIST.spad" 1745461 1745470 1746059 1746064) (-1071 "RGCHAIN.spad" 1743989 1744005 1744891 1744918) (-1070 "RGBCSPC.spad" 1743770 1743782 1743979 1743984) (-1069 "RGBCMDL.spad" 1743300 1743312 1743760 1743765) (-1068 "RF.spad" 1740942 1740953 1743290 1743295) (-1067 "RFFACTOR.spad" 1740404 1740415 1740932 1740937) (-1066 "RFFACT.spad" 1740139 1740151 1740394 1740399) (-1065 "RFDIST.spad" 1739135 1739144 1740129 1740134) (-1064 "RETSOL.spad" 1738554 1738567 1739125 1739130) (-1063 "RETRACT.spad" 1737982 1737993 1738544 1738549) (-1062 "RETRACT.spad" 1737408 1737421 1737972 1737977) (-1061 "RETAST.spad" 1737220 1737229 1737398 1737403) (-1060 "RESULT.spad" 1734818 1734827 1735405 1735432) (-1059 "RESRING.spad" 1734165 1734212 1734756 1734813) (-1058 "RESLATC.spad" 1733489 1733500 1734155 1734160) (-1057 "REPSQ.spad" 1733220 1733231 1733479 1733484) (-1056 "REP.spad" 1730774 1730783 1733210 1733215) (-1055 "REPDB.spad" 1730481 1730492 1730764 1730769) (-1054 "REP2.spad" 1720139 1720150 1730323 1730328) (-1053 "REP1.spad" 1714335 1714346 1720089 1720094) (-1052 "REGSET.spad" 1712096 1712113 1713945 1713972) (-1051 "REF.spad" 1711431 1711442 1712051 1712056) (-1050 "REDORDER.spad" 1710637 1710654 1711421 1711426) (-1049 "RECLOS.spad" 1709420 1709440 1710124 1710217) (-1048 "REALSOLV.spad" 1708560 1708569 1709410 1709415) (-1047 "REAL.spad" 1708432 1708441 1708550 1708555) (-1046 "REAL0Q.spad" 1705730 1705745 1708422 1708427) (-1045 "REAL0.spad" 1702574 1702589 1705720 1705725) (-1044 "RDUCEAST.spad" 1702295 1702304 1702564 1702569) (-1043 "RDIV.spad" 1701950 1701975 1702285 1702290) (-1042 "RDIST.spad" 1701517 1701528 1701940 1701945) (-1041 "RDETRS.spad" 1700381 1700399 1701507 1701512) (-1040 "RDETR.spad" 1698520 1698538 1700371 1700376) (-1039 "RDEEFS.spad" 1697619 1697636 1698510 1698515) (-1038 "RDEEF.spad" 1696629 1696646 1697609 1697614) (-1037 "RCFIELD.spad" 1693815 1693824 1696531 1696624) (-1036 "RCFIELD.spad" 1691087 1691098 1693805 1693810) (-1035 "RCAGG.spad" 1689015 1689026 1691077 1691082) (-1034 "RCAGG.spad" 1686870 1686883 1688934 1688939) (-1033 "RATRET.spad" 1686230 1686241 1686860 1686865) (-1032 "RATFACT.spad" 1685922 1685934 1686220 1686225) (-1031 "RANDSRC.spad" 1685241 1685250 1685912 1685917) (-1030 "RADUTIL.spad" 1684997 1685006 1685231 1685236) (-1029 "RADIX.spad" 1681821 1681835 1683367 1683460) (-1028 "RADFF.spad" 1679560 1679597 1679679 1679835) (-1027 "RADCAT.spad" 1679155 1679164 1679550 1679555) (-1026 "RADCAT.spad" 1678748 1678759 1679145 1679150) (-1025 "QUEUE.spad" 1677979 1677990 1678238 1678265) (-1024 "QUAT.spad" 1676467 1676478 1676810 1676875) (-1023 "QUATCT2.spad" 1676087 1676106 1676457 1676462) (-1022 "QUATCAT.spad" 1674257 1674268 1676017 1676082) (-1021 "QUATCAT.spad" 1672178 1672191 1673940 1673945) (-1020 "QUAGG.spad" 1671005 1671016 1672146 1672173) (-1019 "QQUTAST.spad" 1670773 1670782 1670995 1671000) (-1018 "QFORM.spad" 1670391 1670406 1670763 1670768) (-1017 "QFCAT.spad" 1669093 1669104 1670293 1670386) (-1016 "QFCAT.spad" 1667386 1667399 1668588 1668593) (-1015 "QFCAT2.spad" 1667078 1667095 1667376 1667381) (-1014 "QEQUAT.spad" 1666636 1666645 1667068 1667073) (-1013 "QCMPACK.spad" 1661382 1661402 1666626 1666631) (-1012 "QALGSET.spad" 1657460 1657493 1661296 1661301) (-1011 "QALGSET2.spad" 1655455 1655474 1657450 1657455) (-1010 "PWFFINTB.spad" 1652870 1652892 1655445 1655450) (-1009 "PUSHVAR.spad" 1652208 1652228 1652860 1652865) (-1008 "PTRANFN.spad" 1648335 1648346 1652198 1652203) (-1007 "PTPACK.spad" 1645422 1645433 1648325 1648330) (-1006 "PTFUNC2.spad" 1645244 1645259 1645412 1645417) (-1005 "PTCAT.spad" 1644498 1644509 1645212 1645239) (-1004 "PSQFR.spad" 1643804 1643829 1644488 1644493) (-1003 "PSEUDLIN.spad" 1642689 1642700 1643794 1643799) (-1002 "PSETPK.spad" 1628121 1628138 1642567 1642572) (-1001 "PSETCAT.spad" 1622040 1622064 1628101 1628116) (-1000 "PSETCAT.spad" 1615933 1615959 1621996 1622001) (-999 "PSCURVE.spad" 1614916 1614924 1615923 1615928) (-998 "PSCAT.spad" 1613699 1613728 1614814 1614911) (-997 "PSCAT.spad" 1612572 1612603 1613689 1613694) (-996 "PRTITION.spad" 1611270 1611278 1612562 1612567) (-995 "PRTDAST.spad" 1610989 1610997 1611260 1611265) (-994 "PRS.spad" 1600551 1600568 1610945 1610950) (-993 "PRQAGG.spad" 1599986 1599996 1600519 1600546) (-992 "PROPLOG.spad" 1599558 1599566 1599976 1599981) (-991 "PROPFUN2.spad" 1599181 1599194 1599548 1599553) (-990 "PROPFUN1.spad" 1598579 1598590 1599171 1599176) (-989 "PROPFRML.spad" 1597147 1597158 1598569 1598574) (-988 "PROPERTY.spad" 1596635 1596643 1597137 1597142) (-987 "PRODUCT.spad" 1594317 1594329 1594601 1594656) (-986 "PR.spad" 1592709 1592721 1593408 1593535) (-985 "PRINT.spad" 1592461 1592469 1592699 1592704) (-984 "PRIMES.spad" 1590714 1590724 1592451 1592456) (-983 "PRIMELT.spad" 1588795 1588809 1590704 1590709) (-982 "PRIMCAT.spad" 1588422 1588430 1588785 1588790) (-981 "PRIMARR.spad" 1587274 1587284 1587452 1587479) (-980 "PRIMARR2.spad" 1586041 1586053 1587264 1587269) (-979 "PREASSOC.spad" 1585423 1585435 1586031 1586036) (-978 "PPCURVE.spad" 1584560 1584568 1585413 1585418) (-977 "PORTNUM.spad" 1584335 1584343 1584550 1584555) (-976 "POLYROOT.spad" 1583184 1583206 1584291 1584296) (-975 "POLY.spad" 1580519 1580529 1581034 1581161) (-974 "POLYLIFT.spad" 1579784 1579807 1580509 1580514) (-973 "POLYCATQ.spad" 1577902 1577924 1579774 1579779) (-972 "POLYCAT.spad" 1571372 1571393 1577770 1577897) (-971 "POLYCAT.spad" 1564180 1564203 1570580 1570585) (-970 "POLY2UP.spad" 1563632 1563646 1564170 1564175) (-969 "POLY2.spad" 1563229 1563241 1563622 1563627) (-968 "POLUTIL.spad" 1562170 1562199 1563185 1563190) (-967 "POLTOPOL.spad" 1560918 1560933 1562160 1562165) (-966 "POINT.spad" 1559603 1559613 1559690 1559717) (-965 "PNTHEORY.spad" 1556305 1556313 1559593 1559598) (-964 "PMTOOLS.spad" 1555080 1555094 1556295 1556300) (-963 "PMSYM.spad" 1554629 1554639 1555070 1555075) (-962 "PMQFCAT.spad" 1554220 1554234 1554619 1554624) (-961 "PMPRED.spad" 1553699 1553713 1554210 1554215) (-960 "PMPREDFS.spad" 1553153 1553175 1553689 1553694) (-959 "PMPLCAT.spad" 1552233 1552251 1553085 1553090) (-958 "PMLSAGG.spad" 1551818 1551832 1552223 1552228) (-957 "PMKERNEL.spad" 1551397 1551409 1551808 1551813) (-956 "PMINS.spad" 1550977 1550987 1551387 1551392) (-955 "PMFS.spad" 1550554 1550572 1550967 1550972) (-954 "PMDOWN.spad" 1549844 1549858 1550544 1550549) (-953 "PMASS.spad" 1548854 1548862 1549834 1549839) (-952 "PMASSFS.spad" 1547821 1547837 1548844 1548849) (-951 "PLOTTOOL.spad" 1547601 1547609 1547811 1547816) (-950 "PLOT.spad" 1542524 1542532 1547591 1547596) (-949 "PLOT3D.spad" 1538988 1538996 1542514 1542519) (-948 "PLOT1.spad" 1538145 1538155 1538978 1538983) (-947 "PLEQN.spad" 1525435 1525462 1538135 1538140) (-946 "PINTERP.spad" 1525057 1525076 1525425 1525430) (-945 "PINTERPA.spad" 1524841 1524857 1525047 1525052) (-944 "PI.spad" 1524450 1524458 1524815 1524836) (-943 "PID.spad" 1523420 1523428 1524376 1524445) (-942 "PICOERCE.spad" 1523077 1523087 1523410 1523415) (-941 "PGROEB.spad" 1521678 1521692 1523067 1523072) (-940 "PGE.spad" 1513295 1513303 1521668 1521673) (-939 "PGCD.spad" 1512185 1512202 1513285 1513290) (-938 "PFRPAC.spad" 1511334 1511344 1512175 1512180) (-937 "PFR.spad" 1507997 1508007 1511236 1511329) (-936 "PFOTOOLS.spad" 1507255 1507271 1507987 1507992) (-935 "PFOQ.spad" 1506625 1506643 1507245 1507250) (-934 "PFO.spad" 1506044 1506071 1506615 1506620) (-933 "PF.spad" 1505618 1505630 1505849 1505942) (-932 "PFECAT.spad" 1503300 1503308 1505544 1505613) (-931 "PFECAT.spad" 1501010 1501020 1503256 1503261) (-930 "PFBRU.spad" 1498898 1498910 1501000 1501005) (-929 "PFBR.spad" 1496458 1496481 1498888 1498893) (-928 "PERM.spad" 1492265 1492275 1496288 1496303) (-927 "PERMGRP.spad" 1487035 1487045 1492255 1492260) (-926 "PERMCAT.spad" 1485696 1485706 1487015 1487030) (-925 "PERMAN.spad" 1484228 1484242 1485686 1485691) (-924 "PENDTREE.spad" 1483452 1483462 1483740 1483745) (-923 "PDSPC.spad" 1482265 1482275 1483442 1483447) (-922 "PDSPC.spad" 1481076 1481088 1482255 1482260) (-921 "PDRING.spad" 1480918 1480928 1481056 1481071) (-920 "PDMOD.spad" 1480734 1480746 1480886 1480913) (-919 "PDEPROB.spad" 1479749 1479757 1480724 1480729) (-918 "PDEPACK.spad" 1473789 1473797 1479739 1479744) (-917 "PDECOMP.spad" 1473259 1473276 1473779 1473784) (-916 "PDECAT.spad" 1471615 1471623 1473249 1473254) (-915 "PDDOM.spad" 1471053 1471066 1471605 1471610) (-914 "PDDOM.spad" 1470489 1470504 1471043 1471048) (-913 "PCOMP.spad" 1470342 1470355 1470479 1470484) (-912 "PBWLB.spad" 1468930 1468947 1470332 1470337) (-911 "PATTERN.spad" 1463469 1463479 1468920 1468925) (-910 "PATTERN2.spad" 1463207 1463219 1463459 1463464) (-909 "PATTERN1.spad" 1461543 1461559 1463197 1463202) (-908 "PATRES.spad" 1459118 1459130 1461533 1461538) (-907 "PATRES2.spad" 1458790 1458804 1459108 1459113) (-906 "PATMATCH.spad" 1456987 1457018 1458498 1458503) (-905 "PATMAB.spad" 1456416 1456426 1456977 1456982) (-904 "PATLRES.spad" 1455502 1455516 1456406 1456411) (-903 "PATAB.spad" 1455266 1455276 1455492 1455497) (-902 "PARTPERM.spad" 1453274 1453282 1455256 1455261) (-901 "PARSURF.spad" 1452708 1452736 1453264 1453269) (-900 "PARSU2.spad" 1452505 1452521 1452698 1452703) (-899 "script-parser.spad" 1452025 1452033 1452495 1452500) (-898 "PARSCURV.spad" 1451459 1451487 1452015 1452020) (-897 "PARSC2.spad" 1451250 1451266 1451449 1451454) (-896 "PARPCURV.spad" 1450712 1450740 1451240 1451245) (-895 "PARPC2.spad" 1450503 1450519 1450702 1450707) (-894 "PARAMAST.spad" 1449631 1449639 1450493 1450498) (-893 "PAN2EXPR.spad" 1449043 1449051 1449621 1449626) (-892 "PALETTE.spad" 1448013 1448021 1449033 1449038) (-891 "PAIR.spad" 1447000 1447013 1447601 1447606) (-890 "PADICRC.spad" 1444241 1444259 1445412 1445505) (-889 "PADICRAT.spad" 1442149 1442161 1442370 1442463) (-888 "PADIC.spad" 1441844 1441856 1442075 1442144) (-887 "PADICCT.spad" 1440393 1440405 1441770 1441839) (-886 "PADEPAC.spad" 1439082 1439101 1440383 1440388) (-885 "PADE.spad" 1437834 1437850 1439072 1439077) (-884 "OWP.spad" 1437074 1437104 1437692 1437759) (-883 "OVERSET.spad" 1436647 1436655 1437064 1437069) (-882 "OVAR.spad" 1436428 1436451 1436637 1436642) (-881 "OUT.spad" 1435514 1435522 1436418 1436423) (-880 "OUTFORM.spad" 1424906 1424914 1435504 1435509) (-879 "OUTBFILE.spad" 1424324 1424332 1424896 1424901) (-878 "OUTBCON.spad" 1423330 1423338 1424314 1424319) (-877 "OUTBCON.spad" 1422334 1422344 1423320 1423325) (-876 "OSI.spad" 1421809 1421817 1422324 1422329) (-875 "OSGROUP.spad" 1421727 1421735 1421799 1421804) (-874 "ORTHPOL.spad" 1420212 1420222 1421644 1421649) (-873 "OREUP.spad" 1419665 1419693 1419892 1419931) (-872 "ORESUP.spad" 1418966 1418990 1419345 1419384) (-871 "OREPCTO.spad" 1416823 1416835 1418886 1418891) (-870 "OREPCAT.spad" 1410970 1410980 1416779 1416818) (-869 "OREPCAT.spad" 1405007 1405019 1410818 1410823) (-868 "ORDTYPE.spad" 1404244 1404252 1404997 1405002) (-867 "ORDTYPE.spad" 1403479 1403489 1404234 1404239) (-866 "ORDSTRCT.spad" 1403252 1403267 1403415 1403420) (-865 "ORDSET.spad" 1402952 1402960 1403242 1403247) (-864 "ORDRING.spad" 1402342 1402350 1402932 1402947) (-863 "ORDRING.spad" 1401740 1401750 1402332 1402337) (-862 "ORDMON.spad" 1401595 1401603 1401730 1401735) (-861 "ORDFUNS.spad" 1400727 1400743 1401585 1401590) (-860 "ORDFIN.spad" 1400547 1400555 1400717 1400722) (-859 "ORDCOMP.spad" 1399012 1399022 1400094 1400123) (-858 "ORDCOMP2.spad" 1398305 1398317 1399002 1399007) (-857 "OPTPROB.spad" 1396943 1396951 1398295 1398300) (-856 "OPTPACK.spad" 1389352 1389360 1396933 1396938) (-855 "OPTCAT.spad" 1387031 1387039 1389342 1389347) (-854 "OPSIG.spad" 1386685 1386693 1387021 1387026) (-853 "OPQUERY.spad" 1386234 1386242 1386675 1386680) (-852 "OP.spad" 1385976 1385986 1386056 1386123) (-851 "OPERCAT.spad" 1385442 1385452 1385966 1385971) (-850 "OPERCAT.spad" 1384906 1384918 1385432 1385437) (-849 "ONECOMP.spad" 1383651 1383661 1384453 1384482) (-848 "ONECOMP2.spad" 1383075 1383087 1383641 1383646) (-847 "OMSERVER.spad" 1382081 1382089 1383065 1383070) (-846 "OMSAGG.spad" 1381869 1381879 1382037 1382076) (-845 "OMPKG.spad" 1380485 1380493 1381859 1381864) (-844 "OM.spad" 1379458 1379466 1380475 1380480) (-843 "OMLO.spad" 1378883 1378895 1379344 1379383) (-842 "OMEXPR.spad" 1378717 1378727 1378873 1378878) (-841 "OMERR.spad" 1378262 1378270 1378707 1378712) (-840 "OMERRK.spad" 1377296 1377304 1378252 1378257) (-839 "OMENC.spad" 1376640 1376648 1377286 1377291) (-838 "OMDEV.spad" 1370949 1370957 1376630 1376635) (-837 "OMCONN.spad" 1370358 1370366 1370939 1370944) (-836 "OINTDOM.spad" 1370121 1370129 1370284 1370353) (-835 "OFMONOID.spad" 1368244 1368254 1370077 1370082) (-834 "ODVAR.spad" 1367505 1367515 1368234 1368239) (-833 "ODR.spad" 1367149 1367175 1367317 1367466) (-832 "ODPOL.spad" 1364438 1364448 1364778 1364905) (-831 "ODP.spad" 1352252 1352272 1352625 1352724) (-830 "ODETOOLS.spad" 1350901 1350920 1352242 1352247) (-829 "ODESYS.spad" 1348595 1348612 1350891 1350896) (-828 "ODERTRIC.spad" 1344604 1344621 1348552 1348557) (-827 "ODERED.spad" 1344003 1344027 1344594 1344599) (-826 "ODERAT.spad" 1341618 1341635 1343993 1343998) (-825 "ODEPRRIC.spad" 1338655 1338677 1341608 1341613) (-824 "ODEPROB.spad" 1337912 1337920 1338645 1338650) (-823 "ODEPRIM.spad" 1335246 1335268 1337902 1337907) (-822 "ODEPAL.spad" 1334632 1334656 1335236 1335241) (-821 "ODEPACK.spad" 1321298 1321306 1334622 1334627) (-820 "ODEINT.spad" 1320733 1320749 1321288 1321293) (-819 "ODEIFTBL.spad" 1318128 1318136 1320723 1320728) (-818 "ODEEF.spad" 1313619 1313635 1318118 1318123) (-817 "ODECONST.spad" 1313156 1313174 1313609 1313614) (-816 "ODECAT.spad" 1311754 1311762 1313146 1313151) (-815 "OCT.spad" 1309890 1309900 1310604 1310643) (-814 "OCTCT2.spad" 1309536 1309557 1309880 1309885) (-813 "OC.spad" 1307332 1307342 1309492 1309531) (-812 "OC.spad" 1304853 1304865 1307015 1307020) (-811 "OCAMON.spad" 1304701 1304709 1304843 1304848) (-810 "OASGP.spad" 1304516 1304524 1304691 1304696) (-809 "OAMONS.spad" 1304038 1304046 1304506 1304511) (-808 "OAMON.spad" 1303899 1303907 1304028 1304033) (-807 "OAGROUP.spad" 1303761 1303769 1303889 1303894) (-806 "NUMTUBE.spad" 1303352 1303368 1303751 1303756) (-805 "NUMQUAD.spad" 1291328 1291336 1303342 1303347) (-804 "NUMODE.spad" 1282682 1282690 1291318 1291323) (-803 "NUMINT.spad" 1280248 1280256 1282672 1282677) (-802 "NUMFMT.spad" 1279088 1279096 1280238 1280243) (-801 "NUMERIC.spad" 1271202 1271212 1278893 1278898) (-800 "NTSCAT.spad" 1269710 1269726 1271170 1271197) (-799 "NTPOLFN.spad" 1269261 1269271 1269627 1269632) (-798 "NSUP.spad" 1262214 1262224 1266754 1266907) (-797 "NSUP2.spad" 1261606 1261618 1262204 1262209) (-796 "NSMP.spad" 1257836 1257855 1258144 1258271) (-795 "NREP.spad" 1256214 1256228 1257826 1257831) (-794 "NPCOEF.spad" 1255460 1255480 1256204 1256209) (-793 "NORMRETR.spad" 1255058 1255097 1255450 1255455) (-792 "NORMPK.spad" 1252960 1252979 1255048 1255053) (-791 "NORMMA.spad" 1252648 1252674 1252950 1252955) (-790 "NONE.spad" 1252389 1252397 1252638 1252643) (-789 "NONE1.spad" 1252065 1252075 1252379 1252384) (-788 "NODE1.spad" 1251552 1251568 1252055 1252060) (-787 "NNI.spad" 1250447 1250455 1251526 1251547) (-786 "NLINSOL.spad" 1249073 1249083 1250437 1250442) (-785 "NIPROB.spad" 1247614 1247622 1249063 1249068) (-784 "NFINTBAS.spad" 1245174 1245191 1247604 1247609) (-783 "NETCLT.spad" 1245148 1245159 1245164 1245169) (-782 "NCODIV.spad" 1243364 1243380 1245138 1245143) (-781 "NCNTFRAC.spad" 1243006 1243020 1243354 1243359) (-780 "NCEP.spad" 1241172 1241186 1242996 1243001) (-779 "NASRING.spad" 1240768 1240776 1241162 1241167) (-778 "NASRING.spad" 1240362 1240372 1240758 1240763) (-777 "NARNG.spad" 1239714 1239722 1240352 1240357) (-776 "NARNG.spad" 1239064 1239074 1239704 1239709) (-775 "NAGSP.spad" 1238141 1238149 1239054 1239059) (-774 "NAGS.spad" 1227802 1227810 1238131 1238136) (-773 "NAGF07.spad" 1226233 1226241 1227792 1227797) (-772 "NAGF04.spad" 1220635 1220643 1226223 1226228) (-771 "NAGF02.spad" 1214704 1214712 1220625 1220630) (-770 "NAGF01.spad" 1210465 1210473 1214694 1214699) (-769 "NAGE04.spad" 1204165 1204173 1210455 1210460) (-768 "NAGE02.spad" 1194825 1194833 1204155 1204160) (-767 "NAGE01.spad" 1190827 1190835 1194815 1194820) (-766 "NAGD03.spad" 1188831 1188839 1190817 1190822) (-765 "NAGD02.spad" 1181578 1181586 1188821 1188826) (-764 "NAGD01.spad" 1175871 1175879 1181568 1181573) (-763 "NAGC06.spad" 1171746 1171754 1175861 1175866) (-762 "NAGC05.spad" 1170247 1170255 1171736 1171741) (-761 "NAGC02.spad" 1169514 1169522 1170237 1170242) (-760 "NAALG.spad" 1169055 1169065 1169482 1169509) (-759 "NAALG.spad" 1168616 1168628 1169045 1169050) (-758 "MULTSQFR.spad" 1165574 1165591 1168606 1168611) (-757 "MULTFACT.spad" 1164957 1164974 1165564 1165569) (-756 "MTSCAT.spad" 1163051 1163072 1164855 1164952) (-755 "MTHING.spad" 1162710 1162720 1163041 1163046) (-754 "MSYSCMD.spad" 1162144 1162152 1162700 1162705) (-753 "MSET.spad" 1160066 1160076 1161814 1161853) (-752 "MSETAGG.spad" 1159911 1159921 1160034 1160061) (-751 "MRING.spad" 1156888 1156900 1159619 1159686) (-750 "MRF2.spad" 1156458 1156472 1156878 1156883) (-749 "MRATFAC.spad" 1156004 1156021 1156448 1156453) (-748 "MPRFF.spad" 1154044 1154063 1155994 1155999) (-747 "MPOLY.spad" 1151515 1151530 1151874 1152001) (-746 "MPCPF.spad" 1150779 1150798 1151505 1151510) (-745 "MPC3.spad" 1150596 1150636 1150769 1150774) (-744 "MPC2.spad" 1150242 1150275 1150586 1150591) (-743 "MONOTOOL.spad" 1148593 1148610 1150232 1150237) (-742 "MONOID.spad" 1147912 1147920 1148583 1148588) (-741 "MONOID.spad" 1147229 1147239 1147902 1147907) (-740 "MONOGEN.spad" 1145977 1145990 1147089 1147224) (-739 "MONOGEN.spad" 1144747 1144762 1145861 1145866) (-738 "MONADWU.spad" 1142777 1142785 1144737 1144742) (-737 "MONADWU.spad" 1140805 1140815 1142767 1142772) (-736 "MONAD.spad" 1139965 1139973 1140795 1140800) (-735 "MONAD.spad" 1139123 1139133 1139955 1139960) (-734 "MOEBIUS.spad" 1137859 1137873 1139103 1139118) (-733 "MODULE.spad" 1137729 1137739 1137827 1137854) (-732 "MODULE.spad" 1137619 1137631 1137719 1137724) (-731 "MODRING.spad" 1136954 1136993 1137599 1137614) (-730 "MODOP.spad" 1135619 1135631 1136776 1136843) (-729 "MODMONOM.spad" 1135350 1135368 1135609 1135614) (-728 "MODMON.spad" 1132052 1132068 1132771 1132924) (-727 "MODFIELD.spad" 1131414 1131453 1131954 1132047) (-726 "MMLFORM.spad" 1130274 1130282 1131404 1131409) (-725 "MMAP.spad" 1130016 1130050 1130264 1130269) (-724 "MLO.spad" 1128475 1128485 1129972 1130011) (-723 "MLIFT.spad" 1127087 1127104 1128465 1128470) (-722 "MKUCFUNC.spad" 1126622 1126640 1127077 1127082) (-721 "MKRECORD.spad" 1126226 1126239 1126612 1126617) (-720 "MKFUNC.spad" 1125633 1125643 1126216 1126221) (-719 "MKFLCFN.spad" 1124601 1124611 1125623 1125628) (-718 "MKBCFUNC.spad" 1124096 1124114 1124591 1124596) (-717 "MINT.spad" 1123535 1123543 1123998 1124091) (-716 "MHROWRED.spad" 1122046 1122056 1123525 1123530) (-715 "MFLOAT.spad" 1120566 1120574 1121936 1122041) (-714 "MFINFACT.spad" 1119966 1119988 1120556 1120561) (-713 "MESH.spad" 1117748 1117756 1119956 1119961) (-712 "MDDFACT.spad" 1115959 1115969 1117738 1117743) (-711 "MDAGG.spad" 1115250 1115260 1115939 1115954) (-710 "MCMPLX.spad" 1110681 1110689 1111295 1111496) (-709 "MCDEN.spad" 1109891 1109903 1110671 1110676) (-708 "MCALCFN.spad" 1107013 1107039 1109881 1109886) (-707 "MAYBE.spad" 1106297 1106308 1107003 1107008) (-706 "MATSTOR.spad" 1103605 1103615 1106287 1106292) (-705 "MATRIX.spad" 1102192 1102202 1102676 1102703) (-704 "MATLIN.spad" 1099536 1099560 1102076 1102081) (-703 "MATCAT.spad" 1091058 1091080 1099504 1099531) (-702 "MATCAT.spad" 1082452 1082476 1090900 1090905) (-701 "MATCAT2.spad" 1081734 1081782 1082442 1082447) (-700 "MAPPKG3.spad" 1080649 1080663 1081724 1081729) (-699 "MAPPKG2.spad" 1079987 1079999 1080639 1080644) (-698 "MAPPKG1.spad" 1078815 1078825 1079977 1079982) (-697 "MAPPAST.spad" 1078130 1078138 1078805 1078810) (-696 "MAPHACK3.spad" 1077942 1077956 1078120 1078125) (-695 "MAPHACK2.spad" 1077711 1077723 1077932 1077937) (-694 "MAPHACK1.spad" 1077355 1077365 1077701 1077706) (-693 "MAGMA.spad" 1075145 1075162 1077345 1077350) (-692 "MACROAST.spad" 1074724 1074732 1075135 1075140) (-691 "M3D.spad" 1072327 1072337 1073985 1073990) (-690 "LZSTAGG.spad" 1069565 1069575 1072317 1072322) (-689 "LZSTAGG.spad" 1066801 1066813 1069555 1069560) (-688 "LWORD.spad" 1063506 1063523 1066791 1066796) (-687 "LSTAST.spad" 1063290 1063298 1063496 1063501) (-686 "LSQM.spad" 1061447 1061461 1061841 1061892) (-685 "LSPP.spad" 1060982 1060999 1061437 1061442) (-684 "LSMP.spad" 1059832 1059860 1060972 1060977) (-683 "LSMP1.spad" 1057650 1057664 1059822 1059827) (-682 "LSAGG.spad" 1057319 1057329 1057618 1057645) (-681 "LSAGG.spad" 1057008 1057020 1057309 1057314) (-680 "LPOLY.spad" 1055962 1055981 1056864 1056933) (-679 "LPEFRAC.spad" 1055233 1055243 1055952 1055957) (-678 "LO.spad" 1054634 1054648 1055167 1055194) (-677 "LOGIC.spad" 1054236 1054244 1054624 1054629) (-676 "LOGIC.spad" 1053836 1053846 1054226 1054231) (-675 "LODOOPS.spad" 1052766 1052778 1053826 1053831) (-674 "LODO.spad" 1052150 1052166 1052446 1052485) (-673 "LODOF.spad" 1051196 1051213 1052107 1052112) (-672 "LODOCAT.spad" 1049862 1049872 1051152 1051191) (-671 "LODOCAT.spad" 1048526 1048538 1049818 1049823) (-670 "LODO2.spad" 1047799 1047811 1048206 1048245) (-669 "LODO1.spad" 1047199 1047209 1047479 1047518) (-668 "LODEEF.spad" 1046001 1046019 1047189 1047194) (-667 "LNAGG.spad" 1042148 1042158 1045991 1045996) (-666 "LNAGG.spad" 1038259 1038271 1042104 1042109) (-665 "LMOPS.spad" 1035027 1035044 1038249 1038254) (-664 "LMODULE.spad" 1034795 1034805 1035017 1035022) (-663 "LMDICT.spad" 1033965 1033975 1034229 1034256) (-662 "LLINSET.spad" 1033672 1033682 1033955 1033960) (-661 "LITERAL.spad" 1033578 1033589 1033662 1033667) (-660 "LIST.spad" 1031160 1031170 1032572 1032599) (-659 "LIST3.spad" 1030471 1030485 1031150 1031155) (-658 "LIST2.spad" 1029173 1029185 1030461 1030466) (-657 "LIST2MAP.spad" 1026076 1026088 1029163 1029168) (-656 "LINSET.spad" 1025855 1025865 1026066 1026071) (-655 "LINFORM.spad" 1025318 1025330 1025823 1025850) (-654 "LINEXP.spad" 1024061 1024071 1025308 1025313) (-653 "LINELT.spad" 1023432 1023444 1023944 1023971) (-652 "LINDEP.spad" 1022241 1022253 1023344 1023349) (-651 "LINBASIS.spad" 1021877 1021892 1022231 1022236) (-650 "LIMITRF.spad" 1019805 1019815 1021867 1021872) (-649 "LIMITPS.spad" 1018708 1018721 1019795 1019800) (-648 "LIE.spad" 1016724 1016736 1017998 1018143) (-647 "LIECAT.spad" 1016200 1016210 1016650 1016719) (-646 "LIECAT.spad" 1015704 1015716 1016156 1016161) (-645 "LIB.spad" 1013455 1013463 1013901 1013916) (-644 "LGROBP.spad" 1010808 1010827 1013445 1013450) (-643 "LF.spad" 1009763 1009779 1010798 1010803) (-642 "LFCAT.spad" 1008822 1008830 1009753 1009758) (-641 "LEXTRIPK.spad" 1004325 1004340 1008812 1008817) (-640 "LEXP.spad" 1002328 1002355 1004305 1004320) (-639 "LETAST.spad" 1002027 1002035 1002318 1002323) (-638 "LEADCDET.spad" 1000425 1000442 1002017 1002022) (-637 "LAZM3PK.spad" 999129 999151 1000415 1000420) (-636 "LAUPOL.spad" 997729 997742 998629 998698) (-635 "LAPLACE.spad" 997312 997328 997719 997724) (-634 "LA.spad" 996752 996766 997234 997273) (-633 "LALG.spad" 996528 996538 996732 996747) (-632 "LALG.spad" 996312 996324 996518 996523) (-631 "KVTFROM.spad" 996047 996057 996302 996307) (-630 "KTVLOGIC.spad" 995559 995567 996037 996042) (-629 "KRCFROM.spad" 995297 995307 995549 995554) (-628 "KOVACIC.spad" 994020 994037 995287 995292) (-627 "KONVERT.spad" 993742 993752 994010 994015) (-626 "KOERCE.spad" 993479 993489 993732 993737) (-625 "KERNEL.spad" 992134 992144 993263 993268) (-624 "KERNEL2.spad" 991837 991849 992124 992129) (-623 "KDAGG.spad" 990946 990968 991817 991832) (-622 "KDAGG.spad" 990063 990087 990936 990941) (-621 "KAFILE.spad" 988917 988933 989152 989179) (-620 "JORDAN.spad" 986746 986758 988207 988352) (-619 "JOINAST.spad" 986440 986448 986736 986741) (-618 "JAVACODE.spad" 986306 986314 986430 986435) (-617 "IXAGG.spad" 984439 984463 986296 986301) (-616 "IXAGG.spad" 982427 982453 984286 984291) (-615 "IVECTOR.spad" 981044 981059 981199 981226) (-614 "ITUPLE.spad" 980205 980215 981034 981039) (-613 "ITRIGMNP.spad" 979044 979063 980195 980200) (-612 "ITFUN3.spad" 978550 978564 979034 979039) (-611 "ITFUN2.spad" 978294 978306 978540 978545) (-610 "ITFORM.spad" 977649 977657 978284 978289) (-609 "ITAYLOR.spad" 975643 975658 977513 977610) (-608 "ISUPS.spad" 968080 968095 974617 974714) (-607 "ISUMP.spad" 967581 967597 968070 968075) (-606 "ISTRING.spad" 966508 966521 966589 966616) (-605 "ISAST.spad" 966227 966235 966498 966503) (-604 "IRURPK.spad" 964944 964963 966217 966222) (-603 "IRSN.spad" 962916 962924 964934 964939) (-602 "IRRF2F.spad" 961401 961411 962872 962877) (-601 "IRREDFFX.spad" 961002 961013 961391 961396) (-600 "IROOT.spad" 959341 959351 960992 960997) (-599 "IR.spad" 957142 957156 959196 959223) (-598 "IRFORM.spad" 956466 956474 957132 957137) (-597 "IR2.spad" 955494 955510 956456 956461) (-596 "IR2F.spad" 954700 954716 955484 955489) (-595 "IPRNTPK.spad" 954460 954468 954690 954695) (-594 "IPF.spad" 954025 954037 954265 954358) (-593 "IPADIC.spad" 953786 953812 953951 954020) (-592 "IP4ADDR.spad" 953343 953351 953776 953781) (-591 "IOMODE.spad" 952865 952873 953333 953338) (-590 "IOBFILE.spad" 952226 952234 952855 952860) (-589 "IOBCON.spad" 952091 952099 952216 952221) (-588 "INVLAPLA.spad" 951740 951756 952081 952086) (-587 "INTTR.spad" 945122 945139 951730 951735) (-586 "INTTOOLS.spad" 942877 942893 944696 944701) (-585 "INTSLPE.spad" 942197 942205 942867 942872) (-584 "INTRVL.spad" 941763 941773 942111 942192) (-583 "INTRF.spad" 940187 940201 941753 941758) (-582 "INTRET.spad" 939619 939629 940177 940182) (-581 "INTRAT.spad" 938346 938363 939609 939614) (-580 "INTPM.spad" 936731 936747 937989 937994) (-579 "INTPAF.spad" 934595 934613 936663 936668) (-578 "INTPACK.spad" 924969 924977 934585 934590) (-577 "INT.spad" 924417 924425 924823 924964) (-576 "INTHERTR.spad" 923691 923708 924407 924412) (-575 "INTHERAL.spad" 923361 923385 923681 923686) (-574 "INTHEORY.spad" 919800 919808 923351 923356) (-573 "INTG0.spad" 913533 913551 919732 919737) (-572 "INTFTBL.spad" 907562 907570 913523 913528) (-571 "INTFACT.spad" 906621 906631 907552 907557) (-570 "INTEF.spad" 905006 905022 906611 906616) (-569 "INTDOM.spad" 903629 903637 904932 905001) (-568 "INTDOM.spad" 902314 902324 903619 903624) (-567 "INTCAT.spad" 900573 900583 902228 902309) (-566 "INTBIT.spad" 900080 900088 900563 900568) (-565 "INTALG.spad" 899268 899295 900070 900075) (-564 "INTAF.spad" 898768 898784 899258 899263) (-563 "INTABL.spad" 896844 896875 897007 897034) (-562 "INT8.spad" 896724 896732 896834 896839) (-561 "INT64.spad" 896603 896611 896714 896719) (-560 "INT32.spad" 896482 896490 896593 896598) (-559 "INT16.spad" 896361 896369 896472 896477) (-558 "INS.spad" 893864 893872 896263 896356) (-557 "INS.spad" 891453 891463 893854 893859) (-556 "INPSIGN.spad" 890901 890914 891443 891448) (-555 "INPRODPF.spad" 889997 890016 890891 890896) (-554 "INPRODFF.spad" 889085 889109 889987 889992) (-553 "INNMFACT.spad" 888060 888077 889075 889080) (-552 "INMODGCD.spad" 887548 887578 888050 888055) (-551 "INFSP.spad" 885845 885867 887538 887543) (-550 "INFPROD0.spad" 884925 884944 885835 885840) (-549 "INFORM.spad" 882124 882132 884915 884920) (-548 "INFORM1.spad" 881749 881759 882114 882119) (-547 "INFINITY.spad" 881301 881309 881739 881744) (-546 "INETCLTS.spad" 881278 881286 881291 881296) (-545 "INEP.spad" 879816 879838 881268 881273) (-544 "INDE.spad" 879465 879482 879726 879731) (-543 "INCRMAPS.spad" 878886 878896 879455 879460) (-542 "INBFILE.spad" 877958 877966 878876 878881) (-541 "INBFF.spad" 873752 873763 877948 877953) (-540 "INBCON.spad" 872042 872050 873742 873747) (-539 "INBCON.spad" 870330 870340 872032 872037) (-538 "INAST.spad" 869991 869999 870320 870325) (-537 "IMPTAST.spad" 869699 869707 869981 869986) (-536 "IMATRIX.spad" 868527 868553 869039 869066) (-535 "IMATQF.spad" 867621 867665 868483 868488) (-534 "IMATLIN.spad" 866226 866250 867577 867582) (-533 "ILIST.spad" 864731 864746 865256 865283) (-532 "IIARRAY2.spad" 864002 864040 864221 864248) (-531 "IFF.spad" 863412 863428 863683 863776) (-530 "IFAST.spad" 863026 863034 863402 863407) (-529 "IFARRAY.spad" 860366 860381 862056 862083) (-528 "IFAMON.spad" 860228 860245 860322 860327) (-527 "IEVALAB.spad" 859633 859645 860218 860223) (-526 "IEVALAB.spad" 859036 859050 859623 859628) (-525 "IDPO.spad" 858771 858783 858948 858953) (-524 "IDPOAMS.spad" 858449 858461 858683 858688) (-523 "IDPOAM.spad" 858091 858103 858361 858366) (-522 "IDPC.spad" 856820 856832 858081 858086) (-521 "IDPAM.spad" 856487 856499 856732 856737) (-520 "IDPAG.spad" 856156 856168 856399 856404) (-519 "IDENT.spad" 855806 855814 856146 856151) (-518 "IDECOMP.spad" 853045 853063 855796 855801) (-517 "IDEAL.spad" 847994 848033 852980 852985) (-516 "ICDEN.spad" 847183 847199 847984 847989) (-515 "ICARD.spad" 846374 846382 847173 847178) (-514 "IBPTOOLS.spad" 844981 844998 846364 846369) (-513 "IBITS.spad" 844146 844159 844579 844606) (-512 "IBATOOL.spad" 841123 841142 844136 844141) (-511 "IBACHIN.spad" 839630 839645 841113 841118) (-510 "IARRAY2.spad" 838501 838527 839120 839147) (-509 "IARRAY1.spad" 837393 837408 837531 837558) (-508 "IAN.spad" 835616 835624 837209 837302) (-507 "IALGFACT.spad" 835219 835252 835606 835611) (-506 "HYPCAT.spad" 834643 834651 835209 835214) (-505 "HYPCAT.spad" 834065 834075 834633 834638) (-504 "HOSTNAME.spad" 833873 833881 834055 834060) (-503 "HOMOTOP.spad" 833616 833626 833863 833868) (-502 "HOAGG.spad" 830898 830908 833606 833611) (-501 "HOAGG.spad" 827919 827931 830629 830634) (-500 "HEXADEC.spad" 825924 825932 826289 826382) (-499 "HEUGCD.spad" 824959 824970 825914 825919) (-498 "HELLFDIV.spad" 824549 824573 824949 824954) (-497 "HEAP.spad" 823824 823834 824039 824066) (-496 "HEADAST.spad" 823357 823365 823814 823819) (-495 "HDP.spad" 811167 811183 811544 811643) (-494 "HDMP.spad" 808381 808396 808997 809124) (-493 "HB.spad" 806632 806640 808371 808376) (-492 "HASHTBL.spad" 804660 804691 804871 804898) (-491 "HASAST.spad" 804376 804384 804650 804655) (-490 "HACKPI.spad" 803867 803875 804278 804371) (-489 "GTSET.spad" 802770 802786 803477 803504) (-488 "GSTBL.spad" 800847 800882 801021 801036) (-487 "GSERIES.spad" 798160 798187 798979 799128) (-486 "GROUP.spad" 797433 797441 798140 798155) (-485 "GROUP.spad" 796714 796724 797423 797428) (-484 "GROEBSOL.spad" 795208 795229 796704 796709) (-483 "GRMOD.spad" 793779 793791 795198 795203) (-482 "GRMOD.spad" 792348 792362 793769 793774) (-481 "GRIMAGE.spad" 785237 785245 792338 792343) (-480 "GRDEF.spad" 783616 783624 785227 785232) (-479 "GRAY.spad" 782079 782087 783606 783611) (-478 "GRALG.spad" 781156 781168 782069 782074) (-477 "GRALG.spad" 780231 780245 781146 781151) (-476 "GPOLSET.spad" 779649 779672 779877 779904) (-475 "GOSPER.spad" 778918 778936 779639 779644) (-474 "GMODPOL.spad" 778066 778093 778886 778913) (-473 "GHENSEL.spad" 777149 777163 778056 778061) (-472 "GENUPS.spad" 773442 773455 777139 777144) (-471 "GENUFACT.spad" 773019 773029 773432 773437) (-470 "GENPGCD.spad" 772605 772622 773009 773014) (-469 "GENMFACT.spad" 772057 772076 772595 772600) (-468 "GENEEZ.spad" 770008 770021 772047 772052) (-467 "GDMP.spad" 767064 767081 767838 767965) (-466 "GCNAALG.spad" 760987 761014 766858 766925) (-465 "GCDDOM.spad" 760163 760171 760913 760982) (-464 "GCDDOM.spad" 759401 759411 760153 760158) (-463 "GB.spad" 756927 756965 759357 759362) (-462 "GBINTERN.spad" 752947 752985 756917 756922) (-461 "GBF.spad" 748714 748752 752937 752942) (-460 "GBEUCLID.spad" 746596 746634 748704 748709) (-459 "GAUSSFAC.spad" 745909 745917 746586 746591) (-458 "GALUTIL.spad" 744235 744245 745865 745870) (-457 "GALPOLYU.spad" 742689 742702 744225 744230) (-456 "GALFACTU.spad" 740862 740881 742679 742684) (-455 "GALFACT.spad" 731051 731062 740852 740857) (-454 "FVFUN.spad" 728074 728082 731041 731046) (-453 "FVC.spad" 727126 727134 728064 728069) (-452 "FUNDESC.spad" 726804 726812 727116 727121) (-451 "FUNCTION.spad" 726653 726665 726794 726799) (-450 "FT.spad" 724950 724958 726643 726648) (-449 "FTEM.spad" 724115 724123 724940 724945) (-448 "FSUPFACT.spad" 723015 723034 724051 724056) (-447 "FST.spad" 721101 721109 723005 723010) (-446 "FSRED.spad" 720581 720597 721091 721096) (-445 "FSPRMELT.spad" 719463 719479 720538 720543) (-444 "FSPECF.spad" 717554 717570 719453 719458) (-443 "FS.spad" 711822 711832 717329 717549) (-442 "FS.spad" 705868 705880 711377 711382) (-441 "FSINT.spad" 705528 705544 705858 705863) (-440 "FSERIES.spad" 704719 704731 705348 705447) (-439 "FSCINT.spad" 704036 704052 704709 704714) (-438 "FSAGG.spad" 703153 703163 703992 704031) (-437 "FSAGG.spad" 702232 702244 703073 703078) (-436 "FSAGG2.spad" 700975 700991 702222 702227) (-435 "FS2UPS.spad" 695466 695500 700965 700970) (-434 "FS2.spad" 695113 695129 695456 695461) (-433 "FS2EXPXP.spad" 694238 694261 695103 695108) (-432 "FRUTIL.spad" 693192 693202 694228 694233) (-431 "FR.spad" 686815 686825 692123 692192) (-430 "FRNAALG.spad" 682084 682094 686757 686810) (-429 "FRNAALG.spad" 677365 677377 682040 682045) (-428 "FRNAAF2.spad" 676821 676839 677355 677360) (-427 "FRMOD.spad" 676231 676261 676752 676757) (-426 "FRIDEAL.spad" 675456 675477 676211 676226) (-425 "FRIDEAL2.spad" 675060 675092 675446 675451) (-424 "FRETRCT.spad" 674571 674581 675050 675055) (-423 "FRETRCT.spad" 673948 673960 674429 674434) (-422 "FRAMALG.spad" 672296 672309 673904 673943) (-421 "FRAMALG.spad" 670676 670691 672286 672291) (-420 "FRAC.spad" 667682 667692 668085 668258) (-419 "FRAC2.spad" 667287 667299 667672 667677) (-418 "FR2.spad" 666623 666635 667277 667282) (-417 "FPS.spad" 663438 663446 666513 666618) (-416 "FPS.spad" 660281 660291 663358 663363) (-415 "FPC.spad" 659327 659335 660183 660276) (-414 "FPC.spad" 658459 658469 659317 659322) (-413 "FPATMAB.spad" 658221 658231 658449 658454) (-412 "FPARFRAC.spad" 657071 657088 658211 658216) (-411 "FORTRAN.spad" 655577 655620 657061 657066) (-410 "FORT.spad" 654526 654534 655567 655572) (-409 "FORTFN.spad" 651696 651704 654516 654521) (-408 "FORTCAT.spad" 651380 651388 651686 651691) (-407 "FORMULA.spad" 648854 648862 651370 651375) (-406 "FORMULA1.spad" 648333 648343 648844 648849) (-405 "FORDER.spad" 648024 648048 648323 648328) (-404 "FOP.spad" 647225 647233 648014 648019) (-403 "FNLA.spad" 646649 646671 647193 647220) (-402 "FNCAT.spad" 645244 645252 646639 646644) (-401 "FNAME.spad" 645136 645144 645234 645239) (-400 "FMTC.spad" 644934 644942 645062 645131) (-399 "FMONOID.spad" 644599 644609 644890 644895) (-398 "FMONCAT.spad" 641752 641762 644589 644594) (-397 "FM.spad" 641367 641379 641606 641633) (-396 "FMFUN.spad" 638397 638405 641357 641362) (-395 "FMC.spad" 637449 637457 638387 638392) (-394 "FMCAT.spad" 635117 635135 637417 637444) (-393 "FM1.spad" 634474 634486 635051 635078) (-392 "FLOATRP.spad" 632209 632223 634464 634469) (-391 "FLOAT.spad" 625523 625531 632075 632204) (-390 "FLOATCP.spad" 622954 622968 625513 625518) (-389 "FLINEXP.spad" 622676 622686 622944 622949) (-388 "FLINEXP.spad" 622342 622354 622612 622617) (-387 "FLASORT.spad" 621668 621680 622332 622337) (-386 "FLALG.spad" 619314 619333 621594 621663) (-385 "FLAGG.spad" 616356 616366 619294 619309) (-384 "FLAGG.spad" 613299 613311 616239 616244) (-383 "FLAGG2.spad" 612024 612040 613289 613294) (-382 "FINRALG.spad" 610085 610098 611980 612019) (-381 "FINRALG.spad" 608072 608087 609969 609974) (-380 "FINITE.spad" 607224 607232 608062 608067) (-379 "FINAALG.spad" 596345 596355 607166 607219) (-378 "FINAALG.spad" 585478 585490 596301 596306) (-377 "FILE.spad" 585061 585071 585468 585473) (-376 "FILECAT.spad" 583587 583604 585051 585056) (-375 "FIELD.spad" 582993 583001 583489 583582) (-374 "FIELD.spad" 582485 582495 582983 582988) (-373 "FGROUP.spad" 581132 581142 582465 582480) (-372 "FGLMICPK.spad" 579919 579934 581122 581127) (-371 "FFX.spad" 579294 579309 579635 579728) (-370 "FFSLPE.spad" 578797 578818 579284 579289) (-369 "FFPOLY.spad" 570059 570070 578787 578792) (-368 "FFPOLY2.spad" 569119 569136 570049 570054) (-367 "FFP.spad" 568516 568536 568835 568928) (-366 "FF.spad" 567964 567980 568197 568290) (-365 "FFNBX.spad" 566476 566496 567680 567773) (-364 "FFNBP.spad" 564989 565006 566192 566285) (-363 "FFNB.spad" 563454 563475 564670 564763) (-362 "FFINTBAS.spad" 560968 560987 563444 563449) (-361 "FFIELDC.spad" 558545 558553 560870 560963) (-360 "FFIELDC.spad" 556208 556218 558535 558540) (-359 "FFHOM.spad" 554956 554973 556198 556203) (-358 "FFF.spad" 552391 552402 554946 554951) (-357 "FFCGX.spad" 551238 551258 552107 552200) (-356 "FFCGP.spad" 550127 550147 550954 551047) (-355 "FFCG.spad" 548919 548940 549808 549901) (-354 "FFCAT.spad" 542092 542114 548758 548914) (-353 "FFCAT.spad" 535344 535368 542012 542017) (-352 "FFCAT2.spad" 535091 535131 535334 535339) (-351 "FEXPR.spad" 526808 526854 534847 534886) (-350 "FEVALAB.spad" 526516 526526 526798 526803) (-349 "FEVALAB.spad" 526009 526021 526293 526298) (-348 "FDIV.spad" 525451 525475 525999 526004) (-347 "FDIVCAT.spad" 523515 523539 525441 525446) (-346 "FDIVCAT.spad" 521577 521603 523505 523510) (-345 "FDIV2.spad" 521233 521273 521567 521572) (-344 "FCTRDATA.spad" 520241 520249 521223 521228) (-343 "FCPAK1.spad" 518808 518816 520231 520236) (-342 "FCOMP.spad" 518187 518197 518798 518803) (-341 "FC.spad" 508194 508202 518177 518182) (-340 "FAXF.spad" 501165 501179 508096 508189) (-339 "FAXF.spad" 494188 494204 501121 501126) (-338 "FARRAY.spad" 492185 492195 493218 493245) (-337 "FAMR.spad" 490321 490333 492083 492180) (-336 "FAMR.spad" 488441 488455 490205 490210) (-335 "FAMONOID.spad" 488109 488119 488395 488400) (-334 "FAMONC.spad" 486405 486417 488099 488104) (-333 "FAGROUP.spad" 486029 486039 486301 486328) (-332 "FACUTIL.spad" 484233 484250 486019 486024) (-331 "FACTFUNC.spad" 483427 483437 484223 484228) (-330 "EXPUPXS.spad" 480260 480283 481559 481708) (-329 "EXPRTUBE.spad" 477548 477556 480250 480255) (-328 "EXPRODE.spad" 474708 474724 477538 477543) (-327 "EXPR.spad" 469883 469893 470597 470892) (-326 "EXPR2UPS.spad" 466005 466018 469873 469878) (-325 "EXPR2.spad" 465710 465722 465995 466000) (-324 "EXPEXPAN.spad" 462511 462536 463143 463236) (-323 "EXIT.spad" 462182 462190 462501 462506) (-322 "EXITAST.spad" 461918 461926 462172 462177) (-321 "EVALCYC.spad" 461378 461392 461908 461913) (-320 "EVALAB.spad" 460950 460960 461368 461373) (-319 "EVALAB.spad" 460520 460532 460940 460945) (-318 "EUCDOM.spad" 458094 458102 460446 460515) (-317 "EUCDOM.spad" 455730 455740 458084 458089) (-316 "ESTOOLS.spad" 447576 447584 455720 455725) (-315 "ESTOOLS2.spad" 447179 447193 447566 447571) (-314 "ESTOOLS1.spad" 446864 446875 447169 447174) (-313 "ES.spad" 439679 439687 446854 446859) (-312 "ES.spad" 432400 432410 439577 439582) (-311 "ESCONT.spad" 429193 429201 432390 432395) (-310 "ESCONT1.spad" 428942 428954 429183 429188) (-309 "ES2.spad" 428447 428463 428932 428937) (-308 "ES1.spad" 428017 428033 428437 428442) (-307 "ERROR.spad" 425344 425352 428007 428012) (-306 "EQTBL.spad" 423374 423396 423583 423610) (-305 "EQ.spad" 418179 418189 420966 421078) (-304 "EQ2.spad" 417897 417909 418169 418174) (-303 "EP.spad" 414223 414233 417887 417892) (-302 "ENV.spad" 412901 412909 414213 414218) (-301 "ENTIRER.spad" 412569 412577 412845 412896) (-300 "EMR.spad" 411857 411898 412495 412564) (-299 "ELTAGG.spad" 410111 410130 411847 411852) (-298 "ELTAGG.spad" 408329 408350 410067 410072) (-297 "ELTAB.spad" 407804 407817 408319 408324) (-296 "ELFUTS.spad" 407191 407210 407794 407799) (-295 "ELEMFUN.spad" 406880 406888 407181 407186) (-294 "ELEMFUN.spad" 406567 406577 406870 406875) (-293 "ELAGG.spad" 404538 404548 406547 406562) (-292 "ELAGG.spad" 402446 402458 404457 404462) (-291 "ELABOR.spad" 401792 401800 402436 402441) (-290 "ELABEXPR.spad" 400724 400732 401782 401787) (-289 "EFUPXS.spad" 397500 397530 400680 400685) (-288 "EFULS.spad" 394336 394359 397456 397461) (-287 "EFSTRUC.spad" 392351 392367 394326 394331) (-286 "EF.spad" 387127 387143 392341 392346) (-285 "EAB.spad" 385403 385411 387117 387122) (-284 "E04UCFA.spad" 384939 384947 385393 385398) (-283 "E04NAFA.spad" 384516 384524 384929 384934) (-282 "E04MBFA.spad" 384096 384104 384506 384511) (-281 "E04JAFA.spad" 383632 383640 384086 384091) (-280 "E04GCFA.spad" 383168 383176 383622 383627) (-279 "E04FDFA.spad" 382704 382712 383158 383163) (-278 "E04DGFA.spad" 382240 382248 382694 382699) (-277 "E04AGNT.spad" 378090 378098 382230 382235) (-276 "DVARCAT.spad" 374980 374990 378080 378085) (-275 "DVARCAT.spad" 371868 371880 374970 374975) (-274 "DSMP.spad" 369242 369256 369547 369674) (-273 "DSEXT.spad" 368544 368554 369232 369237) (-272 "DSEXT.spad" 367753 367765 368443 368448) (-271 "DROPT.spad" 361712 361720 367743 367748) (-270 "DROPT1.spad" 361377 361387 361702 361707) (-269 "DROPT0.spad" 356234 356242 361367 361372) (-268 "DRAWPT.spad" 354407 354415 356224 356229) (-267 "DRAW.spad" 347283 347296 354397 354402) (-266 "DRAWHACK.spad" 346591 346601 347273 347278) (-265 "DRAWCX.spad" 344061 344069 346581 346586) (-264 "DRAWCURV.spad" 343608 343623 344051 344056) (-263 "DRAWCFUN.spad" 333140 333148 343598 343603) (-262 "DQAGG.spad" 331318 331328 333108 333135) (-261 "DPOLCAT.spad" 326667 326683 331186 331313) (-260 "DPOLCAT.spad" 322102 322120 326623 326628) (-259 "DPMO.spad" 313862 313878 314000 314213) (-258 "DPMM.spad" 305635 305653 305760 305973) (-257 "DOMTMPLT.spad" 305406 305414 305625 305630) (-256 "DOMCTOR.spad" 305161 305169 305396 305401) (-255 "DOMAIN.spad" 304248 304256 305151 305156) (-254 "DMP.spad" 301508 301523 302078 302205) (-253 "DMEXT.spad" 301375 301385 301476 301503) (-252 "DLP.spad" 300727 300737 301365 301370) (-251 "DLIST.spad" 299153 299163 299757 299784) (-250 "DLAGG.spad" 297570 297580 299143 299148) (-249 "DIVRING.spad" 297112 297120 297514 297565) (-248 "DIVRING.spad" 296698 296708 297102 297107) (-247 "DISPLAY.spad" 294888 294896 296688 296693) (-246 "DIRPROD.spad" 282435 282451 283075 283174) (-245 "DIRPROD2.spad" 281253 281271 282425 282430) (-244 "DIRPCAT.spad" 280446 280462 281149 281248) (-243 "DIRPCAT.spad" 279266 279284 279971 279976) (-242 "DIOSP.spad" 278091 278099 279256 279261) (-241 "DIOPS.spad" 277087 277097 278071 278086) (-240 "DIOPS.spad" 276057 276069 277043 277048) (-239 "DIFRING.spad" 275895 275903 276037 276052) (-238 "DIFFSPC.spad" 275474 275482 275885 275890) (-237 "DIFFSPC.spad" 275051 275061 275464 275469) (-236 "DIFFMOD.spad" 274540 274550 275019 275046) (-235 "DIFFDOM.spad" 273705 273716 274530 274535) (-234 "DIFFDOM.spad" 272868 272881 273695 273700) (-233 "DIFEXT.spad" 272687 272697 272848 272863) (-232 "DIAGG.spad" 272317 272327 272667 272682) (-231 "DIAGG.spad" 271955 271967 272307 272312) (-230 "DHMATRIX.spad" 270150 270160 271295 271322) (-229 "DFSFUN.spad" 263790 263798 270140 270145) (-228 "DFLOAT.spad" 260521 260529 263680 263785) (-227 "DFINTTLS.spad" 258752 258768 260511 260516) (-226 "DERHAM.spad" 256666 256698 258732 258747) (-225 "DEQUEUE.spad" 255873 255883 256156 256183) (-224 "DEGRED.spad" 255490 255504 255863 255868) (-223 "DEFINTRF.spad" 253027 253037 255480 255485) (-222 "DEFINTEF.spad" 251537 251553 253017 253022) (-221 "DEFAST.spad" 250905 250913 251527 251532) (-220 "DECIMAL.spad" 248914 248922 249275 249368) (-219 "DDFACT.spad" 246727 246744 248904 248909) (-218 "DBLRESP.spad" 246327 246351 246717 246722) (-217 "DBASIS.spad" 245953 245968 246317 246322) (-216 "DBASE.spad" 244617 244627 245943 245948) (-215 "DATAARY.spad" 244079 244092 244607 244612) (-214 "D03FAFA.spad" 243907 243915 244069 244074) (-213 "D03EEFA.spad" 243727 243735 243897 243902) (-212 "D03AGNT.spad" 242813 242821 243717 243722) (-211 "D02EJFA.spad" 242275 242283 242803 242808) (-210 "D02CJFA.spad" 241753 241761 242265 242270) (-209 "D02BHFA.spad" 241243 241251 241743 241748) (-208 "D02BBFA.spad" 240733 240741 241233 241238) (-207 "D02AGNT.spad" 235547 235555 240723 240728) (-206 "D01WGTS.spad" 233866 233874 235537 235542) (-205 "D01TRNS.spad" 233843 233851 233856 233861) (-204 "D01GBFA.spad" 233365 233373 233833 233838) (-203 "D01FCFA.spad" 232887 232895 233355 233360) (-202 "D01ASFA.spad" 232355 232363 232877 232882) (-201 "D01AQFA.spad" 231801 231809 232345 232350) (-200 "D01APFA.spad" 231225 231233 231791 231796) (-199 "D01ANFA.spad" 230719 230727 231215 231220) (-198 "D01AMFA.spad" 230229 230237 230709 230714) (-197 "D01ALFA.spad" 229769 229777 230219 230224) (-196 "D01AKFA.spad" 229295 229303 229759 229764) (-195 "D01AJFA.spad" 228818 228826 229285 229290) (-194 "D01AGNT.spad" 224885 224893 228808 228813) (-193 "CYCLOTOM.spad" 224391 224399 224875 224880) (-192 "CYCLES.spad" 221183 221191 224381 224386) (-191 "CVMP.spad" 220600 220610 221173 221178) (-190 "CTRIGMNP.spad" 219100 219116 220590 220595) (-189 "CTOR.spad" 218791 218799 219090 219095) (-188 "CTORKIND.spad" 218394 218402 218781 218786) (-187 "CTORCAT.spad" 217643 217651 218384 218389) (-186 "CTORCAT.spad" 216890 216900 217633 217638) (-185 "CTORCALL.spad" 216479 216489 216880 216885) (-184 "CSTTOOLS.spad" 215724 215737 216469 216474) (-183 "CRFP.spad" 209448 209461 215714 215719) (-182 "CRCEAST.spad" 209168 209176 209438 209443) (-181 "CRAPACK.spad" 208219 208229 209158 209163) (-180 "CPMATCH.spad" 207723 207738 208144 208149) (-179 "CPIMA.spad" 207428 207447 207713 207718) (-178 "COORDSYS.spad" 202437 202447 207418 207423) (-177 "CONTOUR.spad" 201848 201856 202427 202432) (-176 "CONTFRAC.spad" 197598 197608 201750 201843) (-175 "CONDUIT.spad" 197356 197364 197588 197593) (-174 "COMRING.spad" 197030 197038 197294 197351) (-173 "COMPPROP.spad" 196548 196556 197020 197025) (-172 "COMPLPAT.spad" 196315 196330 196538 196543) (-171 "COMPLEX.spad" 191692 191702 191936 192197) (-170 "COMPLEX2.spad" 191407 191419 191682 191687) (-169 "COMPILER.spad" 190956 190964 191397 191402) (-168 "COMPFACT.spad" 190558 190572 190946 190951) (-167 "COMPCAT.spad" 188630 188640 190292 190553) (-166 "COMPCAT.spad" 186430 186442 188094 188099) (-165 "COMMUPC.spad" 186178 186196 186420 186425) (-164 "COMMONOP.spad" 185711 185719 186168 186173) (-163 "COMM.spad" 185522 185530 185701 185706) (-162 "COMMAAST.spad" 185285 185293 185512 185517) (-161 "COMBOPC.spad" 184200 184208 185275 185280) (-160 "COMBINAT.spad" 182967 182977 184190 184195) (-159 "COMBF.spad" 180349 180365 182957 182962) (-158 "COLOR.spad" 179186 179194 180339 180344) (-157 "COLONAST.spad" 178852 178860 179176 179181) (-156 "CMPLXRT.spad" 178563 178580 178842 178847) (-155 "CLLCTAST.spad" 178225 178233 178553 178558) (-154 "CLIP.spad" 174333 174341 178215 178220) (-153 "CLIF.spad" 172988 173004 174289 174328) (-152 "CLAGG.spad" 169493 169503 172978 172983) (-151 "CLAGG.spad" 165869 165881 169356 169361) (-150 "CINTSLPE.spad" 165200 165213 165859 165864) (-149 "CHVAR.spad" 163338 163360 165190 165195) (-148 "CHARZ.spad" 163253 163261 163318 163333) (-147 "CHARPOL.spad" 162763 162773 163243 163248) (-146 "CHARNZ.spad" 162516 162524 162743 162758) (-145 "CHAR.spad" 160390 160398 162506 162511) (-144 "CFCAT.spad" 159718 159726 160380 160385) (-143 "CDEN.spad" 158914 158928 159708 159713) (-142 "CCLASS.spad" 157025 157033 158287 158326) (-141 "CATEGORY.spad" 156067 156075 157015 157020) (-140 "CATCTOR.spad" 155958 155966 156057 156062) (-139 "CATAST.spad" 155576 155584 155948 155953) (-138 "CASEAST.spad" 155290 155298 155566 155571) (-137 "CARTEN.spad" 150657 150681 155280 155285) (-136 "CARTEN2.spad" 150047 150074 150647 150652) (-135 "CARD.spad" 147342 147350 150021 150042) (-134 "CAPSLAST.spad" 147116 147124 147332 147337) (-133 "CACHSET.spad" 146740 146748 147106 147111) (-132 "CABMON.spad" 146295 146303 146730 146735) (-131 "BYTEORD.spad" 145970 145978 146285 146290) (-130 "BYTE.spad" 145397 145405 145960 145965) (-129 "BYTEBUF.spad" 143095 143103 144405 144432) (-128 "BTREE.spad" 142051 142061 142585 142612) (-127 "BTOURN.spad" 140939 140949 141541 141568) (-126 "BTCAT.spad" 140331 140341 140907 140934) (-125 "BTCAT.spad" 139743 139755 140321 140326) (-124 "BTAGG.spad" 139209 139217 139711 139738) (-123 "BTAGG.spad" 138695 138705 139199 139204) (-122 "BSTREE.spad" 137319 137329 138185 138212) (-121 "BRILL.spad" 135516 135527 137309 137314) (-120 "BRAGG.spad" 134456 134466 135506 135511) (-119 "BRAGG.spad" 133360 133372 134412 134417) (-118 "BPADICRT.spad" 131234 131246 131489 131582) (-117 "BPADIC.spad" 130898 130910 131160 131229) (-116 "BOUNDZRO.spad" 130554 130571 130888 130893) (-115 "BOP.spad" 125736 125744 130544 130549) (-114 "BOP1.spad" 123202 123212 125726 125731) (-113 "BOOLE.spad" 122852 122860 123192 123197) (-112 "BOOLEAN.spad" 122290 122298 122842 122847) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP8.spad" 97941 97954 98888 98893) (-87 "ASP80.spad" 97263 97276 97931 97936) (-86 "ASP7.spad" 96423 96436 97253 97258) (-85 "ASP78.spad" 95874 95887 96413 96418) (-84 "ASP77.spad" 95243 95256 95864 95869) (-83 "ASP74.spad" 94335 94348 95233 95238) (-82 "ASP73.spad" 93606 93619 94325 94330) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP4.spad" 88094 88107 88789 88794) (-77 "ASP49.spad" 87093 87106 88084 88089) (-76 "ASP42.spad" 85500 85539 87083 87088) (-75 "ASP41.spad" 84079 84118 85490 85495) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP1.spad" 67528 67541 68137 68142) (-63 "ASP19.spad" 62214 62227 67518 67523) (-62 "ASP12.spad" 61628 61641 62204 62209) (-61 "ASP10.spad" 60899 60912 61618 61623) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY1.spad" 58826 58835 59172 59199) (-58 "ARRAY12.spad" 57539 57550 58816 58821) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY.spad" 46217 46224 47348 47353) (-51 "ANY1.spad" 45288 45297 46207 46212) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 7f7190d7..c161147c 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,1158 +1,1162 @@ -(205224 . 3486967795) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((#0=(-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) -((((-576)) . T) (($) -2802 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1060 (-419 (-576))))) ((|#1|) . T)) +(205510 . 3487133936) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((#0=(-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) #0#) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) +((((-577)) . T) (($) -2839 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-1063 (-420 (-577))))) ((|#1|) . T)) (((|#2| |#2|) . T)) -((((-576)) . T)) -((($ $) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) ((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576))))) +((((-577)) . T)) +((($ $) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) ((|#2| |#2|) . T) ((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577))))) ((($) . T)) (((|#1|) . T)) -((($) . T) (((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) . T) (((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#2|) . T)) -((($) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -(|has| |#1| (-929)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((($) . T) (((-419 (-576))) . T)) +((($) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) +(|has| |#1| (-932)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +(((|#1|) . T) (((-577)) . T)) +((($) . T) (((-420 (-577))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) ((((-145)) . T)) -((((-548)) . T) (((-1180)) . T) (((-227)) . T) (((-390)) . T) (((-908 (-390))) . T)) -(((|#1|) . T)) -((((-227)) . T) (((-877)) . T)) -(-2802 (|has| |#2| (-806)) (|has| |#2| (-862))) -(-2802 (-12 (|has| |#1| (-806)) (|has| |#2| (-806))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))) -(((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(-2802 (|has| |#1| (-21)) (|has| |#1| (-861))) -((($ $) . T) ((#0=(-419 (-576)) #0#) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) -(-2802 (|has| |#1| (-833)) (|has| |#1| (-862))) -((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) |has| |#1| (-1060 (-576))) ((|#1|) . T)) -((((-877)) . T)) -((((-877)) . T)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-568))) -(|has| |#1| (-861)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((((-326 |#1|)) . T) (((-576)) . T) (($) . T)) +((((-549)) . T) (((-1183)) . T) (((-228)) . T) (((-391)) . T) (((-911 (-391))) . T)) +(((|#1|) . T)) +((((-228)) . T) (((-880)) . T)) +(-2839 (|has| |#2| (-809)) (|has| |#2| (-865))) +(-2839 (-12 (|has| |#1| (-809)) (|has| |#2| (-809))) (-12 (|has| |#1| (-865)) (|has| |#2| (-865)))) +(((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(-2839 (|has| |#1| (-21)) (|has| |#1| (-864))) +((($ $) . T) ((#0=(-420 (-577)) #0#) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1| |#1|) . T)) +(-2839 (|has| |#1| (-836)) (|has| |#1| (-865))) +((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) |has| |#1| (-1063 (-577))) ((|#1|) . T)) +((((-880)) . T)) +((((-880)) . T)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-569))) +(|has| |#1| (-864)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-327 |#1|)) . T) (((-577)) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) -((((-576)) . T) (((-885 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-419 (-576))) . T) (((-712)) . T) (($) . T)) -((((-877)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) +((((-577)) . T) (((-888 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +((($) . T) (((-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +((((-420 (-577))) . T) (((-715)) . T) (($) . T)) +((((-880)) . T)) +((((-1206)) . T)) +((((-1206)) . T)) (((|#4|) . T)) -((((-419 (-576))) . T) (((-712)) . T) (($) . T)) -((((-877)) . T)) -((((-877)) |has| (-1116 |#1|) (-1122))) -((((-877)) . T) (((-1203)) . T)) +((((-420 (-577))) . T) (((-715)) . T) (($) . T)) +((((-880)) . T)) +((((-880)) |has| (-1119 |#1|) (-1125))) +((((-880)) . T) (((-1206)) . T)) (((|#1|) . T) ((|#2|) . T)) -((((-1203)) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) -(-2802 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -(((|#2| (-494 (-3440 |#1|) (-784))) . T)) -((((-1198)) -2802 (|has| (-419 |#2|) (-918 (-1198))) (|has| (-419 |#2|) (-920 (-1198))))) -(((|#1| (-543 (-1198))) . T)) -((((-1180)) . T) (((-978 (-130))) . T) (((-877)) . T)) -((((-877)) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -(((#0=(-885 |#1|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(|has| |#4| (-379)) -(|has| |#3| (-379)) -(((|#1|) . T)) -((((-1198)) . T)) -((((-518)) . T)) -((((-885 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-1206)) . T)) +(((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) +(-2839 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +(((|#2| (-495 (-3484 |#1|) (-787))) . T)) +((((-1201)) -2839 (|has| (-420 |#2|) (-921 (-1201))) (|has| (-420 |#2|) (-923 (-1201))))) +(((|#1| (-544 (-1201))) . T)) +((((-1183)) . T) (((-981 (-130))) . T) (((-880)) . T)) +((((-880)) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +(((#0=(-888 |#1|) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) +(|has| |#4| (-380)) +(|has| |#3| (-380)) +(((|#1|) . T)) +((((-1201)) . T)) +((((-519)) . T)) +((((-888 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +((((-880)) . T)) +((((-880)) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) +((((-880)) . T)) ((($) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#1| (-568)) -((((-576)) . T) (((-419 (-576))) -2802 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576))))) ((|#2|) . T) (($) -2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) (((-879 |#1|)) . T)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-2 (|:| -3178 |#1|) (|:| -1801 |#2|))) . T)) +(|has| |#1| (-569)) +((((-577)) . T) (((-420 (-577))) -2839 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577))))) ((|#2|) . T) (($) -2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) (((-882 |#1|)) . T)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-569))) +((((-2 (|:| -3222 |#1|) (|:| -3556 |#2|))) . T)) ((($) . T)) -((((-877)) |has| |#1| (-625 (-877))) ((|#1|) . T)) -((((-576)) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))) ((|#1|) . T) (($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) (((-1198)) . T)) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) -((((-548)) |has| |#1| (-626 (-548)))) -((((-1198)) . T)) -(((|#1|) . T)) -((((-576)) . T) (($) . T)) -((((-593 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) +((((-880)) |has| |#1| (-626 (-880))) ((|#1|) . T)) +((((-577)) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ((|#1|) . T) (($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) (((-1201)) . T)) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) +((((-549)) |has| |#1| (-627 (-549)))) +((((-1201)) . T)) +(((|#1|) . T)) +((((-577)) . T) (($) . T)) +((((-594 |#1|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) . T)) +((($) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) . T) (((-576)) . T) (($) . T)) -((((-877)) . T)) -((((-877)) . T)) -(((|#1|) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1|) . T) (((-577)) . T) (($) . T)) +((((-880)) . T)) +((((-880)) . T)) +(((|#1|) . T)) +((((-420 (-577))) . T) (($) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2802 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) -(|has| |#1| (-1122)) -(((|#1|) . T)) -((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) -((($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((((-117 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) -(((|#2|) . T) (((-576)) . T) ((|#6|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2802 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +(((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577)))) ((|#2| |#2|) . T) (($ $) -2839 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +(|has| |#1| (-1125)) +(((|#1|) . T)) +((((-117 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +((((-117 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +((((-420 (-577))) . T) (($) . T) (((-577)) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T)) +(((|#2|) . T) (((-577)) . T) ((|#6|) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2839 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) ((($) . T)) ((($) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) +(((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) +((((-577)) . T) (($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) +(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) ((($ $) . T)) ((($) . T)) -((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-577)) . T) (($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-379)) +(|has| |#1| (-380)) (((|#1|) . T)) -((((-877)) . T)) -((((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1281 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) +((((-880)) . T)) +((((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1284 |#1| |#2| |#3|)) |has| |#1| (-375)) (($) . T) ((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -(((|#1|) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) -((((-576)) . T)) -((((-877)) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +(((|#1|) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) . T)) +(((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (($) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) +((((-577)) . T)) +((((-880)) . T)) (((|#1| |#2|) . T)) -(-2802 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071))) -(-2802 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071))) -((($) -2802 (|has| |#1| (-238)) (|has| |#1| (-237)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(|has| |#1| (-568)) -(((|#1|) . T) (((-576)) . T) (($) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -(-2802 (|has| |#1| (-21)) (|has| |#1| (-861))) -((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2802 (|has| |#1| (-862)) (|has| |#1| (-1122))) -(|has| |#1| (-1122)) -(-2802 (|has| |#1| (-862)) (|has| |#1| (-1122))) -(|has| |#1| (-1122)) -(-2802 (|has| |#1| (-862)) (|has| |#1| (-1122))) -(|has| |#1| (-861)) +(-2839 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074))) +(-2839 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074))) +((($) -2839 (|has| |#1| (-239)) (|has| |#1| (-238)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(|has| |#1| (-569)) +(((|#1|) . T) (((-577)) . T) (($) . T)) +((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) +(-2839 (|has| |#1| (-21)) (|has| |#1| (-864))) +((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2839 (|has| |#1| (-865)) (|has| |#1| (-1125))) +(|has| |#1| (-1125)) +(-2839 (|has| |#1| (-865)) (|has| |#1| (-1125))) +(|has| |#1| (-1125)) +(-2839 (|has| |#1| (-865)) (|has| |#1| (-1125))) +(|has| |#1| (-864)) (((|#1| |#1|) . T)) -((($) . T) (((-419 (-576))) . T)) +((($) . T) (((-420 (-577))) . T)) (((|#1|) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-576) (-130)) . T)) -((((-877)) . T)) -((($) . T) (((-419 (-576))) . T)) +((((-420 (-577))) . T) (($) . T)) +((((-577) (-130)) . T)) +((((-880)) . T)) +((($) . T) (((-420 (-577))) . T)) ((((-130)) . T)) -(|has| |#4| (-806)) -(|has| |#4| (-806)) -(|has| |#3| (-806)) -(|has| |#3| (-806)) +(|has| |#4| (-809)) +(|has| |#4| (-809)) +(|has| |#3| (-809)) +(|has| |#3| (-809)) (((|#1| |#2|) . T)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1203)) . T)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-361))) +((((-1206)) . T)) (((|#1| |#2|) . T)) -(((|#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) (((-1198) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1198) |#2|)))) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) -((((-576)) . T) (((-419 (-576))) . T)) -(((|#1| (-1198) (-1110 (-1198)) (-543 (-1110 (-1198)))) . T)) -((((-576) |#1|) . T)) -((((-576)) . T)) -((((-576)) . T)) -((((-930 |#1|)) . T)) -(((|#1| (-543 |#2|)) . T)) -((((-576)) . T)) -((((-576)) . T)) -(((|#1|) . T)) -(|has| |#2| (-1071)) -(((|#1| (-784)) . T)) -(|has| |#2| (-806)) -(|has| |#2| (-806)) +(((|#2| |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-320 |#2|))) (((-1201) |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-527 (-1201) |#2|)))) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) +((((-577)) . T) (((-420 (-577))) . T)) +(((|#1| (-1201) (-1113 (-1201)) (-544 (-1113 (-1201)))) . T)) +((((-577) |#1|) . T)) +((((-577)) . T)) +((((-577)) . T)) +((((-933 |#1|)) . T)) +(((|#1| (-544 |#2|)) . T)) +((((-577)) . T)) +((((-577)) . T)) +(((|#1|) . T)) +(|has| |#2| (-1074)) +(((|#1| (-787)) . T)) +(|has| |#2| (-809)) +(|has| |#2| (-809)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1180) |#1|) . T)) -((((-1256 (-576)) $) . T) (((-576) (-130)) . T)) +((((-1183) |#1|) . T)) +((((-1259 (-577)) $) . T) (((-577) (-130)) . T)) (((|#1|) . T)) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) -(((|#3| (-784)) . T)) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +(((|#3| (-787)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((($) . T) (((-419 (-576))) . T)) +((($) . T) (((-420 (-577))) . T)) ((($) . T)) ((($) . T)) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-419 (-576))) . T) (($) . T)) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) +((((-420 (-577))) . T) (($) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-1122)) -((((-419 (-576))) . T) (((-576)) . T)) -((((-576)) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) -((((-576)) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))) ((|#1|) . T) (($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#2|) . T)) -((((-1198) |#2|) |has| |#2| (-526 (-1198) |#2|)) ((|#2| |#2|) |has| |#2| (-319 |#2|))) -((((-419 (-576))) . T) (((-576)) . T)) -((((-576)) . T) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) (((-1104)) . T) ((|#1|) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) +(|has| |#1| (-1125)) +((((-420 (-577))) . T) (((-577)) . T)) +((((-577)) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) +((((-577)) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ((|#1|) . T) (($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#2|) . T)) +((((-1201) |#2|) |has| |#2| (-527 (-1201) |#2|)) ((|#2| |#2|) |has| |#2| (-320 |#2|))) +((((-420 (-577))) . T) (((-577)) . T)) +((((-577)) . T) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) (((-1107)) . T) ((|#1|) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577)))))) (((|#1|) . T) (($) . T)) -((((-576)) . T)) -((((-576)) . T)) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -((((-576)) . T)) -((((-576)) . T)) -((((-419 (-576))) . T) (($) . T)) -(((#0=(-712) (-1194 #0#)) . T)) -((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-374)) -((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) -((($) -2802 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) +((((-577)) . T)) +((((-577)) . T)) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) +((((-577)) . T)) +((((-577)) . T)) +((((-420 (-577))) . T) (($) . T)) +(((#0=(-715) (-1197 #0#)) . T)) +((((-420 (-577))) . T) (((-577)) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-375)) +((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) +((($) -2839 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-238)))) +((($) . T) (((-577)) . T) (((-420 (-577))) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) +((((-880)) . T)) (((|#1|) . T)) -((((-1180) |#1|) . T)) +((((-1183) |#1|) . T)) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) (((|#3| |#3|) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-880)) . T)) +((((-880)) . T)) (((|#1| |#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) -((($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071))) (($) |has| |#2| (-1071)) (((-576)) -12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-576) |#1|) . T)) -((((-877)) . T)) -((((-171 (-227))) |has| |#1| (-1044)) (((-171 (-390))) |has| |#1| (-1044)) (((-548)) |has| |#1| (-626 (-548))) (((-1194 |#1|)) . T) (((-908 (-576))) |has| |#1| (-626 (-908 (-576)))) (((-908 (-390))) |has| |#1| (-626 (-908 (-390))))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) . T)) -(-2802 (|has| |#1| (-21)) (|has| |#1| (-861))) -(-2802 (|has| |#1| (-21)) (|has| |#1| (-861))) -((((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568)))) -(|has| |#1| (-374)) -((((-877)) . T)) +(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) +((($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074))) (($) |has| |#2| (-1074)) (((-577)) -12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-577) |#1|) . T)) +((((-880)) . T)) +((((-171 (-228))) |has| |#1| (-1047)) (((-171 (-391))) |has| |#1| (-1047)) (((-549)) |has| |#1| (-627 (-549))) (((-1197 |#1|)) . T) (((-911 (-577))) |has| |#1| (-627 (-911 (-577)))) (((-911 (-391))) |has| |#1| (-627 (-911 (-391))))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1|) . T)) +(-2839 (|has| |#1| (-21)) (|has| |#1| (-864))) +(-2839 (|has| |#1| (-21)) (|has| |#1| (-864))) +((((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569)))) +(|has| |#1| (-375)) +((((-880)) . T)) ((($) . T)) ((($) . T)) ((((-130)) . T)) -(-12 (|has| |#4| (-238)) (|has| |#4| (-1071))) -(-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) -((($) -2802 (|has| |#2| (-238)) (|has| |#2| (-237)))) -(|has| |#4| (-1071)) -(|has| |#3| (-1071)) -((((-877)) . T) (((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T)) -(((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) |has| |#1| (-1060 (-576))) ((|#1|) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) -(((|#2|) . T) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) . T)) -(|has| |#1| (-568)) -((((-576)) -2802 (-12 (|has| |#4| (-1060 (-576))) (|has| |#4| (-1122))) (|has| |#4| (-1071))) ((|#4|) |has| |#4| (-1122)) (((-419 (-576))) -12 (|has| |#4| (-1060 (-419 (-576)))) (|has| |#4| (-1122)))) -((((-576)) -2802 (-12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122))) (|has| |#3| (-1071))) ((|#3|) |has| |#3| (-1122)) (((-419 (-576))) -12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(|has| |#1| (-568)) -(-2802 (|has| |#1| (-862)) (|has| |#1| (-1122))) -(((|#1|) . T)) -(|has| |#1| (-568)) -((((-879 |#1|)) . T)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) +(-12 (|has| |#4| (-239)) (|has| |#4| (-1074))) +(-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) +((($) -2839 (|has| |#2| (-239)) (|has| |#2| (-238)))) +(|has| |#4| (-1074)) +(|has| |#3| (-1074)) +((((-880)) . T) (((-1206)) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) +((((-1206)) . T)) +((((-880)) . T)) +(((|#1|) . T)) +((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) |has| |#1| (-1063 (-577))) ((|#1|) . T)) +(((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) +(((|#2|) . T) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) . T)) +(|has| |#1| (-569)) +((((-577)) -2839 (-12 (|has| |#4| (-1063 (-577))) (|has| |#4| (-1125))) (|has| |#4| (-1074))) ((|#4|) |has| |#4| (-1125)) (((-420 (-577))) -12 (|has| |#4| (-1063 (-420 (-577)))) (|has| |#4| (-1125)))) +((((-577)) -2839 (-12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125))) (|has| |#3| (-1074))) ((|#3|) |has| |#3| (-1125)) (((-420 (-577))) -12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(|has| |#1| (-569)) +(-2839 (|has| |#1| (-865)) (|has| |#1| (-1125))) +(((|#1|) . T)) +(|has| |#1| (-569)) +((((-882 |#1|)) . T)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) (((|#2|) . T)) -((((-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (((-1104)) . T)) -((((-712)) . T)) -(((|#1|) . T)) -((((-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (((-1110 (-1198))) . T)) -(-12 (|has| |#1| (-1024)) (|has| |#1| (-1224))) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -(((|#2|) . T) (($) . T) (((-419 (-576))) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -(-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) -((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) -(((|#4| |#4|) -2802 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1071)))) -(((|#3| |#3|) -2802 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1071)))) +((((-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (((-1107)) . T)) +((((-715)) . T)) +(((|#1|) . T)) +((((-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (((-1113 (-1201))) . T)) +(-12 (|has| |#1| (-1027)) (|has| |#1| (-1227))) +((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) +(((|#2|) . T) (($) . T) (((-420 (-577))) . T)) +((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) +(-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))) +((($) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) +((((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1199 |#1| |#2| |#3|)) |has| |#1| (-375)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) . T)) +(((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (($) . T)) +(((|#4| |#4|) -2839 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-1074)))) +(((|#3| |#3|) -2839 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1074)))) (((|#2|) . T)) (((|#1|) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-908 (-390))) |has| |#2| (-626 (-908 (-390)))) (((-908 (-576))) |has| |#2| (-626 (-908 (-576))))) -((((-877)) . T)) +((((-549)) |has| |#2| (-627 (-549))) (((-911 (-391))) |has| |#2| (-627 (-911 (-391)))) (((-911 (-577))) |has| |#2| (-627 (-911 (-577))))) +((((-880)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -3178 |#1|) (|:| -1801 |#2|))) . T) (((-877)) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-908 (-390))) |has| |#1| (-626 (-908 (-390)))) (((-908 (-576))) |has| |#1| (-626 (-908 (-576))))) -(((|#4|) -2802 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1071)))) -(((|#3|) -2802 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1071)))) -((((-2 (|:| -3178 |#1|) (|:| -1801 |#2|))) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-548)) . T) (((-576)) . T) (((-908 (-576))) . T) (((-390)) . T) (((-227)) . T)) -((((-657 |#1|)) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) -((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) -((((-419 $) (-419 $)) |has| |#2| (-568)) (($ $) . T) ((|#2| |#2|) . T)) -((($ (-1198)) -2802 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198))))) -((((-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-929)) -((((-1180) (-52)) . T)) -((((-576)) |has| #0=(-419 |#2|) (-652 (-576))) ((#0#) . T)) -((((-548)) . T) (((-227)) . T) (((-390)) . T) (((-908 (-390))) . T)) -((((-877)) . T)) -(-2802 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071))) +((((-2 (|:| -3222 |#1|) (|:| -3556 |#2|))) . T) (((-880)) . T)) +((((-549)) |has| |#1| (-627 (-549))) (((-911 (-391))) |has| |#1| (-627 (-911 (-391)))) (((-911 (-577))) |has| |#1| (-627 (-911 (-577))))) +(((|#4|) -2839 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-1074)))) +(((|#3|) -2839 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1074)))) +((((-2 (|:| -3222 |#1|) (|:| -3556 |#2|))) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-549)) . T) (((-577)) . T) (((-911 (-577))) . T) (((-391)) . T) (((-228)) . T)) +((((-660 |#1|)) . T)) +(((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) +((($) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) +((((-420 $) (-420 $)) |has| |#2| (-569)) (($ $) . T) ((|#2| |#2|) . T)) +((($ (-1201)) -2839 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201))))) +((((-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-932)) +((((-1183) (-52)) . T)) +((((-577)) |has| #0=(-420 |#2|) (-654 (-577))) ((#0#) . T)) +((((-549)) . T) (((-228)) . T) (((-391)) . T) (((-911 (-391))) . T)) +((((-880)) . T)) +(-2839 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074))) (((|#1|) |has| |#1| (-174))) -(((|#1| $) |has| |#1| (-296 |#1| |#1|))) -((((-877)) . T)) -((((-877)) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) . T) (($) . T)) -(((|#1|) . T)) -((((-877)) . T)) -(|has| |#1| (-862)) -(((|#2|) . T) (((-576)) . T) (((-832 |#1|)) . T)) -((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-1122)) -((((-930 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T)) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) -((((-548)) |has| |#1| (-626 (-548)))) -((((-877)) . T) (((-1203)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) -((((-1203)) . T)) -((($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| |#1| (-238)) -((($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1| (-543 (-831 (-1198)))) . T)) -(((|#1| (-993)) . T)) -((((-576)) . T) ((|#2|) . T)) -(|has| |#1| (-861)) -((((-1198)) . T)) -(((#0=(-885 |#1|) $) |has| #0# (-296 #0# #0#))) -((((-576) |#4|) . T)) -((((-576) |#3|) . T)) +(((|#1| $) |has| |#1| (-297 |#1| |#1|))) +((((-880)) . T)) +((((-880)) . T)) +((((-420 (-577))) . T) (($) . T)) +((((-420 (-577))) . T) (($) . T)) +(((|#1|) . T)) +((((-880)) . T)) +(|has| |#1| (-865)) +(((|#2|) . T) (((-577)) . T) (((-835 |#1|)) . T)) +((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +(|has| |#1| (-1125)) +((((-933 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +(((|#1|) . T)) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) +((((-549)) |has| |#1| (-627 (-549)))) +((((-880)) . T) (((-1206)) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((((-1206)) . T)) +((($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(|has| |#1| (-239)) +((($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#1| (-544 (-834 (-1201)))) . T)) +(((|#1| (-996)) . T)) +((((-577)) . T) ((|#2|) . T)) +(|has| |#1| (-864)) +((((-1201)) . T)) +(((#0=(-888 |#1|) $) |has| #0# (-297 #0# #0#))) +((((-577) |#4|) . T)) +((((-577) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1174)) -((((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) . T)) -(|has| (-1275 |#1| |#2| |#3| |#4|) (-146)) -(|has| (-1275 |#1| |#2| |#3| |#4|) (-148)) +(|has| |#1| (-1177)) +((((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) . T)) +(|has| (-1278 |#1| |#2| |#3| |#4|) (-146)) +(|has| (-1278 |#1| |#2| |#3| |#4|) (-148)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-1198)) -12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071)))) +((((-1201)) -12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074)))) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-1122)) -((((-1180) |#1|) . T)) +(|has| |#1| (-1125)) +((((-1183) |#1|) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) -((((-1147 |#1| (-1198))) . T) (((-576)) . T) (((-831 (-1198))) . T) (($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))) (((-1198)) . T)) -(|has| |#2| (-379)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) +((((-1150 |#1| (-1201))) . T) (((-577)) . T) (((-834 (-1201))) . T) (($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) (((-1201)) . T)) +(|has| |#2| (-380)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1071))) -((((-877)) . T)) -(|has| |#1| (-861)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((#0=(-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) -(((|#1|) . T)) -((((-1289 (-350 (-3511) (-3511 (QUOTE X)) (-712)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((#0=(-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) #0#) |has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))))) -((((-877)) . T)) -((((-576) |#1|) . T)) -((((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))) (((-908 (-390))) -12 (|has| |#1| (-626 (-908 (-390)))) (|has| |#2| (-626 (-908 (-390))))) (((-908 (-576))) -12 (|has| |#1| (-626 (-908 (-576)))) (|has| |#2| (-626 (-908 (-576)))))) +(((|#2|) |has| |#2| (-1074))) +((((-880)) . T)) +(|has| |#1| (-864)) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((#0=(-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) #0#) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) +(((|#1|) . T)) +((((-1292 (-351 (-3553) (-3553 (QUOTE X)) (-715)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((#0=(-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) #0#) |has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-320 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))))) +((((-880)) . T)) +((((-577) |#1|) . T)) +((((-549)) -12 (|has| |#1| (-627 (-549))) (|has| |#2| (-627 (-549)))) (((-911 (-391))) -12 (|has| |#1| (-627 (-911 (-391)))) (|has| |#2| (-627 (-911 (-391))))) (((-911 (-577))) -12 (|has| |#1| (-627 (-911 (-577)))) (|has| |#2| (-627 (-911 (-577)))))) ((($) . T)) -((((-877)) . T)) -((($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((((-877)) . T)) +((((-880)) . T)) +((($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +((((-880)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-877)) . T)) -((((-877)) . T)) -(|has| (-1274 |#2| |#3| |#4|) (-148)) -(|has| (-1274 |#2| |#3| |#4|) (-146)) -(((|#2|) |has| |#2| (-1122)) (((-576)) -12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (((-419 (-576))) -12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-880)) . T)) +((((-880)) . T)) +(|has| (-1277 |#2| |#3| |#4|) (-148)) +(|has| (-1277 |#2| |#3| |#4|) (-146)) +(((|#2|) |has| |#2| (-1125)) (((-577)) -12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (((-420 (-577))) -12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) (((|#1|) . T)) -(|has| |#1| (-1122)) -((((-877)) . T)) +(|has| |#1| (-1125)) +((((-880)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2802 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071))) +(((|#1|) . T)) +(((|#1|) . T)) +(-2839 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074))) (((|#1|) . T)) ((($) . T)) -((((-576) |#1|) . T)) +((((-577) |#1|) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) -(-2802 (|has| |#1| (-21)) (|has| |#1| (-861))) -((((-877)) |has| |#1| (-1122))) -((($) -2802 (|has| |#1| (-238)) (|has| |#1| (-237)))) -(-2802 (|has| |#1| (-485)) (|has| |#1| (-739)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071)) (|has| |#1| (-1134))) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-930 |#1|)) . T)) -((((-419 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-576) |#1|))) -((((-419 (-576))) . T) (($) . T)) +(-2839 (|has| |#1| (-21)) (|has| |#1| (-864))) +((((-880)) |has| |#1| (-1125))) +((($) -2839 (|has| |#1| (-239)) (|has| |#1| (-238)))) +(-2839 (|has| |#1| (-486)) (|has| |#1| (-742)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074)) (|has| |#1| (-1137))) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-361))) +((((-933 |#1|)) . T)) +((((-420 |#2|) |#3|) . T)) +(|has| |#1| (-15 * (|#1| (-577) |#1|))) +((((-420 (-577))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-877)) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -(|has| |#1| (-374)) -(-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(|has| |#1| (-374)) -(|has| |#1| (-15 * (|#1| (-784) |#1|))) -((((-576)) . T)) -((((-576)) . T)) -((((-1164 |#2| (-419 (-972 |#1|)))) . T) (((-419 (-972 |#1|))) . T)) +((((-420 (-577))) . T) (($) . T)) +((((-880)) . T)) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) +(|has| |#1| (-375)) +(-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) +(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) +(|has| |#1| (-375)) +(|has| |#1| (-15 * (|#1| (-787) |#1|))) +((((-577)) . T)) +((((-577)) . T)) +((((-1167 |#2| (-420 (-975 |#1|)))) . T) (((-420 (-975 |#1|))) . T)) ((($) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) +(((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (($) . T)) (((|#1|) . T)) -((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) -((((-877)) . T)) +((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) +((((-880)) . T)) (((|#2|) . T)) -(-2802 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) -((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((($) |has| |#1| (-568)) (((-576)) . T)) -(|has| |#2| (-806)) -(|has| |#2| (-806)) -((((-1281 |#1| |#2| |#3|)) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) -((((-1285 |#2|)) . T) (((-1281 |#1| |#2| |#3|)) . T) (((-1253 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568)))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T)) -(((|#1|) . T)) -((((-1198)) -12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071)))) -(((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(-12 (|has| |#1| (-374)) (|has| |#2| (-833))) -(-2802 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($ $) |has| |#1| (-568)) ((|#1| |#1|) . T)) -((($ (-1198)) -2802 (|has| (-419 |#2|) (-918 (-1198))) (|has| (-419 |#2|) (-920 (-1198))))) -(((#0=(-712) (-1194 #0#)) . T)) -((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-877)) . T) (((-1289 |#4|)) . T)) -((((-877)) . T) (((-1289 |#3|)) . T)) -((((-593 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($) |has| |#1| (-568)) ((|#1|) . T)) -((((-877)) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) +(-2839 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) +((((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) +((($) |has| |#1| (-569)) (((-577)) . T)) +(|has| |#2| (-809)) +(|has| |#2| (-809)) +((((-1284 |#1| |#2| |#3|)) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) ((|#1|) |has| |#1| (-174))) +((((-1288 |#2|)) . T) (((-1284 |#1| |#2| |#3|)) . T) (((-1256 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569)))) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T)) +(((|#1|) . T)) +((((-1201)) -12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074)))) +(((|#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(-12 (|has| |#1| (-375)) (|has| |#2| (-836))) +(-2839 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) +(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-569)))) +((($ $) |has| |#1| (-569)) ((|#1| |#1|) . T)) +((($ (-1201)) -2839 (|has| (-420 |#2|) (-921 (-1201))) (|has| (-420 |#2|) (-923 (-1201))))) +(((#0=(-715) (-1197 #0#)) . T)) +((((-594 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +((((-420 (-577))) . T) (($) . T)) +((((-880)) . T) (((-1292 |#4|)) . T)) +((((-880)) . T) (((-1292 |#3|)) . T)) +((((-594 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +((($) . T) (((-420 (-577))) . T)) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-569)))) +((($) |has| |#1| (-569)) ((|#1|) . T)) +((((-880)) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) . T)) ((($) . T)) -((($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1281 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1281 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -(((|#1|) . T) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -(((|#3|) |has| |#3| (-1071))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -(|has| (-1116 |#1|) (-1122)) -(((|#2| (-832 |#1|)) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) -((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((#1=(-1284 |#1| |#2| |#3|) #1#) |has| |#1| (-375)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1284 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) . T)) +(((|#1|) . T) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) +(((|#3|) |has| |#3| (-1074))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +(|has| (-1119 |#1|) (-1125)) +(((|#2| (-835 |#1|)) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T)) +((((-577)) . T) (($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) (((|#2|) . T) ((|#6|) . T)) -(|has| |#1| (-374)) -((((-576)) . T) ((|#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2802 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +(|has| |#1| (-375)) +((((-577)) . T) ((|#2|) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2839 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) (((|#2|) . T) ((|#6|) . T)) -((($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T)) -((($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((#0=(-1104) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-877)) . T)) -((((-930 |#1|)) . T)) +((($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#1|) . T)) +((($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-420 $) (-420 $)) |has| |#1| (-569)) (($ $) . T) ((|#1| |#1|) . T)) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((#0=(-1107) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-880)) . T)) +((((-933 |#1|)) . T)) ((((-145)) . T)) ((((-145)) . T)) -((((-245 |#1| |#2|) |#2|) . T)) -((((-877)) . T)) -(((|#3|) |has| |#3| (-1122)) (((-576)) -12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122))) (((-419 (-576))) -12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122)))) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) +((((-246 |#1| |#2|) |#2|) . T)) +((((-880)) . T)) +(((|#3|) |has| |#3| (-1125)) (((-577)) -12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125))) (((-420 (-577))) -12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125)))) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) (((|#1|) . T)) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) -((((-548)) |has| |#1| (-626 (-548)))) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) +((((-549)) |has| |#1| (-627 (-549)))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) . T)) -(|has| |#1| (-374)) -((((-1203)) . T)) +((((-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) . T)) +(|has| |#1| (-375)) +((((-1206)) . T)) (((|#1|) . T)) -(-2802 (|has| |#1| (-21)) (|has| |#1| (-861))) +(-2839 (|has| |#1| (-21)) (|has| |#1| (-864))) ((($) . T)) -((((-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) -(|has| |#2| (-833)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-861)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) +((((-1201) |#1|) |has| |#1| (-527 (-1201) |#1|)) ((|#1| |#1|) |has| |#1| (-320 |#1|))) +(|has| |#2| (-836)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-864)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) (((|#1| |#2|) . T)) -(((|#1| |#2| |#3| (-543 |#3|)) . T)) -((((-877)) . T)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -((((-419 (-576))) . T)) -(((|#1|) . T)) -(-2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) -((((-419 (-576))) . T)) -((((-1180) |#1|) . T)) -(|has| |#1| (-379)) -((((-576)) . T)) -((((-576)) . T)) -(((|#1|) . T) (((-576)) . T)) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -(-2802 (|has| |#1| (-862)) (|has| |#1| (-1122))) -((((-877)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-1198)) -12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198))))) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-877)) . T)) -(-12 (|has| |#2| (-238)) (|has| |#2| (-1071))) -((((-1198) #0=(-885 |#1|)) |has| #0# (-526 (-1198) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) -(((|#1|) . T)) -((((-548)) |has| |#1| (-626 (-548)))) -((((-576) |#4|) . T)) -((((-576) |#3|) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) -(|has| |#2| (-1071)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -(-2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) -((((-877)) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T)) -((((-419 (-576))) . T) (((-576)) . T)) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) +(((|#1| |#2| |#3| (-544 |#3|)) . T)) +((((-880)) . T)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +((((-420 (-577))) . T)) +(((|#1|) . T)) +(-2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) +((((-420 (-577))) . T)) +((((-1183) |#1|) . T)) +(|has| |#1| (-380)) +((((-577)) . T)) +((((-577)) . T)) +(((|#1|) . T) (((-577)) . T)) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +(-2839 (|has| |#1| (-865)) (|has| |#1| (-1125))) +((((-880)) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +((((-1201)) -12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201))))) +((((-577)) . T) (($) . T) (((-420 (-577))) . T)) +((((-880)) . T)) +(-12 (|has| |#2| (-239)) (|has| |#2| (-1074))) +((((-1201) #0=(-888 |#1|)) |has| #0# (-527 (-1201) #0#)) ((#0# #0#) |has| #0# (-320 #0#))) +(((|#1|) . T)) +((((-549)) |has| |#1| (-627 (-549)))) +((((-577) |#4|) . T)) +((((-577) |#3|) . T)) +(((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) +(|has| |#2| (-1074)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +(-2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) +((((-880)) . T)) +((((-1278 |#1| |#2| |#3| |#4|)) . T)) +((((-420 (-577))) . T) (((-577)) . T)) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1|) . T)) (((|#1|) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) . T)) +((((-577)) . T)) +((((-577)) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) . T)) +((((-577)) -2839 (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (|has| |#2| (-1074))) ((|#2|) |has| |#2| (-1125)) (((-420 (-577))) -12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) (((|#1|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-576)) . T)) -((((-576)) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-576)) -2802 (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (|has| |#2| (-1071))) ((|#2|) |has| |#2| (-1122)) (((-419 (-576))) -12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (((|#1|) . T)) (((|#1|) . T)) +((((-420 (-577))) . T) (($) . T)) (((|#1|) . T)) -((((-419 (-576))) . T) (($) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) +((($) . T) (((-420 (-577))) . T)) +(((#0=(-577) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((($) . T) (((-419 (-576))) . T)) -(((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) -(((|#1|) |has| |#1| (-568))) -((((-576) |#4|) . T)) -((((-576) |#3|) . T)) -((((-877)) . T)) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((((-877)) . T)) -((((-576) |#1|) . T)) +(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) +(((|#1|) |has| |#1| (-569))) +((((-577) |#4|) . T)) +((((-577) |#3|) . T)) +((((-880)) . T)) +((((-577)) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-569)))) +((((-880)) . T)) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) +((((-577) |#1|) . T)) (((|#1|) . T)) -((($ $) . T) ((#0=(-879 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((#0=(-882 |#1|) $) . T) ((#0# |#2|) . T)) ((($) . T)) -((($ $) . T) ((#0=(-1198) $) . T) ((#0# |#1|) . T)) +((($ $) . T) ((#0=(-1201) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-174))) -((($) -2802 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -(((|#2| |#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071)))) +((($) -2839 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) ((|#2|) |has| |#2| (-174)) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) +(((|#2| |#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074)))) ((((-145)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-379)) (|has| |#2| (-379))) -((((-877)) . T)) -(((|#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071)))) +(-12 (|has| |#1| (-380)) (|has| |#2| (-380))) +((((-880)) . T)) +(((|#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074)))) (((|#1|) . T)) -((((-877)) . T)) -(|has| |#1| (-1122)) +((((-880)) . T)) +(|has| |#1| (-1125)) (|has| $ (-148)) -((((-1203)) . T)) -((((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) -((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) -((($) -2802 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) -(|has| |#1| (-374)) -(-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(|has| |#1| (-374)) -(|has| |#1| (-15 * (|#1| (-784) |#1|))) -(((|#1|) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) -((((-877)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(-2802 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) -(((|#2| (-543 (-879 |#1|))) . T)) -((((-877)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) . T)) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -((((-593 |#1|)) . T)) +((((-1206)) . T)) +((((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2|) |has| |#1| (-375)) (((-577)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) . T)) +((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) +((($) -2839 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) +(|has| |#1| (-375)) +(-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) +(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) +(|has| |#1| (-375)) +(|has| |#1| (-15 * (|#1| (-787) |#1|))) +(((|#1|) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) +((((-880)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(-2839 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) +(((|#2| (-544 (-882 |#1|))) . T)) +((((-880)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1|) . T)) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +((((-594 |#1|)) . T)) ((($) . T)) -((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) +((((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) (((|#1|) . T) (($) . T)) -((((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T)) -((((-1196 |#1| |#2| |#3|)) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) -((((-1285 |#2|)) . T) (((-1196 |#1| |#2| |#3|)) . T) (((-1189 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T)) +((((-1199 |#1| |#2| |#3|)) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) ((|#1|) |has| |#1| (-174))) +((((-1288 |#2|)) . T) (((-1199 |#1| |#2| |#3|)) . T) (((-1192 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569)))) (((|#4|) . T)) (((|#3|) . T)) -((((-885 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T)) -((((-1198)) -12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071)))) -(-2802 (|has| |#2| (-238)) (|has| |#2| (-237))) +((((-888 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T)) +((((-1201)) -12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074)))) +(-2839 (|has| |#2| (-239)) (|has| |#2| (-238))) (((|#1|) . T)) -((((-879 |#1|)) . T)) -((((-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) ((|#3|) . T)) +((((-882 |#1|)) . T)) +((((-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) ((|#3|) . T)) ((($) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-576)) . T) (((-419 (-576))) -2802 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576))))) ((|#2|) . T) (($) -2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) (((-879 |#1|)) . T)) -((((-576) |#2|) . T)) -((((-877)) . T)) -((($) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-577)) . T) (((-420 (-577))) -2839 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577))))) ((|#2|) . T) (($) -2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) (((-882 |#1|)) . T)) +((((-577) |#2|) . T)) +((((-880)) . T)) +((($) . T) (((-577)) . T) ((|#2|) . T) (((-420 (-577))) . T)) +((((-880)) . T)) +((((-880)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1196 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((((-877)) . T)) -(((|#2|) |has| |#2| (-1071))) -(|has| |#1| (-1122)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -(((|#1|) . T) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-569)))) +((($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((#1=(-1199 |#1| |#2| |#3|) #1#) |has| |#1| (-375)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) +((($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +((((-880)) . T)) +(((|#2|) |has| |#2| (-1074))) +(|has| |#1| (-1125)) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-569)))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1199 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) . T)) +(((|#1|) . T) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#1|) |has| |#1| (-174)) (($) . T)) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2802 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) -((((-877)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) -((($ (-879 |#1|)) . T)) +(((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577)))) ((|#2| |#2|) . T) (($ $) -2839 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((((-880)) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((($ (-882 |#1|)) . T)) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) ((($ |#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2802 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) -((($ (-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (($ (-1104)) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2839 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((($ (-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (($ (-1107)) . T)) ((($) . T)) -(((#0=(-1104) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ (-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (($ (-1110 (-1198))) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) -(((|#1|) . T)) -(((|#2|) |has| |#2| (-1122)) (((-576)) -12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (((-419 (-576))) -12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) -(|has| |#1| (-1122)) -(((|#2|) |has| |#1| (-374))) -(((|#2|) |has| |#1| (-374))) -((((-576) |#1|) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) -((((-877)) . T)) -((((-419 |#2|) |#3|) . T)) -(((|#1| (-419 (-576))) . T)) -(((|#1|) . T) (((-576)) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-877)) . T) (((-1203)) . T)) +(((#0=(-1107) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ (-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (($ (-1113 (-1201))) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) +(((|#1|) . T)) +(((|#2|) |has| |#2| (-1125)) (((-577)) -12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (((-420 (-577))) -12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) +(((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (($) . T)) +(|has| |#1| (-1125)) +(((|#2|) |has| |#1| (-375))) +(((|#2|) |has| |#1| (-375))) +((((-577) |#1|) . T)) +((((-1206)) . T)) +((((-1206)) . T)) +((((-1206)) . T)) +((((-1206)) . T)) +((((-1206)) . T)) +((((-1206)) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-577)) . T)) +((((-880)) . T)) +((((-420 |#2|) |#3|) . T)) +(((|#1| (-420 (-577))) . T)) +(((|#1|) . T) (((-577)) . T)) +((((-420 (-577))) . T) (($) . T)) +((((-420 (-577))) . T) (($) . T)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +((((-880)) . T) (((-1206)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-1203)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) -((($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) . T) (($) . T)) -(((|#2| |#3| (-879 |#1|)) . T)) -((((-1198)) |has| |#2| (-918 (-1198)))) -(((|#1|) . T)) -(((|#1| (-543 |#2|) |#2|) . T)) -(((|#1| (-784) (-1104)) . T)) -((((-419 (-576))) |has| |#2| (-374)) (($) . T)) -(((|#1| (-543 (-1110 (-1198))) (-1110 (-1198))) . T)) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) +((((-1206)) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-420 (-577))) . T) (($) . T)) +((((-420 (-577))) . T) (($) . T)) +((((-420 (-577))) . T) (($) . T)) +(((|#2| |#3| (-882 |#1|)) . T)) +((((-1201)) |has| |#2| (-921 (-1201)))) +(((|#1|) . T)) +(((|#1| (-544 |#2|) |#2|) . T)) +(((|#1| (-787) (-1107)) . T)) +((((-420 (-577))) |has| |#2| (-375)) (($) . T)) +(((|#1| (-544 (-1113 (-1201))) (-1113 (-1201))) . T)) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (((|#2|) . T)) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) (((|#1|) . T)) (((|#2|) . T)) -((((-1021 |#1|)) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) -2802 (|has| (-1021 |#1|) (-1060 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) -(|has| |#2| (-1071)) -(|has| |#2| (-806)) -(|has| |#2| (-806)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -((((-909 |#1|)) . T) (((-832 |#1|)) . T)) -((((-832 (-1198))) . T)) +((((-1024 |#1|)) . T) (((-577)) . T) ((|#1|) . T) (((-420 (-577))) -2839 (|has| (-1024 |#1|) (-1063 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577)))))) +(|has| |#2| (-1074)) +(|has| |#2| (-809)) +(|has| |#2| (-809)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +((((-912 |#1|)) . T) (((-835 |#1|)) . T)) +((((-835 (-1201))) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-657 (-941))) . T) (((-877)) . T)) -((((-419 (-576))) . T) (((-877)) . T)) -((((-548)) . T) (((-908 (-576))) . T) (((-390)) . T) (((-227)) . T)) -(|has| |#1| (-238)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((($ $) . T) (((-576) |#1|) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-660 (-944))) . T) (((-880)) . T)) +((((-420 (-577))) . T) (((-880)) . T)) +((((-549)) . T) (((-911 (-577))) . T) (((-391)) . T) (((-228)) . T)) +(|has| |#1| (-239)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((($ $) . T) (((-577) |#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((((-1281 |#1| |#2| |#3|) $) -12 (|has| (-1281 |#1| |#2| |#3|) (-296 (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T)) -((($ $) . T) (((-419 (-576)) |#1|) . T)) -((((-784) |#1|) . T) (($ $) . T)) -(((|#1|) . T)) -((($ (-1198)) . T)) -(-2802 (|has| |#1| (-833)) (|has| |#1| (-862))) -((((-1162 |#1| |#2|)) |has| (-1162 |#1| |#2|) (-319 (-1162 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) -(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) -(((|#2|) . T) (((-576)) |has| |#2| (-1060 (-576))) (((-419 (-576))) |has| |#2| (-1060 (-419 (-576))))) -(|has| |#1| (-861)) -(((|#1|) . T)) -((((-1198)) -2802 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-918 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-920 (-1198)))))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-1284 |#1| |#2| |#3|) $) -12 (|has| (-1284 |#1| |#2| |#3|) (-297 (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375))) (($ $) . T) (((-577) |#1|) . T)) +((($ $) . T) (((-420 (-577)) |#1|) . T)) +((((-787) |#1|) . T) (($ $) . T)) +(((|#1|) . T)) +((($ (-1201)) . T)) +(-2839 (|has| |#1| (-836)) (|has| |#1| (-865))) +((((-1165 |#1| |#2|)) |has| (-1165 |#1| |#2|) (-320 (-1165 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) +(((|#3| |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) +(((|#2|) . T) (((-577)) |has| |#2| (-1063 (-577))) (((-420 (-577))) |has| |#2| (-1063 (-420 (-577))))) +(|has| |#1| (-864)) +(((|#1|) . T)) +((((-1201)) -2839 (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-921 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-923 (-1201)))))) (((|#1| |#2|) . T)) -((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) +((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-2802 (|has| |#1| (-862)) (|has| |#1| (-1122))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) +(-2839 (|has| |#1| (-865)) (|has| |#1| (-1125))) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) (((|#2|) . T)) -((((-877)) -2802 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-877))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-739)) (|has| |#2| (-806)) (|has| |#2| (-862)) (|has| |#2| (-1071)) (|has| |#2| (-1122))) (((-1289 |#2|)) . T)) -((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((|#1|) . T) (((-576)) . T) (($) . T)) +((((-880)) -2839 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-626 (-880))) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-742)) (|has| |#2| (-809)) (|has| |#2| (-865)) (|has| |#2| (-1074)) (|has| |#2| (-1125))) (((-1292 |#2|)) . T)) +((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((|#1|) . T) (((-577)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -((((-576)) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) -(|has| |#1| (-1122)) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-576) (-145)) . T)) -(((|#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071))) (($) |has| |#2| (-1071)) (((-576)) -12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) -((((-576)) . T)) -(((|#1|) . T) ((|#2|) . T) (((-576)) . T)) -((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))) (((-576)) . T)) -(-2802 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1071))) -(((|#1|) . T)) -(-2802 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1071))) -((($) . T) (((-576)) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) -(((|#2|) |has| |#1| (-374))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +((((-577)) . T)) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) +(|has| |#1| (-1125)) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-577) (-145)) . T)) +(((|#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074))) (($) |has| |#2| (-1074)) (((-577)) -12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) +((((-577)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-577)) . T)) +((($) |has| |#1| (-569)) ((|#1|) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) (((-577)) . T)) +(-2839 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1074))) +(((|#1|) . T)) +(-2839 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1074))) +((($) . T) (((-577)) . T) ((|#2|) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-577)) . T)) +(((|#2|) |has| |#1| (-375))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((((-1203)) . T)) -((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1| (-543 #0=(-1198)) #0#) . T)) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-1206)) . T)) +((((-420 (-577))) . T) (((-577)) . T) (($) . T)) +(((|#1| (-544 #0=(-1201)) #0#) . T)) (((|#1|) . T) (($) . T)) -((((-576)) . T)) -(((#0=(-419 (-972 |#1|)) #0#) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) -((((-548)) |has| |#1| (-626 (-548)))) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) +((((-577)) . T)) +(((#0=(-420 (-975 |#1|)) #0#) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) +((((-549)) |has| |#1| (-627 (-549)))) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) (((|#1| |#1|) |has| |#1| (-174))) -(-2802 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))) -((($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((((-419 (-972 |#1|))) . T)) +(-2839 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-238))) +((($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-420 (-975 |#1|))) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-576)) . T) (($) . T)) +(((|#1|) . T) (((-577)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -((((-1198)) -2802 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198))))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -((((-877)) . T)) -((((-877)) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1071)) (((-576)) -12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))) +((((-1201)) -2839 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201))))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +((((-880)) . T)) +((((-880)) . T)) +((((-1278 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1074)) (((-577)) -12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) (((|#1| |#2|) . T)) -(|has| |#3| (-1071)) -(|has| |#3| (-806)) -(|has| |#3| (-806)) -((((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568)))) +(|has| |#3| (-1074)) +(|has| |#3| (-809)) +(|has| |#3| (-809)) +((((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569)))) (((|#2|) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -(((|#1| (-1179 |#1|)) |has| |#1| (-861))) -((((-576) |#2|) . T)) -(|has| |#1| (-1122)) -(((|#1|) . T)) -(-12 (|has| |#1| (-374)) (|has| |#2| (-1174))) -((((-419 (-576))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((($) . T) (((-419 (-576))) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +(((|#1| (-1182 |#1|)) |has| |#1| (-864))) +((((-577) |#2|) . T)) +(|has| |#1| (-1125)) +(((|#1|) . T)) +(-12 (|has| |#1| (-375)) (|has| |#2| (-1177))) +((((-420 (-577))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((($) . T) (((-420 (-577))) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) (((|#2|) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-908 (-390))) |has| |#2| (-626 (-908 (-390)))) (((-908 (-576))) |has| |#2| (-626 (-908 (-576))))) -(((|#4|) -2802 (|has| |#4| (-174)) (|has| |#4| (-374)))) -(((|#3|) -2802 (|has| |#3| (-174)) (|has| |#3| (-374)))) -((((-877)) . T)) -(((|#1|) . T)) -(-2802 (|has| |#2| (-464)) (|has| |#2| (-929))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) -((($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-929))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2802 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) +((((-549)) |has| |#2| (-627 (-549))) (((-911 (-391))) |has| |#2| (-627 (-911 (-391)))) (((-911 (-577))) |has| |#2| (-627 (-911 (-577))))) +(((|#4|) -2839 (|has| |#4| (-174)) (|has| |#4| (-375)))) +(((|#3|) -2839 (|has| |#3| (-174)) (|has| |#3| (-375)))) +((((-880)) . T)) +(((|#1|) . T)) +(-2839 (|has| |#2| (-465)) (|has| |#2| (-932))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-932))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2839 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) +(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) +(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) (((|#2|) . T)) (((|#2|) . T)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-929))) -((($ $) . T) ((#0=(-1198) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-831 (-1198)) |#1|) . T) ((#1# $) . T)) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-929))) -((((-576) |#2|) . T)) -((((-877)) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(((|#3|) -2802 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1071))) (($) |has| |#3| (-1071)) (((-576)) -12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) -((((-576) |#1|) . T)) -(|has| (-419 |#2|) (-148)) -(|has| (-419 |#2|) (-146)) -(((|#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|)))) -(|has| |#1| (-38 (-419 (-576)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-419 (-576))) . T)) -((((-877)) . T)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -((((-877)) . T)) -((((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) . T)) -(|has| |#1| (-38 (-419 (-576)))) -((((-400) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#2| (-1174)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-877)) . T) (((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-1238)) . T) (((-877)) . T) (((-1203)) . T)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-932))) +((($ $) . T) ((#0=(-1201) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-834 (-1201)) |#1|) . T) ((#1# $) . T)) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-932))) +((((-577) |#2|) . T)) +((((-880)) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#3|) -2839 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1074))) (($) |has| |#3| (-1074)) (((-577)) -12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074)))) +((((-577) |#1|) . T)) +(|has| (-420 |#2|) (-148)) +(|has| (-420 |#2|) (-146)) +(((|#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-320 |#2|)))) +(|has| |#1| (-38 (-420 (-577)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-420 (-577))) . T)) +((((-880)) . T)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +((((-880)) . T)) +((((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) . T)) +(|has| |#1| (-38 (-420 (-577)))) +((((-401) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) . T)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#2| (-1177)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-569))) +((((-880)) . T) (((-1206)) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) +((((-1206)) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) +((((-1241)) . T) (((-880)) . T) (((-1206)) . T)) ((((-117 |#1|)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -(((|#1|) . T)) -((((-400) (-1180)) . T)) -(|has| |#1| (-568)) -((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) +((((-1206)) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) +(((|#1|) . T)) +((((-401) (-1183)) . T)) +(|has| |#1| (-569)) +((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +((((-577)) . T) (($) . T) (((-420 (-577))) . T)) +((((-577)) . T) (($) . T) (((-420 (-577))) . T)) (((|#2|) . T)) -((((-784) (-1203)) . T)) -((((-877)) . T)) -((((-832 |#1|)) . T)) +((((-787) (-1206)) . T)) +((((-880)) . T)) +((((-835 |#1|)) . T)) ((($) . T)) -((((-1198) (-52)) . T)) +((((-1201) (-52)) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-568)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-569)) (((|#1|) |has| |#1| (-174))) (((|#2|) |has| |#2| (-174))) -((((-657 |#1|)) . T)) -((((-877)) . T)) -((((-548)) |has| |#1| (-626 (-548)))) -(-2802 (|has| |#1| (-862)) (|has| |#1| (-1122))) -(((|#2|) |has| |#2| (-319 |#2|))) -(((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -(((|#1| (-1194 |#1|)) . T)) +((((-660 |#1|)) . T)) +((((-880)) . T)) +((((-549)) |has| |#1| (-627 (-549)))) +(-2839 (|has| |#1| (-865)) (|has| |#1| (-1125))) +(((|#2|) |has| |#2| (-320 |#2|))) +(((#0=(-577) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +(((|#1| (-1197 |#1|)) . T)) (|has| $ (-148)) (((|#2|) . T)) ((($) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -(|has| |#2| (-379)) -(((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) . T) (((-577)) . T) (((-420 (-577))) . T)) +(|has| |#2| (-380)) +(((#0=(-577) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +((((-577)) . T) (((-420 (-577))) . T) (($) . T)) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) (((|#1| |#2|) . T)) -((((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) +((((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1|) . T)) +((((-577)) . T) (((-420 (-577))) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-548)) |has| |#1| (-626 (-548)))) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) -((($) . T) (((-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) -((((-877)) . T)) -((((-1196 |#1| |#2| |#3|) $) -12 (|has| (-1196 |#1| |#2| |#3|) (-296 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T)) -((($ $) . T) (((-419 (-576)) |#1|) . T)) -((((-784) |#1|) . T) (($ $) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(((#0=(-1281 |#1| |#2| |#3|) #0#) -12 (|has| (-1281 |#1| |#2| |#3|) (-319 (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1198) #0#) -12 (|has| (-1281 |#1| |#2| |#3|) (-526 (-1198) (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374)))) -(-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-576)) . T) (($) . T)) -((($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) . T) (((-576)) . T) ((|#2|) . T)) -((((-576)) . T) (($) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -((((-419 (-576))) . T) (((-576)) . T)) -((((-576) (-145)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-549)) |has| |#1| (-627 (-549)))) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((($) . T) (((-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) +((((-880)) . T)) +((((-1199 |#1| |#2| |#3|) $) -12 (|has| (-1199 |#1| |#2| |#3|) (-297 (-1199 |#1| |#2| |#3|) (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375))) (($ $) . T) (((-577) |#1|) . T)) +((($ $) . T) (((-420 (-577)) |#1|) . T)) +((((-787) |#1|) . T) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((#0=(-1284 |#1| |#2| |#3|) #0#) -12 (|has| (-1284 |#1| |#2| |#3|) (-320 (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375))) (((-1201) #0#) -12 (|has| (-1284 |#1| |#2| |#3|) (-527 (-1201) (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375)))) +(-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-577)) . T) (($) . T)) +((($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) . T) (((-577)) . T) ((|#2|) . T)) +((((-577)) . T) (($) . T) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) +((((-420 (-577))) . T) (((-577)) . T)) +((((-577) (-145)) . T)) ((((-145)) . T)) (((|#1|) . T)) ((((-112)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(-2802 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1071))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(-2839 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1074))) ((((-112)) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-227)) . #0=(|has| |#1| (-1044))) (((-390)) . #0#)) -((((-877)) . T)) -(((|#1|) . T)) -((((-1203)) . T)) -(|has| |#1| (-833)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) -((((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-568))) -(|has| |#1| (-568)) -(((|#1|) . T) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) . T) (((-576)) . T) (((-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) -(|has| |#1| (-929)) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568)))) -(((|#1|) . T)) -(|has| |#1| (-1122)) -((((-877)) . T)) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-568))) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -(|has| |#1| (-862)) -(((|#1| (-1289 |#1|) (-1289 |#1|)) . T)) -((((-576) (-145)) . T) (((-1256 (-576)) $) . T)) +((((-549)) |has| |#1| (-627 (-549))) (((-228)) . #0=(|has| |#1| (-1047))) (((-391)) . #0#)) +((((-880)) . T)) +(((|#1|) . T)) +((((-1206)) . T)) +(|has| |#1| (-836)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2|) |has| |#1| (-375)) ((|#1|) . T)) +((((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-569))) +(|has| |#1| (-569)) +(((|#1|) . T) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) +((($) . T) (((-577)) . T) (((-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((|#1|) . T) (((-577)) . T)) +(|has| |#1| (-932)) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569)))) +(((|#1|) . T)) +(|has| |#1| (-1125)) +((((-880)) . T)) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-569))) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +(|has| |#1| (-865)) +(((|#1| (-1292 |#1|) (-1292 |#1|)) . T)) +((((-577) (-145)) . T) (((-1259 (-577)) $) . T)) ((($) . T)) -(|has| |#4| (-1071)) -(|has| |#3| (-1071)) -((((-1203)) . T) (((-877)) . T)) -((((-1203)) . T)) -((((-877)) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) -(((|#1| (-993)) . T)) +(|has| |#4| (-1074)) +(|has| |#3| (-1074)) +((((-1206)) . T) (((-880)) . T)) +((((-1206)) . T)) +((((-880)) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) +(((|#1| (-996)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(|has| |#2| (-806)) -(|has| |#2| (-806)) -(-12 (|has| |#1| (-485)) (|has| |#2| (-485))) -(|has| |#2| (-1071)) -((($) . T) (((-576)) . T) (((-885 |#1|)) . T) (((-419 (-576))) . T)) -(((|#1|) . T)) -(|has| |#2| (-806)) -(|has| |#2| (-806)) +(|has| |#2| (-809)) +(|has| |#2| (-809)) +(-12 (|has| |#1| (-486)) (|has| |#2| (-486))) +(|has| |#2| (-1074)) +((($) . T) (((-577)) . T) (((-888 |#1|)) . T) (((-420 (-577))) . T)) +(((|#1|) . T)) +(|has| |#2| (-809)) +(|has| |#2| (-809)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(-12 (|has| |#1| (-806)) (|has| |#2| (-806))) -(-12 (|has| |#1| (-806)) (|has| |#2| (-806))) -(-2802 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(-12 (|has| |#1| (-809)) (|has| |#2| (-809))) +(-12 (|has| |#1| (-809)) (|has| |#2| (-809))) +(-2839 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-742)) (|has| |#2| (-742)))) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-576)) . T)) +(((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-577)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -((((-877)) . T)) -(-2802 (|has| |#1| (-238)) (|has| |#1| (-237))) -(|has| |#1| (-360)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-419 (-576))) . T) (($) . T)) -(((|#2|) . T) (($) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) -(|has| |#1| (-841)) -((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) |has| |#1| (-1060 (-576))) ((|#1|) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) -(((|#1| $) |has| |#1| (-296 |#1| |#1|))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((($) |has| |#1| (-568))) -(((|#2|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1122))) -(((|#3|) |has| |#3| (-1122))) -(|has| |#3| (-379)) -((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))) (((-576)) . T)) -((((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1281 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -((((-877)) . T)) +((((-880)) . T)) +(-2839 (|has| |#1| (-239)) (|has| |#1| (-238))) +(|has| |#1| (-361)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-420 (-577))) . T) (($) . T)) +(((|#2|) . T) (($) . T) (((-420 (-577))) . T)) +((($) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) . T)) +(|has| |#1| (-844)) +((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) |has| |#1| (-1063 (-577))) ((|#1|) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) +(((|#1| $) |has| |#1| (-297 |#1| |#1|))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) +((($) |has| |#1| (-569))) +(((|#2|) . T) (((-420 (-577))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1125))) +(((|#3|) |has| |#3| (-1125))) +(|has| |#3| (-380)) +((($) |has| |#1| (-569)) ((|#1|) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) (((-577)) . T)) +((((-880)) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) -(|has| |#1| (-862)) +((((-880)) . T)) +(|has| |#1| (-865)) +((((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1284 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) (((|#2|) . T)) +(|has| |#2| (-375)) +((((-420 (-577))) . T) (((-577)) . T)) +((($) -2839 (|has| |#2| (-239)) (|has| |#2| (-238)))) +((($ (-882 |#1|)) . T)) +((($ (-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (($ |#3|) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T)) +(((|#1|) . T)) +((($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) (((|#2|) . T)) -(|has| |#2| (-374)) -((((-419 (-576))) . T) (((-576)) . T)) -((($) -2802 (|has| |#2| (-238)) (|has| |#2| (-237)))) -((($ (-879 |#1|)) . T)) -((($ (-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (($ |#3|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) -(((|#1|) . T)) -((($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568)))) -((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) . T) (((-576)) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569)))) +((($) . T) (((-577)) . T)) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#1|) |has| |#1| (-174))) (((|#1| |#1|) |has| |#1| (-174))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) ((((-145)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071))) (($) |has| |#2| (-1071)) (((-576)) -12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) +(((|#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074))) (($) |has| |#2| (-1074)) (((-577)) -12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) ((((-145)) . T)) ((((-145)) . T)) -((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#) ((|#2|) . T) (((-576)) . T)) +((((-420 (-577))) . #0=(|has| |#2| (-375))) (($) . #0#) ((|#2|) . T) (((-577)) . T)) (((|#1| |#2| |#3|) . T)) -(-2802 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1071))) +(-2839 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1074))) (((|#1|) |has| |#1| (-174))) (|has| $ (-148)) (|has| $ (-148)) -((((-1203)) . T)) +((((-1206)) . T)) (((|#1|) |has| |#1| (-174))) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) -((((-877)) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(-2802 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1071)) (|has| |#1| (-1134))) -((($ $) |has| |#1| (-296 $ $)) ((|#1| $) |has| |#1| (-296 |#1| |#1|))) -(((|#1| (-419 (-576))) . T)) -(((|#1|) . T)) -((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1198)) . T)) -(|has| |#1| (-568)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-568))) -(|has| |#1| (-568)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-877)) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) +((((-880)) . T)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(-2839 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-486)) (|has| |#1| (-569)) (|has| |#1| (-1074)) (|has| |#1| (-1137))) +((($ $) |has| |#1| (-297 $ $)) ((|#1| $) |has| |#1| (-297 |#1| |#1|))) +(((|#1| (-420 (-577))) . T)) +(((|#1|) . T)) +((((-420 (-577))) . T) (((-577)) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1201)) . T)) +(|has| |#1| (-569)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-569))) +(|has| |#1| (-569)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +((((-880)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) -((((-576) (-419 (-972 |#1|))) . T)) +((((-577) (-420 (-975 |#1|))) . T)) (((|#2|) . T) (($) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(((|#2| (-245 (-3440 |#1|) (-784)) (-879 |#1|)) . T)) -(((|#1| (-543 |#3|) |#3|) . T)) +(((|#2| (-246 (-3484 |#1|) (-787)) (-882 |#1|)) . T)) +(((|#1| (-544 |#3|) |#3|) . T)) (|has| |#1| (-146)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-374)) (($ $) . T)) -((((-885 |#1|)) . T)) -((((-885 |#1|)) . T)) +(((#0=(-420 (-577)) #0#) |has| |#2| (-375)) (($ $) . T)) +((((-888 |#1|)) . T)) +((((-888 |#1|)) . T)) (|has| |#1| (-148)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -((((-877)) . T)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +((((-880)) . T)) (|has| |#1| (-146)) -((((-419 (-576))) |has| |#2| (-374)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(-2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) -(-2802 (|has| |#1| (-360)) (|has| |#1| (-379))) -((((-1164 |#2| |#1|)) . T) ((|#1|) . T)) +((((-420 (-577))) |has| |#2| (-375)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(-2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) +(-2839 (|has| |#1| (-361)) (|has| |#1| (-380))) +((((-1167 |#2| |#1|)) . T) ((|#1|) . T)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-238)) (|has| |#2| (-1071))) -(((|#2|) . T) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -(|has| |#3| (-806)) -(|has| |#3| (-806)) -((((-877)) . T)) +(-12 (|has| |#2| (-239)) (|has| |#2| (-1074))) +(((|#2|) . T) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +(|has| |#3| (-809)) +(|has| |#3| (-809)) +((((-880)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) -((((-712)) . T)) -(|has| |#2| (-1071)) -(|has| |#1| (-568)) +((((-715)) . T)) +(|has| |#2| (-1074)) +(|has| |#1| (-569)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -1162,630 +1166,631 @@ (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-1198) (-52)) . T)) -((((-1026 10)) . T) (((-419 (-576))) . T) (((-877)) . T)) -((((-548)) . T) (((-908 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-1201) (-52)) . T)) +((((-1029 10)) . T) (((-420 (-577))) . T) (((-880)) . T)) +((((-549)) . T) (((-911 (-577))) . T) (((-391)) . T) (((-228)) . T)) (((|#1|) . T)) -((((-1026 16)) . T) (((-419 (-576))) . T) (((-877)) . T)) -((((-548)) . T) (((-908 (-576))) . T) (((-390)) . T) (((-227)) . T)) -(((|#1| (-576)) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-1029 16)) . T) (((-420 (-577))) . T) (((-880)) . T)) +((((-549)) . T) (((-911 (-577))) . T) (((-391)) . T) (((-228)) . T)) +(((|#1| (-577)) . T)) +((((-880)) . T)) +((((-880)) . T)) (((|#1| |#2|) . T)) -((((-1198)) -2802 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198)))) (((-1104)) . T)) +((((-1201)) -2839 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201)))) (((-1107)) . T)) (((|#1|) . T)) -(((|#3|) . T) (((-624 $)) . T)) -(((|#1| (-419 (-576))) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) +(((|#3|) . T) (((-625 $)) . T)) +(((|#1| (-420 (-577))) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((($ (-1285 |#2|)) . T) (($ (-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -((((-576)) -2802 (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (|has| |#2| (-1071))) ((|#2|) |has| |#2| (-1122)) (((-419 (-576))) -12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((($ (-1288 |#2|)) . T) (($ (-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +((((-577)) -2839 (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (|has| |#2| (-1074))) ((|#2|) |has| |#2| (-1125)) (((-420 (-577))) -12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -(((#0=(-1196 |#1| |#2| |#3|) #0#) -12 (|has| (-1196 |#1| |#2| |#3|) (-319 (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1198) #0#) -12 (|has| (-1196 |#1| |#2| |#3|) (-526 (-1198) (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374)))) -((((-877)) . T)) -((((-877)) . T)) +((((-577)) . T) (($) . T) (((-420 (-577))) . T)) +(((#0=(-1199 |#1| |#2| |#3|) #0#) -12 (|has| (-1199 |#1| |#2| |#3|) (-320 (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375))) (((-1201) #0#) -12 (|has| (-1199 |#1| |#2| |#3|) (-527 (-1201) (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375)))) +((((-880)) . T)) +((((-880)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) (((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) |has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))))) -((((-877)) . T)) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) (((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) |has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-320 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))))) +((((-880)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) -((($) . T) ((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) -((((-1198) (-52)) . T)) -((((-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198))))) +((($) . T) ((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) +((((-1201) (-52)) . T)) +((((-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201))))) (((|#3|) . T)) -((($ $) . T) ((#0=(-879 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-841)) -((($) . T) (((-576)) . T) ((|#1|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| (-1116 |#1|) (-1122)) -(((|#2| |#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071)))) -(((|#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)))) -((((-576) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071)))) -((((-576)) . T)) -((((-1203)) . T)) -((((-784)) . T)) +((($ $) . T) ((#0=(-882 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-844)) +((($) . T) (((-577)) . T) ((|#1|) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) +((((-577)) . T) (($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(|has| (-1119 |#1|) (-1125)) +(((|#2| |#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074)))) +(((|#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)))) +((((-577) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074)))) +((((-577)) . T)) +((((-1206)) . T)) +((((-787)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-568)) -((((-576)) . T)) +(|has| |#1| (-569)) +((((-577)) . T)) (((|#2|) . T)) -((((-877)) . T)) -(((|#1| (-419 (-576)) (-1104)) . T)) +((((-880)) . T)) +(((|#1| (-420 (-577)) (-1107)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) -(|has| |#1| (-568)) -((((-576)) . T)) +(|has| |#1| (-569)) +((((-577)) . T)) ((((-117 |#1|)) . T)) (((|#1|) . T)) -((((-419 (-576))) . T) (($) . T)) -((($) . T) (((-419 (-576))) . T)) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-568))) -((((-1203)) . T)) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-576)) . T)) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-568))) +((((-420 (-577))) . T) (($) . T)) +((($) . T) (((-420 (-577))) . T)) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-569))) +((((-1206)) . T)) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) +((((-577)) . T)) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-569))) (|has| |#1| (-146)) -((((-576)) . T)) +((((-577)) . T)) (|has| |#1| (-148)) -((($ (-1198)) -2802 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-918 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-920 (-1198)))))) -((($ (-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) -((((-908 (-576))) . T) (((-908 (-390))) . T) (((-548)) . T) (((-1198)) . T)) -((((-877)) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) +((($ (-1201)) -2839 (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-921 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-923 (-1201)))))) +((($ (-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) +((((-911 (-577))) . T) (((-911 (-391))) . T) (((-549)) . T) (((-1201)) . T)) +((((-880)) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) ((($) . T)) (((|#1|) . T)) -((((-877)) . T)) -(-2802 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) +((((-880)) . T)) +(-2839 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) (((|#1|) . T) (($) . T)) (((|#2|) |has| |#2| (-174))) -((($) -2802 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -((((-885 |#1|)) . T)) -(-2802 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-739)) (|has| |#2| (-806)) (|has| |#2| (-862)) (|has| |#2| (-1071)) (|has| |#2| (-1122))) -(-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) -(|has| |#2| (-1174)) -(((#0=(-52)) . T) (((-2 (|:| -4291 (-1198)) (|:| -4440 #0#))) . T)) +((($) -2839 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) ((|#2|) |has| |#2| (-174)) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) +((((-888 |#1|)) . T)) +(-2839 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-742)) (|has| |#2| (-809)) (|has| |#2| (-865)) (|has| |#2| (-1074)) (|has| |#2| (-1125))) +(-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) +(|has| |#2| (-1177)) +(((#0=(-52)) . T) (((-2 (|:| -4295 (-1201)) (|:| -4444 #0#))) . T)) (((|#1| |#2|) . T)) -(|has| |#3| (-1071)) -(((|#1| (-576) (-1104)) . T)) -((((-879 |#1|)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(((|#1| (-419 (-576)) (-1104)) . T)) -((((-1198)) . T)) -((($) -2802 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((($) -2802 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))) -((((-576) |#2|) . T)) -((($ (-1198)) -2802 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198))))) +(((|#1| (-651 |#2|)) . T)) +(|has| |#3| (-1074)) +((((-882 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1| (-577) (-1107)) . T)) +(((|#1| (-420 (-577)) (-1107)) . T)) +((((-1201)) . T)) +((($) -2839 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +((($) -2839 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-238)))) +((((-577) |#2|) . T)) +((($ (-1201)) -2839 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201))))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-379)) +(|has| |#2| (-380)) (((|#1| |#1|) . T)) -((((-877)) . T)) -((((-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) -(-12 (|has| |#1| (-379)) (|has| |#2| (-379))) -(-2802 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-2802 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-2802 (|has| |#1| (-146)) (|has| |#1| (-379))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) +((((-880)) . T)) +((((-1201) |#1|) |has| |#1| (-527 (-1201) |#1|)) ((|#1| |#1|) |has| |#1| (-320 |#1|))) +(-12 (|has| |#1| (-380)) (|has| |#2| (-380))) +(-2839 (|has| |#1| (-146)) (|has| |#1| (-380))) +(-2839 (|has| |#1| (-146)) (|has| |#1| (-380))) +(-2839 (|has| |#1| (-146)) (|has| |#1| (-380))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) (((|#1|) . T)) -((((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568)))) -(|has| |#1| (-360)) -((((-576)) -2802 (-12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122))) (|has| |#3| (-1071))) ((|#3|) |has| |#3| (-1122)) (((-419 (-576))) -12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122)))) +((((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1199 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569)))) +(|has| |#1| (-361)) +((((-577)) -2839 (-12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125))) (|has| |#3| (-1074))) ((|#3|) |has| |#3| (-1125)) (((-420 (-577))) -12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125)))) (((|#1|) . T)) (((|#1|) . T)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#4|) . T)) -(((|#4|) . T) (((-877)) . T)) -(((|#3|) . T) ((|#2|) . T) (((-576)) . T) ((|#4|) -2802 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-739)) (|has| |#4| (-1071))) (($) |has| |#4| (-1071))) -(((|#2|) . T) (((-576)) . T) ((|#3|) -2802 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-739)) (|has| |#3| (-1071))) (($) |has| |#3| (-1071))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((#0=(-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) -(|has| |#1| (-568)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((((-877)) . T)) +(((|#4|) . T) (((-880)) . T)) +(((|#3|) . T) ((|#2|) . T) (((-577)) . T) ((|#4|) -2839 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-742)) (|has| |#4| (-1074))) (($) |has| |#4| (-1074))) +(((|#2|) . T) (((-577)) . T) ((|#3|) -2839 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-742)) (|has| |#3| (-1074))) (($) |has| |#3| (-1074))) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((#0=(-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) #0#) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) +(|has| |#1| (-569)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-880)) . T)) (((|#1| |#2|) . T)) -(-2802 (|has| |#2| (-464)) (|has| |#2| (-929))) -(-2802 (|has| |#1| (-862)) (|has| |#1| (-1122))) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-929))) +(-2839 (|has| |#2| (-465)) (|has| |#2| (-932))) +(-2839 (|has| |#1| (-865)) (|has| |#1| (-1125))) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-932))) (((|#1|) . T)) -((((-419 (-576))) . T) (((-576)) . T)) -((((-576)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((((-420 (-577))) . T) (((-577)) . T)) +((((-577)) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) ((($) . T)) -((((-877)) -12 (|has| |#1| (-1122)) (|has| |#2| (-1122)))) -(((|#1|) . T)) -((((-885 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-877)) . T)) -(((|#3| |#3|) -2802 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1071)))) -(|has| |#1| (-1044)) -((((-877)) . T)) -(((|#3|) -2802 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1071)))) -((((-576) (-112)) . T)) -((((-1203)) . T)) -(((|#1|) |has| |#1| (-319 |#1|))) -((((-1203)) . T)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -((((-1198) $) |has| |#1| (-526 (-1198) $)) (($ $) |has| |#1| (-319 $)) ((|#1| |#1|) |has| |#1| (-319 |#1|)) (((-1198) |#1|) |has| |#1| (-526 (-1198) |#1|))) -((((-1198)) |has| |#1| (-918 (-1198)))) -(-2802 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-360))) +((((-880)) -12 (|has| |#1| (-1125)) (|has| |#2| (-1125)))) +(((|#1|) . T)) +((((-888 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +((((-880)) . T)) +(((|#3| |#3|) -2839 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1074)))) +(|has| |#1| (-1047)) +((((-880)) . T)) +(((|#3|) -2839 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1074)))) +((((-577) (-112)) . T)) +((((-1206)) . T)) +(((|#1|) |has| |#1| (-320 |#1|))) +((((-1206)) . T)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +((((-1201) $) |has| |#1| (-527 (-1201) $)) (($ $) |has| |#1| (-320 $)) ((|#1| |#1|) |has| |#1| (-320 |#1|)) (((-1201) |#1|) |has| |#1| (-527 (-1201) |#1|))) +((((-1201)) |has| |#1| (-921 (-1201)))) +(-2839 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-361))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) ((($) . T)) -((((-400) |#1|) . T)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-360))) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) -(((|#2|) . T) (((-877)) . T)) -((((-877)) . T)) +((((-401) |#1|) . T)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-361))) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) +(((|#2|) . T) (((-880)) . T)) +((((-880)) . T)) (((|#2|) . T)) -((((-930 |#1|)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) +((((-933 |#1|)) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) +((((-577)) . T) (($) . T) (((-420 (-577))) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) (((|#1| |#1|) . T)) -(((#0=(-885 |#1|)) |has| #0# (-319 #0#))) -((((-576)) . T) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1060 (-419 (-576))))) ((|#1|) . T)) +(((#0=(-888 |#1|)) |has| #0# (-320 #0#))) +((((-577)) . T) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) (((-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-1063 (-420 (-577))))) ((|#1|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-806)) -(|has| |#2| (-806)) -(((|#1|) . T)) -(-12 (|has| |#1| (-806)) (|has| |#2| (-806))) -(-12 (|has| |#1| (-806)) (|has| |#2| (-806))) -(|has| |#2| (-1071)) -((($) . T) (((-576)) . T) ((|#2|) . T)) -(((|#2|) . T) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) +(|has| |#2| (-809)) +(|has| |#2| (-809)) +(((|#1|) . T)) +(-12 (|has| |#1| (-809)) (|has| |#2| (-809))) +(-12 (|has| |#1| (-809)) (|has| |#2| (-809))) +(|has| |#2| (-1074)) +((($) . T) (((-577)) . T) ((|#2|) . T)) +(((|#2|) . T) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-1224)) -(((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -((((-419 (-576))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1071))) -(((|#4|) |has| |#4| (-1071))) -(((|#3|) |has| |#3| (-1071))) -(((|#3|) |has| |#3| (-1071))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(|has| |#1| (-374)) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -((((-877)) . T)) -((((-877)) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T)) -((((-877)) . T)) -((($ $) . T) ((#0=(-419 (-576)) #0#) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) -((((-548)) |has| |#3| (-626 (-548)))) +(|has| |#1| (-1227)) +(((#0=(-577) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) +((((-420 (-577))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1074))) +(((|#4|) |has| |#4| (-1074))) +(((|#3|) |has| |#3| (-1074))) +(((|#3|) |has| |#3| (-1074))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) +(|has| |#1| (-375)) +((((-577)) . T) (((-420 (-577))) . T) (($) . T)) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) +((((-880)) . T)) +((((-880)) . T)) +(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) +(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) +(((|#1|) . T)) +((((-880)) . T)) +((($ $) . T) ((#0=(-420 (-577)) #0#) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1| |#1|) . T)) +((((-549)) |has| |#3| (-627 (-549)))) (((|#1| |#2|) . T)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) -((((-702 |#3|)) . T) (((-877)) . T)) -((($) . T) (((-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +(|has| |#1| (-864)) +(|has| |#1| (-864)) +((((-705 |#3|)) . T) (((-880)) . T)) +((($) . T) (((-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) (((|#1|) . T)) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-569))) ((($) . T)) -(((#0=(-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) #0#) |has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))))) -((((-576) |#3|) . T)) +(((#0=(-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) #0#) |has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-320 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))))) +((((-577) |#3|) . T)) (((|#2|) . T)) ((($) . T)) ((($) . T)) -((((-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (((-1104)) . T)) -(((|#2|) |has| |#2| (-1122))) -((((-877)) -2802 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-877))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-739)) (|has| |#2| (-806)) (|has| |#2| (-862)) (|has| |#2| (-1071)) (|has| |#2| (-1122))) (((-1289 |#2|)) . T)) +((((-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (((-1107)) . T)) +(((|#2|) |has| |#2| (-1125))) +((((-880)) -2839 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-626 (-880))) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-742)) (|has| |#2| (-809)) (|has| |#2| (-865)) (|has| |#2| (-1074)) (|has| |#2| (-1125))) (((-1292 |#2|)) . T)) ((($) . T)) -((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-1180) (-52)) . T)) +((((-577)) . T) (($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-1183) (-52)) . T)) (((|#2|) |has| |#2| (-174))) -((($) -2802 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -((((-877)) . T)) +((($) -2839 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) ((|#2|) |has| |#2| (-174)) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) +((((-880)) . T)) (((|#2|) . T)) -((($) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -((((-576)) |has| #0=(-419 |#2|) (-652 (-576))) ((#0#) . T)) -((($) . T) (((-576)) . T)) -((((-576) (-145)) . T)) -((((-576) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T) ((|#1| |#2|) . T)) -((((-419 (-576))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -((((-877)) . T)) -((((-930 |#1|)) . T)) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(|has| |#1| (-861)) -((($) -2802 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -(|has| |#1| (-374)) +((($) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) +((((-577)) |has| #0=(-420 |#2|) (-654 (-577))) ((#0#) . T)) +((($) . T) (((-577)) . T)) +((((-577) (-145)) . T)) +((((-577) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T) ((|#1| |#2|) . T)) +((((-420 (-577))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +((((-880)) . T)) +((((-933 |#1|)) . T)) +(|has| |#1| (-375)) +(|has| |#1| (-375)) +(|has| |#1| (-375)) +(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) +(|has| |#1| (-864)) +((($) -2839 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +(|has| |#1| (-375)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-861)) -((($) . T) (((-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-1198)) |has| |#1| (-918 (-1198)))) -(|has| |#1| (-861)) -((((-518)) . T)) -(((|#1| (-1198)) . T)) -(((|#1| (-1289 |#1|) (-1289 |#1|)) . T)) -((((-877)) . T) (((-1203)) . T)) +(|has| |#1| (-864)) +((($) . T) (((-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +((((-1201)) |has| |#1| (-921 (-1201)))) +(|has| |#1| (-864)) +((((-519)) . T)) +(((|#1| (-1201)) . T)) +(((|#1| (-1292 |#1|) (-1292 |#1|)) . T)) +((((-880)) . T) (((-1206)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -((((-1203)) . T)) -(|has| |#1| (-1122)) -(((|#1| (-1198) (-831 (-1198)) (-543 (-831 (-1198)))) . T)) -((((-419 (-972 |#1|))) . T)) -((((-548)) . T)) -((((-877)) . T)) +((((-1206)) . T)) +(|has| |#1| (-1125)) +(((|#1| (-1201) (-834 (-1201)) (-544 (-834 (-1201)))) . T)) +((((-420 (-975 |#1|))) . T)) +((((-549)) . T)) +((((-880)) . T)) ((($) . T)) -((((-576) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T) (((-1256 (-576)) $) . T) ((|#1| |#2|) . T)) +((((-577) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T) (((-1259 (-577)) $) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-174))) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-908 (-390))) |has| |#1| (-626 (-908 (-390)))) (((-908 (-576))) |has| |#1| (-626 (-908 (-576))))) -((((-877)) . T)) -((((-885 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#2|) . T) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -((((-518)) . T)) -((((-518)) . T)) -((((-1198)) -2802 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) -((((-1198)) -2802 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) -(|has| |#1| (-568)) -(-12 (|has| |#2| (-238)) (|has| |#2| (-1071))) -(-2802 (|has| |#1| (-238)) (|has| |#1| (-237))) -((((-885 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#2| (-1071)) -((((-1180) |#1|) . T)) -(|has| |#1| (-1174)) -((((-978 |#1|)) . T)) -(((#0=(-419 (-576)) #0#) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) -((((-419 (-576))) |has| |#1| (-1060 (-576))) (((-576)) |has| |#1| (-1060 (-576))) (((-1198)) |has| |#1| (-1060 (-1198))) ((|#1|) . T)) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-549)) |has| |#1| (-627 (-549))) (((-911 (-391))) |has| |#1| (-627 (-911 (-391)))) (((-911 (-577))) |has| |#1| (-627 (-911 (-577))))) +((((-880)) . T)) +((((-888 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +(((|#2|) . T) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +((((-519)) . T)) +((((-519)) . T)) +((((-1201)) -2839 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074))))) +((((-1201)) -2839 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))))) +(|has| |#1| (-569)) +(-12 (|has| |#2| (-239)) (|has| |#2| (-1074))) +(-2839 (|has| |#1| (-239)) (|has| |#1| (-238))) +((((-888 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +(|has| |#2| (-1074)) +((((-1183) |#1|) . T)) +(|has| |#1| (-1177)) +((((-981 |#1|)) . T)) +(((#0=(-420 (-577)) #0#) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1| |#1|) . T)) +((((-420 (-577))) |has| |#1| (-1063 (-577))) (((-577)) |has| |#1| (-1063 (-577))) (((-1201)) |has| |#1| (-1063 (-1201))) ((|#1|) . T)) ((($) . T)) ((($) . T)) -((((-576) |#2|) . T)) -((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) |has| |#1| (-1060 (-576))) ((|#1|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((((-576)) |has| |#1| (-902 (-576))) (((-390)) |has| |#1| (-902 (-390)))) -((((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-576)) . T)) -((((-657 |#4|)) . T) (((-877)) . T)) -((((-548)) |has| |#4| (-626 (-548)))) -((((-548)) |has| |#4| (-626 (-548)))) -((((-877)) . T) (((-657 |#4|)) . T)) -((($) |has| |#1| (-861))) -((((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1281 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) -((((-576)) -2802 (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (|has| |#2| (-1071))) ((|#2|) |has| |#2| (-1122)) (((-419 (-576))) -12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-657 |#4|)) . T) (((-877)) . T)) -((((-548)) |has| |#4| (-626 (-548)))) -(((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -((((-1198)) |has| (-419 |#2|) (-918 (-1198)))) +((((-577) |#2|) . T)) +((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) |has| |#1| (-1063 (-577))) ((|#1|) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) +((((-577)) |has| |#1| (-905 (-577))) (((-391)) |has| |#1| (-905 (-391)))) +((((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T) (($) . T) (((-577)) . T)) +((((-660 |#4|)) . T) (((-880)) . T)) +((((-549)) |has| |#4| (-627 (-549)))) +((((-549)) |has| |#4| (-627 (-549)))) +((((-880)) . T) (((-660 |#4|)) . T)) +((($) |has| |#1| (-864))) +((((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1284 |#1| |#2| |#3|)) |has| |#1| (-375)) (((-577)) . T) (($) . T) ((|#1|) . T)) +((((-577)) -2839 (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (|has| |#2| (-1074))) ((|#2|) |has| |#2| (-1125)) (((-420 (-577))) -12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-660 |#4|)) . T) (((-880)) . T)) +((((-549)) |has| |#4| (-627 (-549)))) +(((|#1|) . T)) +(((|#1|) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) +((((-1201)) |has| (-420 |#2|) (-921 (-1201)))) (((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((#0=(-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((#0=(-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) #0#) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) ((($) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2802 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) -((($) -2802 (|has| |#1| (-238)) (|has| |#1| (-237)))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2839 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((($) -2839 (|has| |#1| (-239)) (|has| |#1| (-238)))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) ((($) . T)) ((($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) ((($) . T)) ((($) . T)) -((((-877)) -2802 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-625 (-877))) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-739)) (|has| |#3| (-806)) (|has| |#3| (-862)) (|has| |#3| (-1071)) (|has| |#3| (-1122))) (((-1289 |#3|)) . T)) +((((-880)) -2839 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-626 (-880))) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-380)) (|has| |#3| (-742)) (|has| |#3| (-809)) (|has| |#3| (-865)) (|has| |#3| (-1074)) (|has| |#3| (-1125))) (((-1292 |#3|)) . T)) (((|#2|) . T)) -((((-576) |#2|) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) -(((|#2| |#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071)))) -(((|#2|) . T) (((-576)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T) ((|#2|) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-1180) (-1198) (-576) (-227) (-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-877)) . T)) -((((-576) (-112)) . T)) -(((|#1|) . T)) -((((-877)) . T)) +((((-577) |#2|) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) +(((|#2| |#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074)))) +(((|#2|) . T) (((-577)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T) ((|#2|) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-1183) (-1201) (-577) (-228) (-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +((((-880)) . T)) +((((-577) (-112)) . T)) +(((|#1|) . T)) +((((-880)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-880)) . T)) +((((-880)) . T)) ((((-112)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-419 (-576))) . T) (($) . T)) -((((-877)) . T)) -((((-548)) |has| |#1| (-626 (-548)))) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) -((($) . T) (((-419 (-576))) . T)) -(((|#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071)))) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +((((-420 (-577))) . T) (($) . T)) +((((-880)) . T)) +((((-549)) |has| |#1| (-627 (-549)))) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((($) . T) (((-420 (-577))) . T)) +(((|#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074)))) (|has| $ (-148)) -((((-419 |#2|)) . T)) -((((-419 (-576))) |has| #0=(-419 |#2|) (-1060 (-419 (-576)))) (((-576)) |has| #0# (-1060 (-576))) ((#0#) . T)) +((((-420 |#2|)) . T)) +((((-420 (-577))) |has| #0=(-420 |#2|) (-1063 (-420 (-577)))) (((-577)) |has| #0# (-1063 (-577))) ((#0#) . T)) (((|#2| |#2|) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -(-2802 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2839 (|has| |#1| (-146)) (|has| |#1| (-380))) (|has| |#1| (-148)) -(-2802 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2839 (|has| |#1| (-146)) (|has| |#1| (-380))) (|has| |#1| (-148)) -(-2802 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2839 (|has| |#1| (-146)) (|has| |#1| (-380))) (|has| |#1| (-148)) (((|#1|) . T)) -(|has| |#2| (-238)) -((((-877)) . T) (((-1203)) . T)) +(|has| |#2| (-239)) +((((-880)) . T) (((-1206)) . T)) (((|#2|) . T)) -((((-1203)) . T)) -((((-1198) (-52)) . T)) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -((((-877)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) +((((-1206)) . T)) +((((-1201) (-52)) . T)) +(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) +((((-880)) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) (((|#1| |#1|) . T)) -((((-1198)) |has| |#2| (-918 (-1198)))) +((((-1201)) |has| |#2| (-921 (-1201)))) ((((-130)) . T)) -((((-576) (-112)) . T) (((-1256 (-576)) $) . T)) -(|has| |#1| (-568)) +((((-577) (-112)) . T) (((-1259 (-577)) $) . T)) +(|has| |#1| (-569)) (((|#2|) . T)) (((|#2|) . T)) -((((-909 |#1|)) . T) ((|#2|) . T) (((-576)) . T) (((-832 |#1|)) . T)) -(((|#1|) . T) (((-576)) . T) (((-832 (-1198))) . T)) +((((-912 |#1|)) . T) ((|#2|) . T) (((-577)) . T) (((-835 |#1|)) . T)) +(((|#1|) . T) (((-577)) . T) (((-835 (-1201))) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) (((|#3|) . T)) -(|has| |#1| (-38 (-419 (-576)))) -((((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1060 (-419 (-576))))) -(((|#1|) . T)) -((((-1026 2)) . T) (((-419 (-576))) . T) (((-877)) . T)) -((((-548)) . T) (((-908 (-576))) . T) (((-390)) . T) (((-227)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-1021 |#1|)) . T) ((|#1|) . T)) -((((-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (((-831 (-1198))) . T)) -((((-877)) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -((((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1194 |#1|)) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) +(|has| |#1| (-38 (-420 (-577)))) +((((-577)) . T) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-1063 (-420 (-577))))) +(((|#1|) . T)) +((((-1029 2)) . T) (((-420 (-577))) . T) (((-880)) . T)) +((((-549)) . T) (((-911 (-577))) . T) (((-391)) . T) (((-228)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-1024 |#1|)) . T) ((|#1|) . T)) +((((-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (((-834 (-1201))) . T)) +((((-880)) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +((((-420 (-577))) . T) (((-420 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1197 |#1|)) . T)) +((((-577)) . T) (($) . T) (((-420 (-577))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-862)) -(((|#1|) . T) (((-576)) . T) (($) . T)) +(|has| |#1| (-865)) +(((|#1|) . T) (((-577)) . T) (($) . T)) (((|#2|) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) . T)) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) -((((-576) |#2|) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-877)) . T)) +((((-577)) . T) (($) . T) (((-420 (-577))) . T)) +((((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) . T)) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((((-577) |#2|) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) . T)) +((((-880)) . T)) (((|#2|) . T)) -((((-576) |#3|) . T)) +((((-577) |#3|) . T)) (((|#2|) . T)) -((((-877)) . T)) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) -(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) -(-2802 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237)))) -(|has| |#1| (-38 (-419 (-576)))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((#0=(-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) +((((-880)) . T)) +(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) +(((|#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) +(-2839 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (-12 (|has| |#1| (-375)) (|has| |#2| (-238)))) +(|has| |#1| (-38 (-420 (-577)))) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((#0=(-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) #0#) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) (((|#2| |#2|) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#2| (-374)) -(((|#2|) . T) (((-576)) |has| |#2| (-1060 (-576))) (((-419 (-576))) |has| |#2| (-1060 (-419 (-576))))) -((((-1281 |#1| |#2| |#3|)) |has| |#1| (-374))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#2| (-375)) +(((|#2|) . T) (((-577)) |has| |#2| (-1063 (-577))) (((-420 (-577))) |has| |#2| (-1063 (-420 (-577))))) +((((-1284 |#1| |#2| |#3|)) |has| |#1| (-375))) (((|#2|) . T)) -((((-1281 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1284 |#1| |#2| |#3|)) |has| |#1| (-375))) (((|#1|) |has| |#1| (-174))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| |#1| (-1122)) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(|has| |#1| (-38 (-419 (-576)))) -((((-1180) (-52)) . T)) -(((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929)))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($ (-1198)) -2802 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198)))) (($ (-1104)) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(|has| |#1| (-1125)) +(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) +(|has| |#1| (-38 (-420 (-577)))) +((((-1183) (-52)) . T)) +(((|#1|) . T)) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932)))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($ (-1201)) -2839 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201)))) (($ (-1107)) . T)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) (((|#2|) |has| |#2| (-174))) (((|#2|) . T)) -((((-576)) -2802 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071))) ((|#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-739)) (|has| |#2| (-1071))) (($) |has| |#2| (-1071))) +((((-577)) -2839 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074))) ((|#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-742)) (|has| |#2| (-1074))) (($) |has| |#2| (-1074))) (((|#1|) . T)) -((((-576) |#3|) . T)) -((((-576) (-145)) . T)) +((((-577) |#3|) . T)) +((((-577) (-145)) . T)) ((((-145)) . T)) -((((-877)) . T)) -((((-1203)) . T)) +((((-880)) . T)) +((((-1206)) . T)) ((((-112)) . T)) (|has| |#1| (-148)) (((|#1|) . T)) (|has| |#1| (-146)) ((($) . T)) -(|has| |#1| (-568)) -((((-576)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(|has| |#1| (-569)) +((((-577)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (((|#1|) . T)) -((($ (-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198))))) -(((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) +((($ (-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201))))) +(((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) ((((-145)) . T)) -((((-877)) . T)) -((((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T)) -((((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T)) -((((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T)) -((((-1198) (-52)) . T) (((-1180) (-52)) . T)) +((((-880)) . T)) +((((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T)) +((((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T)) +((((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T)) +((((-1201) (-52)) . T) (((-1183) (-52)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (((|#1| |#2|) . T)) -(-2802 (|has| |#2| (-238)) (|has| |#2| (-237))) -((((-576) (-145)) . T) (((-1256 (-576)) $) . T)) -(((#0=(-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) -((($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| |#1| (-862)) -(((|#2| (-784) (-1104)) . T)) +(-2839 (|has| |#2| (-239)) (|has| |#2| (-238))) +((((-577) (-145)) . T) (((-1259 (-577)) $) . T)) +(((#0=(-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) #0#) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) +((($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(|has| |#1| (-865)) +(((|#2| (-787) (-1107)) . T)) (((|#1| |#2|) . T)) -((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) -(|has| |#1| (-804)) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-568))) -((((-1198)) -2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) -((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) -((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) +((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) +(|has| |#1| (-807)) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-569))) +((((-1201)) -2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) +((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) +((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) (((|#1|) |has| |#1| (-174))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-2802 (|has| |#1| (-148)) (-12 (|has| |#1| (-374)) (|has| |#2| (-148)))) +(-2839 (|has| |#1| (-148)) (-12 (|has| |#1| (-375)) (|has| |#2| (-148)))) (((|#4|) . T)) -(-2802 (|has| |#1| (-146)) (-12 (|has| |#1| (-374)) (|has| |#2| (-146)))) -((((-1180) |#1|) . T)) +(-2839 (|has| |#1| (-146)) (-12 (|has| |#1| (-375)) (|has| |#2| (-146)))) +((((-1183) |#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) (((|#1|) . T)) -((((-576)) . T)) -((((-877)) . T)) -((((-576)) . T)) +((((-577)) . T)) +((((-880)) . T)) +((((-577)) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +((((-880)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (((|#3|) . T)) -((((-1281 |#1| |#2| |#3|)) |has| |#1| (-374))) -((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) -((((-877)) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) -(((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122))) (((-978 |#1|)) . T)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((((-978 |#1|)) . T)) -(((|#4|) -2802 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-739)))) -(((|#3|) -2802 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-739)))) -(|has| |#2| (-374)) +((((-1284 |#1| |#2| |#3|)) |has| |#1| (-375))) +((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) +((((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1199 |#1| |#2| |#3|)) |has| |#1| (-375)) (((-577)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) . T)) +((((-880)) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) +(((|#1|) . T)) +(((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125))) (((-981 |#1|)) . T)) +(|has| |#1| (-864)) +(|has| |#1| (-864)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-981 |#1|)) . T)) +(((|#4|) -2839 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-742)))) +(((|#3|) -2839 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-742)))) +(|has| |#2| (-375)) (((|#1|) |has| |#1| (-174))) -(((|#4|) -2802 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-739)) (|has| |#4| (-1071)))) -(((|#3|) -2802 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-739)) (|has| |#3| (-1071)))) -(((|#2|) |has| |#2| (-1071))) -(((|#2|) |has| |#2| (-1071))) -((((-1180) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) -(((|#2| (-909 |#1|)) . T)) +(((|#4|) -2839 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-742)) (|has| |#4| (-1074)))) +(((|#3|) -2839 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-742)) (|has| |#3| (-1074)))) +(((|#2|) |has| |#2| (-1074))) +(((|#2|) |has| |#2| (-1074))) +((((-1183) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) +(((|#2| (-912 |#1|)) . T)) ((($) . T)) -((($ (-879 |#1|)) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) -((((-400) (-1180)) . T)) -((($ (-1198)) . T)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-877)) -2802 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-877))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-739)) (|has| |#2| (-806)) (|has| |#2| (-862)) (|has| |#2| (-1071)) (|has| |#2| (-1122))) (((-1289 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -4291 (-1180)) (|:| -4440 #0#))) . T)) -(((|#1|) . T)) -((((-877)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) +((($ (-882 |#1|)) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T)) +((((-401) (-1183)) . T)) +((($ (-1201)) . T)) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-880)) -2839 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-626 (-880))) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-742)) (|has| |#2| (-809)) (|has| |#2| (-865)) (|has| |#2| (-1074)) (|has| |#2| (-1125))) (((-1292 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -4295 (-1183)) (|:| -4444 #0#))) . T)) +(((|#1|) . T)) +((((-880)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) ((((-145)) . T)) (|has| |#2| (-146)) -((((-576)) . T)) +((((-577)) . T)) (|has| |#2| (-148)) -(|has| |#1| (-485)) -(-2802 (|has| |#1| (-485)) (|has| |#1| (-739)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071))) -(|has| |#1| (-374)) -((((-877)) . T)) -(|has| |#1| (-38 (-419 (-576)))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((($) |has| |#1| (-568))) -((((-1203)) . T)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) -((((-877)) . T)) +(|has| |#1| (-486)) +(-2839 (|has| |#1| (-486)) (|has| |#1| (-742)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074))) +(|has| |#1| (-375)) +((((-880)) . T)) +(|has| |#1| (-38 (-420 (-577)))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) +((($) |has| |#1| (-569))) +((((-1206)) . T)) +(|has| |#1| (-864)) +(|has| |#1| (-864)) +((((-880)) . T)) (((|#2|) . T)) -((((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1281 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568)))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) . T) (((-576)) . T) (((-832 |#1|)) . T)) +((((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1284 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569)))) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#2|) . T) (((-577)) . T) (((-835 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1198)) |has| |#1| (-918 (-1198)))) +((((-1201)) |has| |#1| (-921 (-1201)))) (((|#2| |#2|) . T)) -((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-877)) . T)) -((((-877)) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) -(((|#2| (-494 (-3440 |#1|) (-784)) (-879 |#1|)) . T)) -((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#)) -(((|#1| (-543 (-1198)) (-1198)) . T)) +((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +((((-880)) . T)) +((((-880)) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) +(((|#2| (-495 (-3484 |#1|) (-787)) (-882 |#1|)) . T)) +((((-420 (-577))) . #0=(|has| |#2| (-375))) (($) . #0#)) +(((|#1| (-544 (-1201)) (-1201)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-880)) . T)) +((((-880)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) +(-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (|has| |#1| (-146)) @@ -1793,2413 +1798,2422 @@ (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) (((|#2|) . T)) -((((-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) . T)) -((((-1196 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-1196 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -((((-1198) (-52)) . T)) -((((-419 (-576)) |#1|) . T) (($ $) . T)) -(((|#1| (-576)) . T)) -((((-930 |#1|)) . T)) -(((|#1|) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1071))) (($) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071)))) -((((-1198)) -2802 (-12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071))) (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071))))) -(((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) -(|has| |#1| (-862)) -(|has| |#1| (-862)) -((((-576) |#2|) . T)) -((($) . T) (((-576)) . T) ((|#1|) . T)) -((((-877)) . T)) -((((-576)) . T)) -(|has| |#1| (-862)) -((((-702 |#2|)) . T) (((-877)) . T)) -((((-1281 |#1| |#2| |#3|)) -12 (|has| (-1281 |#1| |#2| |#3|) (-319 (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374)))) -((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(|has| |#1| (-238)) -(|has| |#1| (-862)) +((((-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) . T)) +((((-1199 |#1| |#2| |#3|)) |has| |#1| (-375))) +((((-1199 |#1| |#2| |#3|)) |has| |#1| (-375))) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +((((-1201) (-52)) . T)) +((((-420 (-577)) |#1|) . T) (($ $) . T)) +(((|#1| (-577)) . T)) +((((-933 |#1|)) . T)) +(((|#1|) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1074))) (($) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074)))) +((((-1201)) -2839 (-12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074))) (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))))) +(((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) +(|has| |#1| (-865)) +(|has| |#1| (-865)) +((((-577) |#2|) . T)) +((($) . T) (((-577)) . T) ((|#1|) . T)) +((((-880)) . T)) +((((-577)) . T)) +(|has| |#1| (-865)) +((((-705 |#2|)) . T) (((-880)) . T)) +((((-1284 |#1| |#2| |#3|)) -12 (|has| (-1284 |#1| |#2| |#3|) (-320 (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375)))) +((((-420 (-577))) . T) (((-577)) . T) (($) . T)) +(|has| |#1| (-239)) +(|has| |#1| (-865)) (((|#1| |#2|) . T)) -((((-419 (-972 |#1|))) . T)) -((((-993)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) +((((-420 (-975 |#1|))) . T)) +((((-996)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) +(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (((|#1|) |has| |#1| (-174))) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) -(((|#3|) -2802 (|has| |#3| (-174)) (|has| |#3| (-374)))) -((($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(-2802 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-929))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) +(((|#3|) -2839 (|has| |#3| (-174)) (|has| |#3| (-375)))) +((($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(-2839 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-932))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) ((($ |#2|) . T)) -((($ (-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (($ (-1104)) . T)) -((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-576) |#2|) . T)) -(((|#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)))) -(|has| |#1| (-360)) -(((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) -(((|#2|) . T) (((-576)) . T)) -((($) . T) (((-419 (-576))) . T)) -((((-576) (-112)) . T)) -(|has| |#1| (-833)) -(|has| |#1| (-833)) -(((|#1|) . T)) -(-2802 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) -(|has| |#1| (-861)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-576)) . T) (($) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-360))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -((((-1198)) |has| |#1| (-918 (-1198))) (((-1104)) . T)) -(((|#1|) . T)) -(|has| |#1| (-861)) -(((#0=(-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) #0#) |has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-319 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(|has| |#1| (-1122)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) +((($ (-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (($ (-1107)) . T)) +((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) +((((-577) |#2|) . T)) +(((|#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)))) +(|has| |#1| (-361)) +(((|#3| |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) +(((|#2|) . T) (((-577)) . T)) +((($) . T) (((-420 (-577))) . T)) +((((-577) (-112)) . T)) +(|has| |#1| (-836)) +(|has| |#1| (-836)) +(((|#1|) . T)) +(-2839 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361))) +(|has| |#1| (-864)) +(|has| |#1| (-864)) +(|has| |#1| (-864)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) . T) (((-577)) . T) (($) . T)) +((((-577)) . T) (($) . T) (((-420 (-577))) . T)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-361))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +((((-1201)) |has| |#1| (-921 (-1201))) (((-1107)) . T)) +(((|#1|) . T)) +(|has| |#1| (-864)) +(((#0=(-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) #0#) |has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-320 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(|has| |#1| (-1125)) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -((((-1164 |#2| (-419 (-972 |#1|)))) . T) (((-419 (-972 |#1|))) . T) (((-576)) . T)) -(((|#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) . T)) +((((-1167 |#2| (-420 (-975 |#1|)))) . T) (((-420 (-975 |#1|))) . T) (((-577)) . T)) +(((|#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) -((($) . T) (((-576)) . T)) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) +((($) . T) (((-577)) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-577)) . T)) +(((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#1| (-543 |#2|) |#2|) . T)) -((((-877)) . T)) -((((-145)) . T) (((-877)) . T)) -((((-576) |#1|) . T)) -(((|#1| (-784) (-1104)) . T)) +((((-880)) . T)) +((((-145)) . T) (((-880)) . T)) +((((-577) |#1|) . T)) +(((|#1| (-544 |#2|) |#2|) . T)) (((|#3|) . T)) +(((|#1| (-787) (-1107)) . T)) ((((-145)) . T)) -((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) -2802 (|has| |#1| (-861)) (|has| |#1| (-1060 (-576)))) ((|#1|) . T)) +((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) -2839 (|has| |#1| (-864)) (|has| |#1| (-1063 (-577)))) ((|#1|) . T)) (((|#1|) . T)) (((|#2|) . T)) ((((-145)) . T)) -((((-1198)) -2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) -((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) -((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) -(-2802 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-739)) (|has| |#2| (-806)) (|has| |#2| (-862)) (|has| |#2| (-1071)) (|has| |#2| (-1122))) +((((-1201)) -2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) +((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) +((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) +(-2839 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-742)) (|has| |#2| (-809)) (|has| |#2| (-865)) (|has| |#2| (-1074)) (|has| |#2| (-1125))) (((|#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(((|#4|) |has| |#4| (-374))) -(((|#3|) |has| |#3| (-374))) +(((|#4|) |has| |#4| (-375))) +(((|#3|) |has| |#3| (-375))) (((|#1|) . T)) -(((|#2|) |has| |#1| (-374))) -((((-877)) . T)) -((((-877)) . T)) -((((-879 |#1|)) . T)) +(((|#2|) |has| |#1| (-375))) +((((-880)) . T)) +((((-880)) . T)) +((((-882 |#1|)) . T)) (((|#2|) . T)) -(((|#1| (-1194 |#1|)) . T)) -((((-1104)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) -((($) . T) ((|#1|) . T) (((-419 (-576))) . T) (((-576)) |has| |#1| (-652 (-576)))) +(((|#1| (-1197 |#1|)) . T)) +((((-1107)) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) +((($) . T) ((|#1|) . T) (((-420 (-577))) . T) (((-577)) |has| |#1| (-654 (-577)))) ((($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((($) |has| |#1| (-568))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) +((($) |has| |#1| (-569))) (((|#2|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($) |has| |#1| (-568)) ((|#1|) . T)) -((($) |has| |#1| (-861))) -((((-1196 |#1| |#2| |#3|)) |has| |#1| (-374))) -(|has| |#1| (-929)) -((((-1198)) . T)) -((((-877)) . T)) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1281 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -((((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1281 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568)))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((((-576) |#2|) . T)) -((($ (-1198)) -2802 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) -((($ (-1198)) -2802 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) -((($) -2802 (|has| |#1| (-238)) (|has| |#1| (-237)))) -((($) |has| |#1| (-379))) -((($) |has| |#1| (-379))) -((($) |has| |#1| (-379))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-569)))) +((($) |has| |#1| (-569)) ((|#1|) . T)) +((($) |has| |#1| (-864))) +((((-1199 |#1| |#2| |#3|)) |has| |#1| (-375))) +(|has| |#1| (-932)) +((((-1201)) . T)) +((((-880)) . T)) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1284 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) . T)) +((((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1284 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569)))) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-577) |#2|) . T)) +((($ (-1201)) -2839 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074))))) +((($ (-1201)) -2839 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))))) +((($) -2839 (|has| |#1| (-239)) (|has| |#1| (-238)))) +((($) |has| |#1| (-380))) +((($) |has| |#1| (-380))) +((($) |has| |#1| (-380))) (((|#1| |#2|) . T)) -(-2802 (|has| |#2| (-464)) (|has| |#2| (-929))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((#0=(-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) #0#) |has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))))) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-929))) +(-2839 (|has| |#2| (-465)) (|has| |#2| (-932))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((#0=(-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) #0#) |has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-320 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))))) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-932))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2802 (|has| |#3| (-174)) (|has| |#3| (-374)))) -(|has| |#1| (-862)) -(|has| |#1| (-568)) -((((-593 |#1|)) . T)) +(((|#3|) -2839 (|has| |#3| (-174)) (|has| |#3| (-375)))) +(|has| |#1| (-865)) +(|has| |#1| (-569)) +((((-594 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-2802 (-12 (|has| |#1| (-374)) (|has| |#2| (-833))) (-12 (|has| |#1| (-374)) (|has| |#2| (-862)))) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-930 |#1|)) . T)) -(((|#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) . T)) +(-2839 (-12 (|has| |#1| (-375)) (|has| |#2| (-836))) (-12 (|has| |#1| (-375)) (|has| |#2| (-865)))) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-569))) +((((-933 |#1|)) . T)) +(((|#1| (-509 |#1| |#3|) (-509 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-784)) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568)))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) . T)) -((((-576)) |has| #0=(-419 |#2|) (-652 (-576))) ((#0#) . T) (((-419 (-576))) . T) (($) . T)) -((((-685 |#1|)) . T)) +(((|#1| (-787)) . T)) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) +((((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1199 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569)))) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) . T)) +((((-577)) |has| #0=(-420 |#2|) (-654 (-577))) ((#0#) . T) (((-420 (-577))) . T) (($) . T)) +((((-688 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-548)) . T)) -((((-877)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((((-877)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) -((((-1203)) . T)) -((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-576)) . T)) -(((|#3|) . T) (((-576)) . T) (((-624 $)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-549)) . T)) +((((-880)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-880)) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((((-1206)) . T)) +((((-420 (-577))) . T) (($) . T) (((-420 |#1|)) . T) ((|#1|) . T) (((-577)) . T)) +(((|#3|) . T) (((-577)) . T) (((-625 $)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) (((|#2|) . T)) -(-2802 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-739)) (|has| |#3| (-806)) (|has| |#3| (-862)) (|has| |#3| (-1071)) (|has| |#3| (-1122))) -(|has| |#2| (-1071)) -((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) |has| |#1| (-1060 (-576))) ((|#1|) . T)) -(|has| |#1| (-1224)) -(|has| |#1| (-1224)) -(-2802 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-739)) (|has| |#2| (-806)) (|has| |#2| (-862)) (|has| |#2| (-1071)) (|has| |#2| (-1122))) -(|has| |#1| (-1224)) -(|has| |#1| (-1224)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((($ $) . T) ((#0=(-419 (-576)) #0#) . T) ((#1=(-419 |#1|) #1#) . T) ((|#1| |#1|) . T)) -((($) . T) (((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T)) +(-2839 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-380)) (|has| |#3| (-742)) (|has| |#3| (-809)) (|has| |#3| (-865)) (|has| |#3| (-1074)) (|has| |#3| (-1125))) +(|has| |#2| (-1074)) +((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) |has| |#1| (-1063 (-577))) ((|#1|) . T)) +(|has| |#1| (-1227)) +(|has| |#1| (-1227)) +(-2839 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-742)) (|has| |#2| (-809)) (|has| |#2| (-865)) (|has| |#2| (-1074)) (|has| |#2| (-1125))) +(|has| |#1| (-1227)) +(|has| |#1| (-1227)) +((($) . T) (((-577)) . T) (((-420 (-577))) . T)) +((((-577)) . T) (($) . T) (((-420 (-577))) . T)) +((($ $) . T) ((#0=(-420 (-577)) #0#) . T) ((#1=(-420 |#1|) #1#) . T) ((|#1| |#1|) . T)) +((($) . T) (((-420 (-577))) . T) (((-420 |#1|)) . T) ((|#1|) . T)) (((|#3| |#3|) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) (((|#3|) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-1180) (-52)) . T)) -(|has| |#1| (-1122)) +((($) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) +((($) . T) (((-577)) . T) (((-420 (-577))) . T)) +((((-1183) (-52)) . T)) +(|has| |#1| (-1125)) (((|#1|) |has| |#1| (-174)) (($) . T)) -(-2802 (|has| |#2| (-833)) (|has| |#2| (-862))) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-576)) . T) (($) . T)) -((((-784)) . T)) -(-2802 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360))) -((((-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198))))) -(-2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) -((((-877)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(|has| |#2| (-929)) -(|has| |#1| (-374)) -(((|#2|) |has| |#2| (-1122))) -((($) . T) (((-576)) . T)) +(-2839 (|has| |#2| (-836)) (|has| |#2| (-865))) +(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) . T)) +((((-577)) . T) (($) . T) (((-420 (-577))) . T)) +((((-577)) . T) (($) . T)) +((((-787)) . T)) +(-2839 (|has| |#1| (-239)) (|has| |#1| (-238)) (|has| |#1| (-361))) +((((-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201))))) +(-2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) +((((-880)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(|has| |#2| (-932)) +(|has| |#1| (-375)) +(((|#2|) |has| |#2| (-1125))) +((($) . T) (((-577)) . T)) ((($) . T)) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -((((-548)) . T) (((-419 (-1194 (-576)))) . T) (((-227)) . T) (((-390)) . T)) -((((-390)) . T) (((-227)) . T) (((-877)) . T)) -(|has| |#1| (-929)) -(|has| |#1| (-929)) -((($ (-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (($ (-831 (-1198))) . T)) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-862)) (|has| |#1| (-1122))) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -(|has| |#1| (-929)) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -(((|#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-739)))) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-929))) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +((((-549)) . T) (((-420 (-1197 (-577)))) . T) (((-228)) . T) (((-391)) . T)) +((((-391)) . T) (((-228)) . T) (((-880)) . T)) +(|has| |#1| (-932)) +(|has| |#1| (-932)) +((($ (-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (($ (-834 (-1201))) . T)) +((((-577)) . T) (((-420 (-577))) . T) (($) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-865)) (|has| |#1| (-1125))) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) (((-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +(|has| |#1| (-932)) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +(((|#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-742)))) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-932))) ((($) . T)) (((|#1|) . T)) -((($) . T) ((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) -(((|#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-739)) (|has| |#2| (-1071)))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) -((((-1196 |#1| |#2| |#3|)) -12 (|has| (-1196 |#1| |#2| |#3|) (-319 (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374)))) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-929))) -((((-877)) . T)) -((((-877)) . T)) +((($) . T) ((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) +(((|#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-742)) (|has| |#2| (-1074)))) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) +((((-1199 |#1| |#2| |#3|)) -12 (|has| (-1199 |#1| |#2| |#3|) (-320 (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375)))) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-932))) +((((-880)) . T)) +((((-880)) . T)) ((($ $) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -((($) -2802 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237))))) -((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) -((((-993)) . T)) -((((-993)) . T) (((-877)) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +((($) -2839 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (-12 (|has| |#1| (-375)) (|has| |#2| (-238))))) +((($) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) +((((-996)) . T)) +((((-996)) . T) (((-880)) . T)) ((($ $) . T)) -((((-576) (-112)) . T)) +((((-577) (-112)) . T)) ((($) . T)) (((|#1|) . T)) ((((-112)) . T)) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-576)) . T)) -(((|#1| (-576)) . T)) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) +((((-577)) . T)) +(((|#1| (-577)) . T)) ((($) . T)) -(((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) -((((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T)) +(((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) +((((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-1198)) |has| |#1| (-1071))) -((((-576)) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-877)) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(((|#1|) . T)) -(((|#1| (-576)) . T)) -(((|#1| (-1281 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(((|#1| (-419 (-576))) . T)) -(((|#1| (-1253 |#1| |#2| |#3|)) . T)) -((((-877)) . T)) -(|has| |#1| (-1122)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -(((|#1| (-784)) . T)) -((((-1180) |#1|) . T)) +((((-1201)) |has| |#1| (-1074))) +((((-577)) . T)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +((((-880)) . T)) +(|has| |#1| (-38 (-420 (-577)))) +(((|#1|) . T)) +(((|#1| (-577)) . T)) +(((|#1| (-1284 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(((|#1| (-420 (-577))) . T)) +(((|#1| (-1256 |#1| |#2| |#3|)) . T)) +((((-880)) . T)) +(|has| |#1| (-1125)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +(((|#1| (-787)) . T)) +((((-1183) |#1|) . T)) (((|#1|) . T)) ((($) . T)) (|has| |#2| (-148)) (|has| |#2| (-146)) -(((|#1| (-543 (-831 (-1198))) (-831 (-1198))) . T)) -((((-877)) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1071))) -((((-576) (-112)) . T) (((-1256 (-576)) $) . T)) -((((-877)) |has| |#1| (-1122))) -(((|#1|) . T) (((-576)) . T) (($) . T)) -((((-576)) . T)) -((((-576)) . T)) -(((|#1|) . T)) -((((-576)) . T)) -((((-576)) . T)) -((((-877)) . T)) -(-2802 (|has| |#1| (-146)) (|has| |#1| (-360))) -((((-877)) . T)) +(((|#1| (-544 (-834 (-1201))) (-834 (-1201))) . T)) +((((-880)) . T)) +((((-1278 |#1| |#2| |#3| |#4|)) . T)) +((((-1278 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1074))) +((((-577) (-112)) . T) (((-1259 (-577)) $) . T)) +((((-880)) |has| |#1| (-1125))) +(((|#1|) . T) (((-577)) . T) (($) . T)) +((((-577)) . T)) +((((-577)) . T)) +(((|#1|) . T)) +((((-577)) . T)) +((((-577)) . T)) +((((-880)) . T)) +(-2839 (|has| |#1| (-146)) (|has| |#1| (-361))) +((((-880)) . T)) (|has| |#1| (-148)) (((|#3|) . T)) -((((-877)) . T)) -(|has| |#3| (-1071)) -((($) -2802 (|has| |#2| (-238)) (|has| |#2| (-237)))) -((((-1274 |#2| |#3| |#4|)) . T) (((-1275 |#1| |#2| |#3| |#4|)) . T)) -((((-877)) . T)) -((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576)))) (((-624 $)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) -2802 (-12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576)))) (|has| |#1| (-1060 (-419 (-576))))) (((-419 (-972 |#1|))) |has| |#1| (-568)) (((-972 |#1|)) |has| |#1| (-1071)) (((-1198)) . T)) +((((-880)) . T)) +(|has| |#3| (-1074)) +((($) -2839 (|has| |#2| (-239)) (|has| |#2| (-238)))) +((((-1277 |#2| |#3| |#4|)) . T) (((-1278 |#1| |#2| |#3| |#4|)) . T)) +((((-880)) . T)) +((((-48)) -12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577)))) (((-625 $)) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) -2839 (-12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) (((-420 (-975 |#1|))) |has| |#1| (-569)) (((-975 |#1|)) |has| |#1| (-1074)) (((-1201)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-784)) . T)) +(((|#1| (-787)) . T)) (((|#1|) . T)) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-319 |#1|))) -((((-1275 |#1| |#2| |#3| |#4|)) . T)) -((((-576)) |has| |#1| (-902 (-576))) (((-390)) |has| |#1| (-902 (-390)))) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-320 |#1|))) +((((-1278 |#1| |#2| |#3| |#4|)) . T)) +((((-577)) |has| |#1| (-905 (-577))) (((-391)) |has| |#1| (-905 (-391)))) (((|#1|) . T)) -((($ (-1198)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) +((($ (-1201)) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) (((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) (((|#1|) . T)) -((((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568)))) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -(((|#1|) . T) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) +((((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-1199 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569)))) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-569)))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-1199 |#1| |#2| |#3|)) |has| |#1| (-375)) ((|#1|) . T)) +(((|#1|) . T) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) (((|#1|) |has| |#1| (-174))) -((((-877)) . T)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(|has| |#1| (-568)) -((($ (-1285 |#2|)) . T) (($ (-1198)) -2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) -((($ (-1285 |#2|)) . T) (($ (-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) -((($ (-1285 |#2|)) . T) (($ (-1198)) -12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) -(((|#1|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2802 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -(((|#3|) |has| |#3| (-1122))) -((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(((|#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)))) -((((-1274 |#2| |#3| |#4|)) . T)) +((((-880)) . T)) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(|has| |#1| (-569)) +((($ (-1288 |#2|)) . T) (($ (-1201)) -2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) +((($ (-1288 |#2|)) . T) (($ (-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) +((($ (-1288 |#2|)) . T) (($ (-1201)) -12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-577)) . T)) +(((|#1|) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2839 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +(((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) +(((|#3|) |has| |#3| (-1125))) +((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) +(((|#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)))) +((((-882 |#1|)) . T)) +((((-1277 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) -(|has| |#1| (-833)) -(|has| |#1| (-833)) -(((|#1| (-576) (-1104)) . T)) -((($) |has| |#1| (-319 $)) ((|#1|) |has| |#1| (-319 |#1|))) -(|has| |#1| (-861)) -(|has| |#1| (-861)) -(((|#1| (-576) (-1104)) . T)) -(-2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071))) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -(((|#1| (-419 (-576)) (-1104)) . T)) -(((|#1| (-784) (-1104)) . T)) -(|has| |#1| (-862)) -(((#0=(-930 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) +(|has| |#1| (-836)) +(|has| |#1| (-836)) +(((|#1| (-577) (-1107)) . T)) +((($) |has| |#1| (-320 $)) ((|#1|) |has| |#1| (-320 |#1|))) +(|has| |#1| (-864)) +(|has| |#1| (-864)) +(((|#1| (-577) (-1107)) . T)) +(-2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074))) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +(((|#1| (-420 (-577)) (-1107)) . T)) +(((|#1| (-787) (-1107)) . T)) +(|has| |#1| (-865)) +(((#0=(-933 |#1|) #0#) . T) (($ $) . T) ((#1=(-420 (-577)) #1#) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) (((|#2|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#1| (-1122)) -((((-930 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -(|has| |#1| (-1122)) -((((-419 (-576))) |has| |#2| (-374)) (($) . T) (((-576)) . T)) -((((-576)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071)))) -(((|#1|) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) -((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-652 (-576)))) ((|#2|) |has| |#1| (-374))) -(-2802 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-739)) (|has| |#2| (-806)) (|has| |#2| (-862)) (|has| |#2| (-1071)) (|has| |#2| (-1122))) -((((-702 (-350 (-3511) (-3511 (QUOTE X) (QUOTE HESS)) (-712)))) . T)) +(|has| |#1| (-1125)) +((((-933 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +(|has| |#1| (-1125)) +((((-420 (-577))) |has| |#2| (-375)) (($) . T) (((-577)) . T)) +((((-577)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074)))) +(((|#1|) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) +((((-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-654 (-577)))) ((|#2|) |has| |#1| (-375))) +(-2839 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-742)) (|has| |#2| (-809)) (|has| |#2| (-865)) (|has| |#2| (-1074)) (|has| |#2| (-1125))) +((((-705 (-351 (-3553) (-3553 (QUOTE X) (QUOTE HESS)) (-715)))) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -((((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-1274 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T)) -(((|#1| |#1|) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1071)))) -(((|#1|) . T)) -((((-576)) . T)) -((((-576)) . T)) -(((|#1|) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1071)))) -(((|#2|) |has| |#2| (-374))) -(((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-374)) (((-576)) |has| |#1| (-652 (-576)))) -(|has| |#1| (-862)) -(((|#1|) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -(((|#1|) . T) (((-576)) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +((((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-1277 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) . T)) +(((|#1| |#1|) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1074)))) +(((|#1|) . T)) +((((-577)) . T)) +((((-577)) . T)) +(((|#1|) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1074)))) +(((|#2|) |has| |#2| (-375))) +(((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-375)) (((-577)) |has| |#1| (-654 (-577)))) +(|has| |#1| (-865)) +(((|#1|) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +(((|#1|) . T) (((-577)) . T)) (((|#2|) . T)) -((((-576)) . T) ((|#3|) . T)) -((((-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) |has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))))) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-929))) -(((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) -((((-877)) . T)) -((((-877)) . T)) -((($ (-1198)) -2802 (-12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071))) (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071))))) -((((-576)) -2802 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071))) ((|#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-739)) (|has| |#2| (-1071))) (($) |has| |#2| (-1071))) -((((-548)) . T) (((-576)) . T) (((-908 (-576))) . T) (((-390)) . T) (((-227)) . T)) -((((-877)) . T)) -((($) |has| |#1| (-238))) -(|has| |#1| (-38 (-419 (-576)))) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) +((((-577)) . T) ((|#3|) . T)) +((((-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) |has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-320 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))))) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-932))) +(((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) +((((-880)) . T)) +((((-880)) . T)) +((($ (-1201)) -2839 (-12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074))) (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))))) +((((-577)) -2839 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074))) ((|#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-742)) (|has| |#2| (-1074))) (($) |has| |#2| (-1074))) +((((-549)) . T) (((-577)) . T) (((-911 (-577))) . T) (((-391)) . T) (((-228)) . T)) +((((-880)) . T)) +((($) |has| |#1| (-239))) +(|has| |#1| (-38 (-420 (-577)))) +((((-577)) . T) (($) . T) (((-420 (-577))) . T)) +((((-577)) . T) (($) . T) (((-420 (-577))) . T)) ((($) . T)) -(|has| |#1| (-238)) +(|has| |#1| (-239)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -(|has| |#1| (-861)) -(((|#1| (-576)) . T)) +(|has| |#1| (-864)) +(((|#1| (-577)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1| (-1196 |#1| |#2| |#3|)) . T)) +(((|#1| (-1199 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(((|#1| (-419 (-576))) . T)) -(((|#1| |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) -(((|#1| (-1189 |#1| |#2| |#3|)) . T)) -(((|#1| (-784)) . T)) +(((|#1| (-420 (-577))) . T)) +(((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) +(((|#1| (-1192 |#1| |#2| |#3|)) . T)) +(((|#1| (-787)) . T)) (((|#1|) . T)) -((((-419 (-972 |#1|))) . T)) +((((-420 (-975 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) -((((-419 (-972 |#1|))) . T)) +((((-420 (-975 |#1|))) . T)) (((|#1|) |has| |#1| (-174))) (|has| |#1| (-146)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) (((|#1|) |has| |#1| (-174))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-576)) . T) ((|#1|) . T) (($) . T) (((-419 (-576))) . T) (((-1198)) |has| |#1| (-1060 (-1198)))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-577)) . T) ((|#1|) . T) (($) . T) (((-420 (-577))) . T) (((-1201)) |has| |#1| (-1063 (-1201)))) (((|#1| |#2|) . T)) -((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) -2802 (|has| |#1| (-861)) (|has| |#1| (-1060 (-576)))) ((|#1|) . T)) -(-2802 (-12 (|has| |#4| (-238)) (|has| |#4| (-1071))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1071)))) -(-2802 (-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1071)))) +((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) -2839 (|has| |#1| (-864)) (|has| |#1| (-1063 (-577)))) ((|#1|) . T)) +(-2839 (-12 (|has| |#4| (-239)) (|has| |#4| (-1074))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1074)))) +(-2839 (-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1074)))) ((((-145)) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(((|#1|) . T)) -(|has| |#2| (-1071)) -(((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) . T) (($ $) . T)) -(((|#2|) . T) ((|#1|) . T) (((-576)) . T)) -((((-877)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((($) . T) (((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) -(|has| |#1| (-374)) -(|has| |#1| (-374)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(((|#1|) . T)) +(|has| |#2| (-1074)) +(((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) . T) (($ $) . T)) +(((|#2|) . T) ((|#1|) . T) (((-577)) . T)) +((((-880)) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +((($) . T) (((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +(|has| |#1| (-375)) +(|has| |#1| (-375)) ((($ |#2|) . T)) -(|has| (-419 |#2|) (-238)) -((((-657 |#1|)) . T)) -((($ (-1285 |#2|)) . T) (($ (-1198)) -2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) -((($ (-1285 |#2|)) . T) (($ (-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) -((($ (-1285 |#2|)) . T) (($ (-1198)) -12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) -(|has| |#1| (-929)) -(((|#2|) |has| |#2| (-1071))) -(((|#2|) |has| |#2| (-1071))) -(|has| |#1| (-374)) +(|has| (-420 |#2|) (-239)) +((((-660 |#1|)) . T)) +((($ (-1288 |#2|)) . T) (($ (-1201)) -2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) +((($ (-1288 |#2|)) . T) (($ (-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) +((($ (-1288 |#2|)) . T) (($ (-1201)) -12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) +(|has| |#1| (-932)) +(((|#2|) |has| |#2| (-1074))) +(((|#2|) |has| |#2| (-1074))) +(|has| |#1| (-375)) ((($) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) (((|#1|) |has| |#1| (-174))) -((($ (-879 |#1|)) . T)) +((($ (-882 |#1|)) . T)) (((|#1| |#1|) . T)) -((((-885 |#1|)) . T)) -((((-877)) . T)) +((((-888 |#1|)) . T)) +((((-880)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1122))) +(((|#2|) |has| |#2| (-1125))) (((|#1|) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-657 $)) . T) (((-1180)) . T) (((-1198)) . T) (((-576)) . T) (((-227)) . T) (((-877)) . T)) -((((-576)) -2802 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1071))) ((|#3|) -2802 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-739)) (|has| |#3| (-1071))) (($) |has| |#3| (-1071))) -((((-419 (-576))) . T) (((-576)) . T) (((-624 $)) . T)) +((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) +((((-660 $)) . T) (((-1183)) . T) (((-1201)) . T) (((-577)) . T) (((-228)) . T) (((-880)) . T)) +((((-577)) -2839 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1074))) ((|#3|) -2839 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-742)) (|has| |#3| (-1074))) (($) |has| |#3| (-1074))) +((((-420 (-577))) . T) (((-577)) . T) (((-625 $)) . T)) (((|#1|) . T)) -((((-877)) . T)) +((((-880)) . T)) ((($) . T)) -(((|#1| (-543 |#2|) |#2|) . T)) -((((-877)) . T)) -(((|#1| (-576) (-1104)) . T)) -((((-930 |#1|)) . T)) -((((-877)) . T)) +(((|#1| (-544 |#2|) |#2|) . T)) +((((-880)) . T)) +(((|#1| (-577) (-1107)) . T)) +((((-933 |#1|)) . T)) +((((-880)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-419 (-576)) (-1104)) . T)) -(((|#1| (-784) (-1104)) . T)) -(((#0=(-419 |#2|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-576)) -2802 (|has| (-419 (-576)) (-1060 (-576))) (|has| |#1| (-1060 (-576)))) (((-419 (-576))) . T)) -(((|#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) . T)) +(((|#1| (-420 (-577)) (-1107)) . T)) +(((|#1| (-787) (-1107)) . T)) +((((-880)) . T)) +(((#0=(-420 |#2|) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-577)) -2839 (|has| (-420 (-577)) (-1063 (-577))) (|has| |#1| (-1063 (-577)))) (((-420 (-577))) . T)) +(((|#1| (-615 |#1| |#3|) (-615 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-862)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -(|has| |#2| (-238)) -(((|#2| (-543 (-879 |#1|)) (-879 |#1|)) . T)) -((((-877)) . T)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-877)) . T)) +(|has| |#1| (-865)) +((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) +(|has| |#2| (-239)) +(((|#2| (-544 (-882 |#1|)) (-882 |#1|)) . T)) +((((-880)) . T)) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-880)) . T)) (((|#1| |#3|) . T)) -((((-877)) . T)) -(((|#1|) |has| |#1| (-174)) (((-972 |#1|)) . T) (((-576)) . T)) +((((-880)) . T)) +(((|#1|) |has| |#1| (-174)) (((-975 |#1|)) . T) (((-577)) . T)) (((|#1|) |has| |#1| (-174))) -((((-712)) . T)) -((((-712)) . T)) +((((-715)) . T)) +((((-715)) . T)) (((|#2|) |has| |#2| (-174))) -(-2802 (|has| |#1| (-238)) (|has| |#1| (-237))) -((((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1060 (-419 (-576))))) -((((-112)) |has| |#1| (-1122)) (((-877)) -2802 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-739)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071)) (|has| |#1| (-1134)) (|has| |#1| (-1122)))) +(-2839 (|has| |#1| (-239)) (|has| |#1| (-238))) +((((-577)) . T) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-1063 (-420 (-577))))) +((((-112)) |has| |#1| (-1125)) (((-880)) -2839 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-486)) (|has| |#1| (-742)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074)) (|has| |#1| (-1137)) (|has| |#1| (-1125)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-877)) . T)) -((((-1198)) -2802 (-12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071))) (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071))))) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-877)) . T)) -((((-712)) . T) (((-419 (-576))) . T) (((-576)) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) . T)) +((((-577)) . T) (($) . T) (((-420 (-577))) . T)) +((((-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +((((-577)) . T) (($) . T) (((-420 (-577))) . T)) +((((-577)) . T) (((-420 (-577))) . T) (($) . T)) +((((-880)) . T)) +((((-1201)) -2839 (-12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074))) (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))))) +((((-577)) . T) (((-420 (-577))) . T) (($) . T)) +((((-880)) . T)) +((((-715)) . T) (((-420 (-577))) . T) (((-577)) . T)) (((|#1| |#1|) |has| |#1| (-174))) (((|#2|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-576) |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) -((((-390)) . T)) -((((-712)) . T)) -((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#)) +((($) . T) (((-577)) . T) (((-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +((((-577) |#1|) . T)) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) +((((-391)) . T)) +((((-715)) . T)) +((((-420 (-577))) . #0=(|has| |#2| (-375))) (($) . #0#)) (((|#1|) |has| |#1| (-174))) -((((-419 (-972 |#1|))) . T)) +((((-420 (-975 |#1|))) . T)) (((|#2| |#2|) . T)) -(-2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +(-2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) (((|#1|) . T)) (((|#2|) . T)) -(((|#3|) |has| |#3| (-1071))) -(|has| |#2| (-929)) -(|has| |#1| (-929)) -(|has| |#1| (-374)) -(((|#3|) |has| |#3| (-1071))) +(((|#3|) |has| |#3| (-1074))) +(|has| |#2| (-932)) +(|has| |#1| (-932)) +(|has| |#1| (-375)) +(((|#3|) |has| |#3| (-1074))) ((($) . T)) -((((-1198)) |has| |#2| (-918 (-1198)))) -(|has| |#1| (-862)) -((((-877)) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -(|has| |#1| (-804)) -((((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-485)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-374)) -(-2802 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1071)) (|has| |#1| (-1134))) -((($) -2802 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360)))) +((((-1201)) |has| |#2| (-921 (-1201)))) +(|has| |#1| (-865)) +((((-880)) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +(|has| |#1| (-807)) +((((-420 (-577))) . T) (($) . T)) +(|has| |#1| (-486)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +(|has| |#1| (-375)) +(-2839 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-486)) (|has| |#1| (-569)) (|has| |#1| (-1074)) (|has| |#1| (-1137))) +((($) -2839 (|has| |#1| (-239)) (|has| |#1| (-238)) (|has| |#1| (-361)))) ((((-117 |#1|)) . T)) ((((-117 |#1|)) . T)) -(|has| |#1| (-360)) +(|has| |#1| (-361)) ((((-145)) . T)) -(|has| |#1| (-38 (-419 (-576)))) -((($) . T) (((-576)) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(((|#2|) . T) (((-877)) . T)) -(((|#2|) . T) (((-877)) . T)) -((($ (-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198))))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-862)) -((((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) . T)) +(|has| |#1| (-38 (-420 (-577)))) +((($) . T) (((-577)) . T)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(((|#2|) . T) (((-880)) . T)) +(((|#2|) . T) (((-880)) . T)) +((($ (-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201))))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-865)) +((((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-576)) . T)) +((($) . T) (((-577)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) ((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) ((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (((|#2|) . T)) -(|has| |#1| (-15 * (|#1| (-576) |#1|))) +(|has| |#1| (-15 * (|#1| (-577) |#1|))) (((|#3|) . T)) ((((-117 |#1|)) . T)) -(|has| |#1| (-379)) -(-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(|has| |#1| (-862)) -(|has| |#1| (-15 * (|#1| (-784) |#1|))) -(((|#2|) . T) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) |has| |#1| (-1060 (-576))) ((|#1|) . T)) +(|has| |#1| (-380)) +(-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) +(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) +(|has| |#1| (-865)) +(|has| |#1| (-15 * (|#1| (-787) |#1|))) +(((|#2|) . T) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) |has| |#1| (-1063 (-577))) ((|#1|) . T)) ((((-117 |#1|)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) -((((-576)) . T)) -((((-576)) . T)) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -((((-877)) . T)) -((((-877)) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-908 (-576))) |has| |#1| (-626 (-908 (-576)))) (((-908 (-390))) |has| |#1| (-626 (-908 (-390)))) (((-390)) . #0=(|has| |#1| (-1044))) (((-227)) . #0#)) -(((|#1|) |has| |#1| (-374))) -(((|#1|) |has| |#1| (-374))) -((((-877)) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -((($ $) . T) (((-624 $) $) . T)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-568))) -((($) . T) (((-1275 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T)) -((($) -2802 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1071))) ((|#1|) -2802 (|has| |#1| (-174)) (|has| |#1| (-1071))) (((-419 (-576))) |has| |#1| (-568)) (((-576)) -12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))) -((($) . T) (((-576)) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -((((-390)) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-1198)) -2802 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) -((((-657 (-793 |#1| (-879 |#2|)))) . T) (((-877)) . T)) -((((-548)) |has| (-793 |#1| (-879 |#2|)) (-626 (-548)))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((((-390)) . T)) +((((-577)) . T)) +((((-577)) . T)) +(|has| |#1| (-375)) +(|has| |#1| (-375)) +((((-880)) . T)) +((((-880)) . T)) +((((-549)) |has| |#1| (-627 (-549))) (((-911 (-577))) |has| |#1| (-627 (-911 (-577)))) (((-911 (-391))) |has| |#1| (-627 (-911 (-391)))) (((-391)) . #0=(|has| |#1| (-1047))) (((-228)) . #0#)) +(((|#1|) |has| |#1| (-375))) +(((|#1|) |has| |#1| (-375))) +((((-880)) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +((($ $) . T) (((-625 $) $) . T)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-569))) +((($) . T) (((-1278 |#1| |#2| |#3| |#4|)) . T) (((-420 (-577))) . T)) +((($) -2839 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1074))) ((|#1|) -2839 (|has| |#1| (-174)) (|has| |#1| (-1074))) (((-420 (-577))) |has| |#1| (-569)) (((-577)) -12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) +((($) . T) (((-577)) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) . T)) +(|has| |#1| (-375)) +(|has| |#1| (-375)) +(|has| |#1| (-375)) +((((-391)) . T) (((-577)) . T) (((-420 (-577))) . T)) +((((-1201)) -2839 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))))) +((((-660 (-796 |#1| (-882 |#2|)))) . T) (((-880)) . T)) +((((-549)) |has| (-796 |#1| (-882 |#2|)) (-627 (-549)))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-391)) . T)) (((|#1|) |has| |#1| (-174))) -(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) +(((|#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) (((|#1|) |has| |#1| (-174))) -((((-877)) . T)) -(-2802 (|has| |#2| (-464)) (|has| |#2| (-929))) +((((-880)) . T)) +(-2839 (|has| |#2| (-465)) (|has| |#2| (-932))) (((|#1|) . T)) ((($) . T)) -((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) -((((-548)) |has| |#1| (-626 (-548)))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) -((((-784)) . T)) -(|has| |#1| (-1122)) -((((-576)) -2802 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071))) ((|#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-739)) (|has| |#2| (-1071))) (($) |has| |#2| (-1071))) -((((-877)) . T)) -((((-1198)) . T) (((-877)) . T)) -((((-576)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) -((((-419 (-576))) . T) (((-576)) . T) (((-624 $)) . T)) +((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-569))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((((-549)) |has| |#1| (-627 (-549)))) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) +((((-787)) . T)) +(|has| |#1| (-1125)) +((((-577)) -2839 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074))) ((|#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-742)) (|has| |#2| (-1074))) (($) |has| |#2| (-1074))) +((((-880)) . T)) +((((-1201)) . T) (((-880)) . T)) +((((-577)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +((((-420 (-577))) . T) (((-577)) . T) (((-625 $)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-576)) . T)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-568))) -(((#0=(-1274 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (($) . T)) -((((-576)) . T)) +((((-577)) . T)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-569))) +(((#0=(-1277 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| #0# (-38 (-420 (-577)))) (($) . T)) +((((-577)) . T)) ((($) . T)) -(|has| |#1| (-374)) -(-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) -(-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) -(|has| |#1| (-374)) +(|has| |#1| (-375)) +(-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-148)) (|has| |#1| (-375))) (|has| |#1| (-148))) +(-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))) +(|has| |#1| (-375)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) -(|has| |#1| (-238)) -(|has| |#1| (-374)) +(|has| |#1| (-239)) +(|has| |#1| (-375)) (((|#3|) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-576)) |has| |#2| (-652 (-576))) ((|#2|) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-577)) |has| |#2| (-654 (-577))) ((|#2|) . T)) (|has| |#1| (-146)) -((((-576) |#1|) |has| |#2| (-429 |#1|))) -((((-576) |#1|) |has| |#2| (-429 |#1|))) -(((|#2|) . T) (($) . T) (((-576)) . T)) +((((-577) |#1|) |has| |#2| (-430 |#1|))) +((((-577) |#1|) |has| |#2| (-430 |#1|))) +(((|#2|) . T) (($) . T) (((-577)) . T)) (((|#2|) . T)) -(|has| |#1| (-862)) -(|has| |#1| (-862)) -((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#)) -(|has| |#1| (-862)) -((((-419 (-576))) |has| |#2| (-374)) (($) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) -((((-1164 |#2| |#1|)) . T) ((|#1|) . T) (((-576)) . T)) +(|has| |#1| (-865)) +(|has| |#1| (-865)) +((((-420 (-577))) . #0=(|has| |#2| (-375))) (($) . #0#)) +(|has| |#1| (-865)) +((((-420 (-577))) |has| |#2| (-375)) (($) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) +((((-1167 |#2| |#1|)) . T) ((|#1|) . T) (((-577)) . T)) (((|#1| |#2|) . T)) -((((-576)) . T) ((|#1|) . T) (((-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-1060 (-419 (-576)))))) -((((-1198)) -2802 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))))) -(((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) -(((|#2|) . T) (($) . T) (((-576)) . T)) -(((|#1|) . T) (($) . T) (((-576)) . T)) -(-2802 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-739)) (|has| |#2| (-806)) (|has| |#2| (-862)) (|has| |#2| (-1071)) (|has| |#2| (-1122))) -((((-877)) . T)) -((((-576)) . T)) -(-2802 (-12 (|has| |#2| (-238)) (|has| |#2| (-1071))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) -(((|#1| $) |has| |#1| (-296 |#1| |#1|))) -((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) -((((-972 |#1|)) . T) (((-877)) . T)) +((((-577)) . T) ((|#1|) . T) (((-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-1063 (-420 (-577)))))) +((((-1201)) -2839 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))))) +(((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) +(((|#2|) . T) (($) . T) (((-577)) . T)) +(((|#1|) . T) (($) . T) (((-577)) . T)) +(-2839 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-742)) (|has| |#2| (-809)) (|has| |#2| (-865)) (|has| |#2| (-1074)) (|has| |#2| (-1125))) +((((-880)) . T)) +((((-577)) . T)) +(-2839 (-12 (|has| |#2| (-239)) (|has| |#2| (-1074))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1074)))) +(((|#1| $) |has| |#1| (-297 |#1| |#1|))) +((((-420 (-577))) . T) (($) . T) (((-420 |#1|)) . T) ((|#1|) . T)) +((((-975 |#1|)) . T) (((-880)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -2802 (|has| |#1| (-300)) (|has| |#1| (-374))) ((#0=(-419 (-576)) #0#) |has| |#1| (-374))) -((((-972 |#1|)) . T)) -((((-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) . T)) +(((|#1| |#1|) . T) (($ $) -2839 (|has| |#1| (-301)) (|has| |#1| (-375))) ((#0=(-420 (-577)) #0#) |has| |#1| (-375))) +((((-975 |#1|)) . T)) +((((-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) . T)) ((($) . T)) -((((-576) |#1|) . T)) -((((-1198)) |has| (-419 |#2|) (-918 (-1198)))) -(((|#1|) . T) (($) -2802 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) -((((-548)) |has| |#2| (-626 (-548)))) -((((-702 |#2|)) . T) (((-877)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) -((((-885 |#1|)) . T)) +((((-577) |#1|) . T)) +((((-1201)) |has| (-420 |#2|) (-921 (-1201)))) +(((|#1|) . T) (($) -2839 (|has| |#1| (-301)) (|has| |#1| (-375))) (((-420 (-577))) |has| |#1| (-375))) +((((-549)) |has| |#2| (-627 (-549)))) +((((-705 |#2|)) . T) (((-880)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) +(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) +((((-888 |#1|)) . T)) (((|#1|) |has| |#1| (-174))) -(-2802 (|has| |#4| (-806)) (|has| |#4| (-862))) -(-2802 (|has| |#3| (-806)) (|has| |#3| (-862))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((((-877)) . T)) -(((|#1|) . T)) -((($) . T) (((-576)) . T) ((|#2|) . T)) -((((-877)) . T)) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) -(((|#3|) -2802 (|has| |#3| (-174)) (|has| |#3| (-374)))) -(((|#2|) |has| |#2| (-1071))) -(((|#2|) |has| |#2| (-1071))) +(-2839 (|has| |#4| (-809)) (|has| |#4| (-865))) +(-2839 (|has| |#3| (-809)) (|has| |#3| (-865))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-880)) . T)) +(((|#1|) . T)) +((($) . T) (((-577)) . T) ((|#2|) . T)) +((((-880)) . T)) +(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) +(((|#3|) -2839 (|has| |#3| (-174)) (|has| |#3| (-375)))) +(((|#2|) |has| |#2| (-1074))) +(((|#2|) |has| |#2| (-1074))) (((|#3|) . T)) ((($) . T)) (((|#1|) . T)) -((((-419 |#2|)) . T)) -(((|#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-739)))) +((((-420 |#2|)) . T)) +(((|#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-742)))) (((|#1|) . T)) -(((|#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-739)) (|has| |#2| (-1071)))) -(((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) -((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) +(((|#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-742)) (|has| |#2| (-1074)))) +(((|#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) +((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) . T) (($) . T)) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-1243))) +((((-577)) . T) (($) . T) (((-420 (-577))) . T)) +((((-420 (-577))) . T) (($) . T)) +((((-420 (-577))) . T) (($) . T)) +((((-420 (-577))) . T) (($) . T)) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-1246))) ((($) . T)) -((((-419 (-576))) |has| #0=(-419 |#2|) (-1060 (-419 (-576)))) (((-576)) |has| #0# (-1060 (-576))) ((#0#) . T)) -(((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) -(((|#1| (-784)) . T)) -(|has| |#1| (-862)) -(((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-576)) . T)) -((((-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) |has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-319 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(|has| |#1| (-861)) -((((-576) $) . T) (((-657 (-576)) $) . T)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-360)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) -(-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(|has| |#1| (-15 * (|#1| (-784) |#1|))) -((((-1180)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T)) -((((-877)) . T)) -(((|#2|) . T) (((-576)) . T) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) (((-1104)) . T) ((|#1|) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) +((((-420 (-577))) |has| #0=(-420 |#2|) (-1063 (-420 (-577)))) (((-577)) |has| #0# (-1063 (-577))) ((#0#) . T)) +(((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) +(((|#1| (-787)) . T)) +(|has| |#1| (-865)) +(((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) (((-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +((((-577)) . T)) +((((-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) |has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-320 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(|has| |#1| (-864)) +((((-577) $) . T) (((-660 (-577)) $) . T)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-361)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) +(-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) +(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) +(|has| |#1| (-15 * (|#1| (-787) |#1|))) +((((-1183)) . T) (((-519)) . T) (((-228)) . T) (((-577)) . T)) +((((-880)) . T)) +(((|#2|) . T) (((-577)) . T) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) (((-1107)) . T) ((|#1|) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577)))))) (((|#1| |#2|) . T)) ((((-145)) . T)) -((((-793 |#1| (-879 |#2|))) . T)) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) -(|has| |#1| (-1224)) -((((-877)) . T)) +((((-796 |#1| (-882 |#2|))) . T)) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +(|has| |#1| (-1227)) +((((-880)) . T)) (((|#1|) . T)) -(-2802 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-739)) (|has| |#3| (-806)) (|has| |#3| (-862)) (|has| |#3| (-1071)) (|has| |#3| (-1122))) -((((-1198) |#1|) |has| |#1| (-526 (-1198) |#1|))) +(-2839 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-380)) (|has| |#3| (-742)) (|has| |#3| (-809)) (|has| |#3| (-865)) (|has| |#3| (-1074)) (|has| |#3| (-1125))) +((((-1201) |#1|) |has| |#1| (-527 (-1201) |#1|))) (((|#2|) . T)) (((|#2|) . T)) -((($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((((-930 |#1|)) . T)) -((($) -2802 (-12 (|has| |#4| (-238)) (|has| |#4| (-1071))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1071))))) -((($) -2802 (-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1071))))) +((($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +((((-933 |#1|)) . T)) +((($) -2839 (-12 (|has| |#4| (-239)) (|has| |#4| (-1074))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1074))))) +((($) -2839 (-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1074))))) ((($) . T)) -((((-419 (-972 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(|has| |#1| (-862)) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-1198)) -2802 (-12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071))) (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071))))) -(|has| |#1| (-861)) -((((-548)) |has| |#4| (-626 (-548)))) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) -((((-877)) . T) (((-657 |#4|)) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -(((|#1|) . T)) -(|has| |#1| (-374)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) (((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) |has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))))) -(-2802 (-12 (|has| |#1| (-374)) (|has| |#2| (-833))) (-12 (|has| |#1| (-374)) (|has| |#2| (-862)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#3|) -2802 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-739)))) -((((-685 |#1|)) . T)) -(((|#3|) -2802 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-739)) (|has| |#3| (-1071)))) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((((-420 (-975 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(|has| |#1| (-865)) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-1201)) -2839 (-12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074))) (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))))) +(|has| |#1| (-864)) +((((-549)) |has| |#4| (-627 (-549)))) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) +((((-880)) . T) (((-660 |#4|)) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +(((|#1|) . T)) +(|has| |#1| (-375)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) (((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) |has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-320 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))))) +(-2839 (-12 (|has| |#1| (-375)) (|has| |#2| (-836))) (-12 (|has| |#1| (-375)) (|has| |#2| (-865)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#3|) -2839 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-742)))) +((((-688 |#1|)) . T)) +(((|#3|) -2839 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-742)) (|has| |#3| (-1074)))) +((((-577)) . T) (($) . T) (((-420 (-577))) . T)) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) (|has| |#1| (-146)) (|has| |#1| (-148)) -(-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) -(-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) +(-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-148)) (|has| |#1| (-375))) (|has| |#1| (-148))) +(-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) -((((-1281 |#1| |#2| |#3|)) |has| |#1| (-374))) -(|has| |#1| (-861)) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((((-1284 |#1| |#2| |#3|)) |has| |#1| (-375))) +(|has| |#1| (-864)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) -((((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T)) -((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-1122)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T) (((-576)) . T)) -((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) +(((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) +((((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T)) +((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +(|has| |#1| (-1125)) +(((|#1|) . T) (($) . T) (((-420 (-577))) . T) (((-577)) . T)) +((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((|#1|) . T) (((-577)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) -(-2802 (|has| |#2| (-833)) (|has| |#2| (-862))) -((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) -((((-576)) . T) ((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-576)) . T)) +(-2839 (|has| |#2| (-836)) (|has| |#2| (-865))) +((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) +((((-577)) . T) ((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-577)) . T)) (((|#2|) . T)) -((((-1198)) -2802 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198))))) +((((-1201)) -2839 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201))))) (((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-374))) -((((-419 |#2|)) . T)) -((((-877)) . T)) -(((|#1|) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-548)) |has| |#1| (-626 (-548)))) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) -(((|#1|) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)))) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((((-326 |#1|)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#2|) |has| |#2| (-374))) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +(((|#3|) |has| |#3| (-375))) +((((-420 |#2|)) . T)) +((((-880)) . T)) +(((|#1|) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-549)) |has| |#1| (-627 (-549)))) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +((((-577)) . T) (($) . T) (((-420 (-577))) . T)) +((((-1201) |#1|) |has| |#1| (-527 (-1201) |#1|)) ((|#1| |#1|) |has| |#1| (-320 |#1|))) +(((|#1|) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)))) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +((((-577)) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +((((-327 |#1|)) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) +(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) +(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) +(((|#2|) |has| |#2| (-375))) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) (((-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) (((|#2|) . T)) -((((-419 (-576))) . T) (((-712)) . T) (($) . T)) -((($) . T) (((-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(-2802 (|has| |#1| (-238)) (|has| |#1| (-237))) -(((#0=(-793 |#1| (-879 |#2|)) #0#) |has| (-793 |#1| (-879 |#2|)) (-319 (-793 |#1| (-879 |#2|))))) -((($) -2802 (|has| |#1| (-238)) (|has| |#1| (-237)))) -((((-576)) . T) (($) . T)) -((((-879 |#1|)) . T)) +((((-420 (-577))) . T) (((-715)) . T) (($) . T)) +((($) . T) (((-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(-2839 (|has| |#1| (-239)) (|has| |#1| (-238))) +(((#0=(-796 |#1| (-882 |#2|)) #0#) |has| (-796 |#1| (-882 |#2|)) (-320 (-796 |#1| (-882 |#2|))))) +((($) -2839 (|has| |#1| (-239)) (|has| |#1| (-238)))) +((((-577)) . T) (($) . T)) +((((-882 |#1|)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) (((|#2|) . T)) -((((-1198)) |has| |#1| (-918 (-1198))) (((-1104)) . T)) -((((-1198)) |has| |#1| (-918 (-1198))) (((-1110 (-1198))) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) -((($ (-1198)) -2802 (-12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071))) (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071))))) -((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(|has| |#1| (-38 (-419 (-576)))) -(((|#4|) |has| |#4| (-1071)) (((-576)) -12 (|has| |#4| (-652 (-576))) (|has| |#4| (-1071)))) -(((|#3|) |has| |#3| (-1071)) (((-576)) -12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) +((((-1201)) |has| |#1| (-921 (-1201))) (((-1107)) . T)) +((((-1201)) |has| |#1| (-921 (-1201))) (((-1113 (-1201))) . T)) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) +((($ (-1201)) -2839 (-12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074))) (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))))) +((((-420 (-577))) . T) (((-577)) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(|has| |#1| (-38 (-420 (-577)))) +(((|#4|) |has| |#4| (-1074)) (((-577)) -12 (|has| |#4| (-654 (-577))) (|has| |#4| (-1074)))) +(((|#3|) |has| |#3| (-1074)) (((-577)) -12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074)))) (|has| |#1| (-146)) (|has| |#1| (-148)) ((($ $) . T)) -(-2802 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-739)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071)) (|has| |#1| (-1134)) (|has| |#1| (-1122))) -(|has| |#1| (-568)) +(-2839 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-486)) (|has| |#1| (-742)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074)) (|has| |#1| (-1137)) (|has| |#1| (-1125))) +(|has| |#1| (-569)) (((|#2|) . T)) -((((-576)) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) +((((-577)) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) (((|#1|) . T)) -(-2802 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1071))) -((((-593 |#1|)) . T)) +(-2839 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1074))) +((((-594 |#1|)) . T)) ((($) . T)) (((|#1| (-59 |#1|) (-59 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) +((((-880)) . T)) ((($) . T)) -(((|#2|) |has| |#2| (-6 (-4468 "*")))) +(((|#2|) |has| |#2| (-6 (-4472 "*")))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) (((|#3|) . T)) ((($) . T)) -(((|#2|) . T) (((-576)) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#3|) . T) (((-576)) . T)) -((((-1274 |#2| |#3| |#4|)) . T) (((-576)) . T) (((-1275 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576)))) (((-576)) -2802 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1060 (-576))) (|has| |#1| (-1071))) ((|#1|) . T) (((-624 $)) . T) (($) |has| |#1| (-568)) (((-419 (-576))) -2802 (|has| |#1| (-568)) (|has| |#1| (-1060 (-419 (-576))))) (((-419 (-972 |#1|))) |has| |#1| (-568)) (((-972 |#1|)) |has| |#1| (-1071)) (((-1198)) . T)) -((((-419 (-576))) |has| |#2| (-1060 (-419 (-576)))) (((-576)) |has| |#2| (-1060 (-576))) ((|#2|) . T) (((-879 |#1|)) . T)) -((($) . T) (((-117 |#1|)) . T) (((-419 (-576))) . T)) -((((-1147 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) -((((-1194 |#1|)) . T) (((-1104)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) -((((-1147 |#1| (-1198))) . T) (((-1110 (-1198))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-1198)) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(((|#2|) . T) (((-577)) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#3|) . T) (((-577)) . T)) +((((-1277 |#2| |#3| |#4|)) . T) (((-577)) . T) (((-1278 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-420 (-577))) . T)) +((((-48)) -12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577)))) (((-577)) -2839 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1063 (-577))) (|has| |#1| (-1074))) ((|#1|) . T) (((-625 $)) . T) (($) |has| |#1| (-569)) (((-420 (-577))) -2839 (|has| |#1| (-569)) (|has| |#1| (-1063 (-420 (-577))))) (((-420 (-975 |#1|))) |has| |#1| (-569)) (((-975 |#1|)) |has| |#1| (-1074)) (((-1201)) . T)) +((((-420 (-577))) |has| |#2| (-1063 (-420 (-577)))) (((-577)) |has| |#2| (-1063 (-577))) ((|#2|) . T) (((-882 |#1|)) . T)) +((($) . T) (((-117 |#1|)) . T) (((-420 (-577))) . T)) +((((-1150 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) +((((-1197 |#1|)) . T) (((-1107)) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) +((((-1150 |#1| (-1201))) . T) (((-1113 (-1201))) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-1201)) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) ((($) . T)) -(|has| |#1| (-1122)) -((((-576)) -12 (|has| |#1| (-902 (-576))) (|has| |#2| (-902 (-576)))) (((-390)) -12 (|has| |#1| (-902 (-390))) (|has| |#2| (-902 (-390))))) +(|has| |#1| (-1125)) +((((-577)) -12 (|has| |#1| (-905 (-577))) (|has| |#2| (-905 (-577)))) (((-391)) -12 (|has| |#1| (-905 (-391))) (|has| |#2| (-905 (-391))))) (((|#1| |#2|) . T)) -((((-1198) |#1|) . T)) +((((-1201) |#1|) . T)) (((|#4|) . T)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1198) (-52)) . T)) -((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) |has| |#1| (-1060 (-576))) ((|#1|) . T)) -((((-1274 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T)) -((((-877)) . T)) -(-2802 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-739)) (|has| |#2| (-806)) (|has| |#2| (-862)) (|has| |#2| (-1071)) (|has| |#2| (-1122))) -(((#0=(-1275 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-174)) ((#0=(-419 (-576)) #0#) |has| |#1| (-568)) (($ $) |has| |#1| (-568))) -((($) |has| |#1| (-15 * (|#1| (-576) |#1|)))) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1| $) |has| |#1| (-296 |#1| |#1|))) -((((-1275 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-568)) (($) |has| |#1| (-568))) -((((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) -(|has| |#1| (-374)) -((($) |has| |#1| (-861)) (((-576)) -2802 (|has| |#1| (-21)) (|has| |#1| (-861)))) -((($) -2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) -((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-361))) +((((-1201) (-52)) . T)) +((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) |has| |#1| (-1063 (-577))) ((|#1|) . T)) +((((-1277 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) . T)) +((((-880)) . T)) +(-2839 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-380)) (|has| |#2| (-742)) (|has| |#2| (-809)) (|has| |#2| (-865)) (|has| |#2| (-1074)) (|has| |#2| (-1125))) +(((#0=(-1278 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-174)) ((#0=(-420 (-577)) #0#) |has| |#1| (-569)) (($ $) |has| |#1| (-569))) +((($) |has| |#1| (-15 * (|#1| (-577) |#1|)))) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) +(((|#1| $) |has| |#1| (-297 |#1| |#1|))) +((((-1278 |#1| |#2| |#3| |#4|)) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-569)) (($) |has| |#1| (-569))) +((((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1|) . T)) +(|has| |#1| (-375)) +((($) |has| |#1| (-864)) (((-577)) -2839 (|has| |#1| (-21)) (|has| |#1| (-864)))) +((($) -2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) +((($) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-419 (-576))) . T) (($) . T)) -(((|#3|) |has| |#3| (-374))) -((($) |has| |#1| (-15 * (|#1| (-784) |#1|)))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) -((((-1198)) . T)) -((($) . T) (((-1274 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| (-1274 |#2| |#3| |#4|) (-38 (-419 (-576)))) (((-576)) . T)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) -(|has| |#1| (-862)) +((((-420 (-577))) . T) (($) . T)) +(((|#3|) |has| |#3| (-375))) +((($) |has| |#1| (-15 * (|#1| (-787) |#1|)))) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) +((((-1201)) . T)) +((($) . T) (((-1277 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| (-1277 |#2| |#3| |#4|) (-38 (-420 (-577)))) (((-577)) . T)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) +(|has| |#1| (-865)) (((|#2| |#3|) . T)) -(((|#1| (-543 |#2|)) . T)) -(((|#1| (-784)) . T)) -(-2802 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) -(((|#1| (-543 (-1110 (-1198)))) . T)) +(((|#1| (-544 |#2|)) . T)) +(((|#1| (-787)) . T)) +(-2839 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) +(((|#1| (-544 (-1113 (-1201)))) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) -(|has| |#2| (-929)) -(-2802 (|has| |#2| (-806)) (|has| |#2| (-862))) -((((-877)) . T)) -(((|#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-739)))) -(((|#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-739)) (|has| |#2| (-1071)))) -((($ (-1198)) -2802 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) -((($ $) . T) ((#0=(-1274 |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) |has| #0# (-38 (-419 (-576))))) -((((-930 |#1|)) . T)) -(-12 (|has| |#1| (-374)) (|has| |#2| (-833))) -((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-877)) . T)) -((($) . T) (((-576)) . T)) +(|has| |#2| (-932)) +(-2839 (|has| |#2| (-809)) (|has| |#2| (-865))) +((((-880)) . T)) +(((|#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-742)))) +(((|#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-742)) (|has| |#2| (-1074)))) +((($ (-1201)) -2839 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))))) +((($ $) . T) ((#0=(-1277 |#2| |#3| |#4|) #0#) . T) ((#1=(-420 (-577)) #1#) |has| #0# (-38 (-420 (-577))))) +((((-933 |#1|)) . T)) +(-12 (|has| |#1| (-375)) (|has| |#2| (-836))) +((((-577)) . T) (($) . T) (((-420 (-577))) . T)) +((((-880)) . T)) +((($) . T) (((-577)) . T)) ((($) . T)) -(-2802 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) -(|has| |#1| (-374)) -(|has| |#1| (-374)) +(-2839 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361)) (|has| |#1| (-569))) +(|has| |#1| (-375)) +(|has| |#1| (-375)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1274 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) -((((-1196 |#1| |#2| |#3|)) |has| |#1| (-374))) -(-2802 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-374)) (|has| |#1| (-360))) -(-2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071))) -((((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T)) +((($) . T) ((#0=(-1277 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) +((((-1199 |#1| |#2| |#3|)) |has| |#1| (-375))) +(-2839 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-375)) (|has| |#1| (-361))) +(-2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074))) +((((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-880)) . T)) +((((-880)) . T)) ((((-112)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|))) . T)) +(((|#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|))) . T)) (((|#2|) . T)) -(|has| |#2| (-374)) -(|has| |#1| (-862)) -(|has| |#1| (-862)) +(|has| |#2| (-375)) +(|has| |#1| (-865)) +(|has| |#1| (-865)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-576)) . T)) +((((-577)) . T)) (((|#1|) . T)) -((((-877)) . T)) +((((-880)) . T)) (((|#2|) |has| |#2| (-174))) -(|has| |#1| (-1122)) +(|has| |#1| (-1125)) (((|#1|) |has| |#1| (-174))) (((|#2|) . T)) (((|#1|) . T)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-576)) . T) (($) . T)) -(((|#3|) . T) (((-576)) . T) (($) . T)) -((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-833)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-420 (-577))) . T) (((-420 |#1|)) . T) ((|#1|) . T) (((-577)) . T) (($) . T)) +(((|#3|) . T) (((-577)) . T) (($) . T)) +((((-420 $) (-420 $)) |has| |#1| (-569)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#2| (-836)) ((($) . T)) (((|#4|) . T)) ((($) . T)) -((($ (-1198)) -2802 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))))) -((((-877)) . T)) -(((|#1| (-543 (-1198))) . T)) +((($ (-1201)) -2839 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))))) +((((-880)) . T)) +(((|#1| (-544 (-1201))) . T)) ((($ $) . T)) (((|#1|) |has| |#1| (-174))) ((($) . T)) -((((-877)) . T)) +((((-880)) . T)) (((|#2|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) +(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (((|#2|) . T)) -(((|#2|) -2802 (|has| |#2| (-6 (-4468 "*"))) (|has| |#2| (-174)))) -(-2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -(|has| |#2| (-929)) -(|has| |#1| (-929)) -((($) -2802 (-12 (|has| |#2| (-238)) (|has| |#2| (-1071))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1071))))) +(((|#2|) -2839 (|has| |#2| (-6 (-4472 "*"))) (|has| |#2| (-174)))) +(-2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +(|has| |#2| (-932)) +(|has| |#1| (-932)) +((($) -2839 (-12 (|has| |#2| (-239)) (|has| |#2| (-1074))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))))) (((|#2|) |has| |#2| (-174))) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -((((-1281 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-877)) . T)) -((((-877)) . T)) -((((-548)) . T) (((-576)) . T) (((-908 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +((((-1284 |#1| |#2| |#3|)) |has| |#1| (-375))) +((((-880)) . T)) +((((-880)) . T)) +((((-549)) . T) (((-577)) . T) (((-911 (-577))) . T) (((-391)) . T) (((-228)) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-576)) . T)) -((((-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) . T)) +((($) . T) (((-577)) . T)) +((((-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) . T)) (((|#1|) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -((((-877)) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +((((-880)) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-576)) . T)) -(((|#1| (-419 (-576))) . T)) +((($) . T) (((-577)) . T)) +(((|#1| (-420 (-577))) . T)) (((|#1|) . T)) -(-2802 (|has| |#1| (-300)) (|has| |#1| (-374))) +(-2839 (|has| |#1| (-301)) (|has| |#1| (-375))) ((((-145)) . T)) -((((-576)) |has| #0=(-419 |#2|) (-652 (-576))) ((#0#) . T) (((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-861)) -((((-877)) . T)) -((((-877)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) +((((-577)) |has| #0=(-420 |#2|) (-654 (-577))) ((#0#) . T) (((-420 (-577))) . T) (($) . T)) +(|has| |#1| (-864)) +((((-880)) . T)) +((((-880)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-189)) . T) (((-877)) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) +((((-420 (-577))) . T) (($) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-189)) . T) (((-880)) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-548)) |has| |#1| (-626 (-548))) (((-908 (-576))) |has| |#1| (-626 (-908 (-576)))) (((-908 (-390))) |has| |#1| (-626 (-908 (-390))))) -((((-1198) (-52)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-549)) |has| |#1| (-627 (-549))) (((-911 (-577))) |has| |#1| (-627 (-911 (-577)))) (((-911 (-391))) |has| |#1| (-627 (-911 (-391))))) +((((-1201) (-52)) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($ (-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) -((((-657 (-145))) . T) (((-1180)) . T)) -((((-877)) . T)) -((((-1180)) . T)) -((((-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) -(|has| |#1| (-862)) -((((-877)) . T)) -((((-548)) |has| |#1| (-626 (-548)))) -((((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) . T)) -((($) -2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) -((((-877)) . T)) -(((|#2|) |has| |#2| (-374))) -((((-877)) . T)) -((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) -((($) |has| |#1| (-15 * (|#1| (-784) |#1|)))) +((($ (-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) +((((-660 (-145))) . T) (((-1183)) . T)) +((((-880)) . T)) +((((-1183)) . T)) +((((-1201) |#1|) |has| |#1| (-527 (-1201) |#1|)) ((|#1| |#1|) |has| |#1| (-320 |#1|))) +(|has| |#1| (-865)) +((((-880)) . T)) +((((-549)) |has| |#1| (-627 (-549)))) +((((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) . T)) +((($) -2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) +((((-880)) . T)) +(((|#2|) |has| |#2| (-375))) +((((-880)) . T)) +((($) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) +((($) |has| |#1| (-15 * (|#1| (-787) |#1|)))) (((|#2|) . T)) -((((-548)) |has| |#4| (-626 (-548)))) -((((-877)) . T) (((-657 |#4|)) . T)) -((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T) (((-624 $)) . T)) -(|has| |#4| (-1071)) -(|has| |#3| (-1071)) -(|has| |#1| (-1122)) -((((-1198) (-52)) . T)) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-2802 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071))) -(-2802 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-806)) (|has| |#2| (-1071))) -(|has| |#1| (-929)) -((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(|has| |#1| (-929)) -(((|#1|) . T) (((-576)) . T) (((-419 (-576))) . T) (($) . T)) +((((-549)) |has| |#4| (-627 (-549)))) +((((-880)) . T) (((-660 |#4|)) . T)) +((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) . T) (((-625 $)) . T)) +(|has| |#4| (-1074)) +(|has| |#3| (-1074)) +(|has| |#1| (-1125)) +((((-1201) (-52)) . T)) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-2839 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074))) +(-2839 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-809)) (|has| |#2| (-1074))) +(|has| |#1| (-932)) +((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) +(|has| |#1| (-932)) +(((|#1|) . T) (((-577)) . T) (((-420 (-577))) . T) (($) . T)) (((|#2|) . T)) -((($ (-1198)) -2802 (-12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071))) (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071))))) -(((#0=(-419 (-576)) #0#) . T) (($ $) . T)) -((((-576)) . T)) -(((|#1|) . T)) -((((-877)) . T)) -((((-419 (-576))) . T) (($) . T)) -(((|#1| (-419 (-576)) (-1104)) . T)) -(|has| |#1| (-1122)) -(|has| |#1| (-568)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -(|has| |#1| (-833)) -(((#0=(-930 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) -((((-419 |#2|)) . T)) -(|has| |#1| (-861)) -((((-1225 |#1|)) . T) (((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) -(((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) . T) ((#1=(-576) #1#) . T) (($ $) . T)) -((((-930 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#2|) |has| |#2| (-1071)) (((-576)) -12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) -((((-930 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) +((($ (-1201)) -2839 (-12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074))) (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))))) +(((#0=(-420 (-577)) #0#) . T) (($ $) . T)) +((((-577)) . T)) +(((|#1|) . T)) +((((-880)) . T)) +((((-420 (-577))) . T) (($) . T)) +(((|#1| (-420 (-577)) (-1107)) . T)) +(|has| |#1| (-1125)) +(|has| |#1| (-569)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +(|has| |#1| (-836)) +(((#0=(-933 |#1|) #0#) . T) (($ $) . T) ((#1=(-420 (-577)) #1#) . T)) +((((-420 |#2|)) . T)) +(|has| |#1| (-864)) +((((-1228 |#1|)) . T) (((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +(((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) . T) ((#1=(-577) #1#) . T) (($ $) . T)) +((((-933 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +(((|#2|) |has| |#2| (-1074)) (((-577)) -12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) +((((-933 |#1|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) (((|#2|) . T)) -((((-877)) . T)) -((((-1198)) . T)) -((((-419 (-576))) . T) (((-712)) . T) (($) . T) (((-576)) . T)) +((((-880)) . T)) +((((-1201)) . T)) +((((-420 (-577))) . T) (((-715)) . T) (($) . T) (((-577)) . T)) (((|#1|) |has| |#1| (-174))) (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(-2802 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-2802 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-2802 (|has| |#1| (-146)) (|has| |#1| (-379))) -((((-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) . T)) -((((-576) |#3|) . T)) -(((#0=(-52)) . T) (((-2 (|:| -4291 (-1198)) (|:| -4440 #0#))) . T)) -(|has| |#1| (-360)) -((((-576)) . T)) -((((-877)) . T)) -(((|#1|) . T)) -(((#0=(-1275 |#1| |#2| |#3| |#4|) $) |has| #0# (-296 #0# #0#))) -(|has| |#1| (-374)) -(-2802 (-12 (|has| |#2| (-238)) (|has| |#2| (-1071))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) -(((|#1|) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1071))) (($) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071))) (((-576)) -2802 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071)))) -(((#0=(-1104) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-360))) -(((#0=(-419 (-576)) #0#) . T) ((#1=(-712) #1#) . T) (($ $) . T)) -((((-326 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-374))) -((((-877)) . T)) -(|has| |#1| (-1122)) -(((|#1|) . T)) -(((|#1|) -2802 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) -(((|#1|) -2802 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) +(-2839 (|has| |#1| (-146)) (|has| |#1| (-380))) +(-2839 (|has| |#1| (-146)) (|has| |#1| (-380))) +(-2839 (|has| |#1| (-146)) (|has| |#1| (-380))) +((((-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) . T)) +((((-577) |#3|) . T)) +(((|#1|) . T)) +(((#0=(-52)) . T) (((-2 (|:| -4295 (-1201)) (|:| -4444 #0#))) . T)) +(|has| |#1| (-361)) +((((-577)) . T)) +((((-880)) . T)) +(((|#1|) . T)) +(((#0=(-1278 |#1| |#2| |#3| |#4|) $) |has| #0# (-297 #0# #0#))) +(|has| |#1| (-375)) +(-2839 (-12 (|has| |#2| (-239)) (|has| |#2| (-1074))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1074)))) +(((|#1|) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1074))) (($) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074))) (((-577)) -2839 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074)))) +(((#0=(-1107) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-361))) +(((#0=(-420 (-577)) #0#) . T) ((#1=(-715) #1#) . T) (($ $) . T)) +((((-327 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) |has| |#1| (-375))) +((((-880)) . T)) +(|has| |#1| (-1125)) +(((|#1|) . T)) +(((|#1|) -2839 (|has| |#2| (-379 |#1|)) (|has| |#2| (-430 |#1|)))) +(((|#1|) -2839 (|has| |#2| (-379 |#1|)) (|has| |#2| (-430 |#1|)))) (((|#2|) . T)) -((((-419 (-576))) . T) (((-712)) . T) (($) . T)) -((((-591)) . T)) +((((-420 (-577))) . T) (((-715)) . T) (($) . T)) +((((-592)) . T)) (((|#3| |#3|) . T)) -((($ (-1198)) -2802 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198))))) -(|has| |#1| (-862)) -(|has| |#2| (-238)) -((((-879 |#1|)) . T)) -((((-1198)) |has| |#1| (-918 (-1198))) ((|#3|) . T)) -((((-657 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -(-12 (|has| |#1| (-374)) (|has| |#2| (-1044))) -(|has| |#1| (-862)) -((((-419 (-576))) . T) (($) . T)) -((((-1196 |#1| |#2| |#3|)) |has| |#1| (-374))) -((($) . T) (((-419 (-576))) . T)) -((((-877)) . T)) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) -((((-576)) . T) (((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-576)) . T)) +((($ (-1201)) -2839 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201))))) +(|has| |#1| (-865)) +(|has| |#2| (-239)) +((((-882 |#1|)) . T)) +((((-1201)) |has| |#1| (-921 (-1201))) ((|#3|) . T)) +((((-660 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +(-12 (|has| |#1| (-375)) (|has| |#2| (-1047))) +(|has| |#1| (-865)) +((((-420 (-577))) . T) (($) . T)) +((((-1199 |#1| |#2| |#3|)) |has| |#1| (-375))) +((($) . T) (((-420 (-577))) . T)) +((((-880)) . T)) +(|has| |#1| (-375)) +(|has| |#1| (-375)) +((((-420 (-577))) . T) (($) . T) (((-420 |#1|)) . T) ((|#1|) . T)) +((((-577)) . T) (((-117 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +((((-577)) . T)) (((|#3|) . T)) -(|has| |#1| (-1122)) +(|has| |#1| (-1125)) (((|#2|) . T)) (((|#1|) . T)) -((($) -2802 (|has| |#1| (-238)) (|has| |#1| (-237)))) -((((-576)) . T)) -(((|#2|) . T) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((|#1|) . T) (($) . T) (((-576)) . T)) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -(((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) +((($) -2839 (|has| |#1| (-239)) (|has| |#1| (-238)))) +((((-577)) . T)) +(((|#2|) . T) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((|#1|) . T) (($) . T) (((-577)) . T)) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +(((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((($) . T) (((-419 (-576))) . T)) +((((-594 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +((($) . T) (((-420 (-577))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-576)) . T)) -(((|#1|) . T) (((-576)) . T)) -(((|#1| (-1289 |#1|) (-1289 |#1|)) . T)) +(((|#1|) . T) (((-577)) . T)) +(((|#1|) . T) (((-577)) . T)) +(((|#1| (-1292 |#1|) (-1292 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-880)) . T)) +((((-880)) . T)) (((|#2|) . T)) (((|#3|) . T)) -(((#0=(-117 |#1|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -((((-419 (-576))) |has| |#2| (-1060 (-419 (-576)))) (((-576)) |has| |#2| (-1060 (-576))) ((|#2|) . T) (((-879 |#1|)) . T)) -((((-1147 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((|#2|) . T)) +(((#0=(-117 |#1|) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) +((((-420 (-577))) |has| |#2| (-1063 (-420 (-577)))) (((-577)) |has| |#2| (-1063 (-577))) ((|#2|) . T) (((-882 |#1|)) . T)) +((((-1150 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#3|) . T)) ((($ $) . T)) -((((-685 |#1|)) . T)) -((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) -((((-117 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-576)) -12 (|has| |#1| (-902 (-576))) (|has| |#3| (-902 (-576)))) (((-390)) -12 (|has| |#1| (-902 (-390))) (|has| |#3| (-902 (-390))))) +((((-688 |#1|)) . T)) +((($) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) +((((-117 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +((((-577)) -12 (|has| |#1| (-905 (-577))) (|has| |#3| (-905 (-577)))) (((-391)) -12 (|has| |#1| (-905 (-391))) (|has| |#3| (-905 (-391))))) (((|#2|) . T) ((|#6|) . T)) -((((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) +((((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) (($) . T)) ((((-145)) . T)) ((($) . T)) -((($) . T) (((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-390)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((($) . T) (((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T)) -(|has| |#2| (-929)) -(|has| |#1| (-929)) -(|has| |#1| (-929)) -(|has| |#2| (-1044)) +((($) . T) (((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-391)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) +((($) . T) (((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#1|) . T)) +(|has| |#2| (-932)) +(|has| |#1| (-932)) +(|has| |#1| (-932)) +(|has| |#2| (-1047)) ((($) . T)) -(|has| |#1| (-929)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) +(|has| |#1| (-932)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) (((|#4|) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) -(|has| |#1| (-374)) -((((-930 |#1|)) . T)) -((($) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) . T)) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) |has| |#1| (-861)) (((-576)) -2802 (|has| |#1| (-21)) (|has| |#1| (-861)))) -((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(-2802 (|has| |#1| (-379)) (|has| |#1| (-862))) -(((|#1|) . T)) -((((-784)) . T)) -((((-877)) . T)) -((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) -((((-419 |#2|) |#3|) . T)) -(-2802 (-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1071)))) -((($) . T) (((-419 (-576))) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T) (((-624 $)) . T)) -((((-576)) . T) (($) . T)) -((((-576)) . T) (($) . T)) -((((-784) |#1|) . T)) -(((|#2| (-245 (-3440 |#1|) (-784))) . T)) -(((|#1| (-543 |#3|)) . T)) -((((-419 (-576))) . T)) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -((((-1180)) . T) (((-877)) . T)) -(((#0=(-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) #0#) |has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))))) -((((-1180)) . T)) -(|has| |#1| (-929)) -(|has| |#2| (-374)) -(((|#1|) . T) (($) . T) (((-576)) . T)) -(-2802 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-806)) (|has| |#2| (-1071))) -((((-171 (-390))) . T) (((-227)) . T) (((-390)) . T)) -((((-877)) . T)) -(((|#1|) . T)) -((((-390)) . T) (((-576)) . T)) -(((#0=(-419 (-576)) #0#) . T) (($ $) . T)) +(|has| |#1| (-375)) +((((-933 |#1|)) . T)) +((($) . T) (((-577)) . T) ((|#1|) . T) (((-420 (-577))) . T)) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) |has| |#1| (-864)) (((-577)) -2839 (|has| |#1| (-21)) (|has| |#1| (-864)))) +((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) +(-2839 (|has| |#1| (-380)) (|has| |#1| (-865))) +(((|#1|) . T)) +((((-787)) . T)) +((((-880)) . T)) +((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) +((((-420 |#2|) |#3|) . T)) +(-2839 (-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1074)))) +((($) . T) (((-420 (-577))) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) . T) (((-625 $)) . T)) +((((-577)) . T) (($) . T)) +((((-577)) . T) (($) . T)) +((((-787) |#1|) . T)) +(((|#2| (-246 (-3484 |#1|) (-787))) . T)) +(((|#1| (-544 |#3|)) . T)) +((((-420 (-577))) . T)) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +((((-1183)) . T) (((-880)) . T)) +(((#0=(-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) #0#) |has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-320 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))))) +((((-1183)) . T)) +(|has| |#1| (-932)) +(|has| |#2| (-375)) +(((|#1|) . T) (($) . T) (((-577)) . T)) +(-2839 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-809)) (|has| |#2| (-1074))) +((((-171 (-391))) . T) (((-228)) . T) (((-391)) . T)) +((((-880)) . T)) +(((|#1|) . T)) +((((-391)) . T) (((-577)) . T)) +(((#0=(-420 (-577)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-877)) . T)) -(|has| |#1| (-568)) -((((-419 (-576))) . T) (($) . T)) +((((-880)) . T)) +(|has| |#1| (-569)) +((((-420 (-577))) . T) (($) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -(-2802 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) -(|has| |#1| (-38 (-419 (-576)))) -(-12 (|has| |#1| (-557)) (|has| |#1| (-841))) -((((-877)) . T)) -((((-1198)) -2802 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-918 (-1198)))))) -(|has| |#1| (-374)) -((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) -(|has| |#1| (-374)) -((((-419 (-576))) . T) (($) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -((((-576) |#1|) . T)) -((((-1198)) |has| |#1| (-918 (-1198)))) -(((|#1|) . T)) -(-2802 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360))) -(((|#2|) |has| |#1| (-374))) -(((|#2|) |has| |#1| (-374))) -(-2802 (|has| |#4| (-806)) (|has| |#4| (-862))) -(-2802 (|has| |#3| (-806)) (|has| |#3| (-862))) -((((-576)) . T) (($) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +(-2839 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361))) +(|has| |#1| (-38 (-420 (-577)))) +(-12 (|has| |#1| (-558)) (|has| |#1| (-844))) +((((-880)) . T)) +((((-1201)) -2839 (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-921 (-1201)))))) +(|has| |#1| (-375)) +((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) +(|has| |#1| (-375)) +((((-420 (-577))) . T) (($) . T)) +((((-420 |#2|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +((($) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +((((-577) |#1|) . T)) +((((-1201)) |has| |#1| (-921 (-1201)))) +(((|#1|) . T)) +(-2839 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361))) +(((|#2|) |has| |#1| (-375))) +(((|#2|) |has| |#1| (-375))) +(-2839 (|has| |#4| (-809)) (|has| |#4| (-865))) +(-2839 (|has| |#3| (-809)) (|has| |#3| (-865))) +((((-577)) . T) (($) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-1198)) -12 (|has| |#1| (-374)) (|has| |#2| (-1060 (-1198)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1060 (-576)))) (((-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1060 (-576))))) +(((|#2|) . T) (((-1201)) -12 (|has| |#1| (-375)) (|has| |#2| (-1063 (-1201)))) (((-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-1063 (-577)))) (((-420 (-577))) -12 (|has| |#1| (-375)) (|has| |#2| (-1063 (-577))))) (((|#2|) . T)) ((($) . T)) -((((-1198) #0=(-1275 |#1| |#2| |#3| |#4|)) |has| #0# (-526 (-1198) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) -((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) -((((-624 $) $) . T) (($ $) . T)) -((((-171 (-227))) . T) (((-171 (-390))) . T) (((-1194 (-712))) . T) (((-908 (-390))) . T)) +((((-1201) #0=(-1278 |#1| |#2| |#3| |#4|)) |has| #0# (-527 (-1201) #0#)) ((#0# #0#) |has| #0# (-320 #0#))) +((((-420 (-577))) . T) (($) . T) (((-420 |#1|)) . T) ((|#1|) . T)) +((((-625 $) $) . T) (($ $) . T)) +((((-171 (-228))) . T) (((-171 (-391))) . T) (((-1197 (-715))) . T) (((-911 (-391))) . T)) (((|#3|) . T)) -(|has| |#1| (-568)) -(|has| (-419 |#2|) (-238)) -(((|#1| (-419 (-576))) . T)) -((($) . T) (((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T)) +(|has| |#1| (-569)) +(|has| (-420 |#2|) (-239)) +(((|#1| (-420 (-577))) . T)) +((($) . T) (((-420 (-577))) . T) (((-420 |#1|)) . T) ((|#1|) . T)) (((|#3|) . T)) -(|has| |#1| (-568)) -((((-877)) . T)) +(|has| |#1| (-569)) +((((-880)) . T)) ((($ $) . T)) -((((-877)) . T)) +((((-880)) . T)) ((($) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-1198)) |has| |#2| (-918 (-1198)))) -(((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(|has| |#1| (-862)) -((((-877)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(((|#2|) |has| |#1| (-374))) -((((-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-902 (-390)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-902 (-576))))) -(((|#1|) . T)) -((($) . T) (((-576)) . T) ((|#2|) . T)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-568))) +((((-420 (-577))) . T) (($) . T)) +((((-1201)) |has| |#2| (-921 (-1201)))) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-577)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(|has| |#1| (-865)) +((((-880)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#2|) |has| |#1| (-375))) +((((-391)) -12 (|has| |#1| (-375)) (|has| |#2| (-905 (-391)))) (((-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-905 (-577))))) +(((|#1|) . T)) +((($) . T) (((-577)) . T) ((|#2|) . T)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-569))) (((|#3|) . T)) -((((-1180)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T)) -(((|#1|) . T)) -(|has| |#1| (-374)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-568))) -(|has| |#1| (-374)) -(|has| |#1| (-568)) -(((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(-2802 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-806)) (|has| |#2| (-1071))) +((((-1183)) . T) (((-519)) . T) (((-228)) . T) (((-577)) . T)) +(((|#1|) . T)) +(|has| |#1| (-375)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-569))) +(|has| |#1| (-375)) +(|has| |#1| (-569)) +(((|#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) +((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) +(-2839 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-809)) (|has| |#2| (-1074))) (((|#2|) . T)) (((|#2|) . T)) -(|has| |#2| (-1071)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -((((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -(|has| |#1| (-38 (-419 (-576)))) +(|has| |#2| (-1074)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +((((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +(|has| |#1| (-38 (-420 (-577)))) (((|#1| |#2|) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(-2802 (|has| |#1| (-146)) (|has| |#1| (-379))) +(|has| |#1| (-38 (-420 (-577)))) +(-2839 (|has| |#1| (-146)) (|has| |#1| (-380))) ((($) . T)) (|has| |#1| (-148)) -(-2802 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2839 (|has| |#1| (-146)) (|has| |#1| (-380))) (|has| |#1| (-148)) -(-2802 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2839 (|has| |#1| (-146)) (|has| |#1| (-380))) (|has| |#1| (-148)) ((($) . T)) -((((-593 |#1|)) . T)) +((((-594 |#1|)) . T)) ((($) . T)) -((((-1180) |#1|) . T)) -(|has| |#1| (-568)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) +((((-1183) |#1|) . T)) +(|has| |#1| (-569)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) ((($) . T)) ((($) . T)) -((((-419 |#2|)) . T)) -((((-419 |#2|)) . T)) -((((-419 (-576))) |has| |#2| (-1060 (-576))) (((-576)) |has| |#2| (-1060 (-576))) (((-1198)) |has| |#2| (-1060 (-1198))) ((|#2|) . T)) -(((#0=(-419 |#2|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) +((((-420 |#2|)) . T)) +((((-420 |#2|)) . T)) +((((-420 (-577))) |has| |#2| (-1063 (-577))) (((-577)) |has| |#2| (-1063 (-577))) (((-1201)) |has| |#2| (-1063 (-1201))) ((|#2|) . T)) +(((#0=(-420 |#2|) #0#) . T) ((#1=(-420 (-577)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(-2802 (|has| |#1| (-146)) (|has| |#1| (-360))) +(-2839 (|has| |#1| (-146)) (|has| |#1| (-361))) (|has| |#1| (-148)) -((((-877)) . T)) +((((-880)) . T)) ((($) . T)) -((((-1162 |#1| |#2|)) . T)) -(((|#1| (-576)) . T)) -(((|#1| (-419 (-576))) . T)) -((((-576)) |has| |#2| (-902 (-576))) (((-390)) |has| |#2| (-902 (-390)))) +((((-1165 |#1| |#2|)) . T)) +(((|#1| (-577)) . T)) +(((|#1| (-420 (-577))) . T)) +((((-577)) |has| |#2| (-905 (-577))) (((-391)) |has| |#2| (-905 (-391)))) (((|#2|) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) ((((-112)) . T)) -(((|#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) +(((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) (((|#2|) . T)) -((((-877)) . T)) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((((-1198) (-52)) . T)) -((((-419 |#2|)) . T)) -((((-877)) . T)) -(((|#1|) . T)) -((((-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198))))) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) -(|has| |#1| (-804)) -(|has| |#1| (-804)) -((((-877)) . T)) -((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-877)) . T)) -((((-548)) |has| |#1| (-626 (-548)))) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) +((((-880)) . T)) +(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-1201) (-52)) . T)) +((((-420 |#2|)) . T)) +((((-880)) . T)) +(((|#1|) . T)) +((((-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201))))) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) +(|has| |#1| (-807)) +(|has| |#1| (-807)) +((((-880)) . T)) +((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) +((((-880)) . T)) +((((-549)) |has| |#1| (-627 (-549)))) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) ((((-115)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-227)) . T) (((-390)) . T) (((-908 (-390))) . T)) -((((-877)) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568))) -((((-877)) . T)) -(-2802 (-12 (|has| |#2| (-238)) (|has| |#2| (-1071))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) -((((-877)) . T)) +((((-228)) . T) (((-391)) . T) (((-911 (-391))) . T)) +((((-880)) . T)) +((((-1278 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-420 (-577))) . T)) +(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569)) (((-420 (-577))) |has| |#1| (-569))) +((((-880)) . T)) +(-2839 (-12 (|has| |#2| (-239)) (|has| |#2| (-1074))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1074)))) +((((-880)) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((#0=(-930 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) +(((#0=(-933 |#1|) #0#) . T) (($ $) . T) ((#1=(-420 (-577)) #1#) . T)) (((|#1|) . T)) -((((-877)) . T)) +((((-880)) . T)) (((|#1|) . T)) -((((-930 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -(|has| |#1| (-374)) -((((-877)) . T)) +((((-933 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +(|has| |#1| (-375)) +((((-880)) . T)) (((|#2|) . T)) -((((-576)) . T)) -((((-1198)) -2802 (|has| (-419 |#2|) (-918 (-1198))) (|has| (-419 |#2|) (-920 (-1198))))) -((((-877)) . T)) -((((-576)) . T)) -(-2802 (|has| |#2| (-806)) (|has| |#2| (-862))) -((((-171 (-390))) . T) (((-227)) . T) (((-390)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-1180)) . T) (((-548)) . T) (((-576)) . T) (((-908 (-576))) . T) (((-390)) . T) (((-227)) . T)) -((((-877)) . T)) +((((-577)) . T)) +((((-1201)) -2839 (|has| (-420 |#2|) (-921 (-1201))) (|has| (-420 |#2|) (-923 (-1201))))) +((((-880)) . T)) +((((-577)) . T)) +(-2839 (|has| |#2| (-809)) (|has| |#2| (-865))) +((((-171 (-391))) . T) (((-228)) . T) (((-391)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-1183)) . T) (((-549)) . T) (((-577)) . T) (((-911 (-577))) . T) (((-391)) . T) (((-228)) . T)) +((((-880)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((($) . T) ((#0=(-1274 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) -((((-576) $) . T) (((-657 (-576)) $) . T)) -(-2802 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-739)) (|has| |#1| (-918 (-1198))) (|has| |#1| (-1071)) (|has| |#1| (-1134)) (|has| |#1| (-1122))) -(|has| |#1| (-1174)) -((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) +((($) . T) ((#0=(-1277 |#2| |#3| |#4|)) |has| #0# (-174)) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) +(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) +(|has| |#1| (-375)) +(|has| |#1| (-375)) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((((-880)) . T)) +((((-577) $) . T) (((-660 (-577)) $) . T)) +(-2839 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-486)) (|has| |#1| (-742)) (|has| |#1| (-921 (-1201))) (|has| |#1| (-1074)) (|has| |#1| (-1137)) (|has| |#1| (-1125))) +(|has| |#1| (-1177)) +((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) ((($) . T)) -((((-930 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-576) |#1|) . T)) +((((-933 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +((((-577) |#1|) . T)) (((|#1|) . T)) -(((#0=(-117 |#1|) $) |has| #0# (-296 #0# #0#))) +(((#0=(-117 |#1|) $) |has| #0# (-297 #0# #0#))) (((|#1|) |has| |#1| (-174))) -((((-326 |#1|)) . T) (((-576)) . T)) -(-2802 (|has| |#2| (-238)) (|has| |#2| (-237))) +((((-327 |#1|)) . T) (((-577)) . T)) +(-2839 (|has| |#2| (-239)) (|has| |#2| (-238))) +(((|#1|) . T)) +(((|#1| |#1|) . T)) +((((-880)) . T)) (((|#1|) . T)) -((((-877)) . T)) ((((-115)) . T) ((|#1|) . T)) -((((-877)) . T)) -((((-1198)) -2802 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198))))) -(((|#1|) |has| |#1| (-319 |#1|))) -((((-576) |#1|) . T) (((-1256 (-576)) $) . T)) +((((-880)) . T)) +((((-1201)) -2839 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201))))) +(((|#1|) |has| |#1| (-320 |#1|))) +((((-577) |#1|) . T) (((-1259 (-577)) $) . T)) (((|#1| |#2|) . T)) -((((-1198) |#1|) . T)) -(((|#1|) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)))) +((((-1201) |#1|) . T)) +(((|#1|) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)))) (((|#1|) . T)) -((($ (-1198)) . T)) -(((|#1|) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1071)))) -((((-576)) . T) (((-419 (-576))) . T)) +((($ (-1201)) . T)) +(((|#1|) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-1074)))) +((((-577)) . T) (((-420 (-577))) . T)) (((|#1|) . T)) -(|has| |#1| (-568)) -((((-390)) . T)) -((($) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-374))) +(|has| |#1| (-569)) +((((-391)) . T)) +((($) . T) (((-577)) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-375))) (((|#1|) . T)) (((|#1|) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-568))) -(|has| |#1| (-374)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-568))) -(|has| |#1| (-374)) -(|has| |#1| (-568)) +((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-569))) +(|has| |#1| (-375)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-569))) +(|has| |#1| (-375)) +(|has| |#1| (-569)) ((($) . T)) -(|has| |#1| (-1122)) -((((-793 |#1| (-879 |#2|))) |has| (-793 |#1| (-879 |#2|)) (-319 (-793 |#1| (-879 |#2|))))) -(-2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) +(|has| |#1| (-1125)) +((((-796 |#1| (-882 |#2|))) |has| (-796 |#1| (-882 |#2|)) (-320 (-796 |#1| (-882 |#2|))))) +(-2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-929)) -(((|#1| (-543 |#2|)) . T)) -(((|#1| (-784)) . T)) -(|has| |#1| (-238)) -(((|#1| (-543 (-1110 (-1198)))) . T)) -((($) -2802 (-12 (|has| |#2| (-238)) (|has| |#2| (-1071))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1071))))) -((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-576)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(|has| |#2| (-374)) -((((-877)) . T)) -((((-877)) . T)) -(-2802 (|has| |#3| (-806)) (|has| |#3| (-862))) -((((-877)) . T)) -((((-1142)) . T) (((-877)) . T)) -((((-548)) . T) (((-877)) . T)) -(((|#1|) . T)) -((($ $) . T) (((-624 $) $) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-576)) . T)) +(|has| |#2| (-932)) +(((|#1| (-544 |#2|)) . T)) +(((|#1| (-787)) . T)) +(|has| |#1| (-239)) +(((|#1| (-544 (-1113 (-1201)))) . T)) +((($) -2839 (-12 (|has| |#2| (-239)) (|has| |#2| (-1074))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))))) +((((-594 |#1|)) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) +((((-577)) . T) (((-420 (-577))) . T) (($) . T)) +((((-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-577)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(|has| |#2| (-375)) +((((-880)) . T)) +((((-880)) . T)) +(-2839 (|has| |#3| (-809)) (|has| |#3| (-865))) +((((-880)) . T)) +((((-1145)) . T) (((-880)) . T)) +((((-549)) . T) (((-880)) . T)) +(((|#1|) . T)) +((($ $) . T) (((-625 $) $) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-577)) . T)) (((|#3|) . T)) -((((-877)) . T)) -(-2802 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-576)) . T) (((-419 (-576))) -2802 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576))))) ((|#2|) . T) (($) -2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) (((-879 |#1|)) . T)) -((((-1147 |#1| |#2|)) . T) ((|#2|) . T) (($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))) (((-576)) . T)) -((((-1194 |#1|)) . T) (((-576)) . T) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) (((-1104)) . T) ((|#1|) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) -(-2802 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1071))) -(((#0=(-593 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) -((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-1147 |#1| (-1198))) . T) (((-576)) . T) (((-1110 (-1198))) . T) (($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))) (((-1198)) . T)) +((((-880)) . T)) +(-2839 (|has| |#1| (-318)) (|has| |#1| (-375)) (|has| |#1| (-361))) +((((-577)) . T) (((-420 (-577))) -2839 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577))))) ((|#2|) . T) (($) -2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) (((-882 |#1|)) . T)) +((((-1150 |#1| |#2|)) . T) ((|#2|) . T) (($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) (((-577)) . T)) +((((-1197 |#1|)) . T) (((-577)) . T) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) (((-1107)) . T) ((|#1|) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577)))))) +(-2839 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1074))) +(((#0=(-594 |#1|) #0#) . T) (($ $) . T) ((#1=(-420 (-577)) #1#) . T)) +((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) +((((-1150 |#1| (-1201))) . T) (((-577)) . T) (((-1113 (-1201))) . T) (($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) (((-1201)) . T)) (((|#1|) |has| |#1| (-174))) -(((|#1| (-1289 |#1|) (-1289 |#1|)) . T)) -((((-593 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) . T)) +(((|#1| (-1292 |#1|) (-1292 |#1|)) . T)) +((((-594 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +((($) . T) (((-420 (-577))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) . T) (((-419 (-576))) . T)) -(((|#2|) |has| |#2| (-6 (-4468 "*")))) +((($) . T) (((-420 (-577))) . T)) +(((|#2|) |has| |#2| (-6 (-4472 "*")))) (((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) +((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((|#1|) . T) (((-577)) . T)) (((|#1|) . T)) -((((-877)) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2802 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((((-880)) . T)) +(((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577)))) ((|#2| |#2|) . T) (($ $) -2839 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) -((((-304 |#3|)) . T)) -(((|#1|) . T)) -((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) -((($) . T) (((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((((-305 |#3|)) . T)) +(((|#1|) . T)) +((($) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) +((($) . T) (((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +((($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +((($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) (((|#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2802 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2839 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((((-877)) . T)) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| |#2| (-929)) -(|has| |#1| (-929)) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-877)) . T)) +((($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +((((-880)) . T)) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(|has| |#2| (-932)) +(|has| |#1| (-932)) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-880)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) . T)) +((((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2802 (|has| |#2| (-806)) (|has| |#2| (-862))) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(-2839 (|has| |#2| (-809)) (|has| |#2| (-865))) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) (((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -((((-1198)) . T) ((|#1|) . T)) -((((-877)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((((-877)) . T)) -((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) -(((#0=(-419 (-576)) #0#) . T)) -((((-419 (-576))) . T)) +(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) +((((-1201)) . T) ((|#1|) . T)) +((((-880)) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T)) +((((-880)) . T)) +((((-577)) . T) (($) . T) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) +(((#0=(-420 (-577)) #0#) . T)) +((((-420 (-577))) . T)) (((|#1|) |has| |#1| (-174))) -(-2802 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071))) -(((|#1|) . T)) -(((|#1|) . T)) -(-2802 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-806)) (|has| |#2| (-1071))) -(((|#1|) . T)) -((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-548)) . T)) -((((-877)) . T)) -((($) -2802 (-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1071))))) -(|has| |#1| (-862)) -((((-877)) . T)) -((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((((-930 |#1|)) . T)) -((((-1198)) |has| |#2| (-918 (-1198))) (((-1104)) . T)) -((((-1274 |#2| |#3| |#4|)) . T)) -((($) . T) (((-419 (-576))) . T)) -(-12 (|has| |#1| (-374)) (|has| |#2| (-833))) -(-12 (|has| |#1| (-374)) (|has| |#2| (-833))) -((((-877)) . T)) -(|has| |#1| (-1243)) +(-2839 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074))) +(((|#1|) . T)) +(((|#1|) . T)) +(-2839 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-809)) (|has| |#2| (-1074))) +(((|#1|) . T)) +((((-420 (-577))) . T) (((-577)) . T) (($) . T)) +((((-549)) . T)) +((((-880)) . T)) +((($) -2839 (-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1074))))) +(|has| |#1| (-865)) +((((-880)) . T)) +((((-577)) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) +((((-933 |#1|)) . T)) +((((-1201)) |has| |#2| (-921 (-1201))) (((-1107)) . T)) +((((-1277 |#2| |#3| |#4|)) . T)) +((($) . T) (((-420 (-577))) . T)) +(-12 (|has| |#1| (-375)) (|has| |#2| (-836))) +(-12 (|has| |#1| (-375)) (|has| |#2| (-836))) +((((-880)) . T)) +(|has| |#1| (-1246)) (((|#2|) . T)) -((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-1198)) |has| |#1| (-918 (-1198)))) -((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((($) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -((($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1071)) (((-576)) -12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-568)))) -(|has| |#1| (-568)) -(((|#1|) |has| |#1| (-374))) -((((-576)) . T)) -((((-1198) #0=(-117 |#1|)) |has| #0# (-526 (-1198) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) -(|has| |#1| (-804)) -(|has| |#1| (-804)) -((((-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198))))) -(((|#2|) . T) (((-576)) |has| |#2| (-1060 (-576))) (((-419 (-576))) |has| |#2| (-1060 (-419 (-576))))) -((((-1104)) . T) ((|#2|) . T) (((-576)) |has| |#2| (-1060 (-576))) (((-419 (-576))) |has| |#2| (-1060 (-419 (-576))))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-576)) . T) (($) . T)) -((((-576) (-784)) . T) ((|#3| (-784)) . T)) +((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) +((((-1201)) |has| |#1| (-921 (-1201)))) +((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +((($) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) . T)) +(((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577)))) ((|#1| |#1|) . T) (($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-569)))) +((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) +((($) . T) (((-420 (-577))) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +(((|#2|) |has| |#2| (-1074)) (((-577)) -12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) +((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-569)))) +(|has| |#1| (-569)) +(((|#1|) |has| |#1| (-375))) +((((-577)) . T)) +((((-1201) #0=(-117 |#1|)) |has| #0# (-527 (-1201) #0#)) ((#0# #0#) |has| #0# (-320 #0#))) +(|has| |#1| (-807)) +(|has| |#1| (-807)) +((((-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201))))) +(((|#2|) . T) (((-577)) |has| |#2| (-1063 (-577))) (((-420 (-577))) |has| |#2| (-1063 (-420 (-577))))) +((((-1107)) . T) ((|#2|) . T) (((-577)) |has| |#2| (-1063 (-577))) (((-420 (-577))) |has| |#2| (-1063 (-420 (-577))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-880)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-577)) . T) (($) . T)) +((((-577) (-787)) . T) ((|#3| (-787)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) -((((-877)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((($) |has| |#1| (-379))) -((($) |has| |#1| (-379))) -((($) |has| |#1| (-379))) -(|has| |#2| (-833)) -(|has| |#2| (-833)) -((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-652 (-576)))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) -((($ (-1198)) |has| |#1| (-918 (-1198)))) -(((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) -((($) -2802 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) -(((|#1|) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((((-576)) |has| |#1| (-902 (-576))) (((-390)) |has| |#1| (-902 (-390)))) -(((|#1|) . T)) -((((-885 |#1|)) . T)) -((((-885 |#1|)) . T)) -((((-419 (-576))) . T) (((-712)) . T) (($) . T)) +((((-880)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((($) |has| |#1| (-380))) +((($) |has| |#1| (-380))) +((($) |has| |#1| (-380))) +(|has| |#2| (-836)) +(|has| |#2| (-836)) +((((-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-654 (-577)))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2|) |has| |#1| (-375)) (($) . T) ((|#1|) . T)) +((($ (-1201)) |has| |#1| (-921 (-1201)))) +(((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) +((($) -2839 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361)))) +(((|#1|) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-577)) |has| |#1| (-905 (-577))) (((-391)) |has| |#1| (-905 (-391)))) +(((|#1|) . T)) +((((-888 |#1|)) . T)) +((((-888 |#1|)) . T)) +((((-420 (-577))) . T) (((-715)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -(-12 (|has| |#1| (-374)) (|has| |#2| (-929))) +(-12 (|has| |#1| (-375)) (|has| |#2| (-932))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) -(((|#2|) -2802 (|has| |#2| (-6 (-4468 "*"))) (|has| |#2| (-174)))) +(|has| |#1| (-375)) +(|has| |#1| (-375)) +(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) +(((|#2|) -2839 (|has| |#2| (-6 (-4472 "*"))) (|has| |#2| (-174)))) (((|#2|) . T)) -(|has| |#1| (-374)) +(|has| |#1| (-375)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-879 |#1|)) . T)) +((((-882 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| (-784)) . T)) -((((-1198)) . T)) -((((-885 |#1|)) . T)) -(-2802 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1071))) -(-2802 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-806)) (|has| |#3| (-1071))) -((((-877)) . T)) +(((|#2| (-787)) . T)) +((((-1201)) . T)) +((((-888 |#1|)) . T)) +(-2839 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1074))) +(-2839 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-809)) (|has| |#3| (-1074))) +((((-880)) . T)) (((|#1|) . T)) -(-2802 (|has| |#2| (-806)) (|has| |#2| (-862))) -(-2802 (-12 (|has| |#1| (-806)) (|has| |#2| (-806))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))) -((((-885 |#1|)) . T)) +(-2839 (|has| |#2| (-809)) (|has| |#2| (-865))) +(-2839 (-12 (|has| |#1| (-809)) (|has| |#2| (-809))) (-12 (|has| |#1| (-865)) (|has| |#2| (-865)))) +((((-888 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -((($ $) . T) (((-624 $) $) . T)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +((($ $) . T) (((-625 $) $) . T)) ((($) . T)) -((((-877)) . T)) -((((-576)) . T)) +((((-880)) . T)) +((((-577)) . T)) (((|#2|) . T)) -((((-877)) . T)) -((($) . T) (((-576)) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-374))) -((((-877)) . T)) -(((|#1|) . T)) -((((-877)) . T)) -((($) . T) ((|#2|) . T) (((-419 (-576))) . T) (((-576)) |has| |#2| (-652 (-576)))) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-877)) . T)) -(|has| |#2| (-929)) -((((-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-908 (-390))) |has| |#2| (-626 (-908 (-390)))) (((-908 (-576))) |has| |#2| (-626 (-908 (-576))))) -((((-877)) . T)) -((((-877)) . T)) -(|has| |#1| (-862)) -(((|#3|) |has| |#3| (-1071)) (((-576)) -12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) -((((-1147 |#1| |#2|)) . T) (((-972 |#1|)) |has| |#2| (-626 (-1198))) (((-877)) . T)) -((((-972 |#1|)) |has| |#2| (-626 (-1198))) (((-1180)) -12 (|has| |#1| (-1060 (-576))) (|has| |#2| (-626 (-1198)))) (((-908 (-576))) -12 (|has| |#1| (-626 (-908 (-576)))) (|has| |#2| (-626 (-908 (-576))))) (((-908 (-390))) -12 (|has| |#1| (-626 (-908 (-390)))) (|has| |#2| (-626 (-908 (-390))))) (((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) -((((-1194 |#1|)) . T) (((-877)) . T)) -((((-877)) . T)) -((((-419 (-576))) |has| |#2| (-1060 (-419 (-576)))) (((-576)) |has| |#2| (-1060 (-576))) ((|#2|) . T) (((-879 |#1|)) . T)) -((((-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (((-1104)) . T)) -((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) |has| |#1| (-1060 (-576))) ((|#1|) . T) (((-1198)) . T)) -((((-877)) . T)) -((((-576)) . T)) +((((-880)) . T)) +((($) . T) (((-577)) . T)) +(((|#1|) . T) (((-420 (-577))) |has| |#1| (-375))) +((((-880)) . T)) +(((|#1|) . T)) +((((-880)) . T)) +((($) . T) ((|#2|) . T) (((-420 (-577))) . T) (((-577)) |has| |#2| (-654 (-577)))) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-880)) . T)) +(|has| |#2| (-932)) +((((-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) . T)) +((((-549)) |has| |#2| (-627 (-549))) (((-911 (-391))) |has| |#2| (-627 (-911 (-391)))) (((-911 (-577))) |has| |#2| (-627 (-911 (-577))))) +((((-880)) . T)) +((((-880)) . T)) +(|has| |#1| (-865)) +(((|#3|) |has| |#3| (-1074)) (((-577)) -12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074)))) +((((-1150 |#1| |#2|)) . T) (((-975 |#1|)) |has| |#2| (-627 (-1201))) (((-880)) . T)) +((((-975 |#1|)) |has| |#2| (-627 (-1201))) (((-1183)) -12 (|has| |#1| (-1063 (-577))) (|has| |#2| (-627 (-1201)))) (((-911 (-577))) -12 (|has| |#1| (-627 (-911 (-577)))) (|has| |#2| (-627 (-911 (-577))))) (((-911 (-391))) -12 (|has| |#1| (-627 (-911 (-391)))) (|has| |#2| (-627 (-911 (-391))))) (((-549)) -12 (|has| |#1| (-627 (-549))) (|has| |#2| (-627 (-549))))) +((((-1197 |#1|)) . T) (((-880)) . T)) +((((-880)) . T)) +((((-420 (-577))) |has| |#2| (-1063 (-420 (-577)))) (((-577)) |has| |#2| (-1063 (-577))) ((|#2|) . T) (((-882 |#1|)) . T)) +((((-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (((-1107)) . T)) +((((-117 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) |has| |#1| (-1063 (-577))) ((|#1|) . T) (((-1201)) . T)) +((((-880)) . T)) +((((-577)) . T)) (((|#1|) . T)) ((($) . T)) -((((-390)) |has| |#1| (-902 (-390))) (((-576)) |has| |#1| (-902 (-576)))) -((((-576)) . T)) -(((|#1|) . T)) -((((-877)) . T)) -(((|#1|) . T)) -((((-877)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-657 |#1|)) . T)) -((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) -((($) . T) (((-576)) . T) (((-1275 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T)) -((((-576)) -2802 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1071))) (($) -2802 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1071))) ((|#1|) -2802 (|has| |#1| (-174)) (|has| |#1| (-1071))) (((-419 (-576))) |has| |#1| (-568))) -((((-1203)) . T)) -((((-576)) . T) (((-419 (-576))) . T)) -((($ (-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198))))) -(((|#1|) . T)) -((((-1203)) . T)) -((((-1203)) . T)) +((((-391)) |has| |#1| (-905 (-391))) (((-577)) |has| |#1| (-905 (-577)))) +((((-577)) . T)) +(((|#1|) . T)) +((((-880)) . T)) +(((|#1|) . T)) +((((-880)) . T)) +((((-653 |#1| |#2|) |#1|) . T)) +((((-1206)) . T)) +((((-1206)) . T)) +((((-1206)) . T)) +((((-660 |#1|)) . T)) +((($) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) +((($) . T) (((-577)) . T) (((-1278 |#1| |#2| |#3| |#4|)) . T) (((-420 (-577))) . T)) +((((-577)) -2839 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1074))) (($) -2839 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-569)) (|has| |#1| (-1074))) ((|#1|) -2839 (|has| |#1| (-174)) (|has| |#1| (-1074))) (((-420 (-577))) |has| |#1| (-569))) +((((-1206)) . T)) +((((-577)) . T) (((-420 (-577))) . T)) +((($ (-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201))))) +(((|#1|) . T)) +((((-1206)) . T)) +((((-1206)) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) -((((-1203)) . T)) -(((|#1|) |has| |#1| (-319 |#1|))) -((((-390)) . T)) +((((-1206)) . T)) +(((|#1|) |has| |#1| (-320 |#1|))) +((((-391)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-419 |#2|) |#3|) . T)) +((((-880)) . T)) +((((-420 (-577))) . T) (($) . T)) +((((-420 |#2|) |#3|) . T)) (((|#1|) . T)) -((((-877)) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) -(((|#2| (-494 (-3440 |#1|) (-784))) . T)) -((((-576) |#1|) . T)) -((((-1180)) . T) (((-877)) . T)) +((((-880)) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) +(((|#2| (-495 (-3484 |#1|) (-787))) . T)) +((((-577) |#1|) . T)) +((((-1183)) . T) (((-880)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-543 (-1198))) . T)) -(-2802 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-806)) (|has| |#2| (-1071))) -((((-576)) . T)) +(((|#1| (-544 (-1201))) . T)) +(-2839 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-809)) (|has| |#2| (-1074))) +((((-577)) . T)) (((|#2|) . T)) -((($) -2802 (-12 (|has| |#2| (-238)) (|has| |#2| (-1071))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1071))))) +((($) -2839 (-12 (|has| |#2| (-239)) (|has| |#2| (-1074))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))))) (((|#2|) . T)) -((((-1198)) |has| |#1| (-918 (-1198))) (((-1104)) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) -(|has| |#1| (-568)) -(((#0=(-1274 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -((($) . T) (((-419 (-576))) . T)) +((((-1201)) |has| |#1| (-921 (-1201))) (((-1107)) . T)) +(((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) +(|has| |#1| (-569)) +(((#0=(-1277 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| #0# (-38 (-420 (-577)))) (((-577)) . T) (($) . T)) +((($) . T) (((-420 (-577))) . T)) ((($) . T)) ((($) . T)) -(-2802 (|has| |#1| (-862)) (|has| |#1| (-1122))) +(-2839 (|has| |#1| (-865)) (|has| |#1| (-1125))) (((|#1|) . T)) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-877)) . T)) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-880)) . T)) ((((-145)) . T)) -(((|#1|) . T) (((-419 (-576))) . T)) +(((|#1|) . T) (((-420 (-577))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) +((((-880)) . T)) (((|#1|) . T)) -(|has| |#1| (-1174)) -((($ (-1198)) -2802 (|has| (-419 |#2|) (-918 (-1198))) (|has| (-419 |#2|) (-920 (-1198))))) +(|has| |#1| (-1177)) +((($ (-1201)) -2839 (|has| (-420 |#2|) (-921 (-1201))) (|has| (-420 |#2|) (-923 (-1201))))) (((|#1|) . T)) -(((|#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|))) . T)) -((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) -((((-877)) . T)) -((((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-576)) |has| |#1| (-1060 (-576))) ((|#1|) . T) ((|#2|) . T)) -((((-1104)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576))))) -((((-390)) -12 (|has| |#1| (-902 (-390))) (|has| |#2| (-902 (-390)))) (((-576)) -12 (|has| |#1| (-902 (-576))) (|has| |#2| (-902 (-576))))) -((((-1275 |#1| |#2| |#3| |#4|)) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T)) -((((-576) |#1|) . T)) +(((|#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|))) . T)) +((((-420 $) (-420 $)) |has| |#1| (-569)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) +((((-880)) . T)) +((((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-577)) |has| |#1| (-1063 (-577))) ((|#1|) . T) ((|#2|) . T)) +((((-1107)) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577))))) +((((-391)) -12 (|has| |#1| (-905 (-391))) (|has| |#2| (-905 (-391)))) (((-577)) -12 (|has| |#1| (-905 (-577))) (|has| |#2| (-905 (-577))))) +((((-1278 |#1| |#2| |#3| |#4|)) . T)) +((((-1278 |#1| |#2| |#3| |#4|)) . T)) +((((-577) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) ((($) . T)) -((((-712)) . T)) -((((-793 |#1| (-879 |#2|))) . T)) -((((-576)) . T) (($) . T)) +((((-715)) . T)) +((((-796 |#1| (-882 |#2|))) . T)) +((((-577)) . T) (($) . T)) ((($) . T)) -(((|#1|) . T) (((-419 (-576))) |has| |#1| (-374))) -((((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-1122)) -(|has| |#1| (-1122)) -(|has| |#2| (-374)) -(((|#1|) . T) (($) -2802 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -(|has| |#1| (-38 (-419 (-576)))) -((($) -2802 (|has| |#2| (-238)) (|has| |#2| (-237)))) -((((-576)) . T)) -(|has| |#1| (-1122)) -((($ (-1198)) -2802 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198))))) -((((-1198)) -12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071)))) -((((-1198)) -12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071)))) -(((|#1|) . T)) -(|has| |#1| (-238)) -(((|#2| (-245 (-3440 |#1|) (-784))) . T)) -(((|#1| (-543 |#3|)) . T)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) -(|has| |#1| (-379)) +(((|#1|) . T) (((-420 (-577))) |has| |#1| (-375))) +((((-420 (-577))) . T) (($) . T)) +(|has| |#1| (-1125)) +(|has| |#1| (-1125)) +(|has| |#2| (-375)) +(((|#1|) . T) (($) -2839 (|has| |#1| (-301)) (|has| |#1| (-375))) (((-420 (-577))) |has| |#1| (-375))) +(|has| |#1| (-375)) +(|has| |#1| (-375)) +((($) -2839 (|has| |#2| (-239)) (|has| |#2| (-238)))) +((((-577)) . T)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-1125)) +((($ (-1201)) -2839 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201))))) +((((-1201)) -12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074)))) +((((-1201)) -12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074)))) +(((|#1|) . T)) +(|has| |#1| (-239)) +(((|#2| (-246 (-3484 |#1|) (-787))) . T)) +(((|#1| (-544 |#3|)) . T)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) +(|has| |#1| (-380)) (((|#1|) . T) (($) . T)) -(((|#1| (-543 |#2|)) . T)) -(-2802 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-806)) (|has| |#2| (-1071))) -(((|#1| (-784)) . T)) -(|has| |#1| (-568)) -(-2802 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1071))) -(-2802 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-806)) (|has| |#2| (-1071))) +(((|#1| (-544 |#2|)) . T)) +(-2839 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-809)) (|has| |#2| (-1074))) +(((|#1| (-787)) . T)) +(|has| |#1| (-569)) +(-2839 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-1074))) +(-2839 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-809)) (|has| |#2| (-1074))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-877)) . T)) -((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -(-2802 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806)))) -(-2802 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-806)) (|has| |#3| (-1071))) -(|has| |#2| (-1071)) +((((-880)) . T)) +((((-577)) . T) (((-420 (-577))) . T) (($) . T)) +(-2839 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809)))) +(-2839 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-809)) (|has| |#3| (-1074))) +(|has| |#2| (-1074)) (((|#1|) |has| |#1| (-174))) -(((|#4|) |has| |#4| (-1071))) -(((|#3|) |has| |#3| (-1071))) -(-12 (|has| |#1| (-374)) (|has| |#2| (-833))) -(-12 (|has| |#1| (-374)) (|has| |#2| (-833))) -((((-576)) . T) (((-419 (-576))) -2802 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576))))) ((|#2|) . T) (($) -2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) (((-879 |#1|)) . T)) -((((-1147 |#1| |#2|)) . T) (((-576)) . T) ((|#3|) . T) (($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))) ((|#2|) . T)) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) -((((-548)) |has| |#1| (-626 (-548)))) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-1203)) . T)) -((((-685 |#1|)) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-877)) . T)) -((((-657 $)) . T) (((-1180)) . T) (((-1198)) . T) (((-576)) . T) (((-227)) . T) (((-877)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((($) . T) (((-419 (-576))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1122)) (((-576)) -12 (|has| |#4| (-1060 (-576))) (|has| |#4| (-1122))) (((-419 (-576))) -12 (|has| |#4| (-1060 (-419 (-576)))) (|has| |#4| (-1122)))) -(((|#3|) |has| |#3| (-1122)) (((-576)) -12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122))) (((-419 (-576))) -12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122)))) -(|has| |#2| (-374)) -(((|#2|) |has| |#2| (-1071)) (((-576)) -12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) -(-2802 (|has| |#1| (-379)) (|has| |#1| (-862))) -(((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2802 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) -((($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-1198)) |has| |#1| (-1071))) -(|has| |#2| (-374)) +(((|#4|) |has| |#4| (-1074))) +(((|#3|) |has| |#3| (-1074))) +(-12 (|has| |#1| (-375)) (|has| |#2| (-836))) +(-12 (|has| |#1| (-375)) (|has| |#2| (-836))) +((((-577)) . T) (((-420 (-577))) -2839 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577))))) ((|#2|) . T) (($) -2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) (((-882 |#1|)) . T)) +((((-1150 |#1| |#2|)) . T) (((-577)) . T) ((|#3|) . T) (($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))) ((|#2|) . T)) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) +((((-549)) |has| |#1| (-627 (-549)))) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (($) . T) (((-577)) . T)) +((((-1206)) . T)) +((((-688 |#1|)) . T)) +((((-420 |#2|)) . T) (((-420 (-577))) . T) (($) . T)) +((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) +((((-880)) . T)) +((((-660 $)) . T) (((-1183)) . T) (((-1201)) . T) (((-577)) . T) (((-228)) . T) (((-880)) . T)) +((((-1206)) . T)) +((((-1206)) . T)) +((($) . T) (((-420 (-577))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1125)) (((-577)) -12 (|has| |#4| (-1063 (-577))) (|has| |#4| (-1125))) (((-420 (-577))) -12 (|has| |#4| (-1063 (-420 (-577)))) (|has| |#4| (-1125)))) +(((|#3|) |has| |#3| (-1125)) (((-577)) -12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125))) (((-420 (-577))) -12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125)))) +(|has| |#2| (-375)) +(((|#2|) |has| |#2| (-1074)) (((-577)) -12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) +(-2839 (|has| |#1| (-380)) (|has| |#1| (-865))) +(((|#1|) . T)) +(((#0=(-420 (-577)) #0#) |has| |#2| (-38 (-420 (-577)))) ((|#2| |#2|) . T) (($ $) -2839 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1| |#1|) . T) ((#0=(-420 (-577)) #0#) |has| |#1| (-38 (-420 (-577))))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-420 (-577)) #0#) . T)) +((((-1201)) |has| |#1| (-1074))) +(|has| |#2| (-375)) (((|#2| |#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2802 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) . T) (($) . T) (((-419 (-576))) . T)) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (($) -2839 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) +(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) +(((|#1|) . T) (($) . T) (((-420 (-577))) . T)) (((|#2|) . T)) -((((-877)) |has| |#1| (-1122))) +((((-880)) |has| |#1| (-1125))) ((($) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-833)) -(|has| |#2| (-833)) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| |#1| (-374)) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(|has| |#1| (-374)) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(|has| |#1| (-374)) -(((|#1|) |has| |#2| (-429 |#1|))) -(((|#1|) |has| |#2| (-429 |#1|))) -((((-1180)) . T)) -((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-657 |#1|)) . T) (((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) -((((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-657 |#1|)) . T)) -((((-548)) |has| |#1| (-626 (-548)))) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1238)) . T) (((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) |has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))))) -(-2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) -((((-576) |#1|) . T)) -((((-576) |#1|) . T)) -((((-576) |#1|) . T)) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -((((-576) |#1|) . T)) -(((|#1|) . T)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -((((-1198)) |has| |#1| (-918 (-1198))) (((-831 (-1198))) . T)) -(-2802 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-806)) (|has| |#3| (-1071))) -((((-832 |#1|)) . T)) +((((-1278 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-836)) +(|has| |#2| (-836)) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(|has| |#1| (-375)) +(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) +(|has| |#1| (-375)) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(|has| |#1| (-375)) +(((|#1|) |has| |#2| (-430 |#1|))) +(((|#1|) |has| |#2| (-430 |#1|))) +((((-1183)) . T)) +((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-660 |#1|)) . T) (((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) +((((-1206)) . T)) +((((-1206)) . T)) +((((-1206)) . T)) +((((-660 |#1|)) . T)) +((((-549)) |has| |#1| (-627 (-549)))) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) +((((-880)) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-1241)) . T) (((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) +((((-1206)) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) +((((-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) |has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-320 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))))) +(-2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) +((((-577) |#1|) . T)) +((((-577) |#1|) . T)) +((((-577) |#1|) . T)) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +((((-577) |#1|) . T)) +(((|#1|) . T)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#1|) |has| |#1| (-174))) +((((-1201)) |has| |#1| (-921 (-1201))) (((-834 (-1201))) . T)) +(-2839 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-809)) (|has| |#3| (-1074))) +((((-835 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) -(|has| |#3| (-1071)) +((((-880)) . T)) +(|has| |#3| (-1074)) (((|#1| |#2|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -(|has| |#1| (-38 (-419 (-576)))) -((((-877)) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568))) -(((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) -(|has| |#1| (-374)) -(-2802 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238)))) -(|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -(|has| |#1| (-374)) -(((|#1|) . T)) -(((#0=(-419 (-576)) #0#) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) -((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) -((((-326 |#1|)) . T)) -((((-930 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((#0=(-712) (-1194 #0#)) . T)) -((((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-576)) . T) (((-419 (-576))) . T)) +((($) . T) (((-577)) . T) (((-420 (-577))) . T)) +(|has| |#1| (-38 (-420 (-577)))) +((((-880)) . T)) +((((-1278 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-420 (-577))) . T)) +(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569)) (((-420 (-577))) |has| |#1| (-569))) +(((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) +(|has| |#1| (-375)) +(-2839 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239)))) +(|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) +(|has| |#1| (-375)) +(((|#1|) . T)) +(((#0=(-420 (-577)) #0#) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1| |#1|) . T)) +((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) +((((-327 |#1|)) . T)) +((((-933 |#1|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +(((#0=(-715) (-1197 #0#)) . T)) +((((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((|#1|) . T)) +(((|#1|) . T) (($) . T) (((-577)) . T) (((-420 (-577))) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-861)) -(((|#2|) . T) (((-1198)) -12 (|has| |#1| (-374)) (|has| |#2| (-1060 (-1198)))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) -(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2802 (|has| |#1| (-374)) (|has| |#1| (-568)))) -((($ $) . T) ((#0=(-879 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1147 |#1| (-1198))) . T) (((-831 (-1198))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1060 (-576))) (((-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) (((-1198)) . T)) +(|has| |#1| (-864)) +(((|#2|) . T) (((-1201)) -12 (|has| |#1| (-375)) (|has| |#2| (-1063 (-1201)))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569))) (((-577)) . T) ((|#1|) |has| |#1| (-174))) +(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) (((-577)) . T) (($) -2839 (|has| |#1| (-375)) (|has| |#1| (-569)))) +((($ $) . T) ((#0=(-882 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1150 |#1| (-1201))) . T) (((-834 (-1201))) . T) ((|#1|) . T) (((-577)) |has| |#1| (-1063 (-577))) (((-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) (((-1201)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1104) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1198) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-1110 (-1198)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1107) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1201) $) |has| |#1| (-239)) ((#0# |#1|) |has| |#1| (-239)) ((#1=(-1113 (-1201)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) (((-576)) |has| |#2| (-652 (-576))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -(|has| |#2| (-929)) -((($) . T) ((#0=(-1274 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) +((($) . T) (((-577)) |has| |#2| (-654 (-577))) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577))))) +(|has| |#2| (-932)) +((($) . T) ((#0=(-1277 |#2| |#3| |#4|)) |has| #0# (-174)) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) (((|#1|) |has| |#1| (-174))) -((((-576) |#1|) . T)) (((|#1|) . T)) -((((-1203)) . T)) -(((#0=(-1275 |#1| |#2| |#3| |#4|)) |has| #0# (-319 #0#))) +((((-577) |#1|) . T)) +(((|#1|) . T)) +((((-1206)) . T)) +(((#0=(-1278 |#1| |#2| |#3| |#4|)) |has| #0# (-320 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2| |#2|) |has| |#1| (-374)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -(|has| |#2| (-238)) +((($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2| |#2|) |has| |#1| (-375)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) ((#0=(-420 (-577)) #0#) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) +(|has| |#2| (-239)) (|has| $ (-148)) -((((-877)) . T)) -((($) . T) (((-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) -((((-877)) . T)) -(|has| |#1| (-861)) +((((-880)) . T)) +((($) . T) (((-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-361))) ((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) +((((-880)) . T)) +(|has| |#1| (-864)) ((((-130)) . T)) -((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) -((((-419 (-576))) . T) (((-712)) . T) (($) . T) (((-576)) . T)) +((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) +((((-420 (-577))) . T) (((-715)) . T) (($) . T) (((-577)) . T)) (((|#1|) . T)) ((((-130)) . T)) -((($ (-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198))))) -((((-877)) . T)) -(-12 (|has| |#1| (-317)) (|has| |#1| (-929))) -(((|#2| (-685 |#1|)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((((-419 |#2|) |#3|) . T)) -((((-877)) |has| |#1| (-1122))) +((($ (-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201))))) +((((-880)) . T)) +(-12 (|has| |#1| (-318)) (|has| |#1| (-932))) +(((|#2| (-688 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-420 |#2|) |#3|) . T)) +((((-880)) |has| |#1| (-1125))) (((|#4|) . T)) -(|has| |#1| (-568)) -((($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) -((((-1198)) -2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) -(((|#1|) . T) (($) -2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) -((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) -(-2802 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) -((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) -(((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) -(((|#1|) . T)) -(((|#1| (-543 (-831 (-1198)))) . T)) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -((((-576)) . T) ((|#2|) . T) (($) . T) (((-419 (-576))) . T) (((-1198)) |has| |#2| (-1060 (-1198)))) -(((|#1|) . T)) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) -(((|#1|) . T)) -(-2802 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-806)) (|has| |#2| (-1071))) -(-2802 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806)))) -((((-1281 |#1| |#2| |#3|)) |has| |#1| (-374))) -((($) . T) (((-885 |#1|)) . T) (((-419 (-576))) . T)) -((((-1281 |#1| |#2| |#3|)) |has| |#1| (-374))) -(|has| |#1| (-568)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-419 |#2|)) . T)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) -((((-548)) |has| |#1| (-626 (-548)))) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) -((((-548)) |has| |#1| (-626 (-548)))) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) -((((-548)) |has| |#1| (-626 (-548)))) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) -(((|#1|) . T)) -(((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) . T) (($ $) . T)) -(((|#2|) . T) (((-419 (-576))) . T) (($) . T)) -((((-576)) . T)) -((((-877)) . T)) -((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-877)) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-576) |#1|) . T)) +(|has| |#1| (-569)) +((($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375))) ((|#2|) |has| |#1| (-375)) ((|#1|) . T)) +((((-1201)) -2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) +(((|#1|) . T) (($) -2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-569))) (((-420 (-577))) -2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-375)))) +((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) +((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) +(-2839 (|has| |#2| (-174)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) +((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) +(((|#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) +(((|#1|) . T)) +(((|#1| (-544 (-834 (-1201)))) . T)) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +((((-577)) . T) ((|#2|) . T) (($) . T) (((-420 (-577))) . T) (((-1201)) |has| |#2| (-1063 (-1201)))) +(((|#1|) . T)) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) +(((|#1|) . T)) +(-2839 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-809)) (|has| |#2| (-1074))) +(-2839 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809)))) +((((-1284 |#1| |#2| |#3|)) |has| |#1| (-375))) +((($) . T) (((-888 |#1|)) . T) (((-420 (-577))) . T)) +((((-1284 |#1| |#2| |#3|)) |has| |#1| (-375))) +(|has| |#1| (-569)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-420 |#2|)) . T)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-361))) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) +((((-549)) |has| |#1| (-627 (-549)))) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) +((((-549)) |has| |#1| (-627 (-549)))) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) +((((-549)) |has| |#1| (-627 (-549)))) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +(((|#1|) . T)) +(((|#2| |#2|) . T) ((#0=(-420 (-577)) #0#) . T) (($ $) . T)) +(((|#2|) . T) (((-420 (-577))) . T) (($) . T)) +((((-577)) . T)) +((((-880)) . T)) +((((-594 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +((((-880)) . T)) +((((-420 (-577))) . T) (($) . T)) +((((-577) |#1|) . T)) ((($) . T)) ((($) . T)) -((((-877)) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-908 (-390))) |has| |#2| (-626 (-908 (-390)))) (((-908 (-576))) |has| |#2| (-626 (-908 (-576))))) -((((-877)) . T)) -((((-877)) . T)) -((((-908 (-576))) -12 (|has| |#1| (-626 (-908 (-576)))) (|has| |#3| (-626 (-908 (-576))))) (((-908 (-390))) -12 (|has| |#1| (-626 (-908 (-390)))) (|has| |#3| (-626 (-908 (-390))))) (((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548))))) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -(-2802 (|has| |#1| (-238)) (|has| |#1| (-237))) -(((|#1|) . T) (((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T)) -((((-115)) . T) ((|#1|) . T) (((-576)) . T)) +((((-880)) . T)) +((((-549)) |has| |#2| (-627 (-549))) (((-911 (-391))) |has| |#2| (-627 (-911 (-391)))) (((-911 (-577))) |has| |#2| (-627 (-911 (-577))))) +((((-880)) . T)) +((((-880)) . T)) +((((-911 (-577))) -12 (|has| |#1| (-627 (-911 (-577)))) (|has| |#3| (-627 (-911 (-577))))) (((-911 (-391))) -12 (|has| |#1| (-627 (-911 (-391)))) (|has| |#3| (-627 (-911 (-391))))) (((-549)) -12 (|has| |#1| (-627 (-549))) (|has| |#3| (-627 (-549))))) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +(-2839 (|has| |#1| (-239)) (|has| |#1| (-238))) +(((|#1|) . T) (((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) +((((-880)) . T)) +((((-115)) . T) ((|#1|) . T) (((-577)) . T)) ((((-130)) . T)) -((($) . T) (((-576)) . T) (((-117 |#1|)) . T) (((-419 (-576))) . T)) -((((-879 |#2|)) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929)))) +((($) . T) (((-577)) . T) (((-117 |#1|)) . T) (((-420 (-577))) . T)) +((((-651 |#2|)) . T)) +(((|#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) |has| |#2| (-174)) (($) -2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-652 (-576)))) -((($) . T) (((-576)) . T)) -(((|#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|))) . T)) -((($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-1126)) . T)) -((((-877)) . T)) -((((-1203)) . T) (((-877)) . T)) -((((-1203)) . T) (((-877)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((($) -2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) -((($) . T) (((-576)) . T)) -(|has| |#2| (-929)) -((($) -2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) -((((-877)) . T)) -(((|#1|) . T)) -((($ $) . T) (((-1198) $) . T)) -((((-1281 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-929)) -((((-1281 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-1281 |#1| |#2| |#3|)) . T) (((-1253 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -((((-1198)) . T) (((-877)) . T)) +((($) . T) (((-420 (-577))) |has| |#2| (-38 (-420 (-577)))) ((|#2|) . T) (((-577)) |has| |#2| (-654 (-577)))) +((($) . T) (((-577)) . T)) +(((|#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|))) . T)) +((($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((((-1129)) . T)) +((((-880)) . T)) +((((-1206)) . T) (((-880)) . T)) +((((-1206)) . T) (((-880)) . T)) +((((-1206)) . T)) +((((-1206)) . T)) +((($) -2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +((($) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) +((($) . T) (((-577)) . T)) +(|has| |#2| (-932)) +((($) -2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) +((((-880)) . T)) +(((|#1|) . T)) +((($ $) . T) (((-1201) $) . T)) +((((-1284 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-932)) +((((-1284 |#1| |#2| |#3|)) |has| |#1| (-375))) +((((-1284 |#1| |#2| |#3|)) . T) (((-1256 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +((((-1201)) . T) (((-880)) . T)) (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-174))) -((((-712)) . T)) -((((-712)) . T)) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) -((((-1203)) . T)) -(-2802 (|has| |#2| (-806)) (|has| |#2| (-862))) +((((-715)) . T)) +((((-715)) . T)) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((((-1206)) . T)) +(-2839 (|has| |#2| (-809)) (|has| |#2| (-865))) (((|#1|) |has| |#1| (-174))) -((((-1203)) . T)) +((((-1206)) . T)) (((|#1| |#1|) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568))) -((((-1203)) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-568)) (($) |has| |#1| (-568))) -((((-419 (-576))) . T) (($) . T)) -(((|#1| (-576)) . T)) -(((|#1|) . T)) -((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((($ (-1198)) -2802 (|has| |#1| (-918 (-1198))) (|has| |#1| (-920 (-1198)))) (($ (-1104)) . T)) +((((-1278 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-420 (-577))) . T)) +(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569)) (((-420 (-577))) |has| |#1| (-569))) +((((-1206)) . T)) +((((-1278 |#1| |#2| |#3| |#4|)) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1|) |has| |#1| (-174)) (((-420 (-577))) |has| |#1| (-569)) (($) |has| |#1| (-569))) +((((-420 (-577))) . T) (($) . T)) +(((|#1| (-577)) . T)) +(((|#1|) . T)) +((((-420 (-577))) . T) (((-577)) . T) (($) . T)) +((($ (-1201)) -2839 (|has| |#1| (-921 (-1201))) (|has| |#1| (-923 (-1201)))) (($ (-1107)) . T)) (((|#1|) |has| |#1| (-174))) -((((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-360))) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1203)) . T)) -((((-1203)) . T)) -(|has| |#1| (-374)) -(|has| |#1| (-374)) -(-2802 (|has| |#1| (-174)) (|has| |#1| (-568))) -(((|#1| (-576)) . T)) -(((|#1| (-419 (-576))) . T)) -(((|#1| (-784)) . T)) -((((-419 (-576))) . T)) -(((|#1| (-543 |#2|) |#2|) . T)) -((((-576) |#1|) . T)) -((((-576) |#1|) . T)) -(-2802 (|has| |#1| (-102)) (|has| |#1| (-1122))) -(-2802 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))) -((((-576) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-908 (-390))) . T) (((-908 (-576))) . T) (((-1198)) . T) (((-548)) . T)) -(-2802 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-806)) (|has| |#2| (-1071))) -(-2802 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806)))) -((((-877)) . T)) -((((-576)) . T)) -((((-576)) . T)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) +((((-1206)) . T)) +((((-1206)) . T)) +((((-1206)) . T)) +((((-1206)) . T)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-361))) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-361))) +((((-1206)) . T)) +((((-1206)) . T)) +(|has| |#1| (-375)) +(|has| |#1| (-375)) +(-2839 (|has| |#1| (-174)) (|has| |#1| (-569))) +(((|#1| (-577)) . T)) +(((|#1| (-420 (-577))) . T)) +(((|#1| (-787)) . T)) +((((-420 (-577))) . T)) +(((|#1| (-544 |#2|) |#2|) . T)) +((((-577) |#1|) . T)) +((((-577) |#1|) . T)) +(-2839 (|has| |#1| (-102)) (|has| |#1| (-1125))) +(-2839 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-238))) +((((-577) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-911 (-391))) . T) (((-911 (-577))) . T) (((-1201)) . T) (((-549)) . T)) +(-2839 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-375)) (|has| |#2| (-809)) (|has| |#2| (-1074))) +(-2839 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809)))) +((((-880)) . T)) +((((-577)) . T)) +((((-577)) . T)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-1198)) -12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071)))) -(|has| |#2| (-1071)) -(-2802 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739)))) +((((-1201)) -12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074)))) +(|has| |#2| (-1074)) +(-2839 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-742)) (|has| |#2| (-742)))) (|has| |#1| (-146)) (|has| |#1| (-148)) -(|has| |#1| (-374)) +(|has| |#1| (-375)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1274 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) -(|has| |#1| (-238)) -((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((($) . T) (((-576)) . T)) -((($) . T) (((-576)) . T)) -((($) . T) ((#0=(-1274 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) -((((-877)) . T)) -(((|#1| (-784) (-1104)) . T)) -((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) -((((-1256 (-576)) $) . T) (((-576) |#1|) . T)) +((($) . T) ((#0=(-1277 |#2| |#3| |#4|)) |has| #0# (-174)) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) +(|has| |#1| (-239)) +((($) . T) (((-577)) . T) (((-420 (-577))) . T)) +((($) . T) (((-577)) . T)) +((($) . T) (((-577)) . T)) +((($) . T) ((#0=(-1277 |#2| |#3| |#4|)) . T) (((-420 (-577))) |has| #0# (-38 (-420 (-577))))) +((((-880)) . T)) +(((|#1| (-787) (-1107)) . T)) +((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) +((((-1259 (-577)) $) . T) (((-577) |#1|) . T)) ((((-117 |#1|)) . T)) ((((-117 |#1|)) . T)) -(((|#2|) |has| |#2| (-1071))) -((((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) . T) (((-576)) . T)) +(((|#2|) |has| |#2| (-1074))) +((((-420 (-577))) . T) (($) . T)) +((((-420 (-577))) . T) (((-577)) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-576)) . T)) -((((-576)) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((((-1180) (-1198) (-576) (-227) (-877)) . T)) +((((-577)) . T)) +((((-577)) . T)) +((((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-569))) +((((-1183) (-1201) (-577) (-228) (-880)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-576)) . T) ((|#2|) |has| |#2| (-174))) -((((-115)) . T) ((|#1|) . T) (((-576)) . T)) -(-2802 (|has| |#1| (-360)) (|has| |#1| (-379))) +((((-577)) . T) ((|#2|) |has| |#2| (-174))) +((((-115)) . T) ((|#1|) . T) (((-577)) . T)) +(-2839 (|has| |#1| (-361)) (|has| |#1| (-380))) (((|#1| |#2|) . T)) -((((-227)) . T)) -((((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-877)) . T)) +((((-228)) . T)) +((((-420 (-577))) . T) (($) . T) (((-577)) . T)) +((((-880)) . T)) ((($) . T) ((|#1|) . T)) -((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (((-576)) |has| |#1| (-652 (-576)))) -((($) . T) (((-576)) |has| |#1| (-652 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) |has| |#2| (-1122)) (((-576)) -12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (((-419 (-576))) -12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) -(-2802 (|has| |#2| (-238)) (|has| |#2| (-237))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-548)) |has| |#1| (-626 (-548)))) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-862)) (|has| |#1| (-1122)))) -((((-576) $) . T) (((-657 (-576)) $) . T)) -((($) . T) (((-419 (-576))) . T)) -(|has| |#1| (-929)) -(|has| |#1| (-929)) -((((-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1044))) (((-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1044))) (((-908 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-908 (-390))))) (((-908 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-908 (-576))))) (((-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548))))) -((((-877)) . T)) -((((-877)) . T)) +((($) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((|#1|) . T) (((-577)) |has| |#1| (-654 (-577)))) +((($) . T) (((-577)) |has| |#1| (-654 (-577))) ((|#1|) . T) (((-420 (-577))) |has| |#1| (-38 (-420 (-577))))) +(((|#2|) |has| |#2| (-1125)) (((-577)) -12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (((-420 (-577))) -12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) +(-2839 (|has| |#2| (-239)) (|has| |#2| (-238))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-549)) |has| |#1| (-627 (-549)))) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-865)) (|has| |#1| (-1125)))) +((((-577) $) . T) (((-660 (-577)) $) . T)) +((($) . T) (((-420 (-577))) . T)) +(|has| |#1| (-932)) +(|has| |#1| (-932)) +((((-228)) -12 (|has| |#1| (-375)) (|has| |#2| (-1047))) (((-391)) -12 (|has| |#1| (-375)) (|has| |#2| (-1047))) (((-911 (-391))) -12 (|has| |#1| (-375)) (|has| |#2| (-627 (-911 (-391))))) (((-911 (-577))) -12 (|has| |#1| (-375)) (|has| |#2| (-627 (-911 (-577))))) (((-549)) -12 (|has| |#1| (-375)) (|has| |#2| (-627 (-549))))) +((((-880)) . T)) +((((-880)) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) |has| |#1| (-174))) -(((|#1|) . T) (((-576)) . T)) -((((-1203)) . T)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-2802 (|has| |#1| (-21)) (|has| |#1| (-861))) +(((|#1|) . T) (((-577)) . T)) +((((-1206)) . T)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-569))) +(-2839 (|has| |#1| (-21)) (|has| |#1| (-864))) (((|#2|) . T)) -(-2802 (|has| |#1| (-21)) (|has| |#1| (-861))) +(-2839 (|has| |#1| (-21)) (|has| |#1| (-864))) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) -2802 (-12 (|has| |#1| (-625 (-877))) (|has| |#2| (-625 (-877)))) (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))))) -((((-419 |#2|) |#3|) . T)) -((((-419 (-576))) . T) (($) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-374)) -((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((($) . T) (((-576)) . T)) -(|has| (-419 |#2|) (-148)) -(|has| (-419 |#2|) (-146)) -(-2802 (|has| |#3| (-806)) (|has| |#3| (-862))) +((((-880)) -2839 (-12 (|has| |#1| (-626 (-880))) (|has| |#2| (-626 (-880)))) (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))))) +((((-420 |#2|) |#3|) . T)) +((((-420 (-577))) . T) (($) . T)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-375)) +((($ $) . T) ((#0=(-420 (-577)) #0#) . T)) +((($) . T) (((-577)) . T)) +(|has| (-420 |#2|) (-148)) +(|has| (-420 |#2|) (-146)) +(-2839 (|has| |#3| (-809)) (|has| |#3| (-865))) ((($) . T)) -((((-712)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((#0=(-576) #0#) . T)) -((($) . T) (((-419 (-576))) . T)) -(|has| |#4| (-1071)) -(|has| |#3| (-1071)) -((((-877)) . T) (((-1203)) . T)) -(|has| |#4| (-806)) -(|has| |#4| (-806)) -(|has| |#3| (-806)) -(|has| |#3| (-806)) -((((-1203)) . T)) -((((-576)) . T)) +((((-715)) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +(((#0=(-577) #0#) . T)) +((($) . T) (((-420 (-577))) . T)) +(|has| |#4| (-1074)) +(|has| |#3| (-1074)) +((((-880)) . T) (((-1206)) . T)) +(|has| |#4| (-809)) +(|has| |#4| (-809)) +(|has| |#3| (-809)) +(|has| |#3| (-809)) +((((-1206)) . T)) +((((-577)) . T)) (((|#2|) . T)) -((((-1198)) -2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) -((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) -((((-1198)) -12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) +((((-1201)) -2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) +((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) +((((-1201)) -12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-879 |#1|)) . T)) +((((-882 |#1|)) . T)) (((|#1|) . T)) -((((-1196 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-1162 |#1| |#2|)) . T)) -((((-1196 |#1| |#2| |#3|)) |has| |#1| (-374))) -(((|#2|) . T) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -((((-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) . T)) +((((-1199 |#1| |#2| |#3|)) |has| |#1| (-375))) +((((-1165 |#1| |#2|)) . T)) +((((-1199 |#1| |#2| |#3|)) |has| |#1| (-375))) +(((|#2|) . T) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +((((-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) . T)) ((($) . T)) -(|has| |#1| (-1044)) -(((|#2|) . T) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) +(|has| |#1| (-1047)) +(((|#2|) . T) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) ((($) . T)) -((((-877)) . T)) -((((-548)) |has| |#2| (-626 (-548))) (((-908 (-576))) |has| |#2| (-626 (-908 (-576)))) (((-908 (-390))) |has| |#2| (-626 (-908 (-390)))) (((-390)) . #0=(|has| |#2| (-1044))) (((-227)) . #0#)) -((((-304 |#3|)) . T)) -((((-1198) (-52)) . T)) -(((|#1|) . T)) -(|has| |#1| (-38 (-419 (-576)))) -(|has| |#1| (-38 (-419 (-576)))) -((((-1198)) -2802 (|has| |#2| (-918 (-1198))) (|has| |#2| (-920 (-1198))))) -((((-877)) . T)) +((((-880)) . T)) +((((-549)) |has| |#2| (-627 (-549))) (((-911 (-577))) |has| |#2| (-627 (-911 (-577)))) (((-911 (-391))) |has| |#2| (-627 (-911 (-391)))) (((-391)) . #0=(|has| |#2| (-1047))) (((-228)) . #0#)) +((((-305 |#3|)) . T)) +((((-1201) (-52)) . T)) +(((|#1|) . T)) +(|has| |#1| (-38 (-420 (-577)))) +(|has| |#1| (-38 (-420 (-577)))) +((((-1201)) -2839 (|has| |#2| (-921 (-1201))) (|has| |#2| (-923 (-1201))))) +((((-880)) . T)) (((|#2|) . T)) -((((-877)) . T)) -((((-419 (-576)) |#1|) . T) (($ $) . T)) -((((-419 |#2|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-419 (-576))) . T) (((-712)) . T) (($) . T)) -((((-1196 |#1| |#2| |#3|)) . T)) -((((-1196 |#1| |#2| |#3|)) . T) (((-1189 |#1| |#2| |#3|)) . T)) -((((-877)) . T)) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) -((((-576) |#1|) . T)) -((((-1196 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-880)) . T)) +((((-420 (-577)) |#1|) . T) (($ $) . T)) +((((-420 |#2|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +((((-420 (-577))) . T) (((-715)) . T) (($) . T)) +((((-1199 |#1| |#2| |#3|)) . T)) +((((-1199 |#1| |#2| |#3|)) . T) (((-1192 |#1| |#2| |#3|)) . T)) +((((-880)) . T)) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((((-577) |#1|) . T)) +((((-1199 |#1| |#2| |#3|)) |has| |#1| (-375))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-374)) -(((|#3|) . T) ((|#2|) . T) ((|#4|) -2802 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1071))) (($) |has| |#4| (-1071)) (((-576)) -12 (|has| |#4| (-652 (-576))) (|has| |#4| (-1071)))) -(((|#2|) . T) ((|#3|) -2802 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1071))) (($) |has| |#3| (-1071)) (((-576)) -12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) +(|has| |#2| (-375)) +(((|#3|) . T) ((|#2|) . T) ((|#4|) -2839 (|has| |#4| (-174)) (|has| |#4| (-375)) (|has| |#4| (-1074))) (($) |has| |#4| (-1074)) (((-577)) -12 (|has| |#4| (-654 (-577))) (|has| |#4| (-1074)))) +(((|#2|) . T) ((|#3|) -2839 (|has| |#3| (-174)) (|has| |#3| (-375)) (|has| |#3| (-1074))) (($) |has| |#3| (-1074)) (((-577)) -12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074)))) (((|#1|) . T)) (((|#1|) . T)) ((((-117 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-419 (-576))) |has| |#2| (-1060 (-419 (-576)))) (((-576)) |has| |#2| (-1060 (-576))) ((|#2|) . T) (((-879 |#1|)) . T)) -((((-1198)) . T) ((|#1|) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-189)) . T) (((-877)) . T)) -((((-877)) . T)) +((((-420 (-577))) |has| |#2| (-1063 (-420 (-577)))) (((-577)) |has| |#2| (-1063 (-577))) ((|#2|) . T) (((-882 |#1|)) . T)) +((((-1201)) . T) ((|#1|) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +((((-189)) . T) (((-880)) . T)) +((((-880)) . T)) (((|#1|) . T)) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) -((((-130)) . T) (((-877)) . T)) -((((-576) |#1|) . T) (((-1256 (-576)) $) . T)) -((((-877)) . T)) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) +((((-130)) . T) (((-880)) . T)) +((((-577) |#1|) . T) (((-1259 (-577)) $) . T)) +((((-880)) . T)) ((((-130)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) (($ $) . T) (((-576) |#1|) . T)) -((($ $) . T) (((-419 (-576)) |#1|) . T)) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-929))) -((($ (-1198)) |has| |#1| (-1071))) -(-2802 (|has| |#1| (-862)) (|has| |#1| (-1122))) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -(((|#1| (-543 |#2|)) . T)) -((((-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) . T)) -((((-576) (-130)) . T)) -(((|#1| (-576)) . T)) -(((|#1| (-419 (-576))) . T)) -(((|#1| (-784)) . T)) -((((-930 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -(-2802 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) -(-2802 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-929))) +(((|#2| $) -12 (|has| |#1| (-375)) (|has| |#2| (-297 |#2| |#2|))) (($ $) . T) (((-577) |#1|) . T)) +((($ $) . T) (((-420 (-577)) |#1|) . T)) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-465)) (|has| |#1| (-932))) +((($ (-1201)) |has| |#1| (-1074))) +(-2839 (|has| |#1| (-865)) (|has| |#1| (-1125))) +((((-880)) . T)) +((((-880)) . T)) +((((-880)) . T)) +(((|#1| (-544 |#2|)) . T)) +((((-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) . T)) +((((-577) (-130)) . T)) +(((|#1| (-577)) . T)) +(((|#1| (-420 (-577))) . T)) +(((|#1| (-787)) . T)) +((((-933 |#1|)) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) +((((-117 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) +((((-1206)) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-880)) . T) (((-1206)) . T)) +(-2839 (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) +(-2839 (|has| |#1| (-465)) (|has| |#1| (-569)) (|has| |#1| (-932))) ((($) . T)) -(((|#2| (-543 (-879 |#1|))) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-576) |#1|) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) +(((|#2| (-544 (-882 |#1|))) . T)) +((((-1206)) . T)) +((((-1206)) . T)) +((((-577) |#1|) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) (((|#2|) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-877)) -2802 (|has| |#1| (-625 (-877))) (|has| |#1| (-1122)))) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) +((((-880)) . T) (((-1206)) . T)) +((((-1206)) . T)) +((((-880)) -2839 (|has| |#1| (-626 (-880))) (|has| |#1| (-1125)))) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-1180) |#1|) . T)) -((((-419 |#2|)) . T)) -((((-419 |#2|)) . T)) -(|has| |#1| (-568)) -(|has| |#1| (-568)) -((((-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T)) -(((|#2| (-784)) . T)) +((((-1183) |#1|) . T)) +((((-420 |#2|)) . T)) +((((-420 |#2|)) . T)) +(|has| |#1| (-569)) +(|has| |#1| (-569)) +((((-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T)) +(((|#2| (-787)) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) . T) (($) . T)) +((($) . T) (((-420 (-577))) . T)) +((((-420 (-577))) . T) (($) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-576)) . T) (($) . T)) -(((|#2| $) |has| |#2| (-296 |#2| |#2|))) -(((|#1| (-657 |#1|)) |has| |#1| (-861))) -(-2802 (|has| |#1| (-238)) (|has| |#1| (-360))) -(-2802 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1285 |#1|)) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1060 (-419 (-576))))) -(|has| |#1| (-1122)) -(((|#1|) . T)) -((((-419 (-576))) . T) (($) . T)) -((((-1285 |#1|)) . T) (((-576)) . T) (($) -2802 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-929))) (((-1104)) . T) ((|#2|) . T) (((-419 (-576))) -2802 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576)))))) -((((-1021 |#1|)) . T) ((|#1|) . T) (((-576)) -2802 (|has| (-1021 |#1|) (-1060 (-576))) (|has| |#1| (-1060 (-576)))) (((-419 (-576))) -2802 (|has| (-1021 |#1|) (-1060 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) -((((-930 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((((-1198)) |has| |#1| (-918 (-1198)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -((((-930 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-577)) . T) (($) . T)) +(((|#2| $) |has| |#2| (-297 |#2| |#2|))) +(((|#1| (-660 |#1|)) |has| |#1| (-864))) +(-2839 (|has| |#1| (-239)) (|has| |#1| (-361))) +(-2839 (|has| |#1| (-375)) (|has| |#1| (-361))) +((((-1288 |#1|)) . T) (((-577)) . T) ((|#2|) . T) (((-420 (-577))) |has| |#2| (-1063 (-420 (-577))))) +(|has| |#1| (-1125)) +(((|#1|) . T)) +((((-420 (-577))) . T) (($) . T)) +((((-1288 |#1|)) . T) (((-577)) . T) (($) -2839 (|has| |#2| (-375)) (|has| |#2| (-465)) (|has| |#2| (-569)) (|has| |#2| (-932))) (((-1107)) . T) ((|#2|) . T) (((-420 (-577))) -2839 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577)))))) +((((-1024 |#1|)) . T) ((|#1|) . T) (((-577)) -2839 (|has| (-1024 |#1|) (-1063 (-577))) (|has| |#1| (-1063 (-577)))) (((-420 (-577))) -2839 (|has| (-1024 |#1|) (-1063 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577)))))) +((((-933 |#1|)) . T) (((-420 (-577))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-1201)) |has| |#1| (-921 (-1201)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +((((-933 |#1|)) . T) (($) . T) (((-420 (-577))) . T)) ((($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) -(((|#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) +(((|#1| (-615 |#1| |#3|) (-615 |#1| |#2|)) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) +(((|#1|) . T) (((-420 (-577))) . T) (((-577)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1162 |#1| |#2|) #0#) |has| (-1162 |#1| |#2|) (-319 (-1162 |#1| |#2|)))) +(((#0=(-1165 |#1| |#2|) #0#) |has| (-1165 |#1| |#2|) (-320 (-1165 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((#0=(-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) #0#) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) -(-2802 (|has| |#1| (-238)) (|has| |#1| (-237))) -(((#0=(-117 |#1|)) |has| #0# (-319 #0#))) +(((|#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((#0=(-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) #0#) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) +(-2839 (|has| |#1| (-239)) (|has| |#1| (-238))) +(((#0=(-117 |#1|)) |has| #0# (-320 #0#))) ((($ $) . T)) -(-2802 (|has| |#1| (-862)) (|has| |#1| (-1122))) -((($ $) . T) ((#0=(-879 |#1|) $) . T) ((#0# |#2|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-238)) ((|#2| |#1|) |has| |#1| (-238)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-490 . -1122) T) ((-273 . -526) 205115) ((-253 . -526) 205058) ((-250 . -1122) 205008) ((-583 . -111) 204993) ((-543 . -23) T) ((-139 . -1122) T) ((-138 . -1122) T) ((-118 . -319) 204950) ((-134 . -1122) T) ((-1021 . -237) 204901) ((-812 . -1239) T) ((-491 . -526) 204693) ((-690 . -628) 204677) ((-707 . -102) T) ((-1163 . -526) 204596) ((-411 . -237) T) ((-402 . -132) T) ((-1302 . -998) 204565) ((-1046 . -1073) 204502) ((-329 . -865) T) ((-31 . -93) T) ((-614 . -501) 204486) ((-1046 . -653) 204423) ((-633 . -132) T) ((-832 . -859) T) ((-535 . -57) 204373) ((-531 . -526) 204306) ((-362 . -234) 204293) ((-365 . -1073) 204238) ((-59 . -526) 204171) ((-528 . -526) 204104) ((-430 . -918) 204063) ((-171 . -1071) T) ((-509 . -526) 203996) ((-508 . -526) 203929) ((-365 . -653) 203874) ((-812 . -1060) 203654) ((-1262 . -628) 203402) ((-712 . -38) 203367) ((-1116 . -1115) 203351) ((-354 . -360) T) ((-480 . -1239) T) ((-1116 . -1122) 203329) ((-870 . -628) 203226) ((-171 . -248) 203177) ((-171 . -238) 203128) ((-1116 . -1117) 203086) ((-887 . -296) 203044) ((-227 . -808) T) ((-227 . -805) T) ((-707 . -294) NIL) ((-583 . -628) 203016) ((-1172 . -1215) 202995) ((-419 . -1014) 202979) ((-48 . -1073) 202944) ((-714 . -21) T) ((-714 . -25) T) ((-48 . -653) 202909) ((-1304 . -661) 202883) ((-1262 . -336) 202860) ((-1172 . -107) 202810) ((-326 . -161) 202789) ((-326 . -144) 202768) ((-117 . -21) T) ((-40 . -232) 202745) ((-40 . -272) 202722) ((-135 . -25) T) ((-117 . -25) T) ((-1262 . -238) T) ((-1262 . -1071) T) ((-620 . -298) 202698) ((-870 . -1071) T) ((-618 . -1239) T) ((-812 . -349) 202682) ((-487 . -298) 202661) ((-684 . -1239) T) ((-182 . -1239) T) ((-162 . -1239) T) ((-157 . -1239) T) ((-155 . -1239) T) ((-140 . -187) T) ((-118 . -1174) NIL) ((-91 . -625) 202593) ((-489 . -132) T) ((-1187 . -1239) T) ((-1118 . -502) 202574) ((-1118 . -625) 202540) ((-1112 . -502) 202521) ((-1112 . -625) 202487) ((-605 . -1239) T) ((-1095 . -502) 202468) ((-583 . -1071) T) ((-1095 . -625) 202434) ((-675 . -730) 202418) ((-1088 . -502) 202399) ((-1088 . -625) 202365) ((-978 . -298) 202342) ((-60 . -34) T) ((-1084 . -808) T) ((-1084 . -805) T) ((-1058 . -502) 202323) ((-1041 . -502) 202304) ((-829 . -739) T) ((-744 . -47) 202269) ((-635 . -38) 202256) ((-366 . -300) T) ((-363 . -300) T) ((-355 . -300) T) ((-273 . -300) 202187) ((-253 . -300) 202118) ((-1058 . -625) 202084) ((-1046 . -102) T) ((-1041 . -625) 202050) ((-638 . -502) 202031) ((-425 . -739) T) ((-118 . -38) 201976) ((-495 . -502) 201957) ((-638 . -625) 201923) ((-425 . -485) T) ((-220 . -502) 201904) ((-495 . -625) 201870) ((-365 . -102) T) ((-220 . -625) 201836) ((-1233 . -1080) T) ((-354 . -659) 201766) ((-724 . -1080) T) ((-1196 . -47) 201743) ((-1195 . -47) 201713) ((-1189 . -47) 201690) ((-129 . -298) 201665) ((-1057 . -152) 201611) ((-930 . -300) T) ((-1148 . -47) 201583) ((-707 . -319) NIL) ((-527 . -625) 201565) ((-522 . -625) 201547) ((-520 . -625) 201529) ((-497 . -1239) T) ((-337 . -1122) 201479) ((-326 . -912) 201443) ((-323 . -912) NIL) ((-725 . -464) 201374) ((-48 . -102) T) ((-1273 . -296) 201332) ((-1252 . -296) 201232) ((-657 . -679) 201216) ((-657 . -664) 201200) ((-350 . -21) T) ((-350 . -25) T) ((-40 . -360) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-657 . -384) 201184) ((-617 . -502) 201166) ((-651 . -625) 201148) ((-614 . -296) 201100) ((-617 . -625) 201067) ((-400 . -102) T) ((-1142 . -144) T) ((-127 . -625) 200999) ((-889 . -1122) T) ((-671 . -423) 200983) ((-744 . -1239) T) ((-727 . -625) 200965) ((-255 . -625) 200932) ((-189 . -625) 200914) ((-163 . -625) 200896) ((-158 . -625) 200878) ((-1304 . -739) T) ((-1124 . -34) T) ((-886 . -808) NIL) ((-886 . -805) NIL) ((-873 . -862) T) ((-744 . -902) NIL) ((-1313 . -132) T) ((-392 . -132) T) ((-908 . -628) 200846) ((-924 . -102) T) ((-744 . -1060) 200722) ((-1196 . -1239) T) ((-1195 . -1239) T) ((-543 . -132) T) ((-1189 . -1239) T) ((-1109 . -423) 200706) ((-1022 . -501) 200690) ((-118 . -412) 200667) ((-1148 . -1239) T) ((-795 . -423) 200651) ((-793 . -423) 200635) ((-963 . -34) T) ((-707 . -1174) NIL) ((-258 . -661) 200455) ((-257 . -661) 200262) ((-830 . -940) 200241) ((-466 . -423) 200225) ((-614 . -19) 200209) ((-1168 . -1232) 200178) ((-1189 . -902) NIL) ((-1189 . -900) 200130) ((-614 . -616) 200107) ((-108 . -865) T) ((-1225 . -625) 200039) ((-1197 . -625) 200021) ((-62 . -407) T) ((-1195 . -1060) 199956) ((-1189 . -1060) 199922) ((-707 . -38) 199872) ((-40 . -659) 199802) ((-486 . -296) 199760) ((-1245 . -625) 199742) ((-744 . -388) 199726) ((-851 . -625) 199708) ((-671 . -1080) T) ((-635 . -920) 199631) ((-1273 . -1024) 199597) ((-448 . -1239) T) ((-1252 . -1024) 199563) ((-256 . -1239) T) ((-1110 . -628) 199547) ((-1085 . -1215) 199522) ((-1098 . -628) 199499) ((-887 . -626) 199306) ((-887 . -625) 199288) ((-118 . -920) NIL) ((-714 . -234) 199275) ((-1211 . -501) 199212) ((-430 . -1044) 199190) ((-48 . -319) 199177) ((-1085 . -107) 199123) ((-491 . -501) 199060) ((-537 . -1239) T) ((-532 . -1239) T) ((-1189 . -349) 199012) ((-1163 . -501) 198983) ((-1189 . -388) 198935) ((-1109 . -1080) T) ((-449 . -102) T) ((-185 . -1122) T) ((-258 . -34) T) ((-257 . -34) T) ((-1180 . -865) T) ((-863 . -628) 198919) ((-795 . -1080) T) ((-793 . -1080) T) ((-744 . -918) 198896) ((-466 . -1080) T) ((-59 . -501) 198880) ((-1056 . -1078) 198854) ((-531 . -501) 198838) ((-528 . -501) 198822) ((-509 . -501) 198806) ((-508 . -501) 198790) ((-250 . -526) 198723) ((-1056 . -111) 198690) ((-1196 . -918) 198603) ((-1195 . -918) 198509) ((-683 . -1134) T) ((-1189 . -918) 198342) ((-658 . -93) T) ((-1148 . -918) 198326) ((-365 . -1174) T) ((-332 . -1078) 198308) ((-31 . -502) 198289) ((-258 . -807) 198268) ((-258 . -806) 198247) ((-257 . -807) 198226) ((-257 . -806) 198205) ((-31 . -625) 198171) ((-50 . -1080) T) ((-258 . -739) 198149) ((-257 . -739) 198127) ((-1233 . -1122) T) ((-683 . -23) T) ((-593 . -1080) T) ((-530 . -1080) T) ((-390 . -1078) 198092) ((-332 . -111) 198067) ((-73 . -394) T) ((-73 . -407) T) ((-1046 . -38) 198004) ((-707 . -412) 197986) ((-99 . -102) T) ((-1318 . -1073) 197973) ((-724 . -1122) T) ((-1135 . -865) 197924) ((-1025 . -146) 197896) ((-1025 . -148) 197868) ((-885 . -659) 197840) ((-390 . -111) 197796) ((-329 . -1243) 197775) ((-486 . -1024) 197741) ((-365 . -38) 197706) ((-40 . -381) 197678) ((-888 . -625) 197550) ((-128 . -126) 197534) ((-122 . -126) 197518) ((-849 . -1078) 197488) ((-846 . -21) 197440) ((-840 . -1078) 197424) ((-846 . -25) 197376) ((-329 . -568) 197327) ((-529 . -628) 197308) ((-576 . -841) T) ((-245 . -1239) T) ((-1056 . -628) 197277) ((-849 . -111) 197242) ((-840 . -111) 197221) ((-1273 . -625) 197203) ((-1252 . -625) 197185) ((-1252 . -626) 196856) ((-1194 . -929) 196835) ((-1147 . -929) 196814) ((-48 . -38) 196779) ((-1311 . -1134) T) ((-548 . -296) 196735) ((-614 . -625) 196647) ((-614 . -626) 196608) ((-1309 . -1134) T) ((-372 . -628) 196592) ((-332 . -628) 196576) ((-1164 . -237) 196527) ((-245 . -1060) 196354) ((-1194 . -661) 196243) ((-1147 . -661) 196132) ((-869 . -661) 196106) ((-731 . -625) 196088) ((-558 . -379) T) ((-1311 . -23) T) ((-707 . -920) NIL) ((-1309 . -23) T) ((-503 . -1122) T) ((-390 . -628) 196038) ((-390 . -630) 196020) ((-1056 . -1071) T) ((-880 . -102) T) ((-1211 . -296) 195999) ((-171 . -379) 195950) ((-1026 . -1239) T) ((-993 . -1239) T) ((-934 . -1239) T) ((-849 . -628) 195904) ((-840 . -628) 195859) ((-44 . -23) T) ((-1318 . -102) T) ((-491 . -296) 195838) ((-598 . -1122) T) ((-1168 . -1131) 195807) ((-439 . -1239) T) ((-1126 . -1125) 195759) ((-402 . -21) T) ((-402 . -25) T) ((-153 . -1134) T) ((-1233 . -730) 195656) ((-1219 . -1122) T) ((-1026 . -900) 195638) ((-1026 . -902) 195620) ((-635 . -232) 195604) ((-635 . -272) 195588) ((-633 . -21) T) ((-299 . -568) T) ((-633 . -25) T) ((-1026 . -1060) 195548) ((-724 . -730) 195513) ((-245 . -388) 195482) ((-390 . -1071) T) ((-225 . -1080) T) ((-118 . -272) 195459) ((-118 . -232) 195436) ((-59 . -296) 195388) ((-153 . -23) T) ((-528 . -296) 195340) ((-337 . -526) 195273) ((-508 . -296) 195225) ((-390 . -248) T) ((-390 . -238) T) ((-849 . -1071) T) ((-840 . -1071) T) ((-725 . -969) 195194) ((-714 . -862) T) ((-624 . -865) T) ((-486 . -625) 195176) ((-1275 . -1073) 195081) ((-592 . -659) 195053) ((-576 . -659) 195025) ((-507 . -659) 194975) ((-840 . -238) 194954) ((-135 . -862) T) ((-1275 . -653) 194846) ((-671 . -1122) T) ((-1211 . -616) 194825) ((-562 . -1215) 194804) ((-347 . -1122) T) ((-329 . -374) 194783) ((-419 . -148) 194762) ((-419 . -146) 194741) ((-984 . -1134) 194640) ((-828 . -1134) 194618) ((-245 . -918) 194550) ((-667 . -867) 194534) ((-491 . -616) 194513) ((-110 . -865) T) ((-536 . -1239) T) ((-562 . -107) 194463) ((-1026 . -388) 194445) ((-1026 . -349) 194427) ((-1198 . -625) 194409) ((-97 . -1122) T) ((-984 . -23) 194220) ((-489 . -21) T) ((-489 . -25) T) ((-828 . -23) 194072) ((-1198 . -626) 193994) ((-59 . -19) 193978) ((-1194 . -739) T) ((-1147 . -739) T) ((-1109 . -1122) T) ((-528 . -19) 193962) ((-508 . -19) 193946) ((-59 . -616) 193923) ((-1025 . -237) 193860) ((-921 . -102) 193810) ((-869 . -739) T) ((-795 . -1122) T) ((-528 . -616) 193787) ((-508 . -616) 193764) ((-793 . -1122) T) ((-793 . -1087) 193731) ((-473 . -1122) T) ((-466 . -1122) T) ((-598 . -730) 193706) ((-662 . -1122) T) ((-1281 . -47) 193683) ((-1275 . -102) T) ((-1274 . -47) 193653) ((-1253 . -47) 193630) ((-1233 . -174) 193581) ((-1195 . -317) 193560) ((-1189 . -317) 193539) ((-1118 . -628) 193520) ((-1112 . -628) 193501) ((-1102 . -568) 193452) ((-1102 . -1243) 193403) ((-1095 . -628) 193384) ((-1026 . -918) NIL) ((-1088 . -628) 193365) ((-683 . -132) T) ((-639 . -1134) T) ((-1058 . -628) 193346) ((-1041 . -628) 193327) ((-727 . -1078) 193297) ((-725 . -912) 193200) ((-712 . -659) 193150) ((-284 . -1122) T) ((-85 . -453) T) ((-85 . -407) T) ((-724 . -174) T) ((-651 . -1078) 193134) ((-50 . -1122) T) ((-607 . -47) 193111) ((-227 . -661) 193076) ((-593 . -1122) T) ((-530 . -1122) T) ((-499 . -833) T) ((-499 . -940) T) ((-370 . -1243) T) ((-364 . -1243) T) ((-356 . -1243) T) ((-329 . -1134) T) ((-326 . -1073) 192986) ((-323 . -1073) 192915) ((-108 . -1243) T) ((-638 . -628) 192896) ((-370 . -568) T) ((-219 . -940) T) ((-219 . -833) T) ((-326 . -653) 192806) ((-323 . -653) 192735) ((-364 . -568) T) ((-356 . -568) T) ((-651 . -111) 192714) ((-1318 . -1174) T) ((-495 . -628) 192695) ((-108 . -568) T) ((-1189 . -1044) NIL) ((-671 . -730) 192665) ((-494 . -865) 192616) ((-220 . -628) 192597) ((-329 . -23) T) ((-67 . -1239) T) ((-1022 . -625) 192529) ((-1313 . -21) T) ((-707 . -272) 192511) ((-707 . -232) 192493) ((-1313 . -25) T) ((-727 . -111) 192458) ((-1311 . -132) T) ((-657 . -34) T) ((-250 . -501) 192442) ((-1309 . -132) T) ((-1302 . -102) T) ((-1285 . -625) 192408) ((-1281 . -1239) T) ((-1124 . -1120) 192392) ((-173 . -1122) T) ((-1274 . -1239) T) ((-1274 . -1060) 192327) ((-1253 . -1239) T) ((-1253 . -902) NIL) ((-1253 . -900) 192279) ((-972 . -929) 192258) ((-1253 . -1060) 192224) ((-1233 . -526) 192191) ((-1211 . -626) NIL) ((-527 . -628) 192175) ((-1211 . -625) 192157) ((-1164 . -1145) 192102) ((-1109 . -730) 191951) ((-493 . -929) 191930) ((-1099 . -102) T) ((-1084 . -661) 191902) ((-972 . -661) 191791) ((-831 . -865) T) ((-795 . -730) 191620) ((-609 . -502) 191601) ((-597 . -502) 191582) ((-609 . -625) 191548) ((-597 . -625) 191514) ((-548 . -625) 191496) ((-591 . -1239) T) ((-548 . -626) 191477) ((-793 . -730) 191326) ((-1068 . -1232) 191255) ((-635 . -659) 191227) ((-392 . -25) T) ((-392 . -21) T) ((-493 . -661) 191116) ((-473 . -730) 191087) ((-466 . -730) 190936) ((-1009 . -102) T) ((-921 . -319) 190874) ((-891 . -93) T) ((-750 . -102) T) ((-651 . -628) 190851) ((-118 . -659) 190781) ((-617 . -628) 190763) ((-727 . -628) 190717) ((-694 . -93) T) ((-543 . -25) T) ((-689 . -93) T) ((-677 . -625) 190699) ((-658 . -502) 190680) ((-658 . -625) 190633) ((-142 . -102) T) ((-44 . -132) T) ((-608 . -1239) T) ((-607 . -1239) T) ((-354 . -1080) T) ((-299 . -1134) T) ((-490 . -93) T) ((-419 . -237) 190584) ((-366 . -625) 190566) ((-363 . -625) 190548) ((-355 . -625) 190530) ((-273 . -626) 190278) ((-273 . -625) 190260) ((-253 . -625) 190242) ((-253 . -626) 190103) ((-139 . -93) T) ((-138 . -93) T) ((-134 . -93) T) ((-1163 . -625) 190085) ((-1142 . -653) 190072) ((-1142 . -1073) 190059) ((-832 . -739) T) ((-832 . -872) T) ((-614 . -298) 190036) ((-593 . -730) 190001) ((-491 . -626) NIL) ((-491 . -625) 189983) ((-530 . -730) 189928) ((-326 . -102) T) ((-323 . -102) T) ((-299 . -23) T) ((-153 . -132) T) ((-930 . -625) 189910) ((-930 . -626) 189892) ((-398 . -739) T) ((-887 . -1078) 189844) ((-887 . -111) 189782) ((-727 . -1071) T) ((-725 . -1265) 189766) ((-707 . -360) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-531 . -625) 189698) ((-390 . -808) T) ((-169 . -1239) T) ((-225 . -1122) T) ((-390 . -805) T) ((-59 . -626) 189659) ((-227 . -807) T) ((-227 . -804) T) ((-59 . -625) 189571) ((-227 . -739) T) ((-528 . -626) 189532) ((-528 . -625) 189444) ((-509 . -625) 189376) ((-508 . -626) 189337) ((-508 . -625) 189249) ((-1102 . -374) 189200) ((-40 . -423) 189177) ((-77 . -1239) T) ((-886 . -929) NIL) ((-370 . -339) 189161) ((-370 . -374) T) ((-364 . -339) 189145) ((-364 . -374) T) ((-356 . -339) 189129) ((-356 . -374) T) ((-326 . -294) 189108) ((-108 . -374) T) ((-70 . -1239) T) ((-1253 . -349) 189060) ((-886 . -661) 189005) ((-1253 . -388) 188957) ((-984 . -132) 188812) ((-828 . -132) 188683) ((-45 . -865) NIL) ((-978 . -664) 188667) ((-1109 . -174) 188578) ((-978 . -384) 188562) ((-1084 . -807) T) ((-1084 . -804) T) ((-887 . -628) 188460) ((-795 . -174) 188351) ((-793 . -174) 188262) ((-829 . -47) 188224) ((-1084 . -739) T) ((-337 . -501) 188208) ((-972 . -739) T) ((-1302 . -319) 188146) ((-1281 . -918) 188059) ((-466 . -174) 187970) ((-250 . -296) 187922) ((-1274 . -918) 187828) ((-1273 . -1078) 187663) ((-1253 . -918) 187496) ((-493 . -739) T) ((-1252 . -1078) 187304) ((-1233 . -300) 187283) ((-1208 . -1239) T) ((-1205 . -379) T) ((-1204 . -379) T) ((-1168 . -152) 187267) ((-1142 . -102) T) ((-1140 . -1122) T) ((-1102 . -23) T) ((-1102 . -1134) T) ((-1097 . -102) T) ((-1079 . -625) 187234) ((-1025 . -421) 187206) ((-947 . -975) T) ((-750 . -319) 187144) ((-75 . -1239) T) ((-677 . -393) 187116) ((-171 . -929) 187069) ((-30 . -975) T) ((-112 . -857) T) ((-1 . -625) 187051) ((-1021 . -912) 186972) ((-129 . -664) 186954) ((-50 . -632) 186938) ((-707 . -659) 186873) ((-607 . -918) 186786) ((-450 . -102) T) ((-129 . -384) 186768) ((-142 . -319) NIL) ((-887 . -1071) T) ((-846 . -862) 186747) ((-81 . -1239) T) ((-724 . -300) T) ((-40 . -1080) T) ((-593 . -174) T) ((-530 . -174) T) ((-523 . -625) 186729) ((-171 . -661) 186603) ((-519 . -625) 186585) ((-362 . -148) 186567) ((-362 . -146) T) ((-370 . -1134) T) ((-364 . -1134) T) ((-356 . -1134) T) ((-1026 . -317) T) ((-934 . -317) T) ((-887 . -248) T) ((-108 . -1134) T) ((-887 . -238) 186546) ((-1273 . -111) 186367) ((-1252 . -111) 186156) ((-250 . -1277) 186140) ((-576 . -861) T) ((-370 . -23) T) ((-365 . -360) T) ((-326 . -319) 186127) ((-323 . -319) 186068) ((-364 . -23) T) ((-329 . -132) T) ((-356 . -23) T) ((-1026 . -1044) T) ((-31 . -628) 186049) ((-108 . -23) T) ((-667 . -1073) 186033) ((-250 . -616) 186010) ((-343 . -1122) T) ((-667 . -653) 185980) ((-1275 . -38) 185872) ((-1262 . -929) 185851) ((-112 . -1122) T) ((-829 . -1239) T) ((-425 . -1239) T) ((-1057 . -102) T) ((-1262 . -661) 185740) ((-886 . -807) NIL) ((-870 . -661) 185714) ((-886 . -804) NIL) ((-829 . -902) NIL) ((-886 . -739) T) ((-1109 . -526) 185587) ((-795 . -526) 185534) ((-793 . -526) 185486) ((-583 . -661) 185473) ((-829 . -1060) 185301) ((-466 . -526) 185244) ((-400 . -401) T) ((-1273 . -628) 185057) ((-1252 . -628) 184805) ((-60 . -1239) T) ((-633 . -862) 184784) ((-512 . -674) T) ((-1168 . -998) 184753) ((-1046 . -659) 184690) ((-1025 . -464) T) ((-712 . -861) T) ((-522 . -805) T) ((-486 . -1078) 184525) ((-512 . -113) T) ((-354 . -1122) T) ((-323 . -1174) NIL) ((-299 . -132) T) ((-406 . -1122) T) ((-885 . -1080) T) ((-707 . -381) 184492) ((-365 . -659) 184422) ((-225 . -632) 184399) ((-337 . -296) 184351) ((-486 . -111) 184172) ((-1273 . -1071) T) ((-1252 . -1071) T) ((-829 . -388) 184156) ((-837 . -1239) T) ((-171 . -739) T) ((-1304 . -1239) T) ((-667 . -102) T) ((-1273 . -248) 184135) ((-1273 . -238) 184087) ((-1252 . -238) 183992) ((-1252 . -248) 183971) ((-1025 . -414) NIL) ((-683 . -652) 183919) ((-326 . -38) 183829) ((-323 . -38) 183758) ((-69 . -625) 183740) ((-329 . -505) 183706) ((-48 . -659) 183656) ((-1211 . -298) 183635) ((-1247 . -862) T) ((-1135 . -1134) 183613) ((-83 . -1239) T) ((-61 . -625) 183595) ((-879 . -865) T) ((-491 . -298) 183574) ((-1304 . -1060) 183551) ((-1186 . -1122) T) ((-1135 . -23) 183403) ((-829 . -918) 183339) ((-1262 . -739) T) ((-1124 . -1239) T) ((-486 . -628) 183165) ((-362 . -237) T) ((-1109 . -300) 183096) ((-986 . -1122) T) ((-909 . -102) T) ((-795 . -300) 183007) ((-337 . -19) 182991) ((-59 . -298) 182968) ((-793 . -300) 182899) ((-870 . -739) T) ((-118 . -861) NIL) ((-528 . -298) 182876) ((-337 . -616) 182853) ((-508 . -298) 182830) ((-466 . -300) 182761) ((-1057 . -319) 182612) ((-891 . -502) 182593) ((-891 . -625) 182559) ((-694 . -502) 182540) ((-583 . -739) T) ((-689 . -502) 182521) ((-694 . -625) 182471) ((-689 . -625) 182437) ((-675 . -625) 182419) ((-490 . -502) 182400) ((-490 . -625) 182366) ((-250 . -626) 182327) ((-250 . -502) 182304) ((-139 . -502) 182285) ((-138 . -502) 182266) ((-134 . -502) 182247) ((-250 . -625) 182139) ((-215 . -102) T) ((-139 . -625) 182105) ((-138 . -625) 182071) ((-134 . -625) 182037) ((-1169 . -34) T) ((-963 . -1239) T) ((-354 . -730) 181982) ((-683 . -25) T) ((-683 . -21) T) ((-1198 . -628) 181963) ((-341 . -1239) T) ((-486 . -1071) T) ((-647 . -429) 181928) ((-619 . -429) 181893) ((-1142 . -1174) T) ((-1274 . -317) 181872) ((-725 . -1073) 181695) ((-593 . -300) T) ((-530 . -300) T) ((-1253 . -317) 181674) ((-486 . -238) 181626) ((-486 . -248) 181605) ((-451 . -1239) T) ((-725 . -653) 181434) ((-1253 . -1044) NIL) ((-1102 . -132) T) ((-887 . -808) 181413) ((-145 . -102) T) ((-40 . -1122) T) ((-887 . -805) 181392) ((-657 . -1032) 181376) ((-592 . -1080) T) ((-576 . -1080) T) ((-507 . -1080) T) ((-419 . -464) T) ((-370 . -132) T) ((-326 . -412) 181360) ((-323 . -412) 181321) ((-364 . -132) T) ((-356 . -132) T) ((-1203 . -1122) T) ((-1142 . -38) 181308) ((-1116 . -625) 181275) ((-108 . -132) T) ((-974 . -1122) T) ((-941 . -1122) T) ((-784 . -1122) T) ((-685 . -1122) T) ((-714 . -148) T) ((-117 . -148) T) ((-1311 . -21) T) ((-1311 . -25) T) ((-1309 . -21) T) ((-1309 . -25) T) ((-677 . -1078) 181259) ((-543 . -862) T) ((-512 . -862) T) ((-376 . -1239) T) ((-366 . -1078) 181211) ((-363 . -1078) 181163) ((-355 . -1078) 181115) ((-258 . -1239) T) ((-257 . -1239) T) ((-273 . -1078) 180958) ((-253 . -1078) 180801) ((-677 . -111) 180780) ((-830 . -1243) 180759) ((-559 . -857) T) ((-326 . -920) 180725) ((-366 . -111) 180663) ((-363 . -111) 180601) ((-355 . -111) 180539) ((-273 . -111) 180368) ((-253 . -111) 180197) ((-323 . -920) NIL) ((-635 . -423) 180181) ((-44 . -21) T) ((-44 . -25) T) ((-925 . -865) 180132) ((-828 . -652) 180038) ((-830 . -568) 180017) ((-499 . -865) T) ((-258 . -1060) 179844) ((-257 . -1060) 179671) ((-127 . -120) 179655) ((-219 . -865) T) ((-930 . -1078) 179620) ((-725 . -102) T) ((-712 . -1080) T) ((-609 . -628) 179601) ((-597 . -628) 179582) ((-548 . -630) 179485) ((-354 . -174) T) ((-153 . -21) T) ((-153 . -25) T) ((-88 . -625) 179467) ((-930 . -111) 179423) ((-40 . -730) 179368) ((-885 . -1122) T) ((-677 . -628) 179345) ((-658 . -628) 179326) ((-366 . -628) 179263) ((-363 . -628) 179200) ((-355 . -628) 179137) ((-559 . -1122) T) ((-337 . -626) 179098) ((-337 . -625) 179010) ((-273 . -628) 178763) ((-253 . -628) 178548) ((-188 . -1239) T) ((-1252 . -805) 178501) ((-1252 . -808) 178454) ((-258 . -388) 178423) ((-257 . -388) 178392) ((-561 . -865) T) ((-667 . -38) 178362) ((-620 . -34) T) ((-494 . -1134) 178340) ((-487 . -34) T) ((-1135 . -132) 178211) ((-984 . -25) 178022) ((-930 . -628) 177972) ((-889 . -625) 177954) ((-984 . -21) 177909) ((-828 . -25) 177742) ((-828 . -21) 177653) ((-1245 . -379) T) ((-635 . -1080) T) ((-1200 . -568) 177632) ((-1194 . -47) 177609) ((-366 . -1071) T) ((-363 . -1071) T) ((-494 . -23) 177461) ((-355 . -1071) T) ((-273 . -1071) T) ((-253 . -1071) T) ((-1147 . -47) 177433) ((-118 . -1080) T) ((-1056 . -661) 177407) ((-978 . -34) T) ((-366 . -238) 177386) ((-366 . -248) T) ((-363 . -238) 177365) ((-363 . -248) T) ((-355 . -238) 177344) ((-355 . -248) T) ((-273 . -336) 177316) ((-253 . -336) 177273) ((-273 . -238) 177252) ((-1179 . -152) 177236) ((-258 . -918) 177168) ((-257 . -918) 177100) ((-1164 . -912) 177021) ((-1104 . -862) T) ((-1256 . -1239) 176999) ((-426 . -1134) T) ((-1076 . -23) T) ((-1046 . -861) T) ((-930 . -1071) T) ((-332 . -661) 176981) ((-714 . -237) T) ((-683 . -234) 176926) ((-1233 . -1024) 176892) ((-1195 . -940) 176871) ((-1189 . -940) 176850) ((-1189 . -833) NIL) ((-1021 . -1073) 176746) ((-987 . -1239) T) ((-930 . -248) T) ((-830 . -374) 176725) ((-396 . -23) T) ((-128 . -1122) 176703) ((-122 . -1122) 176681) ((-930 . -238) T) ((-129 . -34) T) ((-390 . -661) 176646) ((-1021 . -653) 176594) ((-885 . -730) 176581) ((-1318 . -659) 176553) ((-1068 . -152) 176518) ((-1015 . -1239) T) ((-877 . -1239) T) ((-40 . -174) T) ((-707 . -423) 176500) ((-725 . -319) 176487) ((-849 . -661) 176447) ((-840 . -661) 176421) ((-329 . -25) T) ((-329 . -21) T) ((-671 . -296) 176400) ((-592 . -1122) T) ((-576 . -1122) T) ((-507 . -1122) T) ((-1194 . -1239) T) ((-250 . -298) 176377) ((-1147 . -1239) T) ((-869 . -1239) T) ((-323 . -272) 176338) ((-323 . -232) 176299) ((-1244 . -865) T) ((-1194 . -902) NIL) ((-55 . -1122) T) ((-1147 . -902) 176158) ((-130 . -862) T) ((-1194 . -1060) 176038) ((-1147 . -1060) 175921) ((-185 . -625) 175903) ((-869 . -1060) 175799) ((-795 . -296) 175726) ((-830 . -1134) T) ((-1056 . -739) T) ((-1068 . -998) 175655) ((-614 . -664) 175639) ((-1025 . -912) 175546) ((-1021 . -102) T) ((-830 . -23) T) ((-725 . -1174) 175524) ((-707 . -1080) T) ((-614 . -384) 175508) ((-362 . -464) T) ((-354 . -300) T) ((-1290 . -1122) T) ((-254 . -1122) T) ((-411 . -102) T) ((-299 . -21) T) ((-299 . -25) T) ((-372 . -739) T) ((-723 . -1122) T) ((-712 . -1122) T) ((-372 . -485) T) ((-1233 . -625) 175490) ((-1194 . -388) 175474) ((-1147 . -388) 175458) ((-1046 . -423) 175420) ((-142 . -231) 175402) ((-390 . -807) T) ((-390 . -804) T) ((-885 . -174) T) ((-390 . -739) T) ((-724 . -625) 175384) ((-725 . -38) 175213) ((-1289 . -1287) 175197) ((-362 . -414) T) ((-1289 . -1122) 175147) ((-1212 . -1122) T) ((-592 . -730) 175134) ((-576 . -730) 175121) ((-507 . -730) 175086) ((-1275 . -659) 174976) ((-326 . -641) 174955) ((-849 . -739) T) ((-840 . -739) T) ((-1137 . -1239) T) ((-657 . -1239) T) ((-1102 . -652) 174903) ((-1194 . -918) 174846) ((-1147 . -918) 174830) ((-828 . -234) 174721) ((-675 . -1078) 174705) ((-108 . -652) 174687) ((-494 . -132) 174558) ((-1200 . -1134) T) ((-832 . -1239) T) ((-972 . -47) 174527) ((-635 . -1122) T) ((-675 . -111) 174506) ((-503 . -625) 174472) ((-337 . -298) 174449) ((-398 . -1239) T) ((-334 . -1239) T) ((-493 . -47) 174406) ((-1200 . -23) T) ((-118 . -1122) T) ((-103 . -102) 174356) ((-1301 . -1134) T) ((-560 . -862) T) ((-227 . -1239) T) ((-1076 . -132) T) ((-1046 . -1080) T) ((-1301 . -23) T) ((-1219 . -625) 174338) ((-832 . -1060) 174322) ((-1142 . -841) T) ((-1025 . -737) 174294) ((-1127 . -1122) T) ((-712 . -730) 174259) ((-598 . -625) 174241) ((-398 . -1060) 174225) ((-365 . -1080) T) ((-396 . -132) T) ((-334 . -1060) 174209) ((-1102 . -21) T) ((-1102 . -25) T) ((-1026 . -833) T) ((-227 . -902) 174191) ((-1026 . -940) T) ((-91 . -34) T) ((-1021 . -319) 174156) ((-934 . -940) T) ((-891 . -628) 174137) ((-727 . -661) 174097) ((-499 . -1243) T) ((-694 . -628) 174078) ((-689 . -628) 174059) ((-651 . -661) 174043) ((-219 . -1243) T) ((-419 . -912) 173964) ((-227 . -1060) 173924) ((-40 . -300) T) ((-499 . -568) T) ((-490 . -628) 173905) ((-370 . -25) T) ((-326 . -659) 173560) ((-323 . -659) 173474) ((-370 . -21) T) ((-364 . -25) T) ((-364 . -21) T) ((-219 . -568) T) ((-356 . -25) T) ((-356 . -21) T) ((-329 . -234) 173420) ((-250 . -628) 173397) ((-139 . -628) 173378) ((-138 . -628) 173359) ((-134 . -628) 173340) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1080) T) ((-592 . -174) T) ((-576 . -174) T) ((-507 . -174) T) ((-1084 . -1239) T) ((-972 . -1239) T) ((-726 . -1239) T) ((-671 . -625) 173322) ((-493 . -1239) T) ((-750 . -749) 173306) ((-347 . -625) 173288) ((-68 . -394) T) ((-68 . -407) T) ((-1124 . -107) 173272) ((-1084 . -902) 173254) ((-972 . -902) 173179) ((-666 . -1134) T) ((-635 . -730) 173166) ((-493 . -902) NIL) ((-1168 . -102) T) ((-1116 . -630) 173150) ((-1084 . -1060) 173132) ((-97 . -625) 173114) ((-489 . -148) T) ((-972 . -1060) 172994) ((-118 . -730) 172939) ((-725 . -920) 172846) ((-666 . -23) T) ((-493 . -1060) 172722) ((-1109 . -626) NIL) ((-1109 . -625) 172704) ((-795 . -626) NIL) ((-795 . -625) 172665) ((-793 . -626) 172299) ((-793 . -625) 172213) ((-1135 . -652) 172119) ((-812 . -865) 172098) ((-473 . -625) 172080) ((-466 . -625) 172062) ((-466 . -626) 171923) ((-1057 . -231) 171869) ((-887 . -929) 171848) ((-127 . -34) T) ((-830 . -132) T) ((-662 . -625) 171830) ((-590 . -102) T) ((-366 . -1308) 171814) ((-363 . -1308) 171798) ((-355 . -1308) 171782) ((-122 . -526) 171715) ((-128 . -526) 171648) ((-523 . -805) T) ((-523 . -808) T) ((-522 . -807) T) ((-103 . -319) 171586) ((-224 . -102) 171536) ((-712 . -174) T) ((-707 . -1122) T) ((-887 . -661) 171452) ((-65 . -395) T) ((-284 . -625) 171434) ((-65 . -407) T) ((-972 . -388) 171418) ((-885 . -300) T) ((-50 . -625) 171400) ((-1021 . -38) 171348) ((-1142 . -659) 171320) ((-593 . -625) 171302) ((-493 . -388) 171286) ((-593 . -626) 171268) ((-530 . -625) 171250) ((-930 . -1308) 171237) ((-886 . -1239) T) ((-714 . -464) T) ((-507 . -526) 171203) ((-1300 . -1239) T) ((-1299 . -1239) T) ((-499 . -374) T) ((-366 . -379) 171182) ((-363 . -379) 171161) ((-355 . -379) 171140) ((-727 . -739) T) ((-219 . -374) T) ((-117 . -464) T) ((-1312 . -1303) 171124) ((-886 . -900) 171101) ((-886 . -902) NIL) ((-984 . -862) 171000) ((-828 . -862) 170951) ((-1246 . -102) T) ((-667 . -669) 170935) ((-1225 . -34) T) ((-173 . -625) 170917) ((-1135 . -25) 170750) ((-1135 . -21) 170661) ((-886 . -1060) 170638) ((-972 . -918) 170619) ((-1262 . -47) 170596) ((-930 . -379) T) ((-605 . -865) T) ((-59 . -664) 170580) ((-528 . -664) 170564) ((-493 . -918) 170541) ((-71 . -453) T) ((-71 . -407) T) ((-508 . -664) 170525) ((-59 . -384) 170509) ((-635 . -174) T) ((-528 . -384) 170493) ((-508 . -384) 170477) ((-558 . -1239) T) ((-840 . -721) 170461) ((-1194 . -317) 170440) ((-1200 . -132) T) ((-1164 . -1073) 170424) ((-118 . -174) T) ((-1164 . -653) 170356) ((-1168 . -319) 170294) ((-171 . -1239) T) ((-1301 . -132) T) ((-1274 . -940) 170273) ((-1253 . -940) 170252) ((-1253 . -833) NIL) ((-881 . -1073) 170222) ((-647 . -757) 170206) ((-619 . -757) 170190) ((-1252 . -929) 170143) ((-1046 . -1122) T) ((-925 . -1134) T) ((-881 . -653) 170113) ((-707 . -730) 170063) ((-916 . -1239) T) ((-886 . -388) 170040) ((-886 . -349) 170017) ((-854 . -1239) T) ((-821 . -1239) T) ((-171 . -900) 170001) ((-171 . -902) 169926) ((-782 . -1239) T) ((-690 . -1239) T) ((-1289 . -526) 169859) ((-1273 . -661) 169756) ((-1102 . -234) 169629) ((-499 . -1134) T) ((-365 . -1122) T) ((-219 . -1134) T) ((-76 . -453) T) ((-76 . -407) T) ((-171 . -1060) 169525) ((-304 . -912) 169482) ((-329 . -862) T) ((-1252 . -661) 169290) ((-887 . -807) 169269) ((-887 . -804) 169248) ((-887 . -739) T) ((-499 . -23) T) ((-370 . -234) 169221) ((-364 . -234) 169194) ((-356 . -234) 169167) ((-176 . -464) T) ((-86 . -453) T) ((-224 . -319) 169105) ((-86 . -407) T) ((-225 . -625) 169087) ((-108 . -234) 169074) ((-219 . -23) T) ((-1313 . -1306) 169053) ((-690 . -1060) 169037) ((-592 . -300) T) ((-576 . -300) T) ((-507 . -300) T) ((-1262 . -1239) T) ((-137 . -482) 168992) ((-870 . -1239) T) ((-667 . -659) 168951) ((-48 . -1122) T) ((-725 . -272) 168935) ((-725 . -232) 168919) ((-886 . -918) NIL) ((-583 . -1239) T) ((-1262 . -902) NIL) ((-905 . -102) T) ((-901 . -102) T) ((-400 . -1122) T) ((-171 . -388) 168903) ((-171 . -349) 168887) ((-1262 . -1060) 168767) ((-870 . -1060) 168663) ((-1164 . -102) T) ((-1021 . -920) 168586) ((-675 . -805) 168565) ((-666 . -132) T) ((-675 . -808) 168544) ((-118 . -526) 168452) ((-583 . -1060) 168434) ((-304 . -1296) 168404) ((-1189 . -865) NIL) ((-881 . -102) T) ((-983 . -568) 168383) ((-1233 . -1078) 168266) ((-1025 . -1073) 168211) ((-494 . -652) 168117) ((-924 . -1122) T) ((-1046 . -730) 168054) ((-724 . -1078) 168019) ((-1025 . -653) 167964) ((-629 . -102) T) ((-614 . -34) T) ((-1169 . -1239) T) ((-1233 . -111) 167833) ((-486 . -661) 167730) ((-365 . -730) 167675) ((-171 . -918) 167634) ((-712 . -300) T) ((-707 . -174) T) ((-724 . -111) 167590) ((-1318 . -1080) T) ((-1262 . -388) 167574) ((-430 . -1243) 167552) ((-1140 . -625) 167534) ((-323 . -861) NIL) ((-430 . -568) T) ((-227 . -317) T) ((-1252 . -804) 167487) ((-1252 . -807) 167440) ((-1273 . -739) T) ((-1252 . -739) T) ((-48 . -730) 167405) ((-227 . -1044) T) ((-1275 . -423) 167371) ((-1262 . -918) 167314) ((-362 . -1296) 167291) ((-1233 . -628) 167173) ((-731 . -739) T) ((-343 . -625) 167155) ((-532 . -865) 167134) ((-1135 . -234) 167025) ((-112 . -625) 167007) ((-112 . -626) 166989) ((-731 . -485) T) ((-724 . -628) 166939) ((-1312 . -1073) 166923) ((-494 . -25) 166756) ((-128 . -501) 166740) ((-122 . -501) 166724) ((-494 . -21) 166635) ((-1312 . -653) 166605) ((-635 . -300) T) ((-598 . -1078) 166580) ((-449 . -1122) T) ((-1084 . -317) T) ((-118 . -300) T) ((-1126 . -102) T) ((-1025 . -102) T) ((-598 . -111) 166548) ((-1233 . -1071) T) ((-1164 . -319) 166486) ((-1084 . -1044) T) ((-1076 . -25) T) ((-66 . -1239) T) ((-908 . -1239) T) ((-1076 . -21) T) ((-724 . -1071) T) ((-396 . -21) T) ((-396 . -25) T) ((-707 . -526) NIL) ((-1046 . -174) T) ((-724 . -248) T) ((-1084 . -557) T) ((-725 . -659) 166396) ((-518 . -102) T) ((-514 . -102) T) ((-365 . -174) T) ((-354 . -625) 166378) ((-419 . -1073) 166330) ((-406 . -625) 166312) ((-1142 . -861) T) ((-486 . -739) T) ((-908 . -1060) 166280) ((-419 . -653) 166232) ((-108 . -862) T) ((-671 . -1078) 166216) ((-499 . -132) T) ((-1275 . -1080) T) ((-219 . -132) T) ((-1179 . -102) 166166) ((-99 . -1122) T) ((-245 . -865) 166117) ((-250 . -679) 166101) ((-250 . -664) 166085) ((-671 . -111) 166064) ((-598 . -628) 166048) ((-326 . -423) 166032) ((-250 . -384) 166016) ((-1181 . -240) 165963) ((-1021 . -272) 165947) ((-1021 . -232) 165931) ((-74 . -1239) T) ((-48 . -174) T) ((-714 . -399) T) ((-714 . -144) T) ((-1312 . -102) T) ((-1220 . -1239) T) ((-1219 . -628) 165913) ((-1110 . -1239) T) ((-1109 . -1078) 165756) ((-1098 . -1239) T) ((-273 . -929) 165735) ((-253 . -929) 165714) ((-795 . -1078) 165537) ((-793 . -1078) 165380) ((-620 . -1239) T) ((-1186 . -625) 165362) ((-1109 . -111) 165191) ((-1068 . -102) T) ((-487 . -1239) T) ((-473 . -1078) 165162) ((-466 . -1078) 165005) ((-677 . -661) 164989) ((-886 . -317) T) ((-795 . -111) 164798) ((-793 . -111) 164627) ((-366 . -661) 164579) ((-363 . -661) 164531) ((-355 . -661) 164483) ((-273 . -661) 164372) ((-253 . -661) 164261) ((-1180 . -862) T) ((-1110 . -1060) 164245) ((-1098 . -1060) 164222) ((-1026 . -865) T) ((-1022 . -34) T) ((-473 . -111) 164183) ((-466 . -111) 164012) ((-993 . -865) T) ((-986 . -625) 163994) ((-983 . -1134) T) ((-978 . -1239) T) ((-127 . -1032) 163978) ((-863 . -1239) T) ((-886 . -1044) NIL) ((-748 . -1134) T) ((-728 . -1134) T) ((-671 . -628) 163896) ((-1289 . -501) 163880) ((-1206 . -1239) T) ((-1205 . -1239) T) ((-1164 . -38) 163840) ((-983 . -23) T) ((-930 . -661) 163805) ((-880 . -1122) T) ((-856 . -102) T) ((-830 . -21) T) ((-647 . -1073) 163789) ((-619 . -1073) 163773) ((-830 . -25) T) ((-748 . -23) T) ((-728 . -23) T) ((-647 . -653) 163757) ((-110 . -674) T) ((-619 . -653) 163741) ((-593 . -1078) 163706) ((-530 . -1078) 163651) ((-229 . -57) 163609) ((-465 . -23) T) ((-419 . -102) T) ((-1204 . -1239) T) ((-270 . -102) T) ((-110 . -113) T) ((-707 . -300) T) ((-881 . -38) 163579) ((-1109 . -628) 163315) ((-593 . -111) 163271) ((-530 . -111) 163200) ((-430 . -1134) T) ((-326 . -1080) 163090) ((-323 . -1080) T) ((-129 . -1239) T) ((-131 . -1239) T) ((-795 . -628) 162838) ((-793 . -628) 162604) ((-671 . -1071) T) ((-1318 . -1122) T) ((-466 . -628) 162389) ((-171 . -317) 162320) ((-430 . -23) T) ((-40 . -625) 162302) ((-40 . -626) 162286) ((-108 . -1014) 162268) ((-117 . -884) 162252) ((-662 . -628) 162236) ((-48 . -526) 162202) ((-1225 . -1032) 162186) ((-1203 . -625) 162153) ((-1211 . -34) T) ((-974 . -625) 162119) ((-941 . -625) 162101) ((-1135 . -862) 162052) ((-784 . -625) 162034) ((-685 . -625) 162016) ((-529 . -1239) T) ((-1262 . -317) 161995) ((-1179 . -319) 161933) ((-1163 . -34) T) ((-491 . -34) T) ((-1114 . -1239) T) ((-489 . -464) T) ((-1056 . -1239) T) ((-1109 . -1071) T) ((-50 . -628) 161902) ((-795 . -1071) T) ((-793 . -1071) T) ((-660 . -240) 161886) ((-644 . -240) 161832) ((-1200 . -21) T) ((-593 . -628) 161782) ((-530 . -628) 161712) ((-494 . -234) 161603) ((-1200 . -25) T) ((-1109 . -336) 161564) ((-466 . -1071) T) ((-1109 . -238) 161543) ((-795 . -336) 161520) ((-795 . -238) T) ((-793 . -336) 161492) ((-744 . -1243) 161471) ((-531 . -34) T) ((-337 . -664) 161455) ((-528 . -34) T) ((-59 . -34) T) ((-509 . -34) T) ((-508 . -34) T) ((-466 . -336) 161434) ((-337 . -384) 161418) ((-372 . -1239) T) ((-332 . -1239) T) ((-1025 . -1174) NIL) ((-744 . -568) 161349) ((-647 . -102) T) ((-619 . -102) T) ((-366 . -739) T) ((-363 . -739) T) ((-355 . -739) T) ((-273 . -739) T) ((-253 . -739) T) ((-390 . -1239) T) ((-1301 . -21) T) ((-1068 . -319) 161257) ((-1301 . -25) T) ((-921 . -1122) 161235) ((-831 . -234) 161222) ((-50 . -1071) T) ((-1196 . -568) 161201) ((-1195 . -1243) 161180) ((-1195 . -568) 161131) ((-1189 . -1243) 161110) ((-1189 . -568) 161061) ((-1046 . -300) T) ((-593 . -1071) T) ((-530 . -1071) T) ((-1025 . -38) 161006) ((-372 . -1060) 160990) ((-332 . -1060) 160974) ((-1021 . -659) 160897) ((-390 . -902) 160879) ((-849 . -1239) T) ((-840 . -1239) T) ((-838 . -1239) T) ((-812 . -1134) T) ((-930 . -739) T) ((-593 . -248) T) ((-593 . -238) T) ((-530 . -238) T) ((-530 . -248) T) ((-1148 . -568) 160858) ((-365 . -300) T) ((-660 . -708) 160842) ((-390 . -1060) 160802) ((-304 . -1073) 160723) ((-350 . -912) 160702) ((-1142 . -1080) T) ((-103 . -126) 160686) ((-304 . -653) 160628) ((-812 . -23) T) ((-1311 . -1306) 160604) ((-1309 . -1306) 160583) ((-1289 . -296) 160535) ((-419 . -319) 160500) ((-1275 . -1122) T) ((-1164 . -920) 160423) ((-885 . -625) 160405) ((-849 . -1060) 160374) ((-205 . -800) T) ((-204 . -800) T) ((-203 . -800) T) ((-202 . -800) T) ((-201 . -800) T) ((-200 . -800) T) ((-199 . -800) T) ((-198 . -800) T) ((-197 . -800) T) ((-196 . -800) T) ((-559 . -625) 160356) ((-507 . -1024) T) ((-283 . -852) T) ((-282 . -852) T) ((-281 . -852) T) ((-280 . -852) T) ((-48 . -300) T) ((-279 . -852) T) ((-278 . -852) T) ((-277 . -852) T) ((-195 . -800) T) ((-624 . -862) T) ((-667 . -423) 160340) ((-683 . -237) 160291) ((-225 . -628) 160253) ((-110 . -862) T) ((-666 . -21) T) ((-666 . -25) T) ((-1312 . -38) 160223) ((-118 . -296) 160174) ((-1289 . -19) 160158) ((-1253 . -865) NIL) ((-1289 . -616) 160135) ((-1302 . -1122) T) ((-362 . -1073) 160080) ((-1099 . -1122) T) ((-1009 . -1122) T) ((-983 . -132) T) ((-830 . -234) 160067) ((-750 . -1122) T) ((-362 . -653) 160012) ((-748 . -132) T) ((-728 . -132) T) ((-523 . -806) T) ((-523 . -807) T) ((-465 . -132) T) ((-419 . -1174) 159990) ((-225 . -1071) T) ((-304 . -102) 159772) ((-142 . -1122) T) ((-712 . -1024) T) ((-1127 . -296) 159728) ((-91 . -1239) T) ((-128 . -625) 159660) ((-122 . -625) 159592) ((-1318 . -174) T) ((-1195 . -374) 159571) ((-1189 . -374) 159550) ((-326 . -1122) T) ((-430 . -132) T) ((-323 . -1122) T) ((-419 . -38) 159502) ((-1155 . -102) T) ((-1275 . -730) 159394) ((-1157 . -1284) T) ((-1118 . -1239) T) ((-1112 . -1239) T) ((-667 . -1080) T) ((-1095 . -1239) T) ((-1088 . -1239) T) ((-1058 . -1239) T) ((-1041 . -1239) T) ((-329 . -146) 159373) ((-329 . -148) 159352) ((-140 . -1122) T) ((-137 . -1122) T) ((-115 . -1122) T) ((-873 . -102) T) ((-638 . -1239) T) ((-495 . -1239) T) ((-592 . -625) 159334) ((-576 . -626) 159233) ((-576 . -625) 159215) ((-507 . -625) 159197) ((-507 . -626) 159142) ((-497 . -23) T) ((-220 . -1239) T) ((-494 . -862) 159093) ((-499 . -652) 159075) ((-985 . -625) 159057) ((-1025 . -920) 158966) ((-219 . -652) 158948) ((-227 . -416) T) ((-675 . -661) 158932) ((-55 . -625) 158914) ((-1194 . -940) 158893) ((-744 . -1134) T) ((-527 . -1239) T) ((-522 . -1239) T) ((-520 . -1239) T) ((-362 . -102) T) ((-1238 . -1105) T) ((-1142 . -857) T) ((-831 . -862) T) ((-744 . -23) T) ((-354 . -1078) 158838) ((-1169 . -107) 158822) ((-1290 . -625) 158804) ((-651 . -1239) T) ((-1196 . -23) T) ((-1196 . -1134) T) ((-1195 . -1134) T) ((-1195 . -23) T) ((-527 . -1060) 158788) ((-1189 . -1134) T) ((-1148 . -1134) T) ((-354 . -111) 158717) ((-1026 . -1243) T) ((-127 . -1239) T) ((-934 . -1243) T) ((-1189 . -23) T) ((-1164 . -272) 158701) ((-707 . -296) NIL) ((-727 . -1239) T) ((-1164 . -232) 158685) ((-1148 . -23) T) ((-1097 . -1122) T) ((-1026 . -568) T) ((-934 . -568) T) ((-255 . -1239) T) ((-189 . -1239) T) ((-163 . -1239) T) ((-158 . -1239) T) ((-254 . -625) 158667) ((-828 . -237) 158564) ((-812 . -132) T) ((-723 . -625) 158546) ((-326 . -730) 158456) ((-323 . -730) 158385) ((-712 . -625) 158367) ((-712 . -626) 158312) ((-419 . -412) 158296) ((-450 . -1122) T) ((-499 . -25) T) ((-499 . -21) T) ((-1142 . -1122) T) ((-219 . -25) T) ((-219 . -21) T) ((-725 . -423) 158280) ((-727 . -1060) 158249) ((-1289 . -625) 158161) ((-1289 . -626) 158122) ((-1275 . -174) T) ((-1212 . -625) 158104) ((-250 . -34) T) ((-354 . -628) 158034) ((-406 . -628) 158016) ((-946 . -996) T) ((-1225 . -1239) T) ((-675 . -804) 157995) ((-675 . -807) 157974) ((-410 . -407) T) ((-535 . -102) 157924) ((-1245 . -1239) T) ((-1057 . -1122) T) ((-419 . -920) 157847) ((-224 . -1017) 157831) ((-851 . -1239) T) ((-516 . -102) T) ((-635 . -625) 157813) ((-45 . -862) NIL) ((-635 . -626) 157790) ((-1057 . -622) 157765) ((-921 . -526) 157698) ((-329 . -237) 157650) ((-354 . -1071) T) ((-118 . -626) NIL) ((-118 . -625) 157632) ((-887 . -1239) T) ((-683 . -429) 157616) ((-683 . -1145) 157561) ((-512 . -152) 157543) ((-354 . -238) T) ((-354 . -248) T) ((-40 . -1078) 157488) ((-887 . -900) 157472) ((-887 . -902) 157397) ((-725 . -1080) T) ((-707 . -1024) NIL) ((-1273 . -47) 157367) ((-1252 . -47) 157344) ((-1163 . -1032) 157315) ((-1142 . -730) 157302) ((-3 . |UnionCategory|) T) ((-1127 . -625) 157284) ((-1102 . -148) 157263) ((-1102 . -146) 157214) ((-1026 . -374) T) ((-986 . -628) 157198) ((-227 . -940) T) ((-40 . -111) 157127) ((-887 . -1060) 156991) ((-1025 . -232) 156968) ((-1025 . -272) 156945) ((-714 . -1073) 156932) ((-934 . -374) T) ((-714 . -653) 156919) ((-329 . -1227) 156885) ((-390 . -317) T) ((-329 . -1224) 156851) ((-326 . -174) 156830) ((-323 . -174) T) ((-620 . -1215) 156806) ((-593 . -1308) 156793) ((-530 . -1308) 156770) ((-117 . -1073) 156757) ((-370 . -148) 156736) ((-370 . -146) 156687) ((-364 . -148) 156666) ((-364 . -146) 156617) ((-356 . -148) 156596) ((-117 . -653) 156583) ((-356 . -146) 156534) ((-329 . -35) 156500) ((-487 . -1215) 156479) ((0 . |EnumerationCategory|) T) ((-329 . -95) 156445) ((-390 . -1044) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -240) 156395) ((-667 . -1122) T) ((-620 . -107) 156342) ((-497 . -132) T) ((-487 . -107) 156292) ((-245 . -1134) 156270) ((-31 . -1239) T) ((-887 . -388) 156254) ((-887 . -349) 156238) ((-245 . -23) 156090) ((-40 . -628) 156020) ((-1302 . -526) 155953) ((-1084 . -940) T) ((-1084 . -833) T) ((-593 . -379) T) ((-530 . -379) T) ((-1281 . -568) 155932) ((-1274 . -1243) 155911) ((-1274 . -568) 155862) ((-1273 . -1239) T) ((-1253 . -1243) 155841) ((-362 . -1174) T) ((-337 . -34) T) ((-44 . -429) 155825) ((-1203 . -628) 155761) ((-888 . -1239) T) ((-402 . -757) 155745) ((-1253 . -568) 155696) ((-1252 . -1239) T) ((-1164 . -659) 155655) ((-744 . -132) T) ((-685 . -628) 155639) ((-1252 . -902) 155512) ((-1252 . -900) 155482) ((-1196 . -132) T) ((-1195 . -132) T) ((-1189 . -132) T) ((-1148 . -132) T) ((-321 . -1105) T) ((-1046 . -1024) T) ((-750 . -526) 155415) ((-1026 . -23) T) ((-1026 . -1134) T) ((-909 . -1122) T) ((-145 . -857) T) ((-1025 . -360) NIL) ((-704 . -625) 155397) ((-963 . -865) 155376) ((-535 . -319) 155314) ((-993 . -23) T) ((-142 . -526) NIL) ((-881 . -659) 155259) ((-934 . -1134) T) ((-934 . -23) T) ((-887 . -918) 155218) ((-362 . -38) 155183) ((-885 . -1078) 155170) ((-341 . -865) T) ((-82 . -625) 155152) ((-40 . -1071) T) ((-885 . -111) 155137) ((-731 . -1239) T) ((-714 . -102) T) ((-707 . -625) 155119) ((-614 . -1239) T) ((-608 . -568) 155098) ((-439 . -1134) T) ((-350 . -1073) 155082) ((-215 . -1122) T) ((-176 . -1073) 155014) ((-486 . -47) 154984) ((-40 . -238) 154956) ((-40 . -248) T) ((-135 . -102) T) ((-117 . -102) T) ((-607 . -568) 154935) ((-350 . -653) 154919) ((-707 . -626) 154827) ((-326 . -526) 154793) ((-176 . -653) 154725) ((-323 . -526) 154617) ((-499 . -234) 154604) ((-1273 . -1060) 154588) ((-1252 . -1060) 154374) ((-1021 . -423) 154358) ((-219 . -234) 154345) ((-439 . -23) T) ((-1142 . -174) T) ((-1275 . -300) T) ((-667 . -730) 154315) ((-145 . -1122) T) ((-48 . -1024) T) ((-419 . -272) 154299) ((-419 . -232) 154283) ((-305 . -240) 154233) ((-886 . -940) T) ((-886 . -833) NIL) ((-885 . -628) 154205) ((-258 . -865) 154156) ((-257 . -865) 154107) ((-879 . -862) T) ((-1252 . -349) 154077) ((-1252 . -388) 154047) ((-1102 . -237) 153926) ((-224 . -1143) 153910) ((-304 . -920) 153869) ((-1289 . -298) 153846) ((-370 . -237) 153825) ((-364 . -237) 153804) ((-486 . -1239) T) ((-356 . -237) 153783) ((-108 . -237) T) ((-1233 . -661) 153708) ((-1025 . -659) 153638) ((-983 . -21) T) ((-983 . -25) T) ((-748 . -21) T) ((-748 . -25) T) ((-728 . -21) T) ((-728 . -25) T) ((-724 . -661) 153603) ((-465 . -21) T) ((-465 . -25) T) ((-350 . -102) T) ((-176 . -102) T) ((-1021 . -1080) T) ((-885 . -1071) T) ((-787 . -102) T) ((-1274 . -374) 153582) ((-1273 . -918) 153488) ((-1253 . -374) 153467) ((-1252 . -918) 153318) ((-1198 . -1239) T) ((-1046 . -625) 153300) ((-419 . -841) 153253) ((-1196 . -505) 153219) ((-171 . -940) 153150) ((-1195 . -505) 153116) ((-1189 . -505) 153082) ((-725 . -1122) T) ((-1148 . -505) 153048) ((-592 . -1078) 153035) ((-576 . -1078) 153022) ((-507 . -1078) 152987) ((-326 . -300) 152966) ((-323 . -300) T) ((-365 . -625) 152948) ((-430 . -25) T) ((-430 . -21) T) ((-99 . -296) 152927) ((-592 . -111) 152912) ((-576 . -111) 152897) ((-507 . -111) 152853) ((-1198 . -902) 152820) ((-921 . -501) 152804) ((-48 . -625) 152786) ((-48 . -626) 152731) ((-245 . -132) 152602) ((-1312 . -659) 152561) ((-1262 . -940) 152540) ((-829 . -1243) 152519) ((-400 . -502) 152500) ((-1057 . -526) 152344) ((-400 . -625) 152310) ((-829 . -568) 152241) ((-598 . -661) 152216) ((-273 . -47) 152188) ((-253 . -47) 152145) ((-543 . -521) 152122) ((-592 . -628) 152094) ((-576 . -628) 152066) ((-507 . -628) 151999) ((-1096 . -1239) T) ((-1022 . -1239) T) ((-1281 . -23) T) ((-1281 . -1134) T) ((-1274 . -1134) T) ((-1274 . -23) T) ((-1253 . -1134) T) ((-712 . -1078) 151964) ((-1253 . -23) T) ((-1233 . -739) T) ((-1142 . -300) T) ((-1135 . -237) 151861) ((-1026 . -132) T) ((-1025 . -381) 151833) ((-112 . -379) T) ((-486 . -918) 151739) ((-993 . -132) T) ((-924 . -625) 151721) ((-55 . -628) 151703) ((-91 . -107) 151687) ((-934 . -132) T) ((-925 . -862) 151638) ((-714 . -1174) T) ((-712 . -111) 151594) ((-856 . -659) 151511) ((-608 . -1134) T) ((-607 . -1134) T) ((-725 . -730) 151340) ((-724 . -739) T) ((-812 . -25) T) ((-812 . -21) T) ((-499 . -862) T) ((-609 . -1239) T) ((-597 . -1239) T) ((-592 . -1071) T) ((-219 . -862) T) ((-419 . -659) 151277) ((-576 . -1071) T) ((-548 . -1239) T) ((-507 . -1071) T) ((-608 . -23) T) ((-354 . -1308) 151254) ((-329 . -464) 151233) ((-350 . -319) 151220) ((-607 . -23) T) ((-439 . -132) T) ((-671 . -661) 151194) ((-250 . -1032) 151178) ((-887 . -317) T) ((-1313 . -1303) 151162) ((-784 . -805) T) ((-784 . -808) T) ((-714 . -38) 151149) ((-576 . -238) T) ((-507 . -248) T) ((-507 . -238) T) ((-1302 . -501) 151133) ((-1285 . -1239) T) ((-1172 . -240) 151083) ((-1109 . -929) 151062) ((-117 . -38) 151049) ((-211 . -813) T) ((-210 . -813) T) ((-209 . -813) T) ((-208 . -813) T) ((-887 . -1044) 151027) ((-677 . -1239) T) ((-658 . -1239) T) ((-795 . -929) 151006) ((-793 . -929) 150985) ((-1211 . -1239) T) ((-366 . -1239) T) ((-363 . -1239) T) ((-355 . -1239) T) ((-273 . -1239) T) ((-253 . -1239) T) ((-466 . -929) 150964) ((-750 . -501) 150948) ((-1109 . -661) 150837) ((-712 . -628) 150772) ((-795 . -661) 150661) ((-635 . -1078) 150648) ((-491 . -1239) T) ((-354 . -379) T) ((-142 . -501) 150630) ((-793 . -661) 150519) ((-1163 . -1239) T) ((-561 . -862) T) ((-473 . -661) 150490) ((-273 . -902) 150349) ((-253 . -902) NIL) ((-118 . -1078) 150294) ((-466 . -661) 150183) ((-677 . -1060) 150160) ((-635 . -111) 150145) ((-402 . -1073) 150129) ((-366 . -1060) 150113) ((-363 . -1060) 150097) ((-355 . -1060) 150081) ((-273 . -1060) 149925) ((-253 . -1060) 149801) ((-930 . -1239) T) ((-118 . -111) 149730) ((-59 . -1239) T) ((-402 . -653) 149714) ((-633 . -1073) 149698) ((-531 . -1239) T) ((-528 . -1239) T) ((-509 . -1239) T) ((-508 . -1239) T) ((-449 . -625) 149680) ((-446 . -625) 149662) ((-633 . -653) 149646) ((-3 . -102) T) ((-1049 . -1232) 149615) ((-846 . -102) T) ((-702 . -57) 149573) ((-712 . -1071) T) ((-647 . -659) 149542) ((-619 . -659) 149511) ((-50 . -661) 149485) ((-299 . -464) T) ((-488 . -1232) 149454) ((0 . -102) T) ((-593 . -661) 149419) ((-530 . -661) 149364) ((-49 . -102) T) ((-930 . -1060) 149351) ((-712 . -248) T) ((-1102 . -421) 149330) ((-744 . -652) 149278) ((-1021 . -1122) T) ((-725 . -174) 149169) ((-635 . -628) 149064) ((-499 . -1014) 149046) ((-430 . -234) 148991) ((-273 . -388) 148975) ((-253 . -388) 148959) ((-411 . -1122) T) ((-1048 . -102) 148937) ((-350 . -38) 148921) ((-219 . -1014) 148903) ((-118 . -628) 148833) ((-176 . -38) 148765) ((-1273 . -317) 148744) ((-1252 . -317) 148723) ((-671 . -739) T) ((-99 . -625) 148705) ((-489 . -1073) 148670) ((-1189 . -652) 148622) ((-489 . -653) 148587) ((-657 . -865) 148566) ((-497 . -25) T) ((-497 . -21) T) ((-1252 . -1044) 148518) ((-1079 . -1239) T) ((-1 . -1239) T) ((-635 . -1071) T) ((-390 . -416) T) ((-402 . -102) T) ((-1127 . -630) 148433) ((-273 . -918) 148379) ((-253 . -918) 148356) ((-118 . -1071) T) ((-1109 . -739) T) ((-829 . -1134) T) ((-832 . -865) T) ((-635 . -238) 148335) ((-633 . -102) T) ((-523 . -1239) T) ((-519 . -1239) T) ((-795 . -739) T) ((-793 . -739) T) ((-1244 . -862) T) ((-425 . -1134) T) ((-118 . -248) T) ((-40 . -379) NIL) ((-118 . -238) NIL) ((-398 . -865) 148314) ((-466 . -739) T) ((-829 . -23) T) ((-744 . -25) T) ((-744 . -21) T) ((-683 . -912) 148235) ((-1099 . -296) 148214) ((-78 . -408) T) ((-78 . -407) T) ((-545 . -780) 148196) ((-227 . -865) T) ((-707 . -1078) 148146) ((-1314 . -102) T) ((-1281 . -132) T) ((-1274 . -132) T) ((-1253 . -132) T) ((-1196 . -25) T) ((-1164 . -423) 148130) ((-647 . -378) 148062) ((-619 . -378) 147994) ((-1179 . -1171) 147978) ((-103 . -1122) 147956) ((-1196 . -21) T) ((-1195 . -21) T) ((-880 . -625) 147938) ((-1021 . -730) 147886) ((-225 . -661) 147853) ((-707 . -111) 147787) ((-50 . -739) T) ((-1195 . -25) T) ((-362 . -360) T) ((-1189 . -21) T) ((-1102 . -464) 147738) ((-1189 . -25) T) ((-725 . -526) 147685) ((-593 . -739) T) ((-530 . -739) T) ((-1148 . -21) T) ((-1148 . -25) T) ((-608 . -132) T) ((-607 . -132) T) ((-304 . -659) 147420) ((-494 . -237) 147317) ((-370 . -464) T) ((-364 . -464) T) ((-356 . -464) T) ((-486 . -317) 147296) ((-1247 . -102) T) ((-323 . -296) 147231) ((-108 . -464) T) ((-79 . -453) T) ((-79 . -407) T) ((-489 . -102) T) ((-704 . -628) 147215) ((-1318 . -625) 147197) ((-1318 . -626) 147179) ((-1102 . -414) 147158) ((-1057 . -501) 147089) ((-137 . -296) 147066) ((-576 . -808) T) ((-576 . -805) T) ((-1085 . -240) 147012) ((-1084 . -865) T) ((-726 . -865) T) ((-370 . -414) 146963) ((-364 . -414) 146914) ((-356 . -414) 146865) ((-1304 . -1134) T) ((-1313 . -1073) 146849) ((-392 . -1073) 146833) ((-1313 . -653) 146803) ((-831 . -237) T) ((-392 . -653) 146773) ((-707 . -628) 146708) ((-1304 . -23) T) ((-1291 . -102) T) ((-350 . -920) 146689) ((-177 . -625) 146671) ((-1164 . -1080) T) ((-559 . -379) T) ((-683 . -757) 146655) ((-1200 . -146) 146634) ((-1200 . -148) 146613) ((-1168 . -1122) T) ((-1168 . -1093) 146582) ((-69 . -1239) T) ((-1046 . -1078) 146519) ((-362 . -659) 146449) ((-881 . -1080) T) ((-245 . -652) 146355) ((-707 . -1071) T) ((-365 . -1078) 146300) ((-61 . -1239) T) ((-1046 . -111) 146216) ((-921 . -625) 146127) ((-707 . -248) T) ((-707 . -238) NIL) ((-856 . -861) 146106) ((-712 . -808) T) ((-712 . -805) T) ((-1025 . -423) 146083) ((-365 . -111) 146012) ((-390 . -940) T) ((-419 . -861) 145991) ((-725 . -300) 145902) ((-225 . -739) T) ((-1281 . -505) 145868) ((-1274 . -505) 145834) ((-1253 . -505) 145800) ((-590 . -1122) T) ((-326 . -1024) 145779) ((-224 . -1122) 145757) ((-1246 . -857) T) ((-329 . -995) 145719) ((-105 . -102) T) ((-48 . -1078) 145684) ((-886 . -865) NIL) ((-1313 . -102) T) ((-392 . -102) T) ((-1275 . -625) 145666) ((-1155 . -1156) 145650) ((-1026 . -652) 145632) ((-891 . -1239) T) ((-48 . -111) 145588) ((-694 . -1239) T) ((-689 . -1239) T) ((-675 . -1239) T) ((-828 . -912) 145455) ((-490 . -1239) T) ((-250 . -1239) T) ((-543 . -102) T) ((-512 . -102) T) ((-153 . -1296) 145439) ((-139 . -1239) T) ((-138 . -1239) T) ((-134 . -1239) T) ((-1238 . -102) T) ((-1046 . -628) 145376) ((-830 . -237) T) ((-1194 . -1243) 145355) ((-365 . -628) 145285) ((-1147 . -1243) 145264) ((-245 . -25) 145097) ((-245 . -21) 145008) ((-128 . -120) 144992) ((-122 . -120) 144976) ((-44 . -757) 144960) ((-1194 . -568) 144871) ((-1147 . -568) 144802) ((-1246 . -1122) T) ((-558 . -865) T) ((-1057 . -296) 144777) ((-1188 . -1105) T) ((-1016 . -1105) T) ((-829 . -132) T) ((-118 . -808) NIL) ((-118 . -805) NIL) ((-366 . -317) T) ((-363 . -317) T) ((-355 . -317) T) ((-1116 . -1239) 144755) ((-258 . -1134) 144733) ((-257 . -1134) 144711) ((-1046 . -1071) T) ((-1025 . -1080) T) ((-48 . -628) 144644) ((-354 . -661) 144589) ((-1302 . -625) 144551) ((-1302 . -626) 144512) ((-633 . -38) 144496) ((-1196 . -234) 144449) ((-1195 . -234) 144395) ((-1099 . -625) 144377) ((-1046 . -248) T) ((-365 . -1071) T) ((-828 . -1296) 144347) ((-258 . -23) T) ((-257 . -23) T) ((-1009 . -625) 144329) ((-1189 . -234) 144146) ((-1181 . -152) 144093) ((-750 . -626) 144054) ((-750 . -625) 144036) ((-1026 . -25) T) ((-812 . -862) 144015) ((-1021 . -526) 143927) ((-690 . -865) T) ((-365 . -238) T) ((-365 . -248) T) ((-400 . -628) 143908) ((-930 . -317) T) ((-142 . -625) 143890) ((-142 . -626) 143849) ((-329 . -912) 143753) ((-1026 . -21) T) ((-993 . -25) T) ((-934 . -21) T) ((-934 . -25) T) ((-439 . -21) T) ((-439 . -25) T) ((-856 . -423) 143737) ((-48 . -1071) T) ((-1311 . -1303) 143721) ((-1309 . -1303) 143705) ((-1057 . -616) 143680) ((-326 . -626) 143541) ((-326 . -625) 143523) ((-323 . -626) NIL) ((-323 . -625) 143505) ((-48 . -248) T) ((-48 . -238) T) ((-667 . -296) 143466) ((-562 . -240) 143416) ((-583 . -865) T) ((-140 . -625) 143383) ((-137 . -625) 143365) ((-115 . -625) 143347) ((-489 . -38) 143312) ((-1313 . -1310) 143291) ((-1304 . -132) T) ((-1312 . -1080) T) ((-1104 . -102) T) ((-88 . -1239) T) ((-512 . -319) NIL) ((-1022 . -107) 143275) ((-905 . -1122) T) ((-901 . -1122) T) ((-1289 . -664) 143259) ((-1289 . -384) 143243) ((-337 . -1239) T) ((-605 . -862) T) ((-1164 . -1122) T) ((-1164 . -1075) 143183) ((-103 . -526) 143116) ((-947 . -625) 143098) ((-354 . -739) T) ((-30 . -625) 143080) ((-881 . -1122) T) ((-856 . -1080) 143059) ((-40 . -661) 142966) ((-227 . -1243) T) ((-419 . -1080) T) ((-1180 . -152) 142948) ((-1021 . -300) 142899) ((-889 . -1239) T) ((-629 . -1122) T) ((-227 . -568) T) ((-329 . -1270) 142883) ((-329 . -1267) 142853) ((-714 . -659) 142825) ((-1211 . -1215) 142804) ((-1097 . -625) 142786) ((-1211 . -107) 142736) ((-660 . -152) 142720) ((-644 . -152) 142666) ((-117 . -659) 142638) ((-491 . -1215) 142617) ((-499 . -148) T) ((-499 . -146) NIL) ((-1142 . -626) 142532) ((-450 . -625) 142514) ((-219 . -148) T) ((-219 . -146) NIL) ((-1142 . -625) 142496) ((-130 . -102) T) ((-52 . -102) T) ((-1253 . -652) 142448) ((-491 . -107) 142398) ((-1015 . -23) T) ((-1313 . -38) 142368) ((-1194 . -1134) T) ((-1147 . -1134) T) ((-1084 . -1243) T) ((-245 . -234) 142259) ((-321 . -102) T) ((-869 . -1134) T) ((-972 . -1243) 142238) ((-493 . -1243) 142217) ((-1084 . -568) T) ((-972 . -568) 142148) ((-1194 . -23) T) ((-1173 . -1105) T) ((-1147 . -23) T) ((-869 . -23) T) ((-493 . -568) 142079) ((-1164 . -730) 142011) ((-683 . -1073) 141995) ((-1168 . -526) 141928) ((-683 . -653) 141912) ((-1057 . -626) NIL) ((-1057 . -625) 141894) ((-96 . -1105) T) ((-1318 . -1078) 141881) ((-881 . -730) 141851) ((-1318 . -111) 141836) ((-1233 . -47) 141805) ((-1189 . -862) NIL) ((-258 . -132) T) ((-257 . -132) T) ((-1126 . -1122) T) ((-1025 . -1122) T) ((-62 . -625) 141787) ((-1102 . -912) 141656) ((-1046 . -805) T) ((-1046 . -808) T) ((-1281 . -25) T) ((-1281 . -21) T) ((-1274 . -21) T) ((-1274 . -25) T) ((-885 . -661) 141643) ((-1253 . -21) T) ((-1253 . -25) T) ((-1049 . -152) 141627) ((-1026 . -234) 141614) ((-887 . -833) 141593) ((-887 . -940) T) ((-725 . -296) 141520) ((-608 . -21) T) ((-350 . -659) 141479) ((-108 . -912) NIL) ((-608 . -25) T) ((-607 . -21) T) ((-176 . -659) 141396) ((-40 . -739) T) ((-224 . -526) 141329) ((-607 . -25) T) ((-488 . -152) 141313) ((-475 . -152) 141297) ((-185 . -1239) T) ((-941 . -807) T) ((-941 . -739) T) ((-784 . -806) T) ((-784 . -807) T) ((-518 . -1122) T) ((-514 . -1122) T) ((-784 . -739) T) ((-227 . -374) T) ((-1311 . -1073) 141281) ((-1309 . -1073) 141265) ((-1311 . -653) 141235) ((-1179 . -1122) 141213) ((-886 . -1243) T) ((-1309 . -653) 141183) ((-1110 . -865) T) ((-667 . -625) 141165) ((-886 . -568) T) ((-707 . -379) NIL) ((-44 . -1073) 141149) ((-1318 . -628) 141131) ((-1312 . -1122) T) ((-683 . -102) T) ((-370 . -1296) 141115) ((-364 . -1296) 141099) ((-44 . -653) 141083) ((-356 . -1296) 141067) ((-560 . -102) T) ((-1233 . -1239) T) ((-532 . -862) 141046) ((-724 . -1239) T) ((-978 . -865) 141025) ((-863 . -865) T) ((-499 . -237) T) ((-219 . -237) T) ((-1068 . -1122) T) ((-830 . -464) 141004) ((-153 . -1073) 140988) ((-1068 . -1093) 140917) ((-1049 . -998) 140886) ((-832 . -1134) T) ((-1025 . -730) 140831) ((-153 . -653) 140815) ((-398 . -1134) T) ((-488 . -998) 140784) ((-475 . -998) 140753) ((-1205 . -865) T) ((-110 . -152) 140735) ((-73 . -625) 140717) ((-909 . -625) 140699) ((-1204 . -865) T) ((-1102 . -737) 140678) ((-1318 . -1071) T) ((-829 . -652) 140626) ((-304 . -1080) 140568) ((-171 . -1243) 140473) ((-227 . -1134) T) ((-334 . -23) T) ((-1189 . -1014) 140425) ((-1275 . -1078) 140330) ((-856 . -1122) T) ((-129 . -865) T) ((-1148 . -753) 140309) ((-1273 . -940) 140288) ((-1252 . -940) 140267) ((-885 . -739) T) ((-171 . -568) 140178) ((-592 . -661) 140165) ((-576 . -661) 140137) ((-419 . -1122) T) ((-270 . -1122) T) ((-215 . -625) 140119) ((-507 . -661) 140069) ((-227 . -23) T) ((-1252 . -833) 140022) ((-1311 . -102) T) ((-503 . -1239) T) ((-365 . -1308) 139999) ((-1309 . -102) T) ((-1275 . -111) 139891) ((-1135 . -912) 139758) ((-828 . -1073) 139659) ((-828 . -653) 139581) ((-145 . -625) 139563) ((-1015 . -132) T) ((-44 . -102) T) ((-245 . -862) 139514) ((-598 . -1239) T) ((-1262 . -1243) 139493) ((-103 . -501) 139477) ((-1312 . -730) 139447) ((-1109 . -47) 139408) ((-1084 . -1134) T) ((-972 . -1134) T) ((-128 . -34) T) ((-122 . -34) T) ((-1262 . -568) 139319) ((-795 . -47) 139296) ((-793 . -47) 139268) ((-1219 . -1239) T) ((-1194 . -132) T) ((-365 . -379) T) ((-493 . -1134) T) ((-1147 . -132) T) ((-886 . -374) T) ((-466 . -47) 139247) ((-869 . -132) T) ((-332 . -865) 139226) ((-153 . -102) T) ((-1084 . -23) T) ((-972 . -23) T) ((-583 . -568) T) ((-829 . -25) T) ((-829 . -21) T) ((-1164 . -526) 139159) ((-604 . -1105) T) ((-598 . -1060) 139143) ((-1275 . -628) 139017) ((-493 . -23) T) ((-362 . -1080) T) ((-390 . -865) T) ((-1233 . -918) 138998) ((-683 . -319) 138936) ((-1281 . -234) 138889) ((-1135 . -1296) 138859) ((-712 . -661) 138824) ((-1026 . -862) T) ((-1025 . -174) T) ((-983 . -146) 138803) ((-647 . -1122) T) ((-619 . -1122) T) ((-983 . -148) 138782) ((-748 . -148) 138761) ((-748 . -146) 138740) ((-671 . -1239) T) ((-993 . -862) T) ((-1274 . -234) 138686) ((-1253 . -234) 138503) ((-846 . -659) 138420) ((-486 . -940) 138399) ((-347 . -1239) T) ((-329 . -1073) 138234) ((-326 . -1078) 138144) ((-323 . -1078) 138073) ((-1021 . -296) 138031) ((-419 . -730) 137983) ((-329 . -653) 137824) ((-607 . -234) 137777) ((-714 . -861) T) ((-1275 . -1071) T) ((-326 . -111) 137673) ((-323 . -111) 137586) ((-97 . -1239) T) ((-984 . -102) T) ((-828 . -102) 137318) ((-725 . -626) NIL) ((-725 . -625) 137300) ((-1275 . -336) 137244) ((-671 . -1060) 137140) ((-1109 . -1239) T) ((-1057 . -298) 137115) ((-592 . -739) T) ((-576 . -807) T) ((-171 . -374) 137066) ((-576 . -804) T) ((-576 . -739) T) ((-507 . -739) T) ((-795 . -1239) T) ((-793 . -1239) T) ((-1168 . -501) 137050) ((-473 . -1239) T) ((-466 . -1239) T) ((-1311 . -1310) 137026) ((-1109 . -902) NIL) ((-886 . -1134) T) ((-118 . -929) NIL) ((-1309 . -1310) 137005) ((-662 . -1239) T) ((-795 . -902) NIL) ((-793 . -902) 136864) ((-1304 . -25) T) ((-1304 . -21) T) ((-1236 . -102) 136842) ((-1128 . -407) T) ((-635 . -661) 136829) ((-466 . -902) NIL) ((-688 . -102) 136779) ((-1109 . -1060) 136606) ((-886 . -23) T) ((-795 . -1060) 136465) ((-793 . -1060) 136322) ((-118 . -661) 136267) ((-466 . -1060) 136143) ((-284 . -1239) T) ((-326 . -628) 135707) ((-323 . -628) 135590) ((-50 . -1239) T) ((-402 . -659) 135559) ((-662 . -1060) 135543) ((-639 . -102) T) ((-593 . -1239) T) ((-530 . -1239) T) ((-224 . -501) 135527) ((-1289 . -34) T) ((-633 . -659) 135486) ((-299 . -1073) 135473) ((-137 . -628) 135457) ((-299 . -653) 135444) ((-647 . -730) 135428) ((-619 . -730) 135412) ((-683 . -38) 135372) ((-329 . -102) T) ((-1142 . -1078) 135359) ((-85 . -625) 135341) ((-50 . -1060) 135325) ((-1109 . -388) 135309) ((-795 . -388) 135293) ((-712 . -739) T) ((-712 . -807) T) ((-712 . -804) T) ((-60 . -57) 135255) ((-593 . -1060) 135242) ((-530 . -1060) 135219) ((-173 . -1239) T) ((-334 . -132) T) ((-326 . -1071) 135109) ((-323 . -1071) T) ((-171 . -1134) T) ((-793 . -388) 135093) ((-45 . -152) 135043) ((-1026 . -1014) 135025) ((-466 . -388) 135009) ((-419 . -174) T) ((-326 . -248) 134988) ((-323 . -248) T) ((-323 . -238) NIL) ((-304 . -1122) 134770) ((-227 . -132) T) ((-1142 . -111) 134755) ((-171 . -23) T) ((-812 . -148) 134734) ((-812 . -146) 134713) ((-258 . -652) 134619) ((-257 . -652) 134525) ((-329 . -294) 134491) ((-1179 . -526) 134424) ((-489 . -659) 134374) ((-494 . -912) 134241) ((-1155 . -1122) T) ((-227 . -1082) T) ((-828 . -319) 134179) ((-1109 . -918) 134114) ((-795 . -918) 134057) ((-793 . -918) 134041) ((-1311 . -38) 134011) ((-1309 . -38) 133981) ((-1262 . -1134) T) ((-870 . -1134) T) ((-466 . -918) 133958) ((-873 . -1122) T) ((-1262 . -23) T) ((-1142 . -628) 133930) ((-1084 . -132) T) ((-870 . -23) T) ((-583 . -1134) T) ((-635 . -739) T) ((-522 . -865) T) ((-366 . -940) T) ((-363 . -940) T) ((-299 . -102) T) ((-355 . -940) T) ((-992 . -1105) T) ((-972 . -132) T) ((-829 . -234) 133875) ((-118 . -807) NIL) ((-118 . -804) NIL) ((-118 . -739) T) ((-1068 . -526) 133776) ((-707 . -929) NIL) ((-583 . -23) T) ((-493 . -132) T) ((-430 . -237) 133727) ((-688 . -319) 133665) ((-225 . -1239) T) ((-647 . -774) T) ((-619 . -774) T) ((-1253 . -862) NIL) ((-1102 . -1073) 133575) ((-1025 . -300) T) ((-707 . -661) 133525) ((-258 . -25) T) ((-362 . -1122) T) ((-258 . -21) T) ((-257 . -25) T) ((-257 . -21) T) ((-153 . -38) 133509) ((-2 . -102) T) ((-930 . -940) T) ((-1102 . -653) 133377) ((-494 . -1296) 133347) ((-1142 . -1071) T) ((-724 . -317) T) ((-370 . -1073) 133299) ((-364 . -1073) 133251) ((-356 . -1073) 133203) ((-370 . -653) 133155) ((-225 . -1060) 133132) ((-364 . -653) 133084) ((-108 . -1073) 133034) ((-356 . -653) 132986) ((-304 . -730) 132928) ((-714 . -1080) T) ((-499 . -464) T) ((-419 . -526) 132840) ((-108 . -653) 132790) ((-219 . -464) T) ((-1142 . -238) T) ((-305 . -152) 132740) ((-1021 . -626) 132701) ((-1021 . -625) 132683) ((-1011 . -625) 132665) ((-117 . -1080) T) ((-667 . -1078) 132649) ((-227 . -505) T) ((-411 . -625) 132631) ((-411 . -626) 132608) ((-1076 . -1296) 132578) ((-667 . -111) 132557) ((-683 . -920) 132480) ((-1164 . -501) 132464) ((-1313 . -659) 132423) ((-392 . -659) 132392) ((-63 . -453) T) ((-63 . -407) T) ((-1181 . -102) T) ((-886 . -132) T) ((-496 . -102) 132342) ((-1140 . -1239) T) ((-1245 . -865) T) ((-1318 . -379) T) ((-1102 . -102) T) ((-1083 . -102) T) ((-362 . -730) 132287) ((-887 . -865) 132238) ((-744 . -148) 132217) ((-744 . -146) 132196) ((-667 . -628) 132114) ((-1046 . -661) 132051) ((-535 . -1122) 132029) ((-370 . -102) T) ((-364 . -102) T) ((-356 . -102) T) ((-108 . -102) T) ((-516 . -1122) T) ((-365 . -661) 131974) ((-1194 . -652) 131922) ((-1147 . -652) 131870) ((-396 . -521) 131849) ((-846 . -861) 131828) ((-707 . -739) T) ((-390 . -1243) T) ((-343 . -1239) T) ((-1253 . -1014) 131780) ((-350 . -1080) T) ((-112 . -1239) T) ((-176 . -1080) T) ((-103 . -625) 131712) ((-1196 . -146) 131691) ((-1196 . -148) 131670) ((-390 . -568) T) ((-1195 . -148) 131649) ((-1195 . -146) 131628) ((-1189 . -146) 131535) ((-419 . -300) T) ((-1189 . -148) 131442) ((-1148 . -148) 131421) ((-1148 . -146) 131400) ((-329 . -38) 131241) ((-171 . -132) T) ((-323 . -808) NIL) ((-323 . -805) NIL) ((-667 . -1071) T) ((-48 . -661) 131191) ((-1135 . -1073) 131092) ((-909 . -628) 131069) ((-1135 . -653) 130991) ((-1188 . -102) T) ((-1016 . -102) T) ((-1015 . -21) T) ((-128 . -1032) 130975) ((-122 . -1032) 130959) ((-1015 . -25) T) ((-921 . -120) 130943) ((-1180 . -102) T) ((-1262 . -132) T) ((-1252 . -865) 130842) ((-1194 . -25) T) ((-1194 . -21) T) ((-1181 . -319) 130637) ((-354 . -1239) T) ((-1147 . -25) T) ((-870 . -132) T) ((-406 . -1239) T) ((-1147 . -21) T) ((-869 . -25) T) ((-869 . -21) T) ((-795 . -317) 130616) ((-1179 . -501) 130600) ((-1172 . -152) 130550) ((-1168 . -625) 130512) ((-660 . -102) 130462) ((-644 . -102) T) ((-1168 . -626) 130423) ((-583 . -132) T) ((-633 . -861) 130402) ((-1046 . -804) T) ((-1046 . -807) T) ((-1046 . -739) T) ((-828 . -920) 130271) ((-725 . -1078) 130094) ((-614 . -865) 130073) ((-496 . -319) 130011) ((-465 . -429) 129981) ((-362 . -174) T) ((-299 . -38) 129968) ((-258 . -234) 129859) ((-257 . -234) 129750) ((-283 . -102) T) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-354 . -1060) 129727) ((-277 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-725 . -111) 129536) ((-365 . -739) T) ((-683 . -272) 129520) ((-683 . -232) 129504) ((-593 . -317) T) ((-530 . -317) T) ((-304 . -526) 129453) ((-1186 . -1239) T) ((-108 . -319) NIL) ((-72 . -407) T) ((-1135 . -102) 129185) ((-846 . -423) 129169) ((-1142 . -808) T) ((-1142 . -805) T) ((-714 . -1122) T) ((-590 . -625) 129151) ((-390 . -374) T) ((-171 . -505) 129129) ((-224 . -625) 129061) ((-135 . -1122) T) ((-117 . -1122) T) ((-986 . -1239) T) ((-48 . -739) T) ((-1068 . -501) 129026) ((-142 . -437) 129008) ((-142 . -379) T) ((-1049 . -102) T) ((-524 . -521) 128987) ((-725 . -628) 128743) ((-1246 . -625) 128725) ((-1203 . -1239) T) ((-1203 . -1060) 128661) ((-1196 . -237) 128620) ((-488 . -102) T) ((-475 . -102) T) ((-1195 . -237) 128572) ((-1189 . -237) 128395) ((-1056 . -1134) T) ((-329 . -920) 128301) ((-1198 . -865) T) ((-1196 . -35) 128267) ((-1196 . -95) 128233) ((-1196 . -1227) 128199) ((-1196 . -1224) 128165) ((-1195 . -1224) 128131) ((-1195 . -1227) 128097) ((-1195 . -95) 128063) ((-1195 . -35) 128029) ((-1189 . -1224) 127995) ((-1189 . -1227) 127961) ((-1180 . -319) NIL) ((-89 . -408) T) ((-89 . -407) T) ((-1102 . -1174) 127940) ((-40 . -1239) T) ((-1189 . -95) 127906) ((-1056 . -23) T) ((-1189 . -35) 127872) ((-583 . -505) T) ((-1148 . -35) 127838) ((-1148 . -95) 127804) ((-1148 . -1227) 127770) ((-1148 . -1224) 127736) ((-372 . -1134) T) ((-370 . -1174) 127715) ((-364 . -1174) 127694) ((-356 . -1174) 127673) ((-1126 . -296) 127629) ((-974 . -1239) T) ((-941 . -1239) T) ((-108 . -1174) T) ((-846 . -1080) 127608) ((-784 . -1239) T) ((-660 . -319) 127546) ((-644 . -319) 127397) ((-685 . -1239) T) ((-725 . -1071) T) ((-1084 . -652) 127379) ((-1102 . -38) 127247) ((-972 . -652) 127195) ((-1026 . -148) T) ((-1026 . -146) NIL) ((-390 . -1134) T) ((-334 . -25) T) ((-332 . -23) T) ((-963 . -862) 127174) ((-725 . -336) 127151) ((-493 . -652) 127099) ((-40 . -1060) 126987) ((-725 . -238) T) ((-714 . -730) 126974) ((-350 . -1122) T) ((-176 . -1122) T) ((-341 . -862) T) ((-430 . -464) 126924) ((-390 . -23) T) ((-370 . -38) 126889) ((-364 . -38) 126854) ((-356 . -38) 126819) ((-80 . -453) T) ((-80 . -407) T) ((-227 . -25) T) ((-227 . -21) T) ((-849 . -1134) T) ((-108 . -38) 126769) ((-840 . -1134) T) ((-787 . -1122) T) ((-117 . -730) 126756) ((-685 . -1060) 126740) ((-624 . -102) T) ((-849 . -23) T) ((-840 . -23) T) ((-1179 . -296) 126692) ((-1135 . -319) 126630) ((-494 . -1073) 126531) ((-1124 . -240) 126515) ((-64 . -408) T) ((-64 . -407) T) ((-1173 . -102) T) ((-110 . -102) T) ((-494 . -653) 126437) ((-40 . -388) 126414) ((-96 . -102) T) ((-666 . -867) 126398) ((-1194 . -234) 126385) ((-1157 . -1105) T) ((-1084 . -21) T) ((-1084 . -25) T) ((-1076 . -1073) 126369) ((-828 . -272) 126338) ((-828 . -232) 126307) ((-972 . -25) T) ((-972 . -21) T) ((-1142 . -379) T) ((-1076 . -653) 126249) ((-633 . -1080) T) ((-1049 . -319) 126187) ((-905 . -625) 126169) ((-683 . -659) 126128) ((-493 . -25) T) ((-493 . -21) T) ((-396 . -1073) 126112) ((-901 . -625) 126094) ((-885 . -1239) T) ((-535 . -526) 126027) ((-258 . -862) 125978) ((-257 . -862) 125929) ((-396 . -653) 125899) ((-886 . -652) 125876) ((-488 . -319) 125814) ((-559 . -1239) T) ((-475 . -319) 125752) ((-362 . -300) T) ((-1179 . -1277) 125736) ((-1164 . -625) 125698) ((-1164 . -626) 125659) ((-1162 . -102) T) ((-1021 . -1078) 125555) ((-40 . -918) 125507) ((-1179 . -616) 125484) ((-1318 . -661) 125471) ((-1085 . -152) 125417) ((-499 . -912) NIL) ((-881 . -502) 125394) ((-1021 . -111) 125276) ((-887 . -1243) T) ((-219 . -912) NIL) ((-350 . -730) 125260) ((-881 . -625) 125222) ((-176 . -730) 125154) ((-887 . -568) T) ((-419 . -296) 125112) ((-245 . -237) 125009) ((-108 . -412) 124991) ((-84 . -395) T) ((-84 . -407) T) ((-714 . -174) T) ((-629 . -625) 124973) ((-99 . -739) T) ((-494 . -102) 124705) ((-99 . -485) T) ((-117 . -174) T) ((-1311 . -659) 124664) ((-1309 . -659) 124623) ((-171 . -652) 124571) ((-1102 . -920) 124442) ((-1076 . -102) T) ((-1021 . -628) 124332) ((-886 . -25) T) ((-828 . -243) 124311) ((-886 . -21) T) ((-831 . -102) T) ((-44 . -659) 124254) ((-1026 . -237) T) ((-426 . -102) T) ((-396 . -102) T) ((-110 . -319) NIL) ((-229 . -102) 124204) ((-128 . -1239) T) ((-122 . -1239) T) ((-108 . -920) NIL) ((-830 . -1073) 124155) ((-59 . -865) 124134) ((-830 . -653) 124076) ((-528 . -865) 124055) ((-508 . -865) 124034) ((-1056 . -132) T) ((-683 . -378) 124018) ((-153 . -659) 123977) ((-1318 . -739) T) ((-647 . -296) 123935) ((-619 . -296) 123893) ((-1281 . -146) 123872) ((-1262 . -652) 123820) ((-1021 . -1071) T) ((-1126 . -625) 123802) ((-1025 . -625) 123784) ((-592 . -1239) T) ((-576 . -1239) T) ((-507 . -1239) T) ((-527 . -23) T) ((-522 . -23) T) ((-354 . -317) T) ((-520 . -23) T) ((-332 . -132) T) ((-3 . -1122) T) ((-1025 . -626) 123768) ((-1021 . -248) 123747) ((-1021 . -238) 123726) ((-1281 . -148) 123705) ((-1274 . -148) 123684) ((-846 . -1122) T) ((-1274 . -146) 123663) ((-1273 . -1243) 123642) ((-1253 . -146) 123549) ((-1253 . -148) 123456) ((-1252 . -1243) 123435) ((-390 . -132) T) ((-227 . -234) 123422) ((-176 . -174) T) ((-576 . -902) 123404) ((0 . -1122) T) ((-171 . -21) T) ((-171 . -25) T) ((-55 . -1239) T) ((-49 . -1122) T) ((-1275 . -661) 123309) ((-1273 . -568) 123260) ((-1252 . -568) 123211) ((-727 . -1134) T) ((-651 . -23) T) ((-576 . -1060) 123193) ((-607 . -148) 123172) ((-607 . -146) 123151) ((-507 . -1060) 123094) ((-1157 . -1159) T) ((-87 . -395) T) ((-87 . -407) T) ((-887 . -374) T) ((-849 . -132) T) ((-840 . -132) T) ((-984 . -659) 123038) ((-727 . -23) T) ((-518 . -625) 123004) ((-514 . -625) 122986) ((-828 . -659) 122765) ((-1313 . -1080) T) ((-390 . -1082) T) ((-1048 . -1122) 122743) ((-55 . -1060) 122725) ((-921 . -34) T) ((-494 . -319) 122663) ((-604 . -102) T) ((-1179 . -626) 122624) ((-1179 . -625) 122556) ((-1200 . -1073) 122439) ((-45 . -102) T) ((-830 . -102) T) ((-1200 . -653) 122336) ((-1290 . -1239) T) ((-1262 . -25) T) ((-1262 . -21) T) ((-1084 . -234) 122323) ((-870 . -25) T) ((-523 . -865) T) ((-254 . -1239) T) ((-44 . -378) 122307) ((-870 . -21) T) ((-744 . -464) 122258) ((-1312 . -625) 122240) ((-723 . -1239) T) ((-712 . -1239) T) ((-1301 . -1073) 122210) ((-1076 . -319) 122148) ((-684 . -1105) T) ((-618 . -1105) T) ((-402 . -1122) T) ((-583 . -25) T) ((-583 . -21) T) ((-182 . -1105) T) ((-162 . -1105) T) ((-157 . -1105) T) ((-155 . -1105) T) ((-1301 . -653) 122118) ((-633 . -1122) T) ((-712 . -902) 122100) ((-1289 . -1239) T) ((-229 . -319) 122038) ((-145 . -379) T) ((-1212 . -1239) T) ((-1068 . -626) 121980) ((-1068 . -625) 121923) ((-323 . -929) NIL) ((-1247 . -857) T) ((-1135 . -920) 121792) ((-712 . -1060) 121737) ((-724 . -940) T) ((-486 . -1243) 121716) ((-1195 . -464) 121695) ((-1189 . -464) 121674) ((-340 . -102) T) ((-887 . -1134) T) ((-329 . -659) 121556) ((-326 . -661) 121285) ((-323 . -661) 121214) ((-486 . -568) 121165) ((-350 . -526) 121131) ((-562 . -152) 121081) ((-40 . -317) T) ((-856 . -625) 121063) ((-714 . -300) T) ((-887 . -23) T) ((-390 . -505) T) ((-1102 . -272) 121033) ((-1102 . -232) 121003) ((-524 . -102) T) ((-419 . -626) 120810) ((-419 . -625) 120792) ((-270 . -625) 120774) ((-117 . -300) T) ((-1275 . -739) T) ((-635 . -1239) T) ((-1314 . -1122) T) ((-1273 . -374) 120753) ((-1252 . -374) 120732) ((-1302 . -34) T) ((-1247 . -1122) T) ((-118 . -1239) T) ((-108 . -272) 120714) ((-108 . -232) 120696) ((-1200 . -102) T) ((-489 . -1122) T) ((-535 . -501) 120680) ((-750 . -34) T) ((-666 . -1073) 120664) ((-666 . -653) 120634) ((-886 . -234) NIL) ((-142 . -34) T) ((-118 . -900) 120611) ((-118 . -902) NIL) ((-635 . -1060) 120494) ((-1301 . -102) T) ((-1281 . -237) 120453) ((-657 . -862) 120432) ((-1274 . -237) 120384) ((-1253 . -237) 120207) ((-305 . -102) T) ((-725 . -379) 120186) ((-118 . -1060) 120163) ((-402 . -730) 120147) ((-607 . -237) 120106) ((-633 . -730) 120090) ((-1127 . -1239) T) ((-45 . -319) 119894) ((-829 . -146) 119873) ((-829 . -148) 119852) ((-299 . -659) 119824) ((-1312 . -393) 119803) ((-832 . -862) T) ((-1291 . -1122) T) ((-1181 . -231) 119750) ((-398 . -862) 119729) ((-1281 . -35) 119695) ((-1281 . -1227) 119661) ((-1281 . -1224) 119627) ((-1274 . -1224) 119593) ((-527 . -132) T) ((-1274 . -1227) 119559) ((-1253 . -1224) 119525) ((-1253 . -1227) 119491) ((-1281 . -95) 119457) ((-1274 . -95) 119423) ((-430 . -912) 119344) ((-647 . -625) 119313) ((-619 . -625) 119282) ((-227 . -862) T) ((-1274 . -35) 119248) ((-1273 . -1134) T) ((-1253 . -95) 119214) ((-1142 . -661) 119186) ((-1253 . -35) 119152) ((-1252 . -1134) T) ((-605 . -152) 119134) ((-1102 . -360) 119113) ((-176 . -300) T) ((-118 . -388) 119090) ((-118 . -349) 119067) ((-171 . -234) 118992) ((-885 . -317) T) ((-323 . -807) NIL) ((-323 . -804) NIL) ((-326 . -739) 118841) ((-323 . -739) T) ((-651 . -132) T) ((-486 . -374) 118820) ((-370 . -360) 118799) ((-364 . -360) 118778) ((-356 . -360) 118757) ((-326 . -485) 118736) ((-1273 . -23) T) ((-1252 . -23) T) ((-731 . -1134) T) ((-727 . -132) T) ((-666 . -102) T) ((-489 . -730) 118701) ((-675 . -865) 118680) ((-45 . -292) 118630) ((-105 . -1122) T) ((-68 . -625) 118612) ((-250 . -865) 118591) ((-992 . -102) T) ((-879 . -102) T) ((-635 . -918) 118550) ((-1313 . -1122) T) ((-392 . -1122) T) ((-1262 . -234) 118537) ((-1238 . -1122) T) ((-82 . -1239) T) ((-1135 . -272) 118506) ((-1084 . -862) T) ((-118 . -918) NIL) ((-795 . -940) 118485) ((-726 . -862) T) ((-543 . -1122) T) ((-512 . -1122) T) ((-366 . -1243) T) ((-363 . -1243) T) ((-355 . -1243) T) ((-273 . -1243) 118464) ((-253 . -1243) 118443) ((-545 . -875) T) ((-1135 . -232) 118412) ((-1180 . -841) T) ((-1164 . -1078) 118396) ((-402 . -774) T) ((-707 . -1239) T) ((-704 . -1060) 118380) ((-366 . -568) T) ((-363 . -568) T) ((-355 . -568) T) ((-273 . -568) 118311) ((-253 . -568) 118242) ((-537 . -1105) T) ((-1164 . -111) 118221) ((-465 . -757) 118191) ((-881 . -1078) 118161) ((-830 . -38) 118103) ((-707 . -900) 118085) ((-707 . -902) 118067) ((-305 . -319) 117871) ((-1179 . -298) 117848) ((-930 . -1243) T) ((-1102 . -659) 117743) ((-1026 . -464) T) ((-683 . -423) 117727) ((-881 . -111) 117692) ((-934 . -464) T) ((-707 . -1060) 117637) ((-930 . -568) T) ((-545 . -625) 117619) ((-593 . -940) T) ((-499 . -1073) 117569) ((-486 . -1134) T) ((-530 . -940) T) ((-494 . -920) 117438) ((-65 . -625) 117420) ((-219 . -1073) 117370) ((-499 . -653) 117320) ((-370 . -659) 117257) ((-364 . -659) 117194) ((-356 . -659) 117131) ((-644 . -231) 117077) ((-219 . -653) 117027) ((-108 . -659) 116977) ((-486 . -23) T) ((-1142 . -807) T) ((-887 . -132) T) ((-1142 . -804) T) ((-1304 . -1306) 116956) ((-1142 . -739) T) ((-667 . -661) 116930) ((-304 . -625) 116671) ((-1164 . -628) 116589) ((-1057 . -34) T) ((-829 . -237) 116540) ((-592 . -317) T) ((-576 . -317) T) ((-507 . -317) T) ((-1313 . -730) 116510) ((-707 . -388) 116492) ((-707 . -349) 116474) ((-489 . -174) T) ((-392 . -730) 116444) ((-881 . -628) 116379) ((-886 . -862) NIL) ((-576 . -1044) T) ((-507 . -1044) T) ((-1155 . -625) 116361) ((-1135 . -243) 116340) ((-216 . -102) T) ((-1172 . -102) T) ((-71 . -625) 116322) ((-1046 . -1239) T) ((-1164 . -1071) T) ((-1200 . -38) 116219) ((-873 . -625) 116201) ((-576 . -557) T) ((-683 . -1080) T) ((-744 . -969) 116154) ((-1164 . -238) 116133) ((-365 . -1239) T) ((-1104 . -1122) T) ((-1056 . -25) T) ((-1056 . -21) T) ((-1025 . -1078) 116078) ((-337 . -865) 116057) ((-925 . -102) T) ((-881 . -1071) T) ((-707 . -918) NIL) ((-366 . -339) 116041) ((-366 . -374) T) ((-363 . -339) 116025) ((-363 . -374) T) ((-355 . -339) 116009) ((-355 . -374) T) ((-499 . -102) T) ((-1301 . -38) 115979) ((-558 . -862) T) ((-535 . -700) 115929) ((-219 . -102) T) ((-1046 . -1060) 115809) ((-1025 . -111) 115738) ((-1196 . -995) 115707) ((-1195 . -995) 115669) ((-532 . -152) 115653) ((-1102 . -381) 115632) ((-362 . -625) 115614) ((-332 . -21) T) ((-365 . -1060) 115591) ((-332 . -25) T) ((-1189 . -995) 115560) ((-48 . -1239) T) ((-76 . -625) 115542) ((-1148 . -995) 115509) ((-712 . -317) T) ((-130 . -857) T) ((-930 . -374) T) ((-390 . -25) T) ((-390 . -21) T) ((-930 . -339) 115496) ((-86 . -625) 115478) ((-712 . -1044) T) ((-690 . -862) T) ((-400 . -1239) T) ((-1273 . -132) T) ((-1252 . -132) T) ((-921 . -1032) 115462) ((-849 . -21) T) ((-48 . -1060) 115405) ((-849 . -25) T) ((-840 . -25) T) ((-840 . -21) T) ((-1135 . -659) 115184) ((-1311 . -1080) T) ((-561 . -102) T) ((-1309 . -1080) T) ((-667 . -739) T) ((-1126 . -630) 115087) ((-1025 . -628) 115017) ((-1312 . -1078) 115001) ((-924 . -1239) T) ((-828 . -423) 114970) ((-103 . -120) 114954) ((-130 . -1122) T) ((-52 . -1122) T) ((-946 . -625) 114936) ((-886 . -1014) 114913) ((-836 . -102) T) ((-1312 . -111) 114892) ((-744 . -912) 114867) ((-666 . -38) 114837) ((-583 . -862) T) ((-366 . -1134) T) ((-363 . -1134) T) ((-355 . -1134) T) ((-273 . -1134) T) ((-253 . -1134) T) ((-1172 . -319) 114641) ((-1110 . -234) 114628) ((-635 . -317) 114607) ((-677 . -23) T) ((-536 . -1105) T) ((-321 . -1122) T) ((-494 . -272) 114576) ((-494 . -232) 114545) ((-153 . -1080) T) ((-366 . -23) T) ((-363 . -23) T) ((-355 . -23) T) ((-118 . -317) T) ((-273 . -23) T) ((-253 . -23) T) ((-1025 . -1071) T) ((-725 . -929) 114524) ((-1196 . -912) 114412) ((-1195 . -912) 114293) ((-1189 . -912) 114029) ((-1179 . -628) 114006) ((-1025 . -238) 113978) ((-1025 . -248) T) ((-1148 . -912) 113960) ((-118 . -1044) NIL) ((-930 . -1134) T) ((-1274 . -464) 113939) ((-1253 . -464) 113918) ((-535 . -625) 113850) ((-725 . -661) 113739) ((-419 . -1078) 113691) ((-516 . -625) 113673) ((-930 . -23) T) ((-499 . -319) NIL) ((-1312 . -628) 113629) ((-486 . -132) T) ((-219 . -319) NIL) ((-419 . -111) 113567) ((-828 . -1080) 113545) ((-750 . -1120) 113529) ((-1273 . -505) 113495) ((-1252 . -505) 113461) ((-449 . -1239) T) ((-560 . -857) T) ((-142 . -1120) 113443) ((-489 . -300) T) ((-1312 . -1071) T) ((-258 . -237) 113340) ((-257 . -237) 113237) ((-1244 . -102) T) ((-1085 . -102) T) ((-856 . -628) 113105) ((-512 . -526) NIL) ((-494 . -243) 113084) ((-419 . -628) 112982) ((-983 . -1073) 112865) ((-748 . -1073) 112835) ((-983 . -653) 112732) ((-1194 . -146) 112711) ((-748 . -653) 112681) ((-465 . -1073) 112651) ((-1194 . -148) 112630) ((-1147 . -148) 112609) ((-1147 . -146) 112588) ((-647 . -1078) 112572) ((-619 . -1078) 112556) ((-465 . -653) 112526) ((-1196 . -1280) 112510) ((-1196 . -1267) 112487) ((-1195 . -1272) 112448) ((-683 . -1122) T) ((-683 . -1075) 112388) ((-1195 . -1267) 112358) ((-560 . -1122) T) ((-499 . -1174) T) ((-1195 . -1270) 112342) ((-1189 . -1251) 112303) ((-831 . -275) 112287) ((-219 . -1174) T) ((-354 . -940) T) ((-99 . -1239) T) ((-647 . -111) 112266) ((-619 . -111) 112245) ((-1189 . -1267) 112222) ((-856 . -1071) 112201) ((-1189 . -1249) 112185) ((-527 . -25) T) ((-507 . -312) T) ((-523 . -23) T) ((-522 . -25) T) ((-520 . -25) T) ((-519 . -23) T) ((-430 . -1073) 112159) ((-419 . -1071) T) ((-329 . -1080) T) ((-707 . -317) T) ((-430 . -653) 112133) ((-108 . -861) T) ((-725 . -739) T) ((-419 . -248) T) ((-419 . -238) 112112) ((-390 . -234) 112099) ((-499 . -38) 112049) ((-219 . -38) 111999) ((-486 . -505) 111965) ((-651 . -21) T) ((-651 . -25) T) ((-1246 . -379) T) ((-1180 . -1166) T) ((-1123 . -102) T) ((-840 . -234) 111938) ((-714 . -625) 111920) ((-714 . -626) 111835) ((-727 . -21) T) ((-727 . -25) T) ((-1157 . -102) T) ((-494 . -659) 111614) ((-245 . -912) 111481) ((-135 . -625) 111463) ((-117 . -625) 111445) ((-158 . -25) T) ((-1311 . -1122) T) ((-887 . -652) 111393) ((-1309 . -1122) T) ((-880 . -1239) T) ((-983 . -102) T) ((-748 . -102) T) ((-728 . -102) T) ((-465 . -102) T) ((-829 . -464) 111344) ((-44 . -1122) T) ((-1110 . -862) T) ((-1085 . -319) 111195) ((-677 . -132) T) ((-1076 . -659) 111164) ((-683 . -730) 111148) ((-299 . -1080) T) ((-366 . -132) T) ((-363 . -132) T) ((-355 . -132) T) ((-273 . -132) T) ((-253 . -132) T) ((-396 . -659) 111117) ((-1318 . -1239) T) ((-430 . -102) T) ((-153 . -1122) T) ((-45 . -231) 111067) ((-1026 . -912) NIL) ((-812 . -1073) 111051) ((-978 . -862) 111030) ((-1021 . -661) 110932) ((-812 . -653) 110916) ((-245 . -1296) 110886) ((-1046 . -317) T) ((-304 . -1078) 110807) ((-930 . -132) T) ((-40 . -940) T) ((-499 . -412) 110789) ((-365 . -317) T) ((-219 . -412) 110771) ((-1102 . -423) 110755) ((-304 . -111) 110671) ((-1205 . -862) T) ((-1204 . -862) T) ((-887 . -25) T) ((-887 . -21) T) ((-1275 . -47) 110615) ((-350 . -625) 110597) ((-1194 . -237) T) ((-227 . -148) T) ((-176 . -625) 110579) ((-787 . -625) 110561) ((-129 . -862) T) ((-620 . -240) 110508) ((-487 . -240) 110458) ((-1311 . -730) 110428) ((-48 . -317) T) ((-1309 . -730) 110398) ((-65 . -628) 110327) ((-984 . -1122) T) ((-828 . -1122) 110079) ((-322 . -102) T) ((-921 . -1239) T) ((-48 . -1044) T) ((-1252 . -652) 109987) ((-702 . -102) 109937) ((-44 . -730) 109921) ((-562 . -102) T) ((-304 . -628) 109852) ((-67 . -394) T) ((-499 . -920) NIL) ((-67 . -407) T) ((-284 . -865) T) ((-219 . -920) NIL) ((-675 . -23) T) ((-830 . -659) 109788) ((-683 . -774) T) ((-1236 . -1122) 109766) ((-362 . -1078) 109711) ((-688 . -1122) 109689) ((-1084 . -148) T) ((-972 . -148) 109668) ((-972 . -146) 109647) ((-812 . -102) T) ((-153 . -730) 109631) ((-493 . -148) 109610) ((-493 . -146) 109589) ((-362 . -111) 109518) ((-1102 . -1080) T) ((-332 . -862) 109497) ((-1281 . -995) 109466) ((-1275 . -1239) T) ((-639 . -1122) T) ((-1274 . -995) 109428) ((-523 . -132) T) ((-519 . -132) T) ((-305 . -231) 109378) ((-370 . -1080) T) ((-364 . -1080) T) ((-356 . -1080) T) ((-304 . -1071) 109320) ((-1253 . -995) 109289) ((-390 . -862) T) ((-108 . -1080) T) ((-1021 . -739) T) ((-885 . -940) T) ((-856 . -808) 109268) ((-856 . -805) 109247) ((-430 . -319) 109186) ((-480 . -102) T) ((-607 . -995) 109155) ((-329 . -1122) T) ((-419 . -808) 109134) ((-419 . -805) 109113) ((-512 . -501) 109095) ((-1275 . -1060) 109061) ((-1273 . -21) T) ((-1273 . -25) T) ((-1252 . -21) T) ((-1252 . -25) T) ((-828 . -730) 109003) ((-362 . -628) 108933) ((-712 . -416) T) ((-1302 . -1239) T) ((-1135 . -423) 108902) ((-1099 . -1239) T) ((-618 . -102) T) ((-1025 . -379) NIL) ((-1009 . -1239) T) ((-684 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1200 . -659) 108812) ((-750 . -1239) T) ((-744 . -1073) 108655) ((-44 . -774) T) ((-744 . -653) 108504) ((-605 . -102) T) ((-666 . -669) 108488) ((-77 . -408) T) ((-77 . -407) T) ((-142 . -1239) T) ((-886 . -148) T) ((-886 . -146) NIL) ((-1301 . -659) 108433) ((-1281 . -912) 108321) ((-1274 . -912) 108202) ((-1238 . -93) T) ((-362 . -1071) T) ((-227 . -237) T) ((-70 . -394) T) ((-70 . -407) T) ((-1187 . -102) T) ((-683 . -526) 108135) ((-1253 . -912) 107871) ((-1233 . -568) 107850) ((-702 . -319) 107788) ((-983 . -38) 107685) ((-1202 . -625) 107667) ((-748 . -38) 107637) ((-562 . -319) 107441) ((-1196 . -1073) 107324) ((-326 . -1239) T) ((-362 . -238) T) ((-362 . -248) T) ((-323 . -1239) T) ((-299 . -1122) T) ((-1195 . -1073) 107159) ((-1189 . -1073) 106949) ((-1148 . -1073) 106832) ((-1196 . -653) 106729) ((-1195 . -653) 106570) ((-724 . -1243) T) ((-1189 . -653) 106366) ((-1179 . -664) 106350) ((-1148 . -653) 106247) ((-832 . -397) 106231) ((-724 . -568) T) ((-607 . -912) 106142) ((-326 . -900) 106126) ((-326 . -902) 106051) ((-323 . -900) 106012) ((-140 . -1239) T) ((-137 . -1239) T) ((-115 . -1239) T) ((-323 . -902) NIL) ((-812 . -319) 105977) ((-329 . -730) 105818) ((-398 . -397) 105802) ((-334 . -333) 105779) ((-497 . -102) T) ((-486 . -25) T) ((-486 . -21) T) ((-430 . -38) 105753) ((-326 . -1060) 105416) ((-227 . -1224) T) ((-227 . -1227) T) ((-3 . -625) 105398) ((-323 . -1060) 105328) ((-887 . -234) 105273) ((-2 . -1122) T) ((-2 . |RecordCategory|) T) ((-1135 . -1080) 105251) ((-846 . -625) 105233) ((-1084 . -237) T) ((-592 . -940) T) ((-576 . -833) T) ((-576 . -940) T) ((-507 . -940) T) ((-137 . -1060) 105217) ((-227 . -95) T) ((-171 . -148) 105196) ((-75 . -453) T) ((0 . -625) 105178) ((-75 . -407) T) ((-171 . -146) 105129) ((-227 . -35) T) ((-49 . -625) 105111) ((-489 . -1080) T) ((-499 . -272) 105093) ((-499 . -232) 105075) ((-496 . -990) 105059) ((-219 . -272) 105041) ((-219 . -232) 105023) ((-81 . -453) T) ((-81 . -407) T) ((-1168 . -34) T) ((-744 . -102) T) ((-666 . -659) 104982) ((-1048 . -625) 104949) ((-512 . -296) 104899) ((-326 . -388) 104868) ((-323 . -388) 104829) ((-323 . -349) 104790) ((-1107 . -625) 104772) ((-829 . -969) 104719) ((-675 . -132) T) ((-1262 . -146) 104698) ((-1262 . -148) 104677) ((-1196 . -102) T) ((-1195 . -102) T) ((-1189 . -102) T) ((-1181 . -1122) T) ((-1148 . -102) T) ((-1097 . -1239) T) ((-224 . -34) T) ((-299 . -730) 104664) ((-1281 . -1280) 104648) ((-1181 . -622) 104624) ((-605 . -319) NIL) ((-1281 . -1267) 104601) ((-1172 . -231) 104551) ((-496 . -1122) 104529) ((-450 . -1239) T) ((-402 . -625) 104511) ((-522 . -862) T) ((-1142 . -1239) T) ((-1274 . -1272) 104472) ((-1274 . -1267) 104442) ((-1274 . -1270) 104426) ((-1253 . -1251) 104387) ((-1253 . -1267) 104364) ((-1253 . -1249) 104348) ((-1196 . -294) 104314) ((-633 . -625) 104296) ((-1195 . -294) 104262) ((-712 . -940) T) ((-1189 . -294) 104228) ((-1148 . -294) 104194) ((-1142 . -902) 104176) ((-1102 . -1122) T) ((-1083 . -1122) T) ((-48 . -312) T) ((-326 . -918) 104142) ((-323 . -918) NIL) ((-1083 . -1090) 104121) ((-812 . -38) 104105) ((-273 . -652) 104053) ((-112 . -865) T) ((-253 . -652) 104001) ((-714 . -1078) 103988) ((-607 . -1267) 103965) ((-1142 . -1060) 103947) ((-329 . -174) 103878) ((-370 . -1122) T) ((-364 . -1122) T) ((-356 . -1122) T) ((-512 . -19) 103860) ((-1124 . -152) 103844) ((-886 . -237) NIL) ((-108 . -1122) T) ((-117 . -1078) 103831) ((-724 . -374) T) ((-512 . -616) 103806) ((-714 . -111) 103791) ((-1314 . -625) 103758) ((-1314 . -502) 103740) ((-1273 . -234) 103686) ((-1252 . -234) 103539) ((-448 . -102) T) ((-891 . -1284) T) ((-256 . -102) T) ((-45 . -1171) 103489) ((-117 . -111) 103474) ((-1291 . -625) 103456) ((-1262 . -237) T) ((-1247 . -625) 103438) ((-1245 . -862) T) ((-647 . -733) T) ((-619 . -733) T) ((-1233 . -1134) T) ((-1233 . -23) T) ((-1194 . -464) 103369) ((-1189 . -319) 103254) ((-1188 . -1122) T) ((-828 . -526) 103187) ((-1057 . -1239) T) ((-245 . -1073) 103088) ((-1180 . -1122) T) ((-1164 . -661) 103026) ((-963 . -152) 103010) ((-1148 . -319) 102997) ((-1147 . -464) 102948) ((-245 . -653) 102870) ((-1109 . -568) 102801) ((-1109 . -1243) 102780) ((-1102 . -730) 102648) ((-537 . -102) T) ((-532 . -102) 102578) ((-1026 . -1073) 102528) ((-1016 . -1122) T) ((-829 . -912) 102424) ((-795 . -1243) 102403) ((-793 . -1243) 102382) ((-62 . -1239) T) ((-489 . -625) 102334) ((-489 . -626) 102256) ((-795 . -568) 102167) ((-793 . -568) 102098) ((-744 . -319) 102085) ((-714 . -628) 102057) ((-494 . -423) 102026) ((-635 . -940) 102005) ((-466 . -1243) 101984) ((-688 . -526) 101917) ((-677 . -25) T) ((-410 . -625) 101899) ((-677 . -21) T) ((-466 . -568) 101830) ((-430 . -920) 101753) ((-366 . -25) T) ((-366 . -21) T) ((-363 . -25) T) ((-118 . -940) T) ((-118 . -833) NIL) ((-363 . -21) T) ((-355 . -25) T) ((-355 . -21) T) ((-273 . -25) T) ((-273 . -21) T) ((-253 . -25) T) ((-253 . -21) T) ((-171 . -237) 101684) ((-83 . -395) T) ((-83 . -407) T) ((-135 . -628) 101666) ((-117 . -628) 101638) ((-1026 . -653) 101588) ((-963 . -1002) 101572) ((-934 . -653) 101524) ((-934 . -1073) 101476) ((-930 . -21) T) ((-930 . -25) T) ((-887 . -862) 101427) ((-881 . -661) 101387) ((-724 . -1134) T) ((-724 . -23) T) ((-714 . -1071) T) ((-714 . -238) T) ((-299 . -174) T) ((-667 . -1239) T) ((-321 . -93) T) ((-660 . -1122) 101365) ((-644 . -622) 101340) ((-644 . -1122) T) ((-593 . -1243) T) ((-593 . -568) T) ((-530 . -1243) T) ((-530 . -568) T) ((-499 . -659) 101290) ((-486 . -234) 101236) ((-439 . -1073) 101220) ((-439 . -653) 101204) ((-370 . -730) 101156) ((-364 . -730) 101108) ((-350 . -1078) 101092) ((-356 . -730) 101044) ((-350 . -111) 101023) ((-176 . -1078) 100955) ((-176 . -111) 100866) ((-108 . -730) 100816) ((-219 . -659) 100766) ((-283 . -1122) T) ((-282 . -1122) T) ((-281 . -1122) T) ((-280 . -1122) T) ((-279 . -1122) T) ((-278 . -1122) T) ((-277 . -1122) T) ((-214 . -1122) T) ((-213 . -1122) T) ((-171 . -1227) 100744) ((-171 . -1224) 100722) ((-211 . -1122) T) ((-210 . -1122) T) ((-117 . -1071) T) ((-209 . -1122) T) ((-208 . -1122) T) ((-205 . -1122) T) ((-204 . -1122) T) ((-203 . -1122) T) ((-202 . -1122) T) ((-201 . -1122) T) ((-200 . -1122) T) ((-199 . -1122) T) ((-198 . -1122) T) ((-197 . -1122) T) ((-196 . -1122) T) ((-195 . -1122) T) ((-245 . -102) 100454) ((-171 . -35) 100432) ((-171 . -95) 100410) ((-667 . -1060) 100306) ((-494 . -1080) 100284) ((-1135 . -1122) 100036) ((-1164 . -34) T) ((-683 . -501) 100020) ((-73 . -1239) T) ((-105 . -625) 100002) ((-909 . -1239) T) ((-1313 . -625) 99984) ((-392 . -625) 99966) ((-350 . -628) 99918) ((-176 . -628) 99835) ((-1238 . -502) 99816) ((-744 . -38) 99665) ((-583 . -1227) T) ((-583 . -1224) T) ((-543 . -625) 99647) ((-532 . -319) 99585) ((-512 . -625) 99567) ((-512 . -626) 99549) ((-1238 . -625) 99515) ((-1189 . -1174) NIL) ((-215 . -1239) T) ((-1049 . -1093) 99484) ((-1049 . -1122) T) ((-1026 . -102) T) ((-993 . -102) T) ((-934 . -102) T) ((-909 . -1060) 99461) ((-1164 . -739) T) ((-1025 . -661) 99368) ((-488 . -1122) T) ((-475 . -1122) T) ((-598 . -23) T) ((-583 . -35) T) ((-583 . -95) T) ((-439 . -102) T) ((-1085 . -231) 99314) ((-1196 . -38) 99211) ((-1195 . -38) 99052) ((-941 . -865) T) ((-881 . -739) T) ((-784 . -865) T) ((-707 . -940) T) ((-685 . -865) T) ((-523 . -25) T) ((-519 . -21) T) ((-519 . -25) T) ((-1189 . -38) 98848) ((-350 . -1071) T) ((-145 . -1239) T) ((-1102 . -174) T) ((-176 . -1071) T) ((-1148 . -38) 98745) ((-725 . -47) 98722) ((-370 . -174) T) ((-364 . -174) T) ((-531 . -57) 98696) ((-509 . -57) 98646) ((-362 . -1308) 98623) ((-227 . -464) T) ((-329 . -300) 98574) ((-356 . -174) T) ((-176 . -248) T) ((-1252 . -862) 98473) ((-108 . -174) T) ((-887 . -1014) 98457) ((-671 . -1134) T) ((-593 . -374) T) ((-593 . -339) 98444) ((-530 . -339) 98421) ((-530 . -374) T) ((-326 . -317) 98400) ((-323 . -317) T) ((-614 . -862) 98379) ((-1135 . -730) 98321) ((-532 . -292) 98305) ((-671 . -23) T) ((-430 . -232) 98289) ((-430 . -272) 98273) ((-323 . -1044) NIL) ((-347 . -23) T) ((-103 . -1032) 98257) ((-45 . -36) 98236) ((-624 . -1122) T) ((-362 . -379) T) ((-536 . -102) T) ((-507 . -27) T) ((-245 . -319) 98174) ((-1109 . -1134) T) ((-1312 . -661) 98148) ((-795 . -1134) T) ((-793 . -1134) T) ((-1200 . -423) 98132) ((-466 . -1134) T) ((-1084 . -464) T) ((-1173 . -1122) T) ((-972 . -464) 98083) ((-1137 . -1105) T) ((-110 . -1122) T) ((-1109 . -23) T) ((-1181 . -526) 97866) ((-830 . -1080) T) ((-795 . -23) T) ((-793 . -23) T) ((-493 . -464) 97817) ((-473 . -23) T) ((-392 . -393) 97796) ((-366 . -234) 97769) ((-363 . -234) 97742) ((-355 . -234) 97715) ((-466 . -23) T) ((-273 . -234) 97660) ((-258 . -912) 97527) ((-257 . -912) 97394) ((-96 . -1122) T) ((-725 . -1239) T) ((-683 . -296) 97371) ((-496 . -526) 97304) ((-1281 . -1073) 97187) ((-1281 . -653) 97084) ((-1274 . -653) 96925) ((-1274 . -1073) 96760) ((-1253 . -653) 96556) ((-1253 . -1073) 96346) ((-299 . -300) T) ((-1104 . -625) 96328) ((-559 . -865) T) ((-1104 . -626) 96309) ((-419 . -929) 96288) ((-1233 . -132) T) ((-50 . -1134) T) ((-1189 . -412) 96240) ((-1046 . -940) T) ((-1025 . -739) T) ((-856 . -661) 96213) ((-725 . -902) NIL) ((-608 . -1073) 96173) ((-593 . -1134) T) ((-530 . -1134) T) ((-607 . -1073) 96056) ((-1179 . -34) T) ((-1026 . -319) NIL) ((-828 . -501) 96040) ((-608 . -653) 96013) ((-365 . -940) T) ((-607 . -653) 95910) ((-930 . -234) 95897) ((-419 . -661) 95813) ((-50 . -23) T) ((-724 . -132) T) ((-725 . -1060) 95693) ((-593 . -23) T) ((-108 . -526) NIL) ((-530 . -23) T) ((-171 . -421) 95664) ((-1162 . -1122) T) ((-1304 . -1303) 95648) ((-744 . -920) 95625) ((-714 . -808) T) ((-714 . -805) T) ((-1142 . -317) T) ((-390 . -148) T) ((-290 . -625) 95607) ((-289 . -625) 95589) ((-1252 . -1014) 95559) ((-48 . -940) T) ((-688 . -501) 95543) ((-258 . -1296) 95513) ((-257 . -1296) 95483) ((-1110 . -237) T) ((-1198 . -862) T) ((-1142 . -1044) T) ((-1068 . -34) T) ((-849 . -148) 95462) ((-849 . -146) 95441) ((-750 . -107) 95425) ((-624 . -133) T) ((-1200 . -1080) T) ((-494 . -1122) 95177) ((-1196 . -920) 95090) ((-1195 . -920) 94996) ((-1189 . -920) 94757) ((-886 . -464) T) ((-85 . -1239) T) ((-142 . -107) 94739) ((-1148 . -920) 94723) ((-725 . -388) 94707) ((-846 . -628) 94575) ((-1312 . -739) T) ((-1301 . -1080) T) ((-1281 . -102) T) ((-1142 . -557) T) ((-591 . -102) T) ((-130 . -502) 94557) ((-1274 . -102) T) ((-402 . -1078) 94541) ((-1194 . -969) 94510) ((-44 . -296) 94487) ((-130 . -625) 94454) ((-52 . -625) 94436) ((-1147 . -969) 94403) ((-666 . -423) 94387) ((-1253 . -102) T) ((-1180 . -526) NIL) ((-675 . -25) T) ((-633 . -1078) 94371) ((-675 . -21) T) ((-983 . -659) 94281) ((-748 . -659) 94226) ((-728 . -659) 94198) ((-402 . -111) 94177) ((-224 . -261) 94161) ((-1076 . -1075) 94101) ((-1076 . -1122) T) ((-1026 . -1174) T) ((-831 . -1122) T) ((-465 . -659) 94016) ((-647 . -661) 94000) ((-633 . -111) 93979) ((-619 . -661) 93963) ((-354 . -1243) T) ((-608 . -102) T) ((-321 . -502) 93944) ((-598 . -132) T) ((-607 . -102) T) ((-426 . -1122) T) ((-396 . -1122) T) ((-321 . -625) 93910) ((-229 . -1122) 93888) ((-660 . -526) 93821) ((-644 . -526) 93665) ((-846 . -1071) 93644) ((-657 . -152) 93628) ((-354 . -568) T) ((-725 . -918) 93571) ((-562 . -231) 93521) ((-1281 . -294) 93487) ((-1274 . -294) 93453) ((-1102 . -300) 93404) ((-576 . -865) T) ((-499 . -861) T) ((-225 . -1134) T) ((-1253 . -294) 93370) ((-1233 . -505) 93336) ((-1026 . -38) 93286) ((-219 . -861) T) ((-430 . -659) 93245) ((-934 . -38) 93197) ((-856 . -807) 93176) ((-856 . -804) 93155) ((-856 . -739) 93134) ((-370 . -300) T) ((-364 . -300) T) ((-356 . -300) T) ((-171 . -464) 93065) ((-439 . -38) 93049) ((-225 . -23) T) ((-108 . -300) T) ((-419 . -807) 93028) ((-419 . -804) 93007) ((-419 . -739) T) ((-512 . -298) 92982) ((-489 . -1078) 92947) ((-671 . -132) T) ((-633 . -628) 92916) ((-1135 . -526) 92849) ((-347 . -132) T) ((-171 . -414) 92828) ((-494 . -730) 92770) ((-828 . -296) 92747) ((-489 . -111) 92703) ((-666 . -1080) T) ((-1194 . -912) 92606) ((-1147 . -912) 92588) ((-829 . -1073) 92431) ((-1300 . -1105) T) ((-1262 . -464) 92362) ((-829 . -653) 92211) ((-1299 . -1105) T) ((-1109 . -132) T) ((-1076 . -730) 92153) ((-1049 . -526) 92086) ((-795 . -132) T) ((-793 . -132) T) ((-712 . -865) T) ((-583 . -464) T) ((-633 . -1071) T) ((-604 . -1122) T) ((-545 . -175) T) ((-473 . -132) T) ((-466 . -132) T) ((-390 . -237) T) ((-1021 . -1239) T) ((-45 . -1122) T) ((-396 . -730) 92056) ((-830 . -1122) T) ((-488 . -526) 91989) ((-475 . -526) 91922) ((-1314 . -628) 91904) ((-465 . -378) 91874) ((-45 . -622) 91853) ((-411 . -1239) T) ((-326 . -312) T) ((-1289 . -865) 91832) ((-840 . -237) 91811) ((-489 . -628) 91761) ((-1253 . -319) 91646) ((-683 . -625) 91608) ((-59 . -862) 91587) ((-1026 . -412) 91569) ((-560 . -625) 91551) ((-812 . -659) 91510) ((-828 . -616) 91487) ((-528 . -862) 91466) ((-508 . -862) 91445) ((-1021 . -1060) 91341) ((-40 . -1243) T) ((-245 . -920) 91210) ((-50 . -132) T) ((-593 . -132) T) ((-530 . -132) T) ((-304 . -661) 91070) ((-354 . -339) 91047) ((-354 . -374) T) ((-332 . -333) 91024) ((-329 . -296) 90982) ((-40 . -568) T) ((-390 . -1224) T) ((-390 . -1227) T) ((-1057 . -1215) 90957) ((-1211 . -240) 90907) ((-1189 . -232) 90859) ((-1189 . -272) 90811) ((-340 . -1122) T) ((-390 . -95) T) ((-390 . -35) T) ((-1057 . -107) 90757) ((-489 . -1071) T) ((-1313 . -1078) 90741) ((-491 . -240) 90691) ((-1181 . -501) 90625) ((-1304 . -1073) 90609) ((-392 . -1078) 90593) ((-1304 . -653) 90563) ((-829 . -102) T) ((-489 . -248) T) ((-727 . -148) 90542) ((-727 . -146) 90521) ((-118 . -865) NIL) ((-496 . -501) 90505) ((-497 . -346) 90474) ((-524 . -1122) 90425) ((-1313 . -111) 90404) ((-1021 . -388) 90388) ((-425 . -102) T) ((-392 . -111) 90367) ((-1021 . -349) 90351) ((-288 . -1005) 90335) ((-287 . -1005) 90319) ((-1026 . -920) NIL) ((-1311 . -625) 90301) ((-1309 . -625) 90283) ((-110 . -526) NIL) ((-1194 . -1265) 90267) ((-869 . -867) 90251) ((-1200 . -1122) T) ((-103 . -1239) T) ((-972 . -969) 90212) ((-830 . -730) 90154) ((-1253 . -1174) NIL) ((-493 . -969) 90099) ((-1084 . -144) T) ((-60 . -102) 90049) ((-44 . -625) 90031) ((-78 . -625) 90013) ((-362 . -661) 89958) ((-1301 . -1122) T) ((-523 . -862) T) ((-299 . -296) 89937) ((-354 . -1134) T) ((-305 . -1122) T) ((-1021 . -918) 89896) ((-305 . -622) 89875) ((-1313 . -628) 89824) ((-1281 . -38) 89721) ((-1274 . -38) 89562) ((-1253 . -38) 89358) ((-499 . -1080) T) ((-392 . -628) 89342) ((-219 . -1080) T) ((-354 . -23) T) ((-153 . -625) 89324) ((-846 . -808) 89303) ((-846 . -805) 89282) ((-1238 . -628) 89263) ((-608 . -38) 89236) ((-607 . -38) 89133) ((-885 . -568) T) ((-225 . -132) T) ((-329 . -1024) 89099) ((-79 . -625) 89081) ((-725 . -317) 89060) ((-304 . -739) 88962) ((-837 . -102) T) ((-879 . -857) T) ((-304 . -485) 88941) ((-1304 . -102) T) ((-40 . -374) T) ((-887 . -148) 88920) ((-497 . -659) 88902) ((-887 . -146) 88881) ((-1180 . -501) 88863) ((-1313 . -1071) T) ((-494 . -526) 88796) ((-1168 . -1239) T) ((-984 . -625) 88778) ((-660 . -501) 88762) ((-644 . -501) 88693) ((-828 . -625) 88386) ((-48 . -27) T) ((-1200 . -730) 88283) ((-972 . -912) 88262) ((-666 . -1122) T) ((-876 . -875) T) ((-448 . -375) 88236) ((-744 . -659) 88146) ((-493 . -912) 88121) ((-1124 . -102) T) ((-992 . -1122) T) ((-879 . -1122) T) ((-829 . -319) 88108) ((-545 . -539) T) ((-545 . -588) T) ((-1309 . -393) 88080) ((-707 . -865) T) ((-1076 . -526) 88013) ((-1181 . -296) 87989) ((-245 . -272) 87958) ((-245 . -232) 87927) ((-258 . -1073) 87828) ((-257 . -1073) 87729) ((-1301 . -730) 87699) ((-1188 . -93) T) ((-1016 . -93) T) ((-830 . -174) 87678) ((-258 . -653) 87600) ((-257 . -653) 87522) ((-1236 . -502) 87499) ((-590 . -1239) T) ((-229 . -526) 87432) ((-633 . -808) 87411) ((-633 . -805) 87390) ((-1236 . -625) 87302) ((-224 . -1239) T) ((-688 . -625) 87234) ((-1196 . -659) 87144) ((-1179 . -1032) 87128) ((-963 . -102) 87058) ((-362 . -739) T) ((-876 . -625) 87040) ((-1195 . -659) 86922) ((-1189 . -659) 86759) ((-1148 . -659) 86669) ((-1253 . -412) 86621) ((-1135 . -501) 86605) ((-60 . -319) 86543) ((-341 . -102) T) ((-1233 . -21) T) ((-1233 . -25) T) ((-40 . -1134) T) ((-724 . -21) T) ((-639 . -625) 86525) ((-527 . -333) 86504) ((-724 . -25) T) ((-451 . -102) T) ((-108 . -296) NIL) ((-941 . -1134) T) ((-40 . -23) T) ((-784 . -1134) T) ((-576 . -1243) T) ((-507 . -1243) T) ((-1026 . -272) 86486) ((-329 . -625) 86468) ((-1026 . -232) 86450) ((-171 . -167) 86434) ((-592 . -568) T) ((-576 . -568) T) ((-507 . -568) T) ((-784 . -23) T) ((-1273 . -148) 86413) ((-1273 . -146) 86392) ((-1181 . -616) 86368) ((-1252 . -146) 86293) ((-1049 . -501) 86277) ((-1246 . -1239) T) ((-1252 . -148) 86202) ((-1304 . -1310) 86181) ((-886 . -912) NIL) ((-488 . -501) 86165) ((-475 . -501) 86149) ((-535 . -34) T) ((-666 . -730) 86119) ((-1281 . -920) 86032) ((-1274 . -920) 85938) ((-1253 . -920) 85699) ((-112 . -989) T) ((-1200 . -174) 85650) ((-675 . -862) 85629) ((-376 . -102) T) ((-607 . -920) 85542) ((-245 . -243) 85521) ((-258 . -102) T) ((-257 . -102) T) ((-1262 . -969) 85490) ((-250 . -862) 85469) ((-1046 . -865) T) ((-829 . -38) 85318) ((-45 . -526) 85110) ((-1180 . -296) 85060) ((-216 . -1122) T) ((-1172 . -1122) T) ((-887 . -237) 85011) ((-1172 . -622) 84990) ((-598 . -25) T) ((-598 . -21) T) ((-1124 . -319) 84928) ((-983 . -423) 84912) ((-712 . -1243) T) ((-644 . -296) 84865) ((-1109 . -652) 84813) ((-925 . -1122) T) ((-795 . -652) 84761) ((-793 . -652) 84709) ((-354 . -132) T) ((-299 . -625) 84691) ((-885 . -1134) T) ((-712 . -568) T) ((-130 . -628) 84673) ((-466 . -652) 84621) ((-171 . -912) 84542) ((-925 . -923) 84526) ((-390 . -464) T) ((-499 . -1122) T) ((-963 . -319) 84464) ((-714 . -661) 84436) ((-561 . -857) T) ((-219 . -1122) T) ((-326 . -940) 84415) ((-323 . -940) T) ((-323 . -833) NIL) ((-402 . -733) T) ((-885 . -23) T) ((-117 . -661) 84402) ((-486 . -146) 84381) ((-430 . -423) 84365) ((-486 . -148) 84344) ((-110 . -501) 84326) ((-321 . -628) 84307) ((-2 . -625) 84289) ((-188 . -102) T) ((-1180 . -19) 84271) ((-1180 . -616) 84246) ((-671 . -21) T) ((-671 . -25) T) ((-605 . -1166) T) ((-1135 . -296) 84223) ((-347 . -25) T) ((-347 . -21) T) ((-905 . -1239) T) ((-901 . -1239) T) ((-1311 . -1078) 84207) ((-245 . -659) 83986) ((-507 . -374) T) ((-1309 . -1078) 83970) ((-1304 . -38) 83940) ((-1273 . -1224) 83906) ((-1273 . -1227) 83872) ((-1262 . -912) 83775) ((-1194 . -1073) 83598) ((-1164 . -1239) T) ((-1147 . -1073) 83441) ((-869 . -1073) 83425) ((-644 . -616) 83400) ((-1273 . -95) 83366) ((-1273 . -237) 83318) ((-1256 . -102) 83296) ((-1194 . -653) 83125) ((-1147 . -653) 82974) ((-869 . -653) 82944) ((-1253 . -232) 82896) ((-1109 . -25) T) ((-561 . -1122) T) ((-1109 . -21) T) ((-983 . -1080) T) ((-543 . -805) T) ((-543 . -808) T) ((-118 . -1243) T) ((-881 . -1239) T) ((-635 . -568) T) ((-795 . -25) T) ((-795 . -21) T) ((-793 . -21) T) ((-793 . -25) T) ((-748 . -1080) T) ((-728 . -1080) T) ((-683 . -1078) 82880) ((-529 . -1105) T) ((-473 . -25) T) ((-118 . -568) T) ((-473 . -21) T) ((-466 . -25) T) ((-466 . -21) T) ((-1253 . -272) 82832) ((-1173 . -93) T) ((-1164 . -1060) 82728) ((-830 . -300) 82707) ((-1252 . -1224) 82673) ((-836 . -1122) T) ((-986 . -989) T) ((-683 . -111) 82652) ((-629 . -1239) T) ((-305 . -526) 82444) ((-1252 . -1227) 82410) ((-1252 . -237) 82269) ((-1247 . -379) T) ((-258 . -319) 82207) ((-257 . -319) 82145) ((-1244 . -857) T) ((-1181 . -626) NIL) ((-1181 . -625) 82127) ((-1164 . -388) 82111) ((-1142 . -833) T) ((-1142 . -940) T) ((-96 . -93) T) ((-1135 . -616) 82088) ((-1102 . -626) 82072) ((-1102 . -625) 82054) ((-1026 . -659) 82004) ((-934 . -659) 81941) ((-828 . -298) 81918) ((-496 . -625) 81850) ((-620 . -152) 81797) ((-499 . -730) 81747) ((-430 . -1080) T) ((-494 . -501) 81731) ((-439 . -659) 81690) ((-337 . -862) 81669) ((-350 . -661) 81643) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -730) 81593) ((-171 . -737) 81564) ((-176 . -661) 81496) ((-593 . -21) T) ((-593 . -25) T) ((-530 . -25) T) ((-530 . -21) T) ((-487 . -152) 81446) ((-1083 . -625) 81428) ((-1015 . -102) T) ((-877 . -102) T) ((-829 . -920) 81328) ((-812 . -423) 81291) ((-40 . -132) T) ((-712 . -374) T) ((-714 . -739) T) ((-714 . -807) T) ((-714 . -804) T) ((-214 . -913) T) ((-592 . -1134) T) ((-576 . -1134) T) ((-507 . -1134) T) ((-370 . -625) 81273) ((-364 . -625) 81255) ((-356 . -625) 81237) ((-66 . -408) T) ((-66 . -407) T) ((-108 . -626) 81167) ((-108 . -625) 81109) ((-213 . -913) T) ((-978 . -152) 81093) ((-784 . -132) T) ((-683 . -628) 81011) ((-135 . -739) T) ((-117 . -739) T) ((-1273 . -35) 80977) ((-1076 . -501) 80961) ((-592 . -23) T) ((-576 . -23) T) ((-507 . -23) T) ((-1252 . -95) 80927) ((-1252 . -35) 80893) ((-1194 . -102) T) ((-1147 . -102) T) ((-869 . -102) T) ((-229 . -501) 80877) ((-1311 . -111) 80856) ((-1309 . -111) 80835) ((-44 . -1078) 80819) ((-1312 . -1239) T) ((-1311 . -628) 80765) ((-1311 . -1071) T) ((-1309 . -628) 80694) ((-1309 . -1071) T) ((-1262 . -1265) 80678) ((-870 . -867) 80662) ((-1200 . -300) 80641) ((-1126 . -1239) T) ((-110 . -296) 80591) ((-1025 . -1239) T) ((-129 . -152) 80573) ((-1164 . -918) 80532) ((-44 . -111) 80511) ((-1244 . -1122) T) ((-1203 . -1284) T) ((-1189 . -861) NIL) ((-1188 . -502) 80492) ((-683 . -1071) T) ((-1188 . -625) 80458) ((-1180 . -625) 80440) ((-486 . -237) 80392) ((-1085 . -622) 80367) ((-1016 . -502) 80348) ((-74 . -453) T) ((-74 . -407) T) ((-1085 . -1122) T) ((-153 . -1078) 80332) ((-1016 . -625) 80298) ((-683 . -238) 80277) ((-583 . -566) 80261) ((-366 . -148) 80240) ((-366 . -146) 80191) ((-363 . -148) 80170) ((-363 . -146) 80121) ((-355 . -148) 80100) ((-355 . -146) 80051) ((-273 . -146) 80030) ((-273 . -148) 80009) ((-253 . -148) 79988) ((-118 . -374) T) ((-253 . -146) 79967) ((-1180 . -626) NIL) ((-153 . -111) 79946) ((-1025 . -1060) 79834) ((-1179 . -1239) T) ((-707 . -1243) T) ((-812 . -1080) T) ((-712 . -1134) T) ((-1025 . -388) 79811) ((-518 . -1239) T) ((-514 . -1239) T) ((-930 . -146) T) ((-930 . -148) 79793) ((-885 . -132) T) ((-828 . -1078) 79714) ((-712 . -23) T) ((-707 . -568) T) ((-227 . -1073) 79679) ((-660 . -625) 79611) ((-660 . -626) 79572) ((-644 . -626) NIL) ((-644 . -625) 79554) ((-499 . -174) T) ((-227 . -653) 79519) ((-219 . -174) T) ((-225 . -21) T) ((-225 . -25) T) ((-486 . -1227) 79485) ((-486 . -1224) 79451) ((-283 . -625) 79433) ((-282 . -625) 79415) ((-281 . -625) 79397) ((-280 . -625) 79379) ((-279 . -625) 79361) ((-512 . -664) 79343) ((-278 . -625) 79325) ((-350 . -739) T) ((-277 . -625) 79307) ((-110 . -19) 79289) ((-176 . -739) T) ((-512 . -384) 79271) ((-214 . -625) 79253) ((-532 . -1171) 79237) ((-512 . -124) T) ((-110 . -616) 79212) ((-213 . -625) 79194) ((-486 . -35) 79160) ((-486 . -95) 79126) ((-211 . -625) 79108) ((-210 . -625) 79090) ((-209 . -625) 79072) ((-208 . -625) 79054) ((-205 . -625) 79036) ((-204 . -625) 79018) ((-203 . -625) 79000) ((-202 . -625) 78982) ((-201 . -625) 78964) ((-200 . -625) 78946) ((-199 . -625) 78928) ((-548 . -1125) 78880) ((-198 . -625) 78862) ((-197 . -625) 78844) ((-45 . -501) 78781) ((-196 . -625) 78763) ((-195 . -625) 78745) ((-153 . -628) 78714) ((-1137 . -102) T) ((-828 . -111) 78630) ((-657 . -102) 78560) ((-494 . -296) 78537) ((-1312 . -1060) 78521) ((-1135 . -625) 78214) ((-1123 . -1122) T) ((-1068 . -1239) T) ((-1194 . -319) 78201) ((-1084 . -1073) 78188) ((-1157 . -1122) T) ((-972 . -1073) 78031) ((-1147 . -319) 78018) ((-1118 . -1105) T) ((-635 . -1134) T) ((-1084 . -653) 78005) ((-1112 . -1105) T) ((-972 . -653) 77854) ((-1109 . -234) 77799) ((-493 . -1073) 77642) ((-1095 . -1105) T) ((-1088 . -1105) T) ((-1058 . -1105) T) ((-1041 . -1105) T) ((-118 . -1134) T) ((-493 . -653) 77491) ((-795 . -234) 77478) ((-832 . -102) T) ((-638 . -1105) T) ((-635 . -23) T) ((-1172 . -526) 77270) ((-495 . -1105) T) ((-983 . -1122) T) ((-398 . -102) T) ((-334 . -102) T) ((-220 . -1105) T) ((-856 . -1239) T) ((-153 . -1071) T) ((-744 . -423) 77254) ((-118 . -23) T) ((-1025 . -918) 77206) ((-748 . -1122) T) ((-728 . -1122) T) ((-1281 . -659) 77116) ((-1274 . -659) 76998) ((-465 . -1122) T) ((-419 . -1239) T) ((-326 . -442) 76982) ((-604 . -93) T) ((-1049 . -626) 76943) ((-270 . -1239) T) ((-1046 . -1243) T) ((-227 . -102) T) ((-1049 . -625) 76905) ((-829 . -272) 76889) ((-829 . -232) 76873) ((-828 . -628) 76671) ((-1253 . -659) 76508) ((-1046 . -568) T) ((-846 . -661) 76481) ((-365 . -1243) T) ((-488 . -625) 76443) ((-488 . -626) 76404) ((-475 . -626) 76365) ((-475 . -625) 76327) ((-608 . -659) 76286) ((-419 . -900) 76270) ((-329 . -1078) 76105) ((-419 . -902) 76030) ((-607 . -659) 75940) ((-856 . -1060) 75836) ((-499 . -526) NIL) ((-494 . -616) 75813) ((-593 . -234) 75800) ((-365 . -568) T) ((-530 . -234) 75787) ((-219 . -526) NIL) ((-887 . -464) T) ((-430 . -1122) T) ((-419 . -1060) 75651) ((-329 . -111) 75472) ((-707 . -374) T) ((-227 . -294) T) ((-1236 . -628) 75449) ((-48 . -1243) T) ((-1194 . -1174) 75427) ((-1181 . -298) 75403) ((-1084 . -102) T) ((-972 . -102) T) ((-828 . -1071) 75381) ((-592 . -132) T) ((-576 . -132) T) ((-507 . -132) T) ((-366 . -237) 75360) ((-363 . -237) 75339) ((-355 . -237) 75318) ((-48 . -568) T) ((-886 . -1073) 75263) ((-273 . -237) 75214) ((-828 . -238) 75166) ((-326 . -27) 75145) ((-258 . -920) 75014) ((-257 . -920) 74883) ((-255 . -848) 74865) ((-189 . -848) 74847) ((-726 . -102) T) ((-305 . -501) 74784) ((-886 . -653) 74729) ((-493 . -102) T) ((-744 . -1080) T) ((-624 . -625) 74711) ((-624 . -626) 74572) ((-419 . -388) 74556) ((-419 . -349) 74540) ((-1194 . -38) 74369) ((-1147 . -38) 74218) ((-329 . -628) 74044) ((-930 . -237) T) ((-647 . -1239) T) ((-619 . -1239) T) ((-869 . -38) 74014) ((-402 . -661) 73998) ((-657 . -319) 73936) ((-1173 . -502) 73917) ((-1173 . -625) 73883) ((-983 . -730) 73780) ((-748 . -730) 73750) ((-633 . -661) 73724) ((-224 . -107) 73708) ((-45 . -296) 73608) ((-322 . -1122) T) ((-299 . -1078) 73595) ((-110 . -625) 73577) ((-110 . -626) 73559) ((-465 . -730) 73529) ((-829 . -260) 73468) ((-702 . -1122) 73446) ((-562 . -1122) T) ((-1196 . -1080) T) ((-1195 . -1080) T) ((-96 . -502) 73427) ((-1189 . -1080) T) ((-299 . -111) 73412) ((-1148 . -1080) T) ((-562 . -622) 73391) ((-96 . -625) 73357) ((-1026 . -861) T) ((-229 . -700) 73315) ((-707 . -1134) T) ((-1233 . -753) 73291) ((-1046 . -374) T) ((-851 . -848) 73273) ((-846 . -807) 73252) ((-419 . -918) 73211) ((-329 . -1071) T) ((-354 . -25) T) ((-354 . -21) T) ((-171 . -1073) 73121) ((-68 . -1239) T) ((-846 . -804) 73100) ((-430 . -730) 73074) ((-812 . -1122) T) ((-725 . -940) 73053) ((-712 . -132) T) ((-171 . -653) 72881) ((-707 . -23) T) ((-499 . -300) T) ((-846 . -739) 72860) ((-329 . -238) 72812) ((-329 . -248) 72791) ((-219 . -300) T) ((-130 . -379) T) ((-1273 . -464) 72770) ((-1252 . -464) 72749) ((-365 . -339) 72726) ((-365 . -374) T) ((-1162 . -625) 72708) ((-45 . -1277) 72658) ((-886 . -102) T) ((-657 . -292) 72642) ((-712 . -1082) T) ((-1300 . -102) T) ((-1299 . -102) T) ((-489 . -661) 72607) ((-480 . -1122) T) ((-45 . -616) 72532) ((-1180 . -298) 72507) ((-299 . -628) 72479) ((-40 . -652) 72418) ((-1262 . -1073) 72241) ((-870 . -1073) 72225) ((-48 . -374) T) ((-1128 . -625) 72207) ((-1262 . -653) 72036) ((-870 . -653) 72006) ((-644 . -298) 71981) ((-829 . -659) 71891) ((-583 . -1073) 71878) ((-494 . -625) 71571) ((-245 . -423) 71540) ((-1194 . -920) 71447) ((-1187 . -1122) T) ((-972 . -319) 71434) ((-583 . -653) 71421) ((-65 . -1239) T) ((-1155 . -1239) T) ((-1147 . -920) 71405) ((-1135 . -298) 71382) ((-1085 . -526) 71226) ((-684 . -1122) T) ((-635 . -132) T) ((-618 . -1122) T) ((-493 . -319) 71213) ((-558 . -102) T) ((-118 . -132) T) ((-299 . -1071) T) ((-182 . -1122) T) ((-162 . -1122) T) ((-157 . -1122) T) ((-155 . -1122) T) ((-465 . -774) T) ((-31 . -1105) T) ((-983 . -174) 71164) ((-1124 . -231) 71148) ((-992 . -93) T) ((-1102 . -1078) 71058) ((-1076 . -625) 71020) ((-633 . -739) T) ((-633 . -807) 70999) ((-605 . -1122) T) ((-633 . -804) 70978) ((-305 . -296) 70957) ((-304 . -1239) T) ((-1076 . -626) 70918) ((-1046 . -1134) T) ((-323 . -865) NIL) ((-171 . -102) T) ((-284 . -862) T) ((-1102 . -111) 70814) ((-831 . -625) 70796) ((-1046 . -23) T) ((-1025 . -317) T) ((-916 . -102) T) ((-812 . -730) 70780) ((-370 . -1078) 70732) ((-365 . -1134) T) ((-364 . -1078) 70684) ((-426 . -625) 70666) ((-396 . -625) 70648) ((-356 . -1078) 70600) ((-229 . -625) 70532) ((-854 . -102) T) ((-821 . -102) T) ((-108 . -1078) 70482) ((-782 . -102) T) ((-690 . -102) T) ((-115 . -865) T) ((-486 . -464) 70461) ((-430 . -174) T) ((-370 . -111) 70399) ((-364 . -111) 70337) ((-356 . -111) 70275) ((-258 . -272) 70244) ((-258 . -232) 70213) ((-257 . -272) 70182) ((-257 . -232) 70151) ((-365 . -23) T) ((-71 . -1239) T) ((-227 . -38) 70116) ((-108 . -111) 70050) ((-40 . -25) T) ((-40 . -21) T) ((-683 . -733) T) ((-171 . -294) 70028) ((-48 . -1134) T) ((-873 . -1239) T) ((-941 . -25) T) ((-784 . -25) T) ((-1313 . -661) 70002) ((-1172 . -501) 69939) ((-497 . -1122) T) ((-1304 . -659) 69898) ((-1262 . -102) T) ((-1084 . -1174) T) ((-870 . -102) T) ((-245 . -1080) 69876) ((-984 . -805) 69829) ((-984 . -808) 69782) ((-392 . -661) 69766) ((-48 . -23) T) ((-828 . -808) 69745) ((-828 . -805) 69724) ((-560 . -379) T) ((-305 . -616) 69703) ((-489 . -739) T) ((-583 . -102) T) ((-1102 . -628) 69521) ((-255 . -187) T) ((-189 . -187) T) ((-886 . -319) 69478) ((-666 . -296) 69457) ((-112 . -674) T) ((-362 . -1239) T) ((-370 . -628) 69394) ((-364 . -628) 69331) ((-356 . -628) 69268) ((-76 . -1239) T) ((-108 . -628) 69218) ((-112 . -113) T) ((-1084 . -38) 69205) ((-677 . -385) 69184) ((-972 . -38) 69033) ((-744 . -1122) T) ((-493 . -38) 68882) ((-86 . -1239) T) ((-604 . -502) 68863) ((-1253 . -861) NIL) ((-1196 . -1122) T) ((-583 . -294) T) ((-1195 . -1122) T) ((-604 . -625) 68829) ((-1189 . -1122) T) ((-1142 . -865) T) ((-1102 . -1071) T) ((-362 . -1060) 68806) ((-830 . -502) 68790) ((-1026 . -1080) T) ((-45 . -625) 68772) ((-45 . -626) NIL) ((-934 . -1080) T) ((-830 . -625) 68741) ((-1169 . -102) 68691) ((-1102 . -248) 68642) ((-439 . -1080) T) ((-370 . -1071) T) ((-364 . -1071) T) ((-376 . -375) 68619) ((-356 . -1071) T) ((-354 . -234) 68606) ((-258 . -243) 68585) ((-257 . -243) 68564) ((-1102 . -238) 68489) ((-1148 . -1122) T) ((-304 . -918) 68448) ((-108 . -1071) T) ((-707 . -132) T) ((-430 . -526) 68290) ((-370 . -238) 68269) ((-370 . -248) T) ((-44 . -733) T) ((-364 . -238) 68248) ((-364 . -248) T) ((-356 . -238) 68227) ((-356 . -248) T) ((-1188 . -628) 68208) ((-171 . -319) 68173) ((-108 . -248) T) ((-108 . -238) T) ((-1016 . -628) 68154) ((-329 . -805) T) ((-885 . -21) T) ((-885 . -25) T) ((-419 . -317) T) ((-512 . -34) T) ((-110 . -298) 68129) ((-1135 . -1078) 68050) ((-886 . -1174) NIL) ((-340 . -625) 68032) ((-419 . -1044) 68010) ((-1135 . -111) 67926) ((-704 . -1284) T) ((-448 . -1122) T) ((-256 . -1122) T) ((-1313 . -739) T) ((-63 . -625) 67908) ((-886 . -38) 67853) ((-614 . -152) 67837) ((-535 . -1239) T) ((-524 . -625) 67777) ((-1262 . -319) 67764) ((-744 . -730) 67613) ((-543 . -806) T) ((-543 . -807) T) ((-576 . -652) 67595) ((-507 . -652) 67555) ((-516 . -1239) T) ((-651 . -1296) 67539) ((-366 . -464) T) ((-363 . -464) T) ((-355 . -464) T) ((-273 . -464) 67490) ((-537 . -1122) T) ((-532 . -1122) 67440) ((-253 . -464) 67391) ((-1172 . -296) 67370) ((-1200 . -625) 67352) ((-702 . -526) 67285) ((-983 . -300) 67264) ((-562 . -526) 67056) ((-258 . -659) 66904) ((-257 . -659) 66739) ((-1301 . -625) 66708) ((-1301 . -502) 66692) ((-1196 . -730) 66589) ((-1194 . -272) 66573) ((-1194 . -232) 66557) ((-1135 . -628) 66355) ((-171 . -1174) 66334) ((-1195 . -730) 66175) ((-1189 . -730) 65971) ((-986 . -113) T) ((-908 . -102) T) ((-1179 . -687) 65955) ((-1148 . -730) 65852) ((-1046 . -132) T) ((-366 . -414) 65803) ((-363 . -414) 65754) ((-355 . -414) 65705) ((-984 . -379) 65658) ((-812 . -526) 65570) ((-305 . -626) NIL) ((-305 . -625) 65552) ((-930 . -464) T) ((-925 . -296) 65531) ((-828 . -379) 65510) ((-522 . -521) 65489) ((-520 . -521) 65468) ((-887 . -912) 65389) ((-499 . -296) NIL) ((-494 . -298) 65366) ((-430 . -300) T) ((-365 . -132) T) ((-219 . -296) NIL) ((-707 . -505) NIL) ((-99 . -1134) T) ((-40 . -234) 65297) ((-171 . -38) 65125) ((-972 . -920) 65106) ((-1273 . -995) 65068) ((-1169 . -319) 65006) ((-493 . -920) 64983) ((-1252 . -995) 64952) ((-930 . -414) T) ((-1135 . -1071) 64930) ((-1275 . -568) T) ((-1172 . -616) 64909) ((-112 . -862) T) ((-1085 . -501) 64840) ((-592 . -21) T) ((-592 . -25) T) ((-576 . -21) T) ((-576 . -25) T) ((-507 . -25) T) ((-507 . -21) T) ((-1262 . -1174) 64818) ((-1135 . -238) 64770) ((-48 . -132) T) ((-1220 . -102) T) ((-245 . -1122) 64522) ((-886 . -412) 64499) ((-1110 . -102) T) ((-1098 . -102) T) ((-909 . -865) T) ((-620 . -102) T) ((-487 . -102) T) ((-1262 . -38) 64328) ((-870 . -38) 64298) ((-1056 . -1073) 64272) ((-744 . -174) 64183) ((-666 . -625) 64165) ((-658 . -1105) T) ((-1056 . -653) 64149) ((-583 . -38) 64136) ((-992 . -502) 64117) ((-992 . -625) 64083) ((-978 . -102) 64013) ((-879 . -625) 63995) ((-879 . -626) 63917) ((-605 . -526) NIL) ((-863 . -102) T) ((-1318 . -1134) T) ((-1281 . -1080) T) ((-1274 . -1080) T) ((-1273 . -912) 63821) ((-1253 . -1080) T) ((-1252 . -912) 63616) ((-1233 . -148) 63595) ((-332 . -1073) 63577) ((-1233 . -146) 63556) ((-1206 . -102) T) ((-1205 . -102) T) ((-1204 . -102) T) ((-1196 . -174) 63507) ((-332 . -653) 63489) ((-714 . -1239) T) ((-1195 . -174) 63420) ((-1189 . -174) 63351) ((-1173 . -628) 63332) ((-1148 . -174) 63283) ((-608 . -1080) T) ((-607 . -1080) T) ((-1026 . -1122) T) ((-993 . -1122) T) ((-390 . -1073) 63248) ((-135 . -1239) T) ((-117 . -1239) T) ((-934 . -1122) T) ((-886 . -920) NIL) ((-390 . -653) 63213) ((-145 . -865) T) ((-812 . -810) 63197) ((-712 . -25) T) ((-712 . -21) T) ((-118 . -652) 63174) ((-714 . -902) 63156) ((-439 . -1122) T) ((-326 . -1243) 63135) ((-323 . -1243) T) ((-171 . -412) 63119) ((-849 . -1073) 63089) ((-486 . -995) 63051) ((-129 . -102) T) ((-72 . -625) 63033) ((-131 . -102) T) ((-840 . -1073) 63017) ((-108 . -808) T) ((-108 . -805) T) ((-714 . -1060) 62999) ((-326 . -568) 62978) ((-323 . -568) T) ((-849 . -653) 62948) ((-840 . -653) 62918) ((-1318 . -23) T) ((-135 . -1060) 62900) ((-96 . -628) 62881) ((-1015 . -659) 62863) ((-494 . -1078) 62784) ((-45 . -298) 62709) ((-245 . -730) 62651) ((-529 . -102) T) ((-494 . -111) 62567) ((-1114 . -102) 62537) ((-1056 . -102) T) ((-1194 . -659) 62447) ((-1147 . -659) 62357) ((-869 . -659) 62316) ((-657 . -841) 62295) ((-744 . -526) 62238) ((-1076 . -1078) 62222) ((-171 . -920) 62145) ((-1157 . -93) T) ((-1085 . -296) 62120) ((-635 . -21) T) ((-635 . -25) T) ((-536 . -1122) T) ((-683 . -661) 62058) ((-372 . -102) T) ((-332 . -102) T) ((-396 . -1078) 62042) ((-1076 . -111) 62021) ((-829 . -423) 62005) ((-118 . -25) T) ((-89 . -625) 61987) ((-118 . -21) T) ((-620 . -319) 61782) ((-1172 . -626) NIL) ((-487 . -319) 61586) ((-350 . -1239) T) ((-176 . -1239) T) ((-396 . -111) 61565) ((-390 . -102) T) ((-216 . -625) 61547) ((-1172 . -625) 61529) ((-787 . -1239) T) ((-1189 . -526) 61298) ((-1026 . -730) 61248) ((-1148 . -526) 61218) ((-934 . -730) 61170) ((-494 . -628) 60968) ((-362 . -317) T) ((-1211 . -152) 60918) ((-486 . -912) 60799) ((-978 . -319) 60737) ((-849 . -102) T) ((-439 . -730) 60721) ((-227 . -841) T) ((-840 . -102) T) ((-838 . -102) T) ((-1311 . -661) 60695) ((-1273 . -1272) 60674) ((-491 . -152) 60624) ((-1273 . -1267) 60594) ((-1142 . -1243) T) ((-350 . -1060) 60561) ((-1273 . -1270) 60545) ((-1262 . -920) 60452) ((-1252 . -1251) 60431) ((-80 . -625) 60413) ((-925 . -625) 60395) ((-1252 . -1267) 60372) ((-1142 . -568) T) ((-941 . -862) T) ((-784 . -862) T) ((-685 . -862) T) ((-499 . -626) 60302) ((-499 . -625) 60243) ((-390 . -294) T) ((-1252 . -1249) 60227) ((-1275 . -1134) T) ((-219 . -626) 60157) ((-219 . -625) 60098) ((-1085 . -616) 60073) ((-831 . -628) 60057) ((-576 . -234) 60044) ((-528 . -152) 60028) ((-59 . -152) 60012) ((-508 . -152) 59996) ((-507 . -234) 59983) ((-370 . -1308) 59967) ((-364 . -1308) 59951) ((-356 . -1308) 59935) ((-326 . -374) 59914) ((-323 . -374) T) ((-494 . -1071) 59892) ((-707 . -652) 59874) ((-1309 . -661) 59848) ((-129 . -319) NIL) ((-1275 . -23) T) ((-702 . -501) 59832) ((-64 . -625) 59814) ((-1135 . -808) 59793) ((-1135 . -805) 59772) ((-562 . -501) 59709) ((-683 . -34) T) ((-494 . -238) 59661) ((-305 . -298) 59640) ((-829 . -1080) T) ((-44 . -661) 59598) ((-1102 . -379) 59549) ((-744 . -300) 59480) ((-532 . -526) 59413) ((-830 . -1078) 59364) ((-1109 . -146) 59343) ((-561 . -625) 59325) ((-370 . -379) 59304) ((-364 . -379) 59283) ((-356 . -379) 59262) ((-1109 . -148) 59241) ((-988 . -1239) T) ((-886 . -272) 59218) ((-886 . -232) 59195) ((-830 . -111) 59137) ((-795 . -146) 59116) ((-273 . -969) 59083) ((-253 . -969) 59028) ((-795 . -148) 59007) ((-793 . -146) 58986) ((-793 . -148) 58965) ((-153 . -661) 58939) ((-591 . -1122) T) ((-465 . -296) 58902) ((-466 . -148) 58881) ((-466 . -146) 58860) ((-683 . -739) T) ((-836 . -625) 58842) ((-1281 . -1122) T) ((-1274 . -1122) T) ((-1253 . -1122) T) ((-1233 . -1227) 58808) ((-1233 . -1224) 58774) ((-1196 . -300) 58753) ((-1195 . -300) 58704) ((-1189 . -300) 58655) ((-1148 . -300) 58634) ((-1026 . -174) T) ((-350 . -918) 58615) ((-934 . -174) T) ((-707 . -21) T) ((-707 . -25) T) ((-651 . -1073) 58599) ((-651 . -653) 58583) ((-227 . -659) 58533) ((-608 . -1122) T) ((-607 . -1122) T) ((-486 . -1270) 58517) ((-486 . -1267) 58487) ((-430 . -296) 58415) ((-559 . -862) T) ((-326 . -1134) 58264) ((-323 . -1134) T) ((-1233 . -35) 58230) ((-1233 . -95) 58196) ((-84 . -625) 58178) ((-91 . -102) 58128) ((-1318 . -132) T) ((-727 . -1073) 58098) ((-604 . -628) 58079) ((-593 . -146) T) ((-593 . -148) 58061) ((-530 . -148) 58043) ((-530 . -146) T) ((-727 . -653) 58013) ((-326 . -23) 57865) ((-40 . -353) 57839) ((-323 . -23) T) ((-830 . -628) 57753) ((-1180 . -664) 57735) ((-1304 . -1080) T) ((-1180 . -384) 57717) ((-1118 . -102) T) ((-828 . -661) 57550) ((-1112 . -102) T) ((-1095 . -102) T) ((-171 . -272) 57534) ((-171 . -232) 57518) ((-1088 . -102) T) ((-1058 . -102) T) ((-1041 . -102) T) ((-605 . -501) 57500) ((-638 . -102) T) ((-245 . -526) 57433) ((-495 . -102) T) ((-1311 . -739) T) ((-1309 . -739) T) ((-220 . -102) T) ((-1200 . -1078) 57316) ((-1301 . -111) 57281) ((-1301 . -1078) 57251) ((-1084 . -659) 57223) ((-1281 . -730) 57120) ((-972 . -659) 57030) ((-1274 . -730) 56871) ((-1200 . -111) 56740) ((-1056 . -38) 56724) ((-891 . -1105) T) ((-876 . -175) T) ((-493 . -659) 56634) ((-273 . -912) 56540) ((-253 . -912) 56515) ((-830 . -1071) T) ((-694 . -1105) T) ((-689 . -1105) T) ((-635 . -234) 56460) ((-527 . -102) T) ((-522 . -102) T) ((-48 . -652) 56420) ((-520 . -102) T) ((-490 . -1105) T) ((-118 . -234) NIL) ((-3 . -1239) T) ((-139 . -1105) T) ((-138 . -1105) T) ((-134 . -1105) T) ((-846 . -1239) T) ((-830 . -238) T) ((-830 . -248) 56399) ((-1262 . -272) 56383) ((-1262 . -232) 56367) ((-1021 . -865) 56346) ((-1244 . -625) 56328) ((-562 . -296) 56307) ((-1085 . -626) NIL) ((-1085 . -625) 56289) ((-618 . -93) T) ((-684 . -93) T) ((0 . -1239) T) ((-49 . -1239) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1253 . -730) 56085) ((-1025 . -940) T) ((-1200 . -628) 55938) ((-153 . -739) T) ((-1135 . -379) 55917) ((-651 . -102) T) ((-1046 . -25) T) ((-1026 . -526) NIL) ((-258 . -423) 55886) ((-257 . -423) 55855) ((-1046 . -21) T) ((-887 . -1073) 55807) ((-608 . -730) 55780) ((-607 . -730) 55677) ((-812 . -296) 55635) ((-127 . -102) 55585) ((-846 . -1060) 55481) ((-171 . -841) 55460) ((-329 . -661) 55357) ((-828 . -34) T) ((-727 . -102) T) ((-1142 . -1134) T) ((-1048 . -1239) T) ((-887 . -653) 55309) ((-390 . -38) 55274) ((-365 . -25) T) ((-365 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-255 . -102) T) ((-158 . -102) T) ((-366 . -1296) 55258) ((-363 . -1296) 55242) ((-355 . -1296) 55226) ((-171 . -360) 55205) ((-576 . -862) T) ((-1109 . -237) 55156) ((-1142 . -23) T) ((-87 . -625) 55138) ((-795 . -237) T) ((-714 . -317) T) ((-849 . -38) 55108) ((-840 . -38) 55078) ((-1301 . -628) 55020) ((-1275 . -132) T) ((-1172 . -298) 54999) ((-984 . -739) 54898) ((-984 . -806) 54851) ((-984 . -807) 54804) ((-117 . -317) T) ((-91 . -319) 54742) ((-688 . -34) T) ((-562 . -616) 54721) ((-48 . -25) T) ((-48 . -21) T) ((-828 . -807) 54700) ((-828 . -806) 54679) ((-714 . -1044) T) ((-666 . -1078) 54663) ((-886 . -659) 54593) ((-828 . -739) 54571) ((-402 . -1239) T) ((-984 . -485) 54524) ((-494 . -808) 54503) ((-494 . -805) 54482) ((-930 . -1296) 54469) ((-1200 . -1071) T) ((-633 . -1239) T) ((-666 . -111) 54448) ((-1200 . -336) 54425) ((-1225 . -102) 54375) ((-1123 . -625) 54357) ((-714 . -557) T) ((-829 . -1122) T) ((-593 . -237) T) ((-530 . -237) T) ((-1301 . -1071) T) ((-1157 . -502) 54338) ((-1245 . -102) T) ((-425 . -1122) T) ((-1157 . -625) 54304) ((-258 . -1080) 54282) ((-257 . -1080) 54260) ((-851 . -102) T) ((-299 . -661) 54247) ((-605 . -296) 54197) ((-702 . -700) 54155) ((-1314 . -1239) T) ((-1289 . -862) 54134) ((-983 . -625) 54116) ((-887 . -102) T) ((-748 . -625) 54098) ((-728 . -625) 54080) ((-1281 . -174) 54031) ((-1274 . -174) 53962) ((-1253 . -174) 53893) ((-712 . -862) T) ((-1026 . -300) T) ((-465 . -625) 53875) ((-639 . -739) T) ((-60 . -1122) 53853) ((-250 . -152) 53837) ((-1273 . -653) 53678) ((-934 . -300) T) ((-1046 . -1034) T) ((-639 . -485) T) ((-725 . -1243) 53657) ((-707 . -234) NIL) ((-666 . -628) 53575) ((-171 . -659) 53470) ((-1273 . -1073) 53305) ((-608 . -174) 53284) ((-607 . -174) 53235) ((-1252 . -653) 53049) ((-1252 . -1073) 52857) ((-1247 . -1239) T) ((-725 . -568) 52768) ((-419 . -833) 52747) ((-419 . -940) T) ((-329 . -807) T) ((-489 . -1239) T) ((-992 . -628) 52728) ((-329 . -739) T) ((-657 . -1171) 52712) ((-430 . -625) 52694) ((-430 . -626) 52601) ((-110 . -664) 52583) ((-326 . -132) 52454) ((-176 . -317) T) ((-127 . -319) 52392) ((-410 . -1239) T) ((-110 . -384) 52374) ((-323 . -132) T) ((-69 . -407) T) ((-110 . -124) T) ((-532 . -501) 52358) ((-667 . -1134) T) ((-605 . -19) 52340) ((-61 . -453) T) ((-61 . -407) T) ((-837 . -1122) T) ((-605 . -616) 52315) ((-489 . -1060) 52275) ((-666 . -1071) T) ((-667 . -23) T) ((-1304 . -1122) T) ((-31 . -102) T) ((-1262 . -659) 52185) ((-870 . -659) 52144) ((-829 . -730) 51993) ((-1291 . -1239) T) ((-589 . -875) T) ((-583 . -659) 51965) ((-118 . -862) NIL) ((-1194 . -423) 51949) ((-1147 . -423) 51933) ((-869 . -423) 51917) ((-888 . -102) 51868) ((-1273 . -102) T) ((-1253 . -526) 51637) ((-1252 . -102) T) ((-1225 . -319) 51575) ((-1196 . -296) 51540) ((-1195 . -296) 51498) ((-537 . -93) T) ((-1189 . -296) 51326) ((-322 . -625) 51308) ((-1124 . -1122) T) ((-1102 . -661) 51182) ((-724 . -464) T) ((-702 . -625) 51114) ((-299 . -739) T) ((-108 . -929) NIL) ((-702 . -626) 51075) ((-613 . -625) 51057) ((-589 . -625) 51039) ((-562 . -626) NIL) ((-562 . -625) 51021) ((-541 . -625) 51003) ((-523 . -521) 50982) ((-499 . -1078) 50932) ((-486 . -1073) 50767) ((-519 . -521) 50746) ((-486 . -653) 50587) ((-219 . -1078) 50537) ((-370 . -661) 50489) ((-364 . -661) 50441) ((-227 . -861) T) ((-356 . -661) 50393) ((-614 . -102) 50323) ((-499 . -111) 50257) ((-494 . -379) 50236) ((-108 . -661) 50186) ((-365 . -234) 50173) ((-245 . -501) 50157) ((-354 . -148) 50139) ((-354 . -146) T) ((-171 . -381) 50110) ((-963 . -1287) 50094) ((-105 . -1239) T) ((-219 . -111) 50028) ((-887 . -319) 49993) ((-963 . -1122) 49943) ((-812 . -626) 49904) ((-812 . -625) 49886) ((-731 . -102) T) ((-1313 . -1239) T) ((-392 . -1239) T) ((-341 . -1122) T) ((-216 . -628) 49863) ((-1142 . -132) T) ((-1304 . -730) 49833) ((-727 . -38) 49803) ((-326 . -505) 49782) ((-543 . -1239) T) ((-512 . -1239) T) ((-1273 . -294) 49748) ((-1252 . -294) 49714) ((-337 . -152) 49698) ((-451 . -1122) T) ((-1238 . -1239) T) ((-1085 . -298) 49673) ((-1246 . -865) T) ((-48 . -234) 49660) ((-1181 . -34) T) ((-1313 . -1060) 49637) ((-496 . -34) T) ((-480 . -625) 49619) ((-256 . -296) 49593) ((-392 . -1060) 49577) ((-1194 . -1080) T) ((-1147 . -1080) T) ((-869 . -1080) T) ((-1084 . -861) T) ((-499 . -628) 49527) ((-219 . -628) 49477) ((-829 . -174) 49388) ((-532 . -296) 49340) ((-1281 . -300) 49319) ((-1220 . -375) 49293) ((-1110 . -275) 49277) ((-684 . -502) 49258) ((-684 . -625) 49224) ((-618 . -502) 49205) ((-118 . -1014) 49182) ((-618 . -625) 49132) ((-486 . -102) T) ((-182 . -502) 49113) ((-182 . -625) 49079) ((-162 . -502) 49060) ((-162 . -625) 49026) ((-157 . -502) 49007) ((-155 . -502) 48988) ((-157 . -625) 48954) ((-376 . -1122) T) ((-258 . -1122) T) ((-257 . -1122) T) ((-155 . -625) 48920) ((-1274 . -300) 48871) ((-1253 . -300) 48822) ((-887 . -1174) 48800) ((-1196 . -1024) 48766) ((-620 . -375) 48706) ((-1195 . -1024) 48672) ((-620 . -231) 48619) ((-707 . -862) T) ((-605 . -625) 48601) ((-605 . -626) NIL) ((-487 . -231) 48551) ((-499 . -1071) T) ((-1189 . -1024) 48517) ((-88 . -452) T) ((-88 . -407) T) ((-219 . -1071) T) ((-1148 . -1024) 48483) ((-1102 . -739) T) ((-725 . -1134) T) ((-608 . -300) 48462) ((-607 . -300) 48441) ((-499 . -248) T) ((-499 . -238) T) ((-219 . -248) T) ((-219 . -238) T) ((-1187 . -625) 48423) ((-887 . -38) 48375) ((-370 . -739) T) ((-364 . -739) T) ((-356 . -739) T) ((-108 . -807) T) ((-108 . -804) T) ((-725 . -23) T) ((-108 . -739) T) ((-532 . -1277) 48359) ((-1318 . -25) T) ((-486 . -294) 48325) ((-1318 . -21) T) ((-1252 . -319) 48264) ((-1198 . -102) T) ((-40 . -146) 48236) ((-40 . -148) 48208) ((-532 . -616) 48185) ((-1135 . -661) 48018) ((-614 . -319) 47956) ((-45 . -664) 47906) ((-45 . -679) 47856) ((-45 . -384) 47806) ((-1180 . -34) T) ((-886 . -861) NIL) ((-667 . -132) T) ((-497 . -625) 47788) ((-245 . -296) 47765) ((-1104 . -1239) T) ((-188 . -1122) T) ((-1109 . -464) 47716) ((-829 . -526) 47590) ((-795 . -464) 47521) ((-677 . -1073) 47505) ((-660 . -34) T) ((-644 . -34) T) ((-677 . -653) 47489) ((-366 . -1073) 47441) ((-354 . -237) T) ((-363 . -1073) 47393) ((-355 . -1073) 47345) ((-273 . -1073) 47188) ((-253 . -1073) 47031) ((-793 . -464) 46982) ((-366 . -653) 46934) ((-363 . -653) 46886) ((-355 . -653) 46838) ((-273 . -653) 46687) ((-253 . -653) 46536) ((-466 . -464) 46487) ((-972 . -423) 46471) ((-744 . -625) 46453) ((-258 . -730) 46395) ((-257 . -730) 46337) ((-744 . -626) 46198) ((-493 . -423) 46182) ((-350 . -312) T) ((-536 . -93) T) ((-362 . -940) T) ((-1022 . -102) 46132) ((-930 . -1073) 46097) ((-1046 . -862) T) ((-60 . -526) 46030) ((-930 . -653) 45995) ((-1252 . -1174) 45947) ((-1026 . -296) NIL) ((-227 . -1080) T) ((-390 . -841) T) ((-1135 . -34) T) ((-593 . -464) T) ((-530 . -464) T) ((-1256 . -1115) 45931) ((-1256 . -1122) 45909) ((-245 . -616) 45886) ((-1256 . -1117) 45843) ((-1196 . -625) 45825) ((-1195 . -625) 45807) ((-1189 . -625) 45789) ((-1189 . -626) NIL) ((-1148 . -625) 45771) ((-887 . -412) 45755) ((-609 . -102) T) ((-597 . -102) T) ((-548 . -102) T) ((-1273 . -38) 45596) ((-1252 . -38) 45410) ((-130 . -1239) T) ((-52 . -1239) T) ((-885 . -148) T) ((-593 . -414) T) ((-530 . -414) T) ((-1285 . -102) T) ((-1275 . -21) T) ((-1275 . -25) T) ((-1211 . -102) T) ((-1135 . -807) 45389) ((-1135 . -806) 45368) ((-1015 . -1122) T) ((-1049 . -34) T) ((-877 . -1122) T) ((-1135 . -739) 45346) ((-677 . -102) T) ((-658 . -102) T) ((-562 . -298) 45325) ((-488 . -34) T) ((-475 . -34) T) ((-366 . -102) T) ((-363 . -102) T) ((-321 . -1239) T) ((-355 . -102) T) ((-273 . -102) T) ((-253 . -102) T) ((-489 . -317) T) ((-1084 . -1080) T) ((-972 . -1080) T) ((-326 . -652) 45231) ((-323 . -652) 45192) ((-1194 . -1122) T) ((-493 . -1080) T) ((-491 . -102) T) ((-448 . -625) 45174) ((-1147 . -1122) T) ((-256 . -625) 45156) ((-869 . -1122) T) ((-1163 . -102) T) ((-829 . -300) 45087) ((-983 . -1078) 44970) ((-489 . -1044) T) ((-887 . -920) 44893) ((-748 . -1078) 44863) ((-1056 . -659) 44822) ((-1169 . -1143) 44806) ((-465 . -1078) 44776) ((-1124 . -526) 44709) ((-983 . -111) 44578) ((-930 . -102) T) ((-40 . -237) 44515) ((-748 . -111) 44480) ((-537 . -502) 44461) ((-537 . -625) 44427) ((-59 . -102) 44357) ((-532 . -626) 44318) ((-532 . -625) 44230) ((-531 . -102) 44180) ((-528 . -102) 44110) ((-509 . -102) 44060) ((-508 . -102) 43990) ((-465 . -111) 43953) ((-332 . -659) 43935) ((-514 . -865) T) ((-430 . -1078) 43909) ((-1233 . -995) 43871) ((-1021 . -1134) T) ((-390 . -659) 43821) ((-1157 . -628) 43802) ((-963 . -526) 43735) ((-499 . -808) T) ((-486 . -38) 43576) ((-430 . -111) 43543) ((-499 . -805) T) ((-1022 . -319) 43481) ((-219 . -808) T) ((-219 . -805) T) ((-1021 . -23) T) ((-725 . -132) T) ((-1252 . -412) 43451) ((-849 . -659) 43396) ((-840 . -659) 43355) ((-326 . -25) 43207) ((-171 . -423) 43191) ((-326 . -21) 43062) ((-323 . -25) T) ((-323 . -21) T) ((-879 . -379) T) ((-983 . -628) 42915) ((-110 . -34) T) ((-748 . -628) 42871) ((-728 . -628) 42853) ((-494 . -661) 42686) ((-886 . -1080) T) ((-605 . -298) 42661) ((-592 . -148) T) ((-576 . -148) T) ((-507 . -148) T) ((-1194 . -730) 42490) ((-1079 . -102) 42468) ((-1147 . -730) 42317) ((-1142 . -652) 42299) ((-869 . -730) 42269) ((-683 . -1239) T) ((-1 . -102) T) ((-560 . -1239) T) ((-430 . -628) 42177) ((-245 . -625) 41870) ((-1137 . -1122) T) ((-1262 . -423) 41854) ((-1211 . -319) 41658) ((-983 . -1071) T) ((-748 . -1071) T) ((-728 . -1071) T) ((-657 . -1122) 41608) ((-1076 . -661) 41592) ((-870 . -423) 41576) ((-523 . -102) T) ((-519 . -102) T) ((-273 . -319) 41563) ((-253 . -319) 41550) ((-1273 . -920) 41456) ((-983 . -336) 41435) ((-1252 . -920) 41232) ((-396 . -661) 41216) ((-856 . -865) 41195) ((-683 . -1060) 41091) ((-491 . -319) 40895) ((-258 . -526) 40828) ((-257 . -526) 40761) ((-1163 . -319) 40687) ((-419 . -865) 40638) ((-1233 . -912) 40617) ((-832 . -1122) T) ((-812 . -1078) 40601) ((-1281 . -296) 40566) ((-1274 . -296) 40524) ((-1253 . -296) 40352) ((-398 . -1122) T) ((-334 . -1122) T) ((-430 . -1071) T) ((-171 . -1080) T) ((-59 . -319) 40290) ((-812 . -111) 40269) ((-607 . -296) 40234) ((-531 . -319) 40172) ((-528 . -319) 40110) ((-509 . -319) 40048) ((-508 . -319) 39986) ((-430 . -238) 39965) ((-494 . -34) T) ((-227 . -1122) T) ((-1026 . -626) 39895) ((-1026 . -625) 39855) ((-993 . -625) 39815) ((-934 . -625) 39797) ((-712 . -148) T) ((-1311 . -1239) T) ((-1309 . -1239) T) ((-714 . -940) T) ((-714 . -833) T) ((-439 . -625) 39779) ((-1142 . -21) T) ((-1142 . -25) T) ((-683 . -388) 39763) ((-117 . -940) T) ((-887 . -272) 39747) ((-887 . -232) 39731) ((-44 . -1239) T) ((-78 . -1239) T) ((-127 . -126) 39715) ((-1076 . -34) T) ((-1311 . -1060) 39689) ((-1309 . -1060) 39646) ((-1262 . -1080) T) ((-870 . -1080) T) ((-366 . -1174) 39625) ((-363 . -1174) 39604) ((-355 . -1174) 39583) ((-494 . -807) 39562) ((-494 . -806) 39541) ((-229 . -34) T) ((-494 . -739) 39519) ((-812 . -628) 39365) ((-675 . -1073) 39349) ((-60 . -501) 39333) ((-583 . -1080) T) ((-1194 . -174) 39224) ((-675 . -653) 39208) ((-486 . -920) 39114) ((-153 . -1239) T) ((-1147 . -174) 39025) ((-1084 . -1122) T) ((-1109 . -969) 38970) ((-972 . -1122) T) ((-830 . -661) 38921) ((-795 . -969) 38890) ((-726 . -1122) T) ((-793 . -969) 38857) ((-528 . -292) 38841) ((-683 . -918) 38800) ((-493 . -1122) T) ((-466 . -969) 38767) ((-79 . -1239) T) ((-366 . -38) 38732) ((-363 . -38) 38697) ((-355 . -38) 38662) ((-273 . -38) 38511) ((-253 . -38) 38360) ((-930 . -1174) T) ((-536 . -502) 38341) ((-635 . -148) 38320) ((-635 . -146) 38299) ((-536 . -625) 38265) ((-118 . -148) T) ((-118 . -146) NIL) ((-426 . -739) T) ((-812 . -1071) T) ((-576 . -237) T) ((-507 . -237) T) ((-354 . -464) T) ((-1281 . -1024) 38231) ((-1274 . -1024) 38197) ((-1253 . -1024) 38163) ((-930 . -38) 38128) ((-227 . -730) 38093) ((-1021 . -132) T) ((-651 . -659) 38062) ((-329 . -47) 38032) ((-40 . -421) 38004) ((-141 . -625) 37986) ((-984 . -1239) T) ((-828 . -1239) T) ((-176 . -940) T) ((-561 . -379) T) ((-727 . -659) 37931) ((-618 . -628) 37912) ((-354 . -414) T) ((-684 . -628) 37893) ((-323 . -234) NIL) ((-182 . -628) 37874) ((-162 . -628) 37855) ((-157 . -628) 37836) ((-155 . -628) 37817) ((-532 . -298) 37794) ((-1252 . -232) 37764) ((-1252 . -272) 37734) ((-1236 . -1239) 37712) ((-1200 . -661) 37637) ((-891 . -102) T) ((-828 . -1060) 37464) ((-45 . -34) T) ((-694 . -102) T) ((-689 . -102) T) ((-675 . -102) T) ((-667 . -21) T) ((-667 . -25) T) ((-1124 . -501) 37448) ((-688 . -1239) T) ((-490 . -102) T) ((-250 . -102) 37378) ((-558 . -857) T) ((-139 . -102) T) ((-138 . -102) T) ((-134 . -102) T) ((-1109 . -912) 37273) ((-886 . -1122) T) ((-1194 . -526) 37220) ((-1084 . -730) 37207) ((-795 . -912) 37110) ((-744 . -1078) 36953) ((-793 . -912) 36935) ((-972 . -730) 36784) ((-1147 . -526) 36736) ((-1300 . -1122) T) ((-1299 . -1122) T) ((-466 . -912) 36711) ((-493 . -730) 36560) ((-67 . -625) 36542) ((-639 . -1239) T) ((-744 . -111) 36371) ((-963 . -501) 36355) ((-1301 . -661) 36315) ((-1196 . -1078) 36198) ((-830 . -739) T) ((-1195 . -1078) 36033) ((-1189 . -1078) 35823) ((-329 . -1239) T) ((-1148 . -1078) 35706) ((-1025 . -1243) T) ((-1116 . -102) 35684) ((-828 . -388) 35653) ((-591 . -625) 35635) ((-558 . -1122) T) ((-1025 . -568) T) ((-1196 . -111) 35504) ((-1195 . -111) 35325) ((-1189 . -111) 35094) ((-1148 . -111) 34963) ((-1127 . -1125) 34927) ((-390 . -861) T) ((-1281 . -625) 34909) ((-1274 . -625) 34891) ((-887 . -659) 34828) ((-1253 . -625) 34810) ((-1253 . -626) NIL) ((-245 . -298) 34787) ((-40 . -464) T) ((-227 . -174) T) ((-171 . -1122) T) ((-744 . -628) 34572) ((-707 . -148) T) ((-707 . -146) NIL) ((-608 . -625) 34554) ((-607 . -625) 34536) ((-1142 . -234) 34523) ((-916 . -1122) T) ((-854 . -1122) T) ((-821 . -1122) T) ((-273 . -920) 34433) ((-253 . -920) 34410) ((-782 . -1122) T) ((-690 . -1122) T) ((-671 . -867) 34394) ((-635 . -237) 34345) ((-828 . -918) 34277) ((-873 . -865) T) ((-1244 . -379) T) ((-40 . -414) NIL) ((-118 . -237) NIL) ((-1196 . -628) 34159) ((-1142 . -674) T) ((-886 . -730) 34104) ((-258 . -501) 34088) ((-257 . -501) 34072) ((-1195 . -628) 33815) ((-1189 . -628) 33610) ((-725 . -652) 33558) ((-666 . -661) 33532) ((-1148 . -628) 33414) ((-305 . -34) T) ((-1142 . -113) T) ((-744 . -1071) T) ((-593 . -1296) 33401) ((-530 . -1296) 33378) ((-1262 . -1122) T) ((-1194 . -300) 33289) ((-1147 . -300) 33220) ((-1084 . -174) T) ((-299 . -1239) T) ((-870 . -1122) T) ((-972 . -174) 33131) ((-795 . -1265) 33115) ((-657 . -526) 33048) ((-77 . -625) 33030) ((-744 . -336) 32995) ((-1200 . -739) T) ((-583 . -1122) T) ((-493 . -174) 32906) ((-250 . -319) 32844) ((-1164 . -1134) T) ((-70 . -625) 32826) ((-1301 . -739) T) ((-1196 . -1071) T) ((-1195 . -1071) T) ((-1189 . -1071) T) ((-337 . -102) 32756) ((-1164 . -23) T) ((-2 . -1239) T) ((-1148 . -1071) T) ((-91 . -1143) 32740) ((-881 . -1134) T) ((-1196 . -238) 32699) ((-1195 . -248) 32678) ((-1195 . -238) 32630) ((-1189 . -238) 32517) ((-1189 . -248) 32496) ((-329 . -918) 32402) ((-881 . -23) T) ((-171 . -730) 32230) ((-419 . -1243) T) ((-1123 . -379) T) ((-1025 . -374) T) ((-885 . -464) T) ((-1046 . -148) T) ((-963 . -296) 32182) ((-323 . -862) NIL) ((-1273 . -659) 32064) ((-889 . -102) T) ((-1252 . -659) 31919) ((-725 . -25) T) ((-419 . -568) T) ((-725 . -21) T) ((-537 . -628) 31900) ((-365 . -148) 31882) ((-365 . -146) T) ((-1169 . -1122) 31860) ((-465 . -733) T) ((-75 . -625) 31842) ((-115 . -862) T) ((-250 . -292) 31826) ((-245 . -1078) 31747) ((-81 . -625) 31729) ((-748 . -379) 31682) ((-1198 . -841) T) ((-750 . -240) 31666) ((-1181 . -1239) T) ((-142 . -240) 31648) ((-245 . -111) 31564) ((-1262 . -730) 31393) ((-48 . -148) T) ((-886 . -174) T) ((-870 . -730) 31363) ((-496 . -1239) T) ((-972 . -526) 31310) ((-666 . -739) T) ((-583 . -730) 31297) ((-1056 . -1080) T) ((-707 . -237) NIL) ((-493 . -526) 31240) ((-963 . -19) 31224) ((-963 . -616) 31201) ((-1102 . -1239) T) ((-1083 . -1239) T) ((-829 . -626) NIL) ((-829 . -625) 31183) ((-1233 . -653) 31080) ((-1233 . -1073) 30963) ((-1026 . -1078) 30913) ((-425 . -625) 30895) ((-258 . -296) 30872) ((-370 . -1239) T) ((-364 . -1239) T) ((-356 . -1239) T) ((-257 . -296) 30849) ((-499 . -929) NIL) ((-326 . -29) 30819) ((-108 . -1239) T) ((-1025 . -1134) T) ((-219 . -929) NIL) ((-1102 . -1060) 30715) ((-934 . -1078) 30667) ((-1026 . -111) 30601) ((-1025 . -23) T) ((-724 . -1073) 30566) ((-934 . -111) 30504) ((-750 . -708) 30488) ((-724 . -653) 30453) ((-273 . -272) 30437) ((-273 . -232) 30421) ((-439 . -1078) 30405) ((-390 . -1080) T) ((-245 . -628) 30203) ((-707 . -1227) NIL) ((-499 . -661) 30153) ((-486 . -659) 30035) ((-108 . -900) 30017) ((-108 . -902) 29999) ((-707 . -1224) NIL) ((-219 . -661) 29949) ((-370 . -1060) 29933) ((-364 . -1060) 29917) ((-337 . -319) 29855) ((-356 . -1060) 29839) ((-227 . -300) T) ((-439 . -111) 29818) ((-60 . -625) 29750) ((-171 . -174) T) ((-1142 . -862) T) ((-108 . -1060) 29710) ((-908 . -1122) T) ((-849 . -1080) T) ((-840 . -1080) T) ((-707 . -35) NIL) ((-707 . -95) NIL) ((-323 . -1014) 29671) ((-185 . -102) T) ((-1312 . -1134) T) ((-1312 . -23) T) ((-592 . -464) T) ((-576 . -464) T) ((-507 . -464) T) ((-1304 . -625) 29653) ((-1262 . -174) 29544) ((-1233 . -102) T) ((-419 . -374) T) ((-1220 . -1122) T) ((-1211 . -231) 29494) ((-1205 . -857) T) ((-1204 . -857) T) ((-1188 . -1239) T) ((-245 . -1071) 29472) ((-1016 . -1239) T) ((-1172 . -34) T) ((-1189 . -805) NIL) ((-1189 . -808) NIL) ((-1180 . -1239) T) ((-489 . -940) T) ((-1021 . -652) 29420) ((-258 . -616) 29397) ((-257 . -616) 29374) ((-1164 . -132) T) ((-1124 . -626) 29335) ((-1102 . -388) 29319) ((-886 . -526) 29227) ((-245 . -238) 29179) ((-1124 . -625) 29161) ((-1110 . -1122) T) ((-1026 . -628) 29111) ((-1102 . -918) 29044) ((-934 . -628) 28981) ((-837 . -625) 28963) ((-1098 . -1122) T) ((-1084 . -300) T) ((-1026 . -248) T) ((-1026 . -238) T) ((-1026 . -1071) T) ((-978 . -1122) 28913) ((-972 . -300) 28844) ((-439 . -628) 28813) ((-108 . -388) 28795) ((-108 . -349) 28777) ((-934 . -1071) T) ((-934 . -248) T) ((-812 . -379) 28756) ((-724 . -102) T) ((-714 . -865) T) ((-660 . -1239) T) ((-644 . -1239) T) ((-620 . -1122) T) ((-620 . -622) 28732) ((-598 . -1073) 28707) ((-493 . -300) 28638) ((-583 . -174) T) ((-337 . -292) 28622) ((-365 . -237) T) ((-598 . -653) 28597) ((-366 . -360) 28576) ((-363 . -360) 28555) ((-355 . -360) 28534) ((-214 . -1239) T) ((-83 . -625) 28516) ((-213 . -1239) T) ((-211 . -1239) T) ((-210 . -1239) T) ((-209 . -1239) T) ((-208 . -1239) T) ((-205 . -1239) T) ((-204 . -1239) T) ((-203 . -1239) T) ((-202 . -1239) T) ((-487 . -1122) T) ((-201 . -1239) T) ((-273 . -260) 28478) ((-200 . -1239) T) ((-199 . -1239) T) ((-198 . -1239) T) ((-197 . -1239) T) ((-196 . -1239) T) ((-487 . -622) 28457) ((-195 . -1239) T) ((-283 . -1239) T) ((-282 . -1239) T) ((-281 . -1239) T) ((-280 . -1239) T) ((-491 . -231) 28407) ((-279 . -1239) T) ((-278 . -1239) T) ((-277 . -1239) T) ((-439 . -1071) T) ((-881 . -132) T) ((-856 . -1134) 28386) ((-48 . -237) T) ((-712 . -464) T) ((-108 . -918) NIL) ((-135 . -865) T) ((-1233 . -294) 28352) ((-1135 . -1239) T) ((-887 . -861) 28331) ((-1021 . -25) T) ((-925 . -739) T) ((-171 . -526) 28243) ((-1021 . -21) T) ((-925 . -485) T) ((-419 . -1134) T) ((-499 . -807) T) ((-499 . -804) T) ((-930 . -360) T) ((-499 . -739) T) ((-219 . -807) T) ((-219 . -804) T) ((-725 . -234) 28230) ((-219 . -739) T) ((-856 . -23) 28182) ((-1206 . -1122) T) ((-671 . -1073) 28166) ((-1205 . -1122) T) ((-536 . -628) 28147) ((-1204 . -1122) T) ((-329 . -317) 28126) ((-1057 . -240) 28072) ((-671 . -653) 28042) ((-419 . -23) T) ((-963 . -626) 28003) ((-963 . -625) 27915) ((-657 . -501) 27899) ((-45 . -1032) 27849) ((-1135 . -1060) 27676) ((-629 . -989) T) ((-503 . -102) T) ((-341 . -625) 27658) ((-1015 . -296) 27625) ((-605 . -664) 27607) ((-129 . -1122) T) ((-131 . -1122) T) ((-605 . -384) 27589) ((-354 . -1296) 27566) ((-451 . -625) 27548) ((-1262 . -526) 27495) ((-1109 . -1073) 27338) ((-1049 . -1239) T) ((-886 . -300) T) ((-1194 . -296) 27265) ((-1109 . -653) 27114) ((-1022 . -1017) 27098) ((-795 . -1073) 26921) ((-793 . -1073) 26764) ((-795 . -653) 26593) ((-793 . -653) 26442) ((-488 . -1239) T) ((-475 . -1239) T) ((-598 . -102) T) ((-473 . -1073) 26413) ((-466 . -1073) 26256) ((-677 . -659) 26225) ((-635 . -464) 26204) ((-473 . -653) 26175) ((-466 . -653) 26024) ((-366 . -659) 25961) ((-363 . -659) 25898) ((-355 . -659) 25835) ((-273 . -659) 25745) ((-253 . -659) 25655) ((-1304 . -393) 25627) ((-529 . -1122) T) ((-118 . -464) T) ((-1219 . -102) T) ((-1114 . -1122) 25597) ((-1056 . -1122) T) ((-1137 . -93) T) ((-909 . -862) T) ((-1281 . -111) 25466) ((-362 . -1243) T) ((-1281 . -1078) 25349) ((-1135 . -388) 25318) ((-1274 . -1078) 25153) ((-1253 . -1078) 24943) ((-1274 . -111) 24764) ((-1253 . -111) 24533) ((-1233 . -319) 24520) ((-1025 . -132) T) ((-930 . -659) 24470) ((-376 . -625) 24452) ((-362 . -568) T) ((-299 . -317) T) ((-608 . -1078) 24412) ((-607 . -1078) 24295) ((-593 . -1073) 24260) ((-530 . -1073) 24205) ((-372 . -1122) T) ((-332 . -1122) T) ((-258 . -625) 24166) ((-257 . -625) 24127) ((-593 . -653) 24092) ((-530 . -653) 24037) ((-707 . -421) 24004) ((-647 . -23) T) ((-619 . -23) T) ((-40 . -912) 23911) ((-671 . -102) T) ((-608 . -111) 23864) ((-607 . -111) 23733) ((-390 . -1122) T) ((-347 . -102) T) ((-171 . -300) 23644) ((-1252 . -861) 23597) ((-727 . -1080) T) ((-624 . -1239) T) ((-1169 . -526) 23530) ((-1212 . -848) 23514) ((-1135 . -918) 23446) ((-849 . -1122) T) ((-840 . -1122) T) ((-838 . -1122) T) ((-97 . -102) T) ((-145 . -862) T) ((-624 . -900) 23430) ((-1173 . -1239) T) ((-110 . -1239) T) ((-1109 . -102) T) ((-1085 . -34) T) ((-795 . -102) T) ((-793 . -102) T) ((-1281 . -628) 23312) ((-1274 . -628) 23055) ((-473 . -102) T) ((-466 . -102) T) ((-1253 . -628) 22850) ((-96 . -1239) T) ((-245 . -808) 22829) ((-245 . -805) 22808) ((-662 . -102) T) ((-608 . -628) 22766) ((-607 . -628) 22648) ((-1262 . -300) 22559) ((-677 . -646) 22543) ((-188 . -625) 22525) ((-657 . -296) 22477) ((-1056 . -730) 22461) ((-583 . -300) T) ((-983 . -661) 22386) ((-1312 . -132) T) ((-748 . -661) 22346) ((-728 . -661) 22333) ((-284 . -102) T) ((-465 . -661) 22263) ((-50 . -102) T) ((-593 . -102) T) ((-530 . -102) T) ((-1281 . -1071) T) ((-1274 . -1071) T) ((-1253 . -1071) T) ((-1162 . -1239) T) ((-519 . -659) 22245) ((-332 . -730) 22227) ((-1281 . -238) 22186) ((-1274 . -248) 22165) ((-1274 . -238) 22117) ((-1253 . -238) 22004) ((-1253 . -248) 21983) ((-1233 . -38) 21880) ((-608 . -1071) T) ((-607 . -1071) T) ((-1026 . -808) T) ((-1026 . -805) T) ((-993 . -808) T) ((-993 . -805) T) ((-887 . -1080) T) ((-109 . -625) 21862) ((-707 . -464) T) ((-390 . -730) 21827) ((-430 . -661) 21801) ((-885 . -884) 21785) ((-724 . -38) 21750) ((-607 . -238) 21709) ((-40 . -737) 21681) ((-362 . -339) 21658) ((-362 . -374) T) ((-1102 . -317) 21609) ((-304 . -1134) 21490) ((-1128 . -1239) T) ((-1021 . -234) 21435) ((-173 . -102) T) ((-1256 . -625) 21402) ((-856 . -132) 21354) ((-849 . -730) 21324) ((-657 . -1277) 21308) ((-840 . -730) 21278) ((-657 . -616) 21255) ((-494 . -1239) T) ((-370 . -317) T) ((-364 . -317) T) ((-356 . -317) T) ((-411 . -234) 21242) ((-419 . -132) T) ((-532 . -679) 21226) ((-108 . -317) T) ((-304 . -23) 21109) ((-532 . -664) 21093) ((-707 . -414) NIL) ((-532 . -384) 21077) ((-301 . -625) 21059) ((-91 . -1122) 21037) ((-108 . -1044) T) ((-576 . -144) T) ((-1289 . -152) 21021) ((-494 . -1060) 20848) ((-1275 . -146) 20809) ((-1275 . -148) 20770) ((-1076 . -1239) T) ((-1300 . -93) T) ((-1015 . -625) 20752) ((-831 . -1239) T) ((-877 . -625) 20734) ((-829 . -1078) 20577) ((-1299 . -93) T) ((-1194 . -626) NIL) ((-1118 . -1122) T) ((-1112 . -1122) T) ((-1109 . -319) 20564) ((-426 . -1239) T) ((-396 . -1239) T) ((-1095 . -1122) T) ((-229 . -1239) T) ((-1088 . -1122) T) ((-1058 . -1122) T) ((-1041 . -1122) T) ((-795 . -319) 20551) ((-793 . -319) 20538) ((-1194 . -625) 20520) ((-829 . -111) 20349) ((-1147 . -625) 20331) ((-638 . -1122) T) ((-589 . -175) T) ((-541 . -175) T) ((-466 . -319) 20318) ((-495 . -1122) T) ((-1147 . -626) 20066) ((-1056 . -174) T) ((-963 . -298) 20043) ((-220 . -1122) T) ((-869 . -625) 20025) ((-620 . -526) 19808) ((-81 . -628) 19749) ((-831 . -1060) 19733) ((-487 . -526) 19525) ((-846 . -865) 19504) ((-983 . -739) T) ((-748 . -739) T) ((-728 . -739) T) ((-362 . -1134) T) ((-1201 . -625) 19486) ((-225 . -102) T) ((-494 . -388) 19455) ((-527 . -1122) T) ((-522 . -1122) T) ((-520 . -1122) T) ((-812 . -661) 19429) ((-1046 . -464) T) ((-978 . -526) 19362) ((-362 . -23) T) ((-647 . -132) T) ((-619 . -132) T) ((-365 . -464) T) ((-245 . -379) 19341) ((-390 . -174) T) ((-1273 . -1080) T) ((-1252 . -1080) T) ((-227 . -1024) T) ((-829 . -628) 19078) ((-712 . -399) T) ((-430 . -739) T) ((-714 . -1243) T) ((-1164 . -652) 19026) ((-651 . -1122) T) ((-592 . -884) 19010) ((-1304 . -1078) 18994) ((-1181 . -1215) 18970) ((-714 . -568) T) ((-127 . -1122) 18948) ((-727 . -1122) T) ((-671 . -38) 18918) ((-494 . -918) 18850) ((-255 . -1122) T) ((-189 . -1122) T) ((-365 . -414) T) ((-326 . -148) 18829) ((-326 . -146) 18808) ((-117 . -568) T) ((-129 . -526) NIL) ((-323 . -148) 18764) ((-323 . -146) 18720) ((-48 . -464) T) ((-163 . -1122) T) ((-158 . -1122) T) ((-1181 . -107) 18667) ((-795 . -1174) 18645) ((-1304 . -111) 18624) ((-702 . -34) T) ((-604 . -1239) T) ((-562 . -34) T) ((-496 . -107) 18608) ((-258 . -298) 18585) ((-257 . -298) 18562) ((-1245 . -857) T) ((-886 . -296) 18513) ((-45 . -1239) T) ((-1233 . -920) 18494) ((-830 . -1239) T) ((-829 . -1071) T) ((-633 . -865) 18473) ((-675 . -659) 18442) ((-1200 . -47) 18419) ((-829 . -336) 18381) ((-1109 . -38) 18230) ((-829 . -238) 18209) ((-795 . -38) 18038) ((-793 . -38) 17887) ((-1137 . -502) 17868) ((-466 . -38) 17717) ((-1137 . -625) 17683) ((-1140 . -102) T) ((-657 . -626) 17644) ((-657 . -625) 17556) ((-593 . -1174) T) ((-530 . -1174) T) ((-1169 . -501) 17540) ((-354 . -1073) 17485) ((-1225 . -1122) 17463) ((-1164 . -25) T) ((-1164 . -21) T) ((-354 . -653) 17408) ((-1304 . -628) 17357) ((-340 . -1239) T) ((-486 . -1080) T) ((-1245 . -1122) T) ((-1253 . -805) NIL) ((-1253 . -808) NIL) ((-1021 . -862) 17336) ((-881 . -21) T) ((-851 . -1122) T) ((-832 . -625) 17318) ((-881 . -25) T) ((-812 . -739) T) ((-651 . -730) 17302) ((-176 . -1243) T) ((-593 . -38) 17267) ((-530 . -38) 17232) ((-398 . -625) 17214) ((-343 . -102) T) ((-334 . -625) 17196) ((-171 . -296) 17154) ((-1247 . -865) T) ((-63 . -1239) T) ((-112 . -102) T) ((-887 . -1122) T) ((-524 . -1239) T) ((-176 . -568) T) ((-727 . -730) 17124) ((-304 . -132) 17007) ((-227 . -625) 16989) ((-227 . -626) 16919) ((-1025 . -652) 16858) ((-1304 . -1071) T) ((-1200 . -1239) T) ((-1142 . -148) T) ((-644 . -1215) 16833) ((-744 . -929) 16812) ((-605 . -34) T) ((-660 . -107) 16796) ((-644 . -107) 16742) ((-1301 . -1239) T) ((-635 . -912) 16663) ((-1262 . -296) 16590) ((-744 . -661) 16479) ((-305 . -1239) T) ((-1200 . -1060) 16375) ((-963 . -630) 16352) ((-589 . -588) T) ((-589 . -539) T) ((-541 . -539) T) ((-118 . -912) NIL) ((-1189 . -929) NIL) ((-1084 . -626) 16267) ((-1084 . -625) 16249) ((-972 . -625) 16231) ((-726 . -502) 16181) ((-354 . -102) T) ((-258 . -1078) 16102) ((-257 . -1078) 16023) ((-406 . -102) T) ((-31 . -1122) T) ((-972 . -626) 15884) ((-726 . -625) 15819) ((-1302 . -1232) 15788) ((-493 . -625) 15770) ((-493 . -626) 15631) ((-273 . -423) 15615) ((-253 . -423) 15599) ((-323 . -237) NIL) ((-258 . -111) 15515) ((-257 . -111) 15431) ((-1196 . -661) 15356) ((-1195 . -661) 15253) ((-1189 . -661) 15105) ((-1148 . -661) 15030) ((-362 . -132) T) ((-82 . -453) T) ((-82 . -407) T) ((-1025 . -25) T) ((-1025 . -21) T) ((-888 . -1122) 14981) ((-40 . -1073) 14926) ((-887 . -730) 14878) ((-40 . -653) 14823) ((-390 . -300) T) ((-171 . -1024) 14774) ((-1109 . -920) 14673) ((-707 . -399) T) ((-1021 . -1019) 14657) ((-714 . -1134) T) ((-707 . -167) 14639) ((-795 . -920) 14546) ((-793 . -920) 14530) ((-1273 . -1122) T) ((-1252 . -1122) T) ((-1186 . -102) T) ((-326 . -1224) 14509) ((-326 . -1227) 14488) ((-466 . -920) 14465) ((-326 . -979) 14444) ((-135 . -1134) T) ((-117 . -1134) T) ((-992 . -1239) T) ((-879 . -1239) T) ((-714 . -23) T) ((-666 . -1239) T) ((-614 . -1287) 14428) ((-614 . -1122) 14378) ((-543 . -865) T) ((-512 . -865) T) ((-326 . -95) 14357) ((-91 . -526) 14290) ((-176 . -374) T) ((-258 . -628) 14088) ((-257 . -628) 13886) ((-326 . -35) 13865) ((-620 . -501) 13799) ((-135 . -23) T) ((-117 . -23) T) ((-986 . -102) T) ((-731 . -1122) T) ((-487 . -501) 13736) ((-419 . -652) 13684) ((-666 . -1060) 13580) ((-978 . -501) 13564) ((-366 . -1080) T) ((-363 . -1080) T) ((-355 . -1080) T) ((-273 . -1080) T) ((-253 . -1080) T) ((-886 . -626) NIL) ((-886 . -625) 13546) ((-1300 . -502) 13527) ((-1299 . -502) 13508) ((-1312 . -21) T) ((-1300 . -625) 13474) ((-1299 . -625) 13440) ((-583 . -1024) T) ((-744 . -739) T) ((-1312 . -25) T) ((-258 . -1071) 13418) ((-257 . -1071) 13396) ((-72 . -1239) T) ((-1164 . -234) 13341) ((-258 . -238) 13293) ((-257 . -238) 13245) ((-1142 . -237) T) ((-40 . -102) T) ((-930 . -1080) T) ((-707 . -912) NIL) ((-1203 . -102) T) ((-129 . -501) 13227) ((-1196 . -739) T) ((-1195 . -739) T) ((-1189 . -739) T) ((-1189 . -804) NIL) ((-1189 . -807) NIL) ((-974 . -102) T) ((-941 . -102) T) ((-885 . -1073) 13214) ((-1148 . -739) T) ((-784 . -102) T) ((-685 . -102) T) ((-885 . -653) 13201) ((-558 . -625) 13183) ((-486 . -1122) T) ((-350 . -1134) T) ((-176 . -1134) T) ((-329 . -940) 13162) ((-1273 . -730) 13003) ((-887 . -174) T) ((-1252 . -730) 12817) ((-856 . -21) 12769) ((-856 . -25) 12721) ((-250 . -1171) 12705) ((-127 . -526) 12638) ((-419 . -25) T) ((-419 . -21) T) ((-350 . -23) T) ((-171 . -626) 12404) ((-171 . -625) 12386) ((-176 . -23) T) ((-657 . -298) 12363) ((-532 . -34) T) ((-916 . -625) 12345) ((-89 . -1239) T) ((-854 . -625) 12327) ((-821 . -625) 12309) ((-782 . -625) 12291) ((-690 . -625) 12273) ((-245 . -661) 12106) ((-629 . -113) T) ((-1198 . -1122) T) ((-1194 . -1078) 11929) ((-216 . -1239) T) ((-1172 . -1239) T) ((-1147 . -1078) 11772) ((-869 . -1078) 11756) ((-1104 . -865) T) ((-1256 . -630) 11740) ((-1194 . -111) 11549) ((-1147 . -111) 11378) ((-869 . -111) 11357) ((-1246 . -862) T) ((-1262 . -626) NIL) ((-1262 . -625) 11339) ((-354 . -1174) T) ((-870 . -625) 11321) ((-1098 . -296) 11300) ((-1233 . -659) 11210) ((-80 . -1239) T) ((-925 . -1239) T) ((-1225 . -526) 11143) ((-1026 . -929) NIL) ((-1109 . -272) 11127) ((-620 . -296) 11103) ((-1109 . -232) 11087) ((-499 . -1239) T) ((-583 . -625) 11069) ((-487 . -296) 11048) ((-1026 . -661) 10998) ((-529 . -93) T) ((-1025 . -234) 10929) ((-219 . -1239) T) ((-978 . -296) 10881) ((-885 . -102) T) ((-299 . -940) T) ((-830 . -317) 10860) ((-795 . -272) 10844) ((-795 . -232) 10828) ((-934 . -661) 10780) ((-724 . -659) 10730) ((-707 . -737) 10697) ((-647 . -21) T) ((-647 . -25) T) ((-619 . -21) T) ((-559 . -102) T) ((-354 . -38) 10662) ((-499 . -900) 10644) ((-499 . -902) 10626) ((-486 . -730) 10467) ((-64 . -1239) T) ((-219 . -900) 10449) ((-219 . -902) 10431) ((-619 . -25) T) ((-439 . -661) 10405) ((-1194 . -628) 10174) ((-499 . -1060) 10134) ((-887 . -526) 10046) ((-1147 . -628) 9838) ((-869 . -628) 9756) ((-219 . -1060) 9716) ((-245 . -34) T) ((-1022 . -1122) 9694) ((-592 . -1073) 9681) ((-576 . -1073) 9668) ((-507 . -1073) 9633) ((-1273 . -174) 9564) ((-1252 . -174) 9495) ((-592 . -653) 9482) ((-576 . -653) 9469) ((-507 . -653) 9434) ((-725 . -146) 9413) ((-725 . -148) 9392) ((-130 . -865) T) ((-714 . -132) T) ((-561 . -1239) T) ((-137 . -477) 9369) ((-1169 . -625) 9301) ((-671 . -669) 9285) ((-129 . -296) 9235) ((-117 . -132) T) ((-489 . -1243) T) ((-620 . -616) 9211) ((-487 . -616) 9190) ((-609 . -1122) T) ((-347 . -346) 9159) ((-597 . -1122) T) ((-548 . -1122) T) ((-489 . -568) T) ((-1194 . -1071) T) ((-1147 . -1071) T) ((-869 . -1071) T) ((-836 . -1239) T) ((-245 . -807) 9138) ((-245 . -806) 9117) ((-1194 . -336) 9094) ((-245 . -739) 9072) ((-978 . -19) 9056) ((-499 . -388) 9038) ((-499 . -349) 9020) ((-1147 . -336) 8992) ((-365 . -1296) 8969) ((-219 . -388) 8951) ((-219 . -349) 8933) ((-978 . -616) 8910) ((-1194 . -238) T) ((-1285 . -1122) T) ((-677 . -1122) T) ((-658 . -1122) T) ((-1211 . -1122) T) ((-1109 . -260) 8847) ((-598 . -659) 8807) ((-366 . -1122) T) ((-363 . -1122) T) ((-355 . -1122) T) ((-273 . -1122) T) ((-253 . -1122) T) ((-84 . -1239) T) ((-128 . -102) 8757) ((-122 . -102) 8707) ((-1252 . -526) 8567) ((-1211 . -622) 8546) ((-1163 . -1122) T) ((-1137 . -628) 8527) ((-1102 . -940) 8478) ((-491 . -1122) T) ((-1026 . -807) T) ((-1026 . -804) T) ((-491 . -622) 8457) ((-258 . -808) 8436) ((-258 . -805) 8415) ((-257 . -808) 8394) ((-40 . -1174) NIL) ((-257 . -805) 8373) ((-1026 . -739) T) ((-129 . -19) 8355) ((-993 . -807) T) ((-712 . -1073) 8320) ((-934 . -739) T) ((-930 . -1122) T) ((-908 . -625) 8302) ((-129 . -616) 8277) ((-712 . -653) 8242) ((-91 . -501) 8226) ((-499 . -918) NIL) ((-887 . -300) T) ((-227 . -1078) 8191) ((-849 . -296) 8170) ((-219 . -918) NIL) ((-846 . -1134) 8149) ((-59 . -1122) 8099) ((-531 . -1122) 8077) ((-528 . -1122) 8027) ((-509 . -1122) 8005) ((-508 . -1122) 7955) ((-592 . -102) T) ((-576 . -102) T) ((-507 . -102) T) ((-486 . -174) 7886) ((-370 . -940) T) ((-364 . -940) T) ((-356 . -940) T) ((-227 . -111) 7842) ((-846 . -23) 7794) ((-439 . -739) T) ((-108 . -940) T) ((-40 . -38) 7739) ((-108 . -833) T) ((-593 . -360) T) ((-530 . -360) T) ((-671 . -659) 7698) ((-326 . -464) 7677) ((-323 . -464) T) ((-614 . -526) 7610) ((-419 . -234) 7555) ((-350 . -132) T) ((-176 . -132) T) ((-304 . -25) 7419) ((-304 . -21) 7302) ((-45 . -1215) 7281) ((-66 . -625) 7263) ((-55 . -102) T) ((-347 . -659) 7245) ((-1290 . -102) T) ((-1289 . -102) 7175) ((-1281 . -661) 7100) ((-1274 . -661) 6997) ((-45 . -107) 6947) ((-832 . -628) 6931) ((-1253 . -661) 6783) ((-1253 . -929) NIL) ((-1244 . -1239) T) ((-1220 . -625) 6765) ((-1212 . -102) T) ((-1124 . -437) 6749) ((-1124 . -379) 6728) ((-398 . -628) 6712) ((-334 . -628) 6696) ((-1118 . -93) T) ((-1109 . -659) 6606) ((-1085 . -1239) T) ((-1084 . -1078) 6593) ((-1084 . -111) 6578) ((-972 . -111) 6407) ((-972 . -1078) 6250) ((-795 . -659) 6160) ((-793 . -659) 6070) ((-677 . -730) 6054) ((-635 . -1073) 6041) ((-635 . -653) 6028) ((-560 . -865) T) ((-493 . -1078) 5871) ((-489 . -374) T) ((-473 . -659) 5827) ((-466 . -659) 5737) ((-227 . -628) 5687) ((-366 . -730) 5639) ((-363 . -730) 5591) ((-118 . -1073) 5536) ((-355 . -730) 5488) ((-273 . -730) 5337) ((-253 . -730) 5186) ((-1112 . -93) T) ((-1095 . -93) T) ((-118 . -653) 5131) ((-1088 . -93) T) ((-963 . -664) 5115) ((-1079 . -1122) 5093) ((-493 . -111) 4922) ((-1058 . -93) T) ((-1041 . -93) T) ((-963 . -384) 4906) ((-254 . -102) T) ((-983 . -47) 4885) ((-74 . -625) 4867) ((-725 . -237) T) ((-723 . -102) T) ((-712 . -102) T) ((-1 . -1122) T) ((-633 . -1134) T) ((-1110 . -625) 4849) ((-638 . -93) T) ((-1098 . -625) 4831) ((-930 . -730) 4796) ((-127 . -501) 4780) ((-495 . -93) T) ((-633 . -23) T) ((-402 . -23) T) ((-87 . -1239) T) ((-220 . -93) T) ((-620 . -625) 4762) ((-620 . -626) NIL) ((-487 . -626) NIL) ((-487 . -625) 4744) ((-362 . -25) T) ((-362 . -21) T) ((-50 . -659) 4703) ((-523 . -1122) T) ((-519 . -1122) T) ((-122 . -319) 4641) ((-128 . -319) 4579) ((-608 . -661) 4553) ((-607 . -661) 4478) ((-593 . -659) 4428) ((-227 . -1071) T) ((-530 . -659) 4358) ((-1084 . -628) 4330) ((-390 . -1024) T) ((-227 . -248) T) ((-227 . -238) T) ((-863 . -502) 4314) ((-1084 . -630) 4295) ((-978 . -626) 4256) ((-978 . -625) 4168) ((-972 . -628) 3957) ((-863 . -625) 3905) ((-885 . -38) 3892) ((-726 . -628) 3842) ((-1273 . -300) 3793) ((-1252 . -300) 3744) ((-493 . -628) 3529) ((-1142 . -464) T) ((-514 . -862) T) ((-326 . -1161) 3508) ((-1123 . -1239) T) ((-1021 . -148) 3487) ((-1021 . -146) 3466) ((-507 . -319) 3453) ((-1206 . -625) 3435) ((-305 . -1215) 3414) ((-1205 . -625) 3396) ((-1157 . -1239) T) ((-1204 . -625) 3378) ((-886 . -1078) 3323) ((-489 . -1134) T) ((-140 . -848) 3305) ((-115 . -848) 3286) ((-1225 . -501) 3270) ((-1084 . -1071) T) ((-635 . -102) T) ((-983 . -1239) T) ((-972 . -1071) T) ((-258 . -379) 3249) ((-257 . -379) 3228) ((-886 . -111) 3157) ((-305 . -107) 3107) ((-131 . -625) 3089) ((-129 . -626) NIL) ((-129 . -625) 3033) ((-118 . -102) T) ((-748 . -1239) T) ((-728 . -1239) T) ((-489 . -23) T) ((-465 . -1239) T) ((-493 . -1071) T) ((-1084 . -238) T) ((-972 . -336) 3002) ((-40 . -920) 2911) ((-493 . -336) 2868) ((-366 . -174) T) ((-363 . -174) T) ((-355 . -174) T) ((-273 . -174) 2779) ((-253 . -174) 2690) ((-983 . -1060) 2586) ((-529 . -502) 2567) ((-748 . -1060) 2538) ((-529 . -625) 2504) ((-430 . -1239) T) ((-1127 . -102) T) ((-1114 . -625) 2463) ((-1056 . -625) 2445) ((-707 . -1073) 2395) ((-1302 . -152) 2379) ((-1300 . -628) 2360) ((-1299 . -628) 2341) ((-1294 . -625) 2323) ((-1281 . -739) T) ((-707 . -653) 2273) ((-1274 . -739) T) ((-1253 . -804) NIL) ((-1253 . -807) NIL) ((-171 . -1078) 2183) ((-930 . -174) T) ((-886 . -628) 2113) ((-1253 . -739) T) ((-1025 . -353) 2087) ((-225 . -659) 2039) ((-1022 . -526) 1972) ((-856 . -862) 1951) ((-576 . -1174) T) ((-486 . -300) 1902) ((-608 . -739) T) ((-372 . -625) 1884) ((-332 . -625) 1866) ((-430 . -1060) 1762) ((-607 . -739) T) ((-419 . -862) 1713) ((-171 . -111) 1609) ((-846 . -132) 1561) ((-1289 . -319) 1499) ((-750 . -152) 1483) ((-984 . -865) 1382) ((-828 . -865) 1333) ((-499 . -317) T) ((-390 . -625) 1300) ((-532 . -1032) 1284) ((-390 . -626) 1198) ((-219 . -317) T) ((-142 . -152) 1180) ((-727 . -296) 1159) ((-499 . -1044) T) ((-592 . -38) 1146) ((-576 . -38) 1133) ((-507 . -38) 1098) ((-219 . -1044) T) ((-886 . -1071) T) ((-849 . -625) 1080) ((-840 . -625) 1062) ((-838 . -625) 1044) ((-829 . -929) 1023) ((-1313 . -1134) T) ((-322 . -1239) T) ((-1262 . -1078) 846) ((-870 . -1078) 830) ((-886 . -248) T) ((-886 . -238) NIL) ((-702 . -1239) T) ((-1313 . -23) T) ((-829 . -661) 719) ((-562 . -1239) T) ((-430 . -349) 703) ((-583 . -1078) 690) ((-1262 . -111) 499) ((-714 . -652) 481) ((-870 . -111) 460) ((-392 . -23) T) ((-171 . -628) 238) ((-1211 . -526) 30) ((-891 . -1122) T) ((-694 . -1122) T) ((-689 . -1122) T) ((-675 . -1122) T))
\ No newline at end of file +(-2839 (|has| |#1| (-865)) (|has| |#1| (-1125))) +((($ $) . T) ((#0=(-882 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-239)) ((|#2| |#1|) |has| |#1| (-239)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(((-491 . -1125) T) ((-274 . -527) 205401) ((-254 . -527) 205344) ((-251 . -1125) 205294) ((-584 . -111) 205279) ((-544 . -23) T) ((-139 . -1125) T) ((-138 . -1125) T) ((-118 . -320) 205236) ((-134 . -1125) T) ((-1024 . -238) 205187) ((-815 . -1242) T) ((-492 . -527) 204979) ((-693 . -629) 204963) ((-710 . -102) T) ((-1166 . -527) 204882) ((-412 . -238) T) ((-403 . -132) T) ((-1305 . -1001) 204851) ((-1049 . -1076) 204788) ((-330 . -868) T) ((-31 . -93) T) ((-615 . -502) 204772) ((-1049 . -656) 204709) ((-634 . -132) T) ((-835 . -862) T) ((-536 . -57) 204659) ((-532 . -527) 204592) ((-363 . -235) 204579) ((-366 . -1076) 204524) ((-59 . -527) 204457) ((-529 . -527) 204390) ((-431 . -921) 204349) ((-171 . -1074) T) ((-510 . -527) 204282) ((-509 . -527) 204215) ((-366 . -656) 204160) ((-815 . -1063) 203940) ((-1265 . -629) 203688) ((-715 . -38) 203653) ((-1119 . -1118) 203637) ((-355 . -361) T) ((-481 . -1242) T) ((-1119 . -1125) 203615) ((-873 . -629) 203512) ((-171 . -249) 203463) ((-171 . -239) 203414) ((-1119 . -1120) 203372) ((-890 . -297) 203330) ((-228 . -811) T) ((-228 . -808) T) ((-710 . -295) NIL) ((-584 . -629) 203302) ((-1175 . -1218) 203281) ((-420 . -1017) 203265) ((-48 . -1076) 203230) ((-717 . -21) T) ((-717 . -25) T) ((-48 . -656) 203195) ((-1307 . -664) 203169) ((-1265 . -337) 203146) ((-1175 . -107) 203096) ((-327 . -161) 203075) ((-327 . -144) 203054) ((-117 . -21) T) ((-40 . -233) 203031) ((-40 . -273) 203008) ((-135 . -25) T) ((-117 . -25) T) ((-1265 . -239) T) ((-1265 . -1074) T) ((-621 . -299) 202984) ((-873 . -1074) T) ((-619 . -1242) T) ((-815 . -350) 202968) ((-488 . -299) 202947) ((-687 . -1242) T) ((-182 . -1242) T) ((-162 . -1242) T) ((-157 . -1242) T) ((-155 . -1242) T) ((-140 . -187) T) ((-118 . -1177) NIL) ((-91 . -626) 202879) ((-490 . -132) T) ((-1190 . -1242) T) ((-1121 . -503) 202860) ((-1121 . -626) 202826) ((-1115 . -503) 202807) ((-1115 . -626) 202773) ((-606 . -1242) T) ((-1098 . -503) 202754) ((-584 . -1074) T) ((-1098 . -626) 202720) ((-678 . -733) 202704) ((-1091 . -503) 202685) ((-1091 . -626) 202651) ((-981 . -299) 202628) ((-60 . -34) T) ((-1087 . -811) T) ((-1087 . -808) T) ((-1061 . -503) 202609) ((-1044 . -503) 202590) ((-832 . -742) T) ((-747 . -47) 202555) ((-636 . -38) 202542) ((-367 . -301) T) ((-364 . -301) T) ((-356 . -301) T) ((-274 . -301) 202473) ((-254 . -301) 202404) ((-1061 . -626) 202370) ((-1049 . -102) T) ((-1044 . -626) 202336) ((-639 . -503) 202317) ((-426 . -742) T) ((-118 . -38) 202262) ((-496 . -503) 202243) ((-639 . -626) 202209) ((-426 . -486) T) ((-221 . -503) 202190) ((-496 . -626) 202156) ((-366 . -102) T) ((-221 . -626) 202122) ((-1236 . -1083) T) ((-355 . -662) 202052) ((-727 . -1083) T) ((-1199 . -47) 202029) ((-1198 . -47) 201999) ((-1192 . -47) 201976) ((-129 . -299) 201951) ((-1060 . -152) 201897) ((-933 . -301) T) ((-1151 . -47) 201869) ((-710 . -320) NIL) ((-528 . -626) 201851) ((-523 . -626) 201833) ((-521 . -626) 201815) ((-498 . -1242) T) ((-338 . -1125) 201765) ((-327 . -915) 201729) ((-324 . -915) NIL) ((-728 . -465) 201660) ((-48 . -102) T) ((-1276 . -297) 201618) ((-1255 . -297) 201518) ((-660 . -682) 201502) ((-660 . -667) 201486) ((-351 . -21) T) ((-351 . -25) T) ((-40 . -361) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-660 . -385) 201470) ((-618 . -503) 201452) ((-653 . -626) 201434) ((-615 . -297) 201386) ((-618 . -626) 201353) ((-401 . -102) T) ((-1145 . -144) T) ((-127 . -626) 201285) ((-892 . -1125) T) ((-674 . -424) 201269) ((-747 . -1242) T) ((-730 . -626) 201251) ((-256 . -626) 201218) ((-189 . -626) 201200) ((-163 . -626) 201182) ((-158 . -626) 201164) ((-1307 . -742) T) ((-1127 . -34) T) ((-889 . -811) NIL) ((-889 . -808) NIL) ((-876 . -865) T) ((-747 . -905) NIL) ((-1316 . -132) T) ((-393 . -132) T) ((-911 . -629) 201132) ((-927 . -102) T) ((-747 . -1063) 201008) ((-1199 . -1242) T) ((-1198 . -1242) T) ((-544 . -132) T) ((-1192 . -1242) T) ((-1112 . -424) 200992) ((-1025 . -502) 200976) ((-118 . -413) 200953) ((-1151 . -1242) T) ((-798 . -424) 200937) ((-796 . -424) 200921) ((-966 . -34) T) ((-710 . -1177) NIL) ((-259 . -664) 200741) ((-258 . -664) 200548) ((-833 . -943) 200527) ((-467 . -424) 200511) ((-651 . -865) T) ((-615 . -19) 200495) ((-1171 . -1235) 200464) ((-1192 . -905) NIL) ((-1192 . -903) 200416) ((-615 . -617) 200393) ((-108 . -868) T) ((-1228 . -626) 200325) ((-1200 . -626) 200307) ((-62 . -408) T) ((-1198 . -1063) 200242) ((-1192 . -1063) 200208) ((-710 . -38) 200158) ((-40 . -662) 200088) ((-487 . -297) 200046) ((-1248 . -626) 200028) ((-747 . -389) 200012) ((-854 . -626) 199994) ((-674 . -1083) T) ((-636 . -923) 199917) ((-1276 . -1027) 199883) ((-449 . -1242) T) ((-1255 . -1027) 199849) ((-257 . -1242) T) ((-1113 . -629) 199833) ((-1088 . -1218) 199808) ((-1101 . -629) 199785) ((-890 . -627) 199592) ((-890 . -626) 199574) ((-118 . -923) NIL) ((-717 . -235) 199561) ((-1214 . -502) 199498) ((-431 . -1047) 199476) ((-48 . -320) 199463) ((-1088 . -107) 199409) ((-492 . -502) 199346) ((-538 . -1242) T) ((-533 . -1242) T) ((-1192 . -350) 199298) ((-1166 . -502) 199269) ((-1192 . -389) 199221) ((-1112 . -1083) T) ((-450 . -102) T) ((-185 . -1125) T) ((-259 . -34) T) ((-258 . -34) T) ((-1183 . -868) T) ((-866 . -629) 199205) ((-798 . -1083) T) ((-796 . -1083) T) ((-747 . -921) 199182) ((-467 . -1083) T) ((-59 . -502) 199166) ((-1059 . -1081) 199140) ((-532 . -502) 199124) ((-529 . -502) 199108) ((-510 . -502) 199092) ((-509 . -502) 199076) ((-251 . -527) 199009) ((-1059 . -111) 198976) ((-1199 . -921) 198889) ((-1198 . -921) 198795) ((-686 . -1137) T) ((-1192 . -921) 198628) ((-661 . -93) T) ((-1151 . -921) 198612) ((-366 . -1177) T) ((-333 . -1081) 198594) ((-31 . -503) 198575) ((-259 . -810) 198554) ((-259 . -809) 198533) ((-258 . -810) 198512) ((-258 . -809) 198491) ((-31 . -626) 198457) ((-50 . -1083) T) ((-259 . -742) 198435) ((-258 . -742) 198413) ((-1236 . -1125) T) ((-686 . -23) T) ((-594 . -1083) T) ((-531 . -1083) T) ((-391 . -1081) 198378) ((-333 . -111) 198353) ((-73 . -395) T) ((-73 . -408) T) ((-1049 . -38) 198290) ((-710 . -413) 198272) ((-99 . -102) T) ((-1321 . -1076) 198259) ((-727 . -1125) T) ((-1138 . -868) 198210) ((-1028 . -146) 198182) ((-1028 . -148) 198154) ((-888 . -662) 198126) ((-391 . -111) 198082) ((-330 . -1246) 198061) ((-487 . -1027) 198027) ((-366 . -38) 197992) ((-40 . -382) 197964) ((-891 . -626) 197836) ((-128 . -126) 197820) ((-122 . -126) 197804) ((-852 . -1081) 197774) ((-849 . -21) 197726) ((-843 . -1081) 197710) ((-849 . -25) 197662) ((-330 . -569) 197613) ((-530 . -629) 197594) ((-577 . -844) T) ((-246 . -1242) T) ((-1059 . -629) 197563) ((-852 . -111) 197528) ((-843 . -111) 197507) ((-1276 . -626) 197489) ((-1255 . -626) 197471) ((-1255 . -627) 197142) ((-1197 . -932) 197121) ((-1150 . -932) 197100) ((-48 . -38) 197065) ((-1314 . -1137) T) ((-549 . -297) 197021) ((-615 . -626) 196933) ((-615 . -627) 196894) ((-1312 . -1137) T) ((-373 . -629) 196878) ((-333 . -629) 196862) ((-1167 . -238) 196813) ((-246 . -1063) 196640) ((-1197 . -664) 196529) ((-1150 . -664) 196418) ((-872 . -664) 196392) ((-734 . -626) 196374) ((-559 . -380) T) ((-1314 . -23) T) ((-710 . -923) NIL) ((-1312 . -23) T) ((-504 . -1125) T) ((-391 . -629) 196324) ((-391 . -631) 196306) ((-1059 . -1074) T) ((-883 . -102) T) ((-1214 . -297) 196285) ((-171 . -380) 196236) ((-1029 . -1242) T) ((-996 . -1242) T) ((-937 . -1242) T) ((-852 . -629) 196190) ((-843 . -629) 196145) ((-44 . -23) T) ((-1321 . -102) T) ((-492 . -297) 196124) ((-599 . -1125) T) ((-1171 . -1134) 196093) ((-440 . -1242) T) ((-1129 . -1128) 196045) ((-403 . -21) T) ((-403 . -25) T) ((-153 . -1137) T) ((-1236 . -733) 195942) ((-1222 . -1125) T) ((-1029 . -903) 195924) ((-1029 . -905) 195906) ((-636 . -233) 195890) ((-636 . -273) 195874) ((-634 . -21) T) ((-300 . -569) T) ((-634 . -25) T) ((-1029 . -1063) 195834) ((-727 . -733) 195799) ((-246 . -389) 195768) ((-391 . -1074) T) ((-226 . -1083) T) ((-118 . -273) 195745) ((-118 . -233) 195722) ((-59 . -297) 195674) ((-153 . -23) T) ((-529 . -297) 195626) ((-338 . -527) 195559) ((-509 . -297) 195511) ((-391 . -249) T) ((-391 . -239) T) ((-852 . -1074) T) ((-843 . -1074) T) ((-728 . -972) 195480) ((-717 . -865) T) ((-625 . -868) T) ((-487 . -626) 195462) ((-1278 . -1076) 195367) ((-593 . -662) 195339) ((-577 . -662) 195311) ((-508 . -662) 195261) ((-843 . -239) 195240) ((-135 . -865) T) ((-1278 . -656) 195132) ((-674 . -1125) T) ((-1214 . -617) 195111) ((-563 . -1218) 195090) ((-348 . -1125) T) ((-330 . -375) 195069) ((-420 . -148) 195048) ((-420 . -146) 195027) ((-987 . -1137) 194926) ((-831 . -1137) 194904) ((-246 . -921) 194836) ((-670 . -870) 194820) ((-492 . -617) 194799) ((-110 . -868) T) ((-537 . -1242) T) ((-563 . -107) 194749) ((-1029 . -389) 194731) ((-1029 . -350) 194713) ((-1201 . -626) 194695) ((-97 . -1125) T) ((-987 . -23) 194506) ((-490 . -21) T) ((-490 . -25) T) ((-831 . -23) 194358) ((-1201 . -627) 194280) ((-59 . -19) 194264) ((-1197 . -742) T) ((-1150 . -742) T) ((-1112 . -1125) T) ((-529 . -19) 194248) ((-509 . -19) 194232) ((-59 . -617) 194209) ((-1028 . -238) 194146) ((-924 . -102) 194096) ((-872 . -742) T) ((-798 . -1125) T) ((-529 . -617) 194073) ((-509 . -617) 194050) ((-796 . -1125) T) ((-796 . -1090) 194017) ((-474 . -1125) T) ((-467 . -1125) T) ((-599 . -733) 193992) ((-665 . -1125) T) ((-1284 . -47) 193969) ((-1278 . -102) T) ((-1277 . -47) 193939) ((-1256 . -47) 193916) ((-1236 . -174) 193867) ((-1198 . -318) 193846) ((-1192 . -318) 193825) ((-1121 . -629) 193806) ((-1115 . -629) 193787) ((-1105 . -569) 193738) ((-1105 . -1246) 193689) ((-1098 . -629) 193670) ((-1029 . -921) NIL) ((-1091 . -629) 193651) ((-686 . -132) T) ((-640 . -1137) T) ((-1061 . -629) 193632) ((-1044 . -629) 193613) ((-730 . -1081) 193583) ((-728 . -915) 193486) ((-715 . -662) 193436) ((-285 . -1125) T) ((-85 . -454) T) ((-85 . -408) T) ((-727 . -174) T) ((-653 . -1081) 193420) ((-50 . -1125) T) ((-608 . -47) 193397) ((-228 . -664) 193362) ((-594 . -1125) T) ((-531 . -1125) T) ((-500 . -836) T) ((-500 . -943) T) ((-371 . -1246) T) ((-365 . -1246) T) ((-357 . -1246) T) ((-330 . -1137) T) ((-327 . -1076) 193272) ((-324 . -1076) 193201) ((-108 . -1246) T) ((-639 . -629) 193182) ((-371 . -569) T) ((-220 . -943) T) ((-220 . -836) T) ((-327 . -656) 193092) ((-324 . -656) 193021) ((-365 . -569) T) ((-357 . -569) T) ((-653 . -111) 193000) ((-1321 . -1177) T) ((-496 . -629) 192981) ((-108 . -569) T) ((-1192 . -1047) NIL) ((-674 . -733) 192951) ((-495 . -868) 192902) ((-221 . -629) 192883) ((-330 . -23) T) ((-67 . -1242) T) ((-1025 . -626) 192815) ((-1316 . -21) T) ((-710 . -273) 192797) ((-710 . -233) 192779) ((-1316 . -25) T) ((-730 . -111) 192744) ((-1314 . -132) T) ((-660 . -34) T) ((-251 . -502) 192728) ((-1312 . -132) T) ((-1305 . -102) T) ((-1288 . -626) 192694) ((-1284 . -1242) T) ((-1127 . -1123) 192678) ((-173 . -1125) T) ((-1277 . -1242) T) ((-1277 . -1063) 192613) ((-1256 . -1242) T) ((-1256 . -905) NIL) ((-1256 . -903) 192565) ((-975 . -932) 192544) ((-1256 . -1063) 192510) ((-1236 . -527) 192477) ((-1214 . -627) NIL) ((-528 . -629) 192461) ((-1214 . -626) 192443) ((-1167 . -1148) 192388) ((-1112 . -733) 192237) ((-494 . -932) 192216) ((-1102 . -102) T) ((-1087 . -664) 192188) ((-975 . -664) 192077) ((-834 . -868) T) ((-798 . -733) 191906) ((-610 . -503) 191887) ((-598 . -503) 191868) ((-610 . -626) 191834) ((-598 . -626) 191800) ((-549 . -626) 191782) ((-592 . -1242) T) ((-549 . -627) 191763) ((-796 . -733) 191612) ((-1071 . -1235) 191541) ((-636 . -662) 191513) ((-393 . -25) T) ((-393 . -21) T) ((-494 . -664) 191402) ((-474 . -733) 191373) ((-467 . -733) 191222) ((-1012 . -102) T) ((-924 . -320) 191160) ((-894 . -93) T) ((-753 . -102) T) ((-653 . -629) 191137) ((-118 . -662) 191067) ((-618 . -629) 191049) ((-730 . -629) 191003) ((-697 . -93) T) ((-544 . -25) T) ((-692 . -93) T) ((-680 . -626) 190985) ((-661 . -503) 190966) ((-661 . -626) 190919) ((-142 . -102) T) ((-44 . -132) T) ((-609 . -1242) T) ((-608 . -1242) T) ((-355 . -1083) T) ((-300 . -1137) T) ((-491 . -93) T) ((-420 . -238) 190870) ((-367 . -626) 190852) ((-364 . -626) 190834) ((-356 . -626) 190816) ((-274 . -627) 190564) ((-274 . -626) 190546) ((-254 . -626) 190528) ((-254 . -627) 190389) ((-139 . -93) T) ((-138 . -93) T) ((-134 . -93) T) ((-1166 . -626) 190371) ((-1145 . -656) 190358) ((-1145 . -1076) 190345) ((-835 . -742) T) ((-835 . -875) T) ((-615 . -299) 190322) ((-594 . -733) 190287) ((-492 . -627) NIL) ((-492 . -626) 190269) ((-531 . -733) 190214) ((-327 . -102) T) ((-324 . -102) T) ((-300 . -23) T) ((-153 . -132) T) ((-933 . -626) 190196) ((-933 . -627) 190178) ((-399 . -742) T) ((-890 . -1081) 190130) ((-890 . -111) 190068) ((-730 . -1074) T) ((-728 . -1268) 190052) ((-710 . -361) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-532 . -626) 189984) ((-391 . -811) T) ((-169 . -1242) T) ((-226 . -1125) T) ((-391 . -808) T) ((-59 . -627) 189945) ((-228 . -810) T) ((-228 . -807) T) ((-59 . -626) 189857) ((-228 . -742) T) ((-529 . -627) 189818) ((-529 . -626) 189730) ((-510 . -626) 189662) ((-509 . -627) 189623) ((-509 . -626) 189535) ((-1105 . -375) 189486) ((-40 . -424) 189463) ((-77 . -1242) T) ((-889 . -932) NIL) ((-371 . -340) 189447) ((-371 . -375) T) ((-365 . -340) 189431) ((-365 . -375) T) ((-357 . -340) 189415) ((-357 . -375) T) ((-327 . -295) 189394) ((-108 . -375) T) ((-70 . -1242) T) ((-655 . -1125) T) ((-1256 . -350) 189346) ((-889 . -664) 189291) ((-1256 . -389) 189243) ((-987 . -132) 189098) ((-831 . -132) 188969) ((-45 . -868) NIL) ((-981 . -667) 188953) ((-1112 . -174) 188864) ((-981 . -385) 188848) ((-1087 . -810) T) ((-1087 . -807) T) ((-890 . -629) 188746) ((-798 . -174) 188637) ((-796 . -174) 188548) ((-832 . -47) 188510) ((-1087 . -742) T) ((-338 . -502) 188494) ((-975 . -742) T) ((-1305 . -320) 188432) ((-1284 . -921) 188345) ((-467 . -174) 188256) ((-251 . -297) 188208) ((-1277 . -921) 188114) ((-1276 . -1081) 187949) ((-1256 . -921) 187782) ((-494 . -742) T) ((-1255 . -1081) 187590) ((-1236 . -301) 187569) ((-1211 . -1242) T) ((-1208 . -380) T) ((-1207 . -380) T) ((-1171 . -152) 187553) ((-1145 . -102) T) ((-1143 . -1125) T) ((-1105 . -23) T) ((-1105 . -1137) T) ((-1100 . -102) T) ((-1082 . -626) 187520) ((-1028 . -422) 187492) ((-950 . -978) T) ((-753 . -320) 187430) ((-75 . -1242) T) ((-680 . -394) 187402) ((-171 . -932) 187355) ((-30 . -978) T) ((-112 . -860) T) ((-1 . -626) 187337) ((-1024 . -915) 187258) ((-129 . -667) 187240) ((-50 . -633) 187224) ((-710 . -662) 187159) ((-608 . -921) 187072) ((-451 . -102) T) ((-129 . -385) 187054) ((-142 . -320) NIL) ((-890 . -1074) T) ((-849 . -865) 187033) ((-81 . -1242) T) ((-727 . -301) T) ((-40 . -1083) T) ((-594 . -174) T) ((-531 . -174) T) ((-524 . -626) 187015) ((-171 . -664) 186889) ((-520 . -626) 186871) ((-363 . -148) 186853) ((-363 . -146) T) ((-371 . -1137) T) ((-365 . -1137) T) ((-357 . -1137) T) ((-1029 . -318) T) ((-937 . -318) T) ((-890 . -249) T) ((-108 . -1137) T) ((-890 . -239) 186832) ((-1276 . -111) 186653) ((-1255 . -111) 186442) ((-251 . -1280) 186426) ((-577 . -864) T) ((-371 . -23) T) ((-366 . -361) T) ((-327 . -320) 186413) ((-324 . -320) 186354) ((-365 . -23) T) ((-330 . -132) T) ((-357 . -23) T) ((-1029 . -1047) T) ((-31 . -629) 186335) ((-108 . -23) T) ((-670 . -1076) 186319) ((-251 . -617) 186296) ((-655 . -733) 186280) ((-344 . -1125) T) ((-670 . -656) 186250) ((-1278 . -38) 186142) ((-1265 . -932) 186121) ((-112 . -1125) T) ((-832 . -1242) T) ((-426 . -1242) T) ((-1060 . -102) T) ((-1265 . -664) 186010) ((-889 . -810) NIL) ((-873 . -664) 185984) ((-889 . -807) NIL) ((-832 . -905) NIL) ((-889 . -742) T) ((-1112 . -527) 185857) ((-798 . -527) 185804) ((-796 . -527) 185756) ((-584 . -664) 185743) ((-832 . -1063) 185571) ((-467 . -527) 185514) ((-401 . -402) T) ((-1276 . -629) 185327) ((-1255 . -629) 185075) ((-60 . -1242) T) ((-634 . -865) 185054) ((-513 . -677) T) ((-1171 . -1001) 185023) ((-1049 . -662) 184960) ((-1028 . -465) T) ((-715 . -864) T) ((-523 . -808) T) ((-487 . -1081) 184795) ((-513 . -113) T) ((-355 . -1125) T) ((-324 . -1177) NIL) ((-300 . -132) T) ((-407 . -1125) T) ((-888 . -1083) T) ((-710 . -382) 184762) ((-366 . -662) 184692) ((-226 . -633) 184669) ((-338 . -297) 184621) ((-487 . -111) 184442) ((-1276 . -1074) T) ((-1255 . -1074) T) ((-832 . -389) 184426) ((-840 . -1242) T) ((-171 . -742) T) ((-1307 . -1242) T) ((-670 . -102) T) ((-1276 . -249) 184405) ((-1276 . -239) 184357) ((-1255 . -239) 184262) ((-1255 . -249) 184241) ((-1028 . -415) NIL) ((-686 . -654) 184189) ((-327 . -38) 184099) ((-324 . -38) 184028) ((-69 . -626) 184010) ((-330 . -506) 183976) ((-48 . -662) 183926) ((-1214 . -299) 183905) ((-1250 . -865) T) ((-1138 . -1137) 183883) ((-83 . -1242) T) ((-61 . -626) 183865) ((-882 . -868) T) ((-492 . -299) 183844) ((-1307 . -1063) 183821) ((-1189 . -1125) T) ((-1138 . -23) 183673) ((-832 . -921) 183609) ((-1265 . -742) T) ((-1127 . -1242) T) ((-487 . -629) 183435) ((-363 . -238) T) ((-1112 . -301) 183366) ((-989 . -1125) T) ((-912 . -102) T) ((-798 . -301) 183277) ((-338 . -19) 183261) ((-59 . -299) 183238) ((-796 . -301) 183169) ((-873 . -742) T) ((-118 . -864) NIL) ((-529 . -299) 183146) ((-338 . -617) 183123) ((-509 . -299) 183100) ((-467 . -301) 183031) ((-1060 . -320) 182882) ((-894 . -503) 182863) ((-894 . -626) 182829) ((-697 . -503) 182810) ((-584 . -742) T) ((-692 . -503) 182791) ((-697 . -626) 182741) ((-692 . -626) 182707) ((-678 . -626) 182689) ((-491 . -503) 182670) ((-491 . -626) 182636) ((-251 . -627) 182597) ((-251 . -503) 182574) ((-139 . -503) 182555) ((-138 . -503) 182536) ((-134 . -503) 182517) ((-251 . -626) 182409) ((-215 . -102) T) ((-139 . -626) 182375) ((-138 . -626) 182341) ((-134 . -626) 182307) ((-1172 . -34) T) ((-966 . -1242) T) ((-355 . -733) 182252) ((-686 . -25) T) ((-686 . -21) T) ((-1201 . -629) 182233) ((-342 . -1242) T) ((-487 . -1074) T) ((-648 . -430) 182198) ((-620 . -430) 182163) ((-1145 . -1177) T) ((-1277 . -318) 182142) ((-728 . -1076) 181965) ((-594 . -301) T) ((-531 . -301) T) ((-1256 . -318) 181944) ((-487 . -239) 181896) ((-487 . -249) 181875) ((-452 . -1242) T) ((-728 . -656) 181704) ((-1256 . -1047) NIL) ((-1105 . -132) T) ((-890 . -811) 181683) ((-145 . -102) T) ((-40 . -1125) T) ((-890 . -808) 181662) ((-660 . -1035) 181646) ((-593 . -1083) T) ((-577 . -1083) T) ((-508 . -1083) T) ((-420 . -465) T) ((-371 . -132) T) ((-327 . -413) 181630) ((-324 . -413) 181591) ((-365 . -132) T) ((-357 . -132) T) ((-1206 . -1125) T) ((-1145 . -38) 181578) ((-1119 . -626) 181545) ((-108 . -132) T) ((-977 . -1125) T) ((-944 . -1125) T) ((-787 . -1125) T) ((-688 . -1125) T) ((-717 . -148) T) ((-117 . -148) T) ((-1314 . -21) T) ((-1314 . -25) T) ((-1312 . -21) T) ((-1312 . -25) T) ((-680 . -1081) 181529) ((-544 . -865) T) ((-513 . -865) T) ((-377 . -1242) T) ((-367 . -1081) 181481) ((-364 . -1081) 181433) ((-356 . -1081) 181385) ((-259 . -1242) T) ((-258 . -1242) T) ((-274 . -1081) 181228) ((-254 . -1081) 181071) ((-680 . -111) 181050) ((-833 . -1246) 181029) ((-560 . -860) T) ((-327 . -923) 180995) ((-367 . -111) 180933) ((-364 . -111) 180871) ((-356 . -111) 180809) ((-274 . -111) 180638) ((-254 . -111) 180467) ((-324 . -923) NIL) ((-636 . -424) 180451) ((-44 . -21) T) ((-44 . -25) T) ((-928 . -868) 180402) ((-831 . -654) 180308) ((-833 . -569) 180287) ((-500 . -868) T) ((-259 . -1063) 180114) ((-258 . -1063) 179941) ((-127 . -120) 179925) ((-220 . -868) T) ((-933 . -1081) 179890) ((-728 . -102) T) ((-715 . -1083) T) ((-610 . -629) 179871) ((-598 . -629) 179852) ((-549 . -631) 179755) ((-355 . -174) T) ((-153 . -21) T) ((-153 . -25) T) ((-88 . -626) 179737) ((-933 . -111) 179693) ((-40 . -733) 179638) ((-888 . -1125) T) ((-680 . -629) 179615) ((-661 . -629) 179596) ((-367 . -629) 179533) ((-364 . -629) 179470) ((-356 . -629) 179407) ((-560 . -1125) T) ((-338 . -627) 179368) ((-338 . -626) 179280) ((-274 . -629) 179033) ((-254 . -629) 178818) ((-188 . -1242) T) ((-1255 . -808) 178771) ((-1255 . -811) 178724) ((-259 . -389) 178693) ((-258 . -389) 178662) ((-562 . -868) T) ((-670 . -38) 178632) ((-621 . -34) T) ((-495 . -1137) 178610) ((-488 . -34) T) ((-1138 . -132) 178481) ((-987 . -25) 178292) ((-933 . -629) 178242) ((-892 . -626) 178224) ((-217 . -860) T) ((-987 . -21) 178179) ((-831 . -25) 178012) ((-831 . -21) 177923) ((-1248 . -380) T) ((-636 . -1083) T) ((-1203 . -569) 177902) ((-1197 . -47) 177879) ((-367 . -1074) T) ((-364 . -1074) T) ((-495 . -23) 177731) ((-356 . -1074) T) ((-274 . -1074) T) ((-254 . -1074) T) ((-1150 . -47) 177703) ((-118 . -1083) T) ((-1059 . -664) 177677) ((-981 . -34) T) ((-367 . -239) 177656) ((-367 . -249) T) ((-364 . -239) 177635) ((-364 . -249) T) ((-356 . -239) 177614) ((-356 . -249) T) ((-274 . -337) 177586) ((-254 . -337) 177543) ((-274 . -239) 177522) ((-1182 . -152) 177506) ((-259 . -921) 177438) ((-258 . -921) 177370) ((-1167 . -915) 177291) ((-1107 . -865) T) ((-1259 . -1242) 177269) ((-427 . -1137) T) ((-1236 . -1027) 177235) ((-1079 . -23) T) ((-1049 . -864) T) ((-933 . -1074) T) ((-333 . -664) 177217) ((-717 . -238) T) ((-686 . -235) 177162) ((-1198 . -943) 177141) ((-1192 . -943) 177120) ((-1192 . -836) NIL) ((-1024 . -1076) 177016) ((-990 . -1242) T) ((-933 . -249) T) ((-833 . -375) 176995) ((-217 . -1125) T) ((-397 . -23) T) ((-128 . -1125) 176973) ((-122 . -1125) 176951) ((-933 . -239) T) ((-129 . -34) T) ((-391 . -664) 176916) ((-1024 . -656) 176864) ((-888 . -733) 176851) ((-1321 . -662) 176823) ((-1071 . -152) 176788) ((-1018 . -1242) T) ((-880 . -1242) T) ((-40 . -174) T) ((-710 . -424) 176770) ((-728 . -320) 176757) ((-852 . -664) 176717) ((-843 . -664) 176691) ((-330 . -25) T) ((-330 . -21) T) ((-674 . -297) 176670) ((-593 . -1125) T) ((-577 . -1125) T) ((-508 . -1125) T) ((-1197 . -1242) T) ((-251 . -299) 176647) ((-1150 . -1242) T) ((-872 . -1242) T) ((-324 . -273) 176608) ((-324 . -233) 176569) ((-1247 . -868) T) ((-1197 . -905) NIL) ((-55 . -1125) T) ((-1150 . -905) 176428) ((-130 . -865) T) ((-1197 . -1063) 176308) ((-1150 . -1063) 176191) ((-185 . -626) 176173) ((-872 . -1063) 176069) ((-798 . -297) 175996) ((-833 . -1137) T) ((-1059 . -742) T) ((-1071 . -1001) 175925) ((-615 . -667) 175909) ((-1028 . -915) 175816) ((-1024 . -102) T) ((-833 . -23) T) ((-728 . -1177) 175794) ((-710 . -1083) T) ((-615 . -385) 175778) ((-363 . -465) T) ((-355 . -301) T) ((-1293 . -1125) T) ((-255 . -1125) T) ((-412 . -102) T) ((-300 . -21) T) ((-300 . -25) T) ((-373 . -742) T) ((-726 . -1125) T) ((-715 . -1125) T) ((-373 . -486) T) ((-1236 . -626) 175760) ((-1197 . -389) 175744) ((-1150 . -389) 175728) ((-1049 . -424) 175690) ((-142 . -232) 175672) ((-391 . -810) T) ((-391 . -807) T) ((-888 . -174) T) ((-391 . -742) T) ((-727 . -626) 175654) ((-728 . -38) 175483) ((-1292 . -1290) 175467) ((-363 . -415) T) ((-1292 . -1125) 175417) ((-1215 . -1125) T) ((-593 . -733) 175404) ((-577 . -733) 175391) ((-508 . -733) 175356) ((-1278 . -662) 175246) ((-327 . -642) 175225) ((-852 . -742) T) ((-843 . -742) T) ((-1140 . -1242) T) ((-660 . -1242) T) ((-1105 . -654) 175173) ((-1197 . -921) 175116) ((-1150 . -921) 175100) ((-831 . -235) 174991) ((-678 . -1081) 174975) ((-108 . -654) 174957) ((-495 . -132) 174828) ((-1203 . -1137) T) ((-835 . -1242) T) ((-975 . -47) 174797) ((-636 . -1125) T) ((-678 . -111) 174776) ((-504 . -626) 174742) ((-338 . -299) 174719) ((-399 . -1242) T) ((-335 . -1242) T) ((-494 . -47) 174676) ((-1203 . -23) T) ((-118 . -1125) T) ((-103 . -102) 174626) ((-1304 . -1137) T) ((-561 . -865) T) ((-228 . -1242) T) ((-1079 . -132) T) ((-1049 . -1083) T) ((-1304 . -23) T) ((-1222 . -626) 174608) ((-835 . -1063) 174592) ((-1145 . -844) T) ((-1028 . -740) 174564) ((-1130 . -1125) T) ((-715 . -733) 174529) ((-599 . -626) 174511) ((-399 . -1063) 174495) ((-366 . -1083) T) ((-397 . -132) T) ((-335 . -1063) 174479) ((-1105 . -21) T) ((-1105 . -25) T) ((-1029 . -836) T) ((-228 . -905) 174461) ((-1029 . -943) T) ((-91 . -34) T) ((-1024 . -320) 174426) ((-937 . -943) T) ((-894 . -629) 174407) ((-730 . -664) 174367) ((-500 . -1246) T) ((-697 . -629) 174348) ((-692 . -629) 174329) ((-653 . -664) 174313) ((-220 . -1246) T) ((-420 . -915) 174234) ((-228 . -1063) 174194) ((-40 . -301) T) ((-500 . -569) T) ((-491 . -629) 174175) ((-371 . -25) T) ((-327 . -662) 173830) ((-324 . -662) 173744) ((-371 . -21) T) ((-365 . -25) T) ((-365 . -21) T) ((-220 . -569) T) ((-357 . -25) T) ((-357 . -21) T) ((-330 . -235) 173690) ((-251 . -629) 173667) ((-139 . -629) 173648) ((-138 . -629) 173629) ((-134 . -629) 173610) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1083) T) ((-593 . -174) T) ((-577 . -174) T) ((-508 . -174) T) ((-1087 . -1242) T) ((-975 . -1242) T) ((-729 . -1242) T) ((-655 . -297) 173577) ((-674 . -626) 173559) ((-494 . -1242) T) ((-753 . -752) 173543) ((-348 . -626) 173525) ((-68 . -395) T) ((-68 . -408) T) ((-1127 . -107) 173509) ((-1087 . -905) 173491) ((-975 . -905) 173416) ((-669 . -1137) T) ((-636 . -733) 173403) ((-494 . -905) NIL) ((-1171 . -102) T) ((-1119 . -631) 173387) ((-1087 . -1063) 173369) ((-97 . -626) 173351) ((-490 . -148) T) ((-975 . -1063) 173231) ((-118 . -733) 173176) ((-728 . -923) 173083) ((-669 . -23) T) ((-494 . -1063) 172959) ((-1112 . -627) NIL) ((-1112 . -626) 172941) ((-798 . -627) NIL) ((-798 . -626) 172902) ((-796 . -627) 172536) ((-796 . -626) 172450) ((-1138 . -654) 172356) ((-815 . -868) 172335) ((-474 . -626) 172317) ((-467 . -626) 172299) ((-467 . -627) 172160) ((-1060 . -232) 172106) ((-890 . -932) 172085) ((-127 . -34) T) ((-833 . -132) T) ((-665 . -626) 172067) ((-591 . -102) T) ((-367 . -1311) 172051) ((-364 . -1311) 172035) ((-356 . -1311) 172019) ((-122 . -527) 171952) ((-128 . -527) 171885) ((-524 . -808) T) ((-524 . -811) T) ((-523 . -810) T) ((-103 . -320) 171823) ((-225 . -102) 171773) ((-715 . -174) T) ((-710 . -1125) T) ((-890 . -664) 171689) ((-65 . -396) T) ((-285 . -626) 171671) ((-65 . -408) T) ((-975 . -389) 171655) ((-888 . -301) T) ((-50 . -626) 171637) ((-1024 . -38) 171585) ((-1145 . -662) 171557) ((-594 . -626) 171539) ((-494 . -389) 171523) ((-594 . -627) 171505) ((-531 . -626) 171487) ((-933 . -1311) 171474) ((-889 . -1242) T) ((-717 . -465) T) ((-508 . -527) 171440) ((-1303 . -1242) T) ((-1302 . -1242) T) ((-500 . -375) T) ((-367 . -380) 171419) ((-364 . -380) 171398) ((-356 . -380) 171377) ((-730 . -742) T) ((-220 . -375) T) ((-117 . -465) T) ((-1315 . -1306) 171361) ((-889 . -903) 171338) ((-889 . -905) NIL) ((-987 . -865) 171237) ((-831 . -865) 171188) ((-1249 . -102) T) ((-670 . -672) 171172) ((-1228 . -34) T) ((-173 . -626) 171154) ((-1138 . -25) 170987) ((-1138 . -21) 170898) ((-889 . -1063) 170875) ((-975 . -921) 170856) ((-1265 . -47) 170833) ((-933 . -380) T) ((-606 . -868) T) ((-59 . -667) 170817) ((-529 . -667) 170801) ((-494 . -921) 170778) ((-71 . -454) T) ((-71 . -408) T) ((-509 . -667) 170762) ((-59 . -385) 170746) ((-636 . -174) T) ((-529 . -385) 170730) ((-509 . -385) 170714) ((-559 . -1242) T) ((-843 . -724) 170698) ((-1197 . -318) 170677) ((-1203 . -132) T) ((-1167 . -1076) 170661) ((-118 . -174) T) ((-1167 . -656) 170593) ((-1171 . -320) 170531) ((-171 . -1242) T) ((-1304 . -132) T) ((-1277 . -943) 170510) ((-1256 . -943) 170489) ((-1256 . -836) NIL) ((-884 . -1076) 170459) ((-648 . -760) 170443) ((-620 . -760) 170427) ((-1255 . -932) 170380) ((-1049 . -1125) T) ((-928 . -1137) T) ((-884 . -656) 170350) ((-710 . -733) 170300) ((-919 . -1242) T) ((-889 . -389) 170277) ((-889 . -350) 170254) ((-857 . -1242) T) ((-824 . -1242) T) ((-171 . -903) 170238) ((-171 . -905) 170163) ((-785 . -1242) T) ((-693 . -1242) T) ((-1292 . -527) 170096) ((-1276 . -664) 169993) ((-1105 . -235) 169866) ((-500 . -1137) T) ((-366 . -1125) T) ((-220 . -1137) T) ((-76 . -454) T) ((-76 . -408) T) ((-171 . -1063) 169762) ((-305 . -915) 169719) ((-330 . -865) T) ((-1255 . -664) 169527) ((-890 . -810) 169506) ((-890 . -807) 169485) ((-890 . -742) T) ((-500 . -23) T) ((-371 . -235) 169458) ((-365 . -235) 169431) ((-357 . -235) 169404) ((-176 . -465) T) ((-86 . -454) T) ((-225 . -320) 169342) ((-86 . -408) T) ((-226 . -626) 169324) ((-108 . -235) 169311) ((-220 . -23) T) ((-1316 . -1309) 169290) ((-693 . -1063) 169274) ((-593 . -301) T) ((-577 . -301) T) ((-508 . -301) T) ((-1265 . -1242) T) ((-137 . -483) 169229) ((-873 . -1242) T) ((-670 . -662) 169188) ((-48 . -1125) T) ((-728 . -273) 169172) ((-728 . -233) 169156) ((-889 . -921) NIL) ((-584 . -1242) T) ((-1265 . -905) NIL) ((-908 . -102) T) ((-904 . -102) T) ((-655 . -626) 169138) ((-401 . -1125) T) ((-171 . -389) 169122) ((-171 . -350) 169106) ((-1265 . -1063) 168986) ((-873 . -1063) 168882) ((-1167 . -102) T) ((-1024 . -923) 168805) ((-678 . -808) 168784) ((-669 . -132) T) ((-678 . -811) 168763) ((-118 . -527) 168671) ((-584 . -1063) 168653) ((-305 . -1299) 168623) ((-1192 . -868) NIL) ((-884 . -102) T) ((-986 . -569) 168602) ((-1236 . -1081) 168485) ((-1028 . -1076) 168430) ((-495 . -654) 168336) ((-927 . -1125) T) ((-1049 . -733) 168273) ((-727 . -1081) 168238) ((-1028 . -656) 168183) ((-630 . -102) T) ((-615 . -34) T) ((-1172 . -1242) T) ((-1236 . -111) 168052) ((-487 . -664) 167949) ((-366 . -733) 167894) ((-171 . -921) 167853) ((-715 . -301) T) ((-710 . -174) T) ((-727 . -111) 167809) ((-1321 . -1083) T) ((-1265 . -389) 167793) ((-431 . -1246) 167771) ((-1143 . -626) 167753) ((-324 . -864) NIL) ((-431 . -569) T) ((-228 . -318) T) ((-1255 . -807) 167706) ((-1255 . -810) 167659) ((-1276 . -742) T) ((-1255 . -742) T) ((-48 . -733) 167624) ((-228 . -1047) T) ((-1278 . -424) 167590) ((-1265 . -921) 167533) ((-363 . -1299) 167510) ((-1236 . -629) 167392) ((-734 . -742) T) ((-344 . -626) 167374) ((-533 . -868) 167353) ((-1138 . -235) 167244) ((-112 . -626) 167226) ((-112 . -627) 167208) ((-734 . -486) T) ((-727 . -629) 167158) ((-1315 . -1076) 167142) ((-495 . -25) 166975) ((-128 . -502) 166959) ((-122 . -502) 166943) ((-495 . -21) 166854) ((-1315 . -656) 166824) ((-636 . -301) T) ((-599 . -1081) 166799) ((-450 . -1125) T) ((-1087 . -318) T) ((-118 . -301) T) ((-1129 . -102) T) ((-1028 . -102) T) ((-599 . -111) 166767) ((-1236 . -1074) T) ((-1167 . -320) 166705) ((-1087 . -1047) T) ((-1079 . -25) T) ((-66 . -1242) T) ((-911 . -1242) T) ((-1079 . -21) T) ((-727 . -1074) T) ((-397 . -21) T) ((-397 . -25) T) ((-710 . -527) NIL) ((-1049 . -174) T) ((-727 . -249) T) ((-1087 . -558) T) ((-728 . -662) 166615) ((-519 . -102) T) ((-515 . -102) T) ((-366 . -174) T) ((-355 . -626) 166597) ((-420 . -1076) 166549) ((-407 . -626) 166531) ((-1145 . -864) T) ((-487 . -742) T) ((-911 . -1063) 166499) ((-420 . -656) 166451) ((-108 . -865) T) ((-674 . -1081) 166435) ((-500 . -132) T) ((-1278 . -1083) T) ((-220 . -132) T) ((-1182 . -102) 166385) ((-99 . -1125) T) ((-246 . -868) 166336) ((-251 . -682) 166320) ((-251 . -667) 166304) ((-674 . -111) 166283) ((-599 . -629) 166267) ((-327 . -424) 166251) ((-251 . -385) 166235) ((-1184 . -241) 166182) ((-1024 . -273) 166166) ((-1024 . -233) 166150) ((-74 . -1242) T) ((-48 . -174) T) ((-717 . -400) T) ((-717 . -144) T) ((-1315 . -102) T) ((-1223 . -1242) T) ((-1222 . -629) 166132) ((-1113 . -1242) T) ((-1112 . -1081) 165975) ((-1101 . -1242) T) ((-274 . -932) 165954) ((-254 . -932) 165933) ((-798 . -1081) 165756) ((-796 . -1081) 165599) ((-621 . -1242) T) ((-1189 . -626) 165581) ((-1112 . -111) 165410) ((-1071 . -102) T) ((-488 . -1242) T) ((-474 . -1081) 165381) ((-467 . -1081) 165224) ((-680 . -664) 165208) ((-889 . -318) T) ((-798 . -111) 165017) ((-796 . -111) 164846) ((-367 . -664) 164798) ((-364 . -664) 164750) ((-356 . -664) 164702) ((-274 . -664) 164591) ((-254 . -664) 164480) ((-1183 . -865) T) ((-1113 . -1063) 164464) ((-1101 . -1063) 164441) ((-1029 . -868) T) ((-1025 . -34) T) ((-474 . -111) 164402) ((-467 . -111) 164231) ((-996 . -868) T) ((-989 . -626) 164213) ((-986 . -1137) T) ((-981 . -1242) T) ((-127 . -1035) 164197) ((-866 . -1242) T) ((-889 . -1047) NIL) ((-751 . -1137) T) ((-731 . -1137) T) ((-674 . -629) 164115) ((-1292 . -502) 164099) ((-1209 . -1242) T) ((-1208 . -1242) T) ((-1167 . -38) 164059) ((-986 . -23) T) ((-933 . -664) 164024) ((-883 . -1125) T) ((-859 . -102) T) ((-833 . -21) T) ((-648 . -1076) 164008) ((-620 . -1076) 163992) ((-833 . -25) T) ((-751 . -23) T) ((-731 . -23) T) ((-648 . -656) 163976) ((-110 . -677) T) ((-620 . -656) 163960) ((-594 . -1081) 163925) ((-531 . -1081) 163870) ((-230 . -57) 163828) ((-466 . -23) T) ((-420 . -102) T) ((-1207 . -1242) T) ((-271 . -102) T) ((-110 . -113) T) ((-710 . -301) T) ((-884 . -38) 163798) ((-1112 . -629) 163534) ((-594 . -111) 163490) ((-531 . -111) 163419) ((-431 . -1137) T) ((-327 . -1083) 163309) ((-324 . -1083) T) ((-129 . -1242) T) ((-131 . -1242) T) ((-798 . -629) 163057) ((-796 . -629) 162823) ((-674 . -1074) T) ((-1321 . -1125) T) ((-467 . -629) 162608) ((-171 . -318) 162539) ((-431 . -23) T) ((-40 . -626) 162521) ((-40 . -627) 162505) ((-108 . -1017) 162487) ((-117 . -887) 162471) ((-665 . -629) 162455) ((-48 . -527) 162421) ((-1228 . -1035) 162405) ((-1206 . -626) 162372) ((-1214 . -34) T) ((-977 . -626) 162338) ((-944 . -626) 162320) ((-1138 . -865) 162271) ((-787 . -626) 162253) ((-688 . -626) 162235) ((-530 . -1242) T) ((-1265 . -318) 162214) ((-1182 . -320) 162152) ((-1166 . -34) T) ((-492 . -34) T) ((-1117 . -1242) T) ((-490 . -465) T) ((-1059 . -1242) T) ((-1112 . -1074) T) ((-50 . -629) 162121) ((-798 . -1074) T) ((-796 . -1074) T) ((-663 . -241) 162105) ((-645 . -241) 162051) ((-1203 . -21) T) ((-594 . -629) 162001) ((-531 . -629) 161931) ((-495 . -235) 161822) ((-1203 . -25) T) ((-1112 . -337) 161783) ((-467 . -1074) T) ((-1112 . -239) 161762) ((-798 . -337) 161739) ((-798 . -239) T) ((-796 . -337) 161711) ((-747 . -1246) 161690) ((-532 . -34) T) ((-338 . -667) 161674) ((-529 . -34) T) ((-59 . -34) T) ((-510 . -34) T) ((-509 . -34) T) ((-467 . -337) 161653) ((-338 . -385) 161637) ((-373 . -1242) T) ((-333 . -1242) T) ((-1028 . -1177) NIL) ((-747 . -569) 161568) ((-648 . -102) T) ((-620 . -102) T) ((-367 . -742) T) ((-364 . -742) T) ((-356 . -742) T) ((-274 . -742) T) ((-254 . -742) T) ((-391 . -1242) T) ((-1304 . -21) T) ((-1071 . -320) 161476) ((-1304 . -25) T) ((-924 . -1125) 161454) ((-834 . -235) 161441) ((-50 . -1074) T) ((-1199 . -569) 161420) ((-1198 . -1246) 161399) ((-1198 . -569) 161350) ((-1192 . -1246) 161329) ((-1192 . -569) 161280) ((-1049 . -301) T) ((-594 . -1074) T) ((-531 . -1074) T) ((-1028 . -38) 161225) ((-373 . -1063) 161209) ((-333 . -1063) 161193) ((-1024 . -662) 161116) ((-391 . -905) 161098) ((-852 . -1242) T) ((-843 . -1242) T) ((-841 . -1242) T) ((-815 . -1137) T) ((-933 . -742) T) ((-594 . -249) T) ((-594 . -239) T) ((-531 . -239) T) ((-531 . -249) T) ((-1151 . -569) 161077) ((-366 . -301) T) ((-663 . -711) 161061) ((-391 . -1063) 161021) ((-305 . -1076) 160942) ((-351 . -915) 160921) ((-1145 . -1083) T) ((-103 . -126) 160905) ((-305 . -656) 160847) ((-815 . -23) T) ((-1314 . -1309) 160823) ((-1312 . -1309) 160802) ((-1292 . -297) 160754) ((-1278 . -1125) T) ((-420 . -320) 160719) ((-1167 . -923) 160642) ((-888 . -626) 160624) ((-852 . -1063) 160593) ((-655 . -1081) 160577) ((-205 . -803) T) ((-204 . -803) T) ((-203 . -803) T) ((-202 . -803) T) ((-201 . -803) T) ((-200 . -803) T) ((-199 . -803) T) ((-198 . -803) T) ((-197 . -803) T) ((-196 . -803) T) ((-560 . -626) 160559) ((-508 . -1027) T) ((-284 . -855) T) ((-283 . -855) T) ((-282 . -855) T) ((-281 . -855) T) ((-48 . -301) T) ((-280 . -855) T) ((-279 . -855) T) ((-278 . -855) T) ((-195 . -803) T) ((-655 . -111) 160538) ((-625 . -865) T) ((-670 . -424) 160522) ((-686 . -238) 160473) ((-226 . -629) 160435) ((-110 . -865) T) ((-669 . -21) T) ((-669 . -25) T) ((-1315 . -38) 160405) ((-118 . -297) 160356) ((-1292 . -19) 160340) ((-1256 . -868) NIL) ((-1292 . -617) 160317) ((-1305 . -1125) T) ((-363 . -1076) 160262) ((-1102 . -1125) T) ((-1012 . -1125) T) ((-986 . -132) T) ((-833 . -235) 160249) ((-753 . -1125) T) ((-363 . -656) 160194) ((-751 . -132) T) ((-731 . -132) T) ((-524 . -809) T) ((-524 . -810) T) ((-466 . -132) T) ((-420 . -1177) 160172) ((-226 . -1074) T) ((-305 . -102) 159954) ((-142 . -1125) T) ((-715 . -1027) T) ((-1130 . -297) 159910) ((-91 . -1242) T) ((-217 . -626) 159892) ((-128 . -626) 159824) ((-122 . -626) 159756) ((-1321 . -174) T) ((-1198 . -375) 159735) ((-1192 . -375) 159714) ((-327 . -1125) T) ((-431 . -132) T) ((-324 . -1125) T) ((-420 . -38) 159666) ((-1158 . -102) T) ((-1278 . -733) 159558) ((-1160 . -1287) T) ((-1121 . -1242) T) ((-1115 . -1242) T) ((-670 . -1083) T) ((-1098 . -1242) T) ((-1091 . -1242) T) ((-1061 . -1242) T) ((-1044 . -1242) T) ((-330 . -146) 159537) ((-330 . -148) 159516) ((-140 . -1125) T) ((-137 . -1125) T) ((-115 . -1125) T) ((-876 . -102) T) ((-639 . -1242) T) ((-496 . -1242) T) ((-593 . -626) 159498) ((-577 . -627) 159397) ((-577 . -626) 159379) ((-508 . -626) 159361) ((-508 . -627) 159306) ((-498 . -23) T) ((-221 . -1242) T) ((-495 . -865) 159257) ((-500 . -654) 159239) ((-988 . -626) 159221) ((-1028 . -923) 159130) ((-220 . -654) 159112) ((-228 . -417) T) ((-678 . -664) 159096) ((-55 . -626) 159078) ((-1197 . -943) 159057) ((-747 . -1137) T) ((-651 . -102) T) ((-528 . -1242) T) ((-523 . -1242) T) ((-521 . -1242) T) ((-363 . -102) T) ((-1241 . -1108) T) ((-1145 . -860) T) ((-834 . -865) T) ((-747 . -23) T) ((-355 . -1081) 159002) ((-1172 . -107) 158986) ((-1293 . -626) 158968) ((-653 . -1242) T) ((-1199 . -23) T) ((-1199 . -1137) T) ((-1198 . -1137) T) ((-1198 . -23) T) ((-528 . -1063) 158952) ((-1192 . -1137) T) ((-1151 . -1137) T) ((-355 . -111) 158881) ((-1029 . -1246) T) ((-127 . -1242) T) ((-937 . -1246) T) ((-1192 . -23) T) ((-1167 . -273) 158865) ((-710 . -297) NIL) ((-730 . -1242) T) ((-1167 . -233) 158849) ((-1151 . -23) T) ((-1100 . -1125) T) ((-1029 . -569) T) ((-937 . -569) T) ((-256 . -1242) T) ((-189 . -1242) T) ((-163 . -1242) T) ((-158 . -1242) T) ((-255 . -626) 158831) ((-831 . -238) 158728) ((-815 . -132) T) ((-726 . -626) 158710) ((-327 . -733) 158620) ((-324 . -733) 158549) ((-715 . -626) 158531) ((-715 . -627) 158476) ((-420 . -413) 158460) ((-451 . -1125) T) ((-500 . -25) T) ((-500 . -21) T) ((-1145 . -1125) T) ((-220 . -25) T) ((-220 . -21) T) ((-728 . -424) 158444) ((-730 . -1063) 158413) ((-1292 . -626) 158325) ((-1292 . -627) 158286) ((-1278 . -174) T) ((-1215 . -626) 158268) ((-251 . -34) T) ((-355 . -629) 158198) ((-407 . -629) 158180) ((-949 . -999) T) ((-1228 . -1242) T) ((-678 . -807) 158159) ((-678 . -810) 158138) ((-411 . -408) T) ((-536 . -102) 158088) ((-1248 . -1242) T) ((-1060 . -1125) T) ((-420 . -923) 158011) ((-225 . -1020) 157995) ((-854 . -1242) T) ((-517 . -102) T) ((-636 . -626) 157977) ((-45 . -865) NIL) ((-636 . -627) 157954) ((-1060 . -623) 157929) ((-924 . -527) 157862) ((-330 . -238) 157814) ((-355 . -1074) T) ((-118 . -627) NIL) ((-118 . -626) 157796) ((-890 . -1242) T) ((-686 . -430) 157780) ((-686 . -1148) 157725) ((-513 . -152) 157707) ((-355 . -239) T) ((-355 . -249) T) ((-40 . -1081) 157652) ((-890 . -903) 157636) ((-890 . -905) 157561) ((-728 . -1083) T) ((-710 . -1027) NIL) ((-1276 . -47) 157531) ((-1255 . -47) 157508) ((-1166 . -1035) 157479) ((-1145 . -733) 157466) ((-3 . |UnionCategory|) T) ((-1130 . -626) 157448) ((-1105 . -148) 157427) ((-1105 . -146) 157378) ((-1029 . -375) T) ((-989 . -629) 157362) ((-228 . -943) T) ((-40 . -111) 157291) ((-890 . -1063) 157155) ((-1028 . -233) 157132) ((-1028 . -273) 157109) ((-717 . -1076) 157096) ((-937 . -375) T) ((-717 . -656) 157083) ((-330 . -1230) 157049) ((-391 . -318) T) ((-330 . -1227) 157015) ((-327 . -174) 156994) ((-324 . -174) T) ((-621 . -1218) 156970) ((-594 . -1311) 156957) ((-531 . -1311) 156934) ((-117 . -1076) 156921) ((-371 . -148) 156900) ((-371 . -146) 156851) ((-365 . -148) 156830) ((-365 . -146) 156781) ((-357 . -148) 156760) ((-117 . -656) 156747) ((-357 . -146) 156698) ((-330 . -35) 156664) ((-488 . -1218) 156643) ((0 . |EnumerationCategory|) T) ((-330 . -95) 156609) ((-391 . -1047) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -241) 156559) ((-670 . -1125) T) ((-621 . -107) 156506) ((-498 . -132) T) ((-488 . -107) 156456) ((-246 . -1137) 156434) ((-31 . -1242) T) ((-890 . -389) 156418) ((-890 . -350) 156402) ((-246 . -23) 156254) ((-40 . -629) 156184) ((-1305 . -527) 156117) ((-1087 . -943) T) ((-1087 . -836) T) ((-594 . -380) T) ((-531 . -380) T) ((-1284 . -569) 156096) ((-1277 . -1246) 156075) ((-1277 . -569) 156026) ((-1276 . -1242) T) ((-1256 . -1246) 156005) ((-363 . -1177) T) ((-338 . -34) T) ((-44 . -430) 155989) ((-1206 . -629) 155925) ((-891 . -1242) T) ((-403 . -760) 155909) ((-1256 . -569) 155860) ((-1255 . -1242) T) ((-1167 . -662) 155819) ((-747 . -132) T) ((-688 . -629) 155803) ((-1255 . -905) 155676) ((-1255 . -903) 155646) ((-1199 . -132) T) ((-1198 . -132) T) ((-1192 . -132) T) ((-1151 . -132) T) ((-322 . -1108) T) ((-1049 . -1027) T) ((-753 . -527) 155579) ((-1029 . -23) T) ((-1029 . -1137) T) ((-912 . -1125) T) ((-145 . -860) T) ((-1028 . -361) NIL) ((-707 . -626) 155561) ((-966 . -868) 155540) ((-536 . -320) 155478) ((-996 . -23) T) ((-142 . -527) NIL) ((-884 . -662) 155423) ((-937 . -1137) T) ((-937 . -23) T) ((-890 . -921) 155382) ((-363 . -38) 155347) ((-888 . -1081) 155334) ((-342 . -868) T) ((-82 . -626) 155316) ((-40 . -1074) T) ((-888 . -111) 155301) ((-734 . -1242) T) ((-717 . -102) T) ((-710 . -626) 155283) ((-615 . -1242) T) ((-609 . -569) 155262) ((-440 . -1137) T) ((-351 . -1076) 155246) ((-215 . -1125) T) ((-176 . -1076) 155178) ((-487 . -47) 155148) ((-40 . -239) 155120) ((-40 . -249) T) ((-135 . -102) T) ((-117 . -102) T) ((-608 . -569) 155099) ((-351 . -656) 155083) ((-710 . -627) 154991) ((-327 . -527) 154957) ((-176 . -656) 154889) ((-324 . -527) 154781) ((-500 . -235) 154768) ((-1276 . -1063) 154752) ((-1255 . -1063) 154538) ((-1024 . -424) 154522) ((-220 . -235) 154509) ((-440 . -23) T) ((-1145 . -174) T) ((-1278 . -301) T) ((-670 . -733) 154479) ((-145 . -1125) T) ((-48 . -1027) T) ((-420 . -273) 154463) ((-420 . -233) 154447) ((-306 . -241) 154397) ((-889 . -943) T) ((-889 . -836) NIL) ((-888 . -629) 154369) ((-259 . -868) 154320) ((-258 . -868) 154271) ((-882 . -865) T) ((-1255 . -350) 154241) ((-1255 . -389) 154211) ((-1105 . -238) 154090) ((-225 . -1146) 154074) ((-305 . -923) 154033) ((-1292 . -299) 154010) ((-371 . -238) 153989) ((-365 . -238) 153968) ((-487 . -1242) T) ((-357 . -238) 153947) ((-108 . -238) T) ((-1236 . -664) 153872) ((-1028 . -662) 153802) ((-986 . -21) T) ((-986 . -25) T) ((-751 . -21) T) ((-751 . -25) T) ((-731 . -21) T) ((-731 . -25) T) ((-727 . -664) 153767) ((-466 . -21) T) ((-466 . -25) T) ((-351 . -102) T) ((-176 . -102) T) ((-1024 . -1083) T) ((-888 . -1074) T) ((-790 . -102) T) ((-1277 . -375) 153746) ((-1276 . -921) 153652) ((-1256 . -375) 153631) ((-1255 . -921) 153482) ((-1201 . -1242) T) ((-1049 . -626) 153464) ((-420 . -844) 153417) ((-1199 . -506) 153383) ((-171 . -943) 153314) ((-1198 . -506) 153280) ((-1192 . -506) 153246) ((-728 . -1125) T) ((-1151 . -506) 153212) ((-593 . -1081) 153199) ((-577 . -1081) 153186) ((-508 . -1081) 153151) ((-327 . -301) 153130) ((-324 . -301) T) ((-366 . -626) 153112) ((-431 . -25) T) ((-431 . -21) T) ((-99 . -297) 153091) ((-593 . -111) 153076) ((-577 . -111) 153061) ((-508 . -111) 153017) ((-1201 . -905) 152984) ((-924 . -502) 152968) ((-48 . -626) 152950) ((-48 . -627) 152895) ((-246 . -132) 152766) ((-1315 . -662) 152725) ((-1265 . -943) 152704) ((-832 . -1246) 152683) ((-401 . -503) 152664) ((-1060 . -527) 152508) ((-401 . -626) 152474) ((-832 . -569) 152405) ((-599 . -664) 152380) ((-274 . -47) 152352) ((-254 . -47) 152309) ((-544 . -522) 152286) ((-593 . -629) 152258) ((-577 . -629) 152230) ((-508 . -629) 152163) ((-1099 . -1242) T) ((-1025 . -1242) T) ((-1284 . -23) T) ((-1284 . -1137) T) ((-1277 . -1137) T) ((-1277 . -23) T) ((-1256 . -1137) T) ((-715 . -1081) 152128) ((-1256 . -23) T) ((-1236 . -742) T) ((-1145 . -301) T) ((-1138 . -238) 152025) ((-1029 . -132) T) ((-1028 . -382) 151997) ((-112 . -380) T) ((-487 . -921) 151903) ((-996 . -132) T) ((-927 . -626) 151885) ((-55 . -629) 151867) ((-91 . -107) 151851) ((-937 . -132) T) ((-928 . -865) 151802) ((-717 . -1177) T) ((-715 . -111) 151758) ((-859 . -662) 151675) ((-609 . -1137) T) ((-608 . -1137) T) ((-728 . -733) 151504) ((-727 . -742) T) ((-815 . -25) T) ((-815 . -21) T) ((-500 . -865) T) ((-610 . -1242) T) ((-609 . -23) T) ((-598 . -1242) T) ((-220 . -865) T) ((-420 . -662) 151441) ((-593 . -1074) T) ((-577 . -1074) T) ((-549 . -1242) T) ((-508 . -1074) T) ((-355 . -1311) 151418) ((-330 . -465) 151397) ((-351 . -320) 151384) ((-608 . -23) T) ((-440 . -132) T) ((-674 . -664) 151358) ((-251 . -1035) 151342) ((-890 . -318) T) ((-1316 . -1306) 151326) ((-787 . -808) T) ((-787 . -811) T) ((-717 . -38) 151313) ((-577 . -239) T) ((-508 . -249) T) ((-508 . -239) T) ((-1305 . -502) 151297) ((-1288 . -1242) T) ((-1175 . -241) 151247) ((-1112 . -932) 151226) ((-117 . -38) 151213) ((-211 . -816) T) ((-210 . -816) T) ((-209 . -816) T) ((-208 . -816) T) ((-890 . -1047) 151191) ((-680 . -1242) T) ((-661 . -1242) T) ((-798 . -932) 151170) ((-796 . -932) 151149) ((-1214 . -1242) T) ((-367 . -1242) T) ((-364 . -1242) T) ((-356 . -1242) T) ((-274 . -1242) T) ((-254 . -1242) T) ((-467 . -932) 151128) ((-753 . -502) 151112) ((-1112 . -664) 151001) ((-715 . -629) 150936) ((-798 . -664) 150825) ((-636 . -1081) 150812) ((-492 . -1242) T) ((-355 . -380) T) ((-142 . -502) 150794) ((-796 . -664) 150683) ((-1166 . -1242) T) ((-562 . -865) T) ((-474 . -664) 150654) ((-274 . -905) 150513) ((-254 . -905) NIL) ((-118 . -1081) 150458) ((-467 . -664) 150347) ((-680 . -1063) 150324) ((-636 . -111) 150309) ((-403 . -1076) 150293) ((-367 . -1063) 150277) ((-364 . -1063) 150261) ((-356 . -1063) 150245) ((-274 . -1063) 150089) ((-254 . -1063) 149965) ((-933 . -1242) T) ((-118 . -111) 149894) ((-59 . -1242) T) ((-403 . -656) 149878) ((-634 . -1076) 149862) ((-532 . -1242) T) ((-529 . -1242) T) ((-510 . -1242) T) ((-509 . -1242) T) ((-450 . -626) 149844) ((-447 . -626) 149826) ((-634 . -656) 149810) ((-3 . -102) T) ((-1052 . -1235) 149779) ((-849 . -102) T) ((-705 . -57) 149737) ((-715 . -1074) T) ((-648 . -662) 149706) ((-620 . -662) 149675) ((-50 . -664) 149649) ((-300 . -465) T) ((-489 . -1235) 149618) ((0 . -102) T) ((-594 . -664) 149583) ((-531 . -664) 149528) ((-49 . -102) T) ((-933 . -1063) 149515) ((-715 . -249) T) ((-1105 . -422) 149494) ((-747 . -654) 149442) ((-1024 . -1125) T) ((-728 . -174) 149333) ((-636 . -629) 149228) ((-500 . -1017) 149210) ((-431 . -235) 149155) ((-274 . -389) 149139) ((-254 . -389) 149123) ((-412 . -1125) T) ((-1051 . -102) 149101) ((-351 . -38) 149085) ((-220 . -1017) 149067) ((-118 . -629) 148997) ((-176 . -38) 148929) ((-1276 . -318) 148908) ((-1255 . -318) 148887) ((-674 . -742) T) ((-99 . -626) 148869) ((-490 . -1076) 148834) ((-1192 . -654) 148786) ((-490 . -656) 148751) ((-660 . -868) 148730) ((-498 . -25) T) ((-498 . -21) T) ((-1255 . -1047) 148682) ((-1082 . -1242) T) ((-1 . -1242) T) ((-636 . -1074) T) ((-391 . -417) T) ((-403 . -102) T) ((-1130 . -631) 148597) ((-274 . -921) 148543) ((-254 . -921) 148520) ((-118 . -1074) T) ((-1112 . -742) T) ((-832 . -1137) T) ((-835 . -868) T) ((-636 . -239) 148499) ((-634 . -102) T) ((-524 . -1242) T) ((-520 . -1242) T) ((-798 . -742) T) ((-796 . -742) T) ((-1247 . -865) T) ((-426 . -1137) T) ((-118 . -249) T) ((-40 . -380) NIL) ((-118 . -239) NIL) ((-399 . -868) 148478) ((-467 . -742) T) ((-832 . -23) T) ((-747 . -25) T) ((-747 . -21) T) ((-686 . -915) 148399) ((-1102 . -297) 148378) ((-78 . -409) T) ((-78 . -408) T) ((-546 . -783) 148360) ((-228 . -868) T) ((-710 . -1081) 148310) ((-1317 . -102) T) ((-1284 . -132) T) ((-1277 . -132) T) ((-1256 . -132) T) ((-1199 . -25) T) ((-1167 . -424) 148294) ((-648 . -379) 148226) ((-620 . -379) 148158) ((-1182 . -1174) 148142) ((-103 . -1125) 148120) ((-1199 . -21) T) ((-1198 . -21) T) ((-883 . -626) 148102) ((-1024 . -733) 148050) ((-226 . -664) 148017) ((-710 . -111) 147951) ((-50 . -742) T) ((-1198 . -25) T) ((-363 . -361) T) ((-1192 . -21) T) ((-1105 . -465) 147902) ((-1192 . -25) T) ((-728 . -527) 147849) ((-594 . -742) T) ((-531 . -742) T) ((-1151 . -21) T) ((-1151 . -25) T) ((-609 . -132) T) ((-608 . -132) T) ((-305 . -662) 147584) ((-495 . -238) 147481) ((-371 . -465) T) ((-365 . -465) T) ((-357 . -465) T) ((-487 . -318) 147460) ((-1250 . -102) T) ((-324 . -297) 147395) ((-108 . -465) T) ((-79 . -454) T) ((-79 . -408) T) ((-490 . -102) T) ((-707 . -629) 147379) ((-1321 . -626) 147361) ((-1321 . -627) 147343) ((-1105 . -415) 147322) ((-1060 . -502) 147253) ((-655 . -664) 147237) ((-137 . -297) 147214) ((-577 . -811) T) ((-577 . -808) T) ((-1088 . -241) 147160) ((-1087 . -868) T) ((-729 . -868) T) ((-371 . -415) 147111) ((-365 . -415) 147062) ((-357 . -415) 147013) ((-1307 . -1137) T) ((-1316 . -1076) 146997) ((-393 . -1076) 146981) ((-1316 . -656) 146951) ((-834 . -238) T) ((-393 . -656) 146921) ((-710 . -629) 146856) ((-1307 . -23) T) ((-1294 . -102) T) ((-351 . -923) 146837) ((-177 . -626) 146819) ((-1167 . -1083) T) ((-560 . -380) T) ((-686 . -760) 146803) ((-1203 . -146) 146782) ((-1203 . -148) 146761) ((-1171 . -1125) T) ((-1171 . -1096) 146730) ((-69 . -1242) T) ((-1049 . -1081) 146667) ((-363 . -662) 146597) ((-884 . -1083) T) ((-246 . -654) 146503) ((-710 . -1074) T) ((-366 . -1081) 146448) ((-61 . -1242) T) ((-1049 . -111) 146364) ((-924 . -626) 146275) ((-710 . -249) T) ((-710 . -239) NIL) ((-859 . -864) 146254) ((-715 . -811) T) ((-715 . -808) T) ((-1028 . -424) 146231) ((-366 . -111) 146160) ((-391 . -943) T) ((-420 . -864) 146139) ((-728 . -301) 146050) ((-226 . -742) T) ((-1284 . -506) 146016) ((-1277 . -506) 145982) ((-1256 . -506) 145948) ((-591 . -1125) T) ((-327 . -1027) 145927) ((-225 . -1125) 145905) ((-1249 . -860) T) ((-330 . -998) 145867) ((-105 . -102) T) ((-48 . -1081) 145832) ((-889 . -868) NIL) ((-1316 . -102) T) ((-393 . -102) T) ((-1278 . -626) 145814) ((-1158 . -1159) 145798) ((-1029 . -654) 145780) ((-894 . -1242) T) ((-48 . -111) 145736) ((-697 . -1242) T) ((-692 . -1242) T) ((-678 . -1242) T) ((-831 . -915) 145603) ((-491 . -1242) T) ((-251 . -1242) T) ((-544 . -102) T) ((-513 . -102) T) ((-153 . -1299) 145587) ((-139 . -1242) T) ((-138 . -1242) T) ((-134 . -1242) T) ((-1241 . -102) T) ((-1049 . -629) 145524) ((-833 . -238) T) ((-1197 . -1246) 145503) ((-217 . -380) T) ((-366 . -629) 145433) ((-1150 . -1246) 145412) ((-246 . -25) 145245) ((-246 . -21) 145156) ((-128 . -120) 145140) ((-122 . -120) 145124) ((-44 . -760) 145108) ((-1197 . -569) 145019) ((-1150 . -569) 144950) ((-1249 . -1125) T) ((-559 . -868) T) ((-1060 . -297) 144925) ((-1191 . -1108) T) ((-1019 . -1108) T) ((-832 . -132) T) ((-118 . -811) NIL) ((-118 . -808) NIL) ((-367 . -318) T) ((-364 . -318) T) ((-356 . -318) T) ((-1119 . -1242) 144903) ((-259 . -1137) 144881) ((-258 . -1137) 144859) ((-1049 . -1074) T) ((-1028 . -1083) T) ((-48 . -629) 144792) ((-355 . -664) 144737) ((-1305 . -626) 144699) ((-1305 . -627) 144660) ((-634 . -38) 144644) ((-1199 . -235) 144597) ((-1198 . -235) 144543) ((-1102 . -626) 144525) ((-1049 . -249) T) ((-366 . -1074) T) ((-831 . -1299) 144495) ((-259 . -23) T) ((-258 . -23) T) ((-1012 . -626) 144477) ((-1192 . -235) 144294) ((-1184 . -152) 144241) ((-753 . -627) 144202) ((-753 . -626) 144184) ((-1029 . -25) T) ((-815 . -865) 144163) ((-1024 . -527) 144075) ((-693 . -868) T) ((-366 . -239) T) ((-366 . -249) T) ((-401 . -629) 144056) ((-933 . -318) T) ((-142 . -626) 144038) ((-142 . -627) 143997) ((-330 . -915) 143901) ((-1029 . -21) T) ((-996 . -25) T) ((-937 . -21) T) ((-937 . -25) T) ((-440 . -21) T) ((-440 . -25) T) ((-859 . -424) 143885) ((-48 . -1074) T) ((-1314 . -1306) 143869) ((-1312 . -1306) 143853) ((-1060 . -617) 143828) ((-327 . -627) 143689) ((-327 . -626) 143671) ((-324 . -627) NIL) ((-324 . -626) 143653) ((-48 . -249) T) ((-48 . -239) T) ((-670 . -297) 143614) ((-563 . -241) 143564) ((-584 . -868) T) ((-140 . -626) 143531) ((-137 . -626) 143513) ((-115 . -626) 143495) ((-490 . -38) 143460) ((-1316 . -1313) 143439) ((-1307 . -132) T) ((-1315 . -1083) T) ((-1107 . -102) T) ((-88 . -1242) T) ((-513 . -320) NIL) ((-1025 . -107) 143423) ((-908 . -1125) T) ((-904 . -1125) T) ((-1292 . -667) 143407) ((-1292 . -385) 143391) ((-338 . -1242) T) ((-606 . -865) T) ((-1167 . -1125) T) ((-1167 . -1078) 143331) ((-103 . -527) 143264) ((-950 . -626) 143246) ((-355 . -742) T) ((-30 . -626) 143228) ((-884 . -1125) T) ((-859 . -1083) 143207) ((-40 . -664) 143114) ((-228 . -1246) T) ((-420 . -1083) T) ((-1183 . -152) 143096) ((-1024 . -301) 143047) ((-892 . -1242) T) ((-630 . -1125) T) ((-228 . -569) T) ((-330 . -1273) 143031) ((-330 . -1270) 143001) ((-717 . -662) 142973) ((-1214 . -1218) 142952) ((-1100 . -626) 142934) ((-1214 . -107) 142884) ((-663 . -152) 142868) ((-645 . -152) 142814) ((-117 . -662) 142786) ((-492 . -1218) 142765) ((-500 . -148) T) ((-500 . -146) NIL) ((-1145 . -627) 142680) ((-451 . -626) 142662) ((-220 . -148) T) ((-220 . -146) NIL) ((-1145 . -626) 142644) ((-130 . -102) T) ((-52 . -102) T) ((-1256 . -654) 142596) ((-492 . -107) 142546) ((-1018 . -23) T) ((-1316 . -38) 142516) ((-1197 . -1137) T) ((-1150 . -1137) T) ((-1087 . -1246) T) ((-246 . -235) 142407) ((-322 . -102) T) ((-872 . -1137) T) ((-975 . -1246) 142386) ((-494 . -1246) 142365) ((-1087 . -569) T) ((-975 . -569) 142296) ((-1197 . -23) T) ((-1176 . -1108) T) ((-1150 . -23) T) ((-872 . -23) T) ((-494 . -569) 142227) ((-1167 . -733) 142159) ((-686 . -1076) 142143) ((-1171 . -527) 142076) ((-686 . -656) 142060) ((-1060 . -627) NIL) ((-1060 . -626) 142042) ((-96 . -1108) T) ((-1321 . -1081) 142029) ((-884 . -733) 141999) ((-1321 . -111) 141984) ((-1236 . -47) 141953) ((-1192 . -865) NIL) ((-259 . -132) T) ((-258 . -132) T) ((-1129 . -1125) T) ((-1028 . -1125) T) ((-62 . -626) 141935) ((-1105 . -915) 141804) ((-1049 . -808) T) ((-1049 . -811) T) ((-1284 . -25) T) ((-1284 . -21) T) ((-1277 . -21) T) ((-1277 . -25) T) ((-888 . -664) 141791) ((-1256 . -21) T) ((-1256 . -25) T) ((-1052 . -152) 141775) ((-1029 . -235) 141762) ((-890 . -836) 141741) ((-890 . -943) T) ((-728 . -297) 141668) ((-609 . -21) T) ((-351 . -662) 141627) ((-108 . -915) NIL) ((-609 . -25) T) ((-608 . -21) T) ((-176 . -662) 141544) ((-40 . -742) T) ((-225 . -527) 141477) ((-608 . -25) T) ((-489 . -152) 141461) ((-476 . -152) 141445) ((-185 . -1242) T) ((-944 . -810) T) ((-944 . -742) T) ((-787 . -809) T) ((-787 . -810) T) ((-519 . -1125) T) ((-515 . -1125) T) ((-787 . -742) T) ((-228 . -375) T) ((-1314 . -1076) 141429) ((-1312 . -1076) 141413) ((-1314 . -656) 141383) ((-1182 . -1125) 141361) ((-889 . -1246) T) ((-1312 . -656) 141331) ((-1113 . -868) T) ((-670 . -626) 141313) ((-889 . -569) T) ((-710 . -380) NIL) ((-44 . -1076) 141297) ((-1321 . -629) 141279) ((-1315 . -1125) T) ((-686 . -102) T) ((-371 . -1299) 141263) ((-365 . -1299) 141247) ((-44 . -656) 141231) ((-357 . -1299) 141215) ((-561 . -102) T) ((-1236 . -1242) T) ((-533 . -865) 141194) ((-727 . -1242) T) ((-981 . -868) 141173) ((-866 . -868) T) ((-500 . -238) T) ((-220 . -238) T) ((-1071 . -1125) T) ((-833 . -465) 141152) ((-153 . -1076) 141136) ((-1071 . -1096) 141065) ((-1052 . -1001) 141034) ((-835 . -1137) T) ((-1028 . -733) 140979) ((-153 . -656) 140963) ((-399 . -1137) T) ((-489 . -1001) 140932) ((-476 . -1001) 140901) ((-1208 . -868) T) ((-110 . -152) 140883) ((-73 . -626) 140865) ((-912 . -626) 140847) ((-1207 . -868) T) ((-1105 . -740) 140826) ((-1321 . -1074) T) ((-832 . -654) 140774) ((-305 . -1083) 140716) ((-171 . -1246) 140621) ((-228 . -1137) T) ((-335 . -23) T) ((-1192 . -1017) 140573) ((-1278 . -1081) 140478) ((-859 . -1125) T) ((-129 . -868) T) ((-1151 . -756) 140457) ((-1276 . -943) 140436) ((-1255 . -943) 140415) ((-888 . -742) T) ((-171 . -569) 140326) ((-593 . -664) 140313) ((-577 . -664) 140285) ((-420 . -1125) T) ((-271 . -1125) T) ((-215 . -626) 140267) ((-508 . -664) 140217) ((-228 . -23) T) ((-1255 . -836) 140170) ((-1314 . -102) T) ((-504 . -1242) T) ((-366 . -1311) 140147) ((-1312 . -102) T) ((-1278 . -111) 140039) ((-1138 . -915) 139906) ((-831 . -1076) 139807) ((-831 . -656) 139729) ((-145 . -626) 139711) ((-1018 . -132) T) ((-44 . -102) T) ((-246 . -865) 139662) ((-599 . -1242) T) ((-1265 . -1246) 139641) ((-103 . -502) 139625) ((-1315 . -733) 139595) ((-1112 . -47) 139556) ((-1087 . -1137) T) ((-975 . -1137) T) ((-128 . -34) T) ((-122 . -34) T) ((-1265 . -569) 139467) ((-798 . -47) 139444) ((-796 . -47) 139416) ((-1222 . -1242) T) ((-1197 . -132) T) ((-366 . -380) T) ((-494 . -1137) T) ((-1150 . -132) T) ((-889 . -375) T) ((-467 . -47) 139395) ((-872 . -132) T) ((-333 . -868) 139374) ((-153 . -102) T) ((-1087 . -23) T) ((-975 . -23) T) ((-584 . -569) T) ((-832 . -25) T) ((-832 . -21) T) ((-1167 . -527) 139307) ((-605 . -1108) T) ((-599 . -1063) 139291) ((-1278 . -629) 139165) ((-494 . -23) T) ((-363 . -1083) T) ((-391 . -868) T) ((-1236 . -921) 139146) ((-686 . -320) 139084) ((-1284 . -235) 139037) ((-1138 . -1299) 139007) ((-715 . -664) 138972) ((-1029 . -865) T) ((-1028 . -174) T) ((-986 . -146) 138951) ((-648 . -1125) T) ((-620 . -1125) T) ((-986 . -148) 138930) ((-751 . -148) 138909) ((-751 . -146) 138888) ((-674 . -1242) T) ((-996 . -865) T) ((-1277 . -235) 138834) ((-1256 . -235) 138651) ((-849 . -662) 138568) ((-487 . -943) 138547) ((-348 . -1242) T) ((-330 . -1076) 138382) ((-327 . -1081) 138292) ((-324 . -1081) 138221) ((-1024 . -297) 138179) ((-420 . -733) 138131) ((-330 . -656) 137972) ((-608 . -235) 137925) ((-717 . -864) T) ((-1278 . -1074) T) ((-327 . -111) 137821) ((-324 . -111) 137734) ((-97 . -1242) T) ((-987 . -102) T) ((-831 . -102) 137466) ((-728 . -627) NIL) ((-728 . -626) 137448) ((-1278 . -337) 137392) ((-674 . -1063) 137288) ((-1112 . -1242) T) ((-1060 . -299) 137263) ((-593 . -742) T) ((-577 . -810) T) ((-171 . -375) 137214) ((-577 . -807) T) ((-577 . -742) T) ((-508 . -742) T) ((-798 . -1242) T) ((-796 . -1242) T) ((-1171 . -502) 137198) ((-474 . -1242) T) ((-467 . -1242) T) ((-1314 . -1313) 137174) ((-1112 . -905) NIL) ((-889 . -1137) T) ((-118 . -932) NIL) ((-1312 . -1313) 137153) ((-665 . -1242) T) ((-798 . -905) NIL) ((-796 . -905) 137012) ((-1307 . -25) T) ((-1307 . -21) T) ((-1239 . -102) 136990) ((-1131 . -408) T) ((-636 . -664) 136977) ((-467 . -905) NIL) ((-691 . -102) 136927) ((-1112 . -1063) 136754) ((-889 . -23) T) ((-798 . -1063) 136613) ((-796 . -1063) 136470) ((-118 . -664) 136415) ((-467 . -1063) 136291) ((-285 . -1242) T) ((-327 . -629) 135855) ((-324 . -629) 135738) ((-50 . -1242) T) ((-403 . -662) 135707) ((-665 . -1063) 135691) ((-640 . -102) T) ((-594 . -1242) T) ((-531 . -1242) T) ((-225 . -502) 135675) ((-1292 . -34) T) ((-634 . -662) 135634) ((-300 . -1076) 135621) ((-137 . -629) 135605) ((-300 . -656) 135592) ((-648 . -733) 135576) ((-620 . -733) 135560) ((-686 . -38) 135520) ((-330 . -102) T) ((-1145 . -1081) 135507) ((-85 . -626) 135489) ((-50 . -1063) 135473) ((-1112 . -389) 135457) ((-798 . -389) 135441) ((-715 . -742) T) ((-715 . -810) T) ((-715 . -807) T) ((-60 . -57) 135403) ((-594 . -1063) 135390) ((-531 . -1063) 135367) ((-173 . -1242) T) ((-335 . -132) T) ((-327 . -1074) 135257) ((-324 . -1074) T) ((-171 . -1137) T) ((-796 . -389) 135241) ((-45 . -152) 135191) ((-1029 . -1017) 135173) ((-467 . -389) 135157) ((-420 . -174) T) ((-327 . -249) 135136) ((-324 . -249) T) ((-324 . -239) NIL) ((-305 . -1125) 134918) ((-228 . -132) T) ((-1145 . -111) 134903) ((-171 . -23) T) ((-815 . -148) 134882) ((-815 . -146) 134861) ((-259 . -654) 134767) ((-258 . -654) 134673) ((-330 . -295) 134639) ((-1182 . -527) 134572) ((-490 . -662) 134522) ((-651 . -860) T) ((-495 . -915) 134389) ((-1158 . -1125) T) ((-228 . -1085) T) ((-831 . -320) 134327) ((-1112 . -921) 134262) ((-798 . -921) 134205) ((-796 . -921) 134189) ((-1314 . -38) 134159) ((-1312 . -38) 134129) ((-1265 . -1137) T) ((-873 . -1137) T) ((-467 . -921) 134106) ((-876 . -1125) T) ((-1265 . -23) T) ((-1145 . -629) 134078) ((-1087 . -132) T) ((-873 . -23) T) ((-584 . -1137) T) ((-636 . -742) T) ((-523 . -868) T) ((-367 . -943) T) ((-364 . -943) T) ((-300 . -102) T) ((-356 . -943) T) ((-995 . -1108) T) ((-975 . -132) T) ((-832 . -235) 134023) ((-118 . -810) NIL) ((-118 . -807) NIL) ((-118 . -742) T) ((-1071 . -527) 133924) ((-710 . -932) NIL) ((-584 . -23) T) ((-494 . -132) T) ((-431 . -238) 133875) ((-691 . -320) 133813) ((-226 . -1242) T) ((-651 . -1125) T) ((-648 . -777) T) ((-620 . -777) T) ((-1256 . -865) NIL) ((-1105 . -1076) 133723) ((-1028 . -301) T) ((-710 . -664) 133673) ((-259 . -25) T) ((-363 . -1125) T) ((-259 . -21) T) ((-258 . -25) T) ((-258 . -21) T) ((-153 . -38) 133657) ((-2 . -102) T) ((-933 . -943) T) ((-1105 . -656) 133525) ((-495 . -1299) 133495) ((-1145 . -1074) T) ((-727 . -318) T) ((-717 . -1083) T) ((-371 . -1076) 133447) ((-365 . -1076) 133399) ((-357 . -1076) 133351) ((-371 . -656) 133303) ((-226 . -1063) 133280) ((-365 . -656) 133232) ((-108 . -1076) 133182) ((-357 . -656) 133134) ((-305 . -733) 133076) ((-655 . -1242) T) ((-500 . -465) T) ((-420 . -527) 132988) ((-108 . -656) 132938) ((-220 . -465) T) ((-1145 . -239) T) ((-306 . -152) 132888) ((-1024 . -627) 132849) ((-1024 . -626) 132831) ((-1014 . -626) 132813) ((-117 . -1083) T) ((-670 . -1081) 132797) ((-228 . -506) T) ((-412 . -626) 132779) ((-412 . -627) 132756) ((-1079 . -1299) 132726) ((-670 . -111) 132705) ((-686 . -923) 132628) ((-1167 . -502) 132612) ((-1316 . -662) 132571) ((-393 . -662) 132540) ((-63 . -454) T) ((-63 . -408) T) ((-1184 . -102) T) ((-889 . -132) T) ((-497 . -102) 132490) ((-1143 . -1242) T) ((-1248 . -868) T) ((-1321 . -380) T) ((-1105 . -102) T) ((-1086 . -102) T) ((-363 . -733) 132435) ((-890 . -868) 132386) ((-747 . -148) 132365) ((-747 . -146) 132344) ((-670 . -629) 132262) ((-1049 . -664) 132199) ((-536 . -1125) 132177) ((-371 . -102) T) ((-365 . -102) T) ((-357 . -102) T) ((-108 . -102) T) ((-517 . -1125) T) ((-366 . -664) 132122) ((-1197 . -654) 132070) ((-1150 . -654) 132018) ((-397 . -522) 131997) ((-849 . -864) 131976) ((-710 . -742) T) ((-391 . -1246) T) ((-344 . -1242) T) ((-1256 . -1017) 131928) ((-351 . -1083) T) ((-112 . -1242) T) ((-176 . -1083) T) ((-103 . -626) 131860) ((-1199 . -146) 131839) ((-1199 . -148) 131818) ((-391 . -569) T) ((-1198 . -148) 131797) ((-1198 . -146) 131776) ((-1192 . -146) 131683) ((-420 . -301) T) ((-1192 . -148) 131590) ((-1151 . -148) 131569) ((-1151 . -146) 131548) ((-330 . -38) 131389) ((-171 . -132) T) ((-324 . -811) NIL) ((-324 . -808) NIL) ((-670 . -1074) T) ((-48 . -664) 131339) ((-1138 . -1076) 131240) ((-912 . -629) 131217) ((-1138 . -656) 131139) ((-1191 . -102) T) ((-1019 . -102) T) ((-1018 . -21) T) ((-128 . -1035) 131123) ((-122 . -1035) 131107) ((-1018 . -25) T) ((-924 . -120) 131091) ((-1183 . -102) T) ((-1265 . -132) T) ((-1255 . -868) 130990) ((-1197 . -25) T) ((-1197 . -21) T) ((-1184 . -320) 130785) ((-355 . -1242) T) ((-1150 . -25) T) ((-873 . -132) T) ((-407 . -1242) T) ((-1150 . -21) T) ((-872 . -25) T) ((-872 . -21) T) ((-798 . -318) 130764) ((-1182 . -502) 130748) ((-1175 . -152) 130698) ((-1171 . -626) 130660) ((-663 . -102) 130610) ((-645 . -102) T) ((-1171 . -627) 130571) ((-584 . -132) T) ((-634 . -864) 130550) ((-1049 . -807) T) ((-1049 . -810) T) ((-1049 . -742) T) ((-831 . -923) 130419) ((-728 . -1081) 130242) ((-615 . -868) 130221) ((-497 . -320) 130159) ((-466 . -430) 130129) ((-363 . -174) T) ((-300 . -38) 130116) ((-259 . -235) 130007) ((-258 . -235) 129898) ((-284 . -102) T) ((-283 . -102) T) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-355 . -1063) 129875) ((-278 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-728 . -111) 129684) ((-366 . -742) T) ((-686 . -273) 129668) ((-686 . -233) 129652) ((-594 . -318) T) ((-531 . -318) T) ((-305 . -527) 129601) ((-1189 . -1242) T) ((-108 . -320) NIL) ((-72 . -408) T) ((-1138 . -102) 129333) ((-849 . -424) 129317) ((-1145 . -811) T) ((-1145 . -808) T) ((-717 . -1125) T) ((-591 . -626) 129299) ((-391 . -375) T) ((-171 . -506) 129277) ((-225 . -626) 129209) ((-135 . -1125) T) ((-117 . -1125) T) ((-989 . -1242) T) ((-48 . -742) T) ((-1071 . -502) 129174) ((-142 . -438) 129156) ((-142 . -380) T) ((-1052 . -102) T) ((-525 . -522) 129135) ((-728 . -629) 128891) ((-1249 . -626) 128873) ((-1206 . -1242) T) ((-1206 . -1063) 128809) ((-1199 . -238) 128768) ((-489 . -102) T) ((-476 . -102) T) ((-1198 . -238) 128720) ((-1192 . -238) 128543) ((-1059 . -1137) T) ((-330 . -923) 128449) ((-1201 . -868) T) ((-1199 . -35) 128415) ((-1199 . -95) 128381) ((-1199 . -1230) 128347) ((-1199 . -1227) 128313) ((-1198 . -1227) 128279) ((-1198 . -1230) 128245) ((-1198 . -95) 128211) ((-1198 . -35) 128177) ((-1192 . -1227) 128143) ((-1192 . -1230) 128109) ((-1183 . -320) NIL) ((-89 . -409) T) ((-89 . -408) T) ((-1105 . -1177) 128088) ((-40 . -1242) T) ((-1192 . -95) 128054) ((-1059 . -23) T) ((-1192 . -35) 128020) ((-584 . -506) T) ((-1151 . -35) 127986) ((-1151 . -95) 127952) ((-1151 . -1230) 127918) ((-1151 . -1227) 127884) ((-373 . -1137) T) ((-371 . -1177) 127863) ((-365 . -1177) 127842) ((-357 . -1177) 127821) ((-1129 . -297) 127777) ((-977 . -1242) T) ((-944 . -1242) T) ((-108 . -1177) T) ((-849 . -1083) 127756) ((-787 . -1242) T) ((-663 . -320) 127694) ((-645 . -320) 127545) ((-688 . -1242) T) ((-728 . -1074) T) ((-1087 . -654) 127527) ((-1105 . -38) 127395) ((-975 . -654) 127343) ((-1029 . -148) T) ((-1029 . -146) NIL) ((-391 . -1137) T) ((-335 . -25) T) ((-333 . -23) T) ((-966 . -865) 127322) ((-728 . -337) 127299) ((-494 . -654) 127247) ((-40 . -1063) 127135) ((-728 . -239) T) ((-717 . -733) 127122) ((-351 . -1125) T) ((-176 . -1125) T) ((-342 . -865) T) ((-431 . -465) 127072) ((-391 . -23) T) ((-371 . -38) 127037) ((-365 . -38) 127002) ((-357 . -38) 126967) ((-80 . -454) T) ((-80 . -408) T) ((-228 . -25) T) ((-228 . -21) T) ((-852 . -1137) T) ((-108 . -38) 126917) ((-843 . -1137) T) ((-790 . -1125) T) ((-117 . -733) 126904) ((-688 . -1063) 126888) ((-625 . -102) T) ((-852 . -23) T) ((-843 . -23) T) ((-1182 . -297) 126840) ((-1138 . -320) 126778) ((-495 . -1076) 126679) ((-1127 . -241) 126663) ((-64 . -409) T) ((-64 . -408) T) ((-1176 . -102) T) ((-110 . -102) T) ((-495 . -656) 126585) ((-40 . -389) 126562) ((-96 . -102) T) ((-669 . -870) 126546) ((-1197 . -235) 126533) ((-1160 . -1108) T) ((-1087 . -21) T) ((-1087 . -25) T) ((-1079 . -1076) 126517) ((-831 . -273) 126486) ((-831 . -233) 126455) ((-975 . -25) T) ((-975 . -21) T) ((-1145 . -380) T) ((-1079 . -656) 126397) ((-634 . -1083) T) ((-1052 . -320) 126335) ((-908 . -626) 126317) ((-686 . -662) 126276) ((-494 . -25) T) ((-494 . -21) T) ((-397 . -1076) 126260) ((-904 . -626) 126242) ((-888 . -1242) T) ((-536 . -527) 126175) ((-259 . -865) 126126) ((-258 . -865) 126077) ((-397 . -656) 126047) ((-889 . -654) 126024) ((-489 . -320) 125962) ((-560 . -1242) T) ((-476 . -320) 125900) ((-363 . -301) T) ((-1182 . -1280) 125884) ((-1167 . -626) 125846) ((-1167 . -627) 125807) ((-1165 . -102) T) ((-1024 . -1081) 125703) ((-40 . -921) 125655) ((-1182 . -617) 125632) ((-1321 . -664) 125619) ((-1088 . -152) 125565) ((-500 . -915) NIL) ((-884 . -503) 125542) ((-1024 . -111) 125424) ((-890 . -1246) T) ((-220 . -915) NIL) ((-351 . -733) 125408) ((-884 . -626) 125370) ((-176 . -733) 125302) ((-890 . -569) T) ((-420 . -297) 125260) ((-246 . -238) 125157) ((-108 . -413) 125139) ((-84 . -396) T) ((-84 . -408) T) ((-717 . -174) T) ((-630 . -626) 125121) ((-99 . -742) T) ((-495 . -102) 124853) ((-99 . -486) T) ((-117 . -174) T) ((-1314 . -662) 124812) ((-1312 . -662) 124771) ((-171 . -654) 124719) ((-1105 . -923) 124590) ((-1079 . -102) T) ((-1024 . -629) 124480) ((-889 . -25) T) ((-831 . -244) 124459) ((-889 . -21) T) ((-834 . -102) T) ((-1029 . -238) T) ((-44 . -662) 124402) ((-427 . -102) T) ((-397 . -102) T) ((-110 . -320) NIL) ((-230 . -102) 124352) ((-217 . -1242) T) ((-128 . -1242) T) ((-122 . -1242) T) ((-108 . -923) NIL) ((-833 . -1076) 124303) ((-59 . -868) 124282) ((-833 . -656) 124224) ((-529 . -868) 124203) ((-509 . -868) 124182) ((-1059 . -132) T) ((-686 . -379) 124166) ((-153 . -662) 124125) ((-1321 . -742) T) ((-648 . -297) 124083) ((-620 . -297) 124041) ((-1284 . -146) 124020) ((-1265 . -654) 123968) ((-1024 . -1074) T) ((-1129 . -626) 123950) ((-1028 . -626) 123932) ((-593 . -1242) T) ((-577 . -1242) T) ((-508 . -1242) T) ((-528 . -23) T) ((-523 . -23) T) ((-355 . -318) T) ((-521 . -23) T) ((-333 . -132) T) ((-3 . -1125) T) ((-1028 . -627) 123916) ((-1024 . -249) 123895) ((-1024 . -239) 123874) ((-1284 . -148) 123853) ((-1277 . -148) 123832) ((-849 . -1125) T) ((-1277 . -146) 123811) ((-1276 . -1246) 123790) ((-1256 . -146) 123697) ((-1256 . -148) 123604) ((-1255 . -1246) 123583) ((-391 . -132) T) ((-228 . -235) 123570) ((-176 . -174) T) ((-577 . -905) 123552) ((0 . -1125) T) ((-171 . -21) T) ((-171 . -25) T) ((-55 . -1242) T) ((-49 . -1125) T) ((-1278 . -664) 123457) ((-1276 . -569) 123408) ((-1255 . -569) 123359) ((-730 . -1137) T) ((-653 . -23) T) ((-577 . -1063) 123341) ((-608 . -148) 123320) ((-608 . -146) 123299) ((-508 . -1063) 123242) ((-1160 . -1162) T) ((-87 . -396) T) ((-87 . -408) T) ((-890 . -375) T) ((-852 . -132) T) ((-843 . -132) T) ((-987 . -662) 123186) ((-730 . -23) T) ((-519 . -626) 123152) ((-515 . -626) 123134) ((-831 . -662) 122913) ((-1316 . -1083) T) ((-391 . -1085) T) ((-1051 . -1125) 122891) ((-55 . -1063) 122873) ((-924 . -34) T) ((-495 . -320) 122811) ((-605 . -102) T) ((-1182 . -627) 122772) ((-1182 . -626) 122704) ((-1203 . -1076) 122587) ((-45 . -102) T) ((-833 . -102) T) ((-1203 . -656) 122484) ((-1293 . -1242) T) ((-1265 . -25) T) ((-1265 . -21) T) ((-1087 . -235) 122471) ((-873 . -25) T) ((-524 . -868) T) ((-255 . -1242) T) ((-44 . -379) 122455) ((-873 . -21) T) ((-747 . -465) 122406) ((-1315 . -626) 122388) ((-726 . -1242) T) ((-715 . -1242) T) ((-1304 . -1076) 122358) ((-1079 . -320) 122296) ((-687 . -1108) T) ((-619 . -1108) T) ((-403 . -1125) T) ((-584 . -25) T) ((-584 . -21) T) ((-182 . -1108) T) ((-162 . -1108) T) ((-157 . -1108) T) ((-155 . -1108) T) ((-1304 . -656) 122266) ((-634 . -1125) T) ((-715 . -905) 122248) ((-1292 . -1242) T) ((-230 . -320) 122186) ((-145 . -380) T) ((-1215 . -1242) T) ((-1071 . -627) 122128) ((-1071 . -626) 122071) ((-324 . -932) NIL) ((-1250 . -860) T) ((-1138 . -923) 121940) ((-715 . -1063) 121885) ((-727 . -943) T) ((-487 . -1246) 121864) ((-1198 . -465) 121843) ((-1192 . -465) 121822) ((-341 . -102) T) ((-890 . -1137) T) ((-330 . -662) 121704) ((-327 . -664) 121433) ((-324 . -664) 121362) ((-487 . -569) 121313) ((-351 . -527) 121279) ((-563 . -152) 121229) ((-40 . -318) T) ((-859 . -626) 121211) ((-717 . -301) T) ((-890 . -23) T) ((-391 . -506) T) ((-1105 . -273) 121181) ((-1105 . -233) 121151) ((-525 . -102) T) ((-420 . -627) 120958) ((-420 . -626) 120940) ((-271 . -626) 120922) ((-117 . -301) T) ((-1278 . -742) T) ((-636 . -1242) T) ((-1317 . -1125) T) ((-1276 . -375) 120901) ((-1255 . -375) 120880) ((-1305 . -34) T) ((-1250 . -1125) T) ((-118 . -1242) T) ((-108 . -273) 120862) ((-108 . -233) 120844) ((-1203 . -102) T) ((-490 . -1125) T) ((-536 . -502) 120828) ((-753 . -34) T) ((-669 . -1076) 120812) ((-669 . -656) 120782) ((-889 . -235) NIL) ((-142 . -34) T) ((-118 . -903) 120759) ((-118 . -905) NIL) ((-636 . -1063) 120642) ((-1304 . -102) T) ((-1284 . -238) 120601) ((-660 . -865) 120580) ((-1277 . -238) 120532) ((-1256 . -238) 120355) ((-306 . -102) T) ((-728 . -380) 120334) ((-118 . -1063) 120311) ((-403 . -733) 120295) ((-608 . -238) 120254) ((-634 . -733) 120238) ((-1130 . -1242) T) ((-45 . -320) 120042) ((-832 . -146) 120021) ((-832 . -148) 120000) ((-300 . -662) 119972) ((-1315 . -394) 119951) ((-835 . -865) T) ((-1294 . -1125) T) ((-1184 . -232) 119898) ((-399 . -865) 119877) ((-1284 . -35) 119843) ((-1284 . -1230) 119809) ((-1284 . -1227) 119775) ((-1277 . -1227) 119741) ((-528 . -132) T) ((-1277 . -1230) 119707) ((-1256 . -1227) 119673) ((-1256 . -1230) 119639) ((-1284 . -95) 119605) ((-1277 . -95) 119571) ((-431 . -915) 119492) ((-648 . -626) 119461) ((-620 . -626) 119430) ((-228 . -865) T) ((-1277 . -35) 119396) ((-1276 . -1137) T) ((-1256 . -95) 119362) ((-1145 . -664) 119334) ((-1256 . -35) 119300) ((-1255 . -1137) T) ((-606 . -152) 119282) ((-1105 . -361) 119261) ((-176 . -301) T) ((-118 . -389) 119238) ((-118 . -350) 119215) ((-171 . -235) 119140) ((-888 . -318) T) ((-324 . -810) NIL) ((-324 . -807) NIL) ((-327 . -742) 118989) ((-324 . -742) T) ((-653 . -132) T) ((-487 . -375) 118968) ((-371 . -361) 118947) ((-365 . -361) 118926) ((-357 . -361) 118905) ((-327 . -486) 118884) ((-1276 . -23) T) ((-1255 . -23) T) ((-734 . -1137) T) ((-730 . -132) T) ((-669 . -102) T) ((-490 . -733) 118849) ((-678 . -868) 118828) ((-45 . -293) 118778) ((-105 . -1125) T) ((-68 . -626) 118760) ((-251 . -868) 118739) ((-995 . -102) T) ((-882 . -102) T) ((-636 . -921) 118698) ((-1316 . -1125) T) ((-393 . -1125) T) ((-1265 . -235) 118685) ((-1241 . -1125) T) ((-82 . -1242) T) ((-1138 . -273) 118654) ((-1087 . -865) T) ((-118 . -921) NIL) ((-798 . -943) 118633) ((-729 . -865) T) ((-544 . -1125) T) ((-513 . -1125) T) ((-367 . -1246) T) ((-364 . -1246) T) ((-356 . -1246) T) ((-274 . -1246) 118612) ((-254 . -1246) 118591) ((-546 . -878) T) ((-1138 . -233) 118560) ((-1183 . -844) T) ((-1167 . -1081) 118544) ((-403 . -777) T) ((-710 . -1242) T) ((-707 . -1063) 118528) ((-367 . -569) T) ((-364 . -569) T) ((-356 . -569) T) ((-274 . -569) 118459) ((-254 . -569) 118390) ((-538 . -1108) T) ((-1167 . -111) 118369) ((-466 . -760) 118339) ((-884 . -1081) 118309) ((-833 . -38) 118251) ((-710 . -903) 118233) ((-710 . -905) 118215) ((-306 . -320) 118019) ((-1182 . -299) 117996) ((-933 . -1246) T) ((-1105 . -662) 117891) ((-1029 . -465) T) ((-686 . -424) 117875) ((-884 . -111) 117840) ((-937 . -465) T) ((-710 . -1063) 117785) ((-933 . -569) T) ((-546 . -626) 117767) ((-594 . -943) T) ((-500 . -1076) 117717) ((-487 . -1137) T) ((-531 . -943) T) ((-495 . -923) 117586) ((-65 . -626) 117568) ((-220 . -1076) 117518) ((-500 . -656) 117468) ((-371 . -662) 117405) ((-365 . -662) 117342) ((-357 . -662) 117279) ((-645 . -232) 117225) ((-220 . -656) 117175) ((-108 . -662) 117125) ((-487 . -23) T) ((-1145 . -810) T) ((-890 . -132) T) ((-1145 . -807) T) ((-1307 . -1309) 117104) ((-1145 . -742) T) ((-670 . -664) 117078) ((-305 . -626) 116819) ((-1167 . -629) 116737) ((-1060 . -34) T) ((-832 . -238) 116688) ((-593 . -318) T) ((-577 . -318) T) ((-508 . -318) T) ((-1316 . -733) 116658) ((-710 . -389) 116640) ((-710 . -350) 116622) ((-490 . -174) T) ((-393 . -733) 116592) ((-884 . -629) 116527) ((-889 . -865) NIL) ((-577 . -1047) T) ((-508 . -1047) T) ((-1158 . -626) 116509) ((-1138 . -244) 116488) ((-216 . -102) T) ((-1175 . -102) T) ((-71 . -626) 116470) ((-1049 . -1242) T) ((-1167 . -1074) T) ((-1203 . -38) 116367) ((-876 . -626) 116349) ((-577 . -558) T) ((-686 . -1083) T) ((-747 . -972) 116302) ((-1167 . -239) 116281) ((-366 . -1242) T) ((-1107 . -1125) T) ((-1059 . -25) T) ((-1059 . -21) T) ((-1028 . -1081) 116226) ((-338 . -868) 116205) ((-928 . -102) T) ((-884 . -1074) T) ((-710 . -921) NIL) ((-367 . -340) 116189) ((-367 . -375) T) ((-364 . -340) 116173) ((-364 . -375) T) ((-356 . -340) 116157) ((-356 . -375) T) ((-500 . -102) T) ((-1304 . -38) 116127) ((-559 . -865) T) ((-536 . -703) 116077) ((-220 . -102) T) ((-1049 . -1063) 115957) ((-1028 . -111) 115886) ((-651 . -626) 115868) ((-1199 . -998) 115837) ((-1198 . -998) 115799) ((-533 . -152) 115783) ((-1105 . -382) 115762) ((-363 . -626) 115744) ((-333 . -21) T) ((-366 . -1063) 115721) ((-333 . -25) T) ((-1192 . -998) 115690) ((-48 . -1242) T) ((-76 . -626) 115672) ((-1151 . -998) 115639) ((-715 . -318) T) ((-130 . -860) T) ((-933 . -375) T) ((-391 . -25) T) ((-391 . -21) T) ((-933 . -340) 115626) ((-86 . -626) 115608) ((-715 . -1047) T) ((-693 . -865) T) ((-401 . -1242) T) ((-1276 . -132) T) ((-1255 . -132) T) ((-924 . -1035) 115592) ((-852 . -21) T) ((-48 . -1063) 115535) ((-852 . -25) T) ((-843 . -25) T) ((-843 . -21) T) ((-1138 . -662) 115314) ((-1314 . -1083) T) ((-562 . -102) T) ((-1312 . -1083) T) ((-670 . -742) T) ((-1129 . -631) 115217) ((-1028 . -629) 115147) ((-1315 . -1081) 115131) ((-927 . -1242) T) ((-831 . -424) 115100) ((-103 . -120) 115084) ((-130 . -1125) T) ((-52 . -1125) T) ((-949 . -626) 115066) ((-889 . -1017) 115043) ((-839 . -102) T) ((-1315 . -111) 115022) ((-747 . -915) 114997) ((-669 . -38) 114967) ((-584 . -865) T) ((-367 . -1137) T) ((-364 . -1137) T) ((-356 . -1137) T) ((-274 . -1137) T) ((-254 . -1137) T) ((-1175 . -320) 114771) ((-1113 . -235) 114758) ((-636 . -318) 114737) ((-680 . -23) T) ((-537 . -1108) T) ((-322 . -1125) T) ((-495 . -273) 114706) ((-495 . -233) 114675) ((-153 . -1083) T) ((-367 . -23) T) ((-364 . -23) T) ((-356 . -23) T) ((-118 . -318) T) ((-274 . -23) T) ((-254 . -23) T) ((-1028 . -1074) T) ((-728 . -932) 114654) ((-1199 . -915) 114542) ((-1198 . -915) 114423) ((-1192 . -915) 114159) ((-1182 . -629) 114136) ((-1028 . -239) 114108) ((-1028 . -249) T) ((-1151 . -915) 114090) ((-118 . -1047) NIL) ((-933 . -1137) T) ((-1277 . -465) 114069) ((-1256 . -465) 114048) ((-536 . -626) 113980) ((-728 . -664) 113869) ((-420 . -1081) 113821) ((-517 . -626) 113803) ((-933 . -23) T) ((-500 . -320) NIL) ((-1315 . -629) 113759) ((-487 . -132) T) ((-220 . -320) NIL) ((-420 . -111) 113697) ((-831 . -1083) 113675) ((-753 . -1123) 113659) ((-1276 . -506) 113625) ((-1255 . -506) 113591) ((-450 . -1242) T) ((-561 . -860) T) ((-142 . -1123) 113573) ((-490 . -301) T) ((-1315 . -1074) T) ((-259 . -238) 113470) ((-258 . -238) 113367) ((-1247 . -102) T) ((-1088 . -102) T) ((-859 . -629) 113235) ((-513 . -527) NIL) ((-495 . -244) 113214) ((-420 . -629) 113112) ((-986 . -1076) 112995) ((-751 . -1076) 112965) ((-986 . -656) 112862) ((-1197 . -146) 112841) ((-751 . -656) 112811) ((-466 . -1076) 112781) ((-1197 . -148) 112760) ((-1150 . -148) 112739) ((-1150 . -146) 112718) ((-648 . -1081) 112702) ((-620 . -1081) 112686) ((-466 . -656) 112656) ((-1199 . -1283) 112640) ((-1199 . -1270) 112617) ((-1198 . -1275) 112578) ((-686 . -1125) T) ((-686 . -1078) 112518) ((-1198 . -1270) 112488) ((-561 . -1125) T) ((-500 . -1177) T) ((-1198 . -1273) 112472) ((-1192 . -1254) 112433) ((-834 . -276) 112417) ((-220 . -1177) T) ((-355 . -943) T) ((-99 . -1242) T) ((-648 . -111) 112396) ((-620 . -111) 112375) ((-1192 . -1270) 112352) ((-859 . -1074) 112331) ((-1192 . -1252) 112315) ((-528 . -25) T) ((-508 . -313) T) ((-524 . -23) T) ((-523 . -25) T) ((-521 . -25) T) ((-520 . -23) T) ((-431 . -1076) 112289) ((-420 . -1074) T) ((-330 . -1083) T) ((-710 . -318) T) ((-431 . -656) 112263) ((-108 . -864) T) ((-728 . -742) T) ((-420 . -249) T) ((-420 . -239) 112242) ((-391 . -235) 112229) ((-500 . -38) 112179) ((-220 . -38) 112129) ((-487 . -506) 112095) ((-653 . -21) T) ((-653 . -25) T) ((-1249 . -380) T) ((-1183 . -1169) T) ((-1126 . -102) T) ((-843 . -235) 112068) ((-717 . -626) 112050) ((-717 . -627) 111965) ((-730 . -21) T) ((-730 . -25) T) ((-1160 . -102) T) ((-495 . -662) 111744) ((-246 . -915) 111611) ((-135 . -626) 111593) ((-117 . -626) 111575) ((-158 . -25) T) ((-1314 . -1125) T) ((-890 . -654) 111523) ((-1312 . -1125) T) ((-883 . -1242) T) ((-986 . -102) T) ((-751 . -102) T) ((-731 . -102) T) ((-466 . -102) T) ((-832 . -465) 111474) ((-44 . -1125) T) ((-1113 . -865) T) ((-1088 . -320) 111325) ((-680 . -132) T) ((-1079 . -662) 111294) ((-686 . -733) 111278) ((-300 . -1083) T) ((-367 . -132) T) ((-364 . -132) T) ((-356 . -132) T) ((-274 . -132) T) ((-254 . -132) T) ((-397 . -662) 111247) ((-1321 . -1242) T) ((-431 . -102) T) ((-153 . -1125) T) ((-45 . -232) 111197) ((-1029 . -915) NIL) ((-815 . -1076) 111181) ((-981 . -865) 111160) ((-1024 . -664) 111062) ((-815 . -656) 111046) ((-246 . -1299) 111016) ((-1049 . -318) T) ((-305 . -1081) 110937) ((-933 . -132) T) ((-40 . -943) T) ((-500 . -413) 110919) ((-366 . -318) T) ((-220 . -413) 110901) ((-1105 . -424) 110885) ((-305 . -111) 110801) ((-1208 . -865) T) ((-1207 . -865) T) ((-890 . -25) T) ((-890 . -21) T) ((-1278 . -47) 110745) ((-351 . -626) 110727) ((-1197 . -238) T) ((-228 . -148) T) ((-176 . -626) 110709) ((-790 . -626) 110691) ((-129 . -865) T) ((-621 . -241) 110638) ((-488 . -241) 110588) ((-1314 . -733) 110558) ((-48 . -318) T) ((-1312 . -733) 110528) ((-65 . -629) 110457) ((-987 . -1125) T) ((-831 . -1125) 110209) ((-323 . -102) T) ((-924 . -1242) T) ((-48 . -1047) T) ((-1255 . -654) 110117) ((-705 . -102) 110067) ((-44 . -733) 110051) ((-563 . -102) T) ((-305 . -629) 109982) ((-67 . -395) T) ((-500 . -923) NIL) ((-67 . -408) T) ((-285 . -868) T) ((-220 . -923) NIL) ((-678 . -23) T) ((-833 . -662) 109918) ((-686 . -777) T) ((-1239 . -1125) 109896) ((-363 . -1081) 109841) ((-691 . -1125) 109819) ((-1087 . -148) T) ((-975 . -148) 109798) ((-975 . -146) 109777) ((-815 . -102) T) ((-153 . -733) 109761) ((-494 . -148) 109740) ((-494 . -146) 109719) ((-363 . -111) 109648) ((-1105 . -1083) T) ((-333 . -865) 109627) ((-1284 . -998) 109596) ((-1278 . -1242) T) ((-640 . -1125) T) ((-1277 . -998) 109558) ((-524 . -132) T) ((-520 . -132) T) ((-306 . -232) 109508) ((-371 . -1083) T) ((-365 . -1083) T) ((-357 . -1083) T) ((-305 . -1074) 109450) ((-1256 . -998) 109419) ((-391 . -865) T) ((-108 . -1083) T) ((-1024 . -742) T) ((-888 . -943) T) ((-859 . -811) 109398) ((-859 . -808) 109377) ((-431 . -320) 109316) ((-481 . -102) T) ((-608 . -998) 109285) ((-330 . -1125) T) ((-420 . -811) 109264) ((-420 . -808) 109243) ((-513 . -502) 109225) ((-1278 . -1063) 109191) ((-1276 . -21) T) ((-1276 . -25) T) ((-1255 . -21) T) ((-1255 . -25) T) ((-651 . -629) 109168) ((-831 . -733) 109110) ((-363 . -629) 109040) ((-715 . -417) T) ((-1305 . -1242) T) ((-1138 . -424) 109009) ((-1102 . -1242) T) ((-619 . -102) T) ((-1028 . -380) NIL) ((-1012 . -1242) T) ((-687 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1203 . -662) 108919) ((-753 . -1242) T) ((-747 . -1076) 108762) ((-44 . -777) T) ((-747 . -656) 108611) ((-606 . -102) T) ((-669 . -672) 108595) ((-77 . -409) T) ((-77 . -408) T) ((-142 . -1242) T) ((-889 . -148) T) ((-889 . -146) NIL) ((-1304 . -662) 108540) ((-1284 . -915) 108428) ((-1277 . -915) 108309) ((-1241 . -93) T) ((-363 . -1074) T) ((-228 . -238) T) ((-70 . -395) T) ((-70 . -408) T) ((-1190 . -102) T) ((-686 . -527) 108242) ((-1256 . -915) 107978) ((-1236 . -569) 107957) ((-705 . -320) 107895) ((-986 . -38) 107792) ((-1205 . -626) 107774) ((-751 . -38) 107744) ((-563 . -320) 107548) ((-1199 . -1076) 107431) ((-327 . -1242) T) ((-363 . -239) T) ((-363 . -249) T) ((-324 . -1242) T) ((-300 . -1125) T) ((-1198 . -1076) 107266) ((-1192 . -1076) 107056) ((-1151 . -1076) 106939) ((-1199 . -656) 106836) ((-1198 . -656) 106677) ((-727 . -1246) T) ((-1192 . -656) 106473) ((-1182 . -667) 106457) ((-1151 . -656) 106354) ((-835 . -398) 106338) ((-727 . -569) T) ((-608 . -915) 106249) ((-327 . -903) 106233) ((-327 . -905) 106158) ((-324 . -903) 106119) ((-140 . -1242) T) ((-137 . -1242) T) ((-115 . -1242) T) ((-324 . -905) NIL) ((-815 . -320) 106084) ((-330 . -733) 105925) ((-399 . -398) 105909) ((-335 . -334) 105886) ((-498 . -102) T) ((-487 . -25) T) ((-487 . -21) T) ((-431 . -38) 105860) ((-327 . -1063) 105523) ((-228 . -1227) T) ((-228 . -1230) T) ((-3 . -626) 105505) ((-324 . -1063) 105435) ((-890 . -235) 105380) ((-2 . -1125) T) ((-2 . |RecordCategory|) T) ((-1138 . -1083) 105358) ((-849 . -626) 105340) ((-1087 . -238) T) ((-593 . -943) T) ((-577 . -836) T) ((-577 . -943) T) ((-508 . -943) T) ((-137 . -1063) 105324) ((-228 . -95) T) ((-171 . -148) 105303) ((-75 . -454) T) ((0 . -626) 105285) ((-75 . -408) T) ((-171 . -146) 105236) ((-228 . -35) T) ((-49 . -626) 105218) ((-490 . -1083) T) ((-500 . -273) 105200) ((-500 . -233) 105182) ((-497 . -993) 105166) ((-220 . -273) 105148) ((-220 . -233) 105130) ((-81 . -454) T) ((-81 . -408) T) ((-1171 . -34) T) ((-747 . -102) T) ((-669 . -662) 105089) ((-1051 . -626) 105056) ((-513 . -297) 105006) ((-327 . -389) 104975) ((-324 . -389) 104936) ((-324 . -350) 104897) ((-1110 . -626) 104879) ((-832 . -972) 104826) ((-678 . -132) T) ((-1265 . -146) 104805) ((-1265 . -148) 104784) ((-1199 . -102) T) ((-1198 . -102) T) ((-1192 . -102) T) ((-1184 . -1125) T) ((-1151 . -102) T) ((-1100 . -1242) T) ((-225 . -34) T) ((-300 . -733) 104771) ((-1284 . -1283) 104755) ((-1184 . -623) 104731) ((-606 . -320) NIL) ((-1284 . -1270) 104708) ((-1175 . -232) 104658) ((-497 . -1125) 104636) ((-451 . -1242) T) ((-403 . -626) 104618) ((-523 . -865) T) ((-1145 . -1242) T) ((-1277 . -1275) 104579) ((-1277 . -1270) 104549) ((-1277 . -1273) 104533) ((-1256 . -1254) 104494) ((-1256 . -1270) 104471) ((-1256 . -1252) 104455) ((-1199 . -295) 104421) ((-634 . -626) 104403) ((-1198 . -295) 104369) ((-715 . -943) T) ((-1192 . -295) 104335) ((-1151 . -295) 104301) ((-1145 . -905) 104283) ((-1105 . -1125) T) ((-1086 . -1125) T) ((-48 . -313) T) ((-327 . -921) 104249) ((-324 . -921) NIL) ((-1086 . -1093) 104228) ((-815 . -38) 104212) ((-274 . -654) 104160) ((-112 . -868) T) ((-254 . -654) 104108) ((-717 . -1081) 104095) ((-608 . -1270) 104072) ((-1145 . -1063) 104054) ((-330 . -174) 103985) ((-371 . -1125) T) ((-365 . -1125) T) ((-357 . -1125) T) ((-513 . -19) 103967) ((-1127 . -152) 103951) ((-889 . -238) NIL) ((-108 . -1125) T) ((-117 . -1081) 103938) ((-727 . -375) T) ((-513 . -617) 103913) ((-717 . -111) 103898) ((-1317 . -626) 103865) ((-1317 . -503) 103847) ((-1276 . -235) 103793) ((-1255 . -235) 103646) ((-449 . -102) T) ((-894 . -1287) T) ((-257 . -102) T) ((-45 . -1174) 103596) ((-117 . -111) 103581) ((-1294 . -626) 103563) ((-1265 . -238) T) ((-1250 . -626) 103545) ((-1248 . -865) T) ((-648 . -736) T) ((-620 . -736) T) ((-1236 . -1137) T) ((-1236 . -23) T) ((-1197 . -465) 103476) ((-1192 . -320) 103361) ((-1191 . -1125) T) ((-831 . -527) 103294) ((-1060 . -1242) T) ((-246 . -1076) 103195) ((-1183 . -1125) T) ((-1167 . -664) 103133) ((-966 . -152) 103117) ((-1151 . -320) 103104) ((-1150 . -465) 103055) ((-246 . -656) 102977) ((-1112 . -569) 102908) ((-1112 . -1246) 102887) ((-1105 . -733) 102755) ((-538 . -102) T) ((-533 . -102) 102685) ((-1029 . -1076) 102635) ((-1019 . -1125) T) ((-832 . -915) 102531) ((-798 . -1246) 102510) ((-796 . -1246) 102489) ((-62 . -1242) T) ((-490 . -626) 102441) ((-490 . -627) 102363) ((-798 . -569) 102274) ((-796 . -569) 102205) ((-747 . -320) 102192) ((-717 . -629) 102164) ((-495 . -424) 102133) ((-636 . -943) 102112) ((-467 . -1246) 102091) ((-691 . -527) 102024) ((-680 . -25) T) ((-411 . -626) 102006) ((-680 . -21) T) ((-467 . -569) 101937) ((-431 . -923) 101860) ((-367 . -25) T) ((-367 . -21) T) ((-364 . -25) T) ((-118 . -943) T) ((-118 . -836) NIL) ((-364 . -21) T) ((-356 . -25) T) ((-356 . -21) T) ((-274 . -25) T) ((-274 . -21) T) ((-254 . -25) T) ((-254 . -21) T) ((-171 . -238) 101791) ((-83 . -396) T) ((-83 . -408) T) ((-135 . -629) 101773) ((-117 . -629) 101745) ((-1029 . -656) 101695) ((-966 . -1005) 101679) ((-937 . -656) 101631) ((-937 . -1076) 101583) ((-933 . -21) T) ((-933 . -25) T) ((-890 . -865) 101534) ((-884 . -664) 101494) ((-727 . -1137) T) ((-727 . -23) T) ((-717 . -1074) T) ((-717 . -239) T) ((-300 . -174) T) ((-670 . -1242) T) ((-322 . -93) T) ((-663 . -1125) 101472) ((-645 . -623) 101447) ((-645 . -1125) T) ((-594 . -1246) T) ((-594 . -569) T) ((-531 . -1246) T) ((-531 . -569) T) ((-500 . -662) 101397) ((-487 . -235) 101343) ((-440 . -1076) 101327) ((-440 . -656) 101311) ((-371 . -733) 101263) ((-365 . -733) 101215) ((-351 . -1081) 101199) ((-357 . -733) 101151) ((-351 . -111) 101130) ((-176 . -1081) 101062) ((-176 . -111) 100973) ((-108 . -733) 100923) ((-220 . -662) 100873) ((-284 . -1125) T) ((-283 . -1125) T) ((-282 . -1125) T) ((-281 . -1125) T) ((-280 . -1125) T) ((-279 . -1125) T) ((-278 . -1125) T) ((-214 . -1125) T) ((-213 . -1125) T) ((-171 . -1230) 100851) ((-171 . -1227) 100829) ((-211 . -1125) T) ((-210 . -1125) T) ((-117 . -1074) T) ((-209 . -1125) T) ((-208 . -1125) T) ((-205 . -1125) T) ((-204 . -1125) T) ((-203 . -1125) T) ((-202 . -1125) T) ((-201 . -1125) T) ((-200 . -1125) T) ((-199 . -1125) T) ((-198 . -1125) T) ((-197 . -1125) T) ((-196 . -1125) T) ((-195 . -1125) T) ((-246 . -102) 100561) ((-171 . -35) 100539) ((-171 . -95) 100517) ((-670 . -1063) 100413) ((-495 . -1083) 100391) ((-1138 . -1125) 100143) ((-1167 . -34) T) ((-686 . -502) 100127) ((-73 . -1242) T) ((-105 . -626) 100109) ((-912 . -1242) T) ((-1316 . -626) 100091) ((-393 . -626) 100073) ((-351 . -629) 100025) ((-176 . -629) 99942) ((-1241 . -503) 99923) ((-747 . -38) 99772) ((-584 . -1230) T) ((-584 . -1227) T) ((-544 . -626) 99754) ((-533 . -320) 99692) ((-513 . -626) 99674) ((-513 . -627) 99656) ((-1241 . -626) 99622) ((-1192 . -1177) NIL) ((-215 . -1242) T) ((-1052 . -1096) 99591) ((-1052 . -1125) T) ((-1029 . -102) T) ((-996 . -102) T) ((-937 . -102) T) ((-912 . -1063) 99568) ((-1167 . -742) T) ((-1028 . -664) 99475) ((-489 . -1125) T) ((-476 . -1125) T) ((-599 . -23) T) ((-584 . -35) T) ((-584 . -95) T) ((-440 . -102) T) ((-1088 . -232) 99421) ((-1199 . -38) 99318) ((-1198 . -38) 99159) ((-944 . -868) T) ((-884 . -742) T) ((-787 . -868) T) ((-710 . -943) T) ((-688 . -868) T) ((-524 . -25) T) ((-520 . -21) T) ((-520 . -25) T) ((-1192 . -38) 98955) ((-351 . -1074) T) ((-145 . -1242) T) ((-1105 . -174) T) ((-176 . -1074) T) ((-1151 . -38) 98852) ((-728 . -47) 98829) ((-371 . -174) T) ((-365 . -174) T) ((-532 . -57) 98803) ((-510 . -57) 98753) ((-363 . -1311) 98730) ((-228 . -465) T) ((-330 . -301) 98681) ((-357 . -174) T) ((-176 . -249) T) ((-1255 . -865) 98580) ((-108 . -174) T) ((-890 . -1017) 98564) ((-674 . -1137) T) ((-594 . -375) T) ((-594 . -340) 98551) ((-531 . -340) 98528) ((-531 . -375) T) ((-327 . -318) 98507) ((-324 . -318) T) ((-615 . -865) 98486) ((-1138 . -733) 98428) ((-533 . -293) 98412) ((-674 . -23) T) ((-431 . -233) 98396) ((-431 . -273) 98380) ((-324 . -1047) NIL) ((-348 . -23) T) ((-103 . -1035) 98364) ((-651 . -380) T) ((-45 . -36) 98343) ((-625 . -1125) T) ((-363 . -380) T) ((-537 . -102) T) ((-508 . -27) T) ((-246 . -320) 98281) ((-1112 . -1137) T) ((-1315 . -664) 98255) ((-798 . -1137) T) ((-796 . -1137) T) ((-1203 . -424) 98239) ((-467 . -1137) T) ((-1087 . -465) T) ((-1176 . -1125) T) ((-975 . -465) 98190) ((-1140 . -1108) T) ((-110 . -1125) T) ((-1112 . -23) T) ((-1184 . -527) 97973) ((-833 . -1083) T) ((-798 . -23) T) ((-796 . -23) T) ((-494 . -465) 97924) ((-474 . -23) T) ((-393 . -394) 97903) ((-367 . -235) 97876) ((-364 . -235) 97849) ((-356 . -235) 97822) ((-467 . -23) T) ((-274 . -235) 97767) ((-259 . -915) 97634) ((-258 . -915) 97501) ((-96 . -1125) T) ((-728 . -1242) T) ((-686 . -297) 97478) ((-497 . -527) 97411) ((-1284 . -1076) 97294) ((-1284 . -656) 97191) ((-1277 . -656) 97032) ((-1277 . -1076) 96867) ((-1256 . -656) 96663) ((-1256 . -1076) 96453) ((-300 . -301) T) ((-1107 . -626) 96435) ((-560 . -868) T) ((-1107 . -627) 96416) ((-420 . -932) 96395) ((-1236 . -132) T) ((-50 . -1137) T) ((-1192 . -413) 96347) ((-1049 . -943) T) ((-1028 . -742) T) ((-859 . -664) 96320) ((-728 . -905) NIL) ((-609 . -1076) 96280) ((-594 . -1137) T) ((-531 . -1137) T) ((-608 . -1076) 96163) ((-1182 . -34) T) ((-1029 . -320) NIL) ((-831 . -502) 96147) ((-609 . -656) 96120) ((-366 . -943) T) ((-608 . -656) 96017) ((-933 . -235) 96004) ((-420 . -664) 95920) ((-50 . -23) T) ((-727 . -132) T) ((-728 . -1063) 95800) ((-594 . -23) T) ((-108 . -527) NIL) ((-531 . -23) T) ((-171 . -422) 95771) ((-1165 . -1125) T) ((-1307 . -1306) 95755) ((-747 . -923) 95732) ((-717 . -811) T) ((-717 . -808) T) ((-1145 . -318) T) ((-391 . -148) T) ((-291 . -626) 95714) ((-290 . -626) 95696) ((-1255 . -1017) 95666) ((-48 . -943) T) ((-691 . -502) 95650) ((-259 . -1299) 95620) ((-258 . -1299) 95590) ((-1113 . -238) T) ((-1201 . -865) T) ((-1145 . -1047) T) ((-1071 . -34) T) ((-852 . -148) 95569) ((-852 . -146) 95548) ((-753 . -107) 95532) ((-625 . -133) T) ((-1203 . -1083) T) ((-495 . -1125) 95284) ((-1199 . -923) 95197) ((-1198 . -923) 95103) ((-1192 . -923) 94864) ((-889 . -465) T) ((-85 . -1242) T) ((-142 . -107) 94846) ((-1151 . -923) 94830) ((-728 . -389) 94814) ((-849 . -629) 94682) ((-1315 . -742) T) ((-1304 . -1083) T) ((-1284 . -102) T) ((-1277 . -102) T) ((-1145 . -558) T) ((-592 . -102) T) ((-130 . -503) 94664) ((-1197 . -972) 94633) ((-403 . -1081) 94617) ((-1150 . -972) 94584) ((-44 . -297) 94561) ((-130 . -626) 94528) ((-52 . -626) 94510) ((-217 . -868) T) ((-669 . -424) 94494) ((-1256 . -102) T) ((-1183 . -527) NIL) ((-678 . -25) T) ((-634 . -1081) 94478) ((-678 . -21) T) ((-986 . -662) 94388) ((-751 . -662) 94333) ((-731 . -662) 94305) ((-403 . -111) 94284) ((-225 . -262) 94268) ((-1079 . -1078) 94208) ((-1079 . -1125) T) ((-1029 . -1177) T) ((-834 . -1125) T) ((-466 . -662) 94123) ((-648 . -664) 94107) ((-634 . -111) 94086) ((-620 . -664) 94070) ((-355 . -1246) T) ((-609 . -102) T) ((-322 . -503) 94051) ((-599 . -132) T) ((-608 . -102) T) ((-427 . -1125) T) ((-397 . -1125) T) ((-322 . -626) 94017) ((-230 . -1125) 93995) ((-663 . -527) 93928) ((-645 . -527) 93772) ((-849 . -1074) 93751) ((-660 . -152) 93735) ((-355 . -569) T) ((-728 . -921) 93678) ((-563 . -232) 93628) ((-1284 . -295) 93594) ((-1277 . -295) 93560) ((-1105 . -301) 93511) ((-577 . -868) T) ((-500 . -864) T) ((-226 . -1137) T) ((-1256 . -295) 93477) ((-1236 . -506) 93443) ((-1029 . -38) 93393) ((-220 . -864) T) ((-431 . -662) 93352) ((-937 . -38) 93304) ((-859 . -810) 93283) ((-859 . -807) 93262) ((-859 . -742) 93241) ((-371 . -301) T) ((-365 . -301) T) ((-357 . -301) T) ((-171 . -465) 93172) ((-440 . -38) 93156) ((-226 . -23) T) ((-108 . -301) T) ((-420 . -810) 93135) ((-420 . -807) 93114) ((-420 . -742) T) ((-513 . -299) 93089) ((-490 . -1081) 93054) ((-674 . -132) T) ((-634 . -629) 93023) ((-1138 . -527) 92956) ((-348 . -132) T) ((-171 . -415) 92935) ((-495 . -733) 92877) ((-831 . -297) 92854) ((-490 . -111) 92810) ((-669 . -1083) T) ((-655 . -23) T) ((-1197 . -915) 92713) ((-1150 . -915) 92695) ((-832 . -1076) 92538) ((-1303 . -1108) T) ((-1265 . -465) 92469) ((-832 . -656) 92318) ((-1302 . -1108) T) ((-1112 . -132) T) ((-1079 . -733) 92260) ((-1052 . -527) 92193) ((-798 . -132) T) ((-796 . -132) T) ((-715 . -868) T) ((-584 . -465) T) ((-634 . -1074) T) ((-605 . -1125) T) ((-546 . -175) T) ((-474 . -132) T) ((-467 . -132) T) ((-391 . -238) T) ((-1024 . -1242) T) ((-45 . -1125) T) ((-397 . -733) 92163) ((-833 . -1125) T) ((-489 . -527) 92096) ((-476 . -527) 92029) ((-1317 . -629) 92011) ((-466 . -379) 91981) ((-45 . -623) 91960) ((-412 . -1242) T) ((-327 . -313) T) ((-1292 . -868) 91939) ((-843 . -238) 91918) ((-490 . -629) 91868) ((-1256 . -320) 91753) ((-686 . -626) 91715) ((-59 . -865) 91694) ((-1029 . -413) 91676) ((-561 . -626) 91658) ((-815 . -662) 91617) ((-831 . -617) 91594) ((-529 . -865) 91573) ((-509 . -865) 91552) ((-1024 . -1063) 91448) ((-40 . -1246) T) ((-246 . -923) 91317) ((-50 . -132) T) ((-594 . -132) T) ((-531 . -132) T) ((-305 . -664) 91177) ((-355 . -340) 91154) ((-355 . -375) T) ((-333 . -334) 91131) ((-330 . -297) 91089) ((-40 . -569) T) ((-391 . -1227) T) ((-391 . -1230) T) ((-1060 . -1218) 91064) ((-1214 . -241) 91014) ((-1192 . -233) 90966) ((-1192 . -273) 90918) ((-341 . -1125) T) ((-391 . -95) T) ((-391 . -35) T) ((-1060 . -107) 90864) ((-490 . -1074) T) ((-1316 . -1081) 90848) ((-492 . -241) 90798) ((-1184 . -502) 90732) ((-1307 . -1076) 90716) ((-393 . -1081) 90700) ((-1307 . -656) 90670) ((-832 . -102) T) ((-490 . -249) T) ((-730 . -148) 90649) ((-730 . -146) 90628) ((-118 . -868) NIL) ((-497 . -502) 90612) ((-498 . -347) 90581) ((-525 . -1125) 90532) ((-1316 . -111) 90511) ((-1024 . -389) 90495) ((-426 . -102) T) ((-393 . -111) 90474) ((-1024 . -350) 90458) ((-289 . -1008) 90442) ((-288 . -1008) 90426) ((-1029 . -923) NIL) ((-1314 . -626) 90408) ((-1312 . -626) 90390) ((-110 . -527) NIL) ((-1197 . -1268) 90374) ((-872 . -870) 90358) ((-1203 . -1125) T) ((-103 . -1242) T) ((-975 . -972) 90319) ((-833 . -733) 90261) ((-1256 . -1177) NIL) ((-494 . -972) 90206) ((-1087 . -144) T) ((-60 . -102) 90156) ((-44 . -626) 90138) ((-78 . -626) 90120) ((-363 . -664) 90065) ((-1304 . -1125) T) ((-524 . -865) T) ((-300 . -297) 90044) ((-355 . -1137) T) ((-306 . -1125) T) ((-1024 . -921) 90003) ((-306 . -623) 89982) ((-1316 . -629) 89931) ((-1284 . -38) 89828) ((-1277 . -38) 89669) ((-1256 . -38) 89465) ((-500 . -1083) T) ((-393 . -629) 89449) ((-220 . -1083) T) ((-355 . -23) T) ((-153 . -626) 89431) ((-849 . -811) 89410) ((-849 . -808) 89389) ((-1241 . -629) 89370) ((-609 . -38) 89343) ((-608 . -38) 89240) ((-888 . -569) T) ((-226 . -132) T) ((-330 . -1027) 89206) ((-79 . -626) 89188) ((-728 . -318) 89167) ((-305 . -742) 89069) ((-840 . -102) T) ((-882 . -860) T) ((-305 . -486) 89048) ((-1307 . -102) T) ((-40 . -375) T) ((-890 . -148) 89027) ((-498 . -662) 89009) ((-890 . -146) 88988) ((-1183 . -502) 88970) ((-1316 . -1074) T) ((-495 . -527) 88903) ((-655 . -132) T) ((-1171 . -1242) T) ((-987 . -626) 88885) ((-663 . -502) 88869) ((-645 . -502) 88800) ((-831 . -626) 88493) ((-48 . -27) T) ((-1203 . -733) 88390) ((-975 . -915) 88369) ((-669 . -1125) T) ((-879 . -878) T) ((-449 . -376) 88343) ((-747 . -662) 88253) ((-494 . -915) 88228) ((-1127 . -102) T) ((-995 . -1125) T) ((-882 . -1125) T) ((-832 . -320) 88215) ((-546 . -540) T) ((-546 . -589) T) ((-1312 . -394) 88187) ((-710 . -868) T) ((-1079 . -527) 88120) ((-1184 . -297) 88096) ((-246 . -273) 88065) ((-246 . -233) 88034) ((-259 . -1076) 87935) ((-258 . -1076) 87836) ((-1304 . -733) 87806) ((-1191 . -93) T) ((-1019 . -93) T) ((-833 . -174) 87785) ((-259 . -656) 87707) ((-258 . -656) 87629) ((-1239 . -503) 87606) ((-591 . -1242) T) ((-230 . -527) 87539) ((-634 . -811) 87518) ((-634 . -808) 87497) ((-1239 . -626) 87409) ((-225 . -1242) T) ((-691 . -626) 87341) ((-1199 . -662) 87251) ((-1182 . -1035) 87235) ((-966 . -102) 87165) ((-363 . -742) T) ((-879 . -626) 87147) ((-1198 . -662) 87029) ((-1192 . -662) 86866) ((-1151 . -662) 86776) ((-1256 . -413) 86728) ((-1138 . -502) 86712) ((-60 . -320) 86650) ((-342 . -102) T) ((-1236 . -21) T) ((-1236 . -25) T) ((-40 . -1137) T) ((-727 . -21) T) ((-640 . -626) 86632) ((-528 . -334) 86611) ((-727 . -25) T) ((-452 . -102) T) ((-108 . -297) NIL) ((-944 . -1137) T) ((-40 . -23) T) ((-787 . -1137) T) ((-577 . -1246) T) ((-508 . -1246) T) ((-1029 . -273) 86593) ((-330 . -626) 86575) ((-1029 . -233) 86557) ((-171 . -167) 86541) ((-593 . -569) T) ((-577 . -569) T) ((-508 . -569) T) ((-787 . -23) T) ((-1276 . -148) 86520) ((-1276 . -146) 86499) ((-1184 . -617) 86475) ((-1255 . -146) 86400) ((-1052 . -502) 86384) ((-1249 . -1242) T) ((-1255 . -148) 86309) ((-1307 . -1313) 86288) ((-889 . -915) NIL) ((-489 . -502) 86272) ((-476 . -502) 86256) ((-536 . -34) T) ((-669 . -733) 86226) ((-1284 . -923) 86139) ((-1277 . -923) 86045) ((-1256 . -923) 85806) ((-112 . -992) T) ((-1203 . -174) 85757) ((-678 . -865) 85736) ((-377 . -102) T) ((-608 . -923) 85649) ((-246 . -244) 85628) ((-259 . -102) T) ((-258 . -102) T) ((-1265 . -972) 85597) ((-251 . -865) 85576) ((-1049 . -868) T) ((-832 . -38) 85425) ((-45 . -527) 85217) ((-1183 . -297) 85167) ((-216 . -1125) T) ((-1175 . -1125) T) ((-890 . -238) 85118) ((-1175 . -623) 85097) ((-599 . -25) T) ((-599 . -21) T) ((-1127 . -320) 85035) ((-986 . -424) 85019) ((-715 . -1246) T) ((-645 . -297) 84972) ((-1112 . -654) 84920) ((-928 . -1125) T) ((-798 . -654) 84868) ((-796 . -654) 84816) ((-355 . -132) T) ((-300 . -626) 84798) ((-888 . -1137) T) ((-715 . -569) T) ((-130 . -629) 84780) ((-467 . -654) 84728) ((-171 . -915) 84649) ((-928 . -926) 84633) ((-391 . -465) T) ((-500 . -1125) T) ((-966 . -320) 84571) ((-717 . -664) 84543) ((-562 . -860) T) ((-220 . -1125) T) ((-327 . -943) 84522) ((-324 . -943) T) ((-324 . -836) NIL) ((-403 . -736) T) ((-888 . -23) T) ((-117 . -664) 84509) ((-487 . -146) 84488) ((-431 . -424) 84472) ((-487 . -148) 84451) ((-110 . -502) 84433) ((-322 . -629) 84414) ((-2 . -626) 84396) ((-188 . -102) T) ((-1183 . -19) 84378) ((-1183 . -617) 84353) ((-674 . -21) T) ((-674 . -25) T) ((-606 . -1169) T) ((-1138 . -297) 84330) ((-348 . -25) T) ((-348 . -21) T) ((-908 . -1242) T) ((-904 . -1242) T) ((-1314 . -1081) 84314) ((-246 . -662) 84093) ((-508 . -375) T) ((-1312 . -1081) 84077) ((-1307 . -38) 84047) ((-1276 . -1227) 84013) ((-1276 . -1230) 83979) ((-1265 . -915) 83882) ((-1197 . -1076) 83705) ((-1167 . -1242) T) ((-1150 . -1076) 83548) ((-872 . -1076) 83532) ((-645 . -617) 83507) ((-1276 . -95) 83473) ((-1276 . -238) 83425) ((-1259 . -102) 83403) ((-1197 . -656) 83232) ((-1150 . -656) 83081) ((-872 . -656) 83051) ((-1256 . -233) 83003) ((-1112 . -25) T) ((-562 . -1125) T) ((-1112 . -21) T) ((-986 . -1083) T) ((-544 . -808) T) ((-544 . -811) T) ((-118 . -1246) T) ((-884 . -1242) T) ((-636 . -569) T) ((-798 . -25) T) ((-798 . -21) T) ((-796 . -21) T) ((-796 . -25) T) ((-751 . -1083) T) ((-731 . -1083) T) ((-686 . -1081) 82987) ((-530 . -1108) T) ((-474 . -25) T) ((-118 . -569) T) ((-474 . -21) T) ((-467 . -25) T) ((-467 . -21) T) ((-1256 . -273) 82939) ((-1176 . -93) T) ((-1167 . -1063) 82835) ((-833 . -301) 82814) ((-1255 . -1227) 82780) ((-839 . -1125) T) ((-989 . -992) T) ((-686 . -111) 82759) ((-630 . -1242) T) ((-306 . -527) 82551) ((-1255 . -1230) 82517) ((-1255 . -238) 82376) ((-1250 . -380) T) ((-259 . -320) 82314) ((-258 . -320) 82252) ((-1247 . -860) T) ((-1184 . -627) NIL) ((-1184 . -626) 82234) ((-1167 . -389) 82218) ((-1145 . -836) T) ((-1145 . -943) T) ((-96 . -93) T) ((-1138 . -617) 82195) ((-1105 . -627) 82179) ((-1105 . -626) 82161) ((-1029 . -662) 82111) ((-937 . -662) 82048) ((-831 . -299) 82025) ((-497 . -626) 81957) ((-621 . -152) 81904) ((-500 . -733) 81854) ((-431 . -1083) T) ((-495 . -502) 81838) ((-440 . -662) 81797) ((-338 . -865) 81776) ((-351 . -664) 81750) ((-50 . -21) T) ((-50 . -25) T) ((-220 . -733) 81700) ((-171 . -740) 81671) ((-176 . -664) 81603) ((-594 . -21) T) ((-594 . -25) T) ((-531 . -25) T) ((-531 . -21) T) ((-488 . -152) 81553) ((-1086 . -626) 81535) ((-1018 . -102) T) ((-880 . -102) T) ((-832 . -923) 81435) ((-815 . -424) 81398) ((-40 . -132) T) ((-715 . -375) T) ((-717 . -742) T) ((-717 . -810) T) ((-717 . -807) T) ((-214 . -916) T) ((-593 . -1137) T) ((-577 . -1137) T) ((-508 . -1137) T) ((-371 . -626) 81380) ((-365 . -626) 81362) ((-357 . -626) 81344) ((-66 . -409) T) ((-66 . -408) T) ((-108 . -627) 81274) ((-108 . -626) 81216) ((-213 . -916) T) ((-981 . -152) 81200) ((-787 . -132) T) ((-686 . -629) 81118) ((-135 . -742) T) ((-117 . -742) T) ((-1276 . -35) 81084) ((-1079 . -502) 81068) ((-593 . -23) T) ((-577 . -23) T) ((-508 . -23) T) ((-1255 . -95) 81034) ((-1255 . -35) 81000) ((-1197 . -102) T) ((-1150 . -102) T) ((-872 . -102) T) ((-230 . -502) 80984) ((-1314 . -111) 80963) ((-1312 . -111) 80942) ((-44 . -1081) 80926) ((-1315 . -1242) T) ((-1314 . -629) 80872) ((-1314 . -1074) T) ((-1312 . -629) 80801) ((-1312 . -1074) T) ((-1265 . -1268) 80785) ((-873 . -870) 80769) ((-1203 . -301) 80748) ((-1129 . -1242) T) ((-110 . -297) 80698) ((-1028 . -1242) T) ((-129 . -152) 80680) ((-1167 . -921) 80639) ((-44 . -111) 80618) ((-1247 . -1125) T) ((-1206 . -1287) T) ((-1192 . -864) NIL) ((-1191 . -503) 80599) ((-686 . -1074) T) ((-1191 . -626) 80565) ((-1183 . -626) 80547) ((-487 . -238) 80499) ((-1088 . -623) 80474) ((-1019 . -503) 80455) ((-74 . -454) T) ((-74 . -408) T) ((-1088 . -1125) T) ((-153 . -1081) 80439) ((-1019 . -626) 80405) ((-686 . -239) 80384) ((-584 . -567) 80368) ((-367 . -148) 80347) ((-367 . -146) 80298) ((-364 . -148) 80277) ((-364 . -146) 80228) ((-356 . -148) 80207) ((-356 . -146) 80158) ((-274 . -146) 80137) ((-274 . -148) 80116) ((-254 . -148) 80095) ((-118 . -375) T) ((-254 . -146) 80074) ((-1183 . -627) NIL) ((-153 . -111) 80053) ((-1028 . -1063) 79941) ((-1182 . -1242) T) ((-710 . -1246) T) ((-815 . -1083) T) ((-715 . -1137) T) ((-1028 . -389) 79918) ((-519 . -1242) T) ((-515 . -1242) T) ((-933 . -146) T) ((-933 . -148) 79900) ((-888 . -132) T) ((-831 . -1081) 79821) ((-715 . -23) T) ((-710 . -569) T) ((-228 . -1076) 79786) ((-663 . -626) 79718) ((-663 . -627) 79679) ((-645 . -627) NIL) ((-645 . -626) 79661) ((-500 . -174) T) ((-228 . -656) 79626) ((-220 . -174) T) ((-226 . -21) T) ((-226 . -25) T) ((-487 . -1230) 79592) ((-487 . -1227) 79558) ((-284 . -626) 79540) ((-283 . -626) 79522) ((-282 . -626) 79504) ((-281 . -626) 79486) ((-280 . -626) 79468) ((-513 . -667) 79450) ((-279 . -626) 79432) ((-351 . -742) T) ((-278 . -626) 79414) ((-110 . -19) 79396) ((-176 . -742) T) ((-513 . -385) 79378) ((-214 . -626) 79360) ((-533 . -1174) 79344) ((-513 . -124) T) ((-110 . -617) 79319) ((-213 . -626) 79301) ((-487 . -35) 79267) ((-487 . -95) 79233) ((-211 . -626) 79215) ((-210 . -626) 79197) ((-209 . -626) 79179) ((-208 . -626) 79161) ((-205 . -626) 79143) ((-204 . -626) 79125) ((-203 . -626) 79107) ((-202 . -626) 79089) ((-201 . -626) 79071) ((-200 . -626) 79053) ((-199 . -626) 79035) ((-549 . -1128) 78987) ((-198 . -626) 78969) ((-197 . -626) 78951) ((-45 . -502) 78888) ((-196 . -626) 78870) ((-195 . -626) 78852) ((-153 . -629) 78821) ((-1140 . -102) T) ((-831 . -111) 78737) ((-660 . -102) 78667) ((-655 . -21) T) ((-655 . -25) T) ((-495 . -297) 78644) ((-1315 . -1063) 78628) ((-1138 . -626) 78321) ((-1126 . -1125) T) ((-1071 . -1242) T) ((-1197 . -320) 78308) ((-1087 . -1076) 78295) ((-1160 . -1125) T) ((-975 . -1076) 78138) ((-1150 . -320) 78125) ((-1121 . -1108) T) ((-636 . -1137) T) ((-1087 . -656) 78112) ((-1115 . -1108) T) ((-975 . -656) 77961) ((-1112 . -235) 77906) ((-494 . -1076) 77749) ((-1098 . -1108) T) ((-1091 . -1108) T) ((-1061 . -1108) T) ((-1044 . -1108) T) ((-118 . -1137) T) ((-494 . -656) 77598) ((-798 . -235) 77585) ((-835 . -102) T) ((-639 . -1108) T) ((-636 . -23) T) ((-1175 . -527) 77377) ((-496 . -1108) T) ((-986 . -1125) T) ((-399 . -102) T) ((-335 . -102) T) ((-221 . -1108) T) ((-859 . -1242) T) ((-153 . -1074) T) ((-747 . -424) 77361) ((-118 . -23) T) ((-1028 . -921) 77313) ((-751 . -1125) T) ((-731 . -1125) T) ((-1284 . -662) 77223) ((-1277 . -662) 77105) ((-466 . -1125) T) ((-420 . -1242) T) ((-327 . -443) 77089) ((-605 . -93) T) ((-1052 . -627) 77050) ((-271 . -1242) T) ((-1049 . -1246) T) ((-228 . -102) T) ((-1052 . -626) 77012) ((-832 . -273) 76996) ((-832 . -233) 76980) ((-831 . -629) 76778) ((-1256 . -662) 76615) ((-1049 . -569) T) ((-849 . -664) 76588) ((-366 . -1246) T) ((-489 . -626) 76550) ((-489 . -627) 76511) ((-476 . -627) 76472) ((-476 . -626) 76434) ((-609 . -662) 76393) ((-420 . -903) 76377) ((-330 . -1081) 76212) ((-420 . -905) 76137) ((-608 . -662) 76047) ((-859 . -1063) 75943) ((-500 . -527) NIL) ((-495 . -617) 75920) ((-594 . -235) 75907) ((-366 . -569) T) ((-531 . -235) 75894) ((-220 . -527) NIL) ((-890 . -465) T) ((-431 . -1125) T) ((-420 . -1063) 75758) ((-330 . -111) 75579) ((-710 . -375) T) ((-228 . -295) T) ((-1239 . -629) 75556) ((-48 . -1246) T) ((-1197 . -1177) 75534) ((-1184 . -299) 75510) ((-1087 . -102) T) ((-975 . -102) T) ((-831 . -1074) 75488) ((-593 . -132) T) ((-577 . -132) T) ((-508 . -132) T) ((-367 . -238) 75467) ((-364 . -238) 75446) ((-356 . -238) 75425) ((-48 . -569) T) ((-889 . -1076) 75370) ((-274 . -238) 75321) ((-831 . -239) 75273) ((-327 . -27) 75252) ((-259 . -923) 75121) ((-258 . -923) 74990) ((-256 . -851) 74972) ((-189 . -851) 74954) ((-729 . -102) T) ((-306 . -502) 74891) ((-889 . -656) 74836) ((-494 . -102) T) ((-747 . -1083) T) ((-625 . -626) 74818) ((-625 . -627) 74679) ((-420 . -389) 74663) ((-420 . -350) 74647) ((-1197 . -38) 74476) ((-1150 . -38) 74325) ((-330 . -629) 74151) ((-933 . -238) T) ((-648 . -1242) T) ((-620 . -1242) T) ((-872 . -38) 74121) ((-403 . -664) 74105) ((-660 . -320) 74043) ((-1176 . -503) 74024) ((-1176 . -626) 73990) ((-986 . -733) 73887) ((-751 . -733) 73857) ((-634 . -664) 73831) ((-225 . -107) 73815) ((-45 . -297) 73715) ((-323 . -1125) T) ((-300 . -1081) 73702) ((-110 . -626) 73684) ((-110 . -627) 73666) ((-466 . -733) 73636) ((-832 . -261) 73575) ((-705 . -1125) 73553) ((-563 . -1125) T) ((-1199 . -1083) T) ((-1198 . -1083) T) ((-96 . -503) 73534) ((-1192 . -1083) T) ((-300 . -111) 73519) ((-1151 . -1083) T) ((-563 . -623) 73498) ((-96 . -626) 73464) ((-1029 . -864) T) ((-230 . -703) 73422) ((-710 . -1137) T) ((-1236 . -756) 73398) ((-1049 . -375) T) ((-854 . -851) 73380) ((-849 . -810) 73359) ((-420 . -921) 73318) ((-330 . -1074) T) ((-355 . -25) T) ((-355 . -21) T) ((-171 . -1076) 73228) ((-68 . -1242) T) ((-849 . -807) 73207) ((-431 . -733) 73181) ((-815 . -1125) T) ((-728 . -943) 73160) ((-715 . -132) T) ((-171 . -656) 72988) ((-710 . -23) T) ((-500 . -301) T) ((-849 . -742) 72967) ((-330 . -239) 72919) ((-330 . -249) 72898) ((-220 . -301) T) ((-130 . -380) T) ((-1276 . -465) 72877) ((-1255 . -465) 72856) ((-366 . -340) 72833) ((-366 . -375) T) ((-1165 . -626) 72815) ((-45 . -1280) 72765) ((-889 . -102) T) ((-660 . -293) 72749) ((-715 . -1085) T) ((-1303 . -102) T) ((-1302 . -102) T) ((-490 . -664) 72714) ((-481 . -1125) T) ((-45 . -617) 72639) ((-1183 . -299) 72614) ((-300 . -629) 72586) ((-40 . -654) 72525) ((-1265 . -1076) 72348) ((-873 . -1076) 72332) ((-48 . -375) T) ((-1131 . -626) 72314) ((-1265 . -656) 72143) ((-873 . -656) 72113) ((-645 . -299) 72088) ((-832 . -662) 71998) ((-584 . -1076) 71985) ((-495 . -626) 71678) ((-246 . -424) 71647) ((-1197 . -923) 71554) ((-1190 . -1125) T) ((-975 . -320) 71541) ((-584 . -656) 71528) ((-65 . -1242) T) ((-1158 . -1242) T) ((-1150 . -923) 71512) ((-1138 . -299) 71489) ((-1088 . -527) 71333) ((-687 . -1125) T) ((-636 . -132) T) ((-619 . -1125) T) ((-494 . -320) 71320) ((-559 . -102) T) ((-118 . -132) T) ((-300 . -1074) T) ((-182 . -1125) T) ((-162 . -1125) T) ((-157 . -1125) T) ((-155 . -1125) T) ((-466 . -777) T) ((-31 . -1108) T) ((-986 . -174) 71271) ((-1127 . -232) 71255) ((-995 . -93) T) ((-1105 . -1081) 71165) ((-1079 . -626) 71127) ((-634 . -742) T) ((-634 . -810) 71106) ((-606 . -1125) T) ((-634 . -807) 71085) ((-306 . -297) 71064) ((-305 . -1242) T) ((-1079 . -627) 71025) ((-1049 . -1137) T) ((-324 . -868) NIL) ((-171 . -102) T) ((-285 . -865) T) ((-1105 . -111) 70921) ((-834 . -626) 70903) ((-1049 . -23) T) ((-1028 . -318) T) ((-919 . -102) T) ((-815 . -733) 70887) ((-371 . -1081) 70839) ((-366 . -1137) T) ((-365 . -1081) 70791) ((-427 . -626) 70773) ((-397 . -626) 70755) ((-357 . -1081) 70707) ((-230 . -626) 70639) ((-857 . -102) T) ((-824 . -102) T) ((-108 . -1081) 70589) ((-785 . -102) T) ((-693 . -102) T) ((-115 . -868) T) ((-487 . -465) 70568) ((-431 . -174) T) ((-371 . -111) 70506) ((-365 . -111) 70444) ((-357 . -111) 70382) ((-259 . -273) 70351) ((-259 . -233) 70320) ((-258 . -273) 70289) ((-258 . -233) 70258) ((-366 . -23) T) ((-71 . -1242) T) ((-228 . -38) 70223) ((-108 . -111) 70157) ((-40 . -25) T) ((-40 . -21) T) ((-686 . -736) T) ((-171 . -295) 70135) ((-48 . -1137) T) ((-876 . -1242) T) ((-944 . -25) T) ((-787 . -25) T) ((-1316 . -664) 70109) ((-1175 . -502) 70046) ((-498 . -1125) T) ((-1307 . -662) 70005) ((-1265 . -102) T) ((-1087 . -1177) T) ((-873 . -102) T) ((-246 . -1083) 69983) ((-987 . -808) 69936) ((-987 . -811) 69889) ((-393 . -664) 69873) ((-48 . -23) T) ((-831 . -811) 69852) ((-831 . -808) 69831) ((-561 . -380) T) ((-306 . -617) 69810) ((-490 . -742) T) ((-584 . -102) T) ((-1105 . -629) 69628) ((-256 . -187) T) ((-189 . -187) T) ((-889 . -320) 69585) ((-669 . -297) 69564) ((-651 . -1242) T) ((-112 . -677) T) ((-363 . -1242) T) ((-371 . -629) 69501) ((-365 . -629) 69438) ((-357 . -629) 69375) ((-76 . -1242) T) ((-108 . -629) 69325) ((-112 . -113) T) ((-1087 . -38) 69312) ((-680 . -386) 69291) ((-975 . -38) 69140) ((-747 . -1125) T) ((-494 . -38) 68989) ((-86 . -1242) T) ((-605 . -503) 68970) ((-1256 . -864) NIL) ((-1199 . -1125) T) ((-584 . -295) T) ((-1198 . -1125) T) ((-605 . -626) 68936) ((-1192 . -1125) T) ((-1145 . -868) T) ((-1105 . -1074) T) ((-363 . -1063) 68913) ((-833 . -503) 68897) ((-1029 . -1083) T) ((-45 . -626) 68879) ((-45 . -627) NIL) ((-937 . -1083) T) ((-833 . -626) 68848) ((-1172 . -102) 68798) ((-1105 . -249) 68749) ((-440 . -1083) T) ((-371 . -1074) T) ((-365 . -1074) T) ((-377 . -376) 68726) ((-357 . -1074) T) ((-355 . -235) 68713) ((-259 . -244) 68692) ((-258 . -244) 68671) ((-1105 . -239) 68596) ((-1151 . -1125) T) ((-305 . -921) 68555) ((-108 . -1074) T) ((-710 . -132) T) ((-431 . -527) 68397) ((-371 . -239) 68376) ((-371 . -249) T) ((-44 . -736) T) ((-365 . -239) 68355) ((-365 . -249) T) ((-357 . -239) 68334) ((-357 . -249) T) ((-1191 . -629) 68315) ((-171 . -320) 68280) ((-108 . -249) T) ((-108 . -239) T) ((-1019 . -629) 68261) ((-330 . -808) T) ((-888 . -21) T) ((-888 . -25) T) ((-420 . -318) T) ((-513 . -34) T) ((-110 . -299) 68236) ((-1138 . -1081) 68157) ((-889 . -1177) NIL) ((-341 . -626) 68139) ((-420 . -1047) 68117) ((-1138 . -111) 68033) ((-707 . -1287) T) ((-449 . -1125) T) ((-257 . -1125) T) ((-1316 . -742) T) ((-63 . -626) 68015) ((-889 . -38) 67960) ((-615 . -152) 67944) ((-536 . -1242) T) ((-525 . -626) 67884) ((-1265 . -320) 67871) ((-747 . -733) 67720) ((-544 . -809) T) ((-544 . -810) T) ((-577 . -654) 67702) ((-508 . -654) 67662) ((-517 . -1242) T) ((-653 . -1299) 67646) ((-367 . -465) T) ((-364 . -465) T) ((-356 . -465) T) ((-274 . -465) 67597) ((-538 . -1125) T) ((-533 . -1125) 67547) ((-254 . -465) 67498) ((-1175 . -297) 67477) ((-1203 . -626) 67459) ((-705 . -527) 67392) ((-986 . -301) 67371) ((-563 . -527) 67163) ((-259 . -662) 67011) ((-258 . -662) 66846) ((-1304 . -626) 66815) ((-1304 . -503) 66799) ((-1199 . -733) 66696) ((-1197 . -273) 66680) ((-1197 . -233) 66664) ((-1138 . -629) 66462) ((-171 . -1177) 66441) ((-1198 . -733) 66282) ((-1192 . -733) 66078) ((-989 . -113) T) ((-911 . -102) T) ((-1182 . -690) 66062) ((-1151 . -733) 65959) ((-1049 . -132) T) ((-367 . -415) 65910) ((-364 . -415) 65861) ((-356 . -415) 65812) ((-987 . -380) 65765) ((-815 . -527) 65677) ((-306 . -627) NIL) ((-306 . -626) 65659) ((-933 . -465) T) ((-928 . -297) 65638) ((-831 . -380) 65617) ((-523 . -522) 65596) ((-521 . -522) 65575) ((-890 . -915) 65496) ((-500 . -297) NIL) ((-495 . -299) 65473) ((-431 . -301) T) ((-366 . -132) T) ((-220 . -297) NIL) ((-710 . -506) NIL) ((-99 . -1137) T) ((-40 . -235) 65404) ((-171 . -38) 65232) ((-975 . -923) 65213) ((-1276 . -998) 65175) ((-1255 . -998) 65144) ((-1172 . -320) 65082) ((-494 . -923) 65059) ((-1138 . -1074) 65037) ((-933 . -415) T) ((-653 . -522) 65009) ((-1278 . -569) T) ((-1175 . -617) 64988) ((-112 . -865) T) ((-1088 . -502) 64919) ((-593 . -21) T) ((-593 . -25) T) ((-577 . -21) T) ((-577 . -25) T) ((-508 . -25) T) ((-508 . -21) T) ((-1265 . -1177) 64897) ((-1138 . -239) 64849) ((-48 . -132) T) ((-1223 . -102) T) ((-246 . -1125) 64601) ((-889 . -413) 64578) ((-1113 . -102) T) ((-1101 . -102) T) ((-912 . -868) T) ((-621 . -102) T) ((-488 . -102) T) ((-1265 . -38) 64407) ((-873 . -38) 64377) ((-1059 . -1076) 64351) ((-747 . -174) 64262) ((-669 . -626) 64244) ((-661 . -1108) T) ((-1059 . -656) 64228) ((-584 . -38) 64215) ((-995 . -503) 64196) ((-995 . -626) 64162) ((-981 . -102) 64092) ((-882 . -626) 64074) ((-882 . -627) 63996) ((-606 . -527) NIL) ((-866 . -102) T) ((-1321 . -1137) T) ((-1284 . -1083) T) ((-1277 . -1083) T) ((-1276 . -915) 63900) ((-1256 . -1083) T) ((-1255 . -915) 63695) ((-1236 . -148) 63674) ((-333 . -1076) 63656) ((-1236 . -146) 63635) ((-1209 . -102) T) ((-1208 . -102) T) ((-1207 . -102) T) ((-1199 . -174) 63586) ((-333 . -656) 63568) ((-717 . -1242) T) ((-1198 . -174) 63499) ((-1192 . -174) 63430) ((-1176 . -629) 63411) ((-1151 . -174) 63362) ((-609 . -1083) T) ((-608 . -1083) T) ((-1029 . -1125) T) ((-996 . -1125) T) ((-391 . -1076) 63327) ((-135 . -1242) T) ((-117 . -1242) T) ((-937 . -1125) T) ((-889 . -923) NIL) ((-391 . -656) 63292) ((-145 . -868) T) ((-815 . -813) 63276) ((-715 . -25) T) ((-715 . -21) T) ((-118 . -654) 63253) ((-717 . -905) 63235) ((-440 . -1125) T) ((-327 . -1246) 63214) ((-324 . -1246) T) ((-171 . -413) 63198) ((-852 . -1076) 63168) ((-487 . -998) 63130) ((-129 . -102) T) ((-72 . -626) 63112) ((-131 . -102) T) ((-843 . -1076) 63096) ((-108 . -811) T) ((-108 . -808) T) ((-717 . -1063) 63078) ((-327 . -569) 63057) ((-324 . -569) T) ((-852 . -656) 63027) ((-843 . -656) 62997) ((-1321 . -23) T) ((-135 . -1063) 62979) ((-96 . -629) 62960) ((-1018 . -662) 62942) ((-495 . -1081) 62863) ((-45 . -299) 62788) ((-246 . -733) 62730) ((-530 . -102) T) ((-495 . -111) 62646) ((-1117 . -102) 62616) ((-1059 . -102) T) ((-1197 . -662) 62526) ((-1150 . -662) 62436) ((-872 . -662) 62395) ((-660 . -844) 62374) ((-747 . -527) 62317) ((-1079 . -1081) 62301) ((-171 . -923) 62224) ((-1160 . -93) T) ((-1088 . -297) 62199) ((-636 . -21) T) ((-636 . -25) T) ((-537 . -1125) T) ((-686 . -664) 62137) ((-373 . -102) T) ((-333 . -102) T) ((-397 . -1081) 62121) ((-1079 . -111) 62100) ((-832 . -424) 62084) ((-118 . -25) T) ((-89 . -626) 62066) ((-118 . -21) T) ((-621 . -320) 61861) ((-1175 . -627) NIL) ((-488 . -320) 61665) ((-351 . -1242) T) ((-176 . -1242) T) ((-397 . -111) 61644) ((-391 . -102) T) ((-216 . -626) 61626) ((-1175 . -626) 61608) ((-790 . -1242) T) ((-1192 . -527) 61377) ((-1029 . -733) 61327) ((-1151 . -527) 61297) ((-937 . -733) 61249) ((-495 . -629) 61047) ((-363 . -318) T) ((-1214 . -152) 60997) ((-487 . -915) 60878) ((-981 . -320) 60816) ((-852 . -102) T) ((-440 . -733) 60800) ((-228 . -844) T) ((-843 . -102) T) ((-841 . -102) T) ((-1314 . -664) 60774) ((-1276 . -1275) 60753) ((-492 . -152) 60703) ((-1276 . -1270) 60673) ((-1145 . -1246) T) ((-351 . -1063) 60640) ((-1276 . -1273) 60624) ((-1265 . -923) 60531) ((-1255 . -1254) 60510) ((-80 . -626) 60492) ((-928 . -626) 60474) ((-1255 . -1270) 60451) ((-1145 . -569) T) ((-944 . -865) T) ((-787 . -865) T) ((-688 . -865) T) ((-500 . -627) 60381) ((-500 . -626) 60322) ((-391 . -295) T) ((-1255 . -1252) 60306) ((-1278 . -1137) T) ((-220 . -627) 60236) ((-220 . -626) 60177) ((-1088 . -617) 60152) ((-834 . -629) 60136) ((-577 . -235) 60123) ((-529 . -152) 60107) ((-59 . -152) 60091) ((-509 . -152) 60075) ((-508 . -235) 60062) ((-371 . -1311) 60046) ((-365 . -1311) 60030) ((-357 . -1311) 60014) ((-327 . -375) 59993) ((-324 . -375) T) ((-495 . -1074) 59971) ((-710 . -654) 59953) ((-1312 . -664) 59927) ((-129 . -320) NIL) ((-1278 . -23) T) ((-705 . -502) 59911) ((-64 . -626) 59893) ((-1138 . -811) 59872) ((-1138 . -808) 59851) ((-563 . -502) 59788) ((-686 . -34) T) ((-495 . -239) 59740) ((-306 . -299) 59719) ((-832 . -1083) T) ((-44 . -664) 59677) ((-1105 . -380) 59628) ((-747 . -301) 59559) ((-533 . -527) 59492) ((-833 . -1081) 59443) ((-1112 . -146) 59422) ((-562 . -626) 59404) ((-371 . -380) 59383) ((-365 . -380) 59362) ((-357 . -380) 59341) ((-1112 . -148) 59320) ((-991 . -1242) T) ((-889 . -273) 59297) ((-889 . -233) 59274) ((-833 . -111) 59216) ((-798 . -146) 59195) ((-274 . -972) 59162) ((-254 . -972) 59107) ((-798 . -148) 59086) ((-796 . -146) 59065) ((-796 . -148) 59044) ((-153 . -664) 59018) ((-592 . -1125) T) ((-466 . -297) 58981) ((-467 . -148) 58960) ((-467 . -146) 58939) ((-686 . -742) T) ((-839 . -626) 58921) ((-1284 . -1125) T) ((-1277 . -1125) T) ((-1256 . -1125) T) ((-1236 . -1230) 58887) ((-1236 . -1227) 58853) ((-1199 . -301) 58832) ((-1198 . -301) 58783) ((-1192 . -301) 58734) ((-1151 . -301) 58713) ((-1029 . -174) T) ((-351 . -921) 58694) ((-937 . -174) T) ((-710 . -21) T) ((-710 . -25) T) ((-653 . -1076) 58678) ((-653 . -656) 58662) ((-228 . -662) 58612) ((-609 . -1125) T) ((-608 . -1125) T) ((-487 . -1273) 58596) ((-487 . -1270) 58566) ((-431 . -297) 58494) ((-560 . -865) T) ((-327 . -1137) 58343) ((-324 . -1137) T) ((-1236 . -35) 58309) ((-1236 . -95) 58275) ((-84 . -626) 58257) ((-91 . -102) 58207) ((-1321 . -132) T) ((-730 . -1076) 58177) ((-605 . -629) 58158) ((-594 . -146) T) ((-594 . -148) 58140) ((-531 . -148) 58122) ((-531 . -146) T) ((-730 . -656) 58092) ((-327 . -23) 57944) ((-40 . -354) 57918) ((-324 . -23) T) ((-833 . -629) 57832) ((-1183 . -667) 57814) ((-1307 . -1083) T) ((-1183 . -385) 57796) ((-1121 . -102) T) ((-831 . -664) 57629) ((-1115 . -102) T) ((-1098 . -102) T) ((-171 . -273) 57613) ((-171 . -233) 57597) ((-1091 . -102) T) ((-1061 . -102) T) ((-1044 . -102) T) ((-606 . -502) 57579) ((-639 . -102) T) ((-246 . -527) 57512) ((-496 . -102) T) ((-1314 . -742) T) ((-1312 . -742) T) ((-221 . -102) T) ((-1203 . -1081) 57395) ((-1304 . -111) 57360) ((-1304 . -1081) 57330) ((-1284 . -733) 57227) ((-1087 . -662) 57199) ((-1277 . -733) 57040) ((-975 . -662) 56950) ((-1265 . -273) 56934) ((-1203 . -111) 56803) ((-1059 . -38) 56787) ((-894 . -1108) T) ((-879 . -175) T) ((-494 . -662) 56697) ((-274 . -915) 56603) ((-254 . -915) 56578) ((-833 . -1074) T) ((-697 . -1108) T) ((-692 . -1108) T) ((-636 . -235) 56523) ((-528 . -102) T) ((-523 . -102) T) ((-48 . -654) 56483) ((-521 . -102) T) ((-491 . -1108) T) ((-118 . -235) NIL) ((-3 . -1242) T) ((-139 . -1108) T) ((-138 . -1108) T) ((-134 . -1108) T) ((-849 . -1242) T) ((-833 . -239) T) ((-833 . -249) 56462) ((-1265 . -233) 56446) ((-1256 . -733) 56242) ((-1024 . -868) 56221) ((-1247 . -626) 56203) ((-563 . -297) 56182) ((-1088 . -627) NIL) ((-1088 . -626) 56164) ((-619 . -93) T) ((-687 . -93) T) ((0 . -1242) T) ((-49 . -1242) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-217 . -865) T) ((-1028 . -943) T) ((-1203 . -629) 56017) ((-153 . -742) T) ((-1138 . -380) 55996) ((-653 . -102) T) ((-1049 . -25) T) ((-1029 . -527) NIL) ((-259 . -424) 55965) ((-258 . -424) 55934) ((-1049 . -21) T) ((-890 . -1076) 55886) ((-609 . -733) 55859) ((-608 . -733) 55756) ((-815 . -297) 55714) ((-127 . -102) 55664) ((-849 . -1063) 55560) ((-171 . -844) 55539) ((-330 . -664) 55436) ((-831 . -34) T) ((-730 . -102) T) ((-1145 . -1137) T) ((-1051 . -1242) T) ((-890 . -656) 55388) ((-391 . -38) 55353) ((-366 . -25) T) ((-366 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-256 . -102) T) ((-158 . -102) T) ((-367 . -1299) 55337) ((-364 . -1299) 55321) ((-356 . -1299) 55305) ((-171 . -361) 55284) ((-577 . -865) T) ((-1112 . -238) 55235) ((-1145 . -23) T) ((-87 . -626) 55217) ((-798 . -238) T) ((-717 . -318) T) ((-852 . -38) 55187) ((-843 . -38) 55157) ((-1304 . -629) 55099) ((-1278 . -132) T) ((-1175 . -299) 55078) ((-987 . -742) 54977) ((-987 . -809) 54930) ((-987 . -810) 54883) ((-117 . -318) T) ((-91 . -320) 54821) ((-691 . -34) T) ((-563 . -617) 54800) ((-48 . -25) T) ((-48 . -21) T) ((-831 . -810) 54779) ((-831 . -809) 54758) ((-717 . -1047) T) ((-669 . -1081) 54742) ((-889 . -662) 54672) ((-831 . -742) 54650) ((-403 . -1242) T) ((-987 . -486) 54603) ((-495 . -811) 54582) ((-495 . -808) 54561) ((-933 . -1299) 54548) ((-1203 . -1074) T) ((-634 . -1242) T) ((-669 . -111) 54527) ((-1203 . -337) 54504) ((-1228 . -102) 54454) ((-1126 . -626) 54436) ((-717 . -558) T) ((-832 . -1125) T) ((-594 . -238) T) ((-531 . -238) T) ((-1304 . -1074) T) ((-1160 . -503) 54417) ((-1248 . -102) T) ((-426 . -1125) T) ((-1160 . -626) 54383) ((-259 . -1083) 54361) ((-258 . -1083) 54339) ((-854 . -102) T) ((-300 . -664) 54326) ((-606 . -297) 54276) ((-705 . -703) 54234) ((-1317 . -1242) T) ((-1292 . -865) 54213) ((-986 . -626) 54195) ((-890 . -102) T) ((-751 . -626) 54177) ((-731 . -626) 54159) ((-1284 . -174) 54110) ((-1277 . -174) 54041) ((-1256 . -174) 53972) ((-715 . -865) T) ((-1029 . -301) T) ((-466 . -626) 53954) ((-640 . -742) T) ((-60 . -1125) 53932) ((-251 . -152) 53916) ((-1276 . -656) 53757) ((-937 . -301) T) ((-1049 . -1037) T) ((-640 . -486) T) ((-728 . -1246) 53736) ((-710 . -235) NIL) ((-669 . -629) 53654) ((-171 . -662) 53549) ((-1276 . -1076) 53384) ((-609 . -174) 53363) ((-608 . -174) 53314) ((-1255 . -656) 53128) ((-1255 . -1076) 52936) ((-1250 . -1242) T) ((-728 . -569) 52847) ((-420 . -836) 52826) ((-420 . -943) T) ((-330 . -810) T) ((-490 . -1242) T) ((-995 . -629) 52807) ((-330 . -742) T) ((-660 . -1174) 52791) ((-431 . -626) 52773) ((-431 . -627) 52680) ((-110 . -667) 52662) ((-327 . -132) 52533) ((-176 . -318) T) ((-127 . -320) 52471) ((-411 . -1242) T) ((-110 . -385) 52453) ((-324 . -132) T) ((-69 . -408) T) ((-110 . -124) T) ((-533 . -502) 52437) ((-670 . -1137) T) ((-606 . -19) 52419) ((-61 . -454) T) ((-61 . -408) T) ((-840 . -1125) T) ((-606 . -617) 52394) ((-490 . -1063) 52354) ((-669 . -1074) T) ((-670 . -23) T) ((-1307 . -1125) T) ((-31 . -102) T) ((-1265 . -662) 52264) ((-873 . -662) 52223) ((-832 . -733) 52072) ((-1294 . -1242) T) ((-590 . -878) T) ((-584 . -662) 52044) ((-118 . -865) NIL) ((-1197 . -424) 52028) ((-1150 . -424) 52012) ((-872 . -424) 51996) ((-891 . -102) 51947) ((-1276 . -102) T) ((-1256 . -527) 51716) ((-1255 . -102) T) ((-1228 . -320) 51654) ((-1199 . -297) 51619) ((-1198 . -297) 51577) ((-538 . -93) T) ((-1192 . -297) 51405) ((-323 . -626) 51387) ((-1127 . -1125) T) ((-1105 . -664) 51261) ((-727 . -465) T) ((-705 . -626) 51193) ((-300 . -742) T) ((-108 . -932) NIL) ((-705 . -627) 51154) ((-614 . -626) 51136) ((-590 . -626) 51118) ((-563 . -627) NIL) ((-563 . -626) 51100) ((-542 . -626) 51082) ((-524 . -522) 51061) ((-500 . -1081) 51011) ((-487 . -1076) 50846) ((-520 . -522) 50825) ((-487 . -656) 50666) ((-220 . -1081) 50616) ((-371 . -664) 50568) ((-365 . -664) 50520) ((-228 . -864) T) ((-357 . -664) 50472) ((-615 . -102) 50402) ((-500 . -111) 50336) ((-495 . -380) 50315) ((-108 . -664) 50265) ((-366 . -235) 50252) ((-246 . -502) 50236) ((-355 . -148) 50218) ((-355 . -146) T) ((-171 . -382) 50189) ((-966 . -1290) 50173) ((-105 . -1242) T) ((-220 . -111) 50107) ((-890 . -320) 50072) ((-966 . -1125) 50022) ((-815 . -627) 49983) ((-815 . -626) 49965) ((-734 . -102) T) ((-1316 . -1242) T) ((-393 . -1242) T) ((-342 . -1125) T) ((-216 . -629) 49942) ((-1145 . -132) T) ((-1307 . -733) 49912) ((-730 . -38) 49882) ((-327 . -506) 49861) ((-544 . -1242) T) ((-513 . -1242) T) ((-1276 . -295) 49827) ((-1255 . -295) 49793) ((-338 . -152) 49777) ((-452 . -1125) T) ((-1241 . -1242) T) ((-1088 . -299) 49752) ((-1249 . -868) T) ((-48 . -235) 49739) ((-1184 . -34) T) ((-1316 . -1063) 49716) ((-497 . -34) T) ((-481 . -626) 49698) ((-257 . -297) 49672) ((-393 . -1063) 49656) ((-1197 . -1083) T) ((-1150 . -1083) T) ((-872 . -1083) T) ((-1087 . -864) T) ((-500 . -629) 49606) ((-220 . -629) 49556) ((-832 . -174) 49467) ((-533 . -297) 49419) ((-1284 . -301) 49398) ((-1223 . -376) 49372) ((-1113 . -276) 49356) ((-687 . -503) 49337) ((-687 . -626) 49303) ((-619 . -503) 49284) ((-118 . -1017) 49261) ((-619 . -626) 49211) ((-487 . -102) T) ((-182 . -503) 49192) ((-182 . -626) 49158) ((-162 . -503) 49139) ((-162 . -626) 49105) ((-157 . -503) 49086) ((-155 . -503) 49067) ((-157 . -626) 49033) ((-377 . -1125) T) ((-259 . -1125) T) ((-258 . -1125) T) ((-155 . -626) 48999) ((-1277 . -301) 48950) ((-1256 . -301) 48901) ((-890 . -1177) 48879) ((-1199 . -1027) 48845) ((-621 . -376) 48785) ((-1198 . -1027) 48751) ((-621 . -232) 48698) ((-710 . -865) T) ((-606 . -626) 48680) ((-606 . -627) NIL) ((-488 . -232) 48630) ((-500 . -1074) T) ((-1192 . -1027) 48596) ((-88 . -453) T) ((-88 . -408) T) ((-220 . -1074) T) ((-1151 . -1027) 48562) ((-1105 . -742) T) ((-728 . -1137) T) ((-609 . -301) 48541) ((-608 . -301) 48520) ((-500 . -249) T) ((-500 . -239) T) ((-220 . -249) T) ((-220 . -239) T) ((-1190 . -626) 48502) ((-890 . -38) 48454) ((-371 . -742) T) ((-365 . -742) T) ((-357 . -742) T) ((-108 . -810) T) ((-108 . -807) T) ((-728 . -23) T) ((-108 . -742) T) ((-533 . -1280) 48438) ((-1321 . -25) T) ((-487 . -295) 48404) ((-1321 . -21) T) ((-1255 . -320) 48343) ((-1201 . -102) T) ((-40 . -146) 48315) ((-40 . -148) 48287) ((-533 . -617) 48264) ((-1138 . -664) 48097) ((-615 . -320) 48035) ((-45 . -667) 47985) ((-45 . -682) 47935) ((-45 . -385) 47885) ((-1183 . -34) T) ((-889 . -864) NIL) ((-670 . -132) T) ((-498 . -626) 47867) ((-246 . -297) 47844) ((-1107 . -1242) T) ((-188 . -1125) T) ((-1112 . -465) 47795) ((-832 . -527) 47669) ((-798 . -465) 47600) ((-680 . -1076) 47584) ((-663 . -34) T) ((-645 . -34) T) ((-680 . -656) 47568) ((-367 . -1076) 47520) ((-355 . -238) T) ((-364 . -1076) 47472) ((-356 . -1076) 47424) ((-274 . -1076) 47267) ((-254 . -1076) 47110) ((-796 . -465) 47061) ((-367 . -656) 47013) ((-364 . -656) 46965) ((-356 . -656) 46917) ((-274 . -656) 46766) ((-254 . -656) 46615) ((-467 . -465) 46566) ((-975 . -424) 46550) ((-747 . -626) 46532) ((-259 . -733) 46474) ((-258 . -733) 46416) ((-747 . -627) 46277) ((-494 . -424) 46261) ((-351 . -313) T) ((-537 . -93) T) ((-363 . -943) T) ((-1025 . -102) 46211) ((-933 . -1076) 46176) ((-1049 . -865) T) ((-60 . -527) 46109) ((-933 . -656) 46074) ((-1255 . -1177) 46026) ((-1029 . -297) NIL) ((-228 . -1083) T) ((-391 . -844) T) ((-1138 . -34) T) ((-594 . -465) T) ((-531 . -465) T) ((-1259 . -1118) 46010) ((-1259 . -1125) 45988) ((-246 . -617) 45965) ((-1259 . -1120) 45922) ((-1199 . -626) 45904) ((-1198 . -626) 45886) ((-1192 . -626) 45868) ((-1192 . -627) NIL) ((-1151 . -626) 45850) ((-890 . -413) 45834) ((-610 . -102) T) ((-598 . -102) T) ((-549 . -102) T) ((-1276 . -38) 45675) ((-1255 . -38) 45489) ((-130 . -1242) T) ((-52 . -1242) T) ((-888 . -148) T) ((-594 . -415) T) ((-531 . -415) T) ((-1288 . -102) T) ((-1278 . -21) T) ((-1278 . -25) T) ((-1214 . -102) T) ((-1138 . -810) 45468) ((-1138 . -809) 45447) ((-1018 . -1125) T) ((-1052 . -34) T) ((-880 . -1125) T) ((-1138 . -742) 45425) ((-680 . -102) T) ((-661 . -102) T) ((-563 . -299) 45404) ((-489 . -34) T) ((-476 . -34) T) ((-367 . -102) T) ((-364 . -102) T) ((-322 . -1242) T) ((-356 . -102) T) ((-274 . -102) T) ((-254 . -102) T) ((-490 . -318) T) ((-1087 . -1083) T) ((-975 . -1083) T) ((-327 . -654) 45310) ((-324 . -654) 45271) ((-1197 . -1125) T) ((-494 . -1083) T) ((-492 . -102) T) ((-449 . -626) 45253) ((-1150 . -1125) T) ((-257 . -626) 45235) ((-872 . -1125) T) ((-1166 . -102) T) ((-832 . -301) 45166) ((-986 . -1081) 45049) ((-490 . -1047) T) ((-890 . -923) 44972) ((-751 . -1081) 44942) ((-1059 . -662) 44901) ((-1172 . -1146) 44885) ((-466 . -1081) 44855) ((-1127 . -527) 44788) ((-986 . -111) 44657) ((-933 . -102) T) ((-40 . -238) 44594) ((-751 . -111) 44559) ((-538 . -503) 44540) ((-538 . -626) 44506) ((-59 . -102) 44436) ((-533 . -627) 44397) ((-533 . -626) 44309) ((-532 . -102) 44259) ((-529 . -102) 44189) ((-510 . -102) 44139) ((-509 . -102) 44069) ((-466 . -111) 44032) ((-333 . -662) 44014) ((-515 . -868) T) ((-431 . -1081) 43988) ((-1236 . -998) 43950) ((-1024 . -1137) T) ((-391 . -662) 43900) ((-1160 . -629) 43881) ((-966 . -527) 43814) ((-500 . -811) T) ((-487 . -38) 43655) ((-431 . -111) 43622) ((-500 . -808) T) ((-1025 . -320) 43560) ((-220 . -811) T) ((-220 . -808) T) ((-1024 . -23) T) ((-728 . -132) T) ((-1255 . -413) 43530) ((-852 . -662) 43475) ((-843 . -662) 43434) ((-327 . -25) 43286) ((-171 . -424) 43270) ((-327 . -21) 43141) ((-324 . -25) T) ((-324 . -21) T) ((-882 . -380) T) ((-986 . -629) 42994) ((-110 . -34) T) ((-751 . -629) 42950) ((-731 . -629) 42932) ((-495 . -664) 42765) ((-889 . -1083) T) ((-606 . -299) 42740) ((-593 . -148) T) ((-577 . -148) T) ((-508 . -148) T) ((-1197 . -733) 42569) ((-1082 . -102) 42547) ((-1150 . -733) 42396) ((-1145 . -654) 42378) ((-872 . -733) 42348) ((-686 . -1242) T) ((-1 . -102) T) ((-561 . -1242) T) ((-431 . -629) 42256) ((-246 . -626) 41949) ((-1140 . -1125) T) ((-1265 . -424) 41933) ((-1214 . -320) 41737) ((-986 . -1074) T) ((-751 . -1074) T) ((-731 . -1074) T) ((-660 . -1125) 41687) ((-1079 . -664) 41671) ((-873 . -424) 41655) ((-524 . -102) T) ((-520 . -102) T) ((-274 . -320) 41642) ((-254 . -320) 41629) ((-1276 . -923) 41535) ((-986 . -337) 41514) ((-1255 . -923) 41311) ((-397 . -664) 41295) ((-859 . -868) 41274) ((-686 . -1063) 41170) ((-492 . -320) 40974) ((-259 . -527) 40907) ((-258 . -527) 40840) ((-1166 . -320) 40766) ((-420 . -868) 40717) ((-1236 . -915) 40696) ((-835 . -1125) T) ((-815 . -1081) 40680) ((-1284 . -297) 40645) ((-1277 . -297) 40603) ((-1256 . -297) 40431) ((-399 . -1125) T) ((-335 . -1125) T) ((-431 . -1074) T) ((-171 . -1083) T) ((-59 . -320) 40369) ((-815 . -111) 40348) ((-608 . -297) 40313) ((-532 . -320) 40251) ((-529 . -320) 40189) ((-510 . -320) 40127) ((-509 . -320) 40065) ((-431 . -239) 40044) ((-495 . -34) T) ((-228 . -1125) T) ((-1029 . -627) 39974) ((-1029 . -626) 39934) ((-996 . -626) 39894) ((-937 . -626) 39876) ((-715 . -148) T) ((-1314 . -1242) T) ((-1312 . -1242) T) ((-717 . -943) T) ((-717 . -836) T) ((-440 . -626) 39858) ((-1145 . -21) T) ((-1145 . -25) T) ((-686 . -389) 39842) ((-117 . -943) T) ((-890 . -273) 39826) ((-890 . -233) 39810) ((-44 . -1242) T) ((-78 . -1242) T) ((-127 . -126) 39794) ((-1079 . -34) T) ((-1314 . -1063) 39768) ((-1312 . -1063) 39725) ((-1265 . -1083) T) ((-873 . -1083) T) ((-367 . -1177) 39704) ((-364 . -1177) 39683) ((-356 . -1177) 39662) ((-495 . -810) 39641) ((-495 . -809) 39620) ((-230 . -34) T) ((-495 . -742) 39598) ((-815 . -629) 39444) ((-678 . -1076) 39428) ((-60 . -502) 39412) ((-584 . -1083) T) ((-1197 . -174) 39303) ((-678 . -656) 39287) ((-487 . -923) 39193) ((-153 . -1242) T) ((-1150 . -174) 39104) ((-1087 . -1125) T) ((-1112 . -972) 39049) ((-975 . -1125) T) ((-833 . -664) 39000) ((-798 . -972) 38969) ((-729 . -1125) T) ((-796 . -972) 38936) ((-529 . -293) 38920) ((-686 . -921) 38879) ((-494 . -1125) T) ((-467 . -972) 38846) ((-79 . -1242) T) ((-367 . -38) 38811) ((-364 . -38) 38776) ((-356 . -38) 38741) ((-274 . -38) 38590) ((-254 . -38) 38439) ((-933 . -1177) T) ((-537 . -503) 38420) ((-636 . -148) 38399) ((-636 . -146) 38378) ((-537 . -626) 38344) ((-118 . -148) T) ((-118 . -146) NIL) ((-427 . -742) T) ((-815 . -1074) T) ((-577 . -238) T) ((-508 . -238) T) ((-355 . -465) T) ((-1284 . -1027) 38310) ((-1277 . -1027) 38276) ((-1256 . -1027) 38242) ((-933 . -38) 38207) ((-228 . -733) 38172) ((-1024 . -132) T) ((-653 . -662) 38141) ((-330 . -47) 38111) ((-40 . -422) 38083) ((-141 . -626) 38065) ((-987 . -1242) T) ((-831 . -1242) T) ((-176 . -943) T) ((-562 . -380) T) ((-730 . -662) 38010) ((-619 . -629) 37991) ((-355 . -415) T) ((-687 . -629) 37972) ((-324 . -235) NIL) ((-182 . -629) 37953) ((-162 . -629) 37934) ((-157 . -629) 37915) ((-155 . -629) 37896) ((-533 . -299) 37873) ((-1255 . -233) 37843) ((-1255 . -273) 37813) ((-1239 . -1242) 37791) ((-1203 . -664) 37716) ((-894 . -102) T) ((-831 . -1063) 37543) ((-45 . -34) T) ((-697 . -102) T) ((-692 . -102) T) ((-678 . -102) T) ((-670 . -21) T) ((-670 . -25) T) ((-1127 . -502) 37527) ((-691 . -1242) T) ((-491 . -102) T) ((-251 . -102) 37457) ((-559 . -860) T) ((-139 . -102) T) ((-138 . -102) T) ((-134 . -102) T) ((-1112 . -915) 37352) ((-889 . -1125) T) ((-1197 . -527) 37299) ((-1087 . -733) 37286) ((-798 . -915) 37189) ((-747 . -1081) 37032) ((-796 . -915) 37014) ((-975 . -733) 36863) ((-1150 . -527) 36815) ((-1303 . -1125) T) ((-1302 . -1125) T) ((-467 . -915) 36790) ((-494 . -733) 36639) ((-67 . -626) 36621) ((-640 . -1242) T) ((-747 . -111) 36450) ((-966 . -502) 36434) ((-1304 . -664) 36394) ((-1199 . -1081) 36277) ((-833 . -742) T) ((-1198 . -1081) 36112) ((-1192 . -1081) 35902) ((-330 . -1242) T) ((-1151 . -1081) 35785) ((-1028 . -1246) T) ((-1119 . -102) 35763) ((-831 . -389) 35732) ((-592 . -626) 35714) ((-559 . -1125) T) ((-1028 . -569) T) ((-1199 . -111) 35583) ((-1198 . -111) 35404) ((-1192 . -111) 35173) ((-1151 . -111) 35042) ((-1130 . -1128) 35006) ((-391 . -864) T) ((-1284 . -626) 34988) ((-1277 . -626) 34970) ((-890 . -662) 34907) ((-1256 . -626) 34889) ((-1256 . -627) NIL) ((-246 . -299) 34866) ((-40 . -465) T) ((-228 . -174) T) ((-171 . -1125) T) ((-747 . -629) 34651) ((-710 . -148) T) ((-710 . -146) NIL) ((-609 . -626) 34633) ((-608 . -626) 34615) ((-1145 . -235) 34602) ((-919 . -1125) T) ((-857 . -1125) T) ((-824 . -1125) T) ((-274 . -923) 34512) ((-254 . -923) 34489) ((-785 . -1125) T) ((-693 . -1125) T) ((-674 . -870) 34473) ((-636 . -238) 34424) ((-831 . -921) 34356) ((-876 . -868) T) ((-1247 . -380) T) ((-40 . -415) NIL) ((-118 . -238) NIL) ((-1199 . -629) 34238) ((-1145 . -677) T) ((-889 . -733) 34183) ((-259 . -502) 34167) ((-258 . -502) 34151) ((-1198 . -629) 33894) ((-1192 . -629) 33689) ((-728 . -654) 33637) ((-669 . -664) 33611) ((-1151 . -629) 33493) ((-306 . -34) T) ((-1145 . -113) T) ((-747 . -1074) T) ((-594 . -1299) 33480) ((-531 . -1299) 33457) ((-1265 . -1125) T) ((-1197 . -301) 33368) ((-1150 . -301) 33299) ((-651 . -868) T) ((-1087 . -174) T) ((-300 . -1242) T) ((-873 . -1125) T) ((-975 . -174) 33210) ((-798 . -1268) 33194) ((-660 . -527) 33127) ((-77 . -626) 33109) ((-747 . -337) 33074) ((-1203 . -742) T) ((-584 . -1125) T) ((-494 . -174) 32985) ((-251 . -320) 32923) ((-1167 . -1137) T) ((-70 . -626) 32905) ((-1304 . -742) T) ((-1199 . -1074) T) ((-1198 . -1074) T) ((-1192 . -1074) T) ((-338 . -102) 32835) ((-1167 . -23) T) ((-2 . -1242) T) ((-1151 . -1074) T) ((-91 . -1146) 32819) ((-884 . -1137) T) ((-1199 . -239) 32778) ((-1198 . -249) 32757) ((-1198 . -239) 32709) ((-1192 . -239) 32596) ((-1192 . -249) 32575) ((-330 . -921) 32481) ((-884 . -23) T) ((-171 . -733) 32309) ((-420 . -1246) T) ((-1126 . -380) T) ((-1028 . -375) T) ((-888 . -465) T) ((-1049 . -148) T) ((-966 . -297) 32261) ((-324 . -865) NIL) ((-1276 . -662) 32143) ((-892 . -102) T) ((-1255 . -662) 31998) ((-728 . -25) T) ((-420 . -569) T) ((-728 . -21) T) ((-538 . -629) 31979) ((-366 . -148) 31961) ((-366 . -146) T) ((-1172 . -1125) 31939) ((-466 . -736) T) ((-75 . -626) 31921) ((-115 . -865) T) ((-251 . -293) 31905) ((-246 . -1081) 31826) ((-81 . -626) 31808) ((-751 . -380) 31761) ((-1201 . -844) T) ((-753 . -241) 31745) ((-1184 . -1242) T) ((-142 . -241) 31727) ((-246 . -111) 31643) ((-1265 . -733) 31472) ((-48 . -148) T) ((-889 . -174) T) ((-873 . -733) 31442) ((-497 . -1242) T) ((-975 . -527) 31389) ((-669 . -742) T) ((-584 . -733) 31376) ((-1059 . -1083) T) ((-710 . -238) NIL) ((-494 . -527) 31319) ((-966 . -19) 31303) ((-966 . -617) 31280) ((-1105 . -1242) T) ((-1086 . -1242) T) ((-1236 . -656) 31177) ((-832 . -627) NIL) ((-832 . -626) 31159) ((-1236 . -1076) 31042) ((-1105 . -1063) 30938) ((-1029 . -1081) 30888) ((-426 . -626) 30870) ((-259 . -297) 30847) ((-371 . -1242) T) ((-365 . -1242) T) ((-357 . -1242) T) ((-258 . -297) 30824) ((-500 . -932) NIL) ((-327 . -29) 30794) ((-108 . -1242) T) ((-1028 . -1137) T) ((-220 . -932) NIL) ((-937 . -1081) 30746) ((-655 . -1299) 30730) ((-1029 . -111) 30664) ((-1028 . -23) T) ((-727 . -1076) 30629) ((-937 . -111) 30567) ((-753 . -711) 30551) ((-727 . -656) 30516) ((-274 . -273) 30500) ((-274 . -233) 30484) ((-440 . -1081) 30468) ((-391 . -1083) T) ((-246 . -629) 30266) ((-710 . -1230) NIL) ((-500 . -664) 30216) ((-487 . -662) 30098) ((-108 . -903) 30080) ((-108 . -905) 30062) ((-710 . -1227) NIL) ((-220 . -664) 30012) ((-371 . -1063) 29996) ((-365 . -1063) 29980) ((-338 . -320) 29918) ((-357 . -1063) 29902) ((-228 . -301) T) ((-440 . -111) 29881) ((-60 . -626) 29813) ((-171 . -174) T) ((-1145 . -865) T) ((-108 . -1063) 29773) ((-911 . -1125) T) ((-852 . -1083) T) ((-843 . -1083) T) ((-710 . -35) NIL) ((-710 . -95) NIL) ((-324 . -1017) 29734) ((-185 . -102) T) ((-1315 . -1137) T) ((-1315 . -23) T) ((-593 . -465) T) ((-577 . -465) T) ((-508 . -465) T) ((-1307 . -626) 29716) ((-1265 . -174) 29607) ((-1236 . -102) T) ((-420 . -375) T) ((-1223 . -1125) T) ((-1214 . -232) 29557) ((-1208 . -860) T) ((-1207 . -860) T) ((-1191 . -1242) T) ((-246 . -1074) 29535) ((-1019 . -1242) T) ((-1175 . -34) T) ((-1192 . -808) NIL) ((-1192 . -811) NIL) ((-1183 . -1242) T) ((-490 . -943) T) ((-1024 . -654) 29483) ((-259 . -617) 29460) ((-258 . -617) 29437) ((-1167 . -132) T) ((-1127 . -627) 29398) ((-1105 . -389) 29382) ((-889 . -527) 29290) ((-246 . -239) 29242) ((-1127 . -626) 29224) ((-1113 . -1125) T) ((-1029 . -629) 29174) ((-1105 . -921) 29107) ((-937 . -629) 29044) ((-840 . -626) 29026) ((-1101 . -1125) T) ((-1087 . -301) T) ((-1029 . -249) T) ((-1029 . -239) T) ((-1029 . -1074) T) ((-981 . -1125) 28976) ((-975 . -301) 28907) ((-440 . -629) 28876) ((-108 . -389) 28858) ((-108 . -350) 28840) ((-937 . -1074) T) ((-937 . -249) T) ((-815 . -380) 28819) ((-727 . -102) T) ((-717 . -868) T) ((-663 . -1242) T) ((-645 . -1242) T) ((-621 . -1125) T) ((-621 . -623) 28795) ((-599 . -1076) 28770) ((-494 . -301) 28701) ((-584 . -174) T) ((-338 . -293) 28685) ((-366 . -238) T) ((-599 . -656) 28660) ((-367 . -361) 28639) ((-364 . -361) 28618) ((-356 . -361) 28597) ((-214 . -1242) T) ((-83 . -626) 28579) ((-213 . -1242) T) ((-211 . -1242) T) ((-210 . -1242) T) ((-209 . -1242) T) ((-208 . -1242) T) ((-205 . -1242) T) ((-204 . -1242) T) ((-203 . -1242) T) ((-202 . -1242) T) ((-488 . -1125) T) ((-201 . -1242) T) ((-274 . -261) 28541) ((-200 . -1242) T) ((-199 . -1242) T) ((-198 . -1242) T) ((-197 . -1242) T) ((-196 . -1242) T) ((-488 . -623) 28520) ((-195 . -1242) T) ((-284 . -1242) T) ((-283 . -1242) T) ((-282 . -1242) T) ((-281 . -1242) T) ((-492 . -232) 28470) ((-280 . -1242) T) ((-279 . -1242) T) ((-278 . -1242) T) ((-440 . -1074) T) ((-884 . -132) T) ((-859 . -1137) 28449) ((-48 . -238) T) ((-715 . -465) T) ((-108 . -921) NIL) ((-135 . -868) T) ((-1236 . -295) 28415) ((-1138 . -1242) T) ((-890 . -864) 28394) ((-1024 . -25) T) ((-928 . -742) T) ((-171 . -527) 28306) ((-1024 . -21) T) ((-928 . -486) T) ((-420 . -1137) T) ((-500 . -810) T) ((-500 . -807) T) ((-933 . -361) T) ((-500 . -742) T) ((-220 . -810) T) ((-220 . -807) T) ((-728 . -235) 28293) ((-220 . -742) T) ((-859 . -23) 28245) ((-1209 . -1125) T) ((-674 . -1076) 28229) ((-1208 . -1125) T) ((-537 . -629) 28210) ((-1207 . -1125) T) ((-330 . -318) 28189) ((-1060 . -241) 28135) ((-674 . -656) 28105) ((-420 . -23) T) ((-966 . -627) 28066) ((-966 . -626) 27978) ((-660 . -502) 27962) ((-45 . -1035) 27912) ((-1138 . -1063) 27739) ((-630 . -992) T) ((-504 . -102) T) ((-342 . -626) 27721) ((-1018 . -297) 27688) ((-606 . -667) 27670) ((-129 . -1125) T) ((-131 . -1125) T) ((-606 . -385) 27652) ((-355 . -1299) 27629) ((-452 . -626) 27611) ((-1265 . -527) 27558) ((-1112 . -1076) 27401) ((-1052 . -1242) T) ((-889 . -301) T) ((-1197 . -297) 27328) ((-1112 . -656) 27177) ((-1025 . -1020) 27161) ((-798 . -1076) 26984) ((-796 . -1076) 26827) ((-798 . -656) 26656) ((-796 . -656) 26505) ((-489 . -1242) T) ((-476 . -1242) T) ((-599 . -102) T) ((-474 . -1076) 26476) ((-467 . -1076) 26319) ((-680 . -662) 26288) ((-636 . -465) 26267) ((-474 . -656) 26238) ((-467 . -656) 26087) ((-367 . -662) 26024) ((-364 . -662) 25961) ((-356 . -662) 25898) ((-274 . -662) 25808) ((-254 . -662) 25718) ((-1307 . -394) 25690) ((-530 . -1125) T) ((-118 . -465) T) ((-1222 . -102) T) ((-1117 . -1125) 25660) ((-1059 . -1125) T) ((-1140 . -93) T) ((-912 . -865) T) ((-1284 . -111) 25529) ((-363 . -1246) T) ((-1284 . -1081) 25412) ((-1138 . -389) 25381) ((-1277 . -1081) 25216) ((-1256 . -1081) 25006) ((-1277 . -111) 24827) ((-1256 . -111) 24596) ((-1236 . -320) 24583) ((-1028 . -132) T) ((-933 . -662) 24533) ((-377 . -626) 24515) ((-363 . -569) T) ((-300 . -318) T) ((-609 . -1081) 24475) ((-608 . -1081) 24358) ((-594 . -1076) 24323) ((-531 . -1076) 24268) ((-373 . -1125) T) ((-333 . -1125) T) ((-259 . -626) 24229) ((-258 . -626) 24190) ((-594 . -656) 24155) ((-531 . -656) 24100) ((-710 . -422) 24067) ((-648 . -23) T) ((-620 . -23) T) ((-40 . -915) 23974) ((-674 . -102) T) ((-609 . -111) 23927) ((-608 . -111) 23796) ((-391 . -1125) T) ((-348 . -102) T) ((-171 . -301) 23707) ((-1255 . -864) 23660) ((-730 . -1083) T) ((-625 . -1242) T) ((-1172 . -527) 23593) ((-1215 . -851) 23577) ((-1138 . -921) 23509) ((-852 . -1125) T) ((-843 . -1125) T) ((-841 . -1125) T) ((-97 . -102) T) ((-145 . -865) T) ((-625 . -903) 23493) ((-1176 . -1242) T) ((-110 . -1242) T) ((-1112 . -102) T) ((-1088 . -34) T) ((-798 . -102) T) ((-796 . -102) T) ((-1284 . -629) 23375) ((-1277 . -629) 23118) ((-474 . -102) T) ((-467 . -102) T) ((-1256 . -629) 22913) ((-96 . -1242) T) ((-246 . -811) 22892) ((-246 . -808) 22871) ((-665 . -102) T) ((-609 . -629) 22829) ((-608 . -629) 22711) ((-1265 . -301) 22622) ((-680 . -647) 22606) ((-188 . -626) 22588) ((-660 . -297) 22540) ((-1059 . -733) 22524) ((-584 . -301) T) ((-986 . -664) 22449) ((-1315 . -132) T) ((-751 . -664) 22409) ((-731 . -664) 22396) ((-285 . -102) T) ((-466 . -664) 22326) ((-50 . -102) T) ((-594 . -102) T) ((-531 . -102) T) ((-1284 . -1074) T) ((-1277 . -1074) T) ((-1256 . -1074) T) ((-1165 . -1242) T) ((-520 . -662) 22308) ((-333 . -733) 22290) ((-1284 . -239) 22249) ((-1277 . -249) 22228) ((-1277 . -239) 22180) ((-1256 . -239) 22067) ((-1256 . -249) 22046) ((-1236 . -38) 21943) ((-609 . -1074) T) ((-608 . -1074) T) ((-1029 . -811) T) ((-1029 . -808) T) ((-996 . -811) T) ((-996 . -808) T) ((-890 . -1083) T) ((-109 . -626) 21925) ((-710 . -465) T) ((-391 . -733) 21890) ((-431 . -664) 21864) ((-888 . -887) 21848) ((-727 . -38) 21813) ((-608 . -239) 21772) ((-40 . -740) 21744) ((-363 . -340) 21721) ((-363 . -375) T) ((-1105 . -318) 21672) ((-305 . -1137) 21553) ((-1131 . -1242) T) ((-1024 . -235) 21498) ((-173 . -102) T) ((-1259 . -626) 21465) ((-859 . -132) 21417) ((-852 . -733) 21387) ((-660 . -1280) 21371) ((-843 . -733) 21341) ((-660 . -617) 21318) ((-495 . -1242) T) ((-371 . -318) T) ((-365 . -318) T) ((-357 . -318) T) ((-412 . -235) 21305) ((-420 . -132) T) ((-533 . -682) 21289) ((-108 . -318) T) ((-305 . -23) 21172) ((-533 . -667) 21156) ((-710 . -415) NIL) ((-533 . -385) 21140) ((-655 . -1076) 21124) ((-655 . -656) 21108) ((-302 . -626) 21090) ((-91 . -1125) 21068) ((-108 . -1047) T) ((-577 . -144) T) ((-1292 . -152) 21052) ((-495 . -1063) 20879) ((-1278 . -146) 20840) ((-1278 . -148) 20801) ((-1079 . -1242) T) ((-1303 . -93) T) ((-1018 . -626) 20783) ((-834 . -1242) T) ((-880 . -626) 20765) ((-832 . -1081) 20608) ((-1302 . -93) T) ((-1197 . -627) NIL) ((-1121 . -1125) T) ((-1115 . -1125) T) ((-1112 . -320) 20595) ((-427 . -1242) T) ((-397 . -1242) T) ((-1098 . -1125) T) ((-230 . -1242) T) ((-1091 . -1125) T) ((-1061 . -1125) T) ((-1044 . -1125) T) ((-798 . -320) 20582) ((-796 . -320) 20569) ((-1197 . -626) 20551) ((-832 . -111) 20380) ((-1150 . -626) 20362) ((-639 . -1125) T) ((-590 . -175) T) ((-542 . -175) T) ((-467 . -320) 20349) ((-496 . -1125) T) ((-1150 . -627) 20097) ((-1059 . -174) T) ((-966 . -299) 20074) ((-221 . -1125) T) ((-872 . -626) 20056) ((-621 . -527) 19839) ((-81 . -629) 19780) ((-834 . -1063) 19764) ((-488 . -527) 19556) ((-849 . -868) 19535) ((-986 . -742) T) ((-751 . -742) T) ((-731 . -742) T) ((-363 . -1137) T) ((-1204 . -626) 19517) ((-226 . -102) T) ((-495 . -389) 19486) ((-528 . -1125) T) ((-523 . -1125) T) ((-521 . -1125) T) ((-815 . -664) 19460) ((-1049 . -465) T) ((-981 . -527) 19393) ((-363 . -23) T) ((-648 . -132) T) ((-620 . -132) T) ((-366 . -465) T) ((-246 . -380) 19372) ((-391 . -174) T) ((-1276 . -1083) T) ((-1255 . -1083) T) ((-228 . -1027) T) ((-832 . -629) 19109) ((-715 . -400) T) ((-431 . -742) T) ((-717 . -1246) T) ((-1167 . -654) 19057) ((-653 . -1125) T) ((-655 . -102) T) ((-593 . -887) 19041) ((-1307 . -1081) 19025) ((-1184 . -1218) 19001) ((-717 . -569) T) ((-127 . -1125) 18979) ((-730 . -1125) T) ((-674 . -38) 18949) ((-495 . -921) 18881) ((-256 . -1125) T) ((-189 . -1125) T) ((-366 . -415) T) ((-327 . -148) 18860) ((-327 . -146) 18839) ((-117 . -569) T) ((-129 . -527) NIL) ((-324 . -148) 18795) ((-324 . -146) 18751) ((-48 . -465) T) ((-163 . -1125) T) ((-158 . -1125) T) ((-1184 . -107) 18698) ((-798 . -1177) 18676) ((-1307 . -111) 18655) ((-705 . -34) T) ((-605 . -1242) T) ((-563 . -34) T) ((-497 . -107) 18639) ((-259 . -299) 18616) ((-258 . -299) 18593) ((-1248 . -860) T) ((-889 . -297) 18544) ((-45 . -1242) T) ((-1236 . -923) 18525) ((-833 . -1242) T) ((-832 . -1074) T) ((-634 . -868) 18504) ((-678 . -662) 18473) ((-1203 . -47) 18450) ((-832 . -337) 18412) ((-1112 . -38) 18261) ((-832 . -239) 18240) ((-798 . -38) 18069) ((-796 . -38) 17918) ((-1140 . -503) 17899) ((-467 . -38) 17748) ((-1140 . -626) 17714) ((-1143 . -102) T) ((-660 . -627) 17675) ((-660 . -626) 17587) ((-594 . -1177) T) ((-531 . -1177) T) ((-1172 . -502) 17571) ((-355 . -1076) 17516) ((-1228 . -1125) 17494) ((-1167 . -25) T) ((-1167 . -21) T) ((-355 . -656) 17439) ((-1307 . -629) 17388) ((-341 . -1242) T) ((-487 . -1083) T) ((-1248 . -1125) T) ((-1256 . -808) NIL) ((-1256 . -811) NIL) ((-1024 . -865) 17367) ((-884 . -21) T) ((-854 . -1125) T) ((-835 . -626) 17349) ((-884 . -25) T) ((-815 . -742) T) ((-653 . -733) 17333) ((-176 . -1246) T) ((-594 . -38) 17298) ((-531 . -38) 17263) ((-399 . -626) 17245) ((-344 . -102) T) ((-335 . -626) 17227) ((-171 . -297) 17185) ((-1250 . -868) T) ((-63 . -1242) T) ((-112 . -102) T) ((-890 . -1125) T) ((-525 . -1242) T) ((-176 . -569) T) ((-730 . -733) 17155) ((-305 . -132) 17038) ((-228 . -626) 17020) ((-228 . -627) 16950) ((-1028 . -654) 16889) ((-1307 . -1074) T) ((-1203 . -1242) T) ((-1145 . -148) T) ((-645 . -1218) 16864) ((-747 . -932) 16843) ((-606 . -34) T) ((-663 . -107) 16827) ((-645 . -107) 16773) ((-1304 . -1242) T) ((-636 . -915) 16694) ((-1265 . -297) 16621) ((-747 . -664) 16510) ((-306 . -1242) T) ((-1203 . -1063) 16406) ((-966 . -631) 16383) ((-590 . -589) T) ((-590 . -540) T) ((-542 . -540) T) ((-118 . -915) NIL) ((-1192 . -932) NIL) ((-1087 . -627) 16298) ((-1087 . -626) 16280) ((-975 . -626) 16262) ((-729 . -503) 16212) ((-355 . -102) T) ((-259 . -1081) 16133) ((-258 . -1081) 16054) ((-407 . -102) T) ((-31 . -1125) T) ((-975 . -627) 15915) ((-729 . -626) 15850) ((-1305 . -1235) 15819) ((-494 . -626) 15801) ((-494 . -627) 15662) ((-274 . -424) 15646) ((-254 . -424) 15630) ((-324 . -238) NIL) ((-259 . -111) 15546) ((-258 . -111) 15462) ((-1199 . -664) 15387) ((-1198 . -664) 15284) ((-1192 . -664) 15136) ((-1151 . -664) 15061) ((-363 . -132) T) ((-82 . -454) T) ((-82 . -408) T) ((-1028 . -25) T) ((-1028 . -21) T) ((-891 . -1125) 15012) ((-40 . -1076) 14957) ((-890 . -733) 14909) ((-40 . -656) 14854) ((-391 . -301) T) ((-171 . -1027) 14805) ((-1112 . -923) 14704) ((-710 . -400) T) ((-1024 . -1022) 14688) ((-717 . -1137) T) ((-710 . -167) 14670) ((-798 . -923) 14577) ((-796 . -923) 14561) ((-1276 . -1125) T) ((-1255 . -1125) T) ((-1189 . -102) T) ((-327 . -1227) 14540) ((-327 . -1230) 14519) ((-467 . -923) 14496) ((-327 . -982) 14475) ((-135 . -1137) T) ((-117 . -1137) T) ((-995 . -1242) T) ((-882 . -1242) T) ((-717 . -23) T) ((-669 . -1242) T) ((-615 . -1290) 14459) ((-615 . -1125) 14409) ((-544 . -868) T) ((-513 . -868) T) ((-327 . -95) 14388) ((-91 . -527) 14321) ((-176 . -375) T) ((-259 . -629) 14119) ((-258 . -629) 13917) ((-327 . -35) 13896) ((-621 . -502) 13830) ((-135 . -23) T) ((-117 . -23) T) ((-989 . -102) T) ((-734 . -1125) T) ((-488 . -502) 13767) ((-420 . -654) 13715) ((-669 . -1063) 13611) ((-981 . -502) 13595) ((-367 . -1083) T) ((-364 . -1083) T) ((-356 . -1083) T) ((-274 . -1083) T) ((-254 . -1083) T) ((-889 . -627) NIL) ((-889 . -626) 13577) ((-1303 . -503) 13558) ((-1302 . -503) 13539) ((-1315 . -21) T) ((-1303 . -626) 13505) ((-1302 . -626) 13471) ((-584 . -1027) T) ((-747 . -742) T) ((-1315 . -25) T) ((-259 . -1074) 13449) ((-258 . -1074) 13427) ((-72 . -1242) T) ((-1167 . -235) 13372) ((-259 . -239) 13324) ((-258 . -239) 13276) ((-1145 . -238) T) ((-40 . -102) T) ((-933 . -1083) T) ((-710 . -915) NIL) ((-1206 . -102) T) ((-129 . -502) 13258) ((-1199 . -742) T) ((-1198 . -742) T) ((-1192 . -742) T) ((-1192 . -807) NIL) ((-1192 . -810) NIL) ((-977 . -102) T) ((-944 . -102) T) ((-888 . -1076) 13245) ((-1151 . -742) T) ((-787 . -102) T) ((-688 . -102) T) ((-888 . -656) 13232) ((-559 . -626) 13214) ((-487 . -1125) T) ((-351 . -1137) T) ((-176 . -1137) T) ((-330 . -943) 13193) ((-1276 . -733) 13034) ((-890 . -174) T) ((-1255 . -733) 12848) ((-859 . -21) 12800) ((-859 . -25) 12752) ((-251 . -1174) 12736) ((-127 . -527) 12669) ((-420 . -25) T) ((-420 . -21) T) ((-351 . -23) T) ((-171 . -627) 12435) ((-171 . -626) 12417) ((-176 . -23) T) ((-660 . -299) 12394) ((-533 . -34) T) ((-919 . -626) 12376) ((-89 . -1242) T) ((-857 . -626) 12358) ((-824 . -626) 12340) ((-785 . -626) 12322) ((-693 . -626) 12304) ((-246 . -664) 12137) ((-630 . -113) T) ((-1201 . -1125) T) ((-1197 . -1081) 11960) ((-216 . -1242) T) ((-1175 . -1242) T) ((-1150 . -1081) 11803) ((-872 . -1081) 11787) ((-1107 . -868) T) ((-1259 . -631) 11771) ((-1197 . -111) 11580) ((-1150 . -111) 11409) ((-872 . -111) 11388) ((-1249 . -865) T) ((-1265 . -627) NIL) ((-1265 . -626) 11370) ((-355 . -1177) T) ((-873 . -626) 11352) ((-1101 . -297) 11331) ((-1236 . -662) 11241) ((-80 . -1242) T) ((-928 . -1242) T) ((-1228 . -527) 11174) ((-1029 . -932) NIL) ((-1112 . -273) 11158) ((-621 . -297) 11134) ((-1112 . -233) 11118) ((-500 . -1242) T) ((-584 . -626) 11100) ((-488 . -297) 11079) ((-1029 . -664) 11029) ((-530 . -93) T) ((-1028 . -235) 10960) ((-220 . -1242) T) ((-981 . -297) 10912) ((-888 . -102) T) ((-300 . -943) T) ((-833 . -318) 10891) ((-798 . -273) 10875) ((-798 . -233) 10859) ((-937 . -664) 10811) ((-727 . -662) 10761) ((-710 . -740) 10728) ((-648 . -21) T) ((-648 . -25) T) ((-620 . -21) T) ((-560 . -102) T) ((-355 . -38) 10693) ((-500 . -903) 10675) ((-500 . -905) 10657) ((-487 . -733) 10498) ((-64 . -1242) T) ((-220 . -903) 10480) ((-220 . -905) 10462) ((-620 . -25) T) ((-440 . -664) 10436) ((-1197 . -629) 10205) ((-500 . -1063) 10165) ((-890 . -527) 10077) ((-1150 . -629) 9869) ((-872 . -629) 9787) ((-220 . -1063) 9747) ((-246 . -34) T) ((-1025 . -1125) 9725) ((-593 . -1076) 9712) ((-577 . -1076) 9699) ((-508 . -1076) 9664) ((-1276 . -174) 9595) ((-1255 . -174) 9526) ((-593 . -656) 9513) ((-577 . -656) 9500) ((-508 . -656) 9465) ((-728 . -146) 9444) ((-728 . -148) 9423) ((-130 . -868) T) ((-717 . -132) T) ((-562 . -1242) T) ((-137 . -478) 9400) ((-1172 . -626) 9332) ((-674 . -672) 9316) ((-129 . -297) 9266) ((-117 . -132) T) ((-490 . -1246) T) ((-621 . -617) 9242) ((-488 . -617) 9221) ((-610 . -1125) T) ((-348 . -347) 9190) ((-598 . -1125) T) ((-549 . -1125) T) ((-490 . -569) T) ((-1197 . -1074) T) ((-1150 . -1074) T) ((-872 . -1074) T) ((-839 . -1242) T) ((-246 . -810) 9169) ((-246 . -809) 9148) ((-1197 . -337) 9125) ((-246 . -742) 9103) ((-981 . -19) 9087) ((-500 . -389) 9069) ((-500 . -350) 9051) ((-1150 . -337) 9023) ((-366 . -1299) 9000) ((-220 . -389) 8982) ((-220 . -350) 8964) ((-981 . -617) 8941) ((-1197 . -239) T) ((-1288 . -1125) T) ((-1214 . -1125) T) ((-680 . -1125) T) ((-661 . -1125) T) ((-1112 . -261) 8878) ((-599 . -662) 8838) ((-367 . -1125) T) ((-364 . -1125) T) ((-356 . -1125) T) ((-274 . -1125) T) ((-254 . -1125) T) ((-84 . -1242) T) ((-217 . -102) T) ((-128 . -102) 8788) ((-122 . -102) 8738) ((-1255 . -527) 8598) ((-1214 . -623) 8577) ((-1166 . -1125) T) ((-1140 . -629) 8558) ((-1105 . -943) 8509) ((-492 . -1125) T) ((-1029 . -810) T) ((-1029 . -807) T) ((-492 . -623) 8488) ((-259 . -811) 8467) ((-259 . -808) 8446) ((-258 . -811) 8425) ((-40 . -1177) NIL) ((-258 . -808) 8404) ((-1029 . -742) T) ((-129 . -19) 8386) ((-996 . -810) T) ((-715 . -1076) 8351) ((-937 . -742) T) ((-933 . -1125) T) ((-911 . -626) 8333) ((-129 . -617) 8308) ((-715 . -656) 8273) ((-91 . -502) 8257) ((-500 . -921) NIL) ((-890 . -301) T) ((-228 . -1081) 8222) ((-852 . -297) 8201) ((-220 . -921) NIL) ((-849 . -1137) 8180) ((-59 . -1125) 8130) ((-532 . -1125) 8108) ((-529 . -1125) 8058) ((-510 . -1125) 8036) ((-509 . -1125) 7986) ((-593 . -102) T) ((-577 . -102) T) ((-508 . -102) T) ((-487 . -174) 7917) ((-371 . -943) T) ((-365 . -943) T) ((-357 . -943) T) ((-228 . -111) 7873) ((-849 . -23) 7825) ((-440 . -742) T) ((-108 . -943) T) ((-40 . -38) 7770) ((-108 . -836) T) ((-594 . -361) T) ((-531 . -361) T) ((-674 . -662) 7729) ((-327 . -465) 7708) ((-324 . -465) T) ((-615 . -527) 7641) ((-420 . -235) 7586) ((-351 . -132) T) ((-176 . -132) T) ((-305 . -25) 7450) ((-305 . -21) 7333) ((-45 . -1218) 7312) ((-66 . -626) 7294) ((-55 . -102) T) ((-348 . -662) 7276) ((-1293 . -102) T) ((-1292 . -102) 7206) ((-1284 . -664) 7131) ((-1277 . -664) 7028) ((-45 . -107) 6978) ((-835 . -629) 6962) ((-1256 . -664) 6814) ((-1256 . -932) NIL) ((-1247 . -1242) T) ((-1223 . -626) 6796) ((-1215 . -102) T) ((-1127 . -438) 6780) ((-1127 . -380) 6759) ((-399 . -629) 6743) ((-335 . -629) 6727) ((-1121 . -93) T) ((-1112 . -662) 6637) ((-1088 . -1242) T) ((-1087 . -1081) 6624) ((-1087 . -111) 6609) ((-975 . -111) 6438) ((-975 . -1081) 6281) ((-798 . -662) 6191) ((-796 . -662) 6101) ((-680 . -733) 6085) ((-636 . -1076) 6072) ((-636 . -656) 6059) ((-561 . -868) T) ((-494 . -1081) 5902) ((-490 . -375) T) ((-474 . -662) 5858) ((-467 . -662) 5768) ((-228 . -629) 5718) ((-367 . -733) 5670) ((-364 . -733) 5622) ((-118 . -1076) 5567) ((-356 . -733) 5519) ((-274 . -733) 5368) ((-254 . -733) 5217) ((-1115 . -93) T) ((-1098 . -93) T) ((-118 . -656) 5162) ((-1091 . -93) T) ((-966 . -667) 5146) ((-1082 . -1125) 5124) ((-494 . -111) 4953) ((-1061 . -93) T) ((-1044 . -93) T) ((-966 . -385) 4937) ((-255 . -102) T) ((-986 . -47) 4916) ((-74 . -626) 4898) ((-728 . -238) T) ((-726 . -102) T) ((-715 . -102) T) ((-1 . -1125) T) ((-634 . -1137) T) ((-1113 . -626) 4880) ((-639 . -93) T) ((-1101 . -626) 4862) ((-933 . -733) 4827) ((-127 . -502) 4811) ((-496 . -93) T) ((-634 . -23) T) ((-403 . -23) T) ((-87 . -1242) T) ((-221 . -93) T) ((-621 . -626) 4793) ((-621 . -627) NIL) ((-488 . -627) NIL) ((-488 . -626) 4775) ((-363 . -25) T) ((-363 . -21) T) ((-50 . -662) 4734) ((-524 . -1125) T) ((-520 . -1125) T) ((-122 . -320) 4672) ((-128 . -320) 4610) ((-609 . -664) 4584) ((-608 . -664) 4509) ((-594 . -662) 4459) ((-228 . -1074) T) ((-531 . -662) 4389) ((-1087 . -629) 4361) ((-391 . -1027) T) ((-228 . -249) T) ((-228 . -239) T) ((-866 . -503) 4345) ((-1087 . -631) 4326) ((-981 . -627) 4287) ((-981 . -626) 4199) ((-975 . -629) 3988) ((-866 . -626) 3936) ((-888 . -38) 3923) ((-729 . -629) 3873) ((-1276 . -301) 3824) ((-1255 . -301) 3775) ((-494 . -629) 3560) ((-1145 . -465) T) ((-515 . -865) T) ((-327 . -1164) 3539) ((-1126 . -1242) T) ((-1024 . -148) 3518) ((-1024 . -146) 3497) ((-508 . -320) 3484) ((-1209 . -626) 3466) ((-306 . -1218) 3445) ((-1208 . -626) 3427) ((-1160 . -1242) T) ((-1207 . -626) 3409) ((-889 . -1081) 3354) ((-490 . -1137) T) ((-140 . -851) 3336) ((-115 . -851) 3317) ((-1228 . -502) 3301) ((-1087 . -1074) T) ((-636 . -102) T) ((-986 . -1242) T) ((-975 . -1074) T) ((-259 . -380) 3280) ((-258 . -380) 3259) ((-889 . -111) 3188) ((-306 . -107) 3138) ((-131 . -626) 3120) ((-129 . -627) NIL) ((-129 . -626) 3064) ((-118 . -102) T) ((-751 . -1242) T) ((-731 . -1242) T) ((-490 . -23) T) ((-466 . -1242) T) ((-494 . -1074) T) ((-1087 . -239) T) ((-975 . -337) 3033) ((-40 . -923) 2942) ((-494 . -337) 2899) ((-367 . -174) T) ((-364 . -174) T) ((-356 . -174) T) ((-274 . -174) 2810) ((-254 . -174) 2721) ((-986 . -1063) 2617) ((-530 . -503) 2598) ((-751 . -1063) 2569) ((-530 . -626) 2535) ((-431 . -1242) T) ((-1130 . -102) T) ((-1117 . -626) 2494) ((-1059 . -626) 2476) ((-710 . -1076) 2426) ((-1305 . -152) 2410) ((-1303 . -629) 2391) ((-1302 . -629) 2372) ((-1297 . -626) 2354) ((-1284 . -742) T) ((-710 . -656) 2304) ((-1277 . -742) T) ((-1256 . -807) NIL) ((-1256 . -810) NIL) ((-171 . -1081) 2214) ((-933 . -174) T) ((-889 . -629) 2144) ((-1256 . -742) T) ((-1028 . -354) 2118) ((-226 . -662) 2070) ((-1025 . -527) 2003) ((-859 . -865) 1982) ((-577 . -1177) T) ((-487 . -301) 1933) ((-609 . -742) T) ((-373 . -626) 1915) ((-333 . -626) 1897) ((-431 . -1063) 1793) ((-608 . -742) T) ((-420 . -865) 1744) ((-171 . -111) 1640) ((-849 . -132) 1592) ((-1292 . -320) 1530) ((-753 . -152) 1514) ((-987 . -868) 1413) ((-831 . -868) 1364) ((-500 . -318) T) ((-391 . -626) 1331) ((-533 . -1035) 1315) ((-391 . -627) 1229) ((-220 . -318) T) ((-142 . -152) 1211) ((-730 . -297) 1190) ((-500 . -1047) T) ((-593 . -38) 1177) ((-577 . -38) 1164) ((-508 . -38) 1129) ((-655 . -662) 1098) ((-220 . -1047) T) ((-889 . -1074) T) ((-852 . -626) 1080) ((-843 . -626) 1062) ((-841 . -626) 1044) ((-832 . -932) 1023) ((-1316 . -1137) T) ((-323 . -1242) T) ((-1265 . -1081) 846) ((-873 . -1081) 830) ((-889 . -249) T) ((-889 . -239) NIL) ((-705 . -1242) T) ((-1316 . -23) T) ((-832 . -664) 719) ((-563 . -1242) T) ((-431 . -350) 703) ((-584 . -1081) 690) ((-1265 . -111) 499) ((-717 . -654) 481) ((-873 . -111) 460) ((-393 . -23) T) ((-171 . -629) 238) ((-1214 . -527) 30) ((-894 . -1125) T) ((-697 . -1125) T) ((-692 . -1125) T) ((-678 . -1125) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 8a7823a2..8fd5f037 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3486967785) -(4469 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3487133925) +(4473 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -61,7 +61,7 @@ |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| - |d03eefAnnaType| |d03fafAnnaType| |DataArray| |Database| + |d03eefAnnaType| |d03fafAnnaType| |DataArray| |Database| |DualBasis| |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| |DefinitionAst| |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| @@ -230,11 +230,11 @@ |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory| |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| - |RationalFunctionLimitPackage| |LinearDependence| |LinearElement| - |LinearlyExplicitRingOver| |LinearSet| |ListToMap| |ListFunctions2| - |ListFunctions3| |List| |Literal| |LeftLinearSet| - |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&| - |LinearAggregate| |ElementaryFunctionLODESolver| + |RationalFunctionLimitPackage| |LinearBasis| |LinearDependence| + |LinearElement| |LinearlyExplicitRingOver| |LinearForm| |LinearSet| + |ListToMap| |ListFunctions2| |ListFunctions3| |List| |Literal| + |LeftLinearSet| |ListMultiDictionary| |LeftModule| |ListMonoidOps| + |LinearAggregate&| |LinearAggregate| |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| @@ -488,662 +488,663 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |YoungDiagram| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |computeCycleEntry| |stoseIntegralLastSubResultant| - |lambert| |insertTop!| |arg2| |f02agf| |stronglyReduce| - |viewWriteAvailable| |string| |trunc| |integralAtInfinity?| - |makeResult| |upperCase!| |minimalPolynomial| - |semiResultantEuclidean2| |subResultantGcdEuclidean| |showAllElements| - |nand| |readLineIfCan!| |exportedOperators| |writable?| |say| - |nullSpace| |scalarMatrix| |constantToUnaryFunction| |imagE| - |allRootsOf| |solveLinear| |conditions| |matrixConcat3D| - |setVariableOrder| |linearAssociatedExp| |exponential1| - |basisOfCommutingElements| |palgRDE0| |d02bbf| - |solveLinearPolynomialEquation| |getIdentifier| |complementaryBasis| - |title| |f02aef| |match| |OMopenString| |insertMatch| - |primitiveElement| |reset| |raisePolynomial| |birth| |swapColumns!| - |rk4a| |arguments| |dot| |maximumExponent| |e02ajf| |mainContent| - |univariatePolynomialsGcds| |digamma| |inc| |permutationGroup| - |twoFactor| |setLabelValue| |dequeue!| |backOldPos| |idealiserMatrix| - |lighting| |s18acf| |lex| |leadingSupport| |write| |isTimes| - |showClipRegion| |testModulus| |hessian| |denominator| |e| |iilog| - |isNot| |save| |f02akf| |adaptive| |s17acf| |critT| - |extractSplittingLeaf| |e01bhf| |split| |ddFact| |mapExpon| |nothing| - |diff| |radicalEigenvalues| |cycles| |mindegTerm| |e04ucf| |argscript| - |iflist2Result| |pmintegrate| |f01rdf| |iiacsc| |binding| |signAround| - |var1Steps| |reseed| |leftTrace| |beauzamyBound| |rightDiscriminant| - |trailingCoefficient| |maxColIndex| |indices| |complete| |f04adf| - |top| |nextIrreduciblePoly| |Vectorise| |safetyMargin| |divideIfCan!| - |leastPower| |pow| |linearDependenceOverZ| |continue| |e02akf| - |fortranLogical| |zeroDim?| |generalizedEigenvectors| |e01sff| - |readUInt8!| |linearDependence| |palginfieldint| |content| - |setStatus!| |sn| |extensionDegree| |se2rfi| |revert| |principal?| - |integralMatrixAtInfinity| |parts| |f02aaf| |splitDenominator| - |enterPointData| |shiftLeft| |printTypes| |typeForm| |mdeg| |reopen!| - |pureLex| |palgextint0| |d01aqf| ** |hash| |functionIsFracPolynomial?| - |thetaCoord| |horizConcat| |s18adf| |newLine| |universe| - |nonLinearPart| |squareFreeLexTriangular| |doubleRank| - |numberOfComposites| |count| |linearElement| |viewpoint| - |separateFactors| |createThreeSpace| |singleFactorBound| |datalist| - |makeTerm| |fortranComplex| |lagrange| |bandedHessian| |determinant| - |divisor| |cdr| |copy!| |f04atf| |rightRecip| |primlimintfrac| - |bipolar| |OMputBVar| |radPoly| |getDatabase| |dictionary| - |ip4Address| |squareTop| |laguerre| |Frobenius| |constant| - |getGoodPrime| |green| |weierstrass| |tablePow| |ParCondList| |entry?| - |dimensionsOf| |iifact| |commutativeEquality| |chebyshevT| - |integralBasisAtInfinity| |returnTypeOf| |mantissa| |OMreadStr| - |endSubProgram| |multiplyExponents| |outputList| |traceMatrix| - |chiSquare1| |leftOne| |addBadValue| |degreeSubResultantEuclidean| - |stripCommentsAndBlanks| |lazyEvaluate| |sts2stst| |makeFR| |sign| - |c06fpf| |romberg| |numberOfFactors| |printHeader| |primaryDecomp| - |rank| |clipBoolean| |RittWuCompare| |c06gcf| |e01saf| |lexGroebner| - |extendIfCan| |asimpson| |maxdeg| |brillhartIrreducible?| |implies| - |showTheRoutinesTable| |check| |quotedOperators| |SturmHabicht| - |completeEchelonBasis| |subResultantGcd| |OMsend| - |monicDecomposeIfCan| |neglist| |open?| |morphism| |basisOfCentroid| - |legendre| |reflect| |OMputEndBVar| |sorted?| |resetNew| |component| - F2FG |decreasePrecision| |f02ajf| |subResultantChain| - |rightRegularRepresentation| |chebyshevU| |logical?| |red| GF2FG - |normalizedDivide| |checkPrecision| |hasPredicate?| |noKaratsuba| - |fortranLiteral| |firstDenom| |quadraticNorm| |diagonals| |heapSort| - |f01qdf| |cPower| |commonDenominator| |arrayStack| |isOp| |separant| - |nthr| |quartic| |leader| |e02bdf| |integralRepresents| |getBadValues| - |dual| UP2UTS |nthRootIfCan| |selectFiniteRoutines| |frst| |swapRows!| - |clip| |oddInfiniteProduct| |setEmpty!| |solid| |max| |rename!| - |integralBasis| |binarySearchTree| |categories| - |wordsForStrongGenerators| |cfirst| |coerceS| |lexico| |padicFraction| - |numer| |laplace| |lists| |retractIfCan| |usingTable?| |trivialIdeal?| - |member?| |possiblyInfinite?| |fintegrate| |associatorDependence| - |changeMeasure| |totalDifferential| |child?| |cRationalPower| |denom| - |s14baf| |complexEigenvalues| |extension| - |semiResultantReduitEuclidean| |elementary| |rightTrace| |polar| - |startTableInvSet!| |gcdcofact| |legendreP| |blue| |mathieu11| - |atrapezoidal| |OMgetObject| |algint| |trigs2explogs| - |createMultiplicationMatrix| |pushucoef| |createPrimitiveNormalPoly| - |setMaxPoints| |nsqfree| |pi| |in?| |closeComponent| - |absolutelyIrreducible?| |secIfCan| |euclideanGroebner| |closedCurve?| - |collectUnder| |toseLastSubResultant| |infinity| |rename| |jacobi| - |complexNumericIfCan| |s21baf| |clearDenominator| |critMonD1| - |genericLeftDiscriminant| |concat| |step| |cyclotomicFactorization| - |numericalIntegration| |iisqrt3| |factorSquareFree| |exprToXXP| - |clipParametric| |unaryFunction| |nextPrimitiveNormalPoly| - |semiResultantEuclideannaif| |range| |unrankImproperPartitions0| - |droot| |roughSubIdeal?| |bernoulliB| |continuedFraction| - |mainPrimitivePart| |coordinate| |internalIntegrate| - |nextLatticePermutation| |hdmpToP| |removeIrreducibleRedundantFactors| - |useEisensteinCriterion?| |denomRicDE| |kernel| |node?| |discriminant| - |simpleBounds?| |rightTraceMatrix| |pquo| |internalInfRittWu?| |init| - |nextSublist| |key?| |f04mbf| |list| |bumptab1| |ptree| - |topFortranOutputStack| |removeConstantTerm| |viewport2D| |number?| - |Beta| |lhs| |balancedBinaryTree| |showFortranOutputStack| |rk4| - |draw| |callForm?| |polyRDE| |leadingBasisTerm| |s15adf| |clearCache| - |bringDown| |fullDisplay| |rhs| |f01ref| |nthExpon| |iteratedInitials| - |linears| |rootProduct| |deleteRoutine!| |SturmHabichtSequence| - |derivative| |adaptive3D?| |isAnd| |constantKernel| |qroot| - |integral?| |semiResultantEuclidean1| |ratDsolve| |mainVariables| - |currentEnv| |systemSizeIF| |aLinear| |tableau| |stirling1| - |operation| |traverse| |zeroVector| |makeViewport3D| - |SturmHabichtMultiple| |shallowCopy| |resultantnaif| |charClass| - |irreducibleFactors| |makeObject| |gbasis| |parametersOf| - |solveRetract| |initials| |computeBasis| |gramschmidt| |middle| - |directory| |degree| |coef| |sizePascalTriangle| |exactQuotient| - |stoseSquareFreePart| |totalDegree| |getOperator| |expintfldpoly| - |powerAssociative?| |userOrdered?| |primeFrobenius| |pointPlot| - |relerror| |hcrf| |operators| |harmonic| |restorePrecision| - |schwerpunkt| |fortranCharacter| |wholeRadix| |reducedQPowers| - |stoseInvertible?sqfreg| |abs| |limitedint| |pushNewContour| - |bubbleSort!| |inconsistent?| |ode2| |df2st| |torsionIfCan| - |reciprocalPolynomial| |exponent| |kind| |evaluate| |setErrorBound| - |viewSizeDefault| |rightMinimalPolynomial| - |primPartElseUnitCanonical!| |exprHasWeightCosWXorSinWX| - |sylvesterSequence| |numericIfCan| |stosePrepareSubResAlgo| |op| - |minPoints3D| |colorFunction| |iiasinh| |dark| |kernels| - |branchPointAtInfinity?| |lastSubResultantEuclidean| - |resultantEuclideannaif| |cCsc| |presuper| |OMUnknownSymbol?| |minset| - |lquo| |move| |physicalLength| |c05adf| |cAsech| |leftFactorIfCan| - |LazardQuotient2| |operator| |more?| |constantOpIfCan| |outputGeneral| - |binaryTree| |expenseOfEvaluation| SEGMENT |notelem| |s18aef| - |countRealRootsMultiple| |sech2cosh| |quoted?| |singularAtInfinity?| - |plotPolar| |cCosh| |dflist| |nativeModuleExtension| |univariate| - |sort| |OMputFloat| |antisymmetricTensors| |nil?| |taylorIfCan| - |lieAdmissible?| |dn| |generalizedEigenvector| |child| |sh| - |pleskenSplit| |radicalEigenvectors| |dec| |algebraic?| - |virtualDegree| |unitsColorDefault| |readByte!| |iicot| - |wordInStrongGenerators| |hasTopPredicate?| |numberOfComputedEntries| - |OMgetFloat| |mathieu12| |LyndonWordsList| |mirror| |rightMult| - |union| |iprint| |normalized?| |create| |divisorCascade| |routines| - |getProperties| |randomR| |c05nbf| |factor| |round| |eulerE| - |showIntensityFunctions| |lfintegrate| |readInt8!| |viewWriteDefault| - |random| |ceiling| |mesh| |pastel| |sqrt| |unary?| |OMgetEndError| - |getCurve| |s17ajf| |comp| |pack!| |extendedResultant| |lifting| - |generalInfiniteProduct| |trim| |real| |oblateSpheroidal| |fi2df| - |e01bff| |zeroOf| |rotatex| |useSingleFactorBound?| - |nthFractionalTerm| |OMconnOutDevice| |imag| |linearlyDependentOverZ?| - |properties| |seriesToOutputForm| |univariatePolynomials| - |cycleSplit!| |doubleDisc| |copy| |directProduct| |rur| |OMgetBVar| - |modifyPointData| |unitNormalize| |radix| |super| |ocf2ocdf| - |getGraph| |translate| |OMgetEndBVar| |padicallyExpand| |rotatey| - |readable?| |drawCurves| |Aleph| |f02aff| |iiasech| |fortranTypeOf| - |depth| |wronskianMatrix| |setEpilogue!| |knownInfBasis| - |clipPointsDefault| |abelianGroup| |push!| |alternative?| |brace| - |symmetricSquare| |factorList| |decompose| |perfectSqrt| - |noLinearFactor?| |quasiComponent| |d01alf| |complexNormalize| - |characteristic| |destruct| |erf| |trapezoidalo| |critpOrder| |e02dff| - |noValueMode| |outputFixed| |algintegrate| |minordet| |OMlistSymbols| - |invertibleElseSplit?| |match?| |upperCase| |normal?| |simpsono| - |numberOfHues| |autoCoerce| |rewriteIdealWithRemainder| |writeBytes!| - |currentScope| |fractionFreeGauss!| |d03edf| |nextPartition| - |interactiveEnv| |basis| |children| |fill!| |nextSubsetGray| - |endOfFile?| |upperBound| |cyclicEqual?| |dilog| |rangeIsFinite| - |complex?| |s17dgf| |mathieu23| |digit| |leftZero| |expand| - |goodnessOfFit| |boundOfCauchy| |irreducible?| |monomial| |sin| - |constant?| |ranges| |radicalSimplify| |multiplyCoefficients| - |physicalLength!| |rowEchelonLocal| |filterWhile| |root| - |makingStats?| |multivariate| |stoseInvertibleSetreg| |close| |cos| - |lazyPseudoRemainder| |create3Space| |quasiRegular?| |accuracyIF| F - |rightUnit| |filterUntil| |karatsubaDivide| |leftDivide| - |discriminantEuclidean| |fractRagits| |variables| |tan| |normalForm| - |commutative?| |toseSquareFreePart| |euclideanSize| |select| - |PDESolve| |binaryFunction| |deepestTail| |scopes| |HenselLift| - |display| |cot| |optional?| |binary| |setlast!| |before?| |points| - |rootRadius| |diagonal?| |setleaves!| |innerint| |sec| |iicos| - |UnVectorise| |pushup| |defineProperty| |sumOfKthPowerDivisors| - |createZechTable| |parent| |exprToGenUPS| |symmetricRemainder| |csc| - |expenseOfEvaluationIF| |toroidal| |minus!| |OMgetEndBind| |factors| - |edf2df| |shrinkable| |members| |tensorProduct| |asin| |removeZero| - |critMTonD1| |pop!| |interpretString| |setAttributeButtonStep| - |alphabetic| |getPickedPoints| |qualifier| |debug| |nthRoot| |qelt| - |taylor| |acos| |predicate| |perfectNthPower?| |fTable| - |createGenericMatrix| |createPrimitiveElement| |binaryTournament| - |startPolynomial| |qsetelt| |vedf2vef| |irDef| |expt| D |laurent| - |input| |atan| |fortranInteger| |antiAssociative?| |ode| |f02xef| - |primitive?| |cAtan| |schema| |complexForm| |xRange| |nextColeman| - |puiseux| |library| |acot| |copyInto!| |OMencodingXML| |newTypeLists| - |fibonacci| EQ |modTree| |removeRoughlyRedundantFactorsInPol| |write!| - |groebnerFactorize| |youngGroup| |yRange| |asec| |jokerMode| |returns| - |primeFactor| |leftExactQuotient| |setFieldInfo| |fortranLinkerArgs| - |tube| |primitivePart!| |inv| |pToHdmp| |zRange| |acsc| |setProperty| - |box| |c05pbf| |totalGroebner| |bipolarCylindrical| - |extendedEuclidean| |read!| |cAcos| |ground?| |any?| |map!| - |OMreceive| |sinh| |OMgetString| |sPol| |transpose| |cAcsc| - |dualSignature| |dihedral| |e01daf| |qsetelt!| |elem?| |ground| - |resetBadValues| |set| |cosh| |leftRankPolynomial| - |internalIntegrate0| |semiDegreeSubResultantEuclidean| |alphanumeric?| - |double| |mapDown!| |rightExtendedGcd| |complexZeros| |sincos| - |intermediateResultsIF| |leadingMonomial| |transcendent?| |tanh| - |compBound| |unravel| |partition| |BumInSepFFE| |yellow| |scaleRoots| - |mapGen| |fixedPoint| |OMputEndAttr| |leadingCoefficient| - |outputSpacing| |coth| |expextendedint| |makeSeries| |normal01| - |localUnquote| |size| |permutation| |realRoots| |argument| |subset?| - |rubiksGroup| |primitiveMonomials| |parameters| |sech| |leftFactor| - |setright!| |s20acf| |lowerCase?| |mkcomm| |block| |groebgen| |d01anf| - |print| |chiSquare| |reductum| |csch| |mapBivariate| |e02daf| - |evaluateInverse| |typeLists| |finiteBound| |intPatternMatch| - |curryLeft| |resolve| |subCase?| |cSech| |acsch| |asinh| - |gcdPolynomial| |fglmIfCan| |cyclicEntries| |orbit| |skewSFunction| - |fortranDouble| |OMReadError?| |invmod| |norm| |acosh| |true| - |quoByVar| |Gamma| |besselJ| |category| |seed| |iiabs| |constDsolve| - |halfExtendedSubResultantGcd2| |limitedIntegrate| |f07aef| |f04asf| - |basisOfNucleus| |domain| |over| |optional| |dmp2rfi| |declare!| - |cot2tan| |deepestInitial| |insertionSort!| |coth2trigh| |factorset| - |epilogue| |linearPolynomials| |clikeUniv| |OMcloseConn| |integers| - |package| |iisec| |vectorise| |whileLoop| |OMgetAttr| |aromberg| - |infinite?| |insert| |maxIndex| |reindex| |exists?| |eyeDistance| - |readInt32!| |extract!| |cosSinInfo| |imagk| |recoverAfterFail| |show| - |iiacsch| |exprHasAlgebraicWeight| |discreteLog| |outputArgs| - |singularitiesOf| |search| |f04qaf| |dmpToP| |lazyVariations| - |lazyPremWithDefault| |rewriteSetWithReduction| |stopTableInvSet!| - UTS2UP |sinIfCan| |node| |solid?| |symmetricTensors| |rquo| - |pointColor| |c06fuf| |trace| |fmecg| |cTanh| |setAdaptive3D| - |conical| |has?| |partialQuotients| |cothIfCan| |iisech| - |zeroDimensional?| |capacity| |coefficient| |region| |degreePartition| - |iomode| |OMencodingBinary| |mapdiv| |e01sbf| |odd?| |stop| |ratpart| - |adaptive?| |segment| |monicCompleteDecompose| |sylvesterMatrix| - |nonSingularModel| |idealSimplify| |ListOfTerms| |setTex!| |OMputApp| - |alternating| |extractIfCan| |prologue| |quotient| |voidMode| - |setsubMatrix!| |prefixRagits| |listOfLists| |formula| |flatten| - |latex| |tanintegrate| |setScreenResolution3D| |lazyGintegrate| - |paraboloidal| |rootNormalize| |charpol| |d02gaf| |lllip| |subMatrix| - |extractBottom!| |mainVariable| |rightFactorIfCan| |reducedForm| - |graeffe| |isQuotient| |monicRightFactorIfCan| |writeInt8!| |getlo| - |doubleComplex?| |lepol| |sinhIfCan| |zero?| |trace2PowMod| - |zeroDimPrime?| |s18aff| |ideal| |dioSolve| |reify| |lyndon| |cAsec| - |pole?| |elliptic?| |augment| |purelyAlgebraic?| |nrows| - |OMUnknownCD?| |genericLeftTraceForm| |entries| |updatD| - |lastSubResultant| |axes| |exprHasLogarithmicWeights| |OMputVariable| - |lazyPrem| |ncols| |UP2ifCan| |c06fqf| |leftRecip| |controlPanel| - |changeBase| |incrementKthElement| |simplify| |conjugates| - |setIntersection| |ScanFloatIgnoreSpacesIfCan| |distdfact| |nullary?| - |ignore?| |mapUnivariateIfCan| |fortranCarriageReturn| |gcdcofactprim| - |height| |units| |log10| |mesh?| |setTopPredicate| |factorSFBRlcUnit| - |rewriteIdealWithHeadRemainder| |equation| |drawToScale| |s17aef| - |expIfCan| |null?| |mindeg| |basisOfLeftNucloid| |bitand| |cup| - |rationalPoints| |univariatePolynomial| |OMserve| |optpair| |leaves| - |outerProduct| |deriv| |bitior| |d02ejf| |setOrder| |addmod| - |genericLeftNorm| |pseudoQuotient| |roughUnitIdeal?| |shape| - |toseInvertible?| |radicalRoots| |triangSolve| |Ci| |cLog| - |divergence| |shallowExpand| |jacobian| |macroExpand| - |leftCharacteristicPolynomial| |distribute| |Is| |anticoord| - |elements| |bumptab| |linSolve| |closedCurve| |replaceKthElement| - |subNodeOf?| |readBytes!| |rightDivide| - |generalizedContinuumHypothesisAssumed?| |explimitedint| - |startTableGcd!| |numberOfVariables| |compdegd| |clearTheSymbolTable| - |df2fi| |inGroundField?| |iitanh| |tubeRadius| |hasHi| |besselI| - |insert!| |createNormalPoly| |pascalTriangle| |f02adf| |getOperands| - |rule| |tryFunctionalDecomposition?| |fprindINFO| |declare| |makeCrit| - |inRadical?| |resize| |ellipticCylindrical| |splitSquarefree| |common| - |rootBound| |linearlyDependent?| |mainMonomial| |atanIfCan| - |asinhIfCan| |mapUp!| |imaginary| |writeLine!| |minRowIndex| - |factorials| |exptMod| |d02gbf| |zoom| |hexDigit| |euler| - |numberOfPrimitivePoly| |PollardSmallFactor| |interReduce| |c06ecf| - |symmetricGroup| |deleteProperty!| |realEigenvectors| |lintgcd| - |zCoord| |lazy?| |elRow2!| |branchIfCan| |partialDenominators| - |iiasin| |leadingExponent| |d02kef| |matrix| |symbol?| - |domainTemplate| |HermiteIntegrate| |twist| |algSplitSimple| |Nul| - |edf2ef| |readUInt16!| |partitions| |removeCoshSq| |ord| |e02adf| - |var2StepsDefault| |Si| |isOpen?| |quotientByP| |ratDenom| |prevPrime| - |createPrimitivePoly| |groebner?| |dequeue| |generators| - |squareFreeFactors| Y |trapezoidal| |acosIfCan| |tanSum| |sec2cos| - |elseBranch| |extendedIntegrate| |isEquiv| |limitPlus| |linearPart| - |label| |internalLastSubResultant| |diagonalProduct| |ef2edf| |inR?| - |associatedEquations| |safeFloor| |makeGraphImage| |B1solve| |df2mf| - |escape| |sin2csc| |stiffnessAndStabilityFactor| |components| - |leastAffineMultiple| |deepCopy| |coerceP| - |numberOfImproperPartitions| |mainDefiningPolynomial| - |rangePascalTriangle| |pair?| |palgint0| |minPol| - |basisOfMiddleNucleus| |rightRankPolynomial| |univariateSolve| - |composites| |result| |zeroDimPrimary?| |iidsum| |listOfMonoms| - |categoryMode| |univariate?| |extendedint| |mkIntegral| |cSec| - |taylorRep| |d02raf| |vark| |enterInCache| |associatedSystem| - |laplacian| |rightExactQuotient| |noncommutativeJordanAlgebra?| - |f02fjf| |expint| |changeNameToObjf| |validExponential| |fixedDivisor| - |d01bbf| |bernoulli| |gcdprim| |showAll?| |setButtonValue| |cyclic| - |setCondition!| |constantOperator| |s17dhf| |setLength!| - |hypergeometric0F1| |constructor| |rightPower| |inverseIntegralMatrix| - |readIfCan!| |graphState| |represents| |approximants| |normalElement| - |substitute| |OMgetEndApp| |hexDigit?| |sum| |iibinom| |totalLex| - |bindings| |cTan| |option| |f04faf| |showSummary| |symbolTable| - |makeCos| |e02ddf| |e04gcf| |basicSet| |OMputSymbol| |leaf?| - |sechIfCan| |rdHack1| |GospersMethod| |curveColorPalette| - |squareFreePart| |getMatch| |front| |squareFreePrim| |symFunc| - |multiEuclideanTree| |s19acf| |elliptic| |pushFortranOutputStack| - |showAttributes| |lp| |d01gaf| |poisson| |badValues| |deref| - |getVariableOrder| |newSubProgram| |elaborateFile| |moduleSum| - |makeRecord| |regime| |popFortranOutputStack| |sturmSequence| |lllp| - |tab1| |realSolve| |complexSolve| |imagI| |saturate| |cAsin| |atom?| - |outputAsFortran| |insertRoot!| |vertConcat| |alphanumeric| - |prinpolINFO| |duplicates?| |OMgetInteger| |name| |bitLength| |d01asf| - |genericRightDiscriminant| |mergeDifference| |setMinPoints3D| - |parabolicCylindrical| |matrixGcd| |currentCategoryFrame| |rightTrim| - |redpps| |body| |prinb| |selectAndPolynomials| |indicialEquations| - |duplicates| |subresultantSequence| |kroneckerDelta| |e02zaf| - |OMgetError| |leftTrim| |untab| |high| |outputAsTex| - |bezoutDiscriminant| |null| |binomThmExpt| |karatsubaOnce| |e04fdf| - |shufflein| |solveLinearPolynomialEquationByRecursion| |stack| - |rootsOf| |linGenPos| |quasiAlgebraicSet| |iicosh| |not| |janko2| - |lazyIrreducibleFactors| |cAtanh| |s19abf| |homogeneous?| BY |cn| - |top!| |subtractIfCan| |ODESolve| |maxPoints| |and| |solve1| - |removeSuperfluousQuasiComponents| |setProperties| |weights| |d02cjf| - |simplifyPower| |categoryFrame| |diagonal| |monicLeftDivide| |or| - |getSyntaxFormsFromFile| |mpsode| |identitySquareMatrix| |curryRight| - |infix| |overset?| |eigenvalues| |magnitude| |opeval| |xor| |pdf2df| - |viewDefaults| |normFactors| |youngDiagram| |innerEigenvectors| - |s13aaf| |besselK| |numerator| |signature| |primextintfrac| |dim| - |case| |spherical| |OMgetEndAtp| |assert| |factorByRecursion| |hasoln| - |po| |port| |infiniteProduct| |leftUnits| |s13adf| |makeMulti| - |pattern| |Zero| |iiasec| |orthonormalBasis| |identification| |presub| - |integral| |rationalIfCan| |SFunction| |simpson| |csubst| |One| - |rationalApproximation| |lazyPseudoDivide| |patternMatchTimes| - |asechIfCan| |subscriptedVariables| |t| |selectNonFiniteRoutines| - |s13acf| |ScanRoman| |basisOfRightNucleus| |shift| NOT - |LyndonWordsList1| |FormatArabic| |shiftRight| |coordinates| |output| - |palglimint0| |powmod| |f04maf| |chainSubResultants| |nodeOf?| OR - |vector| |leadingIndex| |messagePrint| |eq?| |bracket| - |irreducibleFactor| |df2ef| |polyred| |expandLog| |problemPoints| - |message| AND |differentiate| |mapCoef| |integerIfCan| |getZechTable| - |multiset| |mergeFactors| |genus| |OMgetSymbol| |setrest!| |unit| - |cAcoth| |lazyPquo| |initTable!| |positive?| |fortran| |curry| |delay| - |iiexp| |initiallyReduce| |reduceLODE| |elt| |overlabel| |tanNa| - |hMonic| |henselFact| |tan2trig| |mainSquareFreePart| |finiteBasis| - |headReduce| |fixPredicate| |iFTable| |replace| |An| - |addMatchRestricted| |level| |indiceSubResultantEuclidean| - |generalSqFr| |coerceListOfPairs| |closed?| |LyndonCoordinates| - |outputBinaryFile| |zeroSetSplitIntoTriangularSystems| |startStats!| - |concat!| |colorDef| |numericalOptimization| - |factorSquareFreePolynomial| |enqueue!| |prod| |sizeLess?| - |removeSuperfluousCases| |branchPoint?| |palgintegrate| |coord| |cons| - |selectOptimizationRoutines| |double?| |sumSquares| |normDeriv2| - |addPoint2| |mainExpression| |s01eaf| |nodes| |htrigs| |cond| - |completeHermite| |negative?| |quadratic| |setValue!| |retract| - |leftNorm| |terms| |paren| |asinIfCan| |completeHensel| |makeSUP| - |clipSurface| |cSinh| |groebnerIdeal| |leftScalarTimes!| - |extractProperty| |subspace| |support| |interpolate| |prime| - |fractionPart| |point?| |second| * |s17akf| |subResultantsChain| - |multisect| |graphCurves| |var2Steps| |ridHack1| |invertIfCan| |row| - |addPoint| |third| |inrootof| |bfEntry| |basisOfRightNucloid| |nary?| - |identityMatrix| |tryFunctionalDecomposition| |setleft!| |reduction| - |typeList| |decrease| |putProperty| |semiSubResultantGcdEuclidean1| - |source| |void| |pushdown| |conditionsForIdempotents| |gensym| - |sortConstraints| |explogs2trigs| = |printStats!| |enumerate| - |dominantTerm| |stoseLastSubResultant| |e04dgf| |makeop| |mix| - |multiEuclidean| |createLowComplexityNormalBasis| - |numberOfIrreduciblePoly| |chvar| |symmetricPower| |script| - |rightCharacteristicPolynomial| |modulus| |mappingMode| |maxrank| - |find| |rationalPoint?| |readUInt32!| < |completeEval| |collectUpper| - |findConstructor| |plusInfinity| |initializeGroupForWordProblem| - |char| |deepExpand| |iCompose| > |iitan| |d02bhf| |minusInfinity| - |isOr| |s17def| |cotIfCan| |systemCommand| |alternatingGroup| - |totolex| <= |isPlus| |whatInfinity| |viewPhiDefault| |tex| |target| - |OMencodingUnknown| |qinterval| |inverseColeman| |s17aff| - |setchildren!| |rightRank| >= |imagJ| |ffactor| |factorPolynomial| - |pr2dmp| |newReduc| |retractable?| |pointColorPalette| - |zeroSquareMatrix| |expr| |roughBase?| |car| |eulerPhi| |mkPrim| - |isExpt| |normal| |changeVar| |s17ahf| |reduceByQuasiMonic| - |ramified?| |permutationRepresentation| |xCoord| |lookup| |isAtom| - |linear| |constantRight| |complexRoots| + |evenInfiniteProduct| - |partialNumerators| |createIrreduciblePoly| |type| |getOrder| - |firstNumer| |exactQuotient!| |exQuo| |s18dcf| - |float| |subPolSet?| - |mathieu22| |certainlySubVariety?| |nthFactor| |rootKerSimp| |f02bjf| - |polynomial| |leadingIdeal| |variable| |repSq| / |phiCoord| |solve| - |roughBasicSet| |postfix| |algebraicVariables| |oddlambert| - |iterators| |divisors| |pdct| |inputBinaryFile| |viewDeltaXDefault| - |rightGcd| |fullPartialFraction| |subresultantVector| |sin?| |inspect| - |maxint| |push| |solveLinearlyOverQ| |tanIfCan| |headAst| |readLine!| - |f02axf| |OMputEndBind| |coshIfCan| |tubePoints| |element?| - |mightHaveRoots| |sumOfDivisors| |s21bdf| |polarCoordinates| |id| - |copies| |hconcat| |fortranReal| |contours| |value| |triangular?| - |merge| |comparison| |generateIrredPoly| |updatF| |symbol| |lo| - |jordanAdmissible?| |modularFactor| |OMputEndAtp| |startTable!| - |SturmHabichtCoefficients| |compiledFunction| |removeSquaresIfCan| - |atanhIfCan| |f02wef| |expression| |lieAlgebra?| |rightUnits| |bit?| - |denomLODE| |multinomial| |s19aaf| |OMwrite| |charthRoot| |calcRanges| - |integer| |integer?| |nthExponent| |leftReducedSystem| GE |hex| - |minrank| |supDimElseRittWu?| |removeZeroes| |intersect| |medialSet| - |setPoly| |unitVector| |contains?| |rational?| GT |bitTruth| - |showRegion| |lSpaceBasis| |f01qcf| |principalAncestors| - |variationOfParameters| |hermite| |style| |eigenvectors| LE |pomopo!| - |e02gaf| |bivariate?| |createRandomElement| |zerosOf| - |createLowComplexityTable| |reduceBasisAtInfinity| |setelt!| - |reverseLex| LT |rotatez| |stopMusserTrials| |distFact| - |decomposeFunc| |extractTop!| |getMultiplicationTable| |crest| - |socf2socdf| |iterationVar| |c06gsf| |list?| |UpTriBddDenomInv| - |connect| |nor| |squareMatrix| |invertibleSet| - |numberOfFractionalTerms| |curve?| |computeCycleLength| |pile| - |integralMatrix| |OMbindTCP| |denominators| |monomial?| - |transcendenceDegree| |keys| |edf2efi| |expressIdealMember| |select!| - |bombieriNorm| |bothWays| |cos2sec| |unknownEndian| |unitNormal| - |separateDegrees| |numberOfOperations| |OMgetApp| |lyndonIfCan| - |singRicDE| |linearAssociatedLog| |cycleRagits| |leviCivitaSymbol| - |OMgetVariable| |primlimitedint| |index| |makeEq| |definingPolynomial| - |numberOfComponents| |order| |triangularSystems| |OMencodingSGML| - |repeatUntilLoop| |square?| |nextNormalPoly| |numeric| |s17dlf| - |shuffle| |cCoth| |polygon| |pushdterm| |hdmpToDmp| |rightNorm| - |gderiv| |redPo| |radical| |OMputBind| |patternMatch| |removeCosSq| - |fixedPointExquo| |resultant| |fortranDoubleComplex| |bivariateSLPEBR| - |reduced?| |rightQuotient| |pair| |open| |tree| |positiveRemainder| - |primPartElseUnitCanonical| |structuralConstants| |outlineRender| - |curve| |kmax| |bright| |setImagSteps| |rst| |graphStates| |tanQ| - |numberOfChildren| |thenBranch| |currentSubProgram| - |LowTriBddDenomInv| |plus!| |fortranCompilerName| |FormatRoman| - |useEisensteinCriterion| |critB| |eof?| |getRef| |algDsolve| |e04jaf| - |printingInfo?| |eval| |makeFloatFunction| |ode1| - |removeRoughlyRedundantFactorsInContents| |setUnion| |stFunc1| - |vspace| |scale| |indicialEquationAtInfinity| |writeByte!| - |expintegrate| |adjoint| |splitNodeOf!| |operations| |mapMatrixIfCan| - |selectOrPolynomials| |checkForZero| |normalizeAtInfinity| |torsion?| - |largest| |lfunc| |internalDecompose| |lowerBound| |bandedJacobian| - |e04mbf| |solveid| |OMreadFile| |interpret| |conjunction| |error| - |midpoints| |complexExpand| |selectIntegrationRoutines| |imagK| - |airyBi| |clearTable!| |f2df| |aQuartic| |ref| |setStatus| |groebner| - |normalize| |quadratic?| |lexTriangular| |pointSizeDefault| - |sayLength| |direction| |optimize| |standardBasisOfCyclicSubmodule| - |algebraicOf| |insertBottom!| |perspective| |sequence| |logGamma| - |function| |stoseInvertibleSet| |symmetricProduct| |OMmakeConn| - |oneDimensionalArray| |cAcsch| |rightOne| |symbolTableOf| - |createNormalElement| |lflimitedint| |tubeRadiusDefault| |subHeight| - |autoReduced?| |symbolIfCan| |matrixDimensions| |seriesSolve| - |reducedSystem| |llprop| |width| |ramifiedAtInfinity?| - |inputOutputBinaryFile| |makeUnit| |cyclicGroup| |lookupFunction| - |iiacoth| |rules| |topPredicate| |monicDivide| |aspFilename| - |primintegrate| |cubic| |dihedralGroup| |rectangularMatrix| |critM| - |explicitEntries?| |unitCanonical| |maxrow| |pseudoRemainder| - |rightRemainder| |divideIfCan| |sumOfSquares| |cCot| - |getMultiplicationMatrix| |tubePlot| |degreeSubResultant| - |extendedSubResultantGcd| |e02bbf| |bezoutResultant| |baseRDEsys| - |tracePowMod| |setMaxPoints3D| |OMconnectTCP| |countRealRoots| - |solveLinearPolynomialEquationByFractions| - |unprotectedRemoveRedundantFactors| |smith| - |leftRegularRepresentation| |queue| |someBasis| |logpart| |printCode| - |mr| |subscript| |selectsecond| |sinh2csch| |genericRightTrace| - |real?| |characteristicSerie| |length| |leftGcd| |redmat| |float?| - |upperCase?| |sort!| |rootPoly| |xn| |changeWeightLevel| |ratPoly| - |changeThreshhold| |scripts| |irreducibleRepresentation| |preprocess| - |prem| |rem| |purelyTranscendental?| |removeRedundantFactors| - |string?| |euclideanNormalForm| |npcoef| |numberOfNormalPoly| - |definingEquations| |scanOneDimSubspaces| |cycle| |selectPDERoutines| - |upDateBranches| |quo| |weakBiRank| |empty?| |argumentList!| - |buildSyntax| |cCos| |varList| |uniform01| |removeSinhSq| - |lfextlimint| |infieldIntegrate| |e02ahf| |intcompBasis| |mainKernel| - |every?| |LiePoly| |wreath| |lcm| |tanhIfCan| |headRemainder| - |normalise| |lineColorDefault| |div| |inf| |delete| |BasicMethod| - |vconcat| |isList| |external?| |graphs| |genericRightTraceForm| - |clearTheFTable| |stoseInvertible?reg| |exquo| |relativeApprox| - |digit?| |algebraicCoefficients?| |drawComplex| |bigEndian| |append| - |minPoints| |normalDeriv| |floor| |pointData| ~= |monicRightDivide| - |minGbasis| |composite| |wholeRagits| |irVar| |imagj| |gcd| - |OMlistCDs| |laurentIfCan| |representationType| |#| |subNode?| - |s15aef| |semiSubResultantGcdEuclidean2| |factorGroebnerBasis| - |OMputEndApp| |perfectSquare?| |false| |status| |delete!| - |factorOfDegree| |extractClosed| ~ |readInt16!| |realEigenvalues| - |aCubic| |mappingAst| |genericPosition| |randnum| |collectQuasiMonic| - |btwFact| |cross| |reorder| |hspace| |bumprow| |ravel| |rowEchLocal| - |att2Result| |complexEigenvectors| |realElementary| |cosIfCan| - |e02agf| |zeroSetSplit| |rk4f| |roman| |reshape| |oddintegers| - |sqfrFactor| |e02dcf| |setprevious!| |airyAi| |stirling2| |/\\| |bat| - |laguerreL| |selectODEIVPRoutines| |processTemplate| |f04axf| - |functorData| |moebiusMu| |plenaryPower| |modularGcdPrimitive| - |stopTableGcd!| |logIfCan| |\\/| |constantCoefficientRicDE| - |rootPower| |genericRightMinimalPolynomial| |innerSolve1| - |viewPosDefault| |apply| |coerce| |genericLeftMinimalPolynomial| - |flexibleArray| |s17adf| |equality| |tRange| |closed| |OMclose| - |d01fcf| |first| |construct| |setLegalFortranSourceExtensions| - |varselect| |idealiser| |internalSubPolSet?| |mainForm| - |prepareDecompose| |listexp| |f04mcf| |printInfo!| |stFunc2| |rest| - |cap| |contractSolve| |anfactor| |f07fdf| |rdregime| |showArrayValues| - |regularRepresentation| |character?| |ParCond| |extractIndex| |plus| - |update| |irCtor| |atoms| |inverseLaplace| |mkAnswer| |unvectorise| - |coHeight| |inHallBasis?| |dmpToHdmp| |groebSolve| |commutator| - |functionIsContinuousAtEndPoints| |critBonD| |meshPar1Var| - |completeSmith| |conjugate| |componentUpperBound| |algebraicSort| - |bytes| |computePowers| |exponential| |redPol| |palglimint| - |showTheSymbolTable| |d03faf| |isPower| |quote| |plot| |times| - |selectMultiDimensionalRoutines| |rootOf| |slex| |parents| - |lfextendedint| |c06ekf| |rspace| |bfKeys| - |selectSumOfSquaresRoutines| |leftMult| |addPointLast| |scalarTypeOf| - |f07adf| |tubePointsDefault| |expandPower| |submod| |sparsityIF| - |iiatan| |empty| |position| |subQuasiComponent?| |csch2sinh| - |printStatement| |s18def| |polygon?| |rationalFunction| - |numberOfDivisors| |rowEchelon| |listBranches| - |tableForDiscreteLogarithm| |even?| |radicalSolve| - |expandTrigProducts| |recur| |eigenMatrix| |OMunhandledSymbol| - |antiCommutator| |cycleTail| |doublyTransitive?| - |internalZeroSetSplit| |crushedSet| |collect| |split!| |reverse!| - |monom| |rootSplit| |lift| |conditionP| |sequences| |leftRank| |tab| - |failed?| |subSet| |getMeasure| |imports| |toseInvertibleSet| - |sdf2lst| |loadNativeModule| |fillPascalTriangle| |reduce| |power!| - |point| |exteriorDifferential| |powern| |mvar| |cyclic?| - |areEquivalent?| |iiatanh| |generalTwoFactor| |close!| - |strongGenerators| |polCase| |part?| |simplifyExp| |getConstant| - |rootOfIrreduciblePoly| |qqq| |integralCoordinates| |lazyResidueClass| - |yCoordinates| |moreAlgebraic?| |remainder| |nonQsign| |frobenius| - |remove!| |OMputEndError| |positiveSolve| - |semiIndiceSubResultantEuclidean| |tan2cot| |blankSeparate| - |mapUnivariate| |f04jgf| |generalPosition| |zeroMatrix| |gethi| - |comment| |padecf| |series| |factorAndSplit| |nullity| - |removeRedundantFactorsInContents| |partialFraction| |center| |f02awf| - |removeRedundantFactorsInPols| |integerBound| |infieldint| |log| - |pushuconst| |coerceImages| |expPot| |lastSubResultantElseSplit| - |associative?| |numFunEvals| |complement| |cExp| |OMputAttr| - |specialTrigs| |subTriSet?| |setelt| |nlde| |internal?| |powerSum| - |rewriteIdealWithQuasiMonicGenerators| |s17dcf| |isConnected?| - |OMputEndObject| |setClipValue| |extractPoint| |nthFlag| |quatern| - |leftUnit| |module| |swap| |selectPolynomials| |freeOf?| - |mainCoefficients| |singular?| |changeName| |contract| |minimize| - |maxRowIndex| |bottom!| |resultantReduitEuclidean| |min| - |outputFloating| |halfExtendedResultant1| |palgLODE| |nextPrime| - |hasSolution?| |ipow| |leadingCoefficientRicDE| |infinityNorm| - |outputForm| |setFormula!| |yCoord| |c02agf| |fixedPoints| - |createMultiplicationTable| |lazyIntegrate| |appendPoint| |monomials| - |cyclicParents| |setColumn!| |createNormalPrimitivePoly| - |measure2Result| |jacobiIdentity?| |flagFactor| |moduloP| - |listRepresentation| |sup| |setvalue!| |totalfract| |exprToUPS| - |bivariatePolynomials| |rootSimp| |iicsc| |figureUnits| |f01bsf| - |factorSquareFreeByRecursion| |property| |transcendentalDecompose| - |unmakeSUP| |unexpand| |f01maf| |d03eef| |numberOfCycles| |mat| - |prindINFO| |byte| |goodPoint| |generalizedInverse| |showScalarValues| - |omError| |separate| |badNum| |meatAxe| |OMputObject| |acothIfCan| - |errorInfo| |setref| |rootDirectory| |zero| |setRealSteps| |mulmod| - |reverse| |sinhcosh| |minColIndex| |algebraicDecompose| |mainValue| - |acschIfCan| |call| |prinshINFO| |myDegree| |pToDmp| |product| - |setRow!| |ldf2vmf| |KrullNumber| |rotate| |polyPart| |setOfMinN| |li| - |OMputError| |iisin| |difference| |OMopenFile| |multiple?| |And| - |viewport3D| |size?| |alphabetic?| |imagi| |mapSolve| |unparse| - |Lazard2| |unknown| |geometric| |makeVariable| |setScreenResolution| - |increasePrecision| |rCoord| |Or| |besselY| |reducedContinuedFraction| - |sturmVariationsOf| |mapmult| |rightZero| |screenResolution3D| |exp1| - |primitivePart| |elaborate| |column| |rightScalarTimes!| |findCycle| - |Not| |generalLambert| |bezoutMatrix| |build| |approxSqrt| |makeprod| - |signatureAst| |finite?| |leftRemainder| |identity| |cycleElt| - |mainMonomials| |setPredicates| |firstUncouplingMatrix| |pointLists| - |complexLimit| |d01ajf| |position!| |superscript| |getStream| - |midpoint| FG2F |weighted| |modifyPoint| |bsolve| |recip| |localReal?| - |int| |cschIfCan| |scripted?| |color| |coth2tanh| |listYoungTableaus| - |superHeight| |factorFraction| |minIndex| |root?| |cylindrical| - |OMputString| |basisOfLeftNucleus| |localAbs| |realZeros| - |useSingleFactorBound| |f01mcf| |gradient| |dimension| |symmetric?| - |decimal| |iisqrt2| |e02baf| |resultantReduit| |attributeData| - |innerSolve| |binomial| |cSin| |supRittWu?| |f02abf| |OMParseError?| - |repeating| |rk4qc| |Lazard| |trueEqual| |OMread| - |shanksDiscLogAlgorithm| |iiGamma| |distance| |stopTable!| - |loopPoints| |interval| |stoseInternalLastSubResultant| |test| - |exponents| |getProperty| |quickSort| |elaboration| |graphImage| - |cyclotomicDecomposition| |remove| |fortranLiteralLine| |power| - |nextNormalPrimitivePoly| |musserTrials| |host| |primes| - |argumentListOf| |probablyZeroDim?| |bat1| |factorsOfDegree| |kovacic| - |factorial| |functionIsOscillatory| |zag| |genericLeftTrace| |cAcosh| - |tanAn| |inverse| |removeDuplicates| |cartesian| - |quasiMonicPolynomials| |dAndcExp| |addMatch| |getButtonValue| |last| - |OMgetAtp| |patternVariable| |ksec| |reducedDiscriminant| |e04naf| - |extend| |cyclicSubmodule| |differentialVariables| |clearTheIFTable| - |nextPrimitivePoly| |wholePart| |assoc| |credPol| |coefChoose| - |errorKind| |normalDenom| |c06gbf| |leftLcm| |assign| |c02aff| - |ReduceOrder| |rewriteSetByReducingWithParticularGenerators| - |condition| |divide| |dimensions| |tower| - |generalizedContinuumHypothesisAssumed| |isobaric?| - |removeRoughlyRedundantFactorsInPols| |writeUInt8!| |parametric?| - |palgRDE| |rightFactorCandidate| |basisOfLeftAnnihilator| - |primintfldpoly| |whitePoint| |parabolic| |infLex?| |iiperm| |bits| - |e01sef| |light| |indiceSubResultant| |acscIfCan| |headReduced?| - |prefix| |nilFactor| |bounds| |stoseInvertibleSetsqfreg| |limit| - |s20adf| |uniform| |cyclicCopy| |const| |wrregime| |putProperties| - |generic| |leftExtendedGcd| |parseString| |setClosed| |polyRicDE| - |axesColorDefault| |weight| |localIntegralBasis| |tValues| - |laurentRep| |obj| |derivationCoordinates| |eq| |orbits| - |genericRightNorm| |meshFun2Var| |arbitrary| |putGraph| |coerceL| - |e02bef| |option?| |pade| |conjug| |cache| |monomialIntegrate| |iter| - |isMult| |setDifference| |flexible?| |Ei| |complexNumeric| - |lowerPolynomial| |e01baf| |variable?| |aQuadratic| |listLoops| - |setfirst!| |maxPoints3D| |infRittWu?| |linkToFortran| |solveInField| - |heap| |nextItem| |lfinfieldint| |stronglyReduced?| |forLoop| - |sizeMultiplication| |irForm| |shiftRoots| |perfectNthRoot| - |cycleLength| |e02aef| |permutations| |coleman| |RemainderList| - |withPredicates| |merge!| |firstSubsetGray| |compose| |fracPart| - |coefficients| |nullary| |digits| |isAbsolutelyIrreducible?| - |associates?| |f07fef| |screenResolution| |f01rcf| |normalizeIfCan| - |LiePolyIfCan| |eisensteinIrreducible?| |OMputInteger| |generic?| - |radicalEigenvector| |surface| |acotIfCan| |uncouplingMatrices| - |subst| |f2st| |mapExponents| |rightLcm| |roughEqualIdeals?| |low| - |substring?| |setAdaptive| |internalAugment| |leadingTerm| |monic?| - |packageCall| |ricDsolve| |exp| |debug3D| |iipow| |s19adf| - |applyRules| |exprex| |nthCoef| |quadraticForm| |froot| |acoshIfCan| - |clipWithRanges| |resetVariableOrder| |bag| |shellSort| |d01amf| |hue| - |map| |nextsousResultant2| |suffix?| |possiblyNewVariety?| - |cycleEntry| |s14abf| |mainVariable?| |ScanArabic| |environment| - |lifting1| |lyndon?| |one?| |table| |Hausdorff| |generator| - |palgLODE0| |getExplanations| |OMgetBind| |simplifyLog| - |commaSeparate| |nil| |explicitlyEmpty?| |semicolonSeparate| - |wordInGenerators| |asecIfCan| |integralLastSubResultant| |new| - |atanh| |basisOfCenter| |prefix?| |OMsupportsCD?| |encodingDirectory| - |antiCommutative?| |OMgetType| |compile| |complexIntegrate| |rischDE| - |principalIdeal| |quasiMonic?| |s21bbf| |OMconnInDevice| |acoth| - |linear?| |repeating?| |LyndonBasis| |e04ycf| |sncndn| |objects| - |iiacos| |directSum| |c06gqf| |normInvertible?| |predicates| - |fractRadix| |asech| |brillhartTrials| |randomLC| |supersub| - |halfExtendedSubResultantGcd1| |pdf2ef| |base| |approximate| |space| - |constantIfCan| |tanh2trigh| |convert| |leastMonomial| - |prolateSpheroidal| |polynomialZeros| |countable?| |minPoly| |just| - |complex| |coercePreimagesImages| |computeInt| |monomRDEsys| |belong?| - |d01gbf| |multiple| |drawComplexVectorField| |univcase| |makeSin| - |dimensionOfIrreducibleRepresentation| |d01akf| |lprop| |increment| - |cAcot| |optAttributes| |hostByteOrder| |applyQuote| - |factorsOfCyclicGroupSize| |mathieu24| |rroot| |monicModulo| |failed| - |particularSolution| |testDim| |overlap| |baseRDE| - |characteristicPolynomial| |invertible?| |infix?| |palgint| - |cosh2sech| |csc2sin| |gcdPrimitive| |refine| |integrate| |iisinh| - |cyclePartition| |balancedFactorisation| |compactFraction| |mask| - |satisfy?| |intensity| |radicalOfLeftTraceForm| |leftAlternative?| - |viewDeltaYDefault| |var1StepsDefault| |elRow1!| |compound?| |ruleset| - |incr| |setPosition| |cyclotomic| |biRank| |measure| |quasiRegular| - |purelyAlgebraicLeadingMonomial?| |transform| |OMgetEndAttr| |c06eaf| - |f01qef| |hi| |pmComplexintegrate| |hitherPlane| - |basisOfRightAnnihilator| |selectfirst| |s14aaf| |normalizedAssociate| - |chineseRemainder| |left| |stoseInvertible?| |convergents| |qPot| - |LazardQuotient| |head| |removeSinSq| |rotate!| |outputMeasure| - |updateStatus!| |leftMinimalPolynomial| |sqfree| |right| |suchThat| - |eigenvector| |rational| |sub| |stFuncN| |index?| |rischDEsys| - |palgextint| |primextendedint| |doubleFloatFormat| |monomRDE| |rowEch| - |nextsubResultant2| |squareFreePolynomial| |shade| |ran| - |rationalPower| |associator| |OMgetEndObject| |outputAsScript| - |prime?| |safeCeiling| |relationsIdeal| |previous| |less?| |delta| - |invmultisect| |curveColor| |integralDerivationMatrix| |consnewpol| - |pseudoDivide| |clearFortranOutputStack| |leftQuotient| - |rischNormalize| |halfExtendedResultant2| |resultantEuclidean| - |edf2fi| |rightAlternative?| |cAsinh| |initial| |diagonalMatrix| - |drawStyle| |iiacosh| |s17agf| |pol| |cscIfCan| |next| - |pointColorDefault| |goto| |explicitlyFinite?| |monomialIntPoly| - |precision| |central?| |s21bcf| |key| |hyperelliptic| - |listConjugateBases| |iidprod| |removeDuplicates!| |cot2trig| |f02bbf| - |putColorInfo| |antisymmetric?| |approxNthRoot| |slash| - |exponentialOrder| |intChoose| |makeYoungTableau| |prepareSubResAlgo| - |unit?| |choosemon| |taylorQuoByVar| |times!| |filename| |c06ebf| - |viewThetaDefault| |swap!| |psolve| |inverseIntegralMatrixAtInfinity| - |hostPlatform| |hclf| |dfRange| |companionBlocks| |powers| - |mainCharacterization| |splitLinear| |corrPoly| |e01bgf| |returnType!| - |qfactor| |setPrologue!| |connectTo| |f01brf| |evenlambert| - |combineFeatureCompatibility| |diag| |parse| |numberOfMonomials| - |arity| |littleEndian| |divideExponents| |recolor| |lambda| - |semiLastSubResultantEuclidean| |iicoth| |indicialEquation| |code| - |rombergo| |generate| |cardinality| |modularGcd| |byteBuffer| - |linearAssociatedOrder| |showTheFTable| |unrankImproperPartitions1| - |setMinPoints| |diophantineSystem| |setnext!| |trigs| - |symmetricDifference| |addiag| |log2| |sample| |OMsupportsSymbol?| - |highCommonTerms| |back| |karatsuba| |iroot| |initiallyReduced?| - |incrementBy| |getCode| |overbar| |checkRur| |disjunction| - |ScanFloatIgnoreSpaces| |numerators| |OMsetEncoding| |truncate| - |factor1| |e01bef| |lazyPseudoQuotient| |lowerCase| |isImplies| - |lowerCase!| |tanh2coth| |permanent| |externalList| |viewZoomDefault| - |constantLeft| |OMputAtp| |resetAttributeButtons| |elColumn2!| - |numFunEvals3D| |findBinding| |printInfo| |multMonom| |ldf2lst| - |doubleResultant| |splitConstant| |jordanAlgebra?| |d01apf| |rarrow| - |polygamma| |makeSketch| |cCsch| |squareFree| |ptFunc| |leftPower| - |complexElementary| |octon| |hermiteH| |leftDiscriminant| LODO2FUN - |stiffnessAndStabilityOfODEIF| |iiacot| |is?| |linearMatrix| - |useNagFunctions| |minimumExponent| |e02bcf| |scan| |options| - |increase| |equiv| |meshPar2Var| |makeViewport2D| |summation| |tail| - |dom| |any| |leftTraceMatrix| |triangulate| RF2UTS |bitCoef| |moebius| - |toScale| |definingInequation| |e02def| |characteristicSet| - |minimumDegree| |iicsch| |arg1| |c06frf| |entry| |f04arf| |iExquo| - |showTheIFTable| |internalSubQuasiComponent?| |LagrangeInterpolation| - |semiDiscriminantEuclidean| |nil| |infinite| |arbitraryExponent| + |Record| |Union| |LyndonCoordinates| |rename!| |setClosed| + |elementary| |pointLists| |arg2| |f04asf| |youngGroup| |radicalRoots| + |string| |mapDown!| |reduceBasisAtInfinity| |constantCoefficientRicDE| + |LyndonBasis| |mainValue| |tube| |alternating| |makeGraphImage| + |lexGroebner| |f04atf| |contractSolve| |say| |normalizeAtInfinity| + |changeVar| |zeroDimensional?| |mainDefiningPolynomial| |unitVector| + |cyclic| |conditions| |graphImage| |totalGroebner| |f04axf| + |decomposeFunc| |complementaryBasis| |ratDsolve| |fglmIfCan| + |mainForm| |cosSinInfo| |dihedral| |title| |groebSolve| |match| + |f04faf| |expressIdealMember| |unvectorise| |reset| |integral?| + |indicialEquationAtInfinity| |groebner| |rischDE| |arguments| + |loopPoints| |cap| |testDim| |principalIdeal| |f04jgf| |bubbleSort!| + |inc| |integralAtInfinity?| |reduceLODE| |lexTriangular| |rischDEsys| + |generalTwoFactor| |cup| |genericPosition| |f04maf| + |LagrangeInterpolation| |insertionSort!| |write| + |integralBasisAtInfinity| |singRicDE| |squareFreeLexTriangular| + |monomRDE| |generalSqFr| |e| |wreath| |save| |lfunc| |psolve| |f04mbf| + |check| |ramified?| |polyRicDE| |belong?| |baseRDE| |twoFactor| + |SFunction| |inHallBasis?| |nothing| |wrregime| |f04mcf| |lprop| + |ramifiedAtInfinity?| |ricDsolve| |Ci| |polyRDE| |setOrder| + |skewSFunction| |reorder| |rdregime| |f04qaf| |llprop| |singular?| + |triangulate| |Si| |monomRDEsys| |getOrder| |cyclotomicDecomposition| + |headAst| |bsolve| |top| |f07adf| |lllp| |singularAtInfinity?| + |solveInField| |Ei| |baseRDEsys| |less?| |cyclotomicFactorization| + |continue| |heap| |dmp2rfi| |f07aef| |lllip| |branchPoint?| + |wronskianMatrix| |linGenPos| |weighted| |userOrdered?| + |rangeIsFinite| |sn| |gcdprim| |se2rfi| |f07fdf| |mesh?| |parts| + |branchPointAtInfinity?| |variationOfParameters| |groebgen| |rdHack1| + |largest| |functionIsContinuousAtEndPoints| |typeForm| |gcdcofact| + |pr2dmp| |f07fef| |mesh| ** |hash| |rationalPoint?| |lexico| |totolex| + |midpoint| |more?| |functionIsOscillatory| |gcdcofactprim| |hasoln| + |s01eaf| |polygon?| |count| |absolutelyIrreducible?| |OMmakeConn| + |minPol| |midpoints| |setVariableOrder| |datalist| |changeName| + |lintgcd| |ParCondList| |s13aaf| |polygon| |genus| |OMcloseConn| + |computeBasis| |realZeros| |getVariableOrder| + |exprHasWeightCosWXorSinWX| |hex| |redpps| |s13acf| |closedCurve?| + |getZechTable| |OMconnInDevice| |coord| |mainCharacterization| + |resetVariableOrder| |constant| |exprHasAlgebraicWeight| |every?| + |B1solve| |s13adf| |closedCurve| |createZechTable| |OMconnOutDevice| + |anticoord| |algebraicOf| |prime?| |exprHasLogarithmicWeights| |any?| + |mantissa| |factorset| |s14aaf| |curve?| |outputList| + |createMultiplicationTable| |OMconnectTCP| |intcompBasis| + |ReduceOrder| |sample| |combineFeatureCompatibility| |host| |maxrank| + |s14abf| |curve| |createMultiplicationMatrix| |OMbindTCP| |choosemon| + |setref| |rationalFunction| |rank| |setProperty| |sparsityIF| + |trueEqual| |minrank| |s14baf| |point?| |createLowComplexityTable| + |OMopenFile| |transform| |deref| |taylorIfCan| + |stiffnessAndStabilityFactor| |factorList| |minset| |s15adf| + |enterPointData| |createLowComplexityNormalBasis| |OMopenString| + |pack!| |ref| |removeZeroes| |deleteProperty!| + |stiffnessAndStabilityOfODEIF| |listConjugateBases| |nextSublist| + |s15aef| |composites| |representationType| |OMclose| |complexLimit| + |radicalEigenvectors| |taylorRep| |has?| |systemSizeIF| |matrixGcd| + |overset?| |s17acf| |components| |checkPrecision| + |createPrimitiveElement| |OMsetEncoding| |limit| |radicalEigenvector| + |factorSquareFree| |expenseOfEvaluationIF| |divideIfCan!| |ParCond| + |s17adf| |numberOfComposites| |tableForDiscreteLogarithm| |OMputApp| + |linearlyDependent?| |radicalEigenvalues| |henselFact| |accuracyIF| + |leader| |leastPower| |redmat| |s17aef| |numberOfComponents| + |factorsOfCyclicGroupSize| |OMputAtp| |linearDependence| |eigenMatrix| + |hasHi| |resetAttributeButtons| |intermediateResultsIF| |idealiser| + |regime| |s17aff| |create3Space| |getButtonValue| |sizeMultiplication| + |categories| |OMputAttr| |solveLinear| |normalise| |numer| |fmecg| + |decrease| |lists| |subscriptedVariables| |retractIfCan| + |idealiserMatrix| |sqfree| |s17agf| |outputAsScript| + |getMultiplicationMatrix| |OMputBind| |linearElement| |gramschmidt| + |denom| |commonDenominator| |increase| |central?| |moduleSum| + |inconsistent?| |s17ahf| |outputAsTex| |getMultiplicationTable| + |OMputBVar| |reducedSystem| |orthonormalBasis| |clearDenominator| + |elliptic?| |mapUnivariate| |numFunEvals| |s17ajf| |abs| |primitive?| + |OMputError| |leftReducedSystem| |antisymmetricTensors| |pi| + |splitDenominator| |mapUnivariateIfCan| |setAdaptive| |s17akf| |Beta| + |numberOfIrreduciblePoly| |OMputObject| |linearForm| + |createGenericMatrix| |infinity| |monicRightFactorIfCan| + |associatedSystem| |charClass| |mapMatrixIfCan| |adaptive?| |s17dcf| + |digamma| |concat| |step| |numberOfPrimitivePoly| |OMputEndApp| + |setDifference| |symmetricTensors| |rightFactorIfCan| + |uncouplingMatrices| |alphanumeric?| |mapBivariate| + |setScreenResolution| |s17def| |polygamma| |numberOfNormalPoly| + |OMputEndAtp| |setIntersection| |tensorProduct| |leftFactorIfCan| + |lowerCase?| |fullDisplay| |screenResolution| |s17dgf| |Gamma| + |setUnion| |permutationRepresentation| |kernel| |monicDecomposeIfCan| + |upperCase?| |relationsIdeal| |setMaxPoints| |s17dhf| |besselJ| |init| + |edf2ef| |substitute| |list| |completeEchelonBasis| + |monicCompleteDecompose| |ptree| |alphabetic?| |saturate| |maxPoints| + |s17dlf| |besselY| |lhs| |vedf2vef| |duplicates?| + |createRandomElement| |draw| |divideIfCan| |hexDigit?| |groebner?| + |setMinPoints| |clearCache| |s18acf| |besselI| |rhs| |df2st| |mapGen| + |cyclicSubmodule| |noKaratsuba| |digit?| |s18adf| |besselK| |f2st| + |mapExpon| |standardBasisOfCyclicSubmodule| |karatsubaOnce| |escape| + |degreePartition| |quoted?| |s18aef| |airyAi| |currentEnv| |ldf2lst| + |integerBound| |commutativeEquality| |areEquivalent?| |karatsuba| + |ord| |operation| |factorOfDegree| |inR?| |s18aff| |airyBi| |sdf2lst| + |setright!| |leftMult| |isAbsolutelyIrreducible?| |makeObject| + |separate| |mkIntegral| |factorsOfDegree| |isList| |s18dcf| |subNode?| + |getlo| |setleft!| |directory| |pseudoDivide| |coef| |radPoly| + |pascalTriangle| |isOp| |s18def| |infLex?| |gethi| |approxSqrt| + |shade| |brillhartIrreducible?| |pseudoQuotient| |rootPoly| + |rangePascalTriangle| |satisfy?| |s19aaf| |setEmpty!| |outputMeasure| + |generateIrredPoly| |nthRootIfCan| |brillhartTrials| |composite| + |goodPoint| |sizePascalTriangle| |addBadValue| |s19abf| |setStatus!| + |measure2Result| |complexExpand| |expIfCan| |noLinearFactor?| + |subResultantGcd| |chvar| |fillPascalTriangle| |badValues| |kind| + |att2Result| |complexIntegrate| |logIfCan| |insertRoot!| |resultant| + |removeDuplicates| |safeCeiling| |retractable?| |d02gbf| |subTriSet?| + |iflist2Result| |op| |dimensionOfIrreducibleRepresentation| |sinIfCan| + |binarySearchTree| |discriminant| |find| |kernels| |safeFloor| + |ListOfTerms| |d02kef| |subPolSet?| |pdf2ef| + |irreducibleRepresentation| |cosIfCan| |nor| |pseudoRemainder| + |clipParametric| |safetyMargin| |d02raf| |PDESolve| + |internalSubPolSet?| |operator| |pdf2df| |checkRur| |tanIfCan| |nand| + |basisOfCommutingElements| |clipWithRanges| SEGMENT |sumSquares| + |leftFactor| |d03edf| |internalInfRittWu?| |df2ef| |cAcsch| |cotIfCan| + |binaryTournament| |cyclicEntries| |basisOfLeftAnnihilator| + |numberOfHues| |euclideanNormalForm| |sort| |d03eef| + |rightFactorCandidate| |univariate| |internalSubQuasiComponent?| + |unary?| |fi2df| |cAsech| |secIfCan| |binaryTree| |cyclicCopy| + |yellow| |euclideanGroebner| |dec| |measure| |d03faf| + |subQuasiComponent?| |mat| |cAcoth| |cscIfCan| |setLength!| |cyclic?| + |iifact| |factorGroebnerBasis| |coerceImages| |e01baf| + |removeSuperfluousQuasiComponents| |neglist| |union| |cAtanh| + |asinIfCan| |capacity| |complexNormalize| |iibinom| + |groebnerFactorize| |e01bef| |fixedPoints| |subCase?| |factor| + |multiEuclidean| |cAcosh| |acosIfCan| |byteBuffer| |complexElementary| + |iiperm| |credPol| |random| |e01bff| |odd?| |sqrt| + |removeSuperfluousCases| |extendedEuclidean| |cAsinh| |atanIfCan| + |unknownEndian| |trigs| |comp| |iipow| |redPol| |e01bgf| |even?| + |prepareDecompose| |real| |euclideanSize| |cCsch| |acotIfCan| + |bigEndian| |real?| |iidsum| |gbasis| |e01bhf| |numberOfCycles| + |branchIfCan| |imag| |properties| |sizeLess?| |cSech| |asecIfCan| + |littleEndian| |complexForm| |copy| |iidprod| |directProduct| |critT| + |cyclePartition| |e01daf| |startTableGcd!| |super| |simplifyPower| + |cCoth| |translate| |acscIfCan| |subtractIfCan| |UpTriBddDenomInv| + |ipow| |critM| |coerceListOfPairs| |e01saf| |stopTableGcd!| |number?| + |cTanh| |depth| |sinhIfCan| |setPosition| |LowTriBddDenomInv| + |factorial| |critB| |e01sbf| |coercePreimagesImages| |brace| + |startTableInvSet!| |seriesSolve| |cCosh| |coshIfCan| + |generalizedContinuumHypothesisAssumed| |simplify| |multinomial| + |critBonD| |e01sef| |listRepresentation| |destruct| |stopTableInvSet!| + |erf| |constantToUnaryFunction| |cSinh| |tanhIfCan| + |generalizedContinuumHypothesisAssumed?| |htrigs| |permutation| + |critMTonD1| |permanent| |e01sff| |stosePrepareSubResAlgo| |match?| + |tubePlot| |cAcsc| |cothIfCan| |countable?| |simplifyExp| |autoCoerce| + |stirling1| |critMonD1| |cycles| |e02adf| + |stoseInternalLastSubResultant| |exponentialOrder| |cAsec| |sechIfCan| + |Aleph| |simplifyLog| |stirling2| |redPo| |cycle| |e02aef| + |stoseIntegralLastSubResultant| |dilog| |completeEval| |cAcot| + |cschIfCan| |unravel| |expandPower| |summation| |hMonic| |expand| + |e02agf| |initializeGroupForWordProblem| |monomial| + |stoseLastSubResultant| |sin| |lowerPolynomial| |cAtan| |asinhIfCan| + |leviCivitaSymbol| |expandLog| |factorials| |updatF| |filterWhile| + |e02ahf| |support| |multivariate| |stoseInvertible?sqfreg| |close| + |cos| |kroneckerDelta| |raisePolynomial| |cAcos| |acoshIfCan| F + |cos2sec| |mkcomm| |sPol| |filterUntil| |e02ajf| |wordInGenerators| + |variables| |stoseInvertibleSetsqfreg| |tan| |normalDeriv| |cAsin| + |atanhIfCan| |reindex| |cosh2sech| |polarCoordinates| |select| + |updatD| |wordInStrongGenerators| |e02akf| |stoseInvertible?reg| + |display| |cot| |ran| |cCsc| |acothIfCan| |principalAncestors| + |cot2trig| |imaginary| |minGbasis| |orbits| |e02baf| + |stoseInvertibleSetreg| |sec| |highCommonTerms| |cSec| |asechIfCan| + |exportedOperators| |coth2trigh| |elaborateFile| |lepol| |orbit| + |e02bbf| |stoseInvertible?| |csc| |mapCoef| |cCot| |acschIfCan| + |alphanumeric| |csc2sin| |elaborate| |prinshINFO| |permutationGroup| + |e02bcf| |stoseInvertibleSet| |asin| |nthCoef| |cTan| |pushdown| + |alphabetic| |csch2sinh| |solid| |prindINFO| |e02bdf| + |wordsForStrongGenerators| |debug| |qelt| |stoseSquareFreePart| + |taylor| |acos| |predicate| |binomThmExpt| |cCos| |pushup| |hexDigit| + |sec2cos| |solid?| |qsetelt| |fprindINFO| |e02bef| |strongGenerators| + D |coleman| |laurent| |input| |atan| |pomopo!| |cSin| + |reducedDiscriminant| |digit| |sech2cosh| |denominators| |prinpolINFO| + |e02daf| |generators| |xRange| |inverseColeman| |puiseux| |library| + |acot| |mapExponents| |cLog| |idealSimplify| |sin2csc| EQ |numerators| + |prinb| |e02dcf| |bivariateSLPEBR| |yRange| |listYoungTableaus| |asec| + |linearAssociatedLog| |cExp| |definingInequation| |sinh2csch| + |convergents| |critpOrder| |e02ddf| + |solveLinearPolynomialEquationByRecursion| |inv| |zRange| + |makeYoungTableau| |acsc| |linearAssociatedOrder| |cRationalPower| + |definingEquations| |tan2trig| |approximants| |ground?| |makeCrit| + |map!| |factorByRecursion| |e02def| |nextColeman| |sinh| + |linearAssociatedExp| |cPower| |setStatus| |tanh2trigh| |reducedForm| + |qsetelt!| |ground| |virtualDegree| |factorSquareFreeByRecursion| + |e02dff| |nextLatticePermutation| |set| |cosh| |createNormalElement| + |seriesToOutputForm| |quasiAlgebraicSet| |double| |tan2cot| + |partialQuotients| |conditionsForIdempotents| |e02gaf| |randomR| + |leadingMonomial| |nextPartition| |balancedBinaryTree| |tanh| + |setLabelValue| |iCompose| |radicalSimplify| |tanh2coth| + |partialDenominators| |genericRightDiscriminant| |e02zaf| + |factorSFBRlcUnit| |leadingCoefficient| |numberOfImproperPartitions| + |sylvesterMatrix| |coth| |getCode| |taylorQuoByVar| |denominator| + |cot2tan| |size| |partialNumerators| |genericRightTraceForm| |e04dgf| + |charthRoot| |primitiveMonomials| |subSet| |parameters| |sech| + |printCode| |iExquo| |numerator| |coth2tanh| + |reducedContinuedFraction| |genericLeftDiscriminant| |e04fdf| + |conditionP| |print| |unrankImproperPartitions0| |reductum| |csch| + |printStatement| |box| |getStream| |quadraticForm| |removeCosSq| + |push| |genericLeftTraceForm| |resolve| |e04gcf| + |solveLinearPolynomialEquation| |unrankImproperPartitions1| |acsch| + |asinh| |block| |getRef| |back| |removeSinSq| |cartesian| + |genericRightNorm| |factorSquareFreePolynomial| |e04jaf| + |subresultantSequence| |acosh| |returns| |true| |makeSeries| |front| + |category| |removeCoshSq| |polar| |genericRightTrace| + |factorPolynomial| |e04mbf| |SturmHabichtSequence| |bezoutMatrix| + |domain| |call| |mappingMode| |optional| |rotate!| |declare!| + |removeSinhSq| |cylindrical| |genericRightMinimalPolynomial| + |squareFreePolynomial| |e04naf| |SturmHabichtCoefficients| + |bezoutResultant| |goto| |categoryMode| |dequeue!| |package| + |expandTrigProducts| |spherical| |rightRankPolynomial| |gcdPolynomial| + |e04ucf| |SturmHabicht| |insert| |repeatUntilLoop| |voidMode| + |enqueue!| |fintegrate| |parabolic| |genericLeftNorm| |torsion?| + |e04ycf| |countRealRoots| |show| |whileLoop| |noValueMode| |quatern| + |coefficient| |basisOfRightAnnihilator| |genericLeftTrace| |search| + |torsionIfCan| |f01brf| |SturmHabichtMultiple| |forLoop| |jokerMode| + |imagK| |coHeight| |node| |basisOfLeftNucleus| + |genericLeftMinimalPolynomial| |getGoodPrime| |f01bsf| + |countRealRootsMultiple| |trace| |sin?| GF2FG |imagJ| |extendIfCan| + |basisOfRightNucleus| |leftRankPolynomial| |badNum| |f01maf| + |signatureAst| |zeroVector| FG2F |imagI| |algebraicVariables| + |basisOfMiddleNucleus| |generic| |mix| |f01mcf| |pop!| |stop| F2FG + |conjugate| |zeroSetSplitIntoTriangularSystems| |segment| + |basisOfNucleus| |rightUnits| |doubleDisc| |f01qcf| |push!| + |validExponential| |explogs2trigs| |queue| |zeroSetSplit| + |basisOfCenter| |leftUnits| |polyred| |f01qdf| |minordet| |formula| + |flatten| |rootNormalize| |trigs2explogs| |nthRoot| + |reduceByQuasiMonic| |basisOfLeftNucloid| |compBound| |padicFraction| + |f01qef| |determinant| |tanQ| |swap!| |fractRadix| |collectQuasiMonic| + |basisOfRightNucloid| |f01rcf| |isQuotient| |diagonalProduct| + |callForm?| |fill!| |wholeRadix| |removeZero| |exprToUPS| |slash| + |basisOfCentroid| |f01rdf| |diagonal| |getIdentifier| |minIndex| + |cycleRagits| |initiallyReduce| |exprToGenUPS| |over| + |radicalOfLeftTraceForm| |f01ref| |diagonalMatrix| |nrows| |variable?| + |maxIndex| |prefixRagits| |headReduce| |localAbs| |zag| |applyRules| + |f02aaf| |scalarMatrix| |ncols| |getConstant| |stronglyReduce| + |universe| |postfix| |localUnquote| |f02abf| |hermite| |environment| + |palgint| |rewriteIdealWithRemainder| |rewriteSetWithReduction| + |arbitrary| |complement| |infix| |f02adf| |height| |completeHermite| + |units| |irForm| |log10| |palgextint| |rewriteIdealWithHeadRemainder| + |autoReduced?| |equation| |cardinality| |vconcat| |setColumn!| + |f02aef| |smith| |elaboration| |bitand| |palglimint| |remainder| + |initiallyReduced?| |internalIntegrate0| |hconcat| |leaves| + |outerProduct| |select!| |bitior| |palgRDE| |headRemainder| + |headReduced?| |makeCos| |rspace| |rightPower| + |lastSubResultantElseSplit| |delete!| |palgLODE| |roughUnitIdeal?| + |stronglyReduced?| |makeSin| |vspace| |derivationCoordinates| + |invertibleSet| |macroExpand| |dn| |splitConstant| |roughEqualIdeals?| + |reduced?| |iiGamma| |hspace| |one?| |invertible?| + |bezoutDiscriminant| |sncndn| |pmComplexintegrate| |roughSubIdeal?| + |iiabs| |superHeight| |splitSquarefree| |invertibleElseSplit?| + |bfEntry| |categoryFrame| |pmintegrate| |roughBase?| |compound?| + |bringDown| |subHeight| |normalDenom| + |purelyAlgebraicLeadingMonomial?| |interactiveEnv| |infieldint| + |trivialIdeal?| |getOperands| |rule| |newReduc| |declare| + |doubleFloatFormat| |totalfract| |algebraicCoefficients?| + |putProperties| |extendedint| |collectUpper| |common| |getOperator| + |logical?| |messagePrint| |pushdterm| |purelyTranscendental?| + |getProperties| |limitedint| |collect| |nil?| |character?| |members| + |pushucoef| |purelyAlgebraic?| |var2StepsDefault| |putProperty| + |integerIfCan| |collectUnder| |buildSyntax| |doubleComplex?| |padecf| + |pushuconst| |prepareSubResAlgo| |tubePointsDefault| |getProperty| + |internalIntegrate| |mainVariable?| |solve| |complex?| + |numberOfMonomials| |pade| |matrix| |internalLastSubResultant| + |tubeRadiusDefault| |scopes| |infieldIntegrate| |mainVariables| + |triangularSystems| |double?| |root| |multiset| + |integralLastSubResultant| |dimension| |eigenvalues| + |limitedIntegrate| |removeSquaresIfCan| |nativeModuleExtension| + |ffactor| |quotientByP| |mergeDifference| |toseLastSubResultant| + |crest| |eigenvector| |extendedIntegrate| + |unprotectedRemoveRedundantFactors| |hostByteOrder| Y |qfactor| + |moduloP| |squareFreePrim| |toseInvertible?| |cfirst| + |generalizedEigenvector| |varselect| |removeRedundantFactors| |label| + |hostPlatform| |UP2ifCan| |modulus| |compdegd| |toseInvertibleSet| + |sts2stst| |generalizedEigenvectors| |kmax| |certainlySubVariety?| + |rootDirectory| |anfactor| |digits| |univcase| |toseSquareFreePart| + |clikeUniv| |eigenvectors| |ksec| |possiblyNewVariety?| |bumprow| + |fortranCharacter| |continuedFraction| |consnewpol| |quotedOperators| + |weierstrass| |factorAndSplit| |vark| |probablyZeroDim?| |result| + |bumptab| |fortranDoubleComplex| |light| |nsqfree| |rur| |qqq| + |rightOne| |removeConstantTerm| |selectPolynomials| |bumptab1| + |fortranComplex| |pastel| |intChoose| |create| |integralBasis| + |leftOne| |mkPrim| |selectOrPolynomials| |untab| |fortranLogical| + |dark| |coefChoose| |enterInCache| |localIntegralBasis| |rightZero| + |intPatternMatch| |selectAndPolynomials| |bat1| |fortranInteger| + |getSyntaxFormsFromFile| |myDegree| |currentCategoryFrame| + |constructor| |qualifier| |leftZero| |primintegrate| + |quasiMonicPolynomials| |bat| |fortranDouble| |surface| |normDeriv2| + |currentScope| |mainExpression| |sum| |bindings| |swap| |expintegrate| + |univariate?| |option| |tab1| |showSummary| |symbolTable| + |fortranReal| |coordinate| |plenaryPower| |pushNewContour| + |changeWeightLevel| |minPoly| |tanintegrate| |univariatePolynomials| + |tab| |external?| |conjugates| |c02aff| |findBinding| + |characteristicSerie| |freeOf?| |primextendedint| |linear?| |lex| + |pushFortranOutputStack| |scalarTypeOf| |lp| |showAttributes| + |shuffle| |c02agf| |contours| |characteristicSet| |operators| + |expextendedint| |linearPolynomials| |makeRecord| |slex| + |popFortranOutputStack| |fortranCarriageReturn| |shufflein| |c05adf| + |structuralConstants| |medialSet| |mainKernel| |primlimitedint| + |bivariate?| |inverse| |outputAsFortran| |fortranLiteral| |sequences| + |c05nbf| |coordinates| |Hausdorff| |distribute| |name| |explimitedint| + |bivariatePolynomials| |maxrow| |fortranLiteralLine| |permutations| + |c05pbf| |bounds| |Frobenius| |rightTrim| |functionIsFracPolynomial?| + |body| |primextintfrac| |removeRoughlyRedundantFactorsInPols| + |tableau| |processTemplate| |makeResult| |c06eaf| |high| + |transcendenceDegree| |leftTrim| |problemPoints| |primlimintfrac| + |removeRoughlyRedundantFactorsInPol| |listOfLists| |null| |makeFR| + |is?| |c06ebf| |low| |stack| |extensionDegree| |zerosOf| + |primintfldpoly| |interReduce| |tanSum| |not| |musserTrials| |Is| + |c06ecf| |subset?| |inGroundField?| BY |cn| |singularitiesOf| + |expintfldpoly| |roughBasicSet| |tanAn| |and| |stopMusserTrials| + |addMatchRestricted| |c06ekf| |symmetricDifference| |transcendent?| + |polynomialZeros| |monomialIntegrate| |crushedSet| |tanNa| |or| + |numberOfFactors| |insertMatch| |c06fpf| |difference| |algebraic?| + |f2df| |monomialIntPoly| + |rewriteSetByReducingWithParticularGenerators| |initTable!| |xor| + |modularFactor| |addMatch| |c06fqf| |intersect| |sh| |ef2edf| + |inverseLaplace| |rewriteIdealWithQuasiMonicGenerators| |signature| + |dim| |printInfo!| |case| |useSingleFactorBound?| |getMatch| |assert| + |c06frf| |part?| |mirror| |ocf2ocdf| |port| |inputOutputBinaryFile| + |squareFreeFactors| |pattern| |startStats!| |Zero| + |useSingleFactorBound| |failed?| |c06fuf| |latex| |monomial?| + |socf2socdf| |closed| |univariatePolynomialsGcds| |printStats!| |One| + |useEisensteinCriterion?| |optpair| |c06gbf| |member?| |rquo| |df2fi| + |t| |bothWays| |removeRoughlyRedundantFactorsInContents| |shift| + |clearTable!| NOT |useEisensteinCriterion| |c06gcf| |getBadValues| + |enumerate| |output| |lquo| |edf2fi| |bytes| + |removeRedundantFactorsInContents| |usingTable?| OR |vector| + |eisensteinIrreducible?| |resetBadValues| |c06gqf| |setOfMinN| + |mindegTerm| |edf2df| |ip4Address| |removeRedundantFactorsInPols| + |message| |printingInfo?| AND |differentiate| + |tryFunctionalDecomposition?| |hasTopPredicate?| |c06gsf| |elements| + |product| |expenseOfEvaluation| |iprint| |irreducibleFactors| + |makingStats?| |tryFunctionalDecomposition| |d01ajf| |topPredicate| + |replaceKthElement| |fortran| |LiePolyIfCan| |numberOfOperations| + |elem?| |lazyIrreducibleFactors| |extractIfCan| |elt| |btwFact| + |setTopPredicate| |d01akf| |incrementKthElement| |trunc| |edf2efi| + |notelem| |removeIrreducibleRedundantFactors| |insert!| + |beauzamyBound| |patternVariable| |d01alf| |cdr| |level| |degree| + |dfRange| |logpart| |normalForm| |interpretString| |bombieriNorm| + |withPredicates| |d01amf| |car| |quasiRegular| |dflist| |ratpart| + |changeBase| |stripCommentsAndBlanks| |rootBound| |setPredicates| + |d01anf| |float?| |cons| |quasiRegular?| |df2mf| |mkAnswer| + |companionBlocks| |setPrologue!| |singleFactorBound| |predicates| + |d01apf| |integer?| |constant?| |ldf2vmf| |cond| |irDef| |xCoord| + |setTex!| |retract| |quadraticNorm| |hasPredicate?| |d01aqf| |symbol?| + |mindeg| |irCtor| |yCoord| |setEpilogue!| |infinityNorm| |optional?| + |d01asf| |string?| |maxdeg| |style| |irVar| |zCoord| |prologue| + |second| * |scaleRoots| |multiple?| |d01bbf| |list?| |RemainderList| + |toScale| |perfectNthPower?| |rCoord| |epilogue| |third| |shiftRoots| + |generic?| |d01fcf| |pair?| |unexpand| |pointColorPalette| + |perfectNthRoot| |thetaCoord| |endOfFile?| |d01gaf| |atom?| |source| + |void| |shape| |curveColorPalette| |approxNthRoot| |phiCoord| + |readIfCan!| |exp1| = |evaluateInverse| |d01gbf| |null?| + |youngDiagram| |var1Steps| |perfectSquare?| |color| |readLineIfCan!| + |log2| |evaluate| |d02bbf| |startTable!| |script| |triangSolve| + |var2Steps| |perfectSqrt| |hue| |readLine!| |rationalApproximation| < + |conjug| |d02bhf| |stopTable!| |univariateSolve| |space| + |plusInfinity| |writeLine!| |char| |relerror| > |adjoint| |d02cjf| + |supDimElseRittWu?| |realSolve| |tubePoints| |minusInfinity| + |innerSolve1| |prevPrime| |systemCommand| |sign| |complexSolve| <= + |arity| |d02ejf| |algebraicSort| |tex| |target| |positiveSolve| + |tubeRadius| |innerSolve| |primes| |mapUp!| |nonQsign| |complexRoots| + >= |getDatabase| |d02gaf| |moreAlgebraic?| |squareFree| |weight| + |makeEq| |selectsecond| |setleaves!| |direction| |expr| |realRoots| + |numericalOptimization| |linearlyDependentOverZ?| |makeVariable| + |modularGcdPrimitive| |selectfirst| |normal| |createThreeSpace| + |leadingTerm| |goodnessOfFit| |invertIfCan| |changeThreshhold| + |linearDependenceOverZ| |finiteBound| |modularGcd| |makeprod| |linear| + |cyclicParents| |overlap| + |whatInfinity| |copy!| + |selectMultiDimensionalRoutines| |solveLinearlyOverQ| + |sortConstraints| |type| |reduction| |property| |cyclicEqual?| |hcrf| + - |infinite?| |float| |plus!| |selectNonFiniteRoutines| |sumOfSquares| + |signAround| |disjunction| |polynomial| |hclf| |variable| / |finite?| + |minus!| |selectSumOfSquaresRoutines| |splitLinear| |invmod| + |conjunction| |mapdiv| |iterators| |writable?| |pureLex| + |leftScalarTimes!| |selectFiniteRoutines| |simpleBounds?| |powmod| + |isEquiv| |lazyGintegrate| |readable?| |totalLex| |rightScalarTimes!| + |selectODEIVPRoutines| |linearMatrix| |mulmod| |isImplies| |power| + |exists?| |reverseLex| |times!| |selectPDERoutines| |linearPart| + |submod| |isOr| |sincos| |id| |extension| |leftLcm| |power!| + |selectOptimizationRoutines| |value| |dot| |nonLinearPart| |addmod| + |isAnd| |symbol| |sinhcosh| |lo| |shallowExpand| |rightExtendedGcd| + |just| |selectIntegrationRoutines| |scan| |quadratic?| + |symmetricRemainder| |isNot| |expression| |subresultantVector| + |deepExpand| |rightGcd| |gradient| |routines| |graphCurves| + |setButtonValue| |changeNameToObjf| |positiveRemainder| |isAtom| + |integer| |primitivePart| |clearFortranOutputStack| + |rightExactQuotient| GE |divergence| |mainSquareFreePart| |drawCurves| + |optAttributes| |bit?| |atoms| |setAttributeButtonStep| |pointData| + |showFortranOutputStack| |rightRemainder| GT |laplacian| + |mainPrimitivePart| |scale| |Nul| |algint| |dual| |parent| + |topFortranOutputStack| |rightQuotient| LE |hessian| |mainContent| + |connect| |exponents| |algintegrate| |equiv| |extractProperty| + |setFormula!| |rightLcm| LT |bandedHessian| |primitivePart!| |region| + |iisqrt2| |palgintegrate| |implies| |extractClosed| |linkToFortran| + |leftExtendedGcd| |jacobian| |nextsubResultant2| |points| |iisqrt3| + |palginfieldint| |merge!| |extractIndex| + |setLegalFortranSourceExtensions| |leftGcd| |bandedJacobian| + |LazardQuotient2| |getGraph| |iiexp| |bitLength| |max| |extractPoint| + |keys| |fracPart| |leftExactQuotient| |duplicates| |LazardQuotient| + |putGraph| |iilog| |bitCoef| |resultantEuclidean| |traverse| + |polyPart| |leftRemainder| |removeDuplicates!| |subResultantChain| + |graphs| |iisin| |bitTruth| |semiResultantEuclidean2| |defineProperty| + |index| |fullPartialFraction| |leftQuotient| |linears| + |halfExtendedSubResultantGcd2| |graphStates| |iicos| |contains?| + |semiResultantEuclidean1| |numeric| |closeComponent| |primeFrobenius| + |monicLeftDivide| |ddFact| |halfExtendedSubResultantGcd1| |graphState| + |iitan| |inf| |indiceSubResultant| |radical| |modifyPoint| + |discreteLog| |monicRightDivide| |separateFactors| + |extendedSubResultantGcd| |makeViewport2D| |iicot| |qinterval| + |indiceSubResultantEuclidean| |addPointLast| |pair| |open| |tree| + |decreasePrecision| |leftDivide| |exptMod| |exactQuotient!| + |viewport2D| |iisec| |bright| |interval| + |semiIndiceSubResultantEuclidean| |addPoint2| |increasePrecision| + |rightDivide| |meshPar2Var| |exactQuotient| |getPickedPoints| |iicsc| + |unit?| |degreeSubResultant| |addPoint| |bits| |hermiteH| + |meshFun2Var| |primPartElseUnitCanonical!| |colorDef| |iiasin| |eval| + |associates?| |degreeSubResultantEuclidean| |merge| |unitNormalize| + |laguerreL| |meshPar1Var| |primPartElseUnitCanonical| |intensity| + |iiacos| |unitCanonical| |semiDegreeSubResultantEuclidean| |deepCopy| + |operations| |unit| |legendreP| |ptFunc| |lazyResidueClass| |lighting| + |iiatan| |unitNormal| |lastSubResultantEuclidean| |shallowCopy| + |flagFactor| |writeBytes!| |minimumExponent| |monicModulo| |interpret| + |clipSurface| |iiacot| |error| |lfextendedint| + |semiLastSubResultantEuclidean| |numberOfChildren| |sqfrFactor| + |writeUInt8!| |maximumExponent| |lazyPseudoDivide| |showClipRegion| + |iiasec| |lflimitedint| |subResultantGcdEuclidean| |children| + |primeFactor| |writeInt8!| |rowEch| |lazyPremWithDefault| |optimize| + |showRegion| |iiacsc| |lfinfieldint| |semiSubResultantGcdEuclidean2| + |child| |nthFlag| |function| |writeByte!| |rowEchLocal| |lazyPquo| + |hitherPlane| |iisinh| |lfintegrate| |semiSubResultantGcdEuclidean1| + |birth| |nthExponent| |isOpen?| |rowEchelonLocal| |lazyPrem| + |eyeDistance| |iicosh| |lfextlimint| |discriminantEuclidean| + |internal?| |width| |irreducibleFactor| |outputBinaryFile| + |normalizedDivide| |pquo| |perspective| |iitanh| |BasicMethod| |rules| + |semiDiscriminantEuclidean| |root?| |factors| |blankSeparate| |maxint| + |prem| |zoom| |iicoth| |PollardSmallFactor| |chainSubResultants| + |leaf?| |nilFactor| |semicolonSeparate| |binaryFunction| |supRittWu?| + |rotate| |iisech| |showTheFTable| |schema| |outputForm| + |regularRepresentation| |commaSeparate| |makeFloatFunction| + |RittWuCompare| |drawStyle| |iicsch| |clearTheFTable| + |resultantReduit| |argscript| |traceMatrix| |pile| |unaryFunction| + |mainMonomials| |mr| |outlineRender| |iiasinh| |fTable| + |resultantReduitEuclidean| |superscript| |randomLC| |paren| |length| + |compiledFunction| |mainCoefficients| |diagonals| |morphism| |iiacosh| + |palgint0| |semiResultantReduitEuclidean| |subscript| |minimize| + |bracket| |scripts| |corrPoly| |leastMonomial| |axes| + |balancedFactorisation| |rem| |setRow!| |iiatanh| |palgextint0| + |divide| |scripted?| |module| |prod| |lifting| |mainMonomial| + |controlPanel| |quo| |oneDimensionalArray| |iiacoth| |palglimint0| + |Lazard| |resetNew| |varList| |rightRegularRepresentation| |overlabel| + |lifting1| |quasiMonic?| |viewpoint| |iiasech| |palgRDE0| |Lazard2| + |symFunc| |leftRegularRepresentation| |lcm| |overbar| |exprex| + |monic?| |dimensions| |div| |iiacsch| |delete| |palgLODE0| + |nextsousResultant2| |symbolTableOf| |rightTraceMatrix| |prime| + |coerceL| |deepestInitial| |resize| |exquo| |specialTrigs| + |chineseRemainder| |resultantnaif| |argumentListOf| |leftTraceMatrix| + |append| |quote| |coerceS| |iteratedInitials| |move| ~= |localReal?| + |divisors| |resultantEuclideannaif| |returnTypeOf| |rightDiscriminant| + |supersub| |gcd| |frobenius| |deepestTail| |modifyPointData| |#| + |rischNormalize| |eulerPhi| |semiResultantEuclideannaif| |printHeader| + |comparison| |leftDiscriminant| |presuper| |false| |computePowers| + |head| |subspace| ~ |realElementary| |fibonacci| |pdct| |returnType!| + |equality| |represents| |presub| |pow| |mdeg| |makeViewport3D| + |harmonic| |powers| |ravel| |argumentList!| |mergeFactors| |sub| |An| + |mvar| |viewport3D| |doubleResultant| |jacobi| |partitions| |reshape| + |endSubProgram| |isMult| |rarrow| |UnVectorise| |relativeApprox| + |viewDeltaYDefault| |distdfact| |/\\| |moebiusMu| |partition| + |extract!| |currentSubProgram| |exprToXXP| |assign| |Vectorise| + |rootOf| |viewDeltaXDefault| |separateDegrees| |\\/| + |numberOfDivisors| |complete| |bag| |newSubProgram| |apply| |coerce| + |setPoly| |allRootsOf| |viewZoomDefault| |trace2PowMod| + |sumOfDivisors| |pole?| |clearTheSymbolTable| |first| |construct| + |createIrreduciblePoly| |OMputEndAttr| |exponent| |definingPolynomial| + |viewPhiDefault| |tracePowMod| |sumOfKthPowerDivisors| |listBranches| + |showTheSymbolTable| |rest| |createPrimitivePoly| |OMputEndBind| + |exQuo| |positive?| |viewThetaDefault| |irreducible?| + |HermiteIntegrate| |plus| |triangular?| |update| |printTypes| + |createNormalPoly| |OMputEndBVar| |moebius| |negative?| + |pointColorDefault| |decimal| |newTypeLists| + |createNormalPrimitivePoly| |OMputEndError| |rightRecip| |zero?| + |lineColorDefault| |innerint| |groebnerIdeal| |minPoints| |typeLists| + |createPrimitiveNormalPoly| |OMputEndObject| |leftRecip| |augment| + |axesColorDefault| |exteriorDifferential| |ideal| |parametric?| + |times| |externalList| |nextIrreduciblePoly| |OMputInteger| |parents| + |leftPower| |lastSubResultant| |unitsColorDefault| |totalDifferential| + |leadingIdeal| |plotPolar| |typeList| |nextPrimitivePoly| |OMputFloat| + |pointSizeDefault| |homogeneous?| |backOldPos| |debug3D| |binding| + |position| |parametersOf| |nextNormalPoly| |OMputVariable| |rightMult| + |meatAxe| |viewPosDefault| |leadingBasisTerm| |generalPosition| + |numFunEvals3D| |setProperties| |fortranTypeOf| |nullary?| + |nextNormalPrimitivePoly| |OMputString| |makeUnit| + |scanOneDimSubspaces| |viewSizeDefault| |ignore?| |quotient| + |setAdaptive3D| |empty| |monom| |derivative| |lift| + |nextPrimitiveNormalPoly| |OMputSymbol| |reverse!| |expt| + |viewDefaults| |computeInt| |zeroDim?| |adaptive3D?| + |constantOperator| |loadNativeModule| |leastAffineMultiple| |reduce| + |OMgetApp| |point| |nthFactor| |showArrayValues| |viewWriteDefault| + |checkForZero| |inRadical?| |setScreenResolution3D| |s19acf| + |setCondition!| |constantOpIfCan| |reducedQPowers| |OMgetAtp| + |nthExpon| |showScalarValues| |viewWriteAvailable| |logGamma| |in?| + |screenResolution3D| |s19adf| |setValue!| |rootOfIrreduciblePoly| + |OMgetAttr| |makeMulti| |solveRetract| |var1StepsDefault| + |hypergeometric0F1| |element?| |setMaxPoints3D| |s20acf| |status| + |comment| |write!| |OMgetBind| |series| |makeTerm| |mainVariable| + |rotatez| |center| |zeroDimPrime?| |maxPoints3D| |s20adf| |empty?| + |log| |read!| |OMgetBVar| |listOfMonoms| |uniform01| |shiftLeft| + |rotatey| |zeroDimPrimary?| |setMinPoints3D| |s21baf| |splitNodeOf!| + |setelt| |iomode| |OMgetError| |symmetricSquare| |normal01| + |shiftRight| |rotatex| |primaryDecomp| |minPoints3D| |s21bbf| + |remove!| |close!| |OMgetObject| |factor1| |exponential1| + |karatsubaDivide| |identity| |contract| |tValues| |s21bcf| + |subNodeOf?| |reopen!| |OMgetEndApp| |min| |symmetricProduct| + |chiSquare1| |monicDivide| |dictionary| |gensym| |tRange| |s21bdf| + |nodeOf?| |rightUnit| |OMgetEndAtp| |symmetricPower| |exponential| + |divideExponents| |dioSolve| |leadingSupport| |plot| + |fortranCompilerName| |updateStatus!| |leftUnit| |OMgetEndAttr| + |directSum| |chiSquare| |zeroOf| |unmakeSUP| |newLine| |shrinkable| + |pointPlot| |fortranLinkerArgs| |extractSplittingLeaf| + |rightMinimalPolynomial| |OMgetEndBind| + |solveLinearPolynomialEquationByFractions| |factorFraction| |rootsOf| + |makeSUP| |copies| |physicalLength!| |calcRanges| |aspFilename| + |squareMatrix| |byte| |leftMinimalPolynomial| |OMgetEndBVar| + |hasSolution?| |componentUpperBound| |makeSketch| |vectorise| + |sayLength| |physicalLength| |dimensionsOf| |fixPredicate| |transpose| + |zero| |associatorDependence| |reverse| |OMgetEndError| |linSolve| + |blue| |inrootof| |extend| |setnext!| |flexibleArray| |patternMatch| + |restorePrecision| |trim| |droot| |lieAlgebra?| |OMgetEndObject| + |LyndonWordsList| |green| |li| |truncate| |setprevious!| |elseBranch| + |antiCommutator| |patternMatchTimes| |And| |split| |iroot| + |jordanAlgebra?| |OMgetInteger| |LyndonWordsList1| |red| |unknown| + |order| |shanksDiscLogAlgorithm| |thenBranch| |commutator| |bernoulli| + |Or| |replace| |noncommutativeJordanAlgebra?| |OMgetFloat| + |lyndonIfCan| |whitePoint| |size?| |terms| |reflect| + |generalizedInverse| |associator| |chebyshevT| |Not| |upperCase!| + |jordanAdmissible?| |OMgetVariable| |lyndon| |uniform| |eq?| + |squareFreePart| |reify| |imports| |chebyshevU| |complexEigenvalues| + |upperCase| |lieAdmissible?| |OMgetString| |lyndon?| |binomial| + |doublyTransitive?| |BumInSepFFE| |functorData| |sequence| + |cyclotomic| |complexEigenvectors| |lowerCase!| |int| + |jacobiIdentity?| |OMgetSymbol| |numberOfComputedEntries| |poisson| + |knownInfBasis| |multiplyExponents| |separant| |readBytes!| |euler| + |isConnected?| |lowerCase| |powerAssociative?| |OMgetType| |rst| + |geometric| |rootSplit| |laurentIfCan| |isobaric?| |readUInt32!| + |fixedDivisor| |connectTo| |KrullNumber| |alternative?| + |OMencodingBinary| |frst| |ridHack1| |ratDenom| |laurentRep| |weights| + |readInt32!| |laguerre| |normalizedAssociate| |numberOfVariables| + |flexible?| |OMencodingSGML| |lazyEvaluate| |interpolate| |ratPoly| + |rationalPower| |test| |differentialVariables| |readUInt16!| + |legendre| |normalize| |algebraicDecompose| |remove| + |rightAlternative?| |OMencodingXML| |lazy?| |nullSpace| |rootPower| + |dominantTerm| |extractBottom!| |readInt16!| |dmpToHdmp| |outputArgs| + |transcendentalDecompose| |leftAlternative?| |OMencodingUnknown| + |explicitlyEmpty?| |nullity| |rootProduct| |limitPlus| |extractTop!| + |readUInt8!| |hdmpToDmp| |normInvertible?| |internalDecompose| |last| + |antiAssociative?| |omError| |explicitEntries?| |rowEchelon| + |rootSimp| |split!| |insertBottom!| |readInt8!| |pToHdmp| + |normFactors| |decompose| |assoc| |associative?| |errorInfo| + |matrixDimensions| |column| |rootKerSimp| |setlast!| |insertTop!| + |readByte!| |hdmpToP| |condition| |npcoef| |upDateBranches| |tower| + |antiCommutative?| |errorKind| |matrixConcat3D| |row| |leftRank| + |setrest!| |bottom!| |setFieldInfo| |dmpToP| |listexp| |preprocess| + |rightRank| |commutative?| |OMReadError?| |setelt!| |maxColIndex| + |setfirst!| |prefix| |top!| |pol| |pToDmp| |characteristicPolynomial| + |internalZeroSetSplit| |rightCharacteristicPolynomial| + |OMUnknownSymbol?| |identityMatrix| |minColIndex| |doubleRank| + |cycleSplit!| |dequeue| |xn| |sylvesterSequence| |realEigenvalues| + |internalAugment| |leftCharacteristicPolynomial| |OMUnknownCD?| + |zeroMatrix| |maxRowIndex| |obj| |concat!| |recolor| |eq| |dAndcExp| + |sturmSequence| |realEigenvectors| |possiblyInfinite?| |rightNorm| + |OMParseError?| |mappingAst| |minRowIndex| |cache| |cycleTail| + |drawComplex| |iter| |repSq| |boundOfCauchy| |halfExtendedResultant2| + |explicitlyFinite?| |complexNumeric| |leftNorm| |OMwrite| |nullary| + |antisymmetric?| |cycleLength| |drawComplexVectorField| |expPot| + |sturmVariationsOf| |halfExtendedResultant1| |nextItem| |rightTrace| + |po| |fixedPoint| |symmetric?| |cycleEntry| |setRealSteps| |qPot| + |lazyVariations| |extendedResultant| |upperBound| |leftTrace| |OMread| + |recur| |diagonal?| |invmultisect| |setImagSteps| |lookup| |content| + |subResultantsChain| |lowerBound| |nary?| |someBasis| |OMreadFile| + |const| |square?| |multisect| |setClipValue| |normal?| |totalDegree| + |lazyPseudoQuotient| |iterationVar| |sort!| |OMreadStr| |curry| + |rectangularMatrix| |subst| |revert| |option?| |basis| |minimumDegree| + |lazyPseudoRemainder| |infiniteProduct| |copyInto!| |substring?| + |OMlistCDs| |diag| |characteristic| |weakBiRank| |generalLambert| + |range| |exp| |normalElement| |monomials| |bernoulliB| + |evenInfiniteProduct| |sorted?| |OMlistSymbols| |curryRight| |round| + |biRank| |evenlambert| |colorFunction| |minimalPolynomial| |eulerE| + |isPlus| |map| |oddInfiniteProduct| |LiePoly| |suffix?| + |OMsupportsCD?| |curryLeft| |fractionPart| |oddlambert| |curveColor| + |position!| |numericIfCan| |isTimes| |generalInfiniteProduct| |table| + |generator| |quickSort| |OMsupportsSymbol?| |constantRight| + |wholePart| |lambert| |nil| |pointColor| |eof?| |complexNumericIfCan| + |isExpt| |showAll?| |new| |atanh| |heapSort| |prefix?| + |OMunhandledSymbol| |constantLeft| |floor| |lagrange| + |associatedEquations| |clip| |inputBinaryFile| |compile| |isPower| + |FormatArabic| |showAllElements| |acoth| |shellSort| |OMreceive| + |twist| |ceiling| |objects| |univariatePolynomial| |arrayStack| + |clipBoolean| |increment| |rroot| |ScanArabic| |delay| |asech| + |outputSpacing| |OMsend| |setsubMatrix!| |norm| |base| |integrate| + |approximate| |charpol| |FormatRoman| |qroot| |convert| |findCycle| + |outputGeneral| |OMserve| |subMatrix| |mightHaveRoots| + |multiplyCoefficients| |complex| |parabolicCylindrical| |solve1| + |froot| |ScanRoman| |repeating?| |multiple| |outputFixed| |makeop| + |swapColumns!| |refine| |quoByVar| |paraboloidal| |innerEigenvectors| + |nthr| |ScanFloatIgnoreSpaces| |repeating| |applyQuote| + |outputFloating| |opeval| |swapRows!| |middle| |failed| |coefficients| + |ellipticCylindrical| |parseString| |firstUncouplingMatrix| + |ScanFloatIgnoreSpacesIfCan| |recip| |infix?| |vertConcat| |roman| + |stFunc1| |prolateSpheroidal| |unparse| |integral| + |numericalIntegration| |integers| |zeroSquareMatrix| |trapezoidal| + |mask| |horizConcat| |recoverAfterFail| |stFunc2| |oblateSpheroidal| + |binary| |primitiveElement| |rk4| |oddintegers| |ruleset| |incr| + |identitySquareMatrix| |rombergo| |squareTop| |showTheRoutinesTable| + |stFuncN| |bipolar| |packageCall| |nextPrime| |rk4a| |mapmult| |hi| + |lookupFunction| |simpsono| |elRow1!| |deleteRoutine!| + |fixedPointExquo| |bipolarCylindrical| |rk4qc| |left| |deriv| + |encodingDirectory| |trapezoidalo| |elRow2!| |getExplanations| |ode1| + |toroidal| |tablePow| |padicallyExpand| |rk4f| |right| |gderiv| + |suchThat| |attributeData| |sup| |elColumn2!| |getMeasure| |ode2| + |conical| |solveid| |numberOfFractionalTerms| |aromberg| |compose| + |domainTemplate| |imagE| |fractionFreeGauss!| |changeMeasure| |ode| + |modTree| |testModulus| |nthFractionalTerm| |asimpson| |addiag| + |lSpaceBasis| |imagk| |previous| |mpsode| |multiEuclideanTree| |delta| + |HenselLift| |firstNumer| |atrapezoidal| |lazyIntegrate| |finiteBasis| + |imagj| |entry?| |fractRagits| UP2UTS |complexZeros| |completeHensel| + |firstDenom| |initial| |romberg| |nlde| |principal?| |imagi| |indices| + |wholeRagits| |divisorCascade| UTS2UP |next| |multMonom| |precision| + |compactFraction| |simpson| |powern| |key| |divisor| |octon| |index?| + |radix| LODO2FUN |graeffe| |build| |partialFraction| |useNagFunctions| + |ODESolve| |entries| |randnum| RF2UTS |pleskenSplit| |leadingIndex| + |gcdPrimitive| |f02aff| |completeSmith| |filename| |rationalPoints| + |constDsolve| |key?| |reseed| |bfKeys| |magnitude| + |reciprocalPolynomial| |leadingExponent| |symmetricGroup| |f02agf| + |diophantineSystem| |nonSingularModel| |showTheIFTable| |symbolIfCan| + |seed| |inspect| |cross| |rootRadius| |GospersMethod| + |alternatingGroup| |f02ajf| |csubst| |parse| |algSplitSimple| + |clearTheIFTable| |argument| |rational| |schwerpunkt| |code| |lambda| + |nextSubsetGray| |abelianGroup| |f02akf| |particularSolution| + |generate| |hyperelliptic| |iFTable| |constantKernel| |rational?| + |normalized?| |setErrorBound| |firstSubsetGray| |cyclicGroup| |f02awf| + |mapSolve| |elliptic| |showIntensityFunctions| |constantIfCan| + |rationalIfCan| |quasiComponent| |startPolynomial| |clipPointsDefault| + |dihedralGroup| |f02axf| |quadratic| |incrementBy| + |integralDerivationMatrix| |expint| |kovacic| |setvalue!| |initials| + |cycleElt| |drawToScale| |mathieu11| |f02bbf| |cubic| + |integralRepresents| |diff| |laplace| |setchildren!| |basicSet| + |computeCycleLength| |adaptive| |mathieu12| |f02bjf| |quartic| + |integralCoordinates| |trailingCoefficient| |algDsolve| |node?| + |printInfo| |infRittWu?| |computeCycleEntry| |figureUnits| |mathieu22| + |f02fjf| |aLinear| |yCoordinates| |denomLODE| |normalizeIfCan| + |child?| |getCurve| |findConstructor| |putColorInfo| |mathieu23| + |f02wef| |aQuadratic| |inverseIntegralMatrixAtInfinity| + |indicialEquations| |polCase| |distance| |listLoops| |dualSignature| + |appendPoint| |f02xef| |mathieu24| |aCubic| |options| + |integralMatrixAtInfinity| |indicialEquation| |distFact| |nodes| + |closed?| |tail| |dom| |any| |coerceP| |component| |janko2| |f04adf| + |aQuartic| |inverseIntegralMatrix| |denomRicDE| |identification| + |rename| |open?| |powerSum| |ranges| |arg1| |entry| |rubiksGroup| + |f04arf| |radicalSolve| |before?| |integralMatrix| + |leadingCoefficientRicDE| |nil| |infinite| |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical| |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 28497f69..9bc3e7ba 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5448 +1,5460 @@ -(3264121 . 3486967810) -((-1568 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-3363 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3682 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-1256 (-576)) |#2|) 44)) (-3606 (($ $) 80)) (-3622 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3582 (((-576) (-1 (-112) |#2|) $) 27) (((-576) |#2| $) NIL) (((-576) |#2| $ (-576)) 96)) (-1458 (((-657 |#2|) $) 13)) (-3073 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2148 (($ (-1 |#2| |#2|) $) 37)) (-4083 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2271 (($ |#2| $ (-576)) NIL) (($ $ $ (-576)) 67)) (-2951 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3399 (((-112) (-1 (-112) |#2|) $) 23)) (-2835 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL) (($ $ (-1256 (-576))) 66)) (-3409 (($ $ (-576)) 76) (($ $ (-1256 (-576))) 75)) (-1482 (((-784) (-1 (-112) |#2|) $) 34) (((-784) |#2| $) NIL)) (-2114 (($ $ $ (-576)) 69)) (-1923 (($ $) 68)) (-3511 (($ (-657 |#2|)) 73)) (-1674 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-657 $)) 85)) (-3501 (((-877) $) 92)) (-2147 (((-112) (-1 (-112) |#2|) $) 22)) (-2933 (((-112) $ $) 95)) (-2954 (((-112) $ $) 99))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2933 ((-112) |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -2954 ((-112) |#1| |#1|)) (-15 -3363 (|#1| |#1|)) (-15 -3363 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3606 (|#1| |#1|)) (-15 -2114 (|#1| |#1| |#1| (-576))) (-15 -1568 ((-112) |#1|)) (-15 -3073 (|#1| |#1| |#1|)) (-15 -3582 ((-576) |#2| |#1| (-576))) (-15 -3582 ((-576) |#2| |#1|)) (-15 -3582 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1568 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3073 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3682 (|#2| |#1| (-1256 (-576)) |#2|)) (-15 -2271 (|#1| |#1| |#1| (-576))) (-15 -2271 (|#1| |#2| |#1| (-576))) (-15 -3409 (|#1| |#1| (-1256 (-576)))) (-15 -3409 (|#1| |#1| (-576))) (-15 -4083 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1674 (|#1| (-657 |#1|))) (-15 -1674 (|#1| |#1| |#1|)) (-15 -1674 (|#1| |#2| |#1|)) (-15 -1674 (|#1| |#1| |#2|)) (-15 -2835 (|#1| |#1| (-1256 (-576)))) (-15 -3511 (|#1| (-657 |#2|))) (-15 -2951 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3622 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3622 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3622 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2835 (|#2| |#1| (-576))) (-15 -2835 (|#2| |#1| (-576) |#2|)) (-15 -3682 (|#2| |#1| (-576) |#2|)) (-15 -1482 ((-784) |#2| |#1|)) (-15 -1458 ((-657 |#2|) |#1|)) (-15 -1482 ((-784) (-1 (-112) |#2|) |#1|)) (-15 -3399 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2147 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2148 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4083 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1923 (|#1| |#1|))) (-19 |#2|) (-1239)) (T -18)) +(3266860 . 3487133951) +((-4077 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-4053 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3709 ((|#2| $ (-577) |#2|) NIL) ((|#2| $ (-1259 (-577)) |#2|) 44)) (-3645 (($ $) 80)) (-3654 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3618 (((-577) (-1 (-112) |#2|) $) 27) (((-577) |#2| $) NIL) (((-577) |#2| $ (-577)) 96)) (-1461 (((-660 |#2|) $) 13)) (-3283 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-2182 (($ (-1 |#2| |#2|) $) 37)) (-4087 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2308 (($ |#2| $ (-577)) NIL) (($ $ $ (-577)) 67)) (-1828 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-1514 (((-112) (-1 (-112) |#2|) $) 23)) (-2872 ((|#2| $ (-577) |#2|) NIL) ((|#2| $ (-577)) NIL) (($ $ (-1259 (-577))) 66)) (-3453 (($ $ (-577)) 76) (($ $ (-1259 (-577))) 75)) (-1485 (((-787) (-1 (-112) |#2|) $) 34) (((-787) |#2| $) NIL)) (-4064 (($ $ $ (-577)) 69)) (-1944 (($ $) 68)) (-3553 (($ (-660 |#2|)) 73)) (-1677 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-660 $)) 85)) (-3544 (((-880) $) 92)) (-1524 (((-112) (-1 (-112) |#2|) $) 22)) (-2970 (((-112) $ $) 95)) (-2990 (((-112) $ $) 99))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2970 ((-112) |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -2990 ((-112) |#1| |#1|)) (-15 -4053 (|#1| |#1|)) (-15 -4053 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3645 (|#1| |#1|)) (-15 -4064 (|#1| |#1| |#1| (-577))) (-15 -4077 ((-112) |#1|)) (-15 -3283 (|#1| |#1| |#1|)) (-15 -3618 ((-577) |#2| |#1| (-577))) (-15 -3618 ((-577) |#2| |#1|)) (-15 -3618 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -4077 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3283 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3709 (|#2| |#1| (-1259 (-577)) |#2|)) (-15 -2308 (|#1| |#1| |#1| (-577))) (-15 -2308 (|#1| |#2| |#1| (-577))) (-15 -3453 (|#1| |#1| (-1259 (-577)))) (-15 -3453 (|#1| |#1| (-577))) (-15 -4087 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1677 (|#1| (-660 |#1|))) (-15 -1677 (|#1| |#1| |#1|)) (-15 -1677 (|#1| |#2| |#1|)) (-15 -1677 (|#1| |#1| |#2|)) (-15 -2872 (|#1| |#1| (-1259 (-577)))) (-15 -3553 (|#1| (-660 |#2|))) (-15 -1828 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3654 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2872 (|#2| |#1| (-577))) (-15 -2872 (|#2| |#1| (-577) |#2|)) (-15 -3709 (|#2| |#1| (-577) |#2|)) (-15 -1485 ((-787) |#2| |#1|)) (-15 -1461 ((-660 |#2|) |#1|)) (-15 -1485 ((-787) (-1 (-112) |#2|) |#1|)) (-15 -1514 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1524 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2182 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4087 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1944 (|#1| |#1|))) (-19 |#2|) (-1242)) (T -18)) NIL -(-10 -8 (-15 -2933 ((-112) |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -2954 ((-112) |#1| |#1|)) (-15 -3363 (|#1| |#1|)) (-15 -3363 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3606 (|#1| |#1|)) (-15 -2114 (|#1| |#1| |#1| (-576))) (-15 -1568 ((-112) |#1|)) (-15 -3073 (|#1| |#1| |#1|)) (-15 -3582 ((-576) |#2| |#1| (-576))) (-15 -3582 ((-576) |#2| |#1|)) (-15 -3582 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1568 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3073 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3682 (|#2| |#1| (-1256 (-576)) |#2|)) (-15 -2271 (|#1| |#1| |#1| (-576))) (-15 -2271 (|#1| |#2| |#1| (-576))) (-15 -3409 (|#1| |#1| (-1256 (-576)))) (-15 -3409 (|#1| |#1| (-576))) (-15 -4083 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1674 (|#1| (-657 |#1|))) (-15 -1674 (|#1| |#1| |#1|)) (-15 -1674 (|#1| |#2| |#1|)) (-15 -1674 (|#1| |#1| |#2|)) (-15 -2835 (|#1| |#1| (-1256 (-576)))) (-15 -3511 (|#1| (-657 |#2|))) (-15 -2951 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3622 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3622 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3622 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2835 (|#2| |#1| (-576))) (-15 -2835 (|#2| |#1| (-576) |#2|)) (-15 -3682 (|#2| |#1| (-576) |#2|)) (-15 -1482 ((-784) |#2| |#1|)) (-15 -1458 ((-657 |#2|) |#1|)) (-15 -1482 ((-784) (-1 (-112) |#2|) |#1|)) (-15 -3399 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2147 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2148 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4083 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1923 (|#1| |#1|))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4313 (((-1294) $ (-576) (-576)) 41 (|has| $ (-6 -4467)))) (-1568 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-3363 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4467))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4467))))) (-1850 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-3793 (((-112) $ (-784)) 8)) (-3682 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 60 (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4466)))) (-4359 (($) 7 T CONST)) (-3606 (($ $) 93 (|has| $ (-6 -4467)))) (-3768 (($ $) 103)) (-3914 (($ $) 80 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3895 (($ |#1| $) 79 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4466)))) (-2158 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) 52)) (-3582 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1122)))) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-4109 (($ (-784) |#1|) 70)) (-1833 (((-112) $ (-784)) 9)) (-3853 (((-576) $) 44 (|has| (-576) (-862)))) (-3707 (($ $ $) 85 (|has| |#1| (-862)))) (-3073 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2272 (((-576) $) 45 (|has| (-576) (-862)))) (-1611 (($ $ $) 86 (|has| |#1| (-862)))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-2271 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-1430 (((-657 (-576)) $) 47)) (-4242 (((-112) (-576) $) 48)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3510 ((|#1| $) 43 (|has| (-576) (-862)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1987 (($ $ |#1|) 42 (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-1515 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) 49)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1256 (-576))) 71)) (-3409 (($ $ (-576)) 64) (($ $ (-1256 (-576))) 63)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2114 (($ $ $ (-576)) 94 (|has| $ (-6 -4467)))) (-1923 (($ $) 13)) (-4148 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 72)) (-1674 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-657 $)) 66)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) 87 (|has| |#1| (-862)))) (-2963 (((-112) $ $) 89 (|has| |#1| (-862)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2973 (((-112) $ $) 88 (|has| |#1| (-862)))) (-2954 (((-112) $ $) 90 (|has| |#1| (-862)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-19 |#1|) (-141) (-1239)) (T -19)) +(-10 -8 (-15 -2970 ((-112) |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -2990 ((-112) |#1| |#1|)) (-15 -4053 (|#1| |#1|)) (-15 -4053 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3645 (|#1| |#1|)) (-15 -4064 (|#1| |#1| |#1| (-577))) (-15 -4077 ((-112) |#1|)) (-15 -3283 (|#1| |#1| |#1|)) (-15 -3618 ((-577) |#2| |#1| (-577))) (-15 -3618 ((-577) |#2| |#1|)) (-15 -3618 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -4077 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3283 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3709 (|#2| |#1| (-1259 (-577)) |#2|)) (-15 -2308 (|#1| |#1| |#1| (-577))) (-15 -2308 (|#1| |#2| |#1| (-577))) (-15 -3453 (|#1| |#1| (-1259 (-577)))) (-15 -3453 (|#1| |#1| (-577))) (-15 -4087 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1677 (|#1| (-660 |#1|))) (-15 -1677 (|#1| |#1| |#1|)) (-15 -1677 (|#1| |#2| |#1|)) (-15 -1677 (|#1| |#1| |#2|)) (-15 -2872 (|#1| |#1| (-1259 (-577)))) (-15 -3553 (|#1| (-660 |#2|))) (-15 -1828 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3654 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2872 (|#2| |#1| (-577))) (-15 -2872 (|#2| |#1| (-577) |#2|)) (-15 -3709 (|#2| |#1| (-577) |#2|)) (-15 -1485 ((-787) |#2| |#1|)) (-15 -1461 ((-660 |#2|) |#1|)) (-15 -1485 ((-787) (-1 (-112) |#2|) |#1|)) (-15 -1514 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1524 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2182 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4087 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1944 (|#1| |#1|))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2389 (((-1297) $ (-577) (-577)) 41 (|has| $ (-6 -4471)))) (-4077 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-865)))) (-4053 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4471))) (($ $) 91 (-12 (|has| |#1| (-865)) (|has| $ (-6 -4471))))) (-1864 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-865)))) (-3828 (((-112) $ (-787)) 8)) (-3709 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) 60 (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4470)))) (-1534 (($) 7 T CONST)) (-3645 (($ $) 93 (|has| $ (-6 -4471)))) (-3787 (($ $) 103)) (-1817 (($ $) 80 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3904 (($ |#1| $) 79 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4470)))) (-2192 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) 52)) (-3618 (((-577) (-1 (-112) |#1|) $) 100) (((-577) |#1| $) 99 (|has| |#1| (-1125))) (((-577) |#1| $ (-577)) 98 (|has| |#1| (-1125)))) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-4113 (($ (-787) |#1|) 70)) (-1479 (((-112) $ (-787)) 9)) (-2406 (((-577) $) 44 (|has| (-577) (-865)))) (-3732 (($ $ $) 85 (|has| |#1| (-865)))) (-3283 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-865)))) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2416 (((-577) $) 45 (|has| (-577) (-865)))) (-3201 (($ $ $) 86 (|has| |#1| (-865)))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-2308 (($ |#1| $ (-577)) 62) (($ $ $ (-577)) 61)) (-4285 (((-660 (-577)) $) 47)) (-4298 (((-112) (-577) $) 48)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-3552 ((|#1| $) 43 (|has| (-577) (-865)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2397 (($ $ |#1|) 42 (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-4274 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) 49)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#1| $ (-577) |#1|) 51) ((|#1| $ (-577)) 50) (($ $ (-1259 (-577))) 71)) (-3453 (($ $ (-577)) 64) (($ $ (-1259 (-577))) 63)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-4064 (($ $ $ (-577)) 94 (|has| $ (-6 -4471)))) (-1944 (($ $) 13)) (-4152 (((-549) $) 81 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 72)) (-1677 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-660 $)) 66)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) 87 (|has| |#1| (-865)))) (-3000 (((-112) $ $) 89 (|has| |#1| (-865)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3012 (((-112) $ $) 88 (|has| |#1| (-865)))) (-2990 (((-112) $ $) 90 (|has| |#1| (-865)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-19 |#1|) (-141) (-1242)) (T -19)) NIL -(-13 (-384 |t#1|) (-10 -7 (-6 -4467))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-664 |#1|) . T) ((-862) |has| |#1| (-862)) ((-865) |has| |#1| (-862)) ((-1122) -2802 (|has| |#1| (-1122)) (|has| |#1| (-862))) ((-1239) . T)) -((-2721 (((-3 $ "failed") $ $) 12)) (-3022 (($ $) NIL) (($ $ $) 9)) (* (($ (-941) $) NIL) (($ (-784) $) 16) (($ (-576) $) 26))) -(((-20 |#1|) (-10 -8 (-15 -3022 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -2721 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) (-21)) (T -20)) +(-13 (-385 |t#1|) (-10 -7 (-6 -4471))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-385 |#1|) . T) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-667 |#1|) . T) ((-865) |has| |#1| (-865)) ((-868) |has| |#1| (-865)) ((-1125) -2839 (|has| |#1| (-1125)) (|has| |#1| (-865))) ((-1242) . T)) +((-1956 (((-3 $ "failed") $ $) 12)) (-3066 (($ $) NIL) (($ $ $) 9)) (* (($ (-944) $) NIL) (($ (-787) $) 16) (($ (-577) $) 26))) +(((-20 |#1|) (-10 -8 (-15 -3066 (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -1956 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 -3022 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -2721 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24))) +(-10 -8 (-15 -3066 (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -1956 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24))) (((-21) (-141)) (T -21)) -((-3022 (*1 *1 *1) (-4 *1 (-21))) (-3022 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-132) (-659 (-576)) (-10 -8 (-15 -3022 ($ $)) (-15 -3022 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-1122) . T) ((-1239) . T)) -((-2364 (((-112) $) 10)) (-4359 (($) 15)) (* (($ (-941) $) 14) (($ (-784) $) 19))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-784) |#1|)) (-15 -2364 ((-112) |#1|)) (-15 -4359 (|#1|)) (-15 * (|#1| (-941) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-784) |#1|)) (-15 -2364 ((-112) |#1|)) (-15 -4359 (|#1|)) (-15 * (|#1| (-941) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-4359 (($) 18 T CONST)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16))) +((-3066 (*1 *1 *1) (-4 *1 (-21))) (-3066 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-132) (-662 (-577)) (-10 -8 (-15 -3066 ($ $)) (-15 -3066 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-1125) . T) ((-1242) . T)) +((-3585 (((-112) $) 10)) (-1534 (($) 15)) (* (($ (-944) $) 14) (($ (-787) $) 19))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-787) |#1|)) (-15 -3585 ((-112) |#1|)) (-15 -1534 (|#1|)) (-15 * (|#1| (-944) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-787) |#1|)) (-15 -3585 ((-112) |#1|)) (-15 -1534 (|#1|)) (-15 * (|#1| (-944) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1534 (($) 18 T CONST)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16))) (((-23) (-141)) (T -23)) -((-2769 (*1 *1) (-4 *1 (-23))) (-4359 (*1 *1) (-4 *1 (-23))) (-2364 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-784))))) -(-13 (-25) (-10 -8 (-15 (-2769) ($) -1509) (-15 -4359 ($) -1509) (-15 -2364 ((-112) $)) (-15 * ($ (-784) $)))) -(((-25) . T) ((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((* (($ (-941) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-941) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-941) |#1|))) -((-3429 (((-112) $ $) 7)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14))) +((-2806 (*1 *1) (-4 *1 (-23))) (-1534 (*1 *1) (-4 *1 (-23))) (-3585 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-787))))) +(-13 (-25) (-10 -8 (-15 (-2806) ($) -1512) (-15 -1534 ($) -1512) (-15 -3585 ((-112) $)) (-15 * ($ (-787) $)))) +(((-25) . T) ((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((* (($ (-944) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-944) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-944) |#1|))) +((-3473 (((-112) $ $) 7)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14))) (((-25) (-141)) (T -25)) -((-3012 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-941))))) -(-13 (-1122) (-10 -8 (-15 -3012 ($ $ $)) (-15 * ($ (-941) $)))) -(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-3128 (((-657 $) (-972 $)) 32) (((-657 $) (-1194 $)) 16) (((-657 $) (-1194 $) (-1198)) 20)) (-1911 (($ (-972 $)) 30) (($ (-1194 $)) 11) (($ (-1194 $) (-1198)) 60)) (-2708 (((-657 $) (-972 $)) 33) (((-657 $) (-1194 $)) 18) (((-657 $) (-1194 $) (-1198)) 19)) (-3564 (($ (-972 $)) 31) (($ (-1194 $)) 13) (($ (-1194 $) (-1198)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -3128 ((-657 |#1|) (-1194 |#1|) (-1198))) (-15 -3128 ((-657 |#1|) (-1194 |#1|))) (-15 -3128 ((-657 |#1|) (-972 |#1|))) (-15 -1911 (|#1| (-1194 |#1|) (-1198))) (-15 -1911 (|#1| (-1194 |#1|))) (-15 -1911 (|#1| (-972 |#1|))) (-15 -2708 ((-657 |#1|) (-1194 |#1|) (-1198))) (-15 -2708 ((-657 |#1|) (-1194 |#1|))) (-15 -2708 ((-657 |#1|) (-972 |#1|))) (-15 -3564 (|#1| (-1194 |#1|) (-1198))) (-15 -3564 (|#1| (-1194 |#1|))) (-15 -3564 (|#1| (-972 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -3128 ((-657 |#1|) (-1194 |#1|) (-1198))) (-15 -3128 ((-657 |#1|) (-1194 |#1|))) (-15 -3128 ((-657 |#1|) (-972 |#1|))) (-15 -1911 (|#1| (-1194 |#1|) (-1198))) (-15 -1911 (|#1| (-1194 |#1|))) (-15 -1911 (|#1| (-972 |#1|))) (-15 -2708 ((-657 |#1|) (-1194 |#1|) (-1198))) (-15 -2708 ((-657 |#1|) (-1194 |#1|))) (-15 -2708 ((-657 |#1|) (-972 |#1|))) (-15 -3564 (|#1| (-1194 |#1|) (-1198))) (-15 -3564 (|#1| (-1194 |#1|))) (-15 -3564 (|#1| (-972 |#1|)))) -((-3429 (((-112) $ $) 7)) (-3128 (((-657 $) (-972 $)) 88) (((-657 $) (-1194 $)) 87) (((-657 $) (-1194 $) (-1198)) 86)) (-1911 (($ (-972 $)) 91) (($ (-1194 $)) 90) (($ (-1194 $) (-1198)) 89)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-2721 (((-3 $ "failed") $ $) 20)) (-2638 (($ $) 81)) (-4402 (((-430 $) $) 80)) (-1896 (($ $) 100)) (-2864 (((-112) $ $) 65)) (-4359 (($) 18 T CONST)) (-2708 (((-657 $) (-972 $)) 94) (((-657 $) (-1194 $)) 93) (((-657 $) (-1194 $) (-1198)) 92)) (-3564 (($ (-972 $)) 97) (($ (-1194 $)) 96) (($ (-1194 $) (-1198)) 95)) (-3373 (($ $ $) 61)) (-3843 (((-3 $ "failed") $) 37)) (-3385 (($ $ $) 62)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 57)) (-4257 (((-112) $) 79)) (-4094 (((-112) $) 35)) (-2082 (($ $ (-576)) 99)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3402 (($ $ $) 52) (($ (-657 $)) 51)) (-2342 (((-1180) $) 10)) (-2134 (($ $) 78)) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3436 (($ $ $) 54) (($ (-657 $)) 53)) (-1885 (((-430 $) $) 82)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3418 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-2034 (((-784) $) 64)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 63)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 45)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3034 (($ $ $) 73)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-3055 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-944))))) +(-13 (-1125) (-10 -8 (-15 -3055 ($ $ $)) (-15 * ($ (-944) $)))) +(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-2745 (((-660 $) (-975 $)) 32) (((-660 $) (-1197 $)) 16) (((-660 $) (-1197 $) (-1201)) 20)) (-3755 (($ (-975 $)) 30) (($ (-1197 $)) 11) (($ (-1197 $) (-1201)) 60)) (-3766 (((-660 $) (-975 $)) 33) (((-660 $) (-1197 $)) 18) (((-660 $) (-1197 $) (-1201)) 19)) (-3535 (($ (-975 $)) 31) (($ (-1197 $)) 13) (($ (-1197 $) (-1201)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -2745 ((-660 |#1|) (-1197 |#1|) (-1201))) (-15 -2745 ((-660 |#1|) (-1197 |#1|))) (-15 -2745 ((-660 |#1|) (-975 |#1|))) (-15 -3755 (|#1| (-1197 |#1|) (-1201))) (-15 -3755 (|#1| (-1197 |#1|))) (-15 -3755 (|#1| (-975 |#1|))) (-15 -3766 ((-660 |#1|) (-1197 |#1|) (-1201))) (-15 -3766 ((-660 |#1|) (-1197 |#1|))) (-15 -3766 ((-660 |#1|) (-975 |#1|))) (-15 -3535 (|#1| (-1197 |#1|) (-1201))) (-15 -3535 (|#1| (-1197 |#1|))) (-15 -3535 (|#1| (-975 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -2745 ((-660 |#1|) (-1197 |#1|) (-1201))) (-15 -2745 ((-660 |#1|) (-1197 |#1|))) (-15 -2745 ((-660 |#1|) (-975 |#1|))) (-15 -3755 (|#1| (-1197 |#1|) (-1201))) (-15 -3755 (|#1| (-1197 |#1|))) (-15 -3755 (|#1| (-975 |#1|))) (-15 -3766 ((-660 |#1|) (-1197 |#1|) (-1201))) (-15 -3766 ((-660 |#1|) (-1197 |#1|))) (-15 -3766 ((-660 |#1|) (-975 |#1|))) (-15 -3535 (|#1| (-1197 |#1|) (-1201))) (-15 -3535 (|#1| (-1197 |#1|))) (-15 -3535 (|#1| (-975 |#1|)))) +((-3473 (((-112) $ $) 7)) (-2745 (((-660 $) (-975 $)) 88) (((-660 $) (-1197 $)) 87) (((-660 $) (-1197 $) (-1201)) 86)) (-3755 (($ (-975 $)) 91) (($ (-1197 $)) 90) (($ (-1197 $) (-1201)) 89)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-1956 (((-3 $ "failed") $ $) 20)) (-3841 (($ $) 81)) (-3029 (((-431 $) $) 80)) (-1913 (($ $) 100)) (-1939 (((-112) $ $) 65)) (-1534 (($) 18 T CONST)) (-3766 (((-660 $) (-975 $)) 94) (((-660 $) (-1197 $)) 93) (((-660 $) (-1197 $) (-1201)) 92)) (-3535 (($ (-975 $)) 97) (($ (-1197 $)) 96) (($ (-1197 $) (-1201)) 95)) (-3418 (($ $ $) 61)) (-4187 (((-3 $ "failed") $) 37)) (-3429 (($ $ $) 62)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 57)) (-1522 (((-112) $) 79)) (-2487 (((-112) $) 35)) (-2381 (($ $ (-577)) 99)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 58)) (-3446 (($ $ $) 52) (($ (-660 $)) 51)) (-2810 (((-1183) $) 10)) (-2171 (($ $) 78)) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 50)) (-3480 (($ $ $) 54) (($ (-660 $)) 53)) (-1902 (((-431 $) $) 82)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3462 (((-3 $ "failed") $ $) 48)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 56)) (-1927 (((-787) $) 64)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 63)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49) (($ (-420 (-577))) 74)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 45)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3077 (($ $ $) 73)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 77) (($ $ (-420 (-577))) 98)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ (-420 (-577))) 76) (($ (-420 (-577)) $) 75))) (((-27) (-141)) (T -27)) -((-3564 (*1 *1 *2) (-12 (-5 *2 (-972 *1)) (-4 *1 (-27)))) (-3564 (*1 *1 *2) (-12 (-5 *2 (-1194 *1)) (-4 *1 (-27)))) (-3564 (*1 *1 *2 *3) (-12 (-5 *2 (-1194 *1)) (-5 *3 (-1198)) (-4 *1 (-27)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-972 *1)) (-4 *1 (-27)) (-5 *2 (-657 *1)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-1194 *1)) (-4 *1 (-27)) (-5 *2 (-657 *1)))) (-2708 (*1 *2 *3 *4) (-12 (-5 *3 (-1194 *1)) (-5 *4 (-1198)) (-4 *1 (-27)) (-5 *2 (-657 *1)))) (-1911 (*1 *1 *2) (-12 (-5 *2 (-972 *1)) (-4 *1 (-27)))) (-1911 (*1 *1 *2) (-12 (-5 *2 (-1194 *1)) (-4 *1 (-27)))) (-1911 (*1 *1 *2 *3) (-12 (-5 *2 (-1194 *1)) (-5 *3 (-1198)) (-4 *1 (-27)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-972 *1)) (-4 *1 (-27)) (-5 *2 (-657 *1)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-1194 *1)) (-4 *1 (-27)) (-5 *2 (-657 *1)))) (-3128 (*1 *2 *3 *4) (-12 (-5 *3 (-1194 *1)) (-5 *4 (-1198)) (-4 *1 (-27)) (-5 *2 (-657 *1))))) -(-13 (-374) (-1024) (-10 -8 (-15 -3564 ($ (-972 $))) (-15 -3564 ($ (-1194 $))) (-15 -3564 ($ (-1194 $) (-1198))) (-15 -2708 ((-657 $) (-972 $))) (-15 -2708 ((-657 $) (-1194 $))) (-15 -2708 ((-657 $) (-1194 $) (-1198))) (-15 -1911 ($ (-972 $))) (-15 -1911 ($ (-1194 $))) (-15 -1911 ($ (-1194 $) (-1198))) (-15 -3128 ((-657 $) (-972 $))) (-15 -3128 ((-657 $) (-1194 $))) (-15 -3128 ((-657 $) (-1194 $) (-1198))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-730 #0#) . T) ((-730 $) . T) ((-739) . T) ((-940) . T) ((-1024) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) . T)) -((-3128 (((-657 $) (-972 $)) NIL) (((-657 $) (-1194 $)) NIL) (((-657 $) (-1194 $) (-1198)) 55) (((-657 $) $) 22) (((-657 $) $ (-1198)) 46)) (-1911 (($ (-972 $)) NIL) (($ (-1194 $)) NIL) (($ (-1194 $) (-1198)) 57) (($ $) 20) (($ $ (-1198)) 40)) (-2708 (((-657 $) (-972 $)) NIL) (((-657 $) (-1194 $)) NIL) (((-657 $) (-1194 $) (-1198)) 53) (((-657 $) $) 18) (((-657 $) $ (-1198)) 48)) (-3564 (($ (-972 $)) NIL) (($ (-1194 $)) NIL) (($ (-1194 $) (-1198)) NIL) (($ $) 15) (($ $ (-1198)) 42))) -(((-28 |#1| |#2|) (-10 -8 (-15 -3128 ((-657 |#1|) |#1| (-1198))) (-15 -1911 (|#1| |#1| (-1198))) (-15 -3128 ((-657 |#1|) |#1|)) (-15 -1911 (|#1| |#1|)) (-15 -2708 ((-657 |#1|) |#1| (-1198))) (-15 -3564 (|#1| |#1| (-1198))) (-15 -2708 ((-657 |#1|) |#1|)) (-15 -3564 (|#1| |#1|)) (-15 -3128 ((-657 |#1|) (-1194 |#1|) (-1198))) (-15 -3128 ((-657 |#1|) (-1194 |#1|))) (-15 -3128 ((-657 |#1|) (-972 |#1|))) (-15 -1911 (|#1| (-1194 |#1|) (-1198))) (-15 -1911 (|#1| (-1194 |#1|))) (-15 -1911 (|#1| (-972 |#1|))) (-15 -2708 ((-657 |#1|) (-1194 |#1|) (-1198))) (-15 -2708 ((-657 |#1|) (-1194 |#1|))) (-15 -2708 ((-657 |#1|) (-972 |#1|))) (-15 -3564 (|#1| (-1194 |#1|) (-1198))) (-15 -3564 (|#1| (-1194 |#1|))) (-15 -3564 (|#1| (-972 |#1|)))) (-29 |#2|) (-568)) (T -28)) -NIL -(-10 -8 (-15 -3128 ((-657 |#1|) |#1| (-1198))) (-15 -1911 (|#1| |#1| (-1198))) (-15 -3128 ((-657 |#1|) |#1|)) (-15 -1911 (|#1| |#1|)) (-15 -2708 ((-657 |#1|) |#1| (-1198))) (-15 -3564 (|#1| |#1| (-1198))) (-15 -2708 ((-657 |#1|) |#1|)) (-15 -3564 (|#1| |#1|)) (-15 -3128 ((-657 |#1|) (-1194 |#1|) (-1198))) (-15 -3128 ((-657 |#1|) (-1194 |#1|))) (-15 -3128 ((-657 |#1|) (-972 |#1|))) (-15 -1911 (|#1| (-1194 |#1|) (-1198))) (-15 -1911 (|#1| (-1194 |#1|))) (-15 -1911 (|#1| (-972 |#1|))) (-15 -2708 ((-657 |#1|) (-1194 |#1|) (-1198))) (-15 -2708 ((-657 |#1|) (-1194 |#1|))) (-15 -2708 ((-657 |#1|) (-972 |#1|))) (-15 -3564 (|#1| (-1194 |#1|) (-1198))) (-15 -3564 (|#1| (-1194 |#1|))) (-15 -3564 (|#1| (-972 |#1|)))) -((-3429 (((-112) $ $) 7)) (-3128 (((-657 $) (-972 $)) 88) (((-657 $) (-1194 $)) 87) (((-657 $) (-1194 $) (-1198)) 86) (((-657 $) $) 138) (((-657 $) $ (-1198)) 136)) (-1911 (($ (-972 $)) 91) (($ (-1194 $)) 90) (($ (-1194 $) (-1198)) 89) (($ $) 139) (($ $ (-1198)) 137)) (-2364 (((-112) $) 17)) (-2029 (((-657 (-1198)) $) 207)) (-1849 (((-419 (-1194 $)) $ (-624 $)) 239 (|has| |#1| (-568)))) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-3946 (((-657 (-624 $)) $) 170)) (-2721 (((-3 $ "failed") $ $) 20)) (-4054 (($ $ (-657 (-624 $)) (-657 $)) 160) (($ $ (-657 (-304 $))) 159) (($ $ (-304 $)) 158)) (-2638 (($ $) 81)) (-4402 (((-430 $) $) 80)) (-1896 (($ $) 100)) (-2864 (((-112) $ $) 65)) (-4359 (($) 18 T CONST)) (-2708 (((-657 $) (-972 $)) 94) (((-657 $) (-1194 $)) 93) (((-657 $) (-1194 $) (-1198)) 92) (((-657 $) $) 142) (((-657 $) $ (-1198)) 140)) (-3564 (($ (-972 $)) 97) (($ (-1194 $)) 96) (($ (-1194 $) (-1198)) 95) (($ $) 143) (($ $ (-1198)) 141)) (-1624 (((-3 (-972 |#1|) "failed") $) 258 (|has| |#1| (-1071))) (((-3 (-419 (-972 |#1|)) "failed") $) 241 (|has| |#1| (-568))) (((-3 |#1| "failed") $) 203) (((-3 (-576) "failed") $) 200 (|has| |#1| (-1060 (-576)))) (((-3 (-1198) "failed") $) 194) (((-3 (-624 $) "failed") $) 145) (((-3 (-419 (-576)) "failed") $) 133 (-2802 (-12 (|has| |#1| (-1060 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1060 (-419 (-576))))))) (-2884 (((-972 |#1|) $) 257 (|has| |#1| (-1071))) (((-419 (-972 |#1|)) $) 240 (|has| |#1| (-568))) ((|#1| $) 202) (((-576) $) 201 (|has| |#1| (-1060 (-576)))) (((-1198) $) 193) (((-624 $) $) 144) (((-419 (-576)) $) 134 (-2802 (-12 (|has| |#1| (-1060 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1060 (-419 (-576))))))) (-3373 (($ $ $) 61)) (-3306 (((-702 |#1|) (-702 $)) 246 (|has| |#1| (-1071))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 245 (|has| |#1| (-1071))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 132 (-2802 (-2724 (|has| |#1| (-1071)) (|has| |#1| (-652 (-576)))) (-2724 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))))) (((-702 (-576)) (-702 $)) 131 (-2802 (-2724 (|has| |#1| (-1071)) (|has| |#1| (-652 (-576)))) (-2724 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))))) (-3843 (((-3 $ "failed") $) 37)) (-3385 (($ $ $) 62)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 57)) (-4257 (((-112) $) 79)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 199 (|has| |#1| (-902 (-390)))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 198 (|has| |#1| (-902 (-576))))) (-2887 (($ (-657 $)) 164) (($ $) 163)) (-1784 (((-657 (-115)) $) 171)) (-1832 (((-115) (-115)) 172)) (-4094 (((-112) $) 35)) (-2320 (((-112) $) 192 (|has| $ (-1060 (-576))))) (-2752 (($ $) 224 (|has| |#1| (-1071)))) (-1621 (((-1147 |#1| (-624 $)) $) 223 (|has| |#1| (-1071)))) (-2082 (($ $ (-576)) 99)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-4153 (((-1194 $) (-624 $)) 189 (|has| $ (-1071)))) (-4083 (($ (-1 $ $) (-624 $)) 178)) (-3398 (((-3 (-624 $) "failed") $) 168)) (-3101 (((-702 |#1|) (-1289 $)) 248 (|has| |#1| (-1071))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 247 (|has| |#1| (-1071))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 130 (-2802 (-2724 (|has| |#1| (-1071)) (|has| |#1| (-652 (-576)))) (-2724 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))))) (((-702 (-576)) (-1289 $)) 129 (-2802 (-2724 (|has| |#1| (-1071)) (|has| |#1| (-652 (-576)))) (-2724 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))))) (-3402 (($ $ $) 52) (($ (-657 $)) 51)) (-2342 (((-1180) $) 10)) (-1817 (((-657 (-624 $)) $) 169)) (-1699 (($ (-115) (-657 $)) 177) (($ (-115) $) 176)) (-1392 (((-3 (-657 $) "failed") $) 218 (|has| |#1| (-1134)))) (-3559 (((-3 (-2 (|:| |val| $) (|:| -1801 (-576))) "failed") $) 227 (|has| |#1| (-1071)))) (-2974 (((-3 (-657 $) "failed") $) 220 (|has| |#1| (-25)))) (-4003 (((-3 (-2 (|:| -1771 (-576)) (|:| |var| (-624 $))) "failed") $) 221 (|has| |#1| (-25)))) (-2999 (((-3 (-2 (|:| |var| (-624 $)) (|:| -1801 (-576))) "failed") $ (-1198)) 226 (|has| |#1| (-1071))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1801 (-576))) "failed") $ (-115)) 225 (|has| |#1| (-1071))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1801 (-576))) "failed") $) 219 (|has| |#1| (-1134)))) (-4412 (((-112) $ (-1198)) 175) (((-112) $ (-115)) 174)) (-2134 (($ $) 78)) (-2404 (((-784) $) 167)) (-1471 (((-1142) $) 11)) (-2146 (((-112) $) 205)) (-2160 ((|#1| $) 206)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3436 (($ $ $) 54) (($ (-657 $)) 53)) (-3698 (((-112) $ (-1198)) 180) (((-112) $ $) 179)) (-1885 (((-430 $) $) 82)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3418 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-3593 (((-112) $) 191 (|has| $ (-1060 (-576))))) (-3236 (($ $ (-1198) (-784) (-1 $ $)) 231 (|has| |#1| (-1071))) (($ $ (-1198) (-784) (-1 $ (-657 $))) 230 (|has| |#1| (-1071))) (($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ (-657 $)))) 229 (|has| |#1| (-1071))) (($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ $))) 228 (|has| |#1| (-1071))) (($ $ (-657 (-115)) (-657 $) (-1198)) 217 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1198)) 216 (|has| |#1| (-626 (-548)))) (($ $) 215 (|has| |#1| (-626 (-548)))) (($ $ (-657 (-1198))) 214 (|has| |#1| (-626 (-548)))) (($ $ (-1198)) 213 (|has| |#1| (-626 (-548)))) (($ $ (-115) (-1 $ $)) 188) (($ $ (-115) (-1 $ (-657 $))) 187) (($ $ (-657 (-115)) (-657 (-1 $ (-657 $)))) 186) (($ $ (-657 (-115)) (-657 (-1 $ $))) 185) (($ $ (-1198) (-1 $ $)) 184) (($ $ (-1198) (-1 $ (-657 $))) 183) (($ $ (-657 (-1198)) (-657 (-1 $ (-657 $)))) 182) (($ $ (-657 (-1198)) (-657 (-1 $ $))) 181) (($ $ (-657 $) (-657 $)) 152) (($ $ $ $) 151) (($ $ (-304 $)) 150) (($ $ (-657 (-304 $))) 149) (($ $ (-657 (-624 $)) (-657 $)) 148) (($ $ (-624 $) $) 147)) (-2034 (((-784) $) 64)) (-2835 (($ (-115) (-657 $)) 157) (($ (-115) $ $ $ $) 156) (($ (-115) $ $ $) 155) (($ (-115) $ $) 154) (($ (-115) $) 153)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 63)) (-2445 (($ $ $) 166) (($ $) 165)) (-2815 (($ $ (-657 (-1198)) (-657 (-784))) 253 (|has| |#1| (-1071))) (($ $ (-1198) (-784)) 252 (|has| |#1| (-1071))) (($ $ (-657 (-1198))) 251 (|has| |#1| (-1071))) (($ $ (-1198)) 249 (|has| |#1| (-1071)))) (-1396 (($ $) 234 (|has| |#1| (-568)))) (-1635 (((-1147 |#1| (-624 $)) $) 233 (|has| |#1| (-568)))) (-3180 (($ $) 190 (|has| $ (-1071)))) (-4148 (((-548) $) 262 (|has| |#1| (-626 (-548)))) (($ (-430 $)) 232 (|has| |#1| (-568))) (((-908 (-390)) $) 197 (|has| |#1| (-626 (-908 (-390))))) (((-908 (-576)) $) 196 (|has| |#1| (-626 (-908 (-576)))))) (-3549 (($ $ $) 261 (|has| |#1| (-485)))) (-3544 (($ $ $) 260 (|has| |#1| (-485)))) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-972 |#1|)) 259 (|has| |#1| (-1071))) (($ (-419 (-972 |#1|))) 242 (|has| |#1| (-568))) (($ (-419 (-972 (-419 |#1|)))) 238 (|has| |#1| (-568))) (($ (-972 (-419 |#1|))) 237 (|has| |#1| (-568))) (($ (-419 |#1|)) 236 (|has| |#1| (-568))) (($ (-1147 |#1| (-624 $))) 222 (|has| |#1| (-1071))) (($ |#1|) 204) (($ (-1198)) 195) (($ (-624 $)) 146)) (-3096 (((-3 $ "failed") $) 244 (|has| |#1| (-146)))) (-1960 (((-784)) 32 T CONST)) (-2139 (($ (-657 $)) 162) (($ $) 161)) (-4159 (((-112) (-115)) 173)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 45)) (-4172 (($ (-1198) (-657 $)) 212) (($ (-1198) $ $ $ $) 211) (($ (-1198) $ $ $) 210) (($ (-1198) $ $) 209) (($ (-1198) $) 208)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-657 (-1198)) (-657 (-784))) 256 (|has| |#1| (-1071))) (($ $ (-1198) (-784)) 255 (|has| |#1| (-1071))) (($ $ (-657 (-1198))) 254 (|has| |#1| (-1071))) (($ $ (-1198)) 250 (|has| |#1| (-1071)))) (-2933 (((-112) $ $) 8)) (-3034 (($ $ $) 73) (($ (-1147 |#1| (-624 $)) (-1147 |#1| (-624 $))) 235 (|has| |#1| (-568)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 243 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1071))))) -(((-29 |#1|) (-141) (-568)) (T -29)) -((-3564 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-2708 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-657 *1)) (-4 *1 (-29 *3)))) (-3564 (*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-2708 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *2 (-657 *1)) (-4 *1 (-29 *4)))) (-1911 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-3128 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-657 *1)) (-4 *1 (-29 *3)))) (-1911 (*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-3128 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *2 (-657 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-442 |t#1|) (-10 -8 (-15 -3564 ($ $)) (-15 -2708 ((-657 $) $)) (-15 -3564 ($ $ (-1198))) (-15 -2708 ((-657 $) $ (-1198))) (-15 -1911 ($ $)) (-15 -3128 ((-657 $) $)) (-15 -1911 ($ $ (-1198))) (-15 -3128 ((-657 $) $ (-1198))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 #1=(-419 (-972 |#1|))) |has| |#1| (-568)) ((-628 (-576)) . T) ((-628 #2=(-624 $)) . T) ((-628 #3=(-972 |#1|)) |has| |#1| (-1071)) ((-628 #4=(-1198)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-908 (-390))) |has| |#1| (-626 (-908 (-390)))) ((-626 (-908 (-576))) |has| |#1| (-626 (-908 (-576)))) ((-248) . T) ((-300) . T) ((-317) . T) ((-319 $) . T) ((-312) . T) ((-374) . T) ((-388 |#1|) |has| |#1| (-1071)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-442 |#1|) . T) ((-464) . T) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 |#1|) -2802 (|has| |#1| (-1071)) (|has| |#1| (-174))) ((-659 $) . T) ((-661 #0#) . T) ((-661 #5=(-576)) -12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))) ((-661 |#1|) -2802 (|has| |#1| (-1071)) (|has| |#1| (-174))) ((-661 $) . T) ((-653 #0#) . T) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) . T) ((-652 #5#) -12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))) ((-652 |#1|) |has| |#1| (-1071)) ((-730 #0#) . T) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) . T) ((-739) . T) ((-912 $ #6=(-1198)) |has| |#1| (-1071)) ((-918 #6#) |has| |#1| (-1071)) ((-920 #6#) |has| |#1| (-1071)) ((-902 (-390)) |has| |#1| (-902 (-390))) ((-902 (-576)) |has| |#1| (-902 (-576))) ((-900 |#1|) . T) ((-940) . T) ((-1024) . T) ((-1060 (-419 (-576))) -2802 (|has| |#1| (-1060 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576))))) ((-1060 #1#) |has| |#1| (-568)) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 #2#) . T) ((-1060 #3#) |has| |#1| (-1071)) ((-1060 #4#) . T) ((-1060 |#1|) . T) ((-1073 #0#) . T) ((-1073 |#1|) |has| |#1| (-174)) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 |#1|) |has| |#1| (-174)) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) . T)) -((-2124 (((-1116 (-227)) $) NIL)) (-2109 (((-1116 (-227)) $) NIL)) (-4189 (($ $ (-227)) 164)) (-4400 (($ (-972 (-576)) (-1198) (-1198) (-1116 (-419 (-576))) (-1116 (-419 (-576)))) 104)) (-3591 (((-657 (-657 (-963 (-227)))) $) 180)) (-3501 (((-877) $) 194))) -(((-30) (-13 (-975) (-10 -8 (-15 -4400 ($ (-972 (-576)) (-1198) (-1198) (-1116 (-419 (-576))) (-1116 (-419 (-576))))) (-15 -4189 ($ $ (-227)))))) (T -30)) -((-4400 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-972 (-576))) (-5 *3 (-1198)) (-5 *4 (-1116 (-419 (-576)))) (-5 *1 (-30)))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))) -(-13 (-975) (-10 -8 (-15 -4400 ($ (-972 (-576)) (-1198) (-1198) (-1116 (-419 (-576))) (-1116 (-419 (-576))))) (-15 -4189 ($ $ (-227))))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 17) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2687 (((-1157) $) 11)) (-2046 (((-112) $ $) NIL)) (-4143 (((-1157) $) 9)) (-2933 (((-112) $ $) NIL))) -(((-31) (-13 (-1105) (-10 -8 (-15 -4143 ((-1157) $)) (-15 -2687 ((-1157) $))))) (T -31)) -((-4143 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-31)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-31))))) -(-13 (-1105) (-10 -8 (-15 -4143 ((-1157) $)) (-15 -2687 ((-1157) $)))) -((-3564 ((|#2| (-1194 |#2|) (-1198)) 41)) (-1832 (((-115) (-115)) 55)) (-4153 (((-1194 |#2|) (-624 |#2|)) 149 (|has| |#1| (-1060 (-576))))) (-4364 ((|#2| |#1| (-576)) 137 (|has| |#1| (-1060 (-576))))) (-2914 ((|#2| (-1194 |#2|) |#2|) 29)) (-1687 (((-877) (-657 |#2|)) 86)) (-3180 ((|#2| |#2|) 144 (|has| |#1| (-1060 (-576))))) (-4159 (((-112) (-115)) 17)) (** ((|#2| |#2| (-419 (-576))) 103 (|has| |#1| (-1060 (-576)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3564 (|#2| (-1194 |#2|) (-1198))) (-15 -1832 ((-115) (-115))) (-15 -4159 ((-112) (-115))) (-15 -2914 (|#2| (-1194 |#2|) |#2|)) (-15 -1687 ((-877) (-657 |#2|))) (IF (|has| |#1| (-1060 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -4153 ((-1194 |#2|) (-624 |#2|))) (-15 -3180 (|#2| |#2|)) (-15 -4364 (|#2| |#1| (-576)))) |%noBranch|)) (-568) (-442 |#1|)) (T -32)) -((-4364 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1060 *4)) (-4 *3 (-568)))) (-3180 (*1 *2 *2) (-12 (-4 *3 (-1060 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) (-4 *2 (-442 *3)))) (-4153 (*1 *2 *3) (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1060 (-576))) (-4 *4 (-568)) (-5 *2 (-1194 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1060 (-576))) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-657 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) (-5 *2 (-877)) (-5 *1 (-32 *4 *5)))) (-2914 (*1 *2 *3 *2) (-12 (-5 *3 (-1194 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-442 *4)))) (-1832 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) (-4 *4 (-442 *3)))) (-3564 (*1 *2 *3 *4) (-12 (-5 *3 (-1194 *2)) (-5 *4 (-1198)) (-4 *2 (-442 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-568))))) -(-10 -7 (-15 -3564 (|#2| (-1194 |#2|) (-1198))) (-15 -1832 ((-115) (-115))) (-15 -4159 ((-112) (-115))) (-15 -2914 (|#2| (-1194 |#2|) |#2|)) (-15 -1687 ((-877) (-657 |#2|))) (IF (|has| |#1| (-1060 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -4153 ((-1194 |#2|) (-624 |#2|))) (-15 -3180 (|#2| |#2|)) (-15 -4364 (|#2| |#1| (-576)))) |%noBranch|)) -((-3793 (((-112) $ (-784)) 20)) (-4359 (($) 10)) (-1833 (((-112) $ (-784)) 19)) (-4261 (((-112) $ (-784)) 17)) (-2806 (((-112) $ $) 8)) (-3387 (((-112) $) 15))) -(((-33 |#1|) (-10 -8 (-15 -4359 (|#1|)) (-15 -3793 ((-112) |#1| (-784))) (-15 -1833 ((-112) |#1| (-784))) (-15 -4261 ((-112) |#1| (-784))) (-15 -3387 ((-112) |#1|)) (-15 -2806 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -4359 (|#1|)) (-15 -3793 ((-112) |#1| (-784))) (-15 -1833 ((-112) |#1| (-784))) (-15 -4261 ((-112) |#1| (-784))) (-15 -3387 ((-112) |#1|)) (-15 -2806 ((-112) |#1| |#1|))) -((-3793 (((-112) $ (-784)) 8)) (-4359 (($) 7 T CONST)) (-1833 (((-112) $ (-784)) 9)) (-4261 (((-112) $ (-784)) 10)) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-1923 (($ $) 13)) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) +((-3535 (*1 *1 *2) (-12 (-5 *2 (-975 *1)) (-4 *1 (-27)))) (-3535 (*1 *1 *2) (-12 (-5 *2 (-1197 *1)) (-4 *1 (-27)))) (-3535 (*1 *1 *2 *3) (-12 (-5 *2 (-1197 *1)) (-5 *3 (-1201)) (-4 *1 (-27)))) (-3766 (*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) (-3766 (*1 *2 *3) (-12 (-5 *3 (-1197 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-1197 *1)) (-5 *4 (-1201)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) (-3755 (*1 *1 *2) (-12 (-5 *2 (-975 *1)) (-4 *1 (-27)))) (-3755 (*1 *1 *2) (-12 (-5 *2 (-1197 *1)) (-4 *1 (-27)))) (-3755 (*1 *1 *2 *3) (-12 (-5 *2 (-1197 *1)) (-5 *3 (-1201)) (-4 *1 (-27)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-1197 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-1197 *1)) (-5 *4 (-1201)) (-4 *1 (-27)) (-5 *2 (-660 *1))))) +(-13 (-375) (-1027) (-10 -8 (-15 -3535 ($ (-975 $))) (-15 -3535 ($ (-1197 $))) (-15 -3535 ($ (-1197 $) (-1201))) (-15 -3766 ((-660 $) (-975 $))) (-15 -3766 ((-660 $) (-1197 $))) (-15 -3766 ((-660 $) (-1197 $) (-1201))) (-15 -3755 ($ (-975 $))) (-15 -3755 ($ (-1197 $))) (-15 -3755 ($ (-1197 $) (-1201))) (-15 -2745 ((-660 $) (-975 $))) (-15 -2745 ((-660 $) (-1197 $))) (-15 -2745 ((-660 $) (-1197 $) (-1201))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-465) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-733 #0#) . T) ((-733 $) . T) ((-742) . T) ((-943) . T) ((-1027) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) . T)) +((-2745 (((-660 $) (-975 $)) NIL) (((-660 $) (-1197 $)) NIL) (((-660 $) (-1197 $) (-1201)) 55) (((-660 $) $) 22) (((-660 $) $ (-1201)) 46)) (-3755 (($ (-975 $)) NIL) (($ (-1197 $)) NIL) (($ (-1197 $) (-1201)) 57) (($ $) 20) (($ $ (-1201)) 40)) (-3766 (((-660 $) (-975 $)) NIL) (((-660 $) (-1197 $)) NIL) (((-660 $) (-1197 $) (-1201)) 53) (((-660 $) $) 18) (((-660 $) $ (-1201)) 48)) (-3535 (($ (-975 $)) NIL) (($ (-1197 $)) NIL) (($ (-1197 $) (-1201)) NIL) (($ $) 15) (($ $ (-1201)) 42))) +(((-28 |#1| |#2|) (-10 -8 (-15 -2745 ((-660 |#1|) |#1| (-1201))) (-15 -3755 (|#1| |#1| (-1201))) (-15 -2745 ((-660 |#1|) |#1|)) (-15 -3755 (|#1| |#1|)) (-15 -3766 ((-660 |#1|) |#1| (-1201))) (-15 -3535 (|#1| |#1| (-1201))) (-15 -3766 ((-660 |#1|) |#1|)) (-15 -3535 (|#1| |#1|)) (-15 -2745 ((-660 |#1|) (-1197 |#1|) (-1201))) (-15 -2745 ((-660 |#1|) (-1197 |#1|))) (-15 -2745 ((-660 |#1|) (-975 |#1|))) (-15 -3755 (|#1| (-1197 |#1|) (-1201))) (-15 -3755 (|#1| (-1197 |#1|))) (-15 -3755 (|#1| (-975 |#1|))) (-15 -3766 ((-660 |#1|) (-1197 |#1|) (-1201))) (-15 -3766 ((-660 |#1|) (-1197 |#1|))) (-15 -3766 ((-660 |#1|) (-975 |#1|))) (-15 -3535 (|#1| (-1197 |#1|) (-1201))) (-15 -3535 (|#1| (-1197 |#1|))) (-15 -3535 (|#1| (-975 |#1|)))) (-29 |#2|) (-569)) (T -28)) +NIL +(-10 -8 (-15 -2745 ((-660 |#1|) |#1| (-1201))) (-15 -3755 (|#1| |#1| (-1201))) (-15 -2745 ((-660 |#1|) |#1|)) (-15 -3755 (|#1| |#1|)) (-15 -3766 ((-660 |#1|) |#1| (-1201))) (-15 -3535 (|#1| |#1| (-1201))) (-15 -3766 ((-660 |#1|) |#1|)) (-15 -3535 (|#1| |#1|)) (-15 -2745 ((-660 |#1|) (-1197 |#1|) (-1201))) (-15 -2745 ((-660 |#1|) (-1197 |#1|))) (-15 -2745 ((-660 |#1|) (-975 |#1|))) (-15 -3755 (|#1| (-1197 |#1|) (-1201))) (-15 -3755 (|#1| (-1197 |#1|))) (-15 -3755 (|#1| (-975 |#1|))) (-15 -3766 ((-660 |#1|) (-1197 |#1|) (-1201))) (-15 -3766 ((-660 |#1|) (-1197 |#1|))) (-15 -3766 ((-660 |#1|) (-975 |#1|))) (-15 -3535 (|#1| (-1197 |#1|) (-1201))) (-15 -3535 (|#1| (-1197 |#1|))) (-15 -3535 (|#1| (-975 |#1|)))) +((-3473 (((-112) $ $) 7)) (-2745 (((-660 $) (-975 $)) 88) (((-660 $) (-1197 $)) 87) (((-660 $) (-1197 $) (-1201)) 86) (((-660 $) $) 138) (((-660 $) $ (-1201)) 136)) (-3755 (($ (-975 $)) 91) (($ (-1197 $)) 90) (($ (-1197 $) (-1201)) 89) (($ $) 139) (($ $ (-1201)) 137)) (-3585 (((-112) $) 17)) (-2058 (((-660 (-1201)) $) 207)) (-1867 (((-420 (-1197 $)) $ (-625 $)) 239 (|has| |#1| (-569)))) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-3952 (((-660 (-625 $)) $) 170)) (-1956 (((-3 $ "failed") $ $) 20)) (-4057 (($ $ (-660 (-625 $)) (-660 $)) 160) (($ $ (-660 (-305 $))) 159) (($ $ (-305 $)) 158)) (-3841 (($ $) 81)) (-3029 (((-431 $) $) 80)) (-1913 (($ $) 100)) (-1939 (((-112) $ $) 65)) (-1534 (($) 18 T CONST)) (-3766 (((-660 $) (-975 $)) 94) (((-660 $) (-1197 $)) 93) (((-660 $) (-1197 $) (-1201)) 92) (((-660 $) $) 142) (((-660 $) $ (-1201)) 140)) (-3535 (($ (-975 $)) 97) (($ (-1197 $)) 96) (($ (-1197 $) (-1201)) 95) (($ $) 143) (($ $ (-1201)) 141)) (-1628 (((-3 (-975 |#1|) "failed") $) 258 (|has| |#1| (-1074))) (((-3 (-420 (-975 |#1|)) "failed") $) 241 (|has| |#1| (-569))) (((-3 |#1| "failed") $) 203) (((-3 (-577) "failed") $) 200 (|has| |#1| (-1063 (-577)))) (((-3 (-1201) "failed") $) 194) (((-3 (-625 $) "failed") $) 145) (((-3 (-420 (-577)) "failed") $) 133 (-2839 (-12 (|has| |#1| (-1063 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1063 (-420 (-577))))))) (-2921 (((-975 |#1|) $) 257 (|has| |#1| (-1074))) (((-420 (-975 |#1|)) $) 240 (|has| |#1| (-569))) ((|#1| $) 202) (((-577) $) 201 (|has| |#1| (-1063 (-577)))) (((-1201) $) 193) (((-625 $) $) 144) (((-420 (-577)) $) 134 (-2839 (-12 (|has| |#1| (-1063 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1063 (-420 (-577))))))) (-3418 (($ $ $) 61)) (-1647 (((-705 |#1|) (-705 $)) 246 (|has| |#1| (-1074))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 245 (|has| |#1| (-1074))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 132 (-2839 (-2761 (|has| |#1| (-1074)) (|has| |#1| (-654 (-577)))) (-2761 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))))) (((-705 (-577)) (-705 $)) 131 (-2839 (-2761 (|has| |#1| (-1074)) (|has| |#1| (-654 (-577)))) (-2761 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))))) (-4187 (((-3 $ "failed") $) 37)) (-3429 (($ $ $) 62)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 57)) (-1522 (((-112) $) 79)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 199 (|has| |#1| (-905 (-391)))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 198 (|has| |#1| (-905 (-577))))) (-3401 (($ (-660 $)) 164) (($ $) 163)) (-2691 (((-660 (-115)) $) 171)) (-1844 (((-115) (-115)) 172)) (-2487 (((-112) $) 35)) (-1912 (((-112) $) 192 (|has| $ (-1063 (-577))))) (-2240 (($ $) 224 (|has| |#1| (-1074)))) (-1623 (((-1150 |#1| (-625 $)) $) 223 (|has| |#1| (-1074)))) (-2381 (($ $ (-577)) 99)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 58)) (-2670 (((-1197 $) (-625 $)) 189 (|has| $ (-1074)))) (-4087 (($ (-1 $ $) (-625 $)) 178)) (-2702 (((-3 (-625 $) "failed") $) 168)) (-1657 (((-705 |#1|) (-1292 $)) 248 (|has| |#1| (-1074))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 247 (|has| |#1| (-1074))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 130 (-2839 (-2761 (|has| |#1| (-1074)) (|has| |#1| (-654 (-577)))) (-2761 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))))) (((-705 (-577)) (-1292 $)) 129 (-2839 (-2761 (|has| |#1| (-1074)) (|has| |#1| (-654 (-577)))) (-2761 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))))) (-3446 (($ $ $) 52) (($ (-660 $)) 51)) (-2810 (((-1183) $) 10)) (-1829 (((-660 (-625 $)) $) 169)) (-1702 (($ (-115) (-660 $)) 177) (($ (-115) $) 176)) (-4098 (((-3 (-660 $) "failed") $) 218 (|has| |#1| (-1137)))) (-4125 (((-3 (-2 (|:| |val| $) (|:| -3556 (-577))) "failed") $) 227 (|has| |#1| (-1074)))) (-4086 (((-3 (-660 $) "failed") $) 220 (|has| |#1| (-25)))) (-3521 (((-3 (-2 (|:| -1777 (-577)) (|:| |var| (-625 $))) "failed") $) 221 (|has| |#1| (-25)))) (-4111 (((-3 (-2 (|:| |var| (-625 $)) (|:| -3556 (-577))) "failed") $ (-1201)) 226 (|has| |#1| (-1074))) (((-3 (-2 (|:| |var| (-625 $)) (|:| -3556 (-577))) "failed") $ (-115)) 225 (|has| |#1| (-1074))) (((-3 (-2 (|:| |var| (-625 $)) (|:| -3556 (-577))) "failed") $) 219 (|has| |#1| (-1137)))) (-2740 (((-112) $ (-1201)) 175) (((-112) $ (-115)) 174)) (-2171 (($ $) 78)) (-2440 (((-787) $) 167)) (-1474 (((-1145) $) 11)) (-2180 (((-112) $) 205)) (-2193 ((|#1| $) 206)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 50)) (-3480 (($ $ $) 54) (($ (-660 $)) 53)) (-2679 (((-112) $ (-1201)) 180) (((-112) $ $) 179)) (-1902 (((-431 $) $) 82)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3462 (((-3 $ "failed") $ $) 48)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 56)) (-1924 (((-112) $) 191 (|has| $ (-1063 (-577))))) (-3280 (($ $ (-1201) (-787) (-1 $ $)) 231 (|has| |#1| (-1074))) (($ $ (-1201) (-787) (-1 $ (-660 $))) 230 (|has| |#1| (-1074))) (($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ (-660 $)))) 229 (|has| |#1| (-1074))) (($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ $))) 228 (|has| |#1| (-1074))) (($ $ (-660 (-115)) (-660 $) (-1201)) 217 (|has| |#1| (-627 (-549)))) (($ $ (-115) $ (-1201)) 216 (|has| |#1| (-627 (-549)))) (($ $) 215 (|has| |#1| (-627 (-549)))) (($ $ (-660 (-1201))) 214 (|has| |#1| (-627 (-549)))) (($ $ (-1201)) 213 (|has| |#1| (-627 (-549)))) (($ $ (-115) (-1 $ $)) 188) (($ $ (-115) (-1 $ (-660 $))) 187) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) 186) (($ $ (-660 (-115)) (-660 (-1 $ $))) 185) (($ $ (-1201) (-1 $ $)) 184) (($ $ (-1201) (-1 $ (-660 $))) 183) (($ $ (-660 (-1201)) (-660 (-1 $ (-660 $)))) 182) (($ $ (-660 (-1201)) (-660 (-1 $ $))) 181) (($ $ (-660 $) (-660 $)) 152) (($ $ $ $) 151) (($ $ (-305 $)) 150) (($ $ (-660 (-305 $))) 149) (($ $ (-660 (-625 $)) (-660 $)) 148) (($ $ (-625 $) $) 147)) (-1927 (((-787) $) 64)) (-2872 (($ (-115) (-660 $)) 157) (($ (-115) $ $ $ $) 156) (($ (-115) $ $ $) 155) (($ (-115) $ $) 154) (($ (-115) $) 153)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 63)) (-2712 (($ $ $) 166) (($ $) 165)) (-2852 (($ $ (-660 (-1201)) (-660 (-787))) 253 (|has| |#1| (-1074))) (($ $ (-1201) (-787)) 252 (|has| |#1| (-1074))) (($ $ (-660 (-1201))) 251 (|has| |#1| (-1074))) (($ $ (-1201)) 249 (|has| |#1| (-1074)))) (-2227 (($ $) 234 (|has| |#1| (-569)))) (-1637 (((-1150 |#1| (-625 $)) $) 233 (|has| |#1| (-569)))) (-3557 (($ $) 190 (|has| $ (-1074)))) (-4152 (((-549) $) 262 (|has| |#1| (-627 (-549)))) (($ (-431 $)) 232 (|has| |#1| (-569))) (((-911 (-391)) $) 197 (|has| |#1| (-627 (-911 (-391))))) (((-911 (-577)) $) 196 (|has| |#1| (-627 (-911 (-577)))))) (-2360 (($ $ $) 261 (|has| |#1| (-486)))) (-3820 (($ $ $) 260 (|has| |#1| (-486)))) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49) (($ (-420 (-577))) 74) (($ (-975 |#1|)) 259 (|has| |#1| (-1074))) (($ (-420 (-975 |#1|))) 242 (|has| |#1| (-569))) (($ (-420 (-975 (-420 |#1|)))) 238 (|has| |#1| (-569))) (($ (-975 (-420 |#1|))) 237 (|has| |#1| (-569))) (($ (-420 |#1|)) 236 (|has| |#1| (-569))) (($ (-1150 |#1| (-625 $))) 222 (|has| |#1| (-1074))) (($ |#1|) 204) (($ (-1201)) 195) (($ (-625 $)) 146)) (-2233 (((-3 $ "failed") $) 244 (|has| |#1| (-146)))) (-4068 (((-787)) 32 T CONST)) (-2251 (($ (-660 $)) 162) (($ $) 161)) (-1409 (((-112) (-115)) 173)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 45)) (-4176 (($ (-1201) (-660 $)) 212) (($ (-1201) $ $ $ $) 211) (($ (-1201) $ $ $) 210) (($ (-1201) $ $) 209) (($ (-1201) $) 208)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-660 (-1201)) (-660 (-787))) 256 (|has| |#1| (-1074))) (($ $ (-1201) (-787)) 255 (|has| |#1| (-1074))) (($ $ (-660 (-1201))) 254 (|has| |#1| (-1074))) (($ $ (-1201)) 250 (|has| |#1| (-1074)))) (-2970 (((-112) $ $) 8)) (-3077 (($ $ $) 73) (($ (-1150 |#1| (-625 $)) (-1150 |#1| (-625 $))) 235 (|has| |#1| (-569)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 77) (($ $ (-420 (-577))) 98)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ (-420 (-577))) 76) (($ (-420 (-577)) $) 75) (($ $ |#1|) 243 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1074))))) +(((-29 |#1|) (-141) (-569)) (T -29)) +((-3535 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) (-3766 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *3)))) (-3535 (*1 *1 *1 *2) (-12 (-5 *2 (-1201)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) (-3766 (*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *4)))) (-3755 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) (-2745 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *3)))) (-3755 (*1 *1 *1 *2) (-12 (-5 *2 (-1201)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) (-2745 (*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-443 |t#1|) (-10 -8 (-15 -3535 ($ $)) (-15 -3766 ((-660 $) $)) (-15 -3535 ($ $ (-1201))) (-15 -3766 ((-660 $) $ (-1201))) (-15 -3755 ($ $)) (-15 -2745 ((-660 $) $)) (-15 -3755 ($ $ (-1201))) (-15 -2745 ((-660 $) $ (-1201))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) . T) ((-629 #1=(-420 (-975 |#1|))) |has| |#1| (-569)) ((-629 (-577)) . T) ((-629 #2=(-625 $)) . T) ((-629 #3=(-975 |#1|)) |has| |#1| (-1074)) ((-629 #4=(-1201)) . T) ((-629 |#1|) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-627 (-911 (-391))) |has| |#1| (-627 (-911 (-391)))) ((-627 (-911 (-577))) |has| |#1| (-627 (-911 (-577)))) ((-249) . T) ((-301) . T) ((-318) . T) ((-320 $) . T) ((-313) . T) ((-375) . T) ((-389 |#1|) |has| |#1| (-1074)) ((-413 |#1|) . T) ((-424 |#1|) . T) ((-443 |#1|) . T) ((-465) . T) ((-486) |has| |#1| (-486)) ((-527 (-625 $) $) . T) ((-527 $ $) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 |#1|) -2839 (|has| |#1| (-1074)) (|has| |#1| (-174))) ((-662 $) . T) ((-664 #0#) . T) ((-664 #5=(-577)) -12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))) ((-664 |#1|) -2839 (|has| |#1| (-1074)) (|has| |#1| (-174))) ((-664 $) . T) ((-656 #0#) . T) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) . T) ((-654 #5#) -12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))) ((-654 |#1|) |has| |#1| (-1074)) ((-733 #0#) . T) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) . T) ((-742) . T) ((-915 $ #6=(-1201)) |has| |#1| (-1074)) ((-921 #6#) |has| |#1| (-1074)) ((-923 #6#) |has| |#1| (-1074)) ((-905 (-391)) |has| |#1| (-905 (-391))) ((-905 (-577)) |has| |#1| (-905 (-577))) ((-903 |#1|) . T) ((-943) . T) ((-1027) . T) ((-1063 (-420 (-577))) -2839 (|has| |#1| (-1063 (-420 (-577)))) (-12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577))))) ((-1063 #1#) |has| |#1| (-569)) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 #2#) . T) ((-1063 #3#) |has| |#1| (-1074)) ((-1063 #4#) . T) ((-1063 |#1|) . T) ((-1076 #0#) . T) ((-1076 |#1|) |has| |#1| (-174)) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 |#1|) |has| |#1| (-174)) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) . T)) +((-2160 (((-1119 (-228)) $) NIL)) (-2146 (((-1119 (-228)) $) NIL)) (-4169 (($ $ (-228)) 164)) (-3778 (($ (-975 (-577)) (-1201) (-1201) (-1119 (-420 (-577))) (-1119 (-420 (-577)))) 104)) (-3561 (((-660 (-660 (-966 (-228)))) $) 180)) (-3544 (((-880) $) 194))) +(((-30) (-13 (-978) (-10 -8 (-15 -3778 ($ (-975 (-577)) (-1201) (-1201) (-1119 (-420 (-577))) (-1119 (-420 (-577))))) (-15 -4169 ($ $ (-228)))))) (T -30)) +((-3778 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-975 (-577))) (-5 *3 (-1201)) (-5 *4 (-1119 (-420 (-577)))) (-5 *1 (-30)))) (-4169 (*1 *1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-30))))) +(-13 (-978) (-10 -8 (-15 -3778 ($ (-975 (-577)) (-1201) (-1201) (-1119 (-420 (-577))) (-1119 (-420 (-577))))) (-15 -4169 ($ $ (-228))))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 17) (($ (-1206)) NIL) (((-1206) $) NIL)) (-2724 (((-1160) $) 11)) (-4448 (((-112) $ $) NIL)) (-4146 (((-1160) $) 9)) (-2970 (((-112) $ $) NIL))) +(((-31) (-13 (-1108) (-10 -8 (-15 -4146 ((-1160) $)) (-15 -2724 ((-1160) $))))) (T -31)) +((-4146 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-31)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-31))))) +(-13 (-1108) (-10 -8 (-15 -4146 ((-1160) $)) (-15 -2724 ((-1160) $)))) +((-3535 ((|#2| (-1197 |#2|) (-1201)) 41)) (-1844 (((-115) (-115)) 55)) (-2670 (((-1197 |#2|) (-625 |#2|)) 149 (|has| |#1| (-1063 (-577))))) (-3811 ((|#2| |#1| (-577)) 137 (|has| |#1| (-1063 (-577))))) (-3791 ((|#2| (-1197 |#2|) |#2|) 29)) (-3798 (((-880) (-660 |#2|)) 86)) (-3557 ((|#2| |#2|) 144 (|has| |#1| (-1063 (-577))))) (-1409 (((-112) (-115)) 17)) (** ((|#2| |#2| (-420 (-577))) 103 (|has| |#1| (-1063 (-577)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3535 (|#2| (-1197 |#2|) (-1201))) (-15 -1844 ((-115) (-115))) (-15 -1409 ((-112) (-115))) (-15 -3791 (|#2| (-1197 |#2|) |#2|)) (-15 -3798 ((-880) (-660 |#2|))) (IF (|has| |#1| (-1063 (-577))) (PROGN (-15 ** (|#2| |#2| (-420 (-577)))) (-15 -2670 ((-1197 |#2|) (-625 |#2|))) (-15 -3557 (|#2| |#2|)) (-15 -3811 (|#2| |#1| (-577)))) |%noBranch|)) (-569) (-443 |#1|)) (T -32)) +((-3811 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-4 *2 (-443 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1063 *4)) (-4 *3 (-569)))) (-3557 (*1 *2 *2) (-12 (-4 *3 (-1063 (-577))) (-4 *3 (-569)) (-5 *1 (-32 *3 *2)) (-4 *2 (-443 *3)))) (-2670 (*1 *2 *3) (-12 (-5 *3 (-625 *5)) (-4 *5 (-443 *4)) (-4 *4 (-1063 (-577))) (-4 *4 (-569)) (-5 *2 (-1197 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-420 (-577))) (-4 *4 (-1063 (-577))) (-4 *4 (-569)) (-5 *1 (-32 *4 *2)) (-4 *2 (-443 *4)))) (-3798 (*1 *2 *3) (-12 (-5 *3 (-660 *5)) (-4 *5 (-443 *4)) (-4 *4 (-569)) (-5 *2 (-880)) (-5 *1 (-32 *4 *5)))) (-3791 (*1 *2 *3 *2) (-12 (-5 *3 (-1197 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) (-5 *1 (-32 *4 *2)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-443 *4)))) (-1844 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-32 *3 *4)) (-4 *4 (-443 *3)))) (-3535 (*1 *2 *3 *4) (-12 (-5 *3 (-1197 *2)) (-5 *4 (-1201)) (-4 *2 (-443 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-569))))) +(-10 -7 (-15 -3535 (|#2| (-1197 |#2|) (-1201))) (-15 -1844 ((-115) (-115))) (-15 -1409 ((-112) (-115))) (-15 -3791 (|#2| (-1197 |#2|) |#2|)) (-15 -3798 ((-880) (-660 |#2|))) (IF (|has| |#1| (-1063 (-577))) (PROGN (-15 ** (|#2| |#2| (-420 (-577)))) (-15 -2670 ((-1197 |#2|) (-625 |#2|))) (-15 -3557 (|#2| |#2|)) (-15 -3811 (|#2| |#1| (-577)))) |%noBranch|)) +((-3828 (((-112) $ (-787)) 20)) (-1534 (($) 10)) (-1479 (((-112) $ (-787)) 19)) (-1443 (((-112) $ (-787)) 17)) (-3840 (((-112) $ $) 8)) (-3697 (((-112) $) 15))) +(((-33 |#1|) (-10 -8 (-15 -1534 (|#1|)) (-15 -3828 ((-112) |#1| (-787))) (-15 -1479 ((-112) |#1| (-787))) (-15 -1443 ((-112) |#1| (-787))) (-15 -3697 ((-112) |#1|)) (-15 -3840 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -1534 (|#1|)) (-15 -3828 ((-112) |#1| (-787))) (-15 -1479 ((-112) |#1| (-787))) (-15 -1443 ((-112) |#1| (-787))) (-15 -3697 ((-112) |#1|)) (-15 -3840 ((-112) |#1| |#1|))) +((-3828 (((-112) $ (-787)) 8)) (-1534 (($) 7 T CONST)) (-1479 (((-112) $ (-787)) 9)) (-1443 (((-112) $ (-787)) 10)) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-1944 (($ $) 13)) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) (((-34) (-141)) (T -34)) -((-2806 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1923 (*1 *1 *1) (-4 *1 (-34))) (-3581 (*1 *1) (-4 *1 (-34))) (-3387 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4261 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-784)) (-5 *2 (-112)))) (-1833 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-784)) (-5 *2 (-112)))) (-3793 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-784)) (-5 *2 (-112)))) (-4359 (*1 *1) (-4 *1 (-34))) (-3440 (*1 *2 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-34)) (-5 *2 (-784))))) -(-13 (-1239) (-10 -8 (-15 -2806 ((-112) $ $)) (-15 -1923 ($ $)) (-15 -3581 ($)) (-15 -3387 ((-112) $)) (-15 -4261 ((-112) $ (-784))) (-15 -1833 ((-112) $ (-784))) (-15 -3793 ((-112) $ (-784))) (-15 -4359 ($) -1509) (IF (|has| $ (-6 -4466)) (-15 -3440 ((-784) $)) |%noBranch|))) -(((-1239) . T)) -((-4110 (($ $) 11)) (-2225 (($ $) 10)) (-4137 (($ $) 9)) (-2224 (($ $) 8)) (-4124 (($ $) 7)) (-2235 (($ $) 6))) +((-3840 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1944 (*1 *1 *1) (-4 *1 (-34))) (-3639 (*1 *1) (-4 *1 (-34))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1443 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-787)) (-5 *2 (-112)))) (-1479 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-787)) (-5 *2 (-112)))) (-3828 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-787)) (-5 *2 (-112)))) (-1534 (*1 *1) (-4 *1 (-34))) (-3484 (*1 *2 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-34)) (-5 *2 (-787))))) +(-13 (-1242) (-10 -8 (-15 -3840 ((-112) $ $)) (-15 -1944 ($ $)) (-15 -3639 ($)) (-15 -3697 ((-112) $)) (-15 -1443 ((-112) $ (-787))) (-15 -1479 ((-112) $ (-787))) (-15 -3828 ((-112) $ (-787))) (-15 -1534 ($) -1512) (IF (|has| $ (-6 -4470)) (-15 -3484 ((-787) $)) |%noBranch|))) +(((-1242) . T)) +((-4114 (($ $) 11)) (-2262 (($ $) 10)) (-4141 (($ $) 9)) (-2261 (($ $) 8)) (-4128 (($ $) 7)) (-2272 (($ $) 6))) (((-35) (-141)) (T -35)) -((-4110 (*1 *1 *1) (-4 *1 (-35))) (-2225 (*1 *1 *1) (-4 *1 (-35))) (-4137 (*1 *1 *1) (-4 *1 (-35))) (-2224 (*1 *1 *1) (-4 *1 (-35))) (-4124 (*1 *1 *1) (-4 *1 (-35))) (-2235 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -2235 ($ $)) (-15 -4124 ($ $)) (-15 -2224 ($ $)) (-15 -4137 ($ $)) (-15 -2225 ($ $)) (-15 -4110 ($ $)))) -((-3429 (((-112) $ $) 20 (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102))))) (-3071 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 127)) (-2913 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 150)) (-4424 (($ $) 148)) (-4095 (($) 73) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 72)) (-4313 (((-1294) $ |#1| |#1|) 100 (|has| $ (-6 -4467))) (((-1294) $ (-576) (-576)) 180 (|has| $ (-6 -4467)))) (-3605 (($ $ (-576)) 161 (|has| $ (-6 -4467)))) (-1568 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-3363 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 202 (|has| $ (-6 -4467))) (($ $) 201 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)) (|has| $ (-6 -4467))))) (-1850 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-3793 (((-112) $ (-784)) 8)) (-3734 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 136 (|has| $ (-6 -4467)))) (-2823 (($ $ $) 157 (|has| $ (-6 -4467)))) (-2045 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 159 (|has| $ (-6 -4467)))) (-4013 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 155 (|has| $ (-6 -4467)))) (-3682 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-576) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 191 (|has| $ (-6 -4467))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-1256 (-576)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 162 (|has| $ (-6 -4467))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ "last" (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 160 (|has| $ (-6 -4467))) (($ $ "rest" $) 158 (|has| $ (-6 -4467))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ "first" (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 156 (|has| $ (-6 -4467))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ "value" (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 135 (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) 134 (|has| $ (-6 -4467)))) (-3162 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 46 (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 218)) (-2035 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 56 (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 177 (|has| $ (-6 -4466)))) (-2902 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 149)) (-2287 (((-3 |#2| "failed") |#1| $) 62)) (-4359 (($) 7 T CONST)) (-3606 (($ $) 203 (|has| $ (-6 -4467)))) (-3768 (($ $) 213)) (-3522 (($ $ (-784)) 144) (($ $) 142)) (-4295 (($ $) 216 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (-3914 (($ $) 59 (-2802 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466))) (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))))) (-3647 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 48 (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 47 (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 222) (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 217 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (-3895 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 55 (|has| $ (-6 -4466))) (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 179 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 176 (|has| $ (-6 -4466)))) (-3622 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 57 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 54 (|has| $ (-6 -4466))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 53 (|has| $ (-6 -4466))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 178 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 175 (|has| $ (-6 -4466))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 174 (|has| $ (-6 -4466)))) (-2158 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4467))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-576) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 192 (|has| $ (-6 -4467)))) (-2083 ((|#2| $ |#1|) 89) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-576)) 190)) (-1628 (((-112) $) 194)) (-3582 (((-576) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 210) (((-576) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 209 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))) (((-576) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-576)) 208 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (-1458 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 31 (|has| $ (-6 -4466))) (((-657 |#2|) $) 80 (|has| $ (-6 -4466))) (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 116 (|has| $ (-6 -4466)))) (-2877 (((-657 $) $) 125)) (-1700 (((-112) $ $) 133 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (-4109 (($ (-784) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 170)) (-1833 (((-112) $ (-784)) 9)) (-3853 ((|#1| $) 97 (|has| |#1| (-862))) (((-576) $) 182 (|has| (-576) (-862)))) (-3707 (($ $ $) 195 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-4033 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-3073 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-2070 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 30 (|has| $ (-6 -4466))) (((-657 |#2|) $) 81 (|has| $ (-6 -4466))) (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 117 (|has| $ (-6 -4466)))) (-1627 (((-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466)))) (((-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 119 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466))))) (-2272 ((|#1| $) 96 (|has| |#1| (-862))) (((-576) $) 183 (|has| (-576) (-862)))) (-1611 (($ $ $) 196 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-2148 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 35 (|has| $ (-6 -4467))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4467))) (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 112 (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 111)) (-1710 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 227)) (-4261 (((-112) $ (-784)) 10)) (-2424 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 130)) (-2633 (((-112) $) 126)) (-2342 (((-1180) $) 23 (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3920 (($ $ (-784)) 147) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 145)) (-3159 (((-657 |#1|) $) 64)) (-1708 (((-112) |#1| $) 65)) (-3050 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 40)) (-2468 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 41) (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-576)) 221) (($ $ $ (-576)) 220)) (-2271 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-576)) 164) (($ $ $ (-576)) 163)) (-1430 (((-657 |#1|) $) 94) (((-657 (-576)) $) 185)) (-4242 (((-112) |#1| $) 93) (((-112) (-576) $) 186)) (-1471 (((-1142) $) 22 (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3510 ((|#2| $) 98 (|has| |#1| (-862))) (($ $ (-784)) 141) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 139)) (-2951 (((-3 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 52) (((-3 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 173)) (-1987 (($ $ |#2|) 99 (|has| $ (-6 -4467))) (($ $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 181 (|has| $ (-6 -4467)))) (-2277 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 42)) (-4286 (((-112) $) 193)) (-3399 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 33 (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 114 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) 27 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 26 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 25 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 24 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 123 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 122 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 121 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) 120 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))))) (-2806 (((-112) $ $) 14)) (-1515 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 184 (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))))) (-2380 (((-657 |#2|) $) 92) (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 187)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-576) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 189) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-576)) 188) (($ $ (-1256 (-576))) 171) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ "first") 140) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ "value") 128)) (-3883 (((-576) $ $) 131)) (-1504 (($) 50) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 49)) (-3449 (($ $ (-576)) 224) (($ $ (-1256 (-576))) 223)) (-3409 (($ $ (-576)) 166) (($ $ (-1256 (-576))) 165)) (-3628 (((-112) $) 129)) (-3600 (($ $) 153)) (-1921 (($ $) 154 (|has| $ (-6 -4467)))) (-4027 (((-784) $) 152)) (-4087 (($ $) 151)) (-1482 (((-784) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 32 (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (((-784) |#2| $) 82 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 118 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 115 (|has| $ (-6 -4466)))) (-2114 (($ $ $ (-576)) 204 (|has| $ (-6 -4467)))) (-1923 (($ $) 13)) (-4148 (((-548) $) 60 (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-626 (-548))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-626 (-548)))))) (-3511 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 51) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 172)) (-2858 (($ $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 226) (($ $ $) 225)) (-1674 (($ $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 169) (($ (-657 $)) 168) (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 138) (($ $ $) 137)) (-3501 (((-877) $) 18 (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-625 (-877))) (|has| |#2| (-625 (-877))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-625 (-877)))))) (-1986 (((-657 $) $) 124)) (-1633 (((-112) $ $) 132 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (-2046 (((-112) $ $) 21 (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102))))) (-4079 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 43)) (-3932 (((-3 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) "failed") |#1| $) 110)) (-2147 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 34 (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 113 (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) 197 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-2963 (((-112) $ $) 199 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-2933 (((-112) $ $) 19 (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102))))) (-2973 (((-112) $ $) 198 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-2954 (((-112) $ $) 200 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-36 |#1| |#2|) (-141) (-1122) (-1122)) (T -36)) -((-3932 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-5 *2 (-2 (|:| -4291 *3) (|:| -4440 *4)))))) -(-13 (-1215 |t#1| |t#2|) (-679 (-2 (|:| -4291 |t#1|) (|:| -4440 |t#2|))) (-10 -8 (-15 -3932 ((-3 (-2 (|:| -4291 |t#1|) (|:| -4440 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T) ((-102) -2802 (|has| |#2| (-1122)) (|has| |#2| (-102)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102))) ((-625 (-877)) -2802 (|has| |#2| (-1122)) (|has| |#2| (-625 (-877))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-625 (-877)))) ((-152 #1=(-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T) ((-626 (-548)) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 #2=(-576) #1#) . T) ((-296 (-1256 (-576)) $) . T) ((-296 |#1| |#2|) . T) ((-298 #2# #1#) . T) ((-298 |#1| |#2|) . T) ((-319 #1#) -12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-292 #1#) . T) ((-384 #1#) . T) ((-501 #1#) . T) ((-501 |#2|) . T) ((-616 #2# #1#) . T) ((-616 |#1| |#2|) . T) ((-526 #1# #1#) -12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-622 |#1| |#2|) . T) ((-664 #1#) . T) ((-679 #1#) . T) ((-862) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)) ((-865) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)) ((-1032 #1#) . T) ((-1122) -2802 (|has| |#2| (-1122)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862))) ((-1171 #1#) . T) ((-1215 |#1| |#2|) . T) ((-1239) . T) ((-1277 #1#) . T)) -((-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -3501 (|#1| |#2|)) (-15 -3501 (|#1| (-576))) (-15 -3501 ((-877) |#1|))) (-38 |#2|) (-174)) (T -37)) -NIL -(-10 -8 (-15 -3501 (|#1| |#2|)) (-15 -3501 (|#1| (-576))) (-15 -3501 ((-877) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3843 (((-3 $ "failed") $) 37)) (-4094 (((-112) $) 35)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-4114 (*1 *1 *1) (-4 *1 (-35))) (-2262 (*1 *1 *1) (-4 *1 (-35))) (-4141 (*1 *1 *1) (-4 *1 (-35))) (-2261 (*1 *1 *1) (-4 *1 (-35))) (-4128 (*1 *1 *1) (-4 *1 (-35))) (-2272 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -2272 ($ $)) (-15 -4128 ($ $)) (-15 -2261 ($ $)) (-15 -4141 ($ $)) (-15 -2262 ($ $)) (-15 -4114 ($ $)))) +((-3473 (((-112) $ $) 20 (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102))))) (-3115 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 127)) (-2950 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 150)) (-4428 (($ $) 148)) (-4100 (($) 73) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 72)) (-2389 (((-1297) $ |#1| |#1|) 100 (|has| $ (-6 -4471))) (((-1297) $ (-577) (-577)) 180 (|has| $ (-6 -4471)))) (-3933 (($ $ (-577)) 161 (|has| $ (-6 -4471)))) (-4077 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-4053 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 202 (|has| $ (-6 -4471))) (($ $) 201 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)) (|has| $ (-6 -4471))))) (-1864 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-3828 (((-112) $ (-787)) 8)) (-4374 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 136 (|has| $ (-6 -4471)))) (-3958 (($ $ $) 157 (|has| $ (-6 -4471)))) (-3945 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 159 (|has| $ (-6 -4471)))) (-3969 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 155 (|has| $ (-6 -4471)))) (-3709 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-577) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 191 (|has| $ (-6 -4471))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-1259 (-577)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 162 (|has| $ (-6 -4471))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ "last" (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 160 (|has| $ (-6 -4471))) (($ $ "rest" $) 158 (|has| $ (-6 -4471))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ "first" (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 156 (|has| $ (-6 -4471))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ "value" (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 135 (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) 134 (|has| $ (-6 -4471)))) (-2463 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 46 (|has| $ (-6 -4470))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 218)) (-2067 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 56 (|has| $ (-6 -4470))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 177 (|has| $ (-6 -4470)))) (-2939 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 149)) (-2325 (((-3 |#2| "failed") |#1| $) 62)) (-1534 (($) 7 T CONST)) (-3645 (($ $) 203 (|has| $ (-6 -4471)))) (-3787 (($ $) 213)) (-3563 (($ $ (-787)) 144) (($ $) 142)) (-3215 (($ $) 216 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (-1817 (($ $) 59 (-2839 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470))) (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470)))))) (-3719 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 48 (|has| $ (-6 -4470))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 47 (|has| $ (-6 -4470))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 222) (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 217 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (-3904 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 55 (|has| $ (-6 -4470))) (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 179 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 176 (|has| $ (-6 -4470)))) (-3654 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 57 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470)))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 54 (|has| $ (-6 -4470))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 53 (|has| $ (-6 -4470))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 178 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470)))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 175 (|has| $ (-6 -4470))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 174 (|has| $ (-6 -4470)))) (-2192 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4471))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-577) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 192 (|has| $ (-6 -4471)))) (-2117 ((|#2| $ |#1|) 89) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-577)) 190)) (-3998 (((-112) $) 194)) (-3618 (((-577) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 210) (((-577) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 209 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))) (((-577) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-577)) 208 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (-1461 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 31 (|has| $ (-6 -4470))) (((-660 |#2|) $) 80 (|has| $ (-6 -4470))) (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 116 (|has| $ (-6 -4470)))) (-4426 (((-660 $) $) 125)) (-4394 (((-112) $ $) 133 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (-4113 (($ (-787) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 170)) (-1479 (((-112) $ (-787)) 9)) (-2406 ((|#1| $) 97 (|has| |#1| (-865))) (((-577) $) 182 (|has| (-577) (-865)))) (-3732 (($ $ $) 195 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-3192 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-3283 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-2530 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 30 (|has| $ (-6 -4470))) (((-660 |#2|) $) 81 (|has| $ (-6 -4470))) (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 117 (|has| $ (-6 -4470)))) (-2820 (((-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470)))) (((-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 119 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470))))) (-2416 ((|#1| $) 96 (|has| |#1| (-865))) (((-577) $) 183 (|has| (-577) (-865)))) (-3201 (($ $ $) 196 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-2182 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 35 (|has| $ (-6 -4471))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4471))) (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 112 (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 111)) (-1712 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 227)) (-1443 (((-112) $ (-787)) 10)) (-2461 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 130)) (-3371 (((-112) $) 126)) (-2810 (((-1183) $) 23 (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| |#2| (-1125)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))))) (-3927 (($ $ (-787)) 147) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 145)) (-3203 (((-660 |#1|) $) 64)) (-4317 (((-112) |#1| $) 65)) (-4330 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 40)) (-2881 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 41) (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-577)) 221) (($ $ $ (-577)) 220)) (-2308 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-577)) 164) (($ $ $ (-577)) 163)) (-4285 (((-660 |#1|) $) 94) (((-660 (-577)) $) 185)) (-4298 (((-112) |#1| $) 93) (((-112) (-577) $) 186)) (-1474 (((-1145) $) 22 (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| |#2| (-1125)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))))) (-3552 ((|#2| $) 98 (|has| |#1| (-865))) (($ $ (-787)) 141) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 139)) (-1828 (((-3 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) "failed") (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 52) (((-3 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) "failed") (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 173)) (-2397 (($ $ |#2|) 99 (|has| $ (-6 -4471))) (($ $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 181 (|has| $ (-6 -4471)))) (-3530 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 42)) (-4010 (((-112) $) 193)) (-1514 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 33 (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4470))) (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 114 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) 27 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 26 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 25 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 24 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 |#2|) (-660 |#2|)) 87 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-305 |#2|)) 85 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 (-305 |#2|))) 84 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 123 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 122 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 121 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) 120 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))))) (-3840 (((-112) $ $) 14)) (-4274 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125)))) (((-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 184 (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))))) (-4306 (((-660 |#2|) $) 92) (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 187)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-577) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 189) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-577)) 188) (($ $ (-1259 (-577))) 171) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ "first") 140) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ "value") 128)) (-4415 (((-577) $ $) 131)) (-3736 (($) 50) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 49)) (-2472 (($ $ (-577)) 224) (($ $ (-1259 (-577))) 223)) (-3453 (($ $ (-577)) 166) (($ $ (-1259 (-577))) 165)) (-1885 (((-112) $) 129)) (-4004 (($ $) 153)) (-3981 (($ $) 154 (|has| $ (-6 -4471)))) (-4016 (((-787) $) 152)) (-4026 (($ $) 151)) (-1485 (((-787) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 32 (|has| $ (-6 -4470))) (((-787) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470)))) (((-787) |#2| $) 82 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470)))) (((-787) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4470))) (((-787) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 118 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470)))) (((-787) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 115 (|has| $ (-6 -4470)))) (-4064 (($ $ $ (-577)) 204 (|has| $ (-6 -4471)))) (-1944 (($ $) 13)) (-4152 (((-549) $) 60 (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-627 (-549))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-627 (-549)))))) (-3553 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 51) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 172)) (-3992 (($ $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 226) (($ $ $) 225)) (-1677 (($ $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 169) (($ (-660 $)) 168) (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 138) (($ $ $) 137)) (-3544 (((-880) $) 18 (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-626 (-880))) (|has| |#2| (-626 (-880))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-626 (-880)))))) (-3322 (((-660 $) $) 124)) (-4405 (((-112) $ $) 132 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (-4448 (((-112) $ $) 21 (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102))))) (-3541 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 43)) (-3939 (((-3 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) "failed") |#1| $) 110)) (-1524 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 34 (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4470))) (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 113 (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) 197 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-3000 (((-112) $ $) 199 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-2970 (((-112) $ $) 19 (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102))))) (-3012 (((-112) $ $) 198 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-2990 (((-112) $ $) 200 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-36 |#1| |#2|) (-141) (-1125) (-1125)) (T -36)) +((-3939 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-5 *2 (-2 (|:| -4295 *3) (|:| -4444 *4)))))) +(-13 (-1218 |t#1| |t#2|) (-682 (-2 (|:| -4295 |t#1|) (|:| -4444 |t#2|))) (-10 -8 (-15 -3939 ((-3 (-2 (|:| -4295 |t#1|) (|:| -4444 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T) ((-102) -2839 (|has| |#2| (-1125)) (|has| |#2| (-102)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102))) ((-626 (-880)) -2839 (|has| |#2| (-1125)) (|has| |#2| (-626 (-880))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-626 (-880)))) ((-152 #1=(-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T) ((-627 (-549)) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-627 (-549))) ((-232 #0#) . T) ((-241 #0#) . T) ((-297 #2=(-577) #1#) . T) ((-297 (-1259 (-577)) $) . T) ((-297 |#1| |#2|) . T) ((-299 #2# #1#) . T) ((-299 |#1| |#2|) . T) ((-320 #1#) -12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-293 #1#) . T) ((-385 #1#) . T) ((-502 #1#) . T) ((-502 |#2|) . T) ((-617 #2# #1#) . T) ((-617 |#1| |#2|) . T) ((-527 #1# #1#) -12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-623 |#1| |#2|) . T) ((-667 #1#) . T) ((-682 #1#) . T) ((-865) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)) ((-868) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)) ((-1035 #1#) . T) ((-1125) -2839 (|has| |#2| (-1125)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865))) ((-1174 #1#) . T) ((-1218 |#1| |#2|) . T) ((-1242) . T) ((-1280 #1#) . T)) +((-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -3544 (|#1| |#2|)) (-15 -3544 (|#1| (-577))) (-15 -3544 ((-880) |#1|))) (-38 |#2|) (-174)) (T -37)) +NIL +(-10 -8 (-15 -3544 (|#1| |#2|)) (-15 -3544 (|#1| (-577))) (-15 -3544 ((-880) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-4187 (((-3 $ "failed") $) 37)) (-2487 (((-112) $) 35)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 44)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-38 |#1|) (-141) (-174)) (T -38)) NIL -(-13 (-1071) (-730 |t#1|) (-628 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 |#1|) . T) ((-730 |#1|) . T) ((-739) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-1407 (((-430 |#1|) |#1|) 41)) (-1885 (((-430 |#1|) |#1|) 30) (((-430 |#1|) |#1| (-657 (-48))) 33)) (-3601 (((-112) |#1|) 59))) -(((-39 |#1|) (-10 -7 (-15 -1885 ((-430 |#1|) |#1| (-657 (-48)))) (-15 -1885 ((-430 |#1|) |#1|)) (-15 -1407 ((-430 |#1|) |#1|)) (-15 -3601 ((-112) |#1|))) (-1265 (-48))) (T -39)) -((-3601 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1265 (-48))))) (-1407 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1265 (-48))))) (-1885 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1265 (-48))))) (-1885 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1265 (-48)))))) -(-10 -7 (-15 -1885 ((-430 |#1|) |#1| (-657 (-48)))) (-15 -1885 ((-430 |#1|) |#1|)) (-15 -1407 ((-430 |#1|) |#1|)) (-15 -3601 ((-112) |#1|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3642 (((-2 (|:| |num| (-1289 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-3325 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-4306 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-1527 (((-702 (-419 |#2|)) (-1289 $)) NIL) (((-702 (-419 |#2|))) NIL)) (-2302 (((-419 |#2|) $) NIL)) (-3592 (((-1211 (-941) (-784)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-4402 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2864 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2193 (((-784)) NIL (|has| (-419 |#2|) (-379)))) (-1844 (((-112)) NIL)) (-3700 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1060 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-2884 (((-576) $) NIL (|has| (-419 |#2|) (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1060 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-2613 (($ (-1289 (-419 |#2|)) (-1289 $)) NIL) (($ (-1289 (-419 |#2|))) 61) (($ (-1289 |#2|) |#2|) 131)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-3373 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3529 (((-702 (-419 |#2|)) $ (-1289 $)) NIL) (((-702 (-419 |#2|)) $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-419 |#2|))) (|:| |vec| (-1289 (-419 |#2|)))) (-702 $) (-1289 $)) NIL) (((-702 (-419 |#2|)) (-702 $)) NIL)) (-3130 (((-1289 $) (-1289 $)) NIL)) (-3622 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-3843 (((-3 $ "failed") $) NIL)) (-2420 (((-657 (-657 |#1|))) NIL (|has| |#1| (-379)))) (-2952 (((-112) |#1| |#1|) NIL)) (-1542 (((-941)) NIL)) (-1892 (($) NIL (|has| (-419 |#2|) (-379)))) (-3309 (((-112)) NIL)) (-3004 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3385 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| (-419 |#2|) (-374)))) (-3813 (($ $) NIL)) (-1367 (($) NIL (|has| (-419 |#2|) (-360)))) (-2105 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-1780 (($ $ (-784)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-4257 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3182 (((-941) $) NIL (|has| (-419 |#2|) (-360))) (((-846 (-941)) $) NIL (|has| (-419 |#2|) (-360)))) (-4094 (((-112) $) NIL)) (-3181 (((-784)) NIL)) (-3253 (((-1289 $) (-1289 $)) 106)) (-2234 (((-419 |#2|) $) NIL)) (-2327 (((-657 (-972 |#1|)) (-1198)) NIL (|has| |#1| (-374)))) (-4019 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1336 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-3007 (((-941) $) NIL (|has| (-419 |#2|) (-379)))) (-3609 ((|#3| $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-419 |#2|))) (|:| |vec| (-1289 (-419 |#2|)))) (-1289 $) $) NIL) (((-702 (-419 |#2|)) (-1289 $)) NIL)) (-3402 (($ (-657 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2342 (((-1180) $) NIL)) (-1946 (((-1294) (-784)) 84)) (-4315 (((-702 (-419 |#2|))) 56)) (-2610 (((-702 (-419 |#2|))) 49)) (-2134 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-1599 (($ (-1289 |#2|) |#2|) 132)) (-1457 (((-702 (-419 |#2|))) 50)) (-3154 (((-702 (-419 |#2|))) 48)) (-4265 (((-2 (|:| |num| (-702 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-3640 (((-2 (|:| |num| (-1289 |#2|)) (|:| |den| |#2|)) $) 68)) (-1520 (((-1289 $)) 47)) (-1613 (((-1289 $)) 46)) (-1333 (((-112) $) NIL)) (-1743 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-1706 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-3178 (($ (-941)) NIL (|has| (-419 |#2|) (-379)))) (-4292 (((-3 |#2| "failed")) NIL)) (-1471 (((-1142) $) NIL)) (-2821 (((-784)) NIL)) (-4097 (($) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| (-419 |#2|) (-374)))) (-3436 (($ (-657 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-1885 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3418 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2034 (((-784) $) NIL (|has| (-419 |#2|) (-374)))) (-2835 ((|#1| $ |#1| |#1|) NIL)) (-2645 (((-3 |#2| "failed")) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1701 (((-419 |#2|) (-1289 $)) NIL) (((-419 |#2|)) 44)) (-2284 (((-784) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-784) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-2815 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-784)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2802 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2802 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2802 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-784)) NIL (-2802 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2802 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3988 (((-702 (-419 |#2|)) (-1289 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-3180 ((|#3|) 55)) (-2090 (($) NIL (|has| (-419 |#2|) (-360)))) (-2795 (((-1289 (-419 |#2|)) $ (-1289 $)) NIL) (((-702 (-419 |#2|)) (-1289 $) (-1289 $)) NIL) (((-1289 (-419 |#2|)) $) 62) (((-702 (-419 |#2|)) (-1289 $)) 107)) (-4148 (((-1289 (-419 |#2|)) $) NIL) (($ (-1289 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| (-419 |#2|) (-360)))) (-1361 (((-1289 $) (-1289 $)) NIL)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-2802 (|has| (-419 |#2|) (-1060 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3096 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-4182 ((|#3| $) NIL)) (-1960 (((-784)) NIL T CONST)) (-1818 (((-112)) 42)) (-2866 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) NIL)) (-4041 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2519 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1660 (((-112)) NIL)) (-2769 (($) 17 T CONST)) (-2779 (($) 27 T CONST)) (-2097 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-784)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2802 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2802 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2802 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-784)) NIL (-2802 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2802 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -1946 ((-1294) (-784))))) (-374) (-1265 |#1|) (-1265 (-419 |#2|)) |#3|) (T -40)) -((-1946 (*1 *2 *3) (-12 (-5 *3 (-784)) (-4 *4 (-374)) (-4 *5 (-1265 *4)) (-5 *2 (-1294)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1265 (-419 *5))) (-14 *7 *6)))) -(-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -1946 ((-1294) (-784))))) -((-3608 ((|#2| |#2|) 47)) (-3738 ((|#2| |#2|) 139 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1060 (-576))))))) (-1735 ((|#2| |#2|) 100 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1060 (-576))))))) (-3496 ((|#2| |#2|) 101 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1060 (-576))))))) (-3028 ((|#2| (-115) |#2| (-784)) 135 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1060 (-576))))))) (-3367 (((-1194 |#2|) |#2|) 44)) (-2531 ((|#2| |#2| (-657 (-624 |#2|))) 18) ((|#2| |#2| (-657 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -3608 (|#2| |#2|)) (-15 -2531 (|#2| |#2|)) (-15 -2531 (|#2| |#2| |#2|)) (-15 -2531 (|#2| |#2| (-657 |#2|))) (-15 -2531 (|#2| |#2| (-657 (-624 |#2|)))) (-15 -3367 ((-1194 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1060 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -3496 (|#2| |#2|)) (-15 -1735 (|#2| |#2|)) (-15 -3738 (|#2| |#2|)) (-15 -3028 (|#2| (-115) |#2| (-784)))) |%noBranch|) |%noBranch|)) (-568) (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1147 |#1| (-624 $)) $)) (-15 -1635 ((-1147 |#1| (-624 $)) $)) (-15 -3501 ($ (-1147 |#1| (-624 $))))))) (T -41)) -((-3028 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-784)) (-4 *5 (-13 (-464) (-1060 (-576)))) (-4 *5 (-568)) (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1147 *5 (-624 $)) $)) (-15 -1635 ((-1147 *5 (-624 $)) $)) (-15 -3501 ($ (-1147 *5 (-624 $))))))))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1147 *3 (-624 $)) $)) (-15 -1635 ((-1147 *3 (-624 $)) $)) (-15 -3501 ($ (-1147 *3 (-624 $))))))))) (-1735 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1147 *3 (-624 $)) $)) (-15 -1635 ((-1147 *3 (-624 $)) $)) (-15 -3501 ($ (-1147 *3 (-624 $))))))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1147 *3 (-624 $)) $)) (-15 -1635 ((-1147 *3 (-624 $)) $)) (-15 -3501 ($ (-1147 *3 (-624 $))))))))) (-3367 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1194 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1147 *4 (-624 $)) $)) (-15 -1635 ((-1147 *4 (-624 $)) $)) (-15 -3501 ($ (-1147 *4 (-624 $))))))))) (-2531 (*1 *2 *2 *3) (-12 (-5 *3 (-657 (-624 *2))) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1147 *4 (-624 $)) $)) (-15 -1635 ((-1147 *4 (-624 $)) $)) (-15 -3501 ($ (-1147 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-2531 (*1 *2 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1147 *4 (-624 $)) $)) (-15 -1635 ((-1147 *4 (-624 $)) $)) (-15 -3501 ($ (-1147 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-2531 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1147 *3 (-624 $)) $)) (-15 -1635 ((-1147 *3 (-624 $)) $)) (-15 -3501 ($ (-1147 *3 (-624 $))))))))) (-2531 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1147 *3 (-624 $)) $)) (-15 -1635 ((-1147 *3 (-624 $)) $)) (-15 -3501 ($ (-1147 *3 (-624 $))))))))) (-3608 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1621 ((-1147 *3 (-624 $)) $)) (-15 -1635 ((-1147 *3 (-624 $)) $)) (-15 -3501 ($ (-1147 *3 (-624 $)))))))))) -(-10 -7 (-15 -3608 (|#2| |#2|)) (-15 -2531 (|#2| |#2|)) (-15 -2531 (|#2| |#2| |#2|)) (-15 -2531 (|#2| |#2| (-657 |#2|))) (-15 -2531 (|#2| |#2| (-657 (-624 |#2|)))) (-15 -3367 ((-1194 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1060 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -3496 (|#2| |#2|)) (-15 -1735 (|#2| |#2|)) (-15 -3738 (|#2| |#2|)) (-15 -3028 (|#2| (-115) |#2| (-784)))) |%noBranch|) |%noBranch|)) -((-1885 (((-430 (-1194 |#3|)) (-1194 |#3|) (-657 (-48))) 23) (((-430 |#3|) |#3| (-657 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1885 ((-430 |#3|) |#3| (-657 (-48)))) (-15 -1885 ((-430 (-1194 |#3|)) (-1194 |#3|) (-657 (-48))))) (-862) (-806) (-969 (-48) |#2| |#1|)) (T -42)) -((-1885 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-48))) (-4 *5 (-862)) (-4 *6 (-806)) (-4 *7 (-969 (-48) *6 *5)) (-5 *2 (-430 (-1194 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1194 *7)))) (-1885 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-48))) (-4 *5 (-862)) (-4 *6 (-806)) (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-969 (-48) *6 *5))))) -(-10 -7 (-15 -1885 ((-430 |#3|) |#3| (-657 (-48)))) (-15 -1885 ((-430 (-1194 |#3|)) (-1194 |#3|) (-657 (-48))))) -((-3386 (((-784) |#2|) 70)) (-2984 (((-784) |#2|) 74)) (-4198 (((-657 |#2|)) 37)) (-3612 (((-784) |#2|) 73)) (-1480 (((-784) |#2|) 69)) (-4208 (((-784) |#2|) 72)) (-2916 (((-657 (-702 |#1|))) 65)) (-2789 (((-657 |#2|)) 60)) (-4219 (((-657 |#2|) |#2|) 48)) (-2248 (((-657 |#2|)) 62)) (-2571 (((-657 |#2|)) 61)) (-2417 (((-657 (-702 |#1|))) 53)) (-3857 (((-657 |#2|)) 59)) (-3954 (((-657 |#2|) |#2|) 47)) (-1356 (((-657 |#2|)) 55)) (-1564 (((-657 (-702 |#1|))) 66)) (-4111 (((-657 |#2|)) 64)) (-1985 (((-1289 |#2|) (-1289 |#2|)) 99 (|has| |#1| (-317))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -3612 ((-784) |#2|)) (-15 -2984 ((-784) |#2|)) (-15 -1480 ((-784) |#2|)) (-15 -3386 ((-784) |#2|)) (-15 -4208 ((-784) |#2|)) (-15 -1356 ((-657 |#2|))) (-15 -3954 ((-657 |#2|) |#2|)) (-15 -4219 ((-657 |#2|) |#2|)) (-15 -3857 ((-657 |#2|))) (-15 -2789 ((-657 |#2|))) (-15 -2571 ((-657 |#2|))) (-15 -2248 ((-657 |#2|))) (-15 -4111 ((-657 |#2|))) (-15 -2417 ((-657 (-702 |#1|)))) (-15 -2916 ((-657 (-702 |#1|)))) (-15 -1564 ((-657 (-702 |#1|)))) (-15 -4198 ((-657 |#2|))) (IF (|has| |#1| (-317)) (-15 -1985 ((-1289 |#2|) (-1289 |#2|))) |%noBranch|)) (-568) (-429 |#1|)) (T -43)) -((-1985 (*1 *2 *2) (-12 (-5 *2 (-1289 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) (-4198 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-1564 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 (-702 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2916 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 (-702 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2417 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 (-702 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-4111 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2248 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2571 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2789 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3857 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-4219 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-657 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3954 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-657 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-1356 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-4208 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3386 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-1480 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2984 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-3612 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4))))) -(-10 -7 (-15 -3612 ((-784) |#2|)) (-15 -2984 ((-784) |#2|)) (-15 -1480 ((-784) |#2|)) (-15 -3386 ((-784) |#2|)) (-15 -4208 ((-784) |#2|)) (-15 -1356 ((-657 |#2|))) (-15 -3954 ((-657 |#2|) |#2|)) (-15 -4219 ((-657 |#2|) |#2|)) (-15 -3857 ((-657 |#2|))) (-15 -2789 ((-657 |#2|))) (-15 -2571 ((-657 |#2|))) (-15 -2248 ((-657 |#2|))) (-15 -4111 ((-657 |#2|))) (-15 -2417 ((-657 (-702 |#1|)))) (-15 -2916 ((-657 (-702 |#1|)))) (-15 -1564 ((-657 (-702 |#1|)))) (-15 -4198 ((-657 |#2|))) (IF (|has| |#1| (-317)) (-15 -1985 ((-1289 |#2|) (-1289 |#2|))) |%noBranch|)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2824 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-3213 (((-1289 (-702 |#1|)) (-1289 $)) NIL) (((-1289 (-702 |#1|))) 24)) (-3348 (((-1289 $)) 52)) (-4359 (($) NIL T CONST)) (-3090 (((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed")) NIL (|has| |#1| (-568)))) (-2023 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-1703 (((-702 |#1|) (-1289 $)) NIL) (((-702 |#1|)) NIL)) (-1641 ((|#1| $) NIL)) (-1575 (((-702 |#1|) $ (-1289 $)) NIL) (((-702 |#1|) $) NIL)) (-1498 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-2572 (((-1194 (-972 |#1|))) NIL (|has| |#1| (-374)))) (-2609 (($ $ (-941)) NIL)) (-3195 ((|#1| $) NIL)) (-1806 (((-1194 |#1|) $) NIL (|has| |#1| (-568)))) (-1427 ((|#1| (-1289 $)) NIL) ((|#1|) NIL)) (-2947 (((-1194 |#1|) $) NIL)) (-4274 (((-112)) 99)) (-2613 (($ (-1289 |#1|) (-1289 $)) NIL) (($ (-1289 |#1|)) NIL)) (-3843 (((-3 $ "failed") $) 14 (|has| |#1| (-568)))) (-1542 (((-941)) 53)) (-1778 (((-112)) NIL)) (-3490 (($ $ (-941)) NIL)) (-2591 (((-112)) NIL)) (-3089 (((-112)) NIL)) (-1855 (((-112)) 101)) (-2765 (((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed")) NIL (|has| |#1| (-568)))) (-3694 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-4427 (((-702 |#1|) (-1289 $)) NIL) (((-702 |#1|)) NIL)) (-1425 ((|#1| $) NIL)) (-3346 (((-702 |#1|) $ (-1289 $)) NIL) (((-702 |#1|) $) NIL)) (-2390 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-2164 (((-1194 (-972 |#1|))) NIL (|has| |#1| (-374)))) (-4404 (($ $ (-941)) NIL)) (-2885 ((|#1| $) NIL)) (-4234 (((-1194 |#1|) $) NIL (|has| |#1| (-568)))) (-4408 ((|#1| (-1289 $)) NIL) ((|#1|) NIL)) (-2444 (((-1194 |#1|) $) NIL)) (-4199 (((-112)) 98)) (-2342 (((-1180) $) NIL)) (-4396 (((-112)) 106)) (-3079 (((-112)) 105)) (-3729 (((-112)) 107)) (-1471 (((-1142) $) NIL)) (-4005 (((-112)) 100)) (-2835 ((|#1| $ (-576)) 55)) (-2795 (((-1289 |#1|) $ (-1289 $)) 48) (((-702 |#1|) (-1289 $) (-1289 $)) NIL) (((-1289 |#1|) $) 28) (((-702 |#1|) (-1289 $)) NIL)) (-4148 (((-1289 |#1|) $) NIL) (($ (-1289 |#1|)) NIL)) (-2929 (((-657 (-972 |#1|)) (-1289 $)) NIL) (((-657 (-972 |#1|))) NIL)) (-3544 (($ $ $) NIL)) (-2032 (((-112)) 95)) (-3501 (((-877) $) 71) (($ (-1289 |#1|)) 22)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) 51)) (-1630 (((-657 (-1289 |#1|))) NIL (|has| |#1| (-568)))) (-4254 (($ $ $ $) NIL)) (-3675 (((-112)) 91)) (-3500 (($ (-702 |#1|) $) 18)) (-3599 (($ $ $) NIL)) (-4115 (((-112)) 97)) (-2102 (((-112)) 92)) (-1950 (((-112)) 90)) (-2769 (($) NIL T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1164 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-429 |#1|) (-661 (-1164 |#2| |#1|)) (-10 -8 (-15 -3501 ($ (-1289 |#1|))))) (-374) (-941) (-657 (-1198)) (-1289 (-702 |#1|))) (T -44)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-374)) (-14 *6 (-1289 (-702 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-941)) (-14 *5 (-657 (-1198)))))) -(-13 (-429 |#1|) (-661 (-1164 |#2| |#1|)) (-10 -8 (-15 -3501 ($ (-1289 |#1|))))) -((-3429 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3071 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2913 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-4424 (($ $) NIL)) (-4095 (($) NIL) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-4313 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4467))) (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3605 (($ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1568 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-3363 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862))))) (-1850 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-3793 (((-112) $ (-784)) NIL)) (-3734 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4467)))) (-2823 (($ $ $) 33 (|has| $ (-6 -4467)))) (-2045 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4467)))) (-4013 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 35 (|has| $ (-6 -4467)))) (-3682 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-576) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4467))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-1256 (-576)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4467))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ "last" (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4467))) (($ $ "rest" $) NIL (|has| $ (-6 -4467))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ "first" (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4467))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ "value" (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-3162 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL)) (-2035 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2902 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2287 (((-3 |#2| "failed") |#1| $) 43)) (-4359 (($) NIL T CONST)) (-3606 (($ $) NIL (|has| $ (-6 -4467)))) (-3768 (($ $) NIL)) (-3522 (($ $ (-784)) NIL) (($ $) 29)) (-4295 (($ $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3647 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (-3895 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3622 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2158 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4467))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-576) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4467)))) (-2083 ((|#2| $ |#1|) NIL) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-576)) NIL)) (-1628 (((-112) $) NIL)) (-3582 (((-576) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL) (((-576) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))) (((-576) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-576)) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (-1458 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 20 (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466))) (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 20 (|has| $ (-6 -4466)))) (-2877 (((-657 $) $) NIL)) (-1700 (((-112) $ $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (-4109 (($ (-784) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-3853 ((|#1| $) NIL (|has| |#1| (-862))) (((-576) $) 38 (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-4033 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-3073 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-2070 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466))) (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))))) (-2272 ((|#1| $) NIL (|has| |#1| (-862))) (((-576) $) 40 (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-2148 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4467))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467))) (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1710 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2424 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL)) (-2633 (((-112) $) NIL)) (-2342 (((-1180) $) 49 (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3920 (($ $ (-784)) NIL) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-3159 (((-657 |#1|) $) 22)) (-1708 (((-112) |#1| $) NIL)) (-3050 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2468 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL) (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2271 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-1430 (((-657 |#1|) $) NIL) (((-657 (-576)) $) NIL)) (-4242 (((-112) |#1| $) NIL) (((-112) (-576) $) NIL)) (-1471 (((-1142) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3510 ((|#2| $) NIL (|has| |#1| (-862))) (($ $ (-784)) NIL) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 27)) (-2951 (((-3 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL) (((-3 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1987 (($ $ |#2|) NIL (|has| $ (-6 -4467))) (($ $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4467)))) (-2277 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-4286 (((-112) $) NIL)) (-3399 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))))) (-2380 (((-657 |#2|) $) NIL) (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 19)) (-3387 (((-112) $) 18)) (-3581 (($) 14)) (-2835 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-576) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ (-576)) NIL) (($ $ (-1256 (-576))) NIL) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ "first") NIL) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $ "value") NIL)) (-3883 (((-576) $ $) NIL)) (-1504 (($) 13) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-3449 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-3409 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-3628 (((-112) $) NIL)) (-3600 (($ $) NIL)) (-1921 (($ $) NIL (|has| $ (-6 -4467)))) (-4027 (((-784) $) NIL)) (-4087 (($ $) NIL)) (-1482 (((-784) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-784) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2114 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3511 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-2858 (($ $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL) (($ $ $) NIL)) (-1674 (($ $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL) (($ (-657 $)) NIL) (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 31) (($ $ $) NIL)) (-3501 (((-877) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-625 (-877))) (|has| |#2| (-625 (-877)))))) (-1986 (((-657 $) $) NIL)) (-1633 (((-112) $ $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (-2046 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4079 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-3932 (((-3 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) "failed") |#1| $) 51)) (-2147 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-2963 (((-112) $ $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-2933 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-2973 (((-112) $ $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-2954 (((-112) $ $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-862)))) (-3440 (((-784) $) 25 (|has| $ (-6 -4466))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1122) (-1122)) (T -45)) +(-13 (-1074) (-733 |t#1|) (-629 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 |#1|) . T) ((-733 |#1|) . T) ((-742) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3810 (((-431 |#1|) |#1|) 41)) (-1902 (((-431 |#1|) |#1|) 30) (((-431 |#1|) |#1| (-660 (-48))) 33)) (-3851 (((-112) |#1|) 59))) +(((-39 |#1|) (-10 -7 (-15 -1902 ((-431 |#1|) |#1| (-660 (-48)))) (-15 -1902 ((-431 |#1|) |#1|)) (-15 -3810 ((-431 |#1|) |#1|)) (-15 -3851 ((-112) |#1|))) (-1268 (-48))) (T -39)) +((-3851 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1268 (-48))))) (-3810 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1268 (-48))))) (-1902 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1268 (-48))))) (-1902 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-48))) (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1268 (-48)))))) +(-10 -7 (-15 -1902 ((-431 |#1|) |#1| (-660 (-48)))) (-15 -1902 ((-431 |#1|) |#1|)) (-15 -3810 ((-431 |#1|) |#1|)) (-15 -3851 ((-112) |#1|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-4402 (((-2 (|:| |num| (-1292 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| (-420 |#2|) (-375)))) (-3290 (($ $) NIL (|has| (-420 |#2|) (-375)))) (-3271 (((-112) $) NIL (|has| (-420 |#2|) (-375)))) (-3390 (((-705 (-420 |#2|)) (-1292 $)) NIL) (((-705 (-420 |#2|))) NIL)) (-2339 (((-420 |#2|) $) NIL)) (-1595 (((-1214 (-944) (-787)) (-577)) NIL (|has| (-420 |#2|) (-361)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL (|has| (-420 |#2|) (-375)))) (-3029 (((-431 $) $) NIL (|has| (-420 |#2|) (-375)))) (-1939 (((-112) $ $) NIL (|has| (-420 |#2|) (-375)))) (-2229 (((-787)) NIL (|has| (-420 |#2|) (-380)))) (-1439 (((-112)) NIL)) (-1428 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL (|has| (-420 |#2|) (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-420 |#2|) (-1063 (-420 (-577))))) (((-3 (-420 |#2|) "failed") $) NIL)) (-2921 (((-577) $) NIL (|has| (-420 |#2|) (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| (-420 |#2|) (-1063 (-420 (-577))))) (((-420 |#2|) $) NIL)) (-3502 (($ (-1292 (-420 |#2|)) (-1292 $)) NIL) (($ (-1292 (-420 |#2|))) 61) (($ (-1292 |#2|) |#2|) 131)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-420 |#2|) (-361)))) (-3418 (($ $ $) NIL (|has| (-420 |#2|) (-375)))) (-3381 (((-705 (-420 |#2|)) $ (-1292 $)) NIL) (((-705 (-420 |#2|)) $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| (-420 |#2|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-420 |#2|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-420 |#2|))) (|:| |vec| (-1292 (-420 |#2|)))) (-705 $) (-1292 $)) NIL) (((-705 (-420 |#2|)) (-705 $)) NIL)) (-1337 (((-1292 $) (-1292 $)) NIL)) (-3654 (($ |#3|) NIL) (((-3 $ "failed") (-420 |#3|)) NIL (|has| (-420 |#2|) (-375)))) (-4187 (((-3 $ "failed") $) NIL)) (-4315 (((-660 (-660 |#1|))) NIL (|has| |#1| (-380)))) (-1475 (((-112) |#1| |#1|) NIL)) (-1545 (((-944)) NIL)) (-1910 (($) NIL (|has| (-420 |#2|) (-380)))) (-1418 (((-112)) NIL)) (-1407 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3429 (($ $ $) NIL (|has| (-420 |#2|) (-375)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| (-420 |#2|) (-375)))) (-3143 (($ $) NIL)) (-4205 (($) NIL (|has| (-420 |#2|) (-361)))) (-1655 (((-112) $) NIL (|has| (-420 |#2|) (-361)))) (-3233 (($ $ (-787)) NIL (|has| (-420 |#2|) (-361))) (($ $) NIL (|has| (-420 |#2|) (-361)))) (-1522 (((-112) $) NIL (|has| (-420 |#2|) (-375)))) (-3817 (((-944) $) NIL (|has| (-420 |#2|) (-361))) (((-849 (-944)) $) NIL (|has| (-420 |#2|) (-361)))) (-2487 (((-112) $) NIL)) (-1605 (((-787)) NIL)) (-1348 (((-1292 $) (-1292 $)) 106)) (-4145 (((-420 |#2|) $) NIL)) (-4326 (((-660 (-975 |#1|)) (-1201)) NIL (|has| |#1| (-375)))) (-4021 (((-3 $ "failed") $) NIL (|has| (-420 |#2|) (-361)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| (-420 |#2|) (-375)))) (-4084 ((|#3| $) NIL (|has| (-420 |#2|) (-375)))) (-4038 (((-944) $) NIL (|has| (-420 |#2|) (-380)))) (-3642 ((|#3| $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| (-420 |#2|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-420 |#2|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-420 |#2|))) (|:| |vec| (-1292 (-420 |#2|)))) (-1292 $) $) NIL) (((-705 (-420 |#2|)) (-1292 $)) NIL)) (-3446 (($ (-660 $)) NIL (|has| (-420 |#2|) (-375))) (($ $ $) NIL (|has| (-420 |#2|) (-375)))) (-2810 (((-1183) $) NIL)) (-3863 (((-1297) (-787)) 84)) (-4412 (((-705 (-420 |#2|))) 56)) (-4436 (((-705 (-420 |#2|))) 49)) (-2171 (($ $) NIL (|has| (-420 |#2|) (-375)))) (-4381 (($ (-1292 |#2|) |#2|) 132)) (-4423 (((-705 (-420 |#2|))) 50)) (-4449 (((-705 (-420 |#2|))) 48)) (-4371 (((-2 (|:| |num| (-705 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-4391 (((-2 (|:| |num| (-1292 |#2|)) (|:| |den| |#2|)) $) 68)) (-1395 (((-1292 $)) 47)) (-2627 (((-1292 $)) 46)) (-1384 (((-112) $) NIL)) (-1372 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-1709 (($) NIL (|has| (-420 |#2|) (-361)) CONST)) (-3222 (($ (-944)) NIL (|has| (-420 |#2|) (-380)))) (-4350 (((-3 |#2| "failed")) NIL)) (-1474 (((-1145) $) NIL)) (-1497 (((-787)) NIL)) (-4101 (($) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| (-420 |#2|) (-375)))) (-3480 (($ (-660 $)) NIL (|has| (-420 |#2|) (-375))) (($ $ $) NIL (|has| (-420 |#2|) (-375)))) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) NIL (|has| (-420 |#2|) (-361)))) (-1902 (((-431 $) $) NIL (|has| (-420 |#2|) (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-420 |#2|) (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| (-420 |#2|) (-375)))) (-3462 (((-3 $ "failed") $ $) NIL (|has| (-420 |#2|) (-375)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| (-420 |#2|) (-375)))) (-1927 (((-787) $) NIL (|has| (-420 |#2|) (-375)))) (-2872 ((|#1| $ |#1| |#1|) NIL)) (-4360 (((-3 |#2| "failed")) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| (-420 |#2|) (-375)))) (-1827 (((-420 |#2|) (-1292 $)) NIL) (((-420 |#2|)) 44)) (-3243 (((-787) $) NIL (|has| (-420 |#2|) (-361))) (((-3 (-787) "failed") $ $) NIL (|has| (-420 |#2|) (-361)))) (-2852 (($ $ (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375))) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-787)) NIL (|has| (-420 |#2|) (-375))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2839 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))))) (($ $ (-1201) (-787)) NIL (-2839 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))))) (($ $ (-660 (-1201))) NIL (-2839 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))))) (($ $ (-787)) NIL (-2839 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361)))) (($ $) NIL (-2839 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))))) (-2478 (((-705 (-420 |#2|)) (-1292 $) (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)))) (-3557 ((|#3|) 55)) (-1585 (($) NIL (|has| (-420 |#2|) (-361)))) (-2710 (((-1292 (-420 |#2|)) $ (-1292 $)) NIL) (((-705 (-420 |#2|)) (-1292 $) (-1292 $)) NIL) (((-1292 (-420 |#2|)) $) 62) (((-705 (-420 |#2|)) (-1292 $)) 107)) (-4152 (((-1292 (-420 |#2|)) $) NIL) (($ (-1292 (-420 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| (-420 |#2|) (-361)))) (-1359 (((-1292 $) (-1292 $)) NIL)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ (-420 |#2|)) NIL) (($ (-420 (-577))) NIL (-2839 (|has| (-420 |#2|) (-1063 (-420 (-577)))) (|has| (-420 |#2|) (-375)))) (($ $) NIL (|has| (-420 |#2|) (-375)))) (-2233 (($ $) NIL (|has| (-420 |#2|) (-361))) (((-3 $ "failed") $) NIL (|has| (-420 |#2|) (-146)))) (-3974 ((|#3| $) NIL)) (-4068 (((-787)) NIL T CONST)) (-1462 (((-112)) 42)) (-1450 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) NIL)) (-3281 (((-112) $ $) NIL (|has| (-420 |#2|) (-375)))) (-4338 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1486 (((-112)) NIL)) (-2806 (($) 17 T CONST)) (-2816 (($) 27 T CONST)) (-2132 (($ $ (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375))) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-787)) NIL (|has| (-420 |#2|) (-375))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2839 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))))) (($ $ (-1201) (-787)) NIL (-2839 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))))) (($ $ (-660 (-1201))) NIL (-2839 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))))) (($ $ (-787)) NIL (-2839 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361)))) (($ $) NIL (-2839 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))))) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL (|has| (-420 |#2|) (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL (|has| (-420 |#2|) (-375)))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 |#2|)) NIL) (($ (-420 |#2|) $) NIL) (($ (-420 (-577)) $) NIL (|has| (-420 |#2|) (-375))) (($ $ (-420 (-577))) NIL (|has| (-420 |#2|) (-375))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-354 |#1| |#2| |#3|) (-10 -7 (-15 -3863 ((-1297) (-787))))) (-375) (-1268 |#1|) (-1268 (-420 |#2|)) |#3|) (T -40)) +((-3863 (*1 *2 *3) (-12 (-5 *3 (-787)) (-4 *4 (-375)) (-4 *5 (-1268 *4)) (-5 *2 (-1297)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1268 (-420 *5))) (-14 *7 *6)))) +(-13 (-354 |#1| |#2| |#3|) (-10 -7 (-15 -3863 ((-1297) (-787))))) +((-3874 ((|#2| |#2|) 47)) (-3932 ((|#2| |#2|) 139 (-12 (|has| |#2| (-443 |#1|)) (|has| |#1| (-13 (-465) (-1063 (-577))))))) (-3920 ((|#2| |#2|) 100 (-12 (|has| |#2| (-443 |#1|)) (|has| |#1| (-13 (-465) (-1063 (-577))))))) (-3909 ((|#2| |#2|) 101 (-12 (|has| |#2| (-443 |#1|)) (|has| |#1| (-13 (-465) (-1063 (-577))))))) (-3944 ((|#2| (-115) |#2| (-787)) 135 (-12 (|has| |#2| (-443 |#1|)) (|has| |#1| (-13 (-465) (-1063 (-577))))))) (-3896 (((-1197 |#2|) |#2|) 44)) (-3885 ((|#2| |#2| (-660 (-625 |#2|))) 18) ((|#2| |#2| (-660 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -3874 (|#2| |#2|)) (-15 -3885 (|#2| |#2|)) (-15 -3885 (|#2| |#2| |#2|)) (-15 -3885 (|#2| |#2| (-660 |#2|))) (-15 -3885 (|#2| |#2| (-660 (-625 |#2|)))) (-15 -3896 ((-1197 |#2|) |#2|)) (IF (|has| |#1| (-13 (-465) (-1063 (-577)))) (IF (|has| |#2| (-443 |#1|)) (PROGN (-15 -3909 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -3932 (|#2| |#2|)) (-15 -3944 (|#2| (-115) |#2| (-787)))) |%noBranch|) |%noBranch|)) (-569) (-13 (-375) (-313) (-10 -8 (-15 -1623 ((-1150 |#1| (-625 $)) $)) (-15 -1637 ((-1150 |#1| (-625 $)) $)) (-15 -3544 ($ (-1150 |#1| (-625 $))))))) (T -41)) +((-3944 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-787)) (-4 *5 (-13 (-465) (-1063 (-577)))) (-4 *5 (-569)) (-5 *1 (-41 *5 *2)) (-4 *2 (-443 *5)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -1623 ((-1150 *5 (-625 $)) $)) (-15 -1637 ((-1150 *5 (-625 $)) $)) (-15 -3544 ($ (-1150 *5 (-625 $))))))))) (-3932 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -1623 ((-1150 *3 (-625 $)) $)) (-15 -1637 ((-1150 *3 (-625 $)) $)) (-15 -3544 ($ (-1150 *3 (-625 $))))))))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -1623 ((-1150 *3 (-625 $)) $)) (-15 -1637 ((-1150 *3 (-625 $)) $)) (-15 -3544 ($ (-1150 *3 (-625 $))))))))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -1623 ((-1150 *3 (-625 $)) $)) (-15 -1637 ((-1150 *3 (-625 $)) $)) (-15 -3544 ($ (-1150 *3 (-625 $))))))))) (-3896 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-1197 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-375) (-313) (-10 -8 (-15 -1623 ((-1150 *4 (-625 $)) $)) (-15 -1637 ((-1150 *4 (-625 $)) $)) (-15 -3544 ($ (-1150 *4 (-625 $))))))))) (-3885 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-625 *2))) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -1623 ((-1150 *4 (-625 $)) $)) (-15 -1637 ((-1150 *4 (-625 $)) $)) (-15 -3544 ($ (-1150 *4 (-625 $))))))) (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) (-3885 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -1623 ((-1150 *4 (-625 $)) $)) (-15 -1637 ((-1150 *4 (-625 $)) $)) (-15 -3544 ($ (-1150 *4 (-625 $))))))) (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) (-3885 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -1623 ((-1150 *3 (-625 $)) $)) (-15 -1637 ((-1150 *3 (-625 $)) $)) (-15 -3544 ($ (-1150 *3 (-625 $))))))))) (-3885 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -1623 ((-1150 *3 (-625 $)) $)) (-15 -1637 ((-1150 *3 (-625 $)) $)) (-15 -3544 ($ (-1150 *3 (-625 $))))))))) (-3874 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-375) (-313) (-10 -8 (-15 -1623 ((-1150 *3 (-625 $)) $)) (-15 -1637 ((-1150 *3 (-625 $)) $)) (-15 -3544 ($ (-1150 *3 (-625 $)))))))))) +(-10 -7 (-15 -3874 (|#2| |#2|)) (-15 -3885 (|#2| |#2|)) (-15 -3885 (|#2| |#2| |#2|)) (-15 -3885 (|#2| |#2| (-660 |#2|))) (-15 -3885 (|#2| |#2| (-660 (-625 |#2|)))) (-15 -3896 ((-1197 |#2|) |#2|)) (IF (|has| |#1| (-13 (-465) (-1063 (-577)))) (IF (|has| |#2| (-443 |#1|)) (PROGN (-15 -3909 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -3932 (|#2| |#2|)) (-15 -3944 (|#2| (-115) |#2| (-787)))) |%noBranch|) |%noBranch|)) +((-1902 (((-431 (-1197 |#3|)) (-1197 |#3|) (-660 (-48))) 23) (((-431 |#3|) |#3| (-660 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1902 ((-431 |#3|) |#3| (-660 (-48)))) (-15 -1902 ((-431 (-1197 |#3|)) (-1197 |#3|) (-660 (-48))))) (-865) (-809) (-972 (-48) |#2| |#1|)) (T -42)) +((-1902 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-48))) (-4 *5 (-865)) (-4 *6 (-809)) (-4 *7 (-972 (-48) *6 *5)) (-5 *2 (-431 (-1197 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1197 *7)))) (-1902 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-48))) (-4 *5 (-865)) (-4 *6 (-809)) (-5 *2 (-431 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-972 (-48) *6 *5))))) +(-10 -7 (-15 -1902 ((-431 |#3|) |#3| (-660 (-48)))) (-15 -1902 ((-431 (-1197 |#3|)) (-1197 |#3|) (-660 (-48))))) +((-4069 (((-787) |#2|) 70)) (-3964 (((-787) |#2|) 74)) (-2411 (((-660 |#2|)) 37)) (-3957 (((-787) |#2|) 73)) (-3980 (((-787) |#2|) 69)) (-4081 (((-787) |#2|) 72)) (-2392 (((-660 (-705 |#1|))) 65)) (-2344 (((-660 |#2|)) 60)) (-2323 (((-660 |#2|) |#2|) 48)) (-2363 (((-660 |#2|)) 62)) (-2353 (((-660 |#2|)) 61)) (-2383 (((-660 (-705 |#1|))) 53)) (-2334 (((-660 |#2|)) 59)) (-1861 (((-660 |#2|) |#2|) 47)) (-1849 (((-660 |#2|)) 55)) (-2402 (((-660 (-705 |#1|))) 66)) (-2372 (((-660 |#2|)) 64)) (-4060 (((-1292 |#2|) (-1292 |#2|)) 99 (|has| |#1| (-318))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -3957 ((-787) |#2|)) (-15 -3964 ((-787) |#2|)) (-15 -3980 ((-787) |#2|)) (-15 -4069 ((-787) |#2|)) (-15 -4081 ((-787) |#2|)) (-15 -1849 ((-660 |#2|))) (-15 -1861 ((-660 |#2|) |#2|)) (-15 -2323 ((-660 |#2|) |#2|)) (-15 -2334 ((-660 |#2|))) (-15 -2344 ((-660 |#2|))) (-15 -2353 ((-660 |#2|))) (-15 -2363 ((-660 |#2|))) (-15 -2372 ((-660 |#2|))) (-15 -2383 ((-660 (-705 |#1|)))) (-15 -2392 ((-660 (-705 |#1|)))) (-15 -2402 ((-660 (-705 |#1|)))) (-15 -2411 ((-660 |#2|))) (IF (|has| |#1| (-318)) (-15 -4060 ((-1292 |#2|) (-1292 |#2|))) |%noBranch|)) (-569) (-430 |#1|)) (T -43)) +((-4060 (*1 *2 *2) (-12 (-5 *2 (-1292 *4)) (-4 *4 (-430 *3)) (-4 *3 (-318)) (-4 *3 (-569)) (-5 *1 (-43 *3 *4)))) (-2411 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2402 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 (-705 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2392 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 (-705 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2383 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 (-705 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2372 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2363 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2353 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2344 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2334 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-2323 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1861 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1849 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-4081 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-4069 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-3980 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-3964 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-3957 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) +(-10 -7 (-15 -3957 ((-787) |#2|)) (-15 -3964 ((-787) |#2|)) (-15 -3980 ((-787) |#2|)) (-15 -4069 ((-787) |#2|)) (-15 -4081 ((-787) |#2|)) (-15 -1849 ((-660 |#2|))) (-15 -1861 ((-660 |#2|) |#2|)) (-15 -2323 ((-660 |#2|) |#2|)) (-15 -2334 ((-660 |#2|))) (-15 -2344 ((-660 |#2|))) (-15 -2353 ((-660 |#2|))) (-15 -2363 ((-660 |#2|))) (-15 -2372 ((-660 |#2|))) (-15 -2383 ((-660 (-705 |#1|)))) (-15 -2392 ((-660 (-705 |#1|)))) (-15 -2402 ((-660 (-705 |#1|)))) (-15 -2411 ((-660 |#2|))) (IF (|has| |#1| (-318)) (-15 -4060 ((-1292 |#2|) (-1292 |#2|))) |%noBranch|)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3294 (((-3 $ "failed")) NIL (|has| |#1| (-569)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-2700 (((-1292 (-705 |#1|)) (-1292 $)) NIL) (((-1292 (-705 |#1|))) 24)) (-4043 (((-1292 $)) 52)) (-1534 (($) NIL T CONST)) (-2364 (((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed")) NIL (|has| |#1| (-569)))) (-3741 (((-3 $ "failed")) NIL (|has| |#1| (-569)))) (-3457 (((-705 |#1|) (-1292 $)) NIL) (((-705 |#1|)) NIL)) (-4022 ((|#1| $) NIL)) (-3436 (((-705 |#1|) $ (-1292 $)) NIL) (((-705 |#1|) $) NIL)) (-3584 (((-3 $ "failed") $) NIL (|has| |#1| (-569)))) (-2304 (((-1197 (-975 |#1|))) NIL (|has| |#1| (-375)))) (-2470 (($ $ (-944)) NIL)) (-3999 ((|#1| $) NIL)) (-3762 (((-1197 |#1|) $) NIL (|has| |#1| (-569)))) (-3478 ((|#1| (-1292 $)) NIL) ((|#1|) NIL)) (-3976 (((-1197 |#1|) $) NIL)) (-3905 (((-112)) 99)) (-3502 (($ (-1292 |#1|) (-1292 $)) NIL) (($ (-1292 |#1|)) NIL)) (-4187 (((-3 $ "failed") $) 14 (|has| |#1| (-569)))) (-1545 (((-944)) 53)) (-3870 (((-112)) NIL)) (-2667 (($ $ (-944)) NIL)) (-3824 (((-112)) NIL)) (-3799 (((-112)) NIL)) (-3847 (((-112)) 101)) (-2373 (((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed")) NIL (|has| |#1| (-569)))) (-3751 (((-3 $ "failed")) NIL (|has| |#1| (-569)))) (-3467 (((-705 |#1|) (-1292 $)) NIL) (((-705 |#1|)) NIL)) (-4032 ((|#1| $) NIL)) (-3445 (((-705 |#1|) $ (-1292 $)) NIL) (((-705 |#1|) $) NIL)) (-3593 (((-3 $ "failed") $) NIL (|has| |#1| (-569)))) (-2345 (((-1197 (-975 |#1|))) NIL (|has| |#1| (-375)))) (-3604 (($ $ (-944)) NIL)) (-4012 ((|#1| $) NIL)) (-3774 (((-1197 |#1|) $) NIL (|has| |#1| (-569)))) (-3490 ((|#1| (-1292 $)) NIL) ((|#1|) NIL)) (-3987 (((-1197 |#1|) $) NIL)) (-3916 (((-112)) 98)) (-2810 (((-1183) $) NIL)) (-3812 (((-112)) 106)) (-3836 (((-112)) 105)) (-3859 (((-112)) 107)) (-1474 (((-1145) $) NIL)) (-3892 (((-112)) 100)) (-2872 ((|#1| $ (-577)) 55)) (-2710 (((-1292 |#1|) $ (-1292 $)) 48) (((-705 |#1|) (-1292 $) (-1292 $)) NIL) (((-1292 |#1|) $) 28) (((-705 |#1|) (-1292 $)) NIL)) (-4152 (((-1292 |#1|) $) NIL) (($ (-1292 |#1|)) NIL)) (-2206 (((-660 (-975 |#1|)) (-1292 $)) NIL) (((-660 (-975 |#1|))) NIL)) (-3820 (($ $ $) NIL)) (-3965 (((-112)) 95)) (-3544 (((-880) $) 71) (($ (-1292 |#1|)) 22)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) 51)) (-3786 (((-660 (-1292 |#1|))) NIL (|has| |#1| (-569)))) (-3832 (($ $ $ $) NIL)) (-3940 (((-112)) 91)) (-3543 (($ (-705 |#1|) $) 18)) (-3807 (($ $ $) NIL)) (-3953 (((-112)) 97)) (-3928 (((-112)) 92)) (-3881 (((-112)) 90)) (-2806 (($) NIL T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1167 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-430 |#1|) (-664 (-1167 |#2| |#1|)) (-10 -8 (-15 -3544 ($ (-1292 |#1|))))) (-375) (-944) (-660 (-1201)) (-1292 (-705 |#1|))) (T -44)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-375)) (-14 *6 (-1292 (-705 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-944)) (-14 *5 (-660 (-1201)))))) +(-13 (-430 |#1|) (-664 (-1167 |#2| |#1|)) (-10 -8 (-15 -3544 ($ (-1292 |#1|))))) +((-3473 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-3115 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-2950 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-4428 (($ $) NIL)) (-4100 (($) NIL) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-2389 (((-1297) $ |#1| |#1|) NIL (|has| $ (-6 -4471))) (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-3933 (($ $ (-577)) NIL (|has| $ (-6 -4471)))) (-4077 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-4053 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4471))) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865))))) (-1864 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-3828 (((-112) $ (-787)) NIL)) (-4374 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (|has| $ (-6 -4471)))) (-3958 (($ $ $) 33 (|has| $ (-6 -4471)))) (-3945 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (|has| $ (-6 -4471)))) (-3969 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 35 (|has| $ (-6 -4471)))) (-3709 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-577) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (|has| $ (-6 -4471))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-1259 (-577)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (|has| $ (-6 -4471))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ "last" (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (|has| $ (-6 -4471))) (($ $ "rest" $) NIL (|has| $ (-6 -4471))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ "first" (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (|has| $ (-6 -4471))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ "value" (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)))) (-2463 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL)) (-2067 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2939 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-2325 (((-3 |#2| "failed") |#1| $) 43)) (-1534 (($) NIL T CONST)) (-3645 (($ $) NIL (|has| $ (-6 -4471)))) (-3787 (($ $) NIL)) (-3563 (($ $ (-787)) NIL) (($ $) 29)) (-3215 (($ $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))))) (-3719 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (|has| $ (-6 -4470))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL) (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (-3904 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-3654 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (|has| $ (-6 -4470))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (|has| $ (-6 -4470))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2192 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4471))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-577) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (|has| $ (-6 -4471)))) (-2117 ((|#2| $ |#1|) NIL) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-577)) NIL)) (-3998 (((-112) $) NIL)) (-3618 (((-577) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL) (((-577) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))) (((-577) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-577)) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (-1461 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 20 (|has| $ (-6 -4470))) (((-660 |#2|) $) NIL (|has| $ (-6 -4470))) (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 20 (|has| $ (-6 -4470)))) (-4426 (((-660 $) $) NIL)) (-4394 (((-112) $ $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (-4113 (($ (-787) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2406 ((|#1| $) NIL (|has| |#1| (-865))) (((-577) $) 38 (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-3192 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-3283 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-2530 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-660 |#2|) $) NIL (|has| $ (-6 -4470))) (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125)))) (((-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))))) (-2416 ((|#1| $) NIL (|has| |#1| (-865))) (((-577) $) 40 (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-2182 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4471))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471))) (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL)) (-1712 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2461 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL)) (-3371 (((-112) $) NIL)) (-2810 (((-1183) $) 49 (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| |#2| (-1125))))) (-3927 (($ $ (-787)) NIL) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-3203 (((-660 |#1|) $) 22)) (-4317 (((-112) |#1| $) NIL)) (-4330 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-2881 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL) (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-577)) NIL) (($ $ $ (-577)) NIL)) (-2308 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-577)) NIL) (($ $ $ (-577)) NIL)) (-4285 (((-660 |#1|) $) NIL) (((-660 (-577)) $) NIL)) (-4298 (((-112) |#1| $) NIL) (((-112) (-577) $) NIL)) (-1474 (((-1145) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| |#2| (-1125))))) (-3552 ((|#2| $) NIL (|has| |#1| (-865))) (($ $ (-787)) NIL) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 27)) (-1828 (((-3 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) "failed") (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL) (((-3 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) "failed") (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL)) (-2397 (($ $ |#2|) NIL (|has| $ (-6 -4471))) (($ $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (|has| $ (-6 -4471)))) (-3530 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-4010 (((-112) $) NIL)) (-1514 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125)))) (((-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))))) (-4306 (((-660 |#2|) $) NIL) (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 19)) (-3697 (((-112) $) 18)) (-3639 (($) 14)) (-2872 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-577) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ (-577)) NIL) (($ $ (-1259 (-577))) NIL) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ "first") NIL) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $ "value") NIL)) (-4415 (((-577) $ $) NIL)) (-3736 (($) 13) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-2472 (($ $ (-577)) NIL) (($ $ (-1259 (-577))) NIL)) (-3453 (($ $ (-577)) NIL) (($ $ (-1259 (-577))) NIL)) (-1885 (((-112) $) NIL)) (-4004 (($ $) NIL)) (-3981 (($ $) NIL (|has| $ (-6 -4471)))) (-4016 (((-787) $) NIL)) (-4026 (($ $) NIL)) (-1485 (((-787) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-787) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125)))) (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470))) (((-787) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-787) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-4064 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-627 (-549))))) (-3553 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-3992 (($ $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL) (($ $ $) NIL)) (-1677 (($ $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL) (($ (-660 $)) NIL) (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 31) (($ $ $) NIL)) (-3544 (((-880) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-626 (-880))) (|has| |#2| (-626 (-880)))))) (-3322 (((-660 $) $) NIL)) (-4405 (((-112) $ $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (-4448 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-3541 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-3939 (((-3 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) "failed") |#1| $) 51)) (-1524 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-3000 (((-112) $ $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-2970 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-3012 (((-112) $ $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-2990 (((-112) $ $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-865)))) (-3484 (((-787) $) 25 (|has| $ (-6 -4470))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1125) (-1125)) (T -45)) NIL (-36 |#1| |#2|) -((-3157 (((-112) $) 12)) (-4083 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-419 (-576)) $) 25) (($ $ (-419 (-576))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3157 ((-112) |#1|)) (-15 -4083 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) (-47 |#2| |#3|) (-1071) (-805)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3157 ((-112) |#1|)) (-15 -4083 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-3325 (($ $) 64 (|has| |#1| (-568)))) (-4306 (((-112) $) 66 (|has| |#1| (-568)))) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2212 (($ $) 72)) (-3843 (((-3 $ "failed") $) 37)) (-4094 (((-112) $) 35)) (-3157 (((-112) $) 74)) (-2003 (($ |#1| |#2|) 73)) (-4083 (($ (-1 |#1| |#1|) $) 75)) (-2174 (($ $) 77)) (-2186 ((|#1| $) 78)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3418 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1770 ((|#2| $) 76)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2313 ((|#1| $ |#2|) 71)) (-3096 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3034 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-47 |#1| |#2|) (-141) (-1071) (-805)) (T -47)) -((-2186 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071)))) (-2174 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) (-4083 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) (-5 *2 (-112)))) (-2003 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)))) (-2212 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)))) (-2313 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071)))) (-3034 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)) (-4 *2 (-374))))) -(-13 (-1071) (-111 |t#1| |t#1|) (-10 -8 (-15 -2186 (|t#1| $)) (-15 -2174 ($ $)) (-15 -1770 (|t#2| $)) (-15 -4083 ($ (-1 |t#1| |t#1|) $)) (-15 -3157 ((-112) $)) (-15 -2003 ($ |t#1| |t#2|)) (-15 -2212 ($ $)) (-15 -2313 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-374)) (-15 -3034 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-568)) (-6 (-568)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-6 (-38 (-419 (-576)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-877)) . T) ((-174) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-659 #0#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) |has| |#1| (-38 (-419 (-576)))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) |has| |#1| (-568)) ((-730 #0#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) |has| |#1| (-568)) ((-739) . T) ((-1073 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1078 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-3128 (((-657 $) (-1194 $) (-1198)) NIL) (((-657 $) (-1194 $)) NIL) (((-657 $) (-972 $)) NIL)) (-1911 (($ (-1194 $) (-1198)) NIL) (($ (-1194 $)) NIL) (($ (-972 $)) NIL)) (-2364 (((-112) $) 9)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3946 (((-657 (-624 $)) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4054 (($ $ (-304 $)) NIL) (($ $ (-657 (-304 $))) NIL) (($ $ (-657 (-624 $)) (-657 $)) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-1896 (($ $) NIL)) (-2864 (((-112) $ $) NIL)) (-4359 (($) NIL T CONST)) (-2708 (((-657 $) (-1194 $) (-1198)) NIL) (((-657 $) (-1194 $)) NIL) (((-657 $) (-972 $)) NIL)) (-3564 (($ (-1194 $) (-1198)) NIL) (($ (-1194 $)) NIL) (($ (-972 $)) NIL)) (-1624 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2884 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-3373 (($ $ $) NIL)) (-3306 (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-702 (-576)) (-702 $)) NIL) (((-2 (|:| -3750 (-702 (-419 (-576)))) (|:| |vec| (-1289 (-419 (-576))))) (-702 $) (-1289 $)) NIL) (((-702 (-419 (-576))) (-702 $)) NIL)) (-3622 (($ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-2887 (($ $) NIL) (($ (-657 $)) NIL)) (-1784 (((-657 (-115)) $) NIL)) (-1832 (((-115) (-115)) NIL)) (-4094 (((-112) $) 11)) (-2320 (((-112) $) NIL (|has| $ (-1060 (-576))))) (-1621 (((-1147 (-576) (-624 $)) $) NIL)) (-2082 (($ $ (-576)) NIL)) (-2234 (((-1194 $) (-1194 $) (-624 $)) NIL) (((-1194 $) (-1194 $) (-657 (-624 $))) NIL) (($ $ (-624 $)) NIL) (($ $ (-657 (-624 $))) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4153 (((-1194 $) (-624 $)) NIL (|has| $ (-1071)))) (-4083 (($ (-1 $ $) (-624 $)) NIL)) (-3398 (((-3 (-624 $) "failed") $) NIL)) (-3101 (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL) (((-702 (-576)) (-1289 $)) NIL) (((-2 (|:| -3750 (-702 (-419 (-576)))) (|:| |vec| (-1289 (-419 (-576))))) (-1289 $) $) NIL) (((-702 (-419 (-576))) (-1289 $)) NIL)) (-3402 (($ (-657 $)) NIL) (($ $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1817 (((-657 (-624 $)) $) NIL)) (-1699 (($ (-115) $) NIL) (($ (-115) (-657 $)) NIL)) (-4412 (((-112) $ (-115)) NIL) (((-112) $ (-1198)) NIL)) (-2134 (($ $) NIL)) (-2404 (((-784) $) NIL)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ (-657 $)) NIL) (($ $ $) NIL)) (-3698 (((-112) $ $) NIL) (((-112) $ (-1198)) NIL)) (-1885 (((-430 $) $) NIL)) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3593 (((-112) $) NIL (|has| $ (-1060 (-576))))) (-3236 (($ $ (-624 $) $) NIL) (($ $ (-657 (-624 $)) (-657 $)) NIL) (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ $))) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-1198) (-1 $ (-657 $))) NIL) (($ $ (-1198) (-1 $ $)) NIL) (($ $ (-657 (-115)) (-657 (-1 $ $))) NIL) (($ $ (-657 (-115)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-115) (-1 $ (-657 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2034 (((-784) $) NIL)) (-2835 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-657 $)) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2445 (($ $) NIL) (($ $ $) NIL)) (-2815 (($ $) NIL) (($ $ (-784)) NIL)) (-1635 (((-1147 (-576) (-624 $)) $) NIL)) (-3180 (($ $) NIL (|has| $ (-1071)))) (-4148 (((-390) $) NIL) (((-227) $) NIL) (((-171 (-390)) $) NIL)) (-3501 (((-877) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1147 (-576) (-624 $))) NIL)) (-1960 (((-784)) NIL T CONST)) (-2139 (($ $) NIL) (($ (-657 $)) NIL)) (-4159 (((-112) (-115)) NIL)) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-2769 (($) 6 T CONST)) (-2779 (($) 10 T CONST)) (-2097 (($ $) NIL) (($ $ (-784)) NIL)) (-2933 (((-112) $ $) 13)) (-3034 (($ $ $) NIL)) (-3022 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) NIL) (($ $ (-784)) NIL) (($ $ (-941)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-784) $) NIL) (($ (-941) $) NIL))) -(((-48) (-13 (-312) (-27) (-1060 (-576)) (-1060 (-419 (-576))) (-652 (-576)) (-1044) (-652 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3501 ($ (-1147 (-576) (-624 $)))) (-15 -1621 ((-1147 (-576) (-624 $)) $)) (-15 -1635 ((-1147 (-576) (-624 $)) $)) (-15 -3622 ($ $)) (-15 -2234 ((-1194 $) (-1194 $) (-624 $))) (-15 -2234 ((-1194 $) (-1194 $) (-657 (-624 $)))) (-15 -2234 ($ $ (-624 $))) (-15 -2234 ($ $ (-657 (-624 $))))))) (T -48)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1147 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-1147 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-1635 (*1 *2 *1) (-12 (-5 *2 (-1147 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-3622 (*1 *1 *1) (-5 *1 (-48))) (-2234 (*1 *2 *2 *3) (-12 (-5 *2 (-1194 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) (-2234 (*1 *2 *2 *3) (-12 (-5 *2 (-1194 (-48))) (-5 *3 (-657 (-624 (-48)))) (-5 *1 (-48)))) (-2234 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) (-2234 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-624 (-48)))) (-5 *1 (-48))))) -(-13 (-312) (-27) (-1060 (-576)) (-1060 (-419 (-576))) (-652 (-576)) (-1044) (-652 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3501 ($ (-1147 (-576) (-624 $)))) (-15 -1621 ((-1147 (-576) (-624 $)) $)) (-15 -1635 ((-1147 (-576) (-624 $)) $)) (-15 -3622 ($ $)) (-15 -2234 ((-1194 $) (-1194 $) (-624 $))) (-15 -2234 ((-1194 $) (-1194 $) (-657 (-624 $)))) (-15 -2234 ($ $ (-624 $))) (-15 -2234 ($ $ (-657 (-624 $)))))) -((-3429 (((-112) $ $) NIL)) (-2200 (((-657 (-518)) $) 17)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 7)) (-2687 (((-1203) $) 18)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-49) (-13 (-1122) (-10 -8 (-15 -2200 ((-657 (-518)) $)) (-15 -2687 ((-1203) $))))) (T -49)) -((-2200 (*1 *2 *1) (-12 (-5 *2 (-657 (-518))) (-5 *1 (-49)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-1203)) (-5 *1 (-49))))) -(-13 (-1122) (-10 -8 (-15 -2200 ((-657 (-518)) $)) (-15 -2687 ((-1203) $)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 85)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-2991 (((-112) $) 30)) (-1624 (((-3 |#1| "failed") $) 33)) (-2884 ((|#1| $) 34)) (-2212 (($ $) 40)) (-3843 (((-3 $ "failed") $) NIL)) (-4094 (((-112) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-2186 ((|#1| $) 31)) (-1725 (($ $) 74)) (-2342 (((-1180) $) NIL)) (-2717 (((-112) $) 43)) (-1471 (((-1142) $) NIL)) (-4097 (($ (-784)) 72)) (-4067 (($ (-657 (-576))) 73)) (-1770 (((-784) $) 44)) (-3501 (((-877) $) 91) (($ (-576)) 69) (($ |#1|) 67)) (-2313 ((|#1| $ $) 28)) (-1960 (((-784)) 71 T CONST)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 45 T CONST)) (-2779 (($) 17 T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 64)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ |#1| $) 58))) -(((-50 |#1| |#2|) (-13 (-632 |#1|) (-1060 |#1|) (-10 -8 (-15 -2186 (|#1| $)) (-15 -1725 ($ $)) (-15 -2212 ($ $)) (-15 -2313 (|#1| $ $)) (-15 -4097 ($ (-784))) (-15 -4067 ($ (-657 (-576)))) (-15 -2717 ((-112) $)) (-15 -2991 ((-112) $)) (-15 -1770 ((-784) $)) (-15 -4083 ($ (-1 |#1| |#1|) $)))) (-1071) (-657 (-1198))) (T -50)) -((-2186 (*1 *2 *1) (-12 (-4 *2 (-1071)) (-5 *1 (-50 *2 *3)) (-14 *3 (-657 (-1198))))) (-1725 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1071)) (-14 *3 (-657 (-1198))))) (-2212 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1071)) (-14 *3 (-657 (-1198))))) (-2313 (*1 *2 *1 *1) (-12 (-4 *2 (-1071)) (-5 *1 (-50 *2 *3)) (-14 *3 (-657 (-1198))))) (-4097 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) (-14 *4 (-657 (-1198))))) (-4067 (*1 *1 *2) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) (-14 *4 (-657 (-1198))))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) (-14 *4 (-657 (-1198))))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) (-14 *4 (-657 (-1198))))) (-1770 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) (-14 *4 (-657 (-1198))))) (-4083 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-50 *3 *4)) (-14 *4 (-657 (-1198)))))) -(-13 (-632 |#1|) (-1060 |#1|) (-10 -8 (-15 -2186 (|#1| $)) (-15 -1725 ($ $)) (-15 -2212 ($ $)) (-15 -2313 (|#1| $ $)) (-15 -4097 ($ (-784))) (-15 -4067 ($ (-657 (-576)))) (-15 -2717 ((-112) $)) (-15 -2991 ((-112) $)) (-15 -1770 ((-784) $)) (-15 -4083 ($ (-1 |#1| |#1|) $)))) -((-2991 (((-112) (-52)) 18)) (-1624 (((-3 |#1| "failed") (-52)) 20)) (-2884 ((|#1| (-52)) 21)) (-3501 (((-52) |#1|) 14))) -(((-51 |#1|) (-10 -7 (-15 -3501 ((-52) |#1|)) (-15 -1624 ((-3 |#1| "failed") (-52))) (-15 -2991 ((-112) (-52))) (-15 -2884 (|#1| (-52)))) (-1239)) (T -51)) -((-2884 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1239)))) (-2991 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1239)))) (-1624 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1239)))) (-3501 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1239))))) -(-10 -7 (-15 -3501 ((-52) |#1|)) (-15 -1624 ((-3 |#1| "failed") (-52))) (-15 -2991 ((-112) (-52))) (-15 -2884 (|#1| (-52)))) -((-3429 (((-112) $ $) NIL)) (-3987 (((-787) $) 8)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-4425 (((-1126) $) 10)) (-3501 (((-877) $) 15)) (-2046 (((-112) $ $) NIL)) (-4426 (($ (-1126) (-787)) 16)) (-2933 (((-112) $ $) 12))) -(((-52) (-13 (-1122) (-10 -8 (-15 -4426 ($ (-1126) (-787))) (-15 -4425 ((-1126) $)) (-15 -3987 ((-787) $))))) (T -52)) -((-4426 (*1 *1 *2 *3) (-12 (-5 *2 (-1126)) (-5 *3 (-787)) (-5 *1 (-52)))) (-4425 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-52)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-52))))) -(-13 (-1122) (-10 -8 (-15 -4426 ($ (-1126) (-787))) (-15 -4425 ((-1126) $)) (-15 -3987 ((-787) $)))) -((-3500 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3500 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1071) (-661 |#1|) (-867 |#1|)) (T -53)) -((-3500 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-661 *5)) (-4 *5 (-1071)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-867 *5))))) -(-10 -7 (-15 -3500 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-2192 ((|#3| |#3| (-657 (-1198))) 44)) (-4071 ((|#3| (-657 (-1098 |#1| |#2| |#3|)) |#3| (-941)) 32) ((|#3| (-657 (-1098 |#1| |#2| |#3|)) |#3|) 31))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -4071 (|#3| (-657 (-1098 |#1| |#2| |#3|)) |#3|)) (-15 -4071 (|#3| (-657 (-1098 |#1| |#2| |#3|)) |#3| (-941))) (-15 -2192 (|#3| |#3| (-657 (-1198))))) (-1122) (-13 (-1071) (-902 |#1|) (-626 (-908 |#1|))) (-13 (-442 |#2|) (-902 |#1|) (-626 (-908 |#1|)))) (T -54)) -((-2192 (*1 *2 *2 *3) (-12 (-5 *3 (-657 (-1198))) (-4 *4 (-1122)) (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))))) (-4071 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-657 (-1098 *5 *6 *2))) (-5 *4 (-941)) (-4 *5 (-1122)) (-4 *6 (-13 (-1071) (-902 *5) (-626 (-908 *5)))) (-4 *2 (-13 (-442 *6) (-902 *5) (-626 (-908 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-4071 (*1 *2 *3 *2) (-12 (-5 *3 (-657 (-1098 *4 *5 *2))) (-4 *4 (-1122)) (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -4071 (|#3| (-657 (-1098 |#1| |#2| |#3|)) |#3|)) (-15 -4071 (|#3| (-657 (-1098 |#1| |#2| |#3|)) |#3| (-941))) (-15 -2192 (|#3| |#3| (-657 (-1198))))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 14)) (-1624 (((-3 (-784) "failed") $) 34)) (-2884 (((-784) $) NIL)) (-4094 (((-112) $) 16)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) 18)) (-3501 (((-877) $) 23) (($ (-784)) 29)) (-2046 (((-112) $ $) NIL)) (-3993 (($) 11 T CONST)) (-2933 (((-112) $ $) 20))) -(((-55) (-13 (-1122) (-1060 (-784)) (-10 -8 (-15 -3993 ($) -1509) (-15 -2364 ((-112) $)) (-15 -4094 ((-112) $))))) (T -55)) -((-3993 (*1 *1) (-5 *1 (-55))) (-2364 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-4094 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) -(-13 (-1122) (-1060 (-784)) (-10 -8 (-15 -3993 ($) -1509) (-15 -2364 ((-112) $)) (-15 -4094 ((-112) $)))) -((-3793 (((-112) $ (-784)) 27)) (-3779 (($ $ (-576) |#3|) 66)) (-3726 (($ $ (-576) |#4|) 70)) (-2911 ((|#3| $ (-576)) 79)) (-1458 (((-657 |#2|) $) 47)) (-1833 (((-112) $ (-784)) 31)) (-1627 (((-112) |#2| $) 74)) (-2148 (($ (-1 |#2| |#2|) $) 55)) (-4083 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-4261 (((-112) $ (-784)) 29)) (-1987 (($ $ |#2|) 52)) (-3399 (((-112) (-1 (-112) |#2|) $) 21)) (-2835 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) 35)) (-1482 (((-784) (-1 (-112) |#2|) $) 41) (((-784) |#2| $) 76)) (-1923 (($ $) 51)) (-3815 ((|#4| $ (-576)) 82)) (-3501 (((-877) $) 88)) (-2147 (((-112) (-1 (-112) |#2|) $) 20)) (-2933 (((-112) $ $) 73)) (-3440 (((-784) $) 32))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2933 ((-112) |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -4083 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4083 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2148 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3726 (|#1| |#1| (-576) |#4|)) (-15 -3779 (|#1| |#1| (-576) |#3|)) (-15 -1458 ((-657 |#2|) |#1|)) (-15 -3815 (|#4| |#1| (-576))) (-15 -2911 (|#3| |#1| (-576))) (-15 -2835 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2835 (|#2| |#1| (-576) (-576))) (-15 -1987 (|#1| |#1| |#2|)) (-15 -1627 ((-112) |#2| |#1|)) (-15 -1482 ((-784) |#2| |#1|)) (-15 -1482 ((-784) (-1 (-112) |#2|) |#1|)) (-15 -3399 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2147 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4083 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3440 ((-784) |#1|)) (-15 -3793 ((-112) |#1| (-784))) (-15 -1833 ((-112) |#1| (-784))) (-15 -4261 ((-112) |#1| (-784))) (-15 -1923 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1239) (-384 |#2|) (-384 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -2933 ((-112) |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -4083 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4083 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2148 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3726 (|#1| |#1| (-576) |#4|)) (-15 -3779 (|#1| |#1| (-576) |#3|)) (-15 -1458 ((-657 |#2|) |#1|)) (-15 -3815 (|#4| |#1| (-576))) (-15 -2911 (|#3| |#1| (-576))) (-15 -2835 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2835 (|#2| |#1| (-576) (-576))) (-15 -1987 (|#1| |#1| |#2|)) (-15 -1627 ((-112) |#2| |#1|)) (-15 -1482 ((-784) |#2| |#1|)) (-15 -1482 ((-784) (-1 (-112) |#2|) |#1|)) (-15 -3399 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2147 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4083 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3440 ((-784) |#1|)) (-15 -3793 ((-112) |#1| (-784))) (-15 -1833 ((-112) |#1| (-784))) (-15 -4261 ((-112) |#1| (-784))) (-15 -1923 (|#1| |#1|))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3793 (((-112) $ (-784)) 8)) (-3682 ((|#1| $ (-576) (-576) |#1|) 45)) (-3779 (($ $ (-576) |#2|) 43)) (-3726 (($ $ (-576) |#3|) 42)) (-4359 (($) 7 T CONST)) (-2911 ((|#2| $ (-576)) 47)) (-2158 ((|#1| $ (-576) (-576) |#1|) 44)) (-2083 ((|#1| $ (-576) (-576)) 49)) (-1458 (((-657 |#1|) $) 31)) (-2377 (((-784) $) 52)) (-4109 (($ (-784) (-784) |#1|) 58)) (-2387 (((-784) $) 51)) (-1833 (((-112) $ (-784)) 9)) (-2491 (((-576) $) 56)) (-3770 (((-576) $) 54)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3704 (((-576) $) 55)) (-1429 (((-576) $) 53)) (-2148 (($ (-1 |#1| |#1|) $) 35)) (-4083 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-1987 (($ $ |#1|) 57)) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-3815 ((|#3| $ (-576)) 46)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-57 |#1| |#2| |#3|) (-141) (-1239) (-384 |t#1|) (-384 |t#1|)) (T -57)) -((-4083 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4109 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-784)) (-4 *3 (-1239)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1987 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1239)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2491 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-2377 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-784)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-784)))) (-2835 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1239)))) (-2083 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1239)))) (-2835 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1239)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-2911 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1239)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-3815 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1239)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-1458 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-657 *3)))) (-3682 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1239)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-2158 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1239)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-3779 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1239)) (-4 *3 (-384 *4)) (-4 *5 (-384 *4)))) (-3726 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1239)) (-4 *5 (-384 *4)) (-4 *3 (-384 *4)))) (-2148 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4083 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4083 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(-13 (-501 |t#1|) (-10 -8 (-6 -4467) (-6 -4466) (-15 -4109 ($ (-784) (-784) |t#1|)) (-15 -1987 ($ $ |t#1|)) (-15 -2491 ((-576) $)) (-15 -3704 ((-576) $)) (-15 -3770 ((-576) $)) (-15 -1429 ((-576) $)) (-15 -2377 ((-784) $)) (-15 -2387 ((-784) $)) (-15 -2835 (|t#1| $ (-576) (-576))) (-15 -2083 (|t#1| $ (-576) (-576))) (-15 -2835 (|t#1| $ (-576) (-576) |t#1|)) (-15 -2911 (|t#2| $ (-576))) (-15 -3815 (|t#3| $ (-576))) (-15 -1458 ((-657 |t#1|) $)) (-15 -3682 (|t#1| $ (-576) (-576) |t#1|)) (-15 -2158 (|t#1| $ (-576) (-576) |t#1|)) (-15 -3779 ($ $ (-576) |t#2|)) (-15 -3726 ($ $ (-576) |t#3|)) (-15 -4083 ($ (-1 |t#1| |t#1|) $)) (-15 -2148 ($ (-1 |t#1| |t#1|) $)) (-15 -4083 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4083 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) -((-4417 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3622 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-4083 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -4417 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3622 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4083 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1239) (-1239)) (T -58)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3622 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1239)) (-4 *2 (-1239)) (-5 *1 (-58 *5 *2)))) (-4417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1239)) (-4 *5 (-1239)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -4417 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3622 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4083 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-1568 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3363 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862))))) (-1850 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-4359 (($) NIL T CONST)) (-3606 (($ $) NIL (|has| $ (-6 -4467)))) (-3768 (($ $) NIL)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3895 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-2158 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) NIL)) (-3582 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122)))) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-3294 (($ (-657 |#1|)) 11) (($ (-784) |#1|) 14)) (-4109 (($ (-784) |#1|) 13)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) NIL (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| |#1| (-862)))) (-3073 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2272 (((-576) $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| |#1| (-862)))) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2271 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3510 ((|#1| $) NIL (|has| (-576) (-862)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1987 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-3409 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2114 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 10)) (-1674 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-657 $)) NIL)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2973 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3294 ($ (-657 |#1|))) (-15 -3294 ($ (-784) |#1|)))) (-1239)) (T -59)) -((-3294 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-59 *3)))) (-3294 (*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-59 *3)) (-4 *3 (-1239))))) -(-13 (-19 |#1|) (-10 -8 (-15 -3294 ($ (-657 |#1|))) (-15 -3294 ($ (-784) |#1|)))) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3779 (($ $ (-576) (-59 |#1|)) NIL)) (-3726 (($ $ (-576) (-59 |#1|)) NIL)) (-4359 (($) NIL T CONST)) (-2911 (((-59 |#1|) $ (-576)) NIL)) (-2158 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2083 ((|#1| $ (-576) (-576)) NIL)) (-1458 (((-657 |#1|) $) NIL)) (-2377 (((-784) $) NIL)) (-4109 (($ (-784) (-784) |#1|) NIL)) (-2387 (((-784) $) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-2491 (((-576) $) NIL)) (-3770 (((-576) $) NIL)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3704 (((-576) $) NIL)) (-1429 (((-576) $) NIL)) (-2148 (($ (-1 |#1| |#1|) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-1987 (($ $ |#1|) NIL)) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) NIL)) (-3815 (((-59 |#1|) $ (-576)) NIL)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4467))) (-1239)) (T -60)) -NIL -(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4467))) -((-1624 (((-3 $ "failed") (-1289 (-326 (-390)))) 74) (((-3 $ "failed") (-1289 (-326 (-576)))) 63) (((-3 $ "failed") (-1289 (-972 (-390)))) 94) (((-3 $ "failed") (-1289 (-972 (-576)))) 84) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 52) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 39)) (-2884 (($ (-1289 (-326 (-390)))) 70) (($ (-1289 (-326 (-576)))) 59) (($ (-1289 (-972 (-390)))) 90) (($ (-1289 (-972 (-576)))) 80) (($ (-1289 (-419 (-972 (-390))))) 48) (($ (-1289 (-419 (-972 (-576))))) 32)) (-2669 (((-1294) $) 124)) (-3501 (((-877) $) 118) (($ (-657 (-340))) 103) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 101) (($ (-1289 (-350 (-3511 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3511) (-712)))) 31))) -(((-61 |#1|) (-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3511) (-712))))))) (-1198)) (T -61)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3511 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3511) (-712)))) (-5 *1 (-61 *3)) (-14 *3 (-1198))))) -(-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3511) (-712))))))) -((-2669 (((-1294) $) 54) (((-1294)) 55)) (-3501 (((-877) $) 51))) -(((-62 |#1|) (-13 (-407) (-10 -7 (-15 -2669 ((-1294))))) (-1198)) (T -62)) -((-2669 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-62 *3)) (-14 *3 (-1198))))) -(-13 (-407) (-10 -7 (-15 -2669 ((-1294))))) -((-1624 (((-3 $ "failed") (-1289 (-326 (-390)))) 150) (((-3 $ "failed") (-1289 (-326 (-576)))) 140) (((-3 $ "failed") (-1289 (-972 (-390)))) 170) (((-3 $ "failed") (-1289 (-972 (-576)))) 160) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 129) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 117)) (-2884 (($ (-1289 (-326 (-390)))) 146) (($ (-1289 (-326 (-576)))) 136) (($ (-1289 (-972 (-390)))) 166) (($ (-1289 (-972 (-576)))) 156) (($ (-1289 (-419 (-972 (-390))))) 125) (($ (-1289 (-419 (-972 (-576))))) 110)) (-2669 (((-1294) $) 103)) (-3501 (((-877) $) 97) (($ (-657 (-340))) 30) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 33) (($ (-1289 (-350 (-3511) (-3511 (QUOTE XC)) (-712)))) 95))) -(((-63 |#1|) (-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511) (-3511 (QUOTE XC)) (-712))))))) (-1198)) (T -63)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3511) (-3511 (QUOTE XC)) (-712)))) (-5 *1 (-63 *3)) (-14 *3 (-1198))))) -(-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511) (-3511 (QUOTE XC)) (-712))))))) -((-1624 (((-3 $ "failed") (-326 (-390))) 41) (((-3 $ "failed") (-326 (-576))) 46) (((-3 $ "failed") (-972 (-390))) 50) (((-3 $ "failed") (-972 (-576))) 54) (((-3 $ "failed") (-419 (-972 (-390)))) 36) (((-3 $ "failed") (-419 (-972 (-576)))) 29)) (-2884 (($ (-326 (-390))) 39) (($ (-326 (-576))) 44) (($ (-972 (-390))) 48) (($ (-972 (-576))) 52) (($ (-419 (-972 (-390)))) 34) (($ (-419 (-972 (-576)))) 26)) (-2669 (((-1294) $) 76)) (-3501 (((-877) $) 69) (($ (-657 (-340))) 61) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 64) (($ (-350 (-3511 (QUOTE X)) (-3511) (-712))) 25))) -(((-64 |#1|) (-13 (-408) (-10 -8 (-15 -3501 ($ (-350 (-3511 (QUOTE X)) (-3511) (-712)))))) (-1198)) (T -64)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-350 (-3511 (QUOTE X)) (-3511) (-712))) (-5 *1 (-64 *3)) (-14 *3 (-1198))))) -(-13 (-408) (-10 -8 (-15 -3501 ($ (-350 (-3511 (QUOTE X)) (-3511) (-712)))))) -((-1624 (((-3 $ "failed") (-702 (-326 (-390)))) 111) (((-3 $ "failed") (-702 (-326 (-576)))) 99) (((-3 $ "failed") (-702 (-972 (-390)))) 133) (((-3 $ "failed") (-702 (-972 (-576)))) 122) (((-3 $ "failed") (-702 (-419 (-972 (-390))))) 87) (((-3 $ "failed") (-702 (-419 (-972 (-576))))) 73)) (-2884 (($ (-702 (-326 (-390)))) 107) (($ (-702 (-326 (-576)))) 95) (($ (-702 (-972 (-390)))) 129) (($ (-702 (-972 (-576)))) 118) (($ (-702 (-419 (-972 (-390))))) 83) (($ (-702 (-419 (-972 (-576))))) 66)) (-2669 (((-1294) $) 141)) (-3501 (((-877) $) 135) (($ (-657 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 32) (($ (-702 (-350 (-3511) (-3511 (QUOTE X) (QUOTE HESS)) (-712)))) 56))) -(((-65 |#1|) (-13 (-395) (-628 (-702 (-350 (-3511) (-3511 (QUOTE X) (QUOTE HESS)) (-712))))) (-1198)) (T -65)) -NIL -(-13 (-395) (-628 (-702 (-350 (-3511) (-3511 (QUOTE X) (QUOTE HESS)) (-712))))) -((-1624 (((-3 $ "failed") (-326 (-390))) 60) (((-3 $ "failed") (-326 (-576))) 65) (((-3 $ "failed") (-972 (-390))) 69) (((-3 $ "failed") (-972 (-576))) 73) (((-3 $ "failed") (-419 (-972 (-390)))) 55) (((-3 $ "failed") (-419 (-972 (-576)))) 48)) (-2884 (($ (-326 (-390))) 58) (($ (-326 (-576))) 63) (($ (-972 (-390))) 67) (($ (-972 (-576))) 71) (($ (-419 (-972 (-390)))) 53) (($ (-419 (-972 (-576)))) 45)) (-2669 (((-1294) $) 82)) (-3501 (((-877) $) 76) (($ (-657 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 32) (($ (-350 (-3511) (-3511 (QUOTE XC)) (-712))) 40))) -(((-66 |#1|) (-13 (-408) (-10 -8 (-15 -3501 ($ (-350 (-3511) (-3511 (QUOTE XC)) (-712)))))) (-1198)) (T -66)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-350 (-3511) (-3511 (QUOTE XC)) (-712))) (-5 *1 (-66 *3)) (-14 *3 (-1198))))) -(-13 (-408) (-10 -8 (-15 -3501 ($ (-350 (-3511) (-3511 (QUOTE XC)) (-712)))))) -((-2669 (((-1294) $) 65)) (-3501 (((-877) $) 59) (($ (-702 (-712))) 51) (($ (-657 (-340))) 50) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 55))) -(((-67 |#1|) (-394) (-1198)) (T -67)) -NIL -(-394) -((-2669 (((-1294) $) 66)) (-3501 (((-877) $) 60) (($ (-702 (-712))) 52) (($ (-657 (-340))) 51) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 57))) -(((-68 |#1|) (-394) (-1198)) (T -68)) -NIL -(-394) -((-2669 (((-1294) $) NIL) (((-1294)) 33)) (-3501 (((-877) $) NIL))) -(((-69 |#1|) (-13 (-407) (-10 -7 (-15 -2669 ((-1294))))) (-1198)) (T -69)) -((-2669 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-69 *3)) (-14 *3 (-1198))))) -(-13 (-407) (-10 -7 (-15 -2669 ((-1294))))) -((-2669 (((-1294) $) 75)) (-3501 (((-877) $) 69) (($ (-702 (-712))) 61) (($ (-657 (-340))) 63) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 60))) -(((-70 |#1|) (-394) (-1198)) (T -70)) -NIL -(-394) -((-1624 (((-3 $ "failed") (-1289 (-326 (-390)))) 109) (((-3 $ "failed") (-1289 (-326 (-576)))) 98) (((-3 $ "failed") (-1289 (-972 (-390)))) 129) (((-3 $ "failed") (-1289 (-972 (-576)))) 119) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 87) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 74)) (-2884 (($ (-1289 (-326 (-390)))) 105) (($ (-1289 (-326 (-576)))) 94) (($ (-1289 (-972 (-390)))) 125) (($ (-1289 (-972 (-576)))) 115) (($ (-1289 (-419 (-972 (-390))))) 83) (($ (-1289 (-419 (-972 (-576))))) 67)) (-2669 (((-1294) $) 142)) (-3501 (((-877) $) 136) (($ (-657 (-340))) 131) (($ (-340)) 134) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 59) (($ (-1289 (-350 (-3511 (QUOTE X)) (-3511 (QUOTE -2538)) (-712)))) 60))) -(((-71 |#1|) (-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511 (QUOTE X)) (-3511 (QUOTE -2538)) (-712))))))) (-1198)) (T -71)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3511 (QUOTE X)) (-3511 (QUOTE -2538)) (-712)))) (-5 *1 (-71 *3)) (-14 *3 (-1198))))) -(-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511 (QUOTE X)) (-3511 (QUOTE -2538)) (-712))))))) -((-2669 (((-1294) $) 33) (((-1294)) 32)) (-3501 (((-877) $) 36))) -(((-72 |#1|) (-13 (-407) (-10 -7 (-15 -2669 ((-1294))))) (-1198)) (T -72)) -((-2669 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-72 *3)) (-14 *3 (-1198))))) -(-13 (-407) (-10 -7 (-15 -2669 ((-1294))))) -((-2669 (((-1294) $) 65)) (-3501 (((-877) $) 59) (($ (-702 (-712))) 51) (($ (-657 (-340))) 53) (($ (-340)) 56) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 50))) -(((-73 |#1|) (-394) (-1198)) (T -73)) -NIL -(-394) -((-1624 (((-3 $ "failed") (-1289 (-326 (-390)))) 127) (((-3 $ "failed") (-1289 (-326 (-576)))) 117) (((-3 $ "failed") (-1289 (-972 (-390)))) 147) (((-3 $ "failed") (-1289 (-972 (-576)))) 137) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 107) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 95)) (-2884 (($ (-1289 (-326 (-390)))) 123) (($ (-1289 (-326 (-576)))) 113) (($ (-1289 (-972 (-390)))) 143) (($ (-1289 (-972 (-576)))) 133) (($ (-1289 (-419 (-972 (-390))))) 103) (($ (-1289 (-419 (-972 (-576))))) 88)) (-2669 (((-1294) $) 80)) (-3501 (((-877) $) 28) (($ (-657 (-340))) 70) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 73) (($ (-1289 (-350 (-3511) (-3511 (QUOTE X)) (-712)))) 67))) -(((-74 |#1|) (-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511) (-3511 (QUOTE X)) (-712))))))) (-1198)) (T -74)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3511) (-3511 (QUOTE X)) (-712)))) (-5 *1 (-74 *3)) (-14 *3 (-1198))))) -(-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511) (-3511 (QUOTE X)) (-712))))))) -((-1624 (((-3 $ "failed") (-1289 (-326 (-390)))) 132) (((-3 $ "failed") (-1289 (-326 (-576)))) 121) (((-3 $ "failed") (-1289 (-972 (-390)))) 152) (((-3 $ "failed") (-1289 (-972 (-576)))) 142) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 110) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 97)) (-2884 (($ (-1289 (-326 (-390)))) 128) (($ (-1289 (-326 (-576)))) 117) (($ (-1289 (-972 (-390)))) 148) (($ (-1289 (-972 (-576)))) 138) (($ (-1289 (-419 (-972 (-390))))) 106) (($ (-1289 (-419 (-972 (-576))))) 90)) (-2669 (((-1294) $) 82)) (-3501 (((-877) $) 74) (($ (-657 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) NIL) (($ (-1289 (-350 (-3511 (QUOTE X) (QUOTE EPS)) (-3511 (QUOTE -2538)) (-712)))) 69))) -(((-75 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511 (QUOTE X) (QUOTE EPS)) (-3511 (QUOTE -2538)) (-712))))))) (-1198) (-1198) (-1198)) (T -75)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3511 (QUOTE X) (QUOTE EPS)) (-3511 (QUOTE -2538)) (-712)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1198)) (-14 *4 (-1198)) (-14 *5 (-1198))))) -(-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511 (QUOTE X) (QUOTE EPS)) (-3511 (QUOTE -2538)) (-712))))))) -((-1624 (((-3 $ "failed") (-1289 (-326 (-390)))) 138) (((-3 $ "failed") (-1289 (-326 (-576)))) 127) (((-3 $ "failed") (-1289 (-972 (-390)))) 158) (((-3 $ "failed") (-1289 (-972 (-576)))) 148) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 116) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 103)) (-2884 (($ (-1289 (-326 (-390)))) 134) (($ (-1289 (-326 (-576)))) 123) (($ (-1289 (-972 (-390)))) 154) (($ (-1289 (-972 (-576)))) 144) (($ (-1289 (-419 (-972 (-390))))) 112) (($ (-1289 (-419 (-972 (-576))))) 96)) (-2669 (((-1294) $) 88)) (-3501 (((-877) $) 80) (($ (-657 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) NIL) (($ (-1289 (-350 (-3511 (QUOTE EPS)) (-3511 (QUOTE YA) (QUOTE YB)) (-712)))) 75))) -(((-76 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511 (QUOTE EPS)) (-3511 (QUOTE YA) (QUOTE YB)) (-712))))))) (-1198) (-1198) (-1198)) (T -76)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3511 (QUOTE EPS)) (-3511 (QUOTE YA) (QUOTE YB)) (-712)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1198)) (-14 *4 (-1198)) (-14 *5 (-1198))))) -(-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511 (QUOTE EPS)) (-3511 (QUOTE YA) (QUOTE YB)) (-712))))))) -((-1624 (((-3 $ "failed") (-326 (-390))) 83) (((-3 $ "failed") (-326 (-576))) 88) (((-3 $ "failed") (-972 (-390))) 92) (((-3 $ "failed") (-972 (-576))) 96) (((-3 $ "failed") (-419 (-972 (-390)))) 78) (((-3 $ "failed") (-419 (-972 (-576)))) 71)) (-2884 (($ (-326 (-390))) 81) (($ (-326 (-576))) 86) (($ (-972 (-390))) 90) (($ (-972 (-576))) 94) (($ (-419 (-972 (-390)))) 76) (($ (-419 (-972 (-576)))) 68)) (-2669 (((-1294) $) 63)) (-3501 (((-877) $) 51) (($ (-657 (-340))) 47) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 55) (($ (-350 (-3511) (-3511 (QUOTE X)) (-712))) 48))) -(((-77 |#1|) (-13 (-408) (-10 -8 (-15 -3501 ($ (-350 (-3511) (-3511 (QUOTE X)) (-712)))))) (-1198)) (T -77)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-350 (-3511) (-3511 (QUOTE X)) (-712))) (-5 *1 (-77 *3)) (-14 *3 (-1198))))) -(-13 (-408) (-10 -8 (-15 -3501 ($ (-350 (-3511) (-3511 (QUOTE X)) (-712)))))) -((-1624 (((-3 $ "failed") (-326 (-390))) 47) (((-3 $ "failed") (-326 (-576))) 52) (((-3 $ "failed") (-972 (-390))) 56) (((-3 $ "failed") (-972 (-576))) 60) (((-3 $ "failed") (-419 (-972 (-390)))) 42) (((-3 $ "failed") (-419 (-972 (-576)))) 35)) (-2884 (($ (-326 (-390))) 45) (($ (-326 (-576))) 50) (($ (-972 (-390))) 54) (($ (-972 (-576))) 58) (($ (-419 (-972 (-390)))) 40) (($ (-419 (-972 (-576)))) 32)) (-2669 (((-1294) $) 81)) (-3501 (((-877) $) 75) (($ (-657 (-340))) 67) (($ (-340)) 72) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 70) (($ (-350 (-3511) (-3511 (QUOTE X)) (-712))) 31))) -(((-78 |#1|) (-13 (-408) (-10 -8 (-15 -3501 ($ (-350 (-3511) (-3511 (QUOTE X)) (-712)))))) (-1198)) (T -78)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-350 (-3511) (-3511 (QUOTE X)) (-712))) (-5 *1 (-78 *3)) (-14 *3 (-1198))))) -(-13 (-408) (-10 -8 (-15 -3501 ($ (-350 (-3511) (-3511 (QUOTE X)) (-712)))))) -((-1624 (((-3 $ "failed") (-1289 (-326 (-390)))) 90) (((-3 $ "failed") (-1289 (-326 (-576)))) 79) (((-3 $ "failed") (-1289 (-972 (-390)))) 110) (((-3 $ "failed") (-1289 (-972 (-576)))) 100) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 68) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 55)) (-2884 (($ (-1289 (-326 (-390)))) 86) (($ (-1289 (-326 (-576)))) 75) (($ (-1289 (-972 (-390)))) 106) (($ (-1289 (-972 (-576)))) 96) (($ (-1289 (-419 (-972 (-390))))) 64) (($ (-1289 (-419 (-972 (-576))))) 48)) (-2669 (((-1294) $) 126)) (-3501 (((-877) $) 120) (($ (-657 (-340))) 113) (($ (-340)) 38) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 116) (($ (-1289 (-350 (-3511) (-3511 (QUOTE XC)) (-712)))) 39))) -(((-79 |#1|) (-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511) (-3511 (QUOTE XC)) (-712))))))) (-1198)) (T -79)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3511) (-3511 (QUOTE XC)) (-712)))) (-5 *1 (-79 *3)) (-14 *3 (-1198))))) -(-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511) (-3511 (QUOTE XC)) (-712))))))) -((-1624 (((-3 $ "failed") (-1289 (-326 (-390)))) 151) (((-3 $ "failed") (-1289 (-326 (-576)))) 141) (((-3 $ "failed") (-1289 (-972 (-390)))) 171) (((-3 $ "failed") (-1289 (-972 (-576)))) 161) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 131) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 119)) (-2884 (($ (-1289 (-326 (-390)))) 147) (($ (-1289 (-326 (-576)))) 137) (($ (-1289 (-972 (-390)))) 167) (($ (-1289 (-972 (-576)))) 157) (($ (-1289 (-419 (-972 (-390))))) 127) (($ (-1289 (-419 (-972 (-576))))) 112)) (-2669 (((-1294) $) 105)) (-3501 (((-877) $) 99) (($ (-657 (-340))) 90) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 95) (($ (-1289 (-350 (-3511) (-3511 (QUOTE X)) (-712)))) 91))) -(((-80 |#1|) (-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511) (-3511 (QUOTE X)) (-712))))))) (-1198)) (T -80)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3511) (-3511 (QUOTE X)) (-712)))) (-5 *1 (-80 *3)) (-14 *3 (-1198))))) -(-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511) (-3511 (QUOTE X)) (-712))))))) -((-1624 (((-3 $ "failed") (-1289 (-326 (-390)))) 79) (((-3 $ "failed") (-1289 (-326 (-576)))) 68) (((-3 $ "failed") (-1289 (-972 (-390)))) 99) (((-3 $ "failed") (-1289 (-972 (-576)))) 89) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 57) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 44)) (-2884 (($ (-1289 (-326 (-390)))) 75) (($ (-1289 (-326 (-576)))) 64) (($ (-1289 (-972 (-390)))) 95) (($ (-1289 (-972 (-576)))) 85) (($ (-1289 (-419 (-972 (-390))))) 53) (($ (-1289 (-419 (-972 (-576))))) 37)) (-2669 (((-1294) $) 125)) (-3501 (((-877) $) 119) (($ (-657 (-340))) 110) (($ (-340)) 116) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 114) (($ (-1289 (-350 (-3511) (-3511 (QUOTE X)) (-712)))) 36))) -(((-81 |#1|) (-13 (-453) (-628 (-1289 (-350 (-3511) (-3511 (QUOTE X)) (-712))))) (-1198)) (T -81)) -NIL -(-13 (-453) (-628 (-1289 (-350 (-3511) (-3511 (QUOTE X)) (-712))))) -((-1624 (((-3 $ "failed") (-1289 (-326 (-390)))) 98) (((-3 $ "failed") (-1289 (-326 (-576)))) 87) (((-3 $ "failed") (-1289 (-972 (-390)))) 118) (((-3 $ "failed") (-1289 (-972 (-576)))) 108) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 76) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 63)) (-2884 (($ (-1289 (-326 (-390)))) 94) (($ (-1289 (-326 (-576)))) 83) (($ (-1289 (-972 (-390)))) 114) (($ (-1289 (-972 (-576)))) 104) (($ (-1289 (-419 (-972 (-390))))) 72) (($ (-1289 (-419 (-972 (-576))))) 56)) (-2669 (((-1294) $) 48)) (-3501 (((-877) $) 42) (($ (-657 (-340))) 32) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 38) (($ (-1289 (-350 (-3511 (QUOTE X) (QUOTE -2538)) (-3511) (-712)))) 33))) -(((-82 |#1|) (-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511 (QUOTE X) (QUOTE -2538)) (-3511) (-712))))))) (-1198)) (T -82)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3511 (QUOTE X) (QUOTE -2538)) (-3511) (-712)))) (-5 *1 (-82 *3)) (-14 *3 (-1198))))) -(-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511 (QUOTE X) (QUOTE -2538)) (-3511) (-712))))))) -((-1624 (((-3 $ "failed") (-702 (-326 (-390)))) 118) (((-3 $ "failed") (-702 (-326 (-576)))) 107) (((-3 $ "failed") (-702 (-972 (-390)))) 140) (((-3 $ "failed") (-702 (-972 (-576)))) 129) (((-3 $ "failed") (-702 (-419 (-972 (-390))))) 96) (((-3 $ "failed") (-702 (-419 (-972 (-576))))) 83)) (-2884 (($ (-702 (-326 (-390)))) 114) (($ (-702 (-326 (-576)))) 103) (($ (-702 (-972 (-390)))) 136) (($ (-702 (-972 (-576)))) 125) (($ (-702 (-419 (-972 (-390))))) 92) (($ (-702 (-419 (-972 (-576))))) 76)) (-2669 (((-1294) $) 66)) (-3501 (((-877) $) 53) (($ (-657 (-340))) 60) (($ (-340)) 49) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 58) (($ (-702 (-350 (-3511 (QUOTE X) (QUOTE -2538)) (-3511) (-712)))) 50))) -(((-83 |#1|) (-13 (-395) (-10 -8 (-15 -3501 ($ (-702 (-350 (-3511 (QUOTE X) (QUOTE -2538)) (-3511) (-712))))))) (-1198)) (T -83)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-702 (-350 (-3511 (QUOTE X) (QUOTE -2538)) (-3511) (-712)))) (-5 *1 (-83 *3)) (-14 *3 (-1198))))) -(-13 (-395) (-10 -8 (-15 -3501 ($ (-702 (-350 (-3511 (QUOTE X) (QUOTE -2538)) (-3511) (-712))))))) -((-1624 (((-3 $ "failed") (-702 (-326 (-390)))) 113) (((-3 $ "failed") (-702 (-326 (-576)))) 101) (((-3 $ "failed") (-702 (-972 (-390)))) 135) (((-3 $ "failed") (-702 (-972 (-576)))) 124) (((-3 $ "failed") (-702 (-419 (-972 (-390))))) 89) (((-3 $ "failed") (-702 (-419 (-972 (-576))))) 75)) (-2884 (($ (-702 (-326 (-390)))) 109) (($ (-702 (-326 (-576)))) 97) (($ (-702 (-972 (-390)))) 131) (($ (-702 (-972 (-576)))) 120) (($ (-702 (-419 (-972 (-390))))) 85) (($ (-702 (-419 (-972 (-576))))) 68)) (-2669 (((-1294) $) 60)) (-3501 (((-877) $) 54) (($ (-657 (-340))) 48) (($ (-340)) 51) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 45) (($ (-702 (-350 (-3511 (QUOTE X)) (-3511) (-712)))) 46))) -(((-84 |#1|) (-13 (-395) (-10 -8 (-15 -3501 ($ (-702 (-350 (-3511 (QUOTE X)) (-3511) (-712))))))) (-1198)) (T -84)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-702 (-350 (-3511 (QUOTE X)) (-3511) (-712)))) (-5 *1 (-84 *3)) (-14 *3 (-1198))))) -(-13 (-395) (-10 -8 (-15 -3501 ($ (-702 (-350 (-3511 (QUOTE X)) (-3511) (-712))))))) -((-1624 (((-3 $ "failed") (-1289 (-326 (-390)))) 105) (((-3 $ "failed") (-1289 (-326 (-576)))) 94) (((-3 $ "failed") (-1289 (-972 (-390)))) 125) (((-3 $ "failed") (-1289 (-972 (-576)))) 115) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 83) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 70)) (-2884 (($ (-1289 (-326 (-390)))) 101) (($ (-1289 (-326 (-576)))) 90) (($ (-1289 (-972 (-390)))) 121) (($ (-1289 (-972 (-576)))) 111) (($ (-1289 (-419 (-972 (-390))))) 79) (($ (-1289 (-419 (-972 (-576))))) 63)) (-2669 (((-1294) $) 47)) (-3501 (((-877) $) 41) (($ (-657 (-340))) 50) (($ (-340)) 37) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 53) (($ (-1289 (-350 (-3511 (QUOTE X)) (-3511) (-712)))) 38))) -(((-85 |#1|) (-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511 (QUOTE X)) (-3511) (-712))))))) (-1198)) (T -85)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3511 (QUOTE X)) (-3511) (-712)))) (-5 *1 (-85 *3)) (-14 *3 (-1198))))) -(-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511 (QUOTE X)) (-3511) (-712))))))) -((-1624 (((-3 $ "failed") (-1289 (-326 (-390)))) 80) (((-3 $ "failed") (-1289 (-326 (-576)))) 69) (((-3 $ "failed") (-1289 (-972 (-390)))) 100) (((-3 $ "failed") (-1289 (-972 (-576)))) 90) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 58) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 45)) (-2884 (($ (-1289 (-326 (-390)))) 76) (($ (-1289 (-326 (-576)))) 65) (($ (-1289 (-972 (-390)))) 96) (($ (-1289 (-972 (-576)))) 86) (($ (-1289 (-419 (-972 (-390))))) 54) (($ (-1289 (-419 (-972 (-576))))) 38)) (-2669 (((-1294) $) 126)) (-3501 (((-877) $) 120) (($ (-657 (-340))) 111) (($ (-340)) 117) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 115) (($ (-1289 (-350 (-3511 (QUOTE X)) (-3511 (QUOTE -2538)) (-712)))) 37))) -(((-86 |#1|) (-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511 (QUOTE X)) (-3511 (QUOTE -2538)) (-712))))))) (-1198)) (T -86)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1289 (-350 (-3511 (QUOTE X)) (-3511 (QUOTE -2538)) (-712)))) (-5 *1 (-86 *3)) (-14 *3 (-1198))))) -(-13 (-453) (-10 -8 (-15 -3501 ($ (-1289 (-350 (-3511 (QUOTE X)) (-3511 (QUOTE -2538)) (-712))))))) -((-1624 (((-3 $ "failed") (-702 (-326 (-390)))) 117) (((-3 $ "failed") (-702 (-326 (-576)))) 105) (((-3 $ "failed") (-702 (-972 (-390)))) 139) (((-3 $ "failed") (-702 (-972 (-576)))) 128) (((-3 $ "failed") (-702 (-419 (-972 (-390))))) 93) (((-3 $ "failed") (-702 (-419 (-972 (-576))))) 79)) (-2884 (($ (-702 (-326 (-390)))) 113) (($ (-702 (-326 (-576)))) 101) (($ (-702 (-972 (-390)))) 135) (($ (-702 (-972 (-576)))) 124) (($ (-702 (-419 (-972 (-390))))) 89) (($ (-702 (-419 (-972 (-576))))) 72)) (-2669 (((-1294) $) 63)) (-3501 (((-877) $) 57) (($ (-657 (-340))) 47) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 52) (($ (-702 (-350 (-3511 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3511) (-712)))) 48))) -(((-87 |#1|) (-13 (-395) (-10 -8 (-15 -3501 ($ (-702 (-350 (-3511 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3511) (-712))))))) (-1198)) (T -87)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-702 (-350 (-3511 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3511) (-712)))) (-5 *1 (-87 *3)) (-14 *3 (-1198))))) -(-13 (-395) (-10 -8 (-15 -3501 ($ (-702 (-350 (-3511 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3511) (-712))))))) -((-2669 (((-1294) $) 45)) (-3501 (((-877) $) 39) (($ (-1289 (-712))) 100) (($ (-657 (-340))) 31) (($ (-340)) 36) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 34))) -(((-88 |#1|) (-452) (-1198)) (T -88)) -NIL -(-452) -((-1624 (((-3 $ "failed") (-326 (-390))) 48) (((-3 $ "failed") (-326 (-576))) 53) (((-3 $ "failed") (-972 (-390))) 57) (((-3 $ "failed") (-972 (-576))) 61) (((-3 $ "failed") (-419 (-972 (-390)))) 43) (((-3 $ "failed") (-419 (-972 (-576)))) 36)) (-2884 (($ (-326 (-390))) 46) (($ (-326 (-576))) 51) (($ (-972 (-390))) 55) (($ (-972 (-576))) 59) (($ (-419 (-972 (-390)))) 41) (($ (-419 (-972 (-576)))) 33)) (-2669 (((-1294) $) 91)) (-3501 (((-877) $) 85) (($ (-657 (-340))) 79) (($ (-340)) 82) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 77) (($ (-350 (-3511 (QUOTE X)) (-3511 (QUOTE -2538)) (-712))) 32))) -(((-89 |#1|) (-13 (-408) (-10 -8 (-15 -3501 ($ (-350 (-3511 (QUOTE X)) (-3511 (QUOTE -2538)) (-712)))))) (-1198)) (T -89)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-350 (-3511 (QUOTE X)) (-3511 (QUOTE -2538)) (-712))) (-5 *1 (-89 *3)) (-14 *3 (-1198))))) -(-13 (-408) (-10 -8 (-15 -3501 ($ (-350 (-3511 (QUOTE X)) (-3511 (QUOTE -2538)) (-712)))))) -((-4053 (((-1289 (-702 |#1|)) (-702 |#1|)) 61)) (-2588 (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 (-657 (-941))))) |#2| (-941)) 49)) (-2553 (((-2 (|:| |minor| (-657 (-941))) (|:| -3989 |#2|) (|:| |minors| (-657 (-657 (-941)))) (|:| |ops| (-657 |#2|))) |#2| (-941)) 72 (|has| |#1| (-374))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -2588 ((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 (-657 (-941))))) |#2| (-941))) (-15 -4053 ((-1289 (-702 |#1|)) (-702 |#1|))) (IF (|has| |#1| (-374)) (-15 -2553 ((-2 (|:| |minor| (-657 (-941))) (|:| -3989 |#2|) (|:| |minors| (-657 (-657 (-941)))) (|:| |ops| (-657 |#2|))) |#2| (-941))) |%noBranch|)) (-568) (-669 |#1|)) (T -90)) -((-2553 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |minor| (-657 (-941))) (|:| -3989 *3) (|:| |minors| (-657 (-657 (-941)))) (|:| |ops| (-657 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-941)) (-4 *3 (-669 *5)))) (-4053 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1289 (-702 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-702 *4)) (-4 *5 (-669 *4)))) (-2588 (*1 *2 *3 *4) (-12 (-4 *5 (-568)) (-5 *2 (-2 (|:| -3750 (-702 *5)) (|:| |vec| (-1289 (-657 (-941)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-941)) (-4 *3 (-669 *5))))) -(-10 -7 (-15 -2588 ((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 (-657 (-941))))) |#2| (-941))) (-15 -4053 ((-1289 (-702 |#1|)) (-702 |#1|))) (IF (|has| |#1| (-374)) (-15 -2553 ((-2 (|:| |minor| (-657 (-941))) (|:| -3989 |#2|) (|:| |minors| (-657 (-657 (-941)))) (|:| |ops| (-657 |#2|))) |#2| (-941))) |%noBranch|)) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1433 ((|#1| $) 40)) (-3793 (((-112) $ (-784)) NIL)) (-4359 (($) NIL T CONST)) (-1949 ((|#1| |#1| $) 35)) (-2075 ((|#1| $) 33)) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3050 ((|#1| $) NIL)) (-2468 (($ |#1| $) 36)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2277 ((|#1| $) 34)) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) 18)) (-3581 (($) 45)) (-1943 (((-784) $) 31)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) 17)) (-3501 (((-877) $) 30 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4079 (($ (-657 |#1|)) NIL)) (-1592 (($ (-657 |#1|)) 42)) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 15 (|has| |#1| (-102)))) (-3440 (((-784) $) 12 (|has| $ (-6 -4466))))) -(((-91 |#1|) (-13 (-1143 |#1|) (-10 -8 (-15 -1592 ($ (-657 |#1|))))) (-1122)) (T -91)) -((-1592 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-91 *3))))) -(-13 (-1143 |#1|) (-10 -8 (-15 -1592 ($ (-657 |#1|))))) -((-3501 (((-877) $) 13) (($ (-1203)) 9) (((-1203) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -3501 ((-1203) |#1|)) (-15 -3501 (|#1| (-1203))) (-15 -3501 ((-877) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -3501 ((-1203) |#1|)) (-15 -3501 (|#1| (-1203))) (-15 -3501 ((-877) |#1|))) -((-3429 (((-112) $ $) 7)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12) (($ (-1203)) 17) (((-1203) $) 16)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8))) +((-2811 (((-112) $) 12)) (-4087 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-420 (-577)) $) 25) (($ $ (-420 (-577))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -2811 ((-112) |#1|)) (-15 -4087 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) (-47 |#2| |#3|) (-1074) (-808)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -2811 ((-112) |#1|)) (-15 -4087 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)))) (-3290 (($ $) 64 (|has| |#1| (-569)))) (-3271 (((-112) $) 66 (|has| |#1| (-569)))) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2248 (($ $) 72)) (-4187 (((-3 $ "failed") $) 37)) (-2487 (((-112) $) 35)) (-2811 (((-112) $) 74)) (-2030 (($ |#1| |#2|) 73)) (-4087 (($ (-1 |#1| |#1|) $) 75)) (-2209 (($ $) 77)) (-2221 ((|#1| $) 78)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3462 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)))) (-2887 ((|#2| $) 76)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577))))) (($ $) 61 (|has| |#1| (-569))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2322 ((|#1| $ |#2|) 71)) (-2233 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 65 (|has| |#1| (-569)))) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3077 (($ $ |#1|) 70 (|has| |#1| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577))))))) +(((-47 |#1| |#2|) (-141) (-1074) (-808)) (T -47)) +((-2221 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074)))) (-2209 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) (-4087 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)))) (-2811 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) (-5 *2 (-112)))) (-2030 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)))) (-2248 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)))) (-2322 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074)))) (-3077 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)) (-4 *2 (-375))))) +(-13 (-1074) (-111 |t#1| |t#1|) (-10 -8 (-15 -2221 (|t#1| $)) (-15 -2209 ($ $)) (-15 -2887 (|t#2| $)) (-15 -4087 ($ (-1 |t#1| |t#1|) $)) (-15 -2811 ((-112) $)) (-15 -2030 ($ |t#1| |t#2|)) (-15 -2248 ($ $)) (-15 -2322 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-375)) (-15 -3077 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-569)) (-6 (-569)) |%noBranch|) (IF (|has| |t#1| (-38 (-420 (-577)))) (-6 (-38 (-420 (-577)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) |has| |#1| (-38 (-420 (-577)))) ((-629 (-577)) . T) ((-629 |#1|) |has| |#1| (-174)) ((-629 $) |has| |#1| (-569)) ((-626 (-880)) . T) ((-174) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-301) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-662 #0#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) |has| |#1| (-38 (-420 (-577)))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) |has| |#1| (-569)) ((-733 #0#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) |has| |#1| (-569)) ((-742) . T) ((-1076 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-2745 (((-660 $) (-1197 $) (-1201)) NIL) (((-660 $) (-1197 $)) NIL) (((-660 $) (-975 $)) NIL)) (-3755 (($ (-1197 $) (-1201)) NIL) (($ (-1197 $)) NIL) (($ (-975 $)) NIL)) (-3585 (((-112) $) 9)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-3952 (((-660 (-625 $)) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-4057 (($ $ (-305 $)) NIL) (($ $ (-660 (-305 $))) NIL) (($ $ (-660 (-625 $)) (-660 $)) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1913 (($ $) NIL)) (-1939 (((-112) $ $) NIL)) (-1534 (($) NIL T CONST)) (-3766 (((-660 $) (-1197 $) (-1201)) NIL) (((-660 $) (-1197 $)) NIL) (((-660 $) (-975 $)) NIL)) (-3535 (($ (-1197 $) (-1201)) NIL) (($ (-1197 $)) NIL) (($ (-975 $)) NIL)) (-1628 (((-3 (-625 $) "failed") $) NIL) (((-3 (-577) "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL)) (-2921 (((-625 $) $) NIL) (((-577) $) NIL) (((-420 (-577)) $) NIL)) (-3418 (($ $ $) NIL)) (-1647 (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL) (((-705 (-577)) (-705 $)) NIL) (((-2 (|:| -1881 (-705 (-420 (-577)))) (|:| |vec| (-1292 (-420 (-577))))) (-705 $) (-1292 $)) NIL) (((-705 (-420 (-577))) (-705 $)) NIL)) (-3654 (($ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-3401 (($ $) NIL) (($ (-660 $)) NIL)) (-2691 (((-660 (-115)) $) NIL)) (-1844 (((-115) (-115)) NIL)) (-2487 (((-112) $) 11)) (-1912 (((-112) $) NIL (|has| $ (-1063 (-577))))) (-1623 (((-1150 (-577) (-625 $)) $) NIL)) (-2381 (($ $ (-577)) NIL)) (-4145 (((-1197 $) (-1197 $) (-625 $)) NIL) (((-1197 $) (-1197 $) (-660 (-625 $))) NIL) (($ $ (-625 $)) NIL) (($ $ (-660 (-625 $))) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-2670 (((-1197 $) (-625 $)) NIL (|has| $ (-1074)))) (-4087 (($ (-1 $ $) (-625 $)) NIL)) (-2702 (((-3 (-625 $) "failed") $) NIL)) (-1657 (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL) (((-705 (-577)) (-1292 $)) NIL) (((-2 (|:| -1881 (-705 (-420 (-577)))) (|:| |vec| (-1292 (-420 (-577))))) (-1292 $) $) NIL) (((-705 (-420 (-577))) (-1292 $)) NIL)) (-3446 (($ (-660 $)) NIL) (($ $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1829 (((-660 (-625 $)) $) NIL)) (-1702 (($ (-115) $) NIL) (($ (-115) (-660 $)) NIL)) (-2740 (((-112) $ (-115)) NIL) (((-112) $ (-1201)) NIL)) (-2171 (($ $) NIL)) (-2440 (((-787) $) NIL)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ (-660 $)) NIL) (($ $ $) NIL)) (-2679 (((-112) $ $) NIL) (((-112) $ (-1201)) NIL)) (-1902 (((-431 $) $) NIL)) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1924 (((-112) $) NIL (|has| $ (-1063 (-577))))) (-3280 (($ $ (-625 $) $) NIL) (($ $ (-660 (-625 $)) (-660 $)) NIL) (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ (-660 (-1201)) (-660 (-1 $ $))) NIL) (($ $ (-660 (-1201)) (-660 (-1 $ (-660 $)))) NIL) (($ $ (-1201) (-1 $ (-660 $))) NIL) (($ $ (-1201) (-1 $ $)) NIL) (($ $ (-660 (-115)) (-660 (-1 $ $))) NIL) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) NIL) (($ $ (-115) (-1 $ (-660 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-1927 (((-787) $) NIL)) (-2872 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-660 $)) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2712 (($ $) NIL) (($ $ $) NIL)) (-2852 (($ $) NIL) (($ $ (-787)) NIL)) (-1637 (((-1150 (-577) (-625 $)) $) NIL)) (-3557 (($ $) NIL (|has| $ (-1074)))) (-4152 (((-391) $) NIL) (((-228) $) NIL) (((-171 (-391)) $) NIL)) (-3544 (((-880) $) NIL) (($ (-625 $)) NIL) (($ (-420 (-577))) NIL) (($ $) NIL) (($ (-577)) NIL) (($ (-1150 (-577) (-625 $))) NIL)) (-4068 (((-787)) NIL T CONST)) (-2251 (($ $) NIL) (($ (-660 $)) NIL)) (-1409 (((-112) (-115)) NIL)) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-2806 (($) 6 T CONST)) (-2816 (($) 10 T CONST)) (-2132 (($ $) NIL) (($ $ (-787)) NIL)) (-2970 (((-112) $ $) 13)) (-3077 (($ $ $) NIL)) (-3066 (($ $ $) NIL) (($ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-420 (-577))) NIL) (($ $ (-577)) NIL) (($ $ (-787)) NIL) (($ $ (-944)) NIL)) (* (($ (-420 (-577)) $) NIL) (($ $ (-420 (-577))) NIL) (($ $ $) NIL) (($ (-577) $) NIL) (($ (-787) $) NIL) (($ (-944) $) NIL))) +(((-48) (-13 (-313) (-27) (-1063 (-577)) (-1063 (-420 (-577))) (-654 (-577)) (-1047) (-654 (-420 (-577))) (-148) (-627 (-171 (-391))) (-239) (-10 -8 (-15 -3544 ($ (-1150 (-577) (-625 $)))) (-15 -1623 ((-1150 (-577) (-625 $)) $)) (-15 -1637 ((-1150 (-577) (-625 $)) $)) (-15 -3654 ($ $)) (-15 -4145 ((-1197 $) (-1197 $) (-625 $))) (-15 -4145 ((-1197 $) (-1197 $) (-660 (-625 $)))) (-15 -4145 ($ $ (-625 $))) (-15 -4145 ($ $ (-660 (-625 $))))))) (T -48)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1150 (-577) (-625 (-48)))) (-5 *1 (-48)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-1150 (-577) (-625 (-48)))) (-5 *1 (-48)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-1150 (-577) (-625 (-48)))) (-5 *1 (-48)))) (-3654 (*1 *1 *1) (-5 *1 (-48))) (-4145 (*1 *2 *2 *3) (-12 (-5 *2 (-1197 (-48))) (-5 *3 (-625 (-48))) (-5 *1 (-48)))) (-4145 (*1 *2 *2 *3) (-12 (-5 *2 (-1197 (-48))) (-5 *3 (-660 (-625 (-48)))) (-5 *1 (-48)))) (-4145 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-48))) (-5 *1 (-48)))) (-4145 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-625 (-48)))) (-5 *1 (-48))))) +(-13 (-313) (-27) (-1063 (-577)) (-1063 (-420 (-577))) (-654 (-577)) (-1047) (-654 (-420 (-577))) (-148) (-627 (-171 (-391))) (-239) (-10 -8 (-15 -3544 ($ (-1150 (-577) (-625 $)))) (-15 -1623 ((-1150 (-577) (-625 $)) $)) (-15 -1637 ((-1150 (-577) (-625 $)) $)) (-15 -3654 ($ $)) (-15 -4145 ((-1197 $) (-1197 $) (-625 $))) (-15 -4145 ((-1197 $) (-1197 $) (-660 (-625 $)))) (-15 -4145 ($ $ (-625 $))) (-15 -4145 ($ $ (-660 (-625 $)))))) +((-3473 (((-112) $ $) NIL)) (-2236 (((-660 (-519)) $) 17)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 7)) (-2724 (((-1206) $) 18)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-49) (-13 (-1125) (-10 -8 (-15 -2236 ((-660 (-519)) $)) (-15 -2724 ((-1206) $))))) (T -49)) +((-2236 (*1 *2 *1) (-12 (-5 *2 (-660 (-519))) (-5 *1 (-49)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-49))))) +(-13 (-1125) (-10 -8 (-15 -2236 ((-660 (-519)) $)) (-15 -2724 ((-1206) $)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 85)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-1819 (((-112) $) 30)) (-1628 (((-3 |#1| "failed") $) 33)) (-2921 ((|#1| $) 34)) (-2248 (($ $) 40)) (-4187 (((-3 $ "failed") $) NIL)) (-2487 (((-112) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-2221 ((|#1| $) 31)) (-3625 (($ $) 74)) (-2810 (((-1183) $) NIL)) (-3614 (((-112) $) 43)) (-1474 (((-1145) $) NIL)) (-4101 (($ (-787)) 72)) (-4072 (($ (-660 (-577))) 73)) (-2887 (((-787) $) 44)) (-3544 (((-880) $) 91) (($ (-577)) 69) (($ |#1|) 67)) (-2322 ((|#1| $ $) 28)) (-4068 (((-787)) 71 T CONST)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 45 T CONST)) (-2816 (($) 17 T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) 64)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 65) (($ |#1| $) 58))) +(((-50 |#1| |#2|) (-13 (-633 |#1|) (-1063 |#1|) (-10 -8 (-15 -2221 (|#1| $)) (-15 -3625 ($ $)) (-15 -2248 ($ $)) (-15 -2322 (|#1| $ $)) (-15 -4101 ($ (-787))) (-15 -4072 ($ (-660 (-577)))) (-15 -3614 ((-112) $)) (-15 -1819 ((-112) $)) (-15 -2887 ((-787) $)) (-15 -4087 ($ (-1 |#1| |#1|) $)))) (-1074) (-660 (-1201))) (T -50)) +((-2221 (*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-50 *2 *3)) (-14 *3 (-660 (-1201))))) (-3625 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1074)) (-14 *3 (-660 (-1201))))) (-2248 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1074)) (-14 *3 (-660 (-1201))))) (-2322 (*1 *2 *1 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-50 *2 *3)) (-14 *3 (-660 (-1201))))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) (-14 *4 (-660 (-1201))))) (-4072 (*1 *1 *2) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) (-14 *4 (-660 (-1201))))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) (-14 *4 (-660 (-1201))))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) (-14 *4 (-660 (-1201))))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) (-14 *4 (-660 (-1201))))) (-4087 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-50 *3 *4)) (-14 *4 (-660 (-1201)))))) +(-13 (-633 |#1|) (-1063 |#1|) (-10 -8 (-15 -2221 (|#1| $)) (-15 -3625 ($ $)) (-15 -2248 ($ $)) (-15 -2322 (|#1| $ $)) (-15 -4101 ($ (-787))) (-15 -4072 ($ (-660 (-577)))) (-15 -3614 ((-112) $)) (-15 -1819 ((-112) $)) (-15 -2887 ((-787) $)) (-15 -4087 ($ (-1 |#1| |#1|) $)))) +((-1819 (((-112) (-52)) 18)) (-1628 (((-3 |#1| "failed") (-52)) 20)) (-2921 ((|#1| (-52)) 21)) (-3544 (((-52) |#1|) 14))) +(((-51 |#1|) (-10 -7 (-15 -3544 ((-52) |#1|)) (-15 -1628 ((-3 |#1| "failed") (-52))) (-15 -1819 ((-112) (-52))) (-15 -2921 (|#1| (-52)))) (-1242)) (T -51)) +((-2921 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1242)))) (-1819 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1242)))) (-1628 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1242)))) (-3544 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1242))))) +(-10 -7 (-15 -3544 ((-52) |#1|)) (-15 -1628 ((-3 |#1| "failed") (-52))) (-15 -1819 ((-112) (-52))) (-15 -2921 (|#1| (-52)))) +((-3473 (((-112) $ $) NIL)) (-3991 (((-790) $) 8)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-4429 (((-1129) $) 10)) (-3544 (((-880) $) 15)) (-4448 (((-112) $ $) NIL)) (-4430 (($ (-1129) (-790)) 16)) (-2970 (((-112) $ $) 12))) +(((-52) (-13 (-1125) (-10 -8 (-15 -4430 ($ (-1129) (-790))) (-15 -4429 ((-1129) $)) (-15 -3991 ((-790) $))))) (T -52)) +((-4430 (*1 *1 *2 *3) (-12 (-5 *2 (-1129)) (-5 *3 (-790)) (-5 *1 (-52)))) (-4429 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-52)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-52))))) +(-13 (-1125) (-10 -8 (-15 -4430 ($ (-1129) (-790))) (-15 -4429 ((-1129) $)) (-15 -3991 ((-790) $)))) +((-3543 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3543 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1074) (-664 |#1|) (-870 |#1|)) (T -53)) +((-3543 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-664 *5)) (-4 *5 (-1074)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-870 *5))))) +(-10 -7 (-15 -3543 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-2429 ((|#3| |#3| (-660 (-1201))) 44)) (-2421 ((|#3| (-660 (-1101 |#1| |#2| |#3|)) |#3| (-944)) 32) ((|#3| (-660 (-1101 |#1| |#2| |#3|)) |#3|) 31))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2421 (|#3| (-660 (-1101 |#1| |#2| |#3|)) |#3|)) (-15 -2421 (|#3| (-660 (-1101 |#1| |#2| |#3|)) |#3| (-944))) (-15 -2429 (|#3| |#3| (-660 (-1201))))) (-1125) (-13 (-1074) (-905 |#1|) (-627 (-911 |#1|))) (-13 (-443 |#2|) (-905 |#1|) (-627 (-911 |#1|)))) (T -54)) +((-2429 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-1201))) (-4 *4 (-1125)) (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))))) (-2421 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-660 (-1101 *5 *6 *2))) (-5 *4 (-944)) (-4 *5 (-1125)) (-4 *6 (-13 (-1074) (-905 *5) (-627 (-911 *5)))) (-4 *2 (-13 (-443 *6) (-905 *5) (-627 (-911 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2421 (*1 *2 *3 *2) (-12 (-5 *3 (-660 (-1101 *4 *5 *2))) (-4 *4 (-1125)) (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -2421 (|#3| (-660 (-1101 |#1| |#2| |#3|)) |#3|)) (-15 -2421 (|#3| (-660 (-1101 |#1| |#2| |#3|)) |#3| (-944))) (-15 -2429 (|#3| |#3| (-660 (-1201))))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 14)) (-1628 (((-3 (-787) "failed") $) 34)) (-2921 (((-787) $) NIL)) (-2487 (((-112) $) 16)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) 18)) (-3544 (((-880) $) 23) (($ (-787)) 29)) (-4448 (((-112) $ $) NIL)) (-2436 (($) 11 T CONST)) (-2970 (((-112) $ $) 20))) +(((-55) (-13 (-1125) (-1063 (-787)) (-10 -8 (-15 -2436 ($) -1512) (-15 -3585 ((-112) $)) (-15 -2487 ((-112) $))))) (T -55)) +((-2436 (*1 *1) (-5 *1 (-55))) (-3585 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) +(-13 (-1125) (-1063 (-787)) (-10 -8 (-15 -2436 ($) -1512) (-15 -3585 ((-112) $)) (-15 -2487 ((-112) $)))) +((-3828 (((-112) $ (-787)) 27)) (-3419 (($ $ (-577) |#3|) 66)) (-2451 (($ $ (-577) |#4|) 70)) (-3956 ((|#3| $ (-577)) 79)) (-1461 (((-660 |#2|) $) 47)) (-1479 (((-112) $ (-787)) 31)) (-2820 (((-112) |#2| $) 74)) (-2182 (($ (-1 |#2| |#2|) $) 55)) (-4087 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-1443 (((-112) $ (-787)) 29)) (-2397 (($ $ |#2|) 52)) (-1514 (((-112) (-1 (-112) |#2|) $) 21)) (-2872 ((|#2| $ (-577) (-577)) NIL) ((|#2| $ (-577) (-577) |#2|) 35)) (-1485 (((-787) (-1 (-112) |#2|) $) 41) (((-787) |#2| $) 76)) (-1944 (($ $) 51)) (-3943 ((|#4| $ (-577)) 82)) (-3544 (((-880) $) 88)) (-1524 (((-112) (-1 (-112) |#2|) $) 20)) (-2970 (((-112) $ $) 73)) (-3484 (((-787) $) 32))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2970 ((-112) |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -4087 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4087 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2182 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2451 (|#1| |#1| (-577) |#4|)) (-15 -3419 (|#1| |#1| (-577) |#3|)) (-15 -1461 ((-660 |#2|) |#1|)) (-15 -3943 (|#4| |#1| (-577))) (-15 -3956 (|#3| |#1| (-577))) (-15 -2872 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2872 (|#2| |#1| (-577) (-577))) (-15 -2397 (|#1| |#1| |#2|)) (-15 -2820 ((-112) |#2| |#1|)) (-15 -1485 ((-787) |#2| |#1|)) (-15 -1485 ((-787) (-1 (-112) |#2|) |#1|)) (-15 -1514 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1524 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4087 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3484 ((-787) |#1|)) (-15 -3828 ((-112) |#1| (-787))) (-15 -1479 ((-112) |#1| (-787))) (-15 -1443 ((-112) |#1| (-787))) (-15 -1944 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1242) (-385 |#2|) (-385 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -2970 ((-112) |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -4087 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4087 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2182 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2451 (|#1| |#1| (-577) |#4|)) (-15 -3419 (|#1| |#1| (-577) |#3|)) (-15 -1461 ((-660 |#2|) |#1|)) (-15 -3943 (|#4| |#1| (-577))) (-15 -3956 (|#3| |#1| (-577))) (-15 -2872 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2872 (|#2| |#1| (-577) (-577))) (-15 -2397 (|#1| |#1| |#2|)) (-15 -2820 ((-112) |#2| |#1|)) (-15 -1485 ((-787) |#2| |#1|)) (-15 -1485 ((-787) (-1 (-112) |#2|) |#1|)) (-15 -1514 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1524 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4087 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3484 ((-787) |#1|)) (-15 -3828 ((-112) |#1| (-787))) (-15 -1479 ((-112) |#1| (-787))) (-15 -1443 ((-112) |#1| (-787))) (-15 -1944 (|#1| |#1|))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3828 (((-112) $ (-787)) 8)) (-3709 ((|#1| $ (-577) (-577) |#1|) 45)) (-3419 (($ $ (-577) |#2|) 43)) (-2451 (($ $ (-577) |#3|) 42)) (-1534 (($) 7 T CONST)) (-3956 ((|#2| $ (-577)) 47)) (-2192 ((|#1| $ (-577) (-577) |#1|) 44)) (-2117 ((|#1| $ (-577) (-577)) 49)) (-1461 (((-660 |#1|) $) 31)) (-2414 (((-787) $) 52)) (-4113 (($ (-787) (-787) |#1|) 58)) (-2424 (((-787) $) 51)) (-1479 (((-112) $ (-787)) 9)) (-4002 (((-577) $) 56)) (-3979 (((-577) $) 54)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3990 (((-577) $) 55)) (-3968 (((-577) $) 53)) (-2182 (($ (-1 |#1| |#1|) $) 35)) (-4087 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-2397 (($ $ |#1|) 57)) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#1| $ (-577) (-577)) 50) ((|#1| $ (-577) (-577) |#1|) 48)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-3943 ((|#3| $ (-577)) 46)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-57 |#1| |#2| |#3|) (-141) (-1242) (-385 |t#1|) (-385 |t#1|)) (T -57)) +((-4087 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4113 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-787)) (-4 *3 (-1242)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2397 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-577)))) (-3990 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-577)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-577)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-577)))) (-2414 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-787)))) (-2424 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-787)))) (-2872 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1242)))) (-2117 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1242)))) (-2872 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1242)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-3956 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1242)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-3943 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1242)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-1461 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-660 *3)))) (-3709 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1242)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-2192 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1242)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-3419 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-577)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-385 *4)) (-4 *5 (-385 *4)))) (-2451 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-577)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1242)) (-4 *5 (-385 *4)) (-4 *3 (-385 *4)))) (-2182 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4087 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4087 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) +(-13 (-502 |t#1|) (-10 -8 (-6 -4471) (-6 -4470) (-15 -4113 ($ (-787) (-787) |t#1|)) (-15 -2397 ($ $ |t#1|)) (-15 -4002 ((-577) $)) (-15 -3990 ((-577) $)) (-15 -3979 ((-577) $)) (-15 -3968 ((-577) $)) (-15 -2414 ((-787) $)) (-15 -2424 ((-787) $)) (-15 -2872 (|t#1| $ (-577) (-577))) (-15 -2117 (|t#1| $ (-577) (-577))) (-15 -2872 (|t#1| $ (-577) (-577) |t#1|)) (-15 -3956 (|t#2| $ (-577))) (-15 -3943 (|t#3| $ (-577))) (-15 -1461 ((-660 |t#1|) $)) (-15 -3709 (|t#1| $ (-577) (-577) |t#1|)) (-15 -2192 (|t#1| $ (-577) (-577) |t#1|)) (-15 -3419 ($ $ (-577) |t#2|)) (-15 -2451 ($ $ (-577) |t#3|)) (-15 -4087 ($ (-1 |t#1| |t#1|) $)) (-15 -2182 ($ (-1 |t#1| |t#1|) $)) (-15 -4087 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4087 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) +((-3127 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3654 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-4087 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -3127 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3654 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4087 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1242) (-1242)) (T -58)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3654 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1242)) (-4 *2 (-1242)) (-5 *1 (-58 *5 *2)))) (-3127 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1242)) (-4 *5 (-1242)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -3127 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3654 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -4087 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4077 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-865)))) (-4053 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471))) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))))) (-1864 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-865)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-1534 (($) NIL T CONST)) (-3645 (($ $) NIL (|has| $ (-6 -4471)))) (-3787 (($ $) NIL)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3904 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)))) (-2192 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) NIL)) (-3618 (((-577) (-1 (-112) |#1|) $) NIL) (((-577) |#1| $) NIL (|has| |#1| (-1125))) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)))) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-3430 (($ (-660 |#1|)) 11) (($ (-787) |#1|) 14)) (-4113 (($ (-787) |#1|) 13)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) NIL (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| |#1| (-865)))) (-3283 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-865)))) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2416 (((-577) $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| |#1| (-865)))) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-2308 (($ |#1| $ (-577)) NIL) (($ $ $ (-577)) NIL)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-3552 ((|#1| $) NIL (|has| (-577) (-865)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2397 (($ $ |#1|) NIL (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#1| $ (-577) |#1|) NIL) ((|#1| $ (-577)) NIL) (($ $ (-1259 (-577))) NIL)) (-3453 (($ $ (-577)) NIL) (($ $ (-1259 (-577))) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4064 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 10)) (-1677 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-660 $)) NIL)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3430 ($ (-660 |#1|))) (-15 -3430 ($ (-787) |#1|)))) (-1242)) (T -59)) +((-3430 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-59 *3)))) (-3430 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *1 (-59 *3)) (-4 *3 (-1242))))) +(-13 (-19 |#1|) (-10 -8 (-15 -3430 ($ (-660 |#1|))) (-15 -3430 ($ (-787) |#1|)))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 ((|#1| $ (-577) (-577) |#1|) NIL)) (-3419 (($ $ (-577) (-59 |#1|)) NIL)) (-2451 (($ $ (-577) (-59 |#1|)) NIL)) (-1534 (($) NIL T CONST)) (-3956 (((-59 |#1|) $ (-577)) NIL)) (-2192 ((|#1| $ (-577) (-577) |#1|) NIL)) (-2117 ((|#1| $ (-577) (-577)) NIL)) (-1461 (((-660 |#1|) $) NIL)) (-2414 (((-787) $) NIL)) (-4113 (($ (-787) (-787) |#1|) NIL)) (-2424 (((-787) $) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-4002 (((-577) $) NIL)) (-3979 (((-577) $) NIL)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3990 (((-577) $) NIL)) (-3968 (((-577) $) NIL)) (-2182 (($ (-1 |#1| |#1|) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-2397 (($ $ |#1|) NIL)) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#1| $ (-577) (-577)) NIL) ((|#1| $ (-577) (-577) |#1|) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) NIL)) (-3943 (((-59 |#1|) $ (-577)) NIL)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4471))) (-1242)) (T -60)) +NIL +(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4471))) +((-1628 (((-3 $ "failed") (-1292 (-327 (-391)))) 74) (((-3 $ "failed") (-1292 (-327 (-577)))) 63) (((-3 $ "failed") (-1292 (-975 (-391)))) 94) (((-3 $ "failed") (-1292 (-975 (-577)))) 84) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 52) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 39)) (-2921 (($ (-1292 (-327 (-391)))) 70) (($ (-1292 (-327 (-577)))) 59) (($ (-1292 (-975 (-391)))) 90) (($ (-1292 (-975 (-577)))) 80) (($ (-1292 (-420 (-975 (-391))))) 48) (($ (-1292 (-420 (-975 (-577))))) 32)) (-2706 (((-1297) $) 124)) (-3544 (((-880) $) 118) (($ (-660 (-341))) 103) (($ (-341)) 97) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 101) (($ (-1292 (-351 (-3553 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3553) (-715)))) 31))) +(((-61 |#1|) (-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3553) (-715))))))) (-1201)) (T -61)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3553 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3553) (-715)))) (-5 *1 (-61 *3)) (-14 *3 (-1201))))) +(-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3553) (-715))))))) +((-2706 (((-1297) $) 54) (((-1297)) 55)) (-3544 (((-880) $) 51))) +(((-62 |#1|) (-13 (-408) (-10 -7 (-15 -2706 ((-1297))))) (-1201)) (T -62)) +((-2706 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-62 *3)) (-14 *3 (-1201))))) +(-13 (-408) (-10 -7 (-15 -2706 ((-1297))))) +((-1628 (((-3 $ "failed") (-1292 (-327 (-391)))) 150) (((-3 $ "failed") (-1292 (-327 (-577)))) 140) (((-3 $ "failed") (-1292 (-975 (-391)))) 170) (((-3 $ "failed") (-1292 (-975 (-577)))) 160) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 129) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 117)) (-2921 (($ (-1292 (-327 (-391)))) 146) (($ (-1292 (-327 (-577)))) 136) (($ (-1292 (-975 (-391)))) 166) (($ (-1292 (-975 (-577)))) 156) (($ (-1292 (-420 (-975 (-391))))) 125) (($ (-1292 (-420 (-975 (-577))))) 110)) (-2706 (((-1297) $) 103)) (-3544 (((-880) $) 97) (($ (-660 (-341))) 30) (($ (-341)) 35) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 33) (($ (-1292 (-351 (-3553) (-3553 (QUOTE XC)) (-715)))) 95))) +(((-63 |#1|) (-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553) (-3553 (QUOTE XC)) (-715))))))) (-1201)) (T -63)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3553) (-3553 (QUOTE XC)) (-715)))) (-5 *1 (-63 *3)) (-14 *3 (-1201))))) +(-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553) (-3553 (QUOTE XC)) (-715))))))) +((-1628 (((-3 $ "failed") (-327 (-391))) 41) (((-3 $ "failed") (-327 (-577))) 46) (((-3 $ "failed") (-975 (-391))) 50) (((-3 $ "failed") (-975 (-577))) 54) (((-3 $ "failed") (-420 (-975 (-391)))) 36) (((-3 $ "failed") (-420 (-975 (-577)))) 29)) (-2921 (($ (-327 (-391))) 39) (($ (-327 (-577))) 44) (($ (-975 (-391))) 48) (($ (-975 (-577))) 52) (($ (-420 (-975 (-391)))) 34) (($ (-420 (-975 (-577)))) 26)) (-2706 (((-1297) $) 76)) (-3544 (((-880) $) 69) (($ (-660 (-341))) 61) (($ (-341)) 66) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 64) (($ (-351 (-3553 (QUOTE X)) (-3553) (-715))) 25))) +(((-64 |#1|) (-13 (-409) (-10 -8 (-15 -3544 ($ (-351 (-3553 (QUOTE X)) (-3553) (-715)))))) (-1201)) (T -64)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-351 (-3553 (QUOTE X)) (-3553) (-715))) (-5 *1 (-64 *3)) (-14 *3 (-1201))))) +(-13 (-409) (-10 -8 (-15 -3544 ($ (-351 (-3553 (QUOTE X)) (-3553) (-715)))))) +((-1628 (((-3 $ "failed") (-705 (-327 (-391)))) 111) (((-3 $ "failed") (-705 (-327 (-577)))) 99) (((-3 $ "failed") (-705 (-975 (-391)))) 133) (((-3 $ "failed") (-705 (-975 (-577)))) 122) (((-3 $ "failed") (-705 (-420 (-975 (-391))))) 87) (((-3 $ "failed") (-705 (-420 (-975 (-577))))) 73)) (-2921 (($ (-705 (-327 (-391)))) 107) (($ (-705 (-327 (-577)))) 95) (($ (-705 (-975 (-391)))) 129) (($ (-705 (-975 (-577)))) 118) (($ (-705 (-420 (-975 (-391))))) 83) (($ (-705 (-420 (-975 (-577))))) 66)) (-2706 (((-1297) $) 141)) (-3544 (((-880) $) 135) (($ (-660 (-341))) 29) (($ (-341)) 34) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 32) (($ (-705 (-351 (-3553) (-3553 (QUOTE X) (QUOTE HESS)) (-715)))) 56))) +(((-65 |#1|) (-13 (-396) (-629 (-705 (-351 (-3553) (-3553 (QUOTE X) (QUOTE HESS)) (-715))))) (-1201)) (T -65)) +NIL +(-13 (-396) (-629 (-705 (-351 (-3553) (-3553 (QUOTE X) (QUOTE HESS)) (-715))))) +((-1628 (((-3 $ "failed") (-327 (-391))) 60) (((-3 $ "failed") (-327 (-577))) 65) (((-3 $ "failed") (-975 (-391))) 69) (((-3 $ "failed") (-975 (-577))) 73) (((-3 $ "failed") (-420 (-975 (-391)))) 55) (((-3 $ "failed") (-420 (-975 (-577)))) 48)) (-2921 (($ (-327 (-391))) 58) (($ (-327 (-577))) 63) (($ (-975 (-391))) 67) (($ (-975 (-577))) 71) (($ (-420 (-975 (-391)))) 53) (($ (-420 (-975 (-577)))) 45)) (-2706 (((-1297) $) 82)) (-3544 (((-880) $) 76) (($ (-660 (-341))) 29) (($ (-341)) 34) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 32) (($ (-351 (-3553) (-3553 (QUOTE XC)) (-715))) 40))) +(((-66 |#1|) (-13 (-409) (-10 -8 (-15 -3544 ($ (-351 (-3553) (-3553 (QUOTE XC)) (-715)))))) (-1201)) (T -66)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-351 (-3553) (-3553 (QUOTE XC)) (-715))) (-5 *1 (-66 *3)) (-14 *3 (-1201))))) +(-13 (-409) (-10 -8 (-15 -3544 ($ (-351 (-3553) (-3553 (QUOTE XC)) (-715)))))) +((-2706 (((-1297) $) 65)) (-3544 (((-880) $) 59) (($ (-705 (-715))) 51) (($ (-660 (-341))) 50) (($ (-341)) 57) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 55))) +(((-67 |#1|) (-395) (-1201)) (T -67)) +NIL +(-395) +((-2706 (((-1297) $) 66)) (-3544 (((-880) $) 60) (($ (-705 (-715))) 52) (($ (-660 (-341))) 51) (($ (-341)) 54) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 57))) +(((-68 |#1|) (-395) (-1201)) (T -68)) +NIL +(-395) +((-2706 (((-1297) $) NIL) (((-1297)) 33)) (-3544 (((-880) $) NIL))) +(((-69 |#1|) (-13 (-408) (-10 -7 (-15 -2706 ((-1297))))) (-1201)) (T -69)) +((-2706 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-69 *3)) (-14 *3 (-1201))))) +(-13 (-408) (-10 -7 (-15 -2706 ((-1297))))) +((-2706 (((-1297) $) 75)) (-3544 (((-880) $) 69) (($ (-705 (-715))) 61) (($ (-660 (-341))) 63) (($ (-341)) 66) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 60))) +(((-70 |#1|) (-395) (-1201)) (T -70)) +NIL +(-395) +((-1628 (((-3 $ "failed") (-1292 (-327 (-391)))) 109) (((-3 $ "failed") (-1292 (-327 (-577)))) 98) (((-3 $ "failed") (-1292 (-975 (-391)))) 129) (((-3 $ "failed") (-1292 (-975 (-577)))) 119) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 87) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 74)) (-2921 (($ (-1292 (-327 (-391)))) 105) (($ (-1292 (-327 (-577)))) 94) (($ (-1292 (-975 (-391)))) 125) (($ (-1292 (-975 (-577)))) 115) (($ (-1292 (-420 (-975 (-391))))) 83) (($ (-1292 (-420 (-975 (-577))))) 67)) (-2706 (((-1297) $) 142)) (-3544 (((-880) $) 136) (($ (-660 (-341))) 131) (($ (-341)) 134) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 59) (($ (-1292 (-351 (-3553 (QUOTE X)) (-3553 (QUOTE -2575)) (-715)))) 60))) +(((-71 |#1|) (-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553 (QUOTE X)) (-3553 (QUOTE -2575)) (-715))))))) (-1201)) (T -71)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3553 (QUOTE X)) (-3553 (QUOTE -2575)) (-715)))) (-5 *1 (-71 *3)) (-14 *3 (-1201))))) +(-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553 (QUOTE X)) (-3553 (QUOTE -2575)) (-715))))))) +((-2706 (((-1297) $) 33) (((-1297)) 32)) (-3544 (((-880) $) 36))) +(((-72 |#1|) (-13 (-408) (-10 -7 (-15 -2706 ((-1297))))) (-1201)) (T -72)) +((-2706 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-72 *3)) (-14 *3 (-1201))))) +(-13 (-408) (-10 -7 (-15 -2706 ((-1297))))) +((-2706 (((-1297) $) 65)) (-3544 (((-880) $) 59) (($ (-705 (-715))) 51) (($ (-660 (-341))) 53) (($ (-341)) 56) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 50))) +(((-73 |#1|) (-395) (-1201)) (T -73)) +NIL +(-395) +((-1628 (((-3 $ "failed") (-1292 (-327 (-391)))) 127) (((-3 $ "failed") (-1292 (-327 (-577)))) 117) (((-3 $ "failed") (-1292 (-975 (-391)))) 147) (((-3 $ "failed") (-1292 (-975 (-577)))) 137) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 107) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 95)) (-2921 (($ (-1292 (-327 (-391)))) 123) (($ (-1292 (-327 (-577)))) 113) (($ (-1292 (-975 (-391)))) 143) (($ (-1292 (-975 (-577)))) 133) (($ (-1292 (-420 (-975 (-391))))) 103) (($ (-1292 (-420 (-975 (-577))))) 88)) (-2706 (((-1297) $) 80)) (-3544 (((-880) $) 28) (($ (-660 (-341))) 70) (($ (-341)) 66) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 73) (($ (-1292 (-351 (-3553) (-3553 (QUOTE X)) (-715)))) 67))) +(((-74 |#1|) (-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553) (-3553 (QUOTE X)) (-715))))))) (-1201)) (T -74)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3553) (-3553 (QUOTE X)) (-715)))) (-5 *1 (-74 *3)) (-14 *3 (-1201))))) +(-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553) (-3553 (QUOTE X)) (-715))))))) +((-1628 (((-3 $ "failed") (-1292 (-327 (-391)))) 132) (((-3 $ "failed") (-1292 (-327 (-577)))) 121) (((-3 $ "failed") (-1292 (-975 (-391)))) 152) (((-3 $ "failed") (-1292 (-975 (-577)))) 142) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 110) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 97)) (-2921 (($ (-1292 (-327 (-391)))) 128) (($ (-1292 (-327 (-577)))) 117) (($ (-1292 (-975 (-391)))) 148) (($ (-1292 (-975 (-577)))) 138) (($ (-1292 (-420 (-975 (-391))))) 106) (($ (-1292 (-420 (-975 (-577))))) 90)) (-2706 (((-1297) $) 82)) (-3544 (((-880) $) 74) (($ (-660 (-341))) NIL) (($ (-341)) NIL) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) NIL) (($ (-1292 (-351 (-3553 (QUOTE X) (QUOTE EPS)) (-3553 (QUOTE -2575)) (-715)))) 69))) +(((-75 |#1| |#2| |#3|) (-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553 (QUOTE X) (QUOTE EPS)) (-3553 (QUOTE -2575)) (-715))))))) (-1201) (-1201) (-1201)) (T -75)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3553 (QUOTE X) (QUOTE EPS)) (-3553 (QUOTE -2575)) (-715)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1201)) (-14 *4 (-1201)) (-14 *5 (-1201))))) +(-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553 (QUOTE X) (QUOTE EPS)) (-3553 (QUOTE -2575)) (-715))))))) +((-1628 (((-3 $ "failed") (-1292 (-327 (-391)))) 138) (((-3 $ "failed") (-1292 (-327 (-577)))) 127) (((-3 $ "failed") (-1292 (-975 (-391)))) 158) (((-3 $ "failed") (-1292 (-975 (-577)))) 148) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 116) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 103)) (-2921 (($ (-1292 (-327 (-391)))) 134) (($ (-1292 (-327 (-577)))) 123) (($ (-1292 (-975 (-391)))) 154) (($ (-1292 (-975 (-577)))) 144) (($ (-1292 (-420 (-975 (-391))))) 112) (($ (-1292 (-420 (-975 (-577))))) 96)) (-2706 (((-1297) $) 88)) (-3544 (((-880) $) 80) (($ (-660 (-341))) NIL) (($ (-341)) NIL) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) NIL) (($ (-1292 (-351 (-3553 (QUOTE EPS)) (-3553 (QUOTE YA) (QUOTE YB)) (-715)))) 75))) +(((-76 |#1| |#2| |#3|) (-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553 (QUOTE EPS)) (-3553 (QUOTE YA) (QUOTE YB)) (-715))))))) (-1201) (-1201) (-1201)) (T -76)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3553 (QUOTE EPS)) (-3553 (QUOTE YA) (QUOTE YB)) (-715)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1201)) (-14 *4 (-1201)) (-14 *5 (-1201))))) +(-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553 (QUOTE EPS)) (-3553 (QUOTE YA) (QUOTE YB)) (-715))))))) +((-1628 (((-3 $ "failed") (-327 (-391))) 83) (((-3 $ "failed") (-327 (-577))) 88) (((-3 $ "failed") (-975 (-391))) 92) (((-3 $ "failed") (-975 (-577))) 96) (((-3 $ "failed") (-420 (-975 (-391)))) 78) (((-3 $ "failed") (-420 (-975 (-577)))) 71)) (-2921 (($ (-327 (-391))) 81) (($ (-327 (-577))) 86) (($ (-975 (-391))) 90) (($ (-975 (-577))) 94) (($ (-420 (-975 (-391)))) 76) (($ (-420 (-975 (-577)))) 68)) (-2706 (((-1297) $) 63)) (-3544 (((-880) $) 51) (($ (-660 (-341))) 47) (($ (-341)) 57) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 55) (($ (-351 (-3553) (-3553 (QUOTE X)) (-715))) 48))) +(((-77 |#1|) (-13 (-409) (-10 -8 (-15 -3544 ($ (-351 (-3553) (-3553 (QUOTE X)) (-715)))))) (-1201)) (T -77)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-351 (-3553) (-3553 (QUOTE X)) (-715))) (-5 *1 (-77 *3)) (-14 *3 (-1201))))) +(-13 (-409) (-10 -8 (-15 -3544 ($ (-351 (-3553) (-3553 (QUOTE X)) (-715)))))) +((-1628 (((-3 $ "failed") (-327 (-391))) 47) (((-3 $ "failed") (-327 (-577))) 52) (((-3 $ "failed") (-975 (-391))) 56) (((-3 $ "failed") (-975 (-577))) 60) (((-3 $ "failed") (-420 (-975 (-391)))) 42) (((-3 $ "failed") (-420 (-975 (-577)))) 35)) (-2921 (($ (-327 (-391))) 45) (($ (-327 (-577))) 50) (($ (-975 (-391))) 54) (($ (-975 (-577))) 58) (($ (-420 (-975 (-391)))) 40) (($ (-420 (-975 (-577)))) 32)) (-2706 (((-1297) $) 81)) (-3544 (((-880) $) 75) (($ (-660 (-341))) 67) (($ (-341)) 72) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 70) (($ (-351 (-3553) (-3553 (QUOTE X)) (-715))) 31))) +(((-78 |#1|) (-13 (-409) (-10 -8 (-15 -3544 ($ (-351 (-3553) (-3553 (QUOTE X)) (-715)))))) (-1201)) (T -78)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-351 (-3553) (-3553 (QUOTE X)) (-715))) (-5 *1 (-78 *3)) (-14 *3 (-1201))))) +(-13 (-409) (-10 -8 (-15 -3544 ($ (-351 (-3553) (-3553 (QUOTE X)) (-715)))))) +((-1628 (((-3 $ "failed") (-1292 (-327 (-391)))) 90) (((-3 $ "failed") (-1292 (-327 (-577)))) 79) (((-3 $ "failed") (-1292 (-975 (-391)))) 110) (((-3 $ "failed") (-1292 (-975 (-577)))) 100) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 68) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 55)) (-2921 (($ (-1292 (-327 (-391)))) 86) (($ (-1292 (-327 (-577)))) 75) (($ (-1292 (-975 (-391)))) 106) (($ (-1292 (-975 (-577)))) 96) (($ (-1292 (-420 (-975 (-391))))) 64) (($ (-1292 (-420 (-975 (-577))))) 48)) (-2706 (((-1297) $) 126)) (-3544 (((-880) $) 120) (($ (-660 (-341))) 113) (($ (-341)) 38) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 116) (($ (-1292 (-351 (-3553) (-3553 (QUOTE XC)) (-715)))) 39))) +(((-79 |#1|) (-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553) (-3553 (QUOTE XC)) (-715))))))) (-1201)) (T -79)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3553) (-3553 (QUOTE XC)) (-715)))) (-5 *1 (-79 *3)) (-14 *3 (-1201))))) +(-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553) (-3553 (QUOTE XC)) (-715))))))) +((-1628 (((-3 $ "failed") (-1292 (-327 (-391)))) 151) (((-3 $ "failed") (-1292 (-327 (-577)))) 141) (((-3 $ "failed") (-1292 (-975 (-391)))) 171) (((-3 $ "failed") (-1292 (-975 (-577)))) 161) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 131) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 119)) (-2921 (($ (-1292 (-327 (-391)))) 147) (($ (-1292 (-327 (-577)))) 137) (($ (-1292 (-975 (-391)))) 167) (($ (-1292 (-975 (-577)))) 157) (($ (-1292 (-420 (-975 (-391))))) 127) (($ (-1292 (-420 (-975 (-577))))) 112)) (-2706 (((-1297) $) 105)) (-3544 (((-880) $) 99) (($ (-660 (-341))) 90) (($ (-341)) 97) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 95) (($ (-1292 (-351 (-3553) (-3553 (QUOTE X)) (-715)))) 91))) +(((-80 |#1|) (-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553) (-3553 (QUOTE X)) (-715))))))) (-1201)) (T -80)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3553) (-3553 (QUOTE X)) (-715)))) (-5 *1 (-80 *3)) (-14 *3 (-1201))))) +(-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553) (-3553 (QUOTE X)) (-715))))))) +((-1628 (((-3 $ "failed") (-1292 (-327 (-391)))) 79) (((-3 $ "failed") (-1292 (-327 (-577)))) 68) (((-3 $ "failed") (-1292 (-975 (-391)))) 99) (((-3 $ "failed") (-1292 (-975 (-577)))) 89) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 57) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 44)) (-2921 (($ (-1292 (-327 (-391)))) 75) (($ (-1292 (-327 (-577)))) 64) (($ (-1292 (-975 (-391)))) 95) (($ (-1292 (-975 (-577)))) 85) (($ (-1292 (-420 (-975 (-391))))) 53) (($ (-1292 (-420 (-975 (-577))))) 37)) (-2706 (((-1297) $) 125)) (-3544 (((-880) $) 119) (($ (-660 (-341))) 110) (($ (-341)) 116) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 114) (($ (-1292 (-351 (-3553) (-3553 (QUOTE X)) (-715)))) 36))) +(((-81 |#1|) (-13 (-454) (-629 (-1292 (-351 (-3553) (-3553 (QUOTE X)) (-715))))) (-1201)) (T -81)) +NIL +(-13 (-454) (-629 (-1292 (-351 (-3553) (-3553 (QUOTE X)) (-715))))) +((-1628 (((-3 $ "failed") (-1292 (-327 (-391)))) 98) (((-3 $ "failed") (-1292 (-327 (-577)))) 87) (((-3 $ "failed") (-1292 (-975 (-391)))) 118) (((-3 $ "failed") (-1292 (-975 (-577)))) 108) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 76) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 63)) (-2921 (($ (-1292 (-327 (-391)))) 94) (($ (-1292 (-327 (-577)))) 83) (($ (-1292 (-975 (-391)))) 114) (($ (-1292 (-975 (-577)))) 104) (($ (-1292 (-420 (-975 (-391))))) 72) (($ (-1292 (-420 (-975 (-577))))) 56)) (-2706 (((-1297) $) 48)) (-3544 (((-880) $) 42) (($ (-660 (-341))) 32) (($ (-341)) 35) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 38) (($ (-1292 (-351 (-3553 (QUOTE X) (QUOTE -2575)) (-3553) (-715)))) 33))) +(((-82 |#1|) (-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553 (QUOTE X) (QUOTE -2575)) (-3553) (-715))))))) (-1201)) (T -82)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3553 (QUOTE X) (QUOTE -2575)) (-3553) (-715)))) (-5 *1 (-82 *3)) (-14 *3 (-1201))))) +(-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553 (QUOTE X) (QUOTE -2575)) (-3553) (-715))))))) +((-1628 (((-3 $ "failed") (-705 (-327 (-391)))) 118) (((-3 $ "failed") (-705 (-327 (-577)))) 107) (((-3 $ "failed") (-705 (-975 (-391)))) 140) (((-3 $ "failed") (-705 (-975 (-577)))) 129) (((-3 $ "failed") (-705 (-420 (-975 (-391))))) 96) (((-3 $ "failed") (-705 (-420 (-975 (-577))))) 83)) (-2921 (($ (-705 (-327 (-391)))) 114) (($ (-705 (-327 (-577)))) 103) (($ (-705 (-975 (-391)))) 136) (($ (-705 (-975 (-577)))) 125) (($ (-705 (-420 (-975 (-391))))) 92) (($ (-705 (-420 (-975 (-577))))) 76)) (-2706 (((-1297) $) 66)) (-3544 (((-880) $) 53) (($ (-660 (-341))) 60) (($ (-341)) 49) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 58) (($ (-705 (-351 (-3553 (QUOTE X) (QUOTE -2575)) (-3553) (-715)))) 50))) +(((-83 |#1|) (-13 (-396) (-10 -8 (-15 -3544 ($ (-705 (-351 (-3553 (QUOTE X) (QUOTE -2575)) (-3553) (-715))))))) (-1201)) (T -83)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-705 (-351 (-3553 (QUOTE X) (QUOTE -2575)) (-3553) (-715)))) (-5 *1 (-83 *3)) (-14 *3 (-1201))))) +(-13 (-396) (-10 -8 (-15 -3544 ($ (-705 (-351 (-3553 (QUOTE X) (QUOTE -2575)) (-3553) (-715))))))) +((-1628 (((-3 $ "failed") (-705 (-327 (-391)))) 113) (((-3 $ "failed") (-705 (-327 (-577)))) 101) (((-3 $ "failed") (-705 (-975 (-391)))) 135) (((-3 $ "failed") (-705 (-975 (-577)))) 124) (((-3 $ "failed") (-705 (-420 (-975 (-391))))) 89) (((-3 $ "failed") (-705 (-420 (-975 (-577))))) 75)) (-2921 (($ (-705 (-327 (-391)))) 109) (($ (-705 (-327 (-577)))) 97) (($ (-705 (-975 (-391)))) 131) (($ (-705 (-975 (-577)))) 120) (($ (-705 (-420 (-975 (-391))))) 85) (($ (-705 (-420 (-975 (-577))))) 68)) (-2706 (((-1297) $) 60)) (-3544 (((-880) $) 54) (($ (-660 (-341))) 48) (($ (-341)) 51) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 45) (($ (-705 (-351 (-3553 (QUOTE X)) (-3553) (-715)))) 46))) +(((-84 |#1|) (-13 (-396) (-10 -8 (-15 -3544 ($ (-705 (-351 (-3553 (QUOTE X)) (-3553) (-715))))))) (-1201)) (T -84)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-705 (-351 (-3553 (QUOTE X)) (-3553) (-715)))) (-5 *1 (-84 *3)) (-14 *3 (-1201))))) +(-13 (-396) (-10 -8 (-15 -3544 ($ (-705 (-351 (-3553 (QUOTE X)) (-3553) (-715))))))) +((-1628 (((-3 $ "failed") (-1292 (-327 (-391)))) 105) (((-3 $ "failed") (-1292 (-327 (-577)))) 94) (((-3 $ "failed") (-1292 (-975 (-391)))) 125) (((-3 $ "failed") (-1292 (-975 (-577)))) 115) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 83) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 70)) (-2921 (($ (-1292 (-327 (-391)))) 101) (($ (-1292 (-327 (-577)))) 90) (($ (-1292 (-975 (-391)))) 121) (($ (-1292 (-975 (-577)))) 111) (($ (-1292 (-420 (-975 (-391))))) 79) (($ (-1292 (-420 (-975 (-577))))) 63)) (-2706 (((-1297) $) 47)) (-3544 (((-880) $) 41) (($ (-660 (-341))) 50) (($ (-341)) 37) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 53) (($ (-1292 (-351 (-3553 (QUOTE X)) (-3553) (-715)))) 38))) +(((-85 |#1|) (-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553 (QUOTE X)) (-3553) (-715))))))) (-1201)) (T -85)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3553 (QUOTE X)) (-3553) (-715)))) (-5 *1 (-85 *3)) (-14 *3 (-1201))))) +(-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553 (QUOTE X)) (-3553) (-715))))))) +((-1628 (((-3 $ "failed") (-1292 (-327 (-391)))) 80) (((-3 $ "failed") (-1292 (-327 (-577)))) 69) (((-3 $ "failed") (-1292 (-975 (-391)))) 100) (((-3 $ "failed") (-1292 (-975 (-577)))) 90) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 58) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 45)) (-2921 (($ (-1292 (-327 (-391)))) 76) (($ (-1292 (-327 (-577)))) 65) (($ (-1292 (-975 (-391)))) 96) (($ (-1292 (-975 (-577)))) 86) (($ (-1292 (-420 (-975 (-391))))) 54) (($ (-1292 (-420 (-975 (-577))))) 38)) (-2706 (((-1297) $) 126)) (-3544 (((-880) $) 120) (($ (-660 (-341))) 111) (($ (-341)) 117) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 115) (($ (-1292 (-351 (-3553 (QUOTE X)) (-3553 (QUOTE -2575)) (-715)))) 37))) +(((-86 |#1|) (-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553 (QUOTE X)) (-3553 (QUOTE -2575)) (-715))))))) (-1201)) (T -86)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1292 (-351 (-3553 (QUOTE X)) (-3553 (QUOTE -2575)) (-715)))) (-5 *1 (-86 *3)) (-14 *3 (-1201))))) +(-13 (-454) (-10 -8 (-15 -3544 ($ (-1292 (-351 (-3553 (QUOTE X)) (-3553 (QUOTE -2575)) (-715))))))) +((-1628 (((-3 $ "failed") (-705 (-327 (-391)))) 117) (((-3 $ "failed") (-705 (-327 (-577)))) 105) (((-3 $ "failed") (-705 (-975 (-391)))) 139) (((-3 $ "failed") (-705 (-975 (-577)))) 128) (((-3 $ "failed") (-705 (-420 (-975 (-391))))) 93) (((-3 $ "failed") (-705 (-420 (-975 (-577))))) 79)) (-2921 (($ (-705 (-327 (-391)))) 113) (($ (-705 (-327 (-577)))) 101) (($ (-705 (-975 (-391)))) 135) (($ (-705 (-975 (-577)))) 124) (($ (-705 (-420 (-975 (-391))))) 89) (($ (-705 (-420 (-975 (-577))))) 72)) (-2706 (((-1297) $) 63)) (-3544 (((-880) $) 57) (($ (-660 (-341))) 47) (($ (-341)) 54) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 52) (($ (-705 (-351 (-3553 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3553) (-715)))) 48))) +(((-87 |#1|) (-13 (-396) (-10 -8 (-15 -3544 ($ (-705 (-351 (-3553 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3553) (-715))))))) (-1201)) (T -87)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-705 (-351 (-3553 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3553) (-715)))) (-5 *1 (-87 *3)) (-14 *3 (-1201))))) +(-13 (-396) (-10 -8 (-15 -3544 ($ (-705 (-351 (-3553 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3553) (-715))))))) +((-2706 (((-1297) $) 45)) (-3544 (((-880) $) 39) (($ (-1292 (-715))) 100) (($ (-660 (-341))) 31) (($ (-341)) 36) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 34))) +(((-88 |#1|) (-453) (-1201)) (T -88)) +NIL +(-453) +((-1628 (((-3 $ "failed") (-327 (-391))) 48) (((-3 $ "failed") (-327 (-577))) 53) (((-3 $ "failed") (-975 (-391))) 57) (((-3 $ "failed") (-975 (-577))) 61) (((-3 $ "failed") (-420 (-975 (-391)))) 43) (((-3 $ "failed") (-420 (-975 (-577)))) 36)) (-2921 (($ (-327 (-391))) 46) (($ (-327 (-577))) 51) (($ (-975 (-391))) 55) (($ (-975 (-577))) 59) (($ (-420 (-975 (-391)))) 41) (($ (-420 (-975 (-577)))) 33)) (-2706 (((-1297) $) 91)) (-3544 (((-880) $) 85) (($ (-660 (-341))) 79) (($ (-341)) 82) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 77) (($ (-351 (-3553 (QUOTE X)) (-3553 (QUOTE -2575)) (-715))) 32))) +(((-89 |#1|) (-13 (-409) (-10 -8 (-15 -3544 ($ (-351 (-3553 (QUOTE X)) (-3553 (QUOTE -2575)) (-715)))))) (-1201)) (T -89)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-351 (-3553 (QUOTE X)) (-3553 (QUOTE -2575)) (-715))) (-5 *1 (-89 *3)) (-14 *3 (-1201))))) +(-13 (-409) (-10 -8 (-15 -3544 ($ (-351 (-3553 (QUOTE X)) (-3553 (QUOTE -2575)) (-715)))))) +((-1684 (((-1292 (-705 |#1|)) (-705 |#1|)) 61)) (-1671 (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 (-660 (-944))))) |#2| (-944)) 49)) (-4121 (((-2 (|:| |minor| (-660 (-944))) (|:| -3994 |#2|) (|:| |minors| (-660 (-660 (-944)))) (|:| |ops| (-660 |#2|))) |#2| (-944)) 72 (|has| |#1| (-375))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -1671 ((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 (-660 (-944))))) |#2| (-944))) (-15 -1684 ((-1292 (-705 |#1|)) (-705 |#1|))) (IF (|has| |#1| (-375)) (-15 -4121 ((-2 (|:| |minor| (-660 (-944))) (|:| -3994 |#2|) (|:| |minors| (-660 (-660 (-944)))) (|:| |ops| (-660 |#2|))) |#2| (-944))) |%noBranch|)) (-569) (-672 |#1|)) (T -90)) +((-4121 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |minor| (-660 (-944))) (|:| -3994 *3) (|:| |minors| (-660 (-660 (-944)))) (|:| |ops| (-660 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-944)) (-4 *3 (-672 *5)))) (-1684 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-1292 (-705 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-705 *4)) (-4 *5 (-672 *4)))) (-1671 (*1 *2 *3 *4) (-12 (-4 *5 (-569)) (-5 *2 (-2 (|:| -1881 (-705 *5)) (|:| |vec| (-1292 (-660 (-944)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-944)) (-4 *3 (-672 *5))))) +(-10 -7 (-15 -1671 ((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 (-660 (-944))))) |#2| (-944))) (-15 -1684 ((-1292 (-705 |#1|)) (-705 |#1|))) (IF (|has| |#1| (-375)) (-15 -4121 ((-2 (|:| |minor| (-660 (-944))) (|:| -3994 |#2|) (|:| |minors| (-660 (-660 (-944)))) (|:| |ops| (-660 |#2|))) |#2| (-944))) |%noBranch|)) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1436 ((|#1| $) 40)) (-3828 (((-112) $ (-787)) NIL)) (-1534 (($) NIL T CONST)) (-2367 ((|#1| |#1| $) 35)) (-2357 ((|#1| $) 33)) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-4330 ((|#1| $) NIL)) (-2881 (($ |#1| $) 36)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-3530 ((|#1| $) 34)) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) 18)) (-3639 (($) 45)) (-1965 (((-787) $) 31)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) 17)) (-3544 (((-880) $) 30 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3541 (($ (-660 |#1|)) NIL)) (-4135 (($ (-660 |#1|)) 42)) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 15 (|has| |#1| (-102)))) (-3484 (((-787) $) 12 (|has| $ (-6 -4470))))) +(((-91 |#1|) (-13 (-1146 |#1|) (-10 -8 (-15 -4135 ($ (-660 |#1|))))) (-1125)) (T -91)) +((-4135 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-91 *3))))) +(-13 (-1146 |#1|) (-10 -8 (-15 -4135 ($ (-660 |#1|))))) +((-3544 (((-880) $) 13) (($ (-1206)) 9) (((-1206) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -3544 ((-1206) |#1|)) (-15 -3544 (|#1| (-1206))) (-15 -3544 ((-880) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -3544 ((-1206) |#1|)) (-15 -3544 (|#1| (-1206))) (-15 -3544 ((-880) |#1|))) +((-3473 (((-112) $ $) 7)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12) (($ (-1206)) 17) (((-1206) $) 16)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8))) (((-93) (-141)) (T -93)) NIL -(-13 (-1122) (-502 (-1203))) -(((-102) . T) ((-628 #0=(-1203)) . T) ((-625 (-877)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1122) . T) ((-1239) . T)) -((-2125 (($ $) 10)) (-2137 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -2137 (|#1| |#1|)) (-15 -2125 (|#1| |#1|))) (-95)) (T -94)) +(-13 (-1125) (-503 (-1206))) +(((-102) . T) ((-629 #0=(-1206)) . T) ((-626 (-880)) . T) ((-626 #0#) . T) ((-503 #0#) . T) ((-1125) . T) ((-1242) . T)) +((-2162 (($ $) 10)) (-2174 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -2174 (|#1| |#1|)) (-15 -2162 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -2137 (|#1| |#1|)) (-15 -2125 (|#1| |#1|))) -((-2100 (($ $) 11)) (-2072 (($ $) 10)) (-2125 (($ $) 9)) (-2137 (($ $) 8)) (-2113 (($ $) 7)) (-2085 (($ $) 6))) +(-10 -8 (-15 -2174 (|#1| |#1|)) (-15 -2162 (|#1| |#1|))) +((-2136 (($ $) 11)) (-2106 (($ $) 10)) (-2162 (($ $) 9)) (-2174 (($ $) 8)) (-2150 (($ $) 7)) (-2120 (($ $) 6))) (((-95) (-141)) (T -95)) -((-2100 (*1 *1 *1) (-4 *1 (-95))) (-2072 (*1 *1 *1) (-4 *1 (-95))) (-2125 (*1 *1 *1) (-4 *1 (-95))) (-2137 (*1 *1 *1) (-4 *1 (-95))) (-2113 (*1 *1 *1) (-4 *1 (-95))) (-2085 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -2085 ($ $)) (-15 -2113 ($ $)) (-15 -2137 ($ $)) (-15 -2125 ($ $)) (-15 -2072 ($ $)) (-15 -2100 ($ $)))) -((-3429 (((-112) $ $) NIL)) (-2676 (((-1157) $) 9)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 15) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-96) (-13 (-1105) (-10 -8 (-15 -2676 ((-1157) $))))) (T -96)) -((-2676 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-96))))) -(-13 (-1105) (-10 -8 (-15 -2676 ((-1157) $)))) -((-3429 (((-112) $ $) NIL)) (-2601 (((-390) (-1180) (-390)) 46) (((-390) (-1180) (-1180) (-390)) 44)) (-2077 (((-390) (-390)) 35)) (-4387 (((-1294)) 37)) (-2342 (((-1180) $) NIL)) (-4419 (((-390) (-1180) (-1180)) 50) (((-390) (-1180)) 52)) (-1471 (((-1142) $) NIL)) (-3919 (((-390) (-1180) (-1180)) 51)) (-2923 (((-390) (-1180) (-1180)) 53) (((-390) (-1180)) 54)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-97) (-13 (-1122) (-10 -7 (-15 -4419 ((-390) (-1180) (-1180))) (-15 -4419 ((-390) (-1180))) (-15 -2923 ((-390) (-1180) (-1180))) (-15 -2923 ((-390) (-1180))) (-15 -3919 ((-390) (-1180) (-1180))) (-15 -4387 ((-1294))) (-15 -2077 ((-390) (-390))) (-15 -2601 ((-390) (-1180) (-390))) (-15 -2601 ((-390) (-1180) (-1180) (-390))) (-6 -4466)))) (T -97)) -((-4419 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97)))) (-4419 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2923 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2923 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3919 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97)))) (-4387 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-97)))) (-2077 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97)))) (-2601 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1180)) (-5 *1 (-97)))) (-2601 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1180)) (-5 *1 (-97))))) -(-13 (-1122) (-10 -7 (-15 -4419 ((-390) (-1180) (-1180))) (-15 -4419 ((-390) (-1180))) (-15 -2923 ((-390) (-1180) (-1180))) (-15 -2923 ((-390) (-1180))) (-15 -3919 ((-390) (-1180) (-1180))) (-15 -4387 ((-1294))) (-15 -2077 ((-390) (-390))) (-15 -2601 ((-390) (-1180) (-390))) (-15 -2601 ((-390) (-1180) (-1180) (-390))) (-6 -4466))) +((-2136 (*1 *1 *1) (-4 *1 (-95))) (-2106 (*1 *1 *1) (-4 *1 (-95))) (-2162 (*1 *1 *1) (-4 *1 (-95))) (-2174 (*1 *1 *1) (-4 *1 (-95))) (-2150 (*1 *1 *1) (-4 *1 (-95))) (-2120 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -2120 ($ $)) (-15 -2150 ($ $)) (-15 -2174 ($ $)) (-15 -2162 ($ $)) (-15 -2106 ($ $)) (-15 -2136 ($ $)))) +((-3473 (((-112) $ $) NIL)) (-2713 (((-1160) $) 9)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 15) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-96) (-13 (-1108) (-10 -8 (-15 -2713 ((-1160) $))))) (T -96)) +((-2713 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-96))))) +(-13 (-1108) (-10 -8 (-15 -2713 ((-1160) $)))) +((-3473 (((-112) $ $) NIL)) (-3138 (((-391) (-1183) (-391)) 46) (((-391) (-1183) (-1183) (-391)) 44)) (-3153 (((-391) (-391)) 35)) (-1611 (((-1297)) 37)) (-2810 (((-1183) $) NIL)) (-1639 (((-391) (-1183) (-1183)) 50) (((-391) (-1183)) 52)) (-1474 (((-1145) $) NIL)) (-1617 (((-391) (-1183) (-1183)) 51)) (-1625 (((-391) (-1183) (-1183)) 53) (((-391) (-1183)) 54)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-97) (-13 (-1125) (-10 -7 (-15 -1639 ((-391) (-1183) (-1183))) (-15 -1639 ((-391) (-1183))) (-15 -1625 ((-391) (-1183) (-1183))) (-15 -1625 ((-391) (-1183))) (-15 -1617 ((-391) (-1183) (-1183))) (-15 -1611 ((-1297))) (-15 -3153 ((-391) (-391))) (-15 -3138 ((-391) (-1183) (-391))) (-15 -3138 ((-391) (-1183) (-1183) (-391))) (-6 -4470)))) (T -97)) +((-1639 (*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1639 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1625 (*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1617 (*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1611 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-97)))) (-3153 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97)))) (-3138 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1183)) (-5 *1 (-97)))) (-3138 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1183)) (-5 *1 (-97))))) +(-13 (-1125) (-10 -7 (-15 -1639 ((-391) (-1183) (-1183))) (-15 -1639 ((-391) (-1183))) (-15 -1625 ((-391) (-1183) (-1183))) (-15 -1625 ((-391) (-1183))) (-15 -1617 ((-391) (-1183) (-1183))) (-15 -1611 ((-1297))) (-15 -3153 ((-391) (-391))) (-15 -3138 ((-391) (-1183) (-391))) (-15 -3138 ((-391) (-1183) (-1183) (-391))) (-6 -4470))) NIL (((-98) (-141)) (T -98)) NIL -(-13 (-10 -7 (-6 -4466) (-6 (-4468 "*")) (-6 -4467) (-6 -4463) (-6 -4461) (-6 -4460) (-6 -4459) (-6 -4464) (-6 -4458) (-6 -4457) (-6 -4456) (-6 -4455) (-6 -4454) (-6 -4462) (-6 -4465) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4453))) -((-3429 (((-112) $ $) NIL)) (-4359 (($) NIL T CONST)) (-3843 (((-3 $ "failed") $) NIL)) (-4094 (((-112) $) NIL)) (-1563 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-576))) 24)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) 16)) (-1471 (((-1142) $) NIL)) (-2835 ((|#1| $ |#1|) 13)) (-3549 (($ $ $) NIL)) (-3544 (($ $ $) NIL)) (-3501 (((-877) $) 22)) (-2046 (((-112) $ $) NIL)) (-2779 (($) 8 T CONST)) (-2933 (((-112) $ $) 10)) (-3034 (($ $ $) NIL)) (** (($ $ (-941)) 32) (($ $ (-784)) NIL) (($ $ (-576)) 18)) (* (($ $ $) 33))) -(((-99 |#1|) (-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -1563 ($ (-1 |#1| |#1|))) (-15 -1563 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1563 ($ (-1 |#1| |#1| (-576)))))) (-1071)) (T -99)) -((-1563 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-99 *3)))) (-1563 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-99 *3)))) (-1563 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1071)) (-5 *1 (-99 *3))))) -(-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -1563 ($ (-1 |#1| |#1|))) (-15 -1563 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1563 ($ (-1 |#1| |#1| (-576)))))) -((-4193 (((-430 |#2|) |#2| (-657 |#2|)) 10) (((-430 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -4193 ((-430 |#2|) |#2| |#2|)) (-15 -4193 ((-430 |#2|) |#2| (-657 |#2|)))) (-13 (-464) (-148)) (-1265 |#1|)) (T -100)) -((-4193 (*1 *2 *3 *4) (-12 (-5 *4 (-657 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3)))) (-4193 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1265 *4))))) -(-10 -7 (-15 -4193 ((-430 |#2|) |#2| |#2|)) (-15 -4193 ((-430 |#2|) |#2| (-657 |#2|)))) -((-3429 (((-112) $ $) 13)) (-2046 (((-112) $ $) 14)) (-2933 (((-112) $ $) 11))) -(((-101 |#1|) (-10 -8 (-15 -2046 ((-112) |#1| |#1|)) (-15 -3429 ((-112) |#1| |#1|)) (-15 -2933 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -2046 ((-112) |#1| |#1|)) (-15 -3429 ((-112) |#1| |#1|)) (-15 -2933 ((-112) |#1| |#1|))) -((-3429 (((-112) $ $) 7)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8))) +(-13 (-10 -7 (-6 -4470) (-6 (-4472 "*")) (-6 -4471) (-6 -4467) (-6 -4465) (-6 -4464) (-6 -4463) (-6 -4468) (-6 -4462) (-6 -4461) (-6 -4460) (-6 -4459) (-6 -4458) (-6 -4466) (-6 -4469) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4457))) +((-3473 (((-112) $ $) NIL)) (-1534 (($) NIL T CONST)) (-4187 (((-3 $ "failed") $) NIL)) (-2487 (((-112) $) NIL)) (-3406 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-577))) 24)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) 16)) (-1474 (((-1145) $) NIL)) (-2872 ((|#1| $ |#1|) 13)) (-2360 (($ $ $) NIL)) (-3820 (($ $ $) NIL)) (-3544 (((-880) $) 22)) (-4448 (((-112) $ $) NIL)) (-2816 (($) 8 T CONST)) (-2970 (((-112) $ $) 10)) (-3077 (($ $ $) NIL)) (** (($ $ (-944)) 32) (($ $ (-787)) NIL) (($ $ (-577)) 18)) (* (($ $ $) 33))) +(((-99 |#1|) (-13 (-486) (-297 |#1| |#1|) (-10 -8 (-15 -3406 ($ (-1 |#1| |#1|))) (-15 -3406 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3406 ($ (-1 |#1| |#1| (-577)))))) (-1074)) (T -99)) +((-3406 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-99 *3)))) (-3406 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-99 *3)))) (-3406 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-577))) (-4 *3 (-1074)) (-5 *1 (-99 *3))))) +(-13 (-486) (-297 |#1| |#1|) (-10 -8 (-15 -3406 ($ (-1 |#1| |#1|))) (-15 -3406 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3406 ($ (-1 |#1| |#1| (-577)))))) +((-3417 (((-431 |#2|) |#2| (-660 |#2|)) 10) (((-431 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -3417 ((-431 |#2|) |#2| |#2|)) (-15 -3417 ((-431 |#2|) |#2| (-660 |#2|)))) (-13 (-465) (-148)) (-1268 |#1|)) (T -100)) +((-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-13 (-465) (-148))) (-5 *2 (-431 *3)) (-5 *1 (-100 *5 *3)))) (-3417 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-465) (-148))) (-5 *2 (-431 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1268 *4))))) +(-10 -7 (-15 -3417 ((-431 |#2|) |#2| |#2|)) (-15 -3417 ((-431 |#2|) |#2| (-660 |#2|)))) +((-3473 (((-112) $ $) 13)) (-4448 (((-112) $ $) 14)) (-2970 (((-112) $ $) 11))) +(((-101 |#1|) (-10 -8 (-15 -4448 ((-112) |#1| |#1|)) (-15 -3473 ((-112) |#1| |#1|)) (-15 -2970 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -4448 ((-112) |#1| |#1|)) (-15 -3473 ((-112) |#1| |#1|)) (-15 -2970 ((-112) |#1| |#1|))) +((-3473 (((-112) $ $) 7)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8))) (((-102) (-141)) (T -102)) -((-2933 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3429 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2046 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-1239) (-10 -8 (-15 -2933 ((-112) $ $)) (-15 -3429 ((-112) $ $)) (-15 -2046 ((-112) $ $)))) -(((-1239) . T)) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3071 ((|#1| $) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-3734 ((|#1| $ |#1|) 24 (|has| $ (-6 -4467)))) (-2203 (($ $ $) NIL (|has| $ (-6 -4467)))) (-2920 (($ $ $) NIL (|has| $ (-6 -4467)))) (-2050 (($ $ (-657 |#1|)) 30)) (-3682 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467))) (($ $ "left" $) NIL (|has| $ (-6 -4467))) (($ $ "right" $) NIL (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-4359 (($) NIL T CONST)) (-4236 (($ $) 12)) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2877 (((-657 $) $) NIL)) (-1700 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2296 (($ $ |#1| $) 32)) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2488 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-2169 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-657 |#1|) |#1| |#1| |#1|)) 49)) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-4224 (($ $) 11)) (-2424 (((-657 |#1|) $) NIL)) (-2633 (((-112) $) 13)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) 9)) (-3581 (($) 31)) (-2835 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3883 (((-576) $ $) NIL)) (-3628 (((-112) $) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) NIL)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-1986 (((-657 $) $) NIL)) (-1633 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1719 (($ (-784) |#1|) 33)) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4466) (-6 -4467) (-15 -1719 ($ (-784) |#1|)) (-15 -2050 ($ $ (-657 |#1|))) (-15 -2488 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2488 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2169 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2169 ($ $ |#1| (-1 (-657 |#1|) |#1| |#1| |#1|))))) (-1122)) (T -103)) -((-1719 (*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-103 *3)) (-4 *3 (-1122)))) (-2050 (*1 *1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-103 *3)))) (-2488 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1122)))) (-2488 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-103 *3)))) (-2169 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1122)) (-5 *1 (-103 *2)))) (-2169 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-657 *2) *2 *2 *2)) (-4 *2 (-1122)) (-5 *1 (-103 *2))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4466) (-6 -4467) (-15 -1719 ($ (-784) |#1|)) (-15 -2050 ($ $ (-657 |#1|))) (-15 -2488 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2488 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2169 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2169 ($ $ |#1| (-1 (-657 |#1|) |#1| |#1| |#1|))))) -((-2326 ((|#3| |#2| |#2|) 34)) (-3337 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4468 "*"))))) (-3820 ((|#3| |#2| |#2|) 36)) (-2700 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4468 "*")))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2326 (|#3| |#2| |#2|)) (-15 -3820 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4468 "*"))) (PROGN (-15 -3337 (|#1| |#2| |#2|)) (-15 -2700 (|#1| |#2|))) |%noBranch|)) (-1071) (-1265 |#1|) (-700 |#1| |#4| |#5|) (-384 |#1|) (-384 |#1|)) (T -104)) -((-2700 (*1 *2 *3) (-12 (|has| *2 (-6 (-4468 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1071)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1265 *2)) (-4 *4 (-700 *2 *5 *6)))) (-3337 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4468 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1071)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1265 *2)) (-4 *4 (-700 *2 *5 *6)))) (-3820 (*1 *2 *3 *3) (-12 (-4 *4 (-1071)) (-4 *2 (-700 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1265 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-2326 (*1 *2 *3 *3) (-12 (-4 *4 (-1071)) (-4 *2 (-700 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1265 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))))) -(-10 -7 (-15 -2326 (|#3| |#2| |#2|)) (-15 -3820 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4468 "*"))) (PROGN (-15 -3337 (|#1| |#2| |#2|)) (-15 -2700 (|#1| |#2|))) |%noBranch|)) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-3570 (((-657 (-1198))) 37)) (-2915 (((-2 (|:| |zeros| (-1179 (-227))) (|:| |ones| (-1179 (-227))) (|:| |singularities| (-1179 (-227)))) (-1198)) 39)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-105) (-13 (-1122) (-10 -7 (-15 -3570 ((-657 (-1198)))) (-15 -2915 ((-2 (|:| |zeros| (-1179 (-227))) (|:| |ones| (-1179 (-227))) (|:| |singularities| (-1179 (-227)))) (-1198))) (-6 -4466)))) (T -105)) -((-3570 (*1 *2) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-105)))) (-2915 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-2 (|:| |zeros| (-1179 (-227))) (|:| |ones| (-1179 (-227))) (|:| |singularities| (-1179 (-227))))) (-5 *1 (-105))))) -(-13 (-1122) (-10 -7 (-15 -3570 ((-657 (-1198)))) (-15 -2915 ((-2 (|:| |zeros| (-1179 (-227))) (|:| |ones| (-1179 (-227))) (|:| |singularities| (-1179 (-227)))) (-1198))) (-6 -4466))) -((-4079 (($ (-657 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -4079 (|#1| (-657 |#2|)))) (-107 |#2|) (-1239)) (T -106)) -NIL -(-10 -8 (-15 -4079 (|#1| (-657 |#2|)))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3793 (((-112) $ (-784)) 8)) (-4359 (($) 7 T CONST)) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) 9)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3050 ((|#1| $) 40)) (-2468 (($ |#1| $) 41)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2277 ((|#1| $) 42)) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-4079 (($ (-657 |#1|)) 43)) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-107 |#1|) (-141) (-1239)) (T -107)) -((-4079 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-4 *1 (-107 *3)))) (-2277 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1239)))) (-2468 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1239)))) (-3050 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1239))))) -(-13 (-501 |t#1|) (-10 -8 (-6 -4467) (-15 -4079 ($ (-657 |t#1|))) (-15 -2277 (|t#1| $)) (-15 -2468 ($ |t#1| $)) (-15 -3050 (|t#1| $)))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3931 (((-576) $) NIL (|has| (-576) (-317)))) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-2864 (((-112) $ $) NIL)) (-1536 (((-576) $) NIL (|has| (-576) (-833)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL) (((-3 (-1198) "failed") $) NIL (|has| (-576) (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1060 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1060 (-576))))) (-2884 (((-576) $) NIL) (((-1198) $) NIL (|has| (-576) (-1060 (-1198)))) (((-419 (-576)) $) NIL (|has| (-576) (-1060 (-576)))) (((-576) $) NIL (|has| (-576) (-1060 (-576))))) (-3373 (($ $ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-702 (-576)) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($) NIL (|has| (-576) (-557)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-2828 (((-112) $) NIL (|has| (-576) (-833)))) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| (-576) (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| (-576) (-902 (-390))))) (-4094 (((-112) $) NIL)) (-2752 (($ $) NIL)) (-1621 (((-576) $) NIL)) (-4019 (((-3 $ "failed") $) NIL (|has| (-576) (-1174)))) (-2881 (((-112) $) NIL (|has| (-576) (-833)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3707 (($ $ $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| (-576) (-862)))) (-4083 (($ (-1 (-576) (-576)) $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL) (((-702 (-576)) (-1289 $)) NIL)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1706 (($) NIL (|has| (-576) (-1174)) CONST)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2900 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-3427 (((-576) $) NIL (|has| (-576) (-557)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-1885 (((-430 $) $) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3236 (($ $ (-657 (-576)) (-657 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-657 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-657 (-1198)) (-657 (-576))) NIL (|has| (-576) (-526 (-1198) (-576)))) (($ $ (-1198) (-576)) NIL (|has| (-576) (-526 (-1198) (-576))))) (-2034 (((-784) $) NIL)) (-2835 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2815 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-576) (-920 (-1198)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-784)) NIL (|has| (-576) (-237)))) (-1396 (($ $) NIL)) (-1635 (((-576) $) NIL)) (-4148 (((-908 (-576)) $) NIL (|has| (-576) (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| (-576) (-626 (-908 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1044))) (((-227) $) NIL (|has| (-576) (-1044)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-929))))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1198)) NIL (|has| (-576) (-1060 (-1198)))) (((-419 (-576)) $) NIL) (((-1026 2) $) 10)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| (-576) (-929))) (|has| (-576) (-146))))) (-1960 (((-784)) NIL T CONST)) (-1893 (((-576) $) NIL (|has| (-576) (-557)))) (-2044 (($ (-419 (-576))) 9)) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-1792 (($ $) NIL (|has| (-576) (-833)))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-576) (-920 (-1198)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-784)) NIL (|has| (-576) (-237)))) (-2985 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2963 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2954 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3034 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) -(((-108) (-13 (-1014 (-576)) (-625 (-419 (-576))) (-625 (-1026 2)) (-10 -8 (-15 -2900 ((-419 (-576)) $)) (-15 -2044 ($ (-419 (-576))))))) (T -108)) -((-2900 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) (-2044 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108))))) -(-13 (-1014 (-576)) (-625 (-419 (-576))) (-625 (-1026 2)) (-10 -8 (-15 -2900 ((-419 (-576)) $)) (-15 -2044 ($ (-419 (-576)))))) -((-1918 (((-657 (-985)) $) 13)) (-2676 (((-518) $) 9)) (-3501 (((-877) $) 20)) (-1421 (($ (-518) (-657 (-985))) 15))) -(((-109) (-13 (-625 (-877)) (-10 -8 (-15 -2676 ((-518) $)) (-15 -1918 ((-657 (-985)) $)) (-15 -1421 ($ (-518) (-657 (-985))))))) (T -109)) -((-2676 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-657 (-985))) (-5 *1 (-109)))) (-1421 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-657 (-985))) (-5 *1 (-109))))) -(-13 (-625 (-877)) (-10 -8 (-15 -2676 ((-518) $)) (-15 -1918 ((-657 (-985)) $)) (-15 -1421 ($ (-518) (-657 (-985)))))) -((-3429 (((-112) $ $) NIL)) (-3452 (($ $) NIL)) (-2744 (($ $ $) NIL)) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-1568 (((-112) $) NIL (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3363 (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| (-112) (-862)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4467)))) (-1850 (($ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-3682 (((-112) $ (-1256 (-576)) (-112)) NIL (|has| $ (-6 -4467))) (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-4359 (($) NIL T CONST)) (-3606 (($ $) NIL (|has| $ (-6 -4467)))) (-3768 (($ $) NIL)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-3895 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-3622 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-2158 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4467)))) (-2083 (((-112) $ (-576)) NIL)) (-3582 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1122))) (((-576) (-112) $) NIL (|has| (-112) (-1122))) (((-576) (-1 (-112) (-112)) $) NIL)) (-1458 (((-657 (-112)) $) NIL (|has| $ (-6 -4466)))) (-2734 (($ $ $) NIL)) (-2712 (($ $) NIL)) (-3147 (($ $ $) NIL)) (-4109 (($ (-784) (-112)) 10)) (-1340 (($ $ $) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) NIL (|has| (-576) (-862)))) (-3707 (($ $ $) NIL)) (-3073 (($ $ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2070 (((-657 (-112)) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-2272 (((-576) $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL)) (-2148 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL)) (-2271 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-1471 (((-1142) $) NIL)) (-3510 (((-112) $) NIL (|has| (-576) (-862)))) (-2951 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1987 (($ $ (-112)) NIL (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-112)) (-657 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122)))) (($ $ (-657 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-2380 (((-657 (-112)) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 (($ $ (-1256 (-576))) NIL) (((-112) $ (-576)) NIL) (((-112) $ (-576) (-112)) NIL)) (-3409 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-1482 (((-784) (-112) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122)))) (((-784) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-2114 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-3511 (($ (-657 (-112))) NIL)) (-1674 (($ (-657 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3501 (((-877) $) NIL)) (-3960 (($ (-784) (-112)) 11)) (-2046 (((-112) $ $) NIL)) (-2147 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-2724 (($ $ $) NIL)) (-3494 (($ $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-3482 (($ $ $) NIL)) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-110) (-13 (-124) (-10 -8 (-15 -3960 ($ (-784) (-112)))))) (T -110)) -((-3960 (*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-124) (-10 -8 (-15 -3960 ($ (-784) (-112))))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) -(((-111 |#1| |#2|) (-141) (-1071) (-1071)) (T -111)) -NIL -(-13 (-661 |t#1|) (-1078 |t#2|) (-10 -7 (-6 -4461) (-6 -4460))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-1073 |#2|) . T) ((-1078 |#2|) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-3452 (($ $) 10)) (-2744 (($ $ $) 15)) (-2236 (($) 7 T CONST)) (-3888 (($ $) 6)) (-2193 (((-784)) 24)) (-1892 (($) 32)) (-2734 (($ $ $) 13)) (-2712 (($ $) 9)) (-3147 (($ $ $) 16)) (-1340 (($ $ $) 17)) (-3707 (($ $ $) NIL) (($) NIL T CONST)) (-1611 (($ $ $) NIL) (($) NIL T CONST)) (-3007 (((-941) $) 30)) (-2342 (((-1180) $) NIL)) (-3178 (($ (-941)) 28)) (-1552 (($ $ $) 20)) (-1471 (((-1142) $) NIL)) (-3447 (($) 8 T CONST)) (-4420 (($ $ $) 21)) (-4148 (((-548) $) 34)) (-3501 (((-877) $) 36)) (-2046 (((-112) $ $) NIL)) (-2724 (($ $ $) 11)) (-3494 (($ $ $) 14)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 19)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 22)) (-3482 (($ $ $) 12))) -(((-112) (-13 (-857) (-674) (-989) (-626 (-548)) (-10 -8 (-15 -2744 ($ $ $)) (-15 -1340 ($ $ $)) (-15 -3147 ($ $ $)) (-15 -3888 ($ $))))) (T -112)) -((-2744 (*1 *1 *1 *1) (-5 *1 (-112))) (-1340 (*1 *1 *1 *1) (-5 *1 (-112))) (-3147 (*1 *1 *1 *1) (-5 *1 (-112))) (-3888 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-857) (-674) (-989) (-626 (-548)) (-10 -8 (-15 -2744 ($ $ $)) (-15 -1340 ($ $ $)) (-15 -3147 ($ $ $)) (-15 -3888 ($ $)))) -((-2734 (($ $ $) 6)) (-2712 (($ $) 8)) (-2724 (($ $ $) 7))) +((-2970 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3473 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-4448 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-1242) (-10 -8 (-15 -2970 ((-112) $ $)) (-15 -3473 ((-112) $ $)) (-15 -4448 ((-112) $ $)))) +(((-1242) . T)) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3115 ((|#1| $) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-4374 ((|#1| $ |#1|) 24 (|has| $ (-6 -4471)))) (-1763 (($ $ $) NIL (|has| $ (-6 -4471)))) (-1774 (($ $ $) NIL (|has| $ (-6 -4471)))) (-3033 (($ $ (-660 |#1|)) 30)) (-3709 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471))) (($ $ "left" $) NIL (|has| $ (-6 -4471))) (($ $ "right" $) NIL (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)))) (-1534 (($) NIL T CONST)) (-4239 (($ $) 12)) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-4426 (((-660 $) $) NIL)) (-4394 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-2333 (($ $ |#1| $) 32)) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3022 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-1336 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-660 |#1|) |#1| |#1| |#1|)) 49)) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-4228 (($ $) 11)) (-2461 (((-660 |#1|) $) NIL)) (-3371 (((-112) $) 13)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) 9)) (-3639 (($) 31)) (-2872 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4415 (((-577) $ $) NIL)) (-1885 (((-112) $) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) NIL)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-3322 (((-660 $) $) NIL)) (-4405 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2211 (($ (-787) |#1|) 33)) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4470) (-6 -4471) (-15 -2211 ($ (-787) |#1|)) (-15 -3033 ($ $ (-660 |#1|))) (-15 -3022 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3022 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1336 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1336 ($ $ |#1| (-1 (-660 |#1|) |#1| |#1| |#1|))))) (-1125)) (T -103)) +((-2211 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *1 (-103 *3)) (-4 *3 (-1125)))) (-3033 (*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-103 *3)))) (-3022 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1125)))) (-3022 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-103 *3)))) (-1336 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1125)) (-5 *1 (-103 *2)))) (-1336 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-660 *2) *2 *2 *2)) (-4 *2 (-1125)) (-5 *1 (-103 *2))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4470) (-6 -4471) (-15 -2211 ($ (-787) |#1|)) (-15 -3033 ($ $ (-660 |#1|))) (-15 -3022 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3022 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1336 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1336 ($ $ |#1| (-1 (-660 |#1|) |#1| |#1| |#1|))))) +((-2223 ((|#3| |#2| |#2|) 34)) (-2297 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4472 "*"))))) (-2284 ((|#3| |#2| |#2|) 36)) (-2489 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4472 "*")))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2223 (|#3| |#2| |#2|)) (-15 -2284 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4472 "*"))) (PROGN (-15 -2297 (|#1| |#2| |#2|)) (-15 -2489 (|#1| |#2|))) |%noBranch|)) (-1074) (-1268 |#1|) (-703 |#1| |#4| |#5|) (-385 |#1|) (-385 |#1|)) (T -104)) +((-2489 (*1 *2 *3) (-12 (|has| *2 (-6 (-4472 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1074)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1268 *2)) (-4 *4 (-703 *2 *5 *6)))) (-2297 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4472 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1074)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1268 *2)) (-4 *4 (-703 *2 *5 *6)))) (-2284 (*1 *2 *3 *3) (-12 (-4 *4 (-1074)) (-4 *2 (-703 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1268 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-2223 (*1 *2 *3 *3) (-12 (-4 *4 (-1074)) (-4 *2 (-703 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1268 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) +(-10 -7 (-15 -2223 (|#3| |#2| |#2|)) (-15 -2284 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4472 "*"))) (PROGN (-15 -2297 (|#1| |#2| |#2|)) (-15 -2489 (|#1| |#2|))) |%noBranch|)) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4319 (((-660 (-1201))) 37)) (-2497 (((-2 (|:| |zeros| (-1182 (-228))) (|:| |ones| (-1182 (-228))) (|:| |singularities| (-1182 (-228)))) (-1201)) 39)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-105) (-13 (-1125) (-10 -7 (-15 -4319 ((-660 (-1201)))) (-15 -2497 ((-2 (|:| |zeros| (-1182 (-228))) (|:| |ones| (-1182 (-228))) (|:| |singularities| (-1182 (-228)))) (-1201))) (-6 -4470)))) (T -105)) +((-4319 (*1 *2) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-105)))) (-2497 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-2 (|:| |zeros| (-1182 (-228))) (|:| |ones| (-1182 (-228))) (|:| |singularities| (-1182 (-228))))) (-5 *1 (-105))))) +(-13 (-1125) (-10 -7 (-15 -4319 ((-660 (-1201)))) (-15 -2497 ((-2 (|:| |zeros| (-1182 (-228))) (|:| |ones| (-1182 (-228))) (|:| |singularities| (-1182 (-228)))) (-1201))) (-6 -4470))) +((-3541 (($ (-660 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -3541 (|#1| (-660 |#2|)))) (-107 |#2|) (-1242)) (T -106)) +NIL +(-10 -8 (-15 -3541 (|#1| (-660 |#2|)))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3828 (((-112) $ (-787)) 8)) (-1534 (($) 7 T CONST)) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) 9)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-4330 ((|#1| $) 40)) (-2881 (($ |#1| $) 41)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-3530 ((|#1| $) 42)) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3541 (($ (-660 |#1|)) 43)) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-107 |#1|) (-141) (-1242)) (T -107)) +((-3541 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-4 *1 (-107 *3)))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1242)))) (-2881 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1242)))) (-4330 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1242))))) +(-13 (-502 |t#1|) (-10 -8 (-6 -4471) (-15 -3541 ($ (-660 |t#1|))) (-15 -3530 (|t#1| $)) (-15 -2881 ($ |t#1| $)) (-15 -4330 (|t#1| $)))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-4105 (((-577) $) NIL (|has| (-577) (-318)))) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)))) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)))) (-1939 (((-112) $ $) NIL)) (-3010 (((-577) $) NIL (|has| (-577) (-836)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL) (((-3 (-1201) "failed") $) NIL (|has| (-577) (-1063 (-1201)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-577) (-1063 (-577)))) (((-3 (-577) "failed") $) NIL (|has| (-577) (-1063 (-577))))) (-2921 (((-577) $) NIL) (((-1201) $) NIL (|has| (-577) (-1063 (-1201)))) (((-420 (-577)) $) NIL (|has| (-577) (-1063 (-577)))) (((-577) $) NIL (|has| (-577) (-1063 (-577))))) (-3418 (($ $ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| (-577) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-577) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL) (((-705 (-577)) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($) NIL (|has| (-577) (-558)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-3567 (((-112) $) NIL (|has| (-577) (-836)))) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| (-577) (-905 (-577)))) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| (-577) (-905 (-391))))) (-2487 (((-112) $) NIL)) (-2240 (($ $) NIL)) (-1623 (((-577) $) NIL)) (-4021 (((-3 $ "failed") $) NIL (|has| (-577) (-1177)))) (-3578 (((-112) $) NIL (|has| (-577) (-836)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3732 (($ $ $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| (-577) (-865)))) (-4087 (($ (-1 (-577) (-577)) $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| (-577) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-577) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL) (((-705 (-577)) (-1292 $)) NIL)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1709 (($) NIL (|has| (-577) (-1177)) CONST)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-4093 (($ $) NIL (|has| (-577) (-318))) (((-420 (-577)) $) NIL)) (-4119 (((-577) $) NIL (|has| (-577) (-558)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)))) (-1902 (((-431 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3280 (($ $ (-660 (-577)) (-660 (-577))) NIL (|has| (-577) (-320 (-577)))) (($ $ (-577) (-577)) NIL (|has| (-577) (-320 (-577)))) (($ $ (-305 (-577))) NIL (|has| (-577) (-320 (-577)))) (($ $ (-660 (-305 (-577)))) NIL (|has| (-577) (-320 (-577)))) (($ $ (-660 (-1201)) (-660 (-577))) NIL (|has| (-577) (-527 (-1201) (-577)))) (($ $ (-1201) (-577)) NIL (|has| (-577) (-527 (-1201) (-577))))) (-1927 (((-787) $) NIL)) (-2872 (($ $ (-577)) NIL (|has| (-577) (-297 (-577) (-577))))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2852 (($ $ (-1 (-577) (-577))) NIL) (($ $ (-1 (-577) (-577)) (-787)) NIL) (($ $ (-1201)) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-577) (-923 (-1201)))) (($ $) NIL (|has| (-577) (-238))) (($ $ (-787)) NIL (|has| (-577) (-238)))) (-2227 (($ $) NIL)) (-1637 (((-577) $) NIL)) (-4152 (((-911 (-577)) $) NIL (|has| (-577) (-627 (-911 (-577))))) (((-911 (-391)) $) NIL (|has| (-577) (-627 (-911 (-391))))) (((-549) $) NIL (|has| (-577) (-627 (-549)))) (((-391) $) NIL (|has| (-577) (-1047))) (((-228) $) NIL (|has| (-577) (-1047)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| (-577) (-932))))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) 8) (($ (-577)) NIL) (($ (-1201)) NIL (|has| (-577) (-1063 (-1201)))) (((-420 (-577)) $) NIL) (((-1029 2) $) 10)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| (-577) (-932))) (|has| (-577) (-146))))) (-4068 (((-787)) NIL T CONST)) (-4132 (((-577) $) NIL (|has| (-577) (-558)))) (-4204 (($ (-420 (-577))) 9)) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-1654 (($ $) NIL (|has| (-577) (-836)))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-1 (-577) (-577))) NIL) (($ $ (-1 (-577) (-577)) (-787)) NIL) (($ $ (-1201)) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-577) (-923 (-1201)))) (($ $) NIL (|has| (-577) (-238))) (($ $ (-787)) NIL (|has| (-577) (-238)))) (-3025 (((-112) $ $) NIL (|has| (-577) (-865)))) (-3000 (((-112) $ $) NIL (|has| (-577) (-865)))) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-577) (-865)))) (-2990 (((-112) $ $) NIL (|has| (-577) (-865)))) (-3077 (($ $ $) NIL) (($ (-577) (-577)) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ (-577) $) NIL) (($ $ (-577)) NIL))) +(((-108) (-13 (-1017 (-577)) (-626 (-420 (-577))) (-626 (-1029 2)) (-10 -8 (-15 -4093 ((-420 (-577)) $)) (-15 -4204 ($ (-420 (-577))))))) (T -108)) +((-4093 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-108)))) (-4204 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-108))))) +(-13 (-1017 (-577)) (-626 (-420 (-577))) (-626 (-1029 2)) (-10 -8 (-15 -4093 ((-420 (-577)) $)) (-15 -4204 ($ (-420 (-577)))))) +((-1938 (((-660 (-988)) $) 13)) (-2713 (((-519) $) 9)) (-3544 (((-880) $) 20)) (-3617 (($ (-519) (-660 (-988))) 15))) +(((-109) (-13 (-626 (-880)) (-10 -8 (-15 -2713 ((-519) $)) (-15 -1938 ((-660 (-988)) $)) (-15 -3617 ($ (-519) (-660 (-988))))))) (T -109)) +((-2713 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-109)))) (-1938 (*1 *2 *1) (-12 (-5 *2 (-660 (-988))) (-5 *1 (-109)))) (-3617 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-660 (-988))) (-5 *1 (-109))))) +(-13 (-626 (-880)) (-10 -8 (-15 -2713 ((-519) $)) (-15 -1938 ((-660 (-988)) $)) (-15 -3617 ($ (-519) (-660 (-988)))))) +((-3473 (((-112) $ $) NIL)) (-3496 (($ $) NIL)) (-2781 (($ $ $) NIL)) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4077 (((-112) $) NIL (|has| (-112) (-865))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-4053 (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| (-112) (-865)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4471)))) (-1864 (($ $) NIL (|has| (-112) (-865))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-3709 (((-112) $ (-1259 (-577)) (-112)) NIL (|has| $ (-6 -4471))) (((-112) $ (-577) (-112)) NIL (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470)))) (-1534 (($) NIL T CONST)) (-3645 (($ $) NIL (|has| $ (-6 -4471)))) (-3787 (($ $) NIL)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))))) (-3904 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))))) (-3654 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))))) (-2192 (((-112) $ (-577) (-112)) NIL (|has| $ (-6 -4471)))) (-2117 (((-112) $ (-577)) NIL)) (-3618 (((-577) (-112) $ (-577)) NIL (|has| (-112) (-1125))) (((-577) (-112) $) NIL (|has| (-112) (-1125))) (((-577) (-1 (-112) (-112)) $) NIL)) (-1461 (((-660 (-112)) $) NIL (|has| $ (-6 -4470)))) (-2771 (($ $ $) NIL)) (-2749 (($ $) NIL)) (-1837 (($ $ $) NIL)) (-4113 (($ (-787) (-112)) 10)) (-1848 (($ $ $) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) NIL (|has| (-577) (-865)))) (-3732 (($ $ $) NIL)) (-3283 (($ $ $) NIL (|has| (-112) (-865))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2530 (((-660 (-112)) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))))) (-2416 (((-577) $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL)) (-2182 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL)) (-2308 (($ $ $ (-577)) NIL) (($ (-112) $ (-577)) NIL)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-1474 (((-1145) $) NIL)) (-3552 (((-112) $) NIL (|has| (-577) (-865)))) (-1828 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2397 (($ $ (-112)) NIL (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-112)) (-660 (-112))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125)))) (($ $ (-305 (-112))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125)))) (($ $ (-660 (-305 (-112)))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))))) (-4306 (((-660 (-112)) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 (($ $ (-1259 (-577))) NIL) (((-112) $ (-577)) NIL) (((-112) $ (-577) (-112)) NIL)) (-3453 (($ $ (-1259 (-577))) NIL) (($ $ (-577)) NIL)) (-1485 (((-787) (-112) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125)))) (((-787) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470)))) (-4064 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| (-112) (-627 (-549))))) (-3553 (($ (-660 (-112))) NIL)) (-1677 (($ (-660 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3544 (((-880) $) NIL)) (-3274 (($ (-787) (-112)) 11)) (-4448 (((-112) $ $) NIL)) (-1524 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470)))) (-2761 (($ $ $) NIL)) (-3538 (($ $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-3527 (($ $ $) NIL)) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-110) (-13 (-124) (-10 -8 (-15 -3274 ($ (-787) (-112)))))) (T -110)) +((-3274 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-124) (-10 -8 (-15 -3274 ($ (-787) (-112))))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) +(((-111 |#1| |#2|) (-141) (-1074) (-1074)) (T -111)) +NIL +(-13 (-664 |t#1|) (-1081 |t#2|) (-10 -7 (-6 -4465) (-6 -4464))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-1076 |#2|) . T) ((-1081 |#2|) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3496 (($ $) 10)) (-2781 (($ $ $) 15)) (-2274 (($) 7 T CONST)) (-3898 (($ $) 6)) (-2229 (((-787)) 24)) (-1910 (($) 32)) (-2771 (($ $ $) 13)) (-2749 (($ $) 9)) (-1837 (($ $ $) 16)) (-1848 (($ $ $) 17)) (-3732 (($ $ $) NIL) (($) NIL T CONST)) (-3201 (($ $ $) NIL) (($) NIL T CONST)) (-4038 (((-944) $) 30)) (-2810 (((-1183) $) NIL)) (-3222 (($ (-944)) 28)) (-3183 (($ $ $) 20)) (-1474 (((-1145) $) NIL)) (-3492 (($) 8 T CONST)) (-3173 (($ $ $) 21)) (-4152 (((-549) $) 34)) (-3544 (((-880) $) 36)) (-4448 (((-112) $ $) NIL)) (-2761 (($ $ $) 11)) (-3538 (($ $ $) 14)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 19)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 22)) (-3527 (($ $ $) 12))) +(((-112) (-13 (-860) (-677) (-992) (-627 (-549)) (-10 -8 (-15 -2781 ($ $ $)) (-15 -1848 ($ $ $)) (-15 -1837 ($ $ $)) (-15 -3898 ($ $))))) (T -112)) +((-2781 (*1 *1 *1 *1) (-5 *1 (-112))) (-1848 (*1 *1 *1 *1) (-5 *1 (-112))) (-1837 (*1 *1 *1 *1) (-5 *1 (-112))) (-3898 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-860) (-677) (-992) (-627 (-549)) (-10 -8 (-15 -2781 ($ $ $)) (-15 -1848 ($ $ $)) (-15 -1837 ($ $ $)) (-15 -3898 ($ $)))) +((-2771 (($ $ $) 6)) (-2749 (($ $) 8)) (-2761 (($ $ $) 7))) (((-113) (-141)) (T -113)) -((-2712 (*1 *1 *1) (-4 *1 (-113))) (-2724 (*1 *1 *1 *1) (-4 *1 (-113))) (-2734 (*1 *1 *1 *1) (-4 *1 (-113)))) -(-13 (-1239) (-10 -8 (-15 -2712 ($ $)) (-15 -2724 ($ $ $)) (-15 -2734 ($ $ $)))) -(((-1239) . T)) -((-1803 (((-3 (-1 |#1| (-657 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-657 |#1|))) 11) (((-3 |#1| "failed") (-115) (-657 |#1|)) 25)) (-1738 (((-3 (-657 (-1 |#1| (-657 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-657 (-1 |#1| (-657 |#1|)))) 30)) (-2604 (((-115) |#1|) 63)) (-1834 (((-3 |#1| "failed") (-115)) 58))) -(((-114 |#1|) (-10 -7 (-15 -1803 ((-3 |#1| "failed") (-115) (-657 |#1|))) (-15 -1803 ((-115) (-115) (-1 |#1| (-657 |#1|)))) (-15 -1803 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1803 ((-3 (-1 |#1| (-657 |#1|)) "failed") (-115))) (-15 -1738 ((-115) (-115) (-657 (-1 |#1| (-657 |#1|))))) (-15 -1738 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1738 ((-3 (-657 (-1 |#1| (-657 |#1|))) "failed") (-115))) (-15 -2604 ((-115) |#1|)) (-15 -1834 ((-3 |#1| "failed") (-115)))) (-1122)) (T -114)) -((-1834 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1122)))) (-2604 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1122)))) (-1738 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-657 (-1 *4 (-657 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1122)))) (-1738 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1122)) (-5 *1 (-114 *4)))) (-1738 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-657 (-1 *4 (-657 *4)))) (-4 *4 (-1122)) (-5 *1 (-114 *4)))) (-1803 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-657 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1122)))) (-1803 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1122)) (-5 *1 (-114 *4)))) (-1803 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-657 *4))) (-4 *4 (-1122)) (-5 *1 (-114 *4)))) (-1803 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-657 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1122))))) -(-10 -7 (-15 -1803 ((-3 |#1| "failed") (-115) (-657 |#1|))) (-15 -1803 ((-115) (-115) (-1 |#1| (-657 |#1|)))) (-15 -1803 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1803 ((-3 (-1 |#1| (-657 |#1|)) "failed") (-115))) (-15 -1738 ((-115) (-115) (-657 (-1 |#1| (-657 |#1|))))) (-15 -1738 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1738 ((-3 (-657 (-1 |#1| (-657 |#1|))) "failed") (-115))) (-15 -2604 ((-115) |#1|)) (-15 -1834 ((-3 |#1| "failed") (-115)))) -((-3429 (((-112) $ $) NIL)) (-3983 (((-784) $) 91) (($ $ (-784)) 37)) (-1897 (((-112) $) 41)) (-2138 (($ $ (-1180) (-787)) 58) (($ $ (-518) (-787)) 33)) (-2727 (($ $ (-45 (-1180) (-787))) 16)) (-3743 (((-3 (-787) "failed") $ (-1180)) 27) (((-704 (-787)) $ (-518)) 32)) (-1918 (((-45 (-1180) (-787)) $) 15)) (-1832 (($ (-1198)) 20) (($ (-1198) (-784)) 23) (($ (-1198) (-55)) 24)) (-2399 (((-112) $) 39)) (-2917 (((-112) $) 43)) (-2676 (((-1198) $) 8)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-2342 (((-1180) $) NIL)) (-4412 (((-112) $ (-1198)) 11)) (-2099 (($ $ (-1 (-548) (-657 (-548)))) 64) (((-3 (-1 (-548) (-657 (-548))) "failed") $) 71)) (-1471 (((-1142) $) NIL)) (-2307 (((-112) $ (-518)) 36)) (-3505 (($ $ (-1 (-112) $ $)) 45)) (-2041 (((-3 (-1 (-877) (-657 (-877))) "failed") $) 69) (($ $ (-1 (-877) (-657 (-877)))) 51) (($ $ (-1 (-877) (-877))) 53)) (-2503 (($ $ (-1180)) 55) (($ $ (-518)) 56)) (-1923 (($ $) 77)) (-3074 (($ $ (-1 (-112) $ $)) 46)) (-3501 (((-877) $) 60)) (-2046 (((-112) $ $) NIL)) (-2759 (($ $ (-518)) 34)) (-4335 (((-55) $) 72)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 89)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 103))) -(((-115) (-13 (-862) (-848 (-1198)) (-10 -8 (-15 -1918 ((-45 (-1180) (-787)) $)) (-15 -1923 ($ $)) (-15 -1832 ($ (-1198))) (-15 -1832 ($ (-1198) (-784))) (-15 -1832 ($ (-1198) (-55))) (-15 -2399 ((-112) $)) (-15 -1897 ((-112) $)) (-15 -2917 ((-112) $)) (-15 -3983 ((-784) $)) (-15 -3983 ($ $ (-784))) (-15 -3505 ($ $ (-1 (-112) $ $))) (-15 -3074 ($ $ (-1 (-112) $ $))) (-15 -2041 ((-3 (-1 (-877) (-657 (-877))) "failed") $)) (-15 -2041 ($ $ (-1 (-877) (-657 (-877))))) (-15 -2041 ($ $ (-1 (-877) (-877)))) (-15 -2099 ($ $ (-1 (-548) (-657 (-548))))) (-15 -2099 ((-3 (-1 (-548) (-657 (-548))) "failed") $)) (-15 -2307 ((-112) $ (-518))) (-15 -2759 ($ $ (-518))) (-15 -2503 ($ $ (-1180))) (-15 -2503 ($ $ (-518))) (-15 -3743 ((-3 (-787) "failed") $ (-1180))) (-15 -3743 ((-704 (-787)) $ (-518))) (-15 -2138 ($ $ (-1180) (-787))) (-15 -2138 ($ $ (-518) (-787))) (-15 -2727 ($ $ (-45 (-1180) (-787))))))) (T -115)) -((-1918 (*1 *2 *1) (-12 (-5 *2 (-45 (-1180) (-787))) (-5 *1 (-115)))) (-1923 (*1 *1 *1) (-5 *1 (-115))) (-1832 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-115)))) (-1832 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-784)) (-5 *1 (-115)))) (-1832 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-55)) (-5 *1 (-115)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1897 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-115)))) (-3983 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-115)))) (-3505 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-3074 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2041 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-877) (-657 (-877)))) (-5 *1 (-115)))) (-2041 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-877) (-657 (-877)))) (-5 *1 (-115)))) (-2041 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-877) (-877))) (-5 *1 (-115)))) (-2099 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-657 (-548)))) (-5 *1 (-115)))) (-2099 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-548) (-657 (-548)))) (-5 *1 (-115)))) (-2307 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2759 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-2503 (*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-115)))) (-2503 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-3743 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1180)) (-5 *2 (-787)) (-5 *1 (-115)))) (-3743 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-704 (-787))) (-5 *1 (-115)))) (-2138 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-787)) (-5 *1 (-115)))) (-2138 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-787)) (-5 *1 (-115)))) (-2727 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1180) (-787))) (-5 *1 (-115))))) -(-13 (-862) (-848 (-1198)) (-10 -8 (-15 -1918 ((-45 (-1180) (-787)) $)) (-15 -1923 ($ $)) (-15 -1832 ($ (-1198))) (-15 -1832 ($ (-1198) (-784))) (-15 -1832 ($ (-1198) (-55))) (-15 -2399 ((-112) $)) (-15 -1897 ((-112) $)) (-15 -2917 ((-112) $)) (-15 -3983 ((-784) $)) (-15 -3983 ($ $ (-784))) (-15 -3505 ($ $ (-1 (-112) $ $))) (-15 -3074 ($ $ (-1 (-112) $ $))) (-15 -2041 ((-3 (-1 (-877) (-657 (-877))) "failed") $)) (-15 -2041 ($ $ (-1 (-877) (-657 (-877))))) (-15 -2041 ($ $ (-1 (-877) (-877)))) (-15 -2099 ($ $ (-1 (-548) (-657 (-548))))) (-15 -2099 ((-3 (-1 (-548) (-657 (-548))) "failed") $)) (-15 -2307 ((-112) $ (-518))) (-15 -2759 ($ $ (-518))) (-15 -2503 ($ $ (-1180))) (-15 -2503 ($ $ (-518))) (-15 -3743 ((-3 (-787) "failed") $ (-1180))) (-15 -3743 ((-704 (-787)) $ (-518))) (-15 -2138 ($ $ (-1180) (-787))) (-15 -2138 ($ $ (-518) (-787))) (-15 -2727 ($ $ (-45 (-1180) (-787)))))) -((-3668 (((-576) |#2|) 41))) -(((-116 |#1| |#2|) (-10 -7 (-15 -3668 ((-576) |#2|))) (-13 (-374) (-1060 (-419 (-576)))) (-1265 |#1|)) (T -116)) -((-3668 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-1060 (-419 *2)))) (-5 *2 (-576)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1265 *4))))) -(-10 -7 (-15 -3668 ((-576) |#2|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-1896 (($ $ (-576)) NIL)) (-2864 (((-112) $ $) NIL)) (-4359 (($) NIL T CONST)) (-2012 (($ (-1194 (-576)) (-576)) NIL)) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-2530 (($ $) NIL)) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-3182 (((-784) $) NIL)) (-4094 (((-112) $) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2948 (((-576)) NIL)) (-3731 (((-576) $) NIL)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3926 (($ $ (-576)) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-4039 (((-1179 (-576)) $) NIL)) (-1431 (($ $) NIL)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-4144 (((-576) $ (-576)) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) -(((-117 |#1|) (-884 |#1|) (-576)) (T -117)) -NIL -(-884 |#1|) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3931 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-317)))) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-117 |#1|) (-929)))) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| (-117 |#1|) (-929)))) (-2864 (((-112) $ $) NIL)) (-1536 (((-576) $) NIL (|has| (-117 |#1|) (-833)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1198) "failed") $) NIL (|has| (-117 |#1|) (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-117 |#1|) (-1060 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-117 |#1|) (-1060 (-576))))) (-2884 (((-117 |#1|) $) NIL) (((-1198) $) NIL (|has| (-117 |#1|) (-1060 (-1198)))) (((-419 (-576)) $) NIL (|has| (-117 |#1|) (-1060 (-576)))) (((-576) $) NIL (|has| (-117 |#1|) (-1060 (-576))))) (-3106 (($ $) NIL) (($ (-576) $) NIL)) (-3373 (($ $ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| (-117 |#1|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-117 |#1|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-117 |#1|))) (|:| |vec| (-1289 (-117 |#1|)))) (-702 $) (-1289 $)) NIL) (((-702 (-117 |#1|)) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($) NIL (|has| (-117 |#1|) (-557)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-2828 (((-112) $) NIL (|has| (-117 |#1|) (-833)))) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| (-117 |#1|) (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| (-117 |#1|) (-902 (-390))))) (-4094 (((-112) $) NIL)) (-2752 (($ $) NIL)) (-1621 (((-117 |#1|) $) NIL)) (-4019 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1174)))) (-2881 (((-112) $) NIL (|has| (-117 |#1|) (-833)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3707 (($ $ $) NIL (|has| (-117 |#1|) (-862)))) (-1611 (($ $ $) NIL (|has| (-117 |#1|) (-862)))) (-4083 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| (-117 |#1|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-117 |#1|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-117 |#1|))) (|:| |vec| (-1289 (-117 |#1|)))) (-1289 $) $) NIL) (((-702 (-117 |#1|)) (-1289 $)) NIL)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1706 (($) NIL (|has| (-117 |#1|) (-1174)) CONST)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2900 (($ $) NIL (|has| (-117 |#1|) (-317)))) (-3427 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-117 |#1|) (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-117 |#1|) (-929)))) (-1885 (((-430 $) $) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3236 (($ $ (-657 (-117 |#1|)) (-657 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-304 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-657 (-304 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-657 (-1198)) (-657 (-117 |#1|))) NIL (|has| (-117 |#1|) (-526 (-1198) (-117 |#1|)))) (($ $ (-1198) (-117 |#1|)) NIL (|has| (-117 |#1|) (-526 (-1198) (-117 |#1|))))) (-2034 (((-784) $) NIL)) (-2835 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-296 (-117 |#1|) (-117 |#1|))))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2815 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-117 |#1|) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-117 |#1|) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-117 |#1|) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-117 |#1|) (-920 (-1198)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-784)) NIL (|has| (-117 |#1|) (-237)))) (-1396 (($ $) NIL)) (-1635 (((-117 |#1|) $) NIL)) (-4148 (((-908 (-576)) $) NIL (|has| (-117 |#1|) (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| (-117 |#1|) (-626 (-908 (-390))))) (((-548) $) NIL (|has| (-117 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-117 |#1|) (-1044))) (((-227) $) NIL (|has| (-117 |#1|) (-1044)))) (-1690 (((-176 (-419 (-576))) $) NIL)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-929))))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-117 |#1|)) NIL) (($ (-1198)) NIL (|has| (-117 |#1|) (-1060 (-1198))))) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-929))) (|has| (-117 |#1|) (-146))))) (-1960 (((-784)) NIL T CONST)) (-1893 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-4144 (((-419 (-576)) $ (-576)) NIL)) (-1792 (($ $) NIL (|has| (-117 |#1|) (-833)))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-117 |#1|) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-117 |#1|) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-117 |#1|) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-117 |#1|) (-920 (-1198)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-784)) NIL (|has| (-117 |#1|) (-237)))) (-2985 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-2963 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-2954 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-3034 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) -(((-118 |#1|) (-13 (-1014 (-117 |#1|)) (-10 -8 (-15 -4144 ((-419 (-576)) $ (-576))) (-15 -1690 ((-176 (-419 (-576))) $)) (-15 -3106 ($ $)) (-15 -3106 ($ (-576) $)))) (-576)) (T -118)) -((-4144 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) (-3106 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) (-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2)))) -(-13 (-1014 (-117 |#1|)) (-10 -8 (-15 -4144 ((-419 (-576)) $ (-576))) (-15 -1690 ((-176 (-419 (-576))) $)) (-15 -3106 ($ $)) (-15 -3106 ($ (-576) $)))) -((-3682 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-2877 (((-657 $) $) 31)) (-1700 (((-112) $ $) 36)) (-1627 (((-112) |#2| $) 40)) (-2424 (((-657 |#2|) $) 25)) (-2633 (((-112) $) 18)) (-2835 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3628 (((-112) $) 57)) (-3501 (((-877) $) 47)) (-1986 (((-657 $) $) 32)) (-2933 (((-112) $ $) 38)) (-3440 (((-784) $) 50))) -(((-119 |#1| |#2|) (-10 -8 (-15 -2933 ((-112) |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -3682 (|#1| |#1| "right" |#1|)) (-15 -3682 (|#1| |#1| "left" |#1|)) (-15 -2835 (|#1| |#1| "right")) (-15 -2835 (|#1| |#1| "left")) (-15 -3682 (|#2| |#1| "value" |#2|)) (-15 -1700 ((-112) |#1| |#1|)) (-15 -2424 ((-657 |#2|) |#1|)) (-15 -3628 ((-112) |#1|)) (-15 -2835 (|#2| |#1| "value")) (-15 -2633 ((-112) |#1|)) (-15 -2877 ((-657 |#1|) |#1|)) (-15 -1986 ((-657 |#1|) |#1|)) (-15 -1627 ((-112) |#2| |#1|)) (-15 -3440 ((-784) |#1|))) (-120 |#2|) (-1239)) (T -119)) -NIL -(-10 -8 (-15 -2933 ((-112) |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -3682 (|#1| |#1| "right" |#1|)) (-15 -3682 (|#1| |#1| "left" |#1|)) (-15 -2835 (|#1| |#1| "right")) (-15 -2835 (|#1| |#1| "left")) (-15 -3682 (|#2| |#1| "value" |#2|)) (-15 -1700 ((-112) |#1| |#1|)) (-15 -2424 ((-657 |#2|) |#1|)) (-15 -3628 ((-112) |#1|)) (-15 -2835 (|#2| |#1| "value")) (-15 -2633 ((-112) |#1|)) (-15 -2877 ((-657 |#1|) |#1|)) (-15 -1986 ((-657 |#1|) |#1|)) (-15 -1627 ((-112) |#2| |#1|)) (-15 -3440 ((-784) |#1|))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3071 ((|#1| $) 49)) (-3793 (((-112) $ (-784)) 8)) (-3734 ((|#1| $ |#1|) 40 (|has| $ (-6 -4467)))) (-2203 (($ $ $) 53 (|has| $ (-6 -4467)))) (-2920 (($ $ $) 55 (|has| $ (-6 -4467)))) (-3682 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4467))) (($ $ "left" $) 56 (|has| $ (-6 -4467))) (($ $ "right" $) 54 (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) 42 (|has| $ (-6 -4467)))) (-4359 (($) 7 T CONST)) (-4236 (($ $) 58)) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-2877 (((-657 $) $) 51)) (-1700 (((-112) $ $) 43 (|has| |#1| (-1122)))) (-1833 (((-112) $ (-784)) 9)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-4224 (($ $) 60)) (-2424 (((-657 |#1|) $) 46)) (-2633 (((-112) $) 50)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3883 (((-576) $ $) 45)) (-3628 (((-112) $) 47)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-1986 (((-657 $) $) 52)) (-1633 (((-112) $ $) 44 (|has| |#1| (-1122)))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-120 |#1|) (-141) (-1239)) (T -120)) -((-4224 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1239)))) (-2835 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1239)))) (-4236 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1239)))) (-2835 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1239)))) (-3682 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4467)) (-4 *1 (-120 *3)) (-4 *3 (-1239)))) (-2920 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-120 *2)) (-4 *2 (-1239)))) (-3682 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4467)) (-4 *1 (-120 *3)) (-4 *3 (-1239)))) (-2203 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-120 *2)) (-4 *2 (-1239))))) -(-13 (-1032 |t#1|) (-10 -8 (-15 -4224 ($ $)) (-15 -2835 ($ $ "left")) (-15 -4236 ($ $)) (-15 -2835 ($ $ "right")) (IF (|has| $ (-6 -4467)) (PROGN (-15 -3682 ($ $ "left" $)) (-15 -2920 ($ $ $)) (-15 -3682 ($ $ "right" $)) (-15 -2203 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1032 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) -((-1956 (((-112) |#1|) 29)) (-4138 (((-784) (-784)) 28) (((-784)) 27)) (-1551 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) -(((-121 |#1|) (-10 -7 (-15 -1551 ((-112) |#1|)) (-15 -1551 ((-112) |#1| (-112))) (-15 -4138 ((-784))) (-15 -4138 ((-784) (-784))) (-15 -1956 ((-112) |#1|))) (-1265 (-576))) (T -121)) -((-1956 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576))))) (-4138 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576))))) (-4138 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576))))) (-1551 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576))))) (-1551 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576)))))) -(-10 -7 (-15 -1551 ((-112) |#1|)) (-15 -1551 ((-112) |#1| (-112))) (-15 -4138 ((-784))) (-15 -4138 ((-784) (-784))) (-15 -1956 ((-112) |#1|))) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3071 ((|#1| $) 18)) (-1407 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-3793 (((-112) $ (-784)) NIL)) (-3734 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-2203 (($ $ $) 21 (|has| $ (-6 -4467)))) (-2920 (($ $ $) 23 (|has| $ (-6 -4467)))) (-3682 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467))) (($ $ "left" $) NIL (|has| $ (-6 -4467))) (($ $ "right" $) NIL (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-4359 (($) NIL T CONST)) (-4236 (($ $) 20)) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2877 (((-657 $) $) NIL)) (-1700 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2296 (($ $ |#1| $) 27)) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-4224 (($ $) 22)) (-2424 (((-657 |#1|) $) NIL)) (-2633 (((-112) $) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2670 (($ |#1| $) 28)) (-2468 (($ |#1| $) 15)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) 17)) (-3581 (($) 11)) (-2835 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3883 (((-576) $ $) NIL)) (-3628 (((-112) $) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) NIL)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-1986 (((-657 $) $) NIL)) (-1633 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-1614 (($ (-657 |#1|)) 16)) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4467) (-6 -4466) (-15 -1614 ($ (-657 |#1|))) (-15 -2468 ($ |#1| $)) (-15 -2670 ($ |#1| $)) (-15 -1407 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-862)) (T -122)) -((-1614 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-122 *3)))) (-2468 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) (-2670 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) (-1407 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-862))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4467) (-6 -4466) (-15 -1614 ($ (-657 |#1|))) (-15 -2468 ($ |#1| $)) (-15 -2670 ($ |#1| $)) (-15 -1407 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-3452 (($ $) 13)) (-2712 (($ $) 11)) (-3147 (($ $ $) 23)) (-1340 (($ $ $) 21)) (-3494 (($ $ $) 19)) (-3482 (($ $ $) 17))) -(((-123 |#1|) (-10 -8 (-15 -3147 (|#1| |#1| |#1|)) (-15 -1340 (|#1| |#1| |#1|)) (-15 -3452 (|#1| |#1|)) (-15 -3482 (|#1| |#1| |#1|)) (-15 -3494 (|#1| |#1| |#1|)) (-15 -2712 (|#1| |#1|))) (-124)) (T -123)) -NIL -(-10 -8 (-15 -3147 (|#1| |#1| |#1|)) (-15 -1340 (|#1| |#1| |#1|)) (-15 -3452 (|#1| |#1|)) (-15 -3482 (|#1| |#1| |#1|)) (-15 -3494 (|#1| |#1| |#1|)) (-15 -2712 (|#1| |#1|))) -((-3429 (((-112) $ $) 7)) (-3452 (($ $) 104)) (-2744 (($ $ $) 29)) (-4313 (((-1294) $ (-576) (-576)) 67 (|has| $ (-6 -4467)))) (-1568 (((-112) $) 99 (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-3363 (($ $) 103 (-12 (|has| (-112) (-862)) (|has| $ (-6 -4467)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4467)))) (-1850 (($ $) 98 (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-3793 (((-112) $ (-784)) 38)) (-3682 (((-112) $ (-1256 (-576)) (-112)) 89 (|has| $ (-6 -4467))) (((-112) $ (-576) (-112)) 55 (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4466)))) (-4359 (($) 39 T CONST)) (-3606 (($ $) 101 (|has| $ (-6 -4467)))) (-3768 (($ $) 91)) (-3914 (($ $) 69 (-12 (|has| (-112) (-1122)) (|has| $ (-6 -4466))))) (-3895 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4466))) (($ (-112) $) 70 (-12 (|has| (-112) (-1122)) (|has| $ (-6 -4466))))) (-3622 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1122)) (|has| $ (-6 -4466))))) (-2158 (((-112) $ (-576) (-112)) 54 (|has| $ (-6 -4467)))) (-2083 (((-112) $ (-576)) 56)) (-3582 (((-576) (-112) $ (-576)) 96 (|has| (-112) (-1122))) (((-576) (-112) $) 95 (|has| (-112) (-1122))) (((-576) (-1 (-112) (-112)) $) 94)) (-1458 (((-657 (-112)) $) 46 (|has| $ (-6 -4466)))) (-2734 (($ $ $) 109)) (-2712 (($ $) 107)) (-3147 (($ $ $) 30)) (-4109 (($ (-784) (-112)) 79)) (-1340 (($ $ $) 31)) (-1833 (((-112) $ (-784)) 37)) (-3853 (((-576) $) 64 (|has| (-576) (-862)))) (-3707 (($ $ $) 20)) (-3073 (($ $ $) 97 (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-2070 (((-657 (-112)) $) 47 (|has| $ (-6 -4466)))) (-1627 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1122)) (|has| $ (-6 -4466))))) (-2272 (((-576) $) 63 (|has| (-576) (-862)))) (-1611 (($ $ $) 19)) (-2148 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-112) (-112) (-112)) $ $) 84) (($ (-1 (-112) (-112)) $) 41)) (-4261 (((-112) $ (-784)) 36)) (-2342 (((-1180) $) 10)) (-2271 (($ $ $ (-576)) 88) (($ (-112) $ (-576)) 87)) (-1430 (((-657 (-576)) $) 61)) (-4242 (((-112) (-576) $) 60)) (-1471 (((-1142) $) 11)) (-3510 (((-112) $) 65 (|has| (-576) (-862)))) (-2951 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-1987 (($ $ (-112)) 66 (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-112)) (-657 (-112))) 53 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122)))) (($ $ (-304 (-112))) 51 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122)))) (($ $ (-657 (-304 (-112)))) 50 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122))))) (-2806 (((-112) $ $) 32)) (-1515 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-2380 (((-657 (-112)) $) 59)) (-3387 (((-112) $) 35)) (-3581 (($) 34)) (-2835 (($ $ (-1256 (-576))) 78) (((-112) $ (-576)) 58) (((-112) $ (-576) (-112)) 57)) (-3409 (($ $ (-1256 (-576))) 86) (($ $ (-576)) 85)) (-1482 (((-784) (-112) $) 48 (-12 (|has| (-112) (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4466)))) (-2114 (($ $ $ (-576)) 100 (|has| $ (-6 -4467)))) (-1923 (($ $) 33)) (-4148 (((-548) $) 68 (|has| (-112) (-626 (-548))))) (-3511 (($ (-657 (-112))) 77)) (-1674 (($ (-657 $)) 83) (($ $ $) 82) (($ (-112) $) 81) (($ $ (-112)) 80)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2147 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4466)))) (-2724 (($ $ $) 108)) (-3494 (($ $ $) 106)) (-2985 (((-112) $ $) 18)) (-2963 (((-112) $ $) 16)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 17)) (-2954 (((-112) $ $) 15)) (-3482 (($ $ $) 105)) (-3440 (((-784) $) 40 (|has| $ (-6 -4466))))) +((-2749 (*1 *1 *1) (-4 *1 (-113))) (-2761 (*1 *1 *1 *1) (-4 *1 (-113))) (-2771 (*1 *1 *1 *1) (-4 *1 (-113)))) +(-13 (-1242) (-10 -8 (-15 -2749 ($ $)) (-15 -2761 ($ $ $)) (-15 -2771 ($ $ $)))) +(((-1242) . T)) +((-2980 (((-3 (-1 |#1| (-660 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-660 |#1|))) 11) (((-3 |#1| "failed") (-115) (-660 |#1|)) 25)) (-3641 (((-3 (-660 (-1 |#1| (-660 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-660 (-1 |#1| (-660 |#1|)))) 30)) (-3651 (((-115) |#1|) 63)) (-3665 (((-3 |#1| "failed") (-115)) 58))) +(((-114 |#1|) (-10 -7 (-15 -2980 ((-3 |#1| "failed") (-115) (-660 |#1|))) (-15 -2980 ((-115) (-115) (-1 |#1| (-660 |#1|)))) (-15 -2980 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2980 ((-3 (-1 |#1| (-660 |#1|)) "failed") (-115))) (-15 -3641 ((-115) (-115) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3641 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3641 ((-3 (-660 (-1 |#1| (-660 |#1|))) "failed") (-115))) (-15 -3651 ((-115) |#1|)) (-15 -3665 ((-3 |#1| "failed") (-115)))) (-1125)) (T -114)) +((-3665 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1125)))) (-3651 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1125)))) (-3641 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-660 (-1 *4 (-660 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1125)))) (-3641 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1125)) (-5 *1 (-114 *4)))) (-3641 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-660 (-1 *4 (-660 *4)))) (-4 *4 (-1125)) (-5 *1 (-114 *4)))) (-2980 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-660 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1125)))) (-2980 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1125)) (-5 *1 (-114 *4)))) (-2980 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-660 *4))) (-4 *4 (-1125)) (-5 *1 (-114 *4)))) (-2980 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-660 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1125))))) +(-10 -7 (-15 -2980 ((-3 |#1| "failed") (-115) (-660 |#1|))) (-15 -2980 ((-115) (-115) (-1 |#1| (-660 |#1|)))) (-15 -2980 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2980 ((-3 (-1 |#1| (-660 |#1|)) "failed") (-115))) (-15 -3641 ((-115) (-115) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3641 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3641 ((-3 (-660 (-1 |#1| (-660 |#1|))) "failed") (-115))) (-15 -3651 ((-115) |#1|)) (-15 -3665 ((-3 |#1| "failed") (-115)))) +((-3473 (((-112) $ $) NIL)) (-3030 (((-787) $) 91) (($ $ (-787)) 37)) (-1869 (((-112) $) 41)) (-1546 (($ $ (-1183) (-790)) 58) (($ $ (-519) (-790)) 33)) (-3628 (($ $ (-45 (-1183) (-790))) 16)) (-3063 (((-3 (-790) "failed") $ (-1183)) 27) (((-707 (-790)) $ (-519)) 32)) (-1938 (((-45 (-1183) (-790)) $) 15)) (-1844 (($ (-1201)) 20) (($ (-1201) (-787)) 23) (($ (-1201) (-55)) 24)) (-3630 (((-112) $) 39)) (-4042 (((-112) $) 43)) (-2713 (((-1201) $) 8)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-2810 (((-1183) $) NIL)) (-2740 (((-112) $ (-1201)) 11)) (-2135 (($ $ (-1 (-549) (-660 (-549)))) 64) (((-3 (-1 (-549) (-660 (-549))) "failed") $) 71)) (-1474 (((-1145) $) NIL)) (-1578 (((-112) $ (-519)) 36)) (-3501 (($ $ (-1 (-112) $ $)) 45)) (-2072 (((-3 (-1 (-880) (-660 (-880))) "failed") $) 69) (($ $ (-1 (-880) (-660 (-880)))) 51) (($ $ (-1 (-880) (-880))) 53)) (-1567 (($ $ (-1183)) 55) (($ $ (-519)) 56)) (-1944 (($ $) 77)) (-3489 (($ $ (-1 (-112) $ $)) 46)) (-3544 (((-880) $) 60)) (-4448 (((-112) $ $) NIL)) (-2796 (($ $ (-519)) 34)) (-3013 (((-55) $) 72)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 89)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 103))) +(((-115) (-13 (-865) (-851 (-1201)) (-10 -8 (-15 -1938 ((-45 (-1183) (-790)) $)) (-15 -1944 ($ $)) (-15 -1844 ($ (-1201))) (-15 -1844 ($ (-1201) (-787))) (-15 -1844 ($ (-1201) (-55))) (-15 -3630 ((-112) $)) (-15 -1869 ((-112) $)) (-15 -4042 ((-112) $)) (-15 -3030 ((-787) $)) (-15 -3030 ($ $ (-787))) (-15 -3501 ($ $ (-1 (-112) $ $))) (-15 -3489 ($ $ (-1 (-112) $ $))) (-15 -2072 ((-3 (-1 (-880) (-660 (-880))) "failed") $)) (-15 -2072 ($ $ (-1 (-880) (-660 (-880))))) (-15 -2072 ($ $ (-1 (-880) (-880)))) (-15 -2135 ($ $ (-1 (-549) (-660 (-549))))) (-15 -2135 ((-3 (-1 (-549) (-660 (-549))) "failed") $)) (-15 -1578 ((-112) $ (-519))) (-15 -2796 ($ $ (-519))) (-15 -1567 ($ $ (-1183))) (-15 -1567 ($ $ (-519))) (-15 -3063 ((-3 (-790) "failed") $ (-1183))) (-15 -3063 ((-707 (-790)) $ (-519))) (-15 -1546 ($ $ (-1183) (-790))) (-15 -1546 ($ $ (-519) (-790))) (-15 -3628 ($ $ (-45 (-1183) (-790))))))) (T -115)) +((-1938 (*1 *2 *1) (-12 (-5 *2 (-45 (-1183) (-790))) (-5 *1 (-115)))) (-1944 (*1 *1 *1) (-5 *1 (-115))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-115)))) (-1844 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-787)) (-5 *1 (-115)))) (-1844 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-55)) (-5 *1 (-115)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-4042 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3030 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-115)))) (-3030 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-115)))) (-3501 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-3489 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2072 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-880) (-660 (-880)))) (-5 *1 (-115)))) (-2072 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-880) (-660 (-880)))) (-5 *1 (-115)))) (-2072 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-880) (-880))) (-5 *1 (-115)))) (-2135 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-549) (-660 (-549)))) (-5 *1 (-115)))) (-2135 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-549) (-660 (-549)))) (-5 *1 (-115)))) (-1578 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2796 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-115)))) (-1567 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-115)))) (-1567 (*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-115)))) (-3063 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1183)) (-5 *2 (-790)) (-5 *1 (-115)))) (-3063 (*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-707 (-790))) (-5 *1 (-115)))) (-1546 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-790)) (-5 *1 (-115)))) (-1546 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-790)) (-5 *1 (-115)))) (-3628 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1183) (-790))) (-5 *1 (-115))))) +(-13 (-865) (-851 (-1201)) (-10 -8 (-15 -1938 ((-45 (-1183) (-790)) $)) (-15 -1944 ($ $)) (-15 -1844 ($ (-1201))) (-15 -1844 ($ (-1201) (-787))) (-15 -1844 ($ (-1201) (-55))) (-15 -3630 ((-112) $)) (-15 -1869 ((-112) $)) (-15 -4042 ((-112) $)) (-15 -3030 ((-787) $)) (-15 -3030 ($ $ (-787))) (-15 -3501 ($ $ (-1 (-112) $ $))) (-15 -3489 ($ $ (-1 (-112) $ $))) (-15 -2072 ((-3 (-1 (-880) (-660 (-880))) "failed") $)) (-15 -2072 ($ $ (-1 (-880) (-660 (-880))))) (-15 -2072 ($ $ (-1 (-880) (-880)))) (-15 -2135 ($ $ (-1 (-549) (-660 (-549))))) (-15 -2135 ((-3 (-1 (-549) (-660 (-549))) "failed") $)) (-15 -1578 ((-112) $ (-519))) (-15 -2796 ($ $ (-519))) (-15 -1567 ($ $ (-1183))) (-15 -1567 ($ $ (-519))) (-15 -3063 ((-3 (-790) "failed") $ (-1183))) (-15 -3063 ((-707 (-790)) $ (-519))) (-15 -1546 ($ $ (-1183) (-790))) (-15 -1546 ($ $ (-519) (-790))) (-15 -3628 ($ $ (-45 (-1183) (-790)))))) +((-1752 (((-577) |#2|) 41))) +(((-116 |#1| |#2|) (-10 -7 (-15 -1752 ((-577) |#2|))) (-13 (-375) (-1063 (-420 (-577)))) (-1268 |#1|)) (T -116)) +((-1752 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-1063 (-420 *2)))) (-5 *2 (-577)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1268 *4))))) +(-10 -7 (-15 -1752 ((-577) |#2|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1913 (($ $ (-577)) NIL)) (-1939 (((-112) $ $) NIL)) (-1534 (($) NIL T CONST)) (-2558 (($ (-1197 (-577)) (-577)) NIL)) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-2567 (($ $) NIL)) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-3817 (((-787) $) NIL)) (-2487 (((-112) $) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-2587 (((-577)) NIL)) (-2577 (((-577) $) NIL)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3792 (($ $ (-577)) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2596 (((-1182 (-577)) $) NIL)) (-3540 (($ $) NIL)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-4148 (((-577) $ (-577)) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL))) +(((-117 |#1|) (-887 |#1|) (-577)) (T -117)) +NIL +(-887 |#1|) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-4105 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-318)))) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-117 |#1|) (-932)))) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| (-117 |#1|) (-932)))) (-1939 (((-112) $ $) NIL)) (-3010 (((-577) $) NIL (|has| (-117 |#1|) (-836)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1201) "failed") $) NIL (|has| (-117 |#1|) (-1063 (-1201)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-117 |#1|) (-1063 (-577)))) (((-3 (-577) "failed") $) NIL (|has| (-117 |#1|) (-1063 (-577))))) (-2921 (((-117 |#1|) $) NIL) (((-1201) $) NIL (|has| (-117 |#1|) (-1063 (-1201)))) (((-420 (-577)) $) NIL (|has| (-117 |#1|) (-1063 (-577)))) (((-577) $) NIL (|has| (-117 |#1|) (-1063 (-577))))) (-1566 (($ $) NIL) (($ (-577) $) NIL)) (-3418 (($ $ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| (-117 |#1|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-117 |#1|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-117 |#1|))) (|:| |vec| (-1292 (-117 |#1|)))) (-705 $) (-1292 $)) NIL) (((-705 (-117 |#1|)) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($) NIL (|has| (-117 |#1|) (-558)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-3567 (((-112) $) NIL (|has| (-117 |#1|) (-836)))) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| (-117 |#1|) (-905 (-577)))) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| (-117 |#1|) (-905 (-391))))) (-2487 (((-112) $) NIL)) (-2240 (($ $) NIL)) (-1623 (((-117 |#1|) $) NIL)) (-4021 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1177)))) (-3578 (((-112) $) NIL (|has| (-117 |#1|) (-836)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3732 (($ $ $) NIL (|has| (-117 |#1|) (-865)))) (-3201 (($ $ $) NIL (|has| (-117 |#1|) (-865)))) (-4087 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| (-117 |#1|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-117 |#1|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-117 |#1|))) (|:| |vec| (-1292 (-117 |#1|)))) (-1292 $) $) NIL) (((-705 (-117 |#1|)) (-1292 $)) NIL)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1709 (($) NIL (|has| (-117 |#1|) (-1177)) CONST)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-4093 (($ $) NIL (|has| (-117 |#1|) (-318)))) (-4119 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-558)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-117 |#1|) (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-117 |#1|) (-932)))) (-1902 (((-431 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3280 (($ $ (-660 (-117 |#1|)) (-660 (-117 |#1|))) NIL (|has| (-117 |#1|) (-320 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-320 (-117 |#1|)))) (($ $ (-305 (-117 |#1|))) NIL (|has| (-117 |#1|) (-320 (-117 |#1|)))) (($ $ (-660 (-305 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-320 (-117 |#1|)))) (($ $ (-660 (-1201)) (-660 (-117 |#1|))) NIL (|has| (-117 |#1|) (-527 (-1201) (-117 |#1|)))) (($ $ (-1201) (-117 |#1|)) NIL (|has| (-117 |#1|) (-527 (-1201) (-117 |#1|))))) (-1927 (((-787) $) NIL)) (-2872 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-297 (-117 |#1|) (-117 |#1|))))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2852 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-787)) NIL) (($ $ (-1201)) NIL (|has| (-117 |#1|) (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| (-117 |#1|) (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| (-117 |#1|) (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-117 |#1|) (-923 (-1201)))) (($ $) NIL (|has| (-117 |#1|) (-238))) (($ $ (-787)) NIL (|has| (-117 |#1|) (-238)))) (-2227 (($ $) NIL)) (-1637 (((-117 |#1|) $) NIL)) (-4152 (((-911 (-577)) $) NIL (|has| (-117 |#1|) (-627 (-911 (-577))))) (((-911 (-391)) $) NIL (|has| (-117 |#1|) (-627 (-911 (-391))))) (((-549) $) NIL (|has| (-117 |#1|) (-627 (-549)))) (((-391) $) NIL (|has| (-117 |#1|) (-1047))) (((-228) $) NIL (|has| (-117 |#1|) (-1047)))) (-2605 (((-176 (-420 (-577))) $) NIL)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-932))))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) NIL) (($ (-117 |#1|)) NIL) (($ (-1201)) NIL (|has| (-117 |#1|) (-1063 (-1201))))) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-932))) (|has| (-117 |#1|) (-146))))) (-4068 (((-787)) NIL T CONST)) (-4132 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-558)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-4148 (((-420 (-577)) $ (-577)) NIL)) (-1654 (($ $) NIL (|has| (-117 |#1|) (-836)))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-787)) NIL) (($ $ (-1201)) NIL (|has| (-117 |#1|) (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| (-117 |#1|) (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| (-117 |#1|) (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-117 |#1|) (-923 (-1201)))) (($ $) NIL (|has| (-117 |#1|) (-238))) (($ $ (-787)) NIL (|has| (-117 |#1|) (-238)))) (-3025 (((-112) $ $) NIL (|has| (-117 |#1|) (-865)))) (-3000 (((-112) $ $) NIL (|has| (-117 |#1|) (-865)))) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-117 |#1|) (-865)))) (-2990 (((-112) $ $) NIL (|has| (-117 |#1|) (-865)))) (-3077 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) +(((-118 |#1|) (-13 (-1017 (-117 |#1|)) (-10 -8 (-15 -4148 ((-420 (-577)) $ (-577))) (-15 -2605 ((-176 (-420 (-577))) $)) (-15 -1566 ($ $)) (-15 -1566 ($ (-577) $)))) (-577)) (T -118)) +((-4148 (*1 *2 *1 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-577)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-118 *3)) (-14 *3 (-577)))) (-1566 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-577)))) (-1566 (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-118 *3)) (-14 *3 *2)))) +(-13 (-1017 (-117 |#1|)) (-10 -8 (-15 -4148 ((-420 (-577)) $ (-577))) (-15 -2605 ((-176 (-420 (-577))) $)) (-15 -1566 ($ $)) (-15 -1566 ($ (-577) $)))) +((-3709 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-4426 (((-660 $) $) 31)) (-4394 (((-112) $ $) 36)) (-2820 (((-112) |#2| $) 40)) (-2461 (((-660 |#2|) $) 25)) (-3371 (((-112) $) 18)) (-2872 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1885 (((-112) $) 57)) (-3544 (((-880) $) 47)) (-3322 (((-660 $) $) 32)) (-2970 (((-112) $ $) 38)) (-3484 (((-787) $) 50))) +(((-119 |#1| |#2|) (-10 -8 (-15 -2970 ((-112) |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -3709 (|#1| |#1| "right" |#1|)) (-15 -3709 (|#1| |#1| "left" |#1|)) (-15 -2872 (|#1| |#1| "right")) (-15 -2872 (|#1| |#1| "left")) (-15 -3709 (|#2| |#1| "value" |#2|)) (-15 -4394 ((-112) |#1| |#1|)) (-15 -2461 ((-660 |#2|) |#1|)) (-15 -1885 ((-112) |#1|)) (-15 -2872 (|#2| |#1| "value")) (-15 -3371 ((-112) |#1|)) (-15 -4426 ((-660 |#1|) |#1|)) (-15 -3322 ((-660 |#1|) |#1|)) (-15 -2820 ((-112) |#2| |#1|)) (-15 -3484 ((-787) |#1|))) (-120 |#2|) (-1242)) (T -119)) +NIL +(-10 -8 (-15 -2970 ((-112) |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -3709 (|#1| |#1| "right" |#1|)) (-15 -3709 (|#1| |#1| "left" |#1|)) (-15 -2872 (|#1| |#1| "right")) (-15 -2872 (|#1| |#1| "left")) (-15 -3709 (|#2| |#1| "value" |#2|)) (-15 -4394 ((-112) |#1| |#1|)) (-15 -2461 ((-660 |#2|) |#1|)) (-15 -1885 ((-112) |#1|)) (-15 -2872 (|#2| |#1| "value")) (-15 -3371 ((-112) |#1|)) (-15 -4426 ((-660 |#1|) |#1|)) (-15 -3322 ((-660 |#1|) |#1|)) (-15 -2820 ((-112) |#2| |#1|)) (-15 -3484 ((-787) |#1|))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3115 ((|#1| $) 49)) (-3828 (((-112) $ (-787)) 8)) (-4374 ((|#1| $ |#1|) 40 (|has| $ (-6 -4471)))) (-1763 (($ $ $) 53 (|has| $ (-6 -4471)))) (-1774 (($ $ $) 55 (|has| $ (-6 -4471)))) (-3709 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4471))) (($ $ "left" $) 56 (|has| $ (-6 -4471))) (($ $ "right" $) 54 (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) 42 (|has| $ (-6 -4471)))) (-1534 (($) 7 T CONST)) (-4239 (($ $) 58)) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-4426 (((-660 $) $) 51)) (-4394 (((-112) $ $) 43 (|has| |#1| (-1125)))) (-1479 (((-112) $ (-787)) 9)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-4228 (($ $) 60)) (-2461 (((-660 |#1|) $) 46)) (-3371 (((-112) $) 50)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-4415 (((-577) $ $) 45)) (-1885 (((-112) $) 47)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-3322 (((-660 $) $) 52)) (-4405 (((-112) $ $) 44 (|has| |#1| (-1125)))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-120 |#1|) (-141) (-1242)) (T -120)) +((-4228 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1242)))) (-2872 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1242)))) (-4239 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1242)))) (-2872 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1242)))) (-3709 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4471)) (-4 *1 (-120 *3)) (-4 *3 (-1242)))) (-1774 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-120 *2)) (-4 *2 (-1242)))) (-3709 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4471)) (-4 *1 (-120 *3)) (-4 *3 (-1242)))) (-1763 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-120 *2)) (-4 *2 (-1242))))) +(-13 (-1035 |t#1|) (-10 -8 (-15 -4228 ($ $)) (-15 -2872 ($ $ "left")) (-15 -4239 ($ $)) (-15 -2872 ($ $ "right")) (IF (|has| $ (-6 -4471)) (PROGN (-15 -3709 ($ $ "left" $)) (-15 -1774 ($ $ $)) (-15 -3709 ($ $ "right" $)) (-15 -1763 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1035 |#1|) . T) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) +((-1806 (((-112) |#1|) 29)) (-1796 (((-787) (-787)) 28) (((-787)) 27)) (-1786 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) +(((-121 |#1|) (-10 -7 (-15 -1786 ((-112) |#1|)) (-15 -1786 ((-112) |#1| (-112))) (-15 -1796 ((-787))) (-15 -1796 ((-787) (-787))) (-15 -1806 ((-112) |#1|))) (-1268 (-577))) (T -121)) +((-1806 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577))))) (-1796 (*1 *2 *2) (-12 (-5 *2 (-787)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577))))) (-1796 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577))))) (-1786 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577))))) (-1786 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577)))))) +(-10 -7 (-15 -1786 ((-112) |#1|)) (-15 -1786 ((-112) |#1| (-112))) (-15 -1796 ((-787))) (-15 -1796 ((-787) (-787))) (-15 -1806 ((-112) |#1|))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3115 ((|#1| $) 18)) (-3810 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-3828 (((-112) $ (-787)) NIL)) (-4374 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)))) (-1763 (($ $ $) 21 (|has| $ (-6 -4471)))) (-1774 (($ $ $) 23 (|has| $ (-6 -4471)))) (-3709 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471))) (($ $ "left" $) NIL (|has| $ (-6 -4471))) (($ $ "right" $) NIL (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)))) (-1534 (($) NIL T CONST)) (-4239 (($ $) 20)) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-4426 (((-660 $) $) NIL)) (-4394 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-2333 (($ $ |#1| $) 27)) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-4228 (($ $) 22)) (-2461 (((-660 |#1|) $) NIL)) (-3371 (((-112) $) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-1815 (($ |#1| $) 28)) (-2881 (($ |#1| $) 15)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) 17)) (-3639 (($) 11)) (-2872 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4415 (((-577) $ $) NIL)) (-1885 (((-112) $) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) NIL)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-3322 (((-660 $) $) NIL)) (-4405 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-1826 (($ (-660 |#1|)) 16)) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4471) (-6 -4470) (-15 -1826 ($ (-660 |#1|))) (-15 -2881 ($ |#1| $)) (-15 -1815 ($ |#1| $)) (-15 -3810 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-865)) (T -122)) +((-1826 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-122 *3)))) (-2881 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-865)))) (-1815 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-865)))) (-3810 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-865))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4471) (-6 -4470) (-15 -1826 ($ (-660 |#1|))) (-15 -2881 ($ |#1| $)) (-15 -1815 ($ |#1| $)) (-15 -3810 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-3496 (($ $) 13)) (-2749 (($ $) 11)) (-1837 (($ $ $) 23)) (-1848 (($ $ $) 21)) (-3538 (($ $ $) 19)) (-3527 (($ $ $) 17))) +(((-123 |#1|) (-10 -8 (-15 -1837 (|#1| |#1| |#1|)) (-15 -1848 (|#1| |#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3527 (|#1| |#1| |#1|)) (-15 -3538 (|#1| |#1| |#1|)) (-15 -2749 (|#1| |#1|))) (-124)) (T -123)) +NIL +(-10 -8 (-15 -1837 (|#1| |#1| |#1|)) (-15 -1848 (|#1| |#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3527 (|#1| |#1| |#1|)) (-15 -3538 (|#1| |#1| |#1|)) (-15 -2749 (|#1| |#1|))) +((-3473 (((-112) $ $) 7)) (-3496 (($ $) 104)) (-2781 (($ $ $) 29)) (-2389 (((-1297) $ (-577) (-577)) 67 (|has| $ (-6 -4471)))) (-4077 (((-112) $) 99 (|has| (-112) (-865))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-4053 (($ $) 103 (-12 (|has| (-112) (-865)) (|has| $ (-6 -4471)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4471)))) (-1864 (($ $) 98 (|has| (-112) (-865))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-3828 (((-112) $ (-787)) 38)) (-3709 (((-112) $ (-1259 (-577)) (-112)) 89 (|has| $ (-6 -4471))) (((-112) $ (-577) (-112)) 55 (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4470)))) (-1534 (($) 39 T CONST)) (-3645 (($ $) 101 (|has| $ (-6 -4471)))) (-3787 (($ $) 91)) (-1817 (($ $) 69 (-12 (|has| (-112) (-1125)) (|has| $ (-6 -4470))))) (-3904 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4470))) (($ (-112) $) 70 (-12 (|has| (-112) (-1125)) (|has| $ (-6 -4470))))) (-3654 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4470))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4470))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1125)) (|has| $ (-6 -4470))))) (-2192 (((-112) $ (-577) (-112)) 54 (|has| $ (-6 -4471)))) (-2117 (((-112) $ (-577)) 56)) (-3618 (((-577) (-112) $ (-577)) 96 (|has| (-112) (-1125))) (((-577) (-112) $) 95 (|has| (-112) (-1125))) (((-577) (-1 (-112) (-112)) $) 94)) (-1461 (((-660 (-112)) $) 46 (|has| $ (-6 -4470)))) (-2771 (($ $ $) 109)) (-2749 (($ $) 107)) (-1837 (($ $ $) 30)) (-4113 (($ (-787) (-112)) 79)) (-1848 (($ $ $) 31)) (-1479 (((-112) $ (-787)) 37)) (-2406 (((-577) $) 64 (|has| (-577) (-865)))) (-3732 (($ $ $) 20)) (-3283 (($ $ $) 97 (|has| (-112) (-865))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-2530 (((-660 (-112)) $) 47 (|has| $ (-6 -4470)))) (-2820 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1125)) (|has| $ (-6 -4470))))) (-2416 (((-577) $) 63 (|has| (-577) (-865)))) (-3201 (($ $ $) 19)) (-2182 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-112) (-112) (-112)) $ $) 84) (($ (-1 (-112) (-112)) $) 41)) (-1443 (((-112) $ (-787)) 36)) (-2810 (((-1183) $) 10)) (-2308 (($ $ $ (-577)) 88) (($ (-112) $ (-577)) 87)) (-4285 (((-660 (-577)) $) 61)) (-4298 (((-112) (-577) $) 60)) (-1474 (((-1145) $) 11)) (-3552 (((-112) $) 65 (|has| (-577) (-865)))) (-1828 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-2397 (($ $ (-112)) 66 (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-112)) (-660 (-112))) 53 (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125)))) (($ $ (-305 (-112))) 51 (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125)))) (($ $ (-660 (-305 (-112)))) 50 (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))))) (-3840 (((-112) $ $) 32)) (-4274 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))))) (-4306 (((-660 (-112)) $) 59)) (-3697 (((-112) $) 35)) (-3639 (($) 34)) (-2872 (($ $ (-1259 (-577))) 78) (((-112) $ (-577)) 58) (((-112) $ (-577) (-112)) 57)) (-3453 (($ $ (-1259 (-577))) 86) (($ $ (-577)) 85)) (-1485 (((-787) (-112) $) 48 (-12 (|has| (-112) (-1125)) (|has| $ (-6 -4470)))) (((-787) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4470)))) (-4064 (($ $ $ (-577)) 100 (|has| $ (-6 -4471)))) (-1944 (($ $) 33)) (-4152 (((-549) $) 68 (|has| (-112) (-627 (-549))))) (-3553 (($ (-660 (-112))) 77)) (-1677 (($ (-660 $)) 83) (($ $ $) 82) (($ (-112) $) 81) (($ $ (-112)) 80)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-1524 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4470)))) (-2761 (($ $ $) 108)) (-3538 (($ $ $) 106)) (-3025 (((-112) $ $) 18)) (-3000 (((-112) $ $) 16)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 17)) (-2990 (((-112) $ $) 15)) (-3527 (($ $ $) 105)) (-3484 (((-787) $) 40 (|has| $ (-6 -4470))))) (((-124) (-141)) (T -124)) -((-1340 (*1 *1 *1 *1) (-4 *1 (-124))) (-3147 (*1 *1 *1 *1) (-4 *1 (-124))) (-2744 (*1 *1 *1 *1) (-4 *1 (-124)))) -(-13 (-862) (-113) (-674) (-19 (-112)) (-10 -8 (-15 -1340 ($ $ $)) (-15 -3147 ($ $ $)) (-15 -2744 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-113) . T) ((-625 (-877)) . T) ((-152 #0=(-112)) . T) ((-626 (-548)) |has| (-112) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122))) ((-664 #0#) . T) ((-674) . T) ((-19 #0#) . T) ((-862) . T) ((-865) . T) ((-1122) . T) ((-1239) . T)) -((-2148 (($ (-1 |#2| |#2|) $) 22)) (-1923 (($ $) 16)) (-3440 (((-784) $) 25))) -(((-125 |#1| |#2|) (-10 -8 (-15 -2148 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3440 ((-784) |#1|)) (-15 -1923 (|#1| |#1|))) (-126 |#2|) (-1122)) (T -125)) -NIL -(-10 -8 (-15 -2148 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3440 ((-784) |#1|)) (-15 -1923 (|#1| |#1|))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3071 ((|#1| $) 49)) (-3793 (((-112) $ (-784)) 8)) (-3734 ((|#1| $ |#1|) 40 (|has| $ (-6 -4467)))) (-2203 (($ $ $) 53 (|has| $ (-6 -4467)))) (-2920 (($ $ $) 55 (|has| $ (-6 -4467)))) (-3682 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4467))) (($ $ "left" $) 56 (|has| $ (-6 -4467))) (($ $ "right" $) 54 (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) 42 (|has| $ (-6 -4467)))) (-4359 (($) 7 T CONST)) (-4236 (($ $) 58)) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-2877 (((-657 $) $) 51)) (-1700 (((-112) $ $) 43 (|has| |#1| (-1122)))) (-2296 (($ $ |#1| $) 61)) (-1833 (((-112) $ (-784)) 9)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-4224 (($ $) 60)) (-2424 (((-657 |#1|) $) 46)) (-2633 (((-112) $) 50)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3883 (((-576) $ $) 45)) (-3628 (((-112) $) 47)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-1986 (((-657 $) $) 52)) (-1633 (((-112) $ $) 44 (|has| |#1| (-1122)))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-126 |#1|) (-141) (-1122)) (T -126)) -((-2296 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1122))))) -(-13 (-120 |t#1|) (-10 -8 (-6 -4467) (-6 -4466) (-15 -2296 ($ $ |t#1| $)))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-120 |#1|) . T) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1032 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3071 ((|#1| $) 18)) (-3793 (((-112) $ (-784)) NIL)) (-3734 ((|#1| $ |#1|) 22 (|has| $ (-6 -4467)))) (-2203 (($ $ $) 23 (|has| $ (-6 -4467)))) (-2920 (($ $ $) 21 (|has| $ (-6 -4467)))) (-3682 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467))) (($ $ "left" $) NIL (|has| $ (-6 -4467))) (($ $ "right" $) NIL (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-4359 (($) NIL T CONST)) (-4236 (($ $) 24)) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2877 (((-657 $) $) NIL)) (-1700 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2296 (($ $ |#1| $) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-4224 (($ $) NIL)) (-2424 (((-657 |#1|) $) NIL)) (-2633 (((-112) $) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2468 (($ |#1| $) 15)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) 17)) (-3581 (($) 11)) (-2835 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3883 (((-576) $ $) NIL)) (-3628 (((-112) $) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) 20)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-1986 (((-657 $) $) NIL)) (-1633 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2091 (($ (-657 |#1|)) 16)) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4467) (-15 -2091 ($ (-657 |#1|))) (-15 -2468 ($ |#1| $)))) (-862)) (T -127)) -((-2091 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-127 *3)))) (-2468 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-862))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4467) (-15 -2091 ($ (-657 |#1|))) (-15 -2468 ($ |#1| $)))) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3071 ((|#1| $) 30)) (-3793 (((-112) $ (-784)) NIL)) (-3734 ((|#1| $ |#1|) 32 (|has| $ (-6 -4467)))) (-2203 (($ $ $) 36 (|has| $ (-6 -4467)))) (-2920 (($ $ $) 34 (|has| $ (-6 -4467)))) (-3682 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467))) (($ $ "left" $) NIL (|has| $ (-6 -4467))) (($ $ "right" $) NIL (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-4359 (($) NIL T CONST)) (-4236 (($ $) 23)) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2877 (((-657 $) $) NIL)) (-1700 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2296 (($ $ |#1| $) 16)) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-4224 (($ $) 22)) (-2424 (((-657 |#1|) $) NIL)) (-2633 (((-112) $) 25)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) 20)) (-3581 (($) 11)) (-2835 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3883 (((-576) $ $) NIL)) (-3628 (((-112) $) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) NIL)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-1986 (((-657 $) $) NIL)) (-1633 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-1836 (($ |#1|) 18) (($ $ |#1| $) 17)) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 10 (|has| |#1| (-102)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -1836 ($ |#1|)) (-15 -1836 ($ $ |#1| $)))) (-1122)) (T -128)) -((-1836 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1122)))) (-1836 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1122))))) -(-13 (-126 |#1|) (-10 -8 (-15 -1836 ($ |#1|)) (-15 -1836 ($ $ |#1| $)))) -((-3429 (((-112) $ $) NIL (|has| (-130) (-102)))) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-1568 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-862)))) (-3363 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| (-130) (-862))))) (-1850 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-862)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 (((-130) $ (-576) (-130)) 26 (|has| $ (-6 -4467))) (((-130) $ (-1256 (-576)) (-130)) NIL (|has| $ (-6 -4467)))) (-2606 (((-784) $ (-784)) 34)) (-2035 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4466)))) (-4359 (($) NIL T CONST)) (-3606 (($ $) NIL (|has| $ (-6 -4467)))) (-3768 (($ $) NIL)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-130) (-1122))))) (-3895 (($ (-130) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-130) (-1122)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4466)))) (-3622 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4466)) (|has| (-130) (-1122)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4466))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4466)))) (-2158 (((-130) $ (-576) (-130)) 25 (|has| $ (-6 -4467)))) (-2083 (((-130) $ (-576)) 20)) (-3582 (((-576) (-1 (-112) (-130)) $) NIL) (((-576) (-130) $) NIL (|has| (-130) (-1122))) (((-576) (-130) $ (-576)) NIL (|has| (-130) (-1122)))) (-1458 (((-657 (-130)) $) NIL (|has| $ (-6 -4466)))) (-4109 (($ (-784) (-130)) 14)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) 27 (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| (-130) (-862)))) (-3073 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-862)))) (-2070 (((-657 (-130)) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-130) (-1122))))) (-2272 (((-576) $) 30 (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| (-130) (-862)))) (-2148 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (|has| (-130) (-1122)))) (-2271 (($ (-130) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-1471 (((-1142) $) NIL (|has| (-130) (-1122)))) (-3510 (((-130) $) NIL (|has| (-576) (-862)))) (-2951 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-1987 (($ $ (-130)) NIL (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-130)))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1122)))) (($ $ (-304 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1122)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1122)))) (($ $ (-657 (-130)) (-657 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-130) (-1122))))) (-2380 (((-657 (-130)) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) 12)) (-2835 (((-130) $ (-576) (-130)) NIL) (((-130) $ (-576)) 23) (($ $ (-1256 (-576))) NIL)) (-3409 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-1482 (((-784) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4466))) (((-784) (-130) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-130) (-1122))))) (-2114 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| (-130) (-626 (-548))))) (-3511 (($ (-657 (-130))) 46)) (-1674 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-657 $)) NIL)) (-3501 (((-978 (-130)) $) 35) (((-1180) $) 43) (((-877) $) NIL (|has| (-130) (-625 (-877))))) (-2312 (((-784) $) 18)) (-4348 (($ (-784)) 8)) (-2046 (((-112) $ $) NIL (|has| (-130) (-102)))) (-2147 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) NIL (|has| (-130) (-862)))) (-2963 (((-112) $ $) NIL (|has| (-130) (-862)))) (-2933 (((-112) $ $) 32 (|has| (-130) (-102)))) (-2973 (((-112) $ $) NIL (|has| (-130) (-862)))) (-2954 (((-112) $ $) NIL (|has| (-130) (-862)))) (-3440 (((-784) $) 15 (|has| $ (-6 -4466))))) -(((-129) (-13 (-19 (-130)) (-625 (-978 (-130))) (-625 (-1180)) (-10 -8 (-15 -4348 ($ (-784))) (-15 -2312 ((-784) $)) (-15 -2606 ((-784) $ (-784))) (-6 -4466)))) (T -129)) -((-4348 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-129)))) (-2312 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-129)))) (-2606 (*1 *2 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-129))))) -(-13 (-19 (-130)) (-625 (-978 (-130))) (-625 (-1180)) (-10 -8 (-15 -4348 ($ (-784))) (-15 -2312 ((-784) $)) (-15 -2606 ((-784) $ (-784))) (-6 -4466))) -((-3429 (((-112) $ $) NIL)) (-2193 (((-784)) 26)) (-4359 (($) NIL T CONST)) (-1892 (($) 35)) (-3707 (($ $ $) NIL) (($) 24 T CONST)) (-1611 (($ $ $) NIL) (($) 25 T CONST)) (-3007 (((-941) $) 33)) (-2342 (((-1180) $) NIL)) (-3178 (($ (-941)) 31)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-3752 (($ (-784)) 8)) (-2427 (($ $ $) 37)) (-2418 (($ $ $) 36)) (-2046 (((-112) $ $) NIL)) (-2985 (((-112) $ $) 22)) (-2963 (((-112) $ $) 20)) (-2933 (((-112) $ $) 18)) (-2973 (((-112) $ $) 21)) (-2954 (((-112) $ $) 19))) -(((-130) (-13 (-857) (-502 (-145)) (-10 -8 (-15 -3752 ($ (-784))) (-15 -2418 ($ $ $)) (-15 -2427 ($ $ $)) (-15 -4359 ($) -1509)))) (T -130)) -((-3752 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-130)))) (-2418 (*1 *1 *1 *1) (-5 *1 (-130))) (-2427 (*1 *1 *1 *1) (-5 *1 (-130))) (-4359 (*1 *1) (-5 *1 (-130)))) -(-13 (-857) (-502 (-145)) (-10 -8 (-15 -3752 ($ (-784))) (-15 -2418 ($ $ $)) (-15 -2427 ($ $ $)) (-15 -4359 ($) -1509))) +((-1848 (*1 *1 *1 *1) (-4 *1 (-124))) (-1837 (*1 *1 *1 *1) (-4 *1 (-124))) (-2781 (*1 *1 *1 *1) (-4 *1 (-124)))) +(-13 (-865) (-113) (-677) (-19 (-112)) (-10 -8 (-15 -1848 ($ $ $)) (-15 -1837 ($ $ $)) (-15 -2781 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-113) . T) ((-626 (-880)) . T) ((-152 #0=(-112)) . T) ((-627 (-549)) |has| (-112) (-627 (-549))) ((-297 #1=(-577) #0#) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #1# #0#) . T) ((-320 #0#) -12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))) ((-385 #0#) . T) ((-502 #0#) . T) ((-617 #1# #0#) . T) ((-527 #0# #0#) -12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))) ((-667 #0#) . T) ((-677) . T) ((-19 #0#) . T) ((-865) . T) ((-868) . T) ((-1125) . T) ((-1242) . T)) +((-2182 (($ (-1 |#2| |#2|) $) 22)) (-1944 (($ $) 16)) (-3484 (((-787) $) 25))) +(((-125 |#1| |#2|) (-10 -8 (-15 -2182 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3484 ((-787) |#1|)) (-15 -1944 (|#1| |#1|))) (-126 |#2|) (-1125)) (T -125)) +NIL +(-10 -8 (-15 -2182 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3484 ((-787) |#1|)) (-15 -1944 (|#1| |#1|))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3115 ((|#1| $) 49)) (-3828 (((-112) $ (-787)) 8)) (-4374 ((|#1| $ |#1|) 40 (|has| $ (-6 -4471)))) (-1763 (($ $ $) 53 (|has| $ (-6 -4471)))) (-1774 (($ $ $) 55 (|has| $ (-6 -4471)))) (-3709 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4471))) (($ $ "left" $) 56 (|has| $ (-6 -4471))) (($ $ "right" $) 54 (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) 42 (|has| $ (-6 -4471)))) (-1534 (($) 7 T CONST)) (-4239 (($ $) 58)) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-4426 (((-660 $) $) 51)) (-4394 (((-112) $ $) 43 (|has| |#1| (-1125)))) (-2333 (($ $ |#1| $) 61)) (-1479 (((-112) $ (-787)) 9)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-4228 (($ $) 60)) (-2461 (((-660 |#1|) $) 46)) (-3371 (((-112) $) 50)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-4415 (((-577) $ $) 45)) (-1885 (((-112) $) 47)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-3322 (((-660 $) $) 52)) (-4405 (((-112) $ $) 44 (|has| |#1| (-1125)))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-126 |#1|) (-141) (-1125)) (T -126)) +((-2333 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1125))))) +(-13 (-120 |t#1|) (-10 -8 (-6 -4471) (-6 -4470) (-15 -2333 ($ $ |t#1| $)))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-120 |#1|) . T) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1035 |#1|) . T) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3115 ((|#1| $) 18)) (-3828 (((-112) $ (-787)) NIL)) (-4374 ((|#1| $ |#1|) 22 (|has| $ (-6 -4471)))) (-1763 (($ $ $) 23 (|has| $ (-6 -4471)))) (-1774 (($ $ $) 21 (|has| $ (-6 -4471)))) (-3709 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471))) (($ $ "left" $) NIL (|has| $ (-6 -4471))) (($ $ "right" $) NIL (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)))) (-1534 (($) NIL T CONST)) (-4239 (($ $) 24)) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-4426 (((-660 $) $) NIL)) (-4394 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-2333 (($ $ |#1| $) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-4228 (($ $) NIL)) (-2461 (((-660 |#1|) $) NIL)) (-3371 (((-112) $) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-2881 (($ |#1| $) 15)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) 17)) (-3639 (($) 11)) (-2872 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4415 (((-577) $ $) NIL)) (-1885 (((-112) $) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) 20)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-3322 (((-660 $) $) NIL)) (-4405 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-1859 (($ (-660 |#1|)) 16)) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4471) (-15 -1859 ($ (-660 |#1|))) (-15 -2881 ($ |#1| $)))) (-865)) (T -127)) +((-1859 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-127 *3)))) (-2881 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-865))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4471) (-15 -1859 ($ (-660 |#1|))) (-15 -2881 ($ |#1| $)))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3115 ((|#1| $) 30)) (-3828 (((-112) $ (-787)) NIL)) (-4374 ((|#1| $ |#1|) 32 (|has| $ (-6 -4471)))) (-1763 (($ $ $) 36 (|has| $ (-6 -4471)))) (-1774 (($ $ $) 34 (|has| $ (-6 -4471)))) (-3709 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471))) (($ $ "left" $) NIL (|has| $ (-6 -4471))) (($ $ "right" $) NIL (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)))) (-1534 (($) NIL T CONST)) (-4239 (($ $) 23)) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-4426 (((-660 $) $) NIL)) (-4394 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-2333 (($ $ |#1| $) 16)) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-4228 (($ $) 22)) (-2461 (((-660 |#1|) $) NIL)) (-3371 (((-112) $) 25)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) 20)) (-3639 (($) 11)) (-2872 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4415 (((-577) $ $) NIL)) (-1885 (((-112) $) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) NIL)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-3322 (((-660 $) $) NIL)) (-4405 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-1873 (($ |#1|) 18) (($ $ |#1| $) 17)) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 10 (|has| |#1| (-102)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -1873 ($ |#1|)) (-15 -1873 ($ $ |#1| $)))) (-1125)) (T -128)) +((-1873 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1125)))) (-1873 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1125))))) +(-13 (-126 |#1|) (-10 -8 (-15 -1873 ($ |#1|)) (-15 -1873 ($ $ |#1| $)))) +((-3473 (((-112) $ $) NIL (|has| (-130) (-102)))) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4077 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-865)))) (-4053 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4471))) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| (-130) (-865))))) (-1864 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-865)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 (((-130) $ (-577) (-130)) 26 (|has| $ (-6 -4471))) (((-130) $ (-1259 (-577)) (-130)) NIL (|has| $ (-6 -4471)))) (-1884 (((-787) $ (-787)) 34)) (-2067 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4470)))) (-1534 (($) NIL T CONST)) (-3645 (($ $) NIL (|has| $ (-6 -4471)))) (-3787 (($ $) NIL)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-130) (-1125))))) (-3904 (($ (-130) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-130) (-1125)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4470)))) (-3654 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4470)) (|has| (-130) (-1125)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4470))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4470)))) (-2192 (((-130) $ (-577) (-130)) 25 (|has| $ (-6 -4471)))) (-2117 (((-130) $ (-577)) 20)) (-3618 (((-577) (-1 (-112) (-130)) $) NIL) (((-577) (-130) $) NIL (|has| (-130) (-1125))) (((-577) (-130) $ (-577)) NIL (|has| (-130) (-1125)))) (-1461 (((-660 (-130)) $) NIL (|has| $ (-6 -4470)))) (-4113 (($ (-787) (-130)) 14)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) 27 (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| (-130) (-865)))) (-3283 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-865)))) (-2530 (((-660 (-130)) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-130) (-1125))))) (-2416 (((-577) $) 30 (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| (-130) (-865)))) (-2182 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (|has| (-130) (-1125)))) (-2308 (($ (-130) $ (-577)) NIL) (($ $ $ (-577)) NIL)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-1474 (((-1145) $) NIL (|has| (-130) (-1125)))) (-3552 (((-130) $) NIL (|has| (-577) (-865)))) (-1828 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-2397 (($ $ (-130)) NIL (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-130)))) NIL (-12 (|has| (-130) (-320 (-130))) (|has| (-130) (-1125)))) (($ $ (-305 (-130))) NIL (-12 (|has| (-130) (-320 (-130))) (|has| (-130) (-1125)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-320 (-130))) (|has| (-130) (-1125)))) (($ $ (-660 (-130)) (-660 (-130))) NIL (-12 (|has| (-130) (-320 (-130))) (|has| (-130) (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-130) (-1125))))) (-4306 (((-660 (-130)) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) 12)) (-2872 (((-130) $ (-577) (-130)) NIL) (((-130) $ (-577)) 23) (($ $ (-1259 (-577))) NIL)) (-3453 (($ $ (-577)) NIL) (($ $ (-1259 (-577))) NIL)) (-1485 (((-787) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4470))) (((-787) (-130) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-130) (-1125))))) (-4064 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| (-130) (-627 (-549))))) (-3553 (($ (-660 (-130))) 46)) (-1677 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-660 $)) NIL)) (-3544 (((-981 (-130)) $) 35) (((-1183) $) 43) (((-880) $) NIL (|has| (-130) (-626 (-880))))) (-1895 (((-787) $) 18)) (-1906 (($ (-787)) 8)) (-4448 (((-112) $ $) NIL (|has| (-130) (-102)))) (-1524 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) NIL (|has| (-130) (-865)))) (-3000 (((-112) $ $) NIL (|has| (-130) (-865)))) (-2970 (((-112) $ $) 32 (|has| (-130) (-102)))) (-3012 (((-112) $ $) NIL (|has| (-130) (-865)))) (-2990 (((-112) $ $) NIL (|has| (-130) (-865)))) (-3484 (((-787) $) 15 (|has| $ (-6 -4470))))) +(((-129) (-13 (-19 (-130)) (-626 (-981 (-130))) (-626 (-1183)) (-10 -8 (-15 -1906 ($ (-787))) (-15 -1895 ((-787) $)) (-15 -1884 ((-787) $ (-787))) (-6 -4470)))) (T -129)) +((-1906 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-129)))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-129)))) (-1884 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-129))))) +(-13 (-19 (-130)) (-626 (-981 (-130))) (-626 (-1183)) (-10 -8 (-15 -1906 ($ (-787))) (-15 -1895 ((-787) $)) (-15 -1884 ((-787) $ (-787))) (-6 -4470))) +((-3473 (((-112) $ $) NIL)) (-2229 (((-787)) 26)) (-1534 (($) NIL T CONST)) (-1910 (($) 35)) (-3732 (($ $ $) NIL) (($) 24 T CONST)) (-3201 (($ $ $) NIL) (($) 25 T CONST)) (-4038 (((-944) $) 33)) (-2810 (((-1183) $) NIL)) (-3222 (($ (-944)) 31)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-3773 (($ (-787)) 8)) (-2464 (($ $ $) 37)) (-2455 (($ $ $) 36)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) 22)) (-3000 (((-112) $ $) 20)) (-2970 (((-112) $ $) 18)) (-3012 (((-112) $ $) 21)) (-2990 (((-112) $ $) 19))) +(((-130) (-13 (-860) (-503 (-145)) (-10 -8 (-15 -3773 ($ (-787))) (-15 -2455 ($ $ $)) (-15 -2464 ($ $ $)) (-15 -1534 ($) -1512)))) (T -130)) +((-3773 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-130)))) (-2455 (*1 *1 *1 *1) (-5 *1 (-130))) (-2464 (*1 *1 *1 *1) (-5 *1 (-130))) (-1534 (*1 *1) (-5 *1 (-130)))) +(-13 (-860) (-503 (-145)) (-10 -8 (-15 -3773 ($ (-787))) (-15 -2455 ($ $ $)) (-15 -2464 ($ $ $)) (-15 -1534 ($) -1512))) ((|NonNegativeInteger|) (|%ilt| |#1| 256)) -((-3429 (((-112) $ $) NIL)) (-3166 (($) 6 T CONST)) (-4336 (($) 7 T CONST)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 14)) (-3423 (($) 8 T CONST)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 10))) -(((-131) (-13 (-1122) (-10 -8 (-15 -4336 ($) -1509) (-15 -3423 ($) -1509) (-15 -3166 ($) -1509)))) (T -131)) -((-4336 (*1 *1) (-5 *1 (-131))) (-3423 (*1 *1) (-5 *1 (-131))) (-3166 (*1 *1) (-5 *1 (-131)))) -(-13 (-1122) (-10 -8 (-15 -4336 ($) -1509) (-15 -3423 ($) -1509) (-15 -3166 ($) -1509))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16))) +((-3473 (((-112) $ $) NIL)) (-1918 (($) 6 T CONST)) (-1942 (($) 7 T CONST)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 14)) (-1930 (($) 8 T CONST)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 10))) +(((-131) (-13 (-1125) (-10 -8 (-15 -1942 ($) -1512) (-15 -1930 ($) -1512) (-15 -1918 ($) -1512)))) (T -131)) +((-1942 (*1 *1) (-5 *1 (-131))) (-1930 (*1 *1) (-5 *1 (-131))) (-1918 (*1 *1) (-5 *1 (-131)))) +(-13 (-1125) (-10 -8 (-15 -1942 ($) -1512) (-15 -1930 ($) -1512) (-15 -1918 ($) -1512))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16))) (((-132) (-141)) (T -132)) -((-2721 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(-13 (-23) (-10 -8 (-15 -2721 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) 7)) (-4206 (((-1294) $ (-784)) 14)) (-3582 (((-784) $) 15)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8))) +((-1956 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(-13 (-23) (-10 -8 (-15 -1956 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) 7)) (-1967 (((-1297) $ (-787)) 14)) (-3618 (((-787) $) 15)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8))) (((-133) (-141)) (T -133)) -((-3582 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-784)))) (-4206 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-784)) (-5 *2 (-1294))))) -(-13 (-1122) (-10 -8 (-15 -3582 ((-784) $)) (-15 -4206 ((-1294) $ (-784))))) -(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 16) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2687 (((-657 (-1157)) $) 10)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-134) (-13 (-1105) (-10 -8 (-15 -2687 ((-657 (-1157)) $))))) (T -134)) -((-2687 (*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-134))))) -(-13 (-1105) (-10 -8 (-15 -2687 ((-657 (-1157)) $)))) -((-3429 (((-112) $ $) 49)) (-2364 (((-112) $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-784) "failed") $) 58)) (-2884 (((-784) $) 56)) (-3843 (((-3 $ "failed") $) NIL)) (-4094 (((-112) $) NIL)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) 37)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2456 (((-112)) 59)) (-3947 (((-112) (-112)) 61)) (-3825 (((-112) $) 30)) (-4152 (((-112) $) 55)) (-3501 (((-877) $) 28) (($ (-784)) 20)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 18 T CONST)) (-2779 (($) 19 T CONST)) (-1939 (($ (-784)) 21)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) 40)) (-2933 (((-112) $ $) 32)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 35)) (-3022 (((-3 $ "failed") $ $) 42)) (-3012 (($ $ $) 38)) (** (($ $ (-784)) NIL) (($ $ (-941)) NIL) (($ $ $) 54)) (* (($ (-784) $) 48) (($ (-941) $) NIL) (($ $ $) 45))) -(((-135) (-13 (-862) (-23) (-739) (-1060 (-784)) (-10 -8 (-6 (-4468 "*")) (-15 -3022 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1939 ($ (-784))) (-15 -3825 ((-112) $)) (-15 -4152 ((-112) $)) (-15 -2456 ((-112))) (-15 -3947 ((-112) (-112)))))) (T -135)) -((-3022 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-1939 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-135)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2456 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3947 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(-13 (-862) (-23) (-739) (-1060 (-784)) (-10 -8 (-6 (-4468 "*")) (-15 -3022 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1939 ($ (-784))) (-15 -3825 ((-112) $)) (-15 -4152 ((-112) $)) (-15 -2456 ((-112))) (-15 -3947 ((-112) (-112))))) -((-3475 (((-137 |#1| |#2| |#4|) (-657 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-4083 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) -(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3475 ((-137 |#1| |#2| |#4|) (-657 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4083 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-576) (-784) (-174) (-174)) (T -136)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-784)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-3475 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-784)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) -(-10 -7 (-15 -3475 ((-137 |#1| |#2| |#4|) (-657 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4083 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) -((-3429 (((-112) $ $) NIL)) (-2178 (($ (-657 |#3|)) 61)) (-2153 (($ $) 123) (($ $ (-576) (-576)) 122)) (-4359 (($) 20)) (-1624 (((-3 |#3| "failed") $) 83)) (-2884 ((|#3| $) NIL)) (-2273 (($ $ (-657 (-576))) 124)) (-3465 (((-657 |#3|) $) 56)) (-1542 (((-784) $) 66)) (-3778 (($ $ $) 117)) (-3175 (($) 65)) (-2342 (((-1180) $) NIL)) (-2693 (($) 19)) (-1471 (((-1142) $) NIL)) (-2835 ((|#3| $ (-576)) 69) ((|#3| $) 68) ((|#3| $ (-576) (-576)) 70) ((|#3| $ (-576) (-576) (-576)) 71) ((|#3| $ (-576) (-576) (-576) (-576)) 72) ((|#3| $ (-657 (-576))) 73)) (-1770 (((-784) $) 67)) (-3702 (($ $ (-576) $ (-576)) 118) (($ $ (-576) (-576)) 120)) (-3501 (((-877) $) 91) (($ |#3|) 92) (($ (-245 |#2| |#3|)) 99) (($ (-1164 |#2| |#3|)) 102) (($ (-657 |#3|)) 74) (($ (-657 $)) 80)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 93 T CONST)) (-2779 (($) 94 T CONST)) (-2933 (((-112) $ $) 104)) (-3022 (($ $) 110) (($ $ $) 108)) (-3012 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-576)) 113) (($ (-576) $) 112) (($ $ $) 119))) -(((-137 |#1| |#2| |#3|) (-13 (-477 |#3| (-784)) (-482 (-576) (-784)) (-296 (-576) |#3|) (-10 -8 (-15 -3501 ($ (-245 |#2| |#3|))) (-15 -3501 ($ (-1164 |#2| |#3|))) (-15 -3501 ($ (-657 |#3|))) (-15 -3501 ($ (-657 $))) (-15 -1542 ((-784) $)) (-15 -2835 (|#3| $)) (-15 -2835 (|#3| $ (-576) (-576))) (-15 -2835 (|#3| $ (-576) (-576) (-576))) (-15 -2835 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -2835 (|#3| $ (-657 (-576)))) (-15 -3778 ($ $ $)) (-15 * ($ $ $)) (-15 -3702 ($ $ (-576) $ (-576))) (-15 -3702 ($ $ (-576) (-576))) (-15 -2153 ($ $)) (-15 -2153 ($ $ (-576) (-576))) (-15 -2273 ($ $ (-657 (-576)))) (-15 -2693 ($)) (-15 -3175 ($)) (-15 -3465 ((-657 |#3|) $)) (-15 -2178 ($ (-657 |#3|))) (-15 -4359 ($)))) (-576) (-784) (-174)) (T -137)) -((-3778 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) (-4 *4 (-174)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-784)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-1164 *4 *5)) (-14 *4 (-784)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-657 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-784)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-657 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-784)) (-4 *5 (-174)))) (-1542 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 *2) (-4 *5 (-174)))) (-2835 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) (-14 *4 (-784)))) (-2835 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-784)))) (-2835 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-784)))) (-2835 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-784)))) (-2835 (*1 *2 *1 *3) (-12 (-5 *3 (-657 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-576)) (-14 *5 (-784)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) (-4 *4 (-174)))) (-3702 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-784)) (-4 *5 (-174)))) (-3702 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-784)) (-4 *5 (-174)))) (-2153 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) (-4 *4 (-174)))) (-2153 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-784)) (-4 *5 (-174)))) (-2273 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-784)) (-4 *5 (-174)))) (-2693 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) (-4 *4 (-174)))) (-3175 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) (-4 *4 (-174)))) (-3465 (*1 *2 *1) (-12 (-5 *2 (-657 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-784)) (-4 *5 (-174)))) (-2178 (*1 *1 *2) (-12 (-5 *2 (-657 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-784)))) (-4359 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) (-4 *4 (-174))))) -(-13 (-477 |#3| (-784)) (-482 (-576) (-784)) (-296 (-576) |#3|) (-10 -8 (-15 -3501 ($ (-245 |#2| |#3|))) (-15 -3501 ($ (-1164 |#2| |#3|))) (-15 -3501 ($ (-657 |#3|))) (-15 -3501 ($ (-657 $))) (-15 -1542 ((-784) $)) (-15 -2835 (|#3| $)) (-15 -2835 (|#3| $ (-576) (-576))) (-15 -2835 (|#3| $ (-576) (-576) (-576))) (-15 -2835 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -2835 (|#3| $ (-657 (-576)))) (-15 -3778 ($ $ $)) (-15 * ($ $ $)) (-15 -3702 ($ $ (-576) $ (-576))) (-15 -3702 ($ $ (-576) (-576))) (-15 -2153 ($ $)) (-15 -2153 ($ $ (-576) (-576))) (-15 -2273 ($ $ (-657 (-576)))) (-15 -2693 ($)) (-15 -3175 ($)) (-15 -3465 ((-657 |#3|) $)) (-15 -2178 ($ (-657 |#3|))) (-15 -4359 ($)))) -((-3429 (((-112) $ $) NIL)) (-1730 (((-1157) $) 11)) (-1718 (((-1157) $) 9)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 17) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-138) (-13 (-1105) (-10 -8 (-15 -1718 ((-1157) $)) (-15 -1730 ((-1157) $))))) (T -138)) -((-1718 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-138)))) (-1730 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-138))))) -(-13 (-1105) (-10 -8 (-15 -1718 ((-1157) $)) (-15 -1730 ((-1157) $)))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1802 (((-188) $) 10)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 20) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2687 (((-657 (-1157)) $) 13)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-139) (-13 (-1105) (-10 -8 (-15 -1802 ((-188) $)) (-15 -2687 ((-657 (-1157)) $))))) (T -139)) -((-1802 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-139))))) -(-13 (-1105) (-10 -8 (-15 -1802 ((-188) $)) (-15 -2687 ((-657 (-1157)) $)))) -((-3429 (((-112) $ $) NIL)) (-3249 (((-657 (-880)) $) NIL)) (-2676 (((-518) $) NIL)) (-2342 (((-1180) $) NIL)) (-1802 (((-188) $) NIL)) (-4412 (((-112) $ (-518)) NIL)) (-1471 (((-1142) $) NIL)) (-2155 (((-657 (-112)) $) NIL)) (-3501 (((-877) $) NIL) (((-189) $) 6)) (-2046 (((-112) $ $) NIL)) (-4335 (((-55) $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-140) (-13 (-187) (-625 (-189)))) (T -140)) -NIL -(-13 (-187) (-625 (-189))) -((-3118 (((-657 (-185 (-140))) $) 13)) (-3566 (((-657 (-185 (-140))) $) 14)) (-1342 (((-657 (-851)) $) 10)) (-2608 (((-140) $) 7)) (-3501 (((-877) $) 16))) -(((-141) (-13 (-625 (-877)) (-10 -8 (-15 -2608 ((-140) $)) (-15 -1342 ((-657 (-851)) $)) (-15 -3118 ((-657 (-185 (-140))) $)) (-15 -3566 ((-657 (-185 (-140))) $))))) (T -141)) -((-2608 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-1342 (*1 *2 *1) (-12 (-5 *2 (-657 (-851))) (-5 *1 (-141)))) (-3118 (*1 *2 *1) (-12 (-5 *2 (-657 (-185 (-140)))) (-5 *1 (-141)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-657 (-185 (-140)))) (-5 *1 (-141))))) -(-13 (-625 (-877)) (-10 -8 (-15 -2608 ((-140) $)) (-15 -1342 ((-657 (-851)) $)) (-15 -3118 ((-657 (-185 (-140))) $)) (-15 -3566 ((-657 (-185 (-140))) $)))) -((-3429 (((-112) $ $) NIL)) (-1973 (($) 17 T CONST)) (-1477 (($) NIL (|has| (-145) (-379)))) (-1876 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-4356 (($ $ $) NIL)) (-2197 (((-112) $ $) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-2193 (((-784)) NIL (|has| (-145) (-379)))) (-2162 (($) NIL) (($ (-657 (-145))) NIL)) (-3162 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-4359 (($) NIL T CONST)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-3647 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466))) (($ (-145) $) 60 (|has| $ (-6 -4466)))) (-3895 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-3622 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4466))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4466))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-1892 (($) NIL (|has| (-145) (-379)))) (-1458 (((-657 (-145)) $) 69 (|has| $ (-6 -4466)))) (-3635 (((-112) $ $) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-3707 (((-145) $) NIL (|has| (-145) (-862)))) (-2070 (((-657 (-145)) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-1611 (((-145) $) NIL (|has| (-145) (-862)))) (-2148 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-145) (-145)) $) 64)) (-4378 (($) 18 T CONST)) (-3007 (((-941) $) NIL (|has| (-145) (-379)))) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL)) (-3107 (($ $ $) 30)) (-3050 (((-145) $) 61)) (-2468 (($ (-145) $) 59)) (-3178 (($ (-941)) NIL (|has| (-145) (-379)))) (-2496 (($) 16 T CONST)) (-1471 (((-1142) $) NIL)) (-2951 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2277 (((-145) $) 62)) (-3399 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-145)) (-657 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-657 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) 57)) (-1997 (($) 15 T CONST)) (-3788 (($ $ $) 32) (($ $ (-145)) NIL)) (-1504 (($ (-657 (-145))) NIL) (($) NIL)) (-1482 (((-784) (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122)))) (((-784) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) NIL)) (-4148 (((-1180) $) 37) (((-548) $) NIL (|has| (-145) (-626 (-548)))) (((-657 (-145)) $) 35)) (-3511 (($ (-657 (-145))) NIL)) (-3677 (($ $) 33 (|has| (-145) (-379)))) (-3501 (((-877) $) 53)) (-1759 (($ (-1180)) 14) (($ (-657 (-145))) 50)) (-4346 (((-784) $) NIL)) (-1951 (($) 58) (($ (-657 (-145))) NIL)) (-2046 (((-112) $ $) NIL)) (-4079 (($ (-657 (-145))) NIL)) (-2147 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-2672 (($) 21 T CONST)) (-2078 (($) 20 T CONST)) (-2933 (((-112) $ $) 24)) (-3440 (((-784) $) 56 (|has| $ (-6 -4466))))) -(((-142) (-13 (-1122) (-626 (-1180)) (-437 (-145)) (-626 (-657 (-145))) (-10 -8 (-15 -1759 ($ (-1180))) (-15 -1759 ($ (-657 (-145)))) (-15 -1997 ($) -1509) (-15 -2496 ($) -1509) (-15 -1973 ($) -1509) (-15 -4378 ($) -1509) (-15 -2078 ($) -1509) (-15 -2672 ($) -1509)))) (T -142)) -((-1759 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-142)))) (-1759 (*1 *1 *2) (-12 (-5 *2 (-657 (-145))) (-5 *1 (-142)))) (-1997 (*1 *1) (-5 *1 (-142))) (-2496 (*1 *1) (-5 *1 (-142))) (-1973 (*1 *1) (-5 *1 (-142))) (-4378 (*1 *1) (-5 *1 (-142))) (-2078 (*1 *1) (-5 *1 (-142))) (-2672 (*1 *1) (-5 *1 (-142)))) -(-13 (-1122) (-626 (-1180)) (-437 (-145)) (-626 (-657 (-145))) (-10 -8 (-15 -1759 ($ (-1180))) (-15 -1759 ($ (-657 (-145)))) (-15 -1997 ($) -1509) (-15 -2496 ($) -1509) (-15 -1973 ($) -1509) (-15 -4378 ($) -1509) (-15 -2078 ($) -1509) (-15 -2672 ($) -1509))) -((-1460 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1591 ((|#1| |#3|) 9)) (-1671 ((|#3| |#3|) 15))) -(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -1591 (|#1| |#3|)) (-15 -1671 (|#3| |#3|)) (-15 -1460 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1014 |#1|) (-384 |#2|)) (T -143)) -((-1460 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1014 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-384 *5)))) (-1671 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1014 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-384 *4)))) (-1591 (*1 *2 *3) (-12 (-4 *4 (-1014 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-384 *4))))) -(-10 -7 (-15 -1591 (|#1| |#3|)) (-15 -1671 (|#3| |#3|)) (-15 -1460 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2194 (($ $ $) 8)) (-3907 (($ $) 7)) (-3871 (($ $ $) 6))) +((-3618 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-787)))) (-1967 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-787)) (-5 *2 (-1297))))) +(-13 (-1125) (-10 -8 (-15 -3618 ((-787) $)) (-15 -1967 ((-1297) $ (-787))))) +(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 16) (($ (-1206)) NIL) (((-1206) $) NIL)) (-2724 (((-660 (-1160)) $) 10)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-134) (-13 (-1108) (-10 -8 (-15 -2724 ((-660 (-1160)) $))))) (T -134)) +((-2724 (*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-134))))) +(-13 (-1108) (-10 -8 (-15 -2724 ((-660 (-1160)) $)))) +((-3473 (((-112) $ $) 49)) (-3585 (((-112) $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-787) "failed") $) 58)) (-2921 (((-787) $) 56)) (-4187 (((-3 $ "failed") $) NIL)) (-2487 (((-112) $) NIL)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) 37)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-1990 (((-112)) 59)) (-1978 (((-112) (-112)) 61)) (-3078 (((-112) $) 30)) (-2001 (((-112) $) 55)) (-3544 (((-880) $) 28) (($ (-787)) 20)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 18 T CONST)) (-2816 (($) 19 T CONST)) (-2012 (($ (-787)) 21)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) 40)) (-2970 (((-112) $ $) 32)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 35)) (-3066 (((-3 $ "failed") $ $) 42)) (-3055 (($ $ $) 38)) (** (($ $ (-787)) NIL) (($ $ (-944)) NIL) (($ $ $) 54)) (* (($ (-787) $) 48) (($ (-944) $) NIL) (($ $ $) 45))) +(((-135) (-13 (-865) (-23) (-742) (-1063 (-787)) (-10 -8 (-6 (-4472 "*")) (-15 -3066 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2012 ($ (-787))) (-15 -3078 ((-112) $)) (-15 -2001 ((-112) $)) (-15 -1990 ((-112))) (-15 -1978 ((-112) (-112)))))) (T -135)) +((-3066 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-2012 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-135)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-1990 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(-13 (-865) (-23) (-742) (-1063 (-787)) (-10 -8 (-6 (-4472 "*")) (-15 -3066 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2012 ($ (-787))) (-15 -3078 ((-112) $)) (-15 -2001 ((-112) $)) (-15 -1990 ((-112))) (-15 -1978 ((-112) (-112))))) +((-3519 (((-137 |#1| |#2| |#4|) (-660 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-4087 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) +(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3519 ((-137 |#1| |#2| |#4|) (-660 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4087 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-577) (-787) (-174) (-174)) (T -136)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-577)) (-14 *6 (-787)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-3519 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-577)) (-14 *6 (-787)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) +(-10 -7 (-15 -3519 ((-137 |#1| |#2| |#4|) (-660 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4087 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) +((-3473 (((-112) $ $) NIL)) (-2023 (($ (-660 |#3|)) 61)) (-3784 (($ $) 123) (($ $ (-577) (-577)) 122)) (-1534 (($) 20)) (-1628 (((-3 |#3| "failed") $) 83)) (-2921 ((|#3| $) NIL)) (-2064 (($ $ (-660 (-577))) 124)) (-3509 (((-660 |#3|) $) 56)) (-1545 (((-787) $) 66)) (-2857 (($ $ $) 117)) (-2036 (($) 65)) (-2810 (((-1183) $) NIL)) (-2047 (($) 19)) (-1474 (((-1145) $) NIL)) (-2872 ((|#3| $ (-577)) 69) ((|#3| $) 68) ((|#3| $ (-577) (-577)) 70) ((|#3| $ (-577) (-577) (-577)) 71) ((|#3| $ (-577) (-577) (-577) (-577)) 72) ((|#3| $ (-660 (-577))) 73)) (-2887 (((-787) $) 67)) (-3726 (($ $ (-577) $ (-577)) 118) (($ $ (-577) (-577)) 120)) (-3544 (((-880) $) 91) (($ |#3|) 92) (($ (-246 |#2| |#3|)) 99) (($ (-1167 |#2| |#3|)) 102) (($ (-660 |#3|)) 74) (($ (-660 $)) 80)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 93 T CONST)) (-2816 (($) 94 T CONST)) (-2970 (((-112) $ $) 104)) (-3066 (($ $) 110) (($ $ $) 108)) (-3055 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-577)) 113) (($ (-577) $) 112) (($ $ $) 119))) +(((-137 |#1| |#2| |#3|) (-13 (-478 |#3| (-787)) (-483 (-577) (-787)) (-297 (-577) |#3|) (-10 -8 (-15 -3544 ($ (-246 |#2| |#3|))) (-15 -3544 ($ (-1167 |#2| |#3|))) (-15 -3544 ($ (-660 |#3|))) (-15 -3544 ($ (-660 $))) (-15 -1545 ((-787) $)) (-15 -2872 (|#3| $)) (-15 -2872 (|#3| $ (-577) (-577))) (-15 -2872 (|#3| $ (-577) (-577) (-577))) (-15 -2872 (|#3| $ (-577) (-577) (-577) (-577))) (-15 -2872 (|#3| $ (-660 (-577)))) (-15 -2857 ($ $ $)) (-15 * ($ $ $)) (-15 -3726 ($ $ (-577) $ (-577))) (-15 -3726 ($ $ (-577) (-577))) (-15 -3784 ($ $)) (-15 -3784 ($ $ (-577) (-577))) (-15 -2064 ($ $ (-660 (-577)))) (-15 -2047 ($)) (-15 -2036 ($)) (-15 -3509 ((-660 |#3|) $)) (-15 -2023 ($ (-660 |#3|))) (-15 -1534 ($)))) (-577) (-787) (-174)) (T -137)) +((-2857 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) (-4 *4 (-174)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-787)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-1167 *4 *5)) (-14 *4 (-787)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-660 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-787)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-660 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-787)) (-4 *5 (-174)))) (-1545 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 *2) (-4 *5 (-174)))) (-2872 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-577)) (-14 *4 (-787)))) (-2872 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-787)))) (-2872 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-787)))) (-2872 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-787)))) (-2872 (*1 *2 *1 *3) (-12 (-5 *3 (-660 (-577))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-577)) (-14 *5 (-787)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) (-4 *4 (-174)))) (-3726 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-787)) (-4 *5 (-174)))) (-3726 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-787)) (-4 *5 (-174)))) (-3784 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) (-4 *4 (-174)))) (-3784 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-787)) (-4 *5 (-174)))) (-2064 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-787)) (-4 *5 (-174)))) (-2047 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) (-4 *4 (-174)))) (-2036 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) (-4 *4 (-174)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-660 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-787)) (-4 *5 (-174)))) (-2023 (*1 *1 *2) (-12 (-5 *2 (-660 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 (-787)))) (-1534 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) (-4 *4 (-174))))) +(-13 (-478 |#3| (-787)) (-483 (-577) (-787)) (-297 (-577) |#3|) (-10 -8 (-15 -3544 ($ (-246 |#2| |#3|))) (-15 -3544 ($ (-1167 |#2| |#3|))) (-15 -3544 ($ (-660 |#3|))) (-15 -3544 ($ (-660 $))) (-15 -1545 ((-787) $)) (-15 -2872 (|#3| $)) (-15 -2872 (|#3| $ (-577) (-577))) (-15 -2872 (|#3| $ (-577) (-577) (-577))) (-15 -2872 (|#3| $ (-577) (-577) (-577) (-577))) (-15 -2872 (|#3| $ (-660 (-577)))) (-15 -2857 ($ $ $)) (-15 * ($ $ $)) (-15 -3726 ($ $ (-577) $ (-577))) (-15 -3726 ($ $ (-577) (-577))) (-15 -3784 ($ $)) (-15 -3784 ($ $ (-577) (-577))) (-15 -2064 ($ $ (-660 (-577)))) (-15 -2047 ($)) (-15 -2036 ($)) (-15 -3509 ((-660 |#3|) $)) (-15 -2023 ($ (-660 |#3|))) (-15 -1534 ($)))) +((-3473 (((-112) $ $) NIL)) (-1733 (((-1160) $) 11)) (-1721 (((-1160) $) 9)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 17) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-138) (-13 (-1108) (-10 -8 (-15 -1721 ((-1160) $)) (-15 -1733 ((-1160) $))))) (T -138)) +((-1721 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-138)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-138))))) +(-13 (-1108) (-10 -8 (-15 -1721 ((-1160) $)) (-15 -1733 ((-1160) $)))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1811 (((-188) $) 10)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 20) (($ (-1206)) NIL) (((-1206) $) NIL)) (-2724 (((-660 (-1160)) $) 13)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-139) (-13 (-1108) (-10 -8 (-15 -1811 ((-188) $)) (-15 -2724 ((-660 (-1160)) $))))) (T -139)) +((-1811 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-139))))) +(-13 (-1108) (-10 -8 (-15 -1811 ((-188) $)) (-15 -2724 ((-660 (-1160)) $)))) +((-3473 (((-112) $ $) NIL)) (-3293 (((-660 (-883)) $) NIL)) (-2713 (((-519) $) NIL)) (-2810 (((-1183) $) NIL)) (-1811 (((-188) $) NIL)) (-2740 (((-112) $ (-519)) NIL)) (-1474 (((-1145) $) NIL)) (-4417 (((-660 (-112)) $) NIL)) (-3544 (((-880) $) NIL) (((-189) $) 6)) (-4448 (((-112) $ $) NIL)) (-3013 (((-55) $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-140) (-13 (-187) (-626 (-189)))) (T -140)) +NIL +(-13 (-187) (-626 (-189))) +((-2077 (((-660 (-185 (-140))) $) 13)) (-3603 (((-660 (-185 (-140))) $) 14)) (-2088 (((-660 (-854)) $) 10)) (-2645 (((-140) $) 7)) (-3544 (((-880) $) 16))) +(((-141) (-13 (-626 (-880)) (-10 -8 (-15 -2645 ((-140) $)) (-15 -2088 ((-660 (-854)) $)) (-15 -2077 ((-660 (-185 (-140))) $)) (-15 -3603 ((-660 (-185 (-140))) $))))) (T -141)) +((-2645 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-660 (-854))) (-5 *1 (-141)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-660 (-185 (-140)))) (-5 *1 (-141)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-660 (-185 (-140)))) (-5 *1 (-141))))) +(-13 (-626 (-880)) (-10 -8 (-15 -2645 ((-140) $)) (-15 -2088 ((-660 (-854)) $)) (-15 -2077 ((-660 (-185 (-140))) $)) (-15 -3603 ((-660 (-185 (-140))) $)))) +((-3473 (((-112) $ $) NIL)) (-3846 (($) 17 T CONST)) (-2427 (($) NIL (|has| (-145) (-380)))) (-1892 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-2765 (($ $ $) NIL)) (-2753 (((-112) $ $) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-2229 (((-787)) NIL (|has| (-145) (-380)))) (-2198 (($) NIL) (($ (-660 (-145))) NIL)) (-2463 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)))) (-1534 (($) NIL T CONST)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))))) (-3719 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470))) (($ (-145) $) 60 (|has| $ (-6 -4470)))) (-3904 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))))) (-3654 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4470))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4470))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))))) (-1910 (($) NIL (|has| (-145) (-380)))) (-1461 (((-660 (-145)) $) 69 (|has| $ (-6 -4470)))) (-2798 (((-112) $ $) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-3732 (((-145) $) NIL (|has| (-145) (-865)))) (-2530 (((-660 (-145)) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))))) (-3201 (((-145) $) NIL (|has| (-145) (-865)))) (-2182 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-145) (-145)) $) 64)) (-3869 (($) 18 T CONST)) (-4038 (((-944) $) NIL (|has| (-145) (-380)))) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL)) (-2785 (($ $ $) 30)) (-4330 (((-145) $) 61)) (-2881 (($ (-145) $) 59)) (-3222 (($ (-944)) NIL (|has| (-145) (-380)))) (-2125 (($) 16 T CONST)) (-1474 (((-1145) $) NIL)) (-1828 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3530 (((-145) $) 62)) (-1514 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-145)) (-660 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125)))) (($ $ (-305 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125)))) (($ $ (-660 (-305 (-145)))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) 57)) (-2140 (($) 15 T CONST)) (-2775 (($ $ $) 32) (($ $ (-145)) NIL)) (-3736 (($ (-660 (-145))) NIL) (($) NIL)) (-1485 (((-787) (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125)))) (((-787) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) NIL)) (-4152 (((-1183) $) 37) (((-549) $) NIL (|has| (-145) (-627 (-549)))) (((-660 (-145)) $) 35)) (-3553 (($ (-660 (-145))) NIL)) (-2437 (($ $) 33 (|has| (-145) (-380)))) (-3544 (((-880) $) 53)) (-1672 (($ (-1183)) 14) (($ (-660 (-145))) 50)) (-2449 (((-787) $) NIL)) (-1973 (($) 58) (($ (-660 (-145))) NIL)) (-4448 (((-112) $ $) NIL)) (-3541 (($ (-660 (-145))) NIL)) (-1524 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)))) (-2099 (($) 21 T CONST)) (-2110 (($) 20 T CONST)) (-2970 (((-112) $ $) 24)) (-3484 (((-787) $) 56 (|has| $ (-6 -4470))))) +(((-142) (-13 (-1125) (-627 (-1183)) (-438 (-145)) (-627 (-660 (-145))) (-10 -8 (-15 -1672 ($ (-1183))) (-15 -1672 ($ (-660 (-145)))) (-15 -2140 ($) -1512) (-15 -2125 ($) -1512) (-15 -3846 ($) -1512) (-15 -3869 ($) -1512) (-15 -2110 ($) -1512) (-15 -2099 ($) -1512)))) (T -142)) +((-1672 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-142)))) (-1672 (*1 *1 *2) (-12 (-5 *2 (-660 (-145))) (-5 *1 (-142)))) (-2140 (*1 *1) (-5 *1 (-142))) (-2125 (*1 *1) (-5 *1 (-142))) (-3846 (*1 *1) (-5 *1 (-142))) (-3869 (*1 *1) (-5 *1 (-142))) (-2110 (*1 *1) (-5 *1 (-142))) (-2099 (*1 *1) (-5 *1 (-142)))) +(-13 (-1125) (-627 (-1183)) (-438 (-145)) (-627 (-660 (-145))) (-10 -8 (-15 -1672 ($ (-1183))) (-15 -1672 ($ (-660 (-145)))) (-15 -2140 ($) -1512) (-15 -2125 ($) -1512) (-15 -3846 ($) -1512) (-15 -3869 ($) -1512) (-15 -2110 ($) -1512) (-15 -2099 ($) -1512))) +((-1660 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1638 ((|#1| |#3|) 9)) (-1649 ((|#3| |#3|) 15))) +(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -1638 (|#1| |#3|)) (-15 -1649 (|#3| |#3|)) (-15 -1660 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-569) (-1017 |#1|) (-385 |#2|)) (T -143)) +((-1660 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1017 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-385 *5)))) (-1649 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *4 (-1017 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-385 *4)))) (-1638 (*1 *2 *3) (-12 (-4 *4 (-1017 *2)) (-4 *2 (-569)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-385 *4))))) +(-10 -7 (-15 -1638 (|#1| |#3|)) (-15 -1649 (|#3| |#3|)) (-15 -1660 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1992 (($ $ $) 8)) (-1969 (($ $) 7)) (-3850 (($ $ $) 6))) (((-144) (-141)) (T -144)) -((-2194 (*1 *1 *1 *1) (-4 *1 (-144))) (-3907 (*1 *1 *1) (-4 *1 (-144))) (-3871 (*1 *1 *1 *1) (-4 *1 (-144)))) -(-13 (-10 -8 (-15 -3871 ($ $ $)) (-15 -3907 ($ $)) (-15 -2194 ($ $ $)))) -((-3429 (((-112) $ $) NIL)) (-3362 (((-112) $) 39)) (-1973 (($ $) 55)) (-4145 (($) 26 T CONST)) (-2193 (((-784)) 13)) (-1892 (($) 25)) (-3560 (($) 27 T CONST)) (-2525 (((-784) $) 21)) (-3707 (($ $ $) NIL) (($) NIL T CONST)) (-1611 (($ $ $) NIL) (($) NIL T CONST)) (-2205 (((-112) $) 41)) (-4378 (($ $) 56)) (-3007 (((-941) $) 23)) (-2342 (((-1180) $) 49)) (-3178 (($ (-941)) 20)) (-2618 (((-112) $) 37)) (-1471 (((-1142) $) NIL)) (-2558 (($) 28 T CONST)) (-3420 (((-112) $) 35)) (-3501 (((-877) $) 30)) (-2960 (($ (-784)) 19) (($ (-1180)) 54)) (-2046 (((-112) $ $) NIL)) (-2167 (((-112) $) 45)) (-3794 (((-112) $) 43)) (-2985 (((-112) $ $) 11)) (-2963 (((-112) $ $) 9)) (-2933 (((-112) $ $) 7)) (-2973 (((-112) $ $) 10)) (-2954 (((-112) $ $) 8))) -(((-145) (-13 (-857) (-10 -8 (-15 -2525 ((-784) $)) (-15 -2960 ($ (-784))) (-15 -2960 ($ (-1180))) (-15 -4145 ($) -1509) (-15 -3560 ($) -1509) (-15 -2558 ($) -1509) (-15 -1973 ($ $)) (-15 -4378 ($ $)) (-15 -3420 ((-112) $)) (-15 -2618 ((-112) $)) (-15 -3794 ((-112) $)) (-15 -3362 ((-112) $)) (-15 -2205 ((-112) $)) (-15 -2167 ((-112) $))))) (T -145)) -((-2525 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-145)))) (-2960 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-145)))) (-2960 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-145)))) (-4145 (*1 *1) (-5 *1 (-145))) (-3560 (*1 *1) (-5 *1 (-145))) (-2558 (*1 *1) (-5 *1 (-145))) (-1973 (*1 *1 *1) (-5 *1 (-145))) (-4378 (*1 *1 *1) (-5 *1 (-145))) (-3420 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3794 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2167 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(-13 (-857) (-10 -8 (-15 -2525 ((-784) $)) (-15 -2960 ($ (-784))) (-15 -2960 ($ (-1180))) (-15 -4145 ($) -1509) (-15 -3560 ($) -1509) (-15 -2558 ($) -1509) (-15 -1973 ($ $)) (-15 -4378 ($ $)) (-15 -3420 ((-112) $)) (-15 -2618 ((-112) $)) (-15 -3794 ((-112) $)) (-15 -3362 ((-112) $)) (-15 -2205 ((-112) $)) (-15 -2167 ((-112) $)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3843 (((-3 $ "failed") $) 37)) (-4094 (((-112) $) 35)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12) (($ (-576)) 33)) (-3096 (((-3 $ "failed") $) 39)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-1992 (*1 *1 *1 *1) (-4 *1 (-144))) (-1969 (*1 *1 *1) (-4 *1 (-144))) (-3850 (*1 *1 *1 *1) (-4 *1 (-144)))) +(-13 (-10 -8 (-15 -3850 ($ $ $)) (-15 -1969 ($ $)) (-15 -1992 ($ $ $)))) +((-3473 (((-112) $ $) NIL)) (-1704 (((-112) $) 39)) (-3846 (($ $) 55)) (-2995 (($) 26 T CONST)) (-2229 (((-787)) 13)) (-1910 (($) 25)) (-3469 (($) 27 T CONST)) (-1756 (((-787) $) 21)) (-3732 (($ $ $) NIL) (($) NIL T CONST)) (-3201 (($ $ $) NIL) (($) NIL T CONST)) (-1695 (((-112) $) 41)) (-3869 (($ $) 56)) (-4038 (((-944) $) 23)) (-2810 (((-1183) $) 49)) (-3222 (($ (-944)) 20)) (-1727 (((-112) $) 37)) (-1474 (((-1145) $) NIL)) (-1745 (($) 28 T CONST)) (-1738 (((-112) $) 35)) (-3544 (((-880) $) 30)) (-2998 (($ (-787)) 19) (($ (-1183)) 54)) (-4448 (((-112) $ $) NIL)) (-1685 (((-112) $) 45)) (-1716 (((-112) $) 43)) (-3025 (((-112) $ $) 11)) (-3000 (((-112) $ $) 9)) (-2970 (((-112) $ $) 7)) (-3012 (((-112) $ $) 10)) (-2990 (((-112) $ $) 8))) +(((-145) (-13 (-860) (-10 -8 (-15 -1756 ((-787) $)) (-15 -2998 ($ (-787))) (-15 -2998 ($ (-1183))) (-15 -2995 ($) -1512) (-15 -3469 ($) -1512) (-15 -1745 ($) -1512) (-15 -3846 ($ $)) (-15 -3869 ($ $)) (-15 -1738 ((-112) $)) (-15 -1727 ((-112) $)) (-15 -1716 ((-112) $)) (-15 -1704 ((-112) $)) (-15 -1695 ((-112) $)) (-15 -1685 ((-112) $))))) (T -145)) +((-1756 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-145)))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-145)))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-145)))) (-2995 (*1 *1) (-5 *1 (-145))) (-3469 (*1 *1) (-5 *1 (-145))) (-1745 (*1 *1) (-5 *1 (-145))) (-3846 (*1 *1 *1) (-5 *1 (-145))) (-3869 (*1 *1 *1) (-5 *1 (-145))) (-1738 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1727 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1704 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1695 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(-13 (-860) (-10 -8 (-15 -1756 ((-787) $)) (-15 -2998 ($ (-787))) (-15 -2998 ($ (-1183))) (-15 -2995 ($) -1512) (-15 -3469 ($) -1512) (-15 -1745 ($) -1512) (-15 -3846 ($ $)) (-15 -3869 ($ $)) (-15 -1738 ((-112) $)) (-15 -1727 ((-112) $)) (-15 -1716 ((-112) $)) (-15 -1704 ((-112) $)) (-15 -1695 ((-112) $)) (-15 -1685 ((-112) $)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-4187 (((-3 $ "failed") $) 37)) (-2487 (((-112) $) 35)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12) (($ (-577)) 33)) (-2233 (((-3 $ "failed") $) 39)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) (((-146) (-141)) (T -146)) -((-3096 (*1 *1 *1) (|partial| -4 *1 (-146)))) -(-13 (-1071) (-10 -8 (-15 -3096 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-739) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-4182 ((|#1| (-702 |#1|) |#1|) 19))) -(((-147 |#1|) (-10 -7 (-15 -4182 (|#1| (-702 |#1|) |#1|))) (-174)) (T -147)) -((-4182 (*1 *2 *3 *2) (-12 (-5 *3 (-702 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) -(-10 -7 (-15 -4182 (|#1| (-702 |#1|) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3843 (((-3 $ "failed") $) 37)) (-4094 (((-112) $) 35)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12) (($ (-576)) 33)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-2233 (*1 *1 *1) (|partial| -4 *1 (-146)))) +(-13 (-1074) (-10 -8 (-15 -2233 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-742) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3974 ((|#1| (-705 |#1|) |#1|) 19))) +(((-147 |#1|) (-10 -7 (-15 -3974 (|#1| (-705 |#1|) |#1|))) (-174)) (T -147)) +((-3974 (*1 *2 *3 *2) (-12 (-5 *3 (-705 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) +(-10 -7 (-15 -3974 (|#1| (-705 |#1|) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-4187 (((-3 $ "failed") $) 37)) (-2487 (((-112) $) 35)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12) (($ (-577)) 33)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) (((-148) (-141)) (T -148)) NIL -(-13 (-1071)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-739) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3364 (((-2 (|:| -1801 (-784)) (|:| -1771 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-784)) 76)) (-1502 (((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-784))) "failed") |#3|) 56)) (-2582 (((-2 (|:| -1771 (-419 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-3753 ((|#1| |#3| |#3|) 44)) (-3236 ((|#3| |#3| (-419 |#2|) (-419 |#2|)) 20)) (-2944 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-784))) |#3| |#3|) 53))) -(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -2582 ((-2 (|:| -1771 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1502 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-784))) "failed") |#3|)) (-15 -3364 ((-2 (|:| -1801 (-784)) (|:| -1771 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-784))) (-15 -3753 (|#1| |#3| |#3|)) (-15 -3236 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -2944 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-784))) |#3| |#3|))) (-1243) (-1265 |#1|) (-1265 (-419 |#2|))) (T -149)) -((-2944 (*1 *2 *3 *3) (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) (|:| |c2| (-419 *5)) (|:| |deg| (-784)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1265 (-419 *5))))) (-3236 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1265 *3)))) (-3753 (*1 *2 *3 *3) (-12 (-4 *4 (-1265 *2)) (-4 *2 (-1243)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1265 (-419 *4))))) (-3364 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *6)) (-4 *5 (-1243)) (-4 *6 (-1265 *5)) (-5 *2 (-2 (|:| -1801 (-784)) (|:| -1771 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-784)) (-4 *7 (-1265 *3)))) (-1502 (*1 *2 *3) (|partial| -12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-784)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1265 (-419 *5))))) (-2582 (*1 *2 *3) (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-5 *2 (-2 (|:| -1771 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1265 (-419 *5)))))) -(-10 -7 (-15 -2582 ((-2 (|:| -1771 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1502 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-784))) "failed") |#3|)) (-15 -3364 ((-2 (|:| -1801 (-784)) (|:| -1771 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-784))) (-15 -3753 (|#1| |#3| |#3|)) (-15 -3236 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -2944 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-784))) |#3| |#3|))) -((-1359 (((-3 (-657 (-1194 |#2|)) "failed") (-657 (-1194 |#2|)) (-1194 |#2|)) 35))) -(((-150 |#1| |#2|) (-10 -7 (-15 -1359 ((-3 (-657 (-1194 |#2|)) "failed") (-657 (-1194 |#2|)) (-1194 |#2|)))) (-557) (-167 |#1|)) (T -150)) -((-1359 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-657 (-1194 *5))) (-5 *3 (-1194 *5)) (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5))))) -(-10 -7 (-15 -1359 ((-3 (-657 (-1194 |#2|)) "failed") (-657 (-1194 |#2|)) (-1194 |#2|)))) -((-2035 (($ (-1 (-112) |#2|) $) 37)) (-3914 (($ $) 44)) (-3895 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-3622 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-2951 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-3399 (((-112) (-1 (-112) |#2|) $) 24)) (-1482 (((-784) (-1 (-112) |#2|) $) 18) (((-784) |#2| $) NIL)) (-2147 (((-112) (-1 (-112) |#2|) $) 21)) (-3440 (((-784) $) 12))) -(((-151 |#1| |#2|) (-10 -8 (-15 -3914 (|#1| |#1|)) (-15 -3895 (|#1| |#2| |#1|)) (-15 -3622 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2035 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3895 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3622 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3622 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2951 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1482 ((-784) |#2| |#1|)) (-15 -1482 ((-784) (-1 (-112) |#2|) |#1|)) (-15 -3399 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2147 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3440 ((-784) |#1|))) (-152 |#2|) (-1239)) (T -151)) -NIL -(-10 -8 (-15 -3914 (|#1| |#1|)) (-15 -3895 (|#1| |#2| |#1|)) (-15 -3622 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2035 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3895 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3622 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3622 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2951 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1482 ((-784) |#2| |#1|)) (-15 -1482 ((-784) (-1 (-112) |#2|) |#1|)) (-15 -3399 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2147 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3440 ((-784) |#1|))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3793 (((-112) $ (-784)) 8)) (-2035 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4466)))) (-4359 (($) 7 T CONST)) (-3914 (($ $) 42 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3895 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4466))) (($ |#1| $) 43 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) 9)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-4148 (((-548) $) 41 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 50)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-152 |#1|) (-141) (-1239)) (T -152)) -((-3511 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-4 *1 (-152 *3)))) (-2951 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1239)))) (-3622 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4466)) (-4 *1 (-152 *2)) (-4 *2 (-1239)))) (-3622 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4466)) (-4 *1 (-152 *2)) (-4 *2 (-1239)))) (-3895 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4466)) (-4 *1 (-152 *3)) (-4 *3 (-1239)))) (-2035 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4466)) (-4 *1 (-152 *3)) (-4 *3 (-1239)))) (-3622 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1122)) (|has| *1 (-6 -4466)) (-4 *1 (-152 *2)) (-4 *2 (-1239)))) (-3895 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-152 *2)) (-4 *2 (-1239)) (-4 *2 (-1122)))) (-3914 (*1 *1 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-152 *2)) (-4 *2 (-1239)) (-4 *2 (-1122))))) -(-13 (-501 |t#1|) (-10 -8 (-15 -3511 ($ (-657 |t#1|))) (-15 -2951 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4466)) (PROGN (-15 -3622 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3622 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3895 ($ (-1 (-112) |t#1|) $)) (-15 -2035 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1122)) (PROGN (-15 -3622 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3895 ($ |t#1| $)) (-15 -3914 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-3843 (((-3 $ "failed") $) 111)) (-4094 (((-112) $) NIL)) (-2003 (($ |#2| (-657 (-941))) 71)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-1397 (($ (-941)) 57)) (-3863 (((-135)) 23)) (-3501 (((-877) $) 86) (($ (-576)) 53) (($ |#2|) 54)) (-2313 ((|#2| $ (-657 (-941))) 74)) (-1960 (((-784)) 20 T CONST)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 47 T CONST)) (-2779 (($) 51 T CONST)) (-2933 (((-112) $ $) 33)) (-3034 (($ $ |#2|) NIL)) (-3022 (($ $) 42) (($ $ $) 40)) (-3012 (($ $ $) 38)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL))) -(((-153 |#1| |#2| |#3|) (-13 (-1071) (-38 |#2|) (-1296 |#2|) (-10 -8 (-15 -1397 ($ (-941))) (-15 -2003 ($ |#2| (-657 (-941)))) (-15 -2313 (|#2| $ (-657 (-941)))) (-15 -3843 ((-3 $ "failed") $)))) (-941) (-374) (-1015 |#1| |#2|)) (T -153)) -((-3843 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-941)) (-4 *3 (-374)) (-14 *4 (-1015 *2 *3)))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-374)) (-14 *5 (-1015 *3 *4)))) (-2003 (*1 *1 *2 *3) (-12 (-5 *3 (-657 (-941))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-941)) (-4 *2 (-374)) (-14 *5 (-1015 *4 *2)))) (-2313 (*1 *2 *1 *3) (-12 (-5 *3 (-657 (-941))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-941)) (-14 *5 (-1015 *4 *2))))) -(-13 (-1071) (-38 |#2|) (-1296 |#2|) (-10 -8 (-15 -1397 ($ (-941))) (-15 -2003 ($ |#2| (-657 (-941)))) (-15 -2313 (|#2| $ (-657 (-941)))) (-15 -3843 ((-3 $ "failed") $)))) -((-4077 (((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-657 (-657 (-963 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-1681 (((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947) (-419 (-576)) (-419 (-576))) 95) (((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947)) 96)) (-1607 (((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-657 (-657 (-963 (-227))))) 99) (((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-657 (-963 (-227)))) 98) (((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947) (-419 (-576)) (-419 (-576))) 90) (((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947)) 91))) -(((-154) (-10 -7 (-15 -1607 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947))) (-15 -1607 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947) (-419 (-576)) (-419 (-576)))) (-15 -1681 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947))) (-15 -1681 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947) (-419 (-576)) (-419 (-576)))) (-15 -4077 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-657 (-657 (-963 (-227)))) (-227) (-227) (-227) (-227))) (-15 -1607 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-657 (-963 (-227))))) (-15 -1607 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-657 (-657 (-963 (-227)))))))) (T -154)) -((-1607 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) (-5 *1 (-154)) (-5 *3 (-657 (-657 (-963 (-227))))))) (-1607 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) (-5 *1 (-154)) (-5 *3 (-657 (-963 (-227)))))) (-4077 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-657 (-657 (-963 *4)))) (|:| |xValues| (-1116 *4)) (|:| |yValues| (-1116 *4)))) (-5 *1 (-154)) (-5 *3 (-657 (-657 (-963 *4)))))) (-1681 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-947)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) (-5 *1 (-154)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) (-5 *1 (-154)))) (-1607 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-947)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) (-5 *1 (-154)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) (-5 *1 (-154))))) -(-10 -7 (-15 -1607 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947))) (-15 -1607 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947) (-419 (-576)) (-419 (-576)))) (-15 -1681 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947))) (-15 -1681 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-947) (-419 (-576)) (-419 (-576)))) (-15 -4077 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-657 (-657 (-963 (-227)))) (-227) (-227) (-227) (-227))) (-15 -1607 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-657 (-963 (-227))))) (-15 -1607 ((-2 (|:| |brans| (-657 (-657 (-963 (-227))))) (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227)))) (-657 (-657 (-963 (-227))))))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-3041 (((-657 (-1157)) $) 20)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 27) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2687 (((-1157) $) 9)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-155) (-13 (-1105) (-10 -8 (-15 -3041 ((-657 (-1157)) $)) (-15 -2687 ((-1157) $))))) (T -155)) -((-3041 (*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-155)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-155))))) -(-13 (-1105) (-10 -8 (-15 -3041 ((-657 (-1157)) $)) (-15 -2687 ((-1157) $)))) -((-2171 (((-657 (-171 |#2|)) |#1| |#2|) 50))) -(((-156 |#1| |#2|) (-10 -7 (-15 -2171 ((-657 (-171 |#2|)) |#1| |#2|))) (-1265 (-171 (-576))) (-13 (-374) (-861))) (T -156)) -((-2171 (*1 *2 *3 *4) (-12 (-5 *2 (-657 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1265 (-171 (-576)))) (-4 *4 (-13 (-374) (-861)))))) -(-10 -7 (-15 -2171 ((-657 (-171 |#2|)) |#1| |#2|))) -((-3429 (((-112) $ $) NIL)) (-1730 (((-1238) $) 12)) (-1718 (((-1157) $) 9)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 19) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-157) (-13 (-1105) (-10 -8 (-15 -1718 ((-1157) $)) (-15 -1730 ((-1238) $))))) (T -157)) -((-1718 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-157)))) (-1730 (*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-157))))) -(-13 (-1105) (-10 -8 (-15 -1718 ((-1157) $)) (-15 -1730 ((-1238) $)))) -((-3429 (((-112) $ $) NIL)) (-2181 (($) 41)) (-1578 (($) 40)) (-1976 (((-941)) 46)) (-2342 (((-1180) $) NIL)) (-4082 (((-576) $) 44)) (-1471 (((-1142) $) NIL)) (-1511 (($) 42)) (-3848 (($ (-576)) 47)) (-3501 (((-877) $) 53)) (-1646 (($) 43)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 38)) (-3012 (($ $ $) 35)) (* (($ (-941) $) 45) (($ (-227) $) 11))) -(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-941) $)) (-15 * ($ (-227) $)) (-15 -3012 ($ $ $)) (-15 -1578 ($)) (-15 -2181 ($)) (-15 -1511 ($)) (-15 -1646 ($)) (-15 -4082 ((-576) $)) (-15 -1976 ((-941))) (-15 -3848 ($ (-576)))))) (T -158)) -((-3012 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-941)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-1578 (*1 *1) (-5 *1 (-158))) (-2181 (*1 *1) (-5 *1 (-158))) (-1511 (*1 *1) (-5 *1 (-158))) (-1646 (*1 *1) (-5 *1 (-158))) (-4082 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) (-1976 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-158)))) (-3848 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158))))) -(-13 (-25) (-10 -8 (-15 * ($ (-941) $)) (-15 * ($ (-227) $)) (-15 -3012 ($ $ $)) (-15 -1578 ($)) (-15 -2181 ($)) (-15 -1511 ($)) (-15 -1646 ($)) (-15 -4082 ((-576) $)) (-15 -1976 ((-941))) (-15 -3848 ($ (-576))))) -((-4423 ((|#2| |#2| (-1114 |#2|)) 98) ((|#2| |#2| (-1198)) 75)) (-3778 ((|#2| |#2| (-1114 |#2|)) 97) ((|#2| |#2| (-1198)) 74)) (-2194 ((|#2| |#2| |#2|) 25)) (-1832 (((-115) (-115)) 111)) (-3713 ((|#2| (-657 |#2|)) 130)) (-4069 ((|#2| (-657 |#2|)) 151)) (-3959 ((|#2| (-657 |#2|)) 138)) (-1517 ((|#2| |#2|) 136)) (-2577 ((|#2| (-657 |#2|)) 124)) (-4294 ((|#2| (-657 |#2|)) 125)) (-2620 ((|#2| (-657 |#2|)) 149)) (-2492 ((|#2| |#2| (-1198)) 63) ((|#2| |#2|) 62)) (-3907 ((|#2| |#2|) 21)) (-3871 ((|#2| |#2| |#2|) 24)) (-4159 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) -(((-159 |#1| |#2|) (-10 -7 (-15 -4159 ((-112) (-115))) (-15 -1832 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3871 (|#2| |#2| |#2|)) (-15 -2194 (|#2| |#2| |#2|)) (-15 -3907 (|#2| |#2|)) (-15 -2492 (|#2| |#2|)) (-15 -2492 (|#2| |#2| (-1198))) (-15 -4423 (|#2| |#2| (-1198))) (-15 -4423 (|#2| |#2| (-1114 |#2|))) (-15 -3778 (|#2| |#2| (-1198))) (-15 -3778 (|#2| |#2| (-1114 |#2|))) (-15 -1517 (|#2| |#2|)) (-15 -2620 (|#2| (-657 |#2|))) (-15 -3959 (|#2| (-657 |#2|))) (-15 -4069 (|#2| (-657 |#2|))) (-15 -2577 (|#2| (-657 |#2|))) (-15 -4294 (|#2| (-657 |#2|))) (-15 -3713 (|#2| (-657 |#2|)))) (-568) (-442 |#1|)) (T -159)) -((-3713 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-4294 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-4069 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2620 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-1517 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-3778 (*1 *2 *2 *3) (-12 (-5 *3 (-1114 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-3778 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-4423 (*1 *2 *2 *3) (-12 (-5 *3 (-1114 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-4423 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-2492 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-2492 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-2194 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-3871 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1832 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) (-4 *4 (-442 *3)))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4))))) -(-10 -7 (-15 -4159 ((-112) (-115))) (-15 -1832 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3871 (|#2| |#2| |#2|)) (-15 -2194 (|#2| |#2| |#2|)) (-15 -3907 (|#2| |#2|)) (-15 -2492 (|#2| |#2|)) (-15 -2492 (|#2| |#2| (-1198))) (-15 -4423 (|#2| |#2| (-1198))) (-15 -4423 (|#2| |#2| (-1114 |#2|))) (-15 -3778 (|#2| |#2| (-1198))) (-15 -3778 (|#2| |#2| (-1114 |#2|))) (-15 -1517 (|#2| |#2|)) (-15 -2620 (|#2| (-657 |#2|))) (-15 -3959 (|#2| (-657 |#2|))) (-15 -4069 (|#2| (-657 |#2|))) (-15 -2577 (|#2| (-657 |#2|))) (-15 -4294 (|#2| (-657 |#2|))) (-15 -3713 (|#2| (-657 |#2|)))) -((-3481 ((|#1| |#1| |#1|) 64)) (-1751 ((|#1| |#1| |#1|) 61)) (-2194 ((|#1| |#1| |#1|) 55)) (-2179 ((|#1| |#1|) 42)) (-3093 ((|#1| |#1| (-657 |#1|)) 53)) (-3907 ((|#1| |#1|) 46)) (-3871 ((|#1| |#1| |#1|) 49))) -(((-160 |#1|) (-10 -7 (-15 -3871 (|#1| |#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3093 (|#1| |#1| (-657 |#1|))) (-15 -2179 (|#1| |#1|)) (-15 -2194 (|#1| |#1| |#1|)) (-15 -1751 (|#1| |#1| |#1|)) (-15 -3481 (|#1| |#1| |#1|))) (-557)) (T -160)) -((-3481 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-1751 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-2194 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-2179 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-3093 (*1 *2 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2)))) (-3907 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-3871 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(-10 -7 (-15 -3871 (|#1| |#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3093 (|#1| |#1| (-657 |#1|))) (-15 -2179 (|#1| |#1|)) (-15 -2194 (|#1| |#1| |#1|)) (-15 -1751 (|#1| |#1| |#1|)) (-15 -3481 (|#1| |#1| |#1|))) -((-4423 (($ $ (-1198)) 12) (($ $ (-1114 $)) 11)) (-3778 (($ $ (-1198)) 10) (($ $ (-1114 $)) 9)) (-2194 (($ $ $) 8)) (-2492 (($ $) 14) (($ $ (-1198)) 13)) (-3907 (($ $) 7)) (-3871 (($ $ $) 6))) +(-13 (-1074)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-742) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-1788 (((-2 (|:| -3556 (-787)) (|:| -1777 (-420 |#2|)) (|:| |radicand| |#2|)) (-420 |#2|) (-787)) 76)) (-1778 (((-3 (-2 (|:| |radicand| (-420 |#2|)) (|:| |deg| (-787))) "failed") |#3|) 56)) (-1768 (((-2 (|:| -1777 (-420 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-1798 ((|#1| |#3| |#3|) 44)) (-3280 ((|#3| |#3| (-420 |#2|) (-420 |#2|)) 20)) (-1808 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| |deg| (-787))) |#3| |#3|) 53))) +(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -1768 ((-2 (|:| -1777 (-420 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1778 ((-3 (-2 (|:| |radicand| (-420 |#2|)) (|:| |deg| (-787))) "failed") |#3|)) (-15 -1788 ((-2 (|:| -3556 (-787)) (|:| -1777 (-420 |#2|)) (|:| |radicand| |#2|)) (-420 |#2|) (-787))) (-15 -1798 (|#1| |#3| |#3|)) (-15 -3280 (|#3| |#3| (-420 |#2|) (-420 |#2|))) (-15 -1808 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| |deg| (-787))) |#3| |#3|))) (-1246) (-1268 |#1|) (-1268 (-420 |#2|))) (T -149)) +((-1808 (*1 *2 *3 *3) (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-420 *5)) (|:| |c2| (-420 *5)) (|:| |deg| (-787)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1268 (-420 *5))))) (-3280 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-420 *5)) (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1268 *3)))) (-1798 (*1 *2 *3 *3) (-12 (-4 *4 (-1268 *2)) (-4 *2 (-1246)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1268 (-420 *4))))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-420 *6)) (-4 *5 (-1246)) (-4 *6 (-1268 *5)) (-5 *2 (-2 (|:| -3556 (-787)) (|:| -1777 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-787)) (-4 *7 (-1268 *3)))) (-1778 (*1 *2 *3) (|partial| -12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-5 *2 (-2 (|:| |radicand| (-420 *5)) (|:| |deg| (-787)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1268 (-420 *5))))) (-1768 (*1 *2 *3) (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-5 *2 (-2 (|:| -1777 (-420 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1268 (-420 *5)))))) +(-10 -7 (-15 -1768 ((-2 (|:| -1777 (-420 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1778 ((-3 (-2 (|:| |radicand| (-420 |#2|)) (|:| |deg| (-787))) "failed") |#3|)) (-15 -1788 ((-2 (|:| -3556 (-787)) (|:| -1777 (-420 |#2|)) (|:| |radicand| |#2|)) (-420 |#2|) (-787))) (-15 -1798 (|#1| |#3| |#3|)) (-15 -3280 (|#3| |#3| (-420 |#2|) (-420 |#2|))) (-15 -1808 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| |deg| (-787))) |#3| |#3|))) +((-2259 (((-3 (-660 (-1197 |#2|)) "failed") (-660 (-1197 |#2|)) (-1197 |#2|)) 35))) +(((-150 |#1| |#2|) (-10 -7 (-15 -2259 ((-3 (-660 (-1197 |#2|)) "failed") (-660 (-1197 |#2|)) (-1197 |#2|)))) (-558) (-167 |#1|)) (T -150)) +((-2259 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-1197 *5))) (-5 *3 (-1197 *5)) (-4 *5 (-167 *4)) (-4 *4 (-558)) (-5 *1 (-150 *4 *5))))) +(-10 -7 (-15 -2259 ((-3 (-660 (-1197 |#2|)) "failed") (-660 (-1197 |#2|)) (-1197 |#2|)))) +((-2067 (($ (-1 (-112) |#2|) $) 37)) (-1817 (($ $) 44)) (-3904 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-3654 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-1828 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-1514 (((-112) (-1 (-112) |#2|) $) 24)) (-1485 (((-787) (-1 (-112) |#2|) $) 18) (((-787) |#2| $) NIL)) (-1524 (((-112) (-1 (-112) |#2|) $) 21)) (-3484 (((-787) $) 12))) +(((-151 |#1| |#2|) (-10 -8 (-15 -1817 (|#1| |#1|)) (-15 -3904 (|#1| |#2| |#1|)) (-15 -3654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2067 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3904 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3654 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1828 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1485 ((-787) |#2| |#1|)) (-15 -1485 ((-787) (-1 (-112) |#2|) |#1|)) (-15 -1514 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1524 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3484 ((-787) |#1|))) (-152 |#2|) (-1242)) (T -151)) +NIL +(-10 -8 (-15 -1817 (|#1| |#1|)) (-15 -3904 (|#1| |#2| |#1|)) (-15 -3654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2067 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3904 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3654 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1828 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1485 ((-787) |#2| |#1|)) (-15 -1485 ((-787) (-1 (-112) |#2|) |#1|)) (-15 -1514 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1524 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3484 ((-787) |#1|))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3828 (((-112) $ (-787)) 8)) (-2067 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4470)))) (-1534 (($) 7 T CONST)) (-1817 (($ $) 42 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3904 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4470))) (($ |#1| $) 43 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) 9)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-4152 (((-549) $) 41 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 50)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-152 |#1|) (-141) (-1242)) (T -152)) +((-3553 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-4 *1 (-152 *3)))) (-1828 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1242)))) (-3654 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4470)) (-4 *1 (-152 *2)) (-4 *2 (-1242)))) (-3654 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4470)) (-4 *1 (-152 *2)) (-4 *2 (-1242)))) (-3904 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4470)) (-4 *1 (-152 *3)) (-4 *3 (-1242)))) (-2067 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4470)) (-4 *1 (-152 *3)) (-4 *3 (-1242)))) (-3654 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1125)) (|has| *1 (-6 -4470)) (-4 *1 (-152 *2)) (-4 *2 (-1242)))) (-3904 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-152 *2)) (-4 *2 (-1242)) (-4 *2 (-1125)))) (-1817 (*1 *1 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-152 *2)) (-4 *2 (-1242)) (-4 *2 (-1125))))) +(-13 (-502 |t#1|) (-10 -8 (-15 -3553 ($ (-660 |t#1|))) (-15 -1828 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4470)) (PROGN (-15 -3654 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3654 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3904 ($ (-1 (-112) |t#1|) $)) (-15 -2067 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1125)) (PROGN (-15 -3654 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3904 ($ |t#1| $)) (-15 -1817 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-4187 (((-3 $ "failed") $) 111)) (-2487 (((-112) $) NIL)) (-2030 (($ |#2| (-660 (-944))) 71)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-1400 (($ (-944)) 57)) (-2561 (((-135)) 23)) (-3544 (((-880) $) 86) (($ (-577)) 53) (($ |#2|) 54)) (-2322 ((|#2| $ (-660 (-944))) 74)) (-4068 (((-787)) 20 T CONST)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 47 T CONST)) (-2816 (($) 51 T CONST)) (-2970 (((-112) $ $) 33)) (-3077 (($ $ |#2|) NIL)) (-3066 (($ $) 42) (($ $ $) 40)) (-3055 (($ $ $) 38)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL))) +(((-153 |#1| |#2| |#3|) (-13 (-1074) (-38 |#2|) (-1299 |#2|) (-10 -8 (-15 -1400 ($ (-944))) (-15 -2030 ($ |#2| (-660 (-944)))) (-15 -2322 (|#2| $ (-660 (-944)))) (-15 -4187 ((-3 $ "failed") $)))) (-944) (-375) (-1018 |#1| |#2|)) (T -153)) +((-4187 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-944)) (-4 *3 (-375)) (-14 *4 (-1018 *2 *3)))) (-1400 (*1 *1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-375)) (-14 *5 (-1018 *3 *4)))) (-2030 (*1 *1 *2 *3) (-12 (-5 *3 (-660 (-944))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-944)) (-4 *2 (-375)) (-14 *5 (-1018 *4 *2)))) (-2322 (*1 *2 *1 *3) (-12 (-5 *3 (-660 (-944))) (-4 *2 (-375)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-944)) (-14 *5 (-1018 *4 *2))))) +(-13 (-1074) (-38 |#2|) (-1299 |#2|) (-10 -8 (-15 -1400 ($ (-944))) (-15 -2030 ($ |#2| (-660 (-944)))) (-15 -2322 (|#2| $ (-660 (-944)))) (-15 -4187 ((-3 $ "failed") $)))) +((-1850 (((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-660 (-660 (-966 (-228)))) (-228) (-228) (-228) (-228)) 59)) (-1839 (((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950) (-420 (-577)) (-420 (-577))) 95) (((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950)) 96)) (-4122 (((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-660 (-660 (-966 (-228))))) 99) (((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-660 (-966 (-228)))) 98) (((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950) (-420 (-577)) (-420 (-577))) 90) (((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950)) 91))) +(((-154) (-10 -7 (-15 -4122 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950))) (-15 -4122 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950) (-420 (-577)) (-420 (-577)))) (-15 -1839 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950))) (-15 -1839 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950) (-420 (-577)) (-420 (-577)))) (-15 -1850 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-660 (-660 (-966 (-228)))) (-228) (-228) (-228) (-228))) (-15 -4122 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-660 (-966 (-228))))) (-15 -4122 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-660 (-660 (-966 (-228)))))))) (T -154)) +((-4122 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) (-5 *1 (-154)) (-5 *3 (-660 (-660 (-966 (-228))))))) (-4122 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) (-5 *1 (-154)) (-5 *3 (-660 (-966 (-228)))))) (-1850 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-228)) (-5 *2 (-2 (|:| |brans| (-660 (-660 (-966 *4)))) (|:| |xValues| (-1119 *4)) (|:| |yValues| (-1119 *4)))) (-5 *1 (-154)) (-5 *3 (-660 (-660 (-966 *4)))))) (-1839 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-950)) (-5 *4 (-420 (-577))) (-5 *2 (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) (-5 *1 (-154)))) (-1839 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) (-5 *1 (-154)))) (-4122 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-950)) (-5 *4 (-420 (-577))) (-5 *2 (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) (-5 *1 (-154)))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) (-5 *1 (-154))))) +(-10 -7 (-15 -4122 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950))) (-15 -4122 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950) (-420 (-577)) (-420 (-577)))) (-15 -1839 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950))) (-15 -1839 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-950) (-420 (-577)) (-420 (-577)))) (-15 -1850 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-660 (-660 (-966 (-228)))) (-228) (-228) (-228) (-228))) (-15 -4122 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-660 (-966 (-228))))) (-15 -4122 ((-2 (|:| |brans| (-660 (-660 (-966 (-228))))) (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228)))) (-660 (-660 (-966 (-228))))))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-3085 (((-660 (-1160)) $) 20)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 27) (($ (-1206)) NIL) (((-1206) $) NIL)) (-2724 (((-1160) $) 9)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-155) (-13 (-1108) (-10 -8 (-15 -3085 ((-660 (-1160)) $)) (-15 -2724 ((-1160) $))))) (T -155)) +((-3085 (*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-155)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-155))))) +(-13 (-1108) (-10 -8 (-15 -3085 ((-660 (-1160)) $)) (-15 -2724 ((-1160) $)))) +((-4277 (((-660 (-171 |#2|)) |#1| |#2|) 50))) +(((-156 |#1| |#2|) (-10 -7 (-15 -4277 ((-660 (-171 |#2|)) |#1| |#2|))) (-1268 (-171 (-577))) (-13 (-375) (-864))) (T -156)) +((-4277 (*1 *2 *3 *4) (-12 (-5 *2 (-660 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1268 (-171 (-577)))) (-4 *4 (-13 (-375) (-864)))))) +(-10 -7 (-15 -4277 ((-660 (-171 |#2|)) |#1| |#2|))) +((-3473 (((-112) $ $) NIL)) (-1733 (((-1241) $) 12)) (-1721 (((-1160) $) 9)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 19) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-157) (-13 (-1108) (-10 -8 (-15 -1721 ((-1160) $)) (-15 -1733 ((-1241) $))))) (T -157)) +((-1721 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-157)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-157))))) +(-13 (-1108) (-10 -8 (-15 -1721 ((-1160) $)) (-15 -1733 ((-1241) $)))) +((-3473 (((-112) $ $) NIL)) (-1875 (($) 41)) (-3815 (($) 40)) (-1862 (((-944)) 46)) (-2810 (((-1183) $) NIL)) (-2987 (((-577) $) 44)) (-1474 (((-1145) $) NIL)) (-3802 (($) 42)) (-2977 (($ (-577)) 47)) (-3544 (((-880) $) 53)) (-3790 (($) 43)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 38)) (-3055 (($ $ $) 35)) (* (($ (-944) $) 45) (($ (-228) $) 11))) +(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-944) $)) (-15 * ($ (-228) $)) (-15 -3055 ($ $ $)) (-15 -3815 ($)) (-15 -1875 ($)) (-15 -3802 ($)) (-15 -3790 ($)) (-15 -2987 ((-577) $)) (-15 -1862 ((-944))) (-15 -2977 ($ (-577)))))) (T -158)) +((-3055 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-944)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-158)))) (-3815 (*1 *1) (-5 *1 (-158))) (-1875 (*1 *1) (-5 *1 (-158))) (-3802 (*1 *1) (-5 *1 (-158))) (-3790 (*1 *1) (-5 *1 (-158))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-158)))) (-1862 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-158)))) (-2977 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-158))))) +(-13 (-25) (-10 -8 (-15 * ($ (-944) $)) (-15 * ($ (-228) $)) (-15 -3055 ($ $ $)) (-15 -3815 ($)) (-15 -1875 ($)) (-15 -3802 ($)) (-15 -3790 ($)) (-15 -2987 ((-577) $)) (-15 -1862 ((-944))) (-15 -2977 ($ (-577))))) +((-2025 ((|#2| |#2| (-1117 |#2|)) 98) ((|#2| |#2| (-1201)) 75)) (-2857 ((|#2| |#2| (-1117 |#2|)) 97) ((|#2| |#2| (-1201)) 74)) (-1992 ((|#2| |#2| |#2|) 25)) (-1844 (((-115) (-115)) 111)) (-1958 ((|#2| (-660 |#2|)) 130)) (-1921 ((|#2| (-660 |#2|)) 151)) (-1908 ((|#2| (-660 |#2|)) 138)) (-1886 ((|#2| |#2|) 136)) (-1932 ((|#2| (-660 |#2|)) 124)) (-1945 ((|#2| (-660 |#2|)) 125)) (-1897 ((|#2| (-660 |#2|)) 149)) (-2038 ((|#2| |#2| (-1201)) 63) ((|#2| |#2|) 62)) (-1969 ((|#2| |#2|) 21)) (-3850 ((|#2| |#2| |#2|) 24)) (-1409 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) +(((-159 |#1| |#2|) (-10 -7 (-15 -1409 ((-112) (-115))) (-15 -1844 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3850 (|#2| |#2| |#2|)) (-15 -1992 (|#2| |#2| |#2|)) (-15 -1969 (|#2| |#2|)) (-15 -2038 (|#2| |#2|)) (-15 -2038 (|#2| |#2| (-1201))) (-15 -2025 (|#2| |#2| (-1201))) (-15 -2025 (|#2| |#2| (-1117 |#2|))) (-15 -2857 (|#2| |#2| (-1201))) (-15 -2857 (|#2| |#2| (-1117 |#2|))) (-15 -1886 (|#2| |#2|)) (-15 -1897 (|#2| (-660 |#2|))) (-15 -1908 (|#2| (-660 |#2|))) (-15 -1921 (|#2| (-660 |#2|))) (-15 -1932 (|#2| (-660 |#2|))) (-15 -1945 (|#2| (-660 |#2|))) (-15 -1958 (|#2| (-660 |#2|)))) (-569) (-443 |#1|)) (T -159)) +((-1958 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-1908 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-569)))) (-1886 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-2857 (*1 *2 *2 *3) (-12 (-5 *3 (-1117 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)))) (-2857 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) (-4 *2 (-443 *4)))) (-2025 (*1 *2 *2 *3) (-12 (-5 *3 (-1117 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)))) (-2025 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) (-4 *2 (-443 *4)))) (-2038 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) (-4 *2 (-443 *4)))) (-2038 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-1969 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-1992 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-3850 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) (-1844 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-159 *3 *4)) (-4 *4 (-443 *3)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-443 *4))))) +(-10 -7 (-15 -1409 ((-112) (-115))) (-15 -1844 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3850 (|#2| |#2| |#2|)) (-15 -1992 (|#2| |#2| |#2|)) (-15 -1969 (|#2| |#2|)) (-15 -2038 (|#2| |#2|)) (-15 -2038 (|#2| |#2| (-1201))) (-15 -2025 (|#2| |#2| (-1201))) (-15 -2025 (|#2| |#2| (-1117 |#2|))) (-15 -2857 (|#2| |#2| (-1201))) (-15 -2857 (|#2| |#2| (-1117 |#2|))) (-15 -1886 (|#2| |#2|)) (-15 -1897 (|#2| (-660 |#2|))) (-15 -1908 (|#2| (-660 |#2|))) (-15 -1921 (|#2| (-660 |#2|))) (-15 -1932 (|#2| (-660 |#2|))) (-15 -1945 (|#2| (-660 |#2|))) (-15 -1958 (|#2| (-660 |#2|)))) +((-2014 ((|#1| |#1| |#1|) 64)) (-2004 ((|#1| |#1| |#1|) 61)) (-1992 ((|#1| |#1| |#1|) 55)) (-3529 ((|#1| |#1|) 42)) (-1980 ((|#1| |#1| (-660 |#1|)) 53)) (-1969 ((|#1| |#1|) 46)) (-3850 ((|#1| |#1| |#1|) 49))) +(((-160 |#1|) (-10 -7 (-15 -3850 (|#1| |#1| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -1980 (|#1| |#1| (-660 |#1|))) (-15 -3529 (|#1| |#1|)) (-15 -1992 (|#1| |#1| |#1|)) (-15 -2004 (|#1| |#1| |#1|)) (-15 -2014 (|#1| |#1| |#1|))) (-558)) (T -160)) +((-2014 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-2004 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-1992 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-3529 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-1980 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-558)) (-5 *1 (-160 *2)))) (-1969 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) (-3850 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) +(-10 -7 (-15 -3850 (|#1| |#1| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -1980 (|#1| |#1| (-660 |#1|))) (-15 -3529 (|#1| |#1|)) (-15 -1992 (|#1| |#1| |#1|)) (-15 -2004 (|#1| |#1| |#1|)) (-15 -2014 (|#1| |#1| |#1|))) +((-2025 (($ $ (-1201)) 12) (($ $ (-1117 $)) 11)) (-2857 (($ $ (-1201)) 10) (($ $ (-1117 $)) 9)) (-1992 (($ $ $) 8)) (-2038 (($ $) 14) (($ $ (-1201)) 13)) (-1969 (($ $) 7)) (-3850 (($ $ $) 6))) (((-161) (-141)) (T -161)) -((-2492 (*1 *1 *1) (-4 *1 (-161))) (-2492 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1198)))) (-4423 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1198)))) (-4423 (*1 *1 *1 *2) (-12 (-5 *2 (-1114 *1)) (-4 *1 (-161)))) (-3778 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1198)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-1114 *1)) (-4 *1 (-161))))) -(-13 (-144) (-10 -8 (-15 -2492 ($ $)) (-15 -2492 ($ $ (-1198))) (-15 -4423 ($ $ (-1198))) (-15 -4423 ($ $ (-1114 $))) (-15 -3778 ($ $ (-1198))) (-15 -3778 ($ $ (-1114 $))))) +((-2038 (*1 *1 *1) (-4 *1 (-161))) (-2038 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1201)))) (-2025 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1201)))) (-2025 (*1 *1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-161)))) (-2857 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1201)))) (-2857 (*1 *1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-161))))) +(-13 (-144) (-10 -8 (-15 -2038 ($ $)) (-15 -2038 ($ $ (-1201))) (-15 -2025 ($ $ (-1201))) (-15 -2025 ($ $ (-1117 $))) (-15 -2857 ($ $ (-1201))) (-15 -2857 ($ $ (-1117 $))))) (((-144) . T)) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 16) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2687 (((-657 (-1157)) $) 10)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-162) (-13 (-1105) (-10 -8 (-15 -2687 ((-657 (-1157)) $))))) (T -162)) -((-2687 (*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-162))))) -(-13 (-1105) (-10 -8 (-15 -2687 ((-657 (-1157)) $)))) -((-3429 (((-112) $ $) NIL)) (-2206 (($ (-576)) 14) (($ $ $) 15)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 18)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 9))) -(((-163) (-13 (-1122) (-10 -8 (-15 -2206 ($ (-576))) (-15 -2206 ($ $ $))))) (T -163)) -((-2206 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163)))) (-2206 (*1 *1 *1 *1) (-5 *1 (-163)))) -(-13 (-1122) (-10 -8 (-15 -2206 ($ (-576))) (-15 -2206 ($ $ $)))) -((-1832 (((-115) (-1198)) 102))) -(((-164) (-10 -7 (-15 -1832 ((-115) (-1198))))) (T -164)) -((-1832 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-115)) (-5 *1 (-164))))) -(-10 -7 (-15 -1832 ((-115) (-1198)))) -((-3696 ((|#3| |#3|) 19))) -(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -3696 (|#3| |#3|))) (-1071) (-1265 |#1|) (-1265 |#2|)) (T -165)) -((-3696 (*1 *2 *2) (-12 (-4 *3 (-1071)) (-4 *4 (-1265 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1265 *4))))) -(-10 -7 (-15 -3696 (|#3| |#3|))) -((-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 223)) (-2302 ((|#2| $) 102)) (-2176 (($ $) 256)) (-2030 (($ $) 250)) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 47)) (-2150 (($ $) 254)) (-2004 (($ $) 248)) (-1624 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2884 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 144)) (-3373 (($ $ $) 229)) (-3306 (((-702 (-576)) (-702 $)) NIL) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) 160) (((-702 |#2|) (-702 $)) 154)) (-3622 (($ (-1194 |#2|)) 125) (((-3 $ "failed") (-419 (-1194 |#2|))) NIL)) (-3843 (((-3 $ "failed") $) 214)) (-2775 (((-3 (-419 (-576)) "failed") $) 204)) (-3112 (((-112) $) 199)) (-4239 (((-419 (-576)) $) 202)) (-1542 (((-941)) 96)) (-3385 (($ $ $) 231)) (-3065 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-1657 (($) 245)) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 193) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 198)) (-2234 ((|#2| $) 100)) (-1336 (((-1194 |#2|) $) 127)) (-4083 (($ (-1 |#2| |#2|) $) 108)) (-3670 (($ $) 247)) (-3609 (((-1194 |#2|) $) 126)) (-2134 (($ $) 207)) (-2489 (($) 103)) (-2861 (((-430 (-1194 $)) (-1194 $)) 95)) (-2988 (((-430 (-1194 $)) (-1194 $)) 64)) (-3418 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-4067 (($ $) 246)) (-2034 (((-784) $) 226)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 236)) (-1701 ((|#2| (-1289 $)) NIL) ((|#2|) 98)) (-2815 (($ $ (-1 |#2| |#2|)) 119) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) NIL) (($ $ (-784)) NIL) (($ $) NIL)) (-3180 (((-1194 |#2|)) 120)) (-2163 (($ $) 255)) (-2017 (($ $) 249)) (-2795 (((-1289 |#2|) $ (-1289 $)) 136) (((-702 |#2|) (-1289 $) (-1289 $)) NIL) (((-1289 |#2|) $) 116) (((-702 |#2|) (-1289 $)) NIL)) (-4148 (((-1289 |#2|) $) NIL) (($ (-1289 |#2|)) NIL) (((-1194 |#2|) $) NIL) (($ (-1194 |#2|)) NIL) (((-908 (-576)) $) 184) (((-908 (-390)) $) 188) (((-171 (-390)) $) 172) (((-171 (-227)) $) 167) (((-548) $) 180)) (-3549 (($ $) 104)) (-3501 (((-877) $) 143) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-419 (-576))) NIL) (($ $) NIL)) (-4182 (((-1194 |#2|) $) 32)) (-1960 (((-784)) 106)) (-2046 (((-112) $ $) 13)) (-4110 (($ $) 259)) (-2100 (($ $) 253)) (-2225 (($ $) 257)) (-2072 (($ $) 251)) (-2196 ((|#2| $) 242)) (-2235 (($ $) 258)) (-2085 (($ $) 252)) (-1792 (($ $) 162)) (-2933 (((-112) $ $) 110)) (-3022 (($ $) 112) (($ $ $) NIL)) (-3012 (($ $ $) 111)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-419 (-576))) 276) (($ $ $) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) -(((-166 |#1| |#2|) (-10 -8 (-15 -2815 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -3501 (|#1| |#1|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3167 ((-2 (|:| -2824 |#1|) (|:| -4453 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2034 ((-784) |#1|)) (-15 -3944 ((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|)) (-15 -3385 (|#1| |#1| |#1|)) (-15 -3373 (|#1| |#1| |#1|)) (-15 -2134 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -4148 ((-548) |#1|)) (-15 -4148 ((-171 (-227)) |#1|)) (-15 -4148 ((-171 (-390)) |#1|)) (-15 -2030 (|#1| |#1|)) (-15 -2004 (|#1| |#1|)) (-15 -2017 (|#1| |#1|)) (-15 -2085 (|#1| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -2100 (|#1| |#1|)) (-15 -2163 (|#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -2176 (|#1| |#1|)) (-15 -2235 (|#1| |#1|)) (-15 -2225 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -4067 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1657 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2988 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -2861 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -1359 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|))) (-15 -2775 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4239 ((-419 (-576)) |#1|)) (-15 -3112 ((-112) |#1|)) (-15 -3065 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2196 (|#2| |#1|)) (-15 -1792 (|#1| |#1|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3549 (|#1| |#1|)) (-15 -2489 (|#1|)) (-15 -4148 ((-908 (-390)) |#1|)) (-15 -4148 ((-908 (-576)) |#1|)) (-15 -3200 ((-905 (-390) |#1|) |#1| (-908 (-390)) (-905 (-390) |#1|))) (-15 -3200 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|))) (-15 -4083 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3622 ((-3 |#1| "failed") (-419 (-1194 |#2|)))) (-15 -3609 ((-1194 |#2|) |#1|)) (-15 -4148 (|#1| (-1194 |#2|))) (-15 -3622 (|#1| (-1194 |#2|))) (-15 -3180 ((-1194 |#2|))) (-15 -3306 ((-702 |#2|) (-702 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-702 (-576)) (-702 |#1|))) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -4148 ((-1194 |#2|) |#1|)) (-15 -1701 (|#2|)) (-15 -4148 (|#1| (-1289 |#2|))) (-15 -4148 ((-1289 |#2|) |#1|)) (-15 -2795 ((-702 |#2|) (-1289 |#1|))) (-15 -2795 ((-1289 |#2|) |#1|)) (-15 -1336 ((-1194 |#2|) |#1|)) (-15 -4182 ((-1194 |#2|) |#1|)) (-15 -1701 (|#2| (-1289 |#1|))) (-15 -2795 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -2795 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -2234 (|#2| |#1|)) (-15 -2302 (|#2| |#1|)) (-15 -1542 ((-941))) (-15 -3501 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1960 ((-784))) (-15 -3501 (|#1| (-576))) (-15 ** (|#1| |#1| (-784))) (-15 -3843 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-941))) (-15 -3022 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -2046 ((-112) |#1| |#1|)) (-15 -2933 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) -((-1960 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-784)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-1542 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-941)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-1701 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-3180 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1194 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) -(-10 -8 (-15 -2815 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -3501 (|#1| |#1|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3167 ((-2 (|:| -2824 |#1|) (|:| -4453 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2034 ((-784) |#1|)) (-15 -3944 ((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|)) (-15 -3385 (|#1| |#1| |#1|)) (-15 -3373 (|#1| |#1| |#1|)) (-15 -2134 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -4148 ((-548) |#1|)) (-15 -4148 ((-171 (-227)) |#1|)) (-15 -4148 ((-171 (-390)) |#1|)) (-15 -2030 (|#1| |#1|)) (-15 -2004 (|#1| |#1|)) (-15 -2017 (|#1| |#1|)) (-15 -2085 (|#1| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -2100 (|#1| |#1|)) (-15 -2163 (|#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -2176 (|#1| |#1|)) (-15 -2235 (|#1| |#1|)) (-15 -2225 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -4067 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1657 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2988 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -2861 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -1359 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|))) (-15 -2775 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4239 ((-419 (-576)) |#1|)) (-15 -3112 ((-112) |#1|)) (-15 -3065 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2196 (|#2| |#1|)) (-15 -1792 (|#1| |#1|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3549 (|#1| |#1|)) (-15 -2489 (|#1|)) (-15 -4148 ((-908 (-390)) |#1|)) (-15 -4148 ((-908 (-576)) |#1|)) (-15 -3200 ((-905 (-390) |#1|) |#1| (-908 (-390)) (-905 (-390) |#1|))) (-15 -3200 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|))) (-15 -4083 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3622 ((-3 |#1| "failed") (-419 (-1194 |#2|)))) (-15 -3609 ((-1194 |#2|) |#1|)) (-15 -4148 (|#1| (-1194 |#2|))) (-15 -3622 (|#1| (-1194 |#2|))) (-15 -3180 ((-1194 |#2|))) (-15 -3306 ((-702 |#2|) (-702 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-702 (-576)) (-702 |#1|))) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -4148 ((-1194 |#2|) |#1|)) (-15 -1701 (|#2|)) (-15 -4148 (|#1| (-1289 |#2|))) (-15 -4148 ((-1289 |#2|) |#1|)) (-15 -2795 ((-702 |#2|) (-1289 |#1|))) (-15 -2795 ((-1289 |#2|) |#1|)) (-15 -1336 ((-1194 |#2|) |#1|)) (-15 -4182 ((-1194 |#2|) |#1|)) (-15 -1701 (|#2| (-1289 |#1|))) (-15 -2795 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -2795 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -2234 (|#2| |#1|)) (-15 -2302 (|#2| |#1|)) (-15 -1542 ((-941))) (-15 -3501 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1960 ((-784))) (-15 -3501 (|#1| (-576))) (-15 ** (|#1| |#1| (-784))) (-15 -3843 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-941))) (-15 -3022 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -2046 ((-112) |#1| |#1|)) (-15 -2933 ((-112) |#1| |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 105 (-2802 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))))) (-3325 (($ $) 106 (-2802 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))))) (-4306 (((-112) $) 108 (-2802 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))))) (-1527 (((-702 |#1|) (-1289 $)) 53) (((-702 |#1|)) 68)) (-2302 ((|#1| $) 59)) (-2176 (($ $) 236 (|has| |#1| (-1224)))) (-2030 (($ $) 219 (|has| |#1| (-1224)))) (-3592 (((-1211 (-941) (-784)) (-576)) 158 (|has| |#1| (-360)))) (-2721 (((-3 $ "failed") $ $) 20)) (-4250 (((-430 (-1194 $)) (-1194 $)) 250 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (-2638 (($ $) 125 (-2802 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-374))))) (-4402 (((-430 $) $) 126 (-2802 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-374))))) (-1896 (($ $) 249 (-12 (|has| |#1| (-1024)) (|has| |#1| (-1224))))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 253 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (-2864 (((-112) $ $) 116 (|has| |#1| (-317)))) (-2193 (((-784)) 99 (|has| |#1| (-379)))) (-2150 (($ $) 235 (|has| |#1| (-1224)))) (-2004 (($ $) 220 (|has| |#1| (-1224)))) (-2201 (($ $) 234 (|has| |#1| (-1224)))) (-2052 (($ $) 221 (|has| |#1| (-1224)))) (-4359 (($) 18 T CONST)) (-1624 (((-3 (-576) "failed") $) 185 (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 180)) (-2884 (((-576) $) 184 (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) 182 (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 181)) (-2613 (($ (-1289 |#1|) (-1289 $)) 55) (($ (-1289 |#1|)) 71)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-3373 (($ $ $) 120 (|has| |#1| (-317)))) (-3529 (((-702 |#1|) $ (-1289 $)) 60) (((-702 |#1|) $) 66)) (-3306 (((-702 (-576)) (-702 $)) 177 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 176 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 175) (((-702 |#1|) (-702 $)) 174)) (-3622 (($ (-1194 |#1|)) 169) (((-3 $ "failed") (-419 (-1194 |#1|))) 166 (|has| |#1| (-374)))) (-3843 (((-3 $ "failed") $) 37)) (-1907 ((|#1| $) 261)) (-2775 (((-3 (-419 (-576)) "failed") $) 254 (|has| |#1| (-557)))) (-3112 (((-112) $) 256 (|has| |#1| (-557)))) (-4239 (((-419 (-576)) $) 255 (|has| |#1| (-557)))) (-1542 (((-941)) 61)) (-1892 (($) 102 (|has| |#1| (-379)))) (-3385 (($ $ $) 119 (|has| |#1| (-317)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 114 (|has| |#1| (-317)))) (-1367 (($) 160 (|has| |#1| (-360)))) (-2105 (((-112) $) 161 (|has| |#1| (-360)))) (-1780 (($ $ (-784)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-4257 (((-112) $) 127 (-2802 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-374))))) (-3065 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 257 (-12 (|has| |#1| (-1082)) (|has| |#1| (-1224))))) (-1657 (($) 246 (|has| |#1| (-1224)))) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 269 (|has| |#1| (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 268 (|has| |#1| (-902 (-390))))) (-3182 (((-941) $) 163 (|has| |#1| (-360))) (((-846 (-941)) $) 149 (|has| |#1| (-360)))) (-4094 (((-112) $) 35)) (-2082 (($ $ (-576)) 248 (-12 (|has| |#1| (-1024)) (|has| |#1| (-1224))))) (-2234 ((|#1| $) 58)) (-4019 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 123 (|has| |#1| (-317)))) (-1336 (((-1194 |#1|) $) 51 (|has| |#1| (-374)))) (-4083 (($ (-1 |#1| |#1|) $) 270)) (-3007 (((-941) $) 101 (|has| |#1| (-379)))) (-3670 (($ $) 243 (|has| |#1| (-1224)))) (-3609 (((-1194 |#1|) $) 167)) (-3101 (((-702 (-576)) (-1289 $)) 179 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 178 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 173) (((-702 |#1|) (-1289 $)) 172)) (-3402 (($ (-657 $)) 112 (-2802 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (($ $ $) 111 (-2802 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))))) (-2342 (((-1180) $) 10)) (-2134 (($ $) 128 (|has| |#1| (-374)))) (-1706 (($) 154 (|has| |#1| (-360)) CONST)) (-3178 (($ (-941)) 100 (|has| |#1| (-379)))) (-2489 (($) 265)) (-1916 ((|#1| $) 262)) (-1471 (((-1142) $) 11)) (-4097 (($) 171)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 113 (-2802 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))))) (-3436 (($ (-657 $)) 110 (-2802 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (($ $ $) 109 (-2802 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))))) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) 157 (|has| |#1| (-360)))) (-2861 (((-430 (-1194 $)) (-1194 $)) 252 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (-2988 (((-430 (-1194 $)) (-1194 $)) 251 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (-1885 (((-430 $) $) 124 (-2802 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-374))))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 121 (|has| |#1| (-317)))) (-3418 (((-3 $ "failed") $ |#1|) 260 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 104 (-2802 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 115 (|has| |#1| (-317)))) (-4067 (($ $) 244 (|has| |#1| (-1224)))) (-3236 (($ $ (-657 |#1|) (-657 |#1|)) 276 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 275 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 274 (|has| |#1| (-319 |#1|))) (($ $ (-657 (-304 |#1|))) 273 (|has| |#1| (-319 |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) 272 (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) |#1|) 271 (|has| |#1| (-526 (-1198) |#1|)))) (-2034 (((-784) $) 117 (|has| |#1| (-317)))) (-2835 (($ $ |#1|) 277 (|has| |#1| (-296 |#1| |#1|)))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 118 (|has| |#1| (-317)))) (-1701 ((|#1| (-1289 $)) 54) ((|#1|) 67)) (-2284 (((-784) $) 162 (|has| |#1| (-360))) (((-3 (-784) "failed") $ $) 150 (|has| |#1| (-360)))) (-2815 (($ $ (-1 |#1| |#1|)) 136) (($ $ (-1 |#1| |#1|) (-784)) 135) (($ $ (-657 (-1198)) (-657 (-784))) 141 (-2802 (-2724 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-2724 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-1198) (-784)) 140 (-2802 (-2724 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-2724 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-657 (-1198))) 139 (-2802 (-2724 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-2724 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-1198)) 137 (-2802 (-2724 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-2724 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-784)) 147 (-2802 (-2724 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2724 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2724 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 145 (-2802 (-2724 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2724 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2724 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-3988 (((-702 |#1|) (-1289 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-3180 (((-1194 |#1|)) 170)) (-2213 (($ $) 233 (|has| |#1| (-1224)))) (-2062 (($ $) 222 (|has| |#1| (-1224)))) (-2090 (($) 159 (|has| |#1| (-360)))) (-2188 (($ $) 232 (|has| |#1| (-1224)))) (-2042 (($ $) 223 (|has| |#1| (-1224)))) (-2163 (($ $) 231 (|has| |#1| (-1224)))) (-2017 (($ $) 224 (|has| |#1| (-1224)))) (-2795 (((-1289 |#1|) $ (-1289 $)) 57) (((-702 |#1|) (-1289 $) (-1289 $)) 56) (((-1289 |#1|) $) 73) (((-702 |#1|) (-1289 $)) 72)) (-4148 (((-1289 |#1|) $) 70) (($ (-1289 |#1|)) 69) (((-1194 |#1|) $) 186) (($ (-1194 |#1|)) 168) (((-908 (-576)) $) 267 (|has| |#1| (-626 (-908 (-576))))) (((-908 (-390)) $) 266 (|has| |#1| (-626 (-908 (-390))))) (((-171 (-390)) $) 218 (|has| |#1| (-1044))) (((-171 (-227)) $) 217 (|has| |#1| (-1044))) (((-548) $) 216 (|has| |#1| (-626 (-548))))) (-3549 (($ $) 264)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) 156 (-2802 (-2724 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))) (|has| |#1| (-360))))) (-4155 (($ |#1| |#1|) 263)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 98 (-2802 (|has| |#1| (-374)) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) 103 (-2802 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))))) (-3096 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (-2802 (-2724 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))) (|has| |#1| (-146))))) (-4182 (((-1194 |#1|) $) 52)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-1985 (((-1289 $)) 74)) (-4110 (($ $) 242 (|has| |#1| (-1224)))) (-2100 (($ $) 230 (|has| |#1| (-1224)))) (-4041 (((-112) $ $) 107 (-2802 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929)))))) (-2225 (($ $) 241 (|has| |#1| (-1224)))) (-2072 (($ $) 229 (|has| |#1| (-1224)))) (-4137 (($ $) 240 (|has| |#1| (-1224)))) (-2125 (($ $) 228 (|has| |#1| (-1224)))) (-2196 ((|#1| $) 258 (|has| |#1| (-1224)))) (-2224 (($ $) 239 (|has| |#1| (-1224)))) (-2137 (($ $) 227 (|has| |#1| (-1224)))) (-4124 (($ $) 238 (|has| |#1| (-1224)))) (-2113 (($ $) 226 (|has| |#1| (-1224)))) (-2235 (($ $) 237 (|has| |#1| (-1224)))) (-2085 (($ $) 225 (|has| |#1| (-1224)))) (-1792 (($ $) 259 (|has| |#1| (-1082)))) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-1 |#1| |#1|)) 134) (($ $ (-1 |#1| |#1|) (-784)) 133) (($ $ (-657 (-1198)) (-657 (-784))) 144 (-2802 (-2724 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-2724 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-1198) (-784)) 143 (-2802 (-2724 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-2724 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-657 (-1198))) 142 (-2802 (-2724 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-2724 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-1198)) 138 (-2802 (-2724 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-2724 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-784)) 148 (-2802 (-2724 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2724 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2724 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 146 (-2802 (-2724 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2724 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2724 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-2933 (((-112) $ $) 8)) (-3034 (($ $ $) 132 (|has| |#1| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-419 (-576))) 247 (-12 (|has| |#1| (-1024)) (|has| |#1| (-1224)))) (($ $ $) 245 (|has| |#1| (-1224))) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374))))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 16) (($ (-1206)) NIL) (((-1206) $) NIL)) (-2724 (((-660 (-1160)) $) 10)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-162) (-13 (-1108) (-10 -8 (-15 -2724 ((-660 (-1160)) $))))) (T -162)) +((-2724 (*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-162))))) +(-13 (-1108) (-10 -8 (-15 -2724 ((-660 (-1160)) $)))) +((-3473 (((-112) $ $) NIL)) (-2053 (($ (-577)) 14) (($ $ $) 15)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 18)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 9))) +(((-163) (-13 (-1125) (-10 -8 (-15 -2053 ($ (-577))) (-15 -2053 ($ $ $))))) (T -163)) +((-2053 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-163)))) (-2053 (*1 *1 *1 *1) (-5 *1 (-163)))) +(-13 (-1125) (-10 -8 (-15 -2053 ($ (-577))) (-15 -2053 ($ $ $)))) +((-1844 (((-115) (-1201)) 102))) +(((-164) (-10 -7 (-15 -1844 ((-115) (-1201))))) (T -164)) +((-1844 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-115)) (-5 *1 (-164))))) +(-10 -7 (-15 -1844 ((-115) (-1201)))) +((-2658 ((|#3| |#3|) 19))) +(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -2658 (|#3| |#3|))) (-1074) (-1268 |#1|) (-1268 |#2|)) (T -165)) +((-2658 (*1 *2 *2) (-12 (-4 *3 (-1074)) (-4 *4 (-1268 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1268 *4))))) +(-10 -7 (-15 -2658 (|#3| |#3|))) +((-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 223)) (-2339 ((|#2| $) 102)) (-2212 (($ $) 256)) (-2060 (($ $) 250)) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 47)) (-2186 (($ $) 254)) (-2032 (($ $) 248)) (-1628 (((-3 (-577) "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2921 (((-577) $) NIL) (((-420 (-577)) $) NIL) ((|#2| $) 144)) (-3418 (($ $ $) 229)) (-1647 (((-705 (-577)) (-705 $)) NIL) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) 160) (((-705 |#2|) (-705 $)) 154)) (-3654 (($ (-1197 |#2|)) 125) (((-3 $ "failed") (-420 (-1197 |#2|))) NIL)) (-4187 (((-3 $ "failed") $) 214)) (-4363 (((-3 (-420 (-577)) "failed") $) 204)) (-4353 (((-112) $) 199)) (-4341 (((-420 (-577)) $) 202)) (-1545 (((-944)) 96)) (-3429 (($ $ $) 231)) (-2066 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-1659 (($) 245)) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 193) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 198)) (-4145 ((|#2| $) 100)) (-4084 (((-1197 |#2|) $) 127)) (-4087 (($ (-1 |#2| |#2|) $) 108)) (-3698 (($ $) 247)) (-3642 (((-1197 |#2|) $) 126)) (-2171 (($ $) 207)) (-2079 (($) 103)) (-2269 (((-431 (-1197 $)) (-1197 $)) 95)) (-2281 (((-431 (-1197 $)) (-1197 $)) 64)) (-3462 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-4072 (($ $) 246)) (-1927 (((-787) $) 226)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 236)) (-1827 ((|#2| (-1292 $)) NIL) ((|#2|) 98)) (-2852 (($ $ (-1 |#2| |#2|)) 119) (($ $ (-1 |#2| |#2|) (-787)) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201))) NIL) (($ $ (-1201)) NIL) (($ $ (-787)) NIL) (($ $) NIL)) (-3557 (((-1197 |#2|)) 120)) (-2199 (($ $) 255)) (-2046 (($ $) 249)) (-2710 (((-1292 |#2|) $ (-1292 $)) 136) (((-705 |#2|) (-1292 $) (-1292 $)) NIL) (((-1292 |#2|) $) 116) (((-705 |#2|) (-1292 $)) NIL)) (-4152 (((-1292 |#2|) $) NIL) (($ (-1292 |#2|)) NIL) (((-1197 |#2|) $) NIL) (($ (-1197 |#2|)) NIL) (((-911 (-577)) $) 184) (((-911 (-391)) $) 188) (((-171 (-391)) $) 172) (((-171 (-228)) $) 167) (((-549) $) 180)) (-2360 (($ $) 104)) (-3544 (((-880) $) 143) (($ (-577)) NIL) (($ |#2|) NIL) (($ (-420 (-577))) NIL) (($ $) NIL)) (-3974 (((-1197 |#2|) $) 32)) (-4068 (((-787)) 106)) (-4448 (((-112) $ $) 13)) (-4114 (($ $) 259)) (-2136 (($ $) 253)) (-2262 (($ $) 257)) (-2106 (($ $) 251)) (-4340 ((|#2| $) 242)) (-2272 (($ $) 258)) (-2120 (($ $) 252)) (-1654 (($ $) 162)) (-2970 (((-112) $ $) 110)) (-3066 (($ $) 112) (($ $ $) NIL)) (-3055 (($ $ $) 111)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-420 (-577))) 276) (($ $ $) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-420 (-577)) $) NIL) (($ $ (-420 (-577))) NIL))) +(((-166 |#1| |#2|) (-10 -8 (-15 -2852 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3544 (|#1| |#1|)) (-15 -3462 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3300 ((-2 (|:| -3294 |#1|) (|:| -4457 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1927 ((-787) |#1|)) (-15 -3422 ((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|)) (-15 -3429 (|#1| |#1| |#1|)) (-15 -3418 (|#1| |#1| |#1|)) (-15 -2171 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -4152 ((-549) |#1|)) (-15 -4152 ((-171 (-228)) |#1|)) (-15 -4152 ((-171 (-391)) |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -2032 (|#1| |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -2120 (|#1| |#1|)) (-15 -2106 (|#1| |#1|)) (-15 -2136 (|#1| |#1|)) (-15 -2199 (|#1| |#1|)) (-15 -2186 (|#1| |#1|)) (-15 -2212 (|#1| |#1|)) (-15 -2272 (|#1| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -3698 (|#1| |#1|)) (-15 -4072 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1659 (|#1|)) (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -2281 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2269 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2259 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|))) (-15 -4363 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -4341 ((-420 (-577)) |#1|)) (-15 -4353 ((-112) |#1|)) (-15 -2066 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4340 (|#2| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -3462 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2360 (|#1| |#1|)) (-15 -2079 (|#1|)) (-15 -4152 ((-911 (-391)) |#1|)) (-15 -4152 ((-911 (-577)) |#1|)) (-15 -3795 ((-908 (-391) |#1|) |#1| (-911 (-391)) (-908 (-391) |#1|))) (-15 -3795 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|))) (-15 -4087 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3654 ((-3 |#1| "failed") (-420 (-1197 |#2|)))) (-15 -3642 ((-1197 |#2|) |#1|)) (-15 -4152 (|#1| (-1197 |#2|))) (-15 -3654 (|#1| (-1197 |#2|))) (-15 -3557 ((-1197 |#2|))) (-15 -1647 ((-705 |#2|) (-705 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-705 (-577)) (-705 |#1|))) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -4152 ((-1197 |#2|) |#1|)) (-15 -1827 (|#2|)) (-15 -4152 (|#1| (-1292 |#2|))) (-15 -4152 ((-1292 |#2|) |#1|)) (-15 -2710 ((-705 |#2|) (-1292 |#1|))) (-15 -2710 ((-1292 |#2|) |#1|)) (-15 -4084 ((-1197 |#2|) |#1|)) (-15 -3974 ((-1197 |#2|) |#1|)) (-15 -1827 (|#2| (-1292 |#1|))) (-15 -2710 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2710 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -4145 (|#2| |#1|)) (-15 -2339 (|#2| |#1|)) (-15 -1545 ((-944))) (-15 -3544 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4068 ((-787))) (-15 -3544 (|#1| (-577))) (-15 ** (|#1| |#1| (-787))) (-15 -4187 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-944))) (-15 -3066 (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|)) (-15 -3055 (|#1| |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -4448 ((-112) |#1| |#1|)) (-15 -2970 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) +((-4068 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-787)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-1545 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-944)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-1827 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-3557 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1197 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) +(-10 -8 (-15 -2852 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3544 (|#1| |#1|)) (-15 -3462 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3300 ((-2 (|:| -3294 |#1|) (|:| -4457 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1927 ((-787) |#1|)) (-15 -3422 ((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|)) (-15 -3429 (|#1| |#1| |#1|)) (-15 -3418 (|#1| |#1| |#1|)) (-15 -2171 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -4152 ((-549) |#1|)) (-15 -4152 ((-171 (-228)) |#1|)) (-15 -4152 ((-171 (-391)) |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -2032 (|#1| |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -2120 (|#1| |#1|)) (-15 -2106 (|#1| |#1|)) (-15 -2136 (|#1| |#1|)) (-15 -2199 (|#1| |#1|)) (-15 -2186 (|#1| |#1|)) (-15 -2212 (|#1| |#1|)) (-15 -2272 (|#1| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -3698 (|#1| |#1|)) (-15 -4072 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1659 (|#1|)) (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -2281 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2269 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2259 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|))) (-15 -4363 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -4341 ((-420 (-577)) |#1|)) (-15 -4353 ((-112) |#1|)) (-15 -2066 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4340 (|#2| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -3462 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2360 (|#1| |#1|)) (-15 -2079 (|#1|)) (-15 -4152 ((-911 (-391)) |#1|)) (-15 -4152 ((-911 (-577)) |#1|)) (-15 -3795 ((-908 (-391) |#1|) |#1| (-911 (-391)) (-908 (-391) |#1|))) (-15 -3795 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|))) (-15 -4087 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3654 ((-3 |#1| "failed") (-420 (-1197 |#2|)))) (-15 -3642 ((-1197 |#2|) |#1|)) (-15 -4152 (|#1| (-1197 |#2|))) (-15 -3654 (|#1| (-1197 |#2|))) (-15 -3557 ((-1197 |#2|))) (-15 -1647 ((-705 |#2|) (-705 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-705 (-577)) (-705 |#1|))) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -4152 ((-1197 |#2|) |#1|)) (-15 -1827 (|#2|)) (-15 -4152 (|#1| (-1292 |#2|))) (-15 -4152 ((-1292 |#2|) |#1|)) (-15 -2710 ((-705 |#2|) (-1292 |#1|))) (-15 -2710 ((-1292 |#2|) |#1|)) (-15 -4084 ((-1197 |#2|) |#1|)) (-15 -3974 ((-1197 |#2|) |#1|)) (-15 -1827 (|#2| (-1292 |#1|))) (-15 -2710 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2710 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -4145 (|#2| |#1|)) (-15 -2339 (|#2| |#1|)) (-15 -1545 ((-944))) (-15 -3544 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4068 ((-787))) (-15 -3544 (|#1| (-577))) (-15 ** (|#1| |#1| (-787))) (-15 -4187 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-944))) (-15 -3066 (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|)) (-15 -3055 (|#1| |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -4448 ((-112) |#1| |#1|)) (-15 -2970 ((-112) |#1| |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 105 (-2839 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))))) (-3290 (($ $) 106 (-2839 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))))) (-3271 (((-112) $) 108 (-2839 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))))) (-3390 (((-705 |#1|) (-1292 $)) 53) (((-705 |#1|)) 68)) (-2339 ((|#1| $) 59)) (-2212 (($ $) 236 (|has| |#1| (-1227)))) (-2060 (($ $) 219 (|has| |#1| (-1227)))) (-1595 (((-1214 (-944) (-787)) (-577)) 158 (|has| |#1| (-361)))) (-1956 (((-3 $ "failed") $ $) 20)) (-2294 (((-431 (-1197 $)) (-1197 $)) 250 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))))) (-3841 (($ $) 125 (-2839 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-375))))) (-3029 (((-431 $) $) 126 (-2839 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-375))))) (-1913 (($ $) 249 (-12 (|has| |#1| (-1027)) (|has| |#1| (-1227))))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 253 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))))) (-1939 (((-112) $ $) 116 (|has| |#1| (-318)))) (-2229 (((-787)) 99 (|has| |#1| (-380)))) (-2186 (($ $) 235 (|has| |#1| (-1227)))) (-2032 (($ $) 220 (|has| |#1| (-1227)))) (-2237 (($ $) 234 (|has| |#1| (-1227)))) (-2084 (($ $) 221 (|has| |#1| (-1227)))) (-1534 (($) 18 T CONST)) (-1628 (((-3 (-577) "failed") $) 185 (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) 183 (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) 180)) (-2921 (((-577) $) 184 (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) 182 (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) 181)) (-3502 (($ (-1292 |#1|) (-1292 $)) 55) (($ (-1292 |#1|)) 71)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-361)))) (-3418 (($ $ $) 120 (|has| |#1| (-318)))) (-3381 (((-705 |#1|) $ (-1292 $)) 60) (((-705 |#1|) $) 66)) (-1647 (((-705 (-577)) (-705 $)) 177 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 176 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 175) (((-705 |#1|) (-705 $)) 174)) (-3654 (($ (-1197 |#1|)) 169) (((-3 $ "failed") (-420 (-1197 |#1|))) 166 (|has| |#1| (-375)))) (-4187 (((-3 $ "failed") $) 37)) (-1926 ((|#1| $) 261)) (-4363 (((-3 (-420 (-577)) "failed") $) 254 (|has| |#1| (-558)))) (-4353 (((-112) $) 256 (|has| |#1| (-558)))) (-4341 (((-420 (-577)) $) 255 (|has| |#1| (-558)))) (-1545 (((-944)) 61)) (-1910 (($) 102 (|has| |#1| (-380)))) (-3429 (($ $ $) 119 (|has| |#1| (-318)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 114 (|has| |#1| (-318)))) (-4205 (($) 160 (|has| |#1| (-361)))) (-1655 (((-112) $) 161 (|has| |#1| (-361)))) (-3233 (($ $ (-787)) 152 (|has| |#1| (-361))) (($ $) 151 (|has| |#1| (-361)))) (-1522 (((-112) $) 127 (-2839 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-375))))) (-2066 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 257 (-12 (|has| |#1| (-1085)) (|has| |#1| (-1227))))) (-1659 (($) 246 (|has| |#1| (-1227)))) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 269 (|has| |#1| (-905 (-577)))) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 268 (|has| |#1| (-905 (-391))))) (-3817 (((-944) $) 163 (|has| |#1| (-361))) (((-849 (-944)) $) 149 (|has| |#1| (-361)))) (-2487 (((-112) $) 35)) (-2381 (($ $ (-577)) 248 (-12 (|has| |#1| (-1027)) (|has| |#1| (-1227))))) (-4145 ((|#1| $) 58)) (-4021 (((-3 $ "failed") $) 153 (|has| |#1| (-361)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 123 (|has| |#1| (-318)))) (-4084 (((-1197 |#1|) $) 51 (|has| |#1| (-375)))) (-4087 (($ (-1 |#1| |#1|) $) 270)) (-4038 (((-944) $) 101 (|has| |#1| (-380)))) (-3698 (($ $) 243 (|has| |#1| (-1227)))) (-3642 (((-1197 |#1|) $) 167)) (-1657 (((-705 (-577)) (-1292 $)) 179 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 178 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 173) (((-705 |#1|) (-1292 $)) 172)) (-3446 (($ (-660 $)) 112 (-2839 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932))))) (($ $ $) 111 (-2839 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))))) (-2810 (((-1183) $) 10)) (-2171 (($ $) 128 (|has| |#1| (-375)))) (-1709 (($) 154 (|has| |#1| (-361)) CONST)) (-3222 (($ (-944)) 100 (|has| |#1| (-380)))) (-2079 (($) 265)) (-1937 ((|#1| $) 262)) (-1474 (((-1145) $) 11)) (-4101 (($) 171)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 113 (-2839 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))))) (-3480 (($ (-660 $)) 110 (-2839 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932))))) (($ $ $) 109 (-2839 (|has| |#1| (-318)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))))) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) 157 (|has| |#1| (-361)))) (-2269 (((-431 (-1197 $)) (-1197 $)) 252 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))))) (-2281 (((-431 (-1197 $)) (-1197 $)) 251 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))))) (-1902 (((-431 $) $) 124 (-2839 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-375))))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-318))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 121 (|has| |#1| (-318)))) (-3462 (((-3 $ "failed") $ |#1|) 260 (|has| |#1| (-569))) (((-3 $ "failed") $ $) 104 (-2839 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 115 (|has| |#1| (-318)))) (-4072 (($ $) 244 (|has| |#1| (-1227)))) (-3280 (($ $ (-660 |#1|) (-660 |#1|)) 276 (|has| |#1| (-320 |#1|))) (($ $ |#1| |#1|) 275 (|has| |#1| (-320 |#1|))) (($ $ (-305 |#1|)) 274 (|has| |#1| (-320 |#1|))) (($ $ (-660 (-305 |#1|))) 273 (|has| |#1| (-320 |#1|))) (($ $ (-660 (-1201)) (-660 |#1|)) 272 (|has| |#1| (-527 (-1201) |#1|))) (($ $ (-1201) |#1|) 271 (|has| |#1| (-527 (-1201) |#1|)))) (-1927 (((-787) $) 117 (|has| |#1| (-318)))) (-2872 (($ $ |#1|) 277 (|has| |#1| (-297 |#1| |#1|)))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 118 (|has| |#1| (-318)))) (-1827 ((|#1| (-1292 $)) 54) ((|#1|) 67)) (-3243 (((-787) $) 162 (|has| |#1| (-361))) (((-3 (-787) "failed") $ $) 150 (|has| |#1| (-361)))) (-2852 (($ $ (-1 |#1| |#1|)) 136) (($ $ (-1 |#1| |#1|) (-787)) 135) (($ $ (-660 (-1201)) (-660 (-787))) 141 (-2839 (-2761 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-2761 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201))))) (($ $ (-1201) (-787)) 140 (-2839 (-2761 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-2761 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201))))) (($ $ (-660 (-1201))) 139 (-2839 (-2761 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-2761 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201))))) (($ $ (-1201)) 137 (-2839 (-2761 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-2761 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201))))) (($ $ (-787)) 147 (-2839 (-2761 (|has| |#1| (-375)) (|has| |#1| (-238))) (-2761 (|has| |#1| (-375)) (|has| |#1| (-239))) (|has| |#1| (-238)) (-2761 (|has| |#1| (-238)) (|has| |#1| (-375))))) (($ $) 145 (-2839 (-2761 (|has| |#1| (-375)) (|has| |#1| (-238))) (-2761 (|has| |#1| (-375)) (|has| |#1| (-239))) (|has| |#1| (-238)) (-2761 (|has| |#1| (-238)) (|has| |#1| (-375)))))) (-2478 (((-705 |#1|) (-1292 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-375)))) (-3557 (((-1197 |#1|)) 170)) (-2249 (($ $) 233 (|has| |#1| (-1227)))) (-2095 (($ $) 222 (|has| |#1| (-1227)))) (-1585 (($) 159 (|has| |#1| (-361)))) (-2224 (($ $) 232 (|has| |#1| (-1227)))) (-2073 (($ $) 223 (|has| |#1| (-1227)))) (-2199 (($ $) 231 (|has| |#1| (-1227)))) (-2046 (($ $) 224 (|has| |#1| (-1227)))) (-2710 (((-1292 |#1|) $ (-1292 $)) 57) (((-705 |#1|) (-1292 $) (-1292 $)) 56) (((-1292 |#1|) $) 73) (((-705 |#1|) (-1292 $)) 72)) (-4152 (((-1292 |#1|) $) 70) (($ (-1292 |#1|)) 69) (((-1197 |#1|) $) 186) (($ (-1197 |#1|)) 168) (((-911 (-577)) $) 267 (|has| |#1| (-627 (-911 (-577))))) (((-911 (-391)) $) 266 (|has| |#1| (-627 (-911 (-391))))) (((-171 (-391)) $) 218 (|has| |#1| (-1047))) (((-171 (-228)) $) 217 (|has| |#1| (-1047))) (((-549) $) 216 (|has| |#1| (-627 (-549))))) (-2360 (($ $) 264)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) 156 (-2839 (-2761 (|has| $ (-146)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) (|has| |#1| (-361))))) (-4159 (($ |#1| |#1|) 263)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 44) (($ (-420 (-577))) 98 (-2839 (|has| |#1| (-375)) (|has| |#1| (-1063 (-420 (-577)))))) (($ $) 103 (-2839 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))))) (-2233 (($ $) 155 (|has| |#1| (-361))) (((-3 $ "failed") $) 50 (-2839 (-2761 (|has| $ (-146)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))) (|has| |#1| (-146))))) (-3974 (((-1197 |#1|) $) 52)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-4060 (((-1292 $)) 74)) (-4114 (($ $) 242 (|has| |#1| (-1227)))) (-2136 (($ $) 230 (|has| |#1| (-1227)))) (-3281 (((-112) $ $) 107 (-2839 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932)))))) (-2262 (($ $) 241 (|has| |#1| (-1227)))) (-2106 (($ $) 229 (|has| |#1| (-1227)))) (-4141 (($ $) 240 (|has| |#1| (-1227)))) (-2162 (($ $) 228 (|has| |#1| (-1227)))) (-4340 ((|#1| $) 258 (|has| |#1| (-1227)))) (-2261 (($ $) 239 (|has| |#1| (-1227)))) (-2174 (($ $) 227 (|has| |#1| (-1227)))) (-4128 (($ $) 238 (|has| |#1| (-1227)))) (-2150 (($ $) 226 (|has| |#1| (-1227)))) (-2272 (($ $) 237 (|has| |#1| (-1227)))) (-2120 (($ $) 225 (|has| |#1| (-1227)))) (-1654 (($ $) 259 (|has| |#1| (-1085)))) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-1 |#1| |#1|)) 134) (($ $ (-1 |#1| |#1|) (-787)) 133) (($ $ (-660 (-1201)) (-660 (-787))) 144 (-2839 (-2761 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-2761 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201))))) (($ $ (-1201) (-787)) 143 (-2839 (-2761 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-2761 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201))))) (($ $ (-660 (-1201))) 142 (-2839 (-2761 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-2761 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201))))) (($ $ (-1201)) 138 (-2839 (-2761 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-2761 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201))))) (($ $ (-787)) 148 (-2839 (-2761 (|has| |#1| (-375)) (|has| |#1| (-238))) (-2761 (|has| |#1| (-375)) (|has| |#1| (-239))) (|has| |#1| (-238)) (-2761 (|has| |#1| (-238)) (|has| |#1| (-375))))) (($ $) 146 (-2839 (-2761 (|has| |#1| (-375)) (|has| |#1| (-238))) (-2761 (|has| |#1| (-375)) (|has| |#1| (-239))) (|has| |#1| (-238)) (-2761 (|has| |#1| (-238)) (|has| |#1| (-375)))))) (-2970 (((-112) $ $) 8)) (-3077 (($ $ $) 132 (|has| |#1| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-420 (-577))) 247 (-12 (|has| |#1| (-1027)) (|has| |#1| (-1227)))) (($ $ $) 245 (|has| |#1| (-1227))) (($ $ (-577)) 129 (|has| |#1| (-375)))) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-420 (-577)) $) 131 (|has| |#1| (-375))) (($ $ (-420 (-577))) 130 (|has| |#1| (-375))))) (((-167 |#1|) (-141) (-174)) (T -167)) -((-2234 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2489 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3549 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4155 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1916 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1907 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3418 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-1792 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1082)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1224)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1082)) (-4 *3 (-1224)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-4239 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-2775 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) -(-13 (-737 |t#1| (-1194 |t#1|)) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-412 |t#1|) (-900 |t#1|) (-388 |t#1|) (-174) (-10 -8 (-6 -4155) (-15 -2489 ($)) (-15 -3549 ($ $)) (-15 -4155 ($ |t#1| |t#1|)) (-15 -1916 (|t#1| $)) (-15 -1907 (|t#1| $)) (-15 -2234 (|t#1| $)) (IF (|has| |t#1| (-568)) (PROGN (-6 (-568)) (-15 -3418 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-6 -4465)) (-6 -4465) |%noBranch|) (IF (|has| |t#1| (-6 -4462)) (-6 -4462) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1044)) (PROGN (-6 (-626 (-171 (-227)))) (-6 (-626 (-171 (-390))))) |%noBranch|) (IF (|has| |t#1| (-1082)) (-15 -1792 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1224)) (PROGN (-6 (-1224)) (-15 -2196 (|t#1| $)) (IF (|has| |t#1| (-1024)) (-6 (-1024)) |%noBranch|) (IF (|has| |t#1| (-1082)) (-15 -3065 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3112 ((-112) $)) (-15 -4239 ((-419 (-576)) $)) (-15 -2775 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-929)) (IF (|has| |t#1| (-317)) (-6 (-929)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-35) |has| |#1| (-1224)) ((-95) |has| |#1| (-1224)) ((-102) . T) ((-111 #0# #0#) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2802 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -2802 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-625 (-877)) . T) ((-174) . T) ((-626 (-171 (-227))) |has| |#1| (-1044)) ((-626 (-171 (-390))) |has| |#1| (-1044)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-908 (-390))) |has| |#1| (-626 (-908 (-390)))) ((-626 (-908 (-576))) |has| |#1| (-626 (-908 (-576)))) ((-626 #1=(-1194 |#1|)) . T) ((-234 $) -2802 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) -2802 (|has| |#1| (-360)) (|has| |#1| (-238))) ((-237) -2802 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-294) |has| |#1| (-1224)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -2802 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-317) -2802 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -2802 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| #1#) . T) ((-421 |#1| #1#) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) -2802 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-505) |has| |#1| (-1224)) ((-526 (-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) -2802 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-659 #0#) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-661 #2=(-576)) |has| |#1| (-652 (-576))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-653 |#1|) . T) ((-653 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-652 #2#) |has| |#1| (-652 (-576))) ((-652 |#1|) . T) ((-730 #0#) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-730 |#1|) . T) ((-730 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-737 |#1| #1#) . T) ((-739) . T) ((-912 $ #3=(-1198)) -2802 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-918 (-1198)) |has| |#1| (-918 (-1198))) ((-920 #3#) -2802 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-902 (-390)) |has| |#1| (-902 (-390))) ((-902 (-576)) |has| |#1| (-902 (-576))) ((-900 |#1|) . T) ((-929) -12 (|has| |#1| (-317)) (|has| |#1| (-929))) ((-940) -2802 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-1024) -12 (|has| |#1| (-1024)) (|has| |#1| (-1224))) ((-1060 (-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1073 #0#) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1078 #0#) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1078 |#1|) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1174) |has| |#1| (-360)) ((-1224) |has| |#1| (-1224)) ((-1227) |has| |#1| (-1224)) ((-1239) . T) ((-1243) -2802 (|has| |#1| (-360)) (|has| |#1| (-374)) (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) -((-1885 (((-430 |#2|) |#2|) 67))) -(((-168 |#1| |#2|) (-10 -7 (-15 -1885 ((-430 |#2|) |#2|))) (-317) (-1265 (-171 |#1|))) (T -168)) -((-1885 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1265 (-171 *4)))))) -(-10 -7 (-15 -1885 ((-430 |#2|) |#2|))) -((-2443 (((-1157) (-1157) (-301)) 8)) (-2655 (((-657 (-704 (-290))) (-1180)) 81)) (-3814 (((-704 (-290)) (-1157)) 76))) -(((-169) (-13 (-1239) (-10 -7 (-15 -2443 ((-1157) (-1157) (-301))) (-15 -3814 ((-704 (-290)) (-1157))) (-15 -2655 ((-657 (-704 (-290))) (-1180)))))) (T -169)) -((-2443 (*1 *2 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-301)) (-5 *1 (-169)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-704 (-290))) (-5 *1 (-169)))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-657 (-704 (-290)))) (-5 *1 (-169))))) -(-13 (-1239) (-10 -7 (-15 -2443 ((-1157) (-1157) (-301))) (-15 -3814 ((-704 (-290)) (-1157))) (-15 -2655 ((-657 (-704 (-290))) (-1180))))) -((-4083 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) -(((-170 |#1| |#2|) (-10 -7 (-15 -4083 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) -(-10 -7 (-15 -4083 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 34)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (-2802 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-568))))) (-3325 (($ $) NIL (-2802 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-568))))) (-4306 (((-112) $) NIL (-2802 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-568))))) (-1527 (((-702 |#1|) (-1289 $)) NIL) (((-702 |#1|)) NIL)) (-2302 ((|#1| $) NIL)) (-2176 (($ $) NIL (|has| |#1| (-1224)))) (-2030 (($ $) NIL (|has| |#1| (-1224)))) (-3592 (((-1211 (-941) (-784)) (-576)) NIL (|has| |#1| (-360)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (-2638 (($ $) NIL (-2802 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-374))))) (-4402 (((-430 $) $) NIL (-2802 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-374))))) (-1896 (($ $) NIL (-12 (|has| |#1| (-1024)) (|has| |#1| (-1224))))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (-2864 (((-112) $ $) NIL (|has| |#1| (-317)))) (-2193 (((-784)) NIL (|has| |#1| (-379)))) (-2150 (($ $) NIL (|has| |#1| (-1224)))) (-2004 (($ $) NIL (|has| |#1| (-1224)))) (-2201 (($ $) NIL (|has| |#1| (-1224)))) (-2052 (($ $) NIL (|has| |#1| (-1224)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2884 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL)) (-2613 (($ (-1289 |#1|) (-1289 $)) NIL) (($ (-1289 |#1|)) NIL)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-3373 (($ $ $) NIL (|has| |#1| (-317)))) (-3529 (((-702 |#1|) $ (-1289 $)) NIL) (((-702 |#1|) $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3622 (($ (-1194 |#1|)) NIL) (((-3 $ "failed") (-419 (-1194 |#1|))) NIL (|has| |#1| (-374)))) (-3843 (((-3 $ "failed") $) NIL)) (-1907 ((|#1| $) 13)) (-2775 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3112 (((-112) $) NIL (|has| |#1| (-557)))) (-4239 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-1542 (((-941)) NIL)) (-1892 (($) NIL (|has| |#1| (-379)))) (-3385 (($ $ $) NIL (|has| |#1| (-317)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| |#1| (-317)))) (-1367 (($) NIL (|has| |#1| (-360)))) (-2105 (((-112) $) NIL (|has| |#1| (-360)))) (-1780 (($ $ (-784)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-4257 (((-112) $) NIL (-2802 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-374))))) (-3065 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1082)) (|has| |#1| (-1224))))) (-1657 (($) NIL (|has| |#1| (-1224)))) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| |#1| (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| |#1| (-902 (-390))))) (-3182 (((-941) $) NIL (|has| |#1| (-360))) (((-846 (-941)) $) NIL (|has| |#1| (-360)))) (-4094 (((-112) $) 36)) (-2082 (($ $ (-576)) NIL (-12 (|has| |#1| (-1024)) (|has| |#1| (-1224))))) (-2234 ((|#1| $) 47)) (-4019 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-317)))) (-1336 (((-1194 |#1|) $) NIL (|has| |#1| (-374)))) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-3007 (((-941) $) NIL (|has| |#1| (-379)))) (-3670 (($ $) NIL (|has| |#1| (-1224)))) (-3609 (((-1194 |#1|) $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-374)))) (-1706 (($) NIL (|has| |#1| (-360)) CONST)) (-3178 (($ (-941)) NIL (|has| |#1| (-379)))) (-2489 (($) NIL)) (-1916 ((|#1| $) 15)) (-1471 (((-1142) $) NIL)) (-4097 (($) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-317)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) NIL (|has| |#1| (-360)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-929))))) (-1885 (((-430 $) $) NIL (-2802 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-374))))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-317)))) (-3418 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 48 (-2802 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-568))))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-317)))) (-4067 (($ $) NIL (|has| |#1| (-1224)))) (-3236 (($ $ (-657 |#1|) (-657 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-657 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) NIL (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) |#1|) NIL (|has| |#1| (-526 (-1198) |#1|)))) (-2034 (((-784) $) NIL (|has| |#1| (-317)))) (-2835 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-317)))) (-1701 ((|#1| (-1289 $)) NIL) ((|#1|) NIL)) (-2284 (((-784) $) NIL (|has| |#1| (-360))) (((-3 (-784) "failed") $ $) NIL (|has| |#1| (-360)))) (-2815 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2802 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-1198) (-784)) NIL (-2802 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-657 (-1198))) NIL (-2802 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-784)) NIL (-2802 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-2802 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-3988 (((-702 |#1|) (-1289 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-3180 (((-1194 |#1|)) NIL)) (-2213 (($ $) NIL (|has| |#1| (-1224)))) (-2062 (($ $) NIL (|has| |#1| (-1224)))) (-2090 (($) NIL (|has| |#1| (-360)))) (-2188 (($ $) NIL (|has| |#1| (-1224)))) (-2042 (($ $) NIL (|has| |#1| (-1224)))) (-2163 (($ $) NIL (|has| |#1| (-1224)))) (-2017 (($ $) NIL (|has| |#1| (-1224)))) (-2795 (((-1289 |#1|) $ (-1289 $)) NIL) (((-702 |#1|) (-1289 $) (-1289 $)) NIL) (((-1289 |#1|) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-4148 (((-1289 |#1|) $) NIL) (($ (-1289 |#1|)) NIL) (((-1194 |#1|) $) NIL) (($ (-1194 |#1|)) NIL) (((-908 (-576)) $) NIL (|has| |#1| (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| |#1| (-626 (-908 (-390))))) (((-171 (-390)) $) NIL (|has| |#1| (-1044))) (((-171 (-227)) $) NIL (|has| |#1| (-1044))) (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3549 (($ $) 46)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-2802 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-360))))) (-4155 (($ |#1| |#1|) 38)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) 37) (($ (-419 (-576))) NIL (-2802 (|has| |#1| (-374)) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) NIL (-2802 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-568))))) (-3096 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-4182 (((-1194 |#1|) $) NIL)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) NIL)) (-4110 (($ $) NIL (|has| |#1| (-1224)))) (-2100 (($ $) NIL (|has| |#1| (-1224)))) (-4041 (((-112) $ $) NIL (-2802 (-12 (|has| |#1| (-317)) (|has| |#1| (-929))) (|has| |#1| (-568))))) (-2225 (($ $) NIL (|has| |#1| (-1224)))) (-2072 (($ $) NIL (|has| |#1| (-1224)))) (-4137 (($ $) NIL (|has| |#1| (-1224)))) (-2125 (($ $) NIL (|has| |#1| (-1224)))) (-2196 ((|#1| $) NIL (|has| |#1| (-1224)))) (-2224 (($ $) NIL (|has| |#1| (-1224)))) (-2137 (($ $) NIL (|has| |#1| (-1224)))) (-4124 (($ $) NIL (|has| |#1| (-1224)))) (-2113 (($ $) NIL (|has| |#1| (-1224)))) (-2235 (($ $) NIL (|has| |#1| (-1224)))) (-2085 (($ $) NIL (|has| |#1| (-1224)))) (-1792 (($ $) NIL (|has| |#1| (-1082)))) (-2769 (($) 28 T CONST)) (-2779 (($) 30 T CONST)) (-3095 (((-1180) $) 23 (|has| |#1| (-841))) (((-1180) $ (-112)) 25 (|has| |#1| (-841))) (((-1294) (-835) $) 26 (|has| |#1| (-841))) (((-1294) (-835) $ (-112)) 27 (|has| |#1| (-841)))) (-2097 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2802 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-1198) (-784)) NIL (-2802 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-657 (-1198))) NIL (-2802 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) (|has| |#1| (-920 (-1198))))) (($ $ (-784)) NIL (-2802 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-2802 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 40)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-419 (-576))) NIL (-12 (|has| |#1| (-1024)) (|has| |#1| (-1224)))) (($ $ $) NIL (|has| |#1| (-1224))) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) -(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|))) (-174)) (T -171)) -NIL -(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|))) -((-4148 (((-908 |#1|) |#3|) 22))) -(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -4148 ((-908 |#1|) |#3|))) (-1122) (-13 (-626 (-908 |#1|)) (-174)) (-167 |#2|)) (T -172)) -((-4148 (*1 *2 *3) (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-908 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1122)) (-4 *3 (-167 *5))))) -(-10 -7 (-15 -4148 ((-908 |#1|) |#3|))) -((-3429 (((-112) $ $) NIL)) (-2297 (((-112) $) 9)) (-1610 (((-112) $ (-112)) 11)) (-4109 (($) 13)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-1923 (($ $) 14)) (-3501 (((-877) $) 18)) (-2853 (((-112) $) 8)) (-2016 (((-112) $ (-112)) 10)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-173) (-13 (-1122) (-10 -8 (-15 -4109 ($)) (-15 -2853 ((-112) $)) (-15 -2297 ((-112) $)) (-15 -2016 ((-112) $ (-112))) (-15 -1610 ((-112) $ (-112))) (-15 -1923 ($ $))))) (T -173)) -((-4109 (*1 *1) (-5 *1 (-173))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2297 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2016 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1610 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1923 (*1 *1 *1) (-5 *1 (-173)))) -(-13 (-1122) (-10 -8 (-15 -4109 ($)) (-15 -2853 ((-112) $)) (-15 -2297 ((-112) $)) (-15 -2016 ((-112) $ (-112))) (-15 -1610 ((-112) $ (-112))) (-15 -1923 ($ $)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3843 (((-3 $ "failed") $) 37)) (-4094 (((-112) $) 35)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12) (($ (-576)) 33)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-4145 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2079 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2360 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4159 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1926 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3462 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) (-1654 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1085)))) (-4340 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1227)))) (-2066 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1085)) (-4 *3 (-1227)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) (-4341 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577))))) (-4363 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577)))))) +(-13 (-740 |t#1| (-1197 |t#1|)) (-424 |t#1|) (-233 |t#1|) (-350 |t#1|) (-413 |t#1|) (-903 |t#1|) (-389 |t#1|) (-174) (-10 -8 (-6 -4159) (-15 -2079 ($)) (-15 -2360 ($ $)) (-15 -4159 ($ |t#1| |t#1|)) (-15 -1937 (|t#1| $)) (-15 -1926 (|t#1| $)) (-15 -4145 (|t#1| $)) (IF (|has| |t#1| (-569)) (PROGN (-6 (-569)) (-15 -3462 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-318)) (-6 (-318)) |%noBranch|) (IF (|has| |t#1| (-6 -4469)) (-6 -4469) |%noBranch|) (IF (|has| |t#1| (-6 -4466)) (-6 -4466) |%noBranch|) (IF (|has| |t#1| (-375)) (-6 (-375)) |%noBranch|) (IF (|has| |t#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1047)) (PROGN (-6 (-627 (-171 (-228)))) (-6 (-627 (-171 (-391))))) |%noBranch|) (IF (|has| |t#1| (-1085)) (-15 -1654 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1227)) (PROGN (-6 (-1227)) (-15 -4340 (|t#1| $)) (IF (|has| |t#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |t#1| (-1085)) (-15 -2066 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -4353 ((-112) $)) (-15 -4341 ((-420 (-577)) $)) (-15 -4363 ((-3 (-420 (-577)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-932)) (IF (|has| |t#1| (-318)) (-6 (-932)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-38 |#1|) . T) ((-38 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-35) |has| |#1| (-1227)) ((-95) |has| |#1| (-1227)) ((-102) . T) ((-111 #0# #0#) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2839 (|has| |#1| (-361)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-629 #0#) -2839 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-361)) (|has| |#1| (-375))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-629 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-626 (-880)) . T) ((-174) . T) ((-627 (-171 (-228))) |has| |#1| (-1047)) ((-627 (-171 (-391))) |has| |#1| (-1047)) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-627 (-911 (-391))) |has| |#1| (-627 (-911 (-391)))) ((-627 (-911 (-577))) |has| |#1| (-627 (-911 (-577)))) ((-627 #1=(-1197 |#1|)) . T) ((-235 $) -2839 (|has| |#1| (-361)) (|has| |#1| (-238)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) -2839 (|has| |#1| (-361)) (|has| |#1| (-239))) ((-238) -2839 (|has| |#1| (-361)) (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-249) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-295) |has| |#1| (-1227)) ((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-301) -2839 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-318) -2839 (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-375) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-415) |has| |#1| (-361)) ((-380) -2839 (|has| |#1| (-380)) (|has| |#1| (-361))) ((-361) |has| |#1| (-361)) ((-382 |#1| #1#) . T) ((-422 |#1| #1#) . T) ((-350 |#1|) . T) ((-389 |#1|) . T) ((-413 |#1|) . T) ((-424 |#1|) . T) ((-465) -2839 (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-506) |has| |#1| (-1227)) ((-527 (-1201) |#1|) |has| |#1| (-527 (-1201) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-569) -2839 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-662 #0#) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-664 #2=(-577)) |has| |#1| (-654 (-577))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-656 |#1|) . T) ((-656 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-654 #2#) |has| |#1| (-654 (-577))) ((-654 |#1|) . T) ((-733 #0#) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-733 |#1|) . T) ((-733 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-740 |#1| #1#) . T) ((-742) . T) ((-915 $ #3=(-1201)) -2839 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-921 (-1201)) |has| |#1| (-921 (-1201))) ((-923 #3#) -2839 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-905 (-391)) |has| |#1| (-905 (-391))) ((-905 (-577)) |has| |#1| (-905 (-577))) ((-903 |#1|) . T) ((-932) -12 (|has| |#1| (-318)) (|has| |#1| (-932))) ((-943) -2839 (|has| |#1| (-361)) (|has| |#1| (-375)) (|has| |#1| (-318))) ((-1027) -12 (|has| |#1| (-1027)) (|has| |#1| (-1227))) ((-1063 (-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1076 #0#) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1081 #0#) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1177) |has| |#1| (-361)) ((-1227) |has| |#1| (-1227)) ((-1230) |has| |#1| (-1227)) ((-1242) . T) ((-1246) -2839 (|has| |#1| (-361)) (|has| |#1| (-375)) (-12 (|has| |#1| (-318)) (|has| |#1| (-932))))) +((-1902 (((-431 |#2|) |#2|) 67))) +(((-168 |#1| |#2|) (-10 -7 (-15 -1902 ((-431 |#2|) |#2|))) (-318) (-1268 (-171 |#1|))) (T -168)) +((-1902 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1268 (-171 *4)))))) +(-10 -7 (-15 -1902 ((-431 |#2|) |#2|))) +((-2480 (((-1160) (-1160) (-302)) 8)) (-2090 (((-660 (-707 (-291))) (-1183)) 81)) (-2101 (((-707 (-291)) (-1160)) 76))) +(((-169) (-13 (-1242) (-10 -7 (-15 -2480 ((-1160) (-1160) (-302))) (-15 -2101 ((-707 (-291)) (-1160))) (-15 -2090 ((-660 (-707 (-291))) (-1183)))))) (T -169)) +((-2480 (*1 *2 *2 *3) (-12 (-5 *2 (-1160)) (-5 *3 (-302)) (-5 *1 (-169)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-1160)) (-5 *2 (-707 (-291))) (-5 *1 (-169)))) (-2090 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-660 (-707 (-291)))) (-5 *1 (-169))))) +(-13 (-1242) (-10 -7 (-15 -2480 ((-1160) (-1160) (-302))) (-15 -2101 ((-707 (-291)) (-1160))) (-15 -2090 ((-660 (-707 (-291))) (-1183))))) +((-4087 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) +(((-170 |#1| |#2|) (-10 -7 (-15 -4087 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) +(-10 -7 (-15 -4087 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 34)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (-2839 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-569))))) (-3290 (($ $) NIL (-2839 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-569))))) (-3271 (((-112) $) NIL (-2839 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-569))))) (-3390 (((-705 |#1|) (-1292 $)) NIL) (((-705 |#1|)) NIL)) (-2339 ((|#1| $) NIL)) (-2212 (($ $) NIL (|has| |#1| (-1227)))) (-2060 (($ $) NIL (|has| |#1| (-1227)))) (-1595 (((-1214 (-944) (-787)) (-577)) NIL (|has| |#1| (-361)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-932))))) (-3841 (($ $) NIL (-2839 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-375))))) (-3029 (((-431 $) $) NIL (-2839 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-375))))) (-1913 (($ $) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1227))))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-932))))) (-1939 (((-112) $ $) NIL (|has| |#1| (-318)))) (-2229 (((-787)) NIL (|has| |#1| (-380)))) (-2186 (($ $) NIL (|has| |#1| (-1227)))) (-2032 (($ $) NIL (|has| |#1| (-1227)))) (-2237 (($ $) NIL (|has| |#1| (-1227)))) (-2084 (($ $) NIL (|has| |#1| (-1227)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) NIL)) (-2921 (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) NIL)) (-3502 (($ (-1292 |#1|) (-1292 $)) NIL) (($ (-1292 |#1|)) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-3418 (($ $ $) NIL (|has| |#1| (-318)))) (-3381 (((-705 |#1|) $ (-1292 $)) NIL) (((-705 |#1|) $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL) (((-705 |#1|) (-705 $)) NIL)) (-3654 (($ (-1197 |#1|)) NIL) (((-3 $ "failed") (-420 (-1197 |#1|))) NIL (|has| |#1| (-375)))) (-4187 (((-3 $ "failed") $) NIL)) (-1926 ((|#1| $) 13)) (-4363 (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-558)))) (-4353 (((-112) $) NIL (|has| |#1| (-558)))) (-4341 (((-420 (-577)) $) NIL (|has| |#1| (-558)))) (-1545 (((-944)) NIL)) (-1910 (($) NIL (|has| |#1| (-380)))) (-3429 (($ $ $) NIL (|has| |#1| (-318)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| |#1| (-318)))) (-4205 (($) NIL (|has| |#1| (-361)))) (-1655 (((-112) $) NIL (|has| |#1| (-361)))) (-3233 (($ $ (-787)) NIL (|has| |#1| (-361))) (($ $) NIL (|has| |#1| (-361)))) (-1522 (((-112) $) NIL (-2839 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-375))))) (-2066 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1085)) (|has| |#1| (-1227))))) (-1659 (($) NIL (|has| |#1| (-1227)))) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| |#1| (-905 (-577)))) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| |#1| (-905 (-391))))) (-3817 (((-944) $) NIL (|has| |#1| (-361))) (((-849 (-944)) $) NIL (|has| |#1| (-361)))) (-2487 (((-112) $) 36)) (-2381 (($ $ (-577)) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1227))))) (-4145 ((|#1| $) 47)) (-4021 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-318)))) (-4084 (((-1197 |#1|) $) NIL (|has| |#1| (-375)))) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-944) $) NIL (|has| |#1| (-380)))) (-3698 (($ $) NIL (|has| |#1| (-1227)))) (-3642 (((-1197 |#1|) $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL) (((-705 |#1|) (-1292 $)) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-318))) (($ $ $) NIL (|has| |#1| (-318)))) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL (|has| |#1| (-375)))) (-1709 (($) NIL (|has| |#1| (-361)) CONST)) (-3222 (($ (-944)) NIL (|has| |#1| (-380)))) (-2079 (($) NIL)) (-1937 ((|#1| $) 15)) (-1474 (((-1145) $) NIL)) (-4101 (($) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-318)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-318))) (($ $ $) NIL (|has| |#1| (-318)))) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) NIL (|has| |#1| (-361)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-932))))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| |#1| (-318)) (|has| |#1| (-932))))) (-1902 (((-431 $) $) NIL (-2839 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-375))))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-318))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-318)))) (-3462 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-569))) (((-3 $ "failed") $ $) 48 (-2839 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-569))))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-318)))) (-4072 (($ $) NIL (|has| |#1| (-1227)))) (-3280 (($ $ (-660 |#1|) (-660 |#1|)) NIL (|has| |#1| (-320 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|))) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|))) (($ $ (-660 (-305 |#1|))) NIL (|has| |#1| (-320 |#1|))) (($ $ (-660 (-1201)) (-660 |#1|)) NIL (|has| |#1| (-527 (-1201) |#1|))) (($ $ (-1201) |#1|) NIL (|has| |#1| (-527 (-1201) |#1|)))) (-1927 (((-787) $) NIL (|has| |#1| (-318)))) (-2872 (($ $ |#1|) NIL (|has| |#1| (-297 |#1| |#1|)))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-318)))) (-1827 ((|#1| (-1292 $)) NIL) ((|#1|) NIL)) (-3243 (((-787) $) NIL (|has| |#1| (-361))) (((-3 (-787) "failed") $ $) NIL (|has| |#1| (-361)))) (-2852 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2839 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201))))) (($ $ (-1201) (-787)) NIL (-2839 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201))))) (($ $ (-660 (-1201))) NIL (-2839 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201))))) (($ $ (-787)) NIL (-2839 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-238)))) (($ $) NIL (-2839 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-238))))) (-2478 (((-705 |#1|) (-1292 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-375)))) (-3557 (((-1197 |#1|)) NIL)) (-2249 (($ $) NIL (|has| |#1| (-1227)))) (-2095 (($ $) NIL (|has| |#1| (-1227)))) (-1585 (($) NIL (|has| |#1| (-361)))) (-2224 (($ $) NIL (|has| |#1| (-1227)))) (-2073 (($ $) NIL (|has| |#1| (-1227)))) (-2199 (($ $) NIL (|has| |#1| (-1227)))) (-2046 (($ $) NIL (|has| |#1| (-1227)))) (-2710 (((-1292 |#1|) $ (-1292 $)) NIL) (((-705 |#1|) (-1292 $) (-1292 $)) NIL) (((-1292 |#1|) $) NIL) (((-705 |#1|) (-1292 $)) NIL)) (-4152 (((-1292 |#1|) $) NIL) (($ (-1292 |#1|)) NIL) (((-1197 |#1|) $) NIL) (($ (-1197 |#1|)) NIL) (((-911 (-577)) $) NIL (|has| |#1| (-627 (-911 (-577))))) (((-911 (-391)) $) NIL (|has| |#1| (-627 (-911 (-391))))) (((-171 (-391)) $) NIL (|has| |#1| (-1047))) (((-171 (-228)) $) NIL (|has| |#1| (-1047))) (((-549) $) NIL (|has| |#1| (-627 (-549))))) (-2360 (($ $) 46)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-2839 (-12 (|has| $ (-146)) (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-361))))) (-4159 (($ |#1| |#1|) 38)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#1|) 37) (($ (-420 (-577))) NIL (-2839 (|has| |#1| (-375)) (|has| |#1| (-1063 (-420 (-577)))))) (($ $) NIL (-2839 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-569))))) (-2233 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-146))))) (-3974 (((-1197 |#1|) $) NIL)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) NIL)) (-4114 (($ $) NIL (|has| |#1| (-1227)))) (-2136 (($ $) NIL (|has| |#1| (-1227)))) (-3281 (((-112) $ $) NIL (-2839 (-12 (|has| |#1| (-318)) (|has| |#1| (-932))) (|has| |#1| (-569))))) (-2262 (($ $) NIL (|has| |#1| (-1227)))) (-2106 (($ $) NIL (|has| |#1| (-1227)))) (-4141 (($ $) NIL (|has| |#1| (-1227)))) (-2162 (($ $) NIL (|has| |#1| (-1227)))) (-4340 ((|#1| $) NIL (|has| |#1| (-1227)))) (-2261 (($ $) NIL (|has| |#1| (-1227)))) (-2174 (($ $) NIL (|has| |#1| (-1227)))) (-4128 (($ $) NIL (|has| |#1| (-1227)))) (-2150 (($ $) NIL (|has| |#1| (-1227)))) (-2272 (($ $) NIL (|has| |#1| (-1227)))) (-2120 (($ $) NIL (|has| |#1| (-1227)))) (-1654 (($ $) NIL (|has| |#1| (-1085)))) (-2806 (($) 28 T CONST)) (-2816 (($) 30 T CONST)) (-4013 (((-1183) $) 23 (|has| |#1| (-844))) (((-1183) $ (-112)) 25 (|has| |#1| (-844))) (((-1297) (-838) $) 26 (|has| |#1| (-844))) (((-1297) (-838) $ (-112)) 27 (|has| |#1| (-844)))) (-2132 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2839 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201))))) (($ $ (-1201) (-787)) NIL (-2839 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201))))) (($ $ (-660 (-1201))) NIL (-2839 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) (|has| |#1| (-923 (-1201))))) (($ $ (-787)) NIL (-2839 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-238)))) (($ $) NIL (-2839 (-12 (|has| |#1| (-239)) (|has| |#1| (-375))) (|has| |#1| (-238))))) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) 40)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-420 (-577))) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1227)))) (($ $ $) NIL (|has| |#1| (-1227))) (($ $ (-577)) NIL (|has| |#1| (-375)))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-420 (-577)) $) NIL (|has| |#1| (-375))) (($ $ (-420 (-577))) NIL (|has| |#1| (-375))))) +(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|))) (-174)) (T -171)) +NIL +(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|))) +((-4152 (((-911 |#1|) |#3|) 22))) +(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -4152 ((-911 |#1|) |#3|))) (-1125) (-13 (-627 (-911 |#1|)) (-174)) (-167 |#2|)) (T -172)) +((-4152 (*1 *2 *3) (-12 (-4 *5 (-13 (-627 *2) (-174))) (-5 *2 (-911 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1125)) (-4 *3 (-167 *5))))) +(-10 -7 (-15 -4152 ((-911 |#1|) |#3|))) +((-3473 (((-112) $ $) NIL)) (-2127 (((-112) $) 9)) (-2112 (((-112) $ (-112)) 11)) (-4113 (($) 13)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-1944 (($ $) 14)) (-3544 (((-880) $) 18)) (-4427 (((-112) $) 8)) (-2045 (((-112) $ (-112)) 10)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-173) (-13 (-1125) (-10 -8 (-15 -4113 ($)) (-15 -4427 ((-112) $)) (-15 -2127 ((-112) $)) (-15 -2045 ((-112) $ (-112))) (-15 -2112 ((-112) $ (-112))) (-15 -1944 ($ $))))) (T -173)) +((-4113 (*1 *1) (-5 *1 (-173))) (-4427 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2127 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2045 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2112 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1944 (*1 *1 *1) (-5 *1 (-173)))) +(-13 (-1125) (-10 -8 (-15 -4113 ($)) (-15 -4427 ((-112) $)) (-15 -2127 ((-112) $)) (-15 -2045 ((-112) $ (-112))) (-15 -2112 ((-112) $ (-112))) (-15 -1944 ($ $)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-4187 (((-3 $ "failed") $) 37)) (-2487 (((-112) $) 35)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12) (($ (-577)) 33)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) (((-174) (-141)) (T -174)) NIL -(-13 (-1071) (-111 $ $) (-10 -7 (-6 (-4468 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-739) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3632 (($ $) 6))) +(-13 (-1074) (-111 $ $) (-10 -7 (-6 (-4472 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-742) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3720 (($ $) 6))) (((-175) (-141)) (T -175)) -((-3632 (*1 *1 *1) (-4 *1 (-175)))) -(-13 (-10 -8 (-15 -3632 ($ $)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3931 ((|#1| $) 81)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-2864 (((-112) $ $) NIL)) (-4359 (($) NIL T CONST)) (-3373 (($ $ $) NIL)) (-2355 (($ $) 21)) (-3807 (($ |#1| (-1179 |#1|)) 50)) (-3843 (((-3 $ "failed") $) 123)) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-2308 (((-1179 |#1|) $) 88)) (-3014 (((-1179 |#1|) $) 85)) (-2510 (((-1179 |#1|) $) 86)) (-4094 (((-112) $) NIL)) (-4372 (((-1179 |#1|) $) 94)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3402 (($ (-657 $)) NIL) (($ $ $) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ (-657 $)) NIL) (($ $ $) NIL)) (-1885 (((-430 $) $) NIL)) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL)) (-3926 (($ $ (-576)) 97)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-3156 (((-1179 |#1|) $) 95)) (-4226 (((-1179 (-419 |#1|)) $) 14)) (-1690 (($ (-419 |#1|)) 17) (($ |#1| (-1179 |#1|) (-1179 |#1|)) 40)) (-1431 (($ $) 99)) (-3501 (((-877) $) 139) (($ (-576)) 53) (($ |#1|) 54) (($ (-419 |#1|)) 38) (($ (-419 (-576))) NIL) (($ $) NIL)) (-1960 (((-784)) 69 T CONST)) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-2614 (((-1179 (-419 |#1|)) $) 20)) (-2769 (($) 27 T CONST)) (-2779 (($) 30 T CONST)) (-2933 (((-112) $ $) 37)) (-3034 (($ $ $) 121)) (-3022 (($ $) 112) (($ $ $) 109)) (-3012 (($ $ $) 107)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-419 |#1|) $) 117) (($ $ (-419 |#1|)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) -(((-176 |#1|) (-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -1690 ($ (-419 |#1|))) (-15 -1690 ($ |#1| (-1179 |#1|) (-1179 |#1|))) (-15 -3807 ($ |#1| (-1179 |#1|))) (-15 -3014 ((-1179 |#1|) $)) (-15 -2510 ((-1179 |#1|) $)) (-15 -2308 ((-1179 |#1|) $)) (-15 -3931 (|#1| $)) (-15 -2355 ($ $)) (-15 -2614 ((-1179 (-419 |#1|)) $)) (-15 -4226 ((-1179 (-419 |#1|)) $)) (-15 -4372 ((-1179 |#1|) $)) (-15 -3156 ((-1179 |#1|) $)) (-15 -3926 ($ $ (-576))) (-15 -1431 ($ $)))) (-317)) (T -176)) -((-1690 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) (-1690 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1179 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-3807 (*1 *1 *2 *3) (-12 (-5 *3 (-1179 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2308 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3931 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-2355 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-2614 (*1 *2 *1) (-12 (-5 *2 (-1179 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-4226 (*1 *2 *1) (-12 (-5 *2 (-1179 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-4372 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3156 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3926 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1431 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) -(-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -1690 ($ (-419 |#1|))) (-15 -1690 ($ |#1| (-1179 |#1|) (-1179 |#1|))) (-15 -3807 ($ |#1| (-1179 |#1|))) (-15 -3014 ((-1179 |#1|) $)) (-15 -2510 ((-1179 |#1|) $)) (-15 -2308 ((-1179 |#1|) $)) (-15 -3931 (|#1| $)) (-15 -2355 ($ $)) (-15 -2614 ((-1179 (-419 |#1|)) $)) (-15 -4226 ((-1179 (-419 |#1|)) $)) (-15 -4372 ((-1179 |#1|) $)) (-15 -3156 ((-1179 |#1|) $)) (-15 -3926 ($ $ (-576))) (-15 -1431 ($ $)))) -((-3052 (($ (-109) $) 15)) (-4390 (((-704 (-109)) (-518) $) 14)) (-3501 (((-877) $) 18)) (-2622 (((-657 (-109)) $) 8))) -(((-177) (-13 (-625 (-877)) (-10 -8 (-15 -2622 ((-657 (-109)) $)) (-15 -3052 ($ (-109) $)) (-15 -4390 ((-704 (-109)) (-518) $))))) (T -177)) -((-2622 (*1 *2 *1) (-12 (-5 *2 (-657 (-109))) (-5 *1 (-177)))) (-3052 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-4390 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-704 (-109))) (-5 *1 (-177))))) -(-13 (-625 (-877)) (-10 -8 (-15 -2622 ((-657 (-109)) $)) (-15 -3052 ($ (-109) $)) (-15 -4390 ((-704 (-109)) (-518) $)))) -((-2064 (((-1 (-963 |#1|) (-963 |#1|)) |#1|) 38)) (-2757 (((-963 |#1|) (-963 |#1|)) 22)) (-4150 (((-1 (-963 |#1|) (-963 |#1|)) |#1|) 34)) (-1642 (((-963 |#1|) (-963 |#1|)) 20)) (-2346 (((-963 |#1|) (-963 |#1|)) 28)) (-2682 (((-963 |#1|) (-963 |#1|)) 27)) (-3957 (((-963 |#1|) (-963 |#1|)) 26)) (-1908 (((-1 (-963 |#1|) (-963 |#1|)) |#1|) 35)) (-2480 (((-1 (-963 |#1|) (-963 |#1|)) |#1|) 33)) (-2645 (((-1 (-963 |#1|) (-963 |#1|)) |#1|) 32)) (-3855 (((-963 |#1|) (-963 |#1|)) 21)) (-2306 (((-1 (-963 |#1|) (-963 |#1|)) |#1| |#1|) 41)) (-3915 (((-963 |#1|) (-963 |#1|)) 8)) (-2142 (((-1 (-963 |#1|) (-963 |#1|)) |#1|) 37)) (-1500 (((-1 (-963 |#1|) (-963 |#1|)) |#1|) 36))) -(((-178 |#1|) (-10 -7 (-15 -3915 ((-963 |#1|) (-963 |#1|))) (-15 -1642 ((-963 |#1|) (-963 |#1|))) (-15 -3855 ((-963 |#1|) (-963 |#1|))) (-15 -2757 ((-963 |#1|) (-963 |#1|))) (-15 -3957 ((-963 |#1|) (-963 |#1|))) (-15 -2682 ((-963 |#1|) (-963 |#1|))) (-15 -2346 ((-963 |#1|) (-963 |#1|))) (-15 -2645 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -2480 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -4150 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -1908 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -1500 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -2142 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -2064 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -2306 ((-1 (-963 |#1|) (-963 |#1|)) |#1| |#1|))) (-13 (-374) (-1224) (-1024))) (T -178)) -((-2306 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))))) (-2064 (*1 *2 *3) (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))))) (-2142 (*1 *2 *3) (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))))) (-1500 (*1 *2 *3) (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))))) (-1908 (*1 *2 *3) (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))))) (-4150 (*1 *2 *3) (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))))) (-2480 (*1 *2 *3) (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))))) (-2645 (*1 *2 *3) (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))))) (-2346 (*1 *2 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) (-5 *1 (-178 *3)))) (-2682 (*1 *2 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) (-5 *1 (-178 *3)))) (-3957 (*1 *2 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) (-5 *1 (-178 *3)))) (-2757 (*1 *2 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) (-5 *1 (-178 *3)))) (-3855 (*1 *2 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) (-5 *1 (-178 *3)))) (-1642 (*1 *2 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) (-5 *1 (-178 *3)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) (-5 *1 (-178 *3))))) -(-10 -7 (-15 -3915 ((-963 |#1|) (-963 |#1|))) (-15 -1642 ((-963 |#1|) (-963 |#1|))) (-15 -3855 ((-963 |#1|) (-963 |#1|))) (-15 -2757 ((-963 |#1|) (-963 |#1|))) (-15 -3957 ((-963 |#1|) (-963 |#1|))) (-15 -2682 ((-963 |#1|) (-963 |#1|))) (-15 -2346 ((-963 |#1|) (-963 |#1|))) (-15 -2645 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -2480 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -4150 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -1908 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -1500 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -2142 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -2064 ((-1 (-963 |#1|) (-963 |#1|)) |#1|)) (-15 -2306 ((-1 (-963 |#1|) (-963 |#1|)) |#1| |#1|))) -((-4182 ((|#2| |#3|) 28))) -(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -4182 (|#2| |#3|))) (-174) (-1265 |#1|) (-737 |#1| |#2|)) (T -179)) -((-4182 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1265 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-737 *4 *2))))) -(-10 -7 (-15 -4182 (|#2| |#3|))) -((-3200 (((-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|)) 44 (|has| (-972 |#2|) (-902 |#1|))))) -(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-972 |#2|) (-902 |#1|)) (-15 -3200 ((-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|))) |%noBranch|)) (-1122) (-13 (-902 |#1|) (-174)) (-167 |#2|)) (T -180)) -((-3200 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-905 *5 *3)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) (-4 *3 (-167 *6)) (-4 (-972 *6) (-902 *5)) (-4 *6 (-13 (-902 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) -(-10 -7 (IF (|has| (-972 |#2|) (-902 |#1|)) (-15 -3200 ((-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|))) |%noBranch|)) -((-2643 (((-657 |#1|) (-657 |#1|) |#1|) 41)) (-2119 (((-657 |#1|) |#1| (-657 |#1|)) 20)) (-4223 (((-657 |#1|) (-657 (-657 |#1|)) (-657 |#1|)) 36) ((|#1| (-657 |#1|) (-657 |#1|)) 32))) -(((-181 |#1|) (-10 -7 (-15 -2119 ((-657 |#1|) |#1| (-657 |#1|))) (-15 -4223 (|#1| (-657 |#1|) (-657 |#1|))) (-15 -4223 ((-657 |#1|) (-657 (-657 |#1|)) (-657 |#1|))) (-15 -2643 ((-657 |#1|) (-657 |#1|) |#1|))) (-317)) (T -181)) -((-2643 (*1 *2 *2 *3) (-12 (-5 *2 (-657 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3)))) (-4223 (*1 *2 *3 *2) (-12 (-5 *3 (-657 (-657 *4))) (-5 *2 (-657 *4)) (-4 *4 (-317)) (-5 *1 (-181 *4)))) (-4223 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) (-2119 (*1 *2 *3 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) -(-10 -7 (-15 -2119 ((-657 |#1|) |#1| (-657 |#1|))) (-15 -4223 (|#1| (-657 |#1|) (-657 |#1|))) (-15 -4223 ((-657 |#1|) (-657 (-657 |#1|)) (-657 |#1|))) (-15 -2643 ((-657 |#1|) (-657 |#1|) |#1|))) -((-3429 (((-112) $ $) NIL)) (-2978 (((-1238) $) 13)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3088 (((-1157) $) 10)) (-3501 (((-877) $) 20) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-182) (-13 (-1105) (-10 -8 (-15 -3088 ((-1157) $)) (-15 -2978 ((-1238) $))))) (T -182)) -((-3088 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-182)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-182))))) -(-13 (-1105) (-10 -8 (-15 -3088 ((-1157) $)) (-15 -2978 ((-1238) $)))) -((-2092 (((-2 (|:| |start| |#2|) (|:| -2067 (-430 |#2|))) |#2|) 66)) (-1804 ((|#1| |#1|) 58)) (-1787 (((-171 |#1|) |#2|) 93)) (-2048 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-1800 ((|#2| |#2|) 91)) (-1860 (((-430 |#2|) |#2| |#1|) 118) (((-430 |#2|) |#2| |#1| (-112)) 88)) (-2234 ((|#1| |#2|) 117)) (-2356 ((|#2| |#2|) 130)) (-1885 (((-430 |#2|) |#2|) 153) (((-430 |#2|) |#2| |#1|) 33) (((-430 |#2|) |#2| |#1| (-112)) 152)) (-1880 (((-657 (-2 (|:| -2067 (-657 |#2|)) (|:| -3265 |#1|))) |#2| |#2|) 151) (((-657 (-2 (|:| -2067 (-657 |#2|)) (|:| -3265 |#1|))) |#2| |#2| (-112)) 81)) (-2171 (((-657 (-171 |#1|)) |#2| |#1|) 42) (((-657 (-171 |#1|)) |#2|) 43))) -(((-183 |#1| |#2|) (-10 -7 (-15 -2171 ((-657 (-171 |#1|)) |#2|)) (-15 -2171 ((-657 (-171 |#1|)) |#2| |#1|)) (-15 -1880 ((-657 (-2 (|:| -2067 (-657 |#2|)) (|:| -3265 |#1|))) |#2| |#2| (-112))) (-15 -1880 ((-657 (-2 (|:| -2067 (-657 |#2|)) (|:| -3265 |#1|))) |#2| |#2|)) (-15 -1885 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1885 ((-430 |#2|) |#2| |#1|)) (-15 -1885 ((-430 |#2|) |#2|)) (-15 -2356 (|#2| |#2|)) (-15 -2234 (|#1| |#2|)) (-15 -1860 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1860 ((-430 |#2|) |#2| |#1|)) (-15 -1800 (|#2| |#2|)) (-15 -2048 (|#1| |#2| |#1|)) (-15 -2048 (|#1| |#2|)) (-15 -1787 ((-171 |#1|) |#2|)) (-15 -1804 (|#1| |#1|)) (-15 -2092 ((-2 (|:| |start| |#2|) (|:| -2067 (-430 |#2|))) |#2|))) (-13 (-374) (-861)) (-1265 (-171 |#1|))) (T -183)) -((-2092 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-2 (|:| |start| *3) (|:| -2067 (-430 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) (-1804 (*1 *2 *2) (-12 (-4 *2 (-13 (-374) (-861))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1265 (-171 *2))))) (-1787 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-374) (-861))) (-4 *3 (-1265 *2)))) (-2048 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-861))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1265 (-171 *2))))) (-2048 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-374) (-861))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1265 (-171 *2))))) (-1800 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-861))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1265 (-171 *3))))) (-1860 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) (-1860 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) (-2234 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-861))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1265 (-171 *2))))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-861))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1265 (-171 *3))))) (-1885 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) (-1885 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) (-1885 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) (-1880 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-657 (-2 (|:| -2067 (-657 *3)) (|:| -3265 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) (-1880 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-861))) (-5 *2 (-657 (-2 (|:| -2067 (-657 *3)) (|:| -3265 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1265 (-171 *5))))) (-2171 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-657 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) (-2171 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-657 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4)))))) -(-10 -7 (-15 -2171 ((-657 (-171 |#1|)) |#2|)) (-15 -2171 ((-657 (-171 |#1|)) |#2| |#1|)) (-15 -1880 ((-657 (-2 (|:| -2067 (-657 |#2|)) (|:| -3265 |#1|))) |#2| |#2| (-112))) (-15 -1880 ((-657 (-2 (|:| -2067 (-657 |#2|)) (|:| -3265 |#1|))) |#2| |#2|)) (-15 -1885 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1885 ((-430 |#2|) |#2| |#1|)) (-15 -1885 ((-430 |#2|) |#2|)) (-15 -2356 (|#2| |#2|)) (-15 -2234 (|#1| |#2|)) (-15 -1860 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1860 ((-430 |#2|) |#2| |#1|)) (-15 -1800 (|#2| |#2|)) (-15 -2048 (|#1| |#2| |#1|)) (-15 -2048 (|#1| |#2|)) (-15 -1787 ((-171 |#1|) |#2|)) (-15 -1804 (|#1| |#1|)) (-15 -2092 ((-2 (|:| |start| |#2|) (|:| -2067 (-430 |#2|))) |#2|))) -((-3828 (((-3 |#2| "failed") |#2|) 16)) (-3152 (((-784) |#2|) 18)) (-1323 ((|#2| |#2| |#2|) 20))) -(((-184 |#1| |#2|) (-10 -7 (-15 -3828 ((-3 |#2| "failed") |#2|)) (-15 -3152 ((-784) |#2|)) (-15 -1323 (|#2| |#2| |#2|))) (-1239) (-687 |#1|)) (T -184)) -((-1323 (*1 *2 *2 *2) (-12 (-4 *3 (-1239)) (-5 *1 (-184 *3 *2)) (-4 *2 (-687 *3)))) (-3152 (*1 *2 *3) (-12 (-4 *4 (-1239)) (-5 *2 (-784)) (-5 *1 (-184 *4 *3)) (-4 *3 (-687 *4)))) (-3828 (*1 *2 *2) (|partial| -12 (-4 *3 (-1239)) (-5 *1 (-184 *3 *2)) (-4 *2 (-687 *3))))) -(-10 -7 (-15 -3828 ((-3 |#2| "failed") |#2|)) (-15 -3152 ((-784) |#2|)) (-15 -1323 (|#2| |#2| |#2|))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2608 ((|#1| $) 7)) (-3501 (((-877) $) 14)) (-2046 (((-112) $ $) NIL)) (-1373 (((-657 (-1203)) $) 10)) (-2933 (((-112) $ $) 12))) -(((-185 |#1|) (-13 (-1122) (-10 -8 (-15 -2608 (|#1| $)) (-15 -1373 ((-657 (-1203)) $)))) (-187)) (T -185)) -((-2608 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-657 (-1203))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(-13 (-1122) (-10 -8 (-15 -2608 (|#1| $)) (-15 -1373 ((-657 (-1203)) $)))) -((-3249 (((-657 (-880)) $) 16)) (-1802 (((-188) $) 8)) (-2155 (((-657 (-112)) $) 13)) (-4335 (((-55) $) 10))) -(((-186 |#1|) (-10 -8 (-15 -3249 ((-657 (-880)) |#1|)) (-15 -2155 ((-657 (-112)) |#1|)) (-15 -1802 ((-188) |#1|)) (-15 -4335 ((-55) |#1|))) (-187)) (T -186)) -NIL -(-10 -8 (-15 -3249 ((-657 (-880)) |#1|)) (-15 -2155 ((-657 (-112)) |#1|)) (-15 -1802 ((-188) |#1|)) (-15 -4335 ((-55) |#1|))) -((-3429 (((-112) $ $) 7)) (-3249 (((-657 (-880)) $) 19)) (-2676 (((-518) $) 16)) (-2342 (((-1180) $) 10)) (-1802 (((-188) $) 21)) (-4412 (((-112) $ (-518)) 14)) (-1471 (((-1142) $) 11)) (-2155 (((-657 (-112)) $) 20)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-4335 (((-55) $) 15)) (-2933 (((-112) $ $) 8))) +((-3720 (*1 *1 *1) (-4 *1 (-175)))) +(-13 (-10 -8 (-15 -3720 ($ $)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-4105 ((|#1| $) 81)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1939 (((-112) $ $) NIL)) (-1534 (($) NIL T CONST)) (-3418 (($ $ $) NIL)) (-2191 (($ $) 21)) (-2242 (($ |#1| (-1182 |#1|)) 50)) (-4187 (((-3 $ "failed") $) 123)) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-2205 (((-1182 |#1|) $) 88)) (-2230 (((-1182 |#1|) $) 85)) (-2217 (((-1182 |#1|) $) 86)) (-2487 (((-112) $) NIL)) (-2156 (((-1182 |#1|) $) 94)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3446 (($ (-660 $)) NIL) (($ $ $) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ (-660 $)) NIL) (($ $ $) NIL)) (-1902 (((-431 $) $) NIL)) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL)) (-3792 (($ $ (-577)) 97)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2142 (((-1182 |#1|) $) 95)) (-2167 (((-1182 (-420 |#1|)) $) 14)) (-2605 (($ (-420 |#1|)) 17) (($ |#1| (-1182 |#1|) (-1182 |#1|)) 40)) (-3540 (($ $) 99)) (-3544 (((-880) $) 139) (($ (-577)) 53) (($ |#1|) 54) (($ (-420 |#1|)) 38) (($ (-420 (-577))) NIL) (($ $) NIL)) (-4068 (((-787)) 69 T CONST)) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-2179 (((-1182 (-420 |#1|)) $) 20)) (-2806 (($) 27 T CONST)) (-2816 (($) 30 T CONST)) (-2970 (((-112) $ $) 37)) (-3077 (($ $ $) 121)) (-3066 (($ $) 112) (($ $ $) 109)) (-3055 (($ $ $) 107)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-420 |#1|) $) 117) (($ $ (-420 |#1|)) NIL) (($ (-420 (-577)) $) NIL) (($ $ (-420 (-577))) NIL))) +(((-176 |#1|) (-13 (-38 |#1|) (-38 (-420 |#1|)) (-375) (-10 -8 (-15 -2605 ($ (-420 |#1|))) (-15 -2605 ($ |#1| (-1182 |#1|) (-1182 |#1|))) (-15 -2242 ($ |#1| (-1182 |#1|))) (-15 -2230 ((-1182 |#1|) $)) (-15 -2217 ((-1182 |#1|) $)) (-15 -2205 ((-1182 |#1|) $)) (-15 -4105 (|#1| $)) (-15 -2191 ($ $)) (-15 -2179 ((-1182 (-420 |#1|)) $)) (-15 -2167 ((-1182 (-420 |#1|)) $)) (-15 -2156 ((-1182 |#1|) $)) (-15 -2142 ((-1182 |#1|) $)) (-15 -3792 ($ $ (-577))) (-15 -3540 ($ $)))) (-318)) (T -176)) +((-2605 (*1 *1 *2) (-12 (-5 *2 (-420 *3)) (-4 *3 (-318)) (-5 *1 (-176 *3)))) (-2605 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1182 *2)) (-4 *2 (-318)) (-5 *1 (-176 *2)))) (-2242 (*1 *1 *2 *3) (-12 (-5 *3 (-1182 *2)) (-4 *2 (-318)) (-5 *1 (-176 *2)))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-4105 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318)))) (-2191 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318)))) (-2179 (*1 *2 *1) (-12 (-5 *2 (-1182 (-420 *3))) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-2167 (*1 *2 *1) (-12 (-5 *2 (-1182 (-420 *3))) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-2156 (*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-2142 (*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-3792 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) (-3540 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318))))) +(-13 (-38 |#1|) (-38 (-420 |#1|)) (-375) (-10 -8 (-15 -2605 ($ (-420 |#1|))) (-15 -2605 ($ |#1| (-1182 |#1|) (-1182 |#1|))) (-15 -2242 ($ |#1| (-1182 |#1|))) (-15 -2230 ((-1182 |#1|) $)) (-15 -2217 ((-1182 |#1|) $)) (-15 -2205 ((-1182 |#1|) $)) (-15 -4105 (|#1| $)) (-15 -2191 ($ $)) (-15 -2179 ((-1182 (-420 |#1|)) $)) (-15 -2167 ((-1182 (-420 |#1|)) $)) (-15 -2156 ((-1182 |#1|) $)) (-15 -2142 ((-1182 |#1|) $)) (-15 -3792 ($ $ (-577))) (-15 -3540 ($ $)))) +((-2255 (($ (-109) $) 15)) (-2677 (((-707 (-109)) (-519) $) 14)) (-3544 (((-880) $) 18)) (-2657 (((-660 (-109)) $) 8))) +(((-177) (-13 (-626 (-880)) (-10 -8 (-15 -2657 ((-660 (-109)) $)) (-15 -2255 ($ (-109) $)) (-15 -2677 ((-707 (-109)) (-519) $))))) (T -177)) +((-2657 (*1 *2 *1) (-12 (-5 *2 (-660 (-109))) (-5 *1 (-177)))) (-2255 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-2677 (*1 *2 *3 *1) (-12 (-5 *3 (-519)) (-5 *2 (-707 (-109))) (-5 *1 (-177))))) +(-13 (-626 (-880)) (-10 -8 (-15 -2657 ((-660 (-109)) $)) (-15 -2255 ($ (-109) $)) (-15 -2677 ((-707 (-109)) (-519) $)))) +((-4235 (((-1 (-966 |#1|) (-966 |#1|)) |#1|) 38)) (-2303 (((-966 |#1|) (-966 |#1|)) 22)) (-4192 (((-1 (-966 |#1|) (-966 |#1|)) |#1|) 34)) (-2279 (((-966 |#1|) (-966 |#1|)) 20)) (-4171 (((-966 |#1|) (-966 |#1|)) 28)) (-4160 (((-966 |#1|) (-966 |#1|)) 27)) (-2313 (((-966 |#1|) (-966 |#1|)) 26)) (-4203 (((-1 (-966 |#1|) (-966 |#1|)) |#1|) 35)) (-4183 (((-1 (-966 |#1|) (-966 |#1|)) |#1|) 33)) (-4360 (((-1 (-966 |#1|) (-966 |#1|)) |#1|) 32)) (-2292 (((-966 |#1|) (-966 |#1|)) 21)) (-4247 (((-1 (-966 |#1|) (-966 |#1|)) |#1| |#1|) 41)) (-2267 (((-966 |#1|) (-966 |#1|)) 8)) (-4226 (((-1 (-966 |#1|) (-966 |#1|)) |#1|) 37)) (-4215 (((-1 (-966 |#1|) (-966 |#1|)) |#1|) 36))) +(((-178 |#1|) (-10 -7 (-15 -2267 ((-966 |#1|) (-966 |#1|))) (-15 -2279 ((-966 |#1|) (-966 |#1|))) (-15 -2292 ((-966 |#1|) (-966 |#1|))) (-15 -2303 ((-966 |#1|) (-966 |#1|))) (-15 -2313 ((-966 |#1|) (-966 |#1|))) (-15 -4160 ((-966 |#1|) (-966 |#1|))) (-15 -4171 ((-966 |#1|) (-966 |#1|))) (-15 -4360 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -4183 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -4192 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -4203 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -4215 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -4226 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -4235 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -4247 ((-1 (-966 |#1|) (-966 |#1|)) |#1| |#1|))) (-13 (-375) (-1227) (-1027))) (T -178)) +((-4247 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))))) (-4235 (*1 *2 *3) (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))))) (-4226 (*1 *2 *3) (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))))) (-4215 (*1 *2 *3) (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))))) (-4203 (*1 *2 *3) (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))))) (-4192 (*1 *2 *3) (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))))) (-4183 (*1 *2 *3) (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))))) (-4360 (*1 *2 *3) (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))))) (-4171 (*1 *2 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) (-5 *1 (-178 *3)))) (-4160 (*1 *2 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) (-5 *1 (-178 *3)))) (-2313 (*1 *2 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) (-5 *1 (-178 *3)))) (-2303 (*1 *2 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) (-5 *1 (-178 *3)))) (-2292 (*1 *2 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) (-5 *1 (-178 *3)))) (-2279 (*1 *2 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) (-5 *1 (-178 *3)))) (-2267 (*1 *2 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) (-5 *1 (-178 *3))))) +(-10 -7 (-15 -2267 ((-966 |#1|) (-966 |#1|))) (-15 -2279 ((-966 |#1|) (-966 |#1|))) (-15 -2292 ((-966 |#1|) (-966 |#1|))) (-15 -2303 ((-966 |#1|) (-966 |#1|))) (-15 -2313 ((-966 |#1|) (-966 |#1|))) (-15 -4160 ((-966 |#1|) (-966 |#1|))) (-15 -4171 ((-966 |#1|) (-966 |#1|))) (-15 -4360 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -4183 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -4192 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -4203 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -4215 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -4226 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -4235 ((-1 (-966 |#1|) (-966 |#1|)) |#1|)) (-15 -4247 ((-1 (-966 |#1|) (-966 |#1|)) |#1| |#1|))) +((-3974 ((|#2| |#3|) 28))) +(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -3974 (|#2| |#3|))) (-174) (-1268 |#1|) (-740 |#1| |#2|)) (T -179)) +((-3974 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1268 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-740 *4 *2))))) +(-10 -7 (-15 -3974 (|#2| |#3|))) +((-3795 (((-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|)) 44 (|has| (-975 |#2|) (-905 |#1|))))) +(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-975 |#2|) (-905 |#1|)) (-15 -3795 ((-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|))) |%noBranch|)) (-1125) (-13 (-905 |#1|) (-174)) (-167 |#2|)) (T -180)) +((-3795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-908 *5 *3)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) (-4 *3 (-167 *6)) (-4 (-975 *6) (-905 *5)) (-4 *6 (-13 (-905 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) +(-10 -7 (IF (|has| (-975 |#2|) (-905 |#1|)) (-15 -3795 ((-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|))) |%noBranch|)) +((-4266 (((-660 |#1|) (-660 |#1|) |#1|) 41)) (-4257 (((-660 |#1|) |#1| (-660 |#1|)) 20)) (-3464 (((-660 |#1|) (-660 (-660 |#1|)) (-660 |#1|)) 36) ((|#1| (-660 |#1|) (-660 |#1|)) 32))) +(((-181 |#1|) (-10 -7 (-15 -4257 ((-660 |#1|) |#1| (-660 |#1|))) (-15 -3464 (|#1| (-660 |#1|) (-660 |#1|))) (-15 -3464 ((-660 |#1|) (-660 (-660 |#1|)) (-660 |#1|))) (-15 -4266 ((-660 |#1|) (-660 |#1|) |#1|))) (-318)) (T -181)) +((-4266 (*1 *2 *2 *3) (-12 (-5 *2 (-660 *3)) (-4 *3 (-318)) (-5 *1 (-181 *3)))) (-3464 (*1 *2 *3 *2) (-12 (-5 *3 (-660 (-660 *4))) (-5 *2 (-660 *4)) (-4 *4 (-318)) (-5 *1 (-181 *4)))) (-3464 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *2)) (-5 *1 (-181 *2)) (-4 *2 (-318)))) (-4257 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-318)) (-5 *1 (-181 *3))))) +(-10 -7 (-15 -4257 ((-660 |#1|) |#1| (-660 |#1|))) (-15 -3464 (|#1| (-660 |#1|) (-660 |#1|))) (-15 -3464 ((-660 |#1|) (-660 (-660 |#1|)) (-660 |#1|))) (-15 -4266 ((-660 |#1|) (-660 |#1|) |#1|))) +((-3473 (((-112) $ $) NIL)) (-3017 (((-1241) $) 13)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3131 (((-1160) $) 10)) (-3544 (((-880) $) 20) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-182) (-13 (-1108) (-10 -8 (-15 -3131 ((-1160) $)) (-15 -3017 ((-1241) $))))) (T -182)) +((-3131 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-182)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-182))))) +(-13 (-1108) (-10 -8 (-15 -3131 ((-1160) $)) (-15 -3017 ((-1241) $)))) +((-4365 (((-2 (|:| |start| |#2|) (|:| -3363 (-431 |#2|))) |#2|) 66)) (-4355 ((|#1| |#1|) 58)) (-4342 (((-171 |#1|) |#2|) 93)) (-4332 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-4321 ((|#2| |#2|) 91)) (-4309 (((-431 |#2|) |#2| |#1|) 118) (((-431 |#2|) |#2| |#1| (-112)) 88)) (-4145 ((|#1| |#2|) 117)) (-4301 ((|#2| |#2|) 130)) (-1902 (((-431 |#2|) |#2|) 153) (((-431 |#2|) |#2| |#1|) 33) (((-431 |#2|) |#2| |#1| (-112)) 152)) (-4287 (((-660 (-2 (|:| -3363 (-660 |#2|)) (|:| -3310 |#1|))) |#2| |#2|) 151) (((-660 (-2 (|:| -3363 (-660 |#2|)) (|:| -3310 |#1|))) |#2| |#2| (-112)) 81)) (-4277 (((-660 (-171 |#1|)) |#2| |#1|) 42) (((-660 (-171 |#1|)) |#2|) 43))) +(((-183 |#1| |#2|) (-10 -7 (-15 -4277 ((-660 (-171 |#1|)) |#2|)) (-15 -4277 ((-660 (-171 |#1|)) |#2| |#1|)) (-15 -4287 ((-660 (-2 (|:| -3363 (-660 |#2|)) (|:| -3310 |#1|))) |#2| |#2| (-112))) (-15 -4287 ((-660 (-2 (|:| -3363 (-660 |#2|)) (|:| -3310 |#1|))) |#2| |#2|)) (-15 -1902 ((-431 |#2|) |#2| |#1| (-112))) (-15 -1902 ((-431 |#2|) |#2| |#1|)) (-15 -1902 ((-431 |#2|) |#2|)) (-15 -4301 (|#2| |#2|)) (-15 -4145 (|#1| |#2|)) (-15 -4309 ((-431 |#2|) |#2| |#1| (-112))) (-15 -4309 ((-431 |#2|) |#2| |#1|)) (-15 -4321 (|#2| |#2|)) (-15 -4332 (|#1| |#2| |#1|)) (-15 -4332 (|#1| |#2|)) (-15 -4342 ((-171 |#1|) |#2|)) (-15 -4355 (|#1| |#1|)) (-15 -4365 ((-2 (|:| |start| |#2|) (|:| -3363 (-431 |#2|))) |#2|))) (-13 (-375) (-864)) (-1268 (-171 |#1|))) (T -183)) +((-4365 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-2 (|:| |start| *3) (|:| -3363 (-431 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) (-4355 (*1 *2 *2) (-12 (-4 *2 (-13 (-375) (-864))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1268 (-171 *2))))) (-4342 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-375) (-864))) (-4 *3 (-1268 *2)))) (-4332 (*1 *2 *3) (-12 (-4 *2 (-13 (-375) (-864))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1268 (-171 *2))))) (-4332 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-375) (-864))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1268 (-171 *2))))) (-4321 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-864))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1268 (-171 *3))))) (-4309 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) (-4309 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) (-4145 (*1 *2 *3) (-12 (-4 *2 (-13 (-375) (-864))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1268 (-171 *2))))) (-4301 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-864))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1268 (-171 *3))))) (-1902 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) (-1902 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) (-1902 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) (-4287 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-660 (-2 (|:| -3363 (-660 *3)) (|:| -3310 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) (-4287 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-375) (-864))) (-5 *2 (-660 (-2 (|:| -3363 (-660 *3)) (|:| -3310 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1268 (-171 *5))))) (-4277 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-660 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) (-4277 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-660 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4)))))) +(-10 -7 (-15 -4277 ((-660 (-171 |#1|)) |#2|)) (-15 -4277 ((-660 (-171 |#1|)) |#2| |#1|)) (-15 -4287 ((-660 (-2 (|:| -3363 (-660 |#2|)) (|:| -3310 |#1|))) |#2| |#2| (-112))) (-15 -4287 ((-660 (-2 (|:| -3363 (-660 |#2|)) (|:| -3310 |#1|))) |#2| |#2|)) (-15 -1902 ((-431 |#2|) |#2| |#1| (-112))) (-15 -1902 ((-431 |#2|) |#2| |#1|)) (-15 -1902 ((-431 |#2|) |#2|)) (-15 -4301 (|#2| |#2|)) (-15 -4145 (|#1| |#2|)) (-15 -4309 ((-431 |#2|) |#2| |#1| (-112))) (-15 -4309 ((-431 |#2|) |#2| |#1|)) (-15 -4321 (|#2| |#2|)) (-15 -4332 (|#1| |#2| |#1|)) (-15 -4332 (|#1| |#2|)) (-15 -4342 ((-171 |#1|) |#2|)) (-15 -4355 (|#1| |#1|)) (-15 -4365 ((-2 (|:| |start| |#2|) (|:| -3363 (-431 |#2|))) |#2|))) +((-4376 (((-3 |#2| "failed") |#2|) 16)) (-4386 (((-787) |#2|) 18)) (-4397 ((|#2| |#2| |#2|) 20))) +(((-184 |#1| |#2|) (-10 -7 (-15 -4376 ((-3 |#2| "failed") |#2|)) (-15 -4386 ((-787) |#2|)) (-15 -4397 (|#2| |#2| |#2|))) (-1242) (-690 |#1|)) (T -184)) +((-4397 (*1 *2 *2 *2) (-12 (-4 *3 (-1242)) (-5 *1 (-184 *3 *2)) (-4 *2 (-690 *3)))) (-4386 (*1 *2 *3) (-12 (-4 *4 (-1242)) (-5 *2 (-787)) (-5 *1 (-184 *4 *3)) (-4 *3 (-690 *4)))) (-4376 (*1 *2 *2) (|partial| -12 (-4 *3 (-1242)) (-5 *1 (-184 *3 *2)) (-4 *2 (-690 *3))))) +(-10 -7 (-15 -4376 ((-3 |#2| "failed") |#2|)) (-15 -4386 ((-787) |#2|)) (-15 -4397 (|#2| |#2| |#2|))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2645 ((|#1| $) 7)) (-3544 (((-880) $) 14)) (-4448 (((-112) $ $) NIL)) (-1376 (((-660 (-1206)) $) 10)) (-2970 (((-112) $ $) 12))) +(((-185 |#1|) (-13 (-1125) (-10 -8 (-15 -2645 (|#1| $)) (-15 -1376 ((-660 (-1206)) $)))) (-187)) (T -185)) +((-2645 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-660 (-1206))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(-13 (-1125) (-10 -8 (-15 -2645 (|#1| $)) (-15 -1376 ((-660 (-1206)) $)))) +((-3293 (((-660 (-883)) $) 16)) (-1811 (((-188) $) 8)) (-4417 (((-660 (-112)) $) 13)) (-3013 (((-55) $) 10))) +(((-186 |#1|) (-10 -8 (-15 -3293 ((-660 (-883)) |#1|)) (-15 -4417 ((-660 (-112)) |#1|)) (-15 -1811 ((-188) |#1|)) (-15 -3013 ((-55) |#1|))) (-187)) (T -186)) +NIL +(-10 -8 (-15 -3293 ((-660 (-883)) |#1|)) (-15 -4417 ((-660 (-112)) |#1|)) (-15 -1811 ((-188) |#1|)) (-15 -3013 ((-55) |#1|))) +((-3473 (((-112) $ $) 7)) (-3293 (((-660 (-883)) $) 19)) (-2713 (((-519) $) 16)) (-2810 (((-1183) $) 10)) (-1811 (((-188) $) 21)) (-2740 (((-112) $ (-519)) 14)) (-1474 (((-1145) $) 11)) (-4417 (((-660 (-112)) $) 20)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-3013 (((-55) $) 15)) (-2970 (((-112) $ $) 8))) (((-187) (-141)) (T -187)) -((-1802 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-657 (-112))))) (-3249 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-657 (-880)))))) -(-13 (-848 (-518)) (-10 -8 (-15 -1802 ((-188) $)) (-15 -2155 ((-657 (-112)) $)) (-15 -3249 ((-657 (-880)) $)))) -(((-102) . T) ((-625 (-877)) . T) ((-848 (-518)) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-8 (($) 7 T CONST)) (-3501 (((-877) $) 12)) (-9 (($) 6 T CONST)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 10))) -(((-188) (-13 (-1122) (-10 -8 (-15 -9 ($) -1509) (-15 -8 ($) -1509) (-15 -7 ($) -1509)))) (T -188)) +((-1811 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-4417 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-660 (-112))))) (-3293 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-660 (-883)))))) +(-13 (-851 (-519)) (-10 -8 (-15 -1811 ((-188) $)) (-15 -4417 ((-660 (-112)) $)) (-15 -3293 ((-660 (-883)) $)))) +(((-102) . T) ((-626 (-880)) . T) ((-851 (-519)) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-8 (($) 7 T CONST)) (-3544 (((-880) $) 12)) (-9 (($) 6 T CONST)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 10))) +(((-188) (-13 (-1125) (-10 -8 (-15 -9 ($) -1512) (-15 -8 ($) -1512) (-15 -7 ($) -1512)))) (T -188)) ((-9 (*1 *1) (-5 *1 (-188))) (-8 (*1 *1) (-5 *1 (-188))) (-7 (*1 *1) (-5 *1 (-188)))) -(-13 (-1122) (-10 -8 (-15 -9 ($) -1509) (-15 -8 ($) -1509) (-15 -7 ($) -1509))) -((-3429 (((-112) $ $) NIL)) (-3249 (((-657 (-880)) $) NIL)) (-2676 (((-518) $) 8)) (-2342 (((-1180) $) NIL)) (-1802 (((-188) $) 10)) (-4412 (((-112) $ (-518)) NIL)) (-1471 (((-1142) $) NIL)) (-2957 (((-704 $) (-518)) 17)) (-2155 (((-657 (-112)) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-4335 (((-55) $) 12)) (-2933 (((-112) $ $) NIL))) -(((-189) (-13 (-187) (-10 -8 (-15 -2957 ((-704 $) (-518)))))) (T -189)) -((-2957 (*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-704 (-189))) (-5 *1 (-189))))) -(-13 (-187) (-10 -8 (-15 -2957 ((-704 $) (-518))))) -((-4355 ((|#2| |#2|) 28)) (-3356 (((-112) |#2|) 19)) (-1907 (((-326 |#1|) |#2|) 12)) (-1916 (((-326 |#1|) |#2|) 14)) (-1959 ((|#2| |#2| (-1198)) 69) ((|#2| |#2|) 70)) (-2108 (((-171 (-326 |#1|)) |#2|) 10)) (-4405 ((|#2| |#2| (-1198)) 66) ((|#2| |#2|) 60))) -(((-190 |#1| |#2|) (-10 -7 (-15 -1959 (|#2| |#2|)) (-15 -1959 (|#2| |#2| (-1198))) (-15 -4405 (|#2| |#2|)) (-15 -4405 (|#2| |#2| (-1198))) (-15 -1907 ((-326 |#1|) |#2|)) (-15 -1916 ((-326 |#1|) |#2|)) (-15 -3356 ((-112) |#2|)) (-15 -4355 (|#2| |#2|)) (-15 -2108 ((-171 (-326 |#1|)) |#2|))) (-13 (-568) (-1060 (-576))) (-13 (-27) (-1224) (-442 (-171 |#1|)))) (T -190)) -((-2108 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 (-171 *4)))))) (-4355 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1060 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 (-171 *3)))))) (-3356 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 (-171 *4)))))) (-1916 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 (-171 *4)))))) (-1907 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 (-171 *4)))))) (-4405 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 (-171 *4)))))) (-4405 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1060 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 (-171 *3)))))) (-1959 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 (-171 *4)))))) (-1959 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1060 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 (-171 *3))))))) -(-10 -7 (-15 -1959 (|#2| |#2|)) (-15 -1959 (|#2| |#2| (-1198))) (-15 -4405 (|#2| |#2|)) (-15 -4405 (|#2| |#2| (-1198))) (-15 -1907 ((-326 |#1|) |#2|)) (-15 -1916 ((-326 |#1|) |#2|)) (-15 -3356 ((-112) |#2|)) (-15 -4355 (|#2| |#2|)) (-15 -2108 ((-171 (-326 |#1|)) |#2|))) -((-2564 (((-1289 (-702 (-972 |#1|))) (-1289 (-702 |#1|))) 26)) (-3501 (((-1289 (-702 (-419 (-972 |#1|)))) (-1289 (-702 |#1|))) 37))) -(((-191 |#1|) (-10 -7 (-15 -2564 ((-1289 (-702 (-972 |#1|))) (-1289 (-702 |#1|)))) (-15 -3501 ((-1289 (-702 (-419 (-972 |#1|)))) (-1289 (-702 |#1|))))) (-174)) (T -191)) -((-3501 (*1 *2 *3) (-12 (-5 *3 (-1289 (-702 *4))) (-4 *4 (-174)) (-5 *2 (-1289 (-702 (-419 (-972 *4))))) (-5 *1 (-191 *4)))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-1289 (-702 *4))) (-4 *4 (-174)) (-5 *2 (-1289 (-702 (-972 *4)))) (-5 *1 (-191 *4))))) -(-10 -7 (-15 -2564 ((-1289 (-702 (-972 |#1|))) (-1289 (-702 |#1|)))) (-15 -3501 ((-1289 (-702 (-419 (-972 |#1|)))) (-1289 (-702 |#1|))))) -((-3401 (((-1200 (-419 (-576))) (-1200 (-419 (-576))) (-1200 (-419 (-576)))) 93)) (-2230 (((-1200 (-419 (-576))) (-657 (-576)) (-657 (-576))) 107)) (-3685 (((-1200 (-419 (-576))) (-941)) 54)) (-3414 (((-1200 (-419 (-576))) (-941)) 79)) (-3236 (((-419 (-576)) (-1200 (-419 (-576)))) 89)) (-1640 (((-1200 (-419 (-576))) (-941)) 37)) (-2156 (((-1200 (-419 (-576))) (-941)) 66)) (-2602 (((-1200 (-419 (-576))) (-941)) 61)) (-2419 (((-1200 (-419 (-576))) (-1200 (-419 (-576))) (-1200 (-419 (-576)))) 87)) (-1431 (((-1200 (-419 (-576))) (-941)) 29)) (-3523 (((-419 (-576)) (-1200 (-419 (-576))) (-1200 (-419 (-576)))) 91)) (-2332 (((-1200 (-419 (-576))) (-941)) 35)) (-2776 (((-1200 (-419 (-576))) (-657 (-941))) 100))) -(((-192) (-10 -7 (-15 -1431 ((-1200 (-419 (-576))) (-941))) (-15 -3685 ((-1200 (-419 (-576))) (-941))) (-15 -1640 ((-1200 (-419 (-576))) (-941))) (-15 -2332 ((-1200 (-419 (-576))) (-941))) (-15 -2602 ((-1200 (-419 (-576))) (-941))) (-15 -2156 ((-1200 (-419 (-576))) (-941))) (-15 -3414 ((-1200 (-419 (-576))) (-941))) (-15 -3523 ((-419 (-576)) (-1200 (-419 (-576))) (-1200 (-419 (-576))))) (-15 -2419 ((-1200 (-419 (-576))) (-1200 (-419 (-576))) (-1200 (-419 (-576))))) (-15 -3236 ((-419 (-576)) (-1200 (-419 (-576))))) (-15 -3401 ((-1200 (-419 (-576))) (-1200 (-419 (-576))) (-1200 (-419 (-576))))) (-15 -2776 ((-1200 (-419 (-576))) (-657 (-941)))) (-15 -2230 ((-1200 (-419 (-576))) (-657 (-576)) (-657 (-576)))))) (T -192)) -((-2230 (*1 *2 *3 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-2776 (*1 *2 *3) (-12 (-5 *3 (-657 (-941))) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-3401 (*1 *2 *2 *2) (-12 (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-1200 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-2419 (*1 *2 *2 *2) (-12 (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-3523 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-2156 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-2332 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192))))) -(-10 -7 (-15 -1431 ((-1200 (-419 (-576))) (-941))) (-15 -3685 ((-1200 (-419 (-576))) (-941))) (-15 -1640 ((-1200 (-419 (-576))) (-941))) (-15 -2332 ((-1200 (-419 (-576))) (-941))) (-15 -2602 ((-1200 (-419 (-576))) (-941))) (-15 -2156 ((-1200 (-419 (-576))) (-941))) (-15 -3414 ((-1200 (-419 (-576))) (-941))) (-15 -3523 ((-419 (-576)) (-1200 (-419 (-576))) (-1200 (-419 (-576))))) (-15 -2419 ((-1200 (-419 (-576))) (-1200 (-419 (-576))) (-1200 (-419 (-576))))) (-15 -3236 ((-419 (-576)) (-1200 (-419 (-576))))) (-15 -3401 ((-1200 (-419 (-576))) (-1200 (-419 (-576))) (-1200 (-419 (-576))))) (-15 -2776 ((-1200 (-419 (-576))) (-657 (-941)))) (-15 -2230 ((-1200 (-419 (-576))) (-657 (-576)) (-657 (-576))))) -((-1676 (((-430 (-1194 (-576))) (-576)) 38)) (-3894 (((-657 (-1194 (-576))) (-576)) 33)) (-4207 (((-1194 (-576)) (-576)) 28))) -(((-193) (-10 -7 (-15 -3894 ((-657 (-1194 (-576))) (-576))) (-15 -4207 ((-1194 (-576)) (-576))) (-15 -1676 ((-430 (-1194 (-576))) (-576))))) (T -193)) -((-1676 (*1 *2 *3) (-12 (-5 *2 (-430 (-1194 (-576)))) (-5 *1 (-193)) (-5 *3 (-576)))) (-4207 (*1 *2 *3) (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) (-3894 (*1 *2 *3) (-12 (-5 *2 (-657 (-1194 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) -(-10 -7 (-15 -3894 ((-657 (-1194 (-576))) (-576))) (-15 -4207 ((-1194 (-576)) (-576))) (-15 -1676 ((-430 (-1194 (-576))) (-576)))) -((-2286 (((-1179 (-227)) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-3619 (((-657 (-1180)) (-1179 (-227))) NIL)) (-1993 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2812 (((-657 (-227)) (-326 (-227)) (-1198) (-1116 (-856 (-227)))) NIL)) (-4393 (((-657 (-1180)) (-657 (-227))) NIL)) (-2360 (((-227) (-1116 (-856 (-227)))) 31)) (-3657 (((-227) (-1116 (-856 (-227)))) 32)) (-3908 (((-390) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-3545 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-1798 (((-1180) (-227)) NIL)) (-4102 (((-1180) (-657 (-1180))) 27)) (-3701 (((-1057) (-1198) (-1198) (-1057)) 13))) -(((-194) (-10 -7 (-15 -1993 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3545 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2360 ((-227) (-1116 (-856 (-227))))) (-15 -3657 ((-227) (-1116 (-856 (-227))))) (-15 -3908 ((-390) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2812 ((-657 (-227)) (-326 (-227)) (-1198) (-1116 (-856 (-227))))) (-15 -2286 ((-1179 (-227)) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1798 ((-1180) (-227))) (-15 -4393 ((-657 (-1180)) (-657 (-227)))) (-15 -3619 ((-657 (-1180)) (-1179 (-227)))) (-15 -4102 ((-1180) (-657 (-1180)))) (-15 -3701 ((-1057) (-1198) (-1198) (-1057))))) (T -194)) -((-3701 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-1198)) (-5 *1 (-194)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-1180)) (-5 *1 (-194)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-1179 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-194)))) (-4393 (*1 *2 *3) (-12 (-5 *3 (-657 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-194)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1180)) (-5 *1 (-194)))) (-2286 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1179 (-227))) (-5 *1 (-194)))) (-2812 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1198)) (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-657 (-227))) (-5 *1 (-194)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-194)))) (-3657 (*1 *2 *3) (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2360 (*1 *2 *3) (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) -(-10 -7 (-15 -1993 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3545 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2360 ((-227) (-1116 (-856 (-227))))) (-15 -3657 ((-227) (-1116 (-856 (-227))))) (-15 -3908 ((-390) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2812 ((-657 (-227)) (-326 (-227)) (-1198) (-1116 (-856 (-227))))) (-15 -2286 ((-1179 (-227)) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1798 ((-1180) (-227))) (-15 -4393 ((-657 (-1180)) (-657 (-227)))) (-15 -3619 ((-657 (-1180)) (-1179 (-227)))) (-15 -4102 ((-1180) (-657 (-1180)))) (-15 -3701 ((-1057) (-1198) (-1198) (-1057)))) -((-3429 (((-112) $ $) NIL)) (-1677 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 61) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-195) (-800)) (T -195)) -NIL -(-800) -((-3429 (((-112) $ $) NIL)) (-1677 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 66) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-196) (-800)) (T -196)) -NIL -(-800) -((-3429 (((-112) $ $) NIL)) (-1677 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 81) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-197) (-800)) (T -197)) -NIL -(-800) -((-3429 (((-112) $ $) NIL)) (-1677 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 63) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-198) (-800)) (T -198)) -NIL -(-800) -((-3429 (((-112) $ $) NIL)) (-1677 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 76) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-199) (-800)) (T -199)) -NIL -(-800) -((-3429 (((-112) $ $) NIL)) (-1677 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 93) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-200) (-800)) (T -200)) -NIL -(-800) -((-3429 (((-112) $ $) NIL)) (-1677 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 90) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-201) (-800)) (T -201)) -NIL -(-800) -((-3429 (((-112) $ $) NIL)) (-1677 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 78) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-202) (-800)) (T -202)) -NIL -(-800) -((-3429 (((-112) $ $) NIL)) (-1677 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 76)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-203) (-800)) (T -203)) -NIL -(-800) -((-3429 (((-112) $ $) NIL)) (-1677 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 77)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-204) (-800)) (T -204)) -NIL -(-800) -((-3429 (((-112) $ $) NIL)) (-1677 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 105) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) NIL)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-205) (-800)) (T -205)) -NIL -(-800) -((-1808 (((-3 (-2 (|:| -1812 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2384 (((-576) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-2283 (((-3 (-657 (-227)) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90))) -(((-206) (-10 -7 (-15 -1808 ((-3 (-2 (|:| -1812 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2283 ((-3 (-657 (-227)) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2384 ((-576) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206)) -((-2384 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-576)) (-5 *1 (-206)))) (-2283 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-657 (-227))) (-5 *1 (-206)))) (-1808 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1812 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) -(-10 -7 (-15 -1808 ((-3 (-2 (|:| -1812 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2283 ((-3 (-657 (-227)) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2384 ((-576) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-1748 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-4410 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-2560 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-702 (-326 (-227)))) 112)) (-3579 (((-390) (-702 (-326 (-227)))) 140)) (-2442 (((-702 (-326 (-227))) (-1289 (-326 (-227))) (-657 (-1198))) 136)) (-2173 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-2063 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-3236 (((-702 (-326 (-227))) (-702 (-326 (-227))) (-657 (-1198)) (-1289 (-326 (-227)))) 125)) (-4331 (((-390) (-390) (-657 (-390))) 133) (((-390) (-390) (-390)) 128)) (-2021 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45))) -(((-207) (-10 -7 (-15 -4331 ((-390) (-390) (-390))) (-15 -4331 ((-390) (-390) (-657 (-390)))) (-15 -3579 ((-390) (-702 (-326 (-227))))) (-15 -2442 ((-702 (-326 (-227))) (-1289 (-326 (-227))) (-657 (-1198)))) (-15 -3236 ((-702 (-326 (-227))) (-702 (-326 (-227))) (-657 (-1198)) (-1289 (-326 (-227))))) (-15 -2560 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-702 (-326 (-227))))) (-15 -4410 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1748 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2063 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2021 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2173 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207)) -((-2173 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2063 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-4410 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-2560 (*1 *2 *3) (-12 (-5 *3 (-702 (-326 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-3236 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-702 (-326 (-227)))) (-5 *3 (-657 (-1198))) (-5 *4 (-1289 (-326 (-227)))) (-5 *1 (-207)))) (-2442 (*1 *2 *3 *4) (-12 (-5 *3 (-1289 (-326 (-227)))) (-5 *4 (-657 (-1198))) (-5 *2 (-702 (-326 (-227)))) (-5 *1 (-207)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-702 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-4331 (*1 *2 *2 *3) (-12 (-5 *3 (-657 (-390))) (-5 *2 (-390)) (-5 *1 (-207)))) (-4331 (*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207))))) -(-10 -7 (-15 -4331 ((-390) (-390) (-390))) (-15 -4331 ((-390) (-390) (-657 (-390)))) (-15 -3579 ((-390) (-702 (-326 (-227))))) (-15 -2442 ((-702 (-326 (-227))) (-1289 (-326 (-227))) (-657 (-1198)))) (-15 -3236 ((-702 (-326 (-227))) (-702 (-326 (-227))) (-657 (-1198)) (-1289 (-326 (-227))))) (-15 -2560 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-702 (-326 (-227))))) (-15 -4410 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1748 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2063 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2021 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2173 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-3429 (((-112) $ $) NIL)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2722 (((-1057) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-2933 (((-112) $ $) NIL))) -(((-208) (-813)) (T -208)) -NIL -(-813) -((-3429 (((-112) $ $) NIL)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2722 (((-1057) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-2933 (((-112) $ $) NIL))) -(((-209) (-813)) (T -209)) -NIL -(-813) -((-3429 (((-112) $ $) NIL)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2722 (((-1057) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-2933 (((-112) $ $) NIL))) -(((-210) (-813)) (T -210)) -NIL -(-813) -((-3429 (((-112) $ $) NIL)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2722 (((-1057) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-2933 (((-112) $ $) NIL))) -(((-211) (-813)) (T -211)) -NIL -(-813) -((-3391 (((-657 (-1198)) (-1198) (-784)) 26)) (-2784 (((-326 (-227)) (-326 (-227))) 35)) (-2374 (((-112) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) 87)) (-4289 (((-112) (-227) (-227) (-657 (-326 (-227)))) 47))) -(((-212) (-10 -7 (-15 -3391 ((-657 (-1198)) (-1198) (-784))) (-15 -2784 ((-326 (-227)) (-326 (-227)))) (-15 -4289 ((-112) (-227) (-227) (-657 (-326 (-227))))) (-15 -2374 ((-112) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227))))))) (T -212)) -((-2374 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-4289 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-657 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212)))) (-3391 (*1 *2 *3 *4) (-12 (-5 *4 (-784)) (-5 *2 (-657 (-1198))) (-5 *1 (-212)) (-5 *3 (-1198))))) -(-10 -7 (-15 -3391 ((-657 (-1198)) (-1198) (-784))) (-15 -2784 ((-326 (-227)) (-326 (-227)))) (-15 -4289 ((-112) (-227) (-227) (-657 (-326 (-227))))) (-15 -2374 ((-112) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))))) -((-3429 (((-112) $ $) NIL)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) 28)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2036 (((-1057) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) 70)) (-2933 (((-112) $ $) NIL))) -(((-213) (-913)) (T -213)) -NIL -(-913) -((-3429 (((-112) $ $) NIL)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) 24)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2036 (((-1057) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) NIL)) (-2933 (((-112) $ $) NIL))) -(((-214) (-913)) (T -214)) -NIL -(-913) -((-3429 (((-112) $ $) NIL)) (-2093 ((|#2| $ (-784) |#2|) 11)) (-2083 ((|#2| $ (-784)) 10)) (-4109 (($) 8)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 23)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 13))) -(((-215 |#1| |#2|) (-13 (-1122) (-10 -8 (-15 -4109 ($)) (-15 -2083 (|#2| $ (-784))) (-15 -2093 (|#2| $ (-784) |#2|)))) (-941) (-1122)) (T -215)) -((-4109 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1122)))) (-2083 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *2 (-1122)) (-5 *1 (-215 *4 *2)) (-14 *4 (-941)))) (-2093 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-215 *4 *2)) (-14 *4 (-941)) (-4 *2 (-1122))))) -(-13 (-1122) (-10 -8 (-15 -4109 ($)) (-15 -2083 (|#2| $ (-784))) (-15 -2093 (|#2| $ (-784) |#2|)))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-1729 (((-1294) $) 37) (((-1294) $ (-941) (-941)) 41)) (-2835 (($ $ (-1011)) 19) (((-250 (-1180)) $ (-1198)) 15)) (-2041 (((-1294) $) 35)) (-3501 (((-877) $) 32) (($ (-657 |#1|)) 8)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $ $) 27)) (-3012 (($ $ $) 22))) -(((-216 |#1|) (-13 (-1122) (-628 (-657 |#1|)) (-10 -8 (-15 -2835 ($ $ (-1011))) (-15 -2835 ((-250 (-1180)) $ (-1198))) (-15 -3012 ($ $ $)) (-15 -3022 ($ $ $)) (-15 -2041 ((-1294) $)) (-15 -1729 ((-1294) $)) (-15 -1729 ((-1294) $ (-941) (-941))))) (-13 (-862) (-10 -8 (-15 -2835 ((-1180) $ (-1198))) (-15 -2041 ((-1294) $)) (-15 -1729 ((-1294) $))))) (T -216)) -((-2835 (*1 *1 *1 *2) (-12 (-5 *2 (-1011)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2835 ((-1180) $ (-1198))) (-15 -2041 ((-1294) $)) (-15 -1729 ((-1294) $))))))) (-2835 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-250 (-1180))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-862) (-10 -8 (-15 -2835 ((-1180) $ *3)) (-15 -2041 ((-1294) $)) (-15 -1729 ((-1294) $))))))) (-3012 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-862) (-10 -8 (-15 -2835 ((-1180) $ (-1198))) (-15 -2041 ((-1294) $)) (-15 -1729 ((-1294) $))))))) (-3022 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-862) (-10 -8 (-15 -2835 ((-1180) $ (-1198))) (-15 -2041 ((-1294) $)) (-15 -1729 ((-1294) $))))))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2835 ((-1180) $ (-1198))) (-15 -2041 (*2 $)) (-15 -1729 (*2 $))))))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2835 ((-1180) $ (-1198))) (-15 -2041 (*2 $)) (-15 -1729 (*2 $))))))) (-1729 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1294)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-862) (-10 -8 (-15 -2835 ((-1180) $ (-1198))) (-15 -2041 (*2 $)) (-15 -1729 (*2 $)))))))) -(-13 (-1122) (-628 (-657 |#1|)) (-10 -8 (-15 -2835 ($ $ (-1011))) (-15 -2835 ((-250 (-1180)) $ (-1198))) (-15 -3012 ($ $ $)) (-15 -3022 ($ $ $)) (-15 -2041 ((-1294) $)) (-15 -1729 ((-1294) $)) (-15 -1729 ((-1294) $ (-941) (-941))))) -((-4394 ((|#2| |#4| (-1 |#2| |#2|)) 49))) -(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4394 (|#2| |#4| (-1 |#2| |#2|)))) (-374) (-1265 |#1|) (-1265 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -217)) -((-4394 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1265 (-419 *2))) (-4 *2 (-1265 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-353 *5 *2 *6))))) -(-10 -7 (-15 -4394 (|#2| |#4| (-1 |#2| |#2|)))) -((-3339 ((|#2| |#2| (-784) |#2|) 55)) (-2365 ((|#2| |#2| (-784) |#2|) 51)) (-1485 (((-657 |#2|) (-657 (-2 (|:| |deg| (-784)) (|:| -2863 |#2|)))) 79)) (-3168 (((-657 (-2 (|:| |deg| (-784)) (|:| -2863 |#2|))) |#2|) 73)) (-2002 (((-112) |#2|) 71)) (-1679 (((-430 |#2|) |#2|) 91)) (-1885 (((-430 |#2|) |#2|) 90)) (-2493 ((|#2| |#2| (-784) |#2|) 49)) (-2398 (((-2 (|:| |cont| |#1|) (|:| -2067 (-657 (-2 (|:| |irr| |#2|) (|:| -1439 (-576)))))) |#2| (-112)) 85))) -(((-218 |#1| |#2|) (-10 -7 (-15 -1885 ((-430 |#2|) |#2|)) (-15 -1679 ((-430 |#2|) |#2|)) (-15 -2398 ((-2 (|:| |cont| |#1|) (|:| -2067 (-657 (-2 (|:| |irr| |#2|) (|:| -1439 (-576)))))) |#2| (-112))) (-15 -3168 ((-657 (-2 (|:| |deg| (-784)) (|:| -2863 |#2|))) |#2|)) (-15 -1485 ((-657 |#2|) (-657 (-2 (|:| |deg| (-784)) (|:| -2863 |#2|))))) (-15 -2493 (|#2| |#2| (-784) |#2|)) (-15 -2365 (|#2| |#2| (-784) |#2|)) (-15 -3339 (|#2| |#2| (-784) |#2|)) (-15 -2002 ((-112) |#2|))) (-360) (-1265 |#1|)) (T -218)) -((-2002 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1265 *4)))) (-3339 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-784)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1265 *4)))) (-2365 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-784)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1265 *4)))) (-2493 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-784)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1265 *4)))) (-1485 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| |deg| (-784)) (|:| -2863 *5)))) (-4 *5 (-1265 *4)) (-4 *4 (-360)) (-5 *2 (-657 *5)) (-5 *1 (-218 *4 *5)))) (-3168 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-657 (-2 (|:| |deg| (-784)) (|:| -2863 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1265 *4)))) (-2398 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-360)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2067 (-657 (-2 (|:| |irr| *3) (|:| -1439 (-576))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1265 *5)))) (-1679 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1265 *4)))) (-1885 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1265 *4))))) -(-10 -7 (-15 -1885 ((-430 |#2|) |#2|)) (-15 -1679 ((-430 |#2|) |#2|)) (-15 -2398 ((-2 (|:| |cont| |#1|) (|:| -2067 (-657 (-2 (|:| |irr| |#2|) (|:| -1439 (-576)))))) |#2| (-112))) (-15 -3168 ((-657 (-2 (|:| |deg| (-784)) (|:| -2863 |#2|))) |#2|)) (-15 -1485 ((-657 |#2|) (-657 (-2 (|:| |deg| (-784)) (|:| -2863 |#2|))))) (-15 -2493 (|#2| |#2| (-784) |#2|)) (-15 -2365 (|#2| |#2| (-784) |#2|)) (-15 -3339 (|#2| |#2| (-784) |#2|)) (-15 -2002 ((-112) |#2|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3931 (((-576) $) NIL (|has| (-576) (-317)))) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-2864 (((-112) $ $) NIL)) (-1536 (((-576) $) NIL (|has| (-576) (-833)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL) (((-3 (-1198) "failed") $) NIL (|has| (-576) (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1060 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1060 (-576))))) (-2884 (((-576) $) NIL) (((-1198) $) NIL (|has| (-576) (-1060 (-1198)))) (((-419 (-576)) $) NIL (|has| (-576) (-1060 (-576)))) (((-576) $) NIL (|has| (-576) (-1060 (-576))))) (-3373 (($ $ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-702 (-576)) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($) NIL (|has| (-576) (-557)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-2828 (((-112) $) NIL (|has| (-576) (-833)))) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| (-576) (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| (-576) (-902 (-390))))) (-4094 (((-112) $) NIL)) (-2752 (($ $) NIL)) (-1621 (((-576) $) NIL)) (-4019 (((-3 $ "failed") $) NIL (|has| (-576) (-1174)))) (-2881 (((-112) $) NIL (|has| (-576) (-833)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3707 (($ $ $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| (-576) (-862)))) (-4083 (($ (-1 (-576) (-576)) $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL) (((-702 (-576)) (-1289 $)) NIL)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1706 (($) NIL (|has| (-576) (-1174)) CONST)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2900 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-3427 (((-576) $) NIL (|has| (-576) (-557)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-1885 (((-430 $) $) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3236 (($ $ (-657 (-576)) (-657 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-657 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-657 (-1198)) (-657 (-576))) NIL (|has| (-576) (-526 (-1198) (-576)))) (($ $ (-1198) (-576)) NIL (|has| (-576) (-526 (-1198) (-576))))) (-2034 (((-784) $) NIL)) (-2835 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2815 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-576) (-920 (-1198)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-784)) NIL (|has| (-576) (-237)))) (-1396 (($ $) NIL)) (-1635 (((-576) $) NIL)) (-3865 (($ (-419 (-576))) 9)) (-4148 (((-908 (-576)) $) NIL (|has| (-576) (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| (-576) (-626 (-908 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1044))) (((-227) $) NIL (|has| (-576) (-1044)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-929))))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1198)) NIL (|has| (-576) (-1060 (-1198)))) (((-419 (-576)) $) NIL) (((-1026 10) $) 10)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| (-576) (-929))) (|has| (-576) (-146))))) (-1960 (((-784)) NIL T CONST)) (-1893 (((-576) $) NIL (|has| (-576) (-557)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-1792 (($ $) NIL (|has| (-576) (-833)))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-576) (-920 (-1198)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-784)) NIL (|has| (-576) (-237)))) (-2985 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2963 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2954 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3034 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) -(((-219) (-13 (-1014 (-576)) (-625 (-419 (-576))) (-625 (-1026 10)) (-10 -8 (-15 -2900 ((-419 (-576)) $)) (-15 -3865 ($ (-419 (-576))))))) (T -219)) -((-2900 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) (-3865 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) -(-13 (-1014 (-576)) (-625 (-419 (-576))) (-625 (-1026 10)) (-10 -8 (-15 -2900 ((-419 (-576)) $)) (-15 -3865 ($ (-419 (-576)))))) -((-3429 (((-112) $ $) NIL)) (-2753 (((-1140) $) 13)) (-2342 (((-1180) $) NIL)) (-4229 (((-495) $) 10)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 23) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2687 (((-1157) $) 15)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-220) (-13 (-1105) (-10 -8 (-15 -4229 ((-495) $)) (-15 -2753 ((-1140) $)) (-15 -2687 ((-1157) $))))) (T -220)) -((-4229 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) (-2753 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-220)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-220))))) -(-13 (-1105) (-10 -8 (-15 -4229 ((-495) $)) (-15 -2753 ((-1140) $)) (-15 -2687 ((-1157) $)))) -((-4190 (((-3 (|:| |f1| (-856 |#2|)) (|:| |f2| (-657 (-856 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1114 (-856 |#2|)) (-1180)) 29) (((-3 (|:| |f1| (-856 |#2|)) (|:| |f2| (-657 (-856 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1114 (-856 |#2|))) 25)) (-2051 (((-3 (|:| |f1| (-856 |#2|)) (|:| |f2| (-657 (-856 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1198) (-856 |#2|) (-856 |#2|) (-112)) 17))) -(((-221 |#1| |#2|) (-10 -7 (-15 -4190 ((-3 (|:| |f1| (-856 |#2|)) (|:| |f2| (-657 (-856 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1114 (-856 |#2|)))) (-15 -4190 ((-3 (|:| |f1| (-856 |#2|)) (|:| |f2| (-657 (-856 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1114 (-856 |#2|)) (-1180))) (-15 -2051 ((-3 (|:| |f1| (-856 |#2|)) (|:| |f2| (-657 (-856 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1198) (-856 |#2|) (-856 |#2|) (-112)))) (-13 (-317) (-148) (-1060 (-576)) (-652 (-576))) (-13 (-1224) (-979) (-29 |#1|))) (T -221)) -((-2051 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1198)) (-5 *6 (-112)) (-4 *7 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-4 *3 (-13 (-1224) (-979) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-856 *3)) (|:| |f2| (-657 (-856 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-856 *3)))) (-4190 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1114 (-856 *3))) (-5 *5 (-1180)) (-4 *3 (-13 (-1224) (-979) (-29 *6))) (-4 *6 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 (|:| |f1| (-856 *3)) (|:| |f2| (-657 (-856 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-4190 (*1 *2 *3 *4) (-12 (-5 *4 (-1114 (-856 *3))) (-4 *3 (-13 (-1224) (-979) (-29 *5))) (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 (|:| |f1| (-856 *3)) (|:| |f2| (-657 (-856 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3))))) -(-10 -7 (-15 -4190 ((-3 (|:| |f1| (-856 |#2|)) (|:| |f2| (-657 (-856 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1114 (-856 |#2|)))) (-15 -4190 ((-3 (|:| |f1| (-856 |#2|)) (|:| |f2| (-657 (-856 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1114 (-856 |#2|)) (-1180))) (-15 -2051 ((-3 (|:| |f1| (-856 |#2|)) (|:| |f2| (-657 (-856 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1198) (-856 |#2|) (-856 |#2|) (-112)))) -((-4190 (((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-419 (-972 |#1|)))) (-1180)) 49) (((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-419 (-972 |#1|))))) 46) (((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-326 |#1|))) (-1180)) 50) (((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-326 |#1|)))) 22))) -(((-222 |#1|) (-10 -7 (-15 -4190 ((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-326 |#1|))))) (-15 -4190 ((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-326 |#1|))) (-1180))) (-15 -4190 ((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-419 (-972 |#1|)))))) (-15 -4190 ((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-419 (-972 |#1|)))) (-1180)))) (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (T -222)) -((-4190 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1114 (-856 (-419 (-972 *6))))) (-5 *5 (-1180)) (-5 *3 (-419 (-972 *6))) (-4 *6 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 (|:| |f1| (-856 (-326 *6))) (|:| |f2| (-657 (-856 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-4190 (*1 *2 *3 *4) (-12 (-5 *4 (-1114 (-856 (-419 (-972 *5))))) (-5 *3 (-419 (-972 *5))) (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 (|:| |f1| (-856 (-326 *5))) (|:| |f2| (-657 (-856 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-4190 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-419 (-972 *6))) (-5 *4 (-1114 (-856 (-326 *6)))) (-5 *5 (-1180)) (-4 *6 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 (|:| |f1| (-856 (-326 *6))) (|:| |f2| (-657 (-856 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-4190 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1114 (-856 (-326 *5)))) (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 (|:| |f1| (-856 (-326 *5))) (|:| |f2| (-657 (-856 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5))))) -(-10 -7 (-15 -4190 ((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-326 |#1|))))) (-15 -4190 ((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-326 |#1|))) (-1180))) (-15 -4190 ((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-419 (-972 |#1|)))))) (-15 -4190 ((-3 (|:| |f1| (-856 (-326 |#1|))) (|:| |f2| (-657 (-856 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-972 |#1|)) (-1114 (-856 (-419 (-972 |#1|)))) (-1180)))) -((-3622 (((-2 (|:| -4281 (-1194 |#1|)) (|:| |deg| (-941))) (-1194 |#1|)) 26)) (-1999 (((-657 (-326 |#2|)) (-326 |#2|) (-941)) 51))) -(((-223 |#1| |#2|) (-10 -7 (-15 -3622 ((-2 (|:| -4281 (-1194 |#1|)) (|:| |deg| (-941))) (-1194 |#1|))) (-15 -1999 ((-657 (-326 |#2|)) (-326 |#2|) (-941)))) (-1071) (-568)) (T -223)) -((-1999 (*1 *2 *3 *4) (-12 (-5 *4 (-941)) (-4 *6 (-568)) (-5 *2 (-657 (-326 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1071)))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-5 *2 (-2 (|:| -4281 (-1194 *4)) (|:| |deg| (-941)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1194 *4)) (-4 *5 (-568))))) -(-10 -7 (-15 -3622 ((-2 (|:| -4281 (-1194 |#1|)) (|:| |deg| (-941))) (-1194 |#1|))) (-15 -1999 ((-657 (-326 |#2|)) (-326 |#2|) (-941)))) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2720 ((|#1| $) NIL)) (-1433 ((|#1| $) 30)) (-3793 (((-112) $ (-784)) NIL)) (-4359 (($) NIL T CONST)) (-4231 (($ $) NIL)) (-3606 (($ $) 39)) (-1949 ((|#1| |#1| $) NIL)) (-2075 ((|#1| $) NIL)) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-3358 (((-784) $) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3050 ((|#1| $) NIL)) (-1326 ((|#1| |#1| $) 35)) (-3286 ((|#1| |#1| $) 37)) (-2468 (($ |#1| $) NIL)) (-2404 (((-784) $) 33)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2640 ((|#1| $) NIL)) (-3138 ((|#1| $) 31)) (-2352 ((|#1| $) 29)) (-2277 ((|#1| $) NIL)) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-2862 ((|#1| |#1| $) NIL)) (-3387 (((-112) $) 9)) (-3581 (($) NIL)) (-1384 ((|#1| $) NIL)) (-2535 (($) NIL) (($ (-657 |#1|)) 16)) (-1943 (((-784) $) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) NIL)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-3705 ((|#1| $) 13)) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4079 (($ (-657 |#1|)) NIL)) (-4362 ((|#1| $) NIL)) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-224 |#1|) (-13 (-261 |#1|) (-10 -8 (-15 -2535 ($ (-657 |#1|))))) (-1122)) (T -224)) -((-2535 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-224 *3))))) -(-13 (-261 |#1|) (-10 -8 (-15 -2535 ($ (-657 |#1|))))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-1632 (($ (-326 |#1|)) 24)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-2991 (((-112) $) NIL)) (-1624 (((-3 (-326 |#1|) "failed") $) NIL)) (-2884 (((-326 |#1|) $) NIL)) (-2212 (($ $) 32)) (-3843 (((-3 $ "failed") $) NIL)) (-4094 (((-112) $) NIL)) (-4083 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL)) (-2186 (((-326 |#1|) $) NIL)) (-1725 (($ $) 31)) (-2342 (((-1180) $) NIL)) (-2717 (((-112) $) NIL)) (-1471 (((-1142) $) NIL)) (-4097 (($ (-784)) NIL)) (-3625 (($ $) 33)) (-1770 (((-576) $) NIL)) (-3501 (((-877) $) 65) (($ (-576)) NIL) (($ (-326 |#1|)) NIL)) (-2313 (((-326 |#1|) $ $) NIL)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 26 T CONST)) (-2779 (($) NIL T CONST)) (-2933 (((-112) $ $) 29)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 20)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 25) (($ (-326 |#1|) $) 19))) -(((-225 |#1| |#2|) (-13 (-632 (-326 |#1|)) (-1060 (-326 |#1|)) (-10 -8 (-15 -2186 ((-326 |#1|) $)) (-15 -1725 ($ $)) (-15 -2212 ($ $)) (-15 -2313 ((-326 |#1|) $ $)) (-15 -4097 ($ (-784))) (-15 -2717 ((-112) $)) (-15 -2991 ((-112) $)) (-15 -1770 ((-576) $)) (-15 -4083 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -1632 ($ (-326 |#1|))) (-15 -3625 ($ $)))) (-13 (-1071) (-862)) (-657 (-1198))) (T -225)) -((-2186 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) (-14 *4 (-657 (-1198))))) (-1725 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1071) (-862))) (-14 *3 (-657 (-1198))))) (-2212 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1071) (-862))) (-14 *3 (-657 (-1198))))) (-2313 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) (-14 *4 (-657 (-1198))))) (-4097 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) (-14 *4 (-657 (-1198))))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) (-14 *4 (-657 (-1198))))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) (-14 *4 (-657 (-1198))))) (-1770 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) (-14 *4 (-657 (-1198))))) (-4083 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1071) (-862))) (-5 *1 (-225 *3 *4)) (-14 *4 (-657 (-1198))))) (-1632 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1071) (-862))) (-5 *1 (-225 *3 *4)) (-14 *4 (-657 (-1198))))) (-3625 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1071) (-862))) (-14 *3 (-657 (-1198)))))) -(-13 (-632 (-326 |#1|)) (-1060 (-326 |#1|)) (-10 -8 (-15 -2186 ((-326 |#1|) $)) (-15 -1725 ($ $)) (-15 -2212 ($ $)) (-15 -2313 ((-326 |#1|) $ $)) (-15 -4097 ($ (-784))) (-15 -2717 ((-112) $)) (-15 -2991 ((-112) $)) (-15 -1770 ((-576) $)) (-15 -4083 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -1632 ($ (-326 |#1|))) (-15 -3625 ($ $)))) -((-2400 (((-112) (-1180)) 26)) (-4157 (((-3 (-856 |#2|) "failed") (-624 |#2|) |#2| (-856 |#2|) (-856 |#2|) (-112)) 35)) (-3252 (((-3 (-112) "failed") (-1194 |#2|) (-856 |#2|) (-856 |#2|) (-112)) 84) (((-3 (-112) "failed") (-972 |#1|) (-1198) (-856 |#2|) (-856 |#2|) (-112)) 85))) -(((-226 |#1| |#2|) (-10 -7 (-15 -2400 ((-112) (-1180))) (-15 -4157 ((-3 (-856 |#2|) "failed") (-624 |#2|) |#2| (-856 |#2|) (-856 |#2|) (-112))) (-15 -3252 ((-3 (-112) "failed") (-972 |#1|) (-1198) (-856 |#2|) (-856 |#2|) (-112))) (-15 -3252 ((-3 (-112) "failed") (-1194 |#2|) (-856 |#2|) (-856 |#2|) (-112)))) (-13 (-464) (-1060 (-576)) (-652 (-576))) (-13 (-1224) (-29 |#1|))) (T -226)) -((-3252 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1194 *6)) (-5 *4 (-856 *6)) (-4 *6 (-13 (-1224) (-29 *5))) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-226 *5 *6)))) (-3252 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-972 *6)) (-5 *4 (-1198)) (-5 *5 (-856 *7)) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-4 *7 (-13 (-1224) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-4157 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-856 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1224) (-29 *6))) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-226 *6 *4)))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1224) (-29 *4)))))) -(-10 -7 (-15 -2400 ((-112) (-1180))) (-15 -4157 ((-3 (-856 |#2|) "failed") (-624 |#2|) |#2| (-856 |#2|) (-856 |#2|) (-112))) (-15 -3252 ((-3 (-112) "failed") (-972 |#1|) (-1198) (-856 |#2|) (-856 |#2|) (-112))) (-15 -3252 ((-3 (-112) "failed") (-1194 |#2|) (-856 |#2|) (-856 |#2|) (-112)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 98)) (-3931 (((-576) $) 33)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4374 (($ $) NIL)) (-2176 (($ $) 87)) (-2030 (($ $) 75)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-1896 (($ $) 66)) (-2864 (((-112) $ $) NIL)) (-2150 (($ $) 85)) (-2004 (($ $) 73)) (-1536 (((-576) $) 127)) (-2201 (($ $) 90)) (-2052 (($ $) 77)) (-4359 (($) NIL T CONST)) (-1886 (($ $) NIL)) (-1624 (((-3 (-576) "failed") $) 126) (((-3 (-419 (-576)) "failed") $) 123)) (-2884 (((-576) $) 124) (((-419 (-576)) $) 121)) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) 103)) (-2780 (((-419 (-576)) $ (-784)) 117) (((-419 (-576)) $ (-784) (-784)) 116)) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-4288 (((-941)) 28) (((-941) (-941)) NIL (|has| $ (-6 -4457)))) (-2828 (((-112) $) NIL)) (-1657 (($) 46)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL)) (-3182 (((-576) $) 40)) (-4094 (((-112) $) 99)) (-2082 (($ $ (-576)) NIL)) (-2234 (($ $) NIL)) (-2881 (((-112) $) 97)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3707 (($ $ $) 63) (($) 36 (-12 (-2712 (|has| $ (-6 -4449))) (-2712 (|has| $ (-6 -4457)))))) (-1611 (($ $ $) 62) (($) 35 (-12 (-2712 (|has| $ (-6 -4449))) (-2712 (|has| $ (-6 -4457)))))) (-1522 (((-576) $) 26)) (-4358 (($ $) 31)) (-2406 (($ $) 67)) (-3670 (($ $) 72)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-3803 (((-941) (-576)) NIL (|has| $ (-6 -4457)))) (-1471 (((-1142) $) 101)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2900 (($ $) NIL)) (-3427 (($ $) NIL)) (-3023 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-941)) 110)) (-1885 (((-430 $) $) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1801 (((-576) $) 27)) (-3812 (($) 45)) (-4067 (($ $) 71)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-4039 (((-941)) NIL) (((-941) (-941)) NIL (|has| $ (-6 -4457)))) (-2815 (($ $) 104) (($ $ (-784)) NIL)) (-1572 (((-941) (-576)) NIL (|has| $ (-6 -4457)))) (-2213 (($ $) 88)) (-2062 (($ $) 78)) (-2188 (($ $) 89)) (-2042 (($ $) 76)) (-2163 (($ $) 86)) (-2017 (($ $) 74)) (-4148 (((-390) $) 113) (((-227) $) 14) (((-908 (-390)) $) NIL) (((-548) $) 52)) (-3501 (((-877) $) 49) (($ (-576)) 152) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 152) (($ (-419 (-576))) NIL)) (-1960 (((-784)) NIL T CONST)) (-1893 (($ $) NIL)) (-3960 (((-941)) 34) (((-941) (-941)) NIL (|has| $ (-6 -4457)))) (-2046 (((-112) $ $) NIL)) (-4143 (((-941)) 24)) (-4110 (($ $) 93)) (-2100 (($ $) 81) (($ $ $) 119)) (-4041 (((-112) $ $) NIL)) (-2225 (($ $) 91)) (-2072 (($ $) 79)) (-4137 (($ $) 96)) (-2125 (($ $) 84)) (-2224 (($ $) 94)) (-2137 (($ $) 82)) (-4124 (($ $) 95)) (-2113 (($ $) 83)) (-2235 (($ $) 92)) (-2085 (($ $) 80)) (-1792 (($ $) 118)) (-2769 (($) 42 T CONST)) (-2779 (($) 43 T CONST)) (-3095 (((-1180) $) 18) (((-1180) $ (-112)) 20) (((-1294) (-835) $) 21) (((-1294) (-835) $ (-112)) 22)) (-2238 (($ $) 107)) (-2097 (($ $) NIL) (($ $ (-784)) NIL)) (-1717 (($ $ $) 109)) (-2985 (((-112) $ $) 56)) (-2963 (((-112) $ $) 54)) (-2933 (((-112) $ $) 64)) (-2973 (((-112) $ $) 55)) (-2954 (((-112) $ $) 53)) (-3034 (($ $ $) 44) (($ $ (-576)) 65)) (-3022 (($ $) 57) (($ $ $) 59)) (-3012 (($ $ $) 58)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) 68) (($ $ (-419 (-576))) 151) (($ $ $) 69)) (* (($ (-941) $) 32) (($ (-784) $) NIL) (($ (-576) $) 61) (($ $ $) 60) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-227) (-13 (-416) (-238) (-841) (-1224) (-626 (-548)) (-10 -8 (-15 -3034 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -3812 ($)) (-15 -4358 ($ $)) (-15 -2406 ($ $)) (-15 -2100 ($ $ $)) (-15 -2238 ($ $)) (-15 -1717 ($ $ $)) (-15 -2780 ((-419 (-576)) $ (-784))) (-15 -2780 ((-419 (-576)) $ (-784) (-784)))))) (T -227)) -((** (*1 *1 *1 *1) (-5 *1 (-227))) (-3034 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) (-3812 (*1 *1) (-5 *1 (-227))) (-4358 (*1 *1 *1) (-5 *1 (-227))) (-2406 (*1 *1 *1) (-5 *1 (-227))) (-2100 (*1 *1 *1 *1) (-5 *1 (-227))) (-2238 (*1 *1 *1) (-5 *1 (-227))) (-1717 (*1 *1 *1 *1) (-5 *1 (-227))) (-2780 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) (-2780 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-784)) (-5 *2 (-419 (-576))) (-5 *1 (-227))))) -(-13 (-416) (-238) (-841) (-1224) (-626 (-548)) (-10 -8 (-15 -3034 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -3812 ($)) (-15 -4358 ($ $)) (-15 -2406 ($ $)) (-15 -2100 ($ $ $)) (-15 -2238 ($ $)) (-15 -1717 ($ $ $)) (-15 -2780 ((-419 (-576)) $ (-784))) (-15 -2780 ((-419 (-576)) $ (-784) (-784))))) -((-4399 (((-171 (-227)) (-784) (-171 (-227))) 11) (((-227) (-784) (-227)) 12)) (-3289 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-2607 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-1379 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-3806 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-2751 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-2239 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-2467 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-3270 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-3480 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-2238 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-1717 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31))) -(((-228) (-10 -7 (-15 -2238 ((-227) (-227))) (-15 -2238 ((-171 (-227)) (-171 (-227)))) (-15 -1717 ((-227) (-227) (-227))) (-15 -1717 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3289 ((-227) (-227))) (-15 -3289 ((-171 (-227)) (-171 (-227)))) (-15 -1379 ((-227) (-227))) (-15 -1379 ((-171 (-227)) (-171 (-227)))) (-15 -4399 ((-227) (-784) (-227))) (-15 -4399 ((-171 (-227)) (-784) (-171 (-227)))) (-15 -2239 ((-227) (-227) (-227))) (-15 -2239 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3806 ((-227) (-227) (-227))) (-15 -3806 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2467 ((-227) (-227) (-227))) (-15 -2467 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2751 ((-227) (-227) (-227))) (-15 -2751 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3480 ((-171 (-227)) (-171 (-227)))) (-15 -3480 ((-227) (-227))) (-15 -3270 ((-227) (-227))) (-15 -3270 ((-171 (-227)) (-171 (-227)))) (-15 -2607 ((-227) (-227) (-227))) (-15 -2607 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228)) -((-2607 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2607 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3270 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2751 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2751 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2467 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2467 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3806 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3806 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2239 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2239 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4399 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-784)) (-5 *1 (-228)))) (-4399 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-784)) (-5 *1 (-228)))) (-1379 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1379 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3289 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3289 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1717 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1717 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2238 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2238 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))) -(-10 -7 (-15 -2238 ((-227) (-227))) (-15 -2238 ((-171 (-227)) (-171 (-227)))) (-15 -1717 ((-227) (-227) (-227))) (-15 -1717 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3289 ((-227) (-227))) (-15 -3289 ((-171 (-227)) (-171 (-227)))) (-15 -1379 ((-227) (-227))) (-15 -1379 ((-171 (-227)) (-171 (-227)))) (-15 -4399 ((-227) (-784) (-227))) (-15 -4399 ((-171 (-227)) (-784) (-171 (-227)))) (-15 -2239 ((-227) (-227) (-227))) (-15 -2239 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3806 ((-227) (-227) (-227))) (-15 -3806 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2467 ((-227) (-227) (-227))) (-15 -2467 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2751 ((-227) (-227) (-227))) (-15 -2751 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3480 ((-171 (-227)) (-171 (-227)))) (-15 -3480 ((-227) (-227))) (-15 -3270 ((-227) (-227))) (-15 -3270 ((-171 (-227)) (-171 (-227)))) (-15 -2607 ((-227) (-227) (-227))) (-15 -2607 ((-171 (-227)) (-171 (-227)) (-171 (-227))))) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3765 (($ (-784) (-784)) NIL)) (-2671 (($ $ $) NIL)) (-2153 (($ (-1289 |#1|)) NIL) (($ $) NIL)) (-1933 (($ |#1| |#1| |#1|) 33)) (-3864 (((-112) $) NIL)) (-1606 (($ $ (-576) (-576)) NIL)) (-1371 (($ $ (-576) (-576)) NIL)) (-2351 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-1506 (($ $) NIL)) (-3186 (((-112) $) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-2337 (($ $ (-576) (-576) $) NIL)) (-3682 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-657 (-576)) (-657 (-576)) $) NIL)) (-3779 (($ $ (-576) (-1289 |#1|)) NIL)) (-3726 (($ $ (-576) (-1289 |#1|)) NIL)) (-3243 (($ |#1| |#1| |#1|) 32)) (-1346 (($ (-784) |#1|) NIL)) (-4359 (($) NIL T CONST)) (-3590 (($ $) NIL (|has| |#1| (-317)))) (-2911 (((-1289 |#1|) $ (-576)) NIL)) (-3134 (($ |#1|) 31)) (-1936 (($ |#1|) 30)) (-1912 (($ |#1|) 29)) (-1542 (((-784) $) NIL (|has| |#1| (-568)))) (-2158 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2083 ((|#1| $ (-576) (-576)) NIL)) (-1458 (((-657 |#1|) $) NIL)) (-3662 (((-784) $) NIL (|has| |#1| (-568)))) (-1345 (((-657 (-1289 |#1|)) $) NIL (|has| |#1| (-568)))) (-2377 (((-784) $) NIL)) (-4109 (($ (-784) (-784) |#1|) NIL)) (-2387 (((-784) $) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-1969 ((|#1| $) NIL (|has| |#1| (-6 (-4468 "*"))))) (-2491 (((-576) $) NIL)) (-3770 (((-576) $) NIL)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3704 (((-576) $) NIL)) (-1429 (((-576) $) NIL)) (-2514 (($ (-657 (-657 |#1|))) 11) (($ (-784) (-784) (-1 |#1| (-576) (-576))) NIL)) (-2148 (($ (-1 |#1| |#1|) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2339 (((-657 (-657 |#1|)) $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3913 (((-3 $ "failed") $) NIL (|has| |#1| (-374)))) (-3827 (($) 12)) (-1474 (($ $ $) NIL)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-1987 (($ $ |#1|) NIL)) (-3418 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-657 (-576)) (-657 (-576))) NIL)) (-4277 (($ (-657 |#1|)) NIL) (($ (-657 $)) NIL)) (-2049 (((-112) $) NIL)) (-1493 ((|#1| $) NIL (|has| |#1| (-6 (-4468 "*"))))) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) NIL)) (-3815 (((-1289 |#1|) $ (-576)) NIL)) (-3501 (($ (-1289 |#1|)) NIL) (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-4299 (((-112) $) NIL)) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3022 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1289 |#1|) $ (-1289 |#1|)) 15) (((-1289 |#1|) (-1289 |#1|) $) NIL) (((-963 |#1|) $ (-963 |#1|)) 21)) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-229 |#1|) (-13 (-700 |#1| (-1289 |#1|) (-1289 |#1|)) (-10 -8 (-15 * ((-963 |#1|) $ (-963 |#1|))) (-15 -3827 ($)) (-15 -1912 ($ |#1|)) (-15 -1936 ($ |#1|)) (-15 -3134 ($ |#1|)) (-15 -3243 ($ |#1| |#1| |#1|)) (-15 -1933 ($ |#1| |#1| |#1|)))) (-13 (-374) (-1224))) (T -229)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224))) (-5 *1 (-229 *3)))) (-3827 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224))))) (-1912 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224))))) (-1936 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224))))) (-3134 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224))))) (-3243 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224))))) (-1933 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224)))))) -(-13 (-700 |#1| (-1289 |#1|) (-1289 |#1|)) (-10 -8 (-15 * ((-963 |#1|) $ (-963 |#1|))) (-15 -3827 ($)) (-15 -1912 ($ |#1|)) (-15 -1936 ($ |#1|)) (-15 -3134 ($ |#1|)) (-15 -3243 ($ |#1| |#1| |#1|)) (-15 -1933 ($ |#1| |#1| |#1|)))) -((-3162 (($ (-1 (-112) |#2|) $) 16)) (-3647 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-1504 (($) NIL) (($ (-657 |#2|)) 11)) (-2933 (((-112) $ $) 26))) -(((-230 |#1| |#2|) (-10 -8 (-15 -2933 ((-112) |#1| |#1|)) (-15 -3162 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3647 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3647 (|#1| |#2| |#1|)) (-15 -1504 (|#1| (-657 |#2|))) (-15 -1504 (|#1|))) (-231 |#2|) (-1122)) (T -230)) -NIL -(-10 -8 (-15 -2933 ((-112) |#1| |#1|)) (-15 -3162 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3647 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3647 (|#1| |#2| |#1|)) (-15 -1504 (|#1| (-657 |#2|))) (-15 -1504 (|#1|))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3793 (((-112) $ (-784)) 8)) (-3162 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4466)))) (-4359 (($) 7 T CONST)) (-3914 (($ $) 59 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3647 (($ |#1| $) 48 (|has| $ (-6 -4466))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4466)))) (-3895 (($ |#1| $) 58 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4466)))) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) 9)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3050 ((|#1| $) 40)) (-2468 (($ |#1| $) 41)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2277 ((|#1| $) 42)) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-1504 (($) 50) (($ (-657 |#1|)) 49)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-4148 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 51)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-4079 (($ (-657 |#1|)) 43)) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-231 |#1|) (-141) (-1122)) (T -231)) -NIL -(-13 (-240 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3843 (((-3 $ "failed") $) 37)) (-4094 (((-112) $) 35)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-2815 (($ $ (-1 |#1| |#1|) (-784)) 57) (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1198)) 55 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 53 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 52 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 51 (|has| |#1| (-920 (-1198)))) (($ $) 47 (|has| |#1| (-237))) (($ $ (-784)) 45 (|has| |#1| (-237)))) (-3501 (((-877) $) 12) (($ (-576)) 33)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-1 |#1| |#1|) (-784)) 59) (($ $ (-1 |#1| |#1|)) 58) (($ $ (-1198)) 54 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 50 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 49 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 48 (|has| |#1| (-920 (-1198)))) (($ $) 46 (|has| |#1| (-237))) (($ $ (-784)) 44 (|has| |#1| (-237)))) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-232 |#1|) (-141) (-1071)) (T -232)) -NIL -(-13 (-1071) (-272 |t#1|) (-10 -7 (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-918 (-1198))) (-6 (-918 (-1198))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-234 $) -2802 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-238) |has| |#1| (-238)) ((-237) -2802 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-739) . T) ((-912 $ #0=(-1198)) -2802 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-918 (-1198)) |has| |#1| (-918 (-1198))) ((-920 #0#) -2802 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-2097 ((|#2| $) 9))) -(((-233 |#1| |#2|) (-10 -8 (-15 -2097 (|#2| |#1|))) (-234 |#2|) (-1239)) (T -233)) -NIL -(-10 -8 (-15 -2097 (|#2| |#1|))) -((-2815 ((|#1| $) 7)) (-2097 ((|#1| $) 6))) -(((-234 |#1|) (-141) (-1239)) (T -234)) -((-2815 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1239)))) (-2097 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1239))))) -(-13 (-1239) (-10 -8 (-15 -2815 (|t#1| $)) (-15 -2097 (|t#1| $)))) -(((-1239) . T)) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-2815 (($ $ (-784)) 37) (($ $) 35)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2097 (($ $ (-784)) 38) (($ $) 36)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-235 |#1|) (-141) (-1071)) (T -235)) -NIL -(-13 (-111 |t#1| |t#1|) (-237) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-730 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-877)) . T) ((-234 $) . T) ((-237) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) |has| |#1| (-174)) ((-730 |#1|) |has| |#1| (-174)) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-2815 (($ $) NIL) (($ $ (-784)) 9)) (-2097 (($ $) NIL) (($ $ (-784)) 11))) -(((-236 |#1|) (-10 -8 (-15 -2097 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1| (-784))) (-15 -2097 (|#1| |#1|)) (-15 -2815 (|#1| |#1|))) (-237)) (T -236)) -NIL -(-10 -8 (-15 -2097 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1| (-784))) (-15 -2097 (|#1| |#1|)) (-15 -2815 (|#1| |#1|))) -((-2815 (($ $) 7) (($ $ (-784)) 10)) (-2097 (($ $) 6) (($ $ (-784)) 9))) -(((-237) (-141)) (T -237)) -((-2815 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-784)))) (-2097 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-784))))) -(-13 (-234 $) (-10 -8 (-15 -2815 ($ $ (-784))) (-15 -2097 ($ $ (-784))))) -(((-234 $) . T) ((-1239) . T)) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3843 (((-3 $ "failed") $) 37)) (-4094 (((-112) $) 35)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-2815 (($ $ (-784)) 42) (($ $) 40)) (-3501 (((-877) $) 12) (($ (-576)) 33)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-784)) 43) (($ $) 41)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(-13 (-1125) (-10 -8 (-15 -9 ($) -1512) (-15 -8 ($) -1512) (-15 -7 ($) -1512))) +((-3473 (((-112) $ $) NIL)) (-3293 (((-660 (-883)) $) NIL)) (-2713 (((-519) $) 8)) (-2810 (((-1183) $) NIL)) (-1811 (((-188) $) 10)) (-2740 (((-112) $ (-519)) NIL)) (-1474 (((-1145) $) NIL)) (-4407 (((-707 $) (-519)) 17)) (-4417 (((-660 (-112)) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-3013 (((-55) $) 12)) (-2970 (((-112) $ $) NIL))) +(((-189) (-13 (-187) (-10 -8 (-15 -4407 ((-707 $) (-519)))))) (T -189)) +((-4407 (*1 *2 *3) (-12 (-5 *3 (-519)) (-5 *2 (-707 (-189))) (-5 *1 (-189))))) +(-13 (-187) (-10 -8 (-15 -4407 ((-707 $) (-519))))) +((-1919 ((|#2| |#2|) 28)) (-1931 (((-112) |#2|) 19)) (-1926 (((-327 |#1|) |#2|) 12)) (-1937 (((-327 |#1|) |#2|) 14)) (-1896 ((|#2| |#2| (-1201)) 69) ((|#2| |#2|) 70)) (-1943 (((-171 (-327 |#1|)) |#2|) 10)) (-1907 ((|#2| |#2| (-1201)) 66) ((|#2| |#2|) 60))) +(((-190 |#1| |#2|) (-10 -7 (-15 -1896 (|#2| |#2|)) (-15 -1896 (|#2| |#2| (-1201))) (-15 -1907 (|#2| |#2|)) (-15 -1907 (|#2| |#2| (-1201))) (-15 -1926 ((-327 |#1|) |#2|)) (-15 -1937 ((-327 |#1|) |#2|)) (-15 -1931 ((-112) |#2|)) (-15 -1919 (|#2| |#2|)) (-15 -1943 ((-171 (-327 |#1|)) |#2|))) (-13 (-569) (-1063 (-577))) (-13 (-27) (-1227) (-443 (-171 |#1|)))) (T -190)) +((-1943 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-171 (-327 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 (-171 *4)))))) (-1919 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1063 (-577)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 (-171 *3)))))) (-1931 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 (-171 *4)))))) (-1937 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-327 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 (-171 *4)))))) (-1926 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-327 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 (-171 *4)))))) (-1907 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 (-171 *4)))))) (-1907 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1063 (-577)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 (-171 *3)))))) (-1896 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 (-171 *4)))))) (-1896 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1063 (-577)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 (-171 *3))))))) +(-10 -7 (-15 -1896 (|#2| |#2|)) (-15 -1896 (|#2| |#2| (-1201))) (-15 -1907 (|#2| |#2|)) (-15 -1907 (|#2| |#2| (-1201))) (-15 -1926 ((-327 |#1|) |#2|)) (-15 -1937 ((-327 |#1|) |#2|)) (-15 -1931 ((-112) |#2|)) (-15 -1919 (|#2| |#2|)) (-15 -1943 ((-171 (-327 |#1|)) |#2|))) +((-4431 (((-1292 (-705 (-975 |#1|))) (-1292 (-705 |#1|))) 26)) (-3544 (((-1292 (-705 (-420 (-975 |#1|)))) (-1292 (-705 |#1|))) 37))) +(((-191 |#1|) (-10 -7 (-15 -4431 ((-1292 (-705 (-975 |#1|))) (-1292 (-705 |#1|)))) (-15 -3544 ((-1292 (-705 (-420 (-975 |#1|)))) (-1292 (-705 |#1|))))) (-174)) (T -191)) +((-3544 (*1 *2 *3) (-12 (-5 *3 (-1292 (-705 *4))) (-4 *4 (-174)) (-5 *2 (-1292 (-705 (-420 (-975 *4))))) (-5 *1 (-191 *4)))) (-4431 (*1 *2 *3) (-12 (-5 *3 (-1292 (-705 *4))) (-4 *4 (-174)) (-5 *2 (-1292 (-705 (-975 *4)))) (-5 *1 (-191 *4))))) +(-10 -7 (-15 -4431 ((-1292 (-705 (-975 |#1|))) (-1292 (-705 |#1|)))) (-15 -3544 ((-1292 (-705 (-420 (-975 |#1|)))) (-1292 (-705 |#1|))))) +((-1401 (((-1203 (-420 (-577))) (-1203 (-420 (-577))) (-1203 (-420 (-577)))) 93)) (-1423 (((-1203 (-420 (-577))) (-660 (-577)) (-660 (-577))) 107)) (-4441 (((-1203 (-420 (-577))) (-944)) 54)) (-3217 (((-1203 (-420 (-577))) (-944)) 79)) (-3280 (((-420 (-577)) (-1203 (-420 (-577)))) 89)) (-1329 (((-1203 (-420 (-577))) (-944)) 37)) (-1364 (((-1203 (-420 (-577))) (-944)) 66)) (-1353 (((-1203 (-420 (-577))) (-944)) 61)) (-1389 (((-1203 (-420 (-577))) (-1203 (-420 (-577))) (-1203 (-420 (-577)))) 87)) (-3540 (((-1203 (-420 (-577))) (-944)) 29)) (-1378 (((-420 (-577)) (-1203 (-420 (-577))) (-1203 (-420 (-577)))) 91)) (-1342 (((-1203 (-420 (-577))) (-944)) 35)) (-1412 (((-1203 (-420 (-577))) (-660 (-944))) 100))) +(((-192) (-10 -7 (-15 -3540 ((-1203 (-420 (-577))) (-944))) (-15 -4441 ((-1203 (-420 (-577))) (-944))) (-15 -1329 ((-1203 (-420 (-577))) (-944))) (-15 -1342 ((-1203 (-420 (-577))) (-944))) (-15 -1353 ((-1203 (-420 (-577))) (-944))) (-15 -1364 ((-1203 (-420 (-577))) (-944))) (-15 -3217 ((-1203 (-420 (-577))) (-944))) (-15 -1378 ((-420 (-577)) (-1203 (-420 (-577))) (-1203 (-420 (-577))))) (-15 -1389 ((-1203 (-420 (-577))) (-1203 (-420 (-577))) (-1203 (-420 (-577))))) (-15 -3280 ((-420 (-577)) (-1203 (-420 (-577))))) (-15 -1401 ((-1203 (-420 (-577))) (-1203 (-420 (-577))) (-1203 (-420 (-577))))) (-15 -1412 ((-1203 (-420 (-577))) (-660 (-944)))) (-15 -1423 ((-1203 (-420 (-577))) (-660 (-577)) (-660 (-577)))))) (T -192)) +((-1423 (*1 *2 *3 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-1412 (*1 *2 *3) (-12 (-5 *3 (-660 (-944))) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-1401 (*1 *2 *2 *2) (-12 (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-3280 (*1 *2 *3) (-12 (-5 *3 (-1203 (-420 (-577)))) (-5 *2 (-420 (-577))) (-5 *1 (-192)))) (-1389 (*1 *2 *2 *2) (-12 (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-1378 (*1 *2 *3 *3) (-12 (-5 *3 (-1203 (-420 (-577)))) (-5 *2 (-420 (-577))) (-5 *1 (-192)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-1353 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-1342 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-4441 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192))))) +(-10 -7 (-15 -3540 ((-1203 (-420 (-577))) (-944))) (-15 -4441 ((-1203 (-420 (-577))) (-944))) (-15 -1329 ((-1203 (-420 (-577))) (-944))) (-15 -1342 ((-1203 (-420 (-577))) (-944))) (-15 -1353 ((-1203 (-420 (-577))) (-944))) (-15 -1364 ((-1203 (-420 (-577))) (-944))) (-15 -3217 ((-1203 (-420 (-577))) (-944))) (-15 -1378 ((-420 (-577)) (-1203 (-420 (-577))) (-1203 (-420 (-577))))) (-15 -1389 ((-1203 (-420 (-577))) (-1203 (-420 (-577))) (-1203 (-420 (-577))))) (-15 -3280 ((-420 (-577)) (-1203 (-420 (-577))))) (-15 -1401 ((-1203 (-420 (-577))) (-1203 (-420 (-577))) (-1203 (-420 (-577))))) (-15 -1412 ((-1203 (-420 (-577))) (-660 (-944)))) (-15 -1423 ((-1203 (-420 (-577))) (-660 (-577)) (-660 (-577))))) +((-1444 (((-431 (-1197 (-577))) (-577)) 38)) (-1433 (((-660 (-1197 (-577))) (-577)) 33)) (-3855 (((-1197 (-577)) (-577)) 28))) +(((-193) (-10 -7 (-15 -1433 ((-660 (-1197 (-577))) (-577))) (-15 -3855 ((-1197 (-577)) (-577))) (-15 -1444 ((-431 (-1197 (-577))) (-577))))) (T -193)) +((-1444 (*1 *2 *3) (-12 (-5 *2 (-431 (-1197 (-577)))) (-5 *1 (-193)) (-5 *3 (-577)))) (-3855 (*1 *2 *3) (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-193)) (-5 *3 (-577)))) (-1433 (*1 *2 *3) (-12 (-5 *2 (-660 (-1197 (-577)))) (-5 *1 (-193)) (-5 *3 (-577))))) +(-10 -7 (-15 -1433 ((-660 (-1197 (-577))) (-577))) (-15 -3855 ((-1197 (-577)) (-577))) (-15 -1444 ((-431 (-1197 (-577))) (-577)))) +((-2757 (((-1182 (-228)) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 132)) (-1762 (((-660 (-1183)) (-1182 (-228))) NIL)) (-1455 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 109)) (-2734 (((-660 (-228)) (-327 (-228)) (-1201) (-1119 (-859 (-228)))) NIL)) (-1751 (((-660 (-1183)) (-660 (-228))) NIL)) (-1773 (((-228) (-1119 (-859 (-228)))) 31)) (-1783 (((-228) (-1119 (-859 (-228)))) 32)) (-1480 (((-391) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 126)) (-1467 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 67)) (-1734 (((-1183) (-228)) NIL)) (-3382 (((-1183) (-660 (-1183))) 27)) (-1492 (((-1060) (-1201) (-1201) (-1060)) 13))) +(((-194) (-10 -7 (-15 -1455 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1467 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1773 ((-228) (-1119 (-859 (-228))))) (-15 -1783 ((-228) (-1119 (-859 (-228))))) (-15 -1480 ((-391) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2734 ((-660 (-228)) (-327 (-228)) (-1201) (-1119 (-859 (-228))))) (-15 -2757 ((-1182 (-228)) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1734 ((-1183) (-228))) (-15 -1751 ((-660 (-1183)) (-660 (-228)))) (-15 -1762 ((-660 (-1183)) (-1182 (-228)))) (-15 -3382 ((-1183) (-660 (-1183)))) (-15 -1492 ((-1060) (-1201) (-1201) (-1060))))) (T -194)) +((-1492 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1060)) (-5 *3 (-1201)) (-5 *1 (-194)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-1183)) (-5 *1 (-194)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-1182 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-194)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-660 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-194)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1183)) (-5 *1 (-194)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-1182 (-228))) (-5 *1 (-194)))) (-2734 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-1201)) (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-660 (-228))) (-5 *1 (-194)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-194)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-194)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-194)))) (-1467 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) +(-10 -7 (-15 -1455 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1467 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1773 ((-228) (-1119 (-859 (-228))))) (-15 -1783 ((-228) (-1119 (-859 (-228))))) (-15 -1480 ((-391) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2734 ((-660 (-228)) (-327 (-228)) (-1201) (-1119 (-859 (-228))))) (-15 -2757 ((-1182 (-228)) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1734 ((-1183) (-228))) (-15 -1751 ((-660 (-1183)) (-660 (-228)))) (-15 -1762 ((-660 (-1183)) (-1182 (-228)))) (-15 -3382 ((-1183) (-660 (-1183)))) (-15 -1492 ((-1060) (-1201) (-1201) (-1060)))) +((-3473 (((-112) $ $) NIL)) (-4195 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 61) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 33) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-195) (-803)) (T -195)) +NIL +(-803) +((-3473 (((-112) $ $) NIL)) (-4195 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 66) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 44) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-196) (-803)) (T -196)) +NIL +(-803) +((-3473 (((-112) $ $) NIL)) (-4195 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 81) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 46) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-197) (-803)) (T -197)) +NIL +(-803) +((-3473 (((-112) $ $) NIL)) (-4195 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 63) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 36) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-198) (-803)) (T -198)) +NIL +(-803) +((-3473 (((-112) $ $) NIL)) (-4195 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 76) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 40) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-199) (-803)) (T -199)) +NIL +(-803) +((-3473 (((-112) $ $) NIL)) (-4195 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 93) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 49) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-200) (-803)) (T -200)) +NIL +(-803) +((-3473 (((-112) $ $) NIL)) (-4195 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 90) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 51) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-201) (-803)) (T -201)) +NIL +(-803) +((-3473 (((-112) $ $) NIL)) (-4195 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 78) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 44) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-202) (-803)) (T -202)) +NIL +(-803) +((-3473 (((-112) $ $) NIL)) (-4195 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 76)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 35)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-203) (-803)) (T -203)) +NIL +(-803) +((-3473 (((-112) $ $) NIL)) (-4195 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 77)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 42)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-204) (-803)) (T -204)) +NIL +(-803) +((-3473 (((-112) $ $) NIL)) (-4195 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 105) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) NIL)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 86) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-205) (-803)) (T -205)) +NIL +(-803) +((-1502 (((-3 (-2 (|:| -1823 (-115)) (|:| |w| (-228))) "failed") (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 109)) (-1523 (((-577) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 59)) (-1513 (((-3 (-660 (-228)) "failed") (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 90))) +(((-206) (-10 -7 (-15 -1502 ((-3 (-2 (|:| -1823 (-115)) (|:| |w| (-228))) "failed") (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1513 ((-3 (-660 (-228)) "failed") (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1523 ((-577) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (T -206)) +((-1523 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-577)) (-5 *1 (-206)))) (-1513 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-660 (-228))) (-5 *1 (-206)))) (-1502 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| -1823 (-115)) (|:| |w| (-228)))) (-5 *1 (-206))))) +(-10 -7 (-15 -1502 ((-3 (-2 (|:| -1823 (-115)) (|:| |w| (-228))) "failed") (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1513 ((-3 (-660 (-228)) "failed") (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1523 ((-577) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) +((-1579 (((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 49)) (-1568 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 157)) (-1557 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-705 (-327 (-228)))) 112)) (-1547 (((-391) (-705 (-327 (-228)))) 140)) (-3187 (((-705 (-327 (-228))) (-1292 (-327 (-228))) (-660 (-1201))) 136)) (-1612 (((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 37)) (-1590 (((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 53)) (-3280 (((-705 (-327 (-228))) (-705 (-327 (-228))) (-660 (-1201)) (-1292 (-327 (-228)))) 125)) (-1535 (((-391) (-391) (-660 (-391))) 133) (((-391) (-391) (-391)) 128)) (-1600 (((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 45))) +(((-207) (-10 -7 (-15 -1535 ((-391) (-391) (-391))) (-15 -1535 ((-391) (-391) (-660 (-391)))) (-15 -1547 ((-391) (-705 (-327 (-228))))) (-15 -3187 ((-705 (-327 (-228))) (-1292 (-327 (-228))) (-660 (-1201)))) (-15 -3280 ((-705 (-327 (-228))) (-705 (-327 (-228))) (-660 (-1201)) (-1292 (-327 (-228))))) (-15 -1557 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-705 (-327 (-228))))) (-15 -1568 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1579 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1590 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1600 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1612 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (T -207)) +((-1612 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-1600 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-1590 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-207)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-705 (-327 (-228)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-207)))) (-3280 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-705 (-327 (-228)))) (-5 *3 (-660 (-1201))) (-5 *4 (-1292 (-327 (-228)))) (-5 *1 (-207)))) (-3187 (*1 *2 *3 *4) (-12 (-5 *3 (-1292 (-327 (-228)))) (-5 *4 (-660 (-1201))) (-5 *2 (-705 (-327 (-228)))) (-5 *1 (-207)))) (-1547 (*1 *2 *3) (-12 (-5 *3 (-705 (-327 (-228)))) (-5 *2 (-391)) (-5 *1 (-207)))) (-1535 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-391))) (-5 *2 (-391)) (-5 *1 (-207)))) (-1535 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-207))))) +(-10 -7 (-15 -1535 ((-391) (-391) (-391))) (-15 -1535 ((-391) (-391) (-660 (-391)))) (-15 -1547 ((-391) (-705 (-327 (-228))))) (-15 -3187 ((-705 (-327 (-228))) (-1292 (-327 (-228))) (-660 (-1201)))) (-15 -3280 ((-705 (-327 (-228))) (-705 (-327 (-228))) (-660 (-1201)) (-1292 (-327 (-228))))) (-15 -1557 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-705 (-327 (-228))))) (-15 -1568 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1579 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1590 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1600 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -1612 ((-391) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) +((-3473 (((-112) $ $) NIL)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 43)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-4305 (((-1060) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 75)) (-2970 (((-112) $ $) NIL))) +(((-208) (-816)) (T -208)) +NIL +(-816) +((-3473 (((-112) $ $) NIL)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 43)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-4305 (((-1060) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 73)) (-2970 (((-112) $ $) NIL))) +(((-209) (-816)) (T -209)) +NIL +(-816) +((-3473 (((-112) $ $) NIL)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 40)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-4305 (((-1060) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 76)) (-2970 (((-112) $ $) NIL))) +(((-210) (-816)) (T -210)) +NIL +(-816) +((-3473 (((-112) $ $) NIL)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 48)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-4305 (((-1060) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 88)) (-2970 (((-112) $ $) NIL))) +(((-211) (-816)) (T -211)) +NIL +(-816) +((-3435 (((-660 (-1201)) (-1201) (-787)) 26)) (-1627 (((-327 (-228)) (-327 (-228))) 35)) (-1650 (((-112) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) 87)) (-1640 (((-112) (-228) (-228) (-660 (-327 (-228)))) 47))) +(((-212) (-10 -7 (-15 -3435 ((-660 (-1201)) (-1201) (-787))) (-15 -1627 ((-327 (-228)) (-327 (-228)))) (-15 -1640 ((-112) (-228) (-228) (-660 (-327 (-228))))) (-15 -1650 ((-112) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228))))))) (T -212)) +((-1650 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-1640 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-660 (-327 (-228)))) (-5 *3 (-228)) (-5 *2 (-112)) (-5 *1 (-212)))) (-1627 (*1 *2 *2) (-12 (-5 *2 (-327 (-228))) (-5 *1 (-212)))) (-3435 (*1 *2 *3 *4) (-12 (-5 *4 (-787)) (-5 *2 (-660 (-1201))) (-5 *1 (-212)) (-5 *3 (-1201))))) +(-10 -7 (-15 -3435 ((-660 (-1201)) (-1201) (-787))) (-15 -1627 ((-327 (-228)) (-327 (-228)))) (-15 -1640 ((-112) (-228) (-228) (-660 (-327 (-228))))) (-15 -1650 ((-112) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))))) +((-3473 (((-112) $ $) NIL)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) 28)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-1842 (((-1060) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) 70)) (-2970 (((-112) $ $) NIL))) +(((-213) (-916)) (T -213)) +NIL +(-916) +((-3473 (((-112) $ $) NIL)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) 24)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-1842 (((-1060) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) NIL)) (-2970 (((-112) $ $) NIL))) +(((-214) (-916)) (T -214)) +NIL +(-916) +((-3473 (((-112) $ $) NIL)) (-2128 ((|#2| $ (-787) |#2|) 11)) (-2117 ((|#2| $ (-787)) 10)) (-4113 (($) 8)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 23)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 13))) +(((-215 |#1| |#2|) (-13 (-1125) (-10 -8 (-15 -4113 ($)) (-15 -2117 (|#2| $ (-787))) (-15 -2128 (|#2| $ (-787) |#2|)))) (-944) (-1125)) (T -215)) +((-4113 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1125)))) (-2117 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *2 (-1125)) (-5 *1 (-215 *4 *2)) (-14 *4 (-944)))) (-2128 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-215 *4 *2)) (-14 *4 (-944)) (-4 *2 (-1125))))) +(-13 (-1125) (-10 -8 (-15 -4113 ($)) (-15 -2117 (|#2| $ (-787))) (-15 -2128 (|#2| $ (-787) |#2|)))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-1696 (((-1297) $) 37) (((-1297) $ (-944) (-944)) 41)) (-2872 (($ $ (-1014)) 19) (((-251 (-1183)) $ (-1201)) 15)) (-2072 (((-1297) $) 35)) (-3544 (((-880) $) 32) (($ (-660 |#1|)) 8)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $ $) 27)) (-3055 (($ $ $) 22))) +(((-216 |#1|) (-13 (-1125) (-629 (-660 |#1|)) (-10 -8 (-15 -2872 ($ $ (-1014))) (-15 -2872 ((-251 (-1183)) $ (-1201))) (-15 -3055 ($ $ $)) (-15 -3066 ($ $ $)) (-15 -2072 ((-1297) $)) (-15 -1696 ((-1297) $)) (-15 -1696 ((-1297) $ (-944) (-944))))) (-13 (-865) (-10 -8 (-15 -2872 ((-1183) $ (-1201))) (-15 -2072 ((-1297) $)) (-15 -1696 ((-1297) $))))) (T -216)) +((-2872 (*1 *1 *1 *2) (-12 (-5 *2 (-1014)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-865) (-10 -8 (-15 -2872 ((-1183) $ (-1201))) (-15 -2072 ((-1297) $)) (-15 -1696 ((-1297) $))))))) (-2872 (*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-251 (-1183))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-865) (-10 -8 (-15 -2872 ((-1183) $ *3)) (-15 -2072 ((-1297) $)) (-15 -1696 ((-1297) $))))))) (-3055 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-865) (-10 -8 (-15 -2872 ((-1183) $ (-1201))) (-15 -2072 ((-1297) $)) (-15 -1696 ((-1297) $))))))) (-3066 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-865) (-10 -8 (-15 -2872 ((-1183) $ (-1201))) (-15 -2072 ((-1297) $)) (-15 -1696 ((-1297) $))))))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-865) (-10 -8 (-15 -2872 ((-1183) $ (-1201))) (-15 -2072 (*2 $)) (-15 -1696 (*2 $))))))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-865) (-10 -8 (-15 -2872 ((-1183) $ (-1201))) (-15 -2072 (*2 $)) (-15 -1696 (*2 $))))))) (-1696 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1297)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-865) (-10 -8 (-15 -2872 ((-1183) $ (-1201))) (-15 -2072 (*2 $)) (-15 -1696 (*2 $)))))))) +(-13 (-1125) (-629 (-660 |#1|)) (-10 -8 (-15 -2872 ($ $ (-1014))) (-15 -2872 ((-251 (-1183)) $ (-1201))) (-15 -3055 ($ $ $)) (-15 -3066 ($ $ $)) (-15 -2072 ((-1297) $)) (-15 -1696 ((-1297) $)) (-15 -1696 ((-1297) $ (-944) (-944))))) +((-3473 (((-112) $ $) NIL)) (-2229 (((-787)) NIL)) (-1910 (($) NIL)) (-3732 (($ $ $) NIL) (($) NIL T CONST)) (-3201 (($ $ $) NIL) (($) NIL T CONST)) (-4038 (((-944) $) NIL)) (-2810 (((-1183) $) NIL)) (-3222 (($ (-944)) 10)) (-1474 (((-1145) $) NIL)) (-3163 (($ (-651 |#1|)) 11)) (-3544 (((-880) $) 18)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL))) +(((-217 |#1|) (-13 (-860) (-10 -8 (-15 -3163 ($ (-651 |#1|))))) (-660 (-1201))) (T -217)) +((-3163 (*1 *1 *2) (-12 (-5 *2 (-651 *3)) (-14 *3 (-660 (-1201))) (-5 *1 (-217 *3))))) +(-13 (-860) (-10 -8 (-15 -3163 ($ (-651 |#1|))))) +((-3516 ((|#2| |#4| (-1 |#2| |#2|)) 49))) +(((-218 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#2| |#4| (-1 |#2| |#2|)))) (-375) (-1268 |#1|) (-1268 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -218)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-375)) (-4 *6 (-1268 (-420 *2))) (-4 *2 (-1268 *5)) (-5 *1 (-218 *5 *2 *6 *3)) (-4 *3 (-354 *5 *2 *6))))) +(-10 -7 (-15 -3516 (|#2| |#4| (-1 |#2| |#2|)))) +((-3559 ((|#2| |#2| (-787) |#2|) 55)) (-3548 ((|#2| |#2| (-787) |#2|) 51)) (-3245 (((-660 |#2|) (-660 (-2 (|:| |deg| (-787)) (|:| -3425 |#2|)))) 79)) (-3537 (((-660 (-2 (|:| |deg| (-787)) (|:| -3425 |#2|))) |#2|) 73)) (-3569 (((-112) |#2|) 71)) (-1589 (((-431 |#2|) |#2|) 91)) (-1902 (((-431 |#2|) |#2|) 90)) (-3257 ((|#2| |#2| (-787) |#2|) 49)) (-3526 (((-2 (|:| |cont| |#1|) (|:| -3363 (-660 (-2 (|:| |irr| |#2|) (|:| -3504 (-577)))))) |#2| (-112)) 85))) +(((-219 |#1| |#2|) (-10 -7 (-15 -1902 ((-431 |#2|) |#2|)) (-15 -1589 ((-431 |#2|) |#2|)) (-15 -3526 ((-2 (|:| |cont| |#1|) (|:| -3363 (-660 (-2 (|:| |irr| |#2|) (|:| -3504 (-577)))))) |#2| (-112))) (-15 -3537 ((-660 (-2 (|:| |deg| (-787)) (|:| -3425 |#2|))) |#2|)) (-15 -3245 ((-660 |#2|) (-660 (-2 (|:| |deg| (-787)) (|:| -3425 |#2|))))) (-15 -3257 (|#2| |#2| (-787) |#2|)) (-15 -3548 (|#2| |#2| (-787) |#2|)) (-15 -3559 (|#2| |#2| (-787) |#2|)) (-15 -3569 ((-112) |#2|))) (-361) (-1268 |#1|)) (T -219)) +((-3569 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-219 *4 *3)) (-4 *3 (-1268 *4)))) (-3559 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-787)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) (-4 *2 (-1268 *4)))) (-3548 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-787)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) (-4 *2 (-1268 *4)))) (-3257 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-787)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) (-4 *2 (-1268 *4)))) (-3245 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| |deg| (-787)) (|:| -3425 *5)))) (-4 *5 (-1268 *4)) (-4 *4 (-361)) (-5 *2 (-660 *5)) (-5 *1 (-219 *4 *5)))) (-3537 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-660 (-2 (|:| |deg| (-787)) (|:| -3425 *3)))) (-5 *1 (-219 *4 *3)) (-4 *3 (-1268 *4)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-361)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3363 (-660 (-2 (|:| |irr| *3) (|:| -3504 (-577))))))) (-5 *1 (-219 *5 *3)) (-4 *3 (-1268 *5)))) (-1589 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-219 *4 *3)) (-4 *3 (-1268 *4)))) (-1902 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-219 *4 *3)) (-4 *3 (-1268 *4))))) +(-10 -7 (-15 -1902 ((-431 |#2|) |#2|)) (-15 -1589 ((-431 |#2|) |#2|)) (-15 -3526 ((-2 (|:| |cont| |#1|) (|:| -3363 (-660 (-2 (|:| |irr| |#2|) (|:| -3504 (-577)))))) |#2| (-112))) (-15 -3537 ((-660 (-2 (|:| |deg| (-787)) (|:| -3425 |#2|))) |#2|)) (-15 -3245 ((-660 |#2|) (-660 (-2 (|:| |deg| (-787)) (|:| -3425 |#2|))))) (-15 -3257 (|#2| |#2| (-787) |#2|)) (-15 -3548 (|#2| |#2| (-787) |#2|)) (-15 -3559 (|#2| |#2| (-787) |#2|)) (-15 -3569 ((-112) |#2|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-4105 (((-577) $) NIL (|has| (-577) (-318)))) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)))) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)))) (-1939 (((-112) $ $) NIL)) (-3010 (((-577) $) NIL (|has| (-577) (-836)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL) (((-3 (-1201) "failed") $) NIL (|has| (-577) (-1063 (-1201)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-577) (-1063 (-577)))) (((-3 (-577) "failed") $) NIL (|has| (-577) (-1063 (-577))))) (-2921 (((-577) $) NIL) (((-1201) $) NIL (|has| (-577) (-1063 (-1201)))) (((-420 (-577)) $) NIL (|has| (-577) (-1063 (-577)))) (((-577) $) NIL (|has| (-577) (-1063 (-577))))) (-3418 (($ $ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| (-577) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-577) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL) (((-705 (-577)) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($) NIL (|has| (-577) (-558)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-3567 (((-112) $) NIL (|has| (-577) (-836)))) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| (-577) (-905 (-577)))) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| (-577) (-905 (-391))))) (-2487 (((-112) $) NIL)) (-2240 (($ $) NIL)) (-1623 (((-577) $) NIL)) (-4021 (((-3 $ "failed") $) NIL (|has| (-577) (-1177)))) (-3578 (((-112) $) NIL (|has| (-577) (-836)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3732 (($ $ $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| (-577) (-865)))) (-4087 (($ (-1 (-577) (-577)) $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| (-577) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-577) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL) (((-705 (-577)) (-1292 $)) NIL)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1709 (($) NIL (|has| (-577) (-1177)) CONST)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-4093 (($ $) NIL (|has| (-577) (-318))) (((-420 (-577)) $) NIL)) (-4119 (((-577) $) NIL (|has| (-577) (-558)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)))) (-1902 (((-431 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3280 (($ $ (-660 (-577)) (-660 (-577))) NIL (|has| (-577) (-320 (-577)))) (($ $ (-577) (-577)) NIL (|has| (-577) (-320 (-577)))) (($ $ (-305 (-577))) NIL (|has| (-577) (-320 (-577)))) (($ $ (-660 (-305 (-577)))) NIL (|has| (-577) (-320 (-577)))) (($ $ (-660 (-1201)) (-660 (-577))) NIL (|has| (-577) (-527 (-1201) (-577)))) (($ $ (-1201) (-577)) NIL (|has| (-577) (-527 (-1201) (-577))))) (-1927 (((-787) $) NIL)) (-2872 (($ $ (-577)) NIL (|has| (-577) (-297 (-577) (-577))))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2852 (($ $ (-1 (-577) (-577))) NIL) (($ $ (-1 (-577) (-577)) (-787)) NIL) (($ $ (-1201)) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-577) (-923 (-1201)))) (($ $) NIL (|has| (-577) (-238))) (($ $ (-787)) NIL (|has| (-577) (-238)))) (-2227 (($ $) NIL)) (-1637 (((-577) $) NIL)) (-3580 (($ (-420 (-577))) 9)) (-4152 (((-911 (-577)) $) NIL (|has| (-577) (-627 (-911 (-577))))) (((-911 (-391)) $) NIL (|has| (-577) (-627 (-911 (-391))))) (((-549) $) NIL (|has| (-577) (-627 (-549)))) (((-391) $) NIL (|has| (-577) (-1047))) (((-228) $) NIL (|has| (-577) (-1047)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| (-577) (-932))))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) 8) (($ (-577)) NIL) (($ (-1201)) NIL (|has| (-577) (-1063 (-1201)))) (((-420 (-577)) $) NIL) (((-1029 10) $) 10)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| (-577) (-932))) (|has| (-577) (-146))))) (-4068 (((-787)) NIL T CONST)) (-4132 (((-577) $) NIL (|has| (-577) (-558)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-1654 (($ $) NIL (|has| (-577) (-836)))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-1 (-577) (-577))) NIL) (($ $ (-1 (-577) (-577)) (-787)) NIL) (($ $ (-1201)) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-577) (-923 (-1201)))) (($ $) NIL (|has| (-577) (-238))) (($ $ (-787)) NIL (|has| (-577) (-238)))) (-3025 (((-112) $ $) NIL (|has| (-577) (-865)))) (-3000 (((-112) $ $) NIL (|has| (-577) (-865)))) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-577) (-865)))) (-2990 (((-112) $ $) NIL (|has| (-577) (-865)))) (-3077 (($ $ $) NIL) (($ (-577) (-577)) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ (-577) $) NIL) (($ $ (-577)) NIL))) +(((-220) (-13 (-1017 (-577)) (-626 (-420 (-577))) (-626 (-1029 10)) (-10 -8 (-15 -4093 ((-420 (-577)) $)) (-15 -3580 ($ (-420 (-577))))))) (T -220)) +((-4093 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-220)))) (-3580 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-220))))) +(-13 (-1017 (-577)) (-626 (-420 (-577))) (-626 (-1029 10)) (-10 -8 (-15 -4093 ((-420 (-577)) $)) (-15 -3580 ($ (-420 (-577)))))) +((-3473 (((-112) $ $) NIL)) (-2790 (((-1143) $) 13)) (-2810 (((-1183) $) NIL)) (-3494 (((-496) $) 10)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 23) (($ (-1206)) NIL) (((-1206) $) NIL)) (-2724 (((-1160) $) 15)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-221) (-13 (-1108) (-10 -8 (-15 -3494 ((-496) $)) (-15 -2790 ((-1143) $)) (-15 -2724 ((-1160) $))))) (T -221)) +((-3494 (*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-221)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-221)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-221))))) +(-13 (-1108) (-10 -8 (-15 -3494 ((-496) $)) (-15 -2790 ((-1143) $)) (-15 -2724 ((-1160) $)))) +((-4147 (((-3 (|:| |f1| (-859 |#2|)) (|:| |f2| (-660 (-859 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1117 (-859 |#2|)) (-1183)) 29) (((-3 (|:| |f1| (-859 |#2|)) (|:| |f2| (-660 (-859 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1117 (-859 |#2|))) 25)) (-3587 (((-3 (|:| |f1| (-859 |#2|)) (|:| |f2| (-660 (-859 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1201) (-859 |#2|) (-859 |#2|) (-112)) 17))) +(((-222 |#1| |#2|) (-10 -7 (-15 -4147 ((-3 (|:| |f1| (-859 |#2|)) (|:| |f2| (-660 (-859 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1117 (-859 |#2|)))) (-15 -4147 ((-3 (|:| |f1| (-859 |#2|)) (|:| |f2| (-660 (-859 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1117 (-859 |#2|)) (-1183))) (-15 -3587 ((-3 (|:| |f1| (-859 |#2|)) (|:| |f2| (-660 (-859 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1201) (-859 |#2|) (-859 |#2|) (-112)))) (-13 (-318) (-148) (-1063 (-577)) (-654 (-577))) (-13 (-1227) (-982) (-29 |#1|))) (T -222)) +((-3587 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1201)) (-5 *6 (-112)) (-4 *7 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-4 *3 (-13 (-1227) (-982) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-859 *3)) (|:| |f2| (-660 (-859 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *7 *3)) (-5 *5 (-859 *3)))) (-4147 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117 (-859 *3))) (-5 *5 (-1183)) (-4 *3 (-13 (-1227) (-982) (-29 *6))) (-4 *6 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 (|:| |f1| (-859 *3)) (|:| |f2| (-660 (-859 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6 *3)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-1117 (-859 *3))) (-4 *3 (-13 (-1227) (-982) (-29 *5))) (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 (|:| |f1| (-859 *3)) (|:| |f2| (-660 (-859 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5 *3))))) +(-10 -7 (-15 -4147 ((-3 (|:| |f1| (-859 |#2|)) (|:| |f2| (-660 (-859 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1117 (-859 |#2|)))) (-15 -4147 ((-3 (|:| |f1| (-859 |#2|)) (|:| |f2| (-660 (-859 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1117 (-859 |#2|)) (-1183))) (-15 -3587 ((-3 (|:| |f1| (-859 |#2|)) (|:| |f2| (-660 (-859 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1201) (-859 |#2|) (-859 |#2|) (-112)))) +((-4147 (((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-420 (-975 |#1|)))) (-1183)) 49) (((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-420 (-975 |#1|))))) 46) (((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-327 |#1|))) (-1183)) 50) (((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-327 |#1|)))) 22))) +(((-223 |#1|) (-10 -7 (-15 -4147 ((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-327 |#1|))))) (-15 -4147 ((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-327 |#1|))) (-1183))) (-15 -4147 ((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-420 (-975 |#1|)))))) (-15 -4147 ((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-420 (-975 |#1|)))) (-1183)))) (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (T -223)) +((-4147 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117 (-859 (-420 (-975 *6))))) (-5 *5 (-1183)) (-5 *3 (-420 (-975 *6))) (-4 *6 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 (|:| |f1| (-859 (-327 *6))) (|:| |f2| (-660 (-859 (-327 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *6)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-1117 (-859 (-420 (-975 *5))))) (-5 *3 (-420 (-975 *5))) (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 (|:| |f1| (-859 (-327 *5))) (|:| |f2| (-660 (-859 (-327 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *5)))) (-4147 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-420 (-975 *6))) (-5 *4 (-1117 (-859 (-327 *6)))) (-5 *5 (-1183)) (-4 *6 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 (|:| |f1| (-859 (-327 *6))) (|:| |f2| (-660 (-859 (-327 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *6)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1117 (-859 (-327 *5)))) (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 (|:| |f1| (-859 (-327 *5))) (|:| |f2| (-660 (-859 (-327 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *5))))) +(-10 -7 (-15 -4147 ((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-327 |#1|))))) (-15 -4147 ((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-327 |#1|))) (-1183))) (-15 -4147 ((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-420 (-975 |#1|)))))) (-15 -4147 ((-3 (|:| |f1| (-859 (-327 |#1|))) (|:| |f2| (-660 (-859 (-327 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-420 (-975 |#1|)) (-1117 (-859 (-420 (-975 |#1|)))) (-1183)))) +((-3654 (((-2 (|:| -3972 (-1197 |#1|)) (|:| |deg| (-944))) (-1197 |#1|)) 26)) (-2027 (((-660 (-327 |#2|)) (-327 |#2|) (-944)) 51))) +(((-224 |#1| |#2|) (-10 -7 (-15 -3654 ((-2 (|:| -3972 (-1197 |#1|)) (|:| |deg| (-944))) (-1197 |#1|))) (-15 -2027 ((-660 (-327 |#2|)) (-327 |#2|) (-944)))) (-1074) (-569)) (T -224)) +((-2027 (*1 *2 *3 *4) (-12 (-5 *4 (-944)) (-4 *6 (-569)) (-5 *2 (-660 (-327 *6))) (-5 *1 (-224 *5 *6)) (-5 *3 (-327 *6)) (-4 *5 (-1074)))) (-3654 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-5 *2 (-2 (|:| -3972 (-1197 *4)) (|:| |deg| (-944)))) (-5 *1 (-224 *4 *5)) (-5 *3 (-1197 *4)) (-4 *5 (-569))))) +(-10 -7 (-15 -3654 ((-2 (|:| -3972 (-1197 |#1|)) (|:| |deg| (-944))) (-1197 |#1|))) (-15 -2027 ((-660 (-327 |#2|)) (-327 |#2|) (-944)))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3971 ((|#1| $) NIL)) (-1436 ((|#1| $) 30)) (-3828 (((-112) $ (-787)) NIL)) (-1534 (($) NIL T CONST)) (-2289 (($ $) NIL)) (-3645 (($ $) 39)) (-2367 ((|#1| |#1| $) NIL)) (-2357 ((|#1| $) NIL)) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-3402 (((-787) $) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-4330 ((|#1| $) NIL)) (-3946 ((|#1| |#1| $) 35)) (-3934 ((|#1| |#1| $) 37)) (-2881 (($ |#1| $) NIL)) (-2440 (((-787) $) 33)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-2276 ((|#1| $) NIL)) (-3922 ((|#1| $) 31)) (-3911 ((|#1| $) 29)) (-3530 ((|#1| $) NIL)) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-2311 ((|#1| |#1| $) NIL)) (-3697 (((-112) $) 9)) (-3639 (($) NIL)) (-2300 ((|#1| $) NIL)) (-3982 (($) NIL) (($ (-660 |#1|)) 16)) (-1965 (((-787) $) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) NIL)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-3959 ((|#1| $) 13)) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3541 (($ (-660 |#1|)) NIL)) (-2265 ((|#1| $) NIL)) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-225 |#1|) (-13 (-262 |#1|) (-10 -8 (-15 -3982 ($ (-660 |#1|))))) (-1125)) (T -225)) +((-3982 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-225 *3))))) +(-13 (-262 |#1|) (-10 -8 (-15 -3982 ($ (-660 |#1|))))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3607 (($ (-327 |#1|)) 24)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-1819 (((-112) $) NIL)) (-1628 (((-3 (-327 |#1|) "failed") $) NIL)) (-2921 (((-327 |#1|) $) NIL)) (-2248 (($ $) 32)) (-4187 (((-3 $ "failed") $) NIL)) (-2487 (((-112) $) NIL)) (-4087 (($ (-1 (-327 |#1|) (-327 |#1|)) $) NIL)) (-2221 (((-327 |#1|) $) NIL)) (-3625 (($ $) 31)) (-2810 (((-1183) $) NIL)) (-3614 (((-112) $) NIL)) (-1474 (((-1145) $) NIL)) (-4101 (($ (-787)) NIL)) (-3596 (($ $) 33)) (-2887 (((-577) $) NIL)) (-3544 (((-880) $) 65) (($ (-577)) NIL) (($ (-327 |#1|)) NIL)) (-2322 (((-327 |#1|) $ $) NIL)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 26 T CONST)) (-2816 (($) NIL T CONST)) (-2970 (((-112) $ $) 29)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) 20)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 25) (($ (-327 |#1|) $) 19))) +(((-226 |#1| |#2|) (-13 (-633 (-327 |#1|)) (-1063 (-327 |#1|)) (-10 -8 (-15 -2221 ((-327 |#1|) $)) (-15 -3625 ($ $)) (-15 -2248 ($ $)) (-15 -2322 ((-327 |#1|) $ $)) (-15 -4101 ($ (-787))) (-15 -3614 ((-112) $)) (-15 -1819 ((-112) $)) (-15 -2887 ((-577) $)) (-15 -4087 ($ (-1 (-327 |#1|) (-327 |#1|)) $)) (-15 -3607 ($ (-327 |#1|))) (-15 -3596 ($ $)))) (-13 (-1074) (-865)) (-660 (-1201))) (T -226)) +((-2221 (*1 *2 *1) (-12 (-5 *2 (-327 *3)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) (-14 *4 (-660 (-1201))))) (-3625 (*1 *1 *1) (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1074) (-865))) (-14 *3 (-660 (-1201))))) (-2248 (*1 *1 *1) (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1074) (-865))) (-14 *3 (-660 (-1201))))) (-2322 (*1 *2 *1 *1) (-12 (-5 *2 (-327 *3)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) (-14 *4 (-660 (-1201))))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) (-14 *4 (-660 (-1201))))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) (-14 *4 (-660 (-1201))))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) (-14 *4 (-660 (-1201))))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) (-14 *4 (-660 (-1201))))) (-4087 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-327 *3) (-327 *3))) (-4 *3 (-13 (-1074) (-865))) (-5 *1 (-226 *3 *4)) (-14 *4 (-660 (-1201))))) (-3607 (*1 *1 *2) (-12 (-5 *2 (-327 *3)) (-4 *3 (-13 (-1074) (-865))) (-5 *1 (-226 *3 *4)) (-14 *4 (-660 (-1201))))) (-3596 (*1 *1 *1) (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1074) (-865))) (-14 *3 (-660 (-1201)))))) +(-13 (-633 (-327 |#1|)) (-1063 (-327 |#1|)) (-10 -8 (-15 -2221 ((-327 |#1|) $)) (-15 -3625 ($ $)) (-15 -2248 ($ $)) (-15 -2322 ((-327 |#1|) $ $)) (-15 -4101 ($ (-787))) (-15 -3614 ((-112) $)) (-15 -1819 ((-112) $)) (-15 -2887 ((-577) $)) (-15 -4087 ($ (-1 (-327 |#1|) (-327 |#1|)) $)) (-15 -3607 ($ (-327 |#1|))) (-15 -3596 ($ $)))) +((-3636 (((-112) (-1183)) 26)) (-3648 (((-3 (-859 |#2|) "failed") (-625 |#2|) |#2| (-859 |#2|) (-859 |#2|) (-112)) 35)) (-3660 (((-3 (-112) "failed") (-1197 |#2|) (-859 |#2|) (-859 |#2|) (-112)) 84) (((-3 (-112) "failed") (-975 |#1|) (-1201) (-859 |#2|) (-859 |#2|) (-112)) 85))) +(((-227 |#1| |#2|) (-10 -7 (-15 -3636 ((-112) (-1183))) (-15 -3648 ((-3 (-859 |#2|) "failed") (-625 |#2|) |#2| (-859 |#2|) (-859 |#2|) (-112))) (-15 -3660 ((-3 (-112) "failed") (-975 |#1|) (-1201) (-859 |#2|) (-859 |#2|) (-112))) (-15 -3660 ((-3 (-112) "failed") (-1197 |#2|) (-859 |#2|) (-859 |#2|) (-112)))) (-13 (-465) (-1063 (-577)) (-654 (-577))) (-13 (-1227) (-29 |#1|))) (T -227)) +((-3660 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1197 *6)) (-5 *4 (-859 *6)) (-4 *6 (-13 (-1227) (-29 *5))) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-227 *5 *6)))) (-3660 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-975 *6)) (-5 *4 (-1201)) (-5 *5 (-859 *7)) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-4 *7 (-13 (-1227) (-29 *6))) (-5 *1 (-227 *6 *7)))) (-3648 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-859 *4)) (-5 *3 (-625 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1227) (-29 *6))) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-227 *6 *4)))) (-3636 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-112)) (-5 *1 (-227 *4 *5)) (-4 *5 (-13 (-1227) (-29 *4)))))) +(-10 -7 (-15 -3636 ((-112) (-1183))) (-15 -3648 ((-3 (-859 |#2|) "failed") (-625 |#2|) |#2| (-859 |#2|) (-859 |#2|) (-112))) (-15 -3660 ((-3 (-112) "failed") (-975 |#1|) (-1201) (-859 |#2|) (-859 |#2|) (-112))) (-15 -3660 ((-3 (-112) "failed") (-1197 |#2|) (-859 |#2|) (-859 |#2|) (-112)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 98)) (-4105 (((-577) $) 33)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-3804 (($ $) NIL)) (-2212 (($ $) 87)) (-2060 (($ $) 75)) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1913 (($ $) 66)) (-1939 (((-112) $ $) NIL)) (-2186 (($ $) 85)) (-2032 (($ $) 73)) (-3010 (((-577) $) 127)) (-2237 (($ $) 90)) (-2084 (($ $) 77)) (-1534 (($) NIL T CONST)) (-4080 (($ $) NIL)) (-1628 (((-3 (-577) "failed") $) 126) (((-3 (-420 (-577)) "failed") $) 123)) (-2921 (((-577) $) 124) (((-420 (-577)) $) 121)) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) 103)) (-2989 (((-420 (-577)) $ (-787)) 117) (((-420 (-577)) $ (-787) (-787)) 116)) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-4291 (((-944)) 28) (((-944) (-944)) NIL (|has| $ (-6 -4461)))) (-3567 (((-112) $) NIL)) (-1659 (($) 46)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL)) (-3817 (((-577) $) 40)) (-2487 (((-112) $) 99)) (-2381 (($ $ (-577)) NIL)) (-4145 (($ $) NIL)) (-3578 (((-112) $) 97)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3732 (($ $ $) 63) (($) 36 (-12 (-2749 (|has| $ (-6 -4453))) (-2749 (|has| $ (-6 -4461)))))) (-3201 (($ $ $) 62) (($) 35 (-12 (-2749 (|has| $ (-6 -4453))) (-2749 (|has| $ (-6 -4461)))))) (-1525 (((-577) $) 26)) (-2979 (($ $) 31)) (-2444 (($ $) 67)) (-3698 (($ $) 72)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-3265 (((-944) (-577)) NIL (|has| $ (-6 -4461)))) (-1474 (((-1145) $) 101)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-4093 (($ $) NIL)) (-4119 (($ $) NIL)) (-3068 (($ (-577) (-577)) NIL) (($ (-577) (-577) (-944)) 110)) (-1902 (((-431 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3556 (((-577) $) 27)) (-2969 (($) 45)) (-4072 (($ $) 71)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2596 (((-944)) NIL) (((-944) (-944)) NIL (|has| $ (-6 -4461)))) (-2852 (($ $) 104) (($ $ (-787)) NIL)) (-3255 (((-944) (-577)) NIL (|has| $ (-6 -4461)))) (-2249 (($ $) 88)) (-2095 (($ $) 78)) (-2224 (($ $) 89)) (-2073 (($ $) 76)) (-2199 (($ $) 86)) (-2046 (($ $) 74)) (-4152 (((-391) $) 113) (((-228) $) 14) (((-911 (-391)) $) NIL) (((-549) $) 52)) (-3544 (((-880) $) 49) (($ (-577)) 152) (($ $) NIL) (($ (-420 (-577))) NIL) (($ (-577)) 152) (($ (-420 (-577))) NIL)) (-4068 (((-787)) NIL T CONST)) (-4132 (($ $) NIL)) (-3274 (((-944)) 34) (((-944) (-944)) NIL (|has| $ (-6 -4461)))) (-4448 (((-112) $ $) NIL)) (-4146 (((-944)) 24)) (-4114 (($ $) 93)) (-2136 (($ $) 81) (($ $ $) 119)) (-3281 (((-112) $ $) NIL)) (-2262 (($ $) 91)) (-2106 (($ $) 79)) (-4141 (($ $) 96)) (-2162 (($ $) 84)) (-2261 (($ $) 94)) (-2174 (($ $) 82)) (-4128 (($ $) 95)) (-2150 (($ $) 83)) (-2272 (($ $) 92)) (-2120 (($ $) 80)) (-1654 (($ $) 118)) (-2806 (($) 42 T CONST)) (-2816 (($) 43 T CONST)) (-4013 (((-1183) $) 18) (((-1183) $ (-112)) 20) (((-1297) (-838) $) 21) (((-1297) (-838) $ (-112)) 22)) (-1699 (($ $) 107)) (-2132 (($ $) NIL) (($ $ (-787)) NIL)) (-1664 (($ $ $) 109)) (-3025 (((-112) $ $) 56)) (-3000 (((-112) $ $) 54)) (-2970 (((-112) $ $) 64)) (-3012 (((-112) $ $) 55)) (-2990 (((-112) $ $) 53)) (-3077 (($ $ $) 44) (($ $ (-577)) 65)) (-3066 (($ $) 57) (($ $ $) 59)) (-3055 (($ $ $) 58)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) 68) (($ $ (-420 (-577))) 151) (($ $ $) 69)) (* (($ (-944) $) 32) (($ (-787) $) NIL) (($ (-577) $) 61) (($ $ $) 60) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL))) +(((-228) (-13 (-417) (-239) (-844) (-1227) (-627 (-549)) (-10 -8 (-15 -3077 ($ $ (-577))) (-15 ** ($ $ $)) (-15 -2969 ($)) (-15 -2979 ($ $)) (-15 -2444 ($ $)) (-15 -2136 ($ $ $)) (-15 -1699 ($ $)) (-15 -1664 ($ $ $)) (-15 -2989 ((-420 (-577)) $ (-787))) (-15 -2989 ((-420 (-577)) $ (-787) (-787)))))) (T -228)) +((** (*1 *1 *1 *1) (-5 *1 (-228))) (-3077 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-228)))) (-2969 (*1 *1) (-5 *1 (-228))) (-2979 (*1 *1 *1) (-5 *1 (-228))) (-2444 (*1 *1 *1) (-5 *1 (-228))) (-2136 (*1 *1 *1 *1) (-5 *1 (-228))) (-1699 (*1 *1 *1) (-5 *1 (-228))) (-1664 (*1 *1 *1 *1) (-5 *1 (-228))) (-2989 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *2 (-420 (-577))) (-5 *1 (-228)))) (-2989 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-787)) (-5 *2 (-420 (-577))) (-5 *1 (-228))))) +(-13 (-417) (-239) (-844) (-1227) (-627 (-549)) (-10 -8 (-15 -3077 ($ $ (-577))) (-15 ** ($ $ $)) (-15 -2969 ($)) (-15 -2979 ($ $)) (-15 -2444 ($ $)) (-15 -2136 ($ $ $)) (-15 -1699 ($ $)) (-15 -1664 ($ $ $)) (-15 -2989 ((-420 (-577)) $ (-787))) (-15 -2989 ((-420 (-577)) $ (-787) (-787))))) +((-1689 (((-171 (-228)) (-787) (-171 (-228))) 11) (((-228) (-787) (-228)) 12)) (-3671 (((-171 (-228)) (-171 (-228))) 13) (((-228) (-228)) 14)) (-3681 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 19) (((-228) (-228) (-228)) 22)) (-1676 (((-171 (-228)) (-171 (-228))) 27) (((-228) (-228)) 26)) (-1720 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 57) (((-228) (-228) (-228)) 49)) (-1740 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 62) (((-228) (-228) (-228)) 60)) (-1708 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 15) (((-228) (-228) (-228)) 16)) (-1732 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 17) (((-228) (-228) (-228)) 18)) (-1761 (((-171 (-228)) (-171 (-228))) 74) (((-228) (-228)) 73)) (-1749 (((-228) (-228)) 68) (((-171 (-228)) (-171 (-228))) 72)) (-1699 (((-171 (-228)) (-171 (-228))) 8) (((-228) (-228)) 9)) (-1664 (((-171 (-228)) (-171 (-228)) (-171 (-228))) 35) (((-228) (-228) (-228)) 31))) +(((-229) (-10 -7 (-15 -1699 ((-228) (-228))) (-15 -1699 ((-171 (-228)) (-171 (-228)))) (-15 -1664 ((-228) (-228) (-228))) (-15 -1664 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -3671 ((-228) (-228))) (-15 -3671 ((-171 (-228)) (-171 (-228)))) (-15 -1676 ((-228) (-228))) (-15 -1676 ((-171 (-228)) (-171 (-228)))) (-15 -1689 ((-228) (-787) (-228))) (-15 -1689 ((-171 (-228)) (-787) (-171 (-228)))) (-15 -1708 ((-228) (-228) (-228))) (-15 -1708 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -1720 ((-228) (-228) (-228))) (-15 -1720 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -1732 ((-228) (-228) (-228))) (-15 -1732 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -1740 ((-228) (-228) (-228))) (-15 -1740 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -1749 ((-171 (-228)) (-171 (-228)))) (-15 -1749 ((-228) (-228))) (-15 -1761 ((-228) (-228))) (-15 -1761 ((-171 (-228)) (-171 (-228)))) (-15 -3681 ((-228) (-228) (-228))) (-15 -3681 ((-171 (-228)) (-171 (-228)) (-171 (-228)))))) (T -229)) +((-3681 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-3681 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-1761 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-1761 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-1749 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-1749 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-1740 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-1740 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-1732 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-1732 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-1720 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-1720 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-1708 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-1708 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-1689 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-228))) (-5 *3 (-787)) (-5 *1 (-229)))) (-1689 (*1 *2 *3 *2) (-12 (-5 *2 (-228)) (-5 *3 (-787)) (-5 *1 (-229)))) (-1676 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-1676 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-3671 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-3671 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-1664 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-1664 (*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) (-1699 (*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) (-1699 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229))))) +(-10 -7 (-15 -1699 ((-228) (-228))) (-15 -1699 ((-171 (-228)) (-171 (-228)))) (-15 -1664 ((-228) (-228) (-228))) (-15 -1664 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -3671 ((-228) (-228))) (-15 -3671 ((-171 (-228)) (-171 (-228)))) (-15 -1676 ((-228) (-228))) (-15 -1676 ((-171 (-228)) (-171 (-228)))) (-15 -1689 ((-228) (-787) (-228))) (-15 -1689 ((-171 (-228)) (-787) (-171 (-228)))) (-15 -1708 ((-228) (-228) (-228))) (-15 -1708 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -1720 ((-228) (-228) (-228))) (-15 -1720 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -1732 ((-228) (-228) (-228))) (-15 -1732 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -1740 ((-228) (-228) (-228))) (-15 -1740 ((-171 (-228)) (-171 (-228)) (-171 (-228)))) (-15 -1749 ((-171 (-228)) (-171 (-228)))) (-15 -1749 ((-228) (-228))) (-15 -1761 ((-228) (-228))) (-15 -1761 ((-171 (-228)) (-171 (-228)))) (-15 -3681 ((-228) (-228) (-228))) (-15 -3681 ((-171 (-228)) (-171 (-228)) (-171 (-228))))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3785 (($ (-787) (-787)) NIL)) (-4189 (($ $ $) NIL)) (-3784 (($ (-1292 |#1|)) NIL) (($ $) NIL)) (-1954 (($ |#1| |#1| |#1|) 33)) (-4025 (((-112) $) NIL)) (-4179 (($ $ (-577) (-577)) NIL)) (-4168 (($ $ (-577) (-577)) NIL)) (-4156 (($ $ (-577) (-577) (-577) (-577)) NIL)) (-4212 (($ $) NIL)) (-4046 (((-112) $) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-4144 (($ $ (-577) (-577) $) NIL)) (-3709 ((|#1| $ (-577) (-577) |#1|) NIL) (($ $ (-660 (-577)) (-660 (-577)) $) NIL)) (-3419 (($ $ (-577) (-1292 |#1|)) NIL)) (-2451 (($ $ (-577) (-1292 |#1|)) NIL)) (-3160 (($ |#1| |#1| |#1|) 32)) (-2423 (($ (-787) |#1|) NIL)) (-1534 (($) NIL T CONST)) (-3931 (($ $) NIL (|has| |#1| (-318)))) (-3956 (((-1292 |#1|) $ (-577)) NIL)) (-3692 (($ |#1|) 31)) (-3704 (($ |#1|) 30)) (-3715 (($ |#1|) 29)) (-1545 (((-787) $) NIL (|has| |#1| (-569)))) (-2192 ((|#1| $ (-577) (-577) |#1|) NIL)) (-2117 ((|#1| $ (-577) (-577)) NIL)) (-1461 (((-660 |#1|) $) NIL)) (-3919 (((-787) $) NIL (|has| |#1| (-569)))) (-3908 (((-660 (-1292 |#1|)) $) NIL (|has| |#1| (-569)))) (-2414 (((-787) $) NIL)) (-4113 (($ (-787) (-787) |#1|) NIL)) (-2424 (((-787) $) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2376 ((|#1| $) NIL (|has| |#1| (-6 (-4472 "*"))))) (-4002 (((-577) $) NIL)) (-3979 (((-577) $) NIL)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3990 (((-577) $) NIL)) (-3968 (((-577) $) NIL)) (-2550 (($ (-660 (-660 |#1|))) 11) (($ (-787) (-787) (-1 |#1| (-577) (-577))) NIL)) (-2182 (($ (-1 |#1| |#1|) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2737 (((-660 (-660 |#1|)) $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-2705 (((-3 $ "failed") $) NIL (|has| |#1| (-375)))) (-3725 (($) 12)) (-4200 (($ $ $) NIL)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-2397 (($ $ |#1|) NIL)) (-3462 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)))) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#1| $ (-577) (-577)) NIL) ((|#1| $ (-577) (-577) |#1|) NIL) (($ $ (-660 (-577)) (-660 (-577))) NIL)) (-2413 (($ (-660 |#1|)) NIL) (($ (-660 $)) NIL)) (-4035 (((-112) $) NIL)) (-2387 ((|#1| $) NIL (|has| |#1| (-6 (-4472 "*"))))) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) NIL)) (-3943 (((-1292 |#1|) $ (-577)) NIL)) (-3544 (($ (-1292 |#1|)) NIL) (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-4015 (((-112) $) NIL)) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375)))) (-3066 (($ $ $) NIL) (($ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-787)) NIL) (($ $ (-577)) NIL (|has| |#1| (-375)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-577) $) NIL) (((-1292 |#1|) $ (-1292 |#1|)) 15) (((-1292 |#1|) (-1292 |#1|) $) NIL) (((-966 |#1|) $ (-966 |#1|)) 21)) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-230 |#1|) (-13 (-703 |#1| (-1292 |#1|) (-1292 |#1|)) (-10 -8 (-15 * ((-966 |#1|) $ (-966 |#1|))) (-15 -3725 ($)) (-15 -3715 ($ |#1|)) (-15 -3704 ($ |#1|)) (-15 -3692 ($ |#1|)) (-15 -3160 ($ |#1| |#1| |#1|)) (-15 -1954 ($ |#1| |#1| |#1|)))) (-13 (-375) (-1227))) (T -230)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227))) (-5 *1 (-230 *3)))) (-3725 (*1 *1) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227))))) (-3715 (*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227))))) (-3704 (*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227))))) (-3692 (*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227))))) (-3160 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227))))) (-1954 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227)))))) +(-13 (-703 |#1| (-1292 |#1|) (-1292 |#1|)) (-10 -8 (-15 * ((-966 |#1|) $ (-966 |#1|))) (-15 -3725 ($)) (-15 -3715 ($ |#1|)) (-15 -3704 ($ |#1|)) (-15 -3692 ($ |#1|)) (-15 -3160 ($ |#1| |#1| |#1|)) (-15 -1954 ($ |#1| |#1| |#1|)))) +((-2463 (($ (-1 (-112) |#2|) $) 16)) (-3719 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-3736 (($) NIL) (($ (-660 |#2|)) 11)) (-2970 (((-112) $ $) 26))) +(((-231 |#1| |#2|) (-10 -8 (-15 -2970 ((-112) |#1| |#1|)) (-15 -2463 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3719 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3719 (|#1| |#2| |#1|)) (-15 -3736 (|#1| (-660 |#2|))) (-15 -3736 (|#1|))) (-232 |#2|) (-1125)) (T -231)) +NIL +(-10 -8 (-15 -2970 ((-112) |#1| |#1|)) (-15 -2463 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3719 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3719 (|#1| |#2| |#1|)) (-15 -3736 (|#1| (-660 |#2|))) (-15 -3736 (|#1|))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3828 (((-112) $ (-787)) 8)) (-2463 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4470)))) (-1534 (($) 7 T CONST)) (-1817 (($ $) 59 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3719 (($ |#1| $) 48 (|has| $ (-6 -4470))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4470)))) (-3904 (($ |#1| $) 58 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4470)))) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) 9)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-4330 ((|#1| $) 40)) (-2881 (($ |#1| $) 41)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3530 ((|#1| $) 42)) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-3736 (($) 50) (($ (-660 |#1|)) 49)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-4152 (((-549) $) 60 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 51)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3541 (($ (-660 |#1|)) 43)) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-232 |#1|) (-141) (-1125)) (T -232)) +NIL +(-13 (-241 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-4187 (((-3 $ "failed") $) 37)) (-2487 (((-112) $) 35)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2852 (($ $ (-1 |#1| |#1|) (-787)) 57) (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1201)) 55 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) 53 (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) 52 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) 51 (|has| |#1| (-923 (-1201)))) (($ $) 47 (|has| |#1| (-238))) (($ $ (-787)) 45 (|has| |#1| (-238)))) (-3544 (((-880) $) 12) (($ (-577)) 33)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-1 |#1| |#1|) (-787)) 59) (($ $ (-1 |#1| |#1|)) 58) (($ $ (-1201)) 54 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) 50 (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) 49 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) 48 (|has| |#1| (-923 (-1201)))) (($ $) 46 (|has| |#1| (-238))) (($ $ (-787)) 44 (|has| |#1| (-238)))) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) +(((-233 |#1|) (-141) (-1074)) (T -233)) +NIL +(-13 (-1074) (-273 |t#1|) (-10 -7 (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-921 (-1201))) (-6 (-921 (-1201))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-235 $) -2839 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-239) |has| |#1| (-239)) ((-238) -2839 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-742) . T) ((-915 $ #0=(-1201)) -2839 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-921 (-1201)) |has| |#1| (-921 (-1201))) ((-923 #0#) -2839 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-2132 ((|#2| $) 9))) +(((-234 |#1| |#2|) (-10 -8 (-15 -2132 (|#2| |#1|))) (-235 |#2|) (-1242)) (T -234)) +NIL +(-10 -8 (-15 -2132 (|#2| |#1|))) +((-2852 ((|#1| $) 7)) (-2132 ((|#1| $) 6))) +(((-235 |#1|) (-141) (-1242)) (T -235)) +((-2852 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1242)))) (-2132 (*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1242))))) +(-13 (-1242) (-10 -8 (-15 -2852 (|t#1| $)) (-15 -2132 (|t#1| $)))) +(((-1242) . T)) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2852 (($ $ (-787)) 37) (($ $) 35)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2132 (($ $ (-787)) 38) (($ $) 36)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-236 |#1|) (-141) (-1074)) (T -236)) +NIL +(-13 (-111 |t#1| |t#1|) (-238) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-733 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-880)) . T) ((-235 $) . T) ((-238) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) |has| |#1| (-174)) ((-733 |#1|) |has| |#1| (-174)) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-2852 (($ $) NIL) (($ $ (-787)) 9)) (-2132 (($ $) NIL) (($ $ (-787)) 11))) +(((-237 |#1|) (-10 -8 (-15 -2132 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1| (-787))) (-15 -2132 (|#1| |#1|)) (-15 -2852 (|#1| |#1|))) (-238)) (T -237)) +NIL +(-10 -8 (-15 -2132 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1| (-787))) (-15 -2132 (|#1| |#1|)) (-15 -2852 (|#1| |#1|))) +((-2852 (($ $) 7) (($ $ (-787)) 10)) (-2132 (($ $) 6) (($ $ (-787)) 9))) (((-238) (-141)) (T -238)) -NIL -(-13 (-1071) (-237)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-234 $) . T) ((-237) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-739) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-1504 (($) 12) (($ (-657 |#2|)) NIL)) (-1923 (($ $) 14)) (-3511 (($ (-657 |#2|)) 10)) (-3501 (((-877) $) 21))) -(((-239 |#1| |#2|) (-10 -8 (-15 -3501 ((-877) |#1|)) (-15 -1504 (|#1| (-657 |#2|))) (-15 -1504 (|#1|)) (-15 -3511 (|#1| (-657 |#2|))) (-15 -1923 (|#1| |#1|))) (-240 |#2|) (-1122)) (T -239)) -NIL -(-10 -8 (-15 -3501 ((-877) |#1|)) (-15 -1504 (|#1| (-657 |#2|))) (-15 -1504 (|#1|)) (-15 -3511 (|#1| (-657 |#2|))) (-15 -1923 (|#1| |#1|))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3793 (((-112) $ (-784)) 8)) (-3162 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4466)))) (-4359 (($) 7 T CONST)) (-3914 (($ $) 59 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3647 (($ |#1| $) 48 (|has| $ (-6 -4466))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4466)))) (-3895 (($ |#1| $) 58 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4466)))) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) 9)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3050 ((|#1| $) 40)) (-2468 (($ |#1| $) 41)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2277 ((|#1| $) 42)) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-1504 (($) 50) (($ (-657 |#1|)) 49)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-4148 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 51)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-4079 (($ (-657 |#1|)) 43)) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-240 |#1|) (-141) (-1122)) (T -240)) -((-1504 (*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1122)))) (-1504 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-4 *1 (-240 *3)))) (-3647 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-240 *2)) (-4 *2 (-1122)))) (-3647 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4466)) (-4 *1 (-240 *3)) (-4 *3 (-1122)))) (-3162 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4466)) (-4 *1 (-240 *3)) (-4 *3 (-1122))))) -(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -1504 ($)) (-15 -1504 ($ (-657 |t#1|))) (IF (|has| $ (-6 -4466)) (PROGN (-15 -3647 ($ |t#1| $)) (-15 -3647 ($ (-1 (-112) |t#1|) $)) (-15 -3162 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) -((-2369 (((-2 (|:| |varOrder| (-657 (-1198))) (|:| |inhom| (-3 (-657 (-1289 (-784))) "failed")) (|:| |hom| (-657 (-1289 (-784))))) (-304 (-972 (-576)))) 42))) -(((-241) (-10 -7 (-15 -2369 ((-2 (|:| |varOrder| (-657 (-1198))) (|:| |inhom| (-3 (-657 (-1289 (-784))) "failed")) (|:| |hom| (-657 (-1289 (-784))))) (-304 (-972 (-576))))))) (T -241)) -((-2369 (*1 *2 *3) (-12 (-5 *3 (-304 (-972 (-576)))) (-5 *2 (-2 (|:| |varOrder| (-657 (-1198))) (|:| |inhom| (-3 (-657 (-1289 (-784))) "failed")) (|:| |hom| (-657 (-1289 (-784)))))) (-5 *1 (-241))))) -(-10 -7 (-15 -2369 ((-2 (|:| |varOrder| (-657 (-1198))) (|:| |inhom| (-3 (-657 (-1289 (-784))) "failed")) (|:| |hom| (-657 (-1289 (-784))))) (-304 (-972 (-576)))))) -((-2193 (((-784)) 56)) (-3306 (((-2 (|:| -3750 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-702 $) (-1289 $)) 53) (((-702 |#3|) (-702 $)) 44) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-702 (-576)) (-702 $)) NIL)) (-3863 (((-135)) 62)) (-2815 (($ $ (-1 |#3| |#3|)) 18) (($ $ (-1 |#3| |#3|) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) NIL) (($ $ (-784)) NIL) (($ $) NIL)) (-3501 (((-1289 |#3|) $) NIL) (($ |#3|) NIL) (((-877) $) NIL) (($ (-576)) 12) (($ (-419 (-576))) NIL)) (-1960 (((-784)) 15)) (-3034 (($ $ |#3|) 59))) -(((-242 |#1| |#2| |#3|) (-10 -8 (-15 -3501 (|#1| (-419 (-576)))) (-15 -3501 (|#1| (-576))) (-15 -2815 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -3501 ((-877) |#1|)) (-15 -1960 ((-784))) (-15 -3306 ((-702 (-576)) (-702 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3501 (|#1| |#3|)) (-15 -2815 (|#1| |#1| (-1 |#3| |#3|) (-784))) (-15 -2815 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3306 ((-702 |#3|) (-702 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-702 |#1|) (-1289 |#1|))) (-15 -2193 ((-784))) (-15 -3034 (|#1| |#1| |#3|)) (-15 -3863 ((-135))) (-15 -3501 ((-1289 |#3|) |#1|))) (-243 |#2| |#3|) (-784) (-1239)) (T -242)) -((-3863 (*1 *2) (-12 (-14 *4 (-784)) (-4 *5 (-1239)) (-5 *2 (-135)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-2193 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1239)) (-5 *2 (-784)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-1960 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1239)) (-5 *2 (-784)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5))))) -(-10 -8 (-15 -3501 (|#1| (-419 (-576)))) (-15 -3501 (|#1| (-576))) (-15 -2815 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -3501 ((-877) |#1|)) (-15 -1960 ((-784))) (-15 -3306 ((-702 (-576)) (-702 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3501 (|#1| |#3|)) (-15 -2815 (|#1| |#1| (-1 |#3| |#3|) (-784))) (-15 -2815 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3306 ((-702 |#3|) (-702 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-702 |#1|) (-1289 |#1|))) (-15 -2193 ((-784))) (-15 -3034 (|#1| |#1| |#3|)) (-15 -3863 ((-135))) (-15 -3501 ((-1289 |#3|) |#1|))) -((-3429 (((-112) $ $) 20 (|has| |#2| (-102)))) (-2364 (((-112) $) 76 (|has| |#2| (-23)))) (-3110 (($ (-941)) 129 (|has| |#2| (-1071)))) (-4313 (((-1294) $ (-576) (-576)) 41 (|has| $ (-6 -4467)))) (-3733 (($ $ $) 125 (|has| |#2| (-806)))) (-2721 (((-3 $ "failed") $ $) 78 (|has| |#2| (-132)))) (-3793 (((-112) $ (-784)) 8)) (-2193 (((-784)) 115 (|has| |#2| (-379)))) (-3682 ((|#2| $ (-576) |#2|) 53 (|has| $ (-6 -4467)))) (-4359 (($) 7 T CONST)) (-1624 (((-3 (-576) "failed") $) 71 (-2724 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122)))) (((-3 (-419 (-576)) "failed") $) 68 (-2724 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1122)))) (-2884 (((-576) $) 70 (-2724 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122)))) (((-419 (-576)) $) 67 (-2724 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) ((|#2| $) 66 (|has| |#2| (-1122)))) (-3306 (((-702 (-576)) (-702 $)) 112 (-2724 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 111 (-2724 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) 110 (|has| |#2| (-1071))) (((-702 |#2|) (-702 $)) 109 (|has| |#2| (-1071)))) (-3843 (((-3 $ "failed") $) 86 (|has| |#2| (-1071)))) (-1892 (($) 118 (|has| |#2| (-379)))) (-2158 ((|#2| $ (-576) |#2|) 54 (|has| $ (-6 -4467)))) (-2083 ((|#2| $ (-576)) 52)) (-1458 (((-657 |#2|) $) 31 (|has| $ (-6 -4466)))) (-4094 (((-112) $) 88 (|has| |#2| (-1071)))) (-1833 (((-112) $ (-784)) 9)) (-3853 (((-576) $) 44 (|has| (-576) (-862)))) (-3707 (($ $ $) 119 (|has| |#2| (-862)))) (-2070 (((-657 |#2|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466))))) (-2272 (((-576) $) 45 (|has| (-576) (-862)))) (-1611 (($ $ $) 120 (|has| |#2| (-862)))) (-2148 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#2| |#2|) $) 36)) (-3007 (((-941) $) 117 (|has| |#2| (-379)))) (-4261 (((-112) $ (-784)) 10)) (-3101 (((-702 (-576)) (-1289 $)) 114 (-2724 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 113 (-2724 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) 108 (|has| |#2| (-1071))) (((-702 |#2|) (-1289 $)) 107 (|has| |#2| (-1071)))) (-2342 (((-1180) $) 23 (|has| |#2| (-1122)))) (-1430 (((-657 (-576)) $) 47)) (-4242 (((-112) (-576) $) 48)) (-3178 (($ (-941)) 116 (|has| |#2| (-379)))) (-1471 (((-1142) $) 22 (|has| |#2| (-1122)))) (-3510 ((|#2| $) 43 (|has| (-576) (-862)))) (-1987 (($ $ |#2|) 42 (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-2806 (((-112) $ $) 14)) (-1515 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2380 (((-657 |#2|) $) 49)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#2| $ (-576) |#2|) 51) ((|#2| $ (-576)) 50)) (-1374 ((|#2| $ $) 128 (|has| |#2| (-1071)))) (-1924 (($ (-1289 |#2|)) 130)) (-3863 (((-135)) 127 (|has| |#2| (-374)))) (-2815 (($ $ (-784)) 105 (-2724 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $) 103 (-2724 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) 99 (-2724 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198) (-784)) 98 (-2724 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-657 (-1198))) 97 (-2724 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198)) 95 (-2724 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1071))) (($ $ (-1 |#2| |#2|) (-784)) 93 (|has| |#2| (-1071)))) (-1482 (((-784) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4466))) (((-784) |#2| $) 29 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-3501 (((-1289 |#2|) $) 131) (($ (-576)) 72 (-2802 (-2724 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (|has| |#2| (-1071)))) (($ (-419 (-576))) 69 (-2724 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (($ |#2|) 64 (|has| |#2| (-1122))) (((-877) $) 18 (|has| |#2| (-625 (-877))))) (-1960 (((-784)) 90 (|has| |#2| (-1071)) CONST)) (-2046 (((-112) $ $) 21 (|has| |#2| (-102)))) (-2147 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4466)))) (-2769 (($) 75 (|has| |#2| (-23)) CONST)) (-2779 (($) 89 (|has| |#2| (-1071)) CONST)) (-2097 (($ $ (-784)) 106 (-2724 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $) 104 (-2724 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) 102 (-2724 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198) (-784)) 101 (-2724 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-657 (-1198))) 100 (-2724 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198)) 96 (-2724 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1071))) (($ $ (-1 |#2| |#2|) (-784)) 91 (|has| |#2| (-1071)))) (-2985 (((-112) $ $) 121 (|has| |#2| (-862)))) (-2963 (((-112) $ $) 123 (|has| |#2| (-862)))) (-2933 (((-112) $ $) 19 (|has| |#2| (-102)))) (-2973 (((-112) $ $) 122 (|has| |#2| (-862)))) (-2954 (((-112) $ $) 124 (|has| |#2| (-862)))) (-3034 (($ $ |#2|) 126 (|has| |#2| (-374)))) (-3022 (($ $ $) 81 (|has| |#2| (-21))) (($ $) 80 (|has| |#2| (-21)))) (-3012 (($ $ $) 73 (|has| |#2| (-25)))) (** (($ $ (-784)) 87 (|has| |#2| (-1071))) (($ $ (-941)) 84 (|has| |#2| (-1071)))) (* (($ $ $) 85 (|has| |#2| (-1071))) (($ $ |#2|) 83 (|has| |#2| (-739))) (($ |#2| $) 82 (|has| |#2| (-739))) (($ (-576) $) 79 (|has| |#2| (-21))) (($ (-784) $) 77 (|has| |#2| (-23))) (($ (-941) $) 74 (|has| |#2| (-25)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-243 |#1| |#2|) (-141) (-784) (-1239)) (T -243)) -((-1924 (*1 *1 *2) (-12 (-5 *2 (-1289 *4)) (-4 *4 (-1239)) (-4 *1 (-243 *3 *4)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-941)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1071)) (-4 *4 (-1239)))) (-1374 (*1 *2 *1 *1) (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1239)) (-4 *2 (-1071))))) -(-13 (-616 (-576) |t#2|) (-625 (-1289 |t#2|)) (-10 -8 (-6 -4466) (-15 -1924 ($ (-1289 |t#2|))) (IF (|has| |t#2| (-1122)) (-6 (-423 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1071)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-232 |t#2|)) (-6 (-388 |t#2|)) (-15 -3110 ($ (-941))) (-15 -1374 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-739)) (-6 (-653 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-730 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4463)) (-6 -4463) |%noBranch|) (IF (|has| |t#2| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#2| (-806)) (-6 (-806)) |%noBranch|) (IF (|has| |t#2| (-374)) (-6 (-1296 |t#2|)) |%noBranch|))) -(((-21) -2802 (|has| |#2| (-1071)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -2802 (|has| |#2| (-1071)) (|has| |#2| (-806)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -2802 (|has| |#2| (-1071)) (|has| |#2| (-806)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -2802 (|has| |#2| (-1122)) (|has| |#2| (-1071)) (|has| |#2| (-862)) (|has| |#2| (-806)) (|has| |#2| (-739)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -2802 (|has| |#2| (-1071)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-132) -2802 (|has| |#2| (-1071)) (|has| |#2| (-806)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-628 #0=(-419 (-576))) -12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122))) ((-628 (-576)) -2802 (|has| |#2| (-1071)) (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122)))) ((-628 |#2|) |has| |#2| (-1122)) ((-625 (-877)) -2802 (|has| |#2| (-1122)) (|has| |#2| (-1071)) (|has| |#2| (-862)) (|has| |#2| (-806)) (|has| |#2| (-739)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-625 (-877))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-625 (-1289 |#2|)) . T) ((-234 $) -2802 (-12 (|has| |#2| (-237)) (|has| |#2| (-1071))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1071)))) ((-232 |#2|) |has| |#2| (-1071)) ((-238) -12 (|has| |#2| (-238)) (|has| |#2| (-1071))) ((-237) -2802 (-12 (|has| |#2| (-237)) (|has| |#2| (-1071))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1071)))) ((-272 |#2|) |has| |#2| (-1071)) ((-296 #1=(-576) |#2|) . T) ((-298 #1# |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-379) |has| |#2| (-379)) ((-388 |#2|) |has| |#2| (-1071)) ((-423 |#2|) |has| |#2| (-1122)) ((-501 |#2|) . T) ((-616 #1# |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-659 (-576)) -2802 (|has| |#2| (-1071)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-659 |#2|) -2802 (|has| |#2| (-1071)) (|has| |#2| (-739)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-659 $) |has| |#2| (-1071)) ((-661 #2=(-576)) -12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071))) ((-661 |#2|) -2802 (|has| |#2| (-1071)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-661 $) |has| |#2| (-1071)) ((-653 |#2|) -2802 (|has| |#2| (-739)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-652 #2#) -12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071))) ((-652 |#2|) |has| |#2| (-1071)) ((-730 |#2|) -2802 (|has| |#2| (-374)) (|has| |#2| (-174))) ((-739) |has| |#2| (-1071)) ((-805) |has| |#2| (-806)) ((-806) |has| |#2| (-806)) ((-807) |has| |#2| (-806)) ((-808) |has| |#2| (-806)) ((-862) -2802 (|has| |#2| (-862)) (|has| |#2| (-806))) ((-865) -2802 (|has| |#2| (-862)) (|has| |#2| (-806))) ((-912 $ #3=(-1198)) -2802 (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071))) (-12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071)))) ((-918 (-1198)) -12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071))) ((-920 #3#) -2802 (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071))) (-12 (|has| |#2| (-918 (-1198))) (|has| |#2| (-1071)))) ((-1060 #0#) -12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122))) ((-1060 (-576)) -12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) ((-1060 |#2|) |has| |#2| (-1122)) ((-1073 |#2|) -2802 (|has| |#2| (-1071)) (|has| |#2| (-739)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1078 |#2|) -2802 (|has| |#2| (-1071)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1071) |has| |#2| (-1071)) ((-1080) |has| |#2| (-1071)) ((-1134) |has| |#2| (-1071)) ((-1122) -2802 (|has| |#2| (-1122)) (|has| |#2| (-1071)) (|has| |#2| (-862)) (|has| |#2| (-806)) (|has| |#2| (-739)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1239) . T) ((-1296 |#2|) |has| |#2| (-374))) -((-4417 (((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 21)) (-3622 ((|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 23)) (-4083 (((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)) 18))) -(((-244 |#1| |#2| |#3|) (-10 -7 (-15 -4417 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -3622 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -4083 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) (-784) (-1239) (-1239)) (T -244)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-784)) (-4 *6 (-1239)) (-4 *7 (-1239)) (-5 *2 (-245 *5 *7)) (-5 *1 (-244 *5 *6 *7)))) (-3622 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-784)) (-4 *6 (-1239)) (-4 *2 (-1239)) (-5 *1 (-244 *5 *6 *2)))) (-4417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-784)) (-4 *7 (-1239)) (-4 *5 (-1239)) (-5 *2 (-245 *6 *5)) (-5 *1 (-244 *6 *7 *5))))) -(-10 -7 (-15 -4417 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -3622 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -4083 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) -((-3429 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2364 (((-112) $) NIL (|has| |#2| (-23)))) (-3110 (($ (-941)) 62 (|has| |#2| (-1071)))) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3733 (($ $ $) 68 (|has| |#2| (-806)))) (-2721 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-3793 (((-112) $ (-784)) NIL)) (-2193 (((-784)) NIL (|has| |#2| (-379)))) (-3682 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4467)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1122)))) (-2884 (((-576) $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) ((|#2| $) 28 (|has| |#2| (-1122)))) (-3306 (((-702 (-576)) (-702 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL (|has| |#2| (-1071))) (((-702 |#2|) (-702 $)) NIL (|has| |#2| (-1071)))) (-3843 (((-3 $ "failed") $) 58 (|has| |#2| (-1071)))) (-1892 (($) NIL (|has| |#2| (-379)))) (-2158 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#2| $ (-576)) 56)) (-1458 (((-657 |#2|) $) 14 (|has| $ (-6 -4466)))) (-4094 (((-112) $) NIL (|has| |#2| (-1071)))) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) 19 (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| |#2| (-862)))) (-2070 (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2272 (((-576) $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| |#2| (-862)))) (-2148 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#2| |#2|) $) NIL)) (-3007 (((-941) $) NIL (|has| |#2| (-379)))) (-4261 (((-112) $ (-784)) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL (|has| |#2| (-1071))) (((-702 |#2|) (-1289 $)) NIL (|has| |#2| (-1071)))) (-2342 (((-1180) $) NIL (|has| |#2| (-1122)))) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-3178 (($ (-941)) NIL (|has| |#2| (-379)))) (-1471 (((-1142) $) NIL (|has| |#2| (-1122)))) (-3510 ((|#2| $) NIL (|has| (-576) (-862)))) (-1987 (($ $ |#2|) NIL (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2380 (((-657 |#2|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) 20)) (-1374 ((|#2| $ $) NIL (|has| |#2| (-1071)))) (-1924 (($ (-1289 |#2|)) 17)) (-3863 (((-135)) NIL (|has| |#2| (-374)))) (-2815 (($ $ (-784)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1071))) (($ $ (-1 |#2| |#2|) (-784)) NIL (|has| |#2| (-1071)))) (-1482 (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1923 (($ $) NIL)) (-3501 (((-1289 |#2|) $) 9) (($ (-576)) NIL (-2802 (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (|has| |#2| (-1071)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (($ |#2|) 12 (|has| |#2| (-1122))) (((-877) $) NIL (|has| |#2| (-625 (-877))))) (-1960 (((-784)) NIL (|has| |#2| (-1071)) CONST)) (-2046 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2147 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2769 (($) 36 (|has| |#2| (-23)) CONST)) (-2779 (($) 40 (|has| |#2| (-1071)) CONST)) (-2097 (($ $ (-784)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1071))) (($ $ (-1 |#2| |#2|) (-784)) NIL (|has| |#2| (-1071)))) (-2985 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2933 (((-112) $ $) 27 (|has| |#2| (-102)))) (-2973 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2954 (((-112) $ $) 66 (|has| |#2| (-862)))) (-3034 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3022 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3012 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-784)) NIL (|has| |#2| (-1071))) (($ $ (-941)) NIL (|has| |#2| (-1071)))) (* (($ $ $) 46 (|has| |#2| (-1071))) (($ $ |#2|) 44 (|has| |#2| (-739))) (($ |#2| $) 45 (|has| |#2| (-739))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-784) $) NIL (|has| |#2| (-23))) (($ (-941) $) NIL (|has| |#2| (-25)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-245 |#1| |#2|) (-243 |#1| |#2|) (-784) (-1239)) (T -245)) -NIL -(-243 |#1| |#2|) -((-3281 (((-576) (-657 (-1180))) 36) (((-576) (-1180)) 29)) (-1344 (((-1294) (-657 (-1180))) 40) (((-1294) (-1180)) 39)) (-1476 (((-1180)) 16)) (-3067 (((-1180) (-576) (-1180)) 23)) (-3665 (((-657 (-1180)) (-657 (-1180)) (-576) (-1180)) 37) (((-1180) (-1180) (-576) (-1180)) 35)) (-3217 (((-657 (-1180)) (-657 (-1180))) 15) (((-657 (-1180)) (-1180)) 11))) -(((-246) (-10 -7 (-15 -3217 ((-657 (-1180)) (-1180))) (-15 -3217 ((-657 (-1180)) (-657 (-1180)))) (-15 -1476 ((-1180))) (-15 -3067 ((-1180) (-576) (-1180))) (-15 -3665 ((-1180) (-1180) (-576) (-1180))) (-15 -3665 ((-657 (-1180)) (-657 (-1180)) (-576) (-1180))) (-15 -1344 ((-1294) (-1180))) (-15 -1344 ((-1294) (-657 (-1180)))) (-15 -3281 ((-576) (-1180))) (-15 -3281 ((-576) (-657 (-1180)))))) (T -246)) -((-3281 (*1 *2 *3) (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-576)) (-5 *1 (-246)))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-576)) (-5 *1 (-246)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-1294)) (-5 *1 (-246)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-246)))) (-3665 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-657 (-1180))) (-5 *3 (-576)) (-5 *4 (-1180)) (-5 *1 (-246)))) (-3665 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-576)) (-5 *1 (-246)))) (-3067 (*1 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-576)) (-5 *1 (-246)))) (-1476 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-246)))) (-3217 (*1 *2 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-246)))) (-3217 (*1 *2 *3) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-246)) (-5 *3 (-1180))))) -(-10 -7 (-15 -3217 ((-657 (-1180)) (-1180))) (-15 -3217 ((-657 (-1180)) (-657 (-1180)))) (-15 -1476 ((-1180))) (-15 -3067 ((-1180) (-576) (-1180))) (-15 -3665 ((-1180) (-1180) (-576) (-1180))) (-15 -3665 ((-657 (-1180)) (-657 (-1180)) (-576) (-1180))) (-15 -1344 ((-1294) (-1180))) (-15 -1344 ((-1294) (-657 (-1180)))) (-15 -3281 ((-576) (-1180))) (-15 -3281 ((-576) (-657 (-1180))))) -((** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) 20)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) NIL))) -(((-247 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-784))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-941))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) (-248)) (T -247)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-784))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-941))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3843 (((-3 $ "failed") $) 37)) (-4094 (((-112) $) 35)) (-2342 (((-1180) $) 10)) (-2134 (($ $) 47)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 51)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 48)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 50) (($ $ (-419 (-576))) 49))) -(((-248) (-141)) (T -248)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-576)))) (-2134 (*1 *1 *1) (-4 *1 (-248)))) -(-13 (-300) (-38 (-419 (-576))) (-10 -8 (-15 ** ($ $ (-576))) (-15 -2134 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-300) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-653 #0#) . T) ((-730 #0#) . T) ((-739) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3071 ((|#1| $) 49)) (-4424 (($ $) 58)) (-3793 (((-112) $ (-784)) 8)) (-3734 ((|#1| $ |#1|) 40 (|has| $ (-6 -4467)))) (-3479 (($ $ $) 54 (|has| $ (-6 -4467)))) (-4354 (($ $ $) 53 (|has| $ (-6 -4467)))) (-3682 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) 42 (|has| $ (-6 -4467)))) (-4359 (($) 7 T CONST)) (-4260 (($ $) 57)) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-2877 (((-657 $) $) 51)) (-1700 (((-112) $ $) 43 (|has| |#1| (-1122)))) (-4283 (($ $) 56)) (-1833 (((-112) $ (-784)) 9)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-2424 (((-657 |#1|) $) 46)) (-2633 (((-112) $) 50)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3920 ((|#1| $) 60)) (-4229 (($ $) 59)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#1| $ "value") 48)) (-3883 (((-576) $ $) 45)) (-3628 (((-112) $) 47)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-2858 (($ $ $) 55 (|has| $ (-6 -4467)))) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-1986 (((-657 $) $) 52)) (-1633 (((-112) $ $) 44 (|has| |#1| (-1122)))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-249 |#1|) (-141) (-1239)) (T -249)) -((-3920 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239)))) (-4229 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239)))) (-4424 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239)))) (-4260 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239)))) (-4283 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239)))) (-2858 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-249 *2)) (-4 *2 (-1239)))) (-3479 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-249 *2)) (-4 *2 (-1239)))) (-4354 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-249 *2)) (-4 *2 (-1239))))) -(-13 (-1032 |t#1|) (-10 -8 (-15 -3920 (|t#1| $)) (-15 -4229 ($ $)) (-15 -4424 ($ $)) (-15 -4260 ($ $)) (-15 -4283 ($ $)) (IF (|has| $ (-6 -4467)) (PROGN (-15 -2858 ($ $ $)) (-15 -3479 ($ $ $)) (-15 -4354 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1032 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3071 ((|#1| $) NIL)) (-2913 ((|#1| $) NIL)) (-4424 (($ $) NIL)) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3605 (($ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1568 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3363 (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-1850 (($ $) 10 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-3734 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-2823 (($ $ $) NIL (|has| $ (-6 -4467)))) (-2045 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-4013 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-3682 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4467))) (($ $ "rest" $) NIL (|has| $ (-6 -4467))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-3162 (($ (-1 (-112) |#1|) $) NIL)) (-2035 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2902 ((|#1| $) NIL)) (-4359 (($) NIL T CONST)) (-3606 (($ $) NIL (|has| $ (-6 -4467)))) (-3768 (($ $) NIL)) (-3522 (($ $) NIL) (($ $ (-784)) NIL)) (-4295 (($ $) NIL (|has| |#1| (-1122)))) (-3914 (($ $) 7 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3647 (($ |#1| $) NIL (|has| |#1| (-1122))) (($ (-1 (-112) |#1|) $) NIL)) (-3895 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2158 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) NIL)) (-1628 (((-112) $) NIL)) (-3582 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122))) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) (-1 (-112) |#1|) $) NIL)) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2877 (((-657 $) $) NIL)) (-1700 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-4109 (($ (-784) |#1|) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) NIL (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| |#1| (-862)))) (-4033 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3073 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2272 (((-576) $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| |#1| (-862)))) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1710 (($ |#1|) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2424 (((-657 |#1|) $) NIL)) (-2633 (((-112) $) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3920 ((|#1| $) NIL) (($ $ (-784)) NIL)) (-2468 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2271 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3510 ((|#1| $) NIL) (($ $ (-784)) NIL)) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1987 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-4286 (((-112) $) NIL)) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1256 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-784) $ "count") 16)) (-3883 (((-576) $ $) NIL)) (-3449 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-3409 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-1488 (($ (-657 |#1|)) 22)) (-3628 (((-112) $) NIL)) (-3600 (($ $) NIL)) (-1921 (($ $) NIL (|has| $ (-6 -4467)))) (-4027 (((-784) $) NIL)) (-4087 (($ $) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2114 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) NIL)) (-2858 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1674 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-657 $)) NIL) (($ $ |#1|) NIL)) (-3501 (($ (-657 |#1|)) 17) (((-657 |#1|) $) 18) (((-877) $) 21 (|has| |#1| (-625 (-877))))) (-1986 (((-657 $) $) NIL)) (-1633 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2973 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3440 (((-784) $) 14 (|has| $ (-6 -4466))))) -(((-250 |#1|) (-13 (-679 |#1|) (-502 (-657 |#1|)) (-10 -8 (-15 -1488 ($ (-657 |#1|))) (-15 -2835 ($ $ "unique")) (-15 -2835 ($ $ "sort")) (-15 -2835 ((-784) $ "count")))) (-862)) (T -250)) -((-1488 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-250 *3)))) (-2835 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-862)))) (-2835 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-862)))) (-2835 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-784)) (-5 *1 (-250 *4)) (-4 *4 (-862))))) -(-13 (-679 |#1|) (-502 (-657 |#1|)) (-10 -8 (-15 -1488 ($ (-657 |#1|))) (-15 -2835 ($ $ "unique")) (-15 -2835 ($ $ "sort")) (-15 -2835 ((-784) $ "count")))) -((-3881 (((-3 (-784) "failed") |#1| |#1| (-784)) 40))) -(((-251 |#1|) (-10 -7 (-15 -3881 ((-3 (-784) "failed") |#1| |#1| (-784)))) (-13 (-739) (-379) (-10 -7 (-15 ** (|#1| |#1| (-576)))))) (T -251)) -((-3881 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-784)) (-4 *3 (-13 (-739) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) (-5 *1 (-251 *3))))) -(-10 -7 (-15 -3881 ((-3 (-784) "failed") |#1| |#1| (-784)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-2815 (($ $) 54 (|has| |#1| (-237))) (($ $ (-784)) 52 (|has| |#1| (-237))) (($ $ (-1198)) 50 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 48 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 47 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 46 (|has| |#1| (-920 (-1198)))) (($ $ (-1 |#1| |#1|) (-784)) 40) (($ $ (-1 |#1| |#1|)) 39)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2097 (($ $) 53 (|has| |#1| (-237))) (($ $ (-784)) 51 (|has| |#1| (-237))) (($ $ (-1198)) 49 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 45 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 44 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 43 (|has| |#1| (-920 (-1198)))) (($ $ (-1 |#1| |#1|) (-784)) 42) (($ $ (-1 |#1| |#1|)) 41)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-252 |#1|) (-141) (-1071)) (T -252)) -NIL -(-13 (-111 |t#1| |t#1|) (-272 |t#1|) (-10 -7 (IF (|has| |t#1| (-237)) (-6 (-235 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-920 (-1198))) (-6 (-917 |t#1| (-1198))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-877)) . T) ((-234 $) |has| |#1| (-237)) ((-235 |#1|) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-272 |#1|) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) -2802 (-12 (|has| |#1| (-174)) (|has| |#1| (-920 (-1198)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-730 |#1|) -2802 (-12 (|has| |#1| (-174)) (|has| |#1| (-920 (-1198)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-912 $ #0=(-1198)) |has| |#1| (-920 (-1198))) ((-917 |#1| (-1198)) |has| |#1| (-920 (-1198))) ((-920 #0#) |has| |#1| (-920 (-1198))) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2029 (((-657 (-879 |#1|)) $) NIL)) (-1849 (((-1194 $) $ (-879 |#1|)) NIL) (((-1194 |#2|) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-3325 (($ $) NIL (|has| |#2| (-568)))) (-4306 (((-112) $) NIL (|has| |#2| (-568)))) (-1775 (((-784) $) NIL) (((-784) $ (-657 (-879 |#1|))) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-2638 (($ $) NIL (|has| |#2| (-464)))) (-4402 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1060 (-576)))) (((-3 (-879 |#1|) "failed") $) NIL)) (-2884 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1060 (-576)))) (((-879 |#1|) $) NIL)) (-3203 (($ $ $ (-879 |#1|)) NIL (|has| |#2| (-174)))) (-3462 (($ $ (-657 (-576))) NIL)) (-2212 (($ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL) (((-702 |#2|) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3813 (($ $) NIL (|has| |#2| (-464))) (($ $ (-879 |#1|)) NIL (|has| |#2| (-464)))) (-2199 (((-657 $) $) NIL)) (-4257 (((-112) $) NIL (|has| |#2| (-929)))) (-3124 (($ $ |#2| (-245 (-3440 |#1|) (-784)) $) NIL)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-879 |#1|) (-902 (-390))) (|has| |#2| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-879 |#1|) (-902 (-576))) (|has| |#2| (-902 (-576)))))) (-4094 (((-112) $) NIL)) (-4334 (((-784) $) NIL)) (-2014 (($ (-1194 |#2|) (-879 |#1|)) NIL) (($ (-1194 $) (-879 |#1|)) NIL)) (-3724 (((-657 $) $) NIL)) (-3157 (((-112) $) NIL)) (-2003 (($ |#2| (-245 (-3440 |#1|) (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ (-879 |#1|)) NIL)) (-4436 (((-245 (-3440 |#1|) (-784)) $) NIL) (((-784) $ (-879 |#1|)) NIL) (((-657 (-784)) $ (-657 (-879 |#1|))) NIL)) (-4056 (($ (-1 (-245 (-3440 |#1|) (-784)) (-245 (-3440 |#1|) (-784))) $) NIL)) (-4083 (($ (-1 |#2| |#2|) $) NIL)) (-2353 (((-3 (-879 |#1|) "failed") $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-2174 (($ $) NIL)) (-2186 ((|#2| $) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2342 (((-1180) $) NIL)) (-1392 (((-3 (-657 $) "failed") $) NIL)) (-2974 (((-3 (-657 $) "failed") $) NIL)) (-2999 (((-3 (-2 (|:| |var| (-879 |#1|)) (|:| -1801 (-784))) "failed") $) NIL)) (-1471 (((-1142) $) NIL)) (-2146 (((-112) $) NIL)) (-2160 ((|#2| $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#2| (-464)))) (-3436 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-1885 (((-430 $) $) NIL (|has| |#2| (-929)))) (-3418 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3236 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-879 |#1|) |#2|) NIL) (($ $ (-657 (-879 |#1|)) (-657 |#2|)) NIL) (($ $ (-879 |#1|) $) NIL) (($ $ (-657 (-879 |#1|)) (-657 $)) NIL)) (-1701 (($ $ (-879 |#1|)) NIL (|has| |#2| (-174)))) (-2815 (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|))) NIL) (($ $ (-879 |#1|)) NIL)) (-1770 (((-245 (-3440 |#1|) (-784)) $) NIL) (((-784) $ (-879 |#1|)) NIL) (((-657 (-784)) $ (-657 (-879 |#1|))) NIL)) (-4148 (((-908 (-390)) $) NIL (-12 (|has| (-879 |#1|) (-626 (-908 (-390)))) (|has| |#2| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-879 |#1|) (-626 (-908 (-576)))) (|has| |#2| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-879 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1450 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-879 |#1|)) NIL (|has| |#2| (-464)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-929))))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-879 |#1|)) NIL) (($ (-419 (-576))) NIL (-2802 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-4037 (((-657 |#2|) $) NIL)) (-2313 ((|#2| $ (-245 (-3440 |#1|) (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| |#2| (-929))) (|has| |#2| (-146))))) (-1960 (((-784)) NIL T CONST)) (-2702 (($ $ $ (-784)) NIL (|has| |#2| (-174)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|))) NIL) (($ $ (-879 |#1|)) NIL)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-253 |#1| |#2|) (-13 (-969 |#2| (-245 (-3440 |#1|) (-784)) (-879 |#1|)) (-10 -8 (-15 -3462 ($ $ (-657 (-576)))))) (-657 (-1198)) (-1071)) (T -253)) -((-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-253 *3 *4)) (-14 *3 (-657 (-1198))) (-4 *4 (-1071))))) -(-13 (-969 |#2| (-245 (-3440 |#1|) (-784)) (-879 |#1|)) (-10 -8 (-15 -3462 ($ $ (-657 (-576)))))) -((-3429 (((-112) $ $) NIL)) (-2626 (((-1294) $) 17)) (-2370 (((-185 (-255)) $) 11)) (-1566 (($ (-185 (-255))) 12)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2608 (((-255) $) 7)) (-3501 (((-877) $) 9)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 15))) -(((-254) (-13 (-1122) (-10 -8 (-15 -2608 ((-255) $)) (-15 -2370 ((-185 (-255)) $)) (-15 -1566 ($ (-185 (-255)))) (-15 -2626 ((-1294) $))))) (T -254)) -((-2608 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))) (-2370 (*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-1566 (*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-2626 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-254))))) -(-13 (-1122) (-10 -8 (-15 -2608 ((-255) $)) (-15 -2370 ((-185 (-255)) $)) (-15 -1566 ($ (-185 (-255)))) (-15 -2626 ((-1294) $)))) -((-3429 (((-112) $ $) NIL)) (-3249 (((-657 (-880)) $) NIL)) (-2676 (((-518) $) NIL)) (-2342 (((-1180) $) NIL)) (-1802 (((-188) $) NIL)) (-4412 (((-112) $ (-518)) NIL)) (-1471 (((-1142) $) NIL)) (-3488 (((-343) $) 7)) (-2155 (((-657 (-112)) $) NIL)) (-3501 (((-877) $) NIL) (((-189) $) 8)) (-2046 (((-112) $ $) NIL)) (-4335 (((-55) $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-255) (-13 (-187) (-625 (-189)) (-10 -8 (-15 -3488 ((-343) $))))) (T -255)) -((-3488 (*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) -(-13 (-187) (-625 (-189)) (-10 -8 (-15 -3488 ((-343) $)))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2835 (((-1203) $ (-784)) 13)) (-3501 (((-877) $) 20)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 16)) (-3440 (((-784) $) 9))) -(((-256) (-13 (-1122) (-296 (-784) (-1203)) (-10 -8 (-15 -3440 ((-784) $))))) (T -256)) -((-3440 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-256))))) -(-13 (-1122) (-296 (-784) (-1203)) (-10 -8 (-15 -3440 ((-784) $)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3110 (($ (-941)) NIL (|has| |#4| (-1071)))) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3733 (($ $ $) NIL (|has| |#4| (-806)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-2193 (((-784)) NIL (|has| |#4| (-379)))) (-3682 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4467)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1122))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#4| (-1060 (-576))) (|has| |#4| (-1122)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#4| (-1060 (-419 (-576)))) (|has| |#4| (-1122))))) (-2884 ((|#4| $) NIL (|has| |#4| (-1122))) (((-576) $) NIL (-12 (|has| |#4| (-1060 (-576))) (|has| |#4| (-1122)))) (((-419 (-576)) $) NIL (-12 (|has| |#4| (-1060 (-419 (-576)))) (|has| |#4| (-1122))))) (-3306 (((-2 (|:| -3750 (-702 |#4|)) (|:| |vec| (-1289 |#4|))) (-702 $) (-1289 $)) NIL (|has| |#4| (-1071))) (((-702 |#4|) (-702 $)) NIL (|has| |#4| (-1071))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| |#4| (-652 (-576))) (|has| |#4| (-1071)))) (((-702 (-576)) (-702 $)) NIL (-12 (|has| |#4| (-652 (-576))) (|has| |#4| (-1071))))) (-3843 (((-3 $ "failed") $) NIL (|has| |#4| (-1071)))) (-1892 (($) NIL (|has| |#4| (-379)))) (-2158 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#4| $ (-576)) NIL)) (-1458 (((-657 |#4|) $) NIL (|has| $ (-6 -4466)))) (-4094 (((-112) $) NIL (|has| |#4| (-1071)))) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) NIL (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| |#4| (-862)))) (-2070 (((-657 |#4|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-2272 (((-576) $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| |#4| (-862)))) (-2148 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#4| |#4|) $) NIL)) (-3007 (((-941) $) NIL (|has| |#4| (-379)))) (-4261 (((-112) $ (-784)) NIL)) (-3101 (((-2 (|:| -3750 (-702 |#4|)) (|:| |vec| (-1289 |#4|))) (-1289 $) $) NIL (|has| |#4| (-1071))) (((-702 |#4|) (-1289 $)) NIL (|has| |#4| (-1071))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| |#4| (-652 (-576))) (|has| |#4| (-1071)))) (((-702 (-576)) (-1289 $)) NIL (-12 (|has| |#4| (-652 (-576))) (|has| |#4| (-1071))))) (-2342 (((-1180) $) NIL)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-3178 (($ (-941)) NIL (|has| |#4| (-379)))) (-1471 (((-1142) $) NIL)) (-3510 ((|#4| $) NIL (|has| (-576) (-862)))) (-1987 (($ $ |#4|) NIL (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 |#4|) (-657 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-2380 (((-657 |#4|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#4| $ (-576) |#4|) NIL) ((|#4| $ (-576)) 12)) (-1374 ((|#4| $ $) NIL (|has| |#4| (-1071)))) (-1924 (($ (-1289 |#4|)) NIL)) (-3863 (((-135)) NIL (|has| |#4| (-374)))) (-2815 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1071))) (($ $ (-1 |#4| |#4|) (-784)) NIL (|has| |#4| (-1071))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2802 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) (($ $ (-1198) (-784)) NIL (-2802 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) (($ $ (-657 (-1198))) NIL (-2802 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) (($ $ (-784)) NIL (-2802 (-12 (|has| |#4| (-238)) (|has| |#4| (-1071))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1071))))) (($ $) NIL (-2802 (-12 (|has| |#4| (-238)) (|has| |#4| (-1071))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1071)))))) (-1482 (((-784) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466))) (((-784) |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-1923 (($ $) NIL)) (-3501 (((-1289 |#4|) $) NIL) (($ |#4|) NIL (|has| |#4| (-1122))) (((-877) $) NIL) (($ (-576)) NIL (-2802 (-12 (|has| |#4| (-1060 (-576))) (|has| |#4| (-1122))) (|has| |#4| (-1071)))) (($ (-419 (-576))) NIL (-12 (|has| |#4| (-1060 (-419 (-576)))) (|has| |#4| (-1122))))) (-1960 (((-784)) NIL (|has| |#4| (-1071)) CONST)) (-2046 (((-112) $ $) NIL)) (-2147 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL (|has| |#4| (-1071)) CONST)) (-2097 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1071))) (($ $ (-1 |#4| |#4|) (-784)) NIL (|has| |#4| (-1071))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2802 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) (($ $ (-1198) (-784)) NIL (-2802 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) (($ $ (-657 (-1198))) NIL (-2802 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| |#4| (-918 (-1198))) (|has| |#4| (-1071))) (-12 (|has| |#4| (-920 (-1198))) (|has| |#4| (-1071))))) (($ $ (-784)) NIL (-2802 (-12 (|has| |#4| (-238)) (|has| |#4| (-1071))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1071))))) (($ $) NIL (-2802 (-12 (|has| |#4| (-238)) (|has| |#4| (-1071))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1071)))))) (-2985 (((-112) $ $) NIL (|has| |#4| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#4| (-862)))) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL (|has| |#4| (-862)))) (-2954 (((-112) $ $) NIL (|has| |#4| (-862)))) (-3034 (($ $ |#4|) NIL (|has| |#4| (-374)))) (-3022 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-784)) NIL (|has| |#4| (-1071))) (($ $ (-941)) NIL (|has| |#4| (-1071)))) (* (($ |#2| $) 14) (($ (-576) $) NIL) (($ (-784) $) NIL) (($ (-941) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-739))) (($ |#4| $) NIL (|has| |#4| (-739))) (($ $ $) NIL (|has| |#4| (-1071)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-257 |#1| |#2| |#3| |#4|) (-13 (-243 |#1| |#4|) (-661 |#2|) (-661 |#3|)) (-941) (-1071) (-1145 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-661 |#2|)) (T -257)) -NIL -(-13 (-243 |#1| |#4|) (-661 |#2|) (-661 |#3|)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3110 (($ (-941)) NIL (|has| |#3| (-1071)))) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3733 (($ $ $) NIL (|has| |#3| (-806)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-2193 (((-784)) NIL (|has| |#3| (-379)))) (-3682 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4467)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1122))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122))))) (-2884 ((|#3| $) NIL (|has| |#3| (-1122))) (((-576) $) NIL (-12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122))))) (-3306 (((-2 (|:| -3750 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-702 $) (-1289 $)) NIL (|has| |#3| (-1071))) (((-702 |#3|) (-702 $)) NIL (|has| |#3| (-1071))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) (((-702 (-576)) (-702 $)) NIL (-12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071))))) (-3843 (((-3 $ "failed") $) NIL (|has| |#3| (-1071)))) (-1892 (($) NIL (|has| |#3| (-379)))) (-2158 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#3| $ (-576)) NIL)) (-1458 (((-657 |#3|) $) NIL (|has| $ (-6 -4466)))) (-4094 (((-112) $) NIL (|has| |#3| (-1071)))) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) NIL (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| |#3| (-862)))) (-2070 (((-657 |#3|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#3| (-1122))))) (-2272 (((-576) $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| |#3| (-862)))) (-2148 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#3| |#3|) $) NIL)) (-3007 (((-941) $) NIL (|has| |#3| (-379)))) (-4261 (((-112) $ (-784)) NIL)) (-3101 (((-2 (|:| -3750 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-1289 $) $) NIL (|has| |#3| (-1071))) (((-702 |#3|) (-1289 $)) NIL (|has| |#3| (-1071))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) (((-702 (-576)) (-1289 $)) NIL (-12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071))))) (-2342 (((-1180) $) NIL)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-3178 (($ (-941)) NIL (|has| |#3| (-379)))) (-1471 (((-1142) $) NIL)) (-3510 ((|#3| $) NIL (|has| (-576) (-862)))) (-1987 (($ $ |#3|) NIL (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ (-657 |#3|) (-657 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#3| (-1122))))) (-2380 (((-657 |#3|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) 11)) (-1374 ((|#3| $ $) NIL (|has| |#3| (-1071)))) (-1924 (($ (-1289 |#3|)) NIL)) (-3863 (((-135)) NIL (|has| |#3| (-374)))) (-2815 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1071))) (($ $ (-1 |#3| |#3|) (-784)) NIL (|has| |#3| (-1071))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2802 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) (($ $ (-1198) (-784)) NIL (-2802 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) (($ $ (-657 (-1198))) NIL (-2802 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) (($ $ (-784)) NIL (-2802 (-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1071))))) (($ $) NIL (-2802 (-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1071)))))) (-1482 (((-784) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4466))) (((-784) |#3| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#3| (-1122))))) (-1923 (($ $) NIL)) (-3501 (((-1289 |#3|) $) NIL) (($ |#3|) NIL (|has| |#3| (-1122))) (((-877) $) NIL) (($ (-576)) NIL (-2802 (-12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122))) (|has| |#3| (-1071)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122))))) (-1960 (((-784)) NIL (|has| |#3| (-1071)) CONST)) (-2046 (((-112) $ $) NIL)) (-2147 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4466)))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL (|has| |#3| (-1071)) CONST)) (-2097 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1071))) (($ $ (-1 |#3| |#3|) (-784)) NIL (|has| |#3| (-1071))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2802 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) (($ $ (-1198) (-784)) NIL (-2802 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) (($ $ (-657 (-1198))) NIL (-2802 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| |#3| (-918 (-1198))) (|has| |#3| (-1071))) (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071))))) (($ $ (-784)) NIL (-2802 (-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1071))))) (($ $) NIL (-2802 (-12 (|has| |#3| (-238)) (|has| |#3| (-1071))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1071)))))) (-2985 (((-112) $ $) NIL (|has| |#3| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#3| (-862)))) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL (|has| |#3| (-862)))) (-2954 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3034 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-3022 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-784)) NIL (|has| |#3| (-1071))) (($ $ (-941)) NIL (|has| |#3| (-1071)))) (* (($ |#2| $) 13) (($ (-576) $) NIL) (($ (-784) $) NIL) (($ (-941) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-739))) (($ |#3| $) NIL (|has| |#3| (-739))) (($ $ $) NIL (|has| |#3| (-1071)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-258 |#1| |#2| |#3|) (-13 (-243 |#1| |#3|) (-661 |#2|)) (-784) (-1071) (-661 |#2|)) (T -258)) -NIL -(-13 (-243 |#1| |#3|) (-661 |#2|)) -((-2728 (((-657 (-784)) $) 56) (((-657 (-784)) $ |#3|) 59)) (-3983 (((-784) $) 58) (((-784) $ |#3|) 61)) (-1594 (($ $) 76)) (-1624 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3182 (((-784) $ |#3|) 43) (((-784) $) 38)) (-3801 (((-1 $ (-784)) |#3|) 15) (((-1 $ (-784)) $) 88)) (-1597 ((|#4| $) 69)) (-3948 (((-112) $) 67)) (-4276 (($ $) 75)) (-3236 (($ $ (-657 (-304 $))) 111) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-657 |#4|) (-657 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-657 |#4|) (-657 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-657 |#3|) (-657 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-657 |#3|) (-657 |#2|)) 97)) (-2815 (($ $ (-657 |#4|) (-657 (-784))) NIL) (($ $ |#4| (-784)) NIL) (($ $ (-657 |#4|)) NIL) (($ $ |#4|) NIL) (($ $ (-1 |#2| |#2|)) 32) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1198)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $) NIL) (($ $ (-784)) NIL)) (-3928 (((-657 |#3|) $) 86)) (-1770 ((|#5| $) NIL) (((-784) $ |#4|) NIL) (((-657 (-784)) $ (-657 |#4|)) NIL) (((-784) $ |#3|) 49)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-419 (-576))) NIL) (($ $) NIL))) -(((-259 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -3501 (|#1| |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -3236 (|#1| |#1| (-657 |#3|) (-657 |#2|))) (-15 -3236 (|#1| |#1| |#3| |#2|)) (-15 -3236 (|#1| |#1| (-657 |#3|) (-657 |#1|))) (-15 -3236 (|#1| |#1| |#3| |#1|)) (-15 -3801 ((-1 |#1| (-784)) |#1|)) (-15 -1594 (|#1| |#1|)) (-15 -4276 (|#1| |#1|)) (-15 -1597 (|#4| |#1|)) (-15 -3948 ((-112) |#1|)) (-15 -3983 ((-784) |#1| |#3|)) (-15 -2728 ((-657 (-784)) |#1| |#3|)) (-15 -3983 ((-784) |#1|)) (-15 -2728 ((-657 (-784)) |#1|)) (-15 -1770 ((-784) |#1| |#3|)) (-15 -3182 ((-784) |#1|)) (-15 -3182 ((-784) |#1| |#3|)) (-15 -3928 ((-657 |#3|) |#1|)) (-15 -3801 ((-1 |#1| (-784)) |#3|)) (-15 -3501 (|#1| |#3|)) (-15 -1624 ((-3 |#3| "failed") |#1|)) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1770 ((-657 (-784)) |#1| (-657 |#4|))) (-15 -1770 ((-784) |#1| |#4|)) (-15 -3501 (|#1| |#4|)) (-15 -1624 ((-3 |#4| "failed") |#1|)) (-15 -3236 (|#1| |#1| (-657 |#4|) (-657 |#1|))) (-15 -3236 (|#1| |#1| |#4| |#1|)) (-15 -3236 (|#1| |#1| (-657 |#4|) (-657 |#2|))) (-15 -3236 (|#1| |#1| |#4| |#2|)) (-15 -3236 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3236 (|#1| |#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| (-304 |#1|))) (-15 -3236 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -1770 (|#5| |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -3501 (|#1| |#2|)) (-15 -2815 (|#1| |#1| |#4|)) (-15 -2815 (|#1| |#1| (-657 |#4|))) (-15 -2815 (|#1| |#1| |#4| (-784))) (-15 -2815 (|#1| |#1| (-657 |#4|) (-657 (-784)))) (-15 -3501 (|#1| (-576))) (-15 -3501 ((-877) |#1|))) (-260 |#2| |#3| |#4| |#5|) (-1071) (-862) (-275 |#3|) (-806)) (T -259)) -NIL -(-10 -8 (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -3501 (|#1| |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -3236 (|#1| |#1| (-657 |#3|) (-657 |#2|))) (-15 -3236 (|#1| |#1| |#3| |#2|)) (-15 -3236 (|#1| |#1| (-657 |#3|) (-657 |#1|))) (-15 -3236 (|#1| |#1| |#3| |#1|)) (-15 -3801 ((-1 |#1| (-784)) |#1|)) (-15 -1594 (|#1| |#1|)) (-15 -4276 (|#1| |#1|)) (-15 -1597 (|#4| |#1|)) (-15 -3948 ((-112) |#1|)) (-15 -3983 ((-784) |#1| |#3|)) (-15 -2728 ((-657 (-784)) |#1| |#3|)) (-15 -3983 ((-784) |#1|)) (-15 -2728 ((-657 (-784)) |#1|)) (-15 -1770 ((-784) |#1| |#3|)) (-15 -3182 ((-784) |#1|)) (-15 -3182 ((-784) |#1| |#3|)) (-15 -3928 ((-657 |#3|) |#1|)) (-15 -3801 ((-1 |#1| (-784)) |#3|)) (-15 -3501 (|#1| |#3|)) (-15 -1624 ((-3 |#3| "failed") |#1|)) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1770 ((-657 (-784)) |#1| (-657 |#4|))) (-15 -1770 ((-784) |#1| |#4|)) (-15 -3501 (|#1| |#4|)) (-15 -1624 ((-3 |#4| "failed") |#1|)) (-15 -3236 (|#1| |#1| (-657 |#4|) (-657 |#1|))) (-15 -3236 (|#1| |#1| |#4| |#1|)) (-15 -3236 (|#1| |#1| (-657 |#4|) (-657 |#2|))) (-15 -3236 (|#1| |#1| |#4| |#2|)) (-15 -3236 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3236 (|#1| |#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| (-304 |#1|))) (-15 -3236 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -1770 (|#5| |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -3501 (|#1| |#2|)) (-15 -2815 (|#1| |#1| |#4|)) (-15 -2815 (|#1| |#1| (-657 |#4|))) (-15 -2815 (|#1| |#1| |#4| (-784))) (-15 -2815 (|#1| |#1| (-657 |#4|) (-657 (-784)))) (-15 -3501 (|#1| (-576))) (-15 -3501 ((-877) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2728 (((-657 (-784)) $) 236) (((-657 (-784)) $ |#2|) 234)) (-3983 (((-784) $) 235) (((-784) $ |#2|) 233)) (-2029 (((-657 |#3|) $) 113)) (-1849 (((-1194 $) $ |#3|) 128) (((-1194 |#1|) $) 127)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-3325 (($ $) 91 (|has| |#1| (-568)))) (-4306 (((-112) $) 93 (|has| |#1| (-568)))) (-1775 (((-784) $) 115) (((-784) $ (-657 |#3|)) 114)) (-2721 (((-3 $ "failed") $ $) 20)) (-4250 (((-430 (-1194 $)) (-1194 $)) 103 (|has| |#1| (-929)))) (-2638 (($ $) 101 (|has| |#1| (-464)))) (-4402 (((-430 $) $) 100 (|has| |#1| (-464)))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 106 (|has| |#1| (-929)))) (-1594 (($ $) 229)) (-4359 (($) 18 T CONST)) (-1624 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1060 (-576)))) (((-3 |#3| "failed") $) 143) (((-3 |#2| "failed") $) 243)) (-2884 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1060 (-576)))) ((|#3| $) 144) ((|#2| $) 244)) (-3203 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-2212 (($ $) 161)) (-3306 (((-702 (-576)) (-702 $)) 139 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 138 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 137) (((-702 |#1|) (-702 $)) 136)) (-3843 (((-3 $ "failed") $) 37)) (-3813 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-2199 (((-657 $) $) 112)) (-4257 (((-112) $) 99 (|has| |#1| (-929)))) (-3124 (($ $ |#1| |#4| $) 179)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 87 (-12 (|has| |#3| (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 86 (-12 (|has| |#3| (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-3182 (((-784) $ |#2|) 239) (((-784) $) 238)) (-4094 (((-112) $) 35)) (-4334 (((-784) $) 176)) (-2014 (($ (-1194 |#1|) |#3|) 120) (($ (-1194 $) |#3|) 119)) (-3724 (((-657 $) $) 129)) (-3157 (((-112) $) 159)) (-2003 (($ |#1| |#4|) 160) (($ $ |#3| (-784)) 122) (($ $ (-657 |#3|) (-657 (-784))) 121)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ |#3|) 123)) (-4436 ((|#4| $) 177) (((-784) $ |#3|) 125) (((-657 (-784)) $ (-657 |#3|)) 124)) (-4056 (($ (-1 |#4| |#4|) $) 178)) (-4083 (($ (-1 |#1| |#1|) $) 158)) (-3801 (((-1 $ (-784)) |#2|) 241) (((-1 $ (-784)) $) 228 (|has| |#1| (-238)))) (-2353 (((-3 |#3| "failed") $) 126)) (-3101 (((-702 (-576)) (-1289 $)) 141 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 140 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 135) (((-702 |#1|) (-1289 $)) 134)) (-2174 (($ $) 156)) (-2186 ((|#1| $) 155)) (-1597 ((|#3| $) 231)) (-3402 (($ (-657 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2342 (((-1180) $) 10)) (-3948 (((-112) $) 232)) (-1392 (((-3 (-657 $) "failed") $) 117)) (-2974 (((-3 (-657 $) "failed") $) 118)) (-2999 (((-3 (-2 (|:| |var| |#3|) (|:| -1801 (-784))) "failed") $) 116)) (-4276 (($ $) 230)) (-1471 (((-1142) $) 11)) (-2146 (((-112) $) 173)) (-2160 ((|#1| $) 174)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 98 (|has| |#1| (-464)))) (-3436 (($ (-657 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-2861 (((-430 (-1194 $)) (-1194 $)) 105 (|has| |#1| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) 104 (|has| |#1| (-929)))) (-1885 (((-430 $) $) 102 (|has| |#1| (-929)))) (-3418 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3236 (($ $ (-657 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-657 $) (-657 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-657 |#3|) (-657 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-657 |#3|) (-657 $)) 145) (($ $ |#2| $) 227 (|has| |#1| (-238))) (($ $ (-657 |#2|) (-657 $)) 226 (|has| |#1| (-238))) (($ $ |#2| |#1|) 225 (|has| |#1| (-238))) (($ $ (-657 |#2|) (-657 |#1|)) 224 (|has| |#1| (-238)))) (-1701 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2815 (($ $ (-657 |#3|) (-657 (-784))) 44) (($ $ |#3| (-784)) 43) (($ $ (-657 |#3|)) 42) (($ $ |#3|) 40) (($ $ (-1 |#1| |#1|)) 248) (($ $ (-1 |#1| |#1|) (-784)) 247) (($ $) 223 (|has| |#1| (-237))) (($ $ (-784)) 221 (|has| |#1| (-237))) (($ $ (-1198)) 219 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 217 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 216 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 215 (|has| |#1| (-920 (-1198))))) (-3928 (((-657 |#2|) $) 240)) (-1770 ((|#4| $) 157) (((-784) $ |#3|) 133) (((-657 (-784)) $ (-657 |#3|)) 132) (((-784) $ |#2|) 237)) (-4148 (((-908 (-390)) $) 85 (-12 (|has| |#3| (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) 84 (-12 (|has| |#3| (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1450 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) 107 (-2724 (|has| $ (-146)) (|has| |#1| (-929))))) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ |#2|) 242) (($ (-419 (-576))) 81 (-2802 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-4037 (((-657 |#1|) $) 175)) (-2313 ((|#1| $ |#4|) 162) (($ $ |#3| (-784)) 131) (($ $ (-657 |#3|) (-657 (-784))) 130)) (-3096 (((-3 $ "failed") $) 82 (-2802 (-2724 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-1960 (((-784)) 32 T CONST)) (-2702 (($ $ $ (-784)) 180 (|has| |#1| (-174)))) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-657 |#3|) (-657 (-784))) 47) (($ $ |#3| (-784)) 46) (($ $ (-657 |#3|)) 45) (($ $ |#3|) 41) (($ $ (-1 |#1| |#1|)) 246) (($ $ (-1 |#1| |#1|) (-784)) 245) (($ $) 222 (|has| |#1| (-237))) (($ $ (-784)) 220 (|has| |#1| (-237))) (($ $ (-1198)) 218 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 214 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 213 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 212 (|has| |#1| (-920 (-1198))))) (-2933 (((-112) $ $) 8)) (-3034 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) -(((-260 |#1| |#2| |#3| |#4|) (-141) (-1071) (-862) (-275 |t#2|) (-806)) (T -260)) -((-3801 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-806)) (-5 *2 (-1 *1 (-784))) (-4 *1 (-260 *4 *3 *5 *6)))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-657 *4)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1071)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-806)) (-5 *2 (-784)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-784)))) (-1770 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1071)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-806)) (-5 *2 (-784)))) (-2728 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-657 (-784))))) (-3983 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-784)))) (-2728 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1071)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-806)) (-5 *2 (-657 (-784))))) (-3983 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1071)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-806)) (-5 *2 (-784)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-112)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-862)) (-4 *5 (-806)) (-4 *2 (-275 *4)))) (-4276 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1071)) (-4 *3 (-862)) (-4 *4 (-275 *3)) (-4 *5 (-806)))) (-1594 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1071)) (-4 *3 (-862)) (-4 *4 (-275 *3)) (-4 *5 (-806)))) (-3801 (*1 *2 *1) (-12 (-4 *3 (-238)) (-4 *3 (-1071)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-1 *1 (-784))) (-4 *1 (-260 *3 *4 *5 *6))))) -(-13 (-969 |t#1| |t#4| |t#3|) (-232 |t#1|) (-1060 |t#2|) (-10 -8 (-15 -3801 ((-1 $ (-784)) |t#2|)) (-15 -3928 ((-657 |t#2|) $)) (-15 -3182 ((-784) $ |t#2|)) (-15 -3182 ((-784) $)) (-15 -1770 ((-784) $ |t#2|)) (-15 -2728 ((-657 (-784)) $)) (-15 -3983 ((-784) $)) (-15 -2728 ((-657 (-784)) $ |t#2|)) (-15 -3983 ((-784) $ |t#2|)) (-15 -3948 ((-112) $)) (-15 -1597 (|t#3| $)) (-15 -4276 ($ $)) (-15 -1594 ($ $)) (IF (|has| |t#1| (-238)) (PROGN (-6 (-526 |t#2| |t#1|)) (-6 (-526 |t#2| $)) (-6 (-319 $)) (-15 -3801 ((-1 $ (-784)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2802 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#2|) . T) ((-628 |#3|) . T) ((-628 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-877)) . T) ((-174) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-908 (-390))) -12 (|has| |#1| (-626 (-908 (-390)))) (|has| |#3| (-626 (-908 (-390))))) ((-626 (-908 (-576))) -12 (|has| |#1| (-626 (-908 (-576)))) (|has| |#3| (-626 (-908 (-576))))) ((-234 $) -2802 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -2802 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-300) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#4|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2802 (|has| |#1| (-929)) (|has| |#1| (-464))) ((-526 |#2| |#1|) |has| |#1| (-238)) ((-526 |#2| $) |has| |#1| (-238)) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-659 #0#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) |has| |#1| (-38 (-419 (-576)))) ((-661 #1=(-576)) |has| |#1| (-652 (-576))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-652 #1#) |has| |#1| (-652 (-576))) ((-652 |#1|) . T) ((-730 #0#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-739) . T) ((-912 $ #2=(-1198)) -2802 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-912 $ |#3|) . T) ((-918 (-1198)) |has| |#1| (-918 (-1198))) ((-918 |#3|) . T) ((-920 #2#) -2802 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-920 |#3|) . T) ((-902 (-390)) -12 (|has| |#1| (-902 (-390))) (|has| |#3| (-902 (-390)))) ((-902 (-576)) -12 (|has| |#1| (-902 (-576))) (|has| |#3| (-902 (-576)))) ((-969 |#1| |#4| |#3|) . T) ((-929) |has| |#1| (-929)) ((-1060 (-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1060 |#2|) . T) ((-1060 |#3|) . T) ((-1073 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1078 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) |has| |#1| (-929))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2720 ((|#1| $) 55)) (-1433 ((|#1| $) 45)) (-3793 (((-112) $ (-784)) 8)) (-4359 (($) 7 T CONST)) (-4231 (($ $) 61)) (-3606 (($ $) 49)) (-1949 ((|#1| |#1| $) 47)) (-2075 ((|#1| $) 46)) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) 9)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-3358 (((-784) $) 62)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3050 ((|#1| $) 40)) (-1326 ((|#1| |#1| $) 53)) (-3286 ((|#1| |#1| $) 52)) (-2468 (($ |#1| $) 41)) (-2404 (((-784) $) 56)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2640 ((|#1| $) 63)) (-3138 ((|#1| $) 51)) (-2352 ((|#1| $) 50)) (-2277 ((|#1| $) 42)) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-2862 ((|#1| |#1| $) 59)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-1384 ((|#1| $) 60)) (-2535 (($) 58) (($ (-657 |#1|)) 57)) (-1943 (((-784) $) 44)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-3705 ((|#1| $) 54)) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-4079 (($ (-657 |#1|)) 43)) (-4362 ((|#1| $) 64)) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-261 |#1|) (-141) (-1239)) (T -261)) -((-2535 (*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239)))) (-2535 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-4 *1 (-261 *3)))) (-2404 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1239)) (-5 *2 (-784)))) (-2720 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239)))) (-1326 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239)))) (-3286 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239)))) (-2352 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239)))) (-3606 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239))))) -(-13 (-1143 |t#1|) (-1017 |t#1|) (-10 -8 (-15 -2535 ($)) (-15 -2535 ($ (-657 |t#1|))) (-15 -2404 ((-784) $)) (-15 -2720 (|t#1| $)) (-15 -3705 (|t#1| $)) (-15 -1326 (|t#1| |t#1| $)) (-15 -3286 (|t#1| |t#1| $)) (-15 -3138 (|t#1| $)) (-15 -2352 (|t#1| $)) (-15 -3606 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1017 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1143 |#1|) . T) ((-1239) . T)) -((-4338 (((-1 (-963 (-227)) (-227) (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1761 (((-1155 (-227)) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390))) 173) (((-1155 (-227)) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)) (-657 (-270))) 171) (((-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390))) 176) (((-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270))) 172) (((-1155 (-227)) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390))) 164) (((-1155 (-227)) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270))) 163) (((-1155 (-227)) (-1 (-963 (-227)) (-227)) (-1116 (-390))) 145) (((-1155 (-227)) (-1 (-963 (-227)) (-227)) (-1116 (-390)) (-657 (-270))) 143) (((-1155 (-227)) (-895 (-1 (-227) (-227))) (-1116 (-390))) 144) (((-1155 (-227)) (-895 (-1 (-227) (-227))) (-1116 (-390)) (-657 (-270))) 141)) (-1722 (((-1291) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390))) 175) (((-1291) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)) (-657 (-270))) 174) (((-1291) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390))) 178) (((-1291) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270))) 177) (((-1291) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390))) 166) (((-1291) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270))) 165) (((-1291) (-1 (-963 (-227)) (-227)) (-1116 (-390))) 151) (((-1291) (-1 (-963 (-227)) (-227)) (-1116 (-390)) (-657 (-270))) 150) (((-1291) (-895 (-1 (-227) (-227))) (-1116 (-390))) 149) (((-1291) (-895 (-1 (-227) (-227))) (-1116 (-390)) (-657 (-270))) 148) (((-1290) (-893 (-1 (-227) (-227))) (-1116 (-390))) 113) (((-1290) (-893 (-1 (-227) (-227))) (-1116 (-390)) (-657 (-270))) 112) (((-1290) (-1 (-227) (-227)) (-1116 (-390))) 107) (((-1290) (-1 (-227) (-227)) (-1116 (-390)) (-657 (-270))) 105))) -(((-262) (-10 -7 (-15 -1722 ((-1290) (-1 (-227) (-227)) (-1116 (-390)) (-657 (-270)))) (-15 -1722 ((-1290) (-1 (-227) (-227)) (-1116 (-390)))) (-15 -1722 ((-1290) (-893 (-1 (-227) (-227))) (-1116 (-390)) (-657 (-270)))) (-15 -1722 ((-1290) (-893 (-1 (-227) (-227))) (-1116 (-390)))) (-15 -1722 ((-1291) (-895 (-1 (-227) (-227))) (-1116 (-390)) (-657 (-270)))) (-15 -1722 ((-1291) (-895 (-1 (-227) (-227))) (-1116 (-390)))) (-15 -1722 ((-1291) (-1 (-963 (-227)) (-227)) (-1116 (-390)) (-657 (-270)))) (-15 -1722 ((-1291) (-1 (-963 (-227)) (-227)) (-1116 (-390)))) (-15 -1761 ((-1155 (-227)) (-895 (-1 (-227) (-227))) (-1116 (-390)) (-657 (-270)))) (-15 -1761 ((-1155 (-227)) (-895 (-1 (-227) (-227))) (-1116 (-390)))) (-15 -1761 ((-1155 (-227)) (-1 (-963 (-227)) (-227)) (-1116 (-390)) (-657 (-270)))) (-15 -1761 ((-1155 (-227)) (-1 (-963 (-227)) (-227)) (-1116 (-390)))) (-15 -1722 ((-1291) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1722 ((-1291) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)))) (-15 -1761 ((-1155 (-227)) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1761 ((-1155 (-227)) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)))) (-15 -1722 ((-1291) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1722 ((-1291) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)))) (-15 -1761 ((-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1761 ((-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)))) (-15 -1722 ((-1291) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1722 ((-1291) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)))) (-15 -1761 ((-1155 (-227)) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1761 ((-1155 (-227)) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)))) (-15 -4338 ((-1 (-963 (-227)) (-227) (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -262)) -((-4338 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-963 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))) (-1761 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-898 (-1 (-227) (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1761 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-898 (-1 (-227) (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1722 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-898 (-1 (-227) (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1722 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-898 (-1 (-227) (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1761 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1761 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1722 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1722 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1761 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1761 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1722 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1722 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1761 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-963 (-227)) (-227))) (-5 *4 (-1116 (-390))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1761 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-963 (-227)) (-227))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1761 (*1 *2 *3 *4) (-12 (-5 *3 (-895 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1761 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-895 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) (-1722 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-963 (-227)) (-227))) (-5 *4 (-1116 (-390))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1722 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-963 (-227)) (-227))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1722 (*1 *2 *3 *4) (-12 (-5 *3 (-895 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1722 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-895 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) (-1722 (*1 *2 *3 *4) (-12 (-5 *3 (-893 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1722 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-893 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1722 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *2 (-1290)) (-5 *1 (-262)))) (-1722 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1116 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1290)) (-5 *1 (-262))))) -(-10 -7 (-15 -1722 ((-1290) (-1 (-227) (-227)) (-1116 (-390)) (-657 (-270)))) (-15 -1722 ((-1290) (-1 (-227) (-227)) (-1116 (-390)))) (-15 -1722 ((-1290) (-893 (-1 (-227) (-227))) (-1116 (-390)) (-657 (-270)))) (-15 -1722 ((-1290) (-893 (-1 (-227) (-227))) (-1116 (-390)))) (-15 -1722 ((-1291) (-895 (-1 (-227) (-227))) (-1116 (-390)) (-657 (-270)))) (-15 -1722 ((-1291) (-895 (-1 (-227) (-227))) (-1116 (-390)))) (-15 -1722 ((-1291) (-1 (-963 (-227)) (-227)) (-1116 (-390)) (-657 (-270)))) (-15 -1722 ((-1291) (-1 (-963 (-227)) (-227)) (-1116 (-390)))) (-15 -1761 ((-1155 (-227)) (-895 (-1 (-227) (-227))) (-1116 (-390)) (-657 (-270)))) (-15 -1761 ((-1155 (-227)) (-895 (-1 (-227) (-227))) (-1116 (-390)))) (-15 -1761 ((-1155 (-227)) (-1 (-963 (-227)) (-227)) (-1116 (-390)) (-657 (-270)))) (-15 -1761 ((-1155 (-227)) (-1 (-963 (-227)) (-227)) (-1116 (-390)))) (-15 -1722 ((-1291) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1722 ((-1291) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)))) (-15 -1761 ((-1155 (-227)) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1761 ((-1155 (-227)) (-1 (-227) (-227) (-227)) (-1116 (-390)) (-1116 (-390)))) (-15 -1722 ((-1291) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1722 ((-1291) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)))) (-15 -1761 ((-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1761 ((-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-390)) (-1116 (-390)))) (-15 -1722 ((-1291) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1722 ((-1291) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)))) (-15 -1761 ((-1155 (-227)) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)) (-657 (-270)))) (-15 -1761 ((-1155 (-227)) (-898 (-1 (-227) (-227) (-227))) (-1116 (-390)) (-1116 (-390)))) (-15 -4338 ((-1 (-963 (-227)) (-227) (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) -((-1722 (((-1290) (-304 |#2|) (-1198) (-1198) (-657 (-270))) 101))) -(((-263 |#1| |#2|) (-10 -7 (-15 -1722 ((-1290) (-304 |#2|) (-1198) (-1198) (-657 (-270))))) (-13 (-568) (-862) (-1060 (-576))) (-442 |#1|)) (T -263)) -((-1722 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-1198)) (-5 *5 (-657 (-270))) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-862) (-1060 (-576)))) (-5 *2 (-1290)) (-5 *1 (-263 *6 *7))))) -(-10 -7 (-15 -1722 ((-1290) (-304 |#2|) (-1198) (-1198) (-657 (-270))))) -((-3766 (((-576) (-576)) 71)) (-3218 (((-576) (-576)) 72)) (-3690 (((-227) (-227)) 73)) (-4162 (((-1291) (-1 (-171 (-227)) (-171 (-227))) (-1116 (-227)) (-1116 (-227))) 70)) (-3422 (((-1291) (-1 (-171 (-227)) (-171 (-227))) (-1116 (-227)) (-1116 (-227)) (-112)) 68))) -(((-264) (-10 -7 (-15 -3422 ((-1291) (-1 (-171 (-227)) (-171 (-227))) (-1116 (-227)) (-1116 (-227)) (-112))) (-15 -4162 ((-1291) (-1 (-171 (-227)) (-171 (-227))) (-1116 (-227)) (-1116 (-227)))) (-15 -3766 ((-576) (-576))) (-15 -3218 ((-576) (-576))) (-15 -3690 ((-227) (-227))))) (T -264)) -((-3690 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))) (-3218 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-3766 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-4162 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1116 (-227))) (-5 *2 (-1291)) (-5 *1 (-264)))) (-3422 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1116 (-227))) (-5 *5 (-112)) (-5 *2 (-1291)) (-5 *1 (-264))))) -(-10 -7 (-15 -3422 ((-1291) (-1 (-171 (-227)) (-171 (-227))) (-1116 (-227)) (-1116 (-227)) (-112))) (-15 -4162 ((-1291) (-1 (-171 (-227)) (-171 (-227))) (-1116 (-227)) (-1116 (-227)))) (-15 -3766 ((-576) (-576))) (-15 -3218 ((-576) (-576))) (-15 -3690 ((-227) (-227)))) -((-3501 (((-1114 (-390)) (-1114 (-326 |#1|))) 16))) -(((-265 |#1|) (-10 -7 (-15 -3501 ((-1114 (-390)) (-1114 (-326 |#1|))))) (-13 (-862) (-568) (-626 (-390)))) (T -265)) -((-3501 (*1 *2 *3) (-12 (-5 *3 (-1114 (-326 *4))) (-4 *4 (-13 (-862) (-568) (-626 (-390)))) (-5 *2 (-1114 (-390))) (-5 *1 (-265 *4))))) -(-10 -7 (-15 -3501 ((-1114 (-390)) (-1114 (-326 |#1|))))) -((-1761 (((-1155 (-227)) (-898 |#1|) (-1114 (-390)) (-1114 (-390))) 75) (((-1155 (-227)) (-898 |#1|) (-1114 (-390)) (-1114 (-390)) (-657 (-270))) 74) (((-1155 (-227)) |#1| (-1114 (-390)) (-1114 (-390))) 65) (((-1155 (-227)) |#1| (-1114 (-390)) (-1114 (-390)) (-657 (-270))) 64) (((-1155 (-227)) (-895 |#1|) (-1114 (-390))) 56) (((-1155 (-227)) (-895 |#1|) (-1114 (-390)) (-657 (-270))) 55)) (-1722 (((-1291) (-898 |#1|) (-1114 (-390)) (-1114 (-390))) 78) (((-1291) (-898 |#1|) (-1114 (-390)) (-1114 (-390)) (-657 (-270))) 77) (((-1291) |#1| (-1114 (-390)) (-1114 (-390))) 68) (((-1291) |#1| (-1114 (-390)) (-1114 (-390)) (-657 (-270))) 67) (((-1291) (-895 |#1|) (-1114 (-390))) 60) (((-1291) (-895 |#1|) (-1114 (-390)) (-657 (-270))) 59) (((-1290) (-893 |#1|) (-1114 (-390))) 47) (((-1290) (-893 |#1|) (-1114 (-390)) (-657 (-270))) 46) (((-1290) |#1| (-1114 (-390))) 38) (((-1290) |#1| (-1114 (-390)) (-657 (-270))) 36))) -(((-266 |#1|) (-10 -7 (-15 -1722 ((-1290) |#1| (-1114 (-390)) (-657 (-270)))) (-15 -1722 ((-1290) |#1| (-1114 (-390)))) (-15 -1722 ((-1290) (-893 |#1|) (-1114 (-390)) (-657 (-270)))) (-15 -1722 ((-1290) (-893 |#1|) (-1114 (-390)))) (-15 -1722 ((-1291) (-895 |#1|) (-1114 (-390)) (-657 (-270)))) (-15 -1722 ((-1291) (-895 |#1|) (-1114 (-390)))) (-15 -1761 ((-1155 (-227)) (-895 |#1|) (-1114 (-390)) (-657 (-270)))) (-15 -1761 ((-1155 (-227)) (-895 |#1|) (-1114 (-390)))) (-15 -1722 ((-1291) |#1| (-1114 (-390)) (-1114 (-390)) (-657 (-270)))) (-15 -1722 ((-1291) |#1| (-1114 (-390)) (-1114 (-390)))) (-15 -1761 ((-1155 (-227)) |#1| (-1114 (-390)) (-1114 (-390)) (-657 (-270)))) (-15 -1761 ((-1155 (-227)) |#1| (-1114 (-390)) (-1114 (-390)))) (-15 -1722 ((-1291) (-898 |#1|) (-1114 (-390)) (-1114 (-390)) (-657 (-270)))) (-15 -1722 ((-1291) (-898 |#1|) (-1114 (-390)) (-1114 (-390)))) (-15 -1761 ((-1155 (-227)) (-898 |#1|) (-1114 (-390)) (-1114 (-390)) (-657 (-270)))) (-15 -1761 ((-1155 (-227)) (-898 |#1|) (-1114 (-390)) (-1114 (-390))))) (-13 (-626 (-548)) (-1122))) (T -266)) -((-1761 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-898 *5)) (-5 *4 (-1114 (-390))) (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1155 (-227))) (-5 *1 (-266 *5)))) (-1761 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-898 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1155 (-227))) (-5 *1 (-266 *6)))) (-1722 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-898 *5)) (-5 *4 (-1114 (-390))) (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1291)) (-5 *1 (-266 *5)))) (-1722 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-898 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1291)) (-5 *1 (-266 *6)))) (-1761 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1114 (-390))) (-5 *2 (-1155 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1122))))) (-1761 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1122))))) (-1722 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1114 (-390))) (-5 *2 (-1291)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1122))))) (-1722 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1122))))) (-1761 (*1 *2 *3 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-1114 (-390))) (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1155 (-227))) (-5 *1 (-266 *5)))) (-1761 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-895 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1155 (-227))) (-5 *1 (-266 *6)))) (-1722 (*1 *2 *3 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-1114 (-390))) (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1291)) (-5 *1 (-266 *5)))) (-1722 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-895 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1291)) (-5 *1 (-266 *6)))) (-1722 (*1 *2 *3 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1114 (-390))) (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1290)) (-5 *1 (-266 *5)))) (-1722 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-893 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1290)) (-5 *1 (-266 *6)))) (-1722 (*1 *2 *3 *4) (-12 (-5 *4 (-1114 (-390))) (-5 *2 (-1290)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1122))))) (-1722 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1290)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1122)))))) -(-10 -7 (-15 -1722 ((-1290) |#1| (-1114 (-390)) (-657 (-270)))) (-15 -1722 ((-1290) |#1| (-1114 (-390)))) (-15 -1722 ((-1290) (-893 |#1|) (-1114 (-390)) (-657 (-270)))) (-15 -1722 ((-1290) (-893 |#1|) (-1114 (-390)))) (-15 -1722 ((-1291) (-895 |#1|) (-1114 (-390)) (-657 (-270)))) (-15 -1722 ((-1291) (-895 |#1|) (-1114 (-390)))) (-15 -1761 ((-1155 (-227)) (-895 |#1|) (-1114 (-390)) (-657 (-270)))) (-15 -1761 ((-1155 (-227)) (-895 |#1|) (-1114 (-390)))) (-15 -1722 ((-1291) |#1| (-1114 (-390)) (-1114 (-390)) (-657 (-270)))) (-15 -1722 ((-1291) |#1| (-1114 (-390)) (-1114 (-390)))) (-15 -1761 ((-1155 (-227)) |#1| (-1114 (-390)) (-1114 (-390)) (-657 (-270)))) (-15 -1761 ((-1155 (-227)) |#1| (-1114 (-390)) (-1114 (-390)))) (-15 -1722 ((-1291) (-898 |#1|) (-1114 (-390)) (-1114 (-390)) (-657 (-270)))) (-15 -1722 ((-1291) (-898 |#1|) (-1114 (-390)) (-1114 (-390)))) (-15 -1761 ((-1155 (-227)) (-898 |#1|) (-1114 (-390)) (-1114 (-390)) (-657 (-270)))) (-15 -1761 ((-1155 (-227)) (-898 |#1|) (-1114 (-390)) (-1114 (-390))))) -((-1722 (((-1291) (-657 (-227)) (-657 (-227)) (-657 (-227)) (-657 (-270))) 23) (((-1291) (-657 (-227)) (-657 (-227)) (-657 (-227))) 24) (((-1290) (-657 (-963 (-227))) (-657 (-270))) 16) (((-1290) (-657 (-963 (-227)))) 17) (((-1290) (-657 (-227)) (-657 (-227)) (-657 (-270))) 20) (((-1290) (-657 (-227)) (-657 (-227))) 21))) -(((-267) (-10 -7 (-15 -1722 ((-1290) (-657 (-227)) (-657 (-227)))) (-15 -1722 ((-1290) (-657 (-227)) (-657 (-227)) (-657 (-270)))) (-15 -1722 ((-1290) (-657 (-963 (-227))))) (-15 -1722 ((-1290) (-657 (-963 (-227))) (-657 (-270)))) (-15 -1722 ((-1291) (-657 (-227)) (-657 (-227)) (-657 (-227)))) (-15 -1722 ((-1291) (-657 (-227)) (-657 (-227)) (-657 (-227)) (-657 (-270)))))) (T -267)) -((-1722 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-657 (-227))) (-5 *4 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-267)))) (-1722 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-657 (-227))) (-5 *2 (-1291)) (-5 *1 (-267)))) (-1722 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-963 (-227)))) (-5 *4 (-657 (-270))) (-5 *2 (-1290)) (-5 *1 (-267)))) (-1722 (*1 *2 *3) (-12 (-5 *3 (-657 (-963 (-227)))) (-5 *2 (-1290)) (-5 *1 (-267)))) (-1722 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-657 (-227))) (-5 *4 (-657 (-270))) (-5 *2 (-1290)) (-5 *1 (-267)))) (-1722 (*1 *2 *3 *3) (-12 (-5 *3 (-657 (-227))) (-5 *2 (-1290)) (-5 *1 (-267))))) -(-10 -7 (-15 -1722 ((-1290) (-657 (-227)) (-657 (-227)))) (-15 -1722 ((-1290) (-657 (-227)) (-657 (-227)) (-657 (-270)))) (-15 -1722 ((-1290) (-657 (-963 (-227))))) (-15 -1722 ((-1290) (-657 (-963 (-227))) (-657 (-270)))) (-15 -1722 ((-1291) (-657 (-227)) (-657 (-227)) (-657 (-227)))) (-15 -1722 ((-1291) (-657 (-227)) (-657 (-227)) (-657 (-227)) (-657 (-270))))) -((-1484 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-657 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-2908 (((-941) (-657 (-270)) (-941)) 52)) (-1423 (((-941) (-657 (-270)) (-941)) 51)) (-2405 (((-657 (-390)) (-657 (-270)) (-657 (-390))) 68)) (-2465 (((-390) (-657 (-270)) (-390)) 57)) (-3060 (((-941) (-657 (-270)) (-941)) 53)) (-4432 (((-112) (-657 (-270)) (-112)) 27)) (-1362 (((-1180) (-657 (-270)) (-1180)) 19)) (-3121 (((-1180) (-657 (-270)) (-1180)) 26)) (-4145 (((-1155 (-227)) (-657 (-270))) 46)) (-2006 (((-657 (-1116 (-390))) (-657 (-270)) (-657 (-1116 (-390)))) 40)) (-2992 (((-889) (-657 (-270)) (-889)) 32)) (-2637 (((-889) (-657 (-270)) (-889)) 33)) (-2868 (((-1 (-963 (-227)) (-963 (-227))) (-657 (-270)) (-1 (-963 (-227)) (-963 (-227)))) 63)) (-1543 (((-112) (-657 (-270)) (-112)) 14)) (-1402 (((-112) (-657 (-270)) (-112)) 13))) -(((-268) (-10 -7 (-15 -1402 ((-112) (-657 (-270)) (-112))) (-15 -1543 ((-112) (-657 (-270)) (-112))) (-15 -1484 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-657 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1362 ((-1180) (-657 (-270)) (-1180))) (-15 -3121 ((-1180) (-657 (-270)) (-1180))) (-15 -4432 ((-112) (-657 (-270)) (-112))) (-15 -2992 ((-889) (-657 (-270)) (-889))) (-15 -2637 ((-889) (-657 (-270)) (-889))) (-15 -2006 ((-657 (-1116 (-390))) (-657 (-270)) (-657 (-1116 (-390))))) (-15 -1423 ((-941) (-657 (-270)) (-941))) (-15 -2908 ((-941) (-657 (-270)) (-941))) (-15 -4145 ((-1155 (-227)) (-657 (-270)))) (-15 -3060 ((-941) (-657 (-270)) (-941))) (-15 -2465 ((-390) (-657 (-270)) (-390))) (-15 -2868 ((-1 (-963 (-227)) (-963 (-227))) (-657 (-270)) (-1 (-963 (-227)) (-963 (-227))))) (-15 -2405 ((-657 (-390)) (-657 (-270)) (-657 (-390)))))) (T -268)) -((-2405 (*1 *2 *3 *2) (-12 (-5 *2 (-657 (-390))) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-2868 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-963 (-227)) (-963 (-227)))) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-2465 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-3060 (*1 *2 *3 *2) (-12 (-5 *2 (-941)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-4145 (*1 *2 *3) (-12 (-5 *3 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-268)))) (-2908 (*1 *2 *3 *2) (-12 (-5 *2 (-941)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-1423 (*1 *2 *3 *2) (-12 (-5 *2 (-941)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-2006 (*1 *2 *3 *2) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-2637 (*1 *2 *3 *2) (-12 (-5 *2 (-889)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-2992 (*1 *2 *3 *2) (-12 (-5 *2 (-889)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-4432 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-3121 (*1 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-1362 (*1 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-1484 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-1543 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) (-1402 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-657 (-270))) (-5 *1 (-268))))) -(-10 -7 (-15 -1402 ((-112) (-657 (-270)) (-112))) (-15 -1543 ((-112) (-657 (-270)) (-112))) (-15 -1484 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-657 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1362 ((-1180) (-657 (-270)) (-1180))) (-15 -3121 ((-1180) (-657 (-270)) (-1180))) (-15 -4432 ((-112) (-657 (-270)) (-112))) (-15 -2992 ((-889) (-657 (-270)) (-889))) (-15 -2637 ((-889) (-657 (-270)) (-889))) (-15 -2006 ((-657 (-1116 (-390))) (-657 (-270)) (-657 (-1116 (-390))))) (-15 -1423 ((-941) (-657 (-270)) (-941))) (-15 -2908 ((-941) (-657 (-270)) (-941))) (-15 -4145 ((-1155 (-227)) (-657 (-270)))) (-15 -3060 ((-941) (-657 (-270)) (-941))) (-15 -2465 ((-390) (-657 (-270)) (-390))) (-15 -2868 ((-1 (-963 (-227)) (-963 (-227))) (-657 (-270)) (-1 (-963 (-227)) (-963 (-227))))) (-15 -2405 ((-657 (-390)) (-657 (-270)) (-657 (-390))))) -((-2624 (((-3 |#1| "failed") (-657 (-270)) (-1198)) 17))) -(((-269 |#1|) (-10 -7 (-15 -2624 ((-3 |#1| "failed") (-657 (-270)) (-1198)))) (-1239)) (T -269)) -((-2624 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-657 (-270))) (-5 *4 (-1198)) (-5 *1 (-269 *2)) (-4 *2 (-1239))))) -(-10 -7 (-15 -2624 ((-3 |#1| "failed") (-657 (-270)) (-1198)))) -((-3429 (((-112) $ $) NIL)) (-1484 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-2908 (($ (-941)) 81)) (-1423 (($ (-941)) 80)) (-2824 (($ (-657 (-390))) 87)) (-2465 (($ (-390)) 66)) (-3060 (($ (-941)) 82)) (-4432 (($ (-112)) 33)) (-1362 (($ (-1180)) 28)) (-3121 (($ (-1180)) 29)) (-4145 (($ (-1155 (-227))) 76)) (-2006 (($ (-657 (-1116 (-390)))) 72)) (-1685 (($ (-657 (-1116 (-390)))) 68) (($ (-657 (-1116 (-419 (-576))))) 71)) (-2300 (($ (-390)) 38) (($ (-889)) 42)) (-3997 (((-112) (-657 $) (-1198)) 100)) (-2624 (((-3 (-52) "failed") (-657 $) (-1198)) 102)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-4264 (($ (-390)) 43) (($ (-889)) 44)) (-2795 (($ (-1 (-963 (-227)) (-963 (-227)))) 65)) (-2868 (($ (-1 (-963 (-227)) (-963 (-227)))) 83)) (-1814 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-3501 (((-877) $) 93)) (-1607 (($ (-112)) 34) (($ (-657 (-1116 (-390)))) 60)) (-2046 (((-112) $ $) NIL)) (-1402 (($ (-112)) 35)) (-2933 (((-112) $ $) 97))) -(((-270) (-13 (-1122) (-10 -8 (-15 -1402 ($ (-112))) (-15 -1607 ($ (-112))) (-15 -1484 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1362 ($ (-1180))) (-15 -3121 ($ (-1180))) (-15 -4432 ($ (-112))) (-15 -1607 ($ (-657 (-1116 (-390))))) (-15 -2795 ($ (-1 (-963 (-227)) (-963 (-227))))) (-15 -2300 ($ (-390))) (-15 -2300 ($ (-889))) (-15 -4264 ($ (-390))) (-15 -4264 ($ (-889))) (-15 -1814 ($ (-1 (-227) (-227)))) (-15 -1814 ($ (-1 (-227) (-227) (-227)))) (-15 -1814 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2465 ($ (-390))) (-15 -1685 ($ (-657 (-1116 (-390))))) (-15 -1685 ($ (-657 (-1116 (-419 (-576)))))) (-15 -2006 ($ (-657 (-1116 (-390))))) (-15 -4145 ($ (-1155 (-227)))) (-15 -1423 ($ (-941))) (-15 -2908 ($ (-941))) (-15 -3060 ($ (-941))) (-15 -2868 ($ (-1 (-963 (-227)) (-963 (-227))))) (-15 -2824 ($ (-657 (-390)))) (-15 -2624 ((-3 (-52) "failed") (-657 $) (-1198))) (-15 -3997 ((-112) (-657 $) (-1198)))))) (T -270)) -((-1402 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-1607 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-270)))) (-1362 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-270)))) (-3121 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-270)))) (-4432 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-1607 (*1 *1 *2) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-270)))) (-2795 (*1 *1 *2) (-12 (-5 *2 (-1 (-963 (-227)) (-963 (-227)))) (-5 *1 (-270)))) (-2300 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-2300 (*1 *1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-270)))) (-4264 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-4264 (*1 *1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-270)))) (-1814 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))) (-1814 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) (-1814 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) (-2465 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-1685 (*1 *1 *2) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-270)))) (-1685 (*1 *1 *2) (-12 (-5 *2 (-657 (-1116 (-419 (-576))))) (-5 *1 (-270)))) (-2006 (*1 *1 *2) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-270)))) (-4145 (*1 *1 *2) (-12 (-5 *2 (-1155 (-227))) (-5 *1 (-270)))) (-1423 (*1 *1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-270)))) (-2908 (*1 *1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-270)))) (-3060 (*1 *1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-270)))) (-2868 (*1 *1 *2) (-12 (-5 *2 (-1 (-963 (-227)) (-963 (-227)))) (-5 *1 (-270)))) (-2824 (*1 *1 *2) (-12 (-5 *2 (-657 (-390))) (-5 *1 (-270)))) (-2624 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-657 (-270))) (-5 *4 (-1198)) (-5 *2 (-52)) (-5 *1 (-270)))) (-3997 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-270))) (-5 *4 (-1198)) (-5 *2 (-112)) (-5 *1 (-270))))) -(-13 (-1122) (-10 -8 (-15 -1402 ($ (-112))) (-15 -1607 ($ (-112))) (-15 -1484 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1362 ($ (-1180))) (-15 -3121 ($ (-1180))) (-15 -4432 ($ (-112))) (-15 -1607 ($ (-657 (-1116 (-390))))) (-15 -2795 ($ (-1 (-963 (-227)) (-963 (-227))))) (-15 -2300 ($ (-390))) (-15 -2300 ($ (-889))) (-15 -4264 ($ (-390))) (-15 -4264 ($ (-889))) (-15 -1814 ($ (-1 (-227) (-227)))) (-15 -1814 ($ (-1 (-227) (-227) (-227)))) (-15 -1814 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -2465 ($ (-390))) (-15 -1685 ($ (-657 (-1116 (-390))))) (-15 -1685 ($ (-657 (-1116 (-419 (-576)))))) (-15 -2006 ($ (-657 (-1116 (-390))))) (-15 -4145 ($ (-1155 (-227)))) (-15 -1423 ($ (-941))) (-15 -2908 ($ (-941))) (-15 -3060 ($ (-941))) (-15 -2868 ($ (-1 (-963 (-227)) (-963 (-227))))) (-15 -2824 ($ (-657 (-390)))) (-15 -2624 ((-3 (-52) "failed") (-657 $) (-1198))) (-15 -3997 ((-112) (-657 $) (-1198))))) -((-2815 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-784)) 11) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) 19) (($ $ (-784)) NIL) (($ $) 16)) (-2097 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-784)) 14) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) NIL) (($ $ (-784)) NIL) (($ $) NIL))) -(((-271 |#1| |#2|) (-10 -8 (-15 -2815 (|#1| |#1|)) (-15 -2097 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-784))) (-15 -2097 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -2097 (|#1| |#1| (-1198))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2097 (|#1| |#1| (-657 (-1198)))) (-15 -2097 (|#1| |#1| (-1198) (-784))) (-15 -2097 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2097 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2097 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|)))) (-272 |#2|) (-1239)) (T -271)) -NIL -(-10 -8 (-15 -2815 (|#1| |#1|)) (-15 -2097 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-784))) (-15 -2097 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -2097 (|#1| |#1| (-1198))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2097 (|#1| |#1| (-657 (-1198)))) (-15 -2097 (|#1| |#1| (-1198) (-784))) (-15 -2097 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2097 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2097 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|)))) -((-2815 (($ $ (-1 |#1| |#1|)) 23) (($ $ (-1 |#1| |#1|) (-784)) 22) (($ $ (-657 (-1198)) (-657 (-784))) 16 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 15 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 14 (|has| |#1| (-920 (-1198)))) (($ $ (-1198)) 12 (|has| |#1| (-920 (-1198)))) (($ $ (-784)) 10 (|has| |#1| (-237))) (($ $) 8 (|has| |#1| (-237)))) (-2097 (($ $ (-1 |#1| |#1|)) 21) (($ $ (-1 |#1| |#1|) (-784)) 20) (($ $ (-657 (-1198)) (-657 (-784))) 19 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 18 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 17 (|has| |#1| (-920 (-1198)))) (($ $ (-1198)) 13 (|has| |#1| (-920 (-1198)))) (($ $ (-784)) 11 (|has| |#1| (-237))) (($ $) 9 (|has| |#1| (-237))))) -(((-272 |#1|) (-141) (-1239)) (T -272)) -((-2815 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1239)))) (-2815 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-784)) (-4 *1 (-272 *4)) (-4 *4 (-1239)))) (-2097 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1239)))) (-2097 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-784)) (-4 *1 (-272 *4)) (-4 *4 (-1239))))) -(-13 (-1239) (-10 -8 (-15 -2815 ($ $ (-1 |t#1| |t#1|))) (-15 -2815 ($ $ (-1 |t#1| |t#1|) (-784))) (-15 -2097 ($ $ (-1 |t#1| |t#1|))) (-15 -2097 ($ $ (-1 |t#1| |t#1|) (-784))) (IF (|has| |t#1| (-237)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-920 (-1198))) (-6 (-920 (-1198))) |%noBranch|))) -(((-234 $) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-912 $ #0=(-1198)) |has| |#1| (-920 (-1198))) ((-920 #0#) |has| |#1| (-920 (-1198))) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2728 (((-657 (-784)) $) NIL) (((-657 (-784)) $ |#2|) NIL)) (-3983 (((-784) $) NIL) (((-784) $ |#2|) NIL)) (-2029 (((-657 |#3|) $) NIL)) (-1849 (((-1194 $) $ |#3|) NIL) (((-1194 |#1|) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-1775 (((-784) $) NIL) (((-784) $ (-657 |#3|)) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2638 (($ $) NIL (|has| |#1| (-464)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1594 (($ $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1147 |#1| |#2|) "failed") $) 23)) (-2884 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1147 |#1| |#2|) $) NIL)) (-3203 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-2212 (($ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3813 (($ $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-2199 (((-657 $) $) NIL)) (-4257 (((-112) $) NIL (|has| |#1| (-929)))) (-3124 (($ $ |#1| (-543 |#3|) $) NIL)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| |#1| (-902 (-390))) (|has| |#3| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| |#1| (-902 (-576))) (|has| |#3| (-902 (-576)))))) (-3182 (((-784) $ |#2|) NIL) (((-784) $) 10)) (-4094 (((-112) $) NIL)) (-4334 (((-784) $) NIL)) (-2014 (($ (-1194 |#1|) |#3|) NIL) (($ (-1194 $) |#3|) NIL)) (-3724 (((-657 $) $) NIL)) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-543 |#3|)) NIL) (($ $ |#3| (-784)) NIL) (($ $ (-657 |#3|) (-657 (-784))) NIL)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ |#3|) NIL)) (-4436 (((-543 |#3|) $) NIL) (((-784) $ |#3|) NIL) (((-657 (-784)) $ (-657 |#3|)) NIL)) (-4056 (($ (-1 (-543 |#3|) (-543 |#3|)) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-3801 (((-1 $ (-784)) |#2|) NIL) (((-1 $ (-784)) $) NIL (|has| |#1| (-238)))) (-2353 (((-3 |#3| "failed") $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-1597 ((|#3| $) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2342 (((-1180) $) NIL)) (-3948 (((-112) $) NIL)) (-1392 (((-3 (-657 $) "failed") $) NIL)) (-2974 (((-3 (-657 $) "failed") $) NIL)) (-2999 (((-3 (-2 (|:| |var| |#3|) (|:| -1801 (-784))) "failed") $) NIL)) (-4276 (($ $) NIL)) (-1471 (((-1142) $) NIL)) (-2146 (((-112) $) NIL)) (-2160 ((|#1| $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-464)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1885 (((-430 $) $) NIL (|has| |#1| (-929)))) (-3418 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3236 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-657 |#3|) (-657 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-657 |#3|) (-657 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-238))) (($ $ (-657 |#2|) (-657 $)) NIL (|has| |#1| (-238))) (($ $ |#2| |#1|) NIL (|has| |#1| (-238))) (($ $ (-657 |#2|) (-657 |#1|)) NIL (|has| |#1| (-238)))) (-1701 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-2815 (($ $ (-657 |#3|) (-657 (-784))) NIL) (($ $ |#3| (-784)) NIL) (($ $ (-657 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237)))) (-3928 (((-657 |#2|) $) NIL)) (-1770 (((-543 |#3|) $) NIL) (((-784) $ |#3|) NIL) (((-657 (-784)) $ (-657 |#3|)) NIL) (((-784) $ |#2|) NIL)) (-4148 (((-908 (-390)) $) NIL (-12 (|has| |#1| (-626 (-908 (-390)))) (|has| |#3| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| |#1| (-626 (-908 (-576)))) (|has| |#3| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))))) (-1450 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1147 |#1| |#2|)) 32) (($ (-419 (-576))) NIL (-2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-4037 (((-657 |#1|) $) NIL)) (-2313 ((|#1| $ (-543 |#3|)) NIL) (($ $ |#3| (-784)) NIL) (($ $ (-657 |#3|) (-657 (-784))) NIL)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-1960 (((-784)) NIL T CONST)) (-2702 (($ $ $ (-784)) NIL (|has| |#1| (-174)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-657 |#3|) (-657 (-784))) NIL) (($ $ |#3| (-784)) NIL) (($ $ (-657 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237)))) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-273 |#1| |#2| |#3|) (-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1060 (-1147 |#1| |#2|))) (-1071) (-862) (-275 |#2|)) (T -273)) -NIL -(-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1060 (-1147 |#1| |#2|))) -((-3983 (((-784) $) 37)) (-1624 (((-3 |#2| "failed") $) 22)) (-2884 ((|#2| $) 33)) (-2815 (($ $ (-784)) 18) (($ $) 14)) (-3501 (((-877) $) 32) (($ |#2|) 11)) (-2933 (((-112) $ $) 26)) (-2954 (((-112) $ $) 36))) -(((-274 |#1| |#2|) (-10 -8 (-15 -3983 ((-784) |#1|)) (-15 -3501 (|#1| |#2|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-784))) (-15 -2954 ((-112) |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -2933 ((-112) |#1| |#1|))) (-275 |#2|) (-862)) (T -274)) -NIL -(-10 -8 (-15 -3983 ((-784) |#1|)) (-15 -3501 (|#1| |#2|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-784))) (-15 -2954 ((-112) |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -2933 ((-112) |#1| |#1|))) -((-3429 (((-112) $ $) 7)) (-3983 (((-784) $) 23)) (-3032 ((|#1| $) 24)) (-1624 (((-3 |#1| "failed") $) 28)) (-2884 ((|#1| $) 29)) (-3182 (((-784) $) 25)) (-3707 (($ $ $) 20)) (-1611 (($ $ $) 19)) (-3801 (($ |#1| (-784)) 26)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-2815 (($ $ (-784)) 32) (($ $) 30)) (-3501 (((-877) $) 12) (($ |#1|) 27)) (-2046 (((-112) $ $) 6)) (-2097 (($ $ (-784)) 33) (($ $) 31)) (-2985 (((-112) $ $) 18)) (-2963 (((-112) $ $) 16)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 17)) (-2954 (((-112) $ $) 15))) -(((-275 |#1|) (-141) (-862)) (T -275)) -((-3501 (*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-3801 (*1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-784)))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-3983 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-784))))) -(-13 (-862) (-237) (-1060 |t#1|) (-10 -8 (-15 -3801 ($ |t#1| (-784))) (-15 -3182 ((-784) $)) (-15 -3032 (|t#1| $)) (-15 -3983 ((-784) $)) (-15 -3501 ($ |t#1|)))) -(((-102) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-234 $) . T) ((-237) . T) ((-862) . T) ((-865) . T) ((-1060 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-2029 (((-657 (-1198)) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) 53)) (-3391 (((-657 (-1198)) (-326 (-227)) (-784)) 94)) (-3330 (((-3 (-326 (-227)) "failed") (-326 (-227))) 63)) (-4322 (((-326 (-227)) (-326 (-227))) 79)) (-2931 (((-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 38)) (-1702 (((-112) (-657 (-326 (-227)))) 104)) (-3278 (((-112) (-326 (-227))) 36)) (-4170 (((-657 (-1180)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))))) 132)) (-1478 (((-657 (-326 (-227))) (-657 (-326 (-227)))) 108)) (-2547 (((-657 (-326 (-227))) (-657 (-326 (-227)))) 106)) (-4413 (((-702 (-227)) (-657 (-326 (-227))) (-784)) 120)) (-4125 (((-112) (-326 (-227))) 31) (((-112) (-657 (-326 (-227)))) 105)) (-2218 (((-657 (-227)) (-657 (-856 (-227))) (-227)) 15)) (-1837 (((-390) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) 126)) (-2594 (((-1057) (-1198) (-1057)) 46))) -(((-276) (-10 -7 (-15 -2218 ((-657 (-227)) (-657 (-856 (-227))) (-227))) (-15 -2931 ((-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227))))))) (-15 -3330 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -4322 ((-326 (-227)) (-326 (-227)))) (-15 -1702 ((-112) (-657 (-326 (-227))))) (-15 -4125 ((-112) (-657 (-326 (-227))))) (-15 -4125 ((-112) (-326 (-227)))) (-15 -4413 ((-702 (-227)) (-657 (-326 (-227))) (-784))) (-15 -2547 ((-657 (-326 (-227))) (-657 (-326 (-227))))) (-15 -1478 ((-657 (-326 (-227))) (-657 (-326 (-227))))) (-15 -3278 ((-112) (-326 (-227)))) (-15 -2029 ((-657 (-1198)) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227)))))) (-15 -3391 ((-657 (-1198)) (-326 (-227)) (-784))) (-15 -2594 ((-1057) (-1198) (-1057))) (-15 -1837 ((-390) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227)))))) (-15 -4170 ((-657 (-1180)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227)))))))))) (T -276)) -((-4170 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))))) (-5 *2 (-657 (-1180))) (-5 *1 (-276)))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) (-5 *2 (-390)) (-5 *1 (-276)))) (-2594 (*1 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-1198)) (-5 *1 (-276)))) (-3391 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-784)) (-5 *2 (-657 (-1198))) (-5 *1 (-276)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) (-5 *2 (-657 (-1198))) (-5 *1 (-276)))) (-3278 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-1478 (*1 *2 *2) (-12 (-5 *2 (-657 (-326 (-227)))) (-5 *1 (-276)))) (-2547 (*1 *2 *2) (-12 (-5 *2 (-657 (-326 (-227)))) (-5 *1 (-276)))) (-4413 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-326 (-227)))) (-5 *4 (-784)) (-5 *2 (-702 (-227))) (-5 *1 (-276)))) (-4125 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-4125 (*1 *2 *3) (-12 (-5 *3 (-657 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-1702 (*1 *2 *3) (-12 (-5 *3 (-657 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-4322 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-3330 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-2931 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (-5 *1 (-276)))) (-2218 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-856 (-227)))) (-5 *4 (-227)) (-5 *2 (-657 *4)) (-5 *1 (-276))))) -(-10 -7 (-15 -2218 ((-657 (-227)) (-657 (-856 (-227))) (-227))) (-15 -2931 ((-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227))))))) (-15 -3330 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -4322 ((-326 (-227)) (-326 (-227)))) (-15 -1702 ((-112) (-657 (-326 (-227))))) (-15 -4125 ((-112) (-657 (-326 (-227))))) (-15 -4125 ((-112) (-326 (-227)))) (-15 -4413 ((-702 (-227)) (-657 (-326 (-227))) (-784))) (-15 -2547 ((-657 (-326 (-227))) (-657 (-326 (-227))))) (-15 -1478 ((-657 (-326 (-227))) (-657 (-326 (-227))))) (-15 -3278 ((-112) (-326 (-227)))) (-15 -2029 ((-657 (-1198)) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227)))))) (-15 -3391 ((-657 (-1198)) (-326 (-227)) (-784))) (-15 -2594 ((-1057) (-1198) (-1057))) (-15 -1837 ((-390) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227)))))) (-15 -4170 ((-657 (-1180)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))))))) -((-3429 (((-112) $ $) NIL)) (-2860 (((-1057) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) NIL) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 56)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 32) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-277) (-852)) (T -277)) -NIL -(-852) -((-3429 (((-112) $ $) NIL)) (-2860 (((-1057) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) 72) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 63)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 41) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) 43)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-278) (-852)) (T -278)) -NIL -(-852) -((-3429 (((-112) $ $) NIL)) (-2860 (((-1057) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) 90) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 85)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 52) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) 65)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-279) (-852)) (T -279)) -NIL -(-852) -((-3429 (((-112) $ $) NIL)) (-2860 (((-1057) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) NIL) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 73)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 45) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-280) (-852)) (T -280)) -NIL -(-852) -((-3429 (((-112) $ $) NIL)) (-2860 (((-1057) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) NIL) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 65)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 31) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-281) (-852)) (T -281)) -NIL -(-852) -((-3429 (((-112) $ $) NIL)) (-2860 (((-1057) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) NIL) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 90)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 33) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-282) (-852)) (T -282)) -NIL -(-852) -((-3429 (((-112) $ $) NIL)) (-2860 (((-1057) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) NIL) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 87)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 32) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-283) (-852)) (T -283)) -NIL -(-852) -((-3429 (((-112) $ $) NIL)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3889 (((-657 (-576)) $) 29)) (-1770 (((-784) $) 27)) (-3501 (((-877) $) 33) (($ (-657 (-576))) 23)) (-2046 (((-112) $ $) NIL)) (-2520 (($ (-784)) 30)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 9)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 17))) -(((-284) (-13 (-862) (-10 -8 (-15 -3501 ($ (-657 (-576)))) (-15 -1770 ((-784) $)) (-15 -3889 ((-657 (-576)) $)) (-15 -2520 ($ (-784)))))) (T -284)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-284)))) (-1770 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-284)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-284)))) (-2520 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-284))))) -(-13 (-862) (-10 -8 (-15 -3501 ($ (-657 (-576)))) (-15 -1770 ((-784) $)) (-15 -3889 ((-657 (-576)) $)) (-15 -2520 ($ (-784))))) -((-2176 ((|#2| |#2|) 77)) (-2030 ((|#2| |#2|) 65)) (-3680 (((-3 |#2| "failed") |#2| (-657 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2150 ((|#2| |#2|) 75)) (-2004 ((|#2| |#2|) 63)) (-2201 ((|#2| |#2|) 79)) (-2052 ((|#2| |#2|) 67)) (-1657 ((|#2|) 46)) (-1832 (((-115) (-115)) 100)) (-3670 ((|#2| |#2|) 61)) (-3844 (((-112) |#2|) 147)) (-2464 ((|#2| |#2|) 195)) (-2964 ((|#2| |#2|) 171)) (-1678 ((|#2|) 59)) (-3866 ((|#2|) 58)) (-4191 ((|#2| |#2|) 191)) (-3787 ((|#2| |#2|) 167)) (-2310 ((|#2| |#2|) 199)) (-2265 ((|#2| |#2|) 175)) (-1398 ((|#2| |#2|) 163)) (-2832 ((|#2| |#2|) 165)) (-4437 ((|#2| |#2|) 201)) (-3739 ((|#2| |#2|) 177)) (-4341 ((|#2| |#2|) 197)) (-1867 ((|#2| |#2|) 173)) (-2711 ((|#2| |#2|) 193)) (-2053 ((|#2| |#2|) 169)) (-3630 ((|#2| |#2|) 207)) (-3580 ((|#2| |#2|) 183)) (-1815 ((|#2| |#2|) 203)) (-2511 ((|#2| |#2|) 179)) (-1941 ((|#2| |#2|) 211)) (-2770 ((|#2| |#2|) 187)) (-2282 ((|#2| |#2|) 213)) (-1420 ((|#2| |#2|) 189)) (-3314 ((|#2| |#2|) 209)) (-4411 ((|#2| |#2|) 185)) (-4279 ((|#2| |#2|) 205)) (-4131 ((|#2| |#2|) 181)) (-4067 ((|#2| |#2|) 62)) (-2213 ((|#2| |#2|) 80)) (-2062 ((|#2| |#2|) 68)) (-2188 ((|#2| |#2|) 78)) (-2042 ((|#2| |#2|) 66)) (-2163 ((|#2| |#2|) 76)) (-2017 ((|#2| |#2|) 64)) (-4159 (((-112) (-115)) 98)) (-4110 ((|#2| |#2|) 83)) (-2100 ((|#2| |#2|) 71)) (-2225 ((|#2| |#2|) 81)) (-2072 ((|#2| |#2|) 69)) (-4137 ((|#2| |#2|) 85)) (-2125 ((|#2| |#2|) 73)) (-2224 ((|#2| |#2|) 86)) (-2137 ((|#2| |#2|) 74)) (-4124 ((|#2| |#2|) 84)) (-2113 ((|#2| |#2|) 72)) (-2235 ((|#2| |#2|) 82)) (-2085 ((|#2| |#2|) 70))) -(((-285 |#1| |#2|) (-10 -7 (-15 -4067 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -2004 (|#2| |#2|)) (-15 -2017 (|#2| |#2|)) (-15 -2030 (|#2| |#2|)) (-15 -2042 (|#2| |#2|)) (-15 -2052 (|#2| |#2|)) (-15 -2062 (|#2| |#2|)) (-15 -2072 (|#2| |#2|)) (-15 -2085 (|#2| |#2|)) (-15 -2100 (|#2| |#2|)) (-15 -2113 (|#2| |#2|)) (-15 -2125 (|#2| |#2|)) (-15 -2137 (|#2| |#2|)) (-15 -2150 (|#2| |#2|)) (-15 -2163 (|#2| |#2|)) (-15 -2176 (|#2| |#2|)) (-15 -2188 (|#2| |#2|)) (-15 -2201 (|#2| |#2|)) (-15 -2213 (|#2| |#2|)) (-15 -2225 (|#2| |#2|)) (-15 -2235 (|#2| |#2|)) (-15 -4110 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -2224 (|#2| |#2|)) (-15 -1657 (|#2|)) (-15 -4159 ((-112) (-115))) (-15 -1832 ((-115) (-115))) (-15 -3866 (|#2|)) (-15 -1678 (|#2|)) (-15 -2832 (|#2| |#2|)) (-15 -1398 (|#2| |#2|)) (-15 -3787 (|#2| |#2|)) (-15 -2053 (|#2| |#2|)) (-15 -2964 (|#2| |#2|)) (-15 -1867 (|#2| |#2|)) (-15 -2265 (|#2| |#2|)) (-15 -3739 (|#2| |#2|)) (-15 -2511 (|#2| |#2|)) (-15 -4131 (|#2| |#2|)) (-15 -3580 (|#2| |#2|)) (-15 -4411 (|#2| |#2|)) (-15 -2770 (|#2| |#2|)) (-15 -1420 (|#2| |#2|)) (-15 -4191 (|#2| |#2|)) (-15 -2711 (|#2| |#2|)) (-15 -2464 (|#2| |#2|)) (-15 -4341 (|#2| |#2|)) (-15 -2310 (|#2| |#2|)) (-15 -4437 (|#2| |#2|)) (-15 -1815 (|#2| |#2|)) (-15 -4279 (|#2| |#2|)) (-15 -3630 (|#2| |#2|)) (-15 -3314 (|#2| |#2|)) (-15 -1941 (|#2| |#2|)) (-15 -2282 (|#2| |#2|)) (-15 -3680 ((-3 |#2| "failed") |#2| (-657 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3844 ((-112) |#2|))) (-568) (-13 (-442 |#1|) (-1024))) (T -285)) -((-3844 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-442 *4) (-1024))))) (-3680 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-657 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-442 *4) (-1024))) (-4 *4 (-568)) (-5 *1 (-285 *4 *2)))) (-2282 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-1941 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-3314 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-4279 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-1815 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-4437 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2310 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-4341 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2464 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2711 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-4191 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-1420 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2770 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-4411 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-3580 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-4131 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2511 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-3739 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2265 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-1867 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2964 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2053 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-3787 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-1398 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2832 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-1678 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1024))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-3866 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1024))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-1832 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) (-4 *4 (-13 (-442 *3) (-1024))))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1024))))) (-1657 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1024))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-2224 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-4124 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-4110 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2235 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2225 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2213 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2201 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2188 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2176 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2163 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2150 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2137 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2125 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2113 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2100 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2085 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2072 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2062 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2052 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2042 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2030 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2017 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-2004 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024))))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024)))))) -(-10 -7 (-15 -4067 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -2004 (|#2| |#2|)) (-15 -2017 (|#2| |#2|)) (-15 -2030 (|#2| |#2|)) (-15 -2042 (|#2| |#2|)) (-15 -2052 (|#2| |#2|)) (-15 -2062 (|#2| |#2|)) (-15 -2072 (|#2| |#2|)) (-15 -2085 (|#2| |#2|)) (-15 -2100 (|#2| |#2|)) (-15 -2113 (|#2| |#2|)) (-15 -2125 (|#2| |#2|)) (-15 -2137 (|#2| |#2|)) (-15 -2150 (|#2| |#2|)) (-15 -2163 (|#2| |#2|)) (-15 -2176 (|#2| |#2|)) (-15 -2188 (|#2| |#2|)) (-15 -2201 (|#2| |#2|)) (-15 -2213 (|#2| |#2|)) (-15 -2225 (|#2| |#2|)) (-15 -2235 (|#2| |#2|)) (-15 -4110 (|#2| |#2|)) (-15 -4124 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -2224 (|#2| |#2|)) (-15 -1657 (|#2|)) (-15 -4159 ((-112) (-115))) (-15 -1832 ((-115) (-115))) (-15 -3866 (|#2|)) (-15 -1678 (|#2|)) (-15 -2832 (|#2| |#2|)) (-15 -1398 (|#2| |#2|)) (-15 -3787 (|#2| |#2|)) (-15 -2053 (|#2| |#2|)) (-15 -2964 (|#2| |#2|)) (-15 -1867 (|#2| |#2|)) (-15 -2265 (|#2| |#2|)) (-15 -3739 (|#2| |#2|)) (-15 -2511 (|#2| |#2|)) (-15 -4131 (|#2| |#2|)) (-15 -3580 (|#2| |#2|)) (-15 -4411 (|#2| |#2|)) (-15 -2770 (|#2| |#2|)) (-15 -1420 (|#2| |#2|)) (-15 -4191 (|#2| |#2|)) (-15 -2711 (|#2| |#2|)) (-15 -2464 (|#2| |#2|)) (-15 -4341 (|#2| |#2|)) (-15 -2310 (|#2| |#2|)) (-15 -4437 (|#2| |#2|)) (-15 -1815 (|#2| |#2|)) (-15 -4279 (|#2| |#2|)) (-15 -3630 (|#2| |#2|)) (-15 -3314 (|#2| |#2|)) (-15 -1941 (|#2| |#2|)) (-15 -2282 (|#2| |#2|)) (-15 -3680 ((-3 |#2| "failed") |#2| (-657 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3844 ((-112) |#2|))) -((-2595 (((-3 |#2| "failed") (-657 (-624 |#2|)) |#2| (-1198)) 151)) (-3221 ((|#2| (-419 (-576)) |#2|) 49)) (-2347 ((|#2| |#2| (-624 |#2|)) 144)) (-4270 (((-2 (|:| |func| |#2|) (|:| |kers| (-657 (-624 |#2|))) (|:| |vals| (-657 |#2|))) |#2| (-1198)) 143)) (-3469 ((|#2| |#2| (-1198)) 20) ((|#2| |#2|) 23)) (-3277 ((|#2| |#2| (-1198)) 157) ((|#2| |#2|) 155))) -(((-286 |#1| |#2|) (-10 -7 (-15 -3277 (|#2| |#2|)) (-15 -3277 (|#2| |#2| (-1198))) (-15 -4270 ((-2 (|:| |func| |#2|) (|:| |kers| (-657 (-624 |#2|))) (|:| |vals| (-657 |#2|))) |#2| (-1198))) (-15 -3469 (|#2| |#2|)) (-15 -3469 (|#2| |#2| (-1198))) (-15 -2595 ((-3 |#2| "failed") (-657 (-624 |#2|)) |#2| (-1198))) (-15 -2347 (|#2| |#2| (-624 |#2|))) (-15 -3221 (|#2| (-419 (-576)) |#2|))) (-13 (-568) (-1060 (-576)) (-652 (-576))) (-13 (-27) (-1224) (-442 |#1|))) (T -286)) -((-3221 (*1 *2 *3 *2) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4))))) (-2347 (*1 *2 *2 *3) (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4))) (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-286 *4 *2)))) (-2595 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-657 (-624 *2))) (-5 *4 (-1198)) (-4 *2 (-13 (-27) (-1224) (-442 *5))) (-4 *5 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-286 *5 *2)))) (-3469 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4))))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3))))) (-4270 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-657 (-624 *3))) (|:| |vals| (-657 *3)))) (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) (-3277 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4))))) (-3277 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3)))))) -(-10 -7 (-15 -3277 (|#2| |#2|)) (-15 -3277 (|#2| |#2| (-1198))) (-15 -4270 ((-2 (|:| |func| |#2|) (|:| |kers| (-657 (-624 |#2|))) (|:| |vals| (-657 |#2|))) |#2| (-1198))) (-15 -3469 (|#2| |#2|)) (-15 -3469 (|#2| |#2| (-1198))) (-15 -2595 ((-3 |#2| "failed") (-657 (-624 |#2|)) |#2| (-1198))) (-15 -2347 (|#2| |#2| (-624 |#2|))) (-15 -3221 (|#2| (-419 (-576)) |#2|))) -((-3403 (((-3 |#3| "failed") |#3|) 120)) (-2176 ((|#3| |#3|) 142)) (-3054 (((-3 |#3| "failed") |#3|) 89)) (-2030 ((|#3| |#3|) 132)) (-2363 (((-3 |#3| "failed") |#3|) 65)) (-2150 ((|#3| |#3|) 140)) (-2295 (((-3 |#3| "failed") |#3|) 53)) (-2004 ((|#3| |#3|) 130)) (-2634 (((-3 |#3| "failed") |#3|) 122)) (-2201 ((|#3| |#3|) 144)) (-1661 (((-3 |#3| "failed") |#3|) 91)) (-2052 ((|#3| |#3|) 134)) (-1603 (((-3 |#3| "failed") |#3| (-784)) 41)) (-3493 (((-3 |#3| "failed") |#3|) 81)) (-3670 ((|#3| |#3|) 129)) (-2414 (((-3 |#3| "failed") |#3|) 51)) (-4067 ((|#3| |#3|) 128)) (-3846 (((-3 |#3| "failed") |#3|) 123)) (-2213 ((|#3| |#3|) 145)) (-4282 (((-3 |#3| "failed") |#3|) 92)) (-2062 ((|#3| |#3|) 135)) (-2309 (((-3 |#3| "failed") |#3|) 121)) (-2188 ((|#3| |#3|) 143)) (-2969 (((-3 |#3| "failed") |#3|) 90)) (-2042 ((|#3| |#3|) 133)) (-3059 (((-3 |#3| "failed") |#3|) 67)) (-2163 ((|#3| |#3|) 141)) (-3470 (((-3 |#3| "failed") |#3|) 55)) (-2017 ((|#3| |#3|) 131)) (-3086 (((-3 |#3| "failed") |#3|) 73)) (-4110 ((|#3| |#3|) 148)) (-2486 (((-3 |#3| "failed") |#3|) 114)) (-2100 ((|#3| |#3|) 152)) (-2487 (((-3 |#3| "failed") |#3|) 69)) (-2225 ((|#3| |#3|) 146)) (-2888 (((-3 |#3| "failed") |#3|) 57)) (-2072 ((|#3| |#3|) 136)) (-2783 (((-3 |#3| "failed") |#3|) 77)) (-4137 ((|#3| |#3|) 150)) (-4107 (((-3 |#3| "failed") |#3|) 61)) (-2125 ((|#3| |#3|) 138)) (-3773 (((-3 |#3| "failed") |#3|) 79)) (-2224 ((|#3| |#3|) 151)) (-3964 (((-3 |#3| "failed") |#3|) 63)) (-2137 ((|#3| |#3|) 139)) (-3761 (((-3 |#3| "failed") |#3|) 75)) (-4124 ((|#3| |#3|) 149)) (-4052 (((-3 |#3| "failed") |#3|) 117)) (-2113 ((|#3| |#3|) 153)) (-4076 (((-3 |#3| "failed") |#3|) 71)) (-2235 ((|#3| |#3|) 147)) (-2540 (((-3 |#3| "failed") |#3|) 59)) (-2085 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-419 (-576))) 47 (|has| |#1| (-374))))) -(((-287 |#1| |#2| |#3|) (-13 (-1005 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4067 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -2004 (|#3| |#3|)) (-15 -2017 (|#3| |#3|)) (-15 -2030 (|#3| |#3|)) (-15 -2042 (|#3| |#3|)) (-15 -2052 (|#3| |#3|)) (-15 -2062 (|#3| |#3|)) (-15 -2072 (|#3| |#3|)) (-15 -2085 (|#3| |#3|)) (-15 -2100 (|#3| |#3|)) (-15 -2113 (|#3| |#3|)) (-15 -2125 (|#3| |#3|)) (-15 -2137 (|#3| |#3|)) (-15 -2150 (|#3| |#3|)) (-15 -2163 (|#3| |#3|)) (-15 -2176 (|#3| |#3|)) (-15 -2188 (|#3| |#3|)) (-15 -2201 (|#3| |#3|)) (-15 -2213 (|#3| |#3|)) (-15 -2225 (|#3| |#3|)) (-15 -2235 (|#3| |#3|)) (-15 -4110 (|#3| |#3|)) (-15 -4124 (|#3| |#3|)) (-15 -4137 (|#3| |#3|)) (-15 -2224 (|#3| |#3|)))) (-38 (-419 (-576))) (-1280 |#1|) (-1251 |#1| |#2|)) (T -287)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1280 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1251 *4 *5)))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2004 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2017 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2030 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2042 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2052 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2062 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2072 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2085 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2100 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2113 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2125 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2137 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2150 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2163 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2176 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2188 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2201 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2213 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2225 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2235 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-4110 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-4124 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-2224 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4))))) -(-13 (-1005 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4067 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -2004 (|#3| |#3|)) (-15 -2017 (|#3| |#3|)) (-15 -2030 (|#3| |#3|)) (-15 -2042 (|#3| |#3|)) (-15 -2052 (|#3| |#3|)) (-15 -2062 (|#3| |#3|)) (-15 -2072 (|#3| |#3|)) (-15 -2085 (|#3| |#3|)) (-15 -2100 (|#3| |#3|)) (-15 -2113 (|#3| |#3|)) (-15 -2125 (|#3| |#3|)) (-15 -2137 (|#3| |#3|)) (-15 -2150 (|#3| |#3|)) (-15 -2163 (|#3| |#3|)) (-15 -2176 (|#3| |#3|)) (-15 -2188 (|#3| |#3|)) (-15 -2201 (|#3| |#3|)) (-15 -2213 (|#3| |#3|)) (-15 -2225 (|#3| |#3|)) (-15 -2235 (|#3| |#3|)) (-15 -4110 (|#3| |#3|)) (-15 -4124 (|#3| |#3|)) (-15 -4137 (|#3| |#3|)) (-15 -2224 (|#3| |#3|)))) -((-3403 (((-3 |#3| "failed") |#3|) 70)) (-2176 ((|#3| |#3|) 137)) (-3054 (((-3 |#3| "failed") |#3|) 54)) (-2030 ((|#3| |#3|) 125)) (-2363 (((-3 |#3| "failed") |#3|) 66)) (-2150 ((|#3| |#3|) 135)) (-2295 (((-3 |#3| "failed") |#3|) 50)) (-2004 ((|#3| |#3|) 123)) (-2634 (((-3 |#3| "failed") |#3|) 74)) (-2201 ((|#3| |#3|) 139)) (-1661 (((-3 |#3| "failed") |#3|) 58)) (-2052 ((|#3| |#3|) 127)) (-1603 (((-3 |#3| "failed") |#3| (-784)) 38)) (-3493 (((-3 |#3| "failed") |#3|) 48)) (-3670 ((|#3| |#3|) 111)) (-2414 (((-3 |#3| "failed") |#3|) 46)) (-4067 ((|#3| |#3|) 122)) (-3846 (((-3 |#3| "failed") |#3|) 76)) (-2213 ((|#3| |#3|) 140)) (-4282 (((-3 |#3| "failed") |#3|) 60)) (-2062 ((|#3| |#3|) 128)) (-2309 (((-3 |#3| "failed") |#3|) 72)) (-2188 ((|#3| |#3|) 138)) (-2969 (((-3 |#3| "failed") |#3|) 56)) (-2042 ((|#3| |#3|) 126)) (-3059 (((-3 |#3| "failed") |#3|) 68)) (-2163 ((|#3| |#3|) 136)) (-3470 (((-3 |#3| "failed") |#3|) 52)) (-2017 ((|#3| |#3|) 124)) (-3086 (((-3 |#3| "failed") |#3|) 78)) (-4110 ((|#3| |#3|) 143)) (-2486 (((-3 |#3| "failed") |#3|) 62)) (-2100 ((|#3| |#3|) 131)) (-2487 (((-3 |#3| "failed") |#3|) 112)) (-2225 ((|#3| |#3|) 141)) (-2888 (((-3 |#3| "failed") |#3|) 100)) (-2072 ((|#3| |#3|) 129)) (-2783 (((-3 |#3| "failed") |#3|) 116)) (-4137 ((|#3| |#3|) 145)) (-4107 (((-3 |#3| "failed") |#3|) 107)) (-2125 ((|#3| |#3|) 133)) (-3773 (((-3 |#3| "failed") |#3|) 117)) (-2224 ((|#3| |#3|) 146)) (-3964 (((-3 |#3| "failed") |#3|) 109)) (-2137 ((|#3| |#3|) 134)) (-3761 (((-3 |#3| "failed") |#3|) 80)) (-4124 ((|#3| |#3|) 144)) (-4052 (((-3 |#3| "failed") |#3|) 64)) (-2113 ((|#3| |#3|) 132)) (-4076 (((-3 |#3| "failed") |#3|) 113)) (-2235 ((|#3| |#3|) 142)) (-2540 (((-3 |#3| "failed") |#3|) 103)) (-2085 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-419 (-576))) 44 (|has| |#1| (-374))))) -(((-288 |#1| |#2| |#3| |#4|) (-13 (-1005 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4067 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -2004 (|#3| |#3|)) (-15 -2017 (|#3| |#3|)) (-15 -2030 (|#3| |#3|)) (-15 -2042 (|#3| |#3|)) (-15 -2052 (|#3| |#3|)) (-15 -2062 (|#3| |#3|)) (-15 -2072 (|#3| |#3|)) (-15 -2085 (|#3| |#3|)) (-15 -2100 (|#3| |#3|)) (-15 -2113 (|#3| |#3|)) (-15 -2125 (|#3| |#3|)) (-15 -2137 (|#3| |#3|)) (-15 -2150 (|#3| |#3|)) (-15 -2163 (|#3| |#3|)) (-15 -2176 (|#3| |#3|)) (-15 -2188 (|#3| |#3|)) (-15 -2201 (|#3| |#3|)) (-15 -2213 (|#3| |#3|)) (-15 -2225 (|#3| |#3|)) (-15 -2235 (|#3| |#3|)) (-15 -4110 (|#3| |#3|)) (-15 -4124 (|#3| |#3|)) (-15 -4137 (|#3| |#3|)) (-15 -2224 (|#3| |#3|)))) (-38 (-419 (-576))) (-1249 |#1|) (-1272 |#1| |#2|) (-1005 |#2|)) (T -288)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1249 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1272 *4 *5)) (-4 *6 (-1005 *5)))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2004 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2017 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2030 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2042 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2052 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2062 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2072 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2085 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2100 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2113 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2125 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2137 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2150 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2163 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2176 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2188 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2201 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2213 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2225 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2235 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-4110 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-4124 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) (-2224 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4))))) -(-13 (-1005 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -4067 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -2004 (|#3| |#3|)) (-15 -2017 (|#3| |#3|)) (-15 -2030 (|#3| |#3|)) (-15 -2042 (|#3| |#3|)) (-15 -2052 (|#3| |#3|)) (-15 -2062 (|#3| |#3|)) (-15 -2072 (|#3| |#3|)) (-15 -2085 (|#3| |#3|)) (-15 -2100 (|#3| |#3|)) (-15 -2113 (|#3| |#3|)) (-15 -2125 (|#3| |#3|)) (-15 -2137 (|#3| |#3|)) (-15 -2150 (|#3| |#3|)) (-15 -2163 (|#3| |#3|)) (-15 -2176 (|#3| |#3|)) (-15 -2188 (|#3| |#3|)) (-15 -2201 (|#3| |#3|)) (-15 -2213 (|#3| |#3|)) (-15 -2225 (|#3| |#3|)) (-15 -2235 (|#3| |#3|)) (-15 -4110 (|#3| |#3|)) (-15 -4124 (|#3| |#3|)) (-15 -4137 (|#3| |#3|)) (-15 -2224 (|#3| |#3|)))) -((-4010 (((-112) $) 20)) (-3016 (((-1203) $) 7)) (-1776 (((-3 (-518) "failed") $) 14)) (-2472 (((-3 (-657 $) "failed") $) NIL)) (-1360 (((-3 (-518) "failed") $) 21)) (-3637 (((-3 (-1126) "failed") $) 18)) (-2005 (((-112) $) 16)) (-3501 (((-877) $) NIL)) (-1723 (((-112) $) 9))) -(((-289) (-13 (-625 (-877)) (-10 -8 (-15 -3016 ((-1203) $)) (-15 -2005 ((-112) $)) (-15 -3637 ((-3 (-1126) "failed") $)) (-15 -4010 ((-112) $)) (-15 -1360 ((-3 (-518) "failed") $)) (-15 -1723 ((-112) $)) (-15 -1776 ((-3 (-518) "failed") $)) (-15 -2472 ((-3 (-657 $) "failed") $))))) (T -289)) -((-3016 (*1 *2 *1) (-12 (-5 *2 (-1203)) (-5 *1 (-289)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-3637 (*1 *2 *1) (|partial| -12 (-5 *2 (-1126)) (-5 *1 (-289)))) (-4010 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-1360 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-1723 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-1776 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-2472 (*1 *2 *1) (|partial| -12 (-5 *2 (-657 (-289))) (-5 *1 (-289))))) -(-13 (-625 (-877)) (-10 -8 (-15 -3016 ((-1203) $)) (-15 -2005 ((-112) $)) (-15 -3637 ((-3 (-1126) "failed") $)) (-15 -4010 ((-112) $)) (-15 -1360 ((-3 (-518) "failed") $)) (-15 -1723 ((-112) $)) (-15 -1776 ((-3 (-518) "failed") $)) (-15 -2472 ((-3 (-657 $) "failed") $)))) -((-1464 (((-609) $) 10)) (-4024 (((-597) $) 8)) (-4091 (((-301) $) 12)) (-3892 (($ (-597) (-609) (-301)) NIL)) (-3501 (((-877) $) 19))) -(((-290) (-13 (-625 (-877)) (-10 -8 (-15 -3892 ($ (-597) (-609) (-301))) (-15 -4024 ((-597) $)) (-15 -1464 ((-609) $)) (-15 -4091 ((-301) $))))) (T -290)) -((-3892 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290)))) (-4091 (*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) -(-13 (-625 (-877)) (-10 -8 (-15 -3892 ($ (-597) (-609) (-301))) (-15 -4024 ((-597) $)) (-15 -1464 ((-609) $)) (-15 -4091 ((-301) $)))) -((-2035 (($ (-1 (-112) |#2|) $) 24)) (-3914 (($ $) 38)) (-3647 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3895 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-4033 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2271 (($ |#2| $ (-576)) 20) (($ $ $ (-576)) 22)) (-3409 (($ $ (-576)) 11) (($ $ (-1256 (-576))) 14)) (-2858 (($ $ |#2|) 32) (($ $ $) NIL)) (-1674 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-657 $)) NIL))) -(((-291 |#1| |#2|) (-10 -8 (-15 -4033 (|#1| |#1| |#1|)) (-15 -3647 (|#1| |#2| |#1|)) (-15 -4033 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3647 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2858 (|#1| |#1| |#1|)) (-15 -2858 (|#1| |#1| |#2|)) (-15 -2271 (|#1| |#1| |#1| (-576))) (-15 -2271 (|#1| |#2| |#1| (-576))) (-15 -3409 (|#1| |#1| (-1256 (-576)))) (-15 -3409 (|#1| |#1| (-576))) (-15 -1674 (|#1| (-657 |#1|))) (-15 -1674 (|#1| |#1| |#1|)) (-15 -1674 (|#1| |#2| |#1|)) (-15 -1674 (|#1| |#1| |#2|)) (-15 -3895 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2035 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3895 (|#1| |#2| |#1|)) (-15 -3914 (|#1| |#1|))) (-292 |#2|) (-1239)) (T -291)) -NIL -(-10 -8 (-15 -4033 (|#1| |#1| |#1|)) (-15 -3647 (|#1| |#2| |#1|)) (-15 -4033 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3647 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2858 (|#1| |#1| |#1|)) (-15 -2858 (|#1| |#1| |#2|)) (-15 -2271 (|#1| |#1| |#1| (-576))) (-15 -2271 (|#1| |#2| |#1| (-576))) (-15 -3409 (|#1| |#1| (-1256 (-576)))) (-15 -3409 (|#1| |#1| (-576))) (-15 -1674 (|#1| (-657 |#1|))) (-15 -1674 (|#1| |#1| |#1|)) (-15 -1674 (|#1| |#2| |#1|)) (-15 -1674 (|#1| |#1| |#2|)) (-15 -3895 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2035 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3895 (|#1| |#2| |#1|)) (-15 -3914 (|#1| |#1|))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4313 (((-1294) $ (-576) (-576)) 41 (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) 8)) (-3682 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 60 (|has| $ (-6 -4467)))) (-3162 (($ (-1 (-112) |#1|) $) 88)) (-2035 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4466)))) (-4359 (($) 7 T CONST)) (-4295 (($ $) 86 (|has| |#1| (-1122)))) (-3914 (($ $) 80 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3647 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1122)))) (-3895 (($ |#1| $) 79 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4466)))) (-2158 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) 52)) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-4109 (($ (-784) |#1|) 70)) (-1833 (((-112) $ (-784)) 9)) (-3853 (((-576) $) 44 (|has| (-576) (-862)))) (-4033 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-862)))) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2272 (((-576) $) 45 (|has| (-576) (-862)))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-2468 (($ |#1| $ (-576)) 91) (($ $ $ (-576)) 90)) (-2271 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-1430 (((-657 (-576)) $) 47)) (-4242 (((-112) (-576) $) 48)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3510 ((|#1| $) 43 (|has| (-576) (-862)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1987 (($ $ |#1|) 42 (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-1515 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) 49)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1256 (-576))) 71)) (-3449 (($ $ (-576)) 94) (($ $ (-1256 (-576))) 93)) (-3409 (($ $ (-576)) 64) (($ $ (-1256 (-576))) 63)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-4148 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 72)) (-2858 (($ $ |#1|) 96) (($ $ $) 95)) (-1674 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-657 $)) 66)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-292 |#1|) (-141) (-1239)) (T -292)) -((-2858 (*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)))) (-2858 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)))) (-3449 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) (-3449 (*1 *1 *1 *2) (-12 (-5 *2 (-1256 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) (-3647 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) (-2468 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1239)))) (-2468 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) (-4033 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) (-3162 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) (-3647 (*1 *1 *2 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)) (-4 *2 (-1122)))) (-4295 (*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)) (-4 *2 (-1122)))) (-4033 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)) (-4 *2 (-862))))) -(-13 (-664 |t#1|) (-10 -8 (-6 -4467) (-15 -2858 ($ $ |t#1|)) (-15 -2858 ($ $ $)) (-15 -3449 ($ $ (-576))) (-15 -3449 ($ $ (-1256 (-576)))) (-15 -3647 ($ (-1 (-112) |t#1|) $)) (-15 -2468 ($ |t#1| $ (-576))) (-15 -2468 ($ $ $ (-576))) (-15 -4033 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3162 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1122)) (PROGN (-15 -3647 ($ |t#1| $)) (-15 -4295 ($ $))) |%noBranch|) (IF (|has| |t#1| (-862)) (-15 -4033 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-664 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) +((-2852 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-787)))) (-2132 (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-787))))) +(-13 (-235 $) (-10 -8 (-15 -2852 ($ $ (-787))) (-15 -2132 ($ $ (-787))))) +(((-235 $) . T) ((-1242) . T)) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-4187 (((-3 $ "failed") $) 37)) (-2487 (((-112) $) 35)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2852 (($ $ (-787)) 42) (($ $) 40)) (-3544 (((-880) $) 12) (($ (-577)) 33)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-787)) 43) (($ $) 41)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) +(((-239) (-141)) (T -239)) +NIL +(-13 (-1074) (-238)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-235 $) . T) ((-238) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-742) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3736 (($) 12) (($ (-660 |#2|)) NIL)) (-1944 (($ $) 14)) (-3553 (($ (-660 |#2|)) 10)) (-3544 (((-880) $) 21))) +(((-240 |#1| |#2|) (-10 -8 (-15 -3544 ((-880) |#1|)) (-15 -3736 (|#1| (-660 |#2|))) (-15 -3736 (|#1|)) (-15 -3553 (|#1| (-660 |#2|))) (-15 -1944 (|#1| |#1|))) (-241 |#2|) (-1125)) (T -240)) +NIL +(-10 -8 (-15 -3544 ((-880) |#1|)) (-15 -3736 (|#1| (-660 |#2|))) (-15 -3736 (|#1|)) (-15 -3553 (|#1| (-660 |#2|))) (-15 -1944 (|#1| |#1|))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3828 (((-112) $ (-787)) 8)) (-2463 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4470)))) (-1534 (($) 7 T CONST)) (-1817 (($ $) 59 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3719 (($ |#1| $) 48 (|has| $ (-6 -4470))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4470)))) (-3904 (($ |#1| $) 58 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4470)))) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) 9)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-4330 ((|#1| $) 40)) (-2881 (($ |#1| $) 41)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3530 ((|#1| $) 42)) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-3736 (($) 50) (($ (-660 |#1|)) 49)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-4152 (((-549) $) 60 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 51)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3541 (($ (-660 |#1|)) 43)) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-241 |#1|) (-141) (-1125)) (T -241)) +((-3736 (*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1125)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-4 *1 (-241 *3)))) (-3719 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-241 *2)) (-4 *2 (-1125)))) (-3719 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4470)) (-4 *1 (-241 *3)) (-4 *3 (-1125)))) (-2463 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4470)) (-4 *1 (-241 *3)) (-4 *3 (-1125))))) +(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -3736 ($)) (-15 -3736 ($ (-660 |t#1|))) (IF (|has| $ (-6 -4470)) (PROGN (-15 -3719 ($ |t#1| $)) (-15 -3719 ($ (-1 (-112) |t#1|) $)) (-15 -2463 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) +((-3746 (((-2 (|:| |varOrder| (-660 (-1201))) (|:| |inhom| (-3 (-660 (-1292 (-787))) "failed")) (|:| |hom| (-660 (-1292 (-787))))) (-305 (-975 (-577)))) 42))) +(((-242) (-10 -7 (-15 -3746 ((-2 (|:| |varOrder| (-660 (-1201))) (|:| |inhom| (-3 (-660 (-1292 (-787))) "failed")) (|:| |hom| (-660 (-1292 (-787))))) (-305 (-975 (-577))))))) (T -242)) +((-3746 (*1 *2 *3) (-12 (-5 *3 (-305 (-975 (-577)))) (-5 *2 (-2 (|:| |varOrder| (-660 (-1201))) (|:| |inhom| (-3 (-660 (-1292 (-787))) "failed")) (|:| |hom| (-660 (-1292 (-787)))))) (-5 *1 (-242))))) +(-10 -7 (-15 -3746 ((-2 (|:| |varOrder| (-660 (-1201))) (|:| |inhom| (-3 (-660 (-1292 (-787))) "failed")) (|:| |hom| (-660 (-1292 (-787))))) (-305 (-975 (-577)))))) +((-2229 (((-787)) 56)) (-1647 (((-2 (|:| -1881 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-705 $) (-1292 $)) 53) (((-705 |#3|) (-705 $)) 44) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL) (((-705 (-577)) (-705 $)) NIL)) (-2561 (((-135)) 62)) (-2852 (($ $ (-1 |#3| |#3|)) 18) (($ $ (-1 |#3| |#3|) (-787)) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201))) NIL) (($ $ (-1201)) NIL) (($ $ (-787)) NIL) (($ $) NIL)) (-3544 (((-1292 |#3|) $) NIL) (($ |#3|) NIL) (((-880) $) NIL) (($ (-577)) 12) (($ (-420 (-577))) NIL)) (-4068 (((-787)) 15)) (-3077 (($ $ |#3|) 59))) +(((-243 |#1| |#2| |#3|) (-10 -8 (-15 -3544 (|#1| (-420 (-577)))) (-15 -3544 (|#1| (-577))) (-15 -2852 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3544 ((-880) |#1|)) (-15 -4068 ((-787))) (-15 -1647 ((-705 (-577)) (-705 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -3544 (|#1| |#3|)) (-15 -2852 (|#1| |#1| (-1 |#3| |#3|) (-787))) (-15 -2852 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1647 ((-705 |#3|) (-705 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-705 |#1|) (-1292 |#1|))) (-15 -2229 ((-787))) (-15 -3077 (|#1| |#1| |#3|)) (-15 -2561 ((-135))) (-15 -3544 ((-1292 |#3|) |#1|))) (-244 |#2| |#3|) (-787) (-1242)) (T -243)) +((-2561 (*1 *2) (-12 (-14 *4 (-787)) (-4 *5 (-1242)) (-5 *2 (-135)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-2229 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1242)) (-5 *2 (-787)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) (-4068 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1242)) (-5 *2 (-787)) (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5))))) +(-10 -8 (-15 -3544 (|#1| (-420 (-577)))) (-15 -3544 (|#1| (-577))) (-15 -2852 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -3544 ((-880) |#1|)) (-15 -4068 ((-787))) (-15 -1647 ((-705 (-577)) (-705 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -3544 (|#1| |#3|)) (-15 -2852 (|#1| |#1| (-1 |#3| |#3|) (-787))) (-15 -2852 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1647 ((-705 |#3|) (-705 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-705 |#1|) (-1292 |#1|))) (-15 -2229 ((-787))) (-15 -3077 (|#1| |#1| |#3|)) (-15 -2561 ((-135))) (-15 -3544 ((-1292 |#3|) |#1|))) +((-3473 (((-112) $ $) 20 (|has| |#2| (-102)))) (-3585 (((-112) $) 76 (|has| |#2| (-23)))) (-1352 (($ (-944)) 129 (|has| |#2| (-1074)))) (-2389 (((-1297) $ (-577) (-577)) 41 (|has| $ (-6 -4471)))) (-4243 (($ $ $) 125 (|has| |#2| (-809)))) (-1956 (((-3 $ "failed") $ $) 78 (|has| |#2| (-132)))) (-3828 (((-112) $ (-787)) 8)) (-2229 (((-787)) 115 (|has| |#2| (-380)))) (-3709 ((|#2| $ (-577) |#2|) 53 (|has| $ (-6 -4471)))) (-1534 (($) 7 T CONST)) (-1628 (((-3 (-577) "failed") $) 71 (-2761 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125)))) (((-3 (-420 (-577)) "failed") $) 68 (-2761 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1125)))) (-2921 (((-577) $) 70 (-2761 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125)))) (((-420 (-577)) $) 67 (-2761 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) ((|#2| $) 66 (|has| |#2| (-1125)))) (-1647 (((-705 (-577)) (-705 $)) 112 (-2761 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 111 (-2761 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) 110 (|has| |#2| (-1074))) (((-705 |#2|) (-705 $)) 109 (|has| |#2| (-1074)))) (-4187 (((-3 $ "failed") $) 86 (|has| |#2| (-1074)))) (-1910 (($) 118 (|has| |#2| (-380)))) (-2192 ((|#2| $ (-577) |#2|) 54 (|has| $ (-6 -4471)))) (-2117 ((|#2| $ (-577)) 52)) (-1461 (((-660 |#2|) $) 31 (|has| $ (-6 -4470)))) (-2487 (((-112) $) 88 (|has| |#2| (-1074)))) (-1479 (((-112) $ (-787)) 9)) (-2406 (((-577) $) 44 (|has| (-577) (-865)))) (-3732 (($ $ $) 119 (|has| |#2| (-865)))) (-2530 (((-660 |#2|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470))))) (-2416 (((-577) $) 45 (|has| (-577) (-865)))) (-3201 (($ $ $) 120 (|has| |#2| (-865)))) (-2182 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#2| |#2|) $) 36)) (-4038 (((-944) $) 117 (|has| |#2| (-380)))) (-1443 (((-112) $ (-787)) 10)) (-1657 (((-705 (-577)) (-1292 $)) 114 (-2761 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 113 (-2761 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) 108 (|has| |#2| (-1074))) (((-705 |#2|) (-1292 $)) 107 (|has| |#2| (-1074)))) (-2810 (((-1183) $) 23 (|has| |#2| (-1125)))) (-4285 (((-660 (-577)) $) 47)) (-4298 (((-112) (-577) $) 48)) (-3222 (($ (-944)) 116 (|has| |#2| (-380)))) (-1474 (((-1145) $) 22 (|has| |#2| (-1125)))) (-3552 ((|#2| $) 43 (|has| (-577) (-865)))) (-2397 (($ $ |#2|) 42 (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#2|))) 27 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-305 |#2|)) 26 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 |#2|) (-660 |#2|)) 24 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))))) (-3840 (((-112) $ $) 14)) (-4274 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-4306 (((-660 |#2|) $) 49)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#2| $ (-577) |#2|) 51) ((|#2| $ (-577)) 50)) (-3116 ((|#2| $ $) 128 (|has| |#2| (-1074)))) (-1946 (($ (-1292 |#2|)) 130)) (-2561 (((-135)) 127 (|has| |#2| (-375)))) (-2852 (($ $ (-787)) 105 (-2761 (|has| |#2| (-238)) (|has| |#2| (-1074)))) (($ $) 103 (-2761 (|has| |#2| (-238)) (|has| |#2| (-1074)))) (($ $ (-660 (-1201)) (-660 (-787))) 99 (-2761 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1201) (-787)) 98 (-2761 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-660 (-1201))) 97 (-2761 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1201)) 95 (-2761 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1074))) (($ $ (-1 |#2| |#2|) (-787)) 93 (|has| |#2| (-1074)))) (-1485 (((-787) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4470))) (((-787) |#2| $) 29 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-3544 (((-1292 |#2|) $) 131) (($ (-577)) 72 (-2839 (-2761 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (|has| |#2| (-1074)))) (($ (-420 (-577))) 69 (-2761 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) (($ |#2|) 64 (|has| |#2| (-1125))) (((-880) $) 18 (|has| |#2| (-626 (-880))))) (-4068 (((-787)) 90 (|has| |#2| (-1074)) CONST)) (-4448 (((-112) $ $) 21 (|has| |#2| (-102)))) (-1524 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4470)))) (-2806 (($) 75 (|has| |#2| (-23)) CONST)) (-2816 (($) 89 (|has| |#2| (-1074)) CONST)) (-2132 (($ $ (-787)) 106 (-2761 (|has| |#2| (-238)) (|has| |#2| (-1074)))) (($ $) 104 (-2761 (|has| |#2| (-238)) (|has| |#2| (-1074)))) (($ $ (-660 (-1201)) (-660 (-787))) 102 (-2761 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1201) (-787)) 101 (-2761 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-660 (-1201))) 100 (-2761 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1201)) 96 (-2761 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1074))) (($ $ (-1 |#2| |#2|) (-787)) 91 (|has| |#2| (-1074)))) (-3025 (((-112) $ $) 121 (|has| |#2| (-865)))) (-3000 (((-112) $ $) 123 (|has| |#2| (-865)))) (-2970 (((-112) $ $) 19 (|has| |#2| (-102)))) (-3012 (((-112) $ $) 122 (|has| |#2| (-865)))) (-2990 (((-112) $ $) 124 (|has| |#2| (-865)))) (-3077 (($ $ |#2|) 126 (|has| |#2| (-375)))) (-3066 (($ $ $) 81 (|has| |#2| (-21))) (($ $) 80 (|has| |#2| (-21)))) (-3055 (($ $ $) 73 (|has| |#2| (-25)))) (** (($ $ (-787)) 87 (|has| |#2| (-1074))) (($ $ (-944)) 84 (|has| |#2| (-1074)))) (* (($ $ $) 85 (|has| |#2| (-1074))) (($ $ |#2|) 83 (|has| |#2| (-742))) (($ |#2| $) 82 (|has| |#2| (-742))) (($ (-577) $) 79 (|has| |#2| (-21))) (($ (-787) $) 77 (|has| |#2| (-23))) (($ (-944) $) 74 (|has| |#2| (-25)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-244 |#1| |#2|) (-141) (-787) (-1242)) (T -244)) +((-1946 (*1 *1 *2) (-12 (-5 *2 (-1292 *4)) (-4 *4 (-1242)) (-4 *1 (-244 *3 *4)))) (-1352 (*1 *1 *2) (-12 (-5 *2 (-944)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1074)) (-4 *4 (-1242)))) (-3116 (*1 *2 *1 *1) (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1242)) (-4 *2 (-1074))))) +(-13 (-617 (-577) |t#2|) (-626 (-1292 |t#2|)) (-10 -8 (-6 -4470) (-15 -1946 ($ (-1292 |t#2|))) (IF (|has| |t#2| (-1125)) (-6 (-424 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1074)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-233 |t#2|)) (-6 (-389 |t#2|)) (-15 -1352 ($ (-944))) (-15 -3116 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-742)) (-6 (-656 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-380)) (-6 (-380)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-733 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4467)) (-6 -4467) |%noBranch|) (IF (|has| |t#2| (-865)) (-6 (-865)) |%noBranch|) (IF (|has| |t#2| (-809)) (-6 (-809)) |%noBranch|) (IF (|has| |t#2| (-375)) (-6 (-1299 |t#2|)) |%noBranch|))) +(((-21) -2839 (|has| |#2| (-1074)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -2839 (|has| |#2| (-1074)) (|has| |#2| (-809)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -2839 (|has| |#2| (-1074)) (|has| |#2| (-809)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -2839 (|has| |#2| (-1125)) (|has| |#2| (-1074)) (|has| |#2| (-865)) (|has| |#2| (-809)) (|has| |#2| (-742)) (|has| |#2| (-380)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -2839 (|has| |#2| (-1074)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-132) -2839 (|has| |#2| (-1074)) (|has| |#2| (-809)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-629 #0=(-420 (-577))) -12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125))) ((-629 (-577)) -2839 (|has| |#2| (-1074)) (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125)))) ((-629 |#2|) |has| |#2| (-1125)) ((-626 (-880)) -2839 (|has| |#2| (-1125)) (|has| |#2| (-1074)) (|has| |#2| (-865)) (|has| |#2| (-809)) (|has| |#2| (-742)) (|has| |#2| (-380)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-626 (-880))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-626 (-1292 |#2|)) . T) ((-235 $) -2839 (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1074)))) ((-233 |#2|) |has| |#2| (-1074)) ((-239) -12 (|has| |#2| (-239)) (|has| |#2| (-1074))) ((-238) -2839 (-12 (|has| |#2| (-238)) (|has| |#2| (-1074))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1074)))) ((-273 |#2|) |has| |#2| (-1074)) ((-297 #1=(-577) |#2|) . T) ((-299 #1# |#2|) . T) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-380) |has| |#2| (-380)) ((-389 |#2|) |has| |#2| (-1074)) ((-424 |#2|) |has| |#2| (-1125)) ((-502 |#2|) . T) ((-617 #1# |#2|) . T) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-662 (-577)) -2839 (|has| |#2| (-1074)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-662 |#2|) -2839 (|has| |#2| (-1074)) (|has| |#2| (-742)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-662 $) |has| |#2| (-1074)) ((-664 #2=(-577)) -12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ((-664 |#2|) -2839 (|has| |#2| (-1074)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-664 $) |has| |#2| (-1074)) ((-656 |#2|) -2839 (|has| |#2| (-742)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-654 #2#) -12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074))) ((-654 |#2|) |has| |#2| (-1074)) ((-733 |#2|) -2839 (|has| |#2| (-375)) (|has| |#2| (-174))) ((-742) |has| |#2| (-1074)) ((-808) |has| |#2| (-809)) ((-809) |has| |#2| (-809)) ((-810) |has| |#2| (-809)) ((-811) |has| |#2| (-809)) ((-865) -2839 (|has| |#2| (-865)) (|has| |#2| (-809))) ((-868) -2839 (|has| |#2| (-865)) (|has| |#2| (-809))) ((-915 $ #3=(-1201)) -2839 (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) (-12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074)))) ((-921 (-1201)) -12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074))) ((-923 #3#) -2839 (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074))) (-12 (|has| |#2| (-921 (-1201))) (|has| |#2| (-1074)))) ((-1063 #0#) -12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125))) ((-1063 (-577)) -12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) ((-1063 |#2|) |has| |#2| (-1125)) ((-1076 |#2|) -2839 (|has| |#2| (-1074)) (|has| |#2| (-742)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-1081 |#2|) -2839 (|has| |#2| (-1074)) (|has| |#2| (-375)) (|has| |#2| (-174))) ((-1074) |has| |#2| (-1074)) ((-1083) |has| |#2| (-1074)) ((-1137) |has| |#2| (-1074)) ((-1125) -2839 (|has| |#2| (-1125)) (|has| |#2| (-1074)) (|has| |#2| (-865)) (|has| |#2| (-809)) (|has| |#2| (-742)) (|has| |#2| (-380)) (|has| |#2| (-375)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1242) . T) ((-1299 |#2|) |has| |#2| (-375))) +((-3127 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21)) (-3654 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23)) (-4087 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18))) +(((-245 |#1| |#2| |#3|) (-10 -7 (-15 -3127 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -3654 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4087 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-787) (-1242) (-1242)) (T -245)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-787)) (-4 *6 (-1242)) (-4 *7 (-1242)) (-5 *2 (-246 *5 *7)) (-5 *1 (-245 *5 *6 *7)))) (-3654 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-787)) (-4 *6 (-1242)) (-4 *2 (-1242)) (-5 *1 (-245 *5 *6 *2)))) (-3127 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-787)) (-4 *7 (-1242)) (-4 *5 (-1242)) (-5 *2 (-246 *6 *5)) (-5 *1 (-245 *6 *7 *5))))) +(-10 -7 (-15 -3127 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -3654 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4087 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) +((-3473 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3585 (((-112) $) NIL (|has| |#2| (-23)))) (-1352 (($ (-944)) 62 (|has| |#2| (-1074)))) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4243 (($ $ $) 68 (|has| |#2| (-809)))) (-1956 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-3828 (((-112) $ (-787)) NIL)) (-2229 (((-787)) NIL (|has| |#2| (-380)))) (-3709 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4471)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125)))) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1125)))) (-2921 (((-577) $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125)))) (((-420 (-577)) $) NIL (-12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) ((|#2| $) 28 (|has| |#2| (-1125)))) (-1647 (((-705 (-577)) (-705 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL (|has| |#2| (-1074))) (((-705 |#2|) (-705 $)) NIL (|has| |#2| (-1074)))) (-4187 (((-3 $ "failed") $) 58 (|has| |#2| (-1074)))) (-1910 (($) NIL (|has| |#2| (-380)))) (-2192 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#2| $ (-577)) 56)) (-1461 (((-660 |#2|) $) 14 (|has| $ (-6 -4470)))) (-2487 (((-112) $) NIL (|has| |#2| (-1074)))) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) 19 (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| |#2| (-865)))) (-2530 (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-2416 (((-577) $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| |#2| (-865)))) (-2182 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#2| |#2|) $) NIL)) (-4038 (((-944) $) NIL (|has| |#2| (-380)))) (-1443 (((-112) $ (-787)) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL (|has| |#2| (-1074))) (((-705 |#2|) (-1292 $)) NIL (|has| |#2| (-1074)))) (-2810 (((-1183) $) NIL (|has| |#2| (-1125)))) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-3222 (($ (-944)) NIL (|has| |#2| (-380)))) (-1474 (((-1145) $) NIL (|has| |#2| (-1125)))) (-3552 ((|#2| $) NIL (|has| (-577) (-865)))) (-2397 (($ $ |#2|) NIL (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-4306 (((-660 |#2|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#2| $ (-577) |#2|) NIL) ((|#2| $ (-577)) 20)) (-3116 ((|#2| $ $) NIL (|has| |#2| (-1074)))) (-1946 (($ (-1292 |#2|)) 17)) (-2561 (((-135)) NIL (|has| |#2| (-375)))) (-2852 (($ $ (-787)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074)))) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1201)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1074))) (($ $ (-1 |#2| |#2|) (-787)) NIL (|has| |#2| (-1074)))) (-1485 (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470))) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-1944 (($ $) NIL)) (-3544 (((-1292 |#2|) $) 9) (($ (-577)) NIL (-2839 (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (|has| |#2| (-1074)))) (($ (-420 (-577))) NIL (-12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) (($ |#2|) 12 (|has| |#2| (-1125))) (((-880) $) NIL (|has| |#2| (-626 (-880))))) (-4068 (((-787)) NIL (|has| |#2| (-1074)) CONST)) (-4448 (((-112) $ $) NIL (|has| |#2| (-102)))) (-1524 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-2806 (($) 36 (|has| |#2| (-23)) CONST)) (-2816 (($) 40 (|has| |#2| (-1074)) CONST)) (-2132 (($ $ (-787)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074)))) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1201)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1074))) (($ $ (-1 |#2| |#2|) (-787)) NIL (|has| |#2| (-1074)))) (-3025 (((-112) $ $) NIL (|has| |#2| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#2| (-865)))) (-2970 (((-112) $ $) 27 (|has| |#2| (-102)))) (-3012 (((-112) $ $) NIL (|has| |#2| (-865)))) (-2990 (((-112) $ $) 66 (|has| |#2| (-865)))) (-3077 (($ $ |#2|) NIL (|has| |#2| (-375)))) (-3066 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3055 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-787)) NIL (|has| |#2| (-1074))) (($ $ (-944)) NIL (|has| |#2| (-1074)))) (* (($ $ $) 46 (|has| |#2| (-1074))) (($ $ |#2|) 44 (|has| |#2| (-742))) (($ |#2| $) 45 (|has| |#2| (-742))) (($ (-577) $) NIL (|has| |#2| (-21))) (($ (-787) $) NIL (|has| |#2| (-23))) (($ (-944) $) NIL (|has| |#2| (-25)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-246 |#1| |#2|) (-244 |#1| |#2|) (-787) (-1242)) (T -246)) +NIL +(-244 |#1| |#2|) +((-3780 (((-577) (-660 (-1183))) 36) (((-577) (-1183)) 29)) (-1347 (((-1297) (-660 (-1183))) 40) (((-1297) (-1183)) 39)) (-3757 (((-1183)) 16)) (-3768 (((-1183) (-577) (-1183)) 23)) (-3693 (((-660 (-1183)) (-660 (-1183)) (-577) (-1183)) 37) (((-1183) (-1183) (-577) (-1183)) 35)) (-3261 (((-660 (-1183)) (-660 (-1183))) 15) (((-660 (-1183)) (-1183)) 11))) +(((-247) (-10 -7 (-15 -3261 ((-660 (-1183)) (-1183))) (-15 -3261 ((-660 (-1183)) (-660 (-1183)))) (-15 -3757 ((-1183))) (-15 -3768 ((-1183) (-577) (-1183))) (-15 -3693 ((-1183) (-1183) (-577) (-1183))) (-15 -3693 ((-660 (-1183)) (-660 (-1183)) (-577) (-1183))) (-15 -1347 ((-1297) (-1183))) (-15 -1347 ((-1297) (-660 (-1183)))) (-15 -3780 ((-577) (-1183))) (-15 -3780 ((-577) (-660 (-1183)))))) (T -247)) +((-3780 (*1 *2 *3) (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-577)) (-5 *1 (-247)))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-577)) (-5 *1 (-247)))) (-1347 (*1 *2 *3) (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-1297)) (-5 *1 (-247)))) (-1347 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-247)))) (-3693 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-660 (-1183))) (-5 *3 (-577)) (-5 *4 (-1183)) (-5 *1 (-247)))) (-3693 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1183)) (-5 *3 (-577)) (-5 *1 (-247)))) (-3768 (*1 *2 *3 *2) (-12 (-5 *2 (-1183)) (-5 *3 (-577)) (-5 *1 (-247)))) (-3757 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-247)))) (-3261 (*1 *2 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-247)))) (-3261 (*1 *2 *3) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-247)) (-5 *3 (-1183))))) +(-10 -7 (-15 -3261 ((-660 (-1183)) (-1183))) (-15 -3261 ((-660 (-1183)) (-660 (-1183)))) (-15 -3757 ((-1183))) (-15 -3768 ((-1183) (-577) (-1183))) (-15 -3693 ((-1183) (-1183) (-577) (-1183))) (-15 -3693 ((-660 (-1183)) (-660 (-1183)) (-577) (-1183))) (-15 -1347 ((-1297) (-1183))) (-15 -1347 ((-1297) (-660 (-1183)))) (-15 -3780 ((-577) (-1183))) (-15 -3780 ((-577) (-660 (-1183))))) +((** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) 20)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ (-420 (-577)) $) 27) (($ $ (-420 (-577))) NIL))) +(((-248 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-577))) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 ** (|#1| |#1| (-787))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-944))) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) (-249)) (T -248)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-577))) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 ** (|#1| |#1| (-787))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-944))) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-4187 (((-3 $ "failed") $) 37)) (-2487 (((-112) $) 35)) (-2810 (((-1183) $) 10)) (-2171 (($ $) 47)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ (-420 (-577))) 51)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 48)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ (-420 (-577)) $) 50) (($ $ (-420 (-577))) 49))) +(((-249) (-141)) (T -249)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-577)))) (-2171 (*1 *1 *1) (-4 *1 (-249)))) +(-13 (-301) (-38 (-420 (-577))) (-10 -8 (-15 ** ($ $ (-577))) (-15 -2171 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-629 #0#) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-301) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-656 #0#) . T) ((-733 #0#) . T) ((-742) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3115 ((|#1| $) 49)) (-4428 (($ $) 58)) (-3828 (((-112) $ (-787)) 8)) (-4374 ((|#1| $ |#1|) 40 (|has| $ (-6 -4471)))) (-3805 (($ $ $) 54 (|has| $ (-6 -4471)))) (-3793 (($ $ $) 53 (|has| $ (-6 -4471)))) (-3709 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) 42 (|has| $ (-6 -4471)))) (-1534 (($) 7 T CONST)) (-4264 (($ $) 57)) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-4426 (((-660 $) $) 51)) (-4394 (((-112) $ $) 43 (|has| |#1| (-1125)))) (-4289 (($ $) 56)) (-1479 (((-112) $ (-787)) 9)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-2461 (((-660 |#1|) $) 46)) (-3371 (((-112) $) 50)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-3927 ((|#1| $) 60)) (-3494 (($ $) 59)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#1| $ "value") 48)) (-4415 (((-577) $ $) 45)) (-1885 (((-112) $) 47)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-3992 (($ $ $) 55 (|has| $ (-6 -4471)))) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-3322 (((-660 $) $) 52)) (-4405 (((-112) $ $) 44 (|has| |#1| (-1125)))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-250 |#1|) (-141) (-1242)) (T -250)) +((-3927 (*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242)))) (-3494 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242)))) (-4428 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242)))) (-4264 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242)))) (-4289 (*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242)))) (-3992 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-250 *2)) (-4 *2 (-1242)))) (-3805 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-250 *2)) (-4 *2 (-1242)))) (-3793 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-250 *2)) (-4 *2 (-1242))))) +(-13 (-1035 |t#1|) (-10 -8 (-15 -3927 (|t#1| $)) (-15 -3494 ($ $)) (-15 -4428 ($ $)) (-15 -4264 ($ $)) (-15 -4289 ($ $)) (IF (|has| $ (-6 -4471)) (PROGN (-15 -3992 ($ $ $)) (-15 -3805 ($ $ $)) (-15 -3793 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1035 |#1|) . T) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3115 ((|#1| $) NIL)) (-2950 ((|#1| $) NIL)) (-4428 (($ $) NIL)) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-3933 (($ $ (-577)) NIL (|has| $ (-6 -4471)))) (-4077 (((-112) $) NIL (|has| |#1| (-865))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4053 (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-1864 (($ $) 10 (|has| |#1| (-865))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-4374 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)))) (-3958 (($ $ $) NIL (|has| $ (-6 -4471)))) (-3945 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)))) (-3969 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)))) (-3709 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4471))) (($ $ "rest" $) NIL (|has| $ (-6 -4471))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471))) ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)))) (-2463 (($ (-1 (-112) |#1|) $) NIL)) (-2067 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2939 ((|#1| $) NIL)) (-1534 (($) NIL T CONST)) (-3645 (($ $) NIL (|has| $ (-6 -4471)))) (-3787 (($ $) NIL)) (-3563 (($ $) NIL) (($ $ (-787)) NIL)) (-3215 (($ $) NIL (|has| |#1| (-1125)))) (-1817 (($ $) 7 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3719 (($ |#1| $) NIL (|has| |#1| (-1125))) (($ (-1 (-112) |#1|) $) NIL)) (-3904 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2192 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) NIL)) (-3998 (((-112) $) NIL)) (-3618 (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125))) (((-577) |#1| $) NIL (|has| |#1| (-1125))) (((-577) (-1 (-112) |#1|) $) NIL)) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-4426 (((-660 $) $) NIL)) (-4394 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-4113 (($ (-787) |#1|) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) NIL (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| |#1| (-865)))) (-3192 (($ $ $) NIL (|has| |#1| (-865))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3283 (($ $ $) NIL (|has| |#1| (-865))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2416 (((-577) $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| |#1| (-865)))) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1712 (($ |#1|) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2461 (((-660 |#1|) $) NIL)) (-3371 (((-112) $) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-3927 ((|#1| $) NIL) (($ $ (-787)) NIL)) (-2881 (($ $ $ (-577)) NIL) (($ |#1| $ (-577)) NIL)) (-2308 (($ $ $ (-577)) NIL) (($ |#1| $ (-577)) NIL)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-3552 ((|#1| $) NIL) (($ $ (-787)) NIL)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2397 (($ $ |#1|) NIL (|has| $ (-6 -4471)))) (-4010 (((-112) $) NIL)) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1259 (-577))) NIL) ((|#1| $ (-577)) NIL) ((|#1| $ (-577) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-787) $ "count") 16)) (-4415 (((-577) $ $) NIL)) (-2472 (($ $ (-1259 (-577))) NIL) (($ $ (-577)) NIL)) (-3453 (($ $ (-1259 (-577))) NIL) (($ $ (-577)) NIL)) (-1491 (($ (-660 |#1|)) 22)) (-1885 (((-112) $) NIL)) (-4004 (($ $) NIL)) (-3981 (($ $) NIL (|has| $ (-6 -4471)))) (-4016 (((-787) $) NIL)) (-4026 (($ $) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4064 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) NIL)) (-3992 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1677 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-660 $)) NIL) (($ $ |#1|) NIL)) (-3544 (($ (-660 |#1|)) 17) (((-660 |#1|) $) 18) (((-880) $) 21 (|has| |#1| (-626 (-880))))) (-3322 (((-660 $) $) NIL)) (-4405 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3484 (((-787) $) 14 (|has| $ (-6 -4470))))) +(((-251 |#1|) (-13 (-682 |#1|) (-503 (-660 |#1|)) (-10 -8 (-15 -1491 ($ (-660 |#1|))) (-15 -2872 ($ $ "unique")) (-15 -2872 ($ $ "sort")) (-15 -2872 ((-787) $ "count")))) (-865)) (T -251)) +((-1491 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-251 *3)))) (-2872 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-865)))) (-2872 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-865)))) (-2872 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-787)) (-5 *1 (-251 *4)) (-4 *4 (-865))))) +(-13 (-682 |#1|) (-503 (-660 |#1|)) (-10 -8 (-15 -1491 ($ (-660 |#1|))) (-15 -2872 ($ $ "unique")) (-15 -2872 ($ $ "sort")) (-15 -2872 ((-787) $ "count")))) +((-3818 (((-3 (-787) "failed") |#1| |#1| (-787)) 40))) +(((-252 |#1|) (-10 -7 (-15 -3818 ((-3 (-787) "failed") |#1| |#1| (-787)))) (-13 (-742) (-380) (-10 -7 (-15 ** (|#1| |#1| (-577)))))) (T -252)) +((-3818 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-787)) (-4 *3 (-13 (-742) (-380) (-10 -7 (-15 ** (*3 *3 (-577)))))) (-5 *1 (-252 *3))))) +(-10 -7 (-15 -3818 ((-3 (-787) "failed") |#1| |#1| (-787)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2852 (($ $) 54 (|has| |#1| (-238))) (($ $ (-787)) 52 (|has| |#1| (-238))) (($ $ (-1201)) 50 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) 48 (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) 47 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) 46 (|has| |#1| (-923 (-1201)))) (($ $ (-1 |#1| |#1|) (-787)) 40) (($ $ (-1 |#1| |#1|)) 39)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2132 (($ $) 53 (|has| |#1| (-238))) (($ $ (-787)) 51 (|has| |#1| (-238))) (($ $ (-1201)) 49 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) 45 (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) 44 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) 43 (|has| |#1| (-923 (-1201)))) (($ $ (-1 |#1| |#1|) (-787)) 42) (($ $ (-1 |#1| |#1|)) 41)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-253 |#1|) (-141) (-1074)) (T -253)) +NIL +(-13 (-111 |t#1| |t#1|) (-273 |t#1|) (-10 -7 (IF (|has| |t#1| (-238)) (-6 (-236 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-923 (-1201))) (-6 (-920 |t#1| (-1201))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-880)) . T) ((-235 $) |has| |#1| (-238)) ((-236 |#1|) |has| |#1| (-238)) ((-238) |has| |#1| (-238)) ((-273 |#1|) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) -2839 (-12 (|has| |#1| (-174)) (|has| |#1| (-923 (-1201)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-238)))) ((-733 |#1|) -2839 (-12 (|has| |#1| (-174)) (|has| |#1| (-923 (-1201)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-238)))) ((-915 $ #0=(-1201)) |has| |#1| (-923 (-1201))) ((-920 |#1| (-1201)) |has| |#1| (-923 (-1201))) ((-923 #0#) |has| |#1| (-923 (-1201))) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-2058 (((-660 (-882 |#1|)) $) NIL)) (-1867 (((-1197 $) $ (-882 |#1|)) NIL) (((-1197 |#2|) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)))) (-3290 (($ $) NIL (|has| |#2| (-569)))) (-3271 (((-112) $) NIL (|has| |#2| (-569)))) (-4050 (((-787) $) NIL) (((-787) $ (-660 (-882 |#1|))) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-3841 (($ $) NIL (|has| |#2| (-465)))) (-3029 (((-431 $) $) NIL (|has| |#2| (-465)))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#2| "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1063 (-577)))) (((-3 (-882 |#1|) "failed") $) NIL)) (-2921 ((|#2| $) NIL) (((-420 (-577)) $) NIL (|has| |#2| (-1063 (-420 (-577))))) (((-577) $) NIL (|has| |#2| (-1063 (-577)))) (((-882 |#1|) $) NIL)) (-1816 (($ $ $ (-882 |#1|)) NIL (|has| |#2| (-174)))) (-1424 (($ $ (-660 (-577))) NIL)) (-2248 (($ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL) (((-705 |#2|) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3143 (($ $) NIL (|has| |#2| (-465))) (($ $ (-882 |#1|)) NIL (|has| |#2| (-465)))) (-2234 (((-660 $) $) NIL)) (-1522 (((-112) $) NIL (|has| |#2| (-932)))) (-2137 (($ $ |#2| (-246 (-3484 |#1|) (-787)) $) NIL)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-882 |#1|) (-905 (-391))) (|has| |#2| (-905 (-391))))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-882 |#1|) (-905 (-577))) (|has| |#2| (-905 (-577)))))) (-2487 (((-112) $) NIL)) (-2548 (((-787) $) NIL)) (-2043 (($ (-1197 |#2|) (-882 |#1|)) NIL) (($ (-1197 $) (-882 |#1|)) NIL)) (-4074 (((-660 $) $) NIL)) (-2811 (((-112) $) NIL)) (-2030 (($ |#2| (-246 (-3484 |#1|) (-787))) NIL) (($ $ (-882 |#1|) (-787)) NIL) (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ (-882 |#1|)) NIL)) (-4061 (((-246 (-3484 |#1|) (-787)) $) NIL) (((-787) $ (-882 |#1|)) NIL) (((-660 (-787)) $ (-660 (-882 |#1|))) NIL)) (-2151 (($ (-1 (-246 (-3484 |#1|) (-787)) (-246 (-3484 |#1|) (-787))) $) NIL)) (-4087 (($ (-1 |#2| |#2|) $) NIL)) (-3691 (((-3 (-882 |#1|) "failed") $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL) (((-705 |#2|) (-1292 $)) NIL)) (-2209 (($ $) NIL)) (-2221 ((|#2| $) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#2| (-465))) (($ $ $) NIL (|has| |#2| (-465)))) (-2810 (((-1183) $) NIL)) (-4098 (((-3 (-660 $) "failed") $) NIL)) (-4086 (((-3 (-660 $) "failed") $) NIL)) (-4111 (((-3 (-2 (|:| |var| (-882 |#1|)) (|:| -3556 (-787))) "failed") $) NIL)) (-1474 (((-1145) $) NIL)) (-2180 (((-112) $) NIL)) (-2193 ((|#2| $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#2| (-465)))) (-3480 (($ (-660 $)) NIL (|has| |#2| (-465))) (($ $ $) NIL (|has| |#2| (-465)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-1902 (((-431 $) $) NIL (|has| |#2| (-932)))) (-3462 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)))) (-3280 (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ (-882 |#1|) |#2|) NIL) (($ $ (-660 (-882 |#1|)) (-660 |#2|)) NIL) (($ $ (-882 |#1|) $) NIL) (($ $ (-660 (-882 |#1|)) (-660 $)) NIL)) (-1827 (($ $ (-882 |#1|)) NIL (|has| |#2| (-174)))) (-2852 (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL) (($ $ (-882 |#1|) (-787)) NIL) (($ $ (-660 (-882 |#1|))) NIL) (($ $ (-882 |#1|)) NIL)) (-2887 (((-246 (-3484 |#1|) (-787)) $) NIL) (((-787) $ (-882 |#1|)) NIL) (((-660 (-787)) $ (-660 (-882 |#1|))) NIL)) (-4152 (((-911 (-391)) $) NIL (-12 (|has| (-882 |#1|) (-627 (-911 (-391)))) (|has| |#2| (-627 (-911 (-391)))))) (((-911 (-577)) $) NIL (-12 (|has| (-882 |#1|) (-627 (-911 (-577)))) (|has| |#2| (-627 (-911 (-577)))))) (((-549) $) NIL (-12 (|has| (-882 |#1|) (-627 (-549))) (|has| |#2| (-627 (-549)))))) (-4039 ((|#2| $) NIL (|has| |#2| (-465))) (($ $ (-882 |#1|)) NIL (|has| |#2| (-465)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-932))))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#2|) NIL) (($ (-882 |#1|)) NIL) (($ (-420 (-577))) NIL (-2839 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577)))))) (($ $) NIL (|has| |#2| (-569)))) (-4182 (((-660 |#2|) $) NIL)) (-2322 ((|#2| $ (-246 (-3484 |#1|) (-787))) NIL) (($ $ (-882 |#1|) (-787)) NIL) (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| |#2| (-932))) (|has| |#2| (-146))))) (-4068 (((-787)) NIL T CONST)) (-2122 (($ $ $ (-787)) NIL (|has| |#2| (-174)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL (|has| |#2| (-569)))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL) (($ $ (-882 |#1|) (-787)) NIL) (($ $ (-660 (-882 |#1|))) NIL) (($ $ (-882 |#1|)) NIL)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#2|) NIL (|has| |#2| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577))))) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-254 |#1| |#2|) (-13 (-972 |#2| (-246 (-3484 |#1|) (-787)) (-882 |#1|)) (-10 -8 (-15 -1424 ($ $ (-660 (-577)))))) (-660 (-1201)) (-1074)) (T -254)) +((-1424 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-254 *3 *4)) (-14 *3 (-660 (-1201))) (-4 *4 (-1074))))) +(-13 (-972 |#2| (-246 (-3484 |#1|) (-787)) (-882 |#1|)) (-10 -8 (-15 -1424 ($ $ (-660 (-577)))))) +((-3473 (((-112) $ $) NIL)) (-2663 (((-1297) $) 17)) (-3842 (((-185 (-256)) $) 11)) (-3830 (($ (-185 (-256))) 12)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2645 (((-256) $) 7)) (-3544 (((-880) $) 9)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 15))) +(((-255) (-13 (-1125) (-10 -8 (-15 -2645 ((-256) $)) (-15 -3842 ((-185 (-256)) $)) (-15 -3830 ($ (-185 (-256)))) (-15 -2663 ((-1297) $))))) (T -255)) +((-2645 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-255)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-185 (-256))) (-5 *1 (-255)))) (-3830 (*1 *1 *2) (-12 (-5 *2 (-185 (-256))) (-5 *1 (-255)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-255))))) +(-13 (-1125) (-10 -8 (-15 -2645 ((-256) $)) (-15 -3842 ((-185 (-256)) $)) (-15 -3830 ($ (-185 (-256)))) (-15 -2663 ((-1297) $)))) +((-3473 (((-112) $ $) NIL)) (-3293 (((-660 (-883)) $) NIL)) (-2713 (((-519) $) NIL)) (-2810 (((-1183) $) NIL)) (-1811 (((-188) $) NIL)) (-2740 (((-112) $ (-519)) NIL)) (-1474 (((-1145) $) NIL)) (-3853 (((-344) $) 7)) (-4417 (((-660 (-112)) $) NIL)) (-3544 (((-880) $) NIL) (((-189) $) 8)) (-4448 (((-112) $ $) NIL)) (-3013 (((-55) $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-256) (-13 (-187) (-626 (-189)) (-10 -8 (-15 -3853 ((-344) $))))) (T -256)) +((-3853 (*1 *2 *1) (-12 (-5 *2 (-344)) (-5 *1 (-256))))) +(-13 (-187) (-626 (-189)) (-10 -8 (-15 -3853 ((-344) $)))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2872 (((-1206) $ (-787)) 13)) (-3544 (((-880) $) 20)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 16)) (-3484 (((-787) $) 9))) +(((-257) (-13 (-1125) (-297 (-787) (-1206)) (-10 -8 (-15 -3484 ((-787) $))))) (T -257)) +((-3484 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-257))))) +(-13 (-1125) (-297 (-787) (-1206)) (-10 -8 (-15 -3484 ((-787) $)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1352 (($ (-944)) NIL (|has| |#4| (-1074)))) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4243 (($ $ $) NIL (|has| |#4| (-809)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-2229 (((-787)) NIL (|has| |#4| (-380)))) (-3709 ((|#4| $ (-577) |#4|) NIL (|has| $ (-6 -4471)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1125))) (((-3 (-577) "failed") $) NIL (-12 (|has| |#4| (-1063 (-577))) (|has| |#4| (-1125)))) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#4| (-1063 (-420 (-577)))) (|has| |#4| (-1125))))) (-2921 ((|#4| $) NIL (|has| |#4| (-1125))) (((-577) $) NIL (-12 (|has| |#4| (-1063 (-577))) (|has| |#4| (-1125)))) (((-420 (-577)) $) NIL (-12 (|has| |#4| (-1063 (-420 (-577)))) (|has| |#4| (-1125))))) (-1647 (((-2 (|:| -1881 (-705 |#4|)) (|:| |vec| (-1292 |#4|))) (-705 $) (-1292 $)) NIL (|has| |#4| (-1074))) (((-705 |#4|) (-705 $)) NIL (|has| |#4| (-1074))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| |#4| (-654 (-577))) (|has| |#4| (-1074)))) (((-705 (-577)) (-705 $)) NIL (-12 (|has| |#4| (-654 (-577))) (|has| |#4| (-1074))))) (-4187 (((-3 $ "failed") $) NIL (|has| |#4| (-1074)))) (-1910 (($) NIL (|has| |#4| (-380)))) (-2192 ((|#4| $ (-577) |#4|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#4| $ (-577)) NIL)) (-1461 (((-660 |#4|) $) NIL (|has| $ (-6 -4470)))) (-2487 (((-112) $) NIL (|has| |#4| (-1074)))) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) NIL (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| |#4| (-865)))) (-2530 (((-660 |#4|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))))) (-2416 (((-577) $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| |#4| (-865)))) (-2182 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#4| |#4|) $) NIL)) (-4038 (((-944) $) NIL (|has| |#4| (-380)))) (-1443 (((-112) $ (-787)) NIL)) (-1657 (((-2 (|:| -1881 (-705 |#4|)) (|:| |vec| (-1292 |#4|))) (-1292 $) $) NIL (|has| |#4| (-1074))) (((-705 |#4|) (-1292 $)) NIL (|has| |#4| (-1074))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| |#4| (-654 (-577))) (|has| |#4| (-1074)))) (((-705 (-577)) (-1292 $)) NIL (-12 (|has| |#4| (-654 (-577))) (|has| |#4| (-1074))))) (-2810 (((-1183) $) NIL)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-3222 (($ (-944)) NIL (|has| |#4| (-380)))) (-1474 (((-1145) $) NIL)) (-3552 ((|#4| $) NIL (|has| (-577) (-865)))) (-2397 (($ $ |#4|) NIL (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-660 |#4|) (-660 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))))) (-4306 (((-660 |#4|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#4| $ (-577) |#4|) NIL) ((|#4| $ (-577)) 12)) (-3116 ((|#4| $ $) NIL (|has| |#4| (-1074)))) (-1946 (($ (-1292 |#4|)) NIL)) (-2561 (((-135)) NIL (|has| |#4| (-375)))) (-2852 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1074))) (($ $ (-1 |#4| |#4|) (-787)) NIL (|has| |#4| (-1074))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2839 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074))))) (($ $ (-1201) (-787)) NIL (-2839 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074))))) (($ $ (-660 (-1201))) NIL (-2839 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074))))) (($ $ (-787)) NIL (-2839 (-12 (|has| |#4| (-239)) (|has| |#4| (-1074))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1074))))) (($ $) NIL (-2839 (-12 (|has| |#4| (-239)) (|has| |#4| (-1074))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1074)))))) (-1485 (((-787) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470))) (((-787) |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))))) (-1944 (($ $) NIL)) (-3544 (((-1292 |#4|) $) NIL) (($ |#4|) NIL (|has| |#4| (-1125))) (((-880) $) NIL) (($ (-577)) NIL (-2839 (-12 (|has| |#4| (-1063 (-577))) (|has| |#4| (-1125))) (|has| |#4| (-1074)))) (($ (-420 (-577))) NIL (-12 (|has| |#4| (-1063 (-420 (-577)))) (|has| |#4| (-1125))))) (-4068 (((-787)) NIL (|has| |#4| (-1074)) CONST)) (-4448 (((-112) $ $) NIL)) (-1524 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL (|has| |#4| (-1074)) CONST)) (-2132 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1074))) (($ $ (-1 |#4| |#4|) (-787)) NIL (|has| |#4| (-1074))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2839 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074))))) (($ $ (-1201) (-787)) NIL (-2839 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074))))) (($ $ (-660 (-1201))) NIL (-2839 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| |#4| (-921 (-1201))) (|has| |#4| (-1074))) (-12 (|has| |#4| (-923 (-1201))) (|has| |#4| (-1074))))) (($ $ (-787)) NIL (-2839 (-12 (|has| |#4| (-239)) (|has| |#4| (-1074))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1074))))) (($ $) NIL (-2839 (-12 (|has| |#4| (-239)) (|has| |#4| (-1074))) (-12 (|has| |#4| (-238)) (|has| |#4| (-1074)))))) (-3025 (((-112) $ $) NIL (|has| |#4| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#4| (-865)))) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#4| (-865)))) (-2990 (((-112) $ $) NIL (|has| |#4| (-865)))) (-3077 (($ $ |#4|) NIL (|has| |#4| (-375)))) (-3066 (($ $ $) NIL) (($ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-787)) NIL (|has| |#4| (-1074))) (($ $ (-944)) NIL (|has| |#4| (-1074)))) (* (($ |#2| $) 14) (($ (-577) $) NIL) (($ (-787) $) NIL) (($ (-944) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-742))) (($ |#4| $) NIL (|has| |#4| (-742))) (($ $ $) NIL (|has| |#4| (-1074)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-258 |#1| |#2| |#3| |#4|) (-13 (-244 |#1| |#4|) (-664 |#2|) (-664 |#3|)) (-944) (-1074) (-1148 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-664 |#2|)) (T -258)) +NIL +(-13 (-244 |#1| |#4|) (-664 |#2|) (-664 |#3|)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1352 (($ (-944)) NIL (|has| |#3| (-1074)))) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4243 (($ $ $) NIL (|has| |#3| (-809)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-2229 (((-787)) NIL (|has| |#3| (-380)))) (-3709 ((|#3| $ (-577) |#3|) NIL (|has| $ (-6 -4471)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1125))) (((-3 (-577) "failed") $) NIL (-12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125)))) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125))))) (-2921 ((|#3| $) NIL (|has| |#3| (-1125))) (((-577) $) NIL (-12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125)))) (((-420 (-577)) $) NIL (-12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125))))) (-1647 (((-2 (|:| -1881 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-705 $) (-1292 $)) NIL (|has| |#3| (-1074))) (((-705 |#3|) (-705 $)) NIL (|has| |#3| (-1074))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074)))) (((-705 (-577)) (-705 $)) NIL (-12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074))))) (-4187 (((-3 $ "failed") $) NIL (|has| |#3| (-1074)))) (-1910 (($) NIL (|has| |#3| (-380)))) (-2192 ((|#3| $ (-577) |#3|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#3| $ (-577)) NIL)) (-1461 (((-660 |#3|) $) NIL (|has| $ (-6 -4470)))) (-2487 (((-112) $) NIL (|has| |#3| (-1074)))) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) NIL (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| |#3| (-865)))) (-2530 (((-660 |#3|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#3| (-1125))))) (-2416 (((-577) $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| |#3| (-865)))) (-2182 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#3| |#3|) $) NIL)) (-4038 (((-944) $) NIL (|has| |#3| (-380)))) (-1443 (((-112) $ (-787)) NIL)) (-1657 (((-2 (|:| -1881 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-1292 $) $) NIL (|has| |#3| (-1074))) (((-705 |#3|) (-1292 $)) NIL (|has| |#3| (-1074))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074)))) (((-705 (-577)) (-1292 $)) NIL (-12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074))))) (-2810 (((-1183) $) NIL)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-3222 (($ (-944)) NIL (|has| |#3| (-380)))) (-1474 (((-1145) $) NIL)) (-3552 ((|#3| $) NIL (|has| (-577) (-865)))) (-2397 (($ $ |#3|) NIL (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#3|))) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) (($ $ (-660 |#3|) (-660 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#3| (-1125))))) (-4306 (((-660 |#3|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#3| $ (-577) |#3|) NIL) ((|#3| $ (-577)) 11)) (-3116 ((|#3| $ $) NIL (|has| |#3| (-1074)))) (-1946 (($ (-1292 |#3|)) NIL)) (-2561 (((-135)) NIL (|has| |#3| (-375)))) (-2852 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1074))) (($ $ (-1 |#3| |#3|) (-787)) NIL (|has| |#3| (-1074))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2839 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))))) (($ $ (-1201) (-787)) NIL (-2839 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))))) (($ $ (-660 (-1201))) NIL (-2839 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))))) (($ $ (-787)) NIL (-2839 (-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1074))))) (($ $) NIL (-2839 (-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1074)))))) (-1485 (((-787) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4470))) (((-787) |#3| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#3| (-1125))))) (-1944 (($ $) NIL)) (-3544 (((-1292 |#3|) $) NIL) (($ |#3|) NIL (|has| |#3| (-1125))) (((-880) $) NIL) (($ (-577)) NIL (-2839 (-12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125))) (|has| |#3| (-1074)))) (($ (-420 (-577))) NIL (-12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125))))) (-4068 (((-787)) NIL (|has| |#3| (-1074)) CONST)) (-4448 (((-112) $ $) NIL)) (-1524 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4470)))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL (|has| |#3| (-1074)) CONST)) (-2132 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1074))) (($ $ (-1 |#3| |#3|) (-787)) NIL (|has| |#3| (-1074))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2839 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))))) (($ $ (-1201) (-787)) NIL (-2839 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))))) (($ $ (-660 (-1201))) NIL (-2839 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| |#3| (-921 (-1201))) (|has| |#3| (-1074))) (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074))))) (($ $ (-787)) NIL (-2839 (-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1074))))) (($ $) NIL (-2839 (-12 (|has| |#3| (-239)) (|has| |#3| (-1074))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1074)))))) (-3025 (((-112) $ $) NIL (|has| |#3| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#3| (-865)))) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#3| (-865)))) (-2990 (((-112) $ $) NIL (|has| |#3| (-865)))) (-3077 (($ $ |#3|) NIL (|has| |#3| (-375)))) (-3066 (($ $ $) NIL) (($ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-787)) NIL (|has| |#3| (-1074))) (($ $ (-944)) NIL (|has| |#3| (-1074)))) (* (($ |#2| $) 13) (($ (-577) $) NIL) (($ (-787) $) NIL) (($ (-944) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-742))) (($ |#3| $) NIL (|has| |#3| (-742))) (($ $ $) NIL (|has| |#3| (-1074)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-259 |#1| |#2| |#3|) (-13 (-244 |#1| |#3|) (-664 |#2|)) (-787) (-1074) (-664 |#2|)) (T -259)) +NIL +(-13 (-244 |#1| |#3|) (-664 |#2|)) +((-3887 (((-660 (-787)) $) 56) (((-660 (-787)) $ |#3|) 59)) (-3030 (((-787) $) 58) (((-787) $ |#3|) 61)) (-3865 (($ $) 76)) (-1628 (((-3 |#2| "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL) (((-3 (-577) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3817 (((-787) $ |#3|) 43) (((-787) $) 38)) (-3039 (((-1 $ (-787)) |#3|) 15) (((-1 $ (-787)) $) 88)) (-1601 ((|#4| $) 69)) (-3876 (((-112) $) 67)) (-4280 (($ $) 75)) (-3280 (($ $ (-660 (-305 $))) 111) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-660 |#4|) (-660 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-660 |#4|) (-660 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-660 |#3|) (-660 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-660 |#3|) (-660 |#2|)) 97)) (-2852 (($ $ (-660 |#4|) (-660 (-787))) NIL) (($ $ |#4| (-787)) NIL) (($ $ (-660 |#4|)) NIL) (($ $ |#4|) NIL) (($ $ (-1 |#2| |#2|)) 32) (($ $ (-1 |#2| |#2|) (-787)) NIL) (($ $ (-1201)) NIL) (($ $ (-660 (-1201))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL) (($ $) NIL) (($ $ (-787)) NIL)) (-3899 (((-660 |#3|) $) 86)) (-2887 ((|#5| $) NIL) (((-787) $ |#4|) NIL) (((-660 (-787)) $ (-660 |#4|)) NIL) (((-787) $ |#3|) 49)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-420 (-577))) NIL) (($ $) NIL))) +(((-260 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -3544 (|#1| |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -3280 (|#1| |#1| (-660 |#3|) (-660 |#2|))) (-15 -3280 (|#1| |#1| |#3| |#2|)) (-15 -3280 (|#1| |#1| (-660 |#3|) (-660 |#1|))) (-15 -3280 (|#1| |#1| |#3| |#1|)) (-15 -3039 ((-1 |#1| (-787)) |#1|)) (-15 -3865 (|#1| |#1|)) (-15 -4280 (|#1| |#1|)) (-15 -1601 (|#4| |#1|)) (-15 -3876 ((-112) |#1|)) (-15 -3030 ((-787) |#1| |#3|)) (-15 -3887 ((-660 (-787)) |#1| |#3|)) (-15 -3030 ((-787) |#1|)) (-15 -3887 ((-660 (-787)) |#1|)) (-15 -2887 ((-787) |#1| |#3|)) (-15 -3817 ((-787) |#1|)) (-15 -3817 ((-787) |#1| |#3|)) (-15 -3899 ((-660 |#3|) |#1|)) (-15 -3039 ((-1 |#1| (-787)) |#3|)) (-15 -3544 (|#1| |#3|)) (-15 -1628 ((-3 |#3| "failed") |#1|)) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2887 ((-660 (-787)) |#1| (-660 |#4|))) (-15 -2887 ((-787) |#1| |#4|)) (-15 -3544 (|#1| |#4|)) (-15 -1628 ((-3 |#4| "failed") |#1|)) (-15 -3280 (|#1| |#1| (-660 |#4|) (-660 |#1|))) (-15 -3280 (|#1| |#1| |#4| |#1|)) (-15 -3280 (|#1| |#1| (-660 |#4|) (-660 |#2|))) (-15 -3280 (|#1| |#1| |#4| |#2|)) (-15 -3280 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3280 (|#1| |#1| |#1| |#1|)) (-15 -3280 (|#1| |#1| (-305 |#1|))) (-15 -3280 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -2887 (|#5| |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -3544 (|#1| |#2|)) (-15 -2852 (|#1| |#1| |#4|)) (-15 -2852 (|#1| |#1| (-660 |#4|))) (-15 -2852 (|#1| |#1| |#4| (-787))) (-15 -2852 (|#1| |#1| (-660 |#4|) (-660 (-787)))) (-15 -3544 (|#1| (-577))) (-15 -3544 ((-880) |#1|))) (-261 |#2| |#3| |#4| |#5|) (-1074) (-865) (-276 |#3|) (-809)) (T -260)) +NIL +(-10 -8 (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -3544 (|#1| |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -3280 (|#1| |#1| (-660 |#3|) (-660 |#2|))) (-15 -3280 (|#1| |#1| |#3| |#2|)) (-15 -3280 (|#1| |#1| (-660 |#3|) (-660 |#1|))) (-15 -3280 (|#1| |#1| |#3| |#1|)) (-15 -3039 ((-1 |#1| (-787)) |#1|)) (-15 -3865 (|#1| |#1|)) (-15 -4280 (|#1| |#1|)) (-15 -1601 (|#4| |#1|)) (-15 -3876 ((-112) |#1|)) (-15 -3030 ((-787) |#1| |#3|)) (-15 -3887 ((-660 (-787)) |#1| |#3|)) (-15 -3030 ((-787) |#1|)) (-15 -3887 ((-660 (-787)) |#1|)) (-15 -2887 ((-787) |#1| |#3|)) (-15 -3817 ((-787) |#1|)) (-15 -3817 ((-787) |#1| |#3|)) (-15 -3899 ((-660 |#3|) |#1|)) (-15 -3039 ((-1 |#1| (-787)) |#3|)) (-15 -3544 (|#1| |#3|)) (-15 -1628 ((-3 |#3| "failed") |#1|)) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2887 ((-660 (-787)) |#1| (-660 |#4|))) (-15 -2887 ((-787) |#1| |#4|)) (-15 -3544 (|#1| |#4|)) (-15 -1628 ((-3 |#4| "failed") |#1|)) (-15 -3280 (|#1| |#1| (-660 |#4|) (-660 |#1|))) (-15 -3280 (|#1| |#1| |#4| |#1|)) (-15 -3280 (|#1| |#1| (-660 |#4|) (-660 |#2|))) (-15 -3280 (|#1| |#1| |#4| |#2|)) (-15 -3280 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3280 (|#1| |#1| |#1| |#1|)) (-15 -3280 (|#1| |#1| (-305 |#1|))) (-15 -3280 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -2887 (|#5| |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -3544 (|#1| |#2|)) (-15 -2852 (|#1| |#1| |#4|)) (-15 -2852 (|#1| |#1| (-660 |#4|))) (-15 -2852 (|#1| |#1| |#4| (-787))) (-15 -2852 (|#1| |#1| (-660 |#4|) (-660 (-787)))) (-15 -3544 (|#1| (-577))) (-15 -3544 ((-880) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3887 (((-660 (-787)) $) 236) (((-660 (-787)) $ |#2|) 234)) (-3030 (((-787) $) 235) (((-787) $ |#2|) 233)) (-2058 (((-660 |#3|) $) 113)) (-1867 (((-1197 $) $ |#3|) 128) (((-1197 |#1|) $) 127)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 90 (|has| |#1| (-569)))) (-3290 (($ $) 91 (|has| |#1| (-569)))) (-3271 (((-112) $) 93 (|has| |#1| (-569)))) (-4050 (((-787) $) 115) (((-787) $ (-660 |#3|)) 114)) (-1956 (((-3 $ "failed") $ $) 20)) (-2294 (((-431 (-1197 $)) (-1197 $)) 103 (|has| |#1| (-932)))) (-3841 (($ $) 101 (|has| |#1| (-465)))) (-3029 (((-431 $) $) 100 (|has| |#1| (-465)))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 106 (|has| |#1| (-932)))) (-3865 (($ $) 229)) (-1534 (($) 18 T CONST)) (-1628 (((-3 |#1| "failed") $) 171) (((-3 (-420 (-577)) "failed") $) 168 (|has| |#1| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) 166 (|has| |#1| (-1063 (-577)))) (((-3 |#3| "failed") $) 143) (((-3 |#2| "failed") $) 243)) (-2921 ((|#1| $) 170) (((-420 (-577)) $) 169 (|has| |#1| (-1063 (-420 (-577))))) (((-577) $) 167 (|has| |#1| (-1063 (-577)))) ((|#3| $) 144) ((|#2| $) 244)) (-1816 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-2248 (($ $) 161)) (-1647 (((-705 (-577)) (-705 $)) 139 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 138 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 137) (((-705 |#1|) (-705 $)) 136)) (-4187 (((-3 $ "failed") $) 37)) (-3143 (($ $) 183 (|has| |#1| (-465))) (($ $ |#3|) 108 (|has| |#1| (-465)))) (-2234 (((-660 $) $) 112)) (-1522 (((-112) $) 99 (|has| |#1| (-932)))) (-2137 (($ $ |#1| |#4| $) 179)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 87 (-12 (|has| |#3| (-905 (-391))) (|has| |#1| (-905 (-391))))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 86 (-12 (|has| |#3| (-905 (-577))) (|has| |#1| (-905 (-577)))))) (-3817 (((-787) $ |#2|) 239) (((-787) $) 238)) (-2487 (((-112) $) 35)) (-2548 (((-787) $) 176)) (-2043 (($ (-1197 |#1|) |#3|) 120) (($ (-1197 $) |#3|) 119)) (-4074 (((-660 $) $) 129)) (-2811 (((-112) $) 159)) (-2030 (($ |#1| |#4|) 160) (($ $ |#3| (-787)) 122) (($ $ (-660 |#3|) (-660 (-787))) 121)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ |#3|) 123)) (-4061 ((|#4| $) 177) (((-787) $ |#3|) 125) (((-660 (-787)) $ (-660 |#3|)) 124)) (-2151 (($ (-1 |#4| |#4|) $) 178)) (-4087 (($ (-1 |#1| |#1|) $) 158)) (-3039 (((-1 $ (-787)) |#2|) 241) (((-1 $ (-787)) $) 228 (|has| |#1| (-239)))) (-3691 (((-3 |#3| "failed") $) 126)) (-1657 (((-705 (-577)) (-1292 $)) 141 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 140 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 135) (((-705 |#1|) (-1292 $)) 134)) (-2209 (($ $) 156)) (-2221 ((|#1| $) 155)) (-1601 ((|#3| $) 231)) (-3446 (($ (-660 $)) 97 (|has| |#1| (-465))) (($ $ $) 96 (|has| |#1| (-465)))) (-2810 (((-1183) $) 10)) (-3876 (((-112) $) 232)) (-4098 (((-3 (-660 $) "failed") $) 117)) (-4086 (((-3 (-660 $) "failed") $) 118)) (-4111 (((-3 (-2 (|:| |var| |#3|) (|:| -3556 (-787))) "failed") $) 116)) (-4280 (($ $) 230)) (-1474 (((-1145) $) 11)) (-2180 (((-112) $) 173)) (-2193 ((|#1| $) 174)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 98 (|has| |#1| (-465)))) (-3480 (($ (-660 $)) 95 (|has| |#1| (-465))) (($ $ $) 94 (|has| |#1| (-465)))) (-2269 (((-431 (-1197 $)) (-1197 $)) 105 (|has| |#1| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) 104 (|has| |#1| (-932)))) (-1902 (((-431 $) $) 102 (|has| |#1| (-932)))) (-3462 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-569))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-569)))) (-3280 (($ $ (-660 (-305 $))) 152) (($ $ (-305 $)) 151) (($ $ $ $) 150) (($ $ (-660 $) (-660 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-660 |#3|) (-660 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-660 |#3|) (-660 $)) 145) (($ $ |#2| $) 227 (|has| |#1| (-239))) (($ $ (-660 |#2|) (-660 $)) 226 (|has| |#1| (-239))) (($ $ |#2| |#1|) 225 (|has| |#1| (-239))) (($ $ (-660 |#2|) (-660 |#1|)) 224 (|has| |#1| (-239)))) (-1827 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2852 (($ $ (-660 |#3|) (-660 (-787))) 44) (($ $ |#3| (-787)) 43) (($ $ (-660 |#3|)) 42) (($ $ |#3|) 40) (($ $ (-1 |#1| |#1|)) 248) (($ $ (-1 |#1| |#1|) (-787)) 247) (($ $) 223 (|has| |#1| (-238))) (($ $ (-787)) 221 (|has| |#1| (-238))) (($ $ (-1201)) 219 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) 217 (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) 216 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) 215 (|has| |#1| (-923 (-1201))))) (-3899 (((-660 |#2|) $) 240)) (-2887 ((|#4| $) 157) (((-787) $ |#3|) 133) (((-660 (-787)) $ (-660 |#3|)) 132) (((-787) $ |#2|) 237)) (-4152 (((-911 (-391)) $) 85 (-12 (|has| |#3| (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391)))))) (((-911 (-577)) $) 84 (-12 (|has| |#3| (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577)))))) (((-549) $) 83 (-12 (|has| |#3| (-627 (-549))) (|has| |#1| (-627 (-549)))))) (-4039 ((|#1| $) 182 (|has| |#1| (-465))) (($ $ |#3|) 109 (|has| |#1| (-465)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) 107 (-2761 (|has| $ (-146)) (|has| |#1| (-932))))) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ |#2|) 242) (($ (-420 (-577))) 81 (-2839 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))))) (($ $) 88 (|has| |#1| (-569)))) (-4182 (((-660 |#1|) $) 175)) (-2322 ((|#1| $ |#4|) 162) (($ $ |#3| (-787)) 131) (($ $ (-660 |#3|) (-660 (-787))) 130)) (-2233 (((-3 $ "failed") $) 82 (-2839 (-2761 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))))) (-4068 (((-787)) 32 T CONST)) (-2122 (($ $ $ (-787)) 180 (|has| |#1| (-174)))) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 92 (|has| |#1| (-569)))) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-660 |#3|) (-660 (-787))) 47) (($ $ |#3| (-787)) 46) (($ $ (-660 |#3|)) 45) (($ $ |#3|) 41) (($ $ (-1 |#1| |#1|)) 246) (($ $ (-1 |#1| |#1|) (-787)) 245) (($ $) 222 (|has| |#1| (-238))) (($ $ (-787)) 220 (|has| |#1| (-238))) (($ $ (-1201)) 218 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) 214 (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) 213 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) 212 (|has| |#1| (-923 (-1201))))) (-2970 (((-112) $ $) 8)) (-3077 (($ $ |#1|) 163 (|has| |#1| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ (-420 (-577))) 165 (|has| |#1| (-38 (-420 (-577))))) (($ (-420 (-577)) $) 164 (|has| |#1| (-38 (-420 (-577))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +(((-261 |#1| |#2| |#3| |#4|) (-141) (-1074) (-865) (-276 |t#2|) (-809)) (T -261)) +((-3039 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-4 *3 (-865)) (-4 *5 (-276 *3)) (-4 *6 (-809)) (-5 *2 (-1 *1 (-787))) (-4 *1 (-261 *4 *3 *5 *6)))) (-3899 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-660 *4)))) (-3817 (*1 *2 *1 *3) (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1074)) (-4 *3 (-865)) (-4 *5 (-276 *3)) (-4 *6 (-809)) (-5 *2 (-787)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-787)))) (-2887 (*1 *2 *1 *3) (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1074)) (-4 *3 (-865)) (-4 *5 (-276 *3)) (-4 *6 (-809)) (-5 *2 (-787)))) (-3887 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-660 (-787))))) (-3030 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-787)))) (-3887 (*1 *2 *1 *3) (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1074)) (-4 *3 (-865)) (-4 *5 (-276 *3)) (-4 *6 (-809)) (-5 *2 (-660 (-787))))) (-3030 (*1 *2 *1 *3) (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1074)) (-4 *3 (-865)) (-4 *5 (-276 *3)) (-4 *6 (-809)) (-5 *2 (-787)))) (-3876 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-112)))) (-1601 (*1 *2 *1) (-12 (-4 *1 (-261 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-865)) (-4 *5 (-809)) (-4 *2 (-276 *4)))) (-4280 (*1 *1 *1) (-12 (-4 *1 (-261 *2 *3 *4 *5)) (-4 *2 (-1074)) (-4 *3 (-865)) (-4 *4 (-276 *3)) (-4 *5 (-809)))) (-3865 (*1 *1 *1) (-12 (-4 *1 (-261 *2 *3 *4 *5)) (-4 *2 (-1074)) (-4 *3 (-865)) (-4 *4 (-276 *3)) (-4 *5 (-809)))) (-3039 (*1 *2 *1) (-12 (-4 *3 (-239)) (-4 *3 (-1074)) (-4 *4 (-865)) (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-1 *1 (-787))) (-4 *1 (-261 *3 *4 *5 *6))))) +(-13 (-972 |t#1| |t#4| |t#3|) (-233 |t#1|) (-1063 |t#2|) (-10 -8 (-15 -3039 ((-1 $ (-787)) |t#2|)) (-15 -3899 ((-660 |t#2|) $)) (-15 -3817 ((-787) $ |t#2|)) (-15 -3817 ((-787) $)) (-15 -2887 ((-787) $ |t#2|)) (-15 -3887 ((-660 (-787)) $)) (-15 -3030 ((-787) $)) (-15 -3887 ((-660 (-787)) $ |t#2|)) (-15 -3030 ((-787) $ |t#2|)) (-15 -3876 ((-112) $)) (-15 -1601 (|t#3| $)) (-15 -4280 ($ $)) (-15 -3865 ($ $)) (IF (|has| |t#1| (-239)) (PROGN (-6 (-527 |t#2| |t#1|)) (-6 (-527 |t#2| $)) (-6 (-320 $)) (-15 -3039 ((-1 $ (-787)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) -2839 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-629 |#2|) . T) ((-629 |#3|) . T) ((-629 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-626 (-880)) . T) ((-174) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-627 (-549)) -12 (|has| |#1| (-627 (-549))) (|has| |#3| (-627 (-549)))) ((-627 (-911 (-391))) -12 (|has| |#1| (-627 (-911 (-391)))) (|has| |#3| (-627 (-911 (-391))))) ((-627 (-911 (-577))) -12 (|has| |#1| (-627 (-911 (-577)))) (|has| |#3| (-627 (-911 (-577))))) ((-235 $) -2839 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) -2839 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-301) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-320 $) . T) ((-337 |#1| |#4|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2839 (|has| |#1| (-932)) (|has| |#1| (-465))) ((-527 |#2| |#1|) |has| |#1| (-239)) ((-527 |#2| $) |has| |#1| (-239)) ((-527 |#3| |#1|) . T) ((-527 |#3| $) . T) ((-527 $ $) . T) ((-569) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-662 #0#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) |has| |#1| (-38 (-420 (-577)))) ((-664 #1=(-577)) |has| |#1| (-654 (-577))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-654 #1#) |has| |#1| (-654 (-577))) ((-654 |#1|) . T) ((-733 #0#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-742) . T) ((-915 $ #2=(-1201)) -2839 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-915 $ |#3|) . T) ((-921 (-1201)) |has| |#1| (-921 (-1201))) ((-921 |#3|) . T) ((-923 #2#) -2839 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-923 |#3|) . T) ((-905 (-391)) -12 (|has| |#1| (-905 (-391))) (|has| |#3| (-905 (-391)))) ((-905 (-577)) -12 (|has| |#1| (-905 (-577))) (|has| |#3| (-905 (-577)))) ((-972 |#1| |#4| |#3|) . T) ((-932) |has| |#1| (-932)) ((-1063 (-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1063 |#2|) . T) ((-1063 |#3|) . T) ((-1076 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) |has| |#1| (-932))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3971 ((|#1| $) 55)) (-1436 ((|#1| $) 45)) (-3828 (((-112) $ (-787)) 8)) (-1534 (($) 7 T CONST)) (-2289 (($ $) 61)) (-3645 (($ $) 49)) (-2367 ((|#1| |#1| $) 47)) (-2357 ((|#1| $) 46)) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) 9)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-3402 (((-787) $) 62)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-4330 ((|#1| $) 40)) (-3946 ((|#1| |#1| $) 53)) (-3934 ((|#1| |#1| $) 52)) (-2881 (($ |#1| $) 41)) (-2440 (((-787) $) 56)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-2276 ((|#1| $) 63)) (-3922 ((|#1| $) 51)) (-3911 ((|#1| $) 50)) (-3530 ((|#1| $) 42)) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-2311 ((|#1| |#1| $) 59)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2300 ((|#1| $) 60)) (-3982 (($) 58) (($ (-660 |#1|)) 57)) (-1965 (((-787) $) 44)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-3959 ((|#1| $) 54)) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3541 (($ (-660 |#1|)) 43)) (-2265 ((|#1| $) 64)) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-262 |#1|) (-141) (-1242)) (T -262)) +((-3982 (*1 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242)))) (-3982 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-4 *1 (-262 *3)))) (-2440 (*1 *2 *1) (-12 (-4 *1 (-262 *3)) (-4 *3 (-1242)) (-5 *2 (-787)))) (-3971 (*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242)))) (-3959 (*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242)))) (-3946 (*1 *2 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242)))) (-3934 (*1 *2 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242)))) (-3911 (*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242)))) (-3645 (*1 *1 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242))))) +(-13 (-1146 |t#1|) (-1020 |t#1|) (-10 -8 (-15 -3982 ($)) (-15 -3982 ($ (-660 |t#1|))) (-15 -2440 ((-787) $)) (-15 -3971 (|t#1| $)) (-15 -3959 (|t#1| $)) (-15 -3946 (|t#1| |t#1| $)) (-15 -3934 (|t#1| |t#1| $)) (-15 -3922 (|t#1| $)) (-15 -3911 (|t#1| $)) (-15 -3645 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1020 |#1|) . T) ((-1125) |has| |#1| (-1125)) ((-1146 |#1|) . T) ((-1242) . T)) +((-3993 (((-1 (-966 (-228)) (-228) (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228) (-228))) 153)) (-1766 (((-1158 (-228)) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391))) 173) (((-1158 (-228)) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)) (-660 (-271))) 171) (((-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391))) 176) (((-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271))) 172) (((-1158 (-228)) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391))) 164) (((-1158 (-228)) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271))) 163) (((-1158 (-228)) (-1 (-966 (-228)) (-228)) (-1119 (-391))) 145) (((-1158 (-228)) (-1 (-966 (-228)) (-228)) (-1119 (-391)) (-660 (-271))) 143) (((-1158 (-228)) (-898 (-1 (-228) (-228))) (-1119 (-391))) 144) (((-1158 (-228)) (-898 (-1 (-228) (-228))) (-1119 (-391)) (-660 (-271))) 141)) (-1725 (((-1294) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391))) 175) (((-1294) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)) (-660 (-271))) 174) (((-1294) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391))) 178) (((-1294) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271))) 177) (((-1294) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391))) 166) (((-1294) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271))) 165) (((-1294) (-1 (-966 (-228)) (-228)) (-1119 (-391))) 151) (((-1294) (-1 (-966 (-228)) (-228)) (-1119 (-391)) (-660 (-271))) 150) (((-1294) (-898 (-1 (-228) (-228))) (-1119 (-391))) 149) (((-1294) (-898 (-1 (-228) (-228))) (-1119 (-391)) (-660 (-271))) 148) (((-1293) (-896 (-1 (-228) (-228))) (-1119 (-391))) 113) (((-1293) (-896 (-1 (-228) (-228))) (-1119 (-391)) (-660 (-271))) 112) (((-1293) (-1 (-228) (-228)) (-1119 (-391))) 107) (((-1293) (-1 (-228) (-228)) (-1119 (-391)) (-660 (-271))) 105))) +(((-263) (-10 -7 (-15 -1725 ((-1293) (-1 (-228) (-228)) (-1119 (-391)) (-660 (-271)))) (-15 -1725 ((-1293) (-1 (-228) (-228)) (-1119 (-391)))) (-15 -1725 ((-1293) (-896 (-1 (-228) (-228))) (-1119 (-391)) (-660 (-271)))) (-15 -1725 ((-1293) (-896 (-1 (-228) (-228))) (-1119 (-391)))) (-15 -1725 ((-1294) (-898 (-1 (-228) (-228))) (-1119 (-391)) (-660 (-271)))) (-15 -1725 ((-1294) (-898 (-1 (-228) (-228))) (-1119 (-391)))) (-15 -1725 ((-1294) (-1 (-966 (-228)) (-228)) (-1119 (-391)) (-660 (-271)))) (-15 -1725 ((-1294) (-1 (-966 (-228)) (-228)) (-1119 (-391)))) (-15 -1766 ((-1158 (-228)) (-898 (-1 (-228) (-228))) (-1119 (-391)) (-660 (-271)))) (-15 -1766 ((-1158 (-228)) (-898 (-1 (-228) (-228))) (-1119 (-391)))) (-15 -1766 ((-1158 (-228)) (-1 (-966 (-228)) (-228)) (-1119 (-391)) (-660 (-271)))) (-15 -1766 ((-1158 (-228)) (-1 (-966 (-228)) (-228)) (-1119 (-391)))) (-15 -1725 ((-1294) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -1725 ((-1294) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)))) (-15 -1766 ((-1158 (-228)) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -1766 ((-1158 (-228)) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)))) (-15 -1725 ((-1294) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -1725 ((-1294) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)))) (-15 -1766 ((-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -1766 ((-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)))) (-15 -1725 ((-1294) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -1725 ((-1294) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)))) (-15 -1766 ((-1158 (-228)) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -1766 ((-1158 (-228)) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)))) (-15 -3993 ((-1 (-966 (-228)) (-228) (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228) (-228)))))) (T -263)) +((-3993 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-966 (-228)) (-228) (-228))) (-5 *3 (-1 (-228) (-228) (-228) (-228))) (-5 *1 (-263)))) (-1766 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-901 (-1 (-228) (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-1766 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-901 (-1 (-228) (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-1725 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-901 (-1 (-228) (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-1725 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-901 (-1 (-228) (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-1766 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-1766 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-1725 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-1725 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-1766 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-1766 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-1725 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-1725 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-1766 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-966 (-228)) (-228))) (-5 *4 (-1119 (-391))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-1766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-966 (-228)) (-228))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-1766 (*1 *2 *3 *4) (-12 (-5 *3 (-898 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-1766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-898 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) (-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-966 (-228)) (-228))) (-5 *4 (-1119 (-391))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-1725 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-966 (-228)) (-228))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-898 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-1725 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-898 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) (-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-896 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *2 (-1293)) (-5 *1 (-263)))) (-1725 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-896 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1293)) (-5 *1 (-263)))) (-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *2 (-1293)) (-5 *1 (-263)))) (-1725 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-228) (-228))) (-5 *4 (-1119 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1293)) (-5 *1 (-263))))) +(-10 -7 (-15 -1725 ((-1293) (-1 (-228) (-228)) (-1119 (-391)) (-660 (-271)))) (-15 -1725 ((-1293) (-1 (-228) (-228)) (-1119 (-391)))) (-15 -1725 ((-1293) (-896 (-1 (-228) (-228))) (-1119 (-391)) (-660 (-271)))) (-15 -1725 ((-1293) (-896 (-1 (-228) (-228))) (-1119 (-391)))) (-15 -1725 ((-1294) (-898 (-1 (-228) (-228))) (-1119 (-391)) (-660 (-271)))) (-15 -1725 ((-1294) (-898 (-1 (-228) (-228))) (-1119 (-391)))) (-15 -1725 ((-1294) (-1 (-966 (-228)) (-228)) (-1119 (-391)) (-660 (-271)))) (-15 -1725 ((-1294) (-1 (-966 (-228)) (-228)) (-1119 (-391)))) (-15 -1766 ((-1158 (-228)) (-898 (-1 (-228) (-228))) (-1119 (-391)) (-660 (-271)))) (-15 -1766 ((-1158 (-228)) (-898 (-1 (-228) (-228))) (-1119 (-391)))) (-15 -1766 ((-1158 (-228)) (-1 (-966 (-228)) (-228)) (-1119 (-391)) (-660 (-271)))) (-15 -1766 ((-1158 (-228)) (-1 (-966 (-228)) (-228)) (-1119 (-391)))) (-15 -1725 ((-1294) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -1725 ((-1294) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)))) (-15 -1766 ((-1158 (-228)) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -1766 ((-1158 (-228)) (-1 (-228) (-228) (-228)) (-1119 (-391)) (-1119 (-391)))) (-15 -1725 ((-1294) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -1725 ((-1294) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)))) (-15 -1766 ((-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -1766 ((-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-391)) (-1119 (-391)))) (-15 -1725 ((-1294) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -1725 ((-1294) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)))) (-15 -1766 ((-1158 (-228)) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)) (-660 (-271)))) (-15 -1766 ((-1158 (-228)) (-901 (-1 (-228) (-228) (-228))) (-1119 (-391)) (-1119 (-391)))) (-15 -3993 ((-1 (-966 (-228)) (-228) (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228) (-228))))) +((-1725 (((-1293) (-305 |#2|) (-1201) (-1201) (-660 (-271))) 101))) +(((-264 |#1| |#2|) (-10 -7 (-15 -1725 ((-1293) (-305 |#2|) (-1201) (-1201) (-660 (-271))))) (-13 (-569) (-865) (-1063 (-577))) (-443 |#1|)) (T -264)) +((-1725 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-1201)) (-5 *5 (-660 (-271))) (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-865) (-1063 (-577)))) (-5 *2 (-1293)) (-5 *1 (-264 *6 *7))))) +(-10 -7 (-15 -1725 ((-1293) (-305 |#2|) (-1201) (-1201) (-660 (-271))))) +((-4027 (((-577) (-577)) 71)) (-4037 (((-577) (-577)) 72)) (-4048 (((-228) (-228)) 73)) (-4017 (((-1294) (-1 (-171 (-228)) (-171 (-228))) (-1119 (-228)) (-1119 (-228))) 70)) (-4005 (((-1294) (-1 (-171 (-228)) (-171 (-228))) (-1119 (-228)) (-1119 (-228)) (-112)) 68))) +(((-265) (-10 -7 (-15 -4005 ((-1294) (-1 (-171 (-228)) (-171 (-228))) (-1119 (-228)) (-1119 (-228)) (-112))) (-15 -4017 ((-1294) (-1 (-171 (-228)) (-171 (-228))) (-1119 (-228)) (-1119 (-228)))) (-15 -4027 ((-577) (-577))) (-15 -4037 ((-577) (-577))) (-15 -4048 ((-228) (-228))))) (T -265)) +((-4048 (*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-265)))) (-4037 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-265)))) (-4027 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-265)))) (-4017 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-228)) (-171 (-228)))) (-5 *4 (-1119 (-228))) (-5 *2 (-1294)) (-5 *1 (-265)))) (-4005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-228)) (-171 (-228)))) (-5 *4 (-1119 (-228))) (-5 *5 (-112)) (-5 *2 (-1294)) (-5 *1 (-265))))) +(-10 -7 (-15 -4005 ((-1294) (-1 (-171 (-228)) (-171 (-228))) (-1119 (-228)) (-1119 (-228)) (-112))) (-15 -4017 ((-1294) (-1 (-171 (-228)) (-171 (-228))) (-1119 (-228)) (-1119 (-228)))) (-15 -4027 ((-577) (-577))) (-15 -4037 ((-577) (-577))) (-15 -4048 ((-228) (-228)))) +((-3544 (((-1117 (-391)) (-1117 (-327 |#1|))) 16))) +(((-266 |#1|) (-10 -7 (-15 -3544 ((-1117 (-391)) (-1117 (-327 |#1|))))) (-13 (-865) (-569) (-627 (-391)))) (T -266)) +((-3544 (*1 *2 *3) (-12 (-5 *3 (-1117 (-327 *4))) (-4 *4 (-13 (-865) (-569) (-627 (-391)))) (-5 *2 (-1117 (-391))) (-5 *1 (-266 *4))))) +(-10 -7 (-15 -3544 ((-1117 (-391)) (-1117 (-327 |#1|))))) +((-1766 (((-1158 (-228)) (-901 |#1|) (-1117 (-391)) (-1117 (-391))) 75) (((-1158 (-228)) (-901 |#1|) (-1117 (-391)) (-1117 (-391)) (-660 (-271))) 74) (((-1158 (-228)) |#1| (-1117 (-391)) (-1117 (-391))) 65) (((-1158 (-228)) |#1| (-1117 (-391)) (-1117 (-391)) (-660 (-271))) 64) (((-1158 (-228)) (-898 |#1|) (-1117 (-391))) 56) (((-1158 (-228)) (-898 |#1|) (-1117 (-391)) (-660 (-271))) 55)) (-1725 (((-1294) (-901 |#1|) (-1117 (-391)) (-1117 (-391))) 78) (((-1294) (-901 |#1|) (-1117 (-391)) (-1117 (-391)) (-660 (-271))) 77) (((-1294) |#1| (-1117 (-391)) (-1117 (-391))) 68) (((-1294) |#1| (-1117 (-391)) (-1117 (-391)) (-660 (-271))) 67) (((-1294) (-898 |#1|) (-1117 (-391))) 60) (((-1294) (-898 |#1|) (-1117 (-391)) (-660 (-271))) 59) (((-1293) (-896 |#1|) (-1117 (-391))) 47) (((-1293) (-896 |#1|) (-1117 (-391)) (-660 (-271))) 46) (((-1293) |#1| (-1117 (-391))) 38) (((-1293) |#1| (-1117 (-391)) (-660 (-271))) 36))) +(((-267 |#1|) (-10 -7 (-15 -1725 ((-1293) |#1| (-1117 (-391)) (-660 (-271)))) (-15 -1725 ((-1293) |#1| (-1117 (-391)))) (-15 -1725 ((-1293) (-896 |#1|) (-1117 (-391)) (-660 (-271)))) (-15 -1725 ((-1293) (-896 |#1|) (-1117 (-391)))) (-15 -1725 ((-1294) (-898 |#1|) (-1117 (-391)) (-660 (-271)))) (-15 -1725 ((-1294) (-898 |#1|) (-1117 (-391)))) (-15 -1766 ((-1158 (-228)) (-898 |#1|) (-1117 (-391)) (-660 (-271)))) (-15 -1766 ((-1158 (-228)) (-898 |#1|) (-1117 (-391)))) (-15 -1725 ((-1294) |#1| (-1117 (-391)) (-1117 (-391)) (-660 (-271)))) (-15 -1725 ((-1294) |#1| (-1117 (-391)) (-1117 (-391)))) (-15 -1766 ((-1158 (-228)) |#1| (-1117 (-391)) (-1117 (-391)) (-660 (-271)))) (-15 -1766 ((-1158 (-228)) |#1| (-1117 (-391)) (-1117 (-391)))) (-15 -1725 ((-1294) (-901 |#1|) (-1117 (-391)) (-1117 (-391)) (-660 (-271)))) (-15 -1725 ((-1294) (-901 |#1|) (-1117 (-391)) (-1117 (-391)))) (-15 -1766 ((-1158 (-228)) (-901 |#1|) (-1117 (-391)) (-1117 (-391)) (-660 (-271)))) (-15 -1766 ((-1158 (-228)) (-901 |#1|) (-1117 (-391)) (-1117 (-391))))) (-13 (-627 (-549)) (-1125))) (T -267)) +((-1766 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-901 *5)) (-5 *4 (-1117 (-391))) (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1158 (-228))) (-5 *1 (-267 *5)))) (-1766 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-901 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1158 (-228))) (-5 *1 (-267 *6)))) (-1725 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-901 *5)) (-5 *4 (-1117 (-391))) (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1294)) (-5 *1 (-267 *5)))) (-1725 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-901 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1294)) (-5 *1 (-267 *6)))) (-1766 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1117 (-391))) (-5 *2 (-1158 (-228))) (-5 *1 (-267 *3)) (-4 *3 (-13 (-627 (-549)) (-1125))))) (-1766 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-267 *3)) (-4 *3 (-13 (-627 (-549)) (-1125))))) (-1725 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1117 (-391))) (-5 *2 (-1294)) (-5 *1 (-267 *3)) (-4 *3 (-13 (-627 (-549)) (-1125))))) (-1725 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-267 *3)) (-4 *3 (-13 (-627 (-549)) (-1125))))) (-1766 (*1 *2 *3 *4) (-12 (-5 *3 (-898 *5)) (-5 *4 (-1117 (-391))) (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1158 (-228))) (-5 *1 (-267 *5)))) (-1766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-898 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1158 (-228))) (-5 *1 (-267 *6)))) (-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-898 *5)) (-5 *4 (-1117 (-391))) (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1294)) (-5 *1 (-267 *5)))) (-1725 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-898 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1294)) (-5 *1 (-267 *6)))) (-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-896 *5)) (-5 *4 (-1117 (-391))) (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1293)) (-5 *1 (-267 *5)))) (-1725 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-896 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1293)) (-5 *1 (-267 *6)))) (-1725 (*1 *2 *3 *4) (-12 (-5 *4 (-1117 (-391))) (-5 *2 (-1293)) (-5 *1 (-267 *3)) (-4 *3 (-13 (-627 (-549)) (-1125))))) (-1725 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1293)) (-5 *1 (-267 *3)) (-4 *3 (-13 (-627 (-549)) (-1125)))))) +(-10 -7 (-15 -1725 ((-1293) |#1| (-1117 (-391)) (-660 (-271)))) (-15 -1725 ((-1293) |#1| (-1117 (-391)))) (-15 -1725 ((-1293) (-896 |#1|) (-1117 (-391)) (-660 (-271)))) (-15 -1725 ((-1293) (-896 |#1|) (-1117 (-391)))) (-15 -1725 ((-1294) (-898 |#1|) (-1117 (-391)) (-660 (-271)))) (-15 -1725 ((-1294) (-898 |#1|) (-1117 (-391)))) (-15 -1766 ((-1158 (-228)) (-898 |#1|) (-1117 (-391)) (-660 (-271)))) (-15 -1766 ((-1158 (-228)) (-898 |#1|) (-1117 (-391)))) (-15 -1725 ((-1294) |#1| (-1117 (-391)) (-1117 (-391)) (-660 (-271)))) (-15 -1725 ((-1294) |#1| (-1117 (-391)) (-1117 (-391)))) (-15 -1766 ((-1158 (-228)) |#1| (-1117 (-391)) (-1117 (-391)) (-660 (-271)))) (-15 -1766 ((-1158 (-228)) |#1| (-1117 (-391)) (-1117 (-391)))) (-15 -1725 ((-1294) (-901 |#1|) (-1117 (-391)) (-1117 (-391)) (-660 (-271)))) (-15 -1725 ((-1294) (-901 |#1|) (-1117 (-391)) (-1117 (-391)))) (-15 -1766 ((-1158 (-228)) (-901 |#1|) (-1117 (-391)) (-1117 (-391)) (-660 (-271)))) (-15 -1766 ((-1158 (-228)) (-901 |#1|) (-1117 (-391)) (-1117 (-391))))) +((-1725 (((-1294) (-660 (-228)) (-660 (-228)) (-660 (-228)) (-660 (-271))) 23) (((-1294) (-660 (-228)) (-660 (-228)) (-660 (-228))) 24) (((-1293) (-660 (-966 (-228))) (-660 (-271))) 16) (((-1293) (-660 (-966 (-228)))) 17) (((-1293) (-660 (-228)) (-660 (-228)) (-660 (-271))) 20) (((-1293) (-660 (-228)) (-660 (-228))) 21))) +(((-268) (-10 -7 (-15 -1725 ((-1293) (-660 (-228)) (-660 (-228)))) (-15 -1725 ((-1293) (-660 (-228)) (-660 (-228)) (-660 (-271)))) (-15 -1725 ((-1293) (-660 (-966 (-228))))) (-15 -1725 ((-1293) (-660 (-966 (-228))) (-660 (-271)))) (-15 -1725 ((-1294) (-660 (-228)) (-660 (-228)) (-660 (-228)))) (-15 -1725 ((-1294) (-660 (-228)) (-660 (-228)) (-660 (-228)) (-660 (-271)))))) (T -268)) +((-1725 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-660 (-228))) (-5 *4 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-268)))) (-1725 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-660 (-228))) (-5 *2 (-1294)) (-5 *1 (-268)))) (-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-966 (-228)))) (-5 *4 (-660 (-271))) (-5 *2 (-1293)) (-5 *1 (-268)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-660 (-966 (-228)))) (-5 *2 (-1293)) (-5 *1 (-268)))) (-1725 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-660 (-228))) (-5 *4 (-660 (-271))) (-5 *2 (-1293)) (-5 *1 (-268)))) (-1725 (*1 *2 *3 *3) (-12 (-5 *3 (-660 (-228))) (-5 *2 (-1293)) (-5 *1 (-268))))) +(-10 -7 (-15 -1725 ((-1293) (-660 (-228)) (-660 (-228)))) (-15 -1725 ((-1293) (-660 (-228)) (-660 (-228)) (-660 (-271)))) (-15 -1725 ((-1293) (-660 (-966 (-228))))) (-15 -1725 ((-1293) (-660 (-966 (-228))) (-660 (-271)))) (-15 -1725 ((-1294) (-660 (-228)) (-660 (-228)) (-660 (-228)))) (-15 -1725 ((-1294) (-660 (-228)) (-660 (-228)) (-660 (-228)) (-660 (-271))))) +((-3440 (((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) (-660 (-271)) (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) 25)) (-2985 (((-944) (-660 (-271)) (-944)) 52)) (-2975 (((-944) (-660 (-271)) (-944)) 51)) (-2442 (((-660 (-391)) (-660 (-271)) (-660 (-391))) 68)) (-3019 (((-391) (-660 (-271)) (-391)) 57)) (-3005 (((-944) (-660 (-271)) (-944)) 53)) (-2946 (((-112) (-660 (-271)) (-112)) 27)) (-1365 (((-1183) (-660 (-271)) (-1183)) 19)) (-2935 (((-1183) (-660 (-271)) (-1183)) 26)) (-2995 (((-1158 (-228)) (-660 (-271))) 46)) (-4442 (((-660 (-1119 (-391))) (-660 (-271)) (-660 (-1119 (-391)))) 40)) (-2956 (((-892) (-660 (-271)) (-892)) 32)) (-2965 (((-892) (-660 (-271)) (-892)) 33)) (-1509 (((-1 (-966 (-228)) (-966 (-228))) (-660 (-271)) (-1 (-966 (-228)) (-966 (-228)))) 63)) (-4136 (((-112) (-660 (-271)) (-112)) 14)) (-4387 (((-112) (-660 (-271)) (-112)) 13))) +(((-269) (-10 -7 (-15 -4387 ((-112) (-660 (-271)) (-112))) (-15 -4136 ((-112) (-660 (-271)) (-112))) (-15 -3440 ((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) (-660 (-271)) (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -1365 ((-1183) (-660 (-271)) (-1183))) (-15 -2935 ((-1183) (-660 (-271)) (-1183))) (-15 -2946 ((-112) (-660 (-271)) (-112))) (-15 -2956 ((-892) (-660 (-271)) (-892))) (-15 -2965 ((-892) (-660 (-271)) (-892))) (-15 -4442 ((-660 (-1119 (-391))) (-660 (-271)) (-660 (-1119 (-391))))) (-15 -2975 ((-944) (-660 (-271)) (-944))) (-15 -2985 ((-944) (-660 (-271)) (-944))) (-15 -2995 ((-1158 (-228)) (-660 (-271)))) (-15 -3005 ((-944) (-660 (-271)) (-944))) (-15 -3019 ((-391) (-660 (-271)) (-391))) (-15 -1509 ((-1 (-966 (-228)) (-966 (-228))) (-660 (-271)) (-1 (-966 (-228)) (-966 (-228))))) (-15 -2442 ((-660 (-391)) (-660 (-271)) (-660 (-391)))))) (T -269)) +((-2442 (*1 *2 *3 *2) (-12 (-5 *2 (-660 (-391))) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-1509 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-966 (-228)) (-966 (-228)))) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-3019 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-3005 (*1 *2 *3 *2) (-12 (-5 *2 (-944)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-269)))) (-2985 (*1 *2 *3 *2) (-12 (-5 *2 (-944)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-2975 (*1 *2 *3 *2) (-12 (-5 *2 (-944)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-4442 (*1 *2 *3 *2) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-2965 (*1 *2 *3 *2) (-12 (-5 *2 (-892)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-2956 (*1 *2 *3 *2) (-12 (-5 *2 (-892)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-2946 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-2935 (*1 *2 *3 *2) (-12 (-5 *2 (-1183)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-1365 (*1 *2 *3 *2) (-12 (-5 *2 (-1183)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-3440 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-4136 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) (-4387 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-660 (-271))) (-5 *1 (-269))))) +(-10 -7 (-15 -4387 ((-112) (-660 (-271)) (-112))) (-15 -4136 ((-112) (-660 (-271)) (-112))) (-15 -3440 ((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) (-660 (-271)) (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -1365 ((-1183) (-660 (-271)) (-1183))) (-15 -2935 ((-1183) (-660 (-271)) (-1183))) (-15 -2946 ((-112) (-660 (-271)) (-112))) (-15 -2956 ((-892) (-660 (-271)) (-892))) (-15 -2965 ((-892) (-660 (-271)) (-892))) (-15 -4442 ((-660 (-1119 (-391))) (-660 (-271)) (-660 (-1119 (-391))))) (-15 -2975 ((-944) (-660 (-271)) (-944))) (-15 -2985 ((-944) (-660 (-271)) (-944))) (-15 -2995 ((-1158 (-228)) (-660 (-271)))) (-15 -3005 ((-944) (-660 (-271)) (-944))) (-15 -3019 ((-391) (-660 (-271)) (-391))) (-15 -1509 ((-1 (-966 (-228)) (-966 (-228))) (-660 (-271)) (-1 (-966 (-228)) (-966 (-228))))) (-15 -2442 ((-660 (-391)) (-660 (-271)) (-660 (-391))))) +((-2661 (((-3 |#1| "failed") (-660 (-271)) (-1201)) 17))) +(((-270 |#1|) (-10 -7 (-15 -2661 ((-3 |#1| "failed") (-660 (-271)) (-1201)))) (-1242)) (T -270)) +((-2661 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-660 (-271))) (-5 *4 (-1201)) (-5 *1 (-270 *2)) (-4 *2 (-1242))))) +(-10 -7 (-15 -2661 ((-3 |#1| "failed") (-660 (-271)) (-1201)))) +((-3473 (((-112) $ $) NIL)) (-3440 (($ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) 24)) (-2985 (($ (-944)) 81)) (-2975 (($ (-944)) 80)) (-3294 (($ (-660 (-391))) 87)) (-3019 (($ (-391)) 66)) (-3005 (($ (-944)) 82)) (-2946 (($ (-112)) 33)) (-1365 (($ (-1183)) 28)) (-2935 (($ (-1183)) 29)) (-2995 (($ (-1158 (-228))) 76)) (-4442 (($ (-660 (-1119 (-391)))) 72)) (-4071 (($ (-660 (-1119 (-391)))) 68) (($ (-660 (-1119 (-420 (-577))))) 71)) (-4108 (($ (-391)) 38) (($ (-892)) 42)) (-4059 (((-112) (-660 $) (-1201)) 100)) (-2661 (((-3 (-52) "failed") (-660 $) (-1201)) 102)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-4095 (($ (-391)) 43) (($ (-892)) 44)) (-2710 (($ (-1 (-966 (-228)) (-966 (-228)))) 65)) (-1509 (($ (-1 (-966 (-228)) (-966 (-228)))) 83)) (-4083 (($ (-1 (-228) (-228))) 48) (($ (-1 (-228) (-228) (-228))) 52) (($ (-1 (-228) (-228) (-228) (-228))) 56)) (-3544 (((-880) $) 93)) (-4122 (($ (-112)) 34) (($ (-660 (-1119 (-391)))) 60)) (-4448 (((-112) $ $) NIL)) (-4387 (($ (-112)) 35)) (-2970 (((-112) $ $) 97))) +(((-271) (-13 (-1125) (-10 -8 (-15 -4387 ($ (-112))) (-15 -4122 ($ (-112))) (-15 -3440 ($ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -1365 ($ (-1183))) (-15 -2935 ($ (-1183))) (-15 -2946 ($ (-112))) (-15 -4122 ($ (-660 (-1119 (-391))))) (-15 -2710 ($ (-1 (-966 (-228)) (-966 (-228))))) (-15 -4108 ($ (-391))) (-15 -4108 ($ (-892))) (-15 -4095 ($ (-391))) (-15 -4095 ($ (-892))) (-15 -4083 ($ (-1 (-228) (-228)))) (-15 -4083 ($ (-1 (-228) (-228) (-228)))) (-15 -4083 ($ (-1 (-228) (-228) (-228) (-228)))) (-15 -3019 ($ (-391))) (-15 -4071 ($ (-660 (-1119 (-391))))) (-15 -4071 ($ (-660 (-1119 (-420 (-577)))))) (-15 -4442 ($ (-660 (-1119 (-391))))) (-15 -2995 ($ (-1158 (-228)))) (-15 -2975 ($ (-944))) (-15 -2985 ($ (-944))) (-15 -3005 ($ (-944))) (-15 -1509 ($ (-1 (-966 (-228)) (-966 (-228))))) (-15 -3294 ($ (-660 (-391)))) (-15 -2661 ((-3 (-52) "failed") (-660 $) (-1201))) (-15 -4059 ((-112) (-660 $) (-1201)))))) (T -271)) +((-4387 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) (-3440 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) (-5 *1 (-271)))) (-1365 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-271)))) (-2935 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-271)))) (-2946 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) (-4122 (*1 *1 *2) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-271)))) (-2710 (*1 *1 *2) (-12 (-5 *2 (-1 (-966 (-228)) (-966 (-228)))) (-5 *1 (-271)))) (-4108 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271)))) (-4108 (*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-271)))) (-4095 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271)))) (-4095 (*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-271)))) (-4083 (*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-271)))) (-4083 (*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228) (-228))) (-5 *1 (-271)))) (-4083 (*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228) (-228) (-228))) (-5 *1 (-271)))) (-3019 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271)))) (-4071 (*1 *1 *2) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-271)))) (-4071 (*1 *1 *2) (-12 (-5 *2 (-660 (-1119 (-420 (-577))))) (-5 *1 (-271)))) (-4442 (*1 *1 *2) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-271)))) (-2995 (*1 *1 *2) (-12 (-5 *2 (-1158 (-228))) (-5 *1 (-271)))) (-2975 (*1 *1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-271)))) (-2985 (*1 *1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-271)))) (-3005 (*1 *1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-271)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-1 (-966 (-228)) (-966 (-228)))) (-5 *1 (-271)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-660 (-391))) (-5 *1 (-271)))) (-2661 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-660 (-271))) (-5 *4 (-1201)) (-5 *2 (-52)) (-5 *1 (-271)))) (-4059 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-271))) (-5 *4 (-1201)) (-5 *2 (-112)) (-5 *1 (-271))))) +(-13 (-1125) (-10 -8 (-15 -4387 ($ (-112))) (-15 -4122 ($ (-112))) (-15 -3440 ($ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -1365 ($ (-1183))) (-15 -2935 ($ (-1183))) (-15 -2946 ($ (-112))) (-15 -4122 ($ (-660 (-1119 (-391))))) (-15 -2710 ($ (-1 (-966 (-228)) (-966 (-228))))) (-15 -4108 ($ (-391))) (-15 -4108 ($ (-892))) (-15 -4095 ($ (-391))) (-15 -4095 ($ (-892))) (-15 -4083 ($ (-1 (-228) (-228)))) (-15 -4083 ($ (-1 (-228) (-228) (-228)))) (-15 -4083 ($ (-1 (-228) (-228) (-228) (-228)))) (-15 -3019 ($ (-391))) (-15 -4071 ($ (-660 (-1119 (-391))))) (-15 -4071 ($ (-660 (-1119 (-420 (-577)))))) (-15 -4442 ($ (-660 (-1119 (-391))))) (-15 -2995 ($ (-1158 (-228)))) (-15 -2975 ($ (-944))) (-15 -2985 ($ (-944))) (-15 -3005 ($ (-944))) (-15 -1509 ($ (-1 (-966 (-228)) (-966 (-228))))) (-15 -3294 ($ (-660 (-391)))) (-15 -2661 ((-3 (-52) "failed") (-660 $) (-1201))) (-15 -4059 ((-112) (-660 $) (-1201))))) +((-2852 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-787)) 11) (($ $ (-660 (-1201)) (-660 (-787))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201))) NIL) (($ $ (-1201)) 19) (($ $ (-787)) NIL) (($ $) 16)) (-2132 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-787)) 14) (($ $ (-660 (-1201)) (-660 (-787))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201))) NIL) (($ $ (-1201)) NIL) (($ $ (-787)) NIL) (($ $) NIL))) +(((-272 |#1| |#2|) (-10 -8 (-15 -2852 (|#1| |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-787))) (-15 -2132 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -2132 (|#1| |#1| (-1201))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2132 (|#1| |#1| (-660 (-1201)))) (-15 -2132 (|#1| |#1| (-1201) (-787))) (-15 -2132 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2132 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -2132 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|)))) (-273 |#2|) (-1242)) (T -272)) +NIL +(-10 -8 (-15 -2852 (|#1| |#1|)) (-15 -2132 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-787))) (-15 -2132 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -2132 (|#1| |#1| (-1201))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2132 (|#1| |#1| (-660 (-1201)))) (-15 -2132 (|#1| |#1| (-1201) (-787))) (-15 -2132 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2132 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -2132 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|)))) +((-2852 (($ $ (-1 |#1| |#1|)) 23) (($ $ (-1 |#1| |#1|) (-787)) 22) (($ $ (-660 (-1201)) (-660 (-787))) 16 (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) 15 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) 14 (|has| |#1| (-923 (-1201)))) (($ $ (-1201)) 12 (|has| |#1| (-923 (-1201)))) (($ $ (-787)) 10 (|has| |#1| (-238))) (($ $) 8 (|has| |#1| (-238)))) (-2132 (($ $ (-1 |#1| |#1|)) 21) (($ $ (-1 |#1| |#1|) (-787)) 20) (($ $ (-660 (-1201)) (-660 (-787))) 19 (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) 18 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) 17 (|has| |#1| (-923 (-1201)))) (($ $ (-1201)) 13 (|has| |#1| (-923 (-1201)))) (($ $ (-787)) 11 (|has| |#1| (-238))) (($ $) 9 (|has| |#1| (-238))))) +(((-273 |#1|) (-141) (-1242)) (T -273)) +((-2852 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1242)))) (-2852 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-787)) (-4 *1 (-273 *4)) (-4 *4 (-1242)))) (-2132 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1242)))) (-2132 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-787)) (-4 *1 (-273 *4)) (-4 *4 (-1242))))) +(-13 (-1242) (-10 -8 (-15 -2852 ($ $ (-1 |t#1| |t#1|))) (-15 -2852 ($ $ (-1 |t#1| |t#1|) (-787))) (-15 -2132 ($ $ (-1 |t#1| |t#1|))) (-15 -2132 ($ $ (-1 |t#1| |t#1|) (-787))) (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-923 (-1201))) (-6 (-923 (-1201))) |%noBranch|))) +(((-235 $) |has| |#1| (-238)) ((-238) |has| |#1| (-238)) ((-915 $ #0=(-1201)) |has| |#1| (-923 (-1201))) ((-923 #0#) |has| |#1| (-923 (-1201))) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3887 (((-660 (-787)) $) NIL) (((-660 (-787)) $ |#2|) NIL)) (-3030 (((-787) $) NIL) (((-787) $ |#2|) NIL)) (-2058 (((-660 |#3|) $) NIL)) (-1867 (((-1197 $) $ |#3|) NIL) (((-1197 |#1|) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-4050 (((-787) $) NIL) (((-787) $ (-660 |#3|)) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-3841 (($ $) NIL (|has| |#1| (-465)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-465)))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-3865 (($ $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1150 |#1| |#2|) "failed") $) 23)) (-2921 ((|#1| $) NIL) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-577) $) NIL (|has| |#1| (-1063 (-577)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1150 |#1| |#2|) $) NIL)) (-1816 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-2248 (($ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL) (((-705 |#1|) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3143 (($ $) NIL (|has| |#1| (-465))) (($ $ |#3|) NIL (|has| |#1| (-465)))) (-2234 (((-660 $) $) NIL)) (-1522 (((-112) $) NIL (|has| |#1| (-932)))) (-2137 (($ $ |#1| (-544 |#3|) $) NIL)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| |#1| (-905 (-391))) (|has| |#3| (-905 (-391))))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| |#1| (-905 (-577))) (|has| |#3| (-905 (-577)))))) (-3817 (((-787) $ |#2|) NIL) (((-787) $) 10)) (-2487 (((-112) $) NIL)) (-2548 (((-787) $) NIL)) (-2043 (($ (-1197 |#1|) |#3|) NIL) (($ (-1197 $) |#3|) NIL)) (-4074 (((-660 $) $) NIL)) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-544 |#3|)) NIL) (($ $ |#3| (-787)) NIL) (($ $ (-660 |#3|) (-660 (-787))) NIL)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ |#3|) NIL)) (-4061 (((-544 |#3|) $) NIL) (((-787) $ |#3|) NIL) (((-660 (-787)) $ (-660 |#3|)) NIL)) (-2151 (($ (-1 (-544 |#3|) (-544 |#3|)) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3039 (((-1 $ (-787)) |#2|) NIL) (((-1 $ (-787)) $) NIL (|has| |#1| (-239)))) (-3691 (((-3 |#3| "failed") $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL) (((-705 |#1|) (-1292 $)) NIL)) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-1601 ((|#3| $) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) NIL (|has| |#1| (-465)))) (-2810 (((-1183) $) NIL)) (-3876 (((-112) $) NIL)) (-4098 (((-3 (-660 $) "failed") $) NIL)) (-4086 (((-3 (-660 $) "failed") $) NIL)) (-4111 (((-3 (-2 (|:| |var| |#3|) (|:| -3556 (-787))) "failed") $) NIL)) (-4280 (($ $) NIL)) (-1474 (((-1145) $) NIL)) (-2180 (((-112) $) NIL)) (-2193 ((|#1| $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-465)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) NIL (|has| |#1| (-465)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-1902 (((-431 $) $) NIL (|has| |#1| (-932)))) (-3462 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)))) (-3280 (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-660 |#3|) (-660 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-660 |#3|) (-660 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-239))) (($ $ (-660 |#2|) (-660 $)) NIL (|has| |#1| (-239))) (($ $ |#2| |#1|) NIL (|has| |#1| (-239))) (($ $ (-660 |#2|) (-660 |#1|)) NIL (|has| |#1| (-239)))) (-1827 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-2852 (($ $ (-660 |#3|) (-660 (-787))) NIL) (($ $ |#3| (-787)) NIL) (($ $ (-660 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201)))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-787)) NIL (|has| |#1| (-238)))) (-3899 (((-660 |#2|) $) NIL)) (-2887 (((-544 |#3|) $) NIL) (((-787) $ |#3|) NIL) (((-660 (-787)) $ (-660 |#3|)) NIL) (((-787) $ |#2|) NIL)) (-4152 (((-911 (-391)) $) NIL (-12 (|has| |#1| (-627 (-911 (-391)))) (|has| |#3| (-627 (-911 (-391)))))) (((-911 (-577)) $) NIL (-12 (|has| |#1| (-627 (-911 (-577)))) (|has| |#3| (-627 (-911 (-577)))))) (((-549) $) NIL (-12 (|has| |#1| (-627 (-549))) (|has| |#3| (-627 (-549)))))) (-4039 ((|#1| $) NIL (|has| |#1| (-465))) (($ $ |#3|) NIL (|has| |#1| (-465)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-932))))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1150 |#1| |#2|)) 32) (($ (-420 (-577))) NIL (-2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577)))))) (($ $) NIL (|has| |#1| (-569)))) (-4182 (((-660 |#1|) $) NIL)) (-2322 ((|#1| $ (-544 |#3|)) NIL) (($ $ |#3| (-787)) NIL) (($ $ (-660 |#3|) (-660 (-787))) NIL)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))))) (-4068 (((-787)) NIL T CONST)) (-2122 (($ $ $ (-787)) NIL (|has| |#1| (-174)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-660 |#3|) (-660 (-787))) NIL) (($ $ |#3| (-787)) NIL) (($ $ (-660 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201)))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-787)) NIL (|has| |#1| (-238)))) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-274 |#1| |#2| |#3|) (-13 (-261 |#1| |#2| |#3| (-544 |#3|)) (-1063 (-1150 |#1| |#2|))) (-1074) (-865) (-276 |#2|)) (T -274)) +NIL +(-13 (-261 |#1| |#2| |#3| (-544 |#3|)) (-1063 (-1150 |#1| |#2|))) +((-3030 (((-787) $) 37)) (-1628 (((-3 |#2| "failed") $) 22)) (-2921 ((|#2| $) 33)) (-2852 (($ $ (-787)) 18) (($ $) 14)) (-3544 (((-880) $) 32) (($ |#2|) 11)) (-2970 (((-112) $ $) 26)) (-2990 (((-112) $ $) 36))) +(((-275 |#1| |#2|) (-10 -8 (-15 -3030 ((-787) |#1|)) (-15 -3544 (|#1| |#2|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -2852 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-787))) (-15 -2990 ((-112) |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -2970 ((-112) |#1| |#1|))) (-276 |#2|) (-865)) (T -275)) +NIL +(-10 -8 (-15 -3030 ((-787) |#1|)) (-15 -3544 (|#1| |#2|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -2852 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-787))) (-15 -2990 ((-112) |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -2970 ((-112) |#1| |#1|))) +((-3473 (((-112) $ $) 7)) (-3030 (((-787) $) 23)) (-3076 ((|#1| $) 24)) (-1628 (((-3 |#1| "failed") $) 28)) (-2921 ((|#1| $) 29)) (-3817 (((-787) $) 25)) (-3732 (($ $ $) 20)) (-3201 (($ $ $) 19)) (-3039 (($ |#1| (-787)) 26)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2852 (($ $ (-787)) 32) (($ $) 30)) (-3544 (((-880) $) 12) (($ |#1|) 27)) (-4448 (((-112) $ $) 6)) (-2132 (($ $ (-787)) 33) (($ $) 31)) (-3025 (((-112) $ $) 18)) (-3000 (((-112) $ $) 16)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 17)) (-2990 (((-112) $ $) 15))) +(((-276 |#1|) (-141) (-865)) (T -276)) +((-3544 (*1 *1 *2) (-12 (-4 *1 (-276 *2)) (-4 *2 (-865)))) (-3039 (*1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-276 *2)) (-4 *2 (-865)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-865)) (-5 *2 (-787)))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-865)))) (-3030 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-865)) (-5 *2 (-787))))) +(-13 (-865) (-238) (-1063 |t#1|) (-10 -8 (-15 -3039 ($ |t#1| (-787))) (-15 -3817 ((-787) $)) (-15 -3076 (|t#1| $)) (-15 -3030 ((-787) $)) (-15 -3544 ($ |t#1|)))) +(((-102) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-235 $) . T) ((-238) . T) ((-865) . T) ((-868) . T) ((-1063 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-2058 (((-660 (-1201)) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) 53)) (-3435 (((-660 (-1201)) (-327 (-228)) (-787)) 94)) (-3071 (((-3 (-327 (-228)) "failed") (-327 (-228))) 63)) (-3081 (((-327 (-228)) (-327 (-228))) 79)) (-3060 (((-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228))))) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 38)) (-3090 (((-112) (-660 (-327 (-228)))) 104)) (-3128 (((-112) (-327 (-228))) 36)) (-3150 (((-660 (-1183)) (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))))) 132)) (-3117 (((-660 (-327 (-228))) (-660 (-327 (-228)))) 108)) (-3106 (((-660 (-327 (-228))) (-660 (-327 (-228)))) 106)) (-3098 (((-705 (-228)) (-660 (-327 (-228))) (-787)) 120)) (-2681 (((-112) (-327 (-228))) 31) (((-112) (-660 (-327 (-228)))) 105)) (-3049 (((-660 (-228)) (-660 (-859 (-228))) (-228)) 15)) (-2858 (((-391) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) 126)) (-3139 (((-1060) (-1201) (-1060)) 46))) +(((-277) (-10 -7 (-15 -3049 ((-660 (-228)) (-660 (-859 (-228))) (-228))) (-15 -3060 ((-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228))))) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228))))))) (-15 -3071 ((-3 (-327 (-228)) "failed") (-327 (-228)))) (-15 -3081 ((-327 (-228)) (-327 (-228)))) (-15 -3090 ((-112) (-660 (-327 (-228))))) (-15 -2681 ((-112) (-660 (-327 (-228))))) (-15 -2681 ((-112) (-327 (-228)))) (-15 -3098 ((-705 (-228)) (-660 (-327 (-228))) (-787))) (-15 -3106 ((-660 (-327 (-228))) (-660 (-327 (-228))))) (-15 -3117 ((-660 (-327 (-228))) (-660 (-327 (-228))))) (-15 -3128 ((-112) (-327 (-228)))) (-15 -2058 ((-660 (-1201)) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228)))))) (-15 -3435 ((-660 (-1201)) (-327 (-228)) (-787))) (-15 -3139 ((-1060) (-1201) (-1060))) (-15 -2858 ((-391) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228)))))) (-15 -3150 ((-660 (-1183)) (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228)))))))))) (T -277)) +((-3150 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))))) (-5 *2 (-660 (-1183))) (-5 *1 (-277)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) (-5 *2 (-391)) (-5 *1 (-277)))) (-3139 (*1 *2 *3 *2) (-12 (-5 *2 (-1060)) (-5 *3 (-1201)) (-5 *1 (-277)))) (-3435 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-787)) (-5 *2 (-660 (-1201))) (-5 *1 (-277)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) (-5 *2 (-660 (-1201))) (-5 *1 (-277)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-112)) (-5 *1 (-277)))) (-3117 (*1 *2 *2) (-12 (-5 *2 (-660 (-327 (-228)))) (-5 *1 (-277)))) (-3106 (*1 *2 *2) (-12 (-5 *2 (-660 (-327 (-228)))) (-5 *1 (-277)))) (-3098 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-327 (-228)))) (-5 *4 (-787)) (-5 *2 (-705 (-228))) (-5 *1 (-277)))) (-2681 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-112)) (-5 *1 (-277)))) (-2681 (*1 *2 *3) (-12 (-5 *3 (-660 (-327 (-228)))) (-5 *2 (-112)) (-5 *1 (-277)))) (-3090 (*1 *2 *3) (-12 (-5 *3 (-660 (-327 (-228)))) (-5 *2 (-112)) (-5 *1 (-277)))) (-3081 (*1 *2 *2) (-12 (-5 *2 (-327 (-228))) (-5 *1 (-277)))) (-3071 (*1 *2 *2) (|partial| -12 (-5 *2 (-327 (-228))) (-5 *1 (-277)))) (-3060 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (-5 *1 (-277)))) (-3049 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-859 (-228)))) (-5 *4 (-228)) (-5 *2 (-660 *4)) (-5 *1 (-277))))) +(-10 -7 (-15 -3049 ((-660 (-228)) (-660 (-859 (-228))) (-228))) (-15 -3060 ((-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228))))) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228))))))) (-15 -3071 ((-3 (-327 (-228)) "failed") (-327 (-228)))) (-15 -3081 ((-327 (-228)) (-327 (-228)))) (-15 -3090 ((-112) (-660 (-327 (-228))))) (-15 -2681 ((-112) (-660 (-327 (-228))))) (-15 -2681 ((-112) (-327 (-228)))) (-15 -3098 ((-705 (-228)) (-660 (-327 (-228))) (-787))) (-15 -3106 ((-660 (-327 (-228))) (-660 (-327 (-228))))) (-15 -3117 ((-660 (-327 (-228))) (-660 (-327 (-228))))) (-15 -3128 ((-112) (-327 (-228)))) (-15 -2058 ((-660 (-1201)) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228)))))) (-15 -3435 ((-660 (-1201)) (-327 (-228)) (-787))) (-15 -3139 ((-1060) (-1201) (-1060))) (-15 -2858 ((-391) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228)))))) (-15 -3150 ((-660 (-1183)) (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))))))) +((-3473 (((-112) $ $) NIL)) (-3037 (((-1060) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) NIL) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 56)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 32) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-278) (-855)) (T -278)) +NIL +(-855) +((-3473 (((-112) $ $) NIL)) (-3037 (((-1060) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) 72) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 63)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 41) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) 43)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-279) (-855)) (T -279)) +NIL +(-855) +((-3473 (((-112) $ $) NIL)) (-3037 (((-1060) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) 90) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 85)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 52) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) 65)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-280) (-855)) (T -280)) +NIL +(-855) +((-3473 (((-112) $ $) NIL)) (-3037 (((-1060) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) NIL) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 73)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 45) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-281) (-855)) (T -281)) +NIL +(-855) +((-3473 (((-112) $ $) NIL)) (-3037 (((-1060) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) NIL) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 65)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 31) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-282) (-855)) (T -282)) +NIL +(-855) +((-3473 (((-112) $ $) NIL)) (-3037 (((-1060) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) NIL) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 90)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 33) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-283) (-855)) (T -283)) +NIL +(-855) +((-3473 (((-112) $ $) NIL)) (-3037 (((-1060) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) NIL) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 87)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 32) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-284) (-855)) (T -284)) +NIL +(-855) +((-3473 (((-112) $ $) NIL)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3171 (((-660 (-577)) $) 29)) (-2887 (((-787) $) 27)) (-3544 (((-880) $) 33) (($ (-660 (-577))) 23)) (-4448 (((-112) $ $) NIL)) (-3161 (($ (-787)) 30)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 9)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 17))) +(((-285) (-13 (-865) (-10 -8 (-15 -3544 ($ (-660 (-577)))) (-15 -2887 ((-787) $)) (-15 -3171 ((-660 (-577)) $)) (-15 -3161 ($ (-787)))))) (T -285)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-285)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-285)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-285)))) (-3161 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-285))))) +(-13 (-865) (-10 -8 (-15 -3544 ($ (-660 (-577)))) (-15 -2887 ((-787) $)) (-15 -3171 ((-660 (-577)) $)) (-15 -3161 ($ (-787))))) +((-2212 ((|#2| |#2|) 77)) (-2060 ((|#2| |#2|) 65)) (-3463 (((-3 |#2| "failed") |#2| (-660 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2186 ((|#2| |#2|) 75)) (-2032 ((|#2| |#2|) 63)) (-2237 ((|#2| |#2|) 79)) (-2084 ((|#2| |#2|) 67)) (-1659 ((|#2|) 46)) (-1844 (((-115) (-115)) 100)) (-3698 ((|#2| |#2|) 61)) (-3474 (((-112) |#2|) 147)) (-3358 ((|#2| |#2|) 195)) (-3238 ((|#2| |#2|) 171)) (-3190 ((|#2|) 59)) (-3181 ((|#2|) 58)) (-3339 ((|#2| |#2|) 191)) (-3218 ((|#2| |#2|) 167)) (-3377 ((|#2| |#2|) 199)) (-3260 ((|#2| |#2|) 175)) (-3209 ((|#2| |#2|) 163)) (-3199 ((|#2| |#2|) 165)) (-3386 ((|#2| |#2|) 201)) (-3270 ((|#2| |#2|) 177)) (-3368 ((|#2| |#2|) 197)) (-3248 ((|#2| |#2|) 173)) (-3348 ((|#2| |#2|) 193)) (-3228 ((|#2| |#2|) 169)) (-3420 ((|#2| |#2|) 207)) (-3299 ((|#2| |#2|) 183)) (-3396 ((|#2| |#2|) 203)) (-3279 ((|#2| |#2|) 179)) (-3441 ((|#2| |#2|) 211)) (-3319 ((|#2| |#2|) 187)) (-3452 ((|#2| |#2|) 213)) (-3329 ((|#2| |#2|) 189)) (-3431 ((|#2| |#2|) 209)) (-3309 ((|#2| |#2|) 185)) (-3407 ((|#2| |#2|) 205)) (-3289 ((|#2| |#2|) 181)) (-4072 ((|#2| |#2|) 62)) (-2249 ((|#2| |#2|) 80)) (-2095 ((|#2| |#2|) 68)) (-2224 ((|#2| |#2|) 78)) (-2073 ((|#2| |#2|) 66)) (-2199 ((|#2| |#2|) 76)) (-2046 ((|#2| |#2|) 64)) (-1409 (((-112) (-115)) 98)) (-4114 ((|#2| |#2|) 83)) (-2136 ((|#2| |#2|) 71)) (-2262 ((|#2| |#2|) 81)) (-2106 ((|#2| |#2|) 69)) (-4141 ((|#2| |#2|) 85)) (-2162 ((|#2| |#2|) 73)) (-2261 ((|#2| |#2|) 86)) (-2174 ((|#2| |#2|) 74)) (-4128 ((|#2| |#2|) 84)) (-2150 ((|#2| |#2|) 72)) (-2272 ((|#2| |#2|) 82)) (-2120 ((|#2| |#2|) 70))) +(((-286 |#1| |#2|) (-10 -7 (-15 -4072 (|#2| |#2|)) (-15 -3698 (|#2| |#2|)) (-15 -2032 (|#2| |#2|)) (-15 -2046 (|#2| |#2|)) (-15 -2060 (|#2| |#2|)) (-15 -2073 (|#2| |#2|)) (-15 -2084 (|#2| |#2|)) (-15 -2095 (|#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -2120 (|#2| |#2|)) (-15 -2136 (|#2| |#2|)) (-15 -2150 (|#2| |#2|)) (-15 -2162 (|#2| |#2|)) (-15 -2174 (|#2| |#2|)) (-15 -2186 (|#2| |#2|)) (-15 -2199 (|#2| |#2|)) (-15 -2212 (|#2| |#2|)) (-15 -2224 (|#2| |#2|)) (-15 -2237 (|#2| |#2|)) (-15 -2249 (|#2| |#2|)) (-15 -2262 (|#2| |#2|)) (-15 -2272 (|#2| |#2|)) (-15 -4114 (|#2| |#2|)) (-15 -4128 (|#2| |#2|)) (-15 -4141 (|#2| |#2|)) (-15 -2261 (|#2| |#2|)) (-15 -1659 (|#2|)) (-15 -1409 ((-112) (-115))) (-15 -1844 ((-115) (-115))) (-15 -3181 (|#2|)) (-15 -3190 (|#2|)) (-15 -3199 (|#2| |#2|)) (-15 -3209 (|#2| |#2|)) (-15 -3218 (|#2| |#2|)) (-15 -3228 (|#2| |#2|)) (-15 -3238 (|#2| |#2|)) (-15 -3248 (|#2| |#2|)) (-15 -3260 (|#2| |#2|)) (-15 -3270 (|#2| |#2|)) (-15 -3279 (|#2| |#2|)) (-15 -3289 (|#2| |#2|)) (-15 -3299 (|#2| |#2|)) (-15 -3309 (|#2| |#2|)) (-15 -3319 (|#2| |#2|)) (-15 -3329 (|#2| |#2|)) (-15 -3339 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -3358 (|#2| |#2|)) (-15 -3368 (|#2| |#2|)) (-15 -3377 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3396 (|#2| |#2|)) (-15 -3407 (|#2| |#2|)) (-15 -3420 (|#2| |#2|)) (-15 -3431 (|#2| |#2|)) (-15 -3441 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -3463 ((-3 |#2| "failed") |#2| (-660 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3474 ((-112) |#2|))) (-569) (-13 (-443 |#1|) (-1027))) (T -286)) +((-3474 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-286 *4 *3)) (-4 *3 (-13 (-443 *4) (-1027))))) (-3463 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-660 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-443 *4) (-1027))) (-4 *4 (-569)) (-5 *1 (-286 *4 *2)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3441 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3431 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3420 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3407 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3396 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3377 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3368 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3358 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3348 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3339 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3329 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3319 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3309 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3299 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3289 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3279 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3270 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3260 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3248 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3238 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3228 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3218 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3209 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3199 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3190 (*1 *2) (-12 (-4 *2 (-13 (-443 *3) (-1027))) (-5 *1 (-286 *3 *2)) (-4 *3 (-569)))) (-3181 (*1 *2) (-12 (-4 *2 (-13 (-443 *3) (-1027))) (-5 *1 (-286 *3 *2)) (-4 *3 (-569)))) (-1844 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-286 *3 *4)) (-4 *4 (-13 (-443 *3) (-1027))))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-286 *4 *5)) (-4 *5 (-13 (-443 *4) (-1027))))) (-1659 (*1 *2) (-12 (-4 *2 (-13 (-443 *3) (-1027))) (-5 *1 (-286 *3 *2)) (-4 *3 (-569)))) (-2261 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-4141 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-4128 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-4114 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2272 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2262 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2249 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2237 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2224 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2212 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2199 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2186 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2174 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2162 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2150 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2136 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2120 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2106 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2095 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2084 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2073 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2060 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2046 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-2032 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-3698 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027))))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027)))))) +(-10 -7 (-15 -4072 (|#2| |#2|)) (-15 -3698 (|#2| |#2|)) (-15 -2032 (|#2| |#2|)) (-15 -2046 (|#2| |#2|)) (-15 -2060 (|#2| |#2|)) (-15 -2073 (|#2| |#2|)) (-15 -2084 (|#2| |#2|)) (-15 -2095 (|#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -2120 (|#2| |#2|)) (-15 -2136 (|#2| |#2|)) (-15 -2150 (|#2| |#2|)) (-15 -2162 (|#2| |#2|)) (-15 -2174 (|#2| |#2|)) (-15 -2186 (|#2| |#2|)) (-15 -2199 (|#2| |#2|)) (-15 -2212 (|#2| |#2|)) (-15 -2224 (|#2| |#2|)) (-15 -2237 (|#2| |#2|)) (-15 -2249 (|#2| |#2|)) (-15 -2262 (|#2| |#2|)) (-15 -2272 (|#2| |#2|)) (-15 -4114 (|#2| |#2|)) (-15 -4128 (|#2| |#2|)) (-15 -4141 (|#2| |#2|)) (-15 -2261 (|#2| |#2|)) (-15 -1659 (|#2|)) (-15 -1409 ((-112) (-115))) (-15 -1844 ((-115) (-115))) (-15 -3181 (|#2|)) (-15 -3190 (|#2|)) (-15 -3199 (|#2| |#2|)) (-15 -3209 (|#2| |#2|)) (-15 -3218 (|#2| |#2|)) (-15 -3228 (|#2| |#2|)) (-15 -3238 (|#2| |#2|)) (-15 -3248 (|#2| |#2|)) (-15 -3260 (|#2| |#2|)) (-15 -3270 (|#2| |#2|)) (-15 -3279 (|#2| |#2|)) (-15 -3289 (|#2| |#2|)) (-15 -3299 (|#2| |#2|)) (-15 -3309 (|#2| |#2|)) (-15 -3319 (|#2| |#2|)) (-15 -3329 (|#2| |#2|)) (-15 -3339 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -3358 (|#2| |#2|)) (-15 -3368 (|#2| |#2|)) (-15 -3377 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3396 (|#2| |#2|)) (-15 -3407 (|#2| |#2|)) (-15 -3420 (|#2| |#2|)) (-15 -3431 (|#2| |#2|)) (-15 -3441 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -3463 ((-3 |#2| "failed") |#2| (-660 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3474 ((-112) |#2|))) +((-2368 (((-3 |#2| "failed") (-660 (-625 |#2|)) |#2| (-1201)) 151)) (-2388 ((|#2| (-420 (-577)) |#2|) 49)) (-2379 ((|#2| |#2| (-625 |#2|)) 144)) (-3485 (((-2 (|:| |func| |#2|) (|:| |kers| (-660 (-625 |#2|))) (|:| |vals| (-660 |#2|))) |#2| (-1201)) 143)) (-3497 ((|#2| |#2| (-1201)) 20) ((|#2| |#2|) 23)) (-3902 ((|#2| |#2| (-1201)) 157) ((|#2| |#2|) 155))) +(((-287 |#1| |#2|) (-10 -7 (-15 -3902 (|#2| |#2|)) (-15 -3902 (|#2| |#2| (-1201))) (-15 -3485 ((-2 (|:| |func| |#2|) (|:| |kers| (-660 (-625 |#2|))) (|:| |vals| (-660 |#2|))) |#2| (-1201))) (-15 -3497 (|#2| |#2|)) (-15 -3497 (|#2| |#2| (-1201))) (-15 -2368 ((-3 |#2| "failed") (-660 (-625 |#2|)) |#2| (-1201))) (-15 -2379 (|#2| |#2| (-625 |#2|))) (-15 -2388 (|#2| (-420 (-577)) |#2|))) (-13 (-569) (-1063 (-577)) (-654 (-577))) (-13 (-27) (-1227) (-443 |#1|))) (T -287)) +((-2388 (*1 *2 *3 *2) (-12 (-5 *3 (-420 (-577))) (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4))))) (-2379 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4))) (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-287 *4 *2)))) (-2368 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-660 (-625 *2))) (-5 *4 (-1201)) (-4 *2 (-13 (-27) (-1227) (-443 *5))) (-4 *5 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-287 *5 *2)))) (-3497 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3))))) (-3485 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-660 (-625 *3))) (|:| |vals| (-660 *3)))) (-5 *1 (-287 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) (-3902 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4))))) (-3902 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3)))))) +(-10 -7 (-15 -3902 (|#2| |#2|)) (-15 -3902 (|#2| |#2| (-1201))) (-15 -3485 ((-2 (|:| |func| |#2|) (|:| |kers| (-660 (-625 |#2|))) (|:| |vals| (-660 |#2|))) |#2| (-1201))) (-15 -3497 (|#2| |#2|)) (-15 -3497 (|#2| |#2| (-1201))) (-15 -2368 ((-3 |#2| "failed") (-660 (-625 |#2|)) |#2| (-1201))) (-15 -2379 (|#2| |#2| (-625 |#2|))) (-15 -2388 (|#2| (-420 (-577)) |#2|))) +((-1989 (((-3 |#3| "failed") |#3|) 120)) (-2212 ((|#3| |#3|) 142)) (-1847 (((-3 |#3| "failed") |#3|) 89)) (-2060 ((|#3| |#3|) 132)) (-1966 (((-3 |#3| "failed") |#3|) 65)) (-2186 ((|#3| |#3|) 140)) (-1825 (((-3 |#3| "failed") |#3|) 53)) (-2032 ((|#3| |#3|) 130)) (-2011 (((-3 |#3| "failed") |#3|) 122)) (-2237 ((|#3| |#3|) 144)) (-1872 (((-3 |#3| "failed") |#3|) 91)) (-2084 ((|#3| |#3|) 134)) (-1795 (((-3 |#3| "failed") |#3| (-787)) 41)) (-1814 (((-3 |#3| "failed") |#3|) 81)) (-3698 ((|#3| |#3|) 129)) (-1805 (((-3 |#3| "failed") |#3|) 51)) (-4072 ((|#3| |#3|) 128)) (-2022 (((-3 |#3| "failed") |#3|) 123)) (-2249 ((|#3| |#3|) 145)) (-1883 (((-3 |#3| "failed") |#3|) 92)) (-2095 ((|#3| |#3|) 135)) (-2000 (((-3 |#3| "failed") |#3|) 121)) (-2224 ((|#3| |#3|) 143)) (-1858 (((-3 |#3| "failed") |#3|) 90)) (-2073 ((|#3| |#3|) 133)) (-1977 (((-3 |#3| "failed") |#3|) 67)) (-2199 ((|#3| |#3|) 141)) (-1836 (((-3 |#3| "failed") |#3|) 55)) (-2046 ((|#3| |#3|) 131)) (-2063 (((-3 |#3| "failed") |#3|) 73)) (-4114 ((|#3| |#3|) 148)) (-1917 (((-3 |#3| "failed") |#3|) 114)) (-2136 ((|#3| |#3|) 152)) (-2035 (((-3 |#3| "failed") |#3|) 69)) (-2262 ((|#3| |#3|) 146)) (-1894 (((-3 |#3| "failed") |#3|) 57)) (-2106 ((|#3| |#3|) 136)) (-2087 (((-3 |#3| "failed") |#3|) 77)) (-4141 ((|#3| |#3|) 150)) (-1941 (((-3 |#3| "failed") |#3|) 61)) (-2162 ((|#3| |#3|) 138)) (-2098 (((-3 |#3| "failed") |#3|) 79)) (-2261 ((|#3| |#3|) 151)) (-1955 (((-3 |#3| "failed") |#3|) 63)) (-2174 ((|#3| |#3|) 139)) (-2076 (((-3 |#3| "failed") |#3|) 75)) (-4128 ((|#3| |#3|) 149)) (-1929 (((-3 |#3| "failed") |#3|) 117)) (-2150 ((|#3| |#3|) 153)) (-2050 (((-3 |#3| "failed") |#3|) 71)) (-2272 ((|#3| |#3|) 147)) (-1905 (((-3 |#3| "failed") |#3|) 59)) (-2120 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-420 (-577))) 47 (|has| |#1| (-375))))) +(((-288 |#1| |#2| |#3|) (-13 (-1008 |#3|) (-10 -7 (IF (|has| |#1| (-375)) (-15 ** (|#3| |#3| (-420 (-577)))) |%noBranch|) (-15 -4072 (|#3| |#3|)) (-15 -3698 (|#3| |#3|)) (-15 -2032 (|#3| |#3|)) (-15 -2046 (|#3| |#3|)) (-15 -2060 (|#3| |#3|)) (-15 -2073 (|#3| |#3|)) (-15 -2084 (|#3| |#3|)) (-15 -2095 (|#3| |#3|)) (-15 -2106 (|#3| |#3|)) (-15 -2120 (|#3| |#3|)) (-15 -2136 (|#3| |#3|)) (-15 -2150 (|#3| |#3|)) (-15 -2162 (|#3| |#3|)) (-15 -2174 (|#3| |#3|)) (-15 -2186 (|#3| |#3|)) (-15 -2199 (|#3| |#3|)) (-15 -2212 (|#3| |#3|)) (-15 -2224 (|#3| |#3|)) (-15 -2237 (|#3| |#3|)) (-15 -2249 (|#3| |#3|)) (-15 -2262 (|#3| |#3|)) (-15 -2272 (|#3| |#3|)) (-15 -4114 (|#3| |#3|)) (-15 -4128 (|#3| |#3|)) (-15 -4141 (|#3| |#3|)) (-15 -2261 (|#3| |#3|)))) (-38 (-420 (-577))) (-1283 |#1|) (-1254 |#1| |#2|)) (T -288)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-420 (-577))) (-4 *4 (-375)) (-4 *4 (-38 *3)) (-4 *5 (-1283 *4)) (-5 *1 (-288 *4 *5 *2)) (-4 *2 (-1254 *4 *5)))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-3698 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2032 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2046 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2060 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2073 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2084 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2095 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2106 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2120 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2136 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2150 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2162 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2174 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2186 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2199 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2212 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2224 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2237 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2249 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2262 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2272 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-4114 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-4128 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-4141 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) (-2261 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4))))) +(-13 (-1008 |#3|) (-10 -7 (IF (|has| |#1| (-375)) (-15 ** (|#3| |#3| (-420 (-577)))) |%noBranch|) (-15 -4072 (|#3| |#3|)) (-15 -3698 (|#3| |#3|)) (-15 -2032 (|#3| |#3|)) (-15 -2046 (|#3| |#3|)) (-15 -2060 (|#3| |#3|)) (-15 -2073 (|#3| |#3|)) (-15 -2084 (|#3| |#3|)) (-15 -2095 (|#3| |#3|)) (-15 -2106 (|#3| |#3|)) (-15 -2120 (|#3| |#3|)) (-15 -2136 (|#3| |#3|)) (-15 -2150 (|#3| |#3|)) (-15 -2162 (|#3| |#3|)) (-15 -2174 (|#3| |#3|)) (-15 -2186 (|#3| |#3|)) (-15 -2199 (|#3| |#3|)) (-15 -2212 (|#3| |#3|)) (-15 -2224 (|#3| |#3|)) (-15 -2237 (|#3| |#3|)) (-15 -2249 (|#3| |#3|)) (-15 -2262 (|#3| |#3|)) (-15 -2272 (|#3| |#3|)) (-15 -4114 (|#3| |#3|)) (-15 -4128 (|#3| |#3|)) (-15 -4141 (|#3| |#3|)) (-15 -2261 (|#3| |#3|)))) +((-1989 (((-3 |#3| "failed") |#3|) 70)) (-2212 ((|#3| |#3|) 137)) (-1847 (((-3 |#3| "failed") |#3|) 54)) (-2060 ((|#3| |#3|) 125)) (-1966 (((-3 |#3| "failed") |#3|) 66)) (-2186 ((|#3| |#3|) 135)) (-1825 (((-3 |#3| "failed") |#3|) 50)) (-2032 ((|#3| |#3|) 123)) (-2011 (((-3 |#3| "failed") |#3|) 74)) (-2237 ((|#3| |#3|) 139)) (-1872 (((-3 |#3| "failed") |#3|) 58)) (-2084 ((|#3| |#3|) 127)) (-1795 (((-3 |#3| "failed") |#3| (-787)) 38)) (-1814 (((-3 |#3| "failed") |#3|) 48)) (-3698 ((|#3| |#3|) 111)) (-1805 (((-3 |#3| "failed") |#3|) 46)) (-4072 ((|#3| |#3|) 122)) (-2022 (((-3 |#3| "failed") |#3|) 76)) (-2249 ((|#3| |#3|) 140)) (-1883 (((-3 |#3| "failed") |#3|) 60)) (-2095 ((|#3| |#3|) 128)) (-2000 (((-3 |#3| "failed") |#3|) 72)) (-2224 ((|#3| |#3|) 138)) (-1858 (((-3 |#3| "failed") |#3|) 56)) (-2073 ((|#3| |#3|) 126)) (-1977 (((-3 |#3| "failed") |#3|) 68)) (-2199 ((|#3| |#3|) 136)) (-1836 (((-3 |#3| "failed") |#3|) 52)) (-2046 ((|#3| |#3|) 124)) (-2063 (((-3 |#3| "failed") |#3|) 78)) (-4114 ((|#3| |#3|) 143)) (-1917 (((-3 |#3| "failed") |#3|) 62)) (-2136 ((|#3| |#3|) 131)) (-2035 (((-3 |#3| "failed") |#3|) 112)) (-2262 ((|#3| |#3|) 141)) (-1894 (((-3 |#3| "failed") |#3|) 100)) (-2106 ((|#3| |#3|) 129)) (-2087 (((-3 |#3| "failed") |#3|) 116)) (-4141 ((|#3| |#3|) 145)) (-1941 (((-3 |#3| "failed") |#3|) 107)) (-2162 ((|#3| |#3|) 133)) (-2098 (((-3 |#3| "failed") |#3|) 117)) (-2261 ((|#3| |#3|) 146)) (-1955 (((-3 |#3| "failed") |#3|) 109)) (-2174 ((|#3| |#3|) 134)) (-2076 (((-3 |#3| "failed") |#3|) 80)) (-4128 ((|#3| |#3|) 144)) (-1929 (((-3 |#3| "failed") |#3|) 64)) (-2150 ((|#3| |#3|) 132)) (-2050 (((-3 |#3| "failed") |#3|) 113)) (-2272 ((|#3| |#3|) 142)) (-1905 (((-3 |#3| "failed") |#3|) 103)) (-2120 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-420 (-577))) 44 (|has| |#1| (-375))))) +(((-289 |#1| |#2| |#3| |#4|) (-13 (-1008 |#3|) (-10 -7 (IF (|has| |#1| (-375)) (-15 ** (|#3| |#3| (-420 (-577)))) |%noBranch|) (-15 -4072 (|#3| |#3|)) (-15 -3698 (|#3| |#3|)) (-15 -2032 (|#3| |#3|)) (-15 -2046 (|#3| |#3|)) (-15 -2060 (|#3| |#3|)) (-15 -2073 (|#3| |#3|)) (-15 -2084 (|#3| |#3|)) (-15 -2095 (|#3| |#3|)) (-15 -2106 (|#3| |#3|)) (-15 -2120 (|#3| |#3|)) (-15 -2136 (|#3| |#3|)) (-15 -2150 (|#3| |#3|)) (-15 -2162 (|#3| |#3|)) (-15 -2174 (|#3| |#3|)) (-15 -2186 (|#3| |#3|)) (-15 -2199 (|#3| |#3|)) (-15 -2212 (|#3| |#3|)) (-15 -2224 (|#3| |#3|)) (-15 -2237 (|#3| |#3|)) (-15 -2249 (|#3| |#3|)) (-15 -2262 (|#3| |#3|)) (-15 -2272 (|#3| |#3|)) (-15 -4114 (|#3| |#3|)) (-15 -4128 (|#3| |#3|)) (-15 -4141 (|#3| |#3|)) (-15 -2261 (|#3| |#3|)))) (-38 (-420 (-577))) (-1252 |#1|) (-1275 |#1| |#2|) (-1008 |#2|)) (T -289)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-420 (-577))) (-4 *4 (-375)) (-4 *4 (-38 *3)) (-4 *5 (-1252 *4)) (-5 *1 (-289 *4 *5 *2 *6)) (-4 *2 (-1275 *4 *5)) (-4 *6 (-1008 *5)))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-3698 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2032 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2046 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2060 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2073 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2084 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2095 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2106 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2120 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2136 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2150 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2162 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2174 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2186 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2199 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2212 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2224 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2237 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2249 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2262 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2272 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-4114 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-4128 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-4141 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) (-2261 (*1 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4))))) +(-13 (-1008 |#3|) (-10 -7 (IF (|has| |#1| (-375)) (-15 ** (|#3| |#3| (-420 (-577)))) |%noBranch|) (-15 -4072 (|#3| |#3|)) (-15 -3698 (|#3| |#3|)) (-15 -2032 (|#3| |#3|)) (-15 -2046 (|#3| |#3|)) (-15 -2060 (|#3| |#3|)) (-15 -2073 (|#3| |#3|)) (-15 -2084 (|#3| |#3|)) (-15 -2095 (|#3| |#3|)) (-15 -2106 (|#3| |#3|)) (-15 -2120 (|#3| |#3|)) (-15 -2136 (|#3| |#3|)) (-15 -2150 (|#3| |#3|)) (-15 -2162 (|#3| |#3|)) (-15 -2174 (|#3| |#3|)) (-15 -2186 (|#3| |#3|)) (-15 -2199 (|#3| |#3|)) (-15 -2212 (|#3| |#3|)) (-15 -2224 (|#3| |#3|)) (-15 -2237 (|#3| |#3|)) (-15 -2249 (|#3| |#3|)) (-15 -2262 (|#3| |#3|)) (-15 -2272 (|#3| |#3|)) (-15 -4114 (|#3| |#3|)) (-15 -4128 (|#3| |#3|)) (-15 -4141 (|#3| |#3|)) (-15 -2261 (|#3| |#3|)))) +((-2415 (((-112) $) 20)) (-3061 (((-1206) $) 7)) (-2520 (((-3 (-519) "failed") $) 14)) (-2509 (((-3 (-660 $) "failed") $) NIL)) (-2405 (((-3 (-519) "failed") $) 21)) (-2425 (((-3 (-1129) "failed") $) 18)) (-2915 (((-112) $) 16)) (-3544 (((-880) $) NIL)) (-2396 (((-112) $) 9))) +(((-290) (-13 (-626 (-880)) (-10 -8 (-15 -3061 ((-1206) $)) (-15 -2915 ((-112) $)) (-15 -2425 ((-3 (-1129) "failed") $)) (-15 -2415 ((-112) $)) (-15 -2405 ((-3 (-519) "failed") $)) (-15 -2396 ((-112) $)) (-15 -2520 ((-3 (-519) "failed") $)) (-15 -2509 ((-3 (-660 $) "failed") $))))) (T -290)) +((-3061 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-290)))) (-2915 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290)))) (-2425 (*1 *2 *1) (|partial| -12 (-5 *2 (-1129)) (-5 *1 (-290)))) (-2415 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290)))) (-2405 (*1 *2 *1) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-290)))) (-2396 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290)))) (-2520 (*1 *2 *1) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-290)))) (-2509 (*1 *2 *1) (|partial| -12 (-5 *2 (-660 (-290))) (-5 *1 (-290))))) +(-13 (-626 (-880)) (-10 -8 (-15 -3061 ((-1206) $)) (-15 -2915 ((-112) $)) (-15 -2425 ((-3 (-1129) "failed") $)) (-15 -2415 ((-112) $)) (-15 -2405 ((-3 (-519) "failed") $)) (-15 -2396 ((-112) $)) (-15 -2520 ((-3 (-519) "failed") $)) (-15 -2509 ((-3 (-660 $) "failed") $)))) +((-1468 (((-610) $) 10)) (-2443 (((-598) $) 8)) (-2432 (((-302) $) 12)) (-2454 (($ (-598) (-610) (-302)) NIL)) (-3544 (((-880) $) 19))) +(((-291) (-13 (-626 (-880)) (-10 -8 (-15 -2454 ($ (-598) (-610) (-302))) (-15 -2443 ((-598) $)) (-15 -1468 ((-610) $)) (-15 -2432 ((-302) $))))) (T -291)) +((-2454 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-598)) (-5 *3 (-610)) (-5 *4 (-302)) (-5 *1 (-291)))) (-2443 (*1 *2 *1) (-12 (-5 *2 (-598)) (-5 *1 (-291)))) (-1468 (*1 *2 *1) (-12 (-5 *2 (-610)) (-5 *1 (-291)))) (-2432 (*1 *2 *1) (-12 (-5 *2 (-302)) (-5 *1 (-291))))) +(-13 (-626 (-880)) (-10 -8 (-15 -2454 ($ (-598) (-610) (-302))) (-15 -2443 ((-598) $)) (-15 -1468 ((-610) $)) (-15 -2432 ((-302) $)))) +((-2067 (($ (-1 (-112) |#2|) $) 24)) (-1817 (($ $) 38)) (-3719 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3904 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3192 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2308 (($ |#2| $ (-577)) 20) (($ $ $ (-577)) 22)) (-3453 (($ $ (-577)) 11) (($ $ (-1259 (-577))) 14)) (-3992 (($ $ |#2|) 32) (($ $ $) NIL)) (-1677 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-660 $)) NIL))) +(((-292 |#1| |#2|) (-10 -8 (-15 -3192 (|#1| |#1| |#1|)) (-15 -3719 (|#1| |#2| |#1|)) (-15 -3192 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3719 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3992 (|#1| |#1| |#1|)) (-15 -3992 (|#1| |#1| |#2|)) (-15 -2308 (|#1| |#1| |#1| (-577))) (-15 -2308 (|#1| |#2| |#1| (-577))) (-15 -3453 (|#1| |#1| (-1259 (-577)))) (-15 -3453 (|#1| |#1| (-577))) (-15 -1677 (|#1| (-660 |#1|))) (-15 -1677 (|#1| |#1| |#1|)) (-15 -1677 (|#1| |#2| |#1|)) (-15 -1677 (|#1| |#1| |#2|)) (-15 -3904 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2067 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3904 (|#1| |#2| |#1|)) (-15 -1817 (|#1| |#1|))) (-293 |#2|) (-1242)) (T -292)) +NIL +(-10 -8 (-15 -3192 (|#1| |#1| |#1|)) (-15 -3719 (|#1| |#2| |#1|)) (-15 -3192 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3719 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3992 (|#1| |#1| |#1|)) (-15 -3992 (|#1| |#1| |#2|)) (-15 -2308 (|#1| |#1| |#1| (-577))) (-15 -2308 (|#1| |#2| |#1| (-577))) (-15 -3453 (|#1| |#1| (-1259 (-577)))) (-15 -3453 (|#1| |#1| (-577))) (-15 -1677 (|#1| (-660 |#1|))) (-15 -1677 (|#1| |#1| |#1|)) (-15 -1677 (|#1| |#2| |#1|)) (-15 -1677 (|#1| |#1| |#2|)) (-15 -3904 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2067 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3904 (|#1| |#2| |#1|)) (-15 -1817 (|#1| |#1|))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2389 (((-1297) $ (-577) (-577)) 41 (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) 8)) (-3709 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) 60 (|has| $ (-6 -4471)))) (-2463 (($ (-1 (-112) |#1|) $) 88)) (-2067 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4470)))) (-1534 (($) 7 T CONST)) (-3215 (($ $) 86 (|has| |#1| (-1125)))) (-1817 (($ $) 80 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3719 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1125)))) (-3904 (($ |#1| $) 79 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4470)))) (-2192 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) 52)) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-4113 (($ (-787) |#1|) 70)) (-1479 (((-112) $ (-787)) 9)) (-2406 (((-577) $) 44 (|has| (-577) (-865)))) (-3192 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-865)))) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2416 (((-577) $) 45 (|has| (-577) (-865)))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-2881 (($ |#1| $ (-577)) 91) (($ $ $ (-577)) 90)) (-2308 (($ |#1| $ (-577)) 62) (($ $ $ (-577)) 61)) (-4285 (((-660 (-577)) $) 47)) (-4298 (((-112) (-577) $) 48)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-3552 ((|#1| $) 43 (|has| (-577) (-865)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2397 (($ $ |#1|) 42 (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-4274 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) 49)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#1| $ (-577) |#1|) 51) ((|#1| $ (-577)) 50) (($ $ (-1259 (-577))) 71)) (-2472 (($ $ (-577)) 94) (($ $ (-1259 (-577))) 93)) (-3453 (($ $ (-577)) 64) (($ $ (-1259 (-577))) 63)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-4152 (((-549) $) 81 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 72)) (-3992 (($ $ |#1|) 96) (($ $ $) 95)) (-1677 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-660 $)) 66)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-293 |#1|) (-141) (-1242)) (T -293)) +((-3992 (*1 *1 *1 *2) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)))) (-3992 (*1 *1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)))) (-2472 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) (-2472 (*1 *1 *1 *2) (-12 (-5 *2 (-1259 (-577))) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) (-3719 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) (-2881 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-293 *2)) (-4 *2 (-1242)))) (-2881 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) (-3192 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) (-2463 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) (-3719 (*1 *1 *2 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)) (-4 *2 (-1125)))) (-3215 (*1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)) (-4 *2 (-1125)))) (-3192 (*1 *1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)) (-4 *2 (-865))))) +(-13 (-667 |t#1|) (-10 -8 (-6 -4471) (-15 -3992 ($ $ |t#1|)) (-15 -3992 ($ $ $)) (-15 -2472 ($ $ (-577))) (-15 -2472 ($ $ (-1259 (-577)))) (-15 -3719 ($ (-1 (-112) |t#1|) $)) (-15 -2881 ($ |t#1| $ (-577))) (-15 -2881 ($ $ $ (-577))) (-15 -3192 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2463 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1125)) (PROGN (-15 -3719 ($ |t#1| $)) (-15 -3215 ($ $))) |%noBranch|) (IF (|has| |t#1| (-865)) (-15 -3192 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-667 |#1|) . T) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) ((** (($ $ $) 10))) -(((-293 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-294)) (T -293)) +(((-294 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-295)) (T -294)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-3670 (($ $) 6)) (-4067 (($ $) 7)) (** (($ $ $) 8))) -(((-294) (-141)) (T -294)) -((** (*1 *1 *1 *1) (-4 *1 (-294))) (-4067 (*1 *1 *1) (-4 *1 (-294))) (-3670 (*1 *1 *1) (-4 *1 (-294)))) -(-13 (-10 -8 (-15 -3670 ($ $)) (-15 -4067 ($ $)) (-15 ** ($ $ $)))) -((-4129 (((-657 (-1179 |#1|)) (-1179 |#1|) |#1|) 35)) (-1452 ((|#2| |#2| |#1|) 39)) (-1856 ((|#2| |#2| |#1|) 41)) (-2719 ((|#2| |#2| |#1|) 40))) -(((-295 |#1| |#2|) (-10 -7 (-15 -1452 (|#2| |#2| |#1|)) (-15 -2719 (|#2| |#2| |#1|)) (-15 -1856 (|#2| |#2| |#1|)) (-15 -4129 ((-657 (-1179 |#1|)) (-1179 |#1|) |#1|))) (-374) (-1280 |#1|)) (T -295)) -((-4129 (*1 *2 *3 *4) (-12 (-4 *4 (-374)) (-5 *2 (-657 (-1179 *4))) (-5 *1 (-295 *4 *5)) (-5 *3 (-1179 *4)) (-4 *5 (-1280 *4)))) (-1856 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1280 *3)))) (-2719 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1280 *3)))) (-1452 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1280 *3))))) -(-10 -7 (-15 -1452 (|#2| |#2| |#1|)) (-15 -2719 (|#2| |#2| |#1|)) (-15 -1856 (|#2| |#2| |#1|)) (-15 -4129 ((-657 (-1179 |#1|)) (-1179 |#1|) |#1|))) -((-2835 ((|#2| $ |#1|) 6))) -(((-296 |#1| |#2|) (-141) (-1239) (-1239)) (T -296)) -((-2835 (*1 *2 *1 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1239)) (-4 *2 (-1239))))) -(-13 (-1239) (-10 -8 (-15 -2835 (|t#2| $ |t#1|)))) -(((-1239) . T)) -((-2158 ((|#3| $ |#2| |#3|) 12)) (-2083 ((|#3| $ |#2|) 10))) -(((-297 |#1| |#2| |#3|) (-10 -8 (-15 -2158 (|#3| |#1| |#2| |#3|)) (-15 -2083 (|#3| |#1| |#2|))) (-298 |#2| |#3|) (-1122) (-1239)) (T -297)) -NIL -(-10 -8 (-15 -2158 (|#3| |#1| |#2| |#3|)) (-15 -2083 (|#3| |#1| |#2|))) -((-3682 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4467)))) (-2158 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4467)))) (-2083 ((|#2| $ |#1|) 11)) (-2835 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-298 |#1| |#2|) (-141) (-1122) (-1239)) (T -298)) -((-2835 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1239)))) (-2083 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1239)))) (-3682 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1239)))) (-2158 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1239))))) -(-13 (-296 |t#1| |t#2|) (-10 -8 (-15 -2835 (|t#2| $ |t#1| |t#2|)) (-15 -2083 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4467)) (PROGN (-15 -3682 (|t#2| $ |t#1| |t#2|)) (-15 -2158 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-296 |#1| |#2|) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 37)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 44)) (-3325 (($ $) 41)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2864 (((-112) $ $) NIL)) (-4359 (($) NIL T CONST)) (-3373 (($ $ $) 35)) (-3622 (($ |#2| |#3|) 18)) (-3843 (((-3 $ "failed") $) NIL)) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4094 (((-112) $) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2948 ((|#3| $) NIL)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) 19)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3020 (((-3 $ "failed") $ $) NIL)) (-2034 (((-784) $) 36)) (-2835 ((|#2| $ |#2|) 46)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 23)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-2769 (($) 31 T CONST)) (-2779 (($) 39 T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 40))) -(((-299 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -2948 (|#3| $)) (-15 -3501 (|#2| $)) (-15 -3622 ($ |#2| |#3|)) (-15 -3020 ((-3 $ "failed") $ $)) (-15 -3843 ((-3 $ "failed") $)) (-15 -2134 ($ $)))) (-174) (-1265 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -299)) -((-3843 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1265 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2948 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1265 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3501 (*1 *2 *1) (-12 (-4 *2 (-1265 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3622 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1265 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3020 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1265 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2134 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1265 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) -(-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -2948 (|#3| $)) (-15 -3501 (|#2| $)) (-15 -3622 ($ |#2| |#3|)) (-15 -3020 ((-3 $ "failed") $ $)) (-15 -3843 ((-3 $ "failed") $)) (-15 -2134 ($ $)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3843 (((-3 $ "failed") $) 37)) (-4094 (((-112) $) 35)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12) (($ (-576)) 33)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-300) (-141)) (T -300)) -NIL -(-13 (-1071) (-111 $ $) (-10 -7 (-6 -4459))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-739) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-2039 (((-657 (-1107)) $) 10)) (-2924 (($ (-518) (-518) (-1126) $) 19)) (-3976 (($ (-518) (-657 (-985)) $) 23)) (-1984 (($) 25)) (-3890 (((-704 (-1126)) (-518) (-518) $) 18)) (-1882 (((-657 (-985)) (-518) $) 22)) (-3581 (($) 7)) (-1747 (($) 24)) (-3501 (((-877) $) 29)) (-2731 (($) 26))) -(((-301) (-13 (-625 (-877)) (-10 -8 (-15 -3581 ($)) (-15 -2039 ((-657 (-1107)) $)) (-15 -3890 ((-704 (-1126)) (-518) (-518) $)) (-15 -2924 ($ (-518) (-518) (-1126) $)) (-15 -1882 ((-657 (-985)) (-518) $)) (-15 -3976 ($ (-518) (-657 (-985)) $)) (-15 -1747 ($)) (-15 -1984 ($)) (-15 -2731 ($))))) (T -301)) -((-3581 (*1 *1) (-5 *1 (-301))) (-2039 (*1 *2 *1) (-12 (-5 *2 (-657 (-1107))) (-5 *1 (-301)))) (-3890 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-704 (-1126))) (-5 *1 (-301)))) (-2924 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1126)) (-5 *1 (-301)))) (-1882 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-657 (-985))) (-5 *1 (-301)))) (-3976 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-657 (-985))) (-5 *1 (-301)))) (-1747 (*1 *1) (-5 *1 (-301))) (-1984 (*1 *1) (-5 *1 (-301))) (-2731 (*1 *1) (-5 *1 (-301)))) -(-13 (-625 (-877)) (-10 -8 (-15 -3581 ($)) (-15 -2039 ((-657 (-1107)) $)) (-15 -3890 ((-704 (-1126)) (-518) (-518) $)) (-15 -2924 ($ (-518) (-518) (-1126) $)) (-15 -1882 ((-657 (-985)) (-518) $)) (-15 -3976 ($ (-518) (-657 (-985)) $)) (-15 -1747 ($)) (-15 -1984 ($)) (-15 -2731 ($)))) -((-1445 (((-657 (-2 (|:| |eigval| (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (|:| |geneigvec| (-657 (-702 (-419 (-972 |#1|))))))) (-702 (-419 (-972 |#1|)))) 102)) (-1857 (((-657 (-702 (-419 (-972 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (|:| |eigmult| (-784)) (|:| |eigvec| (-657 (-702 (-419 (-972 |#1|)))))) (-702 (-419 (-972 |#1|)))) 97) (((-657 (-702 (-419 (-972 |#1|)))) (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|))) (-702 (-419 (-972 |#1|))) (-784) (-784)) 41)) (-3122 (((-657 (-2 (|:| |eigval| (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (|:| |eigmult| (-784)) (|:| |eigvec| (-657 (-702 (-419 (-972 |#1|))))))) (-702 (-419 (-972 |#1|)))) 99)) (-4238 (((-657 (-702 (-419 (-972 |#1|)))) (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|))) (-702 (-419 (-972 |#1|)))) 75)) (-2741 (((-657 (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (-702 (-419 (-972 |#1|)))) 74)) (-4182 (((-972 |#1|) (-702 (-419 (-972 |#1|)))) 55) (((-972 |#1|) (-702 (-419 (-972 |#1|))) (-1198)) 56))) -(((-302 |#1|) (-10 -7 (-15 -4182 ((-972 |#1|) (-702 (-419 (-972 |#1|))) (-1198))) (-15 -4182 ((-972 |#1|) (-702 (-419 (-972 |#1|))))) (-15 -2741 ((-657 (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (-702 (-419 (-972 |#1|))))) (-15 -4238 ((-657 (-702 (-419 (-972 |#1|)))) (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|))) (-702 (-419 (-972 |#1|))))) (-15 -1857 ((-657 (-702 (-419 (-972 |#1|)))) (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|))) (-702 (-419 (-972 |#1|))) (-784) (-784))) (-15 -1857 ((-657 (-702 (-419 (-972 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (|:| |eigmult| (-784)) (|:| |eigvec| (-657 (-702 (-419 (-972 |#1|)))))) (-702 (-419 (-972 |#1|))))) (-15 -1445 ((-657 (-2 (|:| |eigval| (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (|:| |geneigvec| (-657 (-702 (-419 (-972 |#1|))))))) (-702 (-419 (-972 |#1|))))) (-15 -3122 ((-657 (-2 (|:| |eigval| (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (|:| |eigmult| (-784)) (|:| |eigvec| (-657 (-702 (-419 (-972 |#1|))))))) (-702 (-419 (-972 |#1|)))))) (-464)) (T -302)) -((-3122 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-657 (-2 (|:| |eigval| (-3 (-419 (-972 *4)) (-1187 (-1198) (-972 *4)))) (|:| |eigmult| (-784)) (|:| |eigvec| (-657 (-702 (-419 (-972 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-702 (-419 (-972 *4)))))) (-1445 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-657 (-2 (|:| |eigval| (-3 (-419 (-972 *4)) (-1187 (-1198) (-972 *4)))) (|:| |geneigvec| (-657 (-702 (-419 (-972 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-702 (-419 (-972 *4)))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-419 (-972 *5)) (-1187 (-1198) (-972 *5)))) (|:| |eigmult| (-784)) (|:| |eigvec| (-657 *4)))) (-4 *5 (-464)) (-5 *2 (-657 (-702 (-419 (-972 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-702 (-419 (-972 *5)))))) (-1857 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-419 (-972 *6)) (-1187 (-1198) (-972 *6)))) (-5 *5 (-784)) (-4 *6 (-464)) (-5 *2 (-657 (-702 (-419 (-972 *6))))) (-5 *1 (-302 *6)) (-5 *4 (-702 (-419 (-972 *6)))))) (-4238 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-419 (-972 *5)) (-1187 (-1198) (-972 *5)))) (-4 *5 (-464)) (-5 *2 (-657 (-702 (-419 (-972 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-702 (-419 (-972 *5)))))) (-2741 (*1 *2 *3) (-12 (-5 *3 (-702 (-419 (-972 *4)))) (-4 *4 (-464)) (-5 *2 (-657 (-3 (-419 (-972 *4)) (-1187 (-1198) (-972 *4))))) (-5 *1 (-302 *4)))) (-4182 (*1 *2 *3) (-12 (-5 *3 (-702 (-419 (-972 *4)))) (-5 *2 (-972 *4)) (-5 *1 (-302 *4)) (-4 *4 (-464)))) (-4182 (*1 *2 *3 *4) (-12 (-5 *3 (-702 (-419 (-972 *5)))) (-5 *4 (-1198)) (-5 *2 (-972 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464))))) -(-10 -7 (-15 -4182 ((-972 |#1|) (-702 (-419 (-972 |#1|))) (-1198))) (-15 -4182 ((-972 |#1|) (-702 (-419 (-972 |#1|))))) (-15 -2741 ((-657 (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (-702 (-419 (-972 |#1|))))) (-15 -4238 ((-657 (-702 (-419 (-972 |#1|)))) (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|))) (-702 (-419 (-972 |#1|))))) (-15 -1857 ((-657 (-702 (-419 (-972 |#1|)))) (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|))) (-702 (-419 (-972 |#1|))) (-784) (-784))) (-15 -1857 ((-657 (-702 (-419 (-972 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (|:| |eigmult| (-784)) (|:| |eigvec| (-657 (-702 (-419 (-972 |#1|)))))) (-702 (-419 (-972 |#1|))))) (-15 -1445 ((-657 (-2 (|:| |eigval| (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (|:| |geneigvec| (-657 (-702 (-419 (-972 |#1|))))))) (-702 (-419 (-972 |#1|))))) (-15 -3122 ((-657 (-2 (|:| |eigval| (-3 (-419 (-972 |#1|)) (-1187 (-1198) (-972 |#1|)))) (|:| |eigmult| (-784)) (|:| |eigvec| (-657 (-702 (-419 (-972 |#1|))))))) (-702 (-419 (-972 |#1|)))))) -((-4083 (((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)) 14))) -(((-303 |#1| |#2|) (-10 -7 (-15 -4083 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) (-1239) (-1239)) (T -303)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6))))) -(-10 -7 (-15 -4083 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) -((-3429 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2364 (((-112) $) NIL (|has| |#1| (-21)))) (-3696 (($ $) 12)) (-2721 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4054 (($ $ $) 95 (|has| |#1| (-312)))) (-4359 (($) NIL (-2802 (|has| |#1| (-21)) (|has| |#1| (-739))) CONST)) (-3810 (($ $) 51 (|has| |#1| (-21)))) (-3296 (((-3 $ "failed") $) 62 (|has| |#1| (-739)))) (-1730 ((|#1| $) 11)) (-3843 (((-3 $ "failed") $) 60 (|has| |#1| (-739)))) (-4094 (((-112) $) NIL (|has| |#1| (-739)))) (-4083 (($ (-1 |#1| |#1|) $) 14)) (-1718 ((|#1| $) 10)) (-1998 (($ $) 50 (|has| |#1| (-21)))) (-1529 (((-3 $ "failed") $) 61 (|has| |#1| (-739)))) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2134 (($ $) 64 (-2802 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3661 (((-657 $) $) 85 (|has| |#1| (-568)))) (-3236 (($ $ $) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 $)) 28 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-1198) |#1|) 17 (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) 21 (|has| |#1| (-526 (-1198) |#1|)))) (-2411 (($ |#1| |#1|) 9)) (-3863 (((-135)) 90 (|has| |#1| (-374)))) (-2815 (($ $ (-1198)) 87 (|has| |#1| (-918 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-918 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-918 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-918 (-1198))))) (-3549 (($ $ $) NIL (|has| |#1| (-485)))) (-3544 (($ $ $) NIL (|has| |#1| (-485)))) (-3501 (($ (-576)) NIL (|has| |#1| (-1071))) (((-112) $) 37 (|has| |#1| (-1122))) (((-877) $) 36 (|has| |#1| (-1122)))) (-1960 (((-784)) 67 (|has| |#1| (-1071)) CONST)) (-2046 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2769 (($) 47 (|has| |#1| (-21)) CONST)) (-2779 (($) 57 (|has| |#1| (-739)) CONST)) (-2097 (($ $ (-1198)) NIL (|has| |#1| (-918 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-918 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-918 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-918 (-1198))))) (-2933 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1122)))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 92 (-2802 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-3022 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3012 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-576)) NIL (|has| |#1| (-485))) (($ $ (-784)) NIL (|has| |#1| (-739))) (($ $ (-941)) NIL (|has| |#1| (-1134)))) (* (($ $ |#1|) 55 (|has| |#1| (-1134))) (($ |#1| $) 54 (|has| |#1| (-1134))) (($ $ $) 53 (|has| |#1| (-1134))) (($ (-576) $) 70 (|has| |#1| (-21))) (($ (-784) $) NIL (|has| |#1| (-21))) (($ (-941) $) NIL (|has| |#1| (-25))))) -(((-304 |#1|) (-13 (-1239) (-10 -8 (-15 -2933 ($ |#1| |#1|)) (-15 -2411 ($ |#1| |#1|)) (-15 -3696 ($ $)) (-15 -1718 (|#1| $)) (-15 -1730 (|#1| $)) (-15 -4083 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1198) |#1|)) (-6 (-526 (-1198) |#1|)) |%noBranch|) (IF (|has| |#1| (-1122)) (PROGN (-6 (-1122)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -3236 ($ $ $)) (-15 -3236 ($ $ (-657 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3012 ($ |#1| $)) (-15 -3012 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1998 ($ $)) (-15 -3810 ($ $)) (-15 -3022 ($ |#1| $)) (-15 -3022 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1134)) (PROGN (-6 (-1134)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-739)) (PROGN (-6 (-739)) (-15 -1529 ((-3 $ "failed") $)) (-15 -3296 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -1529 ((-3 $ "failed") $)) (-15 -3296 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1071)) (PROGN (-6 (-1071)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-730 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -3661 ((-657 $) $)) |%noBranch|) (IF (|has| |#1| (-918 (-1198))) (-6 (-918 (-1198))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1296 |#1|)) (-15 -3034 ($ $ $)) (-15 -2134 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -4054 ($ $ $)) |%noBranch|))) (-1239)) (T -304)) -((-2933 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239)))) (-2411 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239)))) (-3696 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239)))) (-1718 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239)))) (-1730 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239)))) (-4083 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1239)) (-5 *1 (-304 *3)))) (-3236 (*1 *1 *1 *1) (-12 (-4 *2 (-319 *2)) (-4 *2 (-1122)) (-4 *2 (-1239)) (-5 *1 (-304 *2)))) (-3236 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1122)) (-4 *3 (-1239)) (-5 *1 (-304 *3)))) (-3012 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1239)))) (-3012 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1239)))) (-1998 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1239)))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1239)))) (-3022 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1239)))) (-3022 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1239)))) (-1529 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-739)) (-4 *2 (-1239)))) (-3296 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-739)) (-4 *2 (-1239)))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-657 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) (-4 *3 (-1239)))) (-4054 (*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1239)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1134)) (-4 *2 (-1239)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1134)) (-4 *2 (-1239)))) (-3034 (*1 *1 *1 *1) (-2802 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1239))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1239))))) (-2134 (*1 *1 *1) (-2802 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1239))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1239)))))) -(-13 (-1239) (-10 -8 (-15 -2933 ($ |#1| |#1|)) (-15 -2411 ($ |#1| |#1|)) (-15 -3696 ($ $)) (-15 -1718 (|#1| $)) (-15 -1730 (|#1| $)) (-15 -4083 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1198) |#1|)) (-6 (-526 (-1198) |#1|)) |%noBranch|) (IF (|has| |#1| (-1122)) (PROGN (-6 (-1122)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -3236 ($ $ $)) (-15 -3236 ($ $ (-657 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3012 ($ |#1| $)) (-15 -3012 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1998 ($ $)) (-15 -3810 ($ $)) (-15 -3022 ($ |#1| $)) (-15 -3022 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1134)) (PROGN (-6 (-1134)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-739)) (PROGN (-6 (-739)) (-15 -1529 ((-3 $ "failed") $)) (-15 -3296 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -1529 ((-3 $ "failed") $)) (-15 -3296 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1071)) (PROGN (-6 (-1071)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-730 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -3661 ((-657 $) $)) |%noBranch|) (IF (|has| |#1| (-918 (-1198))) (-6 (-918 (-1198))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1296 |#1|)) (-15 -3034 ($ $ $)) (-15 -2134 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -4054 ($ $ $)) |%noBranch|))) -((-3429 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4095 (($) NIL) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-4313 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 ((|#2| $ |#1| |#2|) NIL)) (-3162 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2287 (((-3 |#2| "failed") |#1| $) NIL)) (-4359 (($) NIL T CONST)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3647 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) NIL)) (-3895 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3622 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2158 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#2| $ |#1|) NIL)) (-1458 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) NIL)) (-3853 ((|#1| $) NIL (|has| |#1| (-862)))) (-2070 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2272 ((|#1| $) NIL (|has| |#1| (-862)))) (-2148 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4467))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3159 (((-657 |#1|) $) NIL)) (-1708 (((-112) |#1| $) NIL)) (-3050 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2468 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-1430 (((-657 |#1|) $) NIL)) (-4242 (((-112) |#1| $) NIL)) (-1471 (((-1142) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3510 ((|#2| $) NIL (|has| |#1| (-862)))) (-2951 (((-3 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1987 (($ $ |#2|) NIL (|has| $ (-6 -4467)))) (-2277 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-3399 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2380 (((-657 |#2|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1504 (($) NIL) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-1482 (((-784) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3511 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-3501 (((-877) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-625 (-877))) (|has| |#2| (-625 (-877)))))) (-2046 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4079 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-2147 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-305 |#1| |#2|) (-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4466))) (-1122) (-1122)) (T -305)) -NIL -(-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4466))) -((-3265 (((-322) (-1180) (-657 (-1180))) 17) (((-322) (-1180) (-1180)) 16) (((-322) (-657 (-1180))) 15) (((-322) (-1180)) 14))) -(((-306) (-10 -7 (-15 -3265 ((-322) (-1180))) (-15 -3265 ((-322) (-657 (-1180)))) (-15 -3265 ((-322) (-1180) (-1180))) (-15 -3265 ((-322) (-1180) (-657 (-1180)))))) (T -306)) -((-3265 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-1180))) (-5 *3 (-1180)) (-5 *2 (-322)) (-5 *1 (-306)))) (-3265 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-322)) (-5 *1 (-306)))) (-3265 (*1 *2 *3) (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-322)) (-5 *1 (-306)))) (-3265 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-322)) (-5 *1 (-306))))) -(-10 -7 (-15 -3265 ((-322) (-1180))) (-15 -3265 ((-322) (-657 (-1180)))) (-15 -3265 ((-322) (-1180) (-1180))) (-15 -3265 ((-322) (-1180) (-657 (-1180))))) -((-4083 ((|#2| (-1 |#2| |#1|) (-1180) (-624 |#1|)) 18))) -(((-307 |#1| |#2|) (-10 -7 (-15 -4083 (|#2| (-1 |#2| |#1|) (-1180) (-624 |#1|)))) (-312) (-1239)) (T -307)) -((-4083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1180)) (-5 *5 (-624 *6)) (-4 *6 (-312)) (-4 *2 (-1239)) (-5 *1 (-307 *6 *2))))) -(-10 -7 (-15 -4083 (|#2| (-1 |#2| |#1|) (-1180) (-624 |#1|)))) -((-4083 ((|#2| (-1 |#2| |#1|) (-624 |#1|)) 17))) -(((-308 |#1| |#2|) (-10 -7 (-15 -4083 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) (-312) (-312)) (T -308)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-308 *5 *2))))) -(-10 -7 (-15 -4083 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) -((-1658 (((-112) (-227)) 12))) -(((-309 |#1| |#2|) (-10 -7 (-15 -1658 ((-112) (-227)))) (-227) (-227)) (T -309)) -((-1658 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -1658 ((-112) (-227)))) -((-3128 (((-1179 (-227)) (-326 (-227)) (-657 (-1198)) (-1116 (-856 (-227)))) 118)) (-2286 (((-1179 (-227)) (-1289 (-326 (-227))) (-657 (-1198)) (-1116 (-856 (-227)))) 135) (((-1179 (-227)) (-326 (-227)) (-657 (-1198)) (-1116 (-856 (-227)))) 72)) (-3619 (((-657 (-1180)) (-1179 (-227))) NIL)) (-2812 (((-657 (-227)) (-326 (-227)) (-1198) (-1116 (-856 (-227)))) 69)) (-4151 (((-657 (-227)) (-972 (-419 (-576))) (-1198) (-1116 (-856 (-227)))) 59)) (-4393 (((-657 (-1180)) (-657 (-227))) NIL)) (-2360 (((-227) (-1116 (-856 (-227)))) 29)) (-3657 (((-227) (-1116 (-856 (-227)))) 30)) (-1472 (((-112) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-1798 (((-1180) (-227)) NIL))) -(((-310) (-10 -7 (-15 -2360 ((-227) (-1116 (-856 (-227))))) (-15 -3657 ((-227) (-1116 (-856 (-227))))) (-15 -1472 ((-112) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2812 ((-657 (-227)) (-326 (-227)) (-1198) (-1116 (-856 (-227))))) (-15 -3128 ((-1179 (-227)) (-326 (-227)) (-657 (-1198)) (-1116 (-856 (-227))))) (-15 -2286 ((-1179 (-227)) (-326 (-227)) (-657 (-1198)) (-1116 (-856 (-227))))) (-15 -2286 ((-1179 (-227)) (-1289 (-326 (-227))) (-657 (-1198)) (-1116 (-856 (-227))))) (-15 -4151 ((-657 (-227)) (-972 (-419 (-576))) (-1198) (-1116 (-856 (-227))))) (-15 -1798 ((-1180) (-227))) (-15 -4393 ((-657 (-1180)) (-657 (-227)))) (-15 -3619 ((-657 (-1180)) (-1179 (-227)))))) (T -310)) -((-3619 (*1 *2 *3) (-12 (-5 *3 (-1179 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-310)))) (-4393 (*1 *2 *3) (-12 (-5 *3 (-657 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-310)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1180)) (-5 *1 (-310)))) (-4151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-972 (-419 (-576)))) (-5 *4 (-1198)) (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-657 (-227))) (-5 *1 (-310)))) (-2286 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1289 (-326 (-227)))) (-5 *4 (-657 (-1198))) (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-1179 (-227))) (-5 *1 (-310)))) (-2286 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-657 (-1198))) (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-1179 (-227))) (-5 *1 (-310)))) (-3128 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-657 (-1198))) (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-1179 (-227))) (-5 *1 (-310)))) (-2812 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1198)) (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-657 (-227))) (-5 *1 (-310)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-310)))) (-3657 (*1 *2 *3) (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) (-2360 (*1 *2 *3) (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-310))))) -(-10 -7 (-15 -2360 ((-227) (-1116 (-856 (-227))))) (-15 -3657 ((-227) (-1116 (-856 (-227))))) (-15 -1472 ((-112) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2812 ((-657 (-227)) (-326 (-227)) (-1198) (-1116 (-856 (-227))))) (-15 -3128 ((-1179 (-227)) (-326 (-227)) (-657 (-1198)) (-1116 (-856 (-227))))) (-15 -2286 ((-1179 (-227)) (-326 (-227)) (-657 (-1198)) (-1116 (-856 (-227))))) (-15 -2286 ((-1179 (-227)) (-1289 (-326 (-227))) (-657 (-1198)) (-1116 (-856 (-227))))) (-15 -4151 ((-657 (-227)) (-972 (-419 (-576))) (-1198) (-1116 (-856 (-227))))) (-15 -1798 ((-1180) (-227))) (-15 -4393 ((-657 (-1180)) (-657 (-227)))) (-15 -3619 ((-657 (-1180)) (-1179 (-227))))) -((-3946 (((-657 (-624 $)) $) 27)) (-4054 (($ $ (-304 $)) 78) (($ $ (-657 (-304 $))) 139) (($ $ (-657 (-624 $)) (-657 $)) NIL)) (-1624 (((-3 (-624 $) "failed") $) 127)) (-2884 (((-624 $) $) 126)) (-2887 (($ $) 17) (($ (-657 $)) 54)) (-1784 (((-657 (-115)) $) 35)) (-1832 (((-115) (-115)) 88)) (-2320 (((-112) $) 150)) (-4083 (($ (-1 $ $) (-624 $)) 86)) (-3398 (((-3 (-624 $) "failed") $) 94)) (-1699 (($ (-115) $) 59) (($ (-115) (-657 $)) 110)) (-4412 (((-112) $ (-115)) 132) (((-112) $ (-1198)) 131)) (-2404 (((-784) $) 44)) (-3698 (((-112) $ $) 57) (((-112) $ (-1198)) 49)) (-3593 (((-112) $) 148)) (-3236 (($ $ (-624 $) $) NIL) (($ $ (-657 (-624 $)) (-657 $)) NIL) (($ $ (-657 (-304 $))) 137) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ $))) 81) (($ $ (-657 (-1198)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-1198) (-1 $ (-657 $))) 67) (($ $ (-1198) (-1 $ $)) 72) (($ $ (-657 (-115)) (-657 (-1 $ $))) 80) (($ $ (-657 (-115)) (-657 (-1 $ (-657 $)))) 82) (($ $ (-115) (-1 $ (-657 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2835 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-657 $)) 123)) (-2445 (($ $) 51) (($ $ $) 135)) (-2139 (($ $) 15) (($ (-657 $)) 53)) (-4159 (((-112) (-115)) 21))) -(((-311 |#1|) (-10 -8 (-15 -2320 ((-112) |#1|)) (-15 -3593 ((-112) |#1|)) (-15 -3236 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3236 (|#1| |#1| (-115) (-1 |#1| (-657 |#1|)))) (-15 -3236 (|#1| |#1| (-657 (-115)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3236 (|#1| |#1| (-657 (-115)) (-657 (-1 |#1| |#1|)))) (-15 -3236 (|#1| |#1| (-1198) (-1 |#1| |#1|))) (-15 -3236 (|#1| |#1| (-1198) (-1 |#1| (-657 |#1|)))) (-15 -3236 (|#1| |#1| (-657 (-1198)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3236 (|#1| |#1| (-657 (-1198)) (-657 (-1 |#1| |#1|)))) (-15 -3698 ((-112) |#1| (-1198))) (-15 -3698 ((-112) |#1| |#1|)) (-15 -4083 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1699 (|#1| (-115) (-657 |#1|))) (-15 -1699 (|#1| (-115) |#1|)) (-15 -4412 ((-112) |#1| (-1198))) (-15 -4412 ((-112) |#1| (-115))) (-15 -4159 ((-112) (-115))) (-15 -1832 ((-115) (-115))) (-15 -1784 ((-657 (-115)) |#1|)) (-15 -3946 ((-657 (-624 |#1|)) |#1|)) (-15 -3398 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2404 ((-784) |#1|)) (-15 -2445 (|#1| |#1| |#1|)) (-15 -2445 (|#1| |#1|)) (-15 -2887 (|#1| (-657 |#1|))) (-15 -2887 (|#1| |#1|)) (-15 -2139 (|#1| (-657 |#1|))) (-15 -2139 (|#1| |#1|)) (-15 -4054 (|#1| |#1| (-657 (-624 |#1|)) (-657 |#1|))) (-15 -4054 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -4054 (|#1| |#1| (-304 |#1|))) (-15 -2835 (|#1| (-115) (-657 |#1|))) (-15 -2835 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2835 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2835 (|#1| (-115) |#1| |#1|)) (-15 -2835 (|#1| (-115) |#1|)) (-15 -3236 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3236 (|#1| |#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| (-304 |#1|))) (-15 -3236 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -3236 (|#1| |#1| (-657 (-624 |#1|)) (-657 |#1|))) (-15 -3236 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -1624 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2884 ((-624 |#1|) |#1|))) (-312)) (T -311)) -((-1832 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312))))) -(-10 -8 (-15 -2320 ((-112) |#1|)) (-15 -3593 ((-112) |#1|)) (-15 -3236 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3236 (|#1| |#1| (-115) (-1 |#1| (-657 |#1|)))) (-15 -3236 (|#1| |#1| (-657 (-115)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3236 (|#1| |#1| (-657 (-115)) (-657 (-1 |#1| |#1|)))) (-15 -3236 (|#1| |#1| (-1198) (-1 |#1| |#1|))) (-15 -3236 (|#1| |#1| (-1198) (-1 |#1| (-657 |#1|)))) (-15 -3236 (|#1| |#1| (-657 (-1198)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3236 (|#1| |#1| (-657 (-1198)) (-657 (-1 |#1| |#1|)))) (-15 -3698 ((-112) |#1| (-1198))) (-15 -3698 ((-112) |#1| |#1|)) (-15 -4083 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1699 (|#1| (-115) (-657 |#1|))) (-15 -1699 (|#1| (-115) |#1|)) (-15 -4412 ((-112) |#1| (-1198))) (-15 -4412 ((-112) |#1| (-115))) (-15 -4159 ((-112) (-115))) (-15 -1832 ((-115) (-115))) (-15 -1784 ((-657 (-115)) |#1|)) (-15 -3946 ((-657 (-624 |#1|)) |#1|)) (-15 -3398 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2404 ((-784) |#1|)) (-15 -2445 (|#1| |#1| |#1|)) (-15 -2445 (|#1| |#1|)) (-15 -2887 (|#1| (-657 |#1|))) (-15 -2887 (|#1| |#1|)) (-15 -2139 (|#1| (-657 |#1|))) (-15 -2139 (|#1| |#1|)) (-15 -4054 (|#1| |#1| (-657 (-624 |#1|)) (-657 |#1|))) (-15 -4054 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -4054 (|#1| |#1| (-304 |#1|))) (-15 -2835 (|#1| (-115) (-657 |#1|))) (-15 -2835 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2835 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2835 (|#1| (-115) |#1| |#1|)) (-15 -2835 (|#1| (-115) |#1|)) (-15 -3236 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3236 (|#1| |#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| (-304 |#1|))) (-15 -3236 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -3236 (|#1| |#1| (-657 (-624 |#1|)) (-657 |#1|))) (-15 -3236 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -1624 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2884 ((-624 |#1|) |#1|))) -((-3429 (((-112) $ $) 7)) (-3946 (((-657 (-624 $)) $) 39)) (-4054 (($ $ (-304 $)) 51) (($ $ (-657 (-304 $))) 50) (($ $ (-657 (-624 $)) (-657 $)) 49)) (-1624 (((-3 (-624 $) "failed") $) 64)) (-2884 (((-624 $) $) 65)) (-2887 (($ $) 46) (($ (-657 $)) 45)) (-1784 (((-657 (-115)) $) 38)) (-1832 (((-115) (-115)) 37)) (-2320 (((-112) $) 17 (|has| $ (-1060 (-576))))) (-4153 (((-1194 $) (-624 $)) 20 (|has| $ (-1071)))) (-4083 (($ (-1 $ $) (-624 $)) 31)) (-3398 (((-3 (-624 $) "failed") $) 41)) (-2342 (((-1180) $) 10)) (-1817 (((-657 (-624 $)) $) 40)) (-1699 (($ (-115) $) 33) (($ (-115) (-657 $)) 32)) (-4412 (((-112) $ (-115)) 35) (((-112) $ (-1198)) 34)) (-2404 (((-784) $) 42)) (-1471 (((-1142) $) 11)) (-3698 (((-112) $ $) 30) (((-112) $ (-1198)) 29)) (-3593 (((-112) $) 18 (|has| $ (-1060 (-576))))) (-3236 (($ $ (-624 $) $) 62) (($ $ (-657 (-624 $)) (-657 $)) 61) (($ $ (-657 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-657 $) (-657 $)) 57) (($ $ (-657 (-1198)) (-657 (-1 $ $))) 28) (($ $ (-657 (-1198)) (-657 (-1 $ (-657 $)))) 27) (($ $ (-1198) (-1 $ (-657 $))) 26) (($ $ (-1198) (-1 $ $)) 25) (($ $ (-657 (-115)) (-657 (-1 $ $))) 24) (($ $ (-657 (-115)) (-657 (-1 $ (-657 $)))) 23) (($ $ (-115) (-1 $ (-657 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2835 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-657 $)) 52)) (-2445 (($ $) 44) (($ $ $) 43)) (-3180 (($ $) 19 (|has| $ (-1071)))) (-3501 (((-877) $) 12) (($ (-624 $)) 63)) (-2139 (($ $) 48) (($ (-657 $)) 47)) (-4159 (((-112) (-115)) 36)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8))) -(((-312) (-141)) (T -312)) -((-2835 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2835 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2835 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2835 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2835 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-657 *1)) (-4 *1 (-312)))) (-4054 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312)))) (-4054 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-304 *1))) (-4 *1 (-312)))) (-4054 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-624 *1))) (-5 *3 (-657 *1)) (-4 *1 (-312)))) (-2139 (*1 *1 *1) (-4 *1 (-312))) (-2139 (*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-312)))) (-2887 (*1 *1 *1) (-4 *1 (-312))) (-2887 (*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-312)))) (-2445 (*1 *1 *1) (-4 *1 (-312))) (-2445 (*1 *1 *1 *1) (-4 *1 (-312))) (-2404 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-784)))) (-3398 (*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-657 (-624 *1))) (-4 *1 (-312)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-657 (-624 *1))) (-4 *1 (-312)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-657 (-115))))) (-1832 (*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-4159 (*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-4412 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-4412 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1198)) (-5 *2 (-112)))) (-1699 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-1699 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-657 *1)) (-4 *1 (-312)))) (-4083 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312)))) (-3698 (*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112)))) (-3698 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1198)) (-5 *2 (-112)))) (-3236 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-657 (-1 *1 *1))) (-4 *1 (-312)))) (-3236 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-657 (-1 *1 (-657 *1)))) (-4 *1 (-312)))) (-3236 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1 *1 (-657 *1))) (-4 *1 (-312)))) (-3236 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-3236 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-115))) (-5 *3 (-657 (-1 *1 *1))) (-4 *1 (-312)))) (-3236 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-115))) (-5 *3 (-657 (-1 *1 (-657 *1)))) (-4 *1 (-312)))) (-3236 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-657 *1))) (-4 *1 (-312)))) (-3236 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-4153 (*1 *2 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-1071)) (-4 *1 (-312)) (-5 *2 (-1194 *1)))) (-3180 (*1 *1 *1) (-12 (-4 *1 (-1071)) (-4 *1 (-312)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-1060 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) (-2320 (*1 *2 *1) (-12 (-4 *1 (-1060 (-576))) (-4 *1 (-312)) (-5 *2 (-112))))) -(-13 (-1122) (-1060 (-624 $)) (-526 (-624 $) $) (-319 $) (-10 -8 (-15 -2835 ($ (-115) $)) (-15 -2835 ($ (-115) $ $)) (-15 -2835 ($ (-115) $ $ $)) (-15 -2835 ($ (-115) $ $ $ $)) (-15 -2835 ($ (-115) (-657 $))) (-15 -4054 ($ $ (-304 $))) (-15 -4054 ($ $ (-657 (-304 $)))) (-15 -4054 ($ $ (-657 (-624 $)) (-657 $))) (-15 -2139 ($ $)) (-15 -2139 ($ (-657 $))) (-15 -2887 ($ $)) (-15 -2887 ($ (-657 $))) (-15 -2445 ($ $)) (-15 -2445 ($ $ $)) (-15 -2404 ((-784) $)) (-15 -3398 ((-3 (-624 $) "failed") $)) (-15 -1817 ((-657 (-624 $)) $)) (-15 -3946 ((-657 (-624 $)) $)) (-15 -1784 ((-657 (-115)) $)) (-15 -1832 ((-115) (-115))) (-15 -4159 ((-112) (-115))) (-15 -4412 ((-112) $ (-115))) (-15 -4412 ((-112) $ (-1198))) (-15 -1699 ($ (-115) $)) (-15 -1699 ($ (-115) (-657 $))) (-15 -4083 ($ (-1 $ $) (-624 $))) (-15 -3698 ((-112) $ $)) (-15 -3698 ((-112) $ (-1198))) (-15 -3236 ($ $ (-657 (-1198)) (-657 (-1 $ $)))) (-15 -3236 ($ $ (-657 (-1198)) (-657 (-1 $ (-657 $))))) (-15 -3236 ($ $ (-1198) (-1 $ (-657 $)))) (-15 -3236 ($ $ (-1198) (-1 $ $))) (-15 -3236 ($ $ (-657 (-115)) (-657 (-1 $ $)))) (-15 -3236 ($ $ (-657 (-115)) (-657 (-1 $ (-657 $))))) (-15 -3236 ($ $ (-115) (-1 $ (-657 $)))) (-15 -3236 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1071)) (PROGN (-15 -4153 ((-1194 $) (-624 $))) (-15 -3180 ($ $))) |%noBranch|) (IF (|has| $ (-1060 (-576))) (PROGN (-15 -3593 ((-112) $)) (-15 -2320 ((-112) $))) |%noBranch|))) -(((-102) . T) ((-628 #0=(-624 $)) . T) ((-625 (-877)) . T) ((-319 $) . T) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-1060 #0#) . T) ((-1122) . T) ((-1239) . T)) -((-1561 (((-657 |#1|) (-657 |#1|)) 10))) -(((-313 |#1|) (-10 -7 (-15 -1561 ((-657 |#1|) (-657 |#1|)))) (-861)) (T -313)) -((-1561 (*1 *2 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-861)) (-5 *1 (-313 *3))))) -(-10 -7 (-15 -1561 ((-657 |#1|) (-657 |#1|)))) -((-4083 (((-702 |#2|) (-1 |#2| |#1|) (-702 |#1|)) 17))) -(((-314 |#1| |#2|) (-10 -7 (-15 -4083 ((-702 |#2|) (-1 |#2| |#1|) (-702 |#1|)))) (-1071) (-1071)) (T -314)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-702 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-5 *2 (-702 *6)) (-5 *1 (-314 *5 *6))))) -(-10 -7 (-15 -4083 ((-702 |#2|) (-1 |#2| |#1|) (-702 |#1|)))) -((-2094 (((-1289 (-326 (-390))) (-1289 (-326 (-227)))) 110)) (-3141 (((-1116 (-856 (-227))) (-1116 (-856 (-390)))) 43)) (-3619 (((-657 (-1180)) (-1179 (-227))) 92)) (-4142 (((-326 (-390)) (-972 (-227))) 53)) (-2745 (((-227) (-972 (-227))) 49)) (-4232 (((-1180) (-390)) 195)) (-1931 (((-856 (-227)) (-856 (-390))) 37)) (-3169 (((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1289 (-326 (-227)))) 165)) (-3728 (((-1057) (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057)))) 207) (((-1057) (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))))) 205)) (-3750 (((-702 (-227)) (-657 (-227)) (-784)) 19)) (-3780 (((-1289 (-712)) (-657 (-227))) 99)) (-4393 (((-657 (-1180)) (-657 (-227))) 79)) (-2357 (((-3 (-326 (-227)) "failed") (-326 (-227))) 128)) (-1658 (((-112) (-227) (-1116 (-856 (-227)))) 117)) (-1417 (((-1057) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) 224)) (-2360 (((-227) (-1116 (-856 (-227)))) 112)) (-3657 (((-227) (-1116 (-856 (-227)))) 113)) (-1909 (((-227) (-419 (-576))) 31)) (-4055 (((-1180) (-390)) 77)) (-3272 (((-227) (-390)) 22)) (-1837 (((-390) (-1289 (-326 (-227)))) 177)) (-2551 (((-326 (-227)) (-326 (-390))) 28)) (-4273 (((-419 (-576)) (-326 (-227))) 56)) (-3160 (((-326 (-419 (-576))) (-326 (-227))) 73)) (-2521 (((-326 (-390)) (-326 (-227))) 103)) (-2068 (((-227) (-326 (-227))) 57)) (-1847 (((-657 (-227)) (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) 68)) (-4318 (((-1116 (-856 (-227))) (-1116 (-856 (-227)))) 65)) (-1798 (((-1180) (-227)) 76)) (-2557 (((-712) (-227)) 95)) (-2462 (((-419 (-576)) (-227)) 58)) (-2809 (((-326 (-390)) (-227)) 52)) (-4148 (((-657 (-1116 (-856 (-227)))) (-657 (-1116 (-856 (-390))))) 46)) (-1674 (((-1057) (-657 (-1057))) 191) (((-1057) (-1057) (-1057)) 185)) (-3467 (((-1057) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221))) -(((-315) (-10 -7 (-15 -3272 ((-227) (-390))) (-15 -2551 ((-326 (-227)) (-326 (-390)))) (-15 -1931 ((-856 (-227)) (-856 (-390)))) (-15 -3141 ((-1116 (-856 (-227))) (-1116 (-856 (-390))))) (-15 -4148 ((-657 (-1116 (-856 (-227)))) (-657 (-1116 (-856 (-390)))))) (-15 -2462 ((-419 (-576)) (-227))) (-15 -4273 ((-419 (-576)) (-326 (-227)))) (-15 -2068 ((-227) (-326 (-227)))) (-15 -2357 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -1837 ((-390) (-1289 (-326 (-227))))) (-15 -3169 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1289 (-326 (-227))))) (-15 -3160 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -4318 ((-1116 (-856 (-227))) (-1116 (-856 (-227))))) (-15 -1847 ((-657 (-227)) (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))))) (-15 -2557 ((-712) (-227))) (-15 -3780 ((-1289 (-712)) (-657 (-227)))) (-15 -2521 ((-326 (-390)) (-326 (-227)))) (-15 -2094 ((-1289 (-326 (-390))) (-1289 (-326 (-227))))) (-15 -1658 ((-112) (-227) (-1116 (-856 (-227))))) (-15 -1798 ((-1180) (-227))) (-15 -4055 ((-1180) (-390))) (-15 -4393 ((-657 (-1180)) (-657 (-227)))) (-15 -3619 ((-657 (-1180)) (-1179 (-227)))) (-15 -2360 ((-227) (-1116 (-856 (-227))))) (-15 -3657 ((-227) (-1116 (-856 (-227))))) (-15 -1674 ((-1057) (-1057) (-1057))) (-15 -1674 ((-1057) (-657 (-1057)))) (-15 -4232 ((-1180) (-390))) (-15 -3728 ((-1057) (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))))) (-15 -3728 ((-1057) (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057))))) (-15 -3467 ((-1057) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1417 ((-1057) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -4142 ((-326 (-390)) (-972 (-227)))) (-15 -2745 ((-227) (-972 (-227)))) (-15 -2809 ((-326 (-390)) (-227))) (-15 -1909 ((-227) (-419 (-576)))) (-15 -3750 ((-702 (-227)) (-657 (-227)) (-784))))) (T -315)) -((-3750 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-227))) (-5 *4 (-784)) (-5 *2 (-702 (-227))) (-5 *1 (-315)))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-972 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-972 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-1417 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *2 (-1057)) (-5 *1 (-315)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1057)) (-5 *1 (-315)))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057)))) (-5 *2 (-1057)) (-5 *1 (-315)))) (-3728 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))))) (-5 *2 (-1057)) (-5 *1 (-315)))) (-4232 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1180)) (-5 *1 (-315)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-657 (-1057))) (-5 *2 (-1057)) (-5 *1 (-315)))) (-1674 (*1 *2 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-315)))) (-3657 (*1 *2 *3) (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-2360 (*1 *2 *3) (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-1179 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-315)))) (-4393 (*1 *2 *3) (-12 (-5 *3 (-657 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-315)))) (-4055 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1180)) (-5 *1 (-315)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1180)) (-5 *1 (-315)))) (-1658 (*1 *2 *3 *4) (-12 (-5 *4 (-1116 (-856 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-315)))) (-2094 (*1 *2 *3) (-12 (-5 *3 (-1289 (-326 (-227)))) (-5 *2 (-1289 (-326 (-390)))) (-5 *1 (-315)))) (-2521 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-657 (-227))) (-5 *2 (-1289 (-712))) (-5 *1 (-315)))) (-2557 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-712)) (-5 *1 (-315)))) (-1847 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) (-5 *2 (-657 (-227))) (-5 *1 (-315)))) (-4318 (*1 *2 *2) (-12 (-5 *2 (-1116 (-856 (-227)))) (-5 *1 (-315)))) (-3160 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) (-5 *1 (-315)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-1289 (-326 (-227)))) (-5 *2 (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) (-5 *1 (-315)))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-1289 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315)))) (-2357 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-2068 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-4273 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-657 (-1116 (-856 (-390))))) (-5 *2 (-657 (-1116 (-856 (-227))))) (-5 *1 (-315)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-1116 (-856 (-390)))) (-5 *2 (-1116 (-856 (-227)))) (-5 *1 (-315)))) (-1931 (*1 *2 *3) (-12 (-5 *3 (-856 (-390))) (-5 *2 (-856 (-227))) (-5 *1 (-315)))) (-2551 (*1 *2 *3) (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-3272 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) -(-10 -7 (-15 -3272 ((-227) (-390))) (-15 -2551 ((-326 (-227)) (-326 (-390)))) (-15 -1931 ((-856 (-227)) (-856 (-390)))) (-15 -3141 ((-1116 (-856 (-227))) (-1116 (-856 (-390))))) (-15 -4148 ((-657 (-1116 (-856 (-227)))) (-657 (-1116 (-856 (-390)))))) (-15 -2462 ((-419 (-576)) (-227))) (-15 -4273 ((-419 (-576)) (-326 (-227)))) (-15 -2068 ((-227) (-326 (-227)))) (-15 -2357 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -1837 ((-390) (-1289 (-326 (-227))))) (-15 -3169 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1289 (-326 (-227))))) (-15 -3160 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -4318 ((-1116 (-856 (-227))) (-1116 (-856 (-227))))) (-15 -1847 ((-657 (-227)) (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))))) (-15 -2557 ((-712) (-227))) (-15 -3780 ((-1289 (-712)) (-657 (-227)))) (-15 -2521 ((-326 (-390)) (-326 (-227)))) (-15 -2094 ((-1289 (-326 (-390))) (-1289 (-326 (-227))))) (-15 -1658 ((-112) (-227) (-1116 (-856 (-227))))) (-15 -1798 ((-1180) (-227))) (-15 -4055 ((-1180) (-390))) (-15 -4393 ((-657 (-1180)) (-657 (-227)))) (-15 -3619 ((-657 (-1180)) (-1179 (-227)))) (-15 -2360 ((-227) (-1116 (-856 (-227))))) (-15 -3657 ((-227) (-1116 (-856 (-227))))) (-15 -1674 ((-1057) (-1057) (-1057))) (-15 -1674 ((-1057) (-657 (-1057)))) (-15 -4232 ((-1180) (-390))) (-15 -3728 ((-1057) (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))))) (-15 -3728 ((-1057) (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057))))) (-15 -3467 ((-1057) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1417 ((-1057) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -4142 ((-326 (-390)) (-972 (-227)))) (-15 -2745 ((-227) (-972 (-227)))) (-15 -2809 ((-326 (-390)) (-227))) (-15 -1909 ((-227) (-419 (-576)))) (-15 -3750 ((-702 (-227)) (-657 (-227)) (-784)))) -((-2864 (((-112) $ $) 14)) (-3373 (($ $ $) 18)) (-3385 (($ $ $) 17)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 50)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 65)) (-3436 (($ $ $) 25) (($ (-657 $)) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-3418 (((-3 $ "failed") $ $) 21)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 53))) -(((-316 |#1|) (-10 -8 (-15 -2941 ((-3 (-657 |#1|) "failed") (-657 |#1|) |#1|)) (-15 -2143 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2143 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4097 |#1|)) |#1| |#1|)) (-15 -3373 (|#1| |#1| |#1|)) (-15 -3385 (|#1| |#1| |#1|)) (-15 -2864 ((-112) |#1| |#1|)) (-15 -3161 ((-3 (-657 |#1|) "failed") (-657 |#1|) |#1|)) (-15 -4120 ((-2 (|:| -1771 (-657 |#1|)) (|:| -4097 |#1|)) (-657 |#1|))) (-15 -3436 (|#1| (-657 |#1|))) (-15 -3436 (|#1| |#1| |#1|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#1|))) (-317)) (T -316)) -NIL -(-10 -8 (-15 -2941 ((-3 (-657 |#1|) "failed") (-657 |#1|) |#1|)) (-15 -2143 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2143 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4097 |#1|)) |#1| |#1|)) (-15 -3373 (|#1| |#1| |#1|)) (-15 -3385 (|#1| |#1| |#1|)) (-15 -2864 ((-112) |#1| |#1|)) (-15 -3161 ((-3 (-657 |#1|) "failed") (-657 |#1|) |#1|)) (-15 -4120 ((-2 (|:| -1771 (-657 |#1|)) (|:| -4097 |#1|)) (-657 |#1|))) (-15 -3436 (|#1| (-657 |#1|))) (-15 -3436 (|#1| |#1| |#1|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-2721 (((-3 $ "failed") $ $) 20)) (-2864 (((-112) $ $) 65)) (-4359 (($) 18 T CONST)) (-3373 (($ $ $) 61)) (-3843 (((-3 $ "failed") $) 37)) (-3385 (($ $ $) 62)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 57)) (-4094 (((-112) $) 35)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3402 (($ $ $) 52) (($ (-657 $)) 51)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3436 (($ $ $) 54) (($ (-657 $)) 53)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3418 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-2034 (((-784) $) 64)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 63)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 45)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-317) (-141)) (T -317)) -((-2864 (*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112)))) (-2034 (*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-784)))) (-3944 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-317)))) (-3385 (*1 *1 *1 *1) (-4 *1 (-317))) (-3373 (*1 *1 *1 *1) (-4 *1 (-317))) (-2143 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4097 *1))) (-4 *1 (-317)))) (-2143 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-317)))) (-2941 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-657 *1)) (-4 *1 (-317))))) -(-13 (-940) (-10 -8 (-15 -2864 ((-112) $ $)) (-15 -2034 ((-784) $)) (-15 -3944 ((-2 (|:| -2335 $) (|:| -3644 $)) $ $)) (-15 -3385 ($ $ $)) (-15 -3373 ($ $ $)) (-15 -2143 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $)) (-15 -2143 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2941 ((-3 (-657 $) "failed") (-657 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-940) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3236 (($ $ (-657 |#2|) (-657 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-304 |#2|)) 11) (($ $ (-657 (-304 |#2|))) NIL))) -(((-318 |#1| |#2|) (-10 -8 (-15 -3236 (|#1| |#1| (-657 (-304 |#2|)))) (-15 -3236 (|#1| |#1| (-304 |#2|))) (-15 -3236 (|#1| |#1| |#2| |#2|)) (-15 -3236 (|#1| |#1| (-657 |#2|) (-657 |#2|)))) (-319 |#2|) (-1122)) (T -318)) -NIL -(-10 -8 (-15 -3236 (|#1| |#1| (-657 (-304 |#2|)))) (-15 -3236 (|#1| |#1| (-304 |#2|))) (-15 -3236 (|#1| |#1| |#2| |#2|)) (-15 -3236 (|#1| |#1| (-657 |#2|) (-657 |#2|)))) -((-3236 (($ $ (-657 |#1|) (-657 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-304 |#1|)) 11) (($ $ (-657 (-304 |#1|))) 10))) -(((-319 |#1|) (-141) (-1122)) (T -319)) -((-3236 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1122)))) (-3236 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1122))))) -(-13 (-526 |t#1| |t#1|) (-10 -8 (-15 -3236 ($ $ (-304 |t#1|))) (-15 -3236 ($ $ (-657 (-304 |t#1|)))))) -(((-526 |#1| |#1|) . T)) -((-3236 ((|#1| (-1 |#1| (-576)) (-1200 (-419 (-576)))) 26))) -(((-320 |#1|) (-10 -7 (-15 -3236 (|#1| (-1 |#1| (-576)) (-1200 (-419 (-576)))))) (-38 (-419 (-576)))) (T -320)) -((-3236 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1200 (-419 (-576)))) (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576))))))) -(-10 -7 (-15 -3236 (|#1| (-1 |#1| (-576)) (-1200 (-419 (-576)))))) -((-3429 (((-112) $ $) NIL)) (-2849 (((-576) $) 12)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3088 (((-1157) $) 9)) (-3501 (((-877) $) 19) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-321) (-13 (-1105) (-10 -8 (-15 -3088 ((-1157) $)) (-15 -2849 ((-576) $))))) (T -321)) -((-3088 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-321)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321))))) -(-13 (-1105) (-10 -8 (-15 -3088 ((-1157) $)) (-15 -2849 ((-576) $)))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 7)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 9))) -(((-322) (-1122)) (T -322)) -NIL -(-1122) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 60)) (-3931 (((-1275 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-317)))) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-929)))) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-929)))) (-2864 (((-112) $ $) NIL)) (-1536 (((-576) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-833)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-1275 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1198) "failed") $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1060 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1060 (-576)))) (((-3 (-1274 |#2| |#3| |#4|) "failed") $) 26)) (-2884 (((-1275 |#1| |#2| |#3| |#4|) $) NIL) (((-1198) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1060 (-1198)))) (((-419 (-576)) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1060 (-576)))) (((-576) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1060 (-576)))) (((-1274 |#2| |#3| |#4|) $) NIL)) (-3373 (($ $ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-1275 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1289 (-1275 |#1| |#2| |#3| |#4|)))) (-702 $) (-1289 $)) NIL) (((-702 (-1275 |#1| |#2| |#3| |#4|)) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-557)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-2828 (((-112) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-833)))) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-902 (-390))))) (-4094 (((-112) $) NIL)) (-2752 (($ $) NIL)) (-1621 (((-1275 |#1| |#2| |#3| |#4|) $) 22)) (-4019 (((-3 $ "failed") $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1174)))) (-2881 (((-112) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-833)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3707 (($ $ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-862)))) (-1611 (($ $ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-862)))) (-4083 (($ (-1 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|)) $) NIL)) (-2546 (((-3 (-856 |#2|) "failed") $) 80)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-1275 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1289 (-1275 |#1| |#2| |#3| |#4|)))) (-1289 $) $) NIL) (((-702 (-1275 |#1| |#2| |#3| |#4|)) (-1289 $)) NIL)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1706 (($) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1174)) CONST)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2900 (($ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-317)))) (-3427 (((-1275 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-557)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-929)))) (-1885 (((-430 $) $) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3236 (($ $ (-657 (-1275 |#1| |#2| |#3| |#4|)) (-657 (-1275 |#1| |#2| |#3| |#4|))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-319 (-1275 |#1| |#2| |#3| |#4|)))) (($ $ (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-319 (-1275 |#1| |#2| |#3| |#4|)))) (($ $ (-304 (-1275 |#1| |#2| |#3| |#4|))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-319 (-1275 |#1| |#2| |#3| |#4|)))) (($ $ (-657 (-304 (-1275 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-319 (-1275 |#1| |#2| |#3| |#4|)))) (($ $ (-657 (-1198)) (-657 (-1275 |#1| |#2| |#3| |#4|))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-526 (-1198) (-1275 |#1| |#2| |#3| |#4|)))) (($ $ (-1198) (-1275 |#1| |#2| |#3| |#4|)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-526 (-1198) (-1275 |#1| |#2| |#3| |#4|))))) (-2034 (((-784) $) NIL)) (-2835 (($ $ (-1275 |#1| |#2| |#3| |#4|)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-296 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|))))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2815 (($ $ (-1 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-920 (-1198)))) (($ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-784)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-237)))) (-1396 (($ $) NIL)) (-1635 (((-1275 |#1| |#2| |#3| |#4|) $) 19)) (-4148 (((-908 (-576)) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-626 (-908 (-390))))) (((-548) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-626 (-548)))) (((-390) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1044))) (((-227) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1044)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| (-1275 |#1| |#2| |#3| |#4|) (-929))))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-1275 |#1| |#2| |#3| |#4|)) 30) (($ (-1198)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1060 (-1198)))) (($ (-1274 |#2| |#3| |#4|)) 37)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| (-1275 |#1| |#2| |#3| |#4|) (-929))) (|has| (-1275 |#1| |#2| |#3| |#4|) (-146))))) (-1960 (((-784)) NIL T CONST)) (-1893 (((-1275 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-557)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-1792 (($ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-833)))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-1 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-920 (-1198)))) (($ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-784)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-237)))) (-2985 (((-112) $ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-862)))) (-2963 (((-112) $ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-862)))) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-862)))) (-2954 (((-112) $ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-862)))) (-3034 (($ $ $) 35) (($ (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|)) 32)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-1275 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1275 |#1| |#2| |#3| |#4|)) NIL))) -(((-323 |#1| |#2| |#3| |#4|) (-13 (-1014 (-1275 |#1| |#2| |#3| |#4|)) (-1060 (-1274 |#2| |#3| |#4|)) (-10 -8 (-15 -2546 ((-3 (-856 |#2|) "failed") $)) (-15 -3501 ($ (-1274 |#2| |#3| |#4|))))) (-13 (-1060 (-576)) (-652 (-576)) (-464)) (-13 (-27) (-1224) (-442 |#1|)) (-1198) |#2|) (T -323)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1274 *4 *5 *6)) (-4 *4 (-13 (-27) (-1224) (-442 *3))) (-14 *5 (-1198)) (-14 *6 *4) (-4 *3 (-13 (-1060 (-576)) (-652 (-576)) (-464))) (-5 *1 (-323 *3 *4 *5 *6)))) (-2546 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1060 (-576)) (-652 (-576)) (-464))) (-5 *2 (-856 *4)) (-5 *1 (-323 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1224) (-442 *3))) (-14 *5 (-1198)) (-14 *6 *4)))) -(-13 (-1014 (-1275 |#1| |#2| |#3| |#4|)) (-1060 (-1274 |#2| |#3| |#4|)) (-10 -8 (-15 -2546 ((-3 (-856 |#2|) "failed") $)) (-15 -3501 ($ (-1274 |#2| |#3| |#4|))))) -((-4083 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13))) -(((-324 |#1| |#2|) (-10 -7 (-15 -4083 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1122) (-1122)) (T -324)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6))))) -(-10 -7 (-15 -4083 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) -((-2084 (((-52) |#2| (-304 |#2|) (-784)) 40) (((-52) |#2| (-304 |#2|)) 32) (((-52) |#2| (-784)) 35) (((-52) |#2|) 33) (((-52) (-1198)) 26)) (-3660 (((-52) |#2| (-304 |#2|) (-419 (-576))) 59) (((-52) |#2| (-304 |#2|)) 56) (((-52) |#2| (-419 (-576))) 58) (((-52) |#2|) 57) (((-52) (-1198)) 55)) (-2111 (((-52) |#2| (-304 |#2|) (-419 (-576))) 54) (((-52) |#2| (-304 |#2|)) 51) (((-52) |#2| (-419 (-576))) 53) (((-52) |#2|) 52) (((-52) (-1198)) 50)) (-2098 (((-52) |#2| (-304 |#2|) (-576)) 47) (((-52) |#2| (-304 |#2|)) 44) (((-52) |#2| (-576)) 46) (((-52) |#2|) 45) (((-52) (-1198)) 43))) -(((-325 |#1| |#2|) (-10 -7 (-15 -2084 ((-52) (-1198))) (-15 -2084 ((-52) |#2|)) (-15 -2084 ((-52) |#2| (-784))) (-15 -2084 ((-52) |#2| (-304 |#2|))) (-15 -2084 ((-52) |#2| (-304 |#2|) (-784))) (-15 -2098 ((-52) (-1198))) (-15 -2098 ((-52) |#2|)) (-15 -2098 ((-52) |#2| (-576))) (-15 -2098 ((-52) |#2| (-304 |#2|))) (-15 -2098 ((-52) |#2| (-304 |#2|) (-576))) (-15 -2111 ((-52) (-1198))) (-15 -2111 ((-52) |#2|)) (-15 -2111 ((-52) |#2| (-419 (-576)))) (-15 -2111 ((-52) |#2| (-304 |#2|))) (-15 -2111 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -3660 ((-52) (-1198))) (-15 -3660 ((-52) |#2|)) (-15 -3660 ((-52) |#2| (-419 (-576)))) (-15 -3660 ((-52) |#2| (-304 |#2|))) (-15 -3660 ((-52) |#2| (-304 |#2|) (-419 (-576))))) (-13 (-464) (-1060 (-576)) (-652 (-576))) (-13 (-27) (-1224) (-442 |#1|))) (T -325)) -((-3660 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-3660 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-3660 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) (-3660 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) (-3660 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-442 *4))))) (-2111 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2111 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2111 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) (-2111 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-442 *4))))) (-2098 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-464) (-1060 *5) (-652 *5))) (-5 *5 (-576)) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2098 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2098 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1060 *4) (-652 *4))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) (-2098 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) (-2098 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-442 *4))))) (-2084 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-784)) (-4 *3 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2084 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2084 (*1 *2 *3 *4) (-12 (-5 *4 (-784)) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) (-2084 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) (-2084 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-442 *4)))))) -(-10 -7 (-15 -2084 ((-52) (-1198))) (-15 -2084 ((-52) |#2|)) (-15 -2084 ((-52) |#2| (-784))) (-15 -2084 ((-52) |#2| (-304 |#2|))) (-15 -2084 ((-52) |#2| (-304 |#2|) (-784))) (-15 -2098 ((-52) (-1198))) (-15 -2098 ((-52) |#2|)) (-15 -2098 ((-52) |#2| (-576))) (-15 -2098 ((-52) |#2| (-304 |#2|))) (-15 -2098 ((-52) |#2| (-304 |#2|) (-576))) (-15 -2111 ((-52) (-1198))) (-15 -2111 ((-52) |#2|)) (-15 -2111 ((-52) |#2| (-419 (-576)))) (-15 -2111 ((-52) |#2| (-304 |#2|))) (-15 -2111 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -3660 ((-52) (-1198))) (-15 -3660 ((-52) |#2|)) (-15 -3660 ((-52) |#2| (-419 (-576)))) (-15 -3660 ((-52) |#2| (-304 |#2|))) (-15 -3660 ((-52) |#2| (-304 |#2|) (-419 (-576))))) -((-3429 (((-112) $ $) NIL)) (-3128 (((-657 $) $ (-1198)) NIL (|has| |#1| (-568))) (((-657 $) $) NIL (|has| |#1| (-568))) (((-657 $) (-1194 $) (-1198)) NIL (|has| |#1| (-568))) (((-657 $) (-1194 $)) NIL (|has| |#1| (-568))) (((-657 $) (-972 $)) NIL (|has| |#1| (-568)))) (-1911 (($ $ (-1198)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1194 $) (-1198)) NIL (|has| |#1| (-568))) (($ (-1194 $)) NIL (|has| |#1| (-568))) (($ (-972 $)) NIL (|has| |#1| (-568)))) (-2364 (((-112) $) 27 (-2802 (|has| |#1| (-25)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))))) (-2029 (((-657 (-1198)) $) 368)) (-1849 (((-419 (-1194 $)) $ (-624 $)) NIL (|has| |#1| (-568)))) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-3946 (((-657 (-624 $)) $) NIL)) (-2176 (($ $) 171 (|has| |#1| (-568)))) (-2030 (($ $) 147 (|has| |#1| (-568)))) (-4423 (($ $ (-1114 $)) 232 (|has| |#1| (-568))) (($ $ (-1198)) 228 (|has| |#1| (-568)))) (-2721 (((-3 $ "failed") $ $) NIL (-2802 (|has| |#1| (-21)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))))) (-4054 (($ $ (-304 $)) NIL) (($ $ (-657 (-304 $))) 386) (($ $ (-657 (-624 $)) (-657 $)) 430)) (-4250 (((-430 (-1194 $)) (-1194 $)) 308 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-2638 (($ $) NIL (|has| |#1| (-568)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-568)))) (-1896 (($ $) NIL (|has| |#1| (-568)))) (-2864 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2150 (($ $) 167 (|has| |#1| (-568)))) (-2004 (($ $) 143 (|has| |#1| (-568)))) (-2730 (($ $ (-576)) 73 (|has| |#1| (-568)))) (-2201 (($ $) 175 (|has| |#1| (-568)))) (-2052 (($ $) 151 (|has| |#1| (-568)))) (-4359 (($) NIL (-2802 (|has| |#1| (-25)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))) (|has| |#1| (-1134))) CONST)) (-2708 (((-657 $) $ (-1198)) NIL (|has| |#1| (-568))) (((-657 $) $) NIL (|has| |#1| (-568))) (((-657 $) (-1194 $) (-1198)) NIL (|has| |#1| (-568))) (((-657 $) (-1194 $)) NIL (|has| |#1| (-568))) (((-657 $) (-972 $)) NIL (|has| |#1| (-568)))) (-3564 (($ $ (-1198)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1194 $) (-1198)) 134 (|has| |#1| (-568))) (($ (-1194 $)) NIL (|has| |#1| (-568))) (($ (-972 $)) NIL (|has| |#1| (-568)))) (-1624 (((-3 (-624 $) "failed") $) 18) (((-3 (-1198) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-972 |#1|)) "failed") $) NIL (|has| |#1| (-568))) (((-3 (-972 |#1|) "failed") $) NIL (|has| |#1| (-1071))) (((-3 (-419 (-576)) "failed") $) 46 (-2802 (-12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576)))) (|has| |#1| (-1060 (-419 (-576))))))) (-2884 (((-624 $) $) 12) (((-1198) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-972 |#1|)) $) NIL (|has| |#1| (-568))) (((-972 |#1|) $) NIL (|has| |#1| (-1071))) (((-419 (-576)) $) 319 (-2802 (-12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576)))) (|has| |#1| (-1060 (-419 (-576))))))) (-3373 (($ $ $) NIL (|has| |#1| (-568)))) (-3306 (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 125 (|has| |#1| (-1071))) (((-702 |#1|) (-702 $)) 115 (|has| |#1| (-1071))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))) (((-702 (-576)) (-702 $)) NIL (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))))) (-3622 (($ $) 96 (|has| |#1| (-568)))) (-3843 (((-3 $ "failed") $) NIL (|has| |#1| (-1134)))) (-3385 (($ $ $) NIL (|has| |#1| (-568)))) (-3778 (($ $ (-1114 $)) 236 (|has| |#1| (-568))) (($ $ (-1198)) 234 (|has| |#1| (-568)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| |#1| (-568)))) (-4257 (((-112) $) NIL (|has| |#1| (-568)))) (-4399 (($ $ $) 202 (|has| |#1| (-568)))) (-1657 (($) 137 (|has| |#1| (-568)))) (-2194 (($ $ $) 222 (|has| |#1| (-568)))) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 392 (|has| |#1| (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 399 (|has| |#1| (-902 (-390))))) (-2887 (($ $) NIL) (($ (-657 $)) NIL)) (-1784 (((-657 (-115)) $) NIL)) (-1832 (((-115) (-115)) 276)) (-4094 (((-112) $) 25 (|has| |#1| (-1134)))) (-2320 (((-112) $) NIL (|has| $ (-1060 (-576))))) (-2752 (($ $) 72 (|has| |#1| (-1071)))) (-1621 (((-1147 |#1| (-624 $)) $) 91 (|has| |#1| (-1071)))) (-1716 (((-112) $) 62 (|has| |#1| (-568)))) (-2082 (($ $ (-576)) NIL (|has| |#1| (-568)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-568)))) (-4153 (((-1194 $) (-624 $)) 277 (|has| $ (-1071)))) (-4083 (($ (-1 $ $) (-624 $)) 426)) (-3398 (((-3 (-624 $) "failed") $) NIL)) (-3670 (($ $) 141 (|has| |#1| (-568)))) (-3785 (($ $) 247 (|has| |#1| (-568)))) (-3101 (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL (|has| |#1| (-1071))) (((-702 |#1|) (-1289 $)) NIL (|has| |#1| (-1071))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))) (((-702 (-576)) (-1289 $)) NIL (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))))) (-3402 (($ (-657 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-2342 (((-1180) $) NIL)) (-1817 (((-657 (-624 $)) $) 49)) (-1699 (($ (-115) $) NIL) (($ (-115) (-657 $)) 431)) (-1392 (((-3 (-657 $) "failed") $) NIL (|has| |#1| (-1134)))) (-3559 (((-3 (-2 (|:| |val| $) (|:| -1801 (-576))) "failed") $) NIL (|has| |#1| (-1071)))) (-2974 (((-3 (-657 $) "failed") $) 436 (|has| |#1| (-25)))) (-4003 (((-3 (-2 (|:| -1771 (-576)) (|:| |var| (-624 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2999 (((-3 (-2 (|:| |var| (-624 $)) (|:| -1801 (-576))) "failed") $) NIL (|has| |#1| (-1134))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1801 (-576))) "failed") $ (-115)) NIL (|has| |#1| (-1071))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1801 (-576))) "failed") $ (-1198)) NIL (|has| |#1| (-1071)))) (-4412 (((-112) $ (-115)) NIL) (((-112) $ (-1198)) 51)) (-2134 (($ $) NIL (-2802 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-2774 (($ $ (-1198)) 251 (|has| |#1| (-568))) (($ $ (-1114 $)) 253 (|has| |#1| (-568)))) (-2404 (((-784) $) NIL)) (-1471 (((-1142) $) NIL)) (-2146 (((-112) $) 43)) (-2160 ((|#1| $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 301 (|has| |#1| (-568)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-3698 (((-112) $ $) NIL) (((-112) $ (-1198)) NIL)) (-2492 (($ $ (-1198)) 226 (|has| |#1| (-568))) (($ $) 224 (|has| |#1| (-568)))) (-3907 (($ $) 218 (|has| |#1| (-568)))) (-2988 (((-430 (-1194 $)) (-1194 $)) 306 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-1885 (((-430 $) $) NIL (|has| |#1| (-568)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-568)))) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-568)))) (-4067 (($ $) 139 (|has| |#1| (-568)))) (-3593 (((-112) $) NIL (|has| $ (-1060 (-576))))) (-3236 (($ $ (-624 $) $) NIL) (($ $ (-657 (-624 $)) (-657 $)) 425) (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ $))) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-1198) (-1 $ (-657 $))) NIL) (($ $ (-1198) (-1 $ $)) NIL) (($ $ (-657 (-115)) (-657 (-1 $ $))) 379) (($ $ (-657 (-115)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-115) (-1 $ (-657 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-626 (-548)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-626 (-548)))) (($ $) NIL (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1198)) 366 (|has| |#1| (-626 (-548)))) (($ $ (-657 (-115)) (-657 $) (-1198)) 365 (|has| |#1| (-626 (-548)))) (($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ $))) NIL (|has| |#1| (-1071))) (($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ (-657 $)))) NIL (|has| |#1| (-1071))) (($ $ (-1198) (-784) (-1 $ (-657 $))) NIL (|has| |#1| (-1071))) (($ $ (-1198) (-784) (-1 $ $)) NIL (|has| |#1| (-1071)))) (-2034 (((-784) $) NIL (|has| |#1| (-568)))) (-1962 (($ $) 239 (|has| |#1| (-568)))) (-2835 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-657 $)) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-568)))) (-2445 (($ $) NIL) (($ $ $) NIL)) (-1992 (($ $) 249 (|has| |#1| (-568)))) (-1379 (($ $) 200 (|has| |#1| (-568)))) (-2815 (($ $ (-1198)) NIL (|has| |#1| (-1071))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-1071))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-1071))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-1071)))) (-1396 (($ $) 74 (|has| |#1| (-568)))) (-1635 (((-1147 |#1| (-624 $)) $) 93 (|has| |#1| (-568)))) (-3180 (($ $) 317 (|has| $ (-1071)))) (-2213 (($ $) 177 (|has| |#1| (-568)))) (-2062 (($ $) 153 (|has| |#1| (-568)))) (-2188 (($ $) 173 (|has| |#1| (-568)))) (-2042 (($ $) 149 (|has| |#1| (-568)))) (-2163 (($ $) 169 (|has| |#1| (-568)))) (-2017 (($ $) 145 (|has| |#1| (-568)))) (-4148 (((-908 (-576)) $) NIL (|has| |#1| (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| |#1| (-626 (-908 (-390))))) (($ (-430 $)) NIL (|has| |#1| (-568))) (((-548) $) 363 (|has| |#1| (-626 (-548))))) (-3549 (($ $ $) NIL (|has| |#1| (-485)))) (-3544 (($ $ $) NIL (|has| |#1| (-485)))) (-3501 (((-877) $) 424) (($ (-624 $)) 415) (($ (-1198)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-568))) (($ (-48)) 312 (-12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576))))) (($ (-1147 |#1| (-624 $))) 95 (|has| |#1| (-1071))) (($ (-419 |#1|)) NIL (|has| |#1| (-568))) (($ (-972 (-419 |#1|))) NIL (|has| |#1| (-568))) (($ (-419 (-972 (-419 |#1|)))) NIL (|has| |#1| (-568))) (($ (-419 (-972 |#1|))) NIL (|has| |#1| (-568))) (($ (-972 |#1|)) NIL (|has| |#1| (-1071))) (($ (-576)) 34 (-2802 (|has| |#1| (-1060 (-576))) (|has| |#1| (-1071)))) (($ (-419 (-576))) NIL (-2802 (|has| |#1| (-568)) (|has| |#1| (-1060 (-419 (-576))))))) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) NIL (|has| |#1| (-1071)) CONST)) (-2139 (($ $) NIL) (($ (-657 $)) NIL)) (-3871 (($ $ $) 220 (|has| |#1| (-568)))) (-3806 (($ $ $) 206 (|has| |#1| (-568)))) (-2751 (($ $ $) 210 (|has| |#1| (-568)))) (-2239 (($ $ $) 204 (|has| |#1| (-568)))) (-2467 (($ $ $) 208 (|has| |#1| (-568)))) (-4159 (((-112) (-115)) 10)) (-2046 (((-112) $ $) 86)) (-4110 (($ $) 183 (|has| |#1| (-568)))) (-2100 (($ $) 159 (|has| |#1| (-568)))) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2225 (($ $) 179 (|has| |#1| (-568)))) (-2072 (($ $) 155 (|has| |#1| (-568)))) (-4137 (($ $) 187 (|has| |#1| (-568)))) (-2125 (($ $) 163 (|has| |#1| (-568)))) (-4172 (($ (-1198) $) NIL) (($ (-1198) $ $) NIL) (($ (-1198) $ $ $) NIL) (($ (-1198) $ $ $ $) NIL) (($ (-1198) (-657 $)) NIL)) (-3270 (($ $) 214 (|has| |#1| (-568)))) (-3480 (($ $) 212 (|has| |#1| (-568)))) (-2224 (($ $) 189 (|has| |#1| (-568)))) (-2137 (($ $) 165 (|has| |#1| (-568)))) (-4124 (($ $) 185 (|has| |#1| (-568)))) (-2113 (($ $) 161 (|has| |#1| (-568)))) (-2235 (($ $) 181 (|has| |#1| (-568)))) (-2085 (($ $) 157 (|has| |#1| (-568)))) (-1792 (($ $) 192 (|has| |#1| (-568)))) (-2769 (($) 21 (-2802 (|has| |#1| (-25)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))) CONST)) (-2528 (($ $) 243 (|has| |#1| (-568)))) (-2779 (($) 23 (|has| |#1| (-1134)) CONST)) (-2238 (($ $) 194 (|has| |#1| (-568))) (($ $ $) 196 (|has| |#1| (-568)))) (-4006 (($ $) 241 (|has| |#1| (-568)))) (-2097 (($ $ (-1198)) NIL (|has| |#1| (-1071))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-1071))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-1071))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-1071)))) (-2438 (($ $) 245 (|has| |#1| (-568)))) (-1717 (($ $ $) 198 (|has| |#1| (-568)))) (-2933 (((-112) $ $) 88)) (-3034 (($ (-1147 |#1| (-624 $)) (-1147 |#1| (-624 $))) 106 (|has| |#1| (-568))) (($ $ $) 42 (-2802 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-3022 (($ $ $) 40 (-2802 (|has| |#1| (-21)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))))) (($ $) 29 (-2802 (|has| |#1| (-21)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))))) (-3012 (($ $ $) 38 (-2802 (|has| |#1| (-25)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))))) (** (($ $ $) 64 (|has| |#1| (-568))) (($ $ (-419 (-576))) 314 (|has| |#1| (-568))) (($ $ (-576)) 80 (-2802 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-784)) 75 (|has| |#1| (-1134))) (($ $ (-941)) 84 (|has| |#1| (-1134)))) (* (($ (-419 (-576)) $) NIL (|has| |#1| (-568))) (($ $ (-419 (-576))) NIL (|has| |#1| (-568))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1071))) (($ $ $) 36 (|has| |#1| (-1134))) (($ (-576) $) 32 (-2802 (|has| |#1| (-21)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))))) (($ (-784) $) NIL (-2802 (|has| |#1| (-25)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))))) (($ (-941) $) NIL (-2802 (|has| |#1| (-25)) (-12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))))))) -(((-326 |#1|) (-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1224)) (-6 (-161)) (-6 (-641)) (-6 (-1161)) (-15 -3622 ($ $)) (-15 -1716 ((-112) $)) (-15 -2730 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -2988 ((-430 (-1194 $)) (-1194 $))) (-15 -4250 ((-430 (-1194 $)) (-1194 $)))) |%noBranch|) (IF (|has| |#1| (-1060 (-576))) (-6 (-1060 (-48))) |%noBranch|)) |%noBranch|))) (-1122)) (T -326)) -((-3622 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1122)))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1122)))) (-2730 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1122)))) (-2988 (*1 *2 *3) (-12 (-5 *2 (-430 (-1194 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1194 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1122)))) (-4250 (*1 *2 *3) (-12 (-5 *2 (-430 (-1194 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1194 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1122))))) -(-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1224)) (-6 (-161)) (-6 (-641)) (-6 (-1161)) (-15 -3622 ($ $)) (-15 -1716 ((-112) $)) (-15 -2730 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -2988 ((-430 (-1194 $)) (-1194 $))) (-15 -4250 ((-430 (-1194 $)) (-1194 $)))) |%noBranch|) (IF (|has| |#1| (-1060 (-576))) (-6 (-1060 (-48))) |%noBranch|)) |%noBranch|))) -((-3305 (((-52) |#2| (-115) (-304 |#2|) (-657 |#2|)) 89) (((-52) |#2| (-115) (-304 |#2|) (-304 |#2|)) 85) (((-52) |#2| (-115) (-304 |#2|) |#2|) 87) (((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|) 88) (((-52) (-657 |#2|) (-657 (-115)) (-304 |#2|) (-657 (-304 |#2|))) 81) (((-52) (-657 |#2|) (-657 (-115)) (-304 |#2|) (-657 |#2|)) 83) (((-52) (-657 (-304 |#2|)) (-657 (-115)) (-304 |#2|) (-657 |#2|)) 84) (((-52) (-657 (-304 |#2|)) (-657 (-115)) (-304 |#2|) (-657 (-304 |#2|))) 82) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-657 |#2|)) 90) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|)) 86))) -(((-327 |#1| |#2|) (-10 -7 (-15 -3305 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -3305 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-657 |#2|))) (-15 -3305 ((-52) (-657 (-304 |#2|)) (-657 (-115)) (-304 |#2|) (-657 (-304 |#2|)))) (-15 -3305 ((-52) (-657 (-304 |#2|)) (-657 (-115)) (-304 |#2|) (-657 |#2|))) (-15 -3305 ((-52) (-657 |#2|) (-657 (-115)) (-304 |#2|) (-657 |#2|))) (-15 -3305 ((-52) (-657 |#2|) (-657 (-115)) (-304 |#2|) (-657 (-304 |#2|)))) (-15 -3305 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -3305 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -3305 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -3305 ((-52) |#2| (-115) (-304 |#2|) (-657 |#2|)))) (-13 (-568) (-626 (-548))) (-442 |#1|)) (T -327)) -((-3305 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-657 *3)) (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *3)))) (-3305 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-3305 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-3305 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *5)))) (-3305 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 (-115))) (-5 *6 (-657 (-304 *8))) (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-3305 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-657 *7)) (-5 *4 (-657 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-3305 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-657 (-304 *8))) (-5 *4 (-657 (-115))) (-5 *5 (-304 *8)) (-5 *6 (-657 *8)) (-4 *8 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-3305 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-657 (-304 *7))) (-5 *4 (-657 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-3305 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-657 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-3305 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *6))))) -(-10 -7 (-15 -3305 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -3305 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-657 |#2|))) (-15 -3305 ((-52) (-657 (-304 |#2|)) (-657 (-115)) (-304 |#2|) (-657 (-304 |#2|)))) (-15 -3305 ((-52) (-657 (-304 |#2|)) (-657 (-115)) (-304 |#2|) (-657 |#2|))) (-15 -3305 ((-52) (-657 |#2|) (-657 (-115)) (-304 |#2|) (-657 |#2|))) (-15 -3305 ((-52) (-657 |#2|) (-657 (-115)) (-304 |#2|) (-657 (-304 |#2|)))) (-15 -3305 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -3305 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -3305 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -3305 ((-52) |#2| (-115) (-304 |#2|) (-657 |#2|)))) -((-3333 (((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-227) (-576) (-1180)) 67) (((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-227) (-576)) 68) (((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-1 (-227) (-227)) (-576) (-1180)) 64) (((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-1 (-227) (-227)) (-576)) 65)) (-1347 (((-1 (-227) (-227)) (-227)) 66))) -(((-328) (-10 -7 (-15 -1347 ((-1 (-227) (-227)) (-227))) (-15 -3333 ((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-1 (-227) (-227)) (-576))) (-15 -3333 ((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-1 (-227) (-227)) (-576) (-1180))) (-15 -3333 ((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-227) (-576))) (-15 -3333 ((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-227) (-576) (-1180))))) (T -328)) -((-3333 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1116 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1180)) (-5 *2 (-1234 (-946))) (-5 *1 (-328)))) (-3333 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1116 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *2 (-1234 (-946))) (-5 *1 (-328)))) (-3333 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1116 (-227))) (-5 *6 (-576)) (-5 *7 (-1180)) (-5 *2 (-1234 (-946))) (-5 *1 (-328)))) (-3333 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1116 (-227))) (-5 *6 (-576)) (-5 *2 (-1234 (-946))) (-5 *1 (-328)))) (-1347 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) -(-10 -7 (-15 -1347 ((-1 (-227) (-227)) (-227))) (-15 -3333 ((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-1 (-227) (-227)) (-576))) (-15 -3333 ((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-1 (-227) (-227)) (-576) (-1180))) (-15 -3333 ((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-227) (-576))) (-15 -3333 ((-1234 (-946)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-227) (-576) (-1180)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 26)) (-2029 (((-657 (-1104)) $) NIL)) (-3032 (((-1198) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-4374 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-2886 (((-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 20)) (-2176 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2030 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL (|has| |#1| (-374)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1896 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2864 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2150 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2004 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3660 (($ (-784) (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-2201 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2052 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4359 (($) NIL T CONST)) (-3373 (($ $ $) NIL (|has| |#1| (-374)))) (-2212 (($ $) 36)) (-3843 (((-3 $ "failed") $) NIL)) (-3385 (($ $ $) NIL (|has| |#1| (-374)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-4257 (((-112) $) NIL (|has| |#1| (-374)))) (-2373 (((-112) $) NIL)) (-1657 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3182 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) 16)) (-4094 (((-112) $) NIL)) (-2082 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1525 (($ $ (-941)) NIL) (($ $ (-419 (-576))) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-419 (-576))) NIL) (($ $ (-1104) (-419 (-576))) NIL) (($ $ (-657 (-1104)) (-657 (-419 (-576)))) NIL)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-3670 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-374)))) (-4190 (($ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| |#1| (-15 -4190 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -2029 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224)))))) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1885 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-3926 (($ $ (-419 (-576))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-4302 (((-419 (-576)) $) 17)) (-3554 (($ (-1274 |#1| |#2| |#3|)) 11)) (-1801 (((-1274 |#1| |#2| |#3|) $) 12)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3236 (((-1179 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2034 (((-784) $) NIL (|has| |#1| (-374)))) (-2835 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1134)))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-374)))) (-2815 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-1770 (((-419 (-576)) $) NIL)) (-2213 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2062 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2188 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2163 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1431 (($ $) 10)) (-3501 (((-877) $) 42) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2313 ((|#1| $ (-419 (-576))) 34)) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) NIL T CONST)) (-3665 ((|#1| $) NIL)) (-2046 (((-112) $ $) NIL)) (-4110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2225 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2072 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2125 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4144 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3501 (|#1| (-1198))))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4124 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2235 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2085 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 28)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 37)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-329 |#1| |#2| |#3|) (-13 (-1270 |#1|) (-805) (-10 -8 (-15 -3554 ($ (-1274 |#1| |#2| |#3|))) (-15 -1801 ((-1274 |#1| |#2| |#3|) $)) (-15 -4302 ((-419 (-576)) $)))) (-374) (-1198) |#1|) (T -329)) -((-3554 (*1 *1 *2) (-12 (-5 *2 (-1274 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1198)) (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1198)) (-14 *5 *3))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1198)) (-14 *5 *3)))) -(-13 (-1270 |#1|) (-805) (-10 -8 (-15 -3554 ($ (-1274 |#1| |#2| |#3|))) (-15 -1801 ((-1274 |#1| |#2| |#3|) $)) (-15 -4302 ((-419 (-576)) $)))) -((-2082 (((-2 (|:| -1801 (-784)) (|:| -1771 |#1|) (|:| |radicand| (-657 |#1|))) (-430 |#1|) (-784)) 35)) (-3670 (((-657 (-2 (|:| -1771 (-784)) (|:| |logand| |#1|))) (-430 |#1|)) 40))) -(((-330 |#1|) (-10 -7 (-15 -2082 ((-2 (|:| -1801 (-784)) (|:| -1771 |#1|) (|:| |radicand| (-657 |#1|))) (-430 |#1|) (-784))) (-15 -3670 ((-657 (-2 (|:| -1771 (-784)) (|:| |logand| |#1|))) (-430 |#1|)))) (-568)) (T -330)) -((-3670 (*1 *2 *3) (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) (-5 *2 (-657 (-2 (|:| -1771 (-784)) (|:| |logand| *4)))) (-5 *1 (-330 *4)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) (-5 *2 (-2 (|:| -1801 (-784)) (|:| -1771 *5) (|:| |radicand| (-657 *5)))) (-5 *1 (-330 *5)) (-5 *4 (-784))))) -(-10 -7 (-15 -2082 ((-2 (|:| -1801 (-784)) (|:| -1771 |#1|) (|:| |radicand| (-657 |#1|))) (-430 |#1|) (-784))) (-15 -3670 ((-657 (-2 (|:| -1771 (-784)) (|:| |logand| |#1|))) (-430 |#1|)))) -((-2029 (((-657 |#2|) (-1194 |#4|)) 44)) (-4252 ((|#3| (-576)) 47)) (-1369 (((-1194 |#4|) (-1194 |#3|)) 30)) (-3426 (((-1194 |#4|) (-1194 |#4|) (-576)) 66)) (-4008 (((-1194 |#3|) (-1194 |#4|)) 21)) (-1770 (((-657 (-784)) (-1194 |#4|) (-657 |#2|)) 41)) (-2955 (((-1194 |#3|) (-1194 |#4|) (-657 |#2|) (-657 |#3|)) 35))) -(((-331 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2955 ((-1194 |#3|) (-1194 |#4|) (-657 |#2|) (-657 |#3|))) (-15 -1770 ((-657 (-784)) (-1194 |#4|) (-657 |#2|))) (-15 -2029 ((-657 |#2|) (-1194 |#4|))) (-15 -4008 ((-1194 |#3|) (-1194 |#4|))) (-15 -1369 ((-1194 |#4|) (-1194 |#3|))) (-15 -3426 ((-1194 |#4|) (-1194 |#4|) (-576))) (-15 -4252 (|#3| (-576)))) (-806) (-862) (-1071) (-969 |#3| |#1| |#2|)) (T -331)) -((-4252 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1071)) (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-969 *2 *4 *5)))) (-3426 (*1 *2 *2 *3) (-12 (-5 *2 (-1194 *7)) (-5 *3 (-576)) (-4 *7 (-969 *6 *4 *5)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) (-5 *1 (-331 *4 *5 *6 *7)))) (-1369 (*1 *2 *3) (-12 (-5 *3 (-1194 *6)) (-4 *6 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-1194 *7)) (-5 *1 (-331 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) (-4008 (*1 *2 *3) (-12 (-5 *3 (-1194 *7)) (-4 *7 (-969 *6 *4 *5)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) (-5 *2 (-1194 *6)) (-5 *1 (-331 *4 *5 *6 *7)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-1194 *7)) (-4 *7 (-969 *6 *4 *5)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) (-5 *2 (-657 *5)) (-5 *1 (-331 *4 *5 *6 *7)))) (-1770 (*1 *2 *3 *4) (-12 (-5 *3 (-1194 *8)) (-5 *4 (-657 *6)) (-4 *6 (-862)) (-4 *8 (-969 *7 *5 *6)) (-4 *5 (-806)) (-4 *7 (-1071)) (-5 *2 (-657 (-784))) (-5 *1 (-331 *5 *6 *7 *8)))) (-2955 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1194 *9)) (-5 *4 (-657 *7)) (-5 *5 (-657 *8)) (-4 *7 (-862)) (-4 *8 (-1071)) (-4 *9 (-969 *8 *6 *7)) (-4 *6 (-806)) (-5 *2 (-1194 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) -(-10 -7 (-15 -2955 ((-1194 |#3|) (-1194 |#4|) (-657 |#2|) (-657 |#3|))) (-15 -1770 ((-657 (-784)) (-1194 |#4|) (-657 |#2|))) (-15 -2029 ((-657 |#2|) (-1194 |#4|))) (-15 -4008 ((-1194 |#3|) (-1194 |#4|))) (-15 -1369 ((-1194 |#4|) (-1194 |#3|))) (-15 -3426 ((-1194 |#4|) (-1194 |#4|) (-576))) (-15 -4252 (|#3| (-576)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 19)) (-2886 (((-657 (-2 (|:| |gen| |#1|) (|:| -4067 (-576)))) $) 21)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2193 (((-784) $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) NIL)) (-2884 ((|#1| $) NIL)) (-3027 ((|#1| $ (-576)) NIL)) (-4073 (((-576) $ (-576)) NIL)) (-3707 (($ $ $) NIL (|has| |#1| (-862)))) (-1611 (($ $ $) NIL (|has| |#1| (-862)))) (-2183 (($ (-1 |#1| |#1|) $) NIL)) (-2816 (($ (-1 (-576) (-576)) $) 11)) (-2342 (((-1180) $) NIL)) (-4361 (($ $ $) NIL (|has| (-576) (-805)))) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL) (($ |#1|) NIL)) (-2313 (((-576) |#1| $) NIL)) (-2046 (((-112) $ $) NIL)) (-2769 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2954 (((-112) $ $) 29 (|has| |#1| (-862)))) (-3022 (($ $) 12) (($ $ $) 28)) (-3012 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL) (($ (-576) |#1|) 27))) -(((-332 |#1|) (-13 (-21) (-730 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-862)) (-6 (-862)) |%noBranch|))) (-1122)) (T -332)) -NIL -(-13 (-21) (-730 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-862)) (-6 (-862)) |%noBranch|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2886 (((-657 (-2 (|:| |gen| |#1|) (|:| -4067 |#2|))) $) 28)) (-2721 (((-3 $ "failed") $ $) 20)) (-2193 (((-784) $) 29)) (-4359 (($) 18 T CONST)) (-1624 (((-3 |#1| "failed") $) 33)) (-2884 ((|#1| $) 34)) (-3027 ((|#1| $ (-576)) 26)) (-4073 ((|#2| $ (-576)) 27)) (-2183 (($ (-1 |#1| |#1|) $) 23)) (-2816 (($ (-1 |#2| |#2|) $) 24)) (-2342 (((-1180) $) 10)) (-4361 (($ $ $) 22 (|has| |#2| (-805)))) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12) (($ |#1|) 32)) (-2313 ((|#2| |#1| $) 25)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3012 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ |#2| |#1|) 30))) -(((-333 |#1| |#2|) (-141) (-1122) (-132)) (T -333)) -((-3012 (*1 *1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-132)))) (-2193 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-132)) (-5 *2 (-784)))) (-2886 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-132)) (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4067 *4)))))) (-4073 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1122)) (-4 *2 (-132)))) (-3027 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1122)))) (-2313 (*1 *2 *3 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-132)))) (-2816 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-132)))) (-2183 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-132)))) (-4361 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-132)) (-4 *3 (-805))))) -(-13 (-132) (-1060 |t#1|) (-10 -8 (-15 -3012 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2193 ((-784) $)) (-15 -2886 ((-657 (-2 (|:| |gen| |t#1|) (|:| -4067 |t#2|))) $)) (-15 -4073 (|t#2| $ (-576))) (-15 -3027 (|t#1| $ (-576))) (-15 -2313 (|t#2| |t#1| $)) (-15 -2816 ($ (-1 |t#2| |t#2|) $)) (-15 -2183 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-805)) (-15 -4361 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-1060 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2886 (((-657 (-2 (|:| |gen| |#1|) (|:| -4067 (-784)))) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2193 (((-784) $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) NIL)) (-2884 ((|#1| $) NIL)) (-3027 ((|#1| $ (-576)) NIL)) (-4073 (((-784) $ (-576)) NIL)) (-2183 (($ (-1 |#1| |#1|) $) NIL)) (-2816 (($ (-1 (-784) (-784)) $) NIL)) (-2342 (((-1180) $) NIL)) (-4361 (($ $ $) NIL (|has| (-784) (-805)))) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL) (($ |#1|) NIL)) (-2313 (((-784) |#1| $) NIL)) (-2046 (((-112) $ $) NIL)) (-2769 (($) NIL T CONST)) (-2933 (((-112) $ $) NIL)) (-3012 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-784) |#1|) NIL))) -(((-334 |#1|) (-333 |#1| (-784)) (-1122)) (T -334)) -NIL -(-333 |#1| (-784)) -((-3813 (($ $) 72)) (-3124 (($ $ |#2| |#3| $) 14)) (-4056 (($ (-1 |#3| |#3|) $) 51)) (-2146 (((-112) $) 42)) (-2160 ((|#2| $) 44)) (-3418 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-1450 ((|#2| $) 68)) (-4037 (((-657 |#2|) $) 56)) (-2702 (($ $ $ (-784)) 37)) (-3034 (($ $ |#2|) 60))) -(((-335 |#1| |#2| |#3|) (-10 -8 (-15 -3813 (|#1| |#1|)) (-15 -1450 (|#2| |#1|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2702 (|#1| |#1| |#1| (-784))) (-15 -3124 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4056 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4037 ((-657 |#2|) |#1|)) (-15 -2160 (|#2| |#1|)) (-15 -2146 ((-112) |#1|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3034 (|#1| |#1| |#2|))) (-336 |#2| |#3|) (-1071) (-805)) (T -335)) -NIL -(-10 -8 (-15 -3813 (|#1| |#1|)) (-15 -1450 (|#2| |#1|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2702 (|#1| |#1| |#1| (-784))) (-15 -3124 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4056 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4037 ((-657 |#2|) |#1|)) (-15 -2160 (|#2| |#1|)) (-15 -2146 ((-112) |#1|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3034 (|#1| |#1| |#2|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-3325 (($ $) 64 (|has| |#1| (-568)))) (-4306 (((-112) $) 66 (|has| |#1| (-568)))) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-1624 (((-3 (-576) "failed") $) 100 (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-2884 (((-576) $) 99 (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 96)) (-2212 (($ $) 72)) (-3843 (((-3 $ "failed") $) 37)) (-3813 (($ $) 84 (|has| |#1| (-464)))) (-3124 (($ $ |#1| |#2| $) 88)) (-4094 (((-112) $) 35)) (-4334 (((-784) $) 91)) (-3157 (((-112) $) 74)) (-2003 (($ |#1| |#2|) 73)) (-4436 ((|#2| $) 90)) (-4056 (($ (-1 |#2| |#2|) $) 89)) (-4083 (($ (-1 |#1| |#1|) $) 75)) (-2174 (($ $) 77)) (-2186 ((|#1| $) 78)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-2146 (((-112) $) 94)) (-2160 ((|#1| $) 93)) (-3418 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-568)))) (-1770 ((|#2| $) 76)) (-1450 ((|#1| $) 85 (|has| |#1| (-464)))) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59) (($ (-419 (-576))) 69 (-2802 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-4037 (((-657 |#1|) $) 92)) (-2313 ((|#1| $ |#2|) 71)) (-3096 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1960 (((-784)) 32 T CONST)) (-2702 (($ $ $ (-784)) 87 (|has| |#1| (-174)))) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3034 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-336 |#1| |#2|) (-141) (-1071) (-805)) (T -336)) -((-2146 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) (-5 *2 (-112)))) (-2160 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071)))) (-4037 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) (-5 *2 (-657 *3)))) (-4334 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) (-5 *2 (-784)))) (-4436 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) (-4056 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)))) (-3124 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)))) (-2702 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) (-4 *3 (-174)))) (-3418 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)) (-4 *2 (-568)))) (-1450 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071)) (-4 *2 (-464)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)) (-4 *2 (-464))))) -(-13 (-47 |t#1| |t#2|) (-423 |t#1|) (-10 -8 (-15 -2146 ((-112) $)) (-15 -2160 (|t#1| $)) (-15 -4037 ((-657 |t#1|) $)) (-15 -4334 ((-784) $)) (-15 -4436 (|t#2| $)) (-15 -4056 ($ (-1 |t#2| |t#2|) $)) (-15 -3124 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -2702 ($ $ $ (-784))) |%noBranch|) (IF (|has| |t#1| (-568)) (-15 -3418 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -1450 (|t#1| $)) (-15 -3813 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2802 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-877)) . T) ((-174) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-423 |#1|) . T) ((-568) |has| |#1| (-568)) ((-659 #0#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) |has| |#1| (-38 (-419 (-576)))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) |has| |#1| (-568)) ((-730 #0#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) |has| |#1| (-568)) ((-739) . T) ((-1060 (-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1073 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1078 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-1568 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3363 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862))))) (-1850 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3793 (((-112) $ (-784)) NIL)) (-2069 (((-112) (-112)) NIL)) (-3682 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467)))) (-3162 (($ (-1 (-112) |#1|) $) NIL)) (-2035 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-4359 (($) NIL T CONST)) (-3606 (($ $) NIL (|has| $ (-6 -4467)))) (-3768 (($ $) NIL)) (-4295 (($ $) NIL (|has| |#1| (-1122)))) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3647 (($ |#1| $) NIL (|has| |#1| (-1122))) (($ (-1 (-112) |#1|) $) NIL)) (-3895 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-2158 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) NIL)) (-3582 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122)))) (-2009 (($ $ (-576)) NIL)) (-1827 (((-784) $) NIL)) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-4109 (($ (-784) |#1|) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) NIL (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| |#1| (-862)))) (-4033 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3073 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2272 (((-576) $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| |#1| (-862)))) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2468 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2271 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3503 (($ (-657 |#1|)) NIL)) (-3510 ((|#1| $) NIL (|has| (-576) (-862)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1987 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-3449 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-3409 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2114 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) NIL)) (-2858 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1674 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-657 $)) NIL)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2973 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-337 |#1|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -3503 ($ (-657 |#1|))) (-15 -1827 ((-784) $)) (-15 -2009 ($ $ (-576))) (-15 -2069 ((-112) (-112))))) (-1239)) (T -337)) -((-3503 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-337 *3)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-337 *3)) (-4 *3 (-1239)))) (-2009 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1239)))) (-2069 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1239))))) -(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -3503 ($ (-657 |#1|))) (-15 -1827 ((-784) $)) (-15 -2009 ($ $ (-576))) (-15 -2069 ((-112) (-112))))) -((-2175 (((-112) $) 47)) (-3158 (((-784)) 23)) (-2302 ((|#2| $) 51) (($ $ (-941)) 121)) (-2193 (((-784)) 122)) (-2613 (($ (-1289 |#2|)) 20)) (-1974 (((-112) $) 134)) (-2234 ((|#2| $) 53) (($ $ (-941)) 118)) (-1336 (((-1194 |#2|) $) NIL) (((-1194 $) $ (-941)) 109)) (-4349 (((-1194 |#2|) $) 95)) (-3173 (((-1194 |#2|) $) 91) (((-3 (-1194 |#2|) "failed") $ $) 88)) (-1354 (($ $ (-1194 |#2|)) 58)) (-1453 (((-846 (-941))) 30) (((-941)) 48)) (-3863 (((-135)) 27)) (-1770 (((-846 (-941)) $) 32) (((-941) $) 137)) (-3298 (($) 128)) (-2795 (((-1289 |#2|) $) NIL) (((-702 |#2|) (-1289 $)) 42)) (-3096 (($ $) NIL) (((-3 $ "failed") $) 98)) (-1863 (((-112) $) 45))) -(((-338 |#1| |#2|) (-10 -8 (-15 -3096 ((-3 |#1| "failed") |#1|)) (-15 -2193 ((-784))) (-15 -3096 (|#1| |#1|)) (-15 -3173 ((-3 (-1194 |#2|) "failed") |#1| |#1|)) (-15 -3173 ((-1194 |#2|) |#1|)) (-15 -4349 ((-1194 |#2|) |#1|)) (-15 -1354 (|#1| |#1| (-1194 |#2|))) (-15 -1974 ((-112) |#1|)) (-15 -3298 (|#1|)) (-15 -2302 (|#1| |#1| (-941))) (-15 -2234 (|#1| |#1| (-941))) (-15 -1336 ((-1194 |#1|) |#1| (-941))) (-15 -2302 (|#2| |#1|)) (-15 -2234 (|#2| |#1|)) (-15 -1770 ((-941) |#1|)) (-15 -1453 ((-941))) (-15 -1336 ((-1194 |#2|) |#1|)) (-15 -2613 (|#1| (-1289 |#2|))) (-15 -2795 ((-702 |#2|) (-1289 |#1|))) (-15 -2795 ((-1289 |#2|) |#1|)) (-15 -3158 ((-784))) (-15 -1453 ((-846 (-941)))) (-15 -1770 ((-846 (-941)) |#1|)) (-15 -2175 ((-112) |#1|)) (-15 -1863 ((-112) |#1|)) (-15 -3863 ((-135)))) (-339 |#2|) (-374)) (T -338)) -((-3863 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-1453 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-846 (-941))) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-3158 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-784)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-1453 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-941)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2193 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-784)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4))))) -(-10 -8 (-15 -3096 ((-3 |#1| "failed") |#1|)) (-15 -2193 ((-784))) (-15 -3096 (|#1| |#1|)) (-15 -3173 ((-3 (-1194 |#2|) "failed") |#1| |#1|)) (-15 -3173 ((-1194 |#2|) |#1|)) (-15 -4349 ((-1194 |#2|) |#1|)) (-15 -1354 (|#1| |#1| (-1194 |#2|))) (-15 -1974 ((-112) |#1|)) (-15 -3298 (|#1|)) (-15 -2302 (|#1| |#1| (-941))) (-15 -2234 (|#1| |#1| (-941))) (-15 -1336 ((-1194 |#1|) |#1| (-941))) (-15 -2302 (|#2| |#1|)) (-15 -2234 (|#2| |#1|)) (-15 -1770 ((-941) |#1|)) (-15 -1453 ((-941))) (-15 -1336 ((-1194 |#2|) |#1|)) (-15 -2613 (|#1| (-1289 |#2|))) (-15 -2795 ((-702 |#2|) (-1289 |#1|))) (-15 -2795 ((-1289 |#2|) |#1|)) (-15 -3158 ((-784))) (-15 -1453 ((-846 (-941)))) (-15 -1770 ((-846 (-941)) |#1|)) (-15 -2175 ((-112) |#1|)) (-15 -1863 ((-112) |#1|)) (-15 -3863 ((-135)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-2175 (((-112) $) 104)) (-3158 (((-784)) 100)) (-2302 ((|#1| $) 151) (($ $ (-941)) 148 (|has| |#1| (-379)))) (-3592 (((-1211 (-941) (-784)) (-576)) 133 (|has| |#1| (-379)))) (-2721 (((-3 $ "failed") $ $) 20)) (-2638 (($ $) 81)) (-4402 (((-430 $) $) 80)) (-2864 (((-112) $ $) 65)) (-2193 (((-784)) 123 (|has| |#1| (-379)))) (-4359 (($) 18 T CONST)) (-1624 (((-3 |#1| "failed") $) 111)) (-2884 ((|#1| $) 112)) (-2613 (($ (-1289 |#1|)) 157)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-379)))) (-3373 (($ $ $) 61)) (-3843 (((-3 $ "failed") $) 37)) (-1892 (($) 120 (|has| |#1| (-379)))) (-3385 (($ $ $) 62)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 57)) (-1367 (($) 135 (|has| |#1| (-379)))) (-2105 (((-112) $) 136 (|has| |#1| (-379)))) (-1780 (($ $ (-784)) 97 (-2802 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4257 (((-112) $) 79)) (-3182 (((-941) $) 138 (|has| |#1| (-379))) (((-846 (-941)) $) 94 (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4094 (((-112) $) 35)) (-2615 (($) 146 (|has| |#1| (-379)))) (-1974 (((-112) $) 145 (|has| |#1| (-379)))) (-2234 ((|#1| $) 152) (($ $ (-941)) 149 (|has| |#1| (-379)))) (-4019 (((-3 $ "failed") $) 124 (|has| |#1| (-379)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-1336 (((-1194 |#1|) $) 156) (((-1194 $) $ (-941)) 150 (|has| |#1| (-379)))) (-3007 (((-941) $) 121 (|has| |#1| (-379)))) (-4349 (((-1194 |#1|) $) 142 (|has| |#1| (-379)))) (-3173 (((-1194 |#1|) $) 141 (|has| |#1| (-379))) (((-3 (-1194 |#1|) "failed") $ $) 140 (|has| |#1| (-379)))) (-1354 (($ $ (-1194 |#1|)) 143 (|has| |#1| (-379)))) (-3402 (($ $ $) 52) (($ (-657 $)) 51)) (-2342 (((-1180) $) 10)) (-2134 (($ $) 78)) (-1706 (($) 125 (|has| |#1| (-379)) CONST)) (-3178 (($ (-941)) 122 (|has| |#1| (-379)))) (-2463 (((-112) $) 103)) (-1471 (((-1142) $) 11)) (-4097 (($) 144 (|has| |#1| (-379)))) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3436 (($ $ $) 54) (($ (-657 $)) 53)) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) 132 (|has| |#1| (-379)))) (-1885 (((-430 $) $) 82)) (-1453 (((-846 (-941))) 101) (((-941)) 154)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3418 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-2034 (((-784) $) 64)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 63)) (-2284 (((-784) $) 137 (|has| |#1| (-379))) (((-3 (-784) "failed") $ $) 95 (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3863 (((-135)) 109)) (-2815 (($ $ (-784)) 128 (|has| |#1| (-379))) (($ $) 126 (|has| |#1| (-379)))) (-1770 (((-846 (-941)) $) 102) (((-941) $) 153)) (-3180 (((-1194 |#1|)) 155)) (-2090 (($) 134 (|has| |#1| (-379)))) (-3298 (($) 147 (|has| |#1| (-379)))) (-2795 (((-1289 |#1|) $) 159) (((-702 |#1|) (-1289 $)) 158)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) 131 (|has| |#1| (-379)))) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-3096 (($ $) 130 (|has| |#1| (-379))) (((-3 $ "failed") $) 93 (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-1985 (((-1289 $)) 161) (((-1289 $) (-941)) 160)) (-4041 (((-112) $ $) 45)) (-1863 (((-112) $) 105)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-1508 (($ $) 99 (|has| |#1| (-379))) (($ $ (-784)) 98 (|has| |#1| (-379)))) (-2097 (($ $ (-784)) 129 (|has| |#1| (-379))) (($ $) 127 (|has| |#1| (-379)))) (-2933 (((-112) $ $) 8)) (-3034 (($ $ $) 73) (($ $ |#1|) 108)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-339 |#1|) (-141) (-374)) (T -339)) -((-1985 (*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1289 *1)) (-4 *1 (-339 *3)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-941)) (-4 *4 (-374)) (-5 *2 (-1289 *1)) (-4 *1 (-339 *4)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1289 *3)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) (-5 *2 (-702 *4)))) (-2613 (*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) (-1336 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1194 *3)))) (-3180 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1194 *3)))) (-1453 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-941)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-941)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-2302 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-1336 (*1 *2 *1 *3) (-12 (-5 *3 (-941)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1194 *1)) (-4 *1 (-339 *4)))) (-2234 (*1 *1 *1 *2) (-12 (-5 *2 (-941)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-2302 (*1 *1 *1 *2) (-12 (-5 *2 (-941)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-3298 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-2615 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-1974 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) (-4097 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-1354 (*1 *1 *1 *2) (-12 (-5 *2 (-1194 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) (-4 *3 (-374)))) (-4349 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1194 *3)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1194 *3)))) (-3173 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1194 *3))))) -(-13 (-1308 |t#1|) (-1060 |t#1|) (-10 -8 (-15 -1985 ((-1289 $))) (-15 -1985 ((-1289 $) (-941))) (-15 -2795 ((-1289 |t#1|) $)) (-15 -2795 ((-702 |t#1|) (-1289 $))) (-15 -2613 ($ (-1289 |t#1|))) (-15 -1336 ((-1194 |t#1|) $)) (-15 -3180 ((-1194 |t#1|))) (-15 -1453 ((-941))) (-15 -1770 ((-941) $)) (-15 -2234 (|t#1| $)) (-15 -2302 (|t#1| $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-360)) (-15 -1336 ((-1194 $) $ (-941))) (-15 -2234 ($ $ (-941))) (-15 -2302 ($ $ (-941))) (-15 -3298 ($)) (-15 -2615 ($)) (-15 -1974 ((-112) $)) (-15 -4097 ($)) (-15 -1354 ($ $ (-1194 |t#1|))) (-15 -4349 ((-1194 |t#1|) $)) (-15 -3173 ((-1194 |t#1|) $)) (-15 -3173 ((-3 (-1194 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2802 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-234 $) |has| |#1| (-379)) ((-238) |has| |#1| (-379)) ((-237) |has| |#1| (-379)) ((-248) . T) ((-300) . T) ((-317) . T) ((-1308 |#1|) . T) ((-374) . T) ((-414) -2802 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-379) |has| |#1| (-379)) ((-360) |has| |#1| (-379)) ((-464) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-730 #0#) . T) ((-730 |#1|) . T) ((-730 $) . T) ((-739) . T) ((-940) . T) ((-1060 |#1|) . T) ((-1073 #0#) . T) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 |#1|) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1174) |has| |#1| (-379)) ((-1239) . T) ((-1243) . T) ((-1296 |#1|) . T)) -((-3429 (((-112) $ $) NIL)) (-2267 (($ (-1197) $) 100)) (-2321 (($) 89)) (-1383 (((-1142) (-1142)) 9)) (-1400 (($) 90)) (-2127 (($) 104) (($ (-326 (-712))) 112) (($ (-326 (-714))) 108) (($ (-326 (-707))) 116) (($ (-326 (-390))) 123) (($ (-326 (-576))) 119) (($ (-326 (-171 (-390)))) 127)) (-3185 (($ (-1197) $) 101)) (-3585 (($ (-657 (-877))) 91)) (-3350 (((-1294) $) 87)) (-1752 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-4285 (($ (-1142)) 58)) (-4367 (((-1126) $) 30)) (-4022 (($ (-1114 (-972 (-576))) $) 97) (($ (-1114 (-972 (-576))) (-972 (-576)) $) 98)) (-1441 (($ (-1142)) 99)) (-2879 (($ (-1197) $) 129) (($ (-1197) $ $) 130)) (-2482 (($ (-1198) (-657 (-1198))) 88)) (-3658 (($ (-1180)) 94) (($ (-657 (-1180))) 92)) (-3501 (((-877) $) 132)) (-4343 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1198)) (|:| |arrayIndex| (-657 (-972 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2994 (-877)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1198)) (|:| |rand| (-877)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1197)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3387 (-112)) (|:| -3071 (-2 (|:| |ints2Floats?| (-112)) (|:| -2994 (-877)))))) (|:| |blockBranch| (-657 $)) (|:| |commentBranch| (-657 (-1180))) (|:| |callBranch| (-1180)) (|:| |forBranch| (-2 (|:| -1685 (-1114 (-972 (-576)))) (|:| |span| (-972 (-576))) (|:| -2687 $))) (|:| |labelBranch| (-1142)) (|:| |loopBranch| (-2 (|:| |switch| (-1197)) (|:| -2687 $))) (|:| |commonBranch| (-2 (|:| -2676 (-1198)) (|:| |contents| (-657 (-1198))))) (|:| |printBranch| (-657 (-877)))) $) 50)) (-3774 (($ (-1180)) 202)) (-2207 (($ (-657 $)) 128)) (-2046 (((-112) $ $) NIL)) (-3939 (($ (-1198) (-1180)) 135) (($ (-1198) (-326 (-714))) 175) (($ (-1198) (-326 (-712))) 176) (($ (-1198) (-326 (-707))) 177) (($ (-1198) (-702 (-714))) 138) (($ (-1198) (-702 (-712))) 141) (($ (-1198) (-702 (-707))) 144) (($ (-1198) (-1289 (-714))) 147) (($ (-1198) (-1289 (-712))) 150) (($ (-1198) (-1289 (-707))) 153) (($ (-1198) (-702 (-326 (-714)))) 156) (($ (-1198) (-702 (-326 (-712)))) 159) (($ (-1198) (-702 (-326 (-707)))) 162) (($ (-1198) (-1289 (-326 (-714)))) 165) (($ (-1198) (-1289 (-326 (-712)))) 168) (($ (-1198) (-1289 (-326 (-707)))) 171) (($ (-1198) (-657 (-972 (-576))) (-326 (-714))) 172) (($ (-1198) (-657 (-972 (-576))) (-326 (-712))) 173) (($ (-1198) (-657 (-972 (-576))) (-326 (-707))) 174) (($ (-1198) (-326 (-576))) 199) (($ (-1198) (-326 (-390))) 200) (($ (-1198) (-326 (-171 (-390)))) 201) (($ (-1198) (-702 (-326 (-576)))) 180) (($ (-1198) (-702 (-326 (-390)))) 183) (($ (-1198) (-702 (-326 (-171 (-390))))) 186) (($ (-1198) (-1289 (-326 (-576)))) 189) (($ (-1198) (-1289 (-326 (-390)))) 192) (($ (-1198) (-1289 (-326 (-171 (-390))))) 195) (($ (-1198) (-657 (-972 (-576))) (-326 (-576))) 196) (($ (-1198) (-657 (-972 (-576))) (-326 (-390))) 197) (($ (-1198) (-657 (-972 (-576))) (-326 (-171 (-390)))) 198)) (-2933 (((-112) $ $) NIL))) -(((-340) (-13 (-1122) (-10 -8 (-15 -4022 ($ (-1114 (-972 (-576))) $)) (-15 -4022 ($ (-1114 (-972 (-576))) (-972 (-576)) $)) (-15 -2267 ($ (-1197) $)) (-15 -3185 ($ (-1197) $)) (-15 -4285 ($ (-1142))) (-15 -1441 ($ (-1142))) (-15 -3658 ($ (-1180))) (-15 -3658 ($ (-657 (-1180)))) (-15 -3774 ($ (-1180))) (-15 -2127 ($)) (-15 -2127 ($ (-326 (-712)))) (-15 -2127 ($ (-326 (-714)))) (-15 -2127 ($ (-326 (-707)))) (-15 -2127 ($ (-326 (-390)))) (-15 -2127 ($ (-326 (-576)))) (-15 -2127 ($ (-326 (-171 (-390))))) (-15 -2879 ($ (-1197) $)) (-15 -2879 ($ (-1197) $ $)) (-15 -3939 ($ (-1198) (-1180))) (-15 -3939 ($ (-1198) (-326 (-714)))) (-15 -3939 ($ (-1198) (-326 (-712)))) (-15 -3939 ($ (-1198) (-326 (-707)))) (-15 -3939 ($ (-1198) (-702 (-714)))) (-15 -3939 ($ (-1198) (-702 (-712)))) (-15 -3939 ($ (-1198) (-702 (-707)))) (-15 -3939 ($ (-1198) (-1289 (-714)))) (-15 -3939 ($ (-1198) (-1289 (-712)))) (-15 -3939 ($ (-1198) (-1289 (-707)))) (-15 -3939 ($ (-1198) (-702 (-326 (-714))))) (-15 -3939 ($ (-1198) (-702 (-326 (-712))))) (-15 -3939 ($ (-1198) (-702 (-326 (-707))))) (-15 -3939 ($ (-1198) (-1289 (-326 (-714))))) (-15 -3939 ($ (-1198) (-1289 (-326 (-712))))) (-15 -3939 ($ (-1198) (-1289 (-326 (-707))))) (-15 -3939 ($ (-1198) (-657 (-972 (-576))) (-326 (-714)))) (-15 -3939 ($ (-1198) (-657 (-972 (-576))) (-326 (-712)))) (-15 -3939 ($ (-1198) (-657 (-972 (-576))) (-326 (-707)))) (-15 -3939 ($ (-1198) (-326 (-576)))) (-15 -3939 ($ (-1198) (-326 (-390)))) (-15 -3939 ($ (-1198) (-326 (-171 (-390))))) (-15 -3939 ($ (-1198) (-702 (-326 (-576))))) (-15 -3939 ($ (-1198) (-702 (-326 (-390))))) (-15 -3939 ($ (-1198) (-702 (-326 (-171 (-390)))))) (-15 -3939 ($ (-1198) (-1289 (-326 (-576))))) (-15 -3939 ($ (-1198) (-1289 (-326 (-390))))) (-15 -3939 ($ (-1198) (-1289 (-326 (-171 (-390)))))) (-15 -3939 ($ (-1198) (-657 (-972 (-576))) (-326 (-576)))) (-15 -3939 ($ (-1198) (-657 (-972 (-576))) (-326 (-390)))) (-15 -3939 ($ (-1198) (-657 (-972 (-576))) (-326 (-171 (-390))))) (-15 -2207 ($ (-657 $))) (-15 -2321 ($)) (-15 -1400 ($)) (-15 -3585 ($ (-657 (-877)))) (-15 -2482 ($ (-1198) (-657 (-1198)))) (-15 -1752 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4343 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1198)) (|:| |arrayIndex| (-657 (-972 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2994 (-877)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1198)) (|:| |rand| (-877)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1197)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3387 (-112)) (|:| -3071 (-2 (|:| |ints2Floats?| (-112)) (|:| -2994 (-877)))))) (|:| |blockBranch| (-657 $)) (|:| |commentBranch| (-657 (-1180))) (|:| |callBranch| (-1180)) (|:| |forBranch| (-2 (|:| -1685 (-1114 (-972 (-576)))) (|:| |span| (-972 (-576))) (|:| -2687 $))) (|:| |labelBranch| (-1142)) (|:| |loopBranch| (-2 (|:| |switch| (-1197)) (|:| -2687 $))) (|:| |commonBranch| (-2 (|:| -2676 (-1198)) (|:| |contents| (-657 (-1198))))) (|:| |printBranch| (-657 (-877)))) $)) (-15 -3350 ((-1294) $)) (-15 -4367 ((-1126) $)) (-15 -1383 ((-1142) (-1142)))))) (T -340)) -((-4022 (*1 *1 *2 *1) (-12 (-5 *2 (-1114 (-972 (-576)))) (-5 *1 (-340)))) (-4022 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1114 (-972 (-576)))) (-5 *3 (-972 (-576))) (-5 *1 (-340)))) (-2267 (*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-340)))) (-3185 (*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-340)))) (-4285 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-340)))) (-1441 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-340)))) (-3658 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-340)))) (-3658 (*1 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-340)))) (-3774 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-340)))) (-2127 (*1 *1) (-5 *1 (-340))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-326 (-712))) (-5 *1 (-340)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-326 (-714))) (-5 *1 (-340)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-326 (-707))) (-5 *1 (-340)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-2879 (*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-340)))) (-2879 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1180)) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-714))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-712))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-707))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-714))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-712))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-707))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-714))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-712))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-707))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-714)))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-712)))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-707)))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-714)))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-712)))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-707)))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-326 (-714))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-326 (-712))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-326 (-707))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-576)))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-390)))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-576)))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-390)))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-326 (-576))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-326 (-390))) (-5 *1 (-340)))) (-3939 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-2207 (*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-5 *1 (-340)))) (-2321 (*1 *1) (-5 *1 (-340))) (-1400 (*1 *1) (-5 *1 (-340))) (-3585 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-340)))) (-2482 (*1 *1 *2 *3) (-12 (-5 *3 (-657 (-1198))) (-5 *2 (-1198)) (-5 *1 (-340)))) (-1752 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-340)))) (-4343 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1198)) (|:| |arrayIndex| (-657 (-972 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2994 (-877)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1198)) (|:| |rand| (-877)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1197)) (|:| |thenClause| (-340)) (|:| |elseClause| (-340)))) (|:| |returnBranch| (-2 (|:| -3387 (-112)) (|:| -3071 (-2 (|:| |ints2Floats?| (-112)) (|:| -2994 (-877)))))) (|:| |blockBranch| (-657 (-340))) (|:| |commentBranch| (-657 (-1180))) (|:| |callBranch| (-1180)) (|:| |forBranch| (-2 (|:| -1685 (-1114 (-972 (-576)))) (|:| |span| (-972 (-576))) (|:| -2687 (-340)))) (|:| |labelBranch| (-1142)) (|:| |loopBranch| (-2 (|:| |switch| (-1197)) (|:| -2687 (-340)))) (|:| |commonBranch| (-2 (|:| -2676 (-1198)) (|:| |contents| (-657 (-1198))))) (|:| |printBranch| (-657 (-877))))) (-5 *1 (-340)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-340)))) (-4367 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-340)))) (-1383 (*1 *2 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-340))))) -(-13 (-1122) (-10 -8 (-15 -4022 ($ (-1114 (-972 (-576))) $)) (-15 -4022 ($ (-1114 (-972 (-576))) (-972 (-576)) $)) (-15 -2267 ($ (-1197) $)) (-15 -3185 ($ (-1197) $)) (-15 -4285 ($ (-1142))) (-15 -1441 ($ (-1142))) (-15 -3658 ($ (-1180))) (-15 -3658 ($ (-657 (-1180)))) (-15 -3774 ($ (-1180))) (-15 -2127 ($)) (-15 -2127 ($ (-326 (-712)))) (-15 -2127 ($ (-326 (-714)))) (-15 -2127 ($ (-326 (-707)))) (-15 -2127 ($ (-326 (-390)))) (-15 -2127 ($ (-326 (-576)))) (-15 -2127 ($ (-326 (-171 (-390))))) (-15 -2879 ($ (-1197) $)) (-15 -2879 ($ (-1197) $ $)) (-15 -3939 ($ (-1198) (-1180))) (-15 -3939 ($ (-1198) (-326 (-714)))) (-15 -3939 ($ (-1198) (-326 (-712)))) (-15 -3939 ($ (-1198) (-326 (-707)))) (-15 -3939 ($ (-1198) (-702 (-714)))) (-15 -3939 ($ (-1198) (-702 (-712)))) (-15 -3939 ($ (-1198) (-702 (-707)))) (-15 -3939 ($ (-1198) (-1289 (-714)))) (-15 -3939 ($ (-1198) (-1289 (-712)))) (-15 -3939 ($ (-1198) (-1289 (-707)))) (-15 -3939 ($ (-1198) (-702 (-326 (-714))))) (-15 -3939 ($ (-1198) (-702 (-326 (-712))))) (-15 -3939 ($ (-1198) (-702 (-326 (-707))))) (-15 -3939 ($ (-1198) (-1289 (-326 (-714))))) (-15 -3939 ($ (-1198) (-1289 (-326 (-712))))) (-15 -3939 ($ (-1198) (-1289 (-326 (-707))))) (-15 -3939 ($ (-1198) (-657 (-972 (-576))) (-326 (-714)))) (-15 -3939 ($ (-1198) (-657 (-972 (-576))) (-326 (-712)))) (-15 -3939 ($ (-1198) (-657 (-972 (-576))) (-326 (-707)))) (-15 -3939 ($ (-1198) (-326 (-576)))) (-15 -3939 ($ (-1198) (-326 (-390)))) (-15 -3939 ($ (-1198) (-326 (-171 (-390))))) (-15 -3939 ($ (-1198) (-702 (-326 (-576))))) (-15 -3939 ($ (-1198) (-702 (-326 (-390))))) (-15 -3939 ($ (-1198) (-702 (-326 (-171 (-390)))))) (-15 -3939 ($ (-1198) (-1289 (-326 (-576))))) (-15 -3939 ($ (-1198) (-1289 (-326 (-390))))) (-15 -3939 ($ (-1198) (-1289 (-326 (-171 (-390)))))) (-15 -3939 ($ (-1198) (-657 (-972 (-576))) (-326 (-576)))) (-15 -3939 ($ (-1198) (-657 (-972 (-576))) (-326 (-390)))) (-15 -3939 ($ (-1198) (-657 (-972 (-576))) (-326 (-171 (-390))))) (-15 -2207 ($ (-657 $))) (-15 -2321 ($)) (-15 -1400 ($)) (-15 -3585 ($ (-657 (-877)))) (-15 -2482 ($ (-1198) (-657 (-1198)))) (-15 -1752 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4343 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1198)) (|:| |arrayIndex| (-657 (-972 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2994 (-877)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1198)) (|:| |rand| (-877)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1197)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3387 (-112)) (|:| -3071 (-2 (|:| |ints2Floats?| (-112)) (|:| -2994 (-877)))))) (|:| |blockBranch| (-657 $)) (|:| |commentBranch| (-657 (-1180))) (|:| |callBranch| (-1180)) (|:| |forBranch| (-2 (|:| -1685 (-1114 (-972 (-576)))) (|:| |span| (-972 (-576))) (|:| -2687 $))) (|:| |labelBranch| (-1142)) (|:| |loopBranch| (-2 (|:| |switch| (-1197)) (|:| -2687 $))) (|:| |commonBranch| (-2 (|:| -2676 (-1198)) (|:| |contents| (-657 (-1198))))) (|:| |printBranch| (-657 (-877)))) $)) (-15 -3350 ((-1294) $)) (-15 -4367 ((-1126) $)) (-15 -1383 ((-1142) (-1142))))) -((-3429 (((-112) $ $) NIL)) (-3049 (((-112) $) 13)) (-2004 (($ |#1|) 10)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2017 (($ |#1|) 12)) (-3501 (((-877) $) 19)) (-2046 (((-112) $ $) NIL)) (-2196 ((|#1| $) 14)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 21))) -(((-341 |#1|) (-13 (-862) (-10 -8 (-15 -2004 ($ |#1|)) (-15 -2017 ($ |#1|)) (-15 -3049 ((-112) $)) (-15 -2196 (|#1| $)))) (-862)) (T -341)) -((-2004 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) (-2017 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) (-3049 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-862)))) (-2196 (*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862))))) -(-13 (-862) (-10 -8 (-15 -2004 ($ |#1|)) (-15 -2017 ($ |#1|)) (-15 -3049 ((-112) $)) (-15 -2196 (|#1| $)))) -((-1754 (((-340) (-1198) (-972 (-576))) 23)) (-2993 (((-340) (-1198) (-972 (-576))) 27)) (-3656 (((-340) (-1198) (-1114 (-972 (-576))) (-1114 (-972 (-576)))) 26) (((-340) (-1198) (-972 (-576)) (-972 (-576))) 24)) (-2737 (((-340) (-1198) (-972 (-576))) 31))) -(((-342) (-10 -7 (-15 -1754 ((-340) (-1198) (-972 (-576)))) (-15 -3656 ((-340) (-1198) (-972 (-576)) (-972 (-576)))) (-15 -3656 ((-340) (-1198) (-1114 (-972 (-576))) (-1114 (-972 (-576))))) (-15 -2993 ((-340) (-1198) (-972 (-576)))) (-15 -2737 ((-340) (-1198) (-972 (-576)))))) (T -342)) -((-2737 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-972 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-2993 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-972 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-3656 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-1114 (-972 (-576)))) (-5 *2 (-340)) (-5 *1 (-342)))) (-3656 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-972 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-972 (-576))) (-5 *2 (-340)) (-5 *1 (-342))))) -(-10 -7 (-15 -1754 ((-340) (-1198) (-972 (-576)))) (-15 -3656 ((-340) (-1198) (-972 (-576)) (-972 (-576)))) (-15 -3656 ((-340) (-1198) (-1114 (-972 (-576))) (-1114 (-972 (-576))))) (-15 -2993 ((-340) (-1198) (-972 (-576)))) (-15 -2737 ((-340) (-1198) (-972 (-576))))) -((-3429 (((-112) $ $) NIL)) (-3313 (((-518) $) 20)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-4114 (((-978 (-784)) $) 18)) (-2516 (((-256) $) 7)) (-3501 (((-877) $) 26)) (-1615 (((-978 (-185 (-140))) $) 16)) (-2046 (((-112) $ $) NIL)) (-3869 (((-657 (-888 (-1203) (-784))) $) 12)) (-2933 (((-112) $ $) 22))) -(((-343) (-13 (-1122) (-10 -8 (-15 -2516 ((-256) $)) (-15 -3869 ((-657 (-888 (-1203) (-784))) $)) (-15 -4114 ((-978 (-784)) $)) (-15 -1615 ((-978 (-185 (-140))) $)) (-15 -3313 ((-518) $))))) (T -343)) -((-2516 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343)))) (-3869 (*1 *2 *1) (-12 (-5 *2 (-657 (-888 (-1203) (-784)))) (-5 *1 (-343)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-978 (-784))) (-5 *1 (-343)))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-978 (-185 (-140)))) (-5 *1 (-343)))) (-3313 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) -(-13 (-1122) (-10 -8 (-15 -2516 ((-256) $)) (-15 -3869 ((-657 (-888 (-1203) (-784))) $)) (-15 -4114 ((-978 (-784)) $)) (-15 -1615 ((-978 (-185 (-140))) $)) (-15 -3313 ((-518) $)))) -((-4083 (((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)) 33))) -(((-344 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4083 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) (-374) (-1265 |#1|) (-1265 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-374) (-1265 |#5|) (-1265 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -344)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *9 (-374)) (-4 *10 (-1265 *9)) (-4 *11 (-1265 (-419 *10))) (-5 *2 (-347 *9 *10 *11 *12)) (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-353 *9 *10 *11))))) -(-10 -7 (-15 -4083 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) -((-1456 (((-112) $) 14))) -(((-345 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1456 ((-112) |#1|))) (-346 |#2| |#3| |#4| |#5|) (-374) (-1265 |#2|) (-1265 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -345)) -NIL -(-10 -8 (-15 -1456 ((-112) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3622 (($ $) 29)) (-1456 (((-112) $) 28)) (-2342 (((-1180) $) 10)) (-2368 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 35)) (-1471 (((-1142) $) 11)) (-4097 (((-3 |#4| "failed") $) 27)) (-1494 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-576)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-1954 (((-2 (|:| -3066 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24))) -(((-346 |#1| |#2| |#3| |#4|) (-141) (-374) (-1265 |t#1|) (-1265 (-419 |t#2|)) (-353 |t#1| |t#2| |t#3|)) (T -346)) -((-2368 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-425 *4 (-419 *4) *5 *6)))) (-1494 (*1 *1 *2) (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) (-4 *1 (-346 *3 *4 *5 *6)))) (-1494 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) (-1494 (*1 *1 *2 *2) (-12 (-4 *2 (-374)) (-4 *3 (-1265 *2)) (-4 *4 (-1265 (-419 *3))) (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) (-1494 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1265 *2)) (-4 *5 (-1265 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) (-4 *6 (-353 *2 *4 *5)))) (-1954 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-2 (|:| -3066 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) (-3622 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1265 *2)) (-4 *4 (-1265 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) (-1456 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112)))) (-4097 (*1 *2 *1) (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-4 *2 (-353 *3 *4 *5)))) (-1494 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-374)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 (-419 *3))) (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -2368 ((-425 |t#2| (-419 |t#2|) |t#3| |t#4|) $)) (-15 -1494 ($ (-425 |t#2| (-419 |t#2|) |t#3| |t#4|))) (-15 -1494 ($ |t#4|)) (-15 -1494 ($ |t#1| |t#1|)) (-15 -1494 ($ |t#1| |t#1| (-576))) (-15 -1954 ((-2 (|:| -3066 (-425 |t#2| (-419 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3622 ($ $)) (-15 -1456 ((-112) $)) (-15 -4097 ((-3 |t#4| "failed") $)) (-15 -1494 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-3622 (($ $) 33)) (-1456 (((-112) $) NIL)) (-2342 (((-1180) $) NIL)) (-3116 (((-1289 |#4|) $) 134)) (-2368 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 31)) (-1471 (((-1142) $) NIL)) (-4097 (((-3 |#4| "failed") $) 36)) (-2842 (((-1289 |#4|) $) 126)) (-1494 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-576)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-1954 (((-2 (|:| -3066 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3501 (((-877) $) 17)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 14 T CONST)) (-2933 (((-112) $ $) 20)) (-3022 (($ $) 27) (($ $ $) NIL)) (-3012 (($ $ $) 25)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 23))) -(((-347 |#1| |#2| |#3| |#4|) (-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2842 ((-1289 |#4|) $)) (-15 -3116 ((-1289 |#4|) $)))) (-374) (-1265 |#1|) (-1265 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -347)) -((-2842 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-1289 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5)))) (-3116 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-1289 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5))))) -(-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2842 ((-1289 |#4|) $)) (-15 -3116 ((-1289 |#4|) $)))) -((-3236 (($ $ (-1198) |#2|) NIL) (($ $ (-657 (-1198)) (-657 |#2|)) 20) (($ $ (-657 (-304 |#2|))) 15) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-657 |#2|) (-657 |#2|)) NIL)) (-2835 (($ $ |#2|) 11))) -(((-348 |#1| |#2|) (-10 -8 (-15 -2835 (|#1| |#1| |#2|)) (-15 -3236 (|#1| |#1| (-657 |#2|) (-657 |#2|))) (-15 -3236 (|#1| |#1| |#2| |#2|)) (-15 -3236 (|#1| |#1| (-304 |#2|))) (-15 -3236 (|#1| |#1| (-657 (-304 |#2|)))) (-15 -3236 (|#1| |#1| (-657 (-1198)) (-657 |#2|))) (-15 -3236 (|#1| |#1| (-1198) |#2|))) (-349 |#2|) (-1122)) (T -348)) -NIL -(-10 -8 (-15 -2835 (|#1| |#1| |#2|)) (-15 -3236 (|#1| |#1| (-657 |#2|) (-657 |#2|))) (-15 -3236 (|#1| |#1| |#2| |#2|)) (-15 -3236 (|#1| |#1| (-304 |#2|))) (-15 -3236 (|#1| |#1| (-657 (-304 |#2|)))) (-15 -3236 (|#1| |#1| (-657 (-1198)) (-657 |#2|))) (-15 -3236 (|#1| |#1| (-1198) |#2|))) -((-4083 (($ (-1 |#1| |#1|) $) 6)) (-3236 (($ $ (-1198) |#1|) 17 (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) 16 (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-657 (-304 |#1|))) 15 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 14 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-319 |#1|))) (($ $ (-657 |#1|) (-657 |#1|)) 12 (|has| |#1| (-319 |#1|)))) (-2835 (($ $ |#1|) 11 (|has| |#1| (-296 |#1| |#1|))))) -(((-349 |#1|) (-141) (-1122)) (T -349)) -((-4083 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1122))))) -(-13 (-10 -8 (-15 -4083 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-296 |t#1| |t#1|)) (-6 (-296 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-526 (-1198) |t#1|)) (-6 (-526 (-1198) |t#1|)) |%noBranch|))) -(((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-526 (-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-1239) |has| |#1| (-296 |#1| |#1|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2029 (((-657 (-1198)) $) NIL)) (-4414 (((-112)) 96) (((-112) (-112)) 97)) (-3946 (((-657 (-624 $)) $) NIL)) (-2176 (($ $) NIL)) (-2030 (($ $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4054 (($ $ (-304 $)) NIL) (($ $ (-657 (-304 $))) NIL) (($ $ (-657 (-624 $)) (-657 $)) NIL)) (-1896 (($ $) NIL)) (-2150 (($ $) NIL)) (-2004 (($ $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-624 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-326 |#3|)) 76) (((-3 $ "failed") (-1198)) 103) (((-3 $ "failed") (-326 (-576))) 64 (|has| |#3| (-1060 (-576)))) (((-3 $ "failed") (-419 (-972 (-576)))) 70 (|has| |#3| (-1060 (-576)))) (((-3 $ "failed") (-972 (-576))) 65 (|has| |#3| (-1060 (-576)))) (((-3 $ "failed") (-326 (-390))) 94 (|has| |#3| (-1060 (-390)))) (((-3 $ "failed") (-419 (-972 (-390)))) 88 (|has| |#3| (-1060 (-390)))) (((-3 $ "failed") (-972 (-390))) 83 (|has| |#3| (-1060 (-390))))) (-2884 (((-624 $) $) NIL) ((|#3| $) NIL) (($ (-326 |#3|)) 77) (($ (-1198)) 104) (($ (-326 (-576))) 66 (|has| |#3| (-1060 (-576)))) (($ (-419 (-972 (-576)))) 71 (|has| |#3| (-1060 (-576)))) (($ (-972 (-576))) 67 (|has| |#3| (-1060 (-576)))) (($ (-326 (-390))) 95 (|has| |#3| (-1060 (-390)))) (($ (-419 (-972 (-390)))) 89 (|has| |#3| (-1060 (-390)))) (($ (-972 (-390))) 85 (|has| |#3| (-1060 (-390))))) (-3843 (((-3 $ "failed") $) NIL)) (-1657 (($) 101)) (-2887 (($ $) NIL) (($ (-657 $)) NIL)) (-1784 (((-657 (-115)) $) NIL)) (-1832 (((-115) (-115)) NIL)) (-4094 (((-112) $) NIL)) (-2320 (((-112) $) NIL (|has| $ (-1060 (-576))))) (-4153 (((-1194 $) (-624 $)) NIL (|has| $ (-1071)))) (-4083 (($ (-1 $ $) (-624 $)) NIL)) (-3398 (((-3 (-624 $) "failed") $) NIL)) (-2406 (($ $) 99)) (-3670 (($ $) NIL)) (-2342 (((-1180) $) NIL)) (-1817 (((-657 (-624 $)) $) NIL)) (-1699 (($ (-115) $) 98) (($ (-115) (-657 $)) NIL)) (-4412 (((-112) $ (-115)) NIL) (((-112) $ (-1198)) NIL)) (-2404 (((-784) $) NIL)) (-1471 (((-1142) $) NIL)) (-3698 (((-112) $ $) NIL) (((-112) $ (-1198)) NIL)) (-4067 (($ $) NIL)) (-3593 (((-112) $) NIL (|has| $ (-1060 (-576))))) (-3236 (($ $ (-624 $) $) NIL) (($ $ (-657 (-624 $)) (-657 $)) NIL) (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ $))) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-1198) (-1 $ (-657 $))) NIL) (($ $ (-1198) (-1 $ $)) NIL) (($ $ (-657 (-115)) (-657 (-1 $ $))) NIL) (($ $ (-657 (-115)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-115) (-1 $ (-657 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2835 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-657 $)) NIL)) (-2445 (($ $) NIL) (($ $ $) NIL)) (-2815 (($ $ (-1198)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL)) (-3180 (($ $) NIL (|has| $ (-1071)))) (-2163 (($ $) NIL)) (-2017 (($ $) NIL)) (-3501 (((-877) $) NIL) (($ (-624 $)) NIL) (($ |#3|) NIL) (($ (-576)) NIL) (((-326 |#3|) $) 102)) (-1960 (((-784)) NIL T CONST)) (-2139 (($ $) NIL) (($ (-657 $)) NIL)) (-4159 (((-112) (-115)) NIL)) (-2046 (((-112) $ $) NIL)) (-2100 (($ $) NIL)) (-2072 (($ $) NIL)) (-2085 (($ $) NIL)) (-1792 (($ $) NIL)) (-2769 (($) 100 T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-1198)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-784)) NIL) (($ $ (-941)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-784) $) NIL) (($ (-941) $) NIL))) -(((-350 |#1| |#2| |#3|) (-13 (-312) (-38 |#3|) (-1060 |#3|) (-918 (-1198)) (-10 -8 (-15 -2884 ($ (-326 |#3|))) (-15 -1624 ((-3 $ "failed") (-326 |#3|))) (-15 -2884 ($ (-1198))) (-15 -1624 ((-3 $ "failed") (-1198))) (-15 -3501 ((-326 |#3|) $)) (IF (|has| |#3| (-1060 (-576))) (PROGN (-15 -2884 ($ (-326 (-576)))) (-15 -1624 ((-3 $ "failed") (-326 (-576)))) (-15 -2884 ($ (-419 (-972 (-576))))) (-15 -1624 ((-3 $ "failed") (-419 (-972 (-576))))) (-15 -2884 ($ (-972 (-576)))) (-15 -1624 ((-3 $ "failed") (-972 (-576))))) |%noBranch|) (IF (|has| |#3| (-1060 (-390))) (PROGN (-15 -2884 ($ (-326 (-390)))) (-15 -1624 ((-3 $ "failed") (-326 (-390)))) (-15 -2884 ($ (-419 (-972 (-390))))) (-15 -1624 ((-3 $ "failed") (-419 (-972 (-390))))) (-15 -2884 ($ (-972 (-390)))) (-15 -1624 ((-3 $ "failed") (-972 (-390))))) |%noBranch|) (-15 -1792 ($ $)) (-15 -1896 ($ $)) (-15 -4067 ($ $)) (-15 -3670 ($ $)) (-15 -2406 ($ $)) (-15 -2004 ($ $)) (-15 -2017 ($ $)) (-15 -2030 ($ $)) (-15 -2072 ($ $)) (-15 -2085 ($ $)) (-15 -2100 ($ $)) (-15 -2150 ($ $)) (-15 -2163 ($ $)) (-15 -2176 ($ $)) (-15 -1657 ($)) (-15 -2029 ((-657 (-1198)) $)) (-15 -4414 ((-112))) (-15 -4414 ((-112) (-112))))) (-657 (-1198)) (-657 (-1198)) (-399)) (T -350)) -((-2884 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 *2)) (-14 *4 (-657 *2)) (-4 *5 (-399)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-1198)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 *2)) (-14 *4 (-657 *2)) (-4 *5 (-399)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-419 (-972 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-972 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-972 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-972 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-419 (-972 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-972 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-972 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-972 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-1792 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-1896 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-4067 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-3670 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2406 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2004 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2017 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2030 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2072 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2085 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2100 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2150 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2176 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-1657 (*1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) (-2029 (*1 *2 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-399)))) (-4414 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) (-4414 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399))))) -(-13 (-312) (-38 |#3|) (-1060 |#3|) (-918 (-1198)) (-10 -8 (-15 -2884 ($ (-326 |#3|))) (-15 -1624 ((-3 $ "failed") (-326 |#3|))) (-15 -2884 ($ (-1198))) (-15 -1624 ((-3 $ "failed") (-1198))) (-15 -3501 ((-326 |#3|) $)) (IF (|has| |#3| (-1060 (-576))) (PROGN (-15 -2884 ($ (-326 (-576)))) (-15 -1624 ((-3 $ "failed") (-326 (-576)))) (-15 -2884 ($ (-419 (-972 (-576))))) (-15 -1624 ((-3 $ "failed") (-419 (-972 (-576))))) (-15 -2884 ($ (-972 (-576)))) (-15 -1624 ((-3 $ "failed") (-972 (-576))))) |%noBranch|) (IF (|has| |#3| (-1060 (-390))) (PROGN (-15 -2884 ($ (-326 (-390)))) (-15 -1624 ((-3 $ "failed") (-326 (-390)))) (-15 -2884 ($ (-419 (-972 (-390))))) (-15 -1624 ((-3 $ "failed") (-419 (-972 (-390))))) (-15 -2884 ($ (-972 (-390)))) (-15 -1624 ((-3 $ "failed") (-972 (-390))))) |%noBranch|) (-15 -1792 ($ $)) (-15 -1896 ($ $)) (-15 -4067 ($ $)) (-15 -3670 ($ $)) (-15 -2406 ($ $)) (-15 -2004 ($ $)) (-15 -2017 ($ $)) (-15 -2030 ($ $)) (-15 -2072 ($ $)) (-15 -2085 ($ $)) (-15 -2100 ($ $)) (-15 -2150 ($ $)) (-15 -2163 ($ $)) (-15 -2176 ($ $)) (-15 -1657 ($)) (-15 -2029 ((-657 (-1198)) $)) (-15 -4414 ((-112))) (-15 -4414 ((-112) (-112))))) -((-4083 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-351 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4083 (|#8| (-1 |#5| |#1|) |#4|))) (-1243) (-1265 |#1|) (-1265 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-1243) (-1265 |#5|) (-1265 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -351)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1243)) (-4 *8 (-1243)) (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) (-4 *9 (-1265 *8)) (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1265 (-419 *9)))))) -(-10 -7 (-15 -4083 (|#8| (-1 |#5| |#1|) |#4|))) -((-3642 (((-2 (|:| |num| (-1289 |#3|)) (|:| |den| |#3|)) $) 39)) (-2613 (($ (-1289 (-419 |#3|)) (-1289 $)) NIL) (($ (-1289 (-419 |#3|))) NIL) (($ (-1289 |#3|) |#3|) 173)) (-3130 (((-1289 $) (-1289 $)) 156)) (-2420 (((-657 (-657 |#2|))) 126)) (-2952 (((-112) |#2| |#2|) 76)) (-3813 (($ $) 148)) (-3181 (((-784)) 172)) (-3253 (((-1289 $) (-1289 $)) 218)) (-2327 (((-657 (-972 |#2|)) (-1198)) 115)) (-1333 (((-112) $) 169)) (-1743 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-4292 (((-3 |#3| "failed")) 52)) (-2821 (((-784)) 184)) (-2835 ((|#2| $ |#2| |#2|) 140)) (-2645 (((-3 |#3| "failed")) 71)) (-2815 (($ $ (-1 (-419 |#3|) (-419 |#3|))) NIL) (($ $ (-1 (-419 |#3|) (-419 |#3|)) (-784)) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) NIL) (($ $ (-784)) NIL) (($ $) NIL)) (-1361 (((-1289 $) (-1289 $)) 162)) (-2519 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-1660 (((-112)) 34))) -(((-352 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2815 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2420 ((-657 (-657 |#2|)))) (-15 -2327 ((-657 (-972 |#2|)) (-1198))) (-15 -2519 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4292 ((-3 |#3| "failed"))) (-15 -2645 ((-3 |#3| "failed"))) (-15 -2835 (|#2| |#1| |#2| |#2|)) (-15 -3813 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1743 ((-112) |#1| |#3|)) (-15 -1743 ((-112) |#1| |#2|)) (-15 -2613 (|#1| (-1289 |#3|) |#3|)) (-15 -3642 ((-2 (|:| |num| (-1289 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3130 ((-1289 |#1|) (-1289 |#1|))) (-15 -3253 ((-1289 |#1|) (-1289 |#1|))) (-15 -1361 ((-1289 |#1|) (-1289 |#1|))) (-15 -1743 ((-112) |#1|)) (-15 -1333 ((-112) |#1|)) (-15 -2952 ((-112) |#2| |#2|)) (-15 -1660 ((-112))) (-15 -2821 ((-784))) (-15 -3181 ((-784))) (-15 -2815 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-784))) (-15 -2815 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -2613 (|#1| (-1289 (-419 |#3|)))) (-15 -2613 (|#1| (-1289 (-419 |#3|)) (-1289 |#1|)))) (-353 |#2| |#3| |#4|) (-1243) (-1265 |#2|) (-1265 (-419 |#3|))) (T -352)) -((-3181 (*1 *2) (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) (-5 *2 (-784)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-2821 (*1 *2) (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) (-5 *2 (-784)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-1660 (*1 *2) (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-2952 (*1 *2 *3 *3) (-12 (-4 *3 (-1243)) (-4 *5 (-1265 *3)) (-4 *6 (-1265 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) (-2645 (*1 *2) (|partial| -12 (-4 *4 (-1243)) (-4 *5 (-1265 (-419 *2))) (-4 *2 (-1265 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-4292 (*1 *2) (|partial| -12 (-4 *4 (-1243)) (-4 *5 (-1265 (-419 *2))) (-4 *2 (-1265 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-2327 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *5 (-1243)) (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) (-5 *2 (-657 (-972 *5))) (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) (-2420 (*1 *2) (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) (-5 *2 (-657 (-657 *4))) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6))))) -(-10 -8 (-15 -2815 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2420 ((-657 (-657 |#2|)))) (-15 -2327 ((-657 (-972 |#2|)) (-1198))) (-15 -2519 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4292 ((-3 |#3| "failed"))) (-15 -2645 ((-3 |#3| "failed"))) (-15 -2835 (|#2| |#1| |#2| |#2|)) (-15 -3813 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1743 ((-112) |#1| |#3|)) (-15 -1743 ((-112) |#1| |#2|)) (-15 -2613 (|#1| (-1289 |#3|) |#3|)) (-15 -3642 ((-2 (|:| |num| (-1289 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3130 ((-1289 |#1|) (-1289 |#1|))) (-15 -3253 ((-1289 |#1|) (-1289 |#1|))) (-15 -1361 ((-1289 |#1|) (-1289 |#1|))) (-15 -1743 ((-112) |#1|)) (-15 -1333 ((-112) |#1|)) (-15 -2952 ((-112) |#2| |#2|)) (-15 -1660 ((-112))) (-15 -2821 ((-784))) (-15 -3181 ((-784))) (-15 -2815 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-784))) (-15 -2815 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -2613 (|#1| (-1289 (-419 |#3|)))) (-15 -2613 (|#1| (-1289 (-419 |#3|)) (-1289 |#1|)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3642 (((-2 (|:| |num| (-1289 |#2|)) (|:| |den| |#2|)) $) 211)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 105 (|has| (-419 |#2|) (-374)))) (-3325 (($ $) 106 (|has| (-419 |#2|) (-374)))) (-4306 (((-112) $) 108 (|has| (-419 |#2|) (-374)))) (-1527 (((-702 (-419 |#2|)) (-1289 $)) 53) (((-702 (-419 |#2|))) 68)) (-2302 (((-419 |#2|) $) 59)) (-3592 (((-1211 (-941) (-784)) (-576)) 158 (|has| (-419 |#2|) (-360)))) (-2721 (((-3 $ "failed") $ $) 20)) (-2638 (($ $) 125 (|has| (-419 |#2|) (-374)))) (-4402 (((-430 $) $) 126 (|has| (-419 |#2|) (-374)))) (-2864 (((-112) $ $) 116 (|has| (-419 |#2|) (-374)))) (-2193 (((-784)) 99 (|has| (-419 |#2|) (-379)))) (-1844 (((-112)) 228)) (-3700 (((-112) |#1|) 227) (((-112) |#2|) 226)) (-4359 (($) 18 T CONST)) (-1624 (((-3 (-576) "failed") $) 185 (|has| (-419 |#2|) (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| (-419 |#2|) (-1060 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) 180)) (-2884 (((-576) $) 184 (|has| (-419 |#2|) (-1060 (-576)))) (((-419 (-576)) $) 182 (|has| (-419 |#2|) (-1060 (-419 (-576))))) (((-419 |#2|) $) 181)) (-2613 (($ (-1289 (-419 |#2|)) (-1289 $)) 55) (($ (-1289 (-419 |#2|))) 71) (($ (-1289 |#2|) |#2|) 210)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-419 |#2|) (-360)))) (-3373 (($ $ $) 120 (|has| (-419 |#2|) (-374)))) (-3529 (((-702 (-419 |#2|)) $ (-1289 $)) 60) (((-702 (-419 |#2|)) $) 66)) (-3306 (((-702 (-576)) (-702 $)) 177 (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 176 (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-419 |#2|))) (|:| |vec| (-1289 (-419 |#2|)))) (-702 $) (-1289 $)) 175) (((-702 (-419 |#2|)) (-702 $)) 174)) (-3130 (((-1289 $) (-1289 $)) 216)) (-3622 (($ |#3|) 169) (((-3 $ "failed") (-419 |#3|)) 166 (|has| (-419 |#2|) (-374)))) (-3843 (((-3 $ "failed") $) 37)) (-2420 (((-657 (-657 |#1|))) 197 (|has| |#1| (-379)))) (-2952 (((-112) |#1| |#1|) 232)) (-1542 (((-941)) 61)) (-1892 (($) 102 (|has| (-419 |#2|) (-379)))) (-3309 (((-112)) 225)) (-3004 (((-112) |#1|) 224) (((-112) |#2|) 223)) (-3385 (($ $ $) 119 (|has| (-419 |#2|) (-374)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 114 (|has| (-419 |#2|) (-374)))) (-3813 (($ $) 203)) (-1367 (($) 160 (|has| (-419 |#2|) (-360)))) (-2105 (((-112) $) 161 (|has| (-419 |#2|) (-360)))) (-1780 (($ $ (-784)) 152 (|has| (-419 |#2|) (-360))) (($ $) 151 (|has| (-419 |#2|) (-360)))) (-4257 (((-112) $) 127 (|has| (-419 |#2|) (-374)))) (-3182 (((-941) $) 163 (|has| (-419 |#2|) (-360))) (((-846 (-941)) $) 149 (|has| (-419 |#2|) (-360)))) (-4094 (((-112) $) 35)) (-3181 (((-784)) 235)) (-3253 (((-1289 $) (-1289 $)) 217)) (-2234 (((-419 |#2|) $) 58)) (-2327 (((-657 (-972 |#1|)) (-1198)) 198 (|has| |#1| (-374)))) (-4019 (((-3 $ "failed") $) 153 (|has| (-419 |#2|) (-360)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 123 (|has| (-419 |#2|) (-374)))) (-1336 ((|#3| $) 51 (|has| (-419 |#2|) (-374)))) (-3007 (((-941) $) 101 (|has| (-419 |#2|) (-379)))) (-3609 ((|#3| $) 167)) (-3101 (((-702 (-576)) (-1289 $)) 179 (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 178 (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-419 |#2|))) (|:| |vec| (-1289 (-419 |#2|)))) (-1289 $) $) 173) (((-702 (-419 |#2|)) (-1289 $)) 172)) (-3402 (($ (-657 $)) 112 (|has| (-419 |#2|) (-374))) (($ $ $) 111 (|has| (-419 |#2|) (-374)))) (-2342 (((-1180) $) 10)) (-4315 (((-702 (-419 |#2|))) 212)) (-2610 (((-702 (-419 |#2|))) 214)) (-2134 (($ $) 128 (|has| (-419 |#2|) (-374)))) (-1599 (($ (-1289 |#2|) |#2|) 208)) (-1457 (((-702 (-419 |#2|))) 213)) (-3154 (((-702 (-419 |#2|))) 215)) (-4265 (((-2 (|:| |num| (-702 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 207)) (-3640 (((-2 (|:| |num| (-1289 |#2|)) (|:| |den| |#2|)) $) 209)) (-1520 (((-1289 $)) 221)) (-1613 (((-1289 $)) 222)) (-1333 (((-112) $) 220)) (-1743 (((-112) $) 219) (((-112) $ |#1|) 206) (((-112) $ |#2|) 205)) (-1706 (($) 154 (|has| (-419 |#2|) (-360)) CONST)) (-3178 (($ (-941)) 100 (|has| (-419 |#2|) (-379)))) (-4292 (((-3 |#2| "failed")) 200)) (-1471 (((-1142) $) 11)) (-2821 (((-784)) 234)) (-4097 (($) 171)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 113 (|has| (-419 |#2|) (-374)))) (-3436 (($ (-657 $)) 110 (|has| (-419 |#2|) (-374))) (($ $ $) 109 (|has| (-419 |#2|) (-374)))) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) 157 (|has| (-419 |#2|) (-360)))) (-1885 (((-430 $) $) 124 (|has| (-419 |#2|) (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 121 (|has| (-419 |#2|) (-374)))) (-3418 (((-3 $ "failed") $ $) 104 (|has| (-419 |#2|) (-374)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 115 (|has| (-419 |#2|) (-374)))) (-2034 (((-784) $) 117 (|has| (-419 |#2|) (-374)))) (-2835 ((|#1| $ |#1| |#1|) 202)) (-2645 (((-3 |#2| "failed")) 201)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 118 (|has| (-419 |#2|) (-374)))) (-1701 (((-419 |#2|) (-1289 $)) 54) (((-419 |#2|)) 67)) (-2284 (((-784) $) 162 (|has| (-419 |#2|) (-360))) (((-3 (-784) "failed") $ $) 150 (|has| (-419 |#2|) (-360)))) (-2815 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 136 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-784)) 135 (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 204) (($ $ (-657 (-1198)) (-657 (-784))) 141 (-2802 (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-2724 (|has| (-419 |#2|) (-920 (-1198))) (|has| (-419 |#2|) (-374))))) (($ $ (-1198) (-784)) 140 (-2802 (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-2724 (|has| (-419 |#2|) (-920 (-1198))) (|has| (-419 |#2|) (-374))))) (($ $ (-657 (-1198))) 139 (-2802 (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-2724 (|has| (-419 |#2|) (-920 (-1198))) (|has| (-419 |#2|) (-374))))) (($ $ (-1198)) 137 (-2802 (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-2724 (|has| (-419 |#2|) (-920 (-1198))) (|has| (-419 |#2|) (-374))))) (($ $ (-784)) 147 (-2802 (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2724 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 145 (-2802 (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2724 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3988 (((-702 (-419 |#2|)) (-1289 $) (-1 (-419 |#2|) (-419 |#2|))) 165 (|has| (-419 |#2|) (-374)))) (-3180 ((|#3|) 170)) (-2090 (($) 159 (|has| (-419 |#2|) (-360)))) (-2795 (((-1289 (-419 |#2|)) $ (-1289 $)) 57) (((-702 (-419 |#2|)) (-1289 $) (-1289 $)) 56) (((-1289 (-419 |#2|)) $) 73) (((-702 (-419 |#2|)) (-1289 $)) 72)) (-4148 (((-1289 (-419 |#2|)) $) 70) (($ (-1289 (-419 |#2|))) 69) ((|#3| $) 186) (($ |#3|) 168)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) 156 (|has| (-419 |#2|) (-360)))) (-1361 (((-1289 $) (-1289 $)) 218)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ (-419 |#2|)) 44) (($ (-419 (-576))) 98 (-2802 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-1060 (-419 (-576)))))) (($ $) 103 (|has| (-419 |#2|) (-374)))) (-3096 (($ $) 155 (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) 50 (|has| (-419 |#2|) (-146)))) (-4182 ((|#3| $) 52)) (-1960 (((-784)) 32 T CONST)) (-1818 (((-112)) 231)) (-2866 (((-112) |#1|) 230) (((-112) |#2|) 229)) (-2046 (((-112) $ $) 6)) (-1985 (((-1289 $)) 74)) (-4041 (((-112) $ $) 107 (|has| (-419 |#2|) (-374)))) (-2519 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 199)) (-1660 (((-112)) 233)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 134 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-784)) 133 (|has| (-419 |#2|) (-374))) (($ $ (-657 (-1198)) (-657 (-784))) 144 (-2802 (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-2724 (|has| (-419 |#2|) (-920 (-1198))) (|has| (-419 |#2|) (-374))))) (($ $ (-1198) (-784)) 143 (-2802 (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-2724 (|has| (-419 |#2|) (-920 (-1198))) (|has| (-419 |#2|) (-374))))) (($ $ (-657 (-1198))) 142 (-2802 (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-2724 (|has| (-419 |#2|) (-920 (-1198))) (|has| (-419 |#2|) (-374))))) (($ $ (-1198)) 138 (-2802 (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-2724 (|has| (-419 |#2|) (-920 (-1198))) (|has| (-419 |#2|) (-374))))) (($ $ (-784)) 148 (-2802 (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2724 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 146 (-2802 (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2724 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2724 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2933 (((-112) $ $) 8)) (-3034 (($ $ $) 132 (|has| (-419 |#2|) (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 129 (|has| (-419 |#2|) (-374)))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 |#2|)) 46) (($ (-419 |#2|) $) 45) (($ (-419 (-576)) $) 131 (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) 130 (|has| (-419 |#2|) (-374))))) -(((-353 |#1| |#2| |#3|) (-141) (-1243) (-1265 |t#1|) (-1265 (-419 |t#2|))) (T -353)) -((-3181 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-784)))) (-2821 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-784)))) (-1660 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-2952 (*1 *2 *3 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-1818 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-2866 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-2866 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 (-419 *3))) (-5 *2 (-112)))) (-1844 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-3700 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-3700 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 (-419 *3))) (-5 *2 (-112)))) (-3309 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-3004 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-3004 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 (-419 *3))) (-5 *2 (-112)))) (-1613 (*1 *2) (-12 (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5)))) (-1520 (*1 *2) (-12 (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5)))) (-1333 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-1743 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-1361 (*1 *2 *2) (-12 (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))))) (-3253 (*1 *2 *2) (-12 (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))))) (-3154 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-702 (-419 *4))))) (-2610 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-702 (-419 *4))))) (-1457 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-702 (-419 *4))))) (-4315 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-702 (-419 *4))))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1289 *4)) (|:| |den| *4))))) (-2613 (*1 *1 *2 *3) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-1265 *4)) (-4 *4 (-1243)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1265 (-419 *3))))) (-3640 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1289 *4)) (|:| |den| *4))))) (-1599 (*1 *1 *2 *3) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-1265 *4)) (-4 *4 (-1243)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1265 (-419 *3))))) (-4265 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) (-5 *2 (-2 (|:| |num| (-702 *5)) (|:| |den| *5))))) (-1743 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) (-1743 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 (-419 *3))) (-5 *2 (-112)))) (-2815 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1243)) (-4 *3 (-1265 *2)) (-4 *4 (-1265 (-419 *3))))) (-2835 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1243)) (-4 *3 (-1265 *2)) (-4 *4 (-1265 (-419 *3))))) (-2645 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1243)) (-4 *4 (-1265 (-419 *2))) (-4 *2 (-1265 *3)))) (-4292 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1243)) (-4 *4 (-1265 (-419 *2))) (-4 *2 (-1265 *3)))) (-2519 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-1243)) (-4 *6 (-1265 (-419 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-353 *4 *5 *6)))) (-2327 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) (-4 *4 (-374)) (-5 *2 (-657 (-972 *4))))) (-2420 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-657 (-657 *3)))))) -(-13 (-737 (-419 |t#2|) |t#3|) (-10 -8 (-15 -3181 ((-784))) (-15 -2821 ((-784))) (-15 -1660 ((-112))) (-15 -2952 ((-112) |t#1| |t#1|)) (-15 -1818 ((-112))) (-15 -2866 ((-112) |t#1|)) (-15 -2866 ((-112) |t#2|)) (-15 -1844 ((-112))) (-15 -3700 ((-112) |t#1|)) (-15 -3700 ((-112) |t#2|)) (-15 -3309 ((-112))) (-15 -3004 ((-112) |t#1|)) (-15 -3004 ((-112) |t#2|)) (-15 -1613 ((-1289 $))) (-15 -1520 ((-1289 $))) (-15 -1333 ((-112) $)) (-15 -1743 ((-112) $)) (-15 -1361 ((-1289 $) (-1289 $))) (-15 -3253 ((-1289 $) (-1289 $))) (-15 -3130 ((-1289 $) (-1289 $))) (-15 -3154 ((-702 (-419 |t#2|)))) (-15 -2610 ((-702 (-419 |t#2|)))) (-15 -1457 ((-702 (-419 |t#2|)))) (-15 -4315 ((-702 (-419 |t#2|)))) (-15 -3642 ((-2 (|:| |num| (-1289 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2613 ($ (-1289 |t#2|) |t#2|)) (-15 -3640 ((-2 (|:| |num| (-1289 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1599 ($ (-1289 |t#2|) |t#2|)) (-15 -4265 ((-2 (|:| |num| (-702 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1743 ((-112) $ |t#1|)) (-15 -1743 ((-112) $ |t#2|)) (-15 -2815 ($ $ (-1 |t#2| |t#2|))) (-15 -3813 ($ $)) (-15 -2835 (|t#1| $ |t#1| |t#1|)) (-15 -2645 ((-3 |t#2| "failed"))) (-15 -4292 ((-3 |t#2| "failed"))) (-15 -2519 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-374)) (-15 -2327 ((-657 (-972 |t#1|)) (-1198))) |%noBranch|) (IF (|has| |t#1| (-379)) (-15 -2420 ((-657 (-657 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-38 #1=(-419 |#2|)) . T) ((-38 $) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-102) . T) ((-111 #0# #0#) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-146))) ((-148) |has| (-419 |#2|) (-148)) ((-628 #0#) -2802 (|has| (-419 |#2|) (-1060 (-419 (-576)))) (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-628 #1#) . T) ((-628 (-576)) . T) ((-628 $) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-625 (-877)) . T) ((-174) . T) ((-626 |#3|) . T) ((-234 $) -2802 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-232 #1#) |has| (-419 |#2|) (-374)) ((-238) -2802 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-237) -2802 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-272 #1#) |has| (-419 |#2|) (-374)) ((-248) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-300) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-317) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-374) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-414) |has| (-419 |#2|) (-360)) ((-379) -2802 (|has| (-419 |#2|) (-379)) (|has| (-419 |#2|) (-360))) ((-360) |has| (-419 |#2|) (-360)) ((-381 #1# |#3|) . T) ((-421 #1# |#3|) . T) ((-388 #1#) . T) ((-423 #1#) . T) ((-464) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-568) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-659 #0#) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-659 #1#) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0#) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-661 #1#) . T) ((-661 #2=(-576)) |has| (-419 |#2|) (-652 (-576))) ((-661 $) . T) ((-653 #0#) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-653 #1#) . T) ((-653 $) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-652 #1#) . T) ((-652 #2#) |has| (-419 |#2|) (-652 (-576))) ((-730 #0#) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-730 #1#) . T) ((-730 $) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-737 #1# |#3|) . T) ((-739) . T) ((-912 $ #3=(-1198)) -2802 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198))))) ((-918 (-1198)) -12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) ((-920 #3#) -2802 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198))))) ((-940) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1060 (-419 (-576))) |has| (-419 |#2|) (-1060 (-419 (-576)))) ((-1060 #1#) . T) ((-1060 (-576)) |has| (-419 |#2|) (-1060 (-576))) ((-1073 #0#) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1073 #1#) . T) ((-1073 $) . T) ((-1078 #0#) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1078 #1#) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1174) |has| (-419 |#2|) (-360)) ((-1239) . T) ((-1243) -2802 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2175 (((-112) $) NIL)) (-3158 (((-784)) NIL)) (-2302 (((-930 |#1|) $) NIL) (($ $ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-3592 (((-1211 (-941) (-784)) (-576)) NIL (|has| (-930 |#1|) (-379)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-2864 (((-112) $ $) NIL)) (-2193 (((-784)) NIL (|has| (-930 |#1|) (-379)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-930 |#1|) "failed") $) NIL)) (-2884 (((-930 |#1|) $) NIL)) (-2613 (($ (-1289 (-930 |#1|))) NIL)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-930 |#1|) (-379)))) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($) NIL (|has| (-930 |#1|) (-379)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-1367 (($) NIL (|has| (-930 |#1|) (-379)))) (-2105 (((-112) $) NIL (|has| (-930 |#1|) (-379)))) (-1780 (($ $ (-784)) NIL (-2802 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379)))) (($ $) NIL (-2802 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-4257 (((-112) $) NIL)) (-3182 (((-941) $) NIL (|has| (-930 |#1|) (-379))) (((-846 (-941)) $) NIL (-2802 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-4094 (((-112) $) NIL)) (-2615 (($) NIL (|has| (-930 |#1|) (-379)))) (-1974 (((-112) $) NIL (|has| (-930 |#1|) (-379)))) (-2234 (((-930 |#1|) $) NIL) (($ $ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-4019 (((-3 $ "failed") $) NIL (|has| (-930 |#1|) (-379)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1336 (((-1194 (-930 |#1|)) $) NIL) (((-1194 $) $ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-3007 (((-941) $) NIL (|has| (-930 |#1|) (-379)))) (-4349 (((-1194 (-930 |#1|)) $) NIL (|has| (-930 |#1|) (-379)))) (-3173 (((-1194 (-930 |#1|)) $) NIL (|has| (-930 |#1|) (-379))) (((-3 (-1194 (-930 |#1|)) "failed") $ $) NIL (|has| (-930 |#1|) (-379)))) (-1354 (($ $ (-1194 (-930 |#1|))) NIL (|has| (-930 |#1|) (-379)))) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1706 (($) NIL (|has| (-930 |#1|) (-379)) CONST)) (-3178 (($ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-2463 (((-112) $) NIL)) (-1471 (((-1142) $) NIL)) (-2818 (((-978 (-1142))) NIL)) (-4097 (($) NIL (|has| (-930 |#1|) (-379)))) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) NIL (|has| (-930 |#1|) (-379)))) (-1885 (((-430 $) $) NIL)) (-1453 (((-846 (-941))) NIL) (((-941)) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2284 (((-784) $) NIL (|has| (-930 |#1|) (-379))) (((-3 (-784) "failed") $ $) NIL (-2802 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-3863 (((-135)) NIL)) (-2815 (($ $ (-784)) NIL (|has| (-930 |#1|) (-379))) (($ $) NIL (|has| (-930 |#1|) (-379)))) (-1770 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-3180 (((-1194 (-930 |#1|))) NIL)) (-2090 (($) NIL (|has| (-930 |#1|) (-379)))) (-3298 (($) NIL (|has| (-930 |#1|) (-379)))) (-2795 (((-1289 (-930 |#1|)) $) NIL) (((-702 (-930 |#1|)) (-1289 $)) NIL)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| (-930 |#1|) (-379)))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-930 |#1|)) NIL)) (-3096 (($ $) NIL (|has| (-930 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2802 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) NIL) (((-1289 $) (-941)) NIL)) (-4041 (((-112) $ $) NIL)) (-1863 (((-112) $) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-1508 (($ $) NIL (|has| (-930 |#1|) (-379))) (($ $ (-784)) NIL (|has| (-930 |#1|) (-379)))) (-2097 (($ $ (-784)) NIL (|has| (-930 |#1|) (-379))) (($ $) NIL (|has| (-930 |#1|) (-379)))) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL) (($ $ (-930 |#1|)) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-930 |#1|)) NIL) (($ (-930 |#1|) $) NIL))) -(((-354 |#1| |#2|) (-13 (-339 (-930 |#1|)) (-10 -7 (-15 -2818 ((-978 (-1142)))))) (-941) (-941)) (T -354)) -((-2818 (*1 *2) (-12 (-5 *2 (-978 (-1142))) (-5 *1 (-354 *3 *4)) (-14 *3 (-941)) (-14 *4 (-941))))) -(-13 (-339 (-930 |#1|)) (-10 -7 (-15 -2818 ((-978 (-1142)))))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 58)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2175 (((-112) $) NIL)) (-3158 (((-784)) NIL)) (-2302 ((|#1| $) NIL) (($ $ (-941)) NIL (|has| |#1| (-379)))) (-3592 (((-1211 (-941) (-784)) (-576)) 56 (|has| |#1| (-379)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-2864 (((-112) $ $) NIL)) (-2193 (((-784)) NIL (|has| |#1| (-379)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) 142)) (-2884 ((|#1| $) 113)) (-2613 (($ (-1289 |#1|)) 130)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-379)))) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($) 124 (|has| |#1| (-379)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-1367 (($) 160 (|has| |#1| (-379)))) (-2105 (((-112) $) 66 (|has| |#1| (-379)))) (-1780 (($ $ (-784)) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4257 (((-112) $) NIL)) (-3182 (((-941) $) 60 (|has| |#1| (-379))) (((-846 (-941)) $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4094 (((-112) $) 62)) (-2615 (($) 162 (|has| |#1| (-379)))) (-1974 (((-112) $) NIL (|has| |#1| (-379)))) (-2234 ((|#1| $) NIL) (($ $ (-941)) NIL (|has| |#1| (-379)))) (-4019 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1336 (((-1194 |#1|) $) 117) (((-1194 $) $ (-941)) NIL (|has| |#1| (-379)))) (-3007 (((-941) $) 171 (|has| |#1| (-379)))) (-4349 (((-1194 |#1|) $) NIL (|has| |#1| (-379)))) (-3173 (((-1194 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1194 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1354 (($ $ (-1194 |#1|)) NIL (|has| |#1| (-379)))) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) 178)) (-1706 (($) NIL (|has| |#1| (-379)) CONST)) (-3178 (($ (-941)) 96 (|has| |#1| (-379)))) (-2463 (((-112) $) 147)) (-1471 (((-1142) $) NIL)) (-2818 (((-978 (-1142))) 57)) (-4097 (($) 158 (|has| |#1| (-379)))) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) 119 (|has| |#1| (-379)))) (-1885 (((-430 $) $) NIL)) (-1453 (((-846 (-941))) 90) (((-941)) 91)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2284 (((-784) $) 161 (|has| |#1| (-379))) (((-3 (-784) "failed") $ $) 154 (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3863 (((-135)) NIL)) (-2815 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-1770 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-3180 (((-1194 |#1|)) 122)) (-2090 (($) 159 (|has| |#1| (-379)))) (-3298 (($) 167 (|has| |#1| (-379)))) (-2795 (((-1289 |#1|) $) 77) (((-702 |#1|) (-1289 $)) NIL)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| |#1| (-379)))) (-3501 (((-877) $) 174) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 100)) (-3096 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1960 (((-784)) 155 T CONST)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) 144) (((-1289 $) (-941)) 98)) (-4041 (((-112) $ $) NIL)) (-1863 (((-112) $) NIL)) (-2769 (($) 67 T CONST)) (-2779 (($) 103 T CONST)) (-1508 (($ $) 107 (|has| |#1| (-379))) (($ $ (-784)) NIL (|has| |#1| (-379)))) (-2097 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2933 (((-112) $ $) 65)) (-3034 (($ $ $) 176) (($ $ |#1|) 177)) (-3022 (($ $) 157) (($ $ $) NIL)) (-3012 (($ $ $) 86)) (** (($ $ (-941)) 180) (($ $ (-784)) 181) (($ $ (-576)) 179)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 102) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) -(((-355 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2818 ((-978 (-1142)))))) (-360) (-1194 |#1|)) (T -355)) -((-2818 (*1 *2) (-12 (-5 *2 (-978 (-1142))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) (-14 *4 (-1194 *3))))) -(-13 (-339 |#1|) (-10 -7 (-15 -2818 ((-978 (-1142)))))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2175 (((-112) $) NIL)) (-3158 (((-784)) NIL)) (-2302 ((|#1| $) NIL) (($ $ (-941)) NIL (|has| |#1| (-379)))) (-3592 (((-1211 (-941) (-784)) (-576)) NIL (|has| |#1| (-379)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-2864 (((-112) $ $) NIL)) (-2193 (((-784)) NIL (|has| |#1| (-379)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) NIL)) (-2884 ((|#1| $) NIL)) (-2613 (($ (-1289 |#1|)) NIL)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($) NIL (|has| |#1| (-379)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-1367 (($) NIL (|has| |#1| (-379)))) (-2105 (((-112) $) NIL (|has| |#1| (-379)))) (-1780 (($ $ (-784)) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4257 (((-112) $) NIL)) (-3182 (((-941) $) NIL (|has| |#1| (-379))) (((-846 (-941)) $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4094 (((-112) $) NIL)) (-2615 (($) NIL (|has| |#1| (-379)))) (-1974 (((-112) $) NIL (|has| |#1| (-379)))) (-2234 ((|#1| $) NIL) (($ $ (-941)) NIL (|has| |#1| (-379)))) (-4019 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1336 (((-1194 |#1|) $) NIL) (((-1194 $) $ (-941)) NIL (|has| |#1| (-379)))) (-3007 (((-941) $) NIL (|has| |#1| (-379)))) (-4349 (((-1194 |#1|) $) NIL (|has| |#1| (-379)))) (-3173 (((-1194 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1194 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1354 (($ $ (-1194 |#1|)) NIL (|has| |#1| (-379)))) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1706 (($) NIL (|has| |#1| (-379)) CONST)) (-3178 (($ (-941)) NIL (|has| |#1| (-379)))) (-2463 (((-112) $) NIL)) (-1471 (((-1142) $) NIL)) (-2818 (((-978 (-1142))) NIL)) (-4097 (($) NIL (|has| |#1| (-379)))) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) NIL (|has| |#1| (-379)))) (-1885 (((-430 $) $) NIL)) (-1453 (((-846 (-941))) NIL) (((-941)) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2284 (((-784) $) NIL (|has| |#1| (-379))) (((-3 (-784) "failed") $ $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3863 (((-135)) NIL)) (-2815 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-1770 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-3180 (((-1194 |#1|)) NIL)) (-2090 (($) NIL (|has| |#1| (-379)))) (-3298 (($) NIL (|has| |#1| (-379)))) (-2795 (((-1289 |#1|) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| |#1| (-379)))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3096 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) NIL) (((-1289 $) (-941)) NIL)) (-4041 (((-112) $ $) NIL)) (-1863 (((-112) $) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-1508 (($ $) NIL (|has| |#1| (-379))) (($ $ (-784)) NIL (|has| |#1| (-379)))) (-2097 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-356 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2818 ((-978 (-1142)))))) (-360) (-941)) (T -356)) -((-2818 (*1 *2) (-12 (-5 *2 (-978 (-1142))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) (-14 *4 (-941))))) -(-13 (-339 |#1|) (-10 -7 (-15 -2818 ((-978 (-1142)))))) -((-4023 (((-784) (-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142)))))) 61)) (-2058 (((-978 (-1142)) (-1194 |#1|)) 112)) (-3721 (((-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142))))) (-1194 |#1|)) 103)) (-1652 (((-702 |#1|) (-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142)))))) 113)) (-3129 (((-3 (-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142))))) "failed") (-941)) 13)) (-2942 (((-3 (-1194 |#1|) (-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142)))))) (-941)) 18))) -(((-357 |#1|) (-10 -7 (-15 -2058 ((-978 (-1142)) (-1194 |#1|))) (-15 -3721 ((-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142))))) (-1194 |#1|))) (-15 -1652 ((-702 |#1|) (-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142))))))) (-15 -4023 ((-784) (-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142))))))) (-15 -3129 ((-3 (-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142))))) "failed") (-941))) (-15 -2942 ((-3 (-1194 |#1|) (-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142)))))) (-941)))) (-360)) (T -357)) -((-2942 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-3 (-1194 *4) (-1289 (-657 (-2 (|:| -3071 *4) (|:| -3178 (-1142))))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-3129 (*1 *2 *3) (|partial| -12 (-5 *3 (-941)) (-5 *2 (-1289 (-657 (-2 (|:| -3071 *4) (|:| -3178 (-1142)))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-4023 (*1 *2 *3) (-12 (-5 *3 (-1289 (-657 (-2 (|:| -3071 *4) (|:| -3178 (-1142)))))) (-4 *4 (-360)) (-5 *2 (-784)) (-5 *1 (-357 *4)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-1289 (-657 (-2 (|:| -3071 *4) (|:| -3178 (-1142)))))) (-4 *4 (-360)) (-5 *2 (-702 *4)) (-5 *1 (-357 *4)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) (-5 *2 (-1289 (-657 (-2 (|:| -3071 *4) (|:| -3178 (-1142)))))) (-5 *1 (-357 *4)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) (-5 *2 (-978 (-1142))) (-5 *1 (-357 *4))))) -(-10 -7 (-15 -2058 ((-978 (-1142)) (-1194 |#1|))) (-15 -3721 ((-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142))))) (-1194 |#1|))) (-15 -1652 ((-702 |#1|) (-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142))))))) (-15 -4023 ((-784) (-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142))))))) (-15 -3129 ((-3 (-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142))))) "failed") (-941))) (-15 -2942 ((-3 (-1194 |#1|) (-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142)))))) (-941)))) -((-3501 ((|#1| |#3|) 104) ((|#3| |#1|) 87))) -(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -3501 (|#3| |#1|)) (-15 -3501 (|#1| |#3|))) (-339 |#2|) (-360) (-339 |#2|)) (T -358)) -((-3501 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3)) (-4 *3 (-339 *4)))) (-3501 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2)) (-4 *3 (-339 *4))))) -(-10 -7 (-15 -3501 (|#3| |#1|)) (-15 -3501 (|#1| |#3|))) -((-2105 (((-112) $) 60)) (-3182 (((-846 (-941)) $) 23) (((-941) $) 64)) (-4019 (((-3 $ "failed") $) 18)) (-1706 (($) 9)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 114)) (-2284 (((-3 (-784) "failed") $ $) 92) (((-784) $) 79)) (-2815 (($ $) 8) (($ $ (-784)) NIL)) (-2090 (($) 53)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) 38)) (-3096 (((-3 $ "failed") $) 45) (($ $) 44))) -(((-359 |#1|) (-10 -8 (-15 -3182 ((-941) |#1|)) (-15 -2284 ((-784) |#1|)) (-15 -2105 ((-112) |#1|)) (-15 -2090 (|#1|)) (-15 -3610 ((-3 (-1289 |#1|) "failed") (-702 |#1|))) (-15 -3096 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1|)) (-15 -1706 (|#1|)) (-15 -4019 ((-3 |#1| "failed") |#1|)) (-15 -2284 ((-3 (-784) "failed") |#1| |#1|)) (-15 -3182 ((-846 (-941)) |#1|)) (-15 -3096 ((-3 |#1| "failed") |#1|)) (-15 -2226 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|)))) (-360)) (T -359)) -NIL -(-10 -8 (-15 -3182 ((-941) |#1|)) (-15 -2284 ((-784) |#1|)) (-15 -2105 ((-112) |#1|)) (-15 -2090 (|#1|)) (-15 -3610 ((-3 (-1289 |#1|) "failed") (-702 |#1|))) (-15 -3096 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1|)) (-15 -1706 (|#1|)) (-15 -4019 ((-3 |#1| "failed") |#1|)) (-15 -2284 ((-3 (-784) "failed") |#1| |#1|)) (-15 -3182 ((-846 (-941)) |#1|)) (-15 -3096 ((-3 |#1| "failed") |#1|)) (-15 -2226 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-3592 (((-1211 (-941) (-784)) (-576)) 102)) (-2721 (((-3 $ "failed") $ $) 20)) (-2638 (($ $) 81)) (-4402 (((-430 $) $) 80)) (-2864 (((-112) $ $) 65)) (-2193 (((-784)) 112)) (-4359 (($) 18 T CONST)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-3373 (($ $ $) 61)) (-3843 (((-3 $ "failed") $) 37)) (-1892 (($) 115)) (-3385 (($ $ $) 62)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 57)) (-1367 (($) 100)) (-2105 (((-112) $) 99)) (-1780 (($ $) 87) (($ $ (-784)) 86)) (-4257 (((-112) $) 79)) (-3182 (((-846 (-941)) $) 89) (((-941) $) 97)) (-4094 (((-112) $) 35)) (-4019 (((-3 $ "failed") $) 111)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3007 (((-941) $) 114)) (-3402 (($ $ $) 52) (($ (-657 $)) 51)) (-2342 (((-1180) $) 10)) (-2134 (($ $) 78)) (-1706 (($) 110 T CONST)) (-3178 (($ (-941)) 113)) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3436 (($ $ $) 54) (($ (-657 $)) 53)) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) 103)) (-1885 (((-430 $) $) 82)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3418 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-2034 (((-784) $) 64)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 63)) (-2284 (((-3 (-784) "failed") $ $) 88) (((-784) $) 98)) (-2815 (($ $) 109) (($ $ (-784)) 107)) (-2090 (($) 101)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) 104)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3096 (((-3 $ "failed") $) 90) (($ $) 105)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 45)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $) 108) (($ $ (-784)) 106)) (-2933 (((-112) $ $) 8)) (-3034 (($ $ $) 73)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) -(((-360) (-141)) (T -360)) -((-3096 (*1 *1 *1) (-4 *1 (-360))) (-3610 (*1 *2 *3) (|partial| -12 (-5 *3 (-702 *1)) (-4 *1 (-360)) (-5 *2 (-1289 *1)))) (-4173 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))))) (-3592 (*1 *2 *3) (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1211 (-941) (-784))))) (-2090 (*1 *1) (-4 *1 (-360))) (-1367 (*1 *1) (-4 *1 (-360))) (-2105 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) (-2284 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-784)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-941)))) (-3439 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-414) (-379) (-1174) (-238) (-10 -8 (-15 -3096 ($ $)) (-15 -3610 ((-3 (-1289 $) "failed") (-702 $))) (-15 -4173 ((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576)))))) (-15 -3592 ((-1211 (-941) (-784)) (-576))) (-15 -2090 ($)) (-15 -1367 ($)) (-15 -2105 ((-112) $)) (-15 -2284 ((-784) $)) (-15 -3182 ((-941) $)) (-15 -3439 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) . T) ((-379) . T) ((-464) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-730 #0#) . T) ((-730 $) . T) ((-739) . T) ((-940) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1174) . T) ((-1239) . T) ((-1243) . T)) -((-3984 (((-2 (|:| -1985 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))) |#1|) 55)) (-1613 (((-2 (|:| -1985 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|)))) 53))) -(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -1613 ((-2 (|:| -1985 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))))) (-15 -3984 ((-2 (|:| -1985 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))) |#1|))) (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $)))) (-1265 |#1|) (-421 |#1| |#2|)) (T -361)) -((-3984 (*1 *2 *3) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) (-4 *4 (-1265 *3)) (-5 *2 (-2 (|:| -1985 (-702 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-702 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1613 (*1 *2) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) (-4 *4 (-1265 *3)) (-5 *2 (-2 (|:| -1985 (-702 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-702 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(-10 -7 (-15 -1613 ((-2 (|:| -1985 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))))) (-15 -3984 ((-2 (|:| -1985 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))) |#1|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2175 (((-112) $) NIL)) (-3158 (((-784)) NIL)) (-2302 (((-930 |#1|) $) NIL) (($ $ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-3592 (((-1211 (-941) (-784)) (-576)) NIL (|has| (-930 |#1|) (-379)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-4023 (((-784)) NIL)) (-2864 (((-112) $ $) NIL)) (-2193 (((-784)) NIL (|has| (-930 |#1|) (-379)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-930 |#1|) "failed") $) NIL)) (-2884 (((-930 |#1|) $) NIL)) (-2613 (($ (-1289 (-930 |#1|))) NIL)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-930 |#1|) (-379)))) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($) NIL (|has| (-930 |#1|) (-379)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-1367 (($) NIL (|has| (-930 |#1|) (-379)))) (-2105 (((-112) $) NIL (|has| (-930 |#1|) (-379)))) (-1780 (($ $ (-784)) NIL (-2802 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379)))) (($ $) NIL (-2802 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-4257 (((-112) $) NIL)) (-3182 (((-941) $) NIL (|has| (-930 |#1|) (-379))) (((-846 (-941)) $) NIL (-2802 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-4094 (((-112) $) NIL)) (-2615 (($) NIL (|has| (-930 |#1|) (-379)))) (-1974 (((-112) $) NIL (|has| (-930 |#1|) (-379)))) (-2234 (((-930 |#1|) $) NIL) (($ $ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-4019 (((-3 $ "failed") $) NIL (|has| (-930 |#1|) (-379)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1336 (((-1194 (-930 |#1|)) $) NIL) (((-1194 $) $ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-3007 (((-941) $) NIL (|has| (-930 |#1|) (-379)))) (-4349 (((-1194 (-930 |#1|)) $) NIL (|has| (-930 |#1|) (-379)))) (-3173 (((-1194 (-930 |#1|)) $) NIL (|has| (-930 |#1|) (-379))) (((-3 (-1194 (-930 |#1|)) "failed") $ $) NIL (|has| (-930 |#1|) (-379)))) (-1354 (($ $ (-1194 (-930 |#1|))) NIL (|has| (-930 |#1|) (-379)))) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1706 (($) NIL (|has| (-930 |#1|) (-379)) CONST)) (-3178 (($ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-2463 (((-112) $) NIL)) (-1471 (((-1142) $) NIL)) (-3139 (((-1289 (-657 (-2 (|:| -3071 (-930 |#1|)) (|:| -3178 (-1142)))))) NIL)) (-3332 (((-702 (-930 |#1|))) NIL)) (-4097 (($) NIL (|has| (-930 |#1|) (-379)))) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) NIL (|has| (-930 |#1|) (-379)))) (-1885 (((-430 $) $) NIL)) (-1453 (((-846 (-941))) NIL) (((-941)) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2284 (((-784) $) NIL (|has| (-930 |#1|) (-379))) (((-3 (-784) "failed") $ $) NIL (-2802 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-3863 (((-135)) NIL)) (-2815 (($ $ (-784)) NIL (|has| (-930 |#1|) (-379))) (($ $) NIL (|has| (-930 |#1|) (-379)))) (-1770 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-3180 (((-1194 (-930 |#1|))) NIL)) (-2090 (($) NIL (|has| (-930 |#1|) (-379)))) (-3298 (($) NIL (|has| (-930 |#1|) (-379)))) (-2795 (((-1289 (-930 |#1|)) $) NIL) (((-702 (-930 |#1|)) (-1289 $)) NIL)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| (-930 |#1|) (-379)))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-930 |#1|)) NIL)) (-3096 (($ $) NIL (|has| (-930 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2802 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) NIL) (((-1289 $) (-941)) NIL)) (-4041 (((-112) $ $) NIL)) (-1863 (((-112) $) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-1508 (($ $) NIL (|has| (-930 |#1|) (-379))) (($ $ (-784)) NIL (|has| (-930 |#1|) (-379)))) (-2097 (($ $ (-784)) NIL (|has| (-930 |#1|) (-379))) (($ $) NIL (|has| (-930 |#1|) (-379)))) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL) (($ $ (-930 |#1|)) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-930 |#1|)) NIL) (($ (-930 |#1|) $) NIL))) -(((-362 |#1| |#2|) (-13 (-339 (-930 |#1|)) (-10 -7 (-15 -3139 ((-1289 (-657 (-2 (|:| -3071 (-930 |#1|)) (|:| -3178 (-1142))))))) (-15 -3332 ((-702 (-930 |#1|)))) (-15 -4023 ((-784))))) (-941) (-941)) (T -362)) -((-3139 (*1 *2) (-12 (-5 *2 (-1289 (-657 (-2 (|:| -3071 (-930 *3)) (|:| -3178 (-1142)))))) (-5 *1 (-362 *3 *4)) (-14 *3 (-941)) (-14 *4 (-941)))) (-3332 (*1 *2) (-12 (-5 *2 (-702 (-930 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-941)) (-14 *4 (-941)))) (-4023 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-362 *3 *4)) (-14 *3 (-941)) (-14 *4 (-941))))) -(-13 (-339 (-930 |#1|)) (-10 -7 (-15 -3139 ((-1289 (-657 (-2 (|:| -3071 (-930 |#1|)) (|:| -3178 (-1142))))))) (-15 -3332 ((-702 (-930 |#1|)))) (-15 -4023 ((-784))))) -((-3429 (((-112) $ $) 73)) (-2364 (((-112) $) 88)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2175 (((-112) $) NIL)) (-3158 (((-784)) NIL)) (-2302 ((|#1| $) 106) (($ $ (-941)) 104 (|has| |#1| (-379)))) (-3592 (((-1211 (-941) (-784)) (-576)) 170 (|has| |#1| (-379)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-4023 (((-784)) 103)) (-2864 (((-112) $ $) NIL)) (-2193 (((-784)) 187 (|has| |#1| (-379)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) 127)) (-2884 ((|#1| $) 105)) (-2613 (($ (-1289 |#1|)) 71)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-379)))) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($) 182 (|has| |#1| (-379)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-1367 (($) 171 (|has| |#1| (-379)))) (-2105 (((-112) $) NIL (|has| |#1| (-379)))) (-1780 (($ $ (-784)) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4257 (((-112) $) NIL)) (-3182 (((-941) $) NIL (|has| |#1| (-379))) (((-846 (-941)) $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4094 (((-112) $) NIL)) (-2615 (($) 113 (|has| |#1| (-379)))) (-1974 (((-112) $) 200 (|has| |#1| (-379)))) (-2234 ((|#1| $) 108) (($ $ (-941)) 107 (|has| |#1| (-379)))) (-4019 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1336 (((-1194 |#1|) $) 214) (((-1194 $) $ (-941)) NIL (|has| |#1| (-379)))) (-3007 (((-941) $) 148 (|has| |#1| (-379)))) (-4349 (((-1194 |#1|) $) 87 (|has| |#1| (-379)))) (-3173 (((-1194 |#1|) $) 84 (|has| |#1| (-379))) (((-3 (-1194 |#1|) "failed") $ $) 96 (|has| |#1| (-379)))) (-1354 (($ $ (-1194 |#1|)) 83 (|has| |#1| (-379)))) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) 218)) (-1706 (($) NIL (|has| |#1| (-379)) CONST)) (-3178 (($ (-941)) 150 (|has| |#1| (-379)))) (-2463 (((-112) $) 123)) (-1471 (((-1142) $) NIL)) (-3139 (((-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142)))))) 97)) (-3332 (((-702 |#1|)) 101)) (-4097 (($) 110 (|has| |#1| (-379)))) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) 173 (|has| |#1| (-379)))) (-1885 (((-430 $) $) NIL)) (-1453 (((-846 (-941))) NIL) (((-941)) 174)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2284 (((-784) $) NIL (|has| |#1| (-379))) (((-3 (-784) "failed") $ $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3863 (((-135)) NIL)) (-2815 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-1770 (((-846 (-941)) $) NIL) (((-941) $) 75)) (-3180 (((-1194 |#1|)) 175)) (-2090 (($) 147 (|has| |#1| (-379)))) (-3298 (($) NIL (|has| |#1| (-379)))) (-2795 (((-1289 |#1|) $) 121) (((-702 |#1|) (-1289 $)) NIL)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| |#1| (-379)))) (-3501 (((-877) $) 140) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 70)) (-3096 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1960 (((-784)) 180 T CONST)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) 197) (((-1289 $) (-941)) 116)) (-4041 (((-112) $ $) NIL)) (-1863 (((-112) $) NIL)) (-2769 (($) 186 T CONST)) (-2779 (($) 161 T CONST)) (-1508 (($ $) 122 (|has| |#1| (-379))) (($ $ (-784)) 114 (|has| |#1| (-379)))) (-2097 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2933 (((-112) $ $) 208)) (-3034 (($ $ $) 119) (($ $ |#1|) 120)) (-3022 (($ $) 202) (($ $ $) 206)) (-3012 (($ $ $) 204)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) 153)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 211) (($ $ $) 164) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118))) -(((-363 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -3139 ((-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142))))))) (-15 -3332 ((-702 |#1|))) (-15 -4023 ((-784))))) (-360) (-3 (-1194 |#1|) (-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142))))))) (T -363)) -((-3139 (*1 *2) (-12 (-5 *2 (-1289 (-657 (-2 (|:| -3071 *3) (|:| -3178 (-1142)))))) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1194 *3) *2)))) (-3332 (*1 *2) (-12 (-5 *2 (-702 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1194 *3) (-1289 (-657 (-2 (|:| -3071 *3) (|:| -3178 (-1142))))))))) (-4023 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1194 *3) (-1289 (-657 (-2 (|:| -3071 *3) (|:| -3178 (-1142)))))))))) -(-13 (-339 |#1|) (-10 -7 (-15 -3139 ((-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142))))))) (-15 -3332 ((-702 |#1|))) (-15 -4023 ((-784))))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2175 (((-112) $) NIL)) (-3158 (((-784)) NIL)) (-2302 ((|#1| $) NIL) (($ $ (-941)) NIL (|has| |#1| (-379)))) (-3592 (((-1211 (-941) (-784)) (-576)) NIL (|has| |#1| (-379)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-4023 (((-784)) NIL)) (-2864 (((-112) $ $) NIL)) (-2193 (((-784)) NIL (|has| |#1| (-379)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) NIL)) (-2884 ((|#1| $) NIL)) (-2613 (($ (-1289 |#1|)) NIL)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($) NIL (|has| |#1| (-379)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-1367 (($) NIL (|has| |#1| (-379)))) (-2105 (((-112) $) NIL (|has| |#1| (-379)))) (-1780 (($ $ (-784)) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4257 (((-112) $) NIL)) (-3182 (((-941) $) NIL (|has| |#1| (-379))) (((-846 (-941)) $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4094 (((-112) $) NIL)) (-2615 (($) NIL (|has| |#1| (-379)))) (-1974 (((-112) $) NIL (|has| |#1| (-379)))) (-2234 ((|#1| $) NIL) (($ $ (-941)) NIL (|has| |#1| (-379)))) (-4019 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1336 (((-1194 |#1|) $) NIL) (((-1194 $) $ (-941)) NIL (|has| |#1| (-379)))) (-3007 (((-941) $) NIL (|has| |#1| (-379)))) (-4349 (((-1194 |#1|) $) NIL (|has| |#1| (-379)))) (-3173 (((-1194 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1194 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1354 (($ $ (-1194 |#1|)) NIL (|has| |#1| (-379)))) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1706 (($) NIL (|has| |#1| (-379)) CONST)) (-3178 (($ (-941)) NIL (|has| |#1| (-379)))) (-2463 (((-112) $) NIL)) (-1471 (((-1142) $) NIL)) (-3139 (((-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142)))))) NIL)) (-3332 (((-702 |#1|)) NIL)) (-4097 (($) NIL (|has| |#1| (-379)))) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) NIL (|has| |#1| (-379)))) (-1885 (((-430 $) $) NIL)) (-1453 (((-846 (-941))) NIL) (((-941)) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2284 (((-784) $) NIL (|has| |#1| (-379))) (((-3 (-784) "failed") $ $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3863 (((-135)) NIL)) (-2815 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-1770 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-3180 (((-1194 |#1|)) NIL)) (-2090 (($) NIL (|has| |#1| (-379)))) (-3298 (($) NIL (|has| |#1| (-379)))) (-2795 (((-1289 |#1|) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| |#1| (-379)))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3096 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) NIL) (((-1289 $) (-941)) NIL)) (-4041 (((-112) $ $) NIL)) (-1863 (((-112) $) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-1508 (($ $) NIL (|has| |#1| (-379))) (($ $ (-784)) NIL (|has| |#1| (-379)))) (-2097 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-364 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -3139 ((-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142))))))) (-15 -3332 ((-702 |#1|))) (-15 -4023 ((-784))))) (-360) (-941)) (T -364)) -((-3139 (*1 *2) (-12 (-5 *2 (-1289 (-657 (-2 (|:| -3071 *3) (|:| -3178 (-1142)))))) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-941)))) (-3332 (*1 *2) (-12 (-5 *2 (-702 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-941)))) (-4023 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-941))))) -(-13 (-339 |#1|) (-10 -7 (-15 -3139 ((-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142))))))) (-15 -3332 ((-702 |#1|))) (-15 -4023 ((-784))))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2175 (((-112) $) NIL)) (-3158 (((-784)) NIL)) (-2302 (((-930 |#1|) $) NIL) (($ $ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-3592 (((-1211 (-941) (-784)) (-576)) NIL (|has| (-930 |#1|) (-379)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-2864 (((-112) $ $) NIL)) (-2193 (((-784)) NIL (|has| (-930 |#1|) (-379)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-930 |#1|) "failed") $) NIL)) (-2884 (((-930 |#1|) $) NIL)) (-2613 (($ (-1289 (-930 |#1|))) NIL)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-930 |#1|) (-379)))) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($) NIL (|has| (-930 |#1|) (-379)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-1367 (($) NIL (|has| (-930 |#1|) (-379)))) (-2105 (((-112) $) NIL (|has| (-930 |#1|) (-379)))) (-1780 (($ $ (-784)) NIL (-2802 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379)))) (($ $) NIL (-2802 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-4257 (((-112) $) NIL)) (-3182 (((-941) $) NIL (|has| (-930 |#1|) (-379))) (((-846 (-941)) $) NIL (-2802 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-4094 (((-112) $) NIL)) (-2615 (($) NIL (|has| (-930 |#1|) (-379)))) (-1974 (((-112) $) NIL (|has| (-930 |#1|) (-379)))) (-2234 (((-930 |#1|) $) NIL) (($ $ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-4019 (((-3 $ "failed") $) NIL (|has| (-930 |#1|) (-379)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1336 (((-1194 (-930 |#1|)) $) NIL) (((-1194 $) $ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-3007 (((-941) $) NIL (|has| (-930 |#1|) (-379)))) (-4349 (((-1194 (-930 |#1|)) $) NIL (|has| (-930 |#1|) (-379)))) (-3173 (((-1194 (-930 |#1|)) $) NIL (|has| (-930 |#1|) (-379))) (((-3 (-1194 (-930 |#1|)) "failed") $ $) NIL (|has| (-930 |#1|) (-379)))) (-1354 (($ $ (-1194 (-930 |#1|))) NIL (|has| (-930 |#1|) (-379)))) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1706 (($) NIL (|has| (-930 |#1|) (-379)) CONST)) (-3178 (($ (-941)) NIL (|has| (-930 |#1|) (-379)))) (-2463 (((-112) $) NIL)) (-1471 (((-1142) $) NIL)) (-4097 (($) NIL (|has| (-930 |#1|) (-379)))) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) NIL (|has| (-930 |#1|) (-379)))) (-1885 (((-430 $) $) NIL)) (-1453 (((-846 (-941))) NIL) (((-941)) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2284 (((-784) $) NIL (|has| (-930 |#1|) (-379))) (((-3 (-784) "failed") $ $) NIL (-2802 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-3863 (((-135)) NIL)) (-2815 (($ $ (-784)) NIL (|has| (-930 |#1|) (-379))) (($ $) NIL (|has| (-930 |#1|) (-379)))) (-1770 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-3180 (((-1194 (-930 |#1|))) NIL)) (-2090 (($) NIL (|has| (-930 |#1|) (-379)))) (-3298 (($) NIL (|has| (-930 |#1|) (-379)))) (-2795 (((-1289 (-930 |#1|)) $) NIL) (((-702 (-930 |#1|)) (-1289 $)) NIL)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| (-930 |#1|) (-379)))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-930 |#1|)) NIL)) (-3096 (($ $) NIL (|has| (-930 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2802 (|has| (-930 |#1|) (-146)) (|has| (-930 |#1|) (-379))))) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) NIL) (((-1289 $) (-941)) NIL)) (-4041 (((-112) $ $) NIL)) (-1863 (((-112) $) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-1508 (($ $) NIL (|has| (-930 |#1|) (-379))) (($ $ (-784)) NIL (|has| (-930 |#1|) (-379)))) (-2097 (($ $ (-784)) NIL (|has| (-930 |#1|) (-379))) (($ $) NIL (|has| (-930 |#1|) (-379)))) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL) (($ $ (-930 |#1|)) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-930 |#1|)) NIL) (($ (-930 |#1|) $) NIL))) -(((-365 |#1| |#2|) (-339 (-930 |#1|)) (-941) (-941)) (T -365)) -NIL -(-339 (-930 |#1|)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2175 (((-112) $) NIL)) (-3158 (((-784)) NIL)) (-2302 ((|#1| $) NIL) (($ $ (-941)) NIL (|has| |#1| (-379)))) (-3592 (((-1211 (-941) (-784)) (-576)) 129 (|has| |#1| (-379)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-2864 (((-112) $ $) NIL)) (-2193 (((-784)) 155 (|has| |#1| (-379)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) 103)) (-2884 ((|#1| $) 100)) (-2613 (($ (-1289 |#1|)) 95)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-379)))) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($) 92 (|has| |#1| (-379)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-1367 (($) 51 (|has| |#1| (-379)))) (-2105 (((-112) $) NIL (|has| |#1| (-379)))) (-1780 (($ $ (-784)) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4257 (((-112) $) NIL)) (-3182 (((-941) $) NIL (|has| |#1| (-379))) (((-846 (-941)) $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4094 (((-112) $) NIL)) (-2615 (($) 130 (|has| |#1| (-379)))) (-1974 (((-112) $) 84 (|has| |#1| (-379)))) (-2234 ((|#1| $) 47) (($ $ (-941)) 52 (|has| |#1| (-379)))) (-4019 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1336 (((-1194 |#1|) $) 75) (((-1194 $) $ (-941)) NIL (|has| |#1| (-379)))) (-3007 (((-941) $) 107 (|has| |#1| (-379)))) (-4349 (((-1194 |#1|) $) NIL (|has| |#1| (-379)))) (-3173 (((-1194 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1194 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1354 (($ $ (-1194 |#1|)) NIL (|has| |#1| (-379)))) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1706 (($) NIL (|has| |#1| (-379)) CONST)) (-3178 (($ (-941)) 105 (|has| |#1| (-379)))) (-2463 (((-112) $) 157)) (-1471 (((-1142) $) NIL)) (-4097 (($) 44 (|has| |#1| (-379)))) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) 124 (|has| |#1| (-379)))) (-1885 (((-430 $) $) NIL)) (-1453 (((-846 (-941))) NIL) (((-941)) 154)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2284 (((-784) $) NIL (|has| |#1| (-379))) (((-3 (-784) "failed") $ $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3863 (((-135)) NIL)) (-2815 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-1770 (((-846 (-941)) $) NIL) (((-941) $) 67)) (-3180 (((-1194 |#1|)) 98)) (-2090 (($) 135 (|has| |#1| (-379)))) (-3298 (($) NIL (|has| |#1| (-379)))) (-2795 (((-1289 |#1|) $) 63) (((-702 |#1|) (-1289 $)) NIL)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| |#1| (-379)))) (-3501 (((-877) $) 153) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 97)) (-3096 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1960 (((-784)) 159 T CONST)) (-2046 (((-112) $ $) 161)) (-1985 (((-1289 $)) 119) (((-1289 $) (-941)) 58)) (-4041 (((-112) $ $) NIL)) (-1863 (((-112) $) NIL)) (-2769 (($) 121 T CONST)) (-2779 (($) 40 T CONST)) (-1508 (($ $) 78 (|has| |#1| (-379))) (($ $ (-784)) NIL (|has| |#1| (-379)))) (-2097 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2933 (((-112) $ $) 117)) (-3034 (($ $ $) 109) (($ $ |#1|) 110)) (-3022 (($ $) 90) (($ $ $) 115)) (-3012 (($ $ $) 113)) (** (($ $ (-941)) NIL) (($ $ (-784)) 53) (($ $ (-576)) 138)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 88) (($ $ $) 65) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86))) -(((-366 |#1| |#2|) (-339 |#1|) (-360) (-1194 |#1|)) (T -366)) -NIL -(-339 |#1|) -((-3638 ((|#1| (-1194 |#2|)) 59))) -(((-367 |#1| |#2|) (-10 -7 (-15 -3638 (|#1| (-1194 |#2|)))) (-13 (-414) (-10 -7 (-15 -3501 (|#1| |#2|)) (-15 -3007 ((-941) |#1|)) (-15 -1985 ((-1289 |#1|) (-941))) (-15 -1508 (|#1| |#1|)))) (-360)) (T -367)) -((-3638 (*1 *2 *3) (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) (-4 *2 (-13 (-414) (-10 -7 (-15 -3501 (*2 *4)) (-15 -3007 ((-941) *2)) (-15 -1985 ((-1289 *2) (-941))) (-15 -1508 (*2 *2))))) (-5 *1 (-367 *2 *4))))) -(-10 -7 (-15 -3638 (|#1| (-1194 |#2|)))) -((-1790 (((-978 (-1194 |#1|)) (-1194 |#1|)) 49)) (-1892 (((-1194 |#1|) (-941) (-941)) 154) (((-1194 |#1|) (-941)) 150)) (-2105 (((-112) (-1194 |#1|)) 107)) (-2498 (((-941) (-941)) 85)) (-3379 (((-941) (-941)) 92)) (-2943 (((-941) (-941)) 83)) (-1974 (((-112) (-1194 |#1|)) 111)) (-3930 (((-3 (-1194 |#1|) "failed") (-1194 |#1|)) 135)) (-1683 (((-3 (-1194 |#1|) "failed") (-1194 |#1|)) 140)) (-3898 (((-3 (-1194 |#1|) "failed") (-1194 |#1|)) 139)) (-3187 (((-3 (-1194 |#1|) "failed") (-1194 |#1|)) 138)) (-1434 (((-3 (-1194 |#1|) "failed") (-1194 |#1|)) 131)) (-2562 (((-1194 |#1|) (-1194 |#1|)) 71)) (-2533 (((-1194 |#1|) (-941)) 145)) (-1654 (((-1194 |#1|) (-941)) 148)) (-3727 (((-1194 |#1|) (-941)) 147)) (-2469 (((-1194 |#1|) (-941)) 146)) (-3015 (((-1194 |#1|) (-941)) 143))) -(((-368 |#1|) (-10 -7 (-15 -2105 ((-112) (-1194 |#1|))) (-15 -1974 ((-112) (-1194 |#1|))) (-15 -2943 ((-941) (-941))) (-15 -2498 ((-941) (-941))) (-15 -3379 ((-941) (-941))) (-15 -3015 ((-1194 |#1|) (-941))) (-15 -2533 ((-1194 |#1|) (-941))) (-15 -2469 ((-1194 |#1|) (-941))) (-15 -3727 ((-1194 |#1|) (-941))) (-15 -1654 ((-1194 |#1|) (-941))) (-15 -1434 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -3930 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -3187 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -3898 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -1683 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -1892 ((-1194 |#1|) (-941))) (-15 -1892 ((-1194 |#1|) (-941) (-941))) (-15 -2562 ((-1194 |#1|) (-1194 |#1|))) (-15 -1790 ((-978 (-1194 |#1|)) (-1194 |#1|)))) (-360)) (T -368)) -((-1790 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-978 (-1194 *4))) (-5 *1 (-368 *4)) (-5 *3 (-1194 *4)))) (-2562 (*1 *2 *2) (-12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-1892 (*1 *2 *3 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1683 (*1 *2 *2) (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3898 (*1 *2 *2) (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3187 (*1 *2 *2) (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3930 (*1 *2 *2) (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-1434 (*1 *2 *2) (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3015 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3379 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-2498 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-2943 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4))))) -(-10 -7 (-15 -2105 ((-112) (-1194 |#1|))) (-15 -1974 ((-112) (-1194 |#1|))) (-15 -2943 ((-941) (-941))) (-15 -2498 ((-941) (-941))) (-15 -3379 ((-941) (-941))) (-15 -3015 ((-1194 |#1|) (-941))) (-15 -2533 ((-1194 |#1|) (-941))) (-15 -2469 ((-1194 |#1|) (-941))) (-15 -3727 ((-1194 |#1|) (-941))) (-15 -1654 ((-1194 |#1|) (-941))) (-15 -1434 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -3930 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -3187 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -3898 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -1683 ((-3 (-1194 |#1|) "failed") (-1194 |#1|))) (-15 -1892 ((-1194 |#1|) (-941))) (-15 -1892 ((-1194 |#1|) (-941) (-941))) (-15 -2562 ((-1194 |#1|) (-1194 |#1|))) (-15 -1790 ((-978 (-1194 |#1|)) (-1194 |#1|)))) -((-1359 (((-3 (-657 |#3|) "failed") (-657 |#3|) |#3|) 38))) -(((-369 |#1| |#2| |#3|) (-10 -7 (-15 -1359 ((-3 (-657 |#3|) "failed") (-657 |#3|) |#3|))) (-360) (-1265 |#1|) (-1265 |#2|)) (T -369)) -((-1359 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-657 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3))))) -(-10 -7 (-15 -1359 ((-3 (-657 |#3|) "failed") (-657 |#3|) |#3|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2175 (((-112) $) NIL)) (-3158 (((-784)) NIL)) (-2302 ((|#1| $) NIL) (($ $ (-941)) NIL (|has| |#1| (-379)))) (-3592 (((-1211 (-941) (-784)) (-576)) NIL (|has| |#1| (-379)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-2864 (((-112) $ $) NIL)) (-2193 (((-784)) NIL (|has| |#1| (-379)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) NIL)) (-2884 ((|#1| $) NIL)) (-2613 (($ (-1289 |#1|)) NIL)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($) NIL (|has| |#1| (-379)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-1367 (($) NIL (|has| |#1| (-379)))) (-2105 (((-112) $) NIL (|has| |#1| (-379)))) (-1780 (($ $ (-784)) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4257 (((-112) $) NIL)) (-3182 (((-941) $) NIL (|has| |#1| (-379))) (((-846 (-941)) $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4094 (((-112) $) NIL)) (-2615 (($) NIL (|has| |#1| (-379)))) (-1974 (((-112) $) NIL (|has| |#1| (-379)))) (-2234 ((|#1| $) NIL) (($ $ (-941)) NIL (|has| |#1| (-379)))) (-4019 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1336 (((-1194 |#1|) $) NIL) (((-1194 $) $ (-941)) NIL (|has| |#1| (-379)))) (-3007 (((-941) $) NIL (|has| |#1| (-379)))) (-4349 (((-1194 |#1|) $) NIL (|has| |#1| (-379)))) (-3173 (((-1194 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1194 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1354 (($ $ (-1194 |#1|)) NIL (|has| |#1| (-379)))) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1706 (($) NIL (|has| |#1| (-379)) CONST)) (-3178 (($ (-941)) NIL (|has| |#1| (-379)))) (-2463 (((-112) $) NIL)) (-1471 (((-1142) $) NIL)) (-4097 (($) NIL (|has| |#1| (-379)))) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) NIL (|has| |#1| (-379)))) (-1885 (((-430 $) $) NIL)) (-1453 (((-846 (-941))) NIL) (((-941)) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2284 (((-784) $) NIL (|has| |#1| (-379))) (((-3 (-784) "failed") $ $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3863 (((-135)) NIL)) (-2815 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-1770 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-3180 (((-1194 |#1|)) NIL)) (-2090 (($) NIL (|has| |#1| (-379)))) (-3298 (($) NIL (|has| |#1| (-379)))) (-2795 (((-1289 |#1|) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| |#1| (-379)))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3096 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) NIL) (((-1289 $) (-941)) NIL)) (-4041 (((-112) $ $) NIL)) (-1863 (((-112) $) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-1508 (($ $) NIL (|has| |#1| (-379))) (($ $ (-784)) NIL (|has| |#1| (-379)))) (-2097 (($ $ (-784)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-370 |#1| |#2|) (-339 |#1|) (-360) (-941)) (T -370)) -NIL -(-339 |#1|) -((-2311 (((-112) (-657 (-972 |#1|))) 41)) (-3276 (((-657 (-972 |#1|)) (-657 (-972 |#1|))) 53)) (-2227 (((-3 (-657 (-972 |#1|)) "failed") (-657 (-972 |#1|))) 48))) -(((-371 |#1| |#2|) (-10 -7 (-15 -2311 ((-112) (-657 (-972 |#1|)))) (-15 -2227 ((-3 (-657 (-972 |#1|)) "failed") (-657 (-972 |#1|)))) (-15 -3276 ((-657 (-972 |#1|)) (-657 (-972 |#1|))))) (-464) (-657 (-1198))) (T -371)) -((-3276 (*1 *2 *2) (-12 (-5 *2 (-657 (-972 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-657 (-1198))))) (-2227 (*1 *2 *2) (|partial| -12 (-5 *2 (-657 (-972 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-657 (-1198))))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-464)) (-5 *2 (-112)) (-5 *1 (-371 *4 *5)) (-14 *5 (-657 (-1198)))))) -(-10 -7 (-15 -2311 ((-112) (-657 (-972 |#1|)))) (-15 -2227 ((-3 (-657 (-972 |#1|)) "failed") (-657 (-972 |#1|)))) (-15 -3276 ((-657 (-972 |#1|)) (-657 (-972 |#1|))))) -((-3429 (((-112) $ $) NIL)) (-2193 (((-784) $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) NIL)) (-2884 ((|#1| $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-4094 (((-112) $) 17)) (-3027 ((|#1| $ (-576)) NIL)) (-1732 (((-576) $ (-576)) NIL)) (-2183 (($ (-1 |#1| |#1|) $) 34)) (-1409 (($ (-1 (-576) (-576)) $) 26)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) 28)) (-1471 (((-1142) $) NIL)) (-2067 (((-657 (-2 (|:| |gen| |#1|) (|:| -4067 (-576)))) $) 30)) (-3549 (($ $ $) NIL)) (-3544 (($ $ $) NIL)) (-3501 (((-877) $) 40) (($ |#1|) NIL)) (-2046 (((-112) $ $) NIL)) (-2779 (($) 11 T CONST)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL) (($ |#1| (-576)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) -(((-372 |#1|) (-13 (-485) (-1060 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2193 ((-784) $)) (-15 -1732 ((-576) $ (-576))) (-15 -3027 (|#1| $ (-576))) (-15 -1409 ($ (-1 (-576) (-576)) $)) (-15 -2183 ($ (-1 |#1| |#1|) $)) (-15 -2067 ((-657 (-2 (|:| |gen| |#1|) (|:| -4067 (-576)))) $)))) (-1122)) (T -372)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1122)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1122)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1122)))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-372 *3)) (-4 *3 (-1122)))) (-1732 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1122)))) (-3027 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1122)))) (-1409 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1122)))) (-2183 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-372 *3)))) (-2067 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4067 (-576))))) (-5 *1 (-372 *3)) (-4 *3 (-1122))))) -(-13 (-485) (-1060 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2193 ((-784) $)) (-15 -1732 ((-576) $ (-576))) (-15 -3027 (|#1| $ (-576))) (-15 -1409 ($ (-1 (-576) (-576)) $)) (-15 -2183 ($ (-1 |#1| |#1|) $)) (-15 -2067 ((-657 (-2 (|:| |gen| |#1|) (|:| -4067 (-576)))) $)))) -((-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 13)) (-3325 (($ $) 14)) (-4402 (((-430 $) $) 34)) (-4257 (((-112) $) 30)) (-2134 (($ $) 19)) (-3436 (($ $ $) 25) (($ (-657 $)) NIL)) (-1885 (((-430 $) $) 35)) (-3418 (((-3 $ "failed") $ $) 24)) (-2034 (((-784) $) 28)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 39)) (-4041 (((-112) $ $) 16)) (-3034 (($ $ $) 37))) -(((-373 |#1|) (-10 -8 (-15 -3034 (|#1| |#1| |#1|)) (-15 -2134 (|#1| |#1|)) (-15 -4257 ((-112) |#1|)) (-15 -4402 ((-430 |#1|) |#1|)) (-15 -1885 ((-430 |#1|) |#1|)) (-15 -3944 ((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|)) (-15 -2034 ((-784) |#1|)) (-15 -3436 (|#1| (-657 |#1|))) (-15 -3436 (|#1| |#1| |#1|)) (-15 -4041 ((-112) |#1| |#1|)) (-15 -3325 (|#1| |#1|)) (-15 -3167 ((-2 (|:| -2824 |#1|) (|:| -4453 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#1|))) (-374)) (T -373)) -NIL -(-10 -8 (-15 -3034 (|#1| |#1| |#1|)) (-15 -2134 (|#1| |#1|)) (-15 -4257 ((-112) |#1|)) (-15 -4402 ((-430 |#1|) |#1|)) (-15 -1885 ((-430 |#1|) |#1|)) (-15 -3944 ((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|)) (-15 -2034 ((-784) |#1|)) (-15 -3436 (|#1| (-657 |#1|))) (-15 -3436 (|#1| |#1| |#1|)) (-15 -4041 ((-112) |#1| |#1|)) (-15 -3325 (|#1| |#1|)) (-15 -3167 ((-2 (|:| -2824 |#1|) (|:| -4453 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-2721 (((-3 $ "failed") $ $) 20)) (-2638 (($ $) 81)) (-4402 (((-430 $) $) 80)) (-2864 (((-112) $ $) 65)) (-4359 (($) 18 T CONST)) (-3373 (($ $ $) 61)) (-3843 (((-3 $ "failed") $) 37)) (-3385 (($ $ $) 62)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 57)) (-4257 (((-112) $) 79)) (-4094 (((-112) $) 35)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3402 (($ $ $) 52) (($ (-657 $)) 51)) (-2342 (((-1180) $) 10)) (-2134 (($ $) 78)) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3436 (($ $ $) 54) (($ (-657 $)) 53)) (-1885 (((-430 $) $) 82)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3418 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-2034 (((-784) $) 64)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 63)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 45)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3034 (($ $ $) 73)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) -(((-374) (-141)) (T -374)) -((-3034 (*1 *1 *1 *1) (-4 *1 (-374)))) -(-13 (-317) (-1243) (-248) (-10 -8 (-15 -3034 ($ $ $)) (-6 -4464) (-6 -4458))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-730 #0#) . T) ((-730 $) . T) ((-739) . T) ((-940) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) . T)) -((-3429 (((-112) $ $) 7)) (-2121 ((|#2| $ |#2|) 14)) (-1466 (($ $ (-1180)) 19)) (-2144 ((|#2| $) 15)) (-3209 (($ |#1|) 21) (($ |#1| (-1180)) 20)) (-2676 ((|#1| $) 17)) (-2342 (((-1180) $) 10)) (-2316 (((-1180) $) 16)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-3632 (($ $) 18)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8))) -(((-375 |#1| |#2|) (-141) (-1122) (-1122)) (T -375)) -((-3209 (*1 *1 *2) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-3209 (*1 *1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1122)) (-4 *4 (-1122)))) (-1466 (*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-3632 (*1 *1 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-2676 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1122)))) (-2316 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-5 *2 (-1180)))) (-2144 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122)))) (-2121 (*1 *2 *1 *2) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122))))) -(-13 (-1122) (-10 -8 (-15 -3209 ($ |t#1|)) (-15 -3209 ($ |t#1| (-1180))) (-15 -1466 ($ $ (-1180))) (-15 -3632 ($ $)) (-15 -2676 (|t#1| $)) (-15 -2316 ((-1180) $)) (-15 -2144 (|t#2| $)) (-15 -2121 (|t#2| $ |t#2|)))) -(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2121 ((|#1| $ |#1|) 31)) (-1466 (($ $ (-1180)) 23)) (-2611 (((-3 |#1| "failed") $) 30)) (-2144 ((|#1| $) 28)) (-3209 (($ (-400)) 22) (($ (-400) (-1180)) 21)) (-2676 (((-400) $) 25)) (-2342 (((-1180) $) NIL)) (-2316 (((-1180) $) 26)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 20)) (-3632 (($ $) 24)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 19))) -(((-376 |#1|) (-13 (-375 (-400) |#1|) (-10 -8 (-15 -2611 ((-3 |#1| "failed") $)))) (-1122)) (T -376)) -((-2611 (*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1122))))) -(-13 (-375 (-400) |#1|) (-10 -8 (-15 -2611 ((-3 |#1| "failed") $)))) -((-3213 (((-1289 (-702 |#2|)) (-1289 $)) 67)) (-1703 (((-702 |#2|) (-1289 $)) 139)) (-1641 ((|#2| $) 36)) (-1575 (((-702 |#2|) $ (-1289 $)) 142)) (-1498 (((-3 $ "failed") $) 89)) (-3195 ((|#2| $) 39)) (-1806 (((-1194 |#2|) $) 98)) (-1427 ((|#2| (-1289 $)) 122)) (-2947 (((-1194 |#2|) $) 32)) (-4274 (((-112)) 116)) (-2613 (($ (-1289 |#2|) (-1289 $)) 132)) (-3843 (((-3 $ "failed") $) 93)) (-2591 (((-112)) 111)) (-3089 (((-112)) 106)) (-1855 (((-112)) 58)) (-4427 (((-702 |#2|) (-1289 $)) 137)) (-1425 ((|#2| $) 35)) (-3346 (((-702 |#2|) $ (-1289 $)) 141)) (-2390 (((-3 $ "failed") $) 87)) (-2885 ((|#2| $) 38)) (-4234 (((-1194 |#2|) $) 97)) (-4408 ((|#2| (-1289 $)) 120)) (-2444 (((-1194 |#2|) $) 30)) (-4199 (((-112)) 115)) (-4396 (((-112)) 108)) (-3079 (((-112)) 56)) (-3729 (((-112)) 103)) (-4005 (((-112)) 117)) (-2795 (((-1289 |#2|) $ (-1289 $)) NIL) (((-702 |#2|) (-1289 $) (-1289 $)) 128)) (-2032 (((-112)) 113)) (-1630 (((-657 (-1289 |#2|))) 102)) (-3675 (((-112)) 114)) (-4115 (((-112)) 112)) (-2102 (((-112)) 51)) (-1950 (((-112)) 118))) -(((-377 |#1| |#2|) (-10 -8 (-15 -1806 ((-1194 |#2|) |#1|)) (-15 -4234 ((-1194 |#2|) |#1|)) (-15 -1630 ((-657 (-1289 |#2|)))) (-15 -1498 ((-3 |#1| "failed") |#1|)) (-15 -2390 ((-3 |#1| "failed") |#1|)) (-15 -3843 ((-3 |#1| "failed") |#1|)) (-15 -3089 ((-112))) (-15 -4396 ((-112))) (-15 -2591 ((-112))) (-15 -3079 ((-112))) (-15 -1855 ((-112))) (-15 -3729 ((-112))) (-15 -1950 ((-112))) (-15 -4005 ((-112))) (-15 -4274 ((-112))) (-15 -4199 ((-112))) (-15 -2102 ((-112))) (-15 -3675 ((-112))) (-15 -4115 ((-112))) (-15 -2032 ((-112))) (-15 -2947 ((-1194 |#2|) |#1|)) (-15 -2444 ((-1194 |#2|) |#1|)) (-15 -1703 ((-702 |#2|) (-1289 |#1|))) (-15 -4427 ((-702 |#2|) (-1289 |#1|))) (-15 -1427 (|#2| (-1289 |#1|))) (-15 -4408 (|#2| (-1289 |#1|))) (-15 -2613 (|#1| (-1289 |#2|) (-1289 |#1|))) (-15 -2795 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -2795 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -3195 (|#2| |#1|)) (-15 -2885 (|#2| |#1|)) (-15 -1641 (|#2| |#1|)) (-15 -1425 (|#2| |#1|)) (-15 -1575 ((-702 |#2|) |#1| (-1289 |#1|))) (-15 -3346 ((-702 |#2|) |#1| (-1289 |#1|))) (-15 -3213 ((-1289 (-702 |#2|)) (-1289 |#1|)))) (-378 |#2|) (-174)) (T -377)) -((-2032 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4115 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3675 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2102 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4199 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4274 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4005 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1950 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3729 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1855 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3079 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2591 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4396 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3089 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1630 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-657 (-1289 *4))) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4))))) -(-10 -8 (-15 -1806 ((-1194 |#2|) |#1|)) (-15 -4234 ((-1194 |#2|) |#1|)) (-15 -1630 ((-657 (-1289 |#2|)))) (-15 -1498 ((-3 |#1| "failed") |#1|)) (-15 -2390 ((-3 |#1| "failed") |#1|)) (-15 -3843 ((-3 |#1| "failed") |#1|)) (-15 -3089 ((-112))) (-15 -4396 ((-112))) (-15 -2591 ((-112))) (-15 -3079 ((-112))) (-15 -1855 ((-112))) (-15 -3729 ((-112))) (-15 -1950 ((-112))) (-15 -4005 ((-112))) (-15 -4274 ((-112))) (-15 -4199 ((-112))) (-15 -2102 ((-112))) (-15 -3675 ((-112))) (-15 -4115 ((-112))) (-15 -2032 ((-112))) (-15 -2947 ((-1194 |#2|) |#1|)) (-15 -2444 ((-1194 |#2|) |#1|)) (-15 -1703 ((-702 |#2|) (-1289 |#1|))) (-15 -4427 ((-702 |#2|) (-1289 |#1|))) (-15 -1427 (|#2| (-1289 |#1|))) (-15 -4408 (|#2| (-1289 |#1|))) (-15 -2613 (|#1| (-1289 |#2|) (-1289 |#1|))) (-15 -2795 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -2795 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -3195 (|#2| |#1|)) (-15 -2885 (|#2| |#1|)) (-15 -1641 (|#2| |#1|)) (-15 -1425 (|#2| |#1|)) (-15 -1575 ((-702 |#2|) |#1| (-1289 |#1|))) (-15 -3346 ((-702 |#2|) |#1| (-1289 |#1|))) (-15 -3213 ((-1289 (-702 |#2|)) (-1289 |#1|)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2824 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-2721 (((-3 $ "failed") $ $) 20)) (-3213 (((-1289 (-702 |#1|)) (-1289 $)) 83)) (-3348 (((-1289 $)) 86)) (-4359 (($) 18 T CONST)) (-3090 (((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed")) 45 (|has| |#1| (-568)))) (-2023 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-1703 (((-702 |#1|) (-1289 $)) 70)) (-1641 ((|#1| $) 79)) (-1575 (((-702 |#1|) $ (-1289 $)) 81)) (-1498 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-2609 (($ $ (-941)) 31)) (-3195 ((|#1| $) 77)) (-1806 (((-1194 |#1|) $) 47 (|has| |#1| (-568)))) (-1427 ((|#1| (-1289 $)) 72)) (-2947 (((-1194 |#1|) $) 68)) (-4274 (((-112)) 62)) (-2613 (($ (-1289 |#1|) (-1289 $)) 74)) (-3843 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-1542 (((-941)) 85)) (-1778 (((-112)) 59)) (-3490 (($ $ (-941)) 38)) (-2591 (((-112)) 55)) (-3089 (((-112)) 53)) (-1855 (((-112)) 57)) (-2765 (((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed")) 46 (|has| |#1| (-568)))) (-3694 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-4427 (((-702 |#1|) (-1289 $)) 71)) (-1425 ((|#1| $) 80)) (-3346 (((-702 |#1|) $ (-1289 $)) 82)) (-2390 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-4404 (($ $ (-941)) 32)) (-2885 ((|#1| $) 78)) (-4234 (((-1194 |#1|) $) 48 (|has| |#1| (-568)))) (-4408 ((|#1| (-1289 $)) 73)) (-2444 (((-1194 |#1|) $) 69)) (-4199 (((-112)) 63)) (-2342 (((-1180) $) 10)) (-4396 (((-112)) 54)) (-3079 (((-112)) 56)) (-3729 (((-112)) 58)) (-1471 (((-1142) $) 11)) (-4005 (((-112)) 61)) (-2795 (((-1289 |#1|) $ (-1289 $)) 76) (((-702 |#1|) (-1289 $) (-1289 $)) 75)) (-2929 (((-657 (-972 |#1|)) (-1289 $)) 84)) (-3544 (($ $ $) 28)) (-2032 (((-112)) 67)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-1630 (((-657 (-1289 |#1|))) 49 (|has| |#1| (-568)))) (-4254 (($ $ $ $) 29)) (-3675 (((-112)) 65)) (-3599 (($ $ $) 27)) (-4115 (((-112)) 66)) (-2102 (((-112)) 64)) (-1950 (((-112)) 60)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 33)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-378 |#1|) (-141) (-174)) (T -378)) -((-3348 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1289 *1)) (-4 *1 (-378 *3)))) (-1542 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-941)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-657 (-972 *4))))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1289 (-702 *4))))) (-3346 (*1 *2 *1 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-702 *4)))) (-1575 (*1 *2 *1 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-702 *4)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-1641 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3195 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2795 (*1 *2 *1 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1289 *4)))) (-2795 (*1 *2 *3 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-702 *4)))) (-2613 (*1 *1 *2 *3) (-12 (-5 *2 (-1289 *4)) (-5 *3 (-1289 *1)) (-4 *4 (-174)) (-4 *1 (-378 *4)))) (-4408 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-4427 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-702 *4)))) (-1703 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-702 *4)))) (-2444 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1194 *3)))) (-2947 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1194 *3)))) (-2032 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4115 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3675 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2102 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4199 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4274 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4005 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1950 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1778 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3729 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1855 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3079 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2591 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4396 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3089 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3843 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2390 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-1498 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-1630 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-657 (-1289 *3))))) (-4234 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1194 *3)))) (-1806 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1194 *3)))) (-2765 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1985 (-657 *1)))) (-4 *1 (-378 *3)))) (-3090 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1985 (-657 *1)))) (-4 *1 (-378 *3)))) (-3694 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-2023 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-2824 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) -(-13 (-757 |t#1|) (-10 -8 (-15 -3348 ((-1289 $))) (-15 -1542 ((-941))) (-15 -2929 ((-657 (-972 |t#1|)) (-1289 $))) (-15 -3213 ((-1289 (-702 |t#1|)) (-1289 $))) (-15 -3346 ((-702 |t#1|) $ (-1289 $))) (-15 -1575 ((-702 |t#1|) $ (-1289 $))) (-15 -1425 (|t#1| $)) (-15 -1641 (|t#1| $)) (-15 -2885 (|t#1| $)) (-15 -3195 (|t#1| $)) (-15 -2795 ((-1289 |t#1|) $ (-1289 $))) (-15 -2795 ((-702 |t#1|) (-1289 $) (-1289 $))) (-15 -2613 ($ (-1289 |t#1|) (-1289 $))) (-15 -4408 (|t#1| (-1289 $))) (-15 -1427 (|t#1| (-1289 $))) (-15 -4427 ((-702 |t#1|) (-1289 $))) (-15 -1703 ((-702 |t#1|) (-1289 $))) (-15 -2444 ((-1194 |t#1|) $)) (-15 -2947 ((-1194 |t#1|) $)) (-15 -2032 ((-112))) (-15 -4115 ((-112))) (-15 -3675 ((-112))) (-15 -2102 ((-112))) (-15 -4199 ((-112))) (-15 -4274 ((-112))) (-15 -4005 ((-112))) (-15 -1950 ((-112))) (-15 -1778 ((-112))) (-15 -3729 ((-112))) (-15 -1855 ((-112))) (-15 -3079 ((-112))) (-15 -2591 ((-112))) (-15 -4396 ((-112))) (-15 -3089 ((-112))) (IF (|has| |t#1| (-568)) (PROGN (-15 -3843 ((-3 $ "failed") $)) (-15 -2390 ((-3 $ "failed") $)) (-15 -1498 ((-3 $ "failed") $)) (-15 -1630 ((-657 (-1289 |t#1|)))) (-15 -4234 ((-1194 |t#1|) $)) (-15 -1806 ((-1194 |t#1|) $)) (-15 -2765 ((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed"))) (-15 -3090 ((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed"))) (-15 -3694 ((-3 $ "failed"))) (-15 -2023 ((-3 $ "failed"))) (-15 -2824 ((-3 $ "failed"))) (-6 -4463)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) . T) ((-730 |#1|) . T) ((-733) . T) ((-757 |#1|) . T) ((-774) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) 7)) (-2193 (((-784)) 17)) (-1892 (($) 14)) (-3007 (((-941) $) 15)) (-2342 (((-1180) $) 10)) (-3178 (($ (-941)) 16)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8))) -(((-379) (-141)) (T -379)) -((-2193 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-784)))) (-3178 (*1 *1 *2) (-12 (-5 *2 (-941)) (-4 *1 (-379)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-941)))) (-1892 (*1 *1) (-4 *1 (-379)))) -(-13 (-1122) (-10 -8 (-15 -2193 ((-784))) (-15 -3178 ($ (-941))) (-15 -3007 ((-941) $)) (-15 -1892 ($)))) -(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-1527 (((-702 |#2|) (-1289 $)) 45)) (-2613 (($ (-1289 |#2|) (-1289 $)) 39)) (-3529 (((-702 |#2|) $ (-1289 $)) 47)) (-1701 ((|#2| (-1289 $)) 13)) (-2795 (((-1289 |#2|) $ (-1289 $)) NIL) (((-702 |#2|) (-1289 $) (-1289 $)) 27))) -(((-380 |#1| |#2| |#3|) (-10 -8 (-15 -1527 ((-702 |#2|) (-1289 |#1|))) (-15 -1701 (|#2| (-1289 |#1|))) (-15 -2613 (|#1| (-1289 |#2|) (-1289 |#1|))) (-15 -2795 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -2795 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -3529 ((-702 |#2|) |#1| (-1289 |#1|)))) (-381 |#2| |#3|) (-174) (-1265 |#2|)) (T -380)) -NIL -(-10 -8 (-15 -1527 ((-702 |#2|) (-1289 |#1|))) (-15 -1701 (|#2| (-1289 |#1|))) (-15 -2613 (|#1| (-1289 |#2|) (-1289 |#1|))) (-15 -2795 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -2795 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -3529 ((-702 |#2|) |#1| (-1289 |#1|)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-1527 (((-702 |#1|) (-1289 $)) 53)) (-2302 ((|#1| $) 59)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2613 (($ (-1289 |#1|) (-1289 $)) 55)) (-3529 (((-702 |#1|) $ (-1289 $)) 60)) (-3843 (((-3 $ "failed") $) 37)) (-1542 (((-941)) 61)) (-4094 (((-112) $) 35)) (-2234 ((|#1| $) 58)) (-1336 ((|#2| $) 51 (|has| |#1| (-374)))) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-1701 ((|#1| (-1289 $)) 54)) (-2795 (((-1289 |#1|) $ (-1289 $)) 57) (((-702 |#1|) (-1289 $) (-1289 $)) 56)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-3096 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4182 ((|#2| $) 52)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-381 |#1| |#2|) (-141) (-174) (-1265 |t#1|)) (T -381)) -((-1542 (*1 *2) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) (-5 *2 (-941)))) (-3529 (*1 *2 *1 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)))) (-2302 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1265 *2)) (-4 *2 (-174)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1265 *2)) (-4 *2 (-174)))) (-2795 (*1 *2 *1 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1265 *4)) (-5 *2 (-1289 *4)))) (-2795 (*1 *2 *3 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)))) (-2613 (*1 *1 *2 *3) (-12 (-5 *2 (-1289 *4)) (-5 *3 (-1289 *1)) (-4 *4 (-174)) (-4 *1 (-381 *4 *5)) (-4 *5 (-1265 *4)))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1265 *2)) (-4 *2 (-174)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)))) (-4182 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1265 *3)))) (-1336 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) (-4 *2 (-1265 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -1542 ((-941))) (-15 -3529 ((-702 |t#1|) $ (-1289 $))) (-15 -2302 (|t#1| $)) (-15 -2234 (|t#1| $)) (-15 -2795 ((-1289 |t#1|) $ (-1289 $))) (-15 -2795 ((-702 |t#1|) (-1289 $) (-1289 $))) (-15 -2613 ($ (-1289 |t#1|) (-1289 $))) (-15 -1701 (|t#1| (-1289 $))) (-15 -1527 ((-702 |t#1|) (-1289 $))) (-15 -4182 (|t#2| $)) (IF (|has| |t#1| (-374)) (-15 -1336 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 |#1|) . T) ((-730 |#1|) . T) ((-739) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-4417 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-3622 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-4083 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-382 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4083 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3622 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4417 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1239) (-384 |#1|) (-1239) (-384 |#3|)) (T -382)) -((-4417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1239)) (-4 *5 (-1239)) (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) (-3622 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1239)) (-4 *2 (-1239)) (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5))))) -(-10 -7 (-15 -4083 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3622 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4417 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1568 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3363 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1850 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3768 (($ $) 25)) (-3582 (((-576) (-1 (-112) |#2|) $) NIL) (((-576) |#2| $) 11) (((-576) |#2| $ (-576)) NIL)) (-3073 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-383 |#1| |#2|) (-10 -8 (-15 -3363 (|#1| |#1|)) (-15 -3363 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1568 ((-112) |#1|)) (-15 -1850 (|#1| |#1|)) (-15 -3073 (|#1| |#1| |#1|)) (-15 -3582 ((-576) |#2| |#1| (-576))) (-15 -3582 ((-576) |#2| |#1|)) (-15 -3582 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1568 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1850 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3073 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-384 |#2|) (-1239)) (T -383)) -NIL -(-10 -8 (-15 -3363 (|#1| |#1|)) (-15 -3363 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1568 ((-112) |#1|)) (-15 -1850 (|#1| |#1|)) (-15 -3073 (|#1| |#1| |#1|)) (-15 -3582 ((-576) |#2| |#1| (-576))) (-15 -3582 ((-576) |#2| |#1|)) (-15 -3582 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -1568 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1850 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3073 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4313 (((-1294) $ (-576) (-576)) 41 (|has| $ (-6 -4467)))) (-1568 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-3363 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4467))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4467))))) (-1850 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-3793 (((-112) $ (-784)) 8)) (-3682 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 60 (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4466)))) (-4359 (($) 7 T CONST)) (-3606 (($ $) 93 (|has| $ (-6 -4467)))) (-3768 (($ $) 103)) (-3914 (($ $) 80 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3895 (($ |#1| $) 79 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4466)))) (-2158 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) 52)) (-3582 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1122)))) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-4109 (($ (-784) |#1|) 70)) (-1833 (((-112) $ (-784)) 9)) (-3853 (((-576) $) 44 (|has| (-576) (-862)))) (-3707 (($ $ $) 85 (|has| |#1| (-862)))) (-3073 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2272 (((-576) $) 45 (|has| (-576) (-862)))) (-1611 (($ $ $) 86 (|has| |#1| (-862)))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-2271 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-1430 (((-657 (-576)) $) 47)) (-4242 (((-112) (-576) $) 48)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3510 ((|#1| $) 43 (|has| (-576) (-862)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1987 (($ $ |#1|) 42 (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-1515 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) 49)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1256 (-576))) 71)) (-3409 (($ $ (-576)) 64) (($ $ (-1256 (-576))) 63)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2114 (($ $ $ (-576)) 94 (|has| $ (-6 -4467)))) (-1923 (($ $) 13)) (-4148 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 72)) (-1674 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-657 $)) 66)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) 87 (|has| |#1| (-862)))) (-2963 (((-112) $ $) 89 (|has| |#1| (-862)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2973 (((-112) $ $) 88 (|has| |#1| (-862)))) (-2954 (((-112) $ $) 90 (|has| |#1| (-862)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-384 |#1|) (-141) (-1239)) (T -384)) -((-3073 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1239)))) (-3768 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1239)))) (-1850 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1239)))) (-1568 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1239)) (-5 *2 (-112)))) (-3582 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1239)) (-5 *2 (-576)))) (-3582 (*1 *2 *3 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1239)) (-4 *3 (-1122)) (-5 *2 (-576)))) (-3582 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1239)) (-4 *3 (-1122)))) (-3073 (*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1239)) (-4 *2 (-862)))) (-1850 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1239)) (-4 *2 (-862)))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1239)) (-4 *3 (-862)) (-5 *2 (-112)))) (-2114 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4467)) (-4 *1 (-384 *3)) (-4 *3 (-1239)))) (-3606 (*1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-384 *2)) (-4 *2 (-1239)))) (-3363 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4467)) (-4 *1 (-384 *3)) (-4 *3 (-1239)))) (-3363 (*1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-384 *2)) (-4 *2 (-1239)) (-4 *2 (-862))))) -(-13 (-664 |t#1|) (-10 -8 (-6 -4466) (-15 -3073 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3768 ($ $)) (-15 -1850 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1568 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3582 ((-576) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1122)) (PROGN (-15 -3582 ((-576) |t#1| $)) (-15 -3582 ((-576) |t#1| $ (-576)))) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-6 (-862)) (-15 -3073 ($ $ $)) (-15 -1850 ($ $)) (-15 -1568 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4467)) (PROGN (-15 -2114 ($ $ $ (-576))) (-15 -3606 ($ $)) (-15 -3363 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-862)) (-15 -3363 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-664 |#1|) . T) ((-862) |has| |#1| (-862)) ((-865) |has| |#1| (-862)) ((-1122) -2802 (|has| |#1| (-1122)) (|has| |#1| (-862))) ((-1239) . T)) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3391 (((-657 |#1|) $) 37)) (-1332 (($ $ (-784)) 38)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2299 (((-1313 |#1| |#2|) (-1313 |#1| |#2|) $) 41)) (-1874 (($ $) 39)) (-1825 (((-1313 |#1| |#2|) (-1313 |#1| |#2|) $) 42)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3236 (($ $ |#1| $) 36) (($ $ (-657 |#1|) (-657 $)) 35)) (-1770 (((-784) $) 43)) (-3511 (($ $ $) 34)) (-3501 (((-877) $) 12) (($ |#1|) 46) (((-1304 |#1| |#2|) $) 45) (((-1313 |#1| |#2|) $) 44)) (-1771 ((|#2| (-1313 |#1| |#2|) $) 47)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-3400 (($ (-685 |#1|)) 40)) (-2933 (((-112) $ $) 8)) (-3034 (($ $ |#2|) 33 (|has| |#2| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) -(((-385 |#1| |#2|) (-141) (-862) (-174)) (T -385)) -((-1771 (*1 *2 *3 *1) (-12 (-5 *3 (-1313 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-862)) (-4 *2 (-174)))) (-3501 (*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-1304 *3 *4)))) (-3501 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-1313 *3 *4)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-784)))) (-1825 (*1 *2 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-2299 (*1 *2 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3400 (*1 *1 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-862)) (-4 *1 (-385 *3 *4)) (-4 *4 (-174)))) (-1874 (*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-1332 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-657 *3)))) (-3236 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-3236 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 *1)) (-4 *1 (-385 *4 *5)) (-4 *4 (-862)) (-4 *5 (-174))))) -(-13 (-646 |t#2|) (-10 -8 (-15 -1771 (|t#2| (-1313 |t#1| |t#2|) $)) (-15 -3501 ($ |t#1|)) (-15 -3501 ((-1304 |t#1| |t#2|) $)) (-15 -3501 ((-1313 |t#1| |t#2|) $)) (-15 -1770 ((-784) $)) (-15 -1825 ((-1313 |t#1| |t#2|) (-1313 |t#1| |t#2|) $)) (-15 -2299 ((-1313 |t#1| |t#2|) (-1313 |t#1| |t#2|) $)) (-15 -3400 ($ (-685 |t#1|))) (-15 -1874 ($ $)) (-15 -1332 ($ $ (-784))) (-15 -3391 ((-657 |t#1|) $)) (-15 -3236 ($ $ |t#1| $)) (-15 -3236 ($ $ (-657 |t#1|) (-657 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#2|) . T) ((-661 |#2|) . T) ((-646 |#2|) . T) ((-653 |#2|) . T) ((-730 |#2|) . T) ((-1073 |#2|) . T) ((-1078 |#2|) . T) ((-1122) . T) ((-1239) . T)) -((-4080 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-3891 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1588 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33))) -(((-386 |#1| |#2|) (-10 -7 (-15 -3891 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1588 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4080 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1239) (-13 (-384 |#1|) (-10 -7 (-6 -4467)))) (T -386)) -((-4080 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4467)))))) (-1588 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4467)))))) (-3891 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4467))))))) -(-10 -7 (-15 -3891 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1588 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4080 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-3306 (((-702 |#2|) (-702 $)) NIL) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 22) (((-702 (-576)) (-702 $)) 14))) -(((-387 |#1| |#2|) (-10 -8 (-15 -3306 ((-702 (-576)) (-702 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-702 |#2|) (-702 |#1|)))) (-388 |#2|) (-1071)) (T -387)) -NIL -(-10 -8 (-15 -3306 ((-702 (-576)) (-702 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-702 |#2|) (-702 |#1|)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3306 (((-702 |#1|) (-702 $)) 30) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 29) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 41 (|has| |#1| (-652 (-576)))) (((-702 (-576)) (-702 $)) 40 (|has| |#1| (-652 (-576))))) (-3101 (((-702 |#1|) (-1289 $)) 32) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 31) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 39 (|has| |#1| (-652 (-576)))) (((-702 (-576)) (-1289 $)) 38 (|has| |#1| (-652 (-576))))) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) -(((-388 |#1|) (-141) (-1071)) (T -388)) -NIL -(-13 (-652 |t#1|) (-10 -7 (IF (|has| |t#1| (-652 (-576))) (-6 (-652 (-576))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 #0=(-576)) |has| |#1| (-652 (-576))) ((-661 |#1|) . T) ((-652 #0#) |has| |#1| (-652 (-576))) ((-652 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-2664 (((-657 (-304 (-972 (-171 |#1|)))) (-304 (-419 (-972 (-171 (-576))))) |#1|) 51) (((-657 (-304 (-972 (-171 |#1|)))) (-419 (-972 (-171 (-576)))) |#1|) 50) (((-657 (-657 (-304 (-972 (-171 |#1|))))) (-657 (-304 (-419 (-972 (-171 (-576)))))) |#1|) 47) (((-657 (-657 (-304 (-972 (-171 |#1|))))) (-657 (-419 (-972 (-171 (-576))))) |#1|) 41)) (-3011 (((-657 (-657 (-171 |#1|))) (-657 (-419 (-972 (-171 (-576))))) (-657 (-1198)) |#1|) 30) (((-657 (-171 |#1|)) (-419 (-972 (-171 (-576)))) |#1|) 18))) -(((-389 |#1|) (-10 -7 (-15 -2664 ((-657 (-657 (-304 (-972 (-171 |#1|))))) (-657 (-419 (-972 (-171 (-576))))) |#1|)) (-15 -2664 ((-657 (-657 (-304 (-972 (-171 |#1|))))) (-657 (-304 (-419 (-972 (-171 (-576)))))) |#1|)) (-15 -2664 ((-657 (-304 (-972 (-171 |#1|)))) (-419 (-972 (-171 (-576)))) |#1|)) (-15 -2664 ((-657 (-304 (-972 (-171 |#1|)))) (-304 (-419 (-972 (-171 (-576))))) |#1|)) (-15 -3011 ((-657 (-171 |#1|)) (-419 (-972 (-171 (-576)))) |#1|)) (-15 -3011 ((-657 (-657 (-171 |#1|))) (-657 (-419 (-972 (-171 (-576))))) (-657 (-1198)) |#1|))) (-13 (-374) (-861))) (T -389)) -((-3011 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 (-419 (-972 (-171 (-576)))))) (-5 *4 (-657 (-1198))) (-5 *2 (-657 (-657 (-171 *5)))) (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-861))))) (-3011 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 (-171 (-576))))) (-5 *2 (-657 (-171 *4))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-861))))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-972 (-171 (-576)))))) (-5 *2 (-657 (-304 (-972 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-861))))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 (-171 (-576))))) (-5 *2 (-657 (-304 (-972 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-861))))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-304 (-419 (-972 (-171 (-576))))))) (-5 *2 (-657 (-657 (-304 (-972 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-861))))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-419 (-972 (-171 (-576)))))) (-5 *2 (-657 (-657 (-304 (-972 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-861)))))) -(-10 -7 (-15 -2664 ((-657 (-657 (-304 (-972 (-171 |#1|))))) (-657 (-419 (-972 (-171 (-576))))) |#1|)) (-15 -2664 ((-657 (-657 (-304 (-972 (-171 |#1|))))) (-657 (-304 (-419 (-972 (-171 (-576)))))) |#1|)) (-15 -2664 ((-657 (-304 (-972 (-171 |#1|)))) (-419 (-972 (-171 (-576)))) |#1|)) (-15 -2664 ((-657 (-304 (-972 (-171 |#1|)))) (-304 (-419 (-972 (-171 (-576))))) |#1|)) (-15 -3011 ((-657 (-171 |#1|)) (-419 (-972 (-171 (-576)))) |#1|)) (-15 -3011 ((-657 (-657 (-171 |#1|))) (-657 (-419 (-972 (-171 (-576))))) (-657 (-1198)) |#1|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 35)) (-3931 (((-576) $) 62)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4374 (($ $) 136)) (-2176 (($ $) 98)) (-2030 (($ $) 90)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-1896 (($ $) 47)) (-2864 (((-112) $ $) NIL)) (-2150 (($ $) 96)) (-2004 (($ $) 85)) (-1536 (((-576) $) 78)) (-2790 (($ $ (-576)) 73)) (-2201 (($ $) NIL)) (-2052 (($ $) NIL)) (-4359 (($) NIL T CONST)) (-1886 (($ $) 138)) (-1624 (((-3 (-576) "failed") $) 231) (((-3 (-419 (-576)) "failed") $) 227)) (-2884 (((-576) $) 229) (((-419 (-576)) $) 225)) (-3373 (($ $ $) NIL)) (-1782 (((-576) $ $) 125)) (-3843 (((-3 $ "failed") $) 141)) (-2780 (((-419 (-576)) $ (-784)) 232) (((-419 (-576)) $ (-784) (-784)) 224)) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-4288 (((-941)) 121) (((-941) (-941)) 122 (|has| $ (-6 -4457)))) (-2828 (((-112) $) 130)) (-1657 (($) 41)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL)) (-2187 (((-1294) (-784)) 191)) (-1835 (((-1294)) 196) (((-1294) (-784)) 197)) (-3708 (((-1294)) 198) (((-1294) (-784)) 199)) (-1967 (((-1294)) 194) (((-1294) (-784)) 195)) (-3182 (((-576) $) 68)) (-4094 (((-112) $) 40)) (-2082 (($ $ (-576)) NIL)) (-3277 (($ $) 51)) (-2234 (($ $) NIL)) (-2881 (((-112) $) 37)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3707 (($ $ $) NIL) (($) NIL (-12 (-2712 (|has| $ (-6 -4449))) (-2712 (|has| $ (-6 -4457)))))) (-1611 (($ $ $) NIL) (($) NIL (-12 (-2712 (|has| $ (-6 -4449))) (-2712 (|has| $ (-6 -4457)))))) (-1522 (((-576) $) 17)) (-4358 (($) 106) (($ $) 113)) (-2406 (($) 112) (($ $) 114)) (-3670 (($ $) 101)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) 143)) (-3803 (((-941) (-576)) 46 (|has| $ (-6 -4457)))) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2900 (($ $) 60)) (-3427 (($ $) 135)) (-3023 (($ (-576) (-576)) 131) (($ (-576) (-576) (-941)) 132)) (-1885 (((-430 $) $) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1801 (((-576) $) 19)) (-3812 (($) 115)) (-4067 (($ $) 95)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-4039 (((-941)) 123) (((-941) (-941)) 124 (|has| $ (-6 -4457)))) (-2815 (($ $) 142) (($ $ (-784)) NIL)) (-1572 (((-941) (-576)) 50 (|has| $ (-6 -4457)))) (-2213 (($ $) NIL)) (-2062 (($ $) NIL)) (-2188 (($ $) NIL)) (-2042 (($ $) NIL)) (-2163 (($ $) 97)) (-2017 (($ $) 89)) (-4148 (((-390) $) 216) (((-227) $) 218) (((-908 (-390)) $) NIL) (((-1180) $) 202) (((-548) $) 214) (($ (-227)) 223)) (-3501 (((-877) $) 206) (($ (-576)) 228) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 228) (($ (-419 (-576))) NIL) (((-227) $) 219)) (-1960 (((-784)) NIL T CONST)) (-1893 (($ $) 137)) (-3960 (((-941)) 61) (((-941) (-941)) 80 (|has| $ (-6 -4457)))) (-2046 (((-112) $ $) NIL)) (-4143 (((-941)) 126)) (-4110 (($ $) 104)) (-2100 (($ $) 49) (($ $ $) 59)) (-4041 (((-112) $ $) NIL)) (-2225 (($ $) 102)) (-2072 (($ $) 39)) (-4137 (($ $) NIL)) (-2125 (($ $) NIL)) (-2224 (($ $) NIL)) (-2137 (($ $) NIL)) (-4124 (($ $) NIL)) (-2113 (($ $) NIL)) (-2235 (($ $) 103)) (-2085 (($ $) 52)) (-1792 (($ $) 58)) (-2769 (($) 36 T CONST)) (-2779 (($) 43 T CONST)) (-3095 (((-1180) $) 27) (((-1180) $ (-112)) 29) (((-1294) (-835) $) 30) (((-1294) (-835) $ (-112)) 31)) (-2097 (($ $) NIL) (($ $ (-784)) NIL)) (-2985 (((-112) $ $) 203)) (-2963 (((-112) $ $) 45)) (-2933 (((-112) $ $) 56)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 57)) (-3034 (($ $ $) 48) (($ $ (-576)) 42)) (-3022 (($ $) 38) (($ $ $) 53)) (-3012 (($ $ $) 72)) (** (($ $ (-941)) 83) (($ $ (-784)) NIL) (($ $ (-576)) 107) (($ $ (-419 (-576))) 154) (($ $ $) 145)) (* (($ (-941) $) 79) (($ (-784) $) NIL) (($ (-576) $) 84) (($ $ $) 71) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-390) (-13 (-416) (-238) (-626 (-1180)) (-841) (-625 (-227)) (-1224) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -3034 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -3277 ($ $)) (-15 -1782 ((-576) $ $)) (-15 -2790 ($ $ (-576))) (-15 -2780 ((-419 (-576)) $ (-784))) (-15 -2780 ((-419 (-576)) $ (-784) (-784))) (-15 -4358 ($)) (-15 -2406 ($)) (-15 -3812 ($)) (-15 -2100 ($ $ $)) (-15 -4358 ($ $)) (-15 -2406 ($ $)) (-15 -3708 ((-1294))) (-15 -3708 ((-1294) (-784))) (-15 -1967 ((-1294))) (-15 -1967 ((-1294) (-784))) (-15 -1835 ((-1294))) (-15 -1835 ((-1294) (-784))) (-15 -2187 ((-1294) (-784))) (-6 -4457) (-6 -4449)))) (T -390)) -((** (*1 *1 *1 *1) (-5 *1 (-390))) (-3034 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-3277 (*1 *1 *1) (-5 *1 (-390))) (-1782 (*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-2790 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-2780 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-2780 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-784)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-4358 (*1 *1) (-5 *1 (-390))) (-2406 (*1 *1) (-5 *1 (-390))) (-3812 (*1 *1) (-5 *1 (-390))) (-2100 (*1 *1 *1 *1) (-5 *1 (-390))) (-4358 (*1 *1 *1) (-5 *1 (-390))) (-2406 (*1 *1 *1) (-5 *1 (-390))) (-3708 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-390)))) (-3708 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-390)))) (-1967 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-390)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-390)))) (-1835 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-390)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-390)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-390))))) -(-13 (-416) (-238) (-626 (-1180)) (-841) (-625 (-227)) (-1224) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -3034 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -3277 ($ $)) (-15 -1782 ((-576) $ $)) (-15 -2790 ($ $ (-576))) (-15 -2780 ((-419 (-576)) $ (-784))) (-15 -2780 ((-419 (-576)) $ (-784) (-784))) (-15 -4358 ($)) (-15 -2406 ($)) (-15 -3812 ($)) (-15 -2100 ($ $ $)) (-15 -4358 ($ $)) (-15 -2406 ($ $)) (-15 -3708 ((-1294))) (-15 -3708 ((-1294) (-784))) (-15 -1967 ((-1294))) (-15 -1967 ((-1294) (-784))) (-15 -1835 ((-1294))) (-15 -1835 ((-1294) (-784))) (-15 -2187 ((-1294) (-784))) (-6 -4457) (-6 -4449))) -((-3036 (((-657 (-304 (-972 |#1|))) (-304 (-419 (-972 (-576)))) |#1|) 46) (((-657 (-304 (-972 |#1|))) (-419 (-972 (-576))) |#1|) 45) (((-657 (-657 (-304 (-972 |#1|)))) (-657 (-304 (-419 (-972 (-576))))) |#1|) 42) (((-657 (-657 (-304 (-972 |#1|)))) (-657 (-419 (-972 (-576)))) |#1|) 36)) (-2195 (((-657 |#1|) (-419 (-972 (-576))) |#1|) 20) (((-657 (-657 |#1|)) (-657 (-419 (-972 (-576)))) (-657 (-1198)) |#1|) 30))) -(((-391 |#1|) (-10 -7 (-15 -3036 ((-657 (-657 (-304 (-972 |#1|)))) (-657 (-419 (-972 (-576)))) |#1|)) (-15 -3036 ((-657 (-657 (-304 (-972 |#1|)))) (-657 (-304 (-419 (-972 (-576))))) |#1|)) (-15 -3036 ((-657 (-304 (-972 |#1|))) (-419 (-972 (-576))) |#1|)) (-15 -3036 ((-657 (-304 (-972 |#1|))) (-304 (-419 (-972 (-576)))) |#1|)) (-15 -2195 ((-657 (-657 |#1|)) (-657 (-419 (-972 (-576)))) (-657 (-1198)) |#1|)) (-15 -2195 ((-657 |#1|) (-419 (-972 (-576))) |#1|))) (-13 (-861) (-374))) (T -391)) -((-2195 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 (-576)))) (-5 *2 (-657 *4)) (-5 *1 (-391 *4)) (-4 *4 (-13 (-861) (-374))))) (-2195 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 (-419 (-972 (-576))))) (-5 *4 (-657 (-1198))) (-5 *2 (-657 (-657 *5))) (-5 *1 (-391 *5)) (-4 *5 (-13 (-861) (-374))))) (-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-972 (-576))))) (-5 *2 (-657 (-304 (-972 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-861) (-374))))) (-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 (-576)))) (-5 *2 (-657 (-304 (-972 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-861) (-374))))) (-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-304 (-419 (-972 (-576)))))) (-5 *2 (-657 (-657 (-304 (-972 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-861) (-374))))) (-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-419 (-972 (-576))))) (-5 *2 (-657 (-657 (-304 (-972 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-861) (-374)))))) -(-10 -7 (-15 -3036 ((-657 (-657 (-304 (-972 |#1|)))) (-657 (-419 (-972 (-576)))) |#1|)) (-15 -3036 ((-657 (-657 (-304 (-972 |#1|)))) (-657 (-304 (-419 (-972 (-576))))) |#1|)) (-15 -3036 ((-657 (-304 (-972 |#1|))) (-419 (-972 (-576))) |#1|)) (-15 -3036 ((-657 (-304 (-972 |#1|))) (-304 (-419 (-972 (-576)))) |#1|)) (-15 -2195 ((-657 (-657 |#1|)) (-657 (-419 (-972 (-576)))) (-657 (-1198)) |#1|)) (-15 -2195 ((-657 |#1|) (-419 (-972 (-576))) |#1|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#2| "failed") $) 30)) (-2884 ((|#2| $) 32)) (-2212 (($ $) NIL)) (-4334 (((-784) $) 11)) (-3724 (((-657 $) $) 23)) (-3157 (((-112) $) NIL)) (-3607 (($ |#2| |#1|) 21)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-4063 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-2174 ((|#2| $) 18)) (-2186 ((|#1| $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 51) (($ |#2|) 31)) (-4037 (((-657 |#1|) $) 20)) (-2313 ((|#1| $ |#2|) 55)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 33 T CONST)) (-2329 (((-657 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) -(((-392 |#1| |#2|) (-13 (-393 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1071) (-862)) (T -392)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-392 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-862))))) -(-13 (-393 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-1624 (((-3 |#2| "failed") $) 49)) (-2884 ((|#2| $) 50)) (-2212 (($ $) 35)) (-4334 (((-784) $) 39)) (-3724 (((-657 $) $) 40)) (-3157 (((-112) $) 43)) (-3607 (($ |#2| |#1|) 44)) (-4083 (($ (-1 |#1| |#1|) $) 45)) (-4063 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-2174 ((|#2| $) 38)) (-2186 ((|#1| $) 37)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12) (($ |#2|) 48)) (-4037 (((-657 |#1|) $) 41)) (-2313 ((|#1| $ |#2|) 46)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2329 (((-657 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) -(((-393 |#1| |#2|) (-141) (-1071) (-1122)) (T -393)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-1122)))) (-2313 (*1 *2 *1 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1071)))) (-4083 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)))) (-3607 (*1 *1 *2 *3) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1122)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) (-5 *2 (-112)))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) (-5 *2 (-657 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4037 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) (-5 *2 (-657 *3)))) (-3724 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-1122)) (-5 *2 (-657 *1)) (-4 *1 (-393 *3 *4)))) (-4334 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) (-5 *2 (-784)))) (-2174 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1122)))) (-2186 (*1 *2 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1071)))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2212 (*1 *1 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-1122))))) -(-13 (-111 |t#1| |t#1|) (-1060 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2313 (|t#1| $ |t#2|)) (-15 -4083 ($ (-1 |t#1| |t#1|) $)) (-15 -3607 ($ |t#2| |t#1|)) (-15 -3157 ((-112) $)) (-15 -2329 ((-657 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4037 ((-657 |t#1|) $)) (-15 -3724 ((-657 $) $)) (-15 -4334 ((-784) $)) (-15 -2174 (|t#2| $)) (-15 -2186 (|t#1| $)) (-15 -4063 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2212 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-730 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 |#2|) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) |has| |#1| (-174)) ((-730 |#1|) |has| |#1| (-174)) ((-1060 |#2|) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-2669 (((-1294) $) 7)) (-3501 (((-877) $) 8) (($ (-702 (-712))) 14) (($ (-657 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 11))) -(((-394) (-141)) (T -394)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-702 (-712))) (-4 *1 (-394)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-394)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) (-4 *1 (-394))))) -(-13 (-407) (-10 -8 (-15 -3501 ($ (-702 (-712)))) (-15 -3501 ($ (-657 (-340)))) (-15 -3501 ($ (-340))) (-15 -3501 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340)))))))) -(((-625 (-877)) . T) ((-407) . T) ((-1239) . T)) -((-1624 (((-3 $ "failed") (-702 (-326 (-390)))) 21) (((-3 $ "failed") (-702 (-326 (-576)))) 19) (((-3 $ "failed") (-702 (-972 (-390)))) 17) (((-3 $ "failed") (-702 (-972 (-576)))) 15) (((-3 $ "failed") (-702 (-419 (-972 (-390))))) 13) (((-3 $ "failed") (-702 (-419 (-972 (-576))))) 11)) (-2884 (($ (-702 (-326 (-390)))) 22) (($ (-702 (-326 (-576)))) 20) (($ (-702 (-972 (-390)))) 18) (($ (-702 (-972 (-576)))) 16) (($ (-702 (-419 (-972 (-390))))) 14) (($ (-702 (-419 (-972 (-576))))) 12)) (-2669 (((-1294) $) 7)) (-3501 (((-877) $) 8) (($ (-657 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 23))) +((-3698 (($ $) 6)) (-4072 (($ $) 7)) (** (($ $ $) 8))) +(((-295) (-141)) (T -295)) +((** (*1 *1 *1 *1) (-4 *1 (-295))) (-4072 (*1 *1 *1) (-4 *1 (-295))) (-3698 (*1 *1 *1) (-4 *1 (-295)))) +(-13 (-10 -8 (-15 -3698 ($ $)) (-15 -4072 ($ $)) (-15 ** ($ $ $)))) +((-2490 (((-660 (-1182 |#1|)) (-1182 |#1|) |#1|) 35)) (-1456 ((|#2| |#2| |#1|) 39)) (-2481 ((|#2| |#2| |#1|) 41)) (-2756 ((|#2| |#2| |#1|) 40))) +(((-296 |#1| |#2|) (-10 -7 (-15 -1456 (|#2| |#2| |#1|)) (-15 -2756 (|#2| |#2| |#1|)) (-15 -2481 (|#2| |#2| |#1|)) (-15 -2490 ((-660 (-1182 |#1|)) (-1182 |#1|) |#1|))) (-375) (-1283 |#1|)) (T -296)) +((-2490 (*1 *2 *3 *4) (-12 (-4 *4 (-375)) (-5 *2 (-660 (-1182 *4))) (-5 *1 (-296 *4 *5)) (-5 *3 (-1182 *4)) (-4 *5 (-1283 *4)))) (-2481 (*1 *2 *2 *3) (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1283 *3)))) (-2756 (*1 *2 *2 *3) (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1283 *3)))) (-1456 (*1 *2 *2 *3) (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1283 *3))))) +(-10 -7 (-15 -1456 (|#2| |#2| |#1|)) (-15 -2756 (|#2| |#2| |#1|)) (-15 -2481 (|#2| |#2| |#1|)) (-15 -2490 ((-660 (-1182 |#1|)) (-1182 |#1|) |#1|))) +((-2872 ((|#2| $ |#1|) 6))) +(((-297 |#1| |#2|) (-141) (-1242) (-1242)) (T -297)) +((-2872 (*1 *2 *1 *3) (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1242)) (-4 *2 (-1242))))) +(-13 (-1242) (-10 -8 (-15 -2872 (|t#2| $ |t#1|)))) +(((-1242) . T)) +((-2192 ((|#3| $ |#2| |#3|) 12)) (-2117 ((|#3| $ |#2|) 10))) +(((-298 |#1| |#2| |#3|) (-10 -8 (-15 -2192 (|#3| |#1| |#2| |#3|)) (-15 -2117 (|#3| |#1| |#2|))) (-299 |#2| |#3|) (-1125) (-1242)) (T -298)) +NIL +(-10 -8 (-15 -2192 (|#3| |#1| |#2| |#3|)) (-15 -2117 (|#3| |#1| |#2|))) +((-3709 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4471)))) (-2192 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4471)))) (-2117 ((|#2| $ |#1|) 11)) (-2872 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-299 |#1| |#2|) (-141) (-1125) (-1242)) (T -299)) +((-2872 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1242)))) (-2117 (*1 *2 *1 *3) (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1242)))) (-3709 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-299 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1242)))) (-2192 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-299 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1242))))) +(-13 (-297 |t#1| |t#2|) (-10 -8 (-15 -2872 (|t#2| $ |t#1| |t#2|)) (-15 -2117 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4471)) (PROGN (-15 -3709 (|t#2| $ |t#1| |t#2|)) (-15 -2192 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-297 |#1| |#2|) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 37)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 44)) (-3290 (($ $) 41)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1939 (((-112) $ $) NIL)) (-1534 (($) NIL T CONST)) (-3418 (($ $ $) 35)) (-3654 (($ |#2| |#3|) 18)) (-4187 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-2487 (((-112) $) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-2587 ((|#3| $) NIL)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) 19)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3566 (((-3 $ "failed") $ $) NIL)) (-1927 (((-787) $) 36)) (-2872 ((|#2| $ |#2|) 46)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 23)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-2806 (($) 31 T CONST)) (-2816 (($) 39 T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 40))) +(((-300 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-318) (-297 |#2| |#2|) (-10 -8 (-15 -2587 (|#3| $)) (-15 -3544 (|#2| $)) (-15 -3654 ($ |#2| |#3|)) (-15 -3566 ((-3 $ "failed") $ $)) (-15 -4187 ((-3 $ "failed") $)) (-15 -2171 ($ $)))) (-174) (-1268 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -300)) +((-4187 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1268 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2587 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-300 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1268 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3544 (*1 *2 *1) (-12 (-4 *2 (-1268 *3)) (-5 *1 (-300 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3654 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-300 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1268 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3566 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1268 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2171 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1268 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) +(-13 (-318) (-297 |#2| |#2|) (-10 -8 (-15 -2587 (|#3| $)) (-15 -3544 (|#2| $)) (-15 -3654 ($ |#2| |#3|)) (-15 -3566 ((-3 $ "failed") $ $)) (-15 -4187 ((-3 $ "failed") $)) (-15 -2171 ($ $)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-4187 (((-3 $ "failed") $) 37)) (-2487 (((-112) $) 35)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12) (($ (-577)) 33)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) +(((-301) (-141)) (T -301)) +NIL +(-13 (-1074) (-111 $ $) (-10 -7 (-6 -4463))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-742) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-2553 (((-660 (-1110)) $) 10)) (-2534 (($ (-519) (-519) (-1129) $) 19)) (-2516 (($ (-519) (-660 (-988)) $) 23)) (-2506 (($) 25)) (-2543 (((-707 (-1129)) (-519) (-519) $) 18)) (-2525 (((-660 (-988)) (-519) $) 22)) (-3639 (($) 7)) (-1750 (($) 24)) (-3544 (((-880) $) 29)) (-2498 (($) 26))) +(((-302) (-13 (-626 (-880)) (-10 -8 (-15 -3639 ($)) (-15 -2553 ((-660 (-1110)) $)) (-15 -2543 ((-707 (-1129)) (-519) (-519) $)) (-15 -2534 ($ (-519) (-519) (-1129) $)) (-15 -2525 ((-660 (-988)) (-519) $)) (-15 -2516 ($ (-519) (-660 (-988)) $)) (-15 -1750 ($)) (-15 -2506 ($)) (-15 -2498 ($))))) (T -302)) +((-3639 (*1 *1) (-5 *1 (-302))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-660 (-1110))) (-5 *1 (-302)))) (-2543 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-519)) (-5 *2 (-707 (-1129))) (-5 *1 (-302)))) (-2534 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-519)) (-5 *3 (-1129)) (-5 *1 (-302)))) (-2525 (*1 *2 *3 *1) (-12 (-5 *3 (-519)) (-5 *2 (-660 (-988))) (-5 *1 (-302)))) (-2516 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-519)) (-5 *3 (-660 (-988))) (-5 *1 (-302)))) (-1750 (*1 *1) (-5 *1 (-302))) (-2506 (*1 *1) (-5 *1 (-302))) (-2498 (*1 *1) (-5 *1 (-302)))) +(-13 (-626 (-880)) (-10 -8 (-15 -3639 ($)) (-15 -2553 ((-660 (-1110)) $)) (-15 -2543 ((-707 (-1129)) (-519) (-519) $)) (-15 -2534 ($ (-519) (-519) (-1129) $)) (-15 -2525 ((-660 (-988)) (-519) $)) (-15 -2516 ($ (-519) (-660 (-988)) $)) (-15 -1750 ($)) (-15 -2506 ($)) (-15 -2498 ($)))) +((-2591 (((-660 (-2 (|:| |eigval| (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (|:| |geneigvec| (-660 (-705 (-420 (-975 |#1|))))))) (-705 (-420 (-975 |#1|)))) 102)) (-2581 (((-660 (-705 (-420 (-975 |#1|)))) (-2 (|:| |eigval| (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (|:| |eigmult| (-787)) (|:| |eigvec| (-660 (-705 (-420 (-975 |#1|)))))) (-705 (-420 (-975 |#1|)))) 97) (((-660 (-705 (-420 (-975 |#1|)))) (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|))) (-705 (-420 (-975 |#1|))) (-787) (-787)) 41)) (-2600 (((-660 (-2 (|:| |eigval| (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (|:| |eigmult| (-787)) (|:| |eigvec| (-660 (-705 (-420 (-975 |#1|))))))) (-705 (-420 (-975 |#1|)))) 99)) (-2571 (((-660 (-705 (-420 (-975 |#1|)))) (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|))) (-705 (-420 (-975 |#1|)))) 75)) (-2562 (((-660 (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (-705 (-420 (-975 |#1|)))) 74)) (-3974 (((-975 |#1|) (-705 (-420 (-975 |#1|)))) 55) (((-975 |#1|) (-705 (-420 (-975 |#1|))) (-1201)) 56))) +(((-303 |#1|) (-10 -7 (-15 -3974 ((-975 |#1|) (-705 (-420 (-975 |#1|))) (-1201))) (-15 -3974 ((-975 |#1|) (-705 (-420 (-975 |#1|))))) (-15 -2562 ((-660 (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (-705 (-420 (-975 |#1|))))) (-15 -2571 ((-660 (-705 (-420 (-975 |#1|)))) (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|))) (-705 (-420 (-975 |#1|))))) (-15 -2581 ((-660 (-705 (-420 (-975 |#1|)))) (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|))) (-705 (-420 (-975 |#1|))) (-787) (-787))) (-15 -2581 ((-660 (-705 (-420 (-975 |#1|)))) (-2 (|:| |eigval| (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (|:| |eigmult| (-787)) (|:| |eigvec| (-660 (-705 (-420 (-975 |#1|)))))) (-705 (-420 (-975 |#1|))))) (-15 -2591 ((-660 (-2 (|:| |eigval| (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (|:| |geneigvec| (-660 (-705 (-420 (-975 |#1|))))))) (-705 (-420 (-975 |#1|))))) (-15 -2600 ((-660 (-2 (|:| |eigval| (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (|:| |eigmult| (-787)) (|:| |eigvec| (-660 (-705 (-420 (-975 |#1|))))))) (-705 (-420 (-975 |#1|)))))) (-465)) (T -303)) +((-2600 (*1 *2 *3) (-12 (-4 *4 (-465)) (-5 *2 (-660 (-2 (|:| |eigval| (-3 (-420 (-975 *4)) (-1190 (-1201) (-975 *4)))) (|:| |eigmult| (-787)) (|:| |eigvec| (-660 (-705 (-420 (-975 *4)))))))) (-5 *1 (-303 *4)) (-5 *3 (-705 (-420 (-975 *4)))))) (-2591 (*1 *2 *3) (-12 (-4 *4 (-465)) (-5 *2 (-660 (-2 (|:| |eigval| (-3 (-420 (-975 *4)) (-1190 (-1201) (-975 *4)))) (|:| |geneigvec| (-660 (-705 (-420 (-975 *4)))))))) (-5 *1 (-303 *4)) (-5 *3 (-705 (-420 (-975 *4)))))) (-2581 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-420 (-975 *5)) (-1190 (-1201) (-975 *5)))) (|:| |eigmult| (-787)) (|:| |eigvec| (-660 *4)))) (-4 *5 (-465)) (-5 *2 (-660 (-705 (-420 (-975 *5))))) (-5 *1 (-303 *5)) (-5 *4 (-705 (-420 (-975 *5)))))) (-2581 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-420 (-975 *6)) (-1190 (-1201) (-975 *6)))) (-5 *5 (-787)) (-4 *6 (-465)) (-5 *2 (-660 (-705 (-420 (-975 *6))))) (-5 *1 (-303 *6)) (-5 *4 (-705 (-420 (-975 *6)))))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-420 (-975 *5)) (-1190 (-1201) (-975 *5)))) (-4 *5 (-465)) (-5 *2 (-660 (-705 (-420 (-975 *5))))) (-5 *1 (-303 *5)) (-5 *4 (-705 (-420 (-975 *5)))))) (-2562 (*1 *2 *3) (-12 (-5 *3 (-705 (-420 (-975 *4)))) (-4 *4 (-465)) (-5 *2 (-660 (-3 (-420 (-975 *4)) (-1190 (-1201) (-975 *4))))) (-5 *1 (-303 *4)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-705 (-420 (-975 *4)))) (-5 *2 (-975 *4)) (-5 *1 (-303 *4)) (-4 *4 (-465)))) (-3974 (*1 *2 *3 *4) (-12 (-5 *3 (-705 (-420 (-975 *5)))) (-5 *4 (-1201)) (-5 *2 (-975 *5)) (-5 *1 (-303 *5)) (-4 *5 (-465))))) +(-10 -7 (-15 -3974 ((-975 |#1|) (-705 (-420 (-975 |#1|))) (-1201))) (-15 -3974 ((-975 |#1|) (-705 (-420 (-975 |#1|))))) (-15 -2562 ((-660 (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (-705 (-420 (-975 |#1|))))) (-15 -2571 ((-660 (-705 (-420 (-975 |#1|)))) (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|))) (-705 (-420 (-975 |#1|))))) (-15 -2581 ((-660 (-705 (-420 (-975 |#1|)))) (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|))) (-705 (-420 (-975 |#1|))) (-787) (-787))) (-15 -2581 ((-660 (-705 (-420 (-975 |#1|)))) (-2 (|:| |eigval| (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (|:| |eigmult| (-787)) (|:| |eigvec| (-660 (-705 (-420 (-975 |#1|)))))) (-705 (-420 (-975 |#1|))))) (-15 -2591 ((-660 (-2 (|:| |eigval| (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (|:| |geneigvec| (-660 (-705 (-420 (-975 |#1|))))))) (-705 (-420 (-975 |#1|))))) (-15 -2600 ((-660 (-2 (|:| |eigval| (-3 (-420 (-975 |#1|)) (-1190 (-1201) (-975 |#1|)))) (|:| |eigmult| (-787)) (|:| |eigvec| (-660 (-705 (-420 (-975 |#1|))))))) (-705 (-420 (-975 |#1|)))))) +((-4087 (((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)) 14))) +(((-304 |#1| |#2|) (-10 -7 (-15 -4087 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)))) (-1242) (-1242)) (T -304)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-305 *6)) (-5 *1 (-304 *5 *6))))) +(-10 -7 (-15 -4087 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-3585 (((-112) $) NIL (|has| |#1| (-21)))) (-2658 (($ $) 12)) (-1956 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4057 (($ $ $) 95 (|has| |#1| (-313)))) (-1534 (($) NIL (-2839 (|has| |#1| (-21)) (|has| |#1| (-742))) CONST)) (-2637 (($ $) 51 (|has| |#1| (-21)))) (-2619 (((-3 $ "failed") $) 62 (|has| |#1| (-742)))) (-1733 ((|#1| $) 11)) (-4187 (((-3 $ "failed") $) 60 (|has| |#1| (-742)))) (-2487 (((-112) $) NIL (|has| |#1| (-742)))) (-4087 (($ (-1 |#1| |#1|) $) 14)) (-1721 ((|#1| $) 10)) (-2647 (($ $) 50 (|has| |#1| (-21)))) (-2628 (((-3 $ "failed") $) 61 (|has| |#1| (-742)))) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-2171 (($ $) 64 (-2839 (|has| |#1| (-375)) (|has| |#1| (-486))))) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-2609 (((-660 $) $) 85 (|has| |#1| (-569)))) (-3280 (($ $ $) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 $)) 28 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-1201) |#1|) 17 (|has| |#1| (-527 (-1201) |#1|))) (($ $ (-660 (-1201)) (-660 |#1|)) 21 (|has| |#1| (-527 (-1201) |#1|)))) (-2448 (($ |#1| |#1|) 9)) (-2561 (((-135)) 90 (|has| |#1| (-375)))) (-2852 (($ $ (-1201)) 87 (|has| |#1| (-921 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-921 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-921 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-921 (-1201))))) (-2360 (($ $ $) NIL (|has| |#1| (-486)))) (-3820 (($ $ $) NIL (|has| |#1| (-486)))) (-3544 (($ (-577)) NIL (|has| |#1| (-1074))) (((-112) $) 37 (|has| |#1| (-1125))) (((-880) $) 36 (|has| |#1| (-1125)))) (-4068 (((-787)) 67 (|has| |#1| (-1074)) CONST)) (-4448 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-2806 (($) 47 (|has| |#1| (-21)) CONST)) (-2816 (($) 57 (|has| |#1| (-742)) CONST)) (-2132 (($ $ (-1201)) NIL (|has| |#1| (-921 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-921 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-921 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-921 (-1201))))) (-2970 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1125)))) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375))) (($ $ $) 92 (-2839 (|has| |#1| (-375)) (|has| |#1| (-486))))) (-3066 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3055 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-577)) NIL (|has| |#1| (-486))) (($ $ (-787)) NIL (|has| |#1| (-742))) (($ $ (-944)) NIL (|has| |#1| (-1137)))) (* (($ $ |#1|) 55 (|has| |#1| (-1137))) (($ |#1| $) 54 (|has| |#1| (-1137))) (($ $ $) 53 (|has| |#1| (-1137))) (($ (-577) $) 70 (|has| |#1| (-21))) (($ (-787) $) NIL (|has| |#1| (-21))) (($ (-944) $) NIL (|has| |#1| (-25))))) +(((-305 |#1|) (-13 (-1242) (-10 -8 (-15 -2970 ($ |#1| |#1|)) (-15 -2448 ($ |#1| |#1|)) (-15 -2658 ($ $)) (-15 -1721 (|#1| $)) (-15 -1733 (|#1| $)) (-15 -4087 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-527 (-1201) |#1|)) (-6 (-527 (-1201) |#1|)) |%noBranch|) (IF (|has| |#1| (-1125)) (PROGN (-6 (-1125)) (-6 (-626 (-112))) (IF (|has| |#1| (-320 |#1|)) (PROGN (-15 -3280 ($ $ $)) (-15 -3280 ($ $ (-660 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3055 ($ |#1| $)) (-15 -3055 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2647 ($ $)) (-15 -2637 ($ $)) (-15 -3066 ($ |#1| $)) (-15 -3066 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1137)) (PROGN (-6 (-1137)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-742)) (PROGN (-6 (-742)) (-15 -2628 ((-3 $ "failed") $)) (-15 -2619 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-486)) (PROGN (-6 (-486)) (-15 -2628 ((-3 $ "failed") $)) (-15 -2619 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1074)) (PROGN (-6 (-1074)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-733 |#1|)) |%noBranch|) (IF (|has| |#1| (-569)) (-15 -2609 ((-660 $) $)) |%noBranch|) (IF (|has| |#1| (-921 (-1201))) (-6 (-921 (-1201))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-6 (-1299 |#1|)) (-15 -3077 ($ $ $)) (-15 -2171 ($ $))) |%noBranch|) (IF (|has| |#1| (-313)) (-15 -4057 ($ $ $)) |%noBranch|))) (-1242)) (T -305)) +((-2970 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242)))) (-2448 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242)))) (-2658 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242)))) (-1721 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242)))) (-1733 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242)))) (-4087 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1242)) (-5 *1 (-305 *3)))) (-3280 (*1 *1 *1 *1) (-12 (-4 *2 (-320 *2)) (-4 *2 (-1125)) (-4 *2 (-1242)) (-5 *1 (-305 *2)))) (-3280 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-305 *3))) (-4 *3 (-320 *3)) (-4 *3 (-1125)) (-4 *3 (-1242)) (-5 *1 (-305 *3)))) (-3055 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1242)))) (-3055 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1242)))) (-2647 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1242)))) (-2637 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1242)))) (-3066 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1242)))) (-3066 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1242)))) (-2628 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-742)) (-4 *2 (-1242)))) (-2619 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-742)) (-4 *2 (-1242)))) (-2609 (*1 *2 *1) (-12 (-5 *2 (-660 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-569)) (-4 *3 (-1242)))) (-4057 (*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-313)) (-4 *2 (-1242)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1137)) (-4 *2 (-1242)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1137)) (-4 *2 (-1242)))) (-3077 (*1 *1 *1 *1) (-2839 (-12 (-5 *1 (-305 *2)) (-4 *2 (-375)) (-4 *2 (-1242))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-486)) (-4 *2 (-1242))))) (-2171 (*1 *1 *1) (-2839 (-12 (-5 *1 (-305 *2)) (-4 *2 (-375)) (-4 *2 (-1242))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-486)) (-4 *2 (-1242)))))) +(-13 (-1242) (-10 -8 (-15 -2970 ($ |#1| |#1|)) (-15 -2448 ($ |#1| |#1|)) (-15 -2658 ($ $)) (-15 -1721 (|#1| $)) (-15 -1733 (|#1| $)) (-15 -4087 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-527 (-1201) |#1|)) (-6 (-527 (-1201) |#1|)) |%noBranch|) (IF (|has| |#1| (-1125)) (PROGN (-6 (-1125)) (-6 (-626 (-112))) (IF (|has| |#1| (-320 |#1|)) (PROGN (-15 -3280 ($ $ $)) (-15 -3280 ($ $ (-660 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3055 ($ |#1| $)) (-15 -3055 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2647 ($ $)) (-15 -2637 ($ $)) (-15 -3066 ($ |#1| $)) (-15 -3066 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1137)) (PROGN (-6 (-1137)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-742)) (PROGN (-6 (-742)) (-15 -2628 ((-3 $ "failed") $)) (-15 -2619 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-486)) (PROGN (-6 (-486)) (-15 -2628 ((-3 $ "failed") $)) (-15 -2619 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1074)) (PROGN (-6 (-1074)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-733 |#1|)) |%noBranch|) (IF (|has| |#1| (-569)) (-15 -2609 ((-660 $) $)) |%noBranch|) (IF (|has| |#1| (-921 (-1201))) (-6 (-921 (-1201))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-6 (-1299 |#1|)) (-15 -3077 ($ $ $)) (-15 -2171 ($ $))) |%noBranch|) (IF (|has| |#1| (-313)) (-15 -4057 ($ $ $)) |%noBranch|))) +((-3473 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-4100 (($) NIL) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-2389 (((-1297) $ |#1| |#1|) NIL (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 ((|#2| $ |#1| |#2|) NIL)) (-2463 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2325 (((-3 |#2| "failed") |#1| $) NIL)) (-1534 (($) NIL T CONST)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))))) (-3719 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (|has| $ (-6 -4470))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-3 |#2| "failed") |#1| $) NIL)) (-3904 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-3654 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (|has| $ (-6 -4470))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2192 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#2| $ |#1|) NIL)) (-1461 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) NIL)) (-2406 ((|#1| $) NIL (|has| |#1| (-865)))) (-2530 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-2416 ((|#1| $) NIL (|has| |#1| (-865)))) (-2182 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4471))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| |#2| (-1125))))) (-3203 (((-660 |#1|) $) NIL)) (-4317 (((-112) |#1| $) NIL)) (-4330 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-2881 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-4285 (((-660 |#1|) $) NIL)) (-4298 (((-112) |#1| $) NIL)) (-1474 (((-1145) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| |#2| (-1125))))) (-3552 ((|#2| $) NIL (|has| |#1| (-865)))) (-1828 (((-3 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) "failed") (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL)) (-2397 (($ $ |#2|) NIL (|has| $ (-6 -4471)))) (-3530 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-1514 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-4306 (((-660 |#2|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3736 (($) NIL) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-1485 (((-787) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-787) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125)))) (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-627 (-549))))) (-3553 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-3544 (((-880) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-626 (-880))) (|has| |#2| (-626 (-880)))))) (-4448 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-3541 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-1524 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-306 |#1| |#2|) (-13 (-1218 |#1| |#2|) (-10 -7 (-6 -4470))) (-1125) (-1125)) (T -306)) +NIL +(-13 (-1218 |#1| |#2|) (-10 -7 (-6 -4470))) +((-3310 (((-323) (-1183) (-660 (-1183))) 17) (((-323) (-1183) (-1183)) 16) (((-323) (-660 (-1183))) 15) (((-323) (-1183)) 14))) +(((-307) (-10 -7 (-15 -3310 ((-323) (-1183))) (-15 -3310 ((-323) (-660 (-1183)))) (-15 -3310 ((-323) (-1183) (-1183))) (-15 -3310 ((-323) (-1183) (-660 (-1183)))))) (T -307)) +((-3310 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-1183))) (-5 *3 (-1183)) (-5 *2 (-323)) (-5 *1 (-307)))) (-3310 (*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-323)) (-5 *1 (-307)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-323)) (-5 *1 (-307)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-323)) (-5 *1 (-307))))) +(-10 -7 (-15 -3310 ((-323) (-1183))) (-15 -3310 ((-323) (-660 (-1183)))) (-15 -3310 ((-323) (-1183) (-1183))) (-15 -3310 ((-323) (-1183) (-660 (-1183))))) +((-4087 ((|#2| (-1 |#2| |#1|) (-1183) (-625 |#1|)) 18))) +(((-308 |#1| |#2|) (-10 -7 (-15 -4087 (|#2| (-1 |#2| |#1|) (-1183) (-625 |#1|)))) (-313) (-1242)) (T -308)) +((-4087 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1183)) (-5 *5 (-625 *6)) (-4 *6 (-313)) (-4 *2 (-1242)) (-5 *1 (-308 *6 *2))))) +(-10 -7 (-15 -4087 (|#2| (-1 |#2| |#1|) (-1183) (-625 |#1|)))) +((-4087 ((|#2| (-1 |#2| |#1|) (-625 |#1|)) 17))) +(((-309 |#1| |#2|) (-10 -7 (-15 -4087 (|#2| (-1 |#2| |#1|) (-625 |#1|)))) (-313) (-313)) (T -309)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-625 *5)) (-4 *5 (-313)) (-4 *2 (-313)) (-5 *1 (-309 *5 *2))))) +(-10 -7 (-15 -4087 (|#2| (-1 |#2| |#1|) (-625 |#1|)))) +((-3672 (((-112) (-228)) 12))) +(((-310 |#1| |#2|) (-10 -7 (-15 -3672 ((-112) (-228)))) (-228) (-228)) (T -310)) +((-3672 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-112)) (-5 *1 (-310 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -3672 ((-112) (-228)))) +((-2745 (((-1182 (-228)) (-327 (-228)) (-660 (-1201)) (-1119 (-859 (-228)))) 118)) (-2757 (((-1182 (-228)) (-1292 (-327 (-228))) (-660 (-1201)) (-1119 (-859 (-228)))) 135) (((-1182 (-228)) (-327 (-228)) (-660 (-1201)) (-1119 (-859 (-228)))) 72)) (-1762 (((-660 (-1183)) (-1182 (-228))) NIL)) (-2734 (((-660 (-228)) (-327 (-228)) (-1201) (-1119 (-859 (-228)))) 69)) (-2767 (((-660 (-228)) (-975 (-420 (-577))) (-1201) (-1119 (-859 (-228)))) 59)) (-1751 (((-660 (-1183)) (-660 (-228))) NIL)) (-1773 (((-228) (-1119 (-859 (-228)))) 29)) (-1783 (((-228) (-1119 (-859 (-228)))) 30)) (-2723 (((-112) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 64)) (-1734 (((-1183) (-228)) NIL))) +(((-311) (-10 -7 (-15 -1773 ((-228) (-1119 (-859 (-228))))) (-15 -1783 ((-228) (-1119 (-859 (-228))))) (-15 -2723 ((-112) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2734 ((-660 (-228)) (-327 (-228)) (-1201) (-1119 (-859 (-228))))) (-15 -2745 ((-1182 (-228)) (-327 (-228)) (-660 (-1201)) (-1119 (-859 (-228))))) (-15 -2757 ((-1182 (-228)) (-327 (-228)) (-660 (-1201)) (-1119 (-859 (-228))))) (-15 -2757 ((-1182 (-228)) (-1292 (-327 (-228))) (-660 (-1201)) (-1119 (-859 (-228))))) (-15 -2767 ((-660 (-228)) (-975 (-420 (-577))) (-1201) (-1119 (-859 (-228))))) (-15 -1734 ((-1183) (-228))) (-15 -1751 ((-660 (-1183)) (-660 (-228)))) (-15 -1762 ((-660 (-1183)) (-1182 (-228)))))) (T -311)) +((-1762 (*1 *2 *3) (-12 (-5 *3 (-1182 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-311)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-660 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-311)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1183)) (-5 *1 (-311)))) (-2767 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-975 (-420 (-577)))) (-5 *4 (-1201)) (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-660 (-228))) (-5 *1 (-311)))) (-2757 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1292 (-327 (-228)))) (-5 *4 (-660 (-1201))) (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-1182 (-228))) (-5 *1 (-311)))) (-2757 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-660 (-1201))) (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-1182 (-228))) (-5 *1 (-311)))) (-2745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-660 (-1201))) (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-1182 (-228))) (-5 *1 (-311)))) (-2734 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-228))) (-5 *4 (-1201)) (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-660 (-228))) (-5 *1 (-311)))) (-2723 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-112)) (-5 *1 (-311)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-311)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-311))))) +(-10 -7 (-15 -1773 ((-228) (-1119 (-859 (-228))))) (-15 -1783 ((-228) (-1119 (-859 (-228))))) (-15 -2723 ((-112) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2734 ((-660 (-228)) (-327 (-228)) (-1201) (-1119 (-859 (-228))))) (-15 -2745 ((-1182 (-228)) (-327 (-228)) (-660 (-1201)) (-1119 (-859 (-228))))) (-15 -2757 ((-1182 (-228)) (-327 (-228)) (-660 (-1201)) (-1119 (-859 (-228))))) (-15 -2757 ((-1182 (-228)) (-1292 (-327 (-228))) (-660 (-1201)) (-1119 (-859 (-228))))) (-15 -2767 ((-660 (-228)) (-975 (-420 (-577))) (-1201) (-1119 (-859 (-228))))) (-15 -1734 ((-1183) (-228))) (-15 -1751 ((-660 (-1183)) (-660 (-228)))) (-15 -1762 ((-660 (-1183)) (-1182 (-228))))) +((-3952 (((-660 (-625 $)) $) 27)) (-4057 (($ $ (-305 $)) 78) (($ $ (-660 (-305 $))) 139) (($ $ (-660 (-625 $)) (-660 $)) NIL)) (-1628 (((-3 (-625 $) "failed") $) 127)) (-2921 (((-625 $) $) 126)) (-3401 (($ $) 17) (($ (-660 $)) 54)) (-2691 (((-660 (-115)) $) 35)) (-1844 (((-115) (-115)) 88)) (-1912 (((-112) $) 150)) (-4087 (($ (-1 $ $) (-625 $)) 86)) (-2702 (((-3 (-625 $) "failed") $) 94)) (-1702 (($ (-115) $) 59) (($ (-115) (-660 $)) 110)) (-2740 (((-112) $ (-115)) 132) (((-112) $ (-1201)) 131)) (-2440 (((-787) $) 44)) (-2679 (((-112) $ $) 57) (((-112) $ (-1201)) 49)) (-1924 (((-112) $) 148)) (-3280 (($ $ (-625 $) $) NIL) (($ $ (-660 (-625 $)) (-660 $)) NIL) (($ $ (-660 (-305 $))) 137) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ (-660 (-1201)) (-660 (-1 $ $))) 81) (($ $ (-660 (-1201)) (-660 (-1 $ (-660 $)))) NIL) (($ $ (-1201) (-1 $ (-660 $))) 67) (($ $ (-1201) (-1 $ $)) 72) (($ $ (-660 (-115)) (-660 (-1 $ $))) 80) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) 82) (($ $ (-115) (-1 $ (-660 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2872 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-660 $)) 123)) (-2712 (($ $) 51) (($ $ $) 135)) (-2251 (($ $) 15) (($ (-660 $)) 53)) (-1409 (((-112) (-115)) 21))) +(((-312 |#1|) (-10 -8 (-15 -1912 ((-112) |#1|)) (-15 -1924 ((-112) |#1|)) (-15 -3280 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3280 (|#1| |#1| (-115) (-1 |#1| (-660 |#1|)))) (-15 -3280 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3280 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| |#1|)))) (-15 -3280 (|#1| |#1| (-1201) (-1 |#1| |#1|))) (-15 -3280 (|#1| |#1| (-1201) (-1 |#1| (-660 |#1|)))) (-15 -3280 (|#1| |#1| (-660 (-1201)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3280 (|#1| |#1| (-660 (-1201)) (-660 (-1 |#1| |#1|)))) (-15 -2679 ((-112) |#1| (-1201))) (-15 -2679 ((-112) |#1| |#1|)) (-15 -4087 (|#1| (-1 |#1| |#1|) (-625 |#1|))) (-15 -1702 (|#1| (-115) (-660 |#1|))) (-15 -1702 (|#1| (-115) |#1|)) (-15 -2740 ((-112) |#1| (-1201))) (-15 -2740 ((-112) |#1| (-115))) (-15 -1409 ((-112) (-115))) (-15 -1844 ((-115) (-115))) (-15 -2691 ((-660 (-115)) |#1|)) (-15 -3952 ((-660 (-625 |#1|)) |#1|)) (-15 -2702 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -2440 ((-787) |#1|)) (-15 -2712 (|#1| |#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 -3401 (|#1| (-660 |#1|))) (-15 -3401 (|#1| |#1|)) (-15 -2251 (|#1| (-660 |#1|))) (-15 -2251 (|#1| |#1|)) (-15 -4057 (|#1| |#1| (-660 (-625 |#1|)) (-660 |#1|))) (-15 -4057 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -4057 (|#1| |#1| (-305 |#1|))) (-15 -2872 (|#1| (-115) (-660 |#1|))) (-15 -2872 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2872 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2872 (|#1| (-115) |#1| |#1|)) (-15 -2872 (|#1| (-115) |#1|)) (-15 -3280 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3280 (|#1| |#1| |#1| |#1|)) (-15 -3280 (|#1| |#1| (-305 |#1|))) (-15 -3280 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -3280 (|#1| |#1| (-660 (-625 |#1|)) (-660 |#1|))) (-15 -3280 (|#1| |#1| (-625 |#1|) |#1|)) (-15 -1628 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -2921 ((-625 |#1|) |#1|))) (-313)) (T -312)) +((-1844 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-312 *3)) (-4 *3 (-313)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-312 *4)) (-4 *4 (-313))))) +(-10 -8 (-15 -1912 ((-112) |#1|)) (-15 -1924 ((-112) |#1|)) (-15 -3280 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3280 (|#1| |#1| (-115) (-1 |#1| (-660 |#1|)))) (-15 -3280 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3280 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| |#1|)))) (-15 -3280 (|#1| |#1| (-1201) (-1 |#1| |#1|))) (-15 -3280 (|#1| |#1| (-1201) (-1 |#1| (-660 |#1|)))) (-15 -3280 (|#1| |#1| (-660 (-1201)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3280 (|#1| |#1| (-660 (-1201)) (-660 (-1 |#1| |#1|)))) (-15 -2679 ((-112) |#1| (-1201))) (-15 -2679 ((-112) |#1| |#1|)) (-15 -4087 (|#1| (-1 |#1| |#1|) (-625 |#1|))) (-15 -1702 (|#1| (-115) (-660 |#1|))) (-15 -1702 (|#1| (-115) |#1|)) (-15 -2740 ((-112) |#1| (-1201))) (-15 -2740 ((-112) |#1| (-115))) (-15 -1409 ((-112) (-115))) (-15 -1844 ((-115) (-115))) (-15 -2691 ((-660 (-115)) |#1|)) (-15 -3952 ((-660 (-625 |#1|)) |#1|)) (-15 -2702 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -2440 ((-787) |#1|)) (-15 -2712 (|#1| |#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 -3401 (|#1| (-660 |#1|))) (-15 -3401 (|#1| |#1|)) (-15 -2251 (|#1| (-660 |#1|))) (-15 -2251 (|#1| |#1|)) (-15 -4057 (|#1| |#1| (-660 (-625 |#1|)) (-660 |#1|))) (-15 -4057 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -4057 (|#1| |#1| (-305 |#1|))) (-15 -2872 (|#1| (-115) (-660 |#1|))) (-15 -2872 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2872 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2872 (|#1| (-115) |#1| |#1|)) (-15 -2872 (|#1| (-115) |#1|)) (-15 -3280 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3280 (|#1| |#1| |#1| |#1|)) (-15 -3280 (|#1| |#1| (-305 |#1|))) (-15 -3280 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -3280 (|#1| |#1| (-660 (-625 |#1|)) (-660 |#1|))) (-15 -3280 (|#1| |#1| (-625 |#1|) |#1|)) (-15 -1628 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -2921 ((-625 |#1|) |#1|))) +((-3473 (((-112) $ $) 7)) (-3952 (((-660 (-625 $)) $) 39)) (-4057 (($ $ (-305 $)) 51) (($ $ (-660 (-305 $))) 50) (($ $ (-660 (-625 $)) (-660 $)) 49)) (-1628 (((-3 (-625 $) "failed") $) 64)) (-2921 (((-625 $) $) 65)) (-3401 (($ $) 46) (($ (-660 $)) 45)) (-2691 (((-660 (-115)) $) 38)) (-1844 (((-115) (-115)) 37)) (-1912 (((-112) $) 17 (|has| $ (-1063 (-577))))) (-2670 (((-1197 $) (-625 $)) 20 (|has| $ (-1074)))) (-4087 (($ (-1 $ $) (-625 $)) 31)) (-2702 (((-3 (-625 $) "failed") $) 41)) (-2810 (((-1183) $) 10)) (-1829 (((-660 (-625 $)) $) 40)) (-1702 (($ (-115) $) 33) (($ (-115) (-660 $)) 32)) (-2740 (((-112) $ (-115)) 35) (((-112) $ (-1201)) 34)) (-2440 (((-787) $) 42)) (-1474 (((-1145) $) 11)) (-2679 (((-112) $ $) 30) (((-112) $ (-1201)) 29)) (-1924 (((-112) $) 18 (|has| $ (-1063 (-577))))) (-3280 (($ $ (-625 $) $) 62) (($ $ (-660 (-625 $)) (-660 $)) 61) (($ $ (-660 (-305 $))) 60) (($ $ (-305 $)) 59) (($ $ $ $) 58) (($ $ (-660 $) (-660 $)) 57) (($ $ (-660 (-1201)) (-660 (-1 $ $))) 28) (($ $ (-660 (-1201)) (-660 (-1 $ (-660 $)))) 27) (($ $ (-1201) (-1 $ (-660 $))) 26) (($ $ (-1201) (-1 $ $)) 25) (($ $ (-660 (-115)) (-660 (-1 $ $))) 24) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) 23) (($ $ (-115) (-1 $ (-660 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2872 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-660 $)) 52)) (-2712 (($ $) 44) (($ $ $) 43)) (-3557 (($ $) 19 (|has| $ (-1074)))) (-3544 (((-880) $) 12) (($ (-625 $)) 63)) (-2251 (($ $) 48) (($ (-660 $)) 47)) (-1409 (((-112) (-115)) 36)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8))) +(((-313) (-141)) (T -313)) +((-2872 (*1 *1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-2872 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-2872 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-2872 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-2872 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-660 *1)) (-4 *1 (-313)))) (-4057 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-313)))) (-4057 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-305 *1))) (-4 *1 (-313)))) (-4057 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-625 *1))) (-5 *3 (-660 *1)) (-4 *1 (-313)))) (-2251 (*1 *1 *1) (-4 *1 (-313))) (-2251 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-313)))) (-3401 (*1 *1 *1) (-4 *1 (-313))) (-3401 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-313)))) (-2712 (*1 *1 *1) (-4 *1 (-313))) (-2712 (*1 *1 *1 *1) (-4 *1 (-313))) (-2440 (*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-787)))) (-2702 (*1 *2 *1) (|partial| -12 (-5 *2 (-625 *1)) (-4 *1 (-313)))) (-1829 (*1 *2 *1) (-12 (-5 *2 (-660 (-625 *1))) (-4 *1 (-313)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-660 (-625 *1))) (-4 *1 (-313)))) (-2691 (*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-660 (-115))))) (-1844 (*1 *2 *2) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-1409 (*1 *2 *3) (-12 (-4 *1 (-313)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2740 (*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-115)) (-5 *2 (-112)))) (-2740 (*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-1201)) (-5 *2 (-112)))) (-1702 (*1 *1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) (-1702 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-660 *1)) (-4 *1 (-313)))) (-4087 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-625 *1)) (-4 *1 (-313)))) (-2679 (*1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-112)))) (-2679 (*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-1201)) (-5 *2 (-112)))) (-3280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-660 (-1 *1 *1))) (-4 *1 (-313)))) (-3280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-660 (-1 *1 (-660 *1)))) (-4 *1 (-313)))) (-3280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1 *1 (-660 *1))) (-4 *1 (-313)))) (-3280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1 *1 *1)) (-4 *1 (-313)))) (-3280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-115))) (-5 *3 (-660 (-1 *1 *1))) (-4 *1 (-313)))) (-3280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-115))) (-5 *3 (-660 (-1 *1 (-660 *1)))) (-4 *1 (-313)))) (-3280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-660 *1))) (-4 *1 (-313)))) (-3280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-313)))) (-2670 (*1 *2 *3) (-12 (-5 *3 (-625 *1)) (-4 *1 (-1074)) (-4 *1 (-313)) (-5 *2 (-1197 *1)))) (-3557 (*1 *1 *1) (-12 (-4 *1 (-1074)) (-4 *1 (-313)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-1063 (-577))) (-4 *1 (-313)) (-5 *2 (-112)))) (-1912 (*1 *2 *1) (-12 (-4 *1 (-1063 (-577))) (-4 *1 (-313)) (-5 *2 (-112))))) +(-13 (-1125) (-1063 (-625 $)) (-527 (-625 $) $) (-320 $) (-10 -8 (-15 -2872 ($ (-115) $)) (-15 -2872 ($ (-115) $ $)) (-15 -2872 ($ (-115) $ $ $)) (-15 -2872 ($ (-115) $ $ $ $)) (-15 -2872 ($ (-115) (-660 $))) (-15 -4057 ($ $ (-305 $))) (-15 -4057 ($ $ (-660 (-305 $)))) (-15 -4057 ($ $ (-660 (-625 $)) (-660 $))) (-15 -2251 ($ $)) (-15 -2251 ($ (-660 $))) (-15 -3401 ($ $)) (-15 -3401 ($ (-660 $))) (-15 -2712 ($ $)) (-15 -2712 ($ $ $)) (-15 -2440 ((-787) $)) (-15 -2702 ((-3 (-625 $) "failed") $)) (-15 -1829 ((-660 (-625 $)) $)) (-15 -3952 ((-660 (-625 $)) $)) (-15 -2691 ((-660 (-115)) $)) (-15 -1844 ((-115) (-115))) (-15 -1409 ((-112) (-115))) (-15 -2740 ((-112) $ (-115))) (-15 -2740 ((-112) $ (-1201))) (-15 -1702 ($ (-115) $)) (-15 -1702 ($ (-115) (-660 $))) (-15 -4087 ($ (-1 $ $) (-625 $))) (-15 -2679 ((-112) $ $)) (-15 -2679 ((-112) $ (-1201))) (-15 -3280 ($ $ (-660 (-1201)) (-660 (-1 $ $)))) (-15 -3280 ($ $ (-660 (-1201)) (-660 (-1 $ (-660 $))))) (-15 -3280 ($ $ (-1201) (-1 $ (-660 $)))) (-15 -3280 ($ $ (-1201) (-1 $ $))) (-15 -3280 ($ $ (-660 (-115)) (-660 (-1 $ $)))) (-15 -3280 ($ $ (-660 (-115)) (-660 (-1 $ (-660 $))))) (-15 -3280 ($ $ (-115) (-1 $ (-660 $)))) (-15 -3280 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1074)) (PROGN (-15 -2670 ((-1197 $) (-625 $))) (-15 -3557 ($ $))) |%noBranch|) (IF (|has| $ (-1063 (-577))) (PROGN (-15 -1924 ((-112) $)) (-15 -1912 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-629 #0=(-625 $)) . T) ((-626 (-880)) . T) ((-320 $) . T) ((-527 (-625 $) $) . T) ((-527 $ $) . T) ((-1063 #0#) . T) ((-1125) . T) ((-1242) . T)) +((-1891 (((-660 |#1|) (-660 |#1|)) 10))) +(((-314 |#1|) (-10 -7 (-15 -1891 ((-660 |#1|) (-660 |#1|)))) (-864)) (T -314)) +((-1891 (*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-864)) (-5 *1 (-314 *3))))) +(-10 -7 (-15 -1891 ((-660 |#1|) (-660 |#1|)))) +((-4087 (((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)) 17))) +(((-315 |#1| |#2|) (-10 -7 (-15 -4087 ((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)))) (-1074) (-1074)) (T -315)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-705 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-705 *6)) (-5 *1 (-315 *5 *6))))) +(-10 -7 (-15 -4087 ((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)))) +((-1722 (((-1292 (-327 (-391))) (-1292 (-327 (-228)))) 110)) (-2812 (((-1119 (-859 (-228))) (-1119 (-859 (-391)))) 43)) (-1762 (((-660 (-1183)) (-1182 (-228))) 92)) (-1834 (((-327 (-391)) (-975 (-228))) 53)) (-1845 (((-228) (-975 (-228))) 49)) (-1793 (((-1183) (-391)) 195)) (-2800 (((-859 (-228)) (-859 (-391))) 37)) (-2868 (((-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577))) (-1292 (-327 (-228)))) 165)) (-1803 (((-1060) (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060)))) 207) (((-1060) (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))))) 205)) (-1881 (((-705 (-228)) (-660 (-228)) (-787)) 19)) (-2916 (((-1292 (-715)) (-660 (-228))) 99)) (-1751 (((-660 (-1183)) (-660 (-228))) 79)) (-2394 (((-3 (-327 (-228)) "failed") (-327 (-228))) 128)) (-3672 (((-112) (-228) (-1119 (-859 (-228)))) 117)) (-1822 (((-1060) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) 224)) (-1773 (((-228) (-1119 (-859 (-228)))) 112)) (-1783 (((-228) (-1119 (-859 (-228)))) 113)) (-1870 (((-228) (-420 (-577))) 31)) (-1741 (((-1183) (-391)) 77)) (-2777 (((-228) (-391)) 22)) (-2858 (((-391) (-1292 (-327 (-228)))) 177)) (-2787 (((-327 (-228)) (-327 (-391))) 28)) (-2835 (((-420 (-577)) (-327 (-228))) 56)) (-2878 (((-327 (-420 (-577))) (-327 (-228))) 73)) (-1710 (((-327 (-391)) (-327 (-228))) 103)) (-2846 (((-228) (-327 (-228))) 57)) (-2897 (((-660 (-228)) (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) 68)) (-2888 (((-1119 (-859 (-228))) (-1119 (-859 (-228)))) 65)) (-1734 (((-1183) (-228)) 76)) (-2907 (((-715) (-228)) 95)) (-2822 (((-420 (-577)) (-228)) 58)) (-1856 (((-327 (-391)) (-228)) 52)) (-4152 (((-660 (-1119 (-859 (-228)))) (-660 (-1119 (-859 (-391))))) 46)) (-1677 (((-1060) (-660 (-1060))) 191) (((-1060) (-1060) (-1060)) 185)) (-1812 (((-1060) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221))) +(((-316) (-10 -7 (-15 -2777 ((-228) (-391))) (-15 -2787 ((-327 (-228)) (-327 (-391)))) (-15 -2800 ((-859 (-228)) (-859 (-391)))) (-15 -2812 ((-1119 (-859 (-228))) (-1119 (-859 (-391))))) (-15 -4152 ((-660 (-1119 (-859 (-228)))) (-660 (-1119 (-859 (-391)))))) (-15 -2822 ((-420 (-577)) (-228))) (-15 -2835 ((-420 (-577)) (-327 (-228)))) (-15 -2846 ((-228) (-327 (-228)))) (-15 -2394 ((-3 (-327 (-228)) "failed") (-327 (-228)))) (-15 -2858 ((-391) (-1292 (-327 (-228))))) (-15 -2868 ((-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577))) (-1292 (-327 (-228))))) (-15 -2878 ((-327 (-420 (-577))) (-327 (-228)))) (-15 -2888 ((-1119 (-859 (-228))) (-1119 (-859 (-228))))) (-15 -2897 ((-660 (-228)) (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))))) (-15 -2907 ((-715) (-228))) (-15 -2916 ((-1292 (-715)) (-660 (-228)))) (-15 -1710 ((-327 (-391)) (-327 (-228)))) (-15 -1722 ((-1292 (-327 (-391))) (-1292 (-327 (-228))))) (-15 -3672 ((-112) (-228) (-1119 (-859 (-228))))) (-15 -1734 ((-1183) (-228))) (-15 -1741 ((-1183) (-391))) (-15 -1751 ((-660 (-1183)) (-660 (-228)))) (-15 -1762 ((-660 (-1183)) (-1182 (-228)))) (-15 -1773 ((-228) (-1119 (-859 (-228))))) (-15 -1783 ((-228) (-1119 (-859 (-228))))) (-15 -1677 ((-1060) (-1060) (-1060))) (-15 -1677 ((-1060) (-660 (-1060)))) (-15 -1793 ((-1183) (-391))) (-15 -1803 ((-1060) (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))))) (-15 -1803 ((-1060) (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060))))) (-15 -1812 ((-1060) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1822 ((-1060) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -1834 ((-327 (-391)) (-975 (-228)))) (-15 -1845 ((-228) (-975 (-228)))) (-15 -1856 ((-327 (-391)) (-228))) (-15 -1870 ((-228) (-420 (-577)))) (-15 -1881 ((-705 (-228)) (-660 (-228)) (-787))))) (T -316)) +((-1881 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-228))) (-5 *4 (-787)) (-5 *2 (-705 (-228))) (-5 *1 (-316)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-420 (-577))) (-5 *2 (-228)) (-5 *1 (-316)))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-327 (-391))) (-5 *1 (-316)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-975 (-228))) (-5 *2 (-228)) (-5 *1 (-316)))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-975 (-228))) (-5 *2 (-327 (-391))) (-5 *1 (-316)))) (-1822 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *2 (-1060)) (-5 *1 (-316)))) (-1812 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1060)) (-5 *1 (-316)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060)))) (-5 *2 (-1060)) (-5 *1 (-316)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))))) (-5 *2 (-1060)) (-5 *1 (-316)))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1183)) (-5 *1 (-316)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-660 (-1060))) (-5 *2 (-1060)) (-5 *1 (-316)))) (-1677 (*1 *2 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-316)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-316)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-316)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-1182 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-316)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-660 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-316)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1183)) (-5 *1 (-316)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1183)) (-5 *1 (-316)))) (-3672 (*1 *2 *3 *4) (-12 (-5 *4 (-1119 (-859 (-228)))) (-5 *3 (-228)) (-5 *2 (-112)) (-5 *1 (-316)))) (-1722 (*1 *2 *3) (-12 (-5 *3 (-1292 (-327 (-228)))) (-5 *2 (-1292 (-327 (-391)))) (-5 *1 (-316)))) (-1710 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-327 (-391))) (-5 *1 (-316)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-660 (-228))) (-5 *2 (-1292 (-715))) (-5 *1 (-316)))) (-2907 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-715)) (-5 *1 (-316)))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) (-5 *2 (-660 (-228))) (-5 *1 (-316)))) (-2888 (*1 *2 *2) (-12 (-5 *2 (-1119 (-859 (-228)))) (-5 *1 (-316)))) (-2878 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-327 (-420 (-577)))) (-5 *1 (-316)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-1292 (-327 (-228)))) (-5 *2 (-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577)))) (-5 *1 (-316)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-1292 (-327 (-228)))) (-5 *2 (-391)) (-5 *1 (-316)))) (-2394 (*1 *2 *2) (|partial| -12 (-5 *2 (-327 (-228))) (-5 *1 (-316)))) (-2846 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-228)) (-5 *1 (-316)))) (-2835 (*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-420 (-577))) (-5 *1 (-316)))) (-2822 (*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-420 (-577))) (-5 *1 (-316)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-660 (-1119 (-859 (-391))))) (-5 *2 (-660 (-1119 (-859 (-228))))) (-5 *1 (-316)))) (-2812 (*1 *2 *3) (-12 (-5 *3 (-1119 (-859 (-391)))) (-5 *2 (-1119 (-859 (-228)))) (-5 *1 (-316)))) (-2800 (*1 *2 *3) (-12 (-5 *3 (-859 (-391))) (-5 *2 (-859 (-228))) (-5 *1 (-316)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-327 (-391))) (-5 *2 (-327 (-228))) (-5 *1 (-316)))) (-2777 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-228)) (-5 *1 (-316))))) +(-10 -7 (-15 -2777 ((-228) (-391))) (-15 -2787 ((-327 (-228)) (-327 (-391)))) (-15 -2800 ((-859 (-228)) (-859 (-391)))) (-15 -2812 ((-1119 (-859 (-228))) (-1119 (-859 (-391))))) (-15 -4152 ((-660 (-1119 (-859 (-228)))) (-660 (-1119 (-859 (-391)))))) (-15 -2822 ((-420 (-577)) (-228))) (-15 -2835 ((-420 (-577)) (-327 (-228)))) (-15 -2846 ((-228) (-327 (-228)))) (-15 -2394 ((-3 (-327 (-228)) "failed") (-327 (-228)))) (-15 -2858 ((-391) (-1292 (-327 (-228))))) (-15 -2868 ((-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577))) (-1292 (-327 (-228))))) (-15 -2878 ((-327 (-420 (-577))) (-327 (-228)))) (-15 -2888 ((-1119 (-859 (-228))) (-1119 (-859 (-228))))) (-15 -2897 ((-660 (-228)) (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))))) (-15 -2907 ((-715) (-228))) (-15 -2916 ((-1292 (-715)) (-660 (-228)))) (-15 -1710 ((-327 (-391)) (-327 (-228)))) (-15 -1722 ((-1292 (-327 (-391))) (-1292 (-327 (-228))))) (-15 -3672 ((-112) (-228) (-1119 (-859 (-228))))) (-15 -1734 ((-1183) (-228))) (-15 -1741 ((-1183) (-391))) (-15 -1751 ((-660 (-1183)) (-660 (-228)))) (-15 -1762 ((-660 (-1183)) (-1182 (-228)))) (-15 -1773 ((-228) (-1119 (-859 (-228))))) (-15 -1783 ((-228) (-1119 (-859 (-228))))) (-15 -1677 ((-1060) (-1060) (-1060))) (-15 -1677 ((-1060) (-660 (-1060)))) (-15 -1793 ((-1183) (-391))) (-15 -1803 ((-1060) (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))))) (-15 -1803 ((-1060) (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060))))) (-15 -1812 ((-1060) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1822 ((-1060) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -1834 ((-327 (-391)) (-975 (-228)))) (-15 -1845 ((-228) (-975 (-228)))) (-15 -1856 ((-327 (-391)) (-228))) (-15 -1870 ((-228) (-420 (-577)))) (-15 -1881 ((-705 (-228)) (-660 (-228)) (-787)))) +((-1939 (((-112) $ $) 14)) (-3418 (($ $ $) 18)) (-3429 (($ $ $) 17)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 50)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 65)) (-3480 (($ $ $) 25) (($ (-660 $)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-3462 (((-3 $ "failed") $ $) 21)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 53))) +(((-317 |#1|) (-10 -8 (-15 -1903 ((-3 (-660 |#1|) "failed") (-660 |#1|) |#1|)) (-15 -1915 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1915 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4101 |#1|)) |#1| |#1|)) (-15 -3418 (|#1| |#1| |#1|)) (-15 -3429 (|#1| |#1| |#1|)) (-15 -1939 ((-112) |#1| |#1|)) (-15 -1369 ((-3 (-660 |#1|) "failed") (-660 |#1|) |#1|)) (-15 -1380 ((-2 (|:| -1777 (-660 |#1|)) (|:| -4101 |#1|)) (-660 |#1|))) (-15 -3480 (|#1| (-660 |#1|))) (-15 -3480 (|#1| |#1| |#1|)) (-15 -3462 ((-3 |#1| "failed") |#1| |#1|))) (-318)) (T -317)) +NIL +(-10 -8 (-15 -1903 ((-3 (-660 |#1|) "failed") (-660 |#1|) |#1|)) (-15 -1915 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1915 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4101 |#1|)) |#1| |#1|)) (-15 -3418 (|#1| |#1| |#1|)) (-15 -3429 (|#1| |#1| |#1|)) (-15 -1939 ((-112) |#1| |#1|)) (-15 -1369 ((-3 (-660 |#1|) "failed") (-660 |#1|) |#1|)) (-15 -1380 ((-2 (|:| -1777 (-660 |#1|)) (|:| -4101 |#1|)) (-660 |#1|))) (-15 -3480 (|#1| (-660 |#1|))) (-15 -3480 (|#1| |#1| |#1|)) (-15 -3462 ((-3 |#1| "failed") |#1| |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-1956 (((-3 $ "failed") $ $) 20)) (-1939 (((-112) $ $) 65)) (-1534 (($) 18 T CONST)) (-3418 (($ $ $) 61)) (-4187 (((-3 $ "failed") $) 37)) (-3429 (($ $ $) 62)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 57)) (-2487 (((-112) $) 35)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 58)) (-3446 (($ $ $) 52) (($ (-660 $)) 51)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 50)) (-3480 (($ $ $) 54) (($ (-660 $)) 53)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3462 (((-3 $ "failed") $ $) 48)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 56)) (-1927 (((-787) $) 64)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 63)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 45)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) +(((-318) (-141)) (T -318)) +((-1939 (*1 *2 *1 *1) (-12 (-4 *1 (-318)) (-5 *2 (-112)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-787)))) (-3422 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-318)))) (-3429 (*1 *1 *1 *1) (-4 *1 (-318))) (-3418 (*1 *1 *1 *1) (-4 *1 (-318))) (-1915 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4101 *1))) (-4 *1 (-318)))) (-1915 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-318)))) (-1903 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-660 *1)) (-4 *1 (-318))))) +(-13 (-943) (-10 -8 (-15 -1939 ((-112) $ $)) (-15 -1927 ((-787) $)) (-15 -3422 ((-2 (|:| -3637 $) (|:| -2457 $)) $ $)) (-15 -3429 ($ $ $)) (-15 -3418 ($ $ $)) (-15 -1915 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $)) (-15 -1915 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1903 ((-3 (-660 $) "failed") (-660 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-301) . T) ((-465) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-943) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3280 (($ $ (-660 |#2|) (-660 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-305 |#2|)) 11) (($ $ (-660 (-305 |#2|))) NIL))) +(((-319 |#1| |#2|) (-10 -8 (-15 -3280 (|#1| |#1| (-660 (-305 |#2|)))) (-15 -3280 (|#1| |#1| (-305 |#2|))) (-15 -3280 (|#1| |#1| |#2| |#2|)) (-15 -3280 (|#1| |#1| (-660 |#2|) (-660 |#2|)))) (-320 |#2|) (-1125)) (T -319)) +NIL +(-10 -8 (-15 -3280 (|#1| |#1| (-660 (-305 |#2|)))) (-15 -3280 (|#1| |#1| (-305 |#2|))) (-15 -3280 (|#1| |#1| |#2| |#2|)) (-15 -3280 (|#1| |#1| (-660 |#2|) (-660 |#2|)))) +((-3280 (($ $ (-660 |#1|) (-660 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-305 |#1|)) 11) (($ $ (-660 (-305 |#1|))) 10))) +(((-320 |#1|) (-141) (-1125)) (T -320)) +((-3280 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *3)) (-4 *1 (-320 *3)) (-4 *3 (-1125)))) (-3280 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-305 *3))) (-4 *1 (-320 *3)) (-4 *3 (-1125))))) +(-13 (-527 |t#1| |t#1|) (-10 -8 (-15 -3280 ($ $ (-305 |t#1|))) (-15 -3280 ($ $ (-660 (-305 |t#1|)))))) +(((-527 |#1| |#1|) . T)) +((-3280 ((|#1| (-1 |#1| (-577)) (-1203 (-420 (-577)))) 26))) +(((-321 |#1|) (-10 -7 (-15 -3280 (|#1| (-1 |#1| (-577)) (-1203 (-420 (-577)))))) (-38 (-420 (-577)))) (T -321)) +((-3280 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-577))) (-5 *4 (-1203 (-420 (-577)))) (-5 *1 (-321 *2)) (-4 *2 (-38 (-420 (-577))))))) +(-10 -7 (-15 -3280 (|#1| (-1 |#1| (-577)) (-1203 (-420 (-577)))))) +((-3473 (((-112) $ $) NIL)) (-2886 (((-577) $) 12)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3131 (((-1160) $) 9)) (-3544 (((-880) $) 19) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-322) (-13 (-1108) (-10 -8 (-15 -3131 ((-1160) $)) (-15 -2886 ((-577) $))))) (T -322)) +((-3131 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-322)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-322))))) +(-13 (-1108) (-10 -8 (-15 -3131 ((-1160) $)) (-15 -2886 ((-577) $)))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 7)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 9))) +(((-323) (-1125)) (T -323)) +NIL +(-1125) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 60)) (-4105 (((-1278 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-318)))) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-932)))) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-932)))) (-1939 (((-112) $ $) NIL)) (-3010 (((-577) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-836)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-1278 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1201) "failed") $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1063 (-1201)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1063 (-577)))) (((-3 (-577) "failed") $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1063 (-577)))) (((-3 (-1277 |#2| |#3| |#4|) "failed") $) 26)) (-2921 (((-1278 |#1| |#2| |#3| |#4|) $) NIL) (((-1201) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1063 (-1201)))) (((-420 (-577)) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1063 (-577)))) (((-577) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1063 (-577)))) (((-1277 |#2| |#3| |#4|) $) NIL)) (-3418 (($ $ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-1278 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1292 (-1278 |#1| |#2| |#3| |#4|)))) (-705 $) (-1292 $)) NIL) (((-705 (-1278 |#1| |#2| |#3| |#4|)) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-558)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-3567 (((-112) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-836)))) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-905 (-577)))) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-905 (-391))))) (-2487 (((-112) $) NIL)) (-2240 (($ $) NIL)) (-1623 (((-1278 |#1| |#2| |#3| |#4|) $) 22)) (-4021 (((-3 $ "failed") $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1177)))) (-3578 (((-112) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-836)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3732 (($ $ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-865)))) (-3201 (($ $ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-865)))) (-4087 (($ (-1 (-1278 |#1| |#2| |#3| |#4|) (-1278 |#1| |#2| |#3| |#4|)) $) NIL)) (-3921 (((-3 (-859 |#2|) "failed") $) 80)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-1278 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1292 (-1278 |#1| |#2| |#3| |#4|)))) (-1292 $) $) NIL) (((-705 (-1278 |#1| |#2| |#3| |#4|)) (-1292 $)) NIL)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1709 (($) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1177)) CONST)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-4093 (($ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-318)))) (-4119 (((-1278 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-558)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-932)))) (-1902 (((-431 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3280 (($ $ (-660 (-1278 |#1| |#2| |#3| |#4|)) (-660 (-1278 |#1| |#2| |#3| |#4|))) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-320 (-1278 |#1| |#2| |#3| |#4|)))) (($ $ (-1278 |#1| |#2| |#3| |#4|) (-1278 |#1| |#2| |#3| |#4|)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-320 (-1278 |#1| |#2| |#3| |#4|)))) (($ $ (-305 (-1278 |#1| |#2| |#3| |#4|))) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-320 (-1278 |#1| |#2| |#3| |#4|)))) (($ $ (-660 (-305 (-1278 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-320 (-1278 |#1| |#2| |#3| |#4|)))) (($ $ (-660 (-1201)) (-660 (-1278 |#1| |#2| |#3| |#4|))) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-527 (-1201) (-1278 |#1| |#2| |#3| |#4|)))) (($ $ (-1201) (-1278 |#1| |#2| |#3| |#4|)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-527 (-1201) (-1278 |#1| |#2| |#3| |#4|))))) (-1927 (((-787) $) NIL)) (-2872 (($ $ (-1278 |#1| |#2| |#3| |#4|)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-297 (-1278 |#1| |#2| |#3| |#4|) (-1278 |#1| |#2| |#3| |#4|))))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2852 (($ $ (-1 (-1278 |#1| |#2| |#3| |#4|) (-1278 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1278 |#1| |#2| |#3| |#4|) (-1278 |#1| |#2| |#3| |#4|)) (-787)) NIL) (($ $ (-1201)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-923 (-1201)))) (($ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-238))) (($ $ (-787)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-238)))) (-2227 (($ $) NIL)) (-1637 (((-1278 |#1| |#2| |#3| |#4|) $) 19)) (-4152 (((-911 (-577)) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-627 (-911 (-577))))) (((-911 (-391)) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-627 (-911 (-391))))) (((-549) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-627 (-549)))) (((-391) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1047))) (((-228) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1047)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| (-1278 |#1| |#2| |#3| |#4|) (-932))))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) NIL) (($ (-1278 |#1| |#2| |#3| |#4|)) 30) (($ (-1201)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-1063 (-1201)))) (($ (-1277 |#2| |#3| |#4|)) 37)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| (-1278 |#1| |#2| |#3| |#4|) (-932))) (|has| (-1278 |#1| |#2| |#3| |#4|) (-146))))) (-4068 (((-787)) NIL T CONST)) (-4132 (((-1278 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-558)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-1654 (($ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-836)))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-1 (-1278 |#1| |#2| |#3| |#4|) (-1278 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1278 |#1| |#2| |#3| |#4|) (-1278 |#1| |#2| |#3| |#4|)) (-787)) NIL) (($ $ (-1201)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-923 (-1201)))) (($ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-238))) (($ $ (-787)) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-238)))) (-3025 (((-112) $ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-865)))) (-3000 (((-112) $ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-865)))) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-865)))) (-2990 (((-112) $ $) NIL (|has| (-1278 |#1| |#2| |#3| |#4|) (-865)))) (-3077 (($ $ $) 35) (($ (-1278 |#1| |#2| |#3| |#4|) (-1278 |#1| |#2| |#3| |#4|)) 32)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ (-1278 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1278 |#1| |#2| |#3| |#4|)) NIL))) +(((-324 |#1| |#2| |#3| |#4|) (-13 (-1017 (-1278 |#1| |#2| |#3| |#4|)) (-1063 (-1277 |#2| |#3| |#4|)) (-10 -8 (-15 -3921 ((-3 (-859 |#2|) "failed") $)) (-15 -3544 ($ (-1277 |#2| |#3| |#4|))))) (-13 (-1063 (-577)) (-654 (-577)) (-465)) (-13 (-27) (-1227) (-443 |#1|)) (-1201) |#2|) (T -324)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1277 *4 *5 *6)) (-4 *4 (-13 (-27) (-1227) (-443 *3))) (-14 *5 (-1201)) (-14 *6 *4) (-4 *3 (-13 (-1063 (-577)) (-654 (-577)) (-465))) (-5 *1 (-324 *3 *4 *5 *6)))) (-3921 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1063 (-577)) (-654 (-577)) (-465))) (-5 *2 (-859 *4)) (-5 *1 (-324 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1227) (-443 *3))) (-14 *5 (-1201)) (-14 *6 *4)))) +(-13 (-1017 (-1278 |#1| |#2| |#3| |#4|)) (-1063 (-1277 |#2| |#3| |#4|)) (-10 -8 (-15 -3921 ((-3 (-859 |#2|) "failed") $)) (-15 -3544 ($ (-1277 |#2| |#3| |#4|))))) +((-4087 (((-327 |#2|) (-1 |#2| |#1|) (-327 |#1|)) 13))) +(((-325 |#1| |#2|) (-10 -7 (-15 -4087 ((-327 |#2|) (-1 |#2| |#1|) (-327 |#1|)))) (-1125) (-1125)) (T -325)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-327 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-327 *6)) (-5 *1 (-325 *5 *6))))) +(-10 -7 (-15 -4087 ((-327 |#2|) (-1 |#2| |#1|) (-327 |#1|)))) +((-2119 (((-52) |#2| (-305 |#2|) (-787)) 40) (((-52) |#2| (-305 |#2|)) 32) (((-52) |#2| (-787)) 35) (((-52) |#2|) 33) (((-52) (-1201)) 26)) (-3689 (((-52) |#2| (-305 |#2|) (-420 (-577))) 59) (((-52) |#2| (-305 |#2|)) 56) (((-52) |#2| (-420 (-577))) 58) (((-52) |#2|) 57) (((-52) (-1201)) 55)) (-2148 (((-52) |#2| (-305 |#2|) (-420 (-577))) 54) (((-52) |#2| (-305 |#2|)) 51) (((-52) |#2| (-420 (-577))) 53) (((-52) |#2|) 52) (((-52) (-1201)) 50)) (-2134 (((-52) |#2| (-305 |#2|) (-577)) 47) (((-52) |#2| (-305 |#2|)) 44) (((-52) |#2| (-577)) 46) (((-52) |#2|) 45) (((-52) (-1201)) 43))) +(((-326 |#1| |#2|) (-10 -7 (-15 -2119 ((-52) (-1201))) (-15 -2119 ((-52) |#2|)) (-15 -2119 ((-52) |#2| (-787))) (-15 -2119 ((-52) |#2| (-305 |#2|))) (-15 -2119 ((-52) |#2| (-305 |#2|) (-787))) (-15 -2134 ((-52) (-1201))) (-15 -2134 ((-52) |#2|)) (-15 -2134 ((-52) |#2| (-577))) (-15 -2134 ((-52) |#2| (-305 |#2|))) (-15 -2134 ((-52) |#2| (-305 |#2|) (-577))) (-15 -2148 ((-52) (-1201))) (-15 -2148 ((-52) |#2|)) (-15 -2148 ((-52) |#2| (-420 (-577)))) (-15 -2148 ((-52) |#2| (-305 |#2|))) (-15 -2148 ((-52) |#2| (-305 |#2|) (-420 (-577)))) (-15 -3689 ((-52) (-1201))) (-15 -3689 ((-52) |#2|)) (-15 -3689 ((-52) |#2| (-420 (-577)))) (-15 -3689 ((-52) |#2| (-305 |#2|))) (-15 -3689 ((-52) |#2| (-305 |#2|) (-420 (-577))))) (-13 (-465) (-1063 (-577)) (-654 (-577))) (-13 (-27) (-1227) (-443 |#1|))) (T -326)) +((-3689 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-420 (-577))) (-4 *3 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-3689 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)))) (-3689 (*1 *2 *3 *4) (-12 (-5 *4 (-420 (-577))) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) (-3689 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) (-3689 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1227) (-443 *4))))) (-2148 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-420 (-577))) (-4 *3 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-2148 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)))) (-2148 (*1 *2 *3 *4) (-12 (-5 *4 (-420 (-577))) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) (-2148 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) (-2148 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1227) (-443 *4))))) (-2134 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-465) (-1063 *5) (-654 *5))) (-5 *5 (-577)) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-2134 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)))) (-2134 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-4 *5 (-13 (-465) (-1063 *4) (-654 *4))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) (-2134 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1227) (-443 *4))))) (-2119 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-787)) (-4 *3 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) (-2119 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)))) (-2119 (*1 *2 *3 *4) (-12 (-5 *4 (-787)) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) (-2119 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1227) (-443 *4)))))) +(-10 -7 (-15 -2119 ((-52) (-1201))) (-15 -2119 ((-52) |#2|)) (-15 -2119 ((-52) |#2| (-787))) (-15 -2119 ((-52) |#2| (-305 |#2|))) (-15 -2119 ((-52) |#2| (-305 |#2|) (-787))) (-15 -2134 ((-52) (-1201))) (-15 -2134 ((-52) |#2|)) (-15 -2134 ((-52) |#2| (-577))) (-15 -2134 ((-52) |#2| (-305 |#2|))) (-15 -2134 ((-52) |#2| (-305 |#2|) (-577))) (-15 -2148 ((-52) (-1201))) (-15 -2148 ((-52) |#2|)) (-15 -2148 ((-52) |#2| (-420 (-577)))) (-15 -2148 ((-52) |#2| (-305 |#2|))) (-15 -2148 ((-52) |#2| (-305 |#2|) (-420 (-577)))) (-15 -3689 ((-52) (-1201))) (-15 -3689 ((-52) |#2|)) (-15 -3689 ((-52) |#2| (-420 (-577)))) (-15 -3689 ((-52) |#2| (-305 |#2|))) (-15 -3689 ((-52) |#2| (-305 |#2|) (-420 (-577))))) +((-3473 (((-112) $ $) NIL)) (-2745 (((-660 $) $ (-1201)) NIL (|has| |#1| (-569))) (((-660 $) $) NIL (|has| |#1| (-569))) (((-660 $) (-1197 $) (-1201)) NIL (|has| |#1| (-569))) (((-660 $) (-1197 $)) NIL (|has| |#1| (-569))) (((-660 $) (-975 $)) NIL (|has| |#1| (-569)))) (-3755 (($ $ (-1201)) NIL (|has| |#1| (-569))) (($ $) NIL (|has| |#1| (-569))) (($ (-1197 $) (-1201)) NIL (|has| |#1| (-569))) (($ (-1197 $)) NIL (|has| |#1| (-569))) (($ (-975 $)) NIL (|has| |#1| (-569)))) (-3585 (((-112) $) 27 (-2839 (|has| |#1| (-25)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))))) (-2058 (((-660 (-1201)) $) 368)) (-1867 (((-420 (-1197 $)) $ (-625 $)) NIL (|has| |#1| (-569)))) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-3952 (((-660 (-625 $)) $) NIL)) (-2212 (($ $) 171 (|has| |#1| (-569)))) (-2060 (($ $) 147 (|has| |#1| (-569)))) (-2025 (($ $ (-1117 $)) 232 (|has| |#1| (-569))) (($ $ (-1201)) 228 (|has| |#1| (-569)))) (-1956 (((-3 $ "failed") $ $) NIL (-2839 (|has| |#1| (-21)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))))) (-4057 (($ $ (-305 $)) NIL) (($ $ (-660 (-305 $))) 386) (($ $ (-660 (-625 $)) (-660 $)) 430)) (-2294 (((-431 (-1197 $)) (-1197 $)) 308 (-12 (|has| |#1| (-465)) (|has| |#1| (-569))))) (-3841 (($ $) NIL (|has| |#1| (-569)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-569)))) (-1913 (($ $) NIL (|has| |#1| (-569)))) (-1939 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2186 (($ $) 167 (|has| |#1| (-569)))) (-2032 (($ $) 143 (|has| |#1| (-569)))) (-1952 (($ $ (-577)) 73 (|has| |#1| (-569)))) (-2237 (($ $) 175 (|has| |#1| (-569)))) (-2084 (($ $) 151 (|has| |#1| (-569)))) (-1534 (($) NIL (-2839 (|has| |#1| (-25)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))) (|has| |#1| (-1137))) CONST)) (-3766 (((-660 $) $ (-1201)) NIL (|has| |#1| (-569))) (((-660 $) $) NIL (|has| |#1| (-569))) (((-660 $) (-1197 $) (-1201)) NIL (|has| |#1| (-569))) (((-660 $) (-1197 $)) NIL (|has| |#1| (-569))) (((-660 $) (-975 $)) NIL (|has| |#1| (-569)))) (-3535 (($ $ (-1201)) NIL (|has| |#1| (-569))) (($ $) NIL (|has| |#1| (-569))) (($ (-1197 $) (-1201)) 134 (|has| |#1| (-569))) (($ (-1197 $)) NIL (|has| |#1| (-569))) (($ (-975 $)) NIL (|has| |#1| (-569)))) (-1628 (((-3 (-625 $) "failed") $) 18) (((-3 (-1201) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577))))) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-975 |#1|)) "failed") $) NIL (|has| |#1| (-569))) (((-3 (-975 |#1|) "failed") $) NIL (|has| |#1| (-1074))) (((-3 (-420 (-577)) "failed") $) 46 (-2839 (-12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577)))) (|has| |#1| (-1063 (-420 (-577))))))) (-2921 (((-625 $) $) 12) (((-1201) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577))))) (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-420 (-975 |#1|)) $) NIL (|has| |#1| (-569))) (((-975 |#1|) $) NIL (|has| |#1| (-1074))) (((-420 (-577)) $) 319 (-2839 (-12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577)))) (|has| |#1| (-1063 (-420 (-577))))))) (-3418 (($ $ $) NIL (|has| |#1| (-569)))) (-1647 (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 125 (|has| |#1| (-1074))) (((-705 |#1|) (-705 $)) 115 (|has| |#1| (-1074))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) (((-705 (-577)) (-705 $)) NIL (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))))) (-3654 (($ $) 96 (|has| |#1| (-569)))) (-4187 (((-3 $ "failed") $) NIL (|has| |#1| (-1137)))) (-3429 (($ $ $) NIL (|has| |#1| (-569)))) (-2857 (($ $ (-1117 $)) 236 (|has| |#1| (-569))) (($ $ (-1201)) 234 (|has| |#1| (-569)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| |#1| (-569)))) (-1522 (((-112) $) NIL (|has| |#1| (-569)))) (-1689 (($ $ $) 202 (|has| |#1| (-569)))) (-1659 (($) 137 (|has| |#1| (-569)))) (-1992 (($ $ $) 222 (|has| |#1| (-569)))) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 392 (|has| |#1| (-905 (-577)))) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 399 (|has| |#1| (-905 (-391))))) (-3401 (($ $) NIL) (($ (-660 $)) NIL)) (-2691 (((-660 (-115)) $) NIL)) (-1844 (((-115) (-115)) 276)) (-2487 (((-112) $) 25 (|has| |#1| (-1137)))) (-1912 (((-112) $) NIL (|has| $ (-1063 (-577))))) (-2240 (($ $) 72 (|has| |#1| (-1074)))) (-1623 (((-1150 |#1| (-625 $)) $) 91 (|has| |#1| (-1074)))) (-1963 (((-112) $) 62 (|has| |#1| (-569)))) (-2381 (($ $ (-577)) NIL (|has| |#1| (-569)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-569)))) (-2670 (((-1197 $) (-625 $)) 277 (|has| $ (-1074)))) (-4087 (($ (-1 $ $) (-625 $)) 426)) (-2702 (((-3 (-625 $) "failed") $) NIL)) (-3698 (($ $) 141 (|has| |#1| (-569)))) (-3803 (($ $) 247 (|has| |#1| (-569)))) (-1657 (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL (|has| |#1| (-1074))) (((-705 |#1|) (-1292 $)) NIL (|has| |#1| (-1074))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) (((-705 (-577)) (-1292 $)) NIL (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))))) (-3446 (($ (-660 $)) NIL (|has| |#1| (-569))) (($ $ $) NIL (|has| |#1| (-569)))) (-2810 (((-1183) $) NIL)) (-1829 (((-660 (-625 $)) $) 49)) (-1702 (($ (-115) $) NIL) (($ (-115) (-660 $)) 431)) (-4098 (((-3 (-660 $) "failed") $) NIL (|has| |#1| (-1137)))) (-4125 (((-3 (-2 (|:| |val| $) (|:| -3556 (-577))) "failed") $) NIL (|has| |#1| (-1074)))) (-4086 (((-3 (-660 $) "failed") $) 436 (|has| |#1| (-25)))) (-3521 (((-3 (-2 (|:| -1777 (-577)) (|:| |var| (-625 $))) "failed") $) 440 (|has| |#1| (-25)))) (-4111 (((-3 (-2 (|:| |var| (-625 $)) (|:| -3556 (-577))) "failed") $) NIL (|has| |#1| (-1137))) (((-3 (-2 (|:| |var| (-625 $)) (|:| -3556 (-577))) "failed") $ (-115)) NIL (|has| |#1| (-1074))) (((-3 (-2 (|:| |var| (-625 $)) (|:| -3556 (-577))) "failed") $ (-1201)) NIL (|has| |#1| (-1074)))) (-2740 (((-112) $ (-115)) NIL) (((-112) $ (-1201)) 51)) (-2171 (($ $) NIL (-2839 (|has| |#1| (-486)) (|has| |#1| (-569))))) (-4194 (($ $ (-1201)) 251 (|has| |#1| (-569))) (($ $ (-1117 $)) 253 (|has| |#1| (-569)))) (-2440 (((-787) $) NIL)) (-1474 (((-1145) $) NIL)) (-2180 (((-112) $) 43)) (-2193 ((|#1| $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 301 (|has| |#1| (-569)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-569))) (($ $ $) NIL (|has| |#1| (-569)))) (-2679 (((-112) $ $) NIL) (((-112) $ (-1201)) NIL)) (-2038 (($ $ (-1201)) 226 (|has| |#1| (-569))) (($ $) 224 (|has| |#1| (-569)))) (-1969 (($ $) 218 (|has| |#1| (-569)))) (-2281 (((-431 (-1197 $)) (-1197 $)) 306 (-12 (|has| |#1| (-465)) (|has| |#1| (-569))))) (-1902 (((-431 $) $) NIL (|has| |#1| (-569)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-569))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-569)))) (-3462 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-569)))) (-4072 (($ $) 139 (|has| |#1| (-569)))) (-1924 (((-112) $) NIL (|has| $ (-1063 (-577))))) (-3280 (($ $ (-625 $) $) NIL) (($ $ (-660 (-625 $)) (-660 $)) 425) (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ (-660 (-1201)) (-660 (-1 $ $))) NIL) (($ $ (-660 (-1201)) (-660 (-1 $ (-660 $)))) NIL) (($ $ (-1201) (-1 $ (-660 $))) NIL) (($ $ (-1201) (-1 $ $)) NIL) (($ $ (-660 (-115)) (-660 (-1 $ $))) 379) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) NIL) (($ $ (-115) (-1 $ (-660 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1201)) NIL (|has| |#1| (-627 (-549)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-627 (-549)))) (($ $) NIL (|has| |#1| (-627 (-549)))) (($ $ (-115) $ (-1201)) 366 (|has| |#1| (-627 (-549)))) (($ $ (-660 (-115)) (-660 $) (-1201)) 365 (|has| |#1| (-627 (-549)))) (($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ $))) NIL (|has| |#1| (-1074))) (($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ (-660 $)))) NIL (|has| |#1| (-1074))) (($ $ (-1201) (-787) (-1 $ (-660 $))) NIL (|has| |#1| (-1074))) (($ $ (-1201) (-787) (-1 $ $)) NIL (|has| |#1| (-1074)))) (-1927 (((-787) $) NIL (|has| |#1| (-569)))) (-1986 (($ $) 239 (|has| |#1| (-569)))) (-2872 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-660 $)) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-569)))) (-2712 (($ $) NIL) (($ $ $) NIL)) (-2019 (($ $) 249 (|has| |#1| (-569)))) (-1676 (($ $) 200 (|has| |#1| (-569)))) (-2852 (($ $ (-1201)) NIL (|has| |#1| (-1074))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-1074))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-1074))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-1074)))) (-2227 (($ $) 74 (|has| |#1| (-569)))) (-1637 (((-1150 |#1| (-625 $)) $) 93 (|has| |#1| (-569)))) (-3557 (($ $) 317 (|has| $ (-1074)))) (-2249 (($ $) 177 (|has| |#1| (-569)))) (-2095 (($ $) 153 (|has| |#1| (-569)))) (-2224 (($ $) 173 (|has| |#1| (-569)))) (-2073 (($ $) 149 (|has| |#1| (-569)))) (-2199 (($ $) 169 (|has| |#1| (-569)))) (-2046 (($ $) 145 (|has| |#1| (-569)))) (-4152 (((-911 (-577)) $) NIL (|has| |#1| (-627 (-911 (-577))))) (((-911 (-391)) $) NIL (|has| |#1| (-627 (-911 (-391))))) (($ (-431 $)) NIL (|has| |#1| (-569))) (((-549) $) 363 (|has| |#1| (-627 (-549))))) (-2360 (($ $ $) NIL (|has| |#1| (-486)))) (-3820 (($ $ $) NIL (|has| |#1| (-486)))) (-3544 (((-880) $) 424) (($ (-625 $)) 415) (($ (-1201)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-569))) (($ (-48)) 312 (-12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577))))) (($ (-1150 |#1| (-625 $))) 95 (|has| |#1| (-1074))) (($ (-420 |#1|)) NIL (|has| |#1| (-569))) (($ (-975 (-420 |#1|))) NIL (|has| |#1| (-569))) (($ (-420 (-975 (-420 |#1|)))) NIL (|has| |#1| (-569))) (($ (-420 (-975 |#1|))) NIL (|has| |#1| (-569))) (($ (-975 |#1|)) NIL (|has| |#1| (-1074))) (($ (-577)) 34 (-2839 (|has| |#1| (-1063 (-577))) (|has| |#1| (-1074)))) (($ (-420 (-577))) NIL (-2839 (|has| |#1| (-569)) (|has| |#1| (-1063 (-420 (-577))))))) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) NIL (|has| |#1| (-1074)) CONST)) (-2251 (($ $) NIL) (($ (-660 $)) NIL)) (-3850 (($ $ $) 220 (|has| |#1| (-569)))) (-1720 (($ $ $) 206 (|has| |#1| (-569)))) (-1740 (($ $ $) 210 (|has| |#1| (-569)))) (-1708 (($ $ $) 204 (|has| |#1| (-569)))) (-1732 (($ $ $) 208 (|has| |#1| (-569)))) (-1409 (((-112) (-115)) 10)) (-4448 (((-112) $ $) 86)) (-4114 (($ $) 183 (|has| |#1| (-569)))) (-2136 (($ $) 159 (|has| |#1| (-569)))) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2262 (($ $) 179 (|has| |#1| (-569)))) (-2106 (($ $) 155 (|has| |#1| (-569)))) (-4141 (($ $) 187 (|has| |#1| (-569)))) (-2162 (($ $) 163 (|has| |#1| (-569)))) (-4176 (($ (-1201) $) NIL) (($ (-1201) $ $) NIL) (($ (-1201) $ $ $) NIL) (($ (-1201) $ $ $ $) NIL) (($ (-1201) (-660 $)) NIL)) (-1761 (($ $) 214 (|has| |#1| (-569)))) (-1749 (($ $) 212 (|has| |#1| (-569)))) (-2261 (($ $) 189 (|has| |#1| (-569)))) (-2174 (($ $) 165 (|has| |#1| (-569)))) (-4128 (($ $) 185 (|has| |#1| (-569)))) (-2150 (($ $) 161 (|has| |#1| (-569)))) (-2272 (($ $) 181 (|has| |#1| (-569)))) (-2120 (($ $) 157 (|has| |#1| (-569)))) (-1654 (($ $) 192 (|has| |#1| (-569)))) (-2806 (($) 21 (-2839 (|has| |#1| (-25)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) CONST)) (-1430 (($ $) 243 (|has| |#1| (-569)))) (-2816 (($) 23 (|has| |#1| (-1137)) CONST)) (-1699 (($ $) 194 (|has| |#1| (-569))) (($ $ $) 196 (|has| |#1| (-569)))) (-1441 (($ $) 241 (|has| |#1| (-569)))) (-2132 (($ $ (-1201)) NIL (|has| |#1| (-1074))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-1074))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-1074))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-1074)))) (-1420 (($ $) 245 (|has| |#1| (-569)))) (-1664 (($ $ $) 198 (|has| |#1| (-569)))) (-2970 (((-112) $ $) 88)) (-3077 (($ (-1150 |#1| (-625 $)) (-1150 |#1| (-625 $))) 106 (|has| |#1| (-569))) (($ $ $) 42 (-2839 (|has| |#1| (-486)) (|has| |#1| (-569))))) (-3066 (($ $ $) 40 (-2839 (|has| |#1| (-21)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))))) (($ $) 29 (-2839 (|has| |#1| (-21)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))))) (-3055 (($ $ $) 38 (-2839 (|has| |#1| (-25)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))))) (** (($ $ $) 64 (|has| |#1| (-569))) (($ $ (-420 (-577))) 314 (|has| |#1| (-569))) (($ $ (-577)) 80 (-2839 (|has| |#1| (-486)) (|has| |#1| (-569)))) (($ $ (-787)) 75 (|has| |#1| (-1137))) (($ $ (-944)) 84 (|has| |#1| (-1137)))) (* (($ (-420 (-577)) $) NIL (|has| |#1| (-569))) (($ $ (-420 (-577))) NIL (|has| |#1| (-569))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1074))) (($ $ $) 36 (|has| |#1| (-1137))) (($ (-577) $) 32 (-2839 (|has| |#1| (-21)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))))) (($ (-787) $) NIL (-2839 (|has| |#1| (-25)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))))) (($ (-944) $) NIL (-2839 (|has| |#1| (-25)) (-12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))))))) +(((-327 |#1|) (-13 (-443 |#1|) (-10 -8 (IF (|has| |#1| (-569)) (PROGN (-6 (-29 |#1|)) (-6 (-1227)) (-6 (-161)) (-6 (-642)) (-6 (-1164)) (-15 -3654 ($ $)) (-15 -1963 ((-112) $)) (-15 -1952 ($ $ (-577))) (IF (|has| |#1| (-465)) (PROGN (-15 -2281 ((-431 (-1197 $)) (-1197 $))) (-15 -2294 ((-431 (-1197 $)) (-1197 $)))) |%noBranch|) (IF (|has| |#1| (-1063 (-577))) (-6 (-1063 (-48))) |%noBranch|)) |%noBranch|))) (-1125)) (T -327)) +((-3654 (*1 *1 *1) (-12 (-5 *1 (-327 *2)) (-4 *2 (-569)) (-4 *2 (-1125)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-569)) (-4 *3 (-1125)))) (-1952 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-327 *3)) (-4 *3 (-569)) (-4 *3 (-1125)))) (-2281 (*1 *2 *3) (-12 (-5 *2 (-431 (-1197 *1))) (-5 *1 (-327 *4)) (-5 *3 (-1197 *1)) (-4 *4 (-465)) (-4 *4 (-569)) (-4 *4 (-1125)))) (-2294 (*1 *2 *3) (-12 (-5 *2 (-431 (-1197 *1))) (-5 *1 (-327 *4)) (-5 *3 (-1197 *1)) (-4 *4 (-465)) (-4 *4 (-569)) (-4 *4 (-1125))))) +(-13 (-443 |#1|) (-10 -8 (IF (|has| |#1| (-569)) (PROGN (-6 (-29 |#1|)) (-6 (-1227)) (-6 (-161)) (-6 (-642)) (-6 (-1164)) (-15 -3654 ($ $)) (-15 -1963 ((-112) $)) (-15 -1952 ($ $ (-577))) (IF (|has| |#1| (-465)) (PROGN (-15 -2281 ((-431 (-1197 $)) (-1197 $))) (-15 -2294 ((-431 (-1197 $)) (-1197 $)))) |%noBranch|) (IF (|has| |#1| (-1063 (-577))) (-6 (-1063 (-48))) |%noBranch|)) |%noBranch|))) +((-1975 (((-52) |#2| (-115) (-305 |#2|) (-660 |#2|)) 89) (((-52) |#2| (-115) (-305 |#2|) (-305 |#2|)) 85) (((-52) |#2| (-115) (-305 |#2|) |#2|) 87) (((-52) (-305 |#2|) (-115) (-305 |#2|) |#2|) 88) (((-52) (-660 |#2|) (-660 (-115)) (-305 |#2|) (-660 (-305 |#2|))) 81) (((-52) (-660 |#2|) (-660 (-115)) (-305 |#2|) (-660 |#2|)) 83) (((-52) (-660 (-305 |#2|)) (-660 (-115)) (-305 |#2|) (-660 |#2|)) 84) (((-52) (-660 (-305 |#2|)) (-660 (-115)) (-305 |#2|) (-660 (-305 |#2|))) 82) (((-52) (-305 |#2|) (-115) (-305 |#2|) (-660 |#2|)) 90) (((-52) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|)) 86))) +(((-328 |#1| |#2|) (-10 -7 (-15 -1975 ((-52) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -1975 ((-52) (-305 |#2|) (-115) (-305 |#2|) (-660 |#2|))) (-15 -1975 ((-52) (-660 (-305 |#2|)) (-660 (-115)) (-305 |#2|) (-660 (-305 |#2|)))) (-15 -1975 ((-52) (-660 (-305 |#2|)) (-660 (-115)) (-305 |#2|) (-660 |#2|))) (-15 -1975 ((-52) (-660 |#2|) (-660 (-115)) (-305 |#2|) (-660 |#2|))) (-15 -1975 ((-52) (-660 |#2|) (-660 (-115)) (-305 |#2|) (-660 (-305 |#2|)))) (-15 -1975 ((-52) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -1975 ((-52) |#2| (-115) (-305 |#2|) |#2|)) (-15 -1975 ((-52) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -1975 ((-52) |#2| (-115) (-305 |#2|) (-660 |#2|)))) (-13 (-569) (-627 (-549))) (-443 |#1|)) (T -328)) +((-1975 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-660 *3)) (-4 *3 (-443 *7)) (-4 *7 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *7 *3)))) (-1975 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-443 *6)) (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *3)))) (-1975 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-443 *6)) (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *3)))) (-1975 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-443 *6)) (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *5)))) (-1975 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 (-115))) (-5 *6 (-660 (-305 *8))) (-4 *8 (-443 *7)) (-5 *5 (-305 *8)) (-4 *7 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *7 *8)))) (-1975 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-660 *7)) (-5 *4 (-660 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *7)))) (-1975 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-660 (-305 *8))) (-5 *4 (-660 (-115))) (-5 *5 (-305 *8)) (-5 *6 (-660 *8)) (-4 *8 (-443 *7)) (-4 *7 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *7 *8)))) (-1975 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-660 (-305 *7))) (-5 *4 (-660 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *7)))) (-1975 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-660 *7)) (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *6 *7)))) (-1975 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-443 *5)) (-4 *5 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) (-5 *1 (-328 *5 *6))))) +(-10 -7 (-15 -1975 ((-52) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -1975 ((-52) (-305 |#2|) (-115) (-305 |#2|) (-660 |#2|))) (-15 -1975 ((-52) (-660 (-305 |#2|)) (-660 (-115)) (-305 |#2|) (-660 (-305 |#2|)))) (-15 -1975 ((-52) (-660 (-305 |#2|)) (-660 (-115)) (-305 |#2|) (-660 |#2|))) (-15 -1975 ((-52) (-660 |#2|) (-660 (-115)) (-305 |#2|) (-660 |#2|))) (-15 -1975 ((-52) (-660 |#2|) (-660 (-115)) (-305 |#2|) (-660 (-305 |#2|)))) (-15 -1975 ((-52) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -1975 ((-52) |#2| (-115) (-305 |#2|) |#2|)) (-15 -1975 ((-52) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -1975 ((-52) |#2| (-115) (-305 |#2|) (-660 |#2|)))) +((-1998 (((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-228) (-577) (-1183)) 67) (((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-228) (-577)) 68) (((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-1 (-228) (-228)) (-577) (-1183)) 64) (((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-1 (-228) (-228)) (-577)) 65)) (-1987 (((-1 (-228) (-228)) (-228)) 66))) +(((-329) (-10 -7 (-15 -1987 ((-1 (-228) (-228)) (-228))) (-15 -1998 ((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-1 (-228) (-228)) (-577))) (-15 -1998 ((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-1 (-228) (-228)) (-577) (-1183))) (-15 -1998 ((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-228) (-577))) (-15 -1998 ((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-228) (-577) (-1183))))) (T -329)) +((-1998 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1119 (-228))) (-5 *6 (-228)) (-5 *7 (-577)) (-5 *8 (-1183)) (-5 *2 (-1237 (-949))) (-5 *1 (-329)))) (-1998 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1119 (-228))) (-5 *6 (-228)) (-5 *7 (-577)) (-5 *2 (-1237 (-949))) (-5 *1 (-329)))) (-1998 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1119 (-228))) (-5 *6 (-577)) (-5 *7 (-1183)) (-5 *2 (-1237 (-949))) (-5 *1 (-329)))) (-1998 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1119 (-228))) (-5 *6 (-577)) (-5 *2 (-1237 (-949))) (-5 *1 (-329)))) (-1987 (*1 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-329)) (-5 *3 (-228))))) +(-10 -7 (-15 -1987 ((-1 (-228) (-228)) (-228))) (-15 -1998 ((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-1 (-228) (-228)) (-577))) (-15 -1998 ((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-1 (-228) (-228)) (-577) (-1183))) (-15 -1998 ((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-228) (-577))) (-15 -1998 ((-1237 (-949)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-228) (-577) (-1183)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 26)) (-2058 (((-660 (-1107)) $) NIL)) (-3076 (((-1201) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-3804 (($ $ (-420 (-577))) NIL) (($ $ (-420 (-577)) (-420 (-577))) NIL)) (-3829 (((-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) 20)) (-2212 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2060 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL (|has| |#1| (-375)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-375)))) (-1913 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1939 (((-112) $ $) NIL (|has| |#1| (-375)))) (-2186 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2032 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3689 (($ (-787) (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) NIL)) (-2237 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2084 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1534 (($) NIL T CONST)) (-3418 (($ $ $) NIL (|has| |#1| (-375)))) (-2248 (($ $) 36)) (-4187 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL (|has| |#1| (-375)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| |#1| (-375)))) (-1522 (((-112) $) NIL (|has| |#1| (-375)))) (-3550 (((-112) $) NIL)) (-1659 (($) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3817 (((-420 (-577)) $) NIL) (((-420 (-577)) $ (-420 (-577))) 16)) (-2487 (((-112) $) NIL)) (-2381 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3864 (($ $ (-944)) NIL) (($ $ (-420 (-577))) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-420 (-577))) NIL) (($ $ (-1107) (-420 (-577))) NIL) (($ $ (-660 (-1107)) (-660 (-420 (-577)))) NIL)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3698 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL (|has| |#1| (-375)))) (-4147 (($ $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| |#1| (-15 -4147 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -2058 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227)))))) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-1902 (((-431 $) $) NIL (|has| |#1| (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3792 (($ $ (-420 (-577))) NIL)) (-3462 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-2009 (((-420 (-577)) $) 17)) (-3744 (($ (-1277 |#1| |#2| |#3|)) 11)) (-3556 (((-1277 |#1| |#2| |#3|) $) 12)) (-4072 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3280 (((-1182 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))))) (-1927 (((-787) $) NIL (|has| |#1| (-375)))) (-2872 ((|#1| $ (-420 (-577))) NIL) (($ $ $) NIL (|has| (-420 (-577)) (-1137)))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-375)))) (-2852 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (-2887 (((-420 (-577)) $) NIL)) (-2249 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2095 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2073 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2199 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2046 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3540 (($ $) 10)) (-3544 (((-880) $) 42) (($ (-577)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $) NIL (|has| |#1| (-569)))) (-2322 ((|#1| $ (-420 (-577))) 34)) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) NIL T CONST)) (-3693 ((|#1| $) NIL)) (-4448 (((-112) $ $) NIL)) (-4114 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2136 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2262 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2106 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4141 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2162 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4148 ((|#1| $ (-420 (-577))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3544 (|#1| (-1201))))))) (-2261 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2174 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4128 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2150 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2272 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2120 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 28)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 37)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))))) +(((-330 |#1| |#2| |#3|) (-13 (-1273 |#1|) (-808) (-10 -8 (-15 -3744 ($ (-1277 |#1| |#2| |#3|))) (-15 -3556 ((-1277 |#1| |#2| |#3|) $)) (-15 -2009 ((-420 (-577)) $)))) (-375) (-1201) |#1|) (T -330)) +((-3744 (*1 *1 *2) (-12 (-5 *2 (-1277 *3 *4 *5)) (-4 *3 (-375)) (-14 *4 (-1201)) (-14 *5 *3) (-5 *1 (-330 *3 *4 *5)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-1277 *3 *4 *5)) (-5 *1 (-330 *3 *4 *5)) (-4 *3 (-375)) (-14 *4 (-1201)) (-14 *5 *3))) (-2009 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-330 *3 *4 *5)) (-4 *3 (-375)) (-14 *4 (-1201)) (-14 *5 *3)))) +(-13 (-1273 |#1|) (-808) (-10 -8 (-15 -3744 ($ (-1277 |#1| |#2| |#3|))) (-15 -3556 ((-1277 |#1| |#2| |#3|) $)) (-15 -2009 ((-420 (-577)) $)))) +((-2381 (((-2 (|:| -3556 (-787)) (|:| -1777 |#1|) (|:| |radicand| (-660 |#1|))) (-431 |#1|) (-787)) 35)) (-3698 (((-660 (-2 (|:| -1777 (-787)) (|:| |logand| |#1|))) (-431 |#1|)) 40))) +(((-331 |#1|) (-10 -7 (-15 -2381 ((-2 (|:| -3556 (-787)) (|:| -1777 |#1|) (|:| |radicand| (-660 |#1|))) (-431 |#1|) (-787))) (-15 -3698 ((-660 (-2 (|:| -1777 (-787)) (|:| |logand| |#1|))) (-431 |#1|)))) (-569)) (T -331)) +((-3698 (*1 *2 *3) (-12 (-5 *3 (-431 *4)) (-4 *4 (-569)) (-5 *2 (-660 (-2 (|:| -1777 (-787)) (|:| |logand| *4)))) (-5 *1 (-331 *4)))) (-2381 (*1 *2 *3 *4) (-12 (-5 *3 (-431 *5)) (-4 *5 (-569)) (-5 *2 (-2 (|:| -3556 (-787)) (|:| -1777 *5) (|:| |radicand| (-660 *5)))) (-5 *1 (-331 *5)) (-5 *4 (-787))))) +(-10 -7 (-15 -2381 ((-2 (|:| -3556 (-787)) (|:| -1777 |#1|) (|:| |radicand| (-660 |#1|))) (-431 |#1|) (-787))) (-15 -3698 ((-660 (-2 (|:| -1777 (-787)) (|:| |logand| |#1|))) (-431 |#1|)))) +((-2058 (((-660 |#2|) (-1197 |#4|)) 44)) (-2074 ((|#3| (-577)) 47)) (-2048 (((-1197 |#4|) (-1197 |#3|)) 30)) (-2061 (((-1197 |#4|) (-1197 |#4|) (-577)) 66)) (-2033 (((-1197 |#3|) (-1197 |#4|)) 21)) (-2887 (((-660 (-787)) (-1197 |#4|) (-660 |#2|)) 41)) (-2020 (((-1197 |#3|) (-1197 |#4|) (-660 |#2|) (-660 |#3|)) 35))) +(((-332 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2020 ((-1197 |#3|) (-1197 |#4|) (-660 |#2|) (-660 |#3|))) (-15 -2887 ((-660 (-787)) (-1197 |#4|) (-660 |#2|))) (-15 -2058 ((-660 |#2|) (-1197 |#4|))) (-15 -2033 ((-1197 |#3|) (-1197 |#4|))) (-15 -2048 ((-1197 |#4|) (-1197 |#3|))) (-15 -2061 ((-1197 |#4|) (-1197 |#4|) (-577))) (-15 -2074 (|#3| (-577)))) (-809) (-865) (-1074) (-972 |#3| |#1| |#2|)) (T -332)) +((-2074 (*1 *2 *3) (-12 (-5 *3 (-577)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1074)) (-5 *1 (-332 *4 *5 *2 *6)) (-4 *6 (-972 *2 *4 *5)))) (-2061 (*1 *2 *2 *3) (-12 (-5 *2 (-1197 *7)) (-5 *3 (-577)) (-4 *7 (-972 *6 *4 *5)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) (-5 *1 (-332 *4 *5 *6 *7)))) (-2048 (*1 *2 *3) (-12 (-5 *3 (-1197 *6)) (-4 *6 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-1197 *7)) (-5 *1 (-332 *4 *5 *6 *7)) (-4 *7 (-972 *6 *4 *5)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-1197 *7)) (-4 *7 (-972 *6 *4 *5)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) (-5 *2 (-1197 *6)) (-5 *1 (-332 *4 *5 *6 *7)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-1197 *7)) (-4 *7 (-972 *6 *4 *5)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) (-5 *2 (-660 *5)) (-5 *1 (-332 *4 *5 *6 *7)))) (-2887 (*1 *2 *3 *4) (-12 (-5 *3 (-1197 *8)) (-5 *4 (-660 *6)) (-4 *6 (-865)) (-4 *8 (-972 *7 *5 *6)) (-4 *5 (-809)) (-4 *7 (-1074)) (-5 *2 (-660 (-787))) (-5 *1 (-332 *5 *6 *7 *8)))) (-2020 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1197 *9)) (-5 *4 (-660 *7)) (-5 *5 (-660 *8)) (-4 *7 (-865)) (-4 *8 (-1074)) (-4 *9 (-972 *8 *6 *7)) (-4 *6 (-809)) (-5 *2 (-1197 *8)) (-5 *1 (-332 *6 *7 *8 *9))))) +(-10 -7 (-15 -2020 ((-1197 |#3|) (-1197 |#4|) (-660 |#2|) (-660 |#3|))) (-15 -2887 ((-660 (-787)) (-1197 |#4|) (-660 |#2|))) (-15 -2058 ((-660 |#2|) (-1197 |#4|))) (-15 -2033 ((-1197 |#3|) (-1197 |#4|))) (-15 -2048 ((-1197 |#4|) (-1197 |#3|))) (-15 -2061 ((-1197 |#4|) (-1197 |#4|) (-577))) (-15 -2074 (|#3| (-577)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 19)) (-3829 (((-660 (-2 (|:| |gen| |#1|) (|:| -4072 (-577)))) $) 21)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2229 (((-787) $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) NIL)) (-2921 ((|#1| $) NIL)) (-3657 ((|#1| $ (-577)) NIL)) (-2107 (((-577) $ (-577)) NIL)) (-3732 (($ $ $) NIL (|has| |#1| (-865)))) (-3201 (($ $ $) NIL (|has| |#1| (-865)))) (-1735 (($ (-1 |#1| |#1|) $) NIL)) (-2096 (($ (-1 (-577) (-577)) $) 11)) (-2810 (((-1183) $) NIL)) (-2085 (($ $ $) NIL (|has| (-577) (-808)))) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL) (($ |#1|) NIL)) (-2322 (((-577) |#1| $) NIL)) (-4448 (((-112) $ $) NIL)) (-2806 (($) NIL T CONST)) (-3025 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2990 (((-112) $ $) 29 (|has| |#1| (-865)))) (-3066 (($ $) 12) (($ $ $) 28)) (-3055 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ (-577)) NIL) (($ (-577) |#1|) 27))) +(((-333 |#1|) (-13 (-21) (-733 (-577)) (-334 |#1| (-577)) (-10 -7 (IF (|has| |#1| (-865)) (-6 (-865)) |%noBranch|))) (-1125)) (T -333)) +NIL +(-13 (-21) (-733 (-577)) (-334 |#1| (-577)) (-10 -7 (IF (|has| |#1| (-865)) (-6 (-865)) |%noBranch|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3829 (((-660 (-2 (|:| |gen| |#1|) (|:| -4072 |#2|))) $) 28)) (-1956 (((-3 $ "failed") $ $) 20)) (-2229 (((-787) $) 29)) (-1534 (($) 18 T CONST)) (-1628 (((-3 |#1| "failed") $) 33)) (-2921 ((|#1| $) 34)) (-3657 ((|#1| $ (-577)) 26)) (-2107 ((|#2| $ (-577)) 27)) (-1735 (($ (-1 |#1| |#1|) $) 23)) (-2096 (($ (-1 |#2| |#2|) $) 24)) (-2810 (((-1183) $) 10)) (-2085 (($ $ $) 22 (|has| |#2| (-808)))) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12) (($ |#1|) 32)) (-2322 ((|#2| |#1| $) 25)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3055 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ |#2| |#1|) 30))) +(((-334 |#1| |#2|) (-141) (-1125) (-132)) (T -334)) +((-3055 (*1 *1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-132)))) (-2229 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-132)) (-5 *2 (-787)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-132)) (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4072 *4)))))) (-2107 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-334 *4 *2)) (-4 *4 (-1125)) (-4 *2 (-132)))) (-3657 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-334 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1125)))) (-2322 (*1 *2 *3 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-132)))) (-2096 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-132)))) (-1735 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-132)))) (-2085 (*1 *1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-132)) (-4 *3 (-808))))) +(-13 (-132) (-1063 |t#1|) (-10 -8 (-15 -3055 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2229 ((-787) $)) (-15 -3829 ((-660 (-2 (|:| |gen| |t#1|) (|:| -4072 |t#2|))) $)) (-15 -2107 (|t#2| $ (-577))) (-15 -3657 (|t#1| $ (-577))) (-15 -2322 (|t#2| |t#1| $)) (-15 -2096 ($ (-1 |t#2| |t#2|) $)) (-15 -1735 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-808)) (-15 -2085 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-1063 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3829 (((-660 (-2 (|:| |gen| |#1|) (|:| -4072 (-787)))) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2229 (((-787) $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) NIL)) (-2921 ((|#1| $) NIL)) (-3657 ((|#1| $ (-577)) NIL)) (-2107 (((-787) $ (-577)) NIL)) (-1735 (($ (-1 |#1| |#1|) $) NIL)) (-2096 (($ (-1 (-787) (-787)) $) NIL)) (-2810 (((-1183) $) NIL)) (-2085 (($ $ $) NIL (|has| (-787) (-808)))) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL) (($ |#1|) NIL)) (-2322 (((-787) |#1| $) NIL)) (-4448 (((-112) $ $) NIL)) (-2806 (($) NIL T CONST)) (-2970 (((-112) $ $) NIL)) (-3055 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-787) |#1|) NIL))) +(((-335 |#1|) (-334 |#1| (-787)) (-1125)) (T -335)) +NIL +(-334 |#1| (-787)) +((-3143 (($ $) 72)) (-2137 (($ $ |#2| |#3| $) 14)) (-2151 (($ (-1 |#3| |#3|) $) 51)) (-2180 (((-112) $) 42)) (-2193 ((|#2| $) 44)) (-3462 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-4039 ((|#2| $) 68)) (-4182 (((-660 |#2|) $) 56)) (-2122 (($ $ $ (-787)) 37)) (-3077 (($ $ |#2|) 60))) +(((-336 |#1| |#2| |#3|) (-10 -8 (-15 -3143 (|#1| |#1|)) (-15 -4039 (|#2| |#1|)) (-15 -3462 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2122 (|#1| |#1| |#1| (-787))) (-15 -2137 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2151 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4182 ((-660 |#2|) |#1|)) (-15 -2193 (|#2| |#1|)) (-15 -2180 ((-112) |#1|)) (-15 -3462 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3077 (|#1| |#1| |#2|))) (-337 |#2| |#3|) (-1074) (-808)) (T -336)) +NIL +(-10 -8 (-15 -3143 (|#1| |#1|)) (-15 -4039 (|#2| |#1|)) (-15 -3462 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2122 (|#1| |#1| |#1| (-787))) (-15 -2137 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2151 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4182 ((-660 |#2|) |#1|)) (-15 -2193 (|#2| |#1|)) (-15 -2180 ((-112) |#1|)) (-15 -3462 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3077 (|#1| |#1| |#2|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)))) (-3290 (($ $) 64 (|has| |#1| (-569)))) (-3271 (((-112) $) 66 (|has| |#1| (-569)))) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-1628 (((-3 (-577) "failed") $) 100 (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) 98 (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) 95)) (-2921 (((-577) $) 99 (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) 97 (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) 96)) (-2248 (($ $) 72)) (-4187 (((-3 $ "failed") $) 37)) (-3143 (($ $) 84 (|has| |#1| (-465)))) (-2137 (($ $ |#1| |#2| $) 88)) (-2487 (((-112) $) 35)) (-2548 (((-787) $) 91)) (-2811 (((-112) $) 74)) (-2030 (($ |#1| |#2|) 73)) (-4061 ((|#2| $) 90)) (-2151 (($ (-1 |#2| |#2|) $) 89)) (-4087 (($ (-1 |#1| |#1|) $) 75)) (-2209 (($ $) 77)) (-2221 ((|#1| $) 78)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2180 (((-112) $) 94)) (-2193 ((|#1| $) 93)) (-3462 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-569)))) (-2887 ((|#2| $) 76)) (-4039 ((|#1| $) 85 (|has| |#1| (-465)))) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 61 (|has| |#1| (-569))) (($ |#1|) 59) (($ (-420 (-577))) 69 (-2839 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))))) (-4182 (((-660 |#1|) $) 92)) (-2322 ((|#1| $ |#2|) 71)) (-2233 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4068 (((-787)) 32 T CONST)) (-2122 (($ $ $ (-787)) 87 (|has| |#1| (-174)))) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 65 (|has| |#1| (-569)))) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3077 (($ $ |#1|) 70 (|has| |#1| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577))))))) +(((-337 |#1| |#2|) (-141) (-1074) (-808)) (T -337)) +((-2180 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) (-5 *2 (-112)))) (-2193 (*1 *2 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074)))) (-4182 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) (-5 *2 (-660 *3)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) (-5 *2 (-787)))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) (-2151 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)))) (-2137 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)))) (-2122 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) (-4 *3 (-174)))) (-3462 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)) (-4 *2 (-569)))) (-4039 (*1 *2 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074)) (-4 *2 (-465)))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)) (-4 *2 (-465))))) +(-13 (-47 |t#1| |t#2|) (-424 |t#1|) (-10 -8 (-15 -2180 ((-112) $)) (-15 -2193 (|t#1| $)) (-15 -4182 ((-660 |t#1|) $)) (-15 -2548 ((-787) $)) (-15 -4061 (|t#2| $)) (-15 -2151 ($ (-1 |t#2| |t#2|) $)) (-15 -2137 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -2122 ($ $ $ (-787))) |%noBranch|) (IF (|has| |t#1| (-569)) (-15 -3462 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-465)) (PROGN (-15 -4039 (|t#1| $)) (-15 -3143 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) -2839 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-629 $) |has| |#1| (-569)) ((-626 (-880)) . T) ((-174) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-301) |has| |#1| (-569)) ((-424 |#1|) . T) ((-569) |has| |#1| (-569)) ((-662 #0#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) |has| |#1| (-38 (-420 (-577)))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) |has| |#1| (-569)) ((-733 #0#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) |has| |#1| (-569)) ((-742) . T) ((-1063 (-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1076 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4077 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-865)))) (-4053 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471))) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))))) (-1864 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-865)))) (-3828 (((-112) $ (-787)) NIL)) (-3758 (((-112) (-112)) NIL)) (-3709 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)))) (-2463 (($ (-1 (-112) |#1|) $) NIL)) (-2067 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-1534 (($) NIL T CONST)) (-3645 (($ $) NIL (|has| $ (-6 -4471)))) (-3787 (($ $) NIL)) (-3215 (($ $) NIL (|has| |#1| (-1125)))) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3719 (($ |#1| $) NIL (|has| |#1| (-1125))) (($ (-1 (-112) |#1|) $) NIL)) (-3904 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)))) (-2192 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) NIL)) (-3618 (((-577) (-1 (-112) |#1|) $) NIL) (((-577) |#1| $) NIL (|has| |#1| (-1125))) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)))) (-3769 (($ $ (-577)) NIL)) (-3781 (((-787) $) NIL)) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-4113 (($ (-787) |#1|) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) NIL (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| |#1| (-865)))) (-3192 (($ $ $) NIL (|has| |#1| (-865))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3283 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-865)))) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2416 (((-577) $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| |#1| (-865)))) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-2881 (($ $ $ (-577)) NIL) (($ |#1| $ (-577)) NIL)) (-2308 (($ |#1| $ (-577)) NIL) (($ $ $ (-577)) NIL)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-3794 (($ (-660 |#1|)) NIL)) (-3552 ((|#1| $) NIL (|has| (-577) (-865)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2397 (($ $ |#1|) NIL (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#1| $ (-577) |#1|) NIL) ((|#1| $ (-577)) NIL) (($ $ (-1259 (-577))) NIL)) (-2472 (($ $ (-1259 (-577))) NIL) (($ $ (-577)) NIL)) (-3453 (($ $ (-577)) NIL) (($ $ (-1259 (-577))) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4064 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) NIL)) (-3992 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1677 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-660 $)) NIL)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-338 |#1|) (-13 (-19 |#1|) (-293 |#1|) (-10 -8 (-15 -3794 ($ (-660 |#1|))) (-15 -3781 ((-787) $)) (-15 -3769 ($ $ (-577))) (-15 -3758 ((-112) (-112))))) (-1242)) (T -338)) +((-3794 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-338 *3)))) (-3781 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-338 *3)) (-4 *3 (-1242)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-338 *3)) (-4 *3 (-1242)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3)) (-4 *3 (-1242))))) +(-13 (-19 |#1|) (-293 |#1|) (-10 -8 (-15 -3794 ($ (-660 |#1|))) (-15 -3781 ((-787) $)) (-15 -3769 ($ $ (-577))) (-15 -3758 ((-112) (-112))))) +((-2766 (((-112) $) 47)) (-2732 (((-787)) 23)) (-2339 ((|#2| $) 51) (($ $ (-944)) 121)) (-2229 (((-787)) 122)) (-3502 (($ (-1292 |#2|)) 20)) (-4049 (((-112) $) 134)) (-4145 ((|#2| $) 53) (($ $ (-944)) 118)) (-4084 (((-1197 |#2|) $) NIL) (((-1197 $) $ (-944)) 109)) (-2175 (((-1197 |#2|) $) 95)) (-2163 (((-1197 |#2|) $) 91) (((-3 (-1197 |#2|) "failed") $ $) 88)) (-2187 (($ $ (-1197 |#2|)) 58)) (-2744 (((-849 (-944))) 30) (((-944)) 48)) (-2561 (((-135)) 27)) (-2887 (((-849 (-944)) $) 32) (((-944) $) 137)) (-2200 (($) 128)) (-2710 (((-1292 |#2|) $) NIL) (((-705 |#2|) (-1292 $)) 42)) (-2233 (($ $) NIL) (((-3 $ "failed") $) 98)) (-2776 (((-112) $) 45))) +(((-339 |#1| |#2|) (-10 -8 (-15 -2233 ((-3 |#1| "failed") |#1|)) (-15 -2229 ((-787))) (-15 -2233 (|#1| |#1|)) (-15 -2163 ((-3 (-1197 |#2|) "failed") |#1| |#1|)) (-15 -2163 ((-1197 |#2|) |#1|)) (-15 -2175 ((-1197 |#2|) |#1|)) (-15 -2187 (|#1| |#1| (-1197 |#2|))) (-15 -4049 ((-112) |#1|)) (-15 -2200 (|#1|)) (-15 -2339 (|#1| |#1| (-944))) (-15 -4145 (|#1| |#1| (-944))) (-15 -4084 ((-1197 |#1|) |#1| (-944))) (-15 -2339 (|#2| |#1|)) (-15 -4145 (|#2| |#1|)) (-15 -2887 ((-944) |#1|)) (-15 -2744 ((-944))) (-15 -4084 ((-1197 |#2|) |#1|)) (-15 -3502 (|#1| (-1292 |#2|))) (-15 -2710 ((-705 |#2|) (-1292 |#1|))) (-15 -2710 ((-1292 |#2|) |#1|)) (-15 -2732 ((-787))) (-15 -2744 ((-849 (-944)))) (-15 -2887 ((-849 (-944)) |#1|)) (-15 -2766 ((-112) |#1|)) (-15 -2776 ((-112) |#1|)) (-15 -2561 ((-135)))) (-340 |#2|) (-375)) (T -339)) +((-2561 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-135)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-2744 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-849 (-944))) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-2732 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-787)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-2744 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-944)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4)))) (-2229 (*1 *2) (-12 (-4 *4 (-375)) (-5 *2 (-787)) (-5 *1 (-339 *3 *4)) (-4 *3 (-340 *4))))) +(-10 -8 (-15 -2233 ((-3 |#1| "failed") |#1|)) (-15 -2229 ((-787))) (-15 -2233 (|#1| |#1|)) (-15 -2163 ((-3 (-1197 |#2|) "failed") |#1| |#1|)) (-15 -2163 ((-1197 |#2|) |#1|)) (-15 -2175 ((-1197 |#2|) |#1|)) (-15 -2187 (|#1| |#1| (-1197 |#2|))) (-15 -4049 ((-112) |#1|)) (-15 -2200 (|#1|)) (-15 -2339 (|#1| |#1| (-944))) (-15 -4145 (|#1| |#1| (-944))) (-15 -4084 ((-1197 |#1|) |#1| (-944))) (-15 -2339 (|#2| |#1|)) (-15 -4145 (|#2| |#1|)) (-15 -2887 ((-944) |#1|)) (-15 -2744 ((-944))) (-15 -4084 ((-1197 |#2|) |#1|)) (-15 -3502 (|#1| (-1292 |#2|))) (-15 -2710 ((-705 |#2|) (-1292 |#1|))) (-15 -2710 ((-1292 |#2|) |#1|)) (-15 -2732 ((-787))) (-15 -2744 ((-849 (-944)))) (-15 -2887 ((-849 (-944)) |#1|)) (-15 -2766 ((-112) |#1|)) (-15 -2776 ((-112) |#1|)) (-15 -2561 ((-135)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-2766 (((-112) $) 104)) (-2732 (((-787)) 100)) (-2339 ((|#1| $) 151) (($ $ (-944)) 148 (|has| |#1| (-380)))) (-1595 (((-1214 (-944) (-787)) (-577)) 133 (|has| |#1| (-380)))) (-1956 (((-3 $ "failed") $ $) 20)) (-3841 (($ $) 81)) (-3029 (((-431 $) $) 80)) (-1939 (((-112) $ $) 65)) (-2229 (((-787)) 123 (|has| |#1| (-380)))) (-1534 (($) 18 T CONST)) (-1628 (((-3 |#1| "failed") $) 111)) (-2921 ((|#1| $) 112)) (-3502 (($ (-1292 |#1|)) 157)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-380)))) (-3418 (($ $ $) 61)) (-4187 (((-3 $ "failed") $) 37)) (-1910 (($) 120 (|has| |#1| (-380)))) (-3429 (($ $ $) 62)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 57)) (-4205 (($) 135 (|has| |#1| (-380)))) (-1655 (((-112) $) 136 (|has| |#1| (-380)))) (-3233 (($ $ (-787)) 97 (-2839 (|has| |#1| (-146)) (|has| |#1| (-380)))) (($ $) 96 (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-1522 (((-112) $) 79)) (-3817 (((-944) $) 138 (|has| |#1| (-380))) (((-849 (-944)) $) 94 (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-2487 (((-112) $) 35)) (-4073 (($) 146 (|has| |#1| (-380)))) (-4049 (((-112) $) 145 (|has| |#1| (-380)))) (-4145 ((|#1| $) 152) (($ $ (-944)) 149 (|has| |#1| (-380)))) (-4021 (((-3 $ "failed") $) 124 (|has| |#1| (-380)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 58)) (-4084 (((-1197 |#1|) $) 156) (((-1197 $) $ (-944)) 150 (|has| |#1| (-380)))) (-4038 (((-944) $) 121 (|has| |#1| (-380)))) (-2175 (((-1197 |#1|) $) 142 (|has| |#1| (-380)))) (-2163 (((-1197 |#1|) $) 141 (|has| |#1| (-380))) (((-3 (-1197 |#1|) "failed") $ $) 140 (|has| |#1| (-380)))) (-2187 (($ $ (-1197 |#1|)) 143 (|has| |#1| (-380)))) (-3446 (($ $ $) 52) (($ (-660 $)) 51)) (-2810 (((-1183) $) 10)) (-2171 (($ $) 78)) (-1709 (($) 125 (|has| |#1| (-380)) CONST)) (-3222 (($ (-944)) 122 (|has| |#1| (-380)))) (-2754 (((-112) $) 103)) (-1474 (((-1145) $) 11)) (-4101 (($) 144 (|has| |#1| (-380)))) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 50)) (-3480 (($ $ $) 54) (($ (-660 $)) 53)) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) 132 (|has| |#1| (-380)))) (-1902 (((-431 $) $) 82)) (-2744 (((-849 (-944))) 101) (((-944)) 154)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3462 (((-3 $ "failed") $ $) 48)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 56)) (-1927 (((-787) $) 64)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 63)) (-3243 (((-787) $) 137 (|has| |#1| (-380))) (((-3 (-787) "failed") $ $) 95 (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-2561 (((-135)) 109)) (-2852 (($ $ (-787)) 128 (|has| |#1| (-380))) (($ $) 126 (|has| |#1| (-380)))) (-2887 (((-849 (-944)) $) 102) (((-944) $) 153)) (-3557 (((-1197 |#1|)) 155)) (-1585 (($) 134 (|has| |#1| (-380)))) (-2200 (($) 147 (|has| |#1| (-380)))) (-2710 (((-1292 |#1|) $) 159) (((-705 |#1|) (-1292 $)) 158)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) 131 (|has| |#1| (-380)))) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49) (($ (-420 (-577))) 74) (($ |#1|) 110)) (-2233 (($ $) 130 (|has| |#1| (-380))) (((-3 $ "failed") $) 93 (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-4060 (((-1292 $)) 161) (((-1292 $) (-944)) 160)) (-3281 (((-112) $ $) 45)) (-2776 (((-112) $) 105)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2721 (($ $) 99 (|has| |#1| (-380))) (($ $ (-787)) 98 (|has| |#1| (-380)))) (-2132 (($ $ (-787)) 129 (|has| |#1| (-380))) (($ $) 127 (|has| |#1| (-380)))) (-2970 (((-112) $ $) 8)) (-3077 (($ $ $) 73) (($ $ |#1|) 108)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 77)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ (-420 (-577))) 76) (($ (-420 (-577)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-340 |#1|) (-141) (-375)) (T -340)) +((-4060 (*1 *2) (-12 (-4 *3 (-375)) (-5 *2 (-1292 *1)) (-4 *1 (-340 *3)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-944)) (-4 *4 (-375)) (-5 *2 (-1292 *1)) (-4 *1 (-340 *4)))) (-2710 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1292 *3)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-340 *4)) (-4 *4 (-375)) (-5 *2 (-705 *4)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-375)) (-4 *1 (-340 *3)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1197 *3)))) (-3557 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1197 *3)))) (-2744 (*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-944)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-944)))) (-4145 (*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-375)))) (-2339 (*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-375)))) (-4084 (*1 *2 *1 *3) (-12 (-5 *3 (-944)) (-4 *4 (-380)) (-4 *4 (-375)) (-5 *2 (-1197 *1)) (-4 *1 (-340 *4)))) (-4145 (*1 *1 *1 *2) (-12 (-5 *2 (-944)) (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) (-2339 (*1 *1 *1 *2) (-12 (-5 *2 (-944)) (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) (-2200 (*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) (-4073 (*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) (-4049 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-112)))) (-4101 (*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) (-2187 (*1 *1 *1 *2) (-12 (-5 *2 (-1197 *3)) (-4 *3 (-380)) (-4 *1 (-340 *3)) (-4 *3 (-375)))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-1197 *3)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-1197 *3)))) (-2163 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-1197 *3))))) +(-13 (-1311 |t#1|) (-1063 |t#1|) (-10 -8 (-15 -4060 ((-1292 $))) (-15 -4060 ((-1292 $) (-944))) (-15 -2710 ((-1292 |t#1|) $)) (-15 -2710 ((-705 |t#1|) (-1292 $))) (-15 -3502 ($ (-1292 |t#1|))) (-15 -4084 ((-1197 |t#1|) $)) (-15 -3557 ((-1197 |t#1|))) (-15 -2744 ((-944))) (-15 -2887 ((-944) $)) (-15 -4145 (|t#1| $)) (-15 -2339 (|t#1| $)) (IF (|has| |t#1| (-380)) (PROGN (-6 (-361)) (-15 -4084 ((-1197 $) $ (-944))) (-15 -4145 ($ $ (-944))) (-15 -2339 ($ $ (-944))) (-15 -2200 ($)) (-15 -4073 ($)) (-15 -4049 ((-112) $)) (-15 -4101 ($)) (-15 -2187 ($ $ (-1197 |t#1|))) (-15 -2175 ((-1197 |t#1|) $)) (-15 -2163 ((-1197 |t#1|) $)) (-15 -2163 ((-3 (-1197 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2839 (|has| |#1| (-380)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-235 $) |has| |#1| (-380)) ((-239) |has| |#1| (-380)) ((-238) |has| |#1| (-380)) ((-249) . T) ((-301) . T) ((-318) . T) ((-1311 |#1|) . T) ((-375) . T) ((-415) -2839 (|has| |#1| (-380)) (|has| |#1| (-146))) ((-380) |has| |#1| (-380)) ((-361) |has| |#1| (-380)) ((-465) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-733 #0#) . T) ((-733 |#1|) . T) ((-733 $) . T) ((-742) . T) ((-943) . T) ((-1063 |#1|) . T) ((-1076 #0#) . T) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1177) |has| |#1| (-380)) ((-1242) . T) ((-1246) . T) ((-1299 |#1|) . T)) +((-3473 (((-112) $ $) NIL)) (-2319 (($ (-1200) $) 100)) (-2358 (($) 89)) (-2213 (((-1145) (-1145)) 9)) (-1402 (($) 90)) (-2273 (($) 104) (($ (-327 (-715))) 112) (($ (-327 (-717))) 108) (($ (-327 (-710))) 116) (($ (-327 (-391))) 123) (($ (-327 (-577))) 119) (($ (-327 (-171 (-391)))) 127)) (-2309 (($ (-1200) $) 101)) (-2250 (($ (-660 (-880))) 91)) (-2238 (((-1297) $) 87)) (-1757 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2298 (($ (-1145)) 58)) (-2225 (((-1129) $) 30)) (-2329 (($ (-1117 (-975 (-577))) $) 97) (($ (-1117 (-975 (-577))) (-975 (-577)) $) 98)) (-1445 (($ (-1145)) 99)) (-2917 (($ (-1200) $) 129) (($ (-1200) $ $) 130)) (-2519 (($ (-1201) (-660 (-1201))) 88)) (-3686 (($ (-1183)) 94) (($ (-660 (-1183))) 92)) (-3544 (((-880) $) 132)) (-4343 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1201)) (|:| |arrayIndex| (-660 (-975 (-577)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3035 (-880)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1201)) (|:| |rand| (-880)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1200)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3697 (-112)) (|:| -3115 (-2 (|:| |ints2Floats?| (-112)) (|:| -3035 (-880)))))) (|:| |blockBranch| (-660 $)) (|:| |commentBranch| (-660 (-1183))) (|:| |callBranch| (-1183)) (|:| |forBranch| (-2 (|:| -4071 (-1117 (-975 (-577)))) (|:| |span| (-975 (-577))) (|:| -2724 $))) (|:| |labelBranch| (-1145)) (|:| |loopBranch| (-2 (|:| |switch| (-1200)) (|:| -2724 $))) (|:| |commonBranch| (-2 (|:| -2713 (-1201)) (|:| |contents| (-660 (-1201))))) (|:| |printBranch| (-660 (-880)))) $) 50)) (-2286 (($ (-1183)) 202)) (-2263 (($ (-660 $)) 128)) (-4448 (((-112) $ $) NIL)) (-3533 (($ (-1201) (-1183)) 135) (($ (-1201) (-327 (-717))) 175) (($ (-1201) (-327 (-715))) 176) (($ (-1201) (-327 (-710))) 177) (($ (-1201) (-705 (-717))) 138) (($ (-1201) (-705 (-715))) 141) (($ (-1201) (-705 (-710))) 144) (($ (-1201) (-1292 (-717))) 147) (($ (-1201) (-1292 (-715))) 150) (($ (-1201) (-1292 (-710))) 153) (($ (-1201) (-705 (-327 (-717)))) 156) (($ (-1201) (-705 (-327 (-715)))) 159) (($ (-1201) (-705 (-327 (-710)))) 162) (($ (-1201) (-1292 (-327 (-717)))) 165) (($ (-1201) (-1292 (-327 (-715)))) 168) (($ (-1201) (-1292 (-327 (-710)))) 171) (($ (-1201) (-660 (-975 (-577))) (-327 (-717))) 172) (($ (-1201) (-660 (-975 (-577))) (-327 (-715))) 173) (($ (-1201) (-660 (-975 (-577))) (-327 (-710))) 174) (($ (-1201) (-327 (-577))) 199) (($ (-1201) (-327 (-391))) 200) (($ (-1201) (-327 (-171 (-391)))) 201) (($ (-1201) (-705 (-327 (-577)))) 180) (($ (-1201) (-705 (-327 (-391)))) 183) (($ (-1201) (-705 (-327 (-171 (-391))))) 186) (($ (-1201) (-1292 (-327 (-577)))) 189) (($ (-1201) (-1292 (-327 (-391)))) 192) (($ (-1201) (-1292 (-327 (-171 (-391))))) 195) (($ (-1201) (-660 (-975 (-577))) (-327 (-577))) 196) (($ (-1201) (-660 (-975 (-577))) (-327 (-391))) 197) (($ (-1201) (-660 (-975 (-577))) (-327 (-171 (-391)))) 198)) (-2970 (((-112) $ $) NIL))) +(((-341) (-13 (-1125) (-10 -8 (-15 -2329 ($ (-1117 (-975 (-577))) $)) (-15 -2329 ($ (-1117 (-975 (-577))) (-975 (-577)) $)) (-15 -2319 ($ (-1200) $)) (-15 -2309 ($ (-1200) $)) (-15 -2298 ($ (-1145))) (-15 -1445 ($ (-1145))) (-15 -3686 ($ (-1183))) (-15 -3686 ($ (-660 (-1183)))) (-15 -2286 ($ (-1183))) (-15 -2273 ($)) (-15 -2273 ($ (-327 (-715)))) (-15 -2273 ($ (-327 (-717)))) (-15 -2273 ($ (-327 (-710)))) (-15 -2273 ($ (-327 (-391)))) (-15 -2273 ($ (-327 (-577)))) (-15 -2273 ($ (-327 (-171 (-391))))) (-15 -2917 ($ (-1200) $)) (-15 -2917 ($ (-1200) $ $)) (-15 -3533 ($ (-1201) (-1183))) (-15 -3533 ($ (-1201) (-327 (-717)))) (-15 -3533 ($ (-1201) (-327 (-715)))) (-15 -3533 ($ (-1201) (-327 (-710)))) (-15 -3533 ($ (-1201) (-705 (-717)))) (-15 -3533 ($ (-1201) (-705 (-715)))) (-15 -3533 ($ (-1201) (-705 (-710)))) (-15 -3533 ($ (-1201) (-1292 (-717)))) (-15 -3533 ($ (-1201) (-1292 (-715)))) (-15 -3533 ($ (-1201) (-1292 (-710)))) (-15 -3533 ($ (-1201) (-705 (-327 (-717))))) (-15 -3533 ($ (-1201) (-705 (-327 (-715))))) (-15 -3533 ($ (-1201) (-705 (-327 (-710))))) (-15 -3533 ($ (-1201) (-1292 (-327 (-717))))) (-15 -3533 ($ (-1201) (-1292 (-327 (-715))))) (-15 -3533 ($ (-1201) (-1292 (-327 (-710))))) (-15 -3533 ($ (-1201) (-660 (-975 (-577))) (-327 (-717)))) (-15 -3533 ($ (-1201) (-660 (-975 (-577))) (-327 (-715)))) (-15 -3533 ($ (-1201) (-660 (-975 (-577))) (-327 (-710)))) (-15 -3533 ($ (-1201) (-327 (-577)))) (-15 -3533 ($ (-1201) (-327 (-391)))) (-15 -3533 ($ (-1201) (-327 (-171 (-391))))) (-15 -3533 ($ (-1201) (-705 (-327 (-577))))) (-15 -3533 ($ (-1201) (-705 (-327 (-391))))) (-15 -3533 ($ (-1201) (-705 (-327 (-171 (-391)))))) (-15 -3533 ($ (-1201) (-1292 (-327 (-577))))) (-15 -3533 ($ (-1201) (-1292 (-327 (-391))))) (-15 -3533 ($ (-1201) (-1292 (-327 (-171 (-391)))))) (-15 -3533 ($ (-1201) (-660 (-975 (-577))) (-327 (-577)))) (-15 -3533 ($ (-1201) (-660 (-975 (-577))) (-327 (-391)))) (-15 -3533 ($ (-1201) (-660 (-975 (-577))) (-327 (-171 (-391))))) (-15 -2263 ($ (-660 $))) (-15 -2358 ($)) (-15 -1402 ($)) (-15 -2250 ($ (-660 (-880)))) (-15 -2519 ($ (-1201) (-660 (-1201)))) (-15 -1757 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4343 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1201)) (|:| |arrayIndex| (-660 (-975 (-577)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3035 (-880)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1201)) (|:| |rand| (-880)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1200)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3697 (-112)) (|:| -3115 (-2 (|:| |ints2Floats?| (-112)) (|:| -3035 (-880)))))) (|:| |blockBranch| (-660 $)) (|:| |commentBranch| (-660 (-1183))) (|:| |callBranch| (-1183)) (|:| |forBranch| (-2 (|:| -4071 (-1117 (-975 (-577)))) (|:| |span| (-975 (-577))) (|:| -2724 $))) (|:| |labelBranch| (-1145)) (|:| |loopBranch| (-2 (|:| |switch| (-1200)) (|:| -2724 $))) (|:| |commonBranch| (-2 (|:| -2713 (-1201)) (|:| |contents| (-660 (-1201))))) (|:| |printBranch| (-660 (-880)))) $)) (-15 -2238 ((-1297) $)) (-15 -2225 ((-1129) $)) (-15 -2213 ((-1145) (-1145)))))) (T -341)) +((-2329 (*1 *1 *2 *1) (-12 (-5 *2 (-1117 (-975 (-577)))) (-5 *1 (-341)))) (-2329 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1117 (-975 (-577)))) (-5 *3 (-975 (-577))) (-5 *1 (-341)))) (-2319 (*1 *1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-341)))) (-2309 (*1 *1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-341)))) (-2298 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-341)))) (-1445 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-341)))) (-3686 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-341)))) (-3686 (*1 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-341)))) (-2286 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-341)))) (-2273 (*1 *1) (-5 *1 (-341))) (-2273 (*1 *1 *2) (-12 (-5 *2 (-327 (-715))) (-5 *1 (-341)))) (-2273 (*1 *1 *2) (-12 (-5 *2 (-327 (-717))) (-5 *1 (-341)))) (-2273 (*1 *1 *2) (-12 (-5 *2 (-327 (-710))) (-5 *1 (-341)))) (-2273 (*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-5 *1 (-341)))) (-2273 (*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-5 *1 (-341)))) (-2273 (*1 *1 *2) (-12 (-5 *2 (-327 (-171 (-391)))) (-5 *1 (-341)))) (-2917 (*1 *1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-341)))) (-2917 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1183)) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-717))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-715))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-710))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-717))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-715))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-710))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-717))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-715))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-710))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-717)))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-715)))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-710)))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-717)))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-715)))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-710)))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-327 (-717))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-327 (-715))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-327 (-710))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-577))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-391))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-171 (-391)))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-577)))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-391)))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-171 (-391))))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-577)))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-391)))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-171 (-391))))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-327 (-577))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-327 (-391))) (-5 *1 (-341)))) (-3533 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-327 (-171 (-391)))) (-5 *1 (-341)))) (-2263 (*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-5 *1 (-341)))) (-2358 (*1 *1) (-5 *1 (-341))) (-1402 (*1 *1) (-5 *1 (-341))) (-2250 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-341)))) (-2519 (*1 *1 *2 *3) (-12 (-5 *3 (-660 (-1201))) (-5 *2 (-1201)) (-5 *1 (-341)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-341)))) (-4343 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1201)) (|:| |arrayIndex| (-660 (-975 (-577)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3035 (-880)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1201)) (|:| |rand| (-880)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1200)) (|:| |thenClause| (-341)) (|:| |elseClause| (-341)))) (|:| |returnBranch| (-2 (|:| -3697 (-112)) (|:| -3115 (-2 (|:| |ints2Floats?| (-112)) (|:| -3035 (-880)))))) (|:| |blockBranch| (-660 (-341))) (|:| |commentBranch| (-660 (-1183))) (|:| |callBranch| (-1183)) (|:| |forBranch| (-2 (|:| -4071 (-1117 (-975 (-577)))) (|:| |span| (-975 (-577))) (|:| -2724 (-341)))) (|:| |labelBranch| (-1145)) (|:| |loopBranch| (-2 (|:| |switch| (-1200)) (|:| -2724 (-341)))) (|:| |commonBranch| (-2 (|:| -2713 (-1201)) (|:| |contents| (-660 (-1201))))) (|:| |printBranch| (-660 (-880))))) (-5 *1 (-341)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-341)))) (-2225 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-341)))) (-2213 (*1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-341))))) +(-13 (-1125) (-10 -8 (-15 -2329 ($ (-1117 (-975 (-577))) $)) (-15 -2329 ($ (-1117 (-975 (-577))) (-975 (-577)) $)) (-15 -2319 ($ (-1200) $)) (-15 -2309 ($ (-1200) $)) (-15 -2298 ($ (-1145))) (-15 -1445 ($ (-1145))) (-15 -3686 ($ (-1183))) (-15 -3686 ($ (-660 (-1183)))) (-15 -2286 ($ (-1183))) (-15 -2273 ($)) (-15 -2273 ($ (-327 (-715)))) (-15 -2273 ($ (-327 (-717)))) (-15 -2273 ($ (-327 (-710)))) (-15 -2273 ($ (-327 (-391)))) (-15 -2273 ($ (-327 (-577)))) (-15 -2273 ($ (-327 (-171 (-391))))) (-15 -2917 ($ (-1200) $)) (-15 -2917 ($ (-1200) $ $)) (-15 -3533 ($ (-1201) (-1183))) (-15 -3533 ($ (-1201) (-327 (-717)))) (-15 -3533 ($ (-1201) (-327 (-715)))) (-15 -3533 ($ (-1201) (-327 (-710)))) (-15 -3533 ($ (-1201) (-705 (-717)))) (-15 -3533 ($ (-1201) (-705 (-715)))) (-15 -3533 ($ (-1201) (-705 (-710)))) (-15 -3533 ($ (-1201) (-1292 (-717)))) (-15 -3533 ($ (-1201) (-1292 (-715)))) (-15 -3533 ($ (-1201) (-1292 (-710)))) (-15 -3533 ($ (-1201) (-705 (-327 (-717))))) (-15 -3533 ($ (-1201) (-705 (-327 (-715))))) (-15 -3533 ($ (-1201) (-705 (-327 (-710))))) (-15 -3533 ($ (-1201) (-1292 (-327 (-717))))) (-15 -3533 ($ (-1201) (-1292 (-327 (-715))))) (-15 -3533 ($ (-1201) (-1292 (-327 (-710))))) (-15 -3533 ($ (-1201) (-660 (-975 (-577))) (-327 (-717)))) (-15 -3533 ($ (-1201) (-660 (-975 (-577))) (-327 (-715)))) (-15 -3533 ($ (-1201) (-660 (-975 (-577))) (-327 (-710)))) (-15 -3533 ($ (-1201) (-327 (-577)))) (-15 -3533 ($ (-1201) (-327 (-391)))) (-15 -3533 ($ (-1201) (-327 (-171 (-391))))) (-15 -3533 ($ (-1201) (-705 (-327 (-577))))) (-15 -3533 ($ (-1201) (-705 (-327 (-391))))) (-15 -3533 ($ (-1201) (-705 (-327 (-171 (-391)))))) (-15 -3533 ($ (-1201) (-1292 (-327 (-577))))) (-15 -3533 ($ (-1201) (-1292 (-327 (-391))))) (-15 -3533 ($ (-1201) (-1292 (-327 (-171 (-391)))))) (-15 -3533 ($ (-1201) (-660 (-975 (-577))) (-327 (-577)))) (-15 -3533 ($ (-1201) (-660 (-975 (-577))) (-327 (-391)))) (-15 -3533 ($ (-1201) (-660 (-975 (-577))) (-327 (-171 (-391))))) (-15 -2263 ($ (-660 $))) (-15 -2358 ($)) (-15 -1402 ($)) (-15 -2250 ($ (-660 (-880)))) (-15 -2519 ($ (-1201) (-660 (-1201)))) (-15 -1757 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4343 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1201)) (|:| |arrayIndex| (-660 (-975 (-577)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3035 (-880)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1201)) (|:| |rand| (-880)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1200)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3697 (-112)) (|:| -3115 (-2 (|:| |ints2Floats?| (-112)) (|:| -3035 (-880)))))) (|:| |blockBranch| (-660 $)) (|:| |commentBranch| (-660 (-1183))) (|:| |callBranch| (-1183)) (|:| |forBranch| (-2 (|:| -4071 (-1117 (-975 (-577)))) (|:| |span| (-975 (-577))) (|:| -2724 $))) (|:| |labelBranch| (-1145)) (|:| |loopBranch| (-2 (|:| |switch| (-1200)) (|:| -2724 $))) (|:| |commonBranch| (-2 (|:| -2713 (-1201)) (|:| |contents| (-660 (-1201))))) (|:| |printBranch| (-660 (-880)))) $)) (-15 -2238 ((-1297) $)) (-15 -2225 ((-1129) $)) (-15 -2213 ((-1145) (-1145))))) +((-3473 (((-112) $ $) NIL)) (-2340 (((-112) $) 13)) (-2032 (($ |#1|) 10)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2046 (($ |#1|) 12)) (-3544 (((-880) $) 19)) (-4448 (((-112) $ $) NIL)) (-4340 ((|#1| $) 14)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 21))) +(((-342 |#1|) (-13 (-865) (-10 -8 (-15 -2032 ($ |#1|)) (-15 -2046 ($ |#1|)) (-15 -2340 ((-112) $)) (-15 -4340 (|#1| $)))) (-865)) (T -342)) +((-2032 (*1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-865)))) (-2046 (*1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-865)))) (-2340 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-342 *3)) (-4 *3 (-865)))) (-4340 (*1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-865))))) +(-13 (-865) (-10 -8 (-15 -2032 ($ |#1|)) (-15 -2046 ($ |#1|)) (-15 -2340 ((-112) $)) (-15 -4340 (|#1| $)))) +((-2349 (((-341) (-1201) (-975 (-577))) 23)) (-4197 (((-341) (-1201) (-975 (-577))) 27)) (-3989 (((-341) (-1201) (-1117 (-975 (-577))) (-1117 (-975 (-577)))) 26) (((-341) (-1201) (-975 (-577)) (-975 (-577))) 24)) (-4210 (((-341) (-1201) (-975 (-577))) 31))) +(((-343) (-10 -7 (-15 -2349 ((-341) (-1201) (-975 (-577)))) (-15 -3989 ((-341) (-1201) (-975 (-577)) (-975 (-577)))) (-15 -3989 ((-341) (-1201) (-1117 (-975 (-577))) (-1117 (-975 (-577))))) (-15 -4197 ((-341) (-1201) (-975 (-577)))) (-15 -4210 ((-341) (-1201) (-975 (-577)))))) (T -343)) +((-4210 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-975 (-577))) (-5 *2 (-341)) (-5 *1 (-343)))) (-4197 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-975 (-577))) (-5 *2 (-341)) (-5 *1 (-343)))) (-3989 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-1117 (-975 (-577)))) (-5 *2 (-341)) (-5 *1 (-343)))) (-3989 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-975 (-577))) (-5 *2 (-341)) (-5 *1 (-343)))) (-2349 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-975 (-577))) (-5 *2 (-341)) (-5 *1 (-343))))) +(-10 -7 (-15 -2349 ((-341) (-1201) (-975 (-577)))) (-15 -3989 ((-341) (-1201) (-975 (-577)) (-975 (-577)))) (-15 -3989 ((-341) (-1201) (-1117 (-975 (-577))) (-1117 (-975 (-577))))) (-15 -4197 ((-341) (-1201) (-975 (-577)))) (-15 -4210 ((-341) (-1201) (-975 (-577))))) +((-3473 (((-112) $ $) NIL)) (-4221 (((-519) $) 20)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-4230 (((-981 (-787)) $) 18)) (-4252 (((-257) $) 7)) (-3544 (((-880) $) 26)) (-1619 (((-981 (-185 (-140))) $) 16)) (-4448 (((-112) $ $) NIL)) (-4242 (((-660 (-891 (-1206) (-787))) $) 12)) (-2970 (((-112) $ $) 22))) +(((-344) (-13 (-1125) (-10 -8 (-15 -4252 ((-257) $)) (-15 -4242 ((-660 (-891 (-1206) (-787))) $)) (-15 -4230 ((-981 (-787)) $)) (-15 -1619 ((-981 (-185 (-140))) $)) (-15 -4221 ((-519) $))))) (T -344)) +((-4252 (*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-344)))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-660 (-891 (-1206) (-787)))) (-5 *1 (-344)))) (-4230 (*1 *2 *1) (-12 (-5 *2 (-981 (-787))) (-5 *1 (-344)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-981 (-185 (-140)))) (-5 *1 (-344)))) (-4221 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-344))))) +(-13 (-1125) (-10 -8 (-15 -4252 ((-257) $)) (-15 -4242 ((-660 (-891 (-1206) (-787))) $)) (-15 -4230 ((-981 (-787)) $)) (-15 -1619 ((-981 (-185 (-140))) $)) (-15 -4221 ((-519) $)))) +((-4087 (((-348 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-348 |#1| |#2| |#3| |#4|)) 33))) +(((-345 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4087 ((-348 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-348 |#1| |#2| |#3| |#4|)))) (-375) (-1268 |#1|) (-1268 (-420 |#2|)) (-354 |#1| |#2| |#3|) (-375) (-1268 |#5|) (-1268 (-420 |#6|)) (-354 |#5| |#6| |#7|)) (T -345)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-348 *5 *6 *7 *8)) (-4 *5 (-375)) (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) (-4 *9 (-375)) (-4 *10 (-1268 *9)) (-4 *11 (-1268 (-420 *10))) (-5 *2 (-348 *9 *10 *11 *12)) (-5 *1 (-345 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-354 *9 *10 *11))))) +(-10 -7 (-15 -4087 ((-348 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-348 |#1| |#2| |#3| |#4|)))) +((-4283 (((-112) $) 14))) +(((-346 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4283 ((-112) |#1|))) (-347 |#2| |#3| |#4| |#5|) (-375) (-1268 |#2|) (-1268 (-420 |#3|)) (-354 |#2| |#3| |#4|)) (T -346)) +NIL +(-10 -8 (-15 -4283 ((-112) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-3654 (($ $) 29)) (-4283 (((-112) $) 28)) (-2810 (((-1183) $) 10)) (-3597 (((-426 |#2| (-420 |#2|) |#3| |#4|) $) 35)) (-1474 (((-1145) $) 11)) (-4101 (((-3 |#4| "failed") $) 27)) (-4296 (($ (-426 |#2| (-420 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-577)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-3938 (((-2 (|:| -3110 (-426 |#2| (-420 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24))) +(((-347 |#1| |#2| |#3| |#4|) (-141) (-375) (-1268 |t#1|) (-1268 (-420 |t#2|)) (-354 |t#1| |t#2| |t#3|)) (T -347)) +((-3597 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-5 *2 (-426 *4 (-420 *4) *5 *6)))) (-4296 (*1 *1 *2) (-12 (-5 *2 (-426 *4 (-420 *4) *5 *6)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-4 *3 (-375)) (-4 *1 (-347 *3 *4 *5 *6)))) (-4296 (*1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-4 *1 (-347 *3 *4 *5 *2)) (-4 *2 (-354 *3 *4 *5)))) (-4296 (*1 *1 *2 *2) (-12 (-4 *2 (-375)) (-4 *3 (-1268 *2)) (-4 *4 (-1268 (-420 *3))) (-4 *1 (-347 *2 *3 *4 *5)) (-4 *5 (-354 *2 *3 *4)))) (-4296 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-577)) (-4 *2 (-375)) (-4 *4 (-1268 *2)) (-4 *5 (-1268 (-420 *4))) (-4 *1 (-347 *2 *4 *5 *6)) (-4 *6 (-354 *2 *4 *5)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-5 *2 (-2 (|:| -3110 (-426 *4 (-420 *4) *5 *6)) (|:| |principalPart| *6))))) (-3654 (*1 *1 *1) (-12 (-4 *1 (-347 *2 *3 *4 *5)) (-4 *2 (-375)) (-4 *3 (-1268 *2)) (-4 *4 (-1268 (-420 *3))) (-4 *5 (-354 *2 *3 *4)))) (-4283 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-5 *2 (-112)))) (-4101 (*1 *2 *1) (|partial| -12 (-4 *1 (-347 *3 *4 *5 *2)) (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-4 *2 (-354 *3 *4 *5)))) (-4296 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-375)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 (-420 *3))) (-4 *1 (-347 *4 *3 *5 *2)) (-4 *2 (-354 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -3597 ((-426 |t#2| (-420 |t#2|) |t#3| |t#4|) $)) (-15 -4296 ($ (-426 |t#2| (-420 |t#2|) |t#3| |t#4|))) (-15 -4296 ($ |t#4|)) (-15 -4296 ($ |t#1| |t#1|)) (-15 -4296 ($ |t#1| |t#1| (-577))) (-15 -3938 ((-2 (|:| -3110 (-426 |t#2| (-420 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3654 ($ $)) (-15 -4283 ((-112) $)) (-15 -4101 ((-3 |t#4| "failed") $)) (-15 -4296 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-3654 (($ $) 33)) (-4283 (((-112) $) NIL)) (-2810 (((-1183) $) NIL)) (-4262 (((-1292 |#4|) $) 134)) (-3597 (((-426 |#2| (-420 |#2|) |#3| |#4|) $) 31)) (-1474 (((-1145) $) NIL)) (-4101 (((-3 |#4| "failed") $) 36)) (-4272 (((-1292 |#4|) $) 126)) (-4296 (($ (-426 |#2| (-420 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-577)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3938 (((-2 (|:| -3110 (-426 |#2| (-420 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3544 (((-880) $) 17)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 14 T CONST)) (-2970 (((-112) $ $) 20)) (-3066 (($ $) 27) (($ $ $) NIL)) (-3055 (($ $ $) 25)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 23))) +(((-348 |#1| |#2| |#3| |#4|) (-13 (-347 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4272 ((-1292 |#4|) $)) (-15 -4262 ((-1292 |#4|) $)))) (-375) (-1268 |#1|) (-1268 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -348)) +((-4272 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-1292 *6)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *6 (-354 *3 *4 *5)))) (-4262 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-1292 *6)) (-5 *1 (-348 *3 *4 *5 *6)) (-4 *6 (-354 *3 *4 *5))))) +(-13 (-347 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4272 ((-1292 |#4|) $)) (-15 -4262 ((-1292 |#4|) $)))) +((-3280 (($ $ (-1201) |#2|) NIL) (($ $ (-660 (-1201)) (-660 |#2|)) 20) (($ $ (-660 (-305 |#2|))) 15) (($ $ (-305 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-660 |#2|) (-660 |#2|)) NIL)) (-2872 (($ $ |#2|) 11))) +(((-349 |#1| |#2|) (-10 -8 (-15 -2872 (|#1| |#1| |#2|)) (-15 -3280 (|#1| |#1| (-660 |#2|) (-660 |#2|))) (-15 -3280 (|#1| |#1| |#2| |#2|)) (-15 -3280 (|#1| |#1| (-305 |#2|))) (-15 -3280 (|#1| |#1| (-660 (-305 |#2|)))) (-15 -3280 (|#1| |#1| (-660 (-1201)) (-660 |#2|))) (-15 -3280 (|#1| |#1| (-1201) |#2|))) (-350 |#2|) (-1125)) (T -349)) +NIL +(-10 -8 (-15 -2872 (|#1| |#1| |#2|)) (-15 -3280 (|#1| |#1| (-660 |#2|) (-660 |#2|))) (-15 -3280 (|#1| |#1| |#2| |#2|)) (-15 -3280 (|#1| |#1| (-305 |#2|))) (-15 -3280 (|#1| |#1| (-660 (-305 |#2|)))) (-15 -3280 (|#1| |#1| (-660 (-1201)) (-660 |#2|))) (-15 -3280 (|#1| |#1| (-1201) |#2|))) +((-4087 (($ (-1 |#1| |#1|) $) 6)) (-3280 (($ $ (-1201) |#1|) 17 (|has| |#1| (-527 (-1201) |#1|))) (($ $ (-660 (-1201)) (-660 |#1|)) 16 (|has| |#1| (-527 (-1201) |#1|))) (($ $ (-660 (-305 |#1|))) 15 (|has| |#1| (-320 |#1|))) (($ $ (-305 |#1|)) 14 (|has| |#1| (-320 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-320 |#1|))) (($ $ (-660 |#1|) (-660 |#1|)) 12 (|has| |#1| (-320 |#1|)))) (-2872 (($ $ |#1|) 11 (|has| |#1| (-297 |#1| |#1|))))) +(((-350 |#1|) (-141) (-1125)) (T -350)) +((-4087 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-350 *3)) (-4 *3 (-1125))))) +(-13 (-10 -8 (-15 -4087 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-297 |t#1| |t#1|)) (-6 (-297 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-320 |t#1|)) (-6 (-320 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-527 (-1201) |t#1|)) (-6 (-527 (-1201) |t#1|)) |%noBranch|))) +(((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-527 (-1201) |#1|) |has| |#1| (-527 (-1201) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-1242) |has| |#1| (-297 |#1| |#1|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-2058 (((-660 (-1201)) $) NIL)) (-4304 (((-112)) 96) (((-112) (-112)) 97)) (-3952 (((-660 (-625 $)) $) NIL)) (-2212 (($ $) NIL)) (-2060 (($ $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-4057 (($ $ (-305 $)) NIL) (($ $ (-660 (-305 $))) NIL) (($ $ (-660 (-625 $)) (-660 $)) NIL)) (-1913 (($ $) NIL)) (-2186 (($ $) NIL)) (-2032 (($ $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-625 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-327 |#3|)) 76) (((-3 $ "failed") (-1201)) 103) (((-3 $ "failed") (-327 (-577))) 64 (|has| |#3| (-1063 (-577)))) (((-3 $ "failed") (-420 (-975 (-577)))) 70 (|has| |#3| (-1063 (-577)))) (((-3 $ "failed") (-975 (-577))) 65 (|has| |#3| (-1063 (-577)))) (((-3 $ "failed") (-327 (-391))) 94 (|has| |#3| (-1063 (-391)))) (((-3 $ "failed") (-420 (-975 (-391)))) 88 (|has| |#3| (-1063 (-391)))) (((-3 $ "failed") (-975 (-391))) 83 (|has| |#3| (-1063 (-391))))) (-2921 (((-625 $) $) NIL) ((|#3| $) NIL) (($ (-327 |#3|)) 77) (($ (-1201)) 104) (($ (-327 (-577))) 66 (|has| |#3| (-1063 (-577)))) (($ (-420 (-975 (-577)))) 71 (|has| |#3| (-1063 (-577)))) (($ (-975 (-577))) 67 (|has| |#3| (-1063 (-577)))) (($ (-327 (-391))) 95 (|has| |#3| (-1063 (-391)))) (($ (-420 (-975 (-391)))) 89 (|has| |#3| (-1063 (-391)))) (($ (-975 (-391))) 85 (|has| |#3| (-1063 (-391))))) (-4187 (((-3 $ "failed") $) NIL)) (-1659 (($) 101)) (-3401 (($ $) NIL) (($ (-660 $)) NIL)) (-2691 (((-660 (-115)) $) NIL)) (-1844 (((-115) (-115)) NIL)) (-2487 (((-112) $) NIL)) (-1912 (((-112) $) NIL (|has| $ (-1063 (-577))))) (-2670 (((-1197 $) (-625 $)) NIL (|has| $ (-1074)))) (-4087 (($ (-1 $ $) (-625 $)) NIL)) (-2702 (((-3 (-625 $) "failed") $) NIL)) (-2444 (($ $) 99)) (-3698 (($ $) NIL)) (-2810 (((-1183) $) NIL)) (-1829 (((-660 (-625 $)) $) NIL)) (-1702 (($ (-115) $) 98) (($ (-115) (-660 $)) NIL)) (-2740 (((-112) $ (-115)) NIL) (((-112) $ (-1201)) NIL)) (-2440 (((-787) $) NIL)) (-1474 (((-1145) $) NIL)) (-2679 (((-112) $ $) NIL) (((-112) $ (-1201)) NIL)) (-4072 (($ $) NIL)) (-1924 (((-112) $) NIL (|has| $ (-1063 (-577))))) (-3280 (($ $ (-625 $) $) NIL) (($ $ (-660 (-625 $)) (-660 $)) NIL) (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ (-660 (-1201)) (-660 (-1 $ $))) NIL) (($ $ (-660 (-1201)) (-660 (-1 $ (-660 $)))) NIL) (($ $ (-1201) (-1 $ (-660 $))) NIL) (($ $ (-1201) (-1 $ $)) NIL) (($ $ (-660 (-115)) (-660 (-1 $ $))) NIL) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) NIL) (($ $ (-115) (-1 $ (-660 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2872 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-660 $)) NIL)) (-2712 (($ $) NIL) (($ $ $) NIL)) (-2852 (($ $ (-1201)) NIL) (($ $ (-660 (-1201))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL)) (-3557 (($ $) NIL (|has| $ (-1074)))) (-2199 (($ $) NIL)) (-2046 (($ $) NIL)) (-3544 (((-880) $) NIL) (($ (-625 $)) NIL) (($ |#3|) NIL) (($ (-577)) NIL) (((-327 |#3|) $) 102)) (-4068 (((-787)) NIL T CONST)) (-2251 (($ $) NIL) (($ (-660 $)) NIL)) (-1409 (((-112) (-115)) NIL)) (-4448 (((-112) $ $) NIL)) (-2136 (($ $) NIL)) (-2106 (($ $) NIL)) (-2120 (($ $) NIL)) (-1654 (($ $) NIL)) (-2806 (($) 100 T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-1201)) NIL) (($ $ (-660 (-1201))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $ $) NIL) (($ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-787)) NIL) (($ $ (-944)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-577) $) NIL) (($ (-787) $) NIL) (($ (-944) $) NIL))) +(((-351 |#1| |#2| |#3|) (-13 (-313) (-38 |#3|) (-1063 |#3|) (-921 (-1201)) (-10 -8 (-15 -2921 ($ (-327 |#3|))) (-15 -1628 ((-3 $ "failed") (-327 |#3|))) (-15 -2921 ($ (-1201))) (-15 -1628 ((-3 $ "failed") (-1201))) (-15 -3544 ((-327 |#3|) $)) (IF (|has| |#3| (-1063 (-577))) (PROGN (-15 -2921 ($ (-327 (-577)))) (-15 -1628 ((-3 $ "failed") (-327 (-577)))) (-15 -2921 ($ (-420 (-975 (-577))))) (-15 -1628 ((-3 $ "failed") (-420 (-975 (-577))))) (-15 -2921 ($ (-975 (-577)))) (-15 -1628 ((-3 $ "failed") (-975 (-577))))) |%noBranch|) (IF (|has| |#3| (-1063 (-391))) (PROGN (-15 -2921 ($ (-327 (-391)))) (-15 -1628 ((-3 $ "failed") (-327 (-391)))) (-15 -2921 ($ (-420 (-975 (-391))))) (-15 -1628 ((-3 $ "failed") (-420 (-975 (-391))))) (-15 -2921 ($ (-975 (-391)))) (-15 -1628 ((-3 $ "failed") (-975 (-391))))) |%noBranch|) (-15 -1654 ($ $)) (-15 -1913 ($ $)) (-15 -4072 ($ $)) (-15 -3698 ($ $)) (-15 -2444 ($ $)) (-15 -2032 ($ $)) (-15 -2046 ($ $)) (-15 -2060 ($ $)) (-15 -2106 ($ $)) (-15 -2120 ($ $)) (-15 -2136 ($ $)) (-15 -2186 ($ $)) (-15 -2199 ($ $)) (-15 -2212 ($ $)) (-15 -1659 ($)) (-15 -2058 ((-660 (-1201)) $)) (-15 -4304 ((-112))) (-15 -4304 ((-112) (-112))))) (-660 (-1201)) (-660 (-1201)) (-400)) (T -351)) +((-2921 (*1 *1 *2) (-12 (-5 *2 (-327 *5)) (-4 *5 (-400)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 *5)) (-4 *5 (-400)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 *2)) (-14 *4 (-660 *2)) (-4 *5 (-400)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-1201)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 *2)) (-14 *4 (-660 *2)) (-4 *5 (-400)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-327 *5)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-577))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-420 (-975 (-577)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 (-975 (-577)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-975 (-577))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-577))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-391))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-420 (-975 (-391)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 (-975 (-391)))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-975 (-391))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-391))) (-5 *1 (-351 *3 *4 *5)) (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-1654 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-1913 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-4072 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-3698 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2444 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2032 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2046 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2060 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2106 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2120 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2136 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2186 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2199 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2212 (*1 *1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-1659 (*1 *1) (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) (-2058 (*1 *2 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-351 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-400)))) (-4304 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) (-4304 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400))))) +(-13 (-313) (-38 |#3|) (-1063 |#3|) (-921 (-1201)) (-10 -8 (-15 -2921 ($ (-327 |#3|))) (-15 -1628 ((-3 $ "failed") (-327 |#3|))) (-15 -2921 ($ (-1201))) (-15 -1628 ((-3 $ "failed") (-1201))) (-15 -3544 ((-327 |#3|) $)) (IF (|has| |#3| (-1063 (-577))) (PROGN (-15 -2921 ($ (-327 (-577)))) (-15 -1628 ((-3 $ "failed") (-327 (-577)))) (-15 -2921 ($ (-420 (-975 (-577))))) (-15 -1628 ((-3 $ "failed") (-420 (-975 (-577))))) (-15 -2921 ($ (-975 (-577)))) (-15 -1628 ((-3 $ "failed") (-975 (-577))))) |%noBranch|) (IF (|has| |#3| (-1063 (-391))) (PROGN (-15 -2921 ($ (-327 (-391)))) (-15 -1628 ((-3 $ "failed") (-327 (-391)))) (-15 -2921 ($ (-420 (-975 (-391))))) (-15 -1628 ((-3 $ "failed") (-420 (-975 (-391))))) (-15 -2921 ($ (-975 (-391)))) (-15 -1628 ((-3 $ "failed") (-975 (-391))))) |%noBranch|) (-15 -1654 ($ $)) (-15 -1913 ($ $)) (-15 -4072 ($ $)) (-15 -3698 ($ $)) (-15 -2444 ($ $)) (-15 -2032 ($ $)) (-15 -2046 ($ $)) (-15 -2060 ($ $)) (-15 -2106 ($ $)) (-15 -2120 ($ $)) (-15 -2136 ($ $)) (-15 -2186 ($ $)) (-15 -2199 ($ $)) (-15 -2212 ($ $)) (-15 -1659 ($)) (-15 -2058 ((-660 (-1201)) $)) (-15 -4304 ((-112))) (-15 -4304 ((-112) (-112))))) +((-4087 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-352 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4087 (|#8| (-1 |#5| |#1|) |#4|))) (-1246) (-1268 |#1|) (-1268 (-420 |#2|)) (-354 |#1| |#2| |#3|) (-1246) (-1268 |#5|) (-1268 (-420 |#6|)) (-354 |#5| |#6| |#7|)) (T -352)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1246)) (-4 *8 (-1246)) (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-4 *9 (-1268 *8)) (-4 *2 (-354 *8 *9 *10)) (-5 *1 (-352 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-354 *5 *6 *7)) (-4 *10 (-1268 (-420 *9)))))) +(-10 -7 (-15 -4087 (|#8| (-1 |#5| |#1|) |#4|))) +((-4402 (((-2 (|:| |num| (-1292 |#3|)) (|:| |den| |#3|)) $) 39)) (-3502 (($ (-1292 (-420 |#3|)) (-1292 $)) NIL) (($ (-1292 (-420 |#3|))) NIL) (($ (-1292 |#3|) |#3|) 173)) (-1337 (((-1292 $) (-1292 $)) 156)) (-4315 (((-660 (-660 |#2|))) 126)) (-1475 (((-112) |#2| |#2|) 76)) (-3143 (($ $) 148)) (-1605 (((-787)) 172)) (-1348 (((-1292 $) (-1292 $)) 218)) (-4326 (((-660 (-975 |#2|)) (-1201)) 115)) (-1384 (((-112) $) 169)) (-1372 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-4350 (((-3 |#3| "failed")) 52)) (-1497 (((-787)) 184)) (-2872 ((|#2| $ |#2| |#2|) 140)) (-4360 (((-3 |#3| "failed")) 71)) (-2852 (($ $ (-1 (-420 |#3|) (-420 |#3|))) NIL) (($ $ (-1 (-420 |#3|) (-420 |#3|)) (-787)) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-660 (-1201)) (-660 (-787))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201))) NIL) (($ $ (-1201)) NIL) (($ $ (-787)) NIL) (($ $) NIL)) (-1359 (((-1292 $) (-1292 $)) 162)) (-4338 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-1486 (((-112)) 34))) +(((-353 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2852 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -4315 ((-660 (-660 |#2|)))) (-15 -4326 ((-660 (-975 |#2|)) (-1201))) (-15 -4338 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4350 ((-3 |#3| "failed"))) (-15 -4360 ((-3 |#3| "failed"))) (-15 -2872 (|#2| |#1| |#2| |#2|)) (-15 -3143 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1372 ((-112) |#1| |#3|)) (-15 -1372 ((-112) |#1| |#2|)) (-15 -3502 (|#1| (-1292 |#3|) |#3|)) (-15 -4402 ((-2 (|:| |num| (-1292 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1337 ((-1292 |#1|) (-1292 |#1|))) (-15 -1348 ((-1292 |#1|) (-1292 |#1|))) (-15 -1359 ((-1292 |#1|) (-1292 |#1|))) (-15 -1372 ((-112) |#1|)) (-15 -1384 ((-112) |#1|)) (-15 -1475 ((-112) |#2| |#2|)) (-15 -1486 ((-112))) (-15 -1497 ((-787))) (-15 -1605 ((-787))) (-15 -2852 (|#1| |#1| (-1 (-420 |#3|) (-420 |#3|)) (-787))) (-15 -2852 (|#1| |#1| (-1 (-420 |#3|) (-420 |#3|)))) (-15 -3502 (|#1| (-1292 (-420 |#3|)))) (-15 -3502 (|#1| (-1292 (-420 |#3|)) (-1292 |#1|)))) (-354 |#2| |#3| |#4|) (-1246) (-1268 |#2|) (-1268 (-420 |#3|))) (T -353)) +((-1605 (*1 *2) (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) (-5 *2 (-787)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) (-1497 (*1 *2) (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) (-5 *2 (-787)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) (-1486 (*1 *2) (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) (-5 *2 (-112)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) (-1475 (*1 *2 *3 *3) (-12 (-4 *3 (-1246)) (-4 *5 (-1268 *3)) (-4 *6 (-1268 (-420 *5))) (-5 *2 (-112)) (-5 *1 (-353 *4 *3 *5 *6)) (-4 *4 (-354 *3 *5 *6)))) (-4360 (*1 *2) (|partial| -12 (-4 *4 (-1246)) (-4 *5 (-1268 (-420 *2))) (-4 *2 (-1268 *4)) (-5 *1 (-353 *3 *4 *2 *5)) (-4 *3 (-354 *4 *2 *5)))) (-4350 (*1 *2) (|partial| -12 (-4 *4 (-1246)) (-4 *5 (-1268 (-420 *2))) (-4 *2 (-1268 *4)) (-5 *1 (-353 *3 *4 *2 *5)) (-4 *3 (-354 *4 *2 *5)))) (-4326 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-4 *5 (-1246)) (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-5 *2 (-660 (-975 *5))) (-5 *1 (-353 *4 *5 *6 *7)) (-4 *4 (-354 *5 *6 *7)))) (-4315 (*1 *2) (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) (-5 *2 (-660 (-660 *4))) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6))))) +(-10 -8 (-15 -2852 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -4315 ((-660 (-660 |#2|)))) (-15 -4326 ((-660 (-975 |#2|)) (-1201))) (-15 -4338 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4350 ((-3 |#3| "failed"))) (-15 -4360 ((-3 |#3| "failed"))) (-15 -2872 (|#2| |#1| |#2| |#2|)) (-15 -3143 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1372 ((-112) |#1| |#3|)) (-15 -1372 ((-112) |#1| |#2|)) (-15 -3502 (|#1| (-1292 |#3|) |#3|)) (-15 -4402 ((-2 (|:| |num| (-1292 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1337 ((-1292 |#1|) (-1292 |#1|))) (-15 -1348 ((-1292 |#1|) (-1292 |#1|))) (-15 -1359 ((-1292 |#1|) (-1292 |#1|))) (-15 -1372 ((-112) |#1|)) (-15 -1384 ((-112) |#1|)) (-15 -1475 ((-112) |#2| |#2|)) (-15 -1486 ((-112))) (-15 -1497 ((-787))) (-15 -1605 ((-787))) (-15 -2852 (|#1| |#1| (-1 (-420 |#3|) (-420 |#3|)) (-787))) (-15 -2852 (|#1| |#1| (-1 (-420 |#3|) (-420 |#3|)))) (-15 -3502 (|#1| (-1292 (-420 |#3|)))) (-15 -3502 (|#1| (-1292 (-420 |#3|)) (-1292 |#1|)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-4402 (((-2 (|:| |num| (-1292 |#2|)) (|:| |den| |#2|)) $) 211)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 105 (|has| (-420 |#2|) (-375)))) (-3290 (($ $) 106 (|has| (-420 |#2|) (-375)))) (-3271 (((-112) $) 108 (|has| (-420 |#2|) (-375)))) (-3390 (((-705 (-420 |#2|)) (-1292 $)) 53) (((-705 (-420 |#2|))) 68)) (-2339 (((-420 |#2|) $) 59)) (-1595 (((-1214 (-944) (-787)) (-577)) 158 (|has| (-420 |#2|) (-361)))) (-1956 (((-3 $ "failed") $ $) 20)) (-3841 (($ $) 125 (|has| (-420 |#2|) (-375)))) (-3029 (((-431 $) $) 126 (|has| (-420 |#2|) (-375)))) (-1939 (((-112) $ $) 116 (|has| (-420 |#2|) (-375)))) (-2229 (((-787)) 99 (|has| (-420 |#2|) (-380)))) (-1439 (((-112)) 228)) (-1428 (((-112) |#1|) 227) (((-112) |#2|) 226)) (-1534 (($) 18 T CONST)) (-1628 (((-3 (-577) "failed") $) 185 (|has| (-420 |#2|) (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) 183 (|has| (-420 |#2|) (-1063 (-420 (-577))))) (((-3 (-420 |#2|) "failed") $) 180)) (-2921 (((-577) $) 184 (|has| (-420 |#2|) (-1063 (-577)))) (((-420 (-577)) $) 182 (|has| (-420 |#2|) (-1063 (-420 (-577))))) (((-420 |#2|) $) 181)) (-3502 (($ (-1292 (-420 |#2|)) (-1292 $)) 55) (($ (-1292 (-420 |#2|))) 71) (($ (-1292 |#2|) |#2|) 210)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-420 |#2|) (-361)))) (-3418 (($ $ $) 120 (|has| (-420 |#2|) (-375)))) (-3381 (((-705 (-420 |#2|)) $ (-1292 $)) 60) (((-705 (-420 |#2|)) $) 66)) (-1647 (((-705 (-577)) (-705 $)) 177 (|has| (-420 |#2|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 176 (|has| (-420 |#2|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-420 |#2|))) (|:| |vec| (-1292 (-420 |#2|)))) (-705 $) (-1292 $)) 175) (((-705 (-420 |#2|)) (-705 $)) 174)) (-1337 (((-1292 $) (-1292 $)) 216)) (-3654 (($ |#3|) 169) (((-3 $ "failed") (-420 |#3|)) 166 (|has| (-420 |#2|) (-375)))) (-4187 (((-3 $ "failed") $) 37)) (-4315 (((-660 (-660 |#1|))) 197 (|has| |#1| (-380)))) (-1475 (((-112) |#1| |#1|) 232)) (-1545 (((-944)) 61)) (-1910 (($) 102 (|has| (-420 |#2|) (-380)))) (-1418 (((-112)) 225)) (-1407 (((-112) |#1|) 224) (((-112) |#2|) 223)) (-3429 (($ $ $) 119 (|has| (-420 |#2|) (-375)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 114 (|has| (-420 |#2|) (-375)))) (-3143 (($ $) 203)) (-4205 (($) 160 (|has| (-420 |#2|) (-361)))) (-1655 (((-112) $) 161 (|has| (-420 |#2|) (-361)))) (-3233 (($ $ (-787)) 152 (|has| (-420 |#2|) (-361))) (($ $) 151 (|has| (-420 |#2|) (-361)))) (-1522 (((-112) $) 127 (|has| (-420 |#2|) (-375)))) (-3817 (((-944) $) 163 (|has| (-420 |#2|) (-361))) (((-849 (-944)) $) 149 (|has| (-420 |#2|) (-361)))) (-2487 (((-112) $) 35)) (-1605 (((-787)) 235)) (-1348 (((-1292 $) (-1292 $)) 217)) (-4145 (((-420 |#2|) $) 58)) (-4326 (((-660 (-975 |#1|)) (-1201)) 198 (|has| |#1| (-375)))) (-4021 (((-3 $ "failed") $) 153 (|has| (-420 |#2|) (-361)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 123 (|has| (-420 |#2|) (-375)))) (-4084 ((|#3| $) 51 (|has| (-420 |#2|) (-375)))) (-4038 (((-944) $) 101 (|has| (-420 |#2|) (-380)))) (-3642 ((|#3| $) 167)) (-1657 (((-705 (-577)) (-1292 $)) 179 (|has| (-420 |#2|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 178 (|has| (-420 |#2|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-420 |#2|))) (|:| |vec| (-1292 (-420 |#2|)))) (-1292 $) $) 173) (((-705 (-420 |#2|)) (-1292 $)) 172)) (-3446 (($ (-660 $)) 112 (|has| (-420 |#2|) (-375))) (($ $ $) 111 (|has| (-420 |#2|) (-375)))) (-2810 (((-1183) $) 10)) (-4412 (((-705 (-420 |#2|))) 212)) (-4436 (((-705 (-420 |#2|))) 214)) (-2171 (($ $) 128 (|has| (-420 |#2|) (-375)))) (-4381 (($ (-1292 |#2|) |#2|) 208)) (-4423 (((-705 (-420 |#2|))) 213)) (-4449 (((-705 (-420 |#2|))) 215)) (-4371 (((-2 (|:| |num| (-705 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 207)) (-4391 (((-2 (|:| |num| (-1292 |#2|)) (|:| |den| |#2|)) $) 209)) (-1395 (((-1292 $)) 221)) (-2627 (((-1292 $)) 222)) (-1384 (((-112) $) 220)) (-1372 (((-112) $) 219) (((-112) $ |#1|) 206) (((-112) $ |#2|) 205)) (-1709 (($) 154 (|has| (-420 |#2|) (-361)) CONST)) (-3222 (($ (-944)) 100 (|has| (-420 |#2|) (-380)))) (-4350 (((-3 |#2| "failed")) 200)) (-1474 (((-1145) $) 11)) (-1497 (((-787)) 234)) (-4101 (($) 171)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 113 (|has| (-420 |#2|) (-375)))) (-3480 (($ (-660 $)) 110 (|has| (-420 |#2|) (-375))) (($ $ $) 109 (|has| (-420 |#2|) (-375)))) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) 157 (|has| (-420 |#2|) (-361)))) (-1902 (((-431 $) $) 124 (|has| (-420 |#2|) (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-420 |#2|) (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 121 (|has| (-420 |#2|) (-375)))) (-3462 (((-3 $ "failed") $ $) 104 (|has| (-420 |#2|) (-375)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 115 (|has| (-420 |#2|) (-375)))) (-1927 (((-787) $) 117 (|has| (-420 |#2|) (-375)))) (-2872 ((|#1| $ |#1| |#1|) 202)) (-4360 (((-3 |#2| "failed")) 201)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 118 (|has| (-420 |#2|) (-375)))) (-1827 (((-420 |#2|) (-1292 $)) 54) (((-420 |#2|)) 67)) (-3243 (((-787) $) 162 (|has| (-420 |#2|) (-361))) (((-3 (-787) "failed") $ $) 150 (|has| (-420 |#2|) (-361)))) (-2852 (($ $ (-1 (-420 |#2|) (-420 |#2|))) 136 (|has| (-420 |#2|) (-375))) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-787)) 135 (|has| (-420 |#2|) (-375))) (($ $ (-1 |#2| |#2|)) 204) (($ $ (-660 (-1201)) (-660 (-787))) 141 (-2839 (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-2761 (|has| (-420 |#2|) (-923 (-1201))) (|has| (-420 |#2|) (-375))))) (($ $ (-1201) (-787)) 140 (-2839 (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-2761 (|has| (-420 |#2|) (-923 (-1201))) (|has| (-420 |#2|) (-375))))) (($ $ (-660 (-1201))) 139 (-2839 (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-2761 (|has| (-420 |#2|) (-923 (-1201))) (|has| (-420 |#2|) (-375))))) (($ $ (-1201)) 137 (-2839 (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-2761 (|has| (-420 |#2|) (-923 (-1201))) (|has| (-420 |#2|) (-375))))) (($ $ (-787)) 147 (-2839 (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-238))) (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-239))) (-2761 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361)))) (($ $) 145 (-2839 (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-238))) (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-239))) (-2761 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))))) (-2478 (((-705 (-420 |#2|)) (-1292 $) (-1 (-420 |#2|) (-420 |#2|))) 165 (|has| (-420 |#2|) (-375)))) (-3557 ((|#3|) 170)) (-1585 (($) 159 (|has| (-420 |#2|) (-361)))) (-2710 (((-1292 (-420 |#2|)) $ (-1292 $)) 57) (((-705 (-420 |#2|)) (-1292 $) (-1292 $)) 56) (((-1292 (-420 |#2|)) $) 73) (((-705 (-420 |#2|)) (-1292 $)) 72)) (-4152 (((-1292 (-420 |#2|)) $) 70) (($ (-1292 (-420 |#2|))) 69) ((|#3| $) 186) (($ |#3|) 168)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) 156 (|has| (-420 |#2|) (-361)))) (-1359 (((-1292 $) (-1292 $)) 218)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ (-420 |#2|)) 44) (($ (-420 (-577))) 98 (-2839 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-1063 (-420 (-577)))))) (($ $) 103 (|has| (-420 |#2|) (-375)))) (-2233 (($ $) 155 (|has| (-420 |#2|) (-361))) (((-3 $ "failed") $) 50 (|has| (-420 |#2|) (-146)))) (-3974 ((|#3| $) 52)) (-4068 (((-787)) 32 T CONST)) (-1462 (((-112)) 231)) (-1450 (((-112) |#1|) 230) (((-112) |#2|) 229)) (-4448 (((-112) $ $) 6)) (-4060 (((-1292 $)) 74)) (-3281 (((-112) $ $) 107 (|has| (-420 |#2|) (-375)))) (-4338 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 199)) (-1486 (((-112)) 233)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-1 (-420 |#2|) (-420 |#2|))) 134 (|has| (-420 |#2|) (-375))) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-787)) 133 (|has| (-420 |#2|) (-375))) (($ $ (-660 (-1201)) (-660 (-787))) 144 (-2839 (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-2761 (|has| (-420 |#2|) (-923 (-1201))) (|has| (-420 |#2|) (-375))))) (($ $ (-1201) (-787)) 143 (-2839 (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-2761 (|has| (-420 |#2|) (-923 (-1201))) (|has| (-420 |#2|) (-375))))) (($ $ (-660 (-1201))) 142 (-2839 (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-2761 (|has| (-420 |#2|) (-923 (-1201))) (|has| (-420 |#2|) (-375))))) (($ $ (-1201)) 138 (-2839 (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-2761 (|has| (-420 |#2|) (-923 (-1201))) (|has| (-420 |#2|) (-375))))) (($ $ (-787)) 148 (-2839 (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-238))) (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-239))) (-2761 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361)))) (($ $) 146 (-2839 (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-238))) (-2761 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-239))) (-2761 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))))) (-2970 (((-112) $ $) 8)) (-3077 (($ $ $) 132 (|has| (-420 |#2|) (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 129 (|has| (-420 |#2|) (-375)))) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ (-420 |#2|)) 46) (($ (-420 |#2|) $) 45) (($ (-420 (-577)) $) 131 (|has| (-420 |#2|) (-375))) (($ $ (-420 (-577))) 130 (|has| (-420 |#2|) (-375))))) +(((-354 |#1| |#2| |#3|) (-141) (-1246) (-1268 |t#1|) (-1268 (-420 |t#2|))) (T -354)) +((-1605 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-787)))) (-1497 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-787)))) (-1486 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-1475 (*1 *2 *3 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-1462 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-1450 (*1 *2 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-1450 (*1 *2 *3) (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1246)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 (-420 *3))) (-5 *2 (-112)))) (-1439 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-1428 (*1 *2 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-1428 (*1 *2 *3) (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1246)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 (-420 *3))) (-5 *2 (-112)))) (-1418 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-1407 (*1 *2 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-1407 (*1 *2 *3) (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1246)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 (-420 *3))) (-5 *2 (-112)))) (-2627 (*1 *2) (-12 (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5)))) (-1395 (*1 *2) (-12 (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5)))) (-1384 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-1372 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-1359 (*1 *2 *2) (-12 (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))))) (-1348 (*1 *2 *2) (-12 (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))))) (-1337 (*1 *2 *2) (-12 (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))))) (-4449 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-705 (-420 *4))))) (-4436 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-705 (-420 *4))))) (-4423 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-705 (-420 *4))))) (-4412 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-705 (-420 *4))))) (-4402 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-2 (|:| |num| (-1292 *4)) (|:| |den| *4))))) (-3502 (*1 *1 *2 *3) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-1268 *4)) (-4 *4 (-1246)) (-4 *1 (-354 *4 *3 *5)) (-4 *5 (-1268 (-420 *3))))) (-4391 (*1 *2 *1) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-2 (|:| |num| (-1292 *4)) (|:| |den| *4))))) (-4381 (*1 *1 *2 *3) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-1268 *4)) (-4 *4 (-1246)) (-4 *1 (-354 *4 *3 *5)) (-4 *5 (-1268 (-420 *3))))) (-4371 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-354 *4 *5 *6)) (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) (-5 *2 (-2 (|:| |num| (-705 *5)) (|:| |den| *5))))) (-1372 (*1 *2 *1 *3) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) (-1372 (*1 *2 *1 *3) (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1246)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 (-420 *3))) (-5 *2 (-112)))) (-2852 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-354 *2 *3 *4)) (-4 *2 (-1246)) (-4 *3 (-1268 *2)) (-4 *4 (-1268 (-420 *3))))) (-2872 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-354 *2 *3 *4)) (-4 *2 (-1246)) (-4 *3 (-1268 *2)) (-4 *4 (-1268 (-420 *3))))) (-4360 (*1 *2) (|partial| -12 (-4 *1 (-354 *3 *2 *4)) (-4 *3 (-1246)) (-4 *4 (-1268 (-420 *2))) (-4 *2 (-1268 *3)))) (-4350 (*1 *2) (|partial| -12 (-4 *1 (-354 *3 *2 *4)) (-4 *3 (-1246)) (-4 *4 (-1268 (-420 *2))) (-4 *2 (-1268 *3)))) (-4338 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1268 *4)) (-4 *4 (-1246)) (-4 *6 (-1268 (-420 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-354 *4 *5 *6)))) (-4326 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-4 *1 (-354 *4 *5 *6)) (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) (-4 *4 (-375)) (-5 *2 (-660 (-975 *4))))) (-4315 (*1 *2) (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) (-4 *3 (-380)) (-5 *2 (-660 (-660 *3)))))) +(-13 (-740 (-420 |t#2|) |t#3|) (-10 -8 (-15 -1605 ((-787))) (-15 -1497 ((-787))) (-15 -1486 ((-112))) (-15 -1475 ((-112) |t#1| |t#1|)) (-15 -1462 ((-112))) (-15 -1450 ((-112) |t#1|)) (-15 -1450 ((-112) |t#2|)) (-15 -1439 ((-112))) (-15 -1428 ((-112) |t#1|)) (-15 -1428 ((-112) |t#2|)) (-15 -1418 ((-112))) (-15 -1407 ((-112) |t#1|)) (-15 -1407 ((-112) |t#2|)) (-15 -2627 ((-1292 $))) (-15 -1395 ((-1292 $))) (-15 -1384 ((-112) $)) (-15 -1372 ((-112) $)) (-15 -1359 ((-1292 $) (-1292 $))) (-15 -1348 ((-1292 $) (-1292 $))) (-15 -1337 ((-1292 $) (-1292 $))) (-15 -4449 ((-705 (-420 |t#2|)))) (-15 -4436 ((-705 (-420 |t#2|)))) (-15 -4423 ((-705 (-420 |t#2|)))) (-15 -4412 ((-705 (-420 |t#2|)))) (-15 -4402 ((-2 (|:| |num| (-1292 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3502 ($ (-1292 |t#2|) |t#2|)) (-15 -4391 ((-2 (|:| |num| (-1292 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4381 ($ (-1292 |t#2|) |t#2|)) (-15 -4371 ((-2 (|:| |num| (-705 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1372 ((-112) $ |t#1|)) (-15 -1372 ((-112) $ |t#2|)) (-15 -2852 ($ $ (-1 |t#2| |t#2|))) (-15 -3143 ($ $)) (-15 -2872 (|t#1| $ |t#1| |t#1|)) (-15 -4360 ((-3 |t#2| "failed"))) (-15 -4350 ((-3 |t#2| "failed"))) (-15 -4338 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-375)) (-15 -4326 ((-660 (-975 |t#1|)) (-1201))) |%noBranch|) (IF (|has| |t#1| (-380)) (-15 -4315 ((-660 (-660 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-38 #1=(-420 |#2|)) . T) ((-38 $) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-102) . T) ((-111 #0# #0#) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-146))) ((-148) |has| (-420 |#2|) (-148)) ((-629 #0#) -2839 (|has| (-420 |#2|) (-1063 (-420 (-577)))) (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-629 #1#) . T) ((-629 (-577)) . T) ((-629 $) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-626 (-880)) . T) ((-174) . T) ((-627 |#3|) . T) ((-235 $) -2839 (|has| (-420 |#2|) (-361)) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375)))) ((-233 #1#) |has| (-420 |#2|) (-375)) ((-239) -2839 (|has| (-420 |#2|) (-361)) (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375)))) ((-238) -2839 (|has| (-420 |#2|) (-361)) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375)))) ((-273 #1#) |has| (-420 |#2|) (-375)) ((-249) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-301) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-318) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-375) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-415) |has| (-420 |#2|) (-361)) ((-380) -2839 (|has| (-420 |#2|) (-380)) (|has| (-420 |#2|) (-361))) ((-361) |has| (-420 |#2|) (-361)) ((-382 #1# |#3|) . T) ((-422 #1# |#3|) . T) ((-389 #1#) . T) ((-424 #1#) . T) ((-465) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-569) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-662 #0#) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-662 #1#) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0#) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-664 #1#) . T) ((-664 #2=(-577)) |has| (-420 |#2|) (-654 (-577))) ((-664 $) . T) ((-656 #0#) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-656 #1#) . T) ((-656 $) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-654 #1#) . T) ((-654 #2#) |has| (-420 |#2|) (-654 (-577))) ((-733 #0#) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-733 #1#) . T) ((-733 $) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-740 #1# |#3|) . T) ((-742) . T) ((-915 $ #3=(-1201)) -2839 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201))))) ((-921 (-1201)) -12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) ((-923 #3#) -2839 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201))))) ((-943) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-1063 (-420 (-577))) |has| (-420 |#2|) (-1063 (-420 (-577)))) ((-1063 #1#) . T) ((-1063 (-577)) |has| (-420 |#2|) (-1063 (-577))) ((-1076 #0#) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-1076 #1#) . T) ((-1076 $) . T) ((-1081 #0#) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375))) ((-1081 #1#) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1177) |has| (-420 |#2|) (-361)) ((-1242) . T) ((-1246) -2839 (|has| (-420 |#2|) (-361)) (|has| (-420 |#2|) (-375)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-2766 (((-112) $) NIL)) (-2732 (((-787)) NIL)) (-2339 (((-933 |#1|) $) NIL) (($ $ (-944)) NIL (|has| (-933 |#1|) (-380)))) (-1595 (((-1214 (-944) (-787)) (-577)) NIL (|has| (-933 |#1|) (-380)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1939 (((-112) $ $) NIL)) (-2229 (((-787)) NIL (|has| (-933 |#1|) (-380)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-933 |#1|) "failed") $) NIL)) (-2921 (((-933 |#1|) $) NIL)) (-3502 (($ (-1292 (-933 |#1|))) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-933 |#1|) (-380)))) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($) NIL (|has| (-933 |#1|) (-380)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-4205 (($) NIL (|has| (-933 |#1|) (-380)))) (-1655 (((-112) $) NIL (|has| (-933 |#1|) (-380)))) (-3233 (($ $ (-787)) NIL (-2839 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380)))) (($ $) NIL (-2839 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))))) (-1522 (((-112) $) NIL)) (-3817 (((-944) $) NIL (|has| (-933 |#1|) (-380))) (((-849 (-944)) $) NIL (-2839 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))))) (-2487 (((-112) $) NIL)) (-4073 (($) NIL (|has| (-933 |#1|) (-380)))) (-4049 (((-112) $) NIL (|has| (-933 |#1|) (-380)))) (-4145 (((-933 |#1|) $) NIL) (($ $ (-944)) NIL (|has| (-933 |#1|) (-380)))) (-4021 (((-3 $ "failed") $) NIL (|has| (-933 |#1|) (-380)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-4084 (((-1197 (-933 |#1|)) $) NIL) (((-1197 $) $ (-944)) NIL (|has| (-933 |#1|) (-380)))) (-4038 (((-944) $) NIL (|has| (-933 |#1|) (-380)))) (-2175 (((-1197 (-933 |#1|)) $) NIL (|has| (-933 |#1|) (-380)))) (-2163 (((-1197 (-933 |#1|)) $) NIL (|has| (-933 |#1|) (-380))) (((-3 (-1197 (-933 |#1|)) "failed") $ $) NIL (|has| (-933 |#1|) (-380)))) (-2187 (($ $ (-1197 (-933 |#1|))) NIL (|has| (-933 |#1|) (-380)))) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1709 (($) NIL (|has| (-933 |#1|) (-380)) CONST)) (-3222 (($ (-944)) NIL (|has| (-933 |#1|) (-380)))) (-2754 (((-112) $) NIL)) (-1474 (((-1145) $) NIL)) (-1507 (((-981 (-1145))) NIL)) (-4101 (($) NIL (|has| (-933 |#1|) (-380)))) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) NIL (|has| (-933 |#1|) (-380)))) (-1902 (((-431 $) $) NIL)) (-2744 (((-849 (-944))) NIL) (((-944)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-3243 (((-787) $) NIL (|has| (-933 |#1|) (-380))) (((-3 (-787) "failed") $ $) NIL (-2839 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))))) (-2561 (((-135)) NIL)) (-2852 (($ $ (-787)) NIL (|has| (-933 |#1|) (-380))) (($ $) NIL (|has| (-933 |#1|) (-380)))) (-2887 (((-849 (-944)) $) NIL) (((-944) $) NIL)) (-3557 (((-1197 (-933 |#1|))) NIL)) (-1585 (($) NIL (|has| (-933 |#1|) (-380)))) (-2200 (($) NIL (|has| (-933 |#1|) (-380)))) (-2710 (((-1292 (-933 |#1|)) $) NIL) (((-705 (-933 |#1|)) (-1292 $)) NIL)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| (-933 |#1|) (-380)))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) NIL) (($ (-933 |#1|)) NIL)) (-2233 (($ $) NIL (|has| (-933 |#1|) (-380))) (((-3 $ "failed") $) NIL (-2839 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))))) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) NIL) (((-1292 $) (-944)) NIL)) (-3281 (((-112) $ $) NIL)) (-2776 (((-112) $) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2721 (($ $) NIL (|has| (-933 |#1|) (-380))) (($ $ (-787)) NIL (|has| (-933 |#1|) (-380)))) (-2132 (($ $ (-787)) NIL (|has| (-933 |#1|) (-380))) (($ $) NIL (|has| (-933 |#1|) (-380)))) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL) (($ $ (-933 |#1|)) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ $ (-933 |#1|)) NIL) (($ (-933 |#1|) $) NIL))) +(((-355 |#1| |#2|) (-13 (-340 (-933 |#1|)) (-10 -7 (-15 -1507 ((-981 (-1145)))))) (-944) (-944)) (T -355)) +((-1507 (*1 *2) (-12 (-5 *2 (-981 (-1145))) (-5 *1 (-355 *3 *4)) (-14 *3 (-944)) (-14 *4 (-944))))) +(-13 (-340 (-933 |#1|)) (-10 -7 (-15 -1507 ((-981 (-1145)))))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 58)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-2766 (((-112) $) NIL)) (-2732 (((-787)) NIL)) (-2339 ((|#1| $) NIL) (($ $ (-944)) NIL (|has| |#1| (-380)))) (-1595 (((-1214 (-944) (-787)) (-577)) 56 (|has| |#1| (-380)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1939 (((-112) $ $) NIL)) (-2229 (((-787)) NIL (|has| |#1| (-380)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) 142)) (-2921 ((|#1| $) 113)) (-3502 (($ (-1292 |#1|)) 130)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-380)))) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($) 124 (|has| |#1| (-380)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-4205 (($) 160 (|has| |#1| (-380)))) (-1655 (((-112) $) 66 (|has| |#1| (-380)))) (-3233 (($ $ (-787)) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380)))) (($ $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-1522 (((-112) $) NIL)) (-3817 (((-944) $) 60 (|has| |#1| (-380))) (((-849 (-944)) $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-2487 (((-112) $) 62)) (-4073 (($) 162 (|has| |#1| (-380)))) (-4049 (((-112) $) NIL (|has| |#1| (-380)))) (-4145 ((|#1| $) NIL) (($ $ (-944)) NIL (|has| |#1| (-380)))) (-4021 (((-3 $ "failed") $) NIL (|has| |#1| (-380)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-4084 (((-1197 |#1|) $) 117) (((-1197 $) $ (-944)) NIL (|has| |#1| (-380)))) (-4038 (((-944) $) 171 (|has| |#1| (-380)))) (-2175 (((-1197 |#1|) $) NIL (|has| |#1| (-380)))) (-2163 (((-1197 |#1|) $) NIL (|has| |#1| (-380))) (((-3 (-1197 |#1|) "failed") $ $) NIL (|has| |#1| (-380)))) (-2187 (($ $ (-1197 |#1|)) NIL (|has| |#1| (-380)))) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) 178)) (-1709 (($) NIL (|has| |#1| (-380)) CONST)) (-3222 (($ (-944)) 96 (|has| |#1| (-380)))) (-2754 (((-112) $) 147)) (-1474 (((-1145) $) NIL)) (-1507 (((-981 (-1145))) 57)) (-4101 (($) 158 (|has| |#1| (-380)))) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) 119 (|has| |#1| (-380)))) (-1902 (((-431 $) $) NIL)) (-2744 (((-849 (-944))) 90) (((-944)) 91)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-3243 (((-787) $) 161 (|has| |#1| (-380))) (((-3 (-787) "failed") $ $) 154 (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-2561 (((-135)) NIL)) (-2852 (($ $ (-787)) NIL (|has| |#1| (-380))) (($ $) NIL (|has| |#1| (-380)))) (-2887 (((-849 (-944)) $) NIL) (((-944) $) NIL)) (-3557 (((-1197 |#1|)) 122)) (-1585 (($) 159 (|has| |#1| (-380)))) (-2200 (($) 167 (|has| |#1| (-380)))) (-2710 (((-1292 |#1|) $) 77) (((-705 |#1|) (-1292 $)) NIL)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| |#1| (-380)))) (-3544 (((-880) $) 174) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) NIL) (($ |#1|) 100)) (-2233 (($ $) NIL (|has| |#1| (-380))) (((-3 $ "failed") $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-4068 (((-787)) 155 T CONST)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) 144) (((-1292 $) (-944)) 98)) (-3281 (((-112) $ $) NIL)) (-2776 (((-112) $) NIL)) (-2806 (($) 67 T CONST)) (-2816 (($) 103 T CONST)) (-2721 (($ $) 107 (|has| |#1| (-380))) (($ $ (-787)) NIL (|has| |#1| (-380)))) (-2132 (($ $ (-787)) NIL (|has| |#1| (-380))) (($ $) NIL (|has| |#1| (-380)))) (-2970 (((-112) $ $) 65)) (-3077 (($ $ $) 176) (($ $ |#1|) 177)) (-3066 (($ $) 157) (($ $ $) NIL)) (-3055 (($ $ $) 86)) (** (($ $ (-944)) 180) (($ $ (-787)) 181) (($ $ (-577)) 179)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 102) (($ $ $) 101) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) +(((-356 |#1| |#2|) (-13 (-340 |#1|) (-10 -7 (-15 -1507 ((-981 (-1145)))))) (-361) (-1197 |#1|)) (T -356)) +((-1507 (*1 *2) (-12 (-5 *2 (-981 (-1145))) (-5 *1 (-356 *3 *4)) (-4 *3 (-361)) (-14 *4 (-1197 *3))))) +(-13 (-340 |#1|) (-10 -7 (-15 -1507 ((-981 (-1145)))))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-2766 (((-112) $) NIL)) (-2732 (((-787)) NIL)) (-2339 ((|#1| $) NIL) (($ $ (-944)) NIL (|has| |#1| (-380)))) (-1595 (((-1214 (-944) (-787)) (-577)) NIL (|has| |#1| (-380)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1939 (((-112) $ $) NIL)) (-2229 (((-787)) NIL (|has| |#1| (-380)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) NIL)) (-2921 ((|#1| $) NIL)) (-3502 (($ (-1292 |#1|)) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-380)))) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($) NIL (|has| |#1| (-380)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-4205 (($) NIL (|has| |#1| (-380)))) (-1655 (((-112) $) NIL (|has| |#1| (-380)))) (-3233 (($ $ (-787)) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380)))) (($ $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-1522 (((-112) $) NIL)) (-3817 (((-944) $) NIL (|has| |#1| (-380))) (((-849 (-944)) $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-2487 (((-112) $) NIL)) (-4073 (($) NIL (|has| |#1| (-380)))) (-4049 (((-112) $) NIL (|has| |#1| (-380)))) (-4145 ((|#1| $) NIL) (($ $ (-944)) NIL (|has| |#1| (-380)))) (-4021 (((-3 $ "failed") $) NIL (|has| |#1| (-380)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-4084 (((-1197 |#1|) $) NIL) (((-1197 $) $ (-944)) NIL (|has| |#1| (-380)))) (-4038 (((-944) $) NIL (|has| |#1| (-380)))) (-2175 (((-1197 |#1|) $) NIL (|has| |#1| (-380)))) (-2163 (((-1197 |#1|) $) NIL (|has| |#1| (-380))) (((-3 (-1197 |#1|) "failed") $ $) NIL (|has| |#1| (-380)))) (-2187 (($ $ (-1197 |#1|)) NIL (|has| |#1| (-380)))) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1709 (($) NIL (|has| |#1| (-380)) CONST)) (-3222 (($ (-944)) NIL (|has| |#1| (-380)))) (-2754 (((-112) $) NIL)) (-1474 (((-1145) $) NIL)) (-1507 (((-981 (-1145))) NIL)) (-4101 (($) NIL (|has| |#1| (-380)))) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) NIL (|has| |#1| (-380)))) (-1902 (((-431 $) $) NIL)) (-2744 (((-849 (-944))) NIL) (((-944)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-3243 (((-787) $) NIL (|has| |#1| (-380))) (((-3 (-787) "failed") $ $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-2561 (((-135)) NIL)) (-2852 (($ $ (-787)) NIL (|has| |#1| (-380))) (($ $) NIL (|has| |#1| (-380)))) (-2887 (((-849 (-944)) $) NIL) (((-944) $) NIL)) (-3557 (((-1197 |#1|)) NIL)) (-1585 (($) NIL (|has| |#1| (-380)))) (-2200 (($) NIL (|has| |#1| (-380)))) (-2710 (((-1292 |#1|) $) NIL) (((-705 |#1|) (-1292 $)) NIL)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| |#1| (-380)))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) NIL) (($ |#1|) NIL)) (-2233 (($ $) NIL (|has| |#1| (-380))) (((-3 $ "failed") $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) NIL) (((-1292 $) (-944)) NIL)) (-3281 (((-112) $ $) NIL)) (-2776 (((-112) $) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2721 (($ $) NIL (|has| |#1| (-380))) (($ $ (-787)) NIL (|has| |#1| (-380)))) (-2132 (($ $ (-787)) NIL (|has| |#1| (-380))) (($ $) NIL (|has| |#1| (-380)))) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-357 |#1| |#2|) (-13 (-340 |#1|) (-10 -7 (-15 -1507 ((-981 (-1145)))))) (-361) (-944)) (T -357)) +((-1507 (*1 *2) (-12 (-5 *2 (-981 (-1145))) (-5 *1 (-357 *3 *4)) (-4 *3 (-361)) (-14 *4 (-944))))) +(-13 (-340 |#1|) (-10 -7 (-15 -1507 ((-981 (-1145)))))) +((-1618 (((-787) (-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145)))))) 61)) (-1518 (((-981 (-1145)) (-1197 |#1|)) 112)) (-1530 (((-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145))))) (-1197 |#1|)) 103)) (-1540 (((-705 |#1|) (-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145)))))) 113)) (-1552 (((-3 (-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145))))) "failed") (-944)) 13)) (-1562 (((-3 (-1197 |#1|) (-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145)))))) (-944)) 18))) +(((-358 |#1|) (-10 -7 (-15 -1518 ((-981 (-1145)) (-1197 |#1|))) (-15 -1530 ((-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145))))) (-1197 |#1|))) (-15 -1540 ((-705 |#1|) (-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145))))))) (-15 -1618 ((-787) (-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145))))))) (-15 -1552 ((-3 (-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145))))) "failed") (-944))) (-15 -1562 ((-3 (-1197 |#1|) (-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145)))))) (-944)))) (-361)) (T -358)) +((-1562 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-3 (-1197 *4) (-1292 (-660 (-2 (|:| -3115 *4) (|:| -3222 (-1145))))))) (-5 *1 (-358 *4)) (-4 *4 (-361)))) (-1552 (*1 *2 *3) (|partial| -12 (-5 *3 (-944)) (-5 *2 (-1292 (-660 (-2 (|:| -3115 *4) (|:| -3222 (-1145)))))) (-5 *1 (-358 *4)) (-4 *4 (-361)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-1292 (-660 (-2 (|:| -3115 *4) (|:| -3222 (-1145)))))) (-4 *4 (-361)) (-5 *2 (-787)) (-5 *1 (-358 *4)))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-1292 (-660 (-2 (|:| -3115 *4) (|:| -3222 (-1145)))))) (-4 *4 (-361)) (-5 *2 (-705 *4)) (-5 *1 (-358 *4)))) (-1530 (*1 *2 *3) (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) (-5 *2 (-1292 (-660 (-2 (|:| -3115 *4) (|:| -3222 (-1145)))))) (-5 *1 (-358 *4)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) (-5 *2 (-981 (-1145))) (-5 *1 (-358 *4))))) +(-10 -7 (-15 -1518 ((-981 (-1145)) (-1197 |#1|))) (-15 -1530 ((-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145))))) (-1197 |#1|))) (-15 -1540 ((-705 |#1|) (-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145))))))) (-15 -1618 ((-787) (-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145))))))) (-15 -1552 ((-3 (-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145))))) "failed") (-944))) (-15 -1562 ((-3 (-1197 |#1|) (-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145)))))) (-944)))) +((-3544 ((|#1| |#3|) 104) ((|#3| |#1|) 87))) +(((-359 |#1| |#2| |#3|) (-10 -7 (-15 -3544 (|#3| |#1|)) (-15 -3544 (|#1| |#3|))) (-340 |#2|) (-361) (-340 |#2|)) (T -359)) +((-3544 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *2 (-340 *4)) (-5 *1 (-359 *2 *4 *3)) (-4 *3 (-340 *4)))) (-3544 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *2 (-340 *4)) (-5 *1 (-359 *3 *4 *2)) (-4 *3 (-340 *4))))) +(-10 -7 (-15 -3544 (|#3| |#1|)) (-15 -3544 (|#1| |#3|))) +((-1655 (((-112) $) 60)) (-3817 (((-849 (-944)) $) 23) (((-944) $) 64)) (-4021 (((-3 $ "failed") $) 18)) (-1709 (($) 9)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 114)) (-3243 (((-3 (-787) "failed") $ $) 92) (((-787) $) 79)) (-2852 (($ $) 8) (($ $ (-787)) NIL)) (-1585 (($) 53)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) 38)) (-2233 (((-3 $ "failed") $) 45) (($ $) 44))) +(((-360 |#1|) (-10 -8 (-15 -3817 ((-944) |#1|)) (-15 -3243 ((-787) |#1|)) (-15 -1655 ((-112) |#1|)) (-15 -1585 (|#1|)) (-15 -2245 ((-3 (-1292 |#1|) "failed") (-705 |#1|))) (-15 -2233 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1|)) (-15 -1709 (|#1|)) (-15 -4021 ((-3 |#1| "failed") |#1|)) (-15 -3243 ((-3 (-787) "failed") |#1| |#1|)) (-15 -3817 ((-849 (-944)) |#1|)) (-15 -2233 ((-3 |#1| "failed") |#1|)) (-15 -2305 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|)))) (-361)) (T -360)) +NIL +(-10 -8 (-15 -3817 ((-944) |#1|)) (-15 -3243 ((-787) |#1|)) (-15 -1655 ((-112) |#1|)) (-15 -1585 (|#1|)) (-15 -2245 ((-3 (-1292 |#1|) "failed") (-705 |#1|))) (-15 -2233 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1|)) (-15 -1709 (|#1|)) (-15 -4021 ((-3 |#1| "failed") |#1|)) (-15 -3243 ((-3 (-787) "failed") |#1| |#1|)) (-15 -3817 ((-849 (-944)) |#1|)) (-15 -2233 ((-3 |#1| "failed") |#1|)) (-15 -2305 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-1595 (((-1214 (-944) (-787)) (-577)) 102)) (-1956 (((-3 $ "failed") $ $) 20)) (-3841 (($ $) 81)) (-3029 (((-431 $) $) 80)) (-1939 (((-112) $ $) 65)) (-2229 (((-787)) 112)) (-1534 (($) 18 T CONST)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-3418 (($ $ $) 61)) (-4187 (((-3 $ "failed") $) 37)) (-1910 (($) 115)) (-3429 (($ $ $) 62)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 57)) (-4205 (($) 100)) (-1655 (((-112) $) 99)) (-3233 (($ $) 87) (($ $ (-787)) 86)) (-1522 (((-112) $) 79)) (-3817 (((-849 (-944)) $) 89) (((-944) $) 97)) (-2487 (((-112) $) 35)) (-4021 (((-3 $ "failed") $) 111)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 58)) (-4038 (((-944) $) 114)) (-3446 (($ $ $) 52) (($ (-660 $)) 51)) (-2810 (((-1183) $) 10)) (-2171 (($ $) 78)) (-1709 (($) 110 T CONST)) (-3222 (($ (-944)) 113)) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 50)) (-3480 (($ $ $) 54) (($ (-660 $)) 53)) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) 103)) (-1902 (((-431 $) $) 82)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3462 (((-3 $ "failed") $ $) 48)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 56)) (-1927 (((-787) $) 64)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 63)) (-3243 (((-3 (-787) "failed") $ $) 88) (((-787) $) 98)) (-2852 (($ $) 109) (($ $ (-787)) 107)) (-1585 (($) 101)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) 104)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49) (($ (-420 (-577))) 74)) (-2233 (((-3 $ "failed") $) 90) (($ $) 105)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 45)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $) 108) (($ $ (-787)) 106)) (-2970 (((-112) $ $) 8)) (-3077 (($ $ $) 73)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 77)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ (-420 (-577))) 76) (($ (-420 (-577)) $) 75))) +(((-361) (-141)) (T -361)) +((-2233 (*1 *1 *1) (-4 *1 (-361))) (-2245 (*1 *2 *3) (|partial| -12 (-5 *3 (-705 *1)) (-4 *1 (-361)) (-5 *2 (-1292 *1)))) (-1606 (*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))))) (-1595 (*1 *2 *3) (-12 (-4 *1 (-361)) (-5 *3 (-577)) (-5 *2 (-1214 (-944) (-787))))) (-1585 (*1 *1) (-4 *1 (-361))) (-4205 (*1 *1) (-4 *1 (-361))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-112)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-787)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-944)))) (-1573 (*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-415) (-380) (-1177) (-239) (-10 -8 (-15 -2233 ($ $)) (-15 -2245 ((-3 (-1292 $) "failed") (-705 $))) (-15 -1606 ((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577)))))) (-15 -1595 ((-1214 (-944) (-787)) (-577))) (-15 -1585 ($)) (-15 -4205 ($)) (-15 -1655 ((-112) $)) (-15 -3243 ((-787) $)) (-15 -3817 ((-944) $)) (-15 -1573 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-415) . T) ((-380) . T) ((-465) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-733 #0#) . T) ((-733 $) . T) ((-742) . T) ((-943) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1177) . T) ((-1242) . T) ((-1246) . T)) +((-2636 (((-2 (|:| -4060 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))) |#1|) 55)) (-2627 (((-2 (|:| -4060 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|)))) 53))) +(((-362 |#1| |#2| |#3|) (-10 -7 (-15 -2627 ((-2 (|:| -4060 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))))) (-15 -2636 ((-2 (|:| -4060 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))) |#1|))) (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $)))) (-1268 |#1|) (-422 |#1| |#2|)) (T -362)) +((-2636 (*1 *2 *3) (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) (-4 *4 (-1268 *3)) (-5 *2 (-2 (|:| -4060 (-705 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-705 *3)))) (-5 *1 (-362 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2627 (*1 *2) (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) (-4 *4 (-1268 *3)) (-5 *2 (-2 (|:| -4060 (-705 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-705 *3)))) (-5 *1 (-362 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) +(-10 -7 (-15 -2627 ((-2 (|:| -4060 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))))) (-15 -2636 ((-2 (|:| -4060 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))) |#1|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-2766 (((-112) $) NIL)) (-2732 (((-787)) NIL)) (-2339 (((-933 |#1|) $) NIL) (($ $ (-944)) NIL (|has| (-933 |#1|) (-380)))) (-1595 (((-1214 (-944) (-787)) (-577)) NIL (|has| (-933 |#1|) (-380)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1618 (((-787)) NIL)) (-1939 (((-112) $ $) NIL)) (-2229 (((-787)) NIL (|has| (-933 |#1|) (-380)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-933 |#1|) "failed") $) NIL)) (-2921 (((-933 |#1|) $) NIL)) (-3502 (($ (-1292 (-933 |#1|))) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-933 |#1|) (-380)))) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($) NIL (|has| (-933 |#1|) (-380)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-4205 (($) NIL (|has| (-933 |#1|) (-380)))) (-1655 (((-112) $) NIL (|has| (-933 |#1|) (-380)))) (-3233 (($ $ (-787)) NIL (-2839 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380)))) (($ $) NIL (-2839 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))))) (-1522 (((-112) $) NIL)) (-3817 (((-944) $) NIL (|has| (-933 |#1|) (-380))) (((-849 (-944)) $) NIL (-2839 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))))) (-2487 (((-112) $) NIL)) (-4073 (($) NIL (|has| (-933 |#1|) (-380)))) (-4049 (((-112) $) NIL (|has| (-933 |#1|) (-380)))) (-4145 (((-933 |#1|) $) NIL) (($ $ (-944)) NIL (|has| (-933 |#1|) (-380)))) (-4021 (((-3 $ "failed") $) NIL (|has| (-933 |#1|) (-380)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-4084 (((-1197 (-933 |#1|)) $) NIL) (((-1197 $) $ (-944)) NIL (|has| (-933 |#1|) (-380)))) (-4038 (((-944) $) NIL (|has| (-933 |#1|) (-380)))) (-2175 (((-1197 (-933 |#1|)) $) NIL (|has| (-933 |#1|) (-380)))) (-2163 (((-1197 (-933 |#1|)) $) NIL (|has| (-933 |#1|) (-380))) (((-3 (-1197 (-933 |#1|)) "failed") $ $) NIL (|has| (-933 |#1|) (-380)))) (-2187 (($ $ (-1197 (-933 |#1|))) NIL (|has| (-933 |#1|) (-380)))) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1709 (($) NIL (|has| (-933 |#1|) (-380)) CONST)) (-3222 (($ (-944)) NIL (|has| (-933 |#1|) (-380)))) (-2754 (((-112) $) NIL)) (-1474 (((-1145) $) NIL)) (-1645 (((-1292 (-660 (-2 (|:| -3115 (-933 |#1|)) (|:| -3222 (-1145)))))) NIL)) (-1633 (((-705 (-933 |#1|))) NIL)) (-4101 (($) NIL (|has| (-933 |#1|) (-380)))) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) NIL (|has| (-933 |#1|) (-380)))) (-1902 (((-431 $) $) NIL)) (-2744 (((-849 (-944))) NIL) (((-944)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-3243 (((-787) $) NIL (|has| (-933 |#1|) (-380))) (((-3 (-787) "failed") $ $) NIL (-2839 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))))) (-2561 (((-135)) NIL)) (-2852 (($ $ (-787)) NIL (|has| (-933 |#1|) (-380))) (($ $) NIL (|has| (-933 |#1|) (-380)))) (-2887 (((-849 (-944)) $) NIL) (((-944) $) NIL)) (-3557 (((-1197 (-933 |#1|))) NIL)) (-1585 (($) NIL (|has| (-933 |#1|) (-380)))) (-2200 (($) NIL (|has| (-933 |#1|) (-380)))) (-2710 (((-1292 (-933 |#1|)) $) NIL) (((-705 (-933 |#1|)) (-1292 $)) NIL)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| (-933 |#1|) (-380)))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) NIL) (($ (-933 |#1|)) NIL)) (-2233 (($ $) NIL (|has| (-933 |#1|) (-380))) (((-3 $ "failed") $) NIL (-2839 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))))) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) NIL) (((-1292 $) (-944)) NIL)) (-3281 (((-112) $ $) NIL)) (-2776 (((-112) $) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2721 (($ $) NIL (|has| (-933 |#1|) (-380))) (($ $ (-787)) NIL (|has| (-933 |#1|) (-380)))) (-2132 (($ $ (-787)) NIL (|has| (-933 |#1|) (-380))) (($ $) NIL (|has| (-933 |#1|) (-380)))) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL) (($ $ (-933 |#1|)) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ $ (-933 |#1|)) NIL) (($ (-933 |#1|) $) NIL))) +(((-363 |#1| |#2|) (-13 (-340 (-933 |#1|)) (-10 -7 (-15 -1645 ((-1292 (-660 (-2 (|:| -3115 (-933 |#1|)) (|:| -3222 (-1145))))))) (-15 -1633 ((-705 (-933 |#1|)))) (-15 -1618 ((-787))))) (-944) (-944)) (T -363)) +((-1645 (*1 *2) (-12 (-5 *2 (-1292 (-660 (-2 (|:| -3115 (-933 *3)) (|:| -3222 (-1145)))))) (-5 *1 (-363 *3 *4)) (-14 *3 (-944)) (-14 *4 (-944)))) (-1633 (*1 *2) (-12 (-5 *2 (-705 (-933 *3))) (-5 *1 (-363 *3 *4)) (-14 *3 (-944)) (-14 *4 (-944)))) (-1618 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-363 *3 *4)) (-14 *3 (-944)) (-14 *4 (-944))))) +(-13 (-340 (-933 |#1|)) (-10 -7 (-15 -1645 ((-1292 (-660 (-2 (|:| -3115 (-933 |#1|)) (|:| -3222 (-1145))))))) (-15 -1633 ((-705 (-933 |#1|)))) (-15 -1618 ((-787))))) +((-3473 (((-112) $ $) 73)) (-3585 (((-112) $) 88)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-2766 (((-112) $) NIL)) (-2732 (((-787)) NIL)) (-2339 ((|#1| $) 106) (($ $ (-944)) 104 (|has| |#1| (-380)))) (-1595 (((-1214 (-944) (-787)) (-577)) 170 (|has| |#1| (-380)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1618 (((-787)) 103)) (-1939 (((-112) $ $) NIL)) (-2229 (((-787)) 187 (|has| |#1| (-380)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) 127)) (-2921 ((|#1| $) 105)) (-3502 (($ (-1292 |#1|)) 71)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-380)))) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($) 182 (|has| |#1| (-380)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-4205 (($) 171 (|has| |#1| (-380)))) (-1655 (((-112) $) NIL (|has| |#1| (-380)))) (-3233 (($ $ (-787)) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380)))) (($ $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-1522 (((-112) $) NIL)) (-3817 (((-944) $) NIL (|has| |#1| (-380))) (((-849 (-944)) $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-2487 (((-112) $) NIL)) (-4073 (($) 113 (|has| |#1| (-380)))) (-4049 (((-112) $) 200 (|has| |#1| (-380)))) (-4145 ((|#1| $) 108) (($ $ (-944)) 107 (|has| |#1| (-380)))) (-4021 (((-3 $ "failed") $) NIL (|has| |#1| (-380)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-4084 (((-1197 |#1|) $) 214) (((-1197 $) $ (-944)) NIL (|has| |#1| (-380)))) (-4038 (((-944) $) 148 (|has| |#1| (-380)))) (-2175 (((-1197 |#1|) $) 87 (|has| |#1| (-380)))) (-2163 (((-1197 |#1|) $) 84 (|has| |#1| (-380))) (((-3 (-1197 |#1|) "failed") $ $) 96 (|has| |#1| (-380)))) (-2187 (($ $ (-1197 |#1|)) 83 (|has| |#1| (-380)))) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) 218)) (-1709 (($) NIL (|has| |#1| (-380)) CONST)) (-3222 (($ (-944)) 150 (|has| |#1| (-380)))) (-2754 (((-112) $) 123)) (-1474 (((-1145) $) NIL)) (-1645 (((-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145)))))) 97)) (-1633 (((-705 |#1|)) 101)) (-4101 (($) 110 (|has| |#1| (-380)))) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) 173 (|has| |#1| (-380)))) (-1902 (((-431 $) $) NIL)) (-2744 (((-849 (-944))) NIL) (((-944)) 174)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-3243 (((-787) $) NIL (|has| |#1| (-380))) (((-3 (-787) "failed") $ $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-2561 (((-135)) NIL)) (-2852 (($ $ (-787)) NIL (|has| |#1| (-380))) (($ $) NIL (|has| |#1| (-380)))) (-2887 (((-849 (-944)) $) NIL) (((-944) $) 75)) (-3557 (((-1197 |#1|)) 175)) (-1585 (($) 147 (|has| |#1| (-380)))) (-2200 (($) NIL (|has| |#1| (-380)))) (-2710 (((-1292 |#1|) $) 121) (((-705 |#1|) (-1292 $)) NIL)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| |#1| (-380)))) (-3544 (((-880) $) 140) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) NIL) (($ |#1|) 70)) (-2233 (($ $) NIL (|has| |#1| (-380))) (((-3 $ "failed") $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-4068 (((-787)) 180 T CONST)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) 197) (((-1292 $) (-944)) 116)) (-3281 (((-112) $ $) NIL)) (-2776 (((-112) $) NIL)) (-2806 (($) 186 T CONST)) (-2816 (($) 161 T CONST)) (-2721 (($ $) 122 (|has| |#1| (-380))) (($ $ (-787)) 114 (|has| |#1| (-380)))) (-2132 (($ $ (-787)) NIL (|has| |#1| (-380))) (($ $) NIL (|has| |#1| (-380)))) (-2970 (((-112) $ $) 208)) (-3077 (($ $ $) 119) (($ $ |#1|) 120)) (-3066 (($ $) 202) (($ $ $) 206)) (-3055 (($ $ $) 204)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) 153)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 211) (($ $ $) 164) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118))) +(((-364 |#1| |#2|) (-13 (-340 |#1|) (-10 -7 (-15 -1645 ((-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145))))))) (-15 -1633 ((-705 |#1|))) (-15 -1618 ((-787))))) (-361) (-3 (-1197 |#1|) (-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145))))))) (T -364)) +((-1645 (*1 *2) (-12 (-5 *2 (-1292 (-660 (-2 (|:| -3115 *3) (|:| -3222 (-1145)))))) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) (-14 *4 (-3 (-1197 *3) *2)))) (-1633 (*1 *2) (-12 (-5 *2 (-705 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) (-14 *4 (-3 (-1197 *3) (-1292 (-660 (-2 (|:| -3115 *3) (|:| -3222 (-1145))))))))) (-1618 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) (-14 *4 (-3 (-1197 *3) (-1292 (-660 (-2 (|:| -3115 *3) (|:| -3222 (-1145)))))))))) +(-13 (-340 |#1|) (-10 -7 (-15 -1645 ((-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145))))))) (-15 -1633 ((-705 |#1|))) (-15 -1618 ((-787))))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-2766 (((-112) $) NIL)) (-2732 (((-787)) NIL)) (-2339 ((|#1| $) NIL) (($ $ (-944)) NIL (|has| |#1| (-380)))) (-1595 (((-1214 (-944) (-787)) (-577)) NIL (|has| |#1| (-380)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1618 (((-787)) NIL)) (-1939 (((-112) $ $) NIL)) (-2229 (((-787)) NIL (|has| |#1| (-380)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) NIL)) (-2921 ((|#1| $) NIL)) (-3502 (($ (-1292 |#1|)) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-380)))) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($) NIL (|has| |#1| (-380)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-4205 (($) NIL (|has| |#1| (-380)))) (-1655 (((-112) $) NIL (|has| |#1| (-380)))) (-3233 (($ $ (-787)) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380)))) (($ $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-1522 (((-112) $) NIL)) (-3817 (((-944) $) NIL (|has| |#1| (-380))) (((-849 (-944)) $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-2487 (((-112) $) NIL)) (-4073 (($) NIL (|has| |#1| (-380)))) (-4049 (((-112) $) NIL (|has| |#1| (-380)))) (-4145 ((|#1| $) NIL) (($ $ (-944)) NIL (|has| |#1| (-380)))) (-4021 (((-3 $ "failed") $) NIL (|has| |#1| (-380)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-4084 (((-1197 |#1|) $) NIL) (((-1197 $) $ (-944)) NIL (|has| |#1| (-380)))) (-4038 (((-944) $) NIL (|has| |#1| (-380)))) (-2175 (((-1197 |#1|) $) NIL (|has| |#1| (-380)))) (-2163 (((-1197 |#1|) $) NIL (|has| |#1| (-380))) (((-3 (-1197 |#1|) "failed") $ $) NIL (|has| |#1| (-380)))) (-2187 (($ $ (-1197 |#1|)) NIL (|has| |#1| (-380)))) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1709 (($) NIL (|has| |#1| (-380)) CONST)) (-3222 (($ (-944)) NIL (|has| |#1| (-380)))) (-2754 (((-112) $) NIL)) (-1474 (((-1145) $) NIL)) (-1645 (((-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145)))))) NIL)) (-1633 (((-705 |#1|)) NIL)) (-4101 (($) NIL (|has| |#1| (-380)))) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) NIL (|has| |#1| (-380)))) (-1902 (((-431 $) $) NIL)) (-2744 (((-849 (-944))) NIL) (((-944)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-3243 (((-787) $) NIL (|has| |#1| (-380))) (((-3 (-787) "failed") $ $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-2561 (((-135)) NIL)) (-2852 (($ $ (-787)) NIL (|has| |#1| (-380))) (($ $) NIL (|has| |#1| (-380)))) (-2887 (((-849 (-944)) $) NIL) (((-944) $) NIL)) (-3557 (((-1197 |#1|)) NIL)) (-1585 (($) NIL (|has| |#1| (-380)))) (-2200 (($) NIL (|has| |#1| (-380)))) (-2710 (((-1292 |#1|) $) NIL) (((-705 |#1|) (-1292 $)) NIL)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| |#1| (-380)))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) NIL) (($ |#1|) NIL)) (-2233 (($ $) NIL (|has| |#1| (-380))) (((-3 $ "failed") $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) NIL) (((-1292 $) (-944)) NIL)) (-3281 (((-112) $ $) NIL)) (-2776 (((-112) $) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2721 (($ $) NIL (|has| |#1| (-380))) (($ $ (-787)) NIL (|has| |#1| (-380)))) (-2132 (($ $ (-787)) NIL (|has| |#1| (-380))) (($ $) NIL (|has| |#1| (-380)))) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-365 |#1| |#2|) (-13 (-340 |#1|) (-10 -7 (-15 -1645 ((-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145))))))) (-15 -1633 ((-705 |#1|))) (-15 -1618 ((-787))))) (-361) (-944)) (T -365)) +((-1645 (*1 *2) (-12 (-5 *2 (-1292 (-660 (-2 (|:| -3115 *3) (|:| -3222 (-1145)))))) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) (-14 *4 (-944)))) (-1633 (*1 *2) (-12 (-5 *2 (-705 *3)) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) (-14 *4 (-944)))) (-1618 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) (-14 *4 (-944))))) +(-13 (-340 |#1|) (-10 -7 (-15 -1645 ((-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145))))))) (-15 -1633 ((-705 |#1|))) (-15 -1618 ((-787))))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-2766 (((-112) $) NIL)) (-2732 (((-787)) NIL)) (-2339 (((-933 |#1|) $) NIL) (($ $ (-944)) NIL (|has| (-933 |#1|) (-380)))) (-1595 (((-1214 (-944) (-787)) (-577)) NIL (|has| (-933 |#1|) (-380)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1939 (((-112) $ $) NIL)) (-2229 (((-787)) NIL (|has| (-933 |#1|) (-380)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-933 |#1|) "failed") $) NIL)) (-2921 (((-933 |#1|) $) NIL)) (-3502 (($ (-1292 (-933 |#1|))) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-933 |#1|) (-380)))) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($) NIL (|has| (-933 |#1|) (-380)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-4205 (($) NIL (|has| (-933 |#1|) (-380)))) (-1655 (((-112) $) NIL (|has| (-933 |#1|) (-380)))) (-3233 (($ $ (-787)) NIL (-2839 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380)))) (($ $) NIL (-2839 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))))) (-1522 (((-112) $) NIL)) (-3817 (((-944) $) NIL (|has| (-933 |#1|) (-380))) (((-849 (-944)) $) NIL (-2839 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))))) (-2487 (((-112) $) NIL)) (-4073 (($) NIL (|has| (-933 |#1|) (-380)))) (-4049 (((-112) $) NIL (|has| (-933 |#1|) (-380)))) (-4145 (((-933 |#1|) $) NIL) (($ $ (-944)) NIL (|has| (-933 |#1|) (-380)))) (-4021 (((-3 $ "failed") $) NIL (|has| (-933 |#1|) (-380)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-4084 (((-1197 (-933 |#1|)) $) NIL) (((-1197 $) $ (-944)) NIL (|has| (-933 |#1|) (-380)))) (-4038 (((-944) $) NIL (|has| (-933 |#1|) (-380)))) (-2175 (((-1197 (-933 |#1|)) $) NIL (|has| (-933 |#1|) (-380)))) (-2163 (((-1197 (-933 |#1|)) $) NIL (|has| (-933 |#1|) (-380))) (((-3 (-1197 (-933 |#1|)) "failed") $ $) NIL (|has| (-933 |#1|) (-380)))) (-2187 (($ $ (-1197 (-933 |#1|))) NIL (|has| (-933 |#1|) (-380)))) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1709 (($) NIL (|has| (-933 |#1|) (-380)) CONST)) (-3222 (($ (-944)) NIL (|has| (-933 |#1|) (-380)))) (-2754 (((-112) $) NIL)) (-1474 (((-1145) $) NIL)) (-4101 (($) NIL (|has| (-933 |#1|) (-380)))) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) NIL (|has| (-933 |#1|) (-380)))) (-1902 (((-431 $) $) NIL)) (-2744 (((-849 (-944))) NIL) (((-944)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-3243 (((-787) $) NIL (|has| (-933 |#1|) (-380))) (((-3 (-787) "failed") $ $) NIL (-2839 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))))) (-2561 (((-135)) NIL)) (-2852 (($ $ (-787)) NIL (|has| (-933 |#1|) (-380))) (($ $) NIL (|has| (-933 |#1|) (-380)))) (-2887 (((-849 (-944)) $) NIL) (((-944) $) NIL)) (-3557 (((-1197 (-933 |#1|))) NIL)) (-1585 (($) NIL (|has| (-933 |#1|) (-380)))) (-2200 (($) NIL (|has| (-933 |#1|) (-380)))) (-2710 (((-1292 (-933 |#1|)) $) NIL) (((-705 (-933 |#1|)) (-1292 $)) NIL)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| (-933 |#1|) (-380)))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) NIL) (($ (-933 |#1|)) NIL)) (-2233 (($ $) NIL (|has| (-933 |#1|) (-380))) (((-3 $ "failed") $) NIL (-2839 (|has| (-933 |#1|) (-146)) (|has| (-933 |#1|) (-380))))) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) NIL) (((-1292 $) (-944)) NIL)) (-3281 (((-112) $ $) NIL)) (-2776 (((-112) $) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2721 (($ $) NIL (|has| (-933 |#1|) (-380))) (($ $ (-787)) NIL (|has| (-933 |#1|) (-380)))) (-2132 (($ $ (-787)) NIL (|has| (-933 |#1|) (-380))) (($ $) NIL (|has| (-933 |#1|) (-380)))) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL) (($ $ (-933 |#1|)) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ $ (-933 |#1|)) NIL) (($ (-933 |#1|) $) NIL))) +(((-366 |#1| |#2|) (-340 (-933 |#1|)) (-944) (-944)) (T -366)) +NIL +(-340 (-933 |#1|)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-2766 (((-112) $) NIL)) (-2732 (((-787)) NIL)) (-2339 ((|#1| $) NIL) (($ $ (-944)) NIL (|has| |#1| (-380)))) (-1595 (((-1214 (-944) (-787)) (-577)) 129 (|has| |#1| (-380)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1939 (((-112) $ $) NIL)) (-2229 (((-787)) 155 (|has| |#1| (-380)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) 103)) (-2921 ((|#1| $) 100)) (-3502 (($ (-1292 |#1|)) 95)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-380)))) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($) 92 (|has| |#1| (-380)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-4205 (($) 51 (|has| |#1| (-380)))) (-1655 (((-112) $) NIL (|has| |#1| (-380)))) (-3233 (($ $ (-787)) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380)))) (($ $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-1522 (((-112) $) NIL)) (-3817 (((-944) $) NIL (|has| |#1| (-380))) (((-849 (-944)) $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-2487 (((-112) $) NIL)) (-4073 (($) 130 (|has| |#1| (-380)))) (-4049 (((-112) $) 84 (|has| |#1| (-380)))) (-4145 ((|#1| $) 47) (($ $ (-944)) 52 (|has| |#1| (-380)))) (-4021 (((-3 $ "failed") $) NIL (|has| |#1| (-380)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-4084 (((-1197 |#1|) $) 75) (((-1197 $) $ (-944)) NIL (|has| |#1| (-380)))) (-4038 (((-944) $) 107 (|has| |#1| (-380)))) (-2175 (((-1197 |#1|) $) NIL (|has| |#1| (-380)))) (-2163 (((-1197 |#1|) $) NIL (|has| |#1| (-380))) (((-3 (-1197 |#1|) "failed") $ $) NIL (|has| |#1| (-380)))) (-2187 (($ $ (-1197 |#1|)) NIL (|has| |#1| (-380)))) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1709 (($) NIL (|has| |#1| (-380)) CONST)) (-3222 (($ (-944)) 105 (|has| |#1| (-380)))) (-2754 (((-112) $) 157)) (-1474 (((-1145) $) NIL)) (-4101 (($) 44 (|has| |#1| (-380)))) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) 124 (|has| |#1| (-380)))) (-1902 (((-431 $) $) NIL)) (-2744 (((-849 (-944))) NIL) (((-944)) 154)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-3243 (((-787) $) NIL (|has| |#1| (-380))) (((-3 (-787) "failed") $ $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-2561 (((-135)) NIL)) (-2852 (($ $ (-787)) NIL (|has| |#1| (-380))) (($ $) NIL (|has| |#1| (-380)))) (-2887 (((-849 (-944)) $) NIL) (((-944) $) 67)) (-3557 (((-1197 |#1|)) 98)) (-1585 (($) 135 (|has| |#1| (-380)))) (-2200 (($) NIL (|has| |#1| (-380)))) (-2710 (((-1292 |#1|) $) 63) (((-705 |#1|) (-1292 $)) NIL)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| |#1| (-380)))) (-3544 (((-880) $) 153) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) NIL) (($ |#1|) 97)) (-2233 (($ $) NIL (|has| |#1| (-380))) (((-3 $ "failed") $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-4068 (((-787)) 159 T CONST)) (-4448 (((-112) $ $) 161)) (-4060 (((-1292 $)) 119) (((-1292 $) (-944)) 58)) (-3281 (((-112) $ $) NIL)) (-2776 (((-112) $) NIL)) (-2806 (($) 121 T CONST)) (-2816 (($) 40 T CONST)) (-2721 (($ $) 78 (|has| |#1| (-380))) (($ $ (-787)) NIL (|has| |#1| (-380)))) (-2132 (($ $ (-787)) NIL (|has| |#1| (-380))) (($ $) NIL (|has| |#1| (-380)))) (-2970 (((-112) $ $) 117)) (-3077 (($ $ $) 109) (($ $ |#1|) 110)) (-3066 (($ $) 90) (($ $ $) 115)) (-3055 (($ $ $) 113)) (** (($ $ (-944)) NIL) (($ $ (-787)) 53) (($ $ (-577)) 138)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 88) (($ $ $) 65) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86))) +(((-367 |#1| |#2|) (-340 |#1|) (-361) (-1197 |#1|)) (T -367)) +NIL +(-340 |#1|) +((-3676 ((|#1| (-1197 |#2|)) 59))) +(((-368 |#1| |#2|) (-10 -7 (-15 -3676 (|#1| (-1197 |#2|)))) (-13 (-415) (-10 -7 (-15 -3544 (|#1| |#2|)) (-15 -4038 ((-944) |#1|)) (-15 -4060 ((-1292 |#1|) (-944))) (-15 -2721 (|#1| |#1|)))) (-361)) (T -368)) +((-3676 (*1 *2 *3) (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) (-4 *2 (-13 (-415) (-10 -7 (-15 -3544 (*2 *4)) (-15 -4038 ((-944) *2)) (-15 -4060 ((-1292 *2) (-944))) (-15 -2721 (*2 *2))))) (-5 *1 (-368 *2 *4))))) +(-10 -7 (-15 -3676 (|#1| (-1197 |#2|)))) +((-3666 (((-981 (-1197 |#1|)) (-1197 |#1|)) 49)) (-1910 (((-1197 |#1|) (-944) (-944)) 154) (((-1197 |#1|) (-944)) 150)) (-1655 (((-112) (-1197 |#1|)) 107)) (-1679 (((-944) (-944)) 85)) (-1690 (((-944) (-944)) 92)) (-1665 (((-944) (-944)) 83)) (-4049 (((-112) (-1197 |#1|)) 111)) (-3611 (((-3 (-1197 |#1|) "failed") (-1197 |#1|)) 135)) (-3643 (((-3 (-1197 |#1|) "failed") (-1197 |#1|)) 140)) (-3631 (((-3 (-1197 |#1|) "failed") (-1197 |#1|)) 139)) (-3620 (((-3 (-1197 |#1|) "failed") (-1197 |#1|)) 138)) (-3601 (((-3 (-1197 |#1|) "failed") (-1197 |#1|)) 131)) (-3653 (((-1197 |#1|) (-1197 |#1|)) 71)) (-3564 (((-1197 |#1|) (-944)) 145)) (-3591 (((-1197 |#1|) (-944)) 148)) (-3582 (((-1197 |#1|) (-944)) 147)) (-3575 (((-1197 |#1|) (-944)) 146)) (-3554 (((-1197 |#1|) (-944)) 143))) +(((-369 |#1|) (-10 -7 (-15 -1655 ((-112) (-1197 |#1|))) (-15 -4049 ((-112) (-1197 |#1|))) (-15 -1665 ((-944) (-944))) (-15 -1679 ((-944) (-944))) (-15 -1690 ((-944) (-944))) (-15 -3554 ((-1197 |#1|) (-944))) (-15 -3564 ((-1197 |#1|) (-944))) (-15 -3575 ((-1197 |#1|) (-944))) (-15 -3582 ((-1197 |#1|) (-944))) (-15 -3591 ((-1197 |#1|) (-944))) (-15 -3601 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -3611 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -3620 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -3631 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -3643 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -1910 ((-1197 |#1|) (-944))) (-15 -1910 ((-1197 |#1|) (-944) (-944))) (-15 -3653 ((-1197 |#1|) (-1197 |#1|))) (-15 -3666 ((-981 (-1197 |#1|)) (-1197 |#1|)))) (-361)) (T -369)) +((-3666 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-981 (-1197 *4))) (-5 *1 (-369 *4)) (-5 *3 (-1197 *4)))) (-3653 (*1 *2 *2) (-12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-1910 (*1 *2 *3 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-1910 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-3643 (*1 *2 *2) (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-3631 (*1 *2 *2) (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-3620 (*1 *2 *2) (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-3611 (*1 *2 *2) (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-3601 (*1 *2 *2) (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3)))) (-3591 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-3564 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) (-4 *4 (-361)))) (-1690 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-369 *3)) (-4 *3 (-361)))) (-1679 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-369 *3)) (-4 *3 (-361)))) (-1665 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-369 *3)) (-4 *3 (-361)))) (-4049 (*1 *2 *3) (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-369 *4)))) (-1655 (*1 *2 *3) (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-369 *4))))) +(-10 -7 (-15 -1655 ((-112) (-1197 |#1|))) (-15 -4049 ((-112) (-1197 |#1|))) (-15 -1665 ((-944) (-944))) (-15 -1679 ((-944) (-944))) (-15 -1690 ((-944) (-944))) (-15 -3554 ((-1197 |#1|) (-944))) (-15 -3564 ((-1197 |#1|) (-944))) (-15 -3575 ((-1197 |#1|) (-944))) (-15 -3582 ((-1197 |#1|) (-944))) (-15 -3591 ((-1197 |#1|) (-944))) (-15 -3601 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -3611 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -3620 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -3631 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -3643 ((-3 (-1197 |#1|) "failed") (-1197 |#1|))) (-15 -1910 ((-1197 |#1|) (-944))) (-15 -1910 ((-1197 |#1|) (-944) (-944))) (-15 -3653 ((-1197 |#1|) (-1197 |#1|))) (-15 -3666 ((-981 (-1197 |#1|)) (-1197 |#1|)))) +((-2259 (((-3 (-660 |#3|) "failed") (-660 |#3|) |#3|) 38))) +(((-370 |#1| |#2| |#3|) (-10 -7 (-15 -2259 ((-3 (-660 |#3|) "failed") (-660 |#3|) |#3|))) (-361) (-1268 |#1|) (-1268 |#2|)) (T -370)) +((-2259 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-1268 *4)) (-4 *4 (-361)) (-5 *1 (-370 *4 *5 *3))))) +(-10 -7 (-15 -2259 ((-3 (-660 |#3|) "failed") (-660 |#3|) |#3|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-2766 (((-112) $) NIL)) (-2732 (((-787)) NIL)) (-2339 ((|#1| $) NIL) (($ $ (-944)) NIL (|has| |#1| (-380)))) (-1595 (((-1214 (-944) (-787)) (-577)) NIL (|has| |#1| (-380)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1939 (((-112) $ $) NIL)) (-2229 (((-787)) NIL (|has| |#1| (-380)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) NIL)) (-2921 ((|#1| $) NIL)) (-3502 (($ (-1292 |#1|)) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-380)))) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($) NIL (|has| |#1| (-380)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-4205 (($) NIL (|has| |#1| (-380)))) (-1655 (((-112) $) NIL (|has| |#1| (-380)))) (-3233 (($ $ (-787)) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380)))) (($ $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-1522 (((-112) $) NIL)) (-3817 (((-944) $) NIL (|has| |#1| (-380))) (((-849 (-944)) $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-2487 (((-112) $) NIL)) (-4073 (($) NIL (|has| |#1| (-380)))) (-4049 (((-112) $) NIL (|has| |#1| (-380)))) (-4145 ((|#1| $) NIL) (($ $ (-944)) NIL (|has| |#1| (-380)))) (-4021 (((-3 $ "failed") $) NIL (|has| |#1| (-380)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-4084 (((-1197 |#1|) $) NIL) (((-1197 $) $ (-944)) NIL (|has| |#1| (-380)))) (-4038 (((-944) $) NIL (|has| |#1| (-380)))) (-2175 (((-1197 |#1|) $) NIL (|has| |#1| (-380)))) (-2163 (((-1197 |#1|) $) NIL (|has| |#1| (-380))) (((-3 (-1197 |#1|) "failed") $ $) NIL (|has| |#1| (-380)))) (-2187 (($ $ (-1197 |#1|)) NIL (|has| |#1| (-380)))) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1709 (($) NIL (|has| |#1| (-380)) CONST)) (-3222 (($ (-944)) NIL (|has| |#1| (-380)))) (-2754 (((-112) $) NIL)) (-1474 (((-1145) $) NIL)) (-4101 (($) NIL (|has| |#1| (-380)))) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) NIL (|has| |#1| (-380)))) (-1902 (((-431 $) $) NIL)) (-2744 (((-849 (-944))) NIL) (((-944)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-3243 (((-787) $) NIL (|has| |#1| (-380))) (((-3 (-787) "failed") $ $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-2561 (((-135)) NIL)) (-2852 (($ $ (-787)) NIL (|has| |#1| (-380))) (($ $) NIL (|has| |#1| (-380)))) (-2887 (((-849 (-944)) $) NIL) (((-944) $) NIL)) (-3557 (((-1197 |#1|)) NIL)) (-1585 (($) NIL (|has| |#1| (-380)))) (-2200 (($) NIL (|has| |#1| (-380)))) (-2710 (((-1292 |#1|) $) NIL) (((-705 |#1|) (-1292 $)) NIL)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| |#1| (-380)))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) NIL) (($ |#1|) NIL)) (-2233 (($ $) NIL (|has| |#1| (-380))) (((-3 $ "failed") $) NIL (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) NIL) (((-1292 $) (-944)) NIL)) (-3281 (((-112) $ $) NIL)) (-2776 (((-112) $) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2721 (($ $) NIL (|has| |#1| (-380))) (($ $ (-787)) NIL (|has| |#1| (-380)))) (-2132 (($ $ (-787)) NIL (|has| |#1| (-380))) (($ $) NIL (|has| |#1| (-380)))) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-371 |#1| |#2|) (-340 |#1|) (-361) (-944)) (T -371)) +NIL +(-340 |#1|) +((-1350 (((-112) (-660 (-975 |#1|))) 41)) (-1374 (((-660 (-975 |#1|)) (-660 (-975 |#1|))) 53)) (-1361 (((-3 (-660 (-975 |#1|)) "failed") (-660 (-975 |#1|))) 48))) +(((-372 |#1| |#2|) (-10 -7 (-15 -1350 ((-112) (-660 (-975 |#1|)))) (-15 -1361 ((-3 (-660 (-975 |#1|)) "failed") (-660 (-975 |#1|)))) (-15 -1374 ((-660 (-975 |#1|)) (-660 (-975 |#1|))))) (-465) (-660 (-1201))) (T -372)) +((-1374 (*1 *2 *2) (-12 (-5 *2 (-660 (-975 *3))) (-4 *3 (-465)) (-5 *1 (-372 *3 *4)) (-14 *4 (-660 (-1201))))) (-1361 (*1 *2 *2) (|partial| -12 (-5 *2 (-660 (-975 *3))) (-4 *3 (-465)) (-5 *1 (-372 *3 *4)) (-14 *4 (-660 (-1201))))) (-1350 (*1 *2 *3) (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-465)) (-5 *2 (-112)) (-5 *1 (-372 *4 *5)) (-14 *5 (-660 (-1201)))))) +(-10 -7 (-15 -1350 ((-112) (-660 (-975 |#1|)))) (-15 -1361 ((-3 (-660 (-975 |#1|)) "failed") (-660 (-975 |#1|)))) (-15 -1374 ((-660 (-975 |#1|)) (-660 (-975 |#1|))))) +((-3473 (((-112) $ $) NIL)) (-2229 (((-787) $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) NIL)) (-2921 ((|#1| $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-2487 (((-112) $) 17)) (-3657 ((|#1| $ (-577)) NIL)) (-3668 (((-577) $ (-577)) NIL)) (-1735 (($ (-1 |#1| |#1|) $) 34)) (-1742 (($ (-1 (-577) (-577)) $) 26)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) 28)) (-1474 (((-1145) $) NIL)) (-3363 (((-660 (-2 (|:| |gen| |#1|) (|:| -4072 (-577)))) $) 30)) (-2360 (($ $ $) NIL)) (-3820 (($ $ $) NIL)) (-3544 (((-880) $) 40) (($ |#1|) NIL)) (-4448 (((-112) $ $) NIL)) (-2816 (($) 11 T CONST)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL) (($ |#1| (-577)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) +(((-373 |#1|) (-13 (-486) (-1063 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-577))) (-15 -2229 ((-787) $)) (-15 -3668 ((-577) $ (-577))) (-15 -3657 (|#1| $ (-577))) (-15 -1742 ($ (-1 (-577) (-577)) $)) (-15 -1735 ($ (-1 |#1| |#1|) $)) (-15 -3363 ((-660 (-2 (|:| |gen| |#1|) (|:| -4072 (-577)))) $)))) (-1125)) (T -373)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-1125)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-373 *2)) (-4 *2 (-1125)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-373 *2)) (-4 *2 (-1125)))) (-2229 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-373 *3)) (-4 *3 (-1125)))) (-3668 (*1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-373 *3)) (-4 *3 (-1125)))) (-3657 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-373 *2)) (-4 *2 (-1125)))) (-1742 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-577) (-577))) (-5 *1 (-373 *3)) (-4 *3 (-1125)))) (-1735 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-373 *3)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4072 (-577))))) (-5 *1 (-373 *3)) (-4 *3 (-1125))))) +(-13 (-486) (-1063 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-577))) (-15 -2229 ((-787) $)) (-15 -3668 ((-577) $ (-577))) (-15 -3657 (|#1| $ (-577))) (-15 -1742 ($ (-1 (-577) (-577)) $)) (-15 -1735 ($ (-1 |#1| |#1|) $)) (-15 -3363 ((-660 (-2 (|:| |gen| |#1|) (|:| -4072 (-577)))) $)))) +((-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 13)) (-3290 (($ $) 14)) (-3029 (((-431 $) $) 34)) (-1522 (((-112) $) 30)) (-2171 (($ $) 19)) (-3480 (($ $ $) 25) (($ (-660 $)) NIL)) (-1902 (((-431 $) $) 35)) (-3462 (((-3 $ "failed") $ $) 24)) (-1927 (((-787) $) 28)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 39)) (-3281 (((-112) $ $) 16)) (-3077 (($ $ $) 37))) +(((-374 |#1|) (-10 -8 (-15 -3077 (|#1| |#1| |#1|)) (-15 -2171 (|#1| |#1|)) (-15 -1522 ((-112) |#1|)) (-15 -3029 ((-431 |#1|) |#1|)) (-15 -1902 ((-431 |#1|) |#1|)) (-15 -3422 ((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|)) (-15 -1927 ((-787) |#1|)) (-15 -3480 (|#1| (-660 |#1|))) (-15 -3480 (|#1| |#1| |#1|)) (-15 -3281 ((-112) |#1| |#1|)) (-15 -3290 (|#1| |#1|)) (-15 -3300 ((-2 (|:| -3294 |#1|) (|:| -4457 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3462 ((-3 |#1| "failed") |#1| |#1|))) (-375)) (T -374)) +NIL +(-10 -8 (-15 -3077 (|#1| |#1| |#1|)) (-15 -2171 (|#1| |#1|)) (-15 -1522 ((-112) |#1|)) (-15 -3029 ((-431 |#1|) |#1|)) (-15 -1902 ((-431 |#1|) |#1|)) (-15 -3422 ((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|)) (-15 -1927 ((-787) |#1|)) (-15 -3480 (|#1| (-660 |#1|))) (-15 -3480 (|#1| |#1| |#1|)) (-15 -3281 ((-112) |#1| |#1|)) (-15 -3290 (|#1| |#1|)) (-15 -3300 ((-2 (|:| -3294 |#1|) (|:| -4457 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3462 ((-3 |#1| "failed") |#1| |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-1956 (((-3 $ "failed") $ $) 20)) (-3841 (($ $) 81)) (-3029 (((-431 $) $) 80)) (-1939 (((-112) $ $) 65)) (-1534 (($) 18 T CONST)) (-3418 (($ $ $) 61)) (-4187 (((-3 $ "failed") $) 37)) (-3429 (($ $ $) 62)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 57)) (-1522 (((-112) $) 79)) (-2487 (((-112) $) 35)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 58)) (-3446 (($ $ $) 52) (($ (-660 $)) 51)) (-2810 (((-1183) $) 10)) (-2171 (($ $) 78)) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 50)) (-3480 (($ $ $) 54) (($ (-660 $)) 53)) (-1902 (((-431 $) $) 82)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3462 (((-3 $ "failed") $ $) 48)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 56)) (-1927 (((-787) $) 64)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 63)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49) (($ (-420 (-577))) 74)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 45)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3077 (($ $ $) 73)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 77)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ (-420 (-577))) 76) (($ (-420 (-577)) $) 75))) +(((-375) (-141)) (T -375)) +((-3077 (*1 *1 *1 *1) (-4 *1 (-375)))) +(-13 (-318) (-1246) (-249) (-10 -8 (-15 -3077 ($ $ $)) (-6 -4468) (-6 -4462))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-465) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-733 #0#) . T) ((-733 $) . T) ((-742) . T) ((-943) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) . T)) +((-3473 (((-112) $ $) 7)) (-3687 ((|#2| $ |#2|) 14)) (-3730 (($ $ (-1183)) 19)) (-3699 ((|#2| $) 15)) (-3253 (($ |#1|) 21) (($ |#1| (-1183)) 20)) (-2713 ((|#1| $) 17)) (-2810 (((-1183) $) 10)) (-3710 (((-1183) $) 16)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-3720 (($ $) 18)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8))) +(((-376 |#1| |#2|) (-141) (-1125) (-1125)) (T -376)) +((-3253 (*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) (-3253 (*1 *1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *1 (-376 *2 *4)) (-4 *2 (-1125)) (-4 *4 (-1125)))) (-3730 (*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-376 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) (-3720 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1125)) (-4 *2 (-1125)))) (-3710 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-5 *2 (-1183)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125)))) (-3687 (*1 *2 *1 *2) (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125))))) +(-13 (-1125) (-10 -8 (-15 -3253 ($ |t#1|)) (-15 -3253 ($ |t#1| (-1183))) (-15 -3730 ($ $ (-1183))) (-15 -3720 ($ $)) (-15 -2713 (|t#1| $)) (-15 -3710 ((-1183) $)) (-15 -3699 (|t#2| $)) (-15 -3687 (|t#2| $ |t#2|)))) +(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3687 ((|#1| $ |#1|) 31)) (-3730 (($ $ (-1183)) 23)) (-2968 (((-3 |#1| "failed") $) 30)) (-3699 ((|#1| $) 28)) (-3253 (($ (-401)) 22) (($ (-401) (-1183)) 21)) (-2713 (((-401) $) 25)) (-2810 (((-1183) $) NIL)) (-3710 (((-1183) $) 26)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 20)) (-3720 (($ $) 24)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 19))) +(((-377 |#1|) (-13 (-376 (-401) |#1|) (-10 -8 (-15 -2968 ((-3 |#1| "failed") $)))) (-1125)) (T -377)) +((-2968 (*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1125))))) +(-13 (-376 (-401) |#1|) (-10 -8 (-15 -2968 ((-3 |#1| "failed") $)))) +((-2700 (((-1292 (-705 |#2|)) (-1292 $)) 67)) (-3457 (((-705 |#2|) (-1292 $)) 139)) (-4022 ((|#2| $) 36)) (-3436 (((-705 |#2|) $ (-1292 $)) 142)) (-3584 (((-3 $ "failed") $) 89)) (-3999 ((|#2| $) 39)) (-3762 (((-1197 |#2|) $) 98)) (-3478 ((|#2| (-1292 $)) 122)) (-3976 (((-1197 |#2|) $) 32)) (-3905 (((-112)) 116)) (-3502 (($ (-1292 |#2|) (-1292 $)) 132)) (-4187 (((-3 $ "failed") $) 93)) (-3824 (((-112)) 111)) (-3799 (((-112)) 106)) (-3847 (((-112)) 58)) (-3467 (((-705 |#2|) (-1292 $)) 137)) (-4032 ((|#2| $) 35)) (-3445 (((-705 |#2|) $ (-1292 $)) 141)) (-3593 (((-3 $ "failed") $) 87)) (-4012 ((|#2| $) 38)) (-3774 (((-1197 |#2|) $) 97)) (-3490 ((|#2| (-1292 $)) 120)) (-3987 (((-1197 |#2|) $) 30)) (-3916 (((-112)) 115)) (-3812 (((-112)) 108)) (-3836 (((-112)) 56)) (-3859 (((-112)) 103)) (-3892 (((-112)) 117)) (-2710 (((-1292 |#2|) $ (-1292 $)) NIL) (((-705 |#2|) (-1292 $) (-1292 $)) 128)) (-3965 (((-112)) 113)) (-3786 (((-660 (-1292 |#2|))) 102)) (-3940 (((-112)) 114)) (-3953 (((-112)) 112)) (-3928 (((-112)) 51)) (-3881 (((-112)) 118))) +(((-378 |#1| |#2|) (-10 -8 (-15 -3762 ((-1197 |#2|) |#1|)) (-15 -3774 ((-1197 |#2|) |#1|)) (-15 -3786 ((-660 (-1292 |#2|)))) (-15 -3584 ((-3 |#1| "failed") |#1|)) (-15 -3593 ((-3 |#1| "failed") |#1|)) (-15 -4187 ((-3 |#1| "failed") |#1|)) (-15 -3799 ((-112))) (-15 -3812 ((-112))) (-15 -3824 ((-112))) (-15 -3836 ((-112))) (-15 -3847 ((-112))) (-15 -3859 ((-112))) (-15 -3881 ((-112))) (-15 -3892 ((-112))) (-15 -3905 ((-112))) (-15 -3916 ((-112))) (-15 -3928 ((-112))) (-15 -3940 ((-112))) (-15 -3953 ((-112))) (-15 -3965 ((-112))) (-15 -3976 ((-1197 |#2|) |#1|)) (-15 -3987 ((-1197 |#2|) |#1|)) (-15 -3457 ((-705 |#2|) (-1292 |#1|))) (-15 -3467 ((-705 |#2|) (-1292 |#1|))) (-15 -3478 (|#2| (-1292 |#1|))) (-15 -3490 (|#2| (-1292 |#1|))) (-15 -3502 (|#1| (-1292 |#2|) (-1292 |#1|))) (-15 -2710 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2710 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -3999 (|#2| |#1|)) (-15 -4012 (|#2| |#1|)) (-15 -4022 (|#2| |#1|)) (-15 -4032 (|#2| |#1|)) (-15 -3436 ((-705 |#2|) |#1| (-1292 |#1|))) (-15 -3445 ((-705 |#2|) |#1| (-1292 |#1|))) (-15 -2700 ((-1292 (-705 |#2|)) (-1292 |#1|)))) (-379 |#2|) (-174)) (T -378)) +((-3965 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3953 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3940 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3928 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3916 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3905 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3892 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3881 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3859 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3847 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3836 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3824 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3812 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3799 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4)))) (-3786 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-660 (-1292 *4))) (-5 *1 (-378 *3 *4)) (-4 *3 (-379 *4))))) +(-10 -8 (-15 -3762 ((-1197 |#2|) |#1|)) (-15 -3774 ((-1197 |#2|) |#1|)) (-15 -3786 ((-660 (-1292 |#2|)))) (-15 -3584 ((-3 |#1| "failed") |#1|)) (-15 -3593 ((-3 |#1| "failed") |#1|)) (-15 -4187 ((-3 |#1| "failed") |#1|)) (-15 -3799 ((-112))) (-15 -3812 ((-112))) (-15 -3824 ((-112))) (-15 -3836 ((-112))) (-15 -3847 ((-112))) (-15 -3859 ((-112))) (-15 -3881 ((-112))) (-15 -3892 ((-112))) (-15 -3905 ((-112))) (-15 -3916 ((-112))) (-15 -3928 ((-112))) (-15 -3940 ((-112))) (-15 -3953 ((-112))) (-15 -3965 ((-112))) (-15 -3976 ((-1197 |#2|) |#1|)) (-15 -3987 ((-1197 |#2|) |#1|)) (-15 -3457 ((-705 |#2|) (-1292 |#1|))) (-15 -3467 ((-705 |#2|) (-1292 |#1|))) (-15 -3478 (|#2| (-1292 |#1|))) (-15 -3490 (|#2| (-1292 |#1|))) (-15 -3502 (|#1| (-1292 |#2|) (-1292 |#1|))) (-15 -2710 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2710 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -3999 (|#2| |#1|)) (-15 -4012 (|#2| |#1|)) (-15 -4022 (|#2| |#1|)) (-15 -4032 (|#2| |#1|)) (-15 -3436 ((-705 |#2|) |#1| (-1292 |#1|))) (-15 -3445 ((-705 |#2|) |#1| (-1292 |#1|))) (-15 -2700 ((-1292 (-705 |#2|)) (-1292 |#1|)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3294 (((-3 $ "failed")) 42 (|has| |#1| (-569)))) (-1956 (((-3 $ "failed") $ $) 20)) (-2700 (((-1292 (-705 |#1|)) (-1292 $)) 83)) (-4043 (((-1292 $)) 86)) (-1534 (($) 18 T CONST)) (-2364 (((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed")) 45 (|has| |#1| (-569)))) (-3741 (((-3 $ "failed")) 43 (|has| |#1| (-569)))) (-3457 (((-705 |#1|) (-1292 $)) 70)) (-4022 ((|#1| $) 79)) (-3436 (((-705 |#1|) $ (-1292 $)) 81)) (-3584 (((-3 $ "failed") $) 50 (|has| |#1| (-569)))) (-2470 (($ $ (-944)) 31)) (-3999 ((|#1| $) 77)) (-3762 (((-1197 |#1|) $) 47 (|has| |#1| (-569)))) (-3478 ((|#1| (-1292 $)) 72)) (-3976 (((-1197 |#1|) $) 68)) (-3905 (((-112)) 62)) (-3502 (($ (-1292 |#1|) (-1292 $)) 74)) (-4187 (((-3 $ "failed") $) 52 (|has| |#1| (-569)))) (-1545 (((-944)) 85)) (-3870 (((-112)) 59)) (-2667 (($ $ (-944)) 38)) (-3824 (((-112)) 55)) (-3799 (((-112)) 53)) (-3847 (((-112)) 57)) (-2373 (((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed")) 46 (|has| |#1| (-569)))) (-3751 (((-3 $ "failed")) 44 (|has| |#1| (-569)))) (-3467 (((-705 |#1|) (-1292 $)) 71)) (-4032 ((|#1| $) 80)) (-3445 (((-705 |#1|) $ (-1292 $)) 82)) (-3593 (((-3 $ "failed") $) 51 (|has| |#1| (-569)))) (-3604 (($ $ (-944)) 32)) (-4012 ((|#1| $) 78)) (-3774 (((-1197 |#1|) $) 48 (|has| |#1| (-569)))) (-3490 ((|#1| (-1292 $)) 73)) (-3987 (((-1197 |#1|) $) 69)) (-3916 (((-112)) 63)) (-2810 (((-1183) $) 10)) (-3812 (((-112)) 54)) (-3836 (((-112)) 56)) (-3859 (((-112)) 58)) (-1474 (((-1145) $) 11)) (-3892 (((-112)) 61)) (-2710 (((-1292 |#1|) $ (-1292 $)) 76) (((-705 |#1|) (-1292 $) (-1292 $)) 75)) (-2206 (((-660 (-975 |#1|)) (-1292 $)) 84)) (-3820 (($ $ $) 28)) (-3965 (((-112)) 67)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-3786 (((-660 (-1292 |#1|))) 49 (|has| |#1| (-569)))) (-3832 (($ $ $ $) 29)) (-3940 (((-112)) 65)) (-3807 (($ $ $) 27)) (-3953 (((-112)) 66)) (-3928 (((-112)) 64)) (-3881 (((-112)) 60)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 33)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-379 |#1|) (-141) (-174)) (T -379)) +((-4043 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1292 *1)) (-4 *1 (-379 *3)))) (-1545 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-944)))) (-2206 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-660 (-975 *4))))) (-2700 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-1292 (-705 *4))))) (-3445 (*1 *2 *1 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-705 *4)))) (-3436 (*1 *2 *1 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-705 *4)))) (-4032 (*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-4022 (*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-4012 (*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-2710 (*1 *2 *1 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-1292 *4)))) (-2710 (*1 *2 *3 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-705 *4)))) (-3502 (*1 *1 *2 *3) (-12 (-5 *2 (-1292 *4)) (-5 *3 (-1292 *1)) (-4 *4 (-174)) (-4 *1 (-379 *4)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *2)) (-4 *2 (-174)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-705 *4)))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) (-5 *2 (-705 *4)))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-1197 *3)))) (-3976 (*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-1197 *3)))) (-3965 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3953 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3940 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3928 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3916 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3905 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3892 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3881 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3870 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3859 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3847 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3836 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3824 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3812 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3799 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4187 (*1 *1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) (-3593 (*1 *1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) (-3584 (*1 *1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) (-3786 (*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) (-5 *2 (-660 (-1292 *3))))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) (-5 *2 (-1197 *3)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) (-5 *2 (-1197 *3)))) (-2373 (*1 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4060 (-660 *1)))) (-4 *1 (-379 *3)))) (-2364 (*1 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4060 (-660 *1)))) (-4 *1 (-379 *3)))) (-3751 (*1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174)))) (-3741 (*1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174)))) (-3294 (*1 *1) (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174))))) +(-13 (-760 |t#1|) (-10 -8 (-15 -4043 ((-1292 $))) (-15 -1545 ((-944))) (-15 -2206 ((-660 (-975 |t#1|)) (-1292 $))) (-15 -2700 ((-1292 (-705 |t#1|)) (-1292 $))) (-15 -3445 ((-705 |t#1|) $ (-1292 $))) (-15 -3436 ((-705 |t#1|) $ (-1292 $))) (-15 -4032 (|t#1| $)) (-15 -4022 (|t#1| $)) (-15 -4012 (|t#1| $)) (-15 -3999 (|t#1| $)) (-15 -2710 ((-1292 |t#1|) $ (-1292 $))) (-15 -2710 ((-705 |t#1|) (-1292 $) (-1292 $))) (-15 -3502 ($ (-1292 |t#1|) (-1292 $))) (-15 -3490 (|t#1| (-1292 $))) (-15 -3478 (|t#1| (-1292 $))) (-15 -3467 ((-705 |t#1|) (-1292 $))) (-15 -3457 ((-705 |t#1|) (-1292 $))) (-15 -3987 ((-1197 |t#1|) $)) (-15 -3976 ((-1197 |t#1|) $)) (-15 -3965 ((-112))) (-15 -3953 ((-112))) (-15 -3940 ((-112))) (-15 -3928 ((-112))) (-15 -3916 ((-112))) (-15 -3905 ((-112))) (-15 -3892 ((-112))) (-15 -3881 ((-112))) (-15 -3870 ((-112))) (-15 -3859 ((-112))) (-15 -3847 ((-112))) (-15 -3836 ((-112))) (-15 -3824 ((-112))) (-15 -3812 ((-112))) (-15 -3799 ((-112))) (IF (|has| |t#1| (-569)) (PROGN (-15 -4187 ((-3 $ "failed") $)) (-15 -3593 ((-3 $ "failed") $)) (-15 -3584 ((-3 $ "failed") $)) (-15 -3786 ((-660 (-1292 |t#1|)))) (-15 -3774 ((-1197 |t#1|) $)) (-15 -3762 ((-1197 |t#1|) $)) (-15 -2373 ((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed"))) (-15 -2364 ((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed"))) (-15 -3751 ((-3 $ "failed"))) (-15 -3741 ((-3 $ "failed"))) (-15 -3294 ((-3 $ "failed"))) (-6 -4467)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) . T) ((-733 |#1|) . T) ((-736) . T) ((-760 |#1|) . T) ((-777) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) 7)) (-2229 (((-787)) 17)) (-1910 (($) 14)) (-4038 (((-944) $) 15)) (-2810 (((-1183) $) 10)) (-3222 (($ (-944)) 16)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8))) +(((-380) (-141)) (T -380)) +((-2229 (*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-787)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-944)) (-4 *1 (-380)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-944)))) (-1910 (*1 *1) (-4 *1 (-380)))) +(-13 (-1125) (-10 -8 (-15 -2229 ((-787))) (-15 -3222 ($ (-944))) (-15 -4038 ((-944) $)) (-15 -1910 ($)))) +(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-3390 (((-705 |#2|) (-1292 $)) 45)) (-3502 (($ (-1292 |#2|) (-1292 $)) 39)) (-3381 (((-705 |#2|) $ (-1292 $)) 47)) (-1827 ((|#2| (-1292 $)) 13)) (-2710 (((-1292 |#2|) $ (-1292 $)) NIL) (((-705 |#2|) (-1292 $) (-1292 $)) 27))) +(((-381 |#1| |#2| |#3|) (-10 -8 (-15 -3390 ((-705 |#2|) (-1292 |#1|))) (-15 -1827 (|#2| (-1292 |#1|))) (-15 -3502 (|#1| (-1292 |#2|) (-1292 |#1|))) (-15 -2710 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2710 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -3381 ((-705 |#2|) |#1| (-1292 |#1|)))) (-382 |#2| |#3|) (-174) (-1268 |#2|)) (T -381)) +NIL +(-10 -8 (-15 -3390 ((-705 |#2|) (-1292 |#1|))) (-15 -1827 (|#2| (-1292 |#1|))) (-15 -3502 (|#1| (-1292 |#2|) (-1292 |#1|))) (-15 -2710 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2710 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -3381 ((-705 |#2|) |#1| (-1292 |#1|)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3390 (((-705 |#1|) (-1292 $)) 53)) (-2339 ((|#1| $) 59)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-3502 (($ (-1292 |#1|) (-1292 $)) 55)) (-3381 (((-705 |#1|) $ (-1292 $)) 60)) (-4187 (((-3 $ "failed") $) 37)) (-1545 (((-944)) 61)) (-2487 (((-112) $) 35)) (-4145 ((|#1| $) 58)) (-4084 ((|#2| $) 51 (|has| |#1| (-375)))) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-1827 ((|#1| (-1292 $)) 54)) (-2710 (((-1292 |#1|) $ (-1292 $)) 57) (((-705 |#1|) (-1292 $) (-1292 $)) 56)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 44)) (-2233 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-3974 ((|#2| $) 52)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-382 |#1| |#2|) (-141) (-174) (-1268 |t#1|)) (T -382)) +((-1545 (*1 *2) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) (-5 *2 (-944)))) (-3381 (*1 *2 *1 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)))) (-2339 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1268 *2)) (-4 *2 (-174)))) (-4145 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1268 *2)) (-4 *2 (-174)))) (-2710 (*1 *2 *1 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1268 *4)) (-5 *2 (-1292 *4)))) (-2710 (*1 *2 *3 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)))) (-3502 (*1 *1 *2 *3) (-12 (-5 *2 (-1292 *4)) (-5 *3 (-1292 *1)) (-4 *4 (-174)) (-4 *1 (-382 *4 *5)) (-4 *5 (-1268 *4)))) (-1827 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *2 *4)) (-4 *4 (-1268 *2)) (-4 *2 (-174)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)))) (-3974 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1268 *3)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-174)) (-4 *3 (-375)) (-4 *2 (-1268 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -1545 ((-944))) (-15 -3381 ((-705 |t#1|) $ (-1292 $))) (-15 -2339 (|t#1| $)) (-15 -4145 (|t#1| $)) (-15 -2710 ((-1292 |t#1|) $ (-1292 $))) (-15 -2710 ((-705 |t#1|) (-1292 $) (-1292 $))) (-15 -3502 ($ (-1292 |t#1|) (-1292 $))) (-15 -1827 (|t#1| (-1292 $))) (-15 -3390 ((-705 |t#1|) (-1292 $))) (-15 -3974 (|t#2| $)) (IF (|has| |t#1| (-375)) (-15 -4084 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 |#1|) . T) ((-733 |#1|) . T) ((-742) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3127 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-3654 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-4087 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-383 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3654 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3127 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1242) (-385 |#1|) (-1242) (-385 |#3|)) (T -383)) +((-3127 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1242)) (-4 *5 (-1242)) (-4 *2 (-385 *5)) (-5 *1 (-383 *6 *4 *5 *2)) (-4 *4 (-385 *6)))) (-3654 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1242)) (-4 *2 (-1242)) (-5 *1 (-383 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-4 *2 (-385 *6)) (-5 *1 (-383 *5 *4 *6 *2)) (-4 *4 (-385 *5))))) +(-10 -7 (-15 -4087 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3654 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3127 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-4077 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-4053 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1864 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3787 (($ $) 25)) (-3618 (((-577) (-1 (-112) |#2|) $) NIL) (((-577) |#2| $) 11) (((-577) |#2| $ (-577)) NIL)) (-3283 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-384 |#1| |#2|) (-10 -8 (-15 -4053 (|#1| |#1|)) (-15 -4053 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4077 ((-112) |#1|)) (-15 -1864 (|#1| |#1|)) (-15 -3283 (|#1| |#1| |#1|)) (-15 -3618 ((-577) |#2| |#1| (-577))) (-15 -3618 ((-577) |#2| |#1|)) (-15 -3618 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -4077 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1864 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3283 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-385 |#2|) (-1242)) (T -384)) +NIL +(-10 -8 (-15 -4053 (|#1| |#1|)) (-15 -4053 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4077 ((-112) |#1|)) (-15 -1864 (|#1| |#1|)) (-15 -3283 (|#1| |#1| |#1|)) (-15 -3618 ((-577) |#2| |#1| (-577))) (-15 -3618 ((-577) |#2| |#1|)) (-15 -3618 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -4077 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1864 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3787 (|#1| |#1|)) (-15 -3283 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2389 (((-1297) $ (-577) (-577)) 41 (|has| $ (-6 -4471)))) (-4077 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-865)))) (-4053 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4471))) (($ $) 91 (-12 (|has| |#1| (-865)) (|has| $ (-6 -4471))))) (-1864 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-865)))) (-3828 (((-112) $ (-787)) 8)) (-3709 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) 60 (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4470)))) (-1534 (($) 7 T CONST)) (-3645 (($ $) 93 (|has| $ (-6 -4471)))) (-3787 (($ $) 103)) (-1817 (($ $) 80 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3904 (($ |#1| $) 79 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4470)))) (-2192 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) 52)) (-3618 (((-577) (-1 (-112) |#1|) $) 100) (((-577) |#1| $) 99 (|has| |#1| (-1125))) (((-577) |#1| $ (-577)) 98 (|has| |#1| (-1125)))) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-4113 (($ (-787) |#1|) 70)) (-1479 (((-112) $ (-787)) 9)) (-2406 (((-577) $) 44 (|has| (-577) (-865)))) (-3732 (($ $ $) 85 (|has| |#1| (-865)))) (-3283 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-865)))) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2416 (((-577) $) 45 (|has| (-577) (-865)))) (-3201 (($ $ $) 86 (|has| |#1| (-865)))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-2308 (($ |#1| $ (-577)) 62) (($ $ $ (-577)) 61)) (-4285 (((-660 (-577)) $) 47)) (-4298 (((-112) (-577) $) 48)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-3552 ((|#1| $) 43 (|has| (-577) (-865)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2397 (($ $ |#1|) 42 (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-4274 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) 49)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#1| $ (-577) |#1|) 51) ((|#1| $ (-577)) 50) (($ $ (-1259 (-577))) 71)) (-3453 (($ $ (-577)) 64) (($ $ (-1259 (-577))) 63)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-4064 (($ $ $ (-577)) 94 (|has| $ (-6 -4471)))) (-1944 (($ $) 13)) (-4152 (((-549) $) 81 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 72)) (-1677 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-660 $)) 66)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) 87 (|has| |#1| (-865)))) (-3000 (((-112) $ $) 89 (|has| |#1| (-865)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3012 (((-112) $ $) 88 (|has| |#1| (-865)))) (-2990 (((-112) $ $) 90 (|has| |#1| (-865)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-385 |#1|) (-141) (-1242)) (T -385)) +((-3283 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1242)))) (-3787 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1242)))) (-1864 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1242)))) (-4077 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1242)) (-5 *2 (-112)))) (-3618 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1242)) (-5 *2 (-577)))) (-3618 (*1 *2 *3 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1242)) (-4 *3 (-1125)) (-5 *2 (-577)))) (-3618 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-385 *3)) (-4 *3 (-1242)) (-4 *3 (-1125)))) (-3283 (*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1242)) (-4 *2 (-865)))) (-1864 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1242)) (-4 *2 (-865)))) (-4077 (*1 *2 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1242)) (-4 *3 (-865)) (-5 *2 (-112)))) (-4064 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-577)) (|has| *1 (-6 -4471)) (-4 *1 (-385 *3)) (-4 *3 (-1242)))) (-3645 (*1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-385 *2)) (-4 *2 (-1242)))) (-4053 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4471)) (-4 *1 (-385 *3)) (-4 *3 (-1242)))) (-4053 (*1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-385 *2)) (-4 *2 (-1242)) (-4 *2 (-865))))) +(-13 (-667 |t#1|) (-10 -8 (-6 -4470) (-15 -3283 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3787 ($ $)) (-15 -1864 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -4077 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3618 ((-577) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1125)) (PROGN (-15 -3618 ((-577) |t#1| $)) (-15 -3618 ((-577) |t#1| $ (-577)))) |%noBranch|) (IF (|has| |t#1| (-865)) (PROGN (-6 (-865)) (-15 -3283 ($ $ $)) (-15 -1864 ($ $)) (-15 -4077 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4471)) (PROGN (-15 -4064 ($ $ $ (-577))) (-15 -3645 ($ $)) (-15 -4053 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-865)) (-15 -4053 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-667 |#1|) . T) ((-865) |has| |#1| (-865)) ((-868) |has| |#1| (-865)) ((-1125) -2839 (|has| |#1| (-1125)) (|has| |#1| (-865))) ((-1242) . T)) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3435 (((-660 |#1|) $) 37)) (-2877 (($ $ (-787)) 38)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2821 (((-1316 |#1| |#2|) (-1316 |#1| |#2|) $) 41)) (-2799 (($ $) 39)) (-2834 (((-1316 |#1| |#2|) (-1316 |#1| |#2|) $) 42)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3280 (($ $ |#1| $) 36) (($ $ (-660 |#1|) (-660 $)) 35)) (-2887 (((-787) $) 43)) (-3553 (($ $ $) 34)) (-3544 (((-880) $) 12) (($ |#1|) 46) (((-1307 |#1| |#2|) $) 45) (((-1316 |#1| |#2|) $) 44)) (-1777 ((|#2| (-1316 |#1| |#2|) $) 47)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-4089 (($ (-688 |#1|)) 40)) (-2970 (((-112) $ $) 8)) (-3077 (($ $ |#2|) 33 (|has| |#2| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) +(((-386 |#1| |#2|) (-141) (-865) (-174)) (T -386)) +((-1777 (*1 *2 *3 *1) (-12 (-5 *3 (-1316 *4 *2)) (-4 *1 (-386 *4 *2)) (-4 *4 (-865)) (-4 *2 (-174)))) (-3544 (*1 *1 *2) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-865)) (-4 *3 (-174)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) (-5 *2 (-1307 *3 *4)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) (-5 *2 (-1316 *3 *4)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) (-5 *2 (-787)))) (-2834 (*1 *2 *2 *1) (-12 (-5 *2 (-1316 *3 *4)) (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)))) (-2821 (*1 *2 *2 *1) (-12 (-5 *2 (-1316 *3 *4)) (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)))) (-4089 (*1 *1 *2) (-12 (-5 *2 (-688 *3)) (-4 *3 (-865)) (-4 *1 (-386 *3 *4)) (-4 *4 (-174)))) (-2799 (*1 *1 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-865)) (-4 *3 (-174)))) (-2877 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) (-5 *2 (-660 *3)))) (-3280 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-865)) (-4 *3 (-174)))) (-3280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 *1)) (-4 *1 (-386 *4 *5)) (-4 *4 (-865)) (-4 *5 (-174))))) +(-13 (-647 |t#2|) (-10 -8 (-15 -1777 (|t#2| (-1316 |t#1| |t#2|) $)) (-15 -3544 ($ |t#1|)) (-15 -3544 ((-1307 |t#1| |t#2|) $)) (-15 -3544 ((-1316 |t#1| |t#2|) $)) (-15 -2887 ((-787) $)) (-15 -2834 ((-1316 |t#1| |t#2|) (-1316 |t#1| |t#2|) $)) (-15 -2821 ((-1316 |t#1| |t#2|) (-1316 |t#1| |t#2|) $)) (-15 -4089 ($ (-688 |t#1|))) (-15 -2799 ($ $)) (-15 -2877 ($ $ (-787))) (-15 -3435 ((-660 |t#1|) $)) (-15 -3280 ($ $ |t#1| $)) (-15 -3280 ($ $ (-660 |t#1|) (-660 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#2|) . T) ((-664 |#2|) . T) ((-647 |#2|) . T) ((-656 |#2|) . T) ((-733 |#2|) . T) ((-1076 |#2|) . T) ((-1081 |#2|) . T) ((-1125) . T) ((-1242) . T)) +((-4129 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-4102 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-4115 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33))) +(((-387 |#1| |#2|) (-10 -7 (-15 -4102 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4115 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4129 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1242) (-13 (-385 |#1|) (-10 -7 (-6 -4471)))) (T -387)) +((-4129 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-387 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4471)))))) (-4115 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-387 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4471)))))) (-4102 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-387 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4471))))))) +(-10 -7 (-15 -4102 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4115 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4129 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-1647 (((-705 |#2|) (-705 $)) NIL) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 22) (((-705 (-577)) (-705 $)) 14))) +(((-388 |#1| |#2|) (-10 -8 (-15 -1647 ((-705 (-577)) (-705 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-705 |#2|) (-705 |#1|)))) (-389 |#2|) (-1074)) (T -388)) +NIL +(-10 -8 (-15 -1647 ((-705 (-577)) (-705 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-705 |#2|) (-705 |#1|)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-1647 (((-705 |#1|) (-705 $)) 30) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 29) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 41 (|has| |#1| (-654 (-577)))) (((-705 (-577)) (-705 $)) 40 (|has| |#1| (-654 (-577))))) (-1657 (((-705 |#1|) (-1292 $)) 32) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 31) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 39 (|has| |#1| (-654 (-577)))) (((-705 (-577)) (-1292 $)) 38 (|has| |#1| (-654 (-577))))) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ |#1| $) 27))) +(((-389 |#1|) (-141) (-1074)) (T -389)) +NIL +(-13 (-654 |t#1|) (-10 -7 (IF (|has| |t#1| (-654 (-577))) (-6 (-654 (-577))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 #0=(-577)) |has| |#1| (-654 (-577))) ((-664 |#1|) . T) ((-654 #0#) |has| |#1| (-654 (-577))) ((-654 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-3011 (((-660 (-305 (-975 (-171 |#1|)))) (-305 (-420 (-975 (-171 (-577))))) |#1|) 51) (((-660 (-305 (-975 (-171 |#1|)))) (-420 (-975 (-171 (-577)))) |#1|) 50) (((-660 (-660 (-305 (-975 (-171 |#1|))))) (-660 (-305 (-420 (-975 (-171 (-577)))))) |#1|) 47) (((-660 (-660 (-305 (-975 (-171 |#1|))))) (-660 (-420 (-975 (-171 (-577))))) |#1|) 41)) (-3024 (((-660 (-660 (-171 |#1|))) (-660 (-420 (-975 (-171 (-577))))) (-660 (-1201)) |#1|) 30) (((-660 (-171 |#1|)) (-420 (-975 (-171 (-577)))) |#1|) 18))) +(((-390 |#1|) (-10 -7 (-15 -3011 ((-660 (-660 (-305 (-975 (-171 |#1|))))) (-660 (-420 (-975 (-171 (-577))))) |#1|)) (-15 -3011 ((-660 (-660 (-305 (-975 (-171 |#1|))))) (-660 (-305 (-420 (-975 (-171 (-577)))))) |#1|)) (-15 -3011 ((-660 (-305 (-975 (-171 |#1|)))) (-420 (-975 (-171 (-577)))) |#1|)) (-15 -3011 ((-660 (-305 (-975 (-171 |#1|)))) (-305 (-420 (-975 (-171 (-577))))) |#1|)) (-15 -3024 ((-660 (-171 |#1|)) (-420 (-975 (-171 (-577)))) |#1|)) (-15 -3024 ((-660 (-660 (-171 |#1|))) (-660 (-420 (-975 (-171 (-577))))) (-660 (-1201)) |#1|))) (-13 (-375) (-864))) (T -390)) +((-3024 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-420 (-975 (-171 (-577)))))) (-5 *4 (-660 (-1201))) (-5 *2 (-660 (-660 (-171 *5)))) (-5 *1 (-390 *5)) (-4 *5 (-13 (-375) (-864))))) (-3024 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 (-171 (-577))))) (-5 *2 (-660 (-171 *4))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-864))))) (-3011 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-420 (-975 (-171 (-577)))))) (-5 *2 (-660 (-305 (-975 (-171 *4))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-864))))) (-3011 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 (-171 (-577))))) (-5 *2 (-660 (-305 (-975 (-171 *4))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-864))))) (-3011 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-305 (-420 (-975 (-171 (-577))))))) (-5 *2 (-660 (-660 (-305 (-975 (-171 *4)))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-864))))) (-3011 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-420 (-975 (-171 (-577)))))) (-5 *2 (-660 (-660 (-305 (-975 (-171 *4)))))) (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-864)))))) +(-10 -7 (-15 -3011 ((-660 (-660 (-305 (-975 (-171 |#1|))))) (-660 (-420 (-975 (-171 (-577))))) |#1|)) (-15 -3011 ((-660 (-660 (-305 (-975 (-171 |#1|))))) (-660 (-305 (-420 (-975 (-171 (-577)))))) |#1|)) (-15 -3011 ((-660 (-305 (-975 (-171 |#1|)))) (-420 (-975 (-171 (-577)))) |#1|)) (-15 -3011 ((-660 (-305 (-975 (-171 |#1|)))) (-305 (-420 (-975 (-171 (-577))))) |#1|)) (-15 -3024 ((-660 (-171 |#1|)) (-420 (-975 (-171 (-577)))) |#1|)) (-15 -3024 ((-660 (-660 (-171 |#1|))) (-660 (-420 (-975 (-171 (-577))))) (-660 (-1201)) |#1|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 35)) (-4105 (((-577) $) 62)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-3804 (($ $) 136)) (-2212 (($ $) 98)) (-2060 (($ $) 90)) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1913 (($ $) 47)) (-1939 (((-112) $ $) NIL)) (-2186 (($ $) 96)) (-2032 (($ $) 85)) (-3010 (((-577) $) 78)) (-2826 (($ $ (-577)) 73)) (-2237 (($ $) NIL)) (-2084 (($ $) NIL)) (-1534 (($) NIL T CONST)) (-4080 (($ $) 138)) (-1628 (((-3 (-577) "failed") $) 231) (((-3 (-420 (-577)) "failed") $) 227)) (-2921 (((-577) $) 229) (((-420 (-577)) $) 225)) (-3418 (($ $ $) NIL)) (-2999 (((-577) $ $) 125)) (-4187 (((-3 $ "failed") $) 141)) (-2989 (((-420 (-577)) $ (-787)) 232) (((-420 (-577)) $ (-787) (-787)) 224)) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-4291 (((-944)) 121) (((-944) (-944)) 122 (|has| $ (-6 -4461)))) (-3567 (((-112) $) 130)) (-1659 (($) 41)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL)) (-4142 (((-1297) (-787)) 191)) (-4154 (((-1297)) 196) (((-1297) (-787)) 197)) (-4177 (((-1297)) 198) (((-1297) (-787)) 199)) (-4166 (((-1297)) 194) (((-1297) (-787)) 195)) (-3817 (((-577) $) 68)) (-2487 (((-112) $) 40)) (-2381 (($ $ (-577)) NIL)) (-3902 (($ $) 51)) (-4145 (($ $) NIL)) (-3578 (((-112) $) 37)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3732 (($ $ $) NIL) (($) NIL (-12 (-2749 (|has| $ (-6 -4453))) (-2749 (|has| $ (-6 -4461)))))) (-3201 (($ $ $) NIL) (($) NIL (-12 (-2749 (|has| $ (-6 -4453))) (-2749 (|has| $ (-6 -4461)))))) (-1525 (((-577) $) 17)) (-2979 (($) 106) (($ $) 113)) (-2444 (($) 112) (($ $) 114)) (-3698 (($ $) 101)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) 143)) (-3265 (((-944) (-577)) 46 (|has| $ (-6 -4461)))) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-4093 (($ $) 60)) (-4119 (($ $) 135)) (-3068 (($ (-577) (-577)) 131) (($ (-577) (-577) (-944)) 132)) (-1902 (((-431 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3556 (((-577) $) 19)) (-2969 (($) 115)) (-4072 (($ $) 95)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2596 (((-944)) 123) (((-944) (-944)) 124 (|has| $ (-6 -4461)))) (-2852 (($ $) 142) (($ $ (-787)) NIL)) (-3255 (((-944) (-577)) 50 (|has| $ (-6 -4461)))) (-2249 (($ $) NIL)) (-2095 (($ $) NIL)) (-2224 (($ $) NIL)) (-2073 (($ $) NIL)) (-2199 (($ $) 97)) (-2046 (($ $) 89)) (-4152 (((-391) $) 216) (((-228) $) 218) (((-911 (-391)) $) NIL) (((-1183) $) 202) (((-549) $) 214) (($ (-228)) 223)) (-3544 (((-880) $) 206) (($ (-577)) 228) (($ $) NIL) (($ (-420 (-577))) NIL) (($ (-577)) 228) (($ (-420 (-577))) NIL) (((-228) $) 219)) (-4068 (((-787)) NIL T CONST)) (-4132 (($ $) 137)) (-3274 (((-944)) 61) (((-944) (-944)) 80 (|has| $ (-6 -4461)))) (-4448 (((-112) $ $) NIL)) (-4146 (((-944)) 126)) (-4114 (($ $) 104)) (-2136 (($ $) 49) (($ $ $) 59)) (-3281 (((-112) $ $) NIL)) (-2262 (($ $) 102)) (-2106 (($ $) 39)) (-4141 (($ $) NIL)) (-2162 (($ $) NIL)) (-2261 (($ $) NIL)) (-2174 (($ $) NIL)) (-4128 (($ $) NIL)) (-2150 (($ $) NIL)) (-2272 (($ $) 103)) (-2120 (($ $) 52)) (-1654 (($ $) 58)) (-2806 (($) 36 T CONST)) (-2816 (($) 43 T CONST)) (-4013 (((-1183) $) 27) (((-1183) $ (-112)) 29) (((-1297) (-838) $) 30) (((-1297) (-838) $ (-112)) 31)) (-2132 (($ $) NIL) (($ $ (-787)) NIL)) (-3025 (((-112) $ $) 203)) (-3000 (((-112) $ $) 45)) (-2970 (((-112) $ $) 56)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 57)) (-3077 (($ $ $) 48) (($ $ (-577)) 42)) (-3066 (($ $) 38) (($ $ $) 53)) (-3055 (($ $ $) 72)) (** (($ $ (-944)) 83) (($ $ (-787)) NIL) (($ $ (-577)) 107) (($ $ (-420 (-577))) 154) (($ $ $) 145)) (* (($ (-944) $) 79) (($ (-787) $) NIL) (($ (-577) $) 84) (($ $ $) 71) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL))) +(((-391) (-13 (-417) (-239) (-627 (-1183)) (-844) (-626 (-228)) (-1227) (-627 (-549)) (-631 (-228)) (-10 -8 (-15 -3077 ($ $ (-577))) (-15 ** ($ $ $)) (-15 -3902 ($ $)) (-15 -2999 ((-577) $ $)) (-15 -2826 ($ $ (-577))) (-15 -2989 ((-420 (-577)) $ (-787))) (-15 -2989 ((-420 (-577)) $ (-787) (-787))) (-15 -2979 ($)) (-15 -2444 ($)) (-15 -2969 ($)) (-15 -2136 ($ $ $)) (-15 -2979 ($ $)) (-15 -2444 ($ $)) (-15 -4177 ((-1297))) (-15 -4177 ((-1297) (-787))) (-15 -4166 ((-1297))) (-15 -4166 ((-1297) (-787))) (-15 -4154 ((-1297))) (-15 -4154 ((-1297) (-787))) (-15 -4142 ((-1297) (-787))) (-6 -4461) (-6 -4453)))) (T -391)) +((** (*1 *1 *1 *1) (-5 *1 (-391))) (-3077 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) (-3902 (*1 *1 *1) (-5 *1 (-391))) (-2999 (*1 *2 *1 *1) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) (-2826 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) (-2989 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *2 (-420 (-577))) (-5 *1 (-391)))) (-2989 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-787)) (-5 *2 (-420 (-577))) (-5 *1 (-391)))) (-2979 (*1 *1) (-5 *1 (-391))) (-2444 (*1 *1) (-5 *1 (-391))) (-2969 (*1 *1) (-5 *1 (-391))) (-2136 (*1 *1 *1 *1) (-5 *1 (-391))) (-2979 (*1 *1 *1) (-5 *1 (-391))) (-2444 (*1 *1 *1) (-5 *1 (-391))) (-4177 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-391)))) (-4177 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-391)))) (-4166 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-391)))) (-4166 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-391)))) (-4154 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-391)))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-391)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-391))))) +(-13 (-417) (-239) (-627 (-1183)) (-844) (-626 (-228)) (-1227) (-627 (-549)) (-631 (-228)) (-10 -8 (-15 -3077 ($ $ (-577))) (-15 ** ($ $ $)) (-15 -3902 ($ $)) (-15 -2999 ((-577) $ $)) (-15 -2826 ($ $ (-577))) (-15 -2989 ((-420 (-577)) $ (-787))) (-15 -2989 ((-420 (-577)) $ (-787) (-787))) (-15 -2979 ($)) (-15 -2444 ($)) (-15 -2969 ($)) (-15 -2136 ($ $ $)) (-15 -2979 ($ $)) (-15 -2444 ($ $)) (-15 -4177 ((-1297))) (-15 -4177 ((-1297) (-787))) (-15 -4166 ((-1297))) (-15 -4166 ((-1297) (-787))) (-15 -4154 ((-1297))) (-15 -4154 ((-1297) (-787))) (-15 -4142 ((-1297) (-787))) (-6 -4461) (-6 -4453))) +((-2546 (((-660 (-305 (-975 |#1|))) (-305 (-420 (-975 (-577)))) |#1|) 46) (((-660 (-305 (-975 |#1|))) (-420 (-975 (-577))) |#1|) 45) (((-660 (-660 (-305 (-975 |#1|)))) (-660 (-305 (-420 (-975 (-577))))) |#1|) 42) (((-660 (-660 (-305 (-975 |#1|)))) (-660 (-420 (-975 (-577)))) |#1|) 36)) (-3036 (((-660 |#1|) (-420 (-975 (-577))) |#1|) 20) (((-660 (-660 |#1|)) (-660 (-420 (-975 (-577)))) (-660 (-1201)) |#1|) 30))) +(((-392 |#1|) (-10 -7 (-15 -2546 ((-660 (-660 (-305 (-975 |#1|)))) (-660 (-420 (-975 (-577)))) |#1|)) (-15 -2546 ((-660 (-660 (-305 (-975 |#1|)))) (-660 (-305 (-420 (-975 (-577))))) |#1|)) (-15 -2546 ((-660 (-305 (-975 |#1|))) (-420 (-975 (-577))) |#1|)) (-15 -2546 ((-660 (-305 (-975 |#1|))) (-305 (-420 (-975 (-577)))) |#1|)) (-15 -3036 ((-660 (-660 |#1|)) (-660 (-420 (-975 (-577)))) (-660 (-1201)) |#1|)) (-15 -3036 ((-660 |#1|) (-420 (-975 (-577))) |#1|))) (-13 (-864) (-375))) (T -392)) +((-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 (-577)))) (-5 *2 (-660 *4)) (-5 *1 (-392 *4)) (-4 *4 (-13 (-864) (-375))))) (-3036 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-420 (-975 (-577))))) (-5 *4 (-660 (-1201))) (-5 *2 (-660 (-660 *5))) (-5 *1 (-392 *5)) (-4 *5 (-13 (-864) (-375))))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-420 (-975 (-577))))) (-5 *2 (-660 (-305 (-975 *4)))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-864) (-375))))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 (-577)))) (-5 *2 (-660 (-305 (-975 *4)))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-864) (-375))))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-305 (-420 (-975 (-577)))))) (-5 *2 (-660 (-660 (-305 (-975 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-864) (-375))))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-420 (-975 (-577))))) (-5 *2 (-660 (-660 (-305 (-975 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-864) (-375)))))) +(-10 -7 (-15 -2546 ((-660 (-660 (-305 (-975 |#1|)))) (-660 (-420 (-975 (-577)))) |#1|)) (-15 -2546 ((-660 (-660 (-305 (-975 |#1|)))) (-660 (-305 (-420 (-975 (-577))))) |#1|)) (-15 -2546 ((-660 (-305 (-975 |#1|))) (-420 (-975 (-577))) |#1|)) (-15 -2546 ((-660 (-305 (-975 |#1|))) (-305 (-420 (-975 (-577)))) |#1|)) (-15 -3036 ((-660 (-660 |#1|)) (-660 (-420 (-975 (-577)))) (-660 (-1201)) |#1|)) (-15 -3036 ((-660 |#1|) (-420 (-975 (-577))) |#1|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#2| "failed") $) 30)) (-2921 ((|#2| $) 32)) (-2248 (($ $) NIL)) (-2548 (((-787) $) 11)) (-4074 (((-660 $) $) 23)) (-2811 (((-112) $) NIL)) (-3640 (($ |#2| |#1|) 21)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3044 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-2209 ((|#2| $) 18)) (-2221 ((|#1| $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 51) (($ |#2|) 31)) (-4182 (((-660 |#1|) $) 20)) (-2322 ((|#1| $ |#2|) 55)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 33 T CONST)) (-1831 (((-660 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) +(((-393 |#1| |#2|) (-13 (-394 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1074) (-865)) (T -393)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-393 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-865))))) +(-13 (-394 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-1628 (((-3 |#2| "failed") $) 49)) (-2921 ((|#2| $) 50)) (-2248 (($ $) 35)) (-2548 (((-787) $) 39)) (-4074 (((-660 $) $) 40)) (-2811 (((-112) $) 43)) (-3640 (($ |#2| |#1|) 44)) (-4087 (($ (-1 |#1| |#1|) $) 45)) (-3044 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-2209 ((|#2| $) 38)) (-2221 ((|#1| $) 37)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12) (($ |#2|) 48)) (-4182 (((-660 |#1|) $) 41)) (-2322 ((|#1| $ |#2|) 46)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-1831 (((-660 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) +(((-394 |#1| |#2|) (-141) (-1074) (-1125)) (T -394)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-394 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1125)))) (-2322 (*1 *2 *1 *3) (-12 (-4 *1 (-394 *2 *3)) (-4 *3 (-1125)) (-4 *2 (-1074)))) (-4087 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)))) (-3640 (*1 *1 *2 *3) (-12 (-4 *1 (-394 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1125)))) (-2811 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) (-5 *2 (-112)))) (-1831 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) (-5 *2 (-660 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4182 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) (-5 *2 (-660 *3)))) (-4074 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-1125)) (-5 *2 (-660 *1)) (-4 *1 (-394 *3 *4)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) (-5 *2 (-787)))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1125)))) (-2221 (*1 *2 *1) (-12 (-4 *1 (-394 *2 *3)) (-4 *3 (-1125)) (-4 *2 (-1074)))) (-3044 (*1 *2 *1) (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2248 (*1 *1 *1) (-12 (-4 *1 (-394 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1125))))) +(-13 (-111 |t#1| |t#1|) (-1063 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2322 (|t#1| $ |t#2|)) (-15 -4087 ($ (-1 |t#1| |t#1|) $)) (-15 -3640 ($ |t#2| |t#1|)) (-15 -2811 ((-112) $)) (-15 -1831 ((-660 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4182 ((-660 |t#1|) $)) (-15 -4074 ((-660 $) $)) (-15 -2548 ((-787) $)) (-15 -2209 (|t#2| $)) (-15 -2221 (|t#1| $)) (-15 -3044 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2248 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-733 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-629 |#2|) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) |has| |#1| (-174)) ((-733 |#1|) |has| |#1| (-174)) ((-1063 |#2|) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-2706 (((-1297) $) 7)) (-3544 (((-880) $) 8) (($ (-705 (-715))) 14) (($ (-660 (-341))) 13) (($ (-341)) 12) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 11))) (((-395) (-141)) (T -395)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-395)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) (-4 *1 (-395)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-702 (-326 (-390)))) (-4 *1 (-395)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-702 (-326 (-390)))) (-4 *1 (-395)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-702 (-326 (-576)))) (-4 *1 (-395)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-702 (-326 (-576)))) (-4 *1 (-395)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-702 (-972 (-390)))) (-4 *1 (-395)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-702 (-972 (-390)))) (-4 *1 (-395)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-702 (-972 (-576)))) (-4 *1 (-395)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-702 (-972 (-576)))) (-4 *1 (-395)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-702 (-419 (-972 (-390))))) (-4 *1 (-395)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-702 (-419 (-972 (-390))))) (-4 *1 (-395)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-702 (-419 (-972 (-576))))) (-4 *1 (-395)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-702 (-419 (-972 (-576))))) (-4 *1 (-395))))) -(-13 (-407) (-10 -8 (-15 -3501 ($ (-657 (-340)))) (-15 -3501 ($ (-340))) (-15 -3501 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340)))))) (-15 -2884 ($ (-702 (-326 (-390))))) (-15 -1624 ((-3 $ "failed") (-702 (-326 (-390))))) (-15 -2884 ($ (-702 (-326 (-576))))) (-15 -1624 ((-3 $ "failed") (-702 (-326 (-576))))) (-15 -2884 ($ (-702 (-972 (-390))))) (-15 -1624 ((-3 $ "failed") (-702 (-972 (-390))))) (-15 -2884 ($ (-702 (-972 (-576))))) (-15 -1624 ((-3 $ "failed") (-702 (-972 (-576))))) (-15 -2884 ($ (-702 (-419 (-972 (-390)))))) (-15 -1624 ((-3 $ "failed") (-702 (-419 (-972 (-390)))))) (-15 -2884 ($ (-702 (-419 (-972 (-576)))))) (-15 -1624 ((-3 $ "failed") (-702 (-419 (-972 (-576)))))))) -(((-625 (-877)) . T) ((-407) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2886 (((-657 (-888 |#2| |#1|)) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-2212 (($ $) NIL)) (-2003 (($ |#1| |#2|) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-1390 ((|#2| $) NIL)) (-2186 ((|#1| $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 33)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 12 T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) -(((-396 |#1| |#2|) (-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-730 |#1|)) |%noBranch|))) (-1071) (-865)) (T -396)) -NIL -(-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-730 |#1|)) |%noBranch|))) -((-3429 (((-112) $ $) 7)) (-2193 (((-784) $) 35)) (-4359 (($) 19 T CONST)) (-2299 (((-3 $ "failed") $ $) 38)) (-1624 (((-3 |#1| "failed") $) 46)) (-2884 ((|#1| $) 47)) (-3843 (((-3 $ "failed") $) 16)) (-4180 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 36)) (-4094 (((-112) $) 18)) (-3027 ((|#1| $ (-576)) 32)) (-1732 (((-784) $ (-576)) 33)) (-3707 (($ $ $) 24 (|has| |#1| (-862)))) (-1611 (($ $ $) 25 (|has| |#1| (-862)))) (-2183 (($ (-1 |#1| |#1|) $) 30)) (-1409 (($ (-1 (-784) (-784)) $) 31)) (-1825 (((-3 $ "failed") $ $) 39)) (-2342 (((-1180) $) 10)) (-1783 (($ $ $) 40)) (-4317 (($ $ $) 41)) (-1471 (((-1142) $) 11)) (-2067 (((-657 (-2 (|:| |gen| |#1|) (|:| -4067 (-784)))) $) 34)) (-3944 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 37)) (-3501 (((-877) $) 12) (($ |#1|) 45)) (-2046 (((-112) $ $) 6)) (-2779 (($) 20 T CONST)) (-2985 (((-112) $ $) 26 (|has| |#1| (-862)))) (-2963 (((-112) $ $) 28 (|has| |#1| (-862)))) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 27 (|has| |#1| (-862)))) (-2954 (((-112) $ $) 29 (|has| |#1| (-862)))) (** (($ $ (-941)) 14) (($ $ (-784)) 17) (($ |#1| (-784)) 42)) (* (($ $ $) 15) (($ |#1| $) 44) (($ $ |#1|) 43))) -(((-397 |#1|) (-141) (-1122)) (T -397)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-397 *2)) (-4 *2 (-1122)))) (-4317 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) (-1783 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) (-1825 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) (-2299 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) (-3944 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1122)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-4180 (*1 *2 *1 *1) (-12 (-4 *3 (-1122)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-2193 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1122)) (-5 *2 (-784)))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1122)) (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4067 (-784))))))) (-1732 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1122)) (-5 *2 (-784)))) (-3027 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1122)))) (-1409 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-784) (-784))) (-4 *1 (-397 *3)) (-4 *3 (-1122)))) (-2183 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1122))))) -(-13 (-739) (-1060 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-784))) (-15 -4317 ($ $ $)) (-15 -1783 ($ $ $)) (-15 -1825 ((-3 $ "failed") $ $)) (-15 -2299 ((-3 $ "failed") $ $)) (-15 -3944 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4180 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2193 ((-784) $)) (-15 -2067 ((-657 (-2 (|:| |gen| |t#1|) (|:| -4067 (-784)))) $)) (-15 -1732 ((-784) $ (-576))) (-15 -3027 (|t#1| $ (-576))) (-15 -1409 ($ (-1 (-784) (-784)) $)) (-15 -2183 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|))) -(((-102) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-739) . T) ((-862) |has| |#1| (-862)) ((-865) |has| |#1| (-862)) ((-1060 |#1|) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2193 (((-784) $) 74)) (-4359 (($) NIL T CONST)) (-2299 (((-3 $ "failed") $ $) 77)) (-1624 (((-3 |#1| "failed") $) NIL)) (-2884 ((|#1| $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-4180 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-4094 (((-112) $) 17)) (-3027 ((|#1| $ (-576)) NIL)) (-1732 (((-784) $ (-576)) NIL)) (-3707 (($ $ $) NIL (|has| |#1| (-862)))) (-1611 (($ $ $) NIL (|has| |#1| (-862)))) (-2183 (($ (-1 |#1| |#1|) $) 40)) (-1409 (($ (-1 (-784) (-784)) $) 37)) (-1825 (((-3 $ "failed") $ $) 60)) (-2342 (((-1180) $) NIL)) (-1783 (($ $ $) 28)) (-4317 (($ $ $) 26)) (-1471 (((-1142) $) NIL)) (-2067 (((-657 (-2 (|:| |gen| |#1|) (|:| -4067 (-784)))) $) 34)) (-3944 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-3501 (((-877) $) 24) (($ |#1|) NIL)) (-2046 (((-112) $ $) NIL)) (-2779 (($) 11 T CONST)) (-2985 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2954 (((-112) $ $) 84 (|has| |#1| (-862)))) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ |#1| (-784)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) -(((-398 |#1|) (-397 |#1|) (-1122)) (T -398)) -NIL -(-397 |#1|) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-1624 (((-3 (-576) "failed") $) 54)) (-2884 (((-576) $) 55)) (-3843 (((-3 $ "failed") $) 37)) (-4094 (((-112) $) 35)) (-3707 (($ $ $) 56)) (-1611 (($ $ $) 57)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3418 (((-3 $ "failed") $ $) 48)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 53)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 45)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2985 (((-112) $ $) 58)) (-2963 (((-112) $ $) 60)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 59)) (-2954 (((-112) $ $) 61)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-399) (-141)) (T -399)) -NIL -(-13 (-568) (-862) (-1060 (-576))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-862) . T) ((-865) . T) ((-1060 (-576)) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-1343 (((-112) $) 25)) (-1937 (((-112) $) 22)) (-4109 (($ (-1180) (-1180) (-1180)) 26)) (-2676 (((-1180) $) 16)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-4310 (($ (-1180) (-1180) (-1180)) 14)) (-1638 (((-1180) $) 17)) (-2274 (((-112) $) 18)) (-1769 (((-1180) $) 15)) (-3501 (((-877) $) 12) (($ (-1180)) 13) (((-1180) $) 9)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 7))) -(((-400) (-401)) (T -400)) -NIL -(-401) -((-3429 (((-112) $ $) 7)) (-1343 (((-112) $) 17)) (-1937 (((-112) $) 18)) (-4109 (($ (-1180) (-1180) (-1180)) 16)) (-2676 (((-1180) $) 21)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-4310 (($ (-1180) (-1180) (-1180)) 23)) (-1638 (((-1180) $) 20)) (-2274 (((-112) $) 19)) (-1769 (((-1180) $) 22)) (-3501 (((-877) $) 12) (($ (-1180)) 25) (((-1180) $) 24)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8))) -(((-401) (-141)) (T -401)) -((-4310 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-401)))) (-1769 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1180)))) (-2676 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1180)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1180)))) (-2274 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-1937 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-1343 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-4109 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-401))))) -(-13 (-1122) (-502 (-1180)) (-10 -8 (-15 -4310 ($ (-1180) (-1180) (-1180))) (-15 -1769 ((-1180) $)) (-15 -2676 ((-1180) $)) (-15 -1638 ((-1180) $)) (-15 -2274 ((-112) $)) (-15 -1937 ((-112) $)) (-15 -1343 ((-112) $)) (-15 -4109 ($ (-1180) (-1180) (-1180))))) -(((-102) . T) ((-628 #0=(-1180)) . T) ((-625 (-877)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2441 (((-877) $) 63)) (-4359 (($) NIL T CONST)) (-2609 (($ $ (-941)) NIL)) (-3490 (($ $ (-941)) NIL)) (-4404 (($ $ (-941)) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-4097 (($ (-784)) 38)) (-3863 (((-784)) 18)) (-2961 (((-877) $) 65)) (-3544 (($ $ $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-4254 (($ $ $ $) NIL)) (-3599 (($ $ $) NIL)) (-2769 (($) 24 T CONST)) (-2933 (((-112) $ $) 41)) (-3022 (($ $) 48) (($ $ $) 50)) (-3012 (($ $ $) 51)) (** (($ $ (-941)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) -(((-402 |#1| |#2| |#3|) (-13 (-757 |#3|) (-10 -8 (-15 -3863 ((-784))) (-15 -2961 ((-877) $)) (-15 -2441 ((-877) $)) (-15 -4097 ($ (-784))))) (-784) (-784) (-174)) (T -402)) -((-3863 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-784)) (-14 *4 (-784)) (-4 *5 (-174)))) (-2441 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-784)) (-14 *4 (-784)) (-4 *5 (-174)))) (-4097 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) -(-13 (-757 |#3|) (-10 -8 (-15 -3863 ((-784))) (-15 -2961 ((-877) $)) (-15 -2441 ((-877) $)) (-15 -4097 ($ (-784))))) -((-1713 (((-1180)) 12)) (-1720 (((-1169 (-1180))) 30)) (-2646 (((-1294) (-1180)) 27) (((-1294) (-400)) 26)) (-2659 (((-1294)) 28)) (-4268 (((-1169 (-1180))) 29))) -(((-403) (-10 -7 (-15 -4268 ((-1169 (-1180)))) (-15 -1720 ((-1169 (-1180)))) (-15 -2659 ((-1294))) (-15 -2646 ((-1294) (-400))) (-15 -2646 ((-1294) (-1180))) (-15 -1713 ((-1180))))) (T -403)) -((-1713 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-403)))) (-2646 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-403)))) (-2646 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1294)) (-5 *1 (-403)))) (-2659 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-403)))) (-1720 (*1 *2) (-12 (-5 *2 (-1169 (-1180))) (-5 *1 (-403)))) (-4268 (*1 *2) (-12 (-5 *2 (-1169 (-1180))) (-5 *1 (-403))))) -(-10 -7 (-15 -4268 ((-1169 (-1180)))) (-15 -1720 ((-1169 (-1180)))) (-15 -2659 ((-1294))) (-15 -2646 ((-1294) (-400))) (-15 -2646 ((-1294) (-1180))) (-15 -1713 ((-1180)))) -((-3182 (((-784) (-347 |#1| |#2| |#3| |#4|)) 16))) -(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3182 ((-784) (-347 |#1| |#2| |#3| |#4|)))) (-13 (-379) (-374)) (-1265 |#1|) (-1265 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -404)) -((-3182 (*1 *2 *3) (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) (-5 *2 (-784)) (-5 *1 (-404 *4 *5 *6 *7))))) -(-10 -7 (-15 -3182 ((-784) (-347 |#1| |#2| |#3| |#4|)))) -((-3501 (((-406) |#1|) 11))) -(((-405 |#1|) (-10 -7 (-15 -3501 ((-406) |#1|))) (-1122)) (T -405)) -((-3501 (*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1122))))) -(-10 -7 (-15 -3501 ((-406) |#1|))) -((-3429 (((-112) $ $) NIL)) (-4327 (((-657 (-1180)) $ (-657 (-1180))) 42)) (-3717 (((-657 (-1180)) $ (-657 (-1180))) 43)) (-1945 (((-657 (-1180)) $ (-657 (-1180))) 44)) (-2334 (((-657 (-1180)) $) 39)) (-4109 (($) 30)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2340 (((-657 (-1180)) $) 40)) (-2259 (((-657 (-1180)) $) 41)) (-2041 (((-1294) $ (-576)) 37) (((-1294) $) 38)) (-4148 (($ (-877) (-576)) 35)) (-3501 (((-877) $) 49) (($ (-877)) 32)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-406) (-13 (-1122) (-628 (-877)) (-10 -8 (-15 -4148 ($ (-877) (-576))) (-15 -2041 ((-1294) $ (-576))) (-15 -2041 ((-1294) $)) (-15 -2259 ((-657 (-1180)) $)) (-15 -2340 ((-657 (-1180)) $)) (-15 -4109 ($)) (-15 -2334 ((-657 (-1180)) $)) (-15 -1945 ((-657 (-1180)) $ (-657 (-1180)))) (-15 -3717 ((-657 (-1180)) $ (-657 (-1180)))) (-15 -4327 ((-657 (-1180)) $ (-657 (-1180))))))) (T -406)) -((-4148 (*1 *1 *2 *3) (-12 (-5 *2 (-877)) (-5 *3 (-576)) (-5 *1 (-406)))) (-2041 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-406)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-406)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406)))) (-2340 (*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406)))) (-4109 (*1 *1) (-5 *1 (-406))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406)))) (-1945 (*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406)))) (-3717 (*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406)))) (-4327 (*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406))))) -(-13 (-1122) (-628 (-877)) (-10 -8 (-15 -4148 ($ (-877) (-576))) (-15 -2041 ((-1294) $ (-576))) (-15 -2041 ((-1294) $)) (-15 -2259 ((-657 (-1180)) $)) (-15 -2340 ((-657 (-1180)) $)) (-15 -4109 ($)) (-15 -2334 ((-657 (-1180)) $)) (-15 -1945 ((-657 (-1180)) $ (-657 (-1180)))) (-15 -3717 ((-657 (-1180)) $ (-657 (-1180)))) (-15 -4327 ((-657 (-1180)) $ (-657 (-1180)))))) -((-2669 (((-1294) $) 7)) (-3501 (((-877) $) 8))) -(((-407) (-141)) (T -407)) -((-2669 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1294))))) -(-13 (-1239) (-625 (-877)) (-10 -8 (-15 -2669 ((-1294) $)))) -(((-625 (-877)) . T) ((-1239) . T)) -((-1624 (((-3 $ "failed") (-326 (-390))) 21) (((-3 $ "failed") (-326 (-576))) 19) (((-3 $ "failed") (-972 (-390))) 17) (((-3 $ "failed") (-972 (-576))) 15) (((-3 $ "failed") (-419 (-972 (-390)))) 13) (((-3 $ "failed") (-419 (-972 (-576)))) 11)) (-2884 (($ (-326 (-390))) 22) (($ (-326 (-576))) 20) (($ (-972 (-390))) 18) (($ (-972 (-576))) 16) (($ (-419 (-972 (-390)))) 14) (($ (-419 (-972 (-576)))) 12)) (-2669 (((-1294) $) 7)) (-3501 (((-877) $) 8) (($ (-657 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 23))) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-705 (-715))) (-4 *1 (-395)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-395)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-395)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) (-4 *1 (-395))))) +(-13 (-408) (-10 -8 (-15 -3544 ($ (-705 (-715)))) (-15 -3544 ($ (-660 (-341)))) (-15 -3544 ($ (-341))) (-15 -3544 ($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341)))))))) +(((-626 (-880)) . T) ((-408) . T) ((-1242) . T)) +((-1628 (((-3 $ "failed") (-705 (-327 (-391)))) 21) (((-3 $ "failed") (-705 (-327 (-577)))) 19) (((-3 $ "failed") (-705 (-975 (-391)))) 17) (((-3 $ "failed") (-705 (-975 (-577)))) 15) (((-3 $ "failed") (-705 (-420 (-975 (-391))))) 13) (((-3 $ "failed") (-705 (-420 (-975 (-577))))) 11)) (-2921 (($ (-705 (-327 (-391)))) 22) (($ (-705 (-327 (-577)))) 20) (($ (-705 (-975 (-391)))) 18) (($ (-705 (-975 (-577)))) 16) (($ (-705 (-420 (-975 (-391))))) 14) (($ (-705 (-420 (-975 (-577))))) 12)) (-2706 (((-1297) $) 7)) (-3544 (((-880) $) 8) (($ (-660 (-341))) 25) (($ (-341)) 24) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 23))) +(((-396) (-141)) (T -396)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-396)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-396)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) (-4 *1 (-396)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-705 (-327 (-391)))) (-4 *1 (-396)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-705 (-327 (-391)))) (-4 *1 (-396)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-705 (-327 (-577)))) (-4 *1 (-396)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-705 (-327 (-577)))) (-4 *1 (-396)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-705 (-975 (-391)))) (-4 *1 (-396)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-705 (-975 (-391)))) (-4 *1 (-396)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-705 (-975 (-577)))) (-4 *1 (-396)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-705 (-975 (-577)))) (-4 *1 (-396)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-705 (-420 (-975 (-391))))) (-4 *1 (-396)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-705 (-420 (-975 (-391))))) (-4 *1 (-396)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-705 (-420 (-975 (-577))))) (-4 *1 (-396)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-705 (-420 (-975 (-577))))) (-4 *1 (-396))))) +(-13 (-408) (-10 -8 (-15 -3544 ($ (-660 (-341)))) (-15 -3544 ($ (-341))) (-15 -3544 ($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341)))))) (-15 -2921 ($ (-705 (-327 (-391))))) (-15 -1628 ((-3 $ "failed") (-705 (-327 (-391))))) (-15 -2921 ($ (-705 (-327 (-577))))) (-15 -1628 ((-3 $ "failed") (-705 (-327 (-577))))) (-15 -2921 ($ (-705 (-975 (-391))))) (-15 -1628 ((-3 $ "failed") (-705 (-975 (-391))))) (-15 -2921 ($ (-705 (-975 (-577))))) (-15 -1628 ((-3 $ "failed") (-705 (-975 (-577))))) (-15 -2921 ($ (-705 (-420 (-975 (-391)))))) (-15 -1628 ((-3 $ "failed") (-705 (-420 (-975 (-391)))))) (-15 -2921 ($ (-705 (-420 (-975 (-577)))))) (-15 -1628 ((-3 $ "failed") (-705 (-420 (-975 (-577)))))))) +(((-626 (-880)) . T) ((-408) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3829 (((-660 (-891 |#2| |#1|)) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-2248 (($ $) NIL)) (-2030 (($ |#1| |#2|) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3747 ((|#2| $) NIL)) (-2221 ((|#1| $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 33)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 12 T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) +(((-397 |#1| |#2|) (-13 (-111 |#1| |#1|) (-522 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-733 |#1|)) |%noBranch|))) (-1074) (-868)) (T -397)) +NIL +(-13 (-111 |#1| |#1|) (-522 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-733 |#1|)) |%noBranch|))) +((-3473 (((-112) $ $) 7)) (-2229 (((-787) $) 35)) (-1534 (($) 19 T CONST)) (-2821 (((-3 $ "failed") $ $) 38)) (-1628 (((-3 |#1| "failed") $) 46)) (-2921 ((|#1| $) 47)) (-4187 (((-3 $ "failed") $) 16)) (-3054 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 36)) (-2487 (((-112) $) 18)) (-3657 ((|#1| $ (-577)) 32)) (-3668 (((-787) $ (-577)) 33)) (-3732 (($ $ $) 24 (|has| |#1| (-865)))) (-3201 (($ $ $) 25 (|has| |#1| (-865)))) (-1735 (($ (-1 |#1| |#1|) $) 30)) (-1742 (($ (-1 (-787) (-787)) $) 31)) (-2834 (((-3 $ "failed") $ $) 39)) (-2810 (((-1183) $) 10)) (-3065 (($ $ $) 40)) (-3075 (($ $ $) 41)) (-1474 (((-1145) $) 11)) (-3363 (((-660 (-2 (|:| |gen| |#1|) (|:| -4072 (-787)))) $) 34)) (-3422 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 37)) (-3544 (((-880) $) 12) (($ |#1|) 45)) (-4448 (((-112) $ $) 6)) (-2816 (($) 20 T CONST)) (-3025 (((-112) $ $) 26 (|has| |#1| (-865)))) (-3000 (((-112) $ $) 28 (|has| |#1| (-865)))) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 27 (|has| |#1| (-865)))) (-2990 (((-112) $ $) 29 (|has| |#1| (-865)))) (** (($ $ (-944)) 14) (($ $ (-787)) 17) (($ |#1| (-787)) 42)) (* (($ $ $) 15) (($ |#1| $) 44) (($ $ |#1|) 43))) +(((-398 |#1|) (-141) (-1125)) (T -398)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-398 *2)) (-4 *2 (-1125)))) (-3075 (*1 *1 *1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) (-3065 (*1 *1 *1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) (-2834 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) (-2821 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) (-3422 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1125)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-398 *3)))) (-3054 (*1 *2 *1 *1) (-12 (-4 *3 (-1125)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-398 *3)))) (-2229 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-1125)) (-5 *2 (-787)))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-1125)) (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4072 (-787))))))) (-3668 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-398 *4)) (-4 *4 (-1125)) (-5 *2 (-787)))) (-3657 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-398 *2)) (-4 *2 (-1125)))) (-1742 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-787) (-787))) (-4 *1 (-398 *3)) (-4 *3 (-1125)))) (-1735 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-398 *3)) (-4 *3 (-1125))))) +(-13 (-742) (-1063 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-787))) (-15 -3075 ($ $ $)) (-15 -3065 ($ $ $)) (-15 -2834 ((-3 $ "failed") $ $)) (-15 -2821 ((-3 $ "failed") $ $)) (-15 -3422 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3054 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2229 ((-787) $)) (-15 -3363 ((-660 (-2 (|:| |gen| |t#1|) (|:| -4072 (-787)))) $)) (-15 -3668 ((-787) $ (-577))) (-15 -3657 (|t#1| $ (-577))) (-15 -1742 ($ (-1 (-787) (-787)) $)) (-15 -1735 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-865)) (-6 (-865)) |%noBranch|))) +(((-102) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-742) . T) ((-865) |has| |#1| (-865)) ((-868) |has| |#1| (-865)) ((-1063 |#1|) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-2229 (((-787) $) 74)) (-1534 (($) NIL T CONST)) (-2821 (((-3 $ "failed") $ $) 77)) (-1628 (((-3 |#1| "failed") $) NIL)) (-2921 ((|#1| $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3054 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-2487 (((-112) $) 17)) (-3657 ((|#1| $ (-577)) NIL)) (-3668 (((-787) $ (-577)) NIL)) (-3732 (($ $ $) NIL (|has| |#1| (-865)))) (-3201 (($ $ $) NIL (|has| |#1| (-865)))) (-1735 (($ (-1 |#1| |#1|) $) 40)) (-1742 (($ (-1 (-787) (-787)) $) 37)) (-2834 (((-3 $ "failed") $ $) 60)) (-2810 (((-1183) $) NIL)) (-3065 (($ $ $) 28)) (-3075 (($ $ $) 26)) (-1474 (((-1145) $) NIL)) (-3363 (((-660 (-2 (|:| |gen| |#1|) (|:| -4072 (-787)))) $) 34)) (-3422 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-3544 (((-880) $) 24) (($ |#1|) NIL)) (-4448 (((-112) $ $) NIL)) (-2816 (($) 11 T CONST)) (-3025 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2990 (((-112) $ $) 84 (|has| |#1| (-865)))) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ |#1| (-787)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) +(((-399 |#1|) (-398 |#1|) (-1125)) (T -399)) +NIL +(-398 |#1|) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-1628 (((-3 (-577) "failed") $) 54)) (-2921 (((-577) $) 55)) (-4187 (((-3 $ "failed") $) 37)) (-2487 (((-112) $) 35)) (-3732 (($ $ $) 56)) (-3201 (($ $ $) 57)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3462 (((-3 $ "failed") $ $) 48)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49) (($ (-577)) 53)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 45)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-3025 (((-112) $ $) 58)) (-3000 (((-112) $ $) 60)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 59)) (-2990 (((-112) $ $) 61)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) +(((-400) (-141)) (T -400)) +NIL +(-13 (-569) (-865) (-1063 (-577))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-301) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-865) . T) ((-868) . T) ((-1063 (-577)) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3086 (((-112) $) 25)) (-3094 (((-112) $) 22)) (-4113 (($ (-1183) (-1183) (-1183)) 26)) (-2713 (((-1183) $) 16)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-4314 (($ (-1183) (-1183) (-1183)) 14)) (-3111 (((-1183) $) 17)) (-3102 (((-112) $) 18)) (-1775 (((-1183) $) 15)) (-3544 (((-880) $) 12) (($ (-1183)) 13) (((-1183) $) 9)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 7))) +(((-401) (-402)) (T -401)) +NIL +(-402) +((-3473 (((-112) $ $) 7)) (-3086 (((-112) $) 17)) (-3094 (((-112) $) 18)) (-4113 (($ (-1183) (-1183) (-1183)) 16)) (-2713 (((-1183) $) 21)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-4314 (($ (-1183) (-1183) (-1183)) 23)) (-3111 (((-1183) $) 20)) (-3102 (((-112) $) 19)) (-1775 (((-1183) $) 22)) (-3544 (((-880) $) 12) (($ (-1183)) 25) (((-1183) $) 24)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8))) +(((-402) (-141)) (T -402)) +((-4314 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-402)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1183)))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1183)))) (-3111 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1183)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112)))) (-3094 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112)))) (-3086 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112)))) (-4113 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-402))))) +(-13 (-1125) (-503 (-1183)) (-10 -8 (-15 -4314 ($ (-1183) (-1183) (-1183))) (-15 -1775 ((-1183) $)) (-15 -2713 ((-1183) $)) (-15 -3111 ((-1183) $)) (-15 -3102 ((-112) $)) (-15 -3094 ((-112) $)) (-15 -3086 ((-112) $)) (-15 -4113 ($ (-1183) (-1183) (-1183))))) +(((-102) . T) ((-629 #0=(-1183)) . T) ((-626 (-880)) . T) ((-626 #0#) . T) ((-503 #0#) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-3123 (((-880) $) 63)) (-1534 (($) NIL T CONST)) (-2470 (($ $ (-944)) NIL)) (-2667 (($ $ (-944)) NIL)) (-3604 (($ $ (-944)) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-4101 (($ (-787)) 38)) (-2561 (((-787)) 18)) (-3133 (((-880) $) 65)) (-3820 (($ $ $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-3832 (($ $ $ $) NIL)) (-3807 (($ $ $) NIL)) (-2806 (($) 24 T CONST)) (-2970 (((-112) $ $) 41)) (-3066 (($ $) 48) (($ $ $) 50)) (-3055 (($ $ $) 51)) (** (($ $ (-944)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) +(((-403 |#1| |#2| |#3|) (-13 (-760 |#3|) (-10 -8 (-15 -2561 ((-787))) (-15 -3133 ((-880) $)) (-15 -3123 ((-880) $)) (-15 -4101 ($ (-787))))) (-787) (-787) (-174)) (T -403)) +((-2561 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-3133 (*1 *2 *1) (-12 (-5 *2 (-880)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 (-787)) (-14 *4 (-787)) (-4 *5 (-174)))) (-3123 (*1 *2 *1) (-12 (-5 *2 (-880)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 (-787)) (-14 *4 (-787)) (-4 *5 (-174)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) +(-13 (-760 |#3|) (-10 -8 (-15 -2561 ((-787))) (-15 -3133 ((-880) $)) (-15 -3123 ((-880) $)) (-15 -4101 ($ (-787))))) +((-3165 (((-1183)) 12)) (-3155 (((-1172 (-1183))) 30)) (-2683 (((-1297) (-1183)) 27) (((-1297) (-401)) 26)) (-2696 (((-1297)) 28)) (-3144 (((-1172 (-1183))) 29))) +(((-404) (-10 -7 (-15 -3144 ((-1172 (-1183)))) (-15 -3155 ((-1172 (-1183)))) (-15 -2696 ((-1297))) (-15 -2683 ((-1297) (-401))) (-15 -2683 ((-1297) (-1183))) (-15 -3165 ((-1183))))) (T -404)) +((-3165 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-404)))) (-2683 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-404)))) (-2683 (*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1297)) (-5 *1 (-404)))) (-2696 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-404)))) (-3155 (*1 *2) (-12 (-5 *2 (-1172 (-1183))) (-5 *1 (-404)))) (-3144 (*1 *2) (-12 (-5 *2 (-1172 (-1183))) (-5 *1 (-404))))) +(-10 -7 (-15 -3144 ((-1172 (-1183)))) (-15 -3155 ((-1172 (-1183)))) (-15 -2696 ((-1297))) (-15 -2683 ((-1297) (-401))) (-15 -2683 ((-1297) (-1183))) (-15 -3165 ((-1183)))) +((-3817 (((-787) (-348 |#1| |#2| |#3| |#4|)) 16))) +(((-405 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3817 ((-787) (-348 |#1| |#2| |#3| |#4|)))) (-13 (-380) (-375)) (-1268 |#1|) (-1268 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -405)) +((-3817 (*1 *2 *3) (-12 (-5 *3 (-348 *4 *5 *6 *7)) (-4 *4 (-13 (-380) (-375))) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) (-4 *7 (-354 *4 *5 *6)) (-5 *2 (-787)) (-5 *1 (-405 *4 *5 *6 *7))))) +(-10 -7 (-15 -3817 ((-787) (-348 |#1| |#2| |#3| |#4|)))) +((-3544 (((-407) |#1|) 11))) +(((-406 |#1|) (-10 -7 (-15 -3544 ((-407) |#1|))) (-1125)) (T -406)) +((-3544 (*1 *2 *3) (-12 (-5 *2 (-407)) (-5 *1 (-406 *3)) (-4 *3 (-1125))))) +(-10 -7 (-15 -3544 ((-407) |#1|))) +((-3473 (((-112) $ $) NIL)) (-2910 (((-660 (-1183)) $ (-660 (-1183))) 42)) (-3175 (((-660 (-1183)) $ (-660 (-1183))) 43)) (-2929 (((-660 (-1183)) $ (-660 (-1183))) 44)) (-2938 (((-660 (-1183)) $) 39)) (-4113 (($) 30)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2377 (((-660 (-1183)) $) 40)) (-2949 (((-660 (-1183)) $) 41)) (-2072 (((-1297) $ (-577)) 37) (((-1297) $) 38)) (-4152 (($ (-880) (-577)) 35)) (-3544 (((-880) $) 49) (($ (-880)) 32)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-407) (-13 (-1125) (-629 (-880)) (-10 -8 (-15 -4152 ($ (-880) (-577))) (-15 -2072 ((-1297) $ (-577))) (-15 -2072 ((-1297) $)) (-15 -2949 ((-660 (-1183)) $)) (-15 -2377 ((-660 (-1183)) $)) (-15 -4113 ($)) (-15 -2938 ((-660 (-1183)) $)) (-15 -2929 ((-660 (-1183)) $ (-660 (-1183)))) (-15 -3175 ((-660 (-1183)) $ (-660 (-1183)))) (-15 -2910 ((-660 (-1183)) $ (-660 (-1183))))))) (T -407)) +((-4152 (*1 *1 *2 *3) (-12 (-5 *2 (-880)) (-5 *3 (-577)) (-5 *1 (-407)))) (-2072 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-407)))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-407)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407)))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407)))) (-4113 (*1 *1) (-5 *1 (-407))) (-2938 (*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407)))) (-2929 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407)))) (-3175 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407)))) (-2910 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407))))) +(-13 (-1125) (-629 (-880)) (-10 -8 (-15 -4152 ($ (-880) (-577))) (-15 -2072 ((-1297) $ (-577))) (-15 -2072 ((-1297) $)) (-15 -2949 ((-660 (-1183)) $)) (-15 -2377 ((-660 (-1183)) $)) (-15 -4113 ($)) (-15 -2938 ((-660 (-1183)) $)) (-15 -2929 ((-660 (-1183)) $ (-660 (-1183)))) (-15 -3175 ((-660 (-1183)) $ (-660 (-1183)))) (-15 -2910 ((-660 (-1183)) $ (-660 (-1183)))))) +((-2706 (((-1297) $) 7)) (-3544 (((-880) $) 8))) (((-408) (-141)) (T -408)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-408)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) (-4 *1 (-408)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-972 (-390))) (-4 *1 (-408)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-972 (-390))) (-4 *1 (-408)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-972 (-576))) (-4 *1 (-408)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-972 (-576))) (-4 *1 (-408)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-419 (-972 (-390)))) (-4 *1 (-408)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-972 (-390)))) (-4 *1 (-408)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-419 (-972 (-576)))) (-4 *1 (-408)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-972 (-576)))) (-4 *1 (-408))))) -(-13 (-407) (-10 -8 (-15 -3501 ($ (-657 (-340)))) (-15 -3501 ($ (-340))) (-15 -3501 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340)))))) (-15 -2884 ($ (-326 (-390)))) (-15 -1624 ((-3 $ "failed") (-326 (-390)))) (-15 -2884 ($ (-326 (-576)))) (-15 -1624 ((-3 $ "failed") (-326 (-576)))) (-15 -2884 ($ (-972 (-390)))) (-15 -1624 ((-3 $ "failed") (-972 (-390)))) (-15 -2884 ($ (-972 (-576)))) (-15 -1624 ((-3 $ "failed") (-972 (-576)))) (-15 -2884 ($ (-419 (-972 (-390))))) (-15 -1624 ((-3 $ "failed") (-419 (-972 (-390))))) (-15 -2884 ($ (-419 (-972 (-576))))) (-15 -1624 ((-3 $ "failed") (-419 (-972 (-576))))))) -(((-625 (-877)) . T) ((-407) . T) ((-1239) . T)) -((-3512 (((-657 (-1180)) (-657 (-1180))) 9)) (-2669 (((-1294) (-400)) 26)) (-4016 (((-1126) (-1198) (-657 (-1198)) (-1201) (-657 (-1198))) 59) (((-1126) (-1198) (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198)))) (-657 (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198))))) (-657 (-1198)) (-1198)) 34) (((-1126) (-1198) (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198)))) (-657 (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198))))) (-657 (-1198))) 33))) -(((-409) (-10 -7 (-15 -4016 ((-1126) (-1198) (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198)))) (-657 (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198))))) (-657 (-1198)))) (-15 -4016 ((-1126) (-1198) (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198)))) (-657 (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198))))) (-657 (-1198)) (-1198))) (-15 -4016 ((-1126) (-1198) (-657 (-1198)) (-1201) (-657 (-1198)))) (-15 -2669 ((-1294) (-400))) (-15 -3512 ((-657 (-1180)) (-657 (-1180)))))) (T -409)) -((-3512 (*1 *2 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-409)))) (-2669 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1294)) (-5 *1 (-409)))) (-4016 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-657 (-1198))) (-5 *5 (-1201)) (-5 *3 (-1198)) (-5 *2 (-1126)) (-5 *1 (-409)))) (-4016 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-657 (-657 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-657 (-3 (|:| |array| (-657 *3)) (|:| |scalar| (-1198))))) (-5 *6 (-657 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1126)) (-5 *1 (-409)))) (-4016 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-657 (-657 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-657 (-3 (|:| |array| (-657 *3)) (|:| |scalar| (-1198))))) (-5 *6 (-657 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1126)) (-5 *1 (-409))))) -(-10 -7 (-15 -4016 ((-1126) (-1198) (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198)))) (-657 (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198))))) (-657 (-1198)))) (-15 -4016 ((-1126) (-1198) (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198)))) (-657 (-657 (-3 (|:| |array| (-657 (-1198))) (|:| |scalar| (-1198))))) (-657 (-1198)) (-1198))) (-15 -4016 ((-1126) (-1198) (-657 (-1198)) (-1201) (-657 (-1198)))) (-15 -2669 ((-1294) (-400))) (-15 -3512 ((-657 (-1180)) (-657 (-1180))))) -((-2669 (((-1294) $) 35)) (-3501 (((-877) $) 97) (($ (-340)) 99) (($ (-657 (-340))) 98) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 96) (($ (-326 (-714))) 52) (($ (-326 (-712))) 72) (($ (-326 (-707))) 85) (($ (-304 (-326 (-714)))) 67) (($ (-304 (-326 (-712)))) 80) (($ (-304 (-326 (-707)))) 93) (($ (-326 (-576))) 104) (($ (-326 (-390))) 117) (($ (-326 (-171 (-390)))) 130) (($ (-304 (-326 (-576)))) 112) (($ (-304 (-326 (-390)))) 125) (($ (-304 (-326 (-171 (-390))))) 138))) -(((-410 |#1| |#2| |#3| |#4|) (-13 (-407) (-10 -8 (-15 -3501 ($ (-340))) (-15 -3501 ($ (-657 (-340)))) (-15 -3501 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340)))))) (-15 -3501 ($ (-326 (-714)))) (-15 -3501 ($ (-326 (-712)))) (-15 -3501 ($ (-326 (-707)))) (-15 -3501 ($ (-304 (-326 (-714))))) (-15 -3501 ($ (-304 (-326 (-712))))) (-15 -3501 ($ (-304 (-326 (-707))))) (-15 -3501 ($ (-326 (-576)))) (-15 -3501 ($ (-326 (-390)))) (-15 -3501 ($ (-326 (-171 (-390))))) (-15 -3501 ($ (-304 (-326 (-576))))) (-15 -3501 ($ (-304 (-326 (-390))))) (-15 -3501 ($ (-304 (-326 (-171 (-390)))))))) (-1198) (-3 (|:| |fst| (-446)) (|:| -2927 "void")) (-657 (-1198)) (-1202)) (T -410)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-326 (-714))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-326 (-712))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-326 (-707))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-714)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-712)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-707)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-14 *5 (-657 (-1198))) (-14 *6 (-1202))))) -(-13 (-407) (-10 -8 (-15 -3501 ($ (-340))) (-15 -3501 ($ (-657 (-340)))) (-15 -3501 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340)))))) (-15 -3501 ($ (-326 (-714)))) (-15 -3501 ($ (-326 (-712)))) (-15 -3501 ($ (-326 (-707)))) (-15 -3501 ($ (-304 (-326 (-714))))) (-15 -3501 ($ (-304 (-326 (-712))))) (-15 -3501 ($ (-304 (-326 (-707))))) (-15 -3501 ($ (-326 (-576)))) (-15 -3501 ($ (-326 (-390)))) (-15 -3501 ($ (-326 (-171 (-390))))) (-15 -3501 ($ (-304 (-326 (-576))))) (-15 -3501 ($ (-304 (-326 (-390))))) (-15 -3501 ($ (-304 (-326 (-171 (-390)))))))) -((-3429 (((-112) $ $) NIL)) (-3783 ((|#2| $) 38)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3047 (($ (-419 |#2|)) 93)) (-4036 (((-657 (-2 (|:| -1801 (-784)) (|:| -3665 |#2|) (|:| |num| |#2|))) $) 39)) (-2815 (($ $ (-784)) 36) (($ $) 34)) (-4148 (((-419 |#2|) $) 49)) (-3511 (($ (-657 (-2 (|:| -1801 (-784)) (|:| -3665 |#2|) (|:| |num| |#2|)))) 33)) (-3501 (((-877) $) 131)) (-2046 (((-112) $ $) NIL)) (-2097 (($ $ (-784)) 37) (($ $) 35)) (-2933 (((-112) $ $) NIL)) (-3012 (($ |#2| $) 41))) -(((-411 |#1| |#2|) (-13 (-1122) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -3012 ($ |#2| $)) (-15 -3047 ($ (-419 |#2|))) (-15 -3783 (|#2| $)) (-15 -4036 ((-657 (-2 (|:| -1801 (-784)) (|:| -3665 |#2|) (|:| |num| |#2|))) $)) (-15 -3511 ($ (-657 (-2 (|:| -1801 (-784)) (|:| -3665 |#2|) (|:| |num| |#2|))))))) (-13 (-374) (-148)) (-1265 |#1|)) (T -411)) -((-3012 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1265 *3)))) (-3047 (*1 *1 *2) (-12 (-5 *2 (-419 *4)) (-4 *4 (-1265 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) (-3783 (*1 *2 *1) (-12 (-4 *2 (-1265 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-374) (-148))))) (-4036 (*1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *2 (-657 (-2 (|:| -1801 (-784)) (|:| -3665 *4) (|:| |num| *4)))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1265 *3)))) (-3511 (*1 *1 *2) (-12 (-5 *2 (-657 (-2 (|:| -1801 (-784)) (|:| -3665 *4) (|:| |num| *4)))) (-4 *4 (-1265 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4))))) -(-13 (-1122) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -3012 ($ |#2| $)) (-15 -3047 ($ (-419 |#2|))) (-15 -3783 (|#2| $)) (-15 -4036 ((-657 (-2 (|:| -1801 (-784)) (|:| -3665 |#2|) (|:| |num| |#2|))) $)) (-15 -3511 ($ (-657 (-2 (|:| -1801 (-784)) (|:| -3665 |#2|) (|:| |num| |#2|))))))) -((-3429 (((-112) $ $) 10 (-2802 (|has| |#1| (-902 (-576))) (|has| |#1| (-902 (-390)))))) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 16 (|has| |#1| (-902 (-390)))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 15 (|has| |#1| (-902 (-576))))) (-2342 (((-1180) $) 14 (-2802 (|has| |#1| (-902 (-576))) (|has| |#1| (-902 (-390)))))) (-1471 (((-1142) $) 13 (-2802 (|has| |#1| (-902 (-576))) (|has| |#1| (-902 (-390)))))) (-3501 (((-877) $) 12 (-2802 (|has| |#1| (-902 (-576))) (|has| |#1| (-902 (-390)))))) (-2046 (((-112) $ $) 11 (-2802 (|has| |#1| (-902 (-576))) (|has| |#1| (-902 (-390)))))) (-2933 (((-112) $ $) 9 (-2802 (|has| |#1| (-902 (-576))) (|has| |#1| (-902 (-390))))))) -(((-412 |#1|) (-141) (-1239)) (T -412)) -NIL -(-13 (-1239) (-10 -7 (IF (|has| |t#1| (-902 (-576))) (-6 (-902 (-576))) |%noBranch|) (IF (|has| |t#1| (-902 (-390))) (-6 (-902 (-390))) |%noBranch|))) -(((-102) -2802 (|has| |#1| (-902 (-576))) (|has| |#1| (-902 (-390)))) ((-625 (-877)) -2802 (|has| |#1| (-902 (-576))) (|has| |#1| (-902 (-390)))) ((-902 (-390)) |has| |#1| (-902 (-390))) ((-902 (-576)) |has| |#1| (-902 (-576))) ((-1122) -2802 (|has| |#1| (-902 (-576))) (|has| |#1| (-902 (-390)))) ((-1239) . T)) -((-1780 (($ $) 10) (($ $ (-784)) 12))) -(((-413 |#1|) (-10 -8 (-15 -1780 (|#1| |#1| (-784))) (-15 -1780 (|#1| |#1|))) (-414)) (T -413)) -NIL -(-10 -8 (-15 -1780 (|#1| |#1| (-784))) (-15 -1780 (|#1| |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-2721 (((-3 $ "failed") $ $) 20)) (-2638 (($ $) 81)) (-4402 (((-430 $) $) 80)) (-2864 (((-112) $ $) 65)) (-4359 (($) 18 T CONST)) (-3373 (($ $ $) 61)) (-3843 (((-3 $ "failed") $) 37)) (-3385 (($ $ $) 62)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 57)) (-1780 (($ $) 87) (($ $ (-784)) 86)) (-4257 (((-112) $) 79)) (-3182 (((-846 (-941)) $) 89)) (-4094 (((-112) $) 35)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3402 (($ $ $) 52) (($ (-657 $)) 51)) (-2342 (((-1180) $) 10)) (-2134 (($ $) 78)) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3436 (($ $ $) 54) (($ (-657 $)) 53)) (-1885 (((-430 $) $) 82)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3418 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-2034 (((-784) $) 64)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 63)) (-2284 (((-3 (-784) "failed") $ $) 88)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3096 (((-3 $ "failed") $) 90)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 45)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3034 (($ $ $) 73)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) -(((-414) (-141)) (T -414)) -((-3182 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-846 (-941))))) (-2284 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-784)))) (-1780 (*1 *1 *1) (-4 *1 (-414))) (-1780 (*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-784))))) -(-13 (-374) (-146) (-10 -8 (-15 -3182 ((-846 (-941)) $)) (-15 -2284 ((-3 (-784) "failed") $ $)) (-15 -1780 ($ $)) (-15 -1780 ($ $ (-784))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-730 #0#) . T) ((-730 $) . T) ((-739) . T) ((-940) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) . T)) -((-3023 (($ (-576) (-576)) 11) (($ (-576) (-576) (-941)) NIL)) (-4039 (((-941)) 19) (((-941) (-941)) NIL))) -(((-415 |#1|) (-10 -8 (-15 -4039 ((-941) (-941))) (-15 -4039 ((-941))) (-15 -3023 (|#1| (-576) (-576) (-941))) (-15 -3023 (|#1| (-576) (-576)))) (-416)) (T -415)) -((-4039 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) (-4039 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-415 *3)) (-4 *3 (-416))))) -(-10 -8 (-15 -4039 ((-941) (-941))) (-15 -4039 ((-941))) (-15 -3023 (|#1| (-576) (-576) (-941))) (-15 -3023 (|#1| (-576) (-576)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3931 (((-576) $) 98)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-4374 (($ $) 96)) (-2721 (((-3 $ "failed") $ $) 20)) (-2638 (($ $) 81)) (-4402 (((-430 $) $) 80)) (-1896 (($ $) 106)) (-2864 (((-112) $ $) 65)) (-1536 (((-576) $) 123)) (-4359 (($) 18 T CONST)) (-1886 (($ $) 95)) (-1624 (((-3 (-576) "failed") $) 111) (((-3 (-419 (-576)) "failed") $) 108)) (-2884 (((-576) $) 112) (((-419 (-576)) $) 109)) (-3373 (($ $ $) 61)) (-3843 (((-3 $ "failed") $) 37)) (-3385 (($ $ $) 62)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 57)) (-4257 (((-112) $) 79)) (-4288 (((-941)) 139) (((-941) (-941)) 136 (|has| $ (-6 -4457)))) (-2828 (((-112) $) 121)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 102)) (-3182 (((-576) $) 145)) (-4094 (((-112) $) 35)) (-2082 (($ $ (-576)) 105)) (-2234 (($ $) 101)) (-2881 (((-112) $) 122)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3707 (($ $ $) 115) (($) 133 (-12 (-2712 (|has| $ (-6 -4457))) (-2712 (|has| $ (-6 -4449)))))) (-1611 (($ $ $) 116) (($) 132 (-12 (-2712 (|has| $ (-6 -4457))) (-2712 (|has| $ (-6 -4449)))))) (-1522 (((-576) $) 142)) (-3402 (($ $ $) 52) (($ (-657 $)) 51)) (-2342 (((-1180) $) 10)) (-2134 (($ $) 78)) (-3803 (((-941) (-576)) 135 (|has| $ (-6 -4457)))) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3436 (($ $ $) 54) (($ (-657 $)) 53)) (-2900 (($ $) 97)) (-3427 (($ $) 99)) (-3023 (($ (-576) (-576)) 147) (($ (-576) (-576) (-941)) 146)) (-1885 (((-430 $) $) 82)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3418 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-1801 (((-576) $) 143)) (-2034 (((-784) $) 64)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 63)) (-4039 (((-941)) 140) (((-941) (-941)) 137 (|has| $ (-6 -4457)))) (-1572 (((-941) (-576)) 134 (|has| $ (-6 -4457)))) (-4148 (((-390) $) 114) (((-227) $) 113) (((-908 (-390)) $) 103)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 110) (($ (-419 (-576))) 107)) (-1960 (((-784)) 32 T CONST)) (-1893 (($ $) 100)) (-3960 (((-941)) 141) (((-941) (-941)) 138 (|has| $ (-6 -4457)))) (-2046 (((-112) $ $) 6)) (-4143 (((-941)) 144)) (-4041 (((-112) $ $) 45)) (-1792 (($ $) 124)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2985 (((-112) $ $) 117)) (-2963 (((-112) $ $) 119)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 118)) (-2954 (((-112) $ $) 120)) (-3034 (($ $ $) 73)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 104)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) -(((-416) (-141)) (T -416)) -((-3023 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) (-3023 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-941)) (-4 *1 (-416)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-4143 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-941)))) (-1801 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-3960 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-941)))) (-4039 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-941)))) (-4288 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-941)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-941)) (|has| *1 (-6 -4457)) (-4 *1 (-416)))) (-4039 (*1 *2 *2) (-12 (-5 *2 (-941)) (|has| *1 (-6 -4457)) (-4 *1 (-416)))) (-4288 (*1 *2 *2) (-12 (-5 *2 (-941)) (|has| *1 (-6 -4457)) (-4 *1 (-416)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4457)) (-4 *1 (-416)) (-5 *2 (-941)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4457)) (-4 *1 (-416)) (-5 *2 (-941)))) (-3707 (*1 *1) (-12 (-4 *1 (-416)) (-2712 (|has| *1 (-6 -4457))) (-2712 (|has| *1 (-6 -4449))))) (-1611 (*1 *1) (-12 (-4 *1 (-416)) (-2712 (|has| *1 (-6 -4457))) (-2712 (|has| *1 (-6 -4449)))))) -(-13 (-1082) (-10 -8 (-6 -4144) (-15 -3023 ($ (-576) (-576))) (-15 -3023 ($ (-576) (-576) (-941))) (-15 -3182 ((-576) $)) (-15 -4143 ((-941))) (-15 -1801 ((-576) $)) (-15 -1522 ((-576) $)) (-15 -3960 ((-941))) (-15 -4039 ((-941))) (-15 -4288 ((-941))) (IF (|has| $ (-6 -4457)) (PROGN (-15 -3960 ((-941) (-941))) (-15 -4039 ((-941) (-941))) (-15 -4288 ((-941) (-941))) (-15 -3803 ((-941) (-576))) (-15 -1572 ((-941) (-576)))) |%noBranch|) (IF (|has| $ (-6 -4449)) |%noBranch| (IF (|has| $ (-6 -4457)) |%noBranch| (PROGN (-15 -3707 ($)) (-15 -1611 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-908 (-390))) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-730 #0#) . T) ((-730 $) . T) ((-739) . T) ((-804) . T) ((-805) . T) ((-807) . T) ((-808) . T) ((-861) . T) ((-862) . T) ((-865) . T) ((-902 (-390)) . T) ((-940) . T) ((-1024) . T) ((-1044) . T) ((-1082) . T) ((-1060 (-419 (-576))) . T) ((-1060 (-576)) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) . T)) -((-4083 (((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)) 20))) -(((-417 |#1| |#2|) (-10 -7 (-15 -4083 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) (-568) (-568)) (T -417)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6))))) -(-10 -7 (-15 -4083 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) -((-4083 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 13))) -(((-418 |#1| |#2|) (-10 -7 (-15 -4083 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-568) (-568)) (T -418)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6))))) -(-10 -7 (-15 -4083 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 13)) (-3931 ((|#1| $) 21 (|has| |#1| (-317)))) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2864 (((-112) $ $) NIL)) (-1536 (((-576) $) NIL (|has| |#1| (-833)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) 17) (((-3 (-1198) "failed") $) NIL (|has| |#1| (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-1060 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576))))) (-2884 ((|#1| $) 15) (((-1198) $) NIL (|has| |#1| (-1060 (-1198)))) (((-419 (-576)) $) 69 (|has| |#1| (-1060 (-576)))) (((-576) $) NIL (|has| |#1| (-1060 (-576))))) (-3373 (($ $ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) 51)) (-1892 (($) NIL (|has| |#1| (-557)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-2828 (((-112) $) NIL (|has| |#1| (-833)))) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| |#1| (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| |#1| (-902 (-390))))) (-4094 (((-112) $) 57)) (-2752 (($ $) NIL)) (-1621 ((|#1| $) 73)) (-4019 (((-3 $ "failed") $) NIL (|has| |#1| (-1174)))) (-2881 (((-112) $) NIL (|has| |#1| (-833)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3707 (($ $ $) NIL (|has| |#1| (-862)))) (-1611 (($ $ $) NIL (|has| |#1| (-862)))) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1706 (($) NIL (|has| |#1| (-1174)) CONST)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 100)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2900 (($ $) NIL (|has| |#1| (-317)))) (-3427 ((|#1| $) 28 (|has| |#1| (-557)))) (-2861 (((-430 (-1194 $)) (-1194 $)) 145 (|has| |#1| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) 138 (|has| |#1| (-929)))) (-1885 (((-430 $) $) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3236 (($ $ (-657 |#1|) (-657 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-657 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) NIL (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) |#1|) NIL (|has| |#1| (-526 (-1198) |#1|)))) (-2034 (((-784) $) NIL)) (-2835 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2815 (($ $ (-1 |#1| |#1|)) 64) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237)))) (-1396 (($ $) NIL)) (-1635 ((|#1| $) 75)) (-4148 (((-908 (-576)) $) NIL (|has| |#1| (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| |#1| (-626 (-908 (-390))))) (((-548) $) NIL (|has| |#1| (-626 (-548)))) (((-390) $) NIL (|has| |#1| (-1044))) (((-227) $) NIL (|has| |#1| (-1044)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 10) (($ (-1198)) NIL (|has| |#1| (-1060 (-1198))))) (-3096 (((-3 $ "failed") $) 102 (-2802 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-1960 (((-784)) 103 T CONST)) (-1893 ((|#1| $) 26 (|has| |#1| (-557)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-1792 (($ $) NIL (|has| |#1| (-833)))) (-2769 (($) 22 T CONST)) (-2779 (($) 8 T CONST)) (-3095 (((-1180) $) 44 (-12 (|has| |#1| (-557)) (|has| |#1| (-841)))) (((-1180) $ (-112)) 45 (-12 (|has| |#1| (-557)) (|has| |#1| (-841)))) (((-1294) (-835) $) 46 (-12 (|has| |#1| (-557)) (|has| |#1| (-841)))) (((-1294) (-835) $ (-112)) 47 (-12 (|has| |#1| (-557)) (|has| |#1| (-841))))) (-2097 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2933 (((-112) $ $) 66)) (-2973 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2954 (((-112) $ $) 24 (|has| |#1| (-862)))) (-3034 (($ $ $) 133) (($ |#1| |#1|) 53)) (-3022 (($ $) 25) (($ $ $) 56)) (-3012 (($ $ $) 54)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) 132)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 61) (($ $ $) 58) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) -(((-419 |#1|) (-13 (-1014 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4464)) (-6 -4453) |%noBranch|) |%noBranch|) |%noBranch|))) (-568)) (T -419)) -NIL -(-13 (-1014 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4453)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4464)) (-6 -4453) |%noBranch|) |%noBranch|) |%noBranch|))) -((-1527 (((-702 |#2|) (-1289 $)) NIL) (((-702 |#2|)) 18)) (-2613 (($ (-1289 |#2|) (-1289 $)) NIL) (($ (-1289 |#2|)) 24)) (-3529 (((-702 |#2|) $ (-1289 $)) NIL) (((-702 |#2|) $) 40)) (-1336 ((|#3| $) 69)) (-1701 ((|#2| (-1289 $)) NIL) ((|#2|) 20)) (-2795 (((-1289 |#2|) $ (-1289 $)) NIL) (((-702 |#2|) (-1289 $) (-1289 $)) NIL) (((-1289 |#2|) $) 22) (((-702 |#2|) (-1289 $)) 38)) (-4148 (((-1289 |#2|) $) 11) (($ (-1289 |#2|)) 13)) (-4182 ((|#3| $) 55))) -(((-420 |#1| |#2| |#3|) (-10 -8 (-15 -3529 ((-702 |#2|) |#1|)) (-15 -1701 (|#2|)) (-15 -1527 ((-702 |#2|))) (-15 -4148 (|#1| (-1289 |#2|))) (-15 -4148 ((-1289 |#2|) |#1|)) (-15 -2613 (|#1| (-1289 |#2|))) (-15 -2795 ((-702 |#2|) (-1289 |#1|))) (-15 -2795 ((-1289 |#2|) |#1|)) (-15 -1336 (|#3| |#1|)) (-15 -4182 (|#3| |#1|)) (-15 -1527 ((-702 |#2|) (-1289 |#1|))) (-15 -1701 (|#2| (-1289 |#1|))) (-15 -2613 (|#1| (-1289 |#2|) (-1289 |#1|))) (-15 -2795 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -2795 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -3529 ((-702 |#2|) |#1| (-1289 |#1|)))) (-421 |#2| |#3|) (-174) (-1265 |#2|)) (T -420)) -((-1527 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)) (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) (-1701 (*1 *2) (-12 (-4 *4 (-1265 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) (-4 *3 (-421 *2 *4))))) -(-10 -8 (-15 -3529 ((-702 |#2|) |#1|)) (-15 -1701 (|#2|)) (-15 -1527 ((-702 |#2|))) (-15 -4148 (|#1| (-1289 |#2|))) (-15 -4148 ((-1289 |#2|) |#1|)) (-15 -2613 (|#1| (-1289 |#2|))) (-15 -2795 ((-702 |#2|) (-1289 |#1|))) (-15 -2795 ((-1289 |#2|) |#1|)) (-15 -1336 (|#3| |#1|)) (-15 -4182 (|#3| |#1|)) (-15 -1527 ((-702 |#2|) (-1289 |#1|))) (-15 -1701 (|#2| (-1289 |#1|))) (-15 -2613 (|#1| (-1289 |#2|) (-1289 |#1|))) (-15 -2795 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -2795 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -3529 ((-702 |#2|) |#1| (-1289 |#1|)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-1527 (((-702 |#1|) (-1289 $)) 53) (((-702 |#1|)) 68)) (-2302 ((|#1| $) 59)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2613 (($ (-1289 |#1|) (-1289 $)) 55) (($ (-1289 |#1|)) 71)) (-3529 (((-702 |#1|) $ (-1289 $)) 60) (((-702 |#1|) $) 66)) (-3843 (((-3 $ "failed") $) 37)) (-1542 (((-941)) 61)) (-4094 (((-112) $) 35)) (-2234 ((|#1| $) 58)) (-1336 ((|#2| $) 51 (|has| |#1| (-374)))) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-1701 ((|#1| (-1289 $)) 54) ((|#1|) 67)) (-2795 (((-1289 |#1|) $ (-1289 $)) 57) (((-702 |#1|) (-1289 $) (-1289 $)) 56) (((-1289 |#1|) $) 73) (((-702 |#1|) (-1289 $)) 72)) (-4148 (((-1289 |#1|) $) 70) (($ (-1289 |#1|)) 69)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-3096 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4182 ((|#2| $) 52)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-1985 (((-1289 $)) 74)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-421 |#1| |#2|) (-141) (-174) (-1265 |t#1|)) (T -421)) -((-1985 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1265 *3)) (-5 *2 (-1289 *1)) (-4 *1 (-421 *3 *4)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) (-5 *2 (-1289 *3)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)))) (-2613 (*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1265 *3)))) (-4148 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) (-5 *2 (-1289 *3)))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1265 *3)))) (-1527 (*1 *2) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) (-5 *2 (-702 *3)))) (-1701 (*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1265 *2)) (-4 *2 (-174)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) (-5 *2 (-702 *3))))) -(-13 (-381 |t#1| |t#2|) (-10 -8 (-15 -1985 ((-1289 $))) (-15 -2795 ((-1289 |t#1|) $)) (-15 -2795 ((-702 |t#1|) (-1289 $))) (-15 -2613 ($ (-1289 |t#1|))) (-15 -4148 ((-1289 |t#1|) $)) (-15 -4148 ($ (-1289 |t#1|))) (-15 -1527 ((-702 |t#1|))) (-15 -1701 (|t#1|)) (-15 -3529 ((-702 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-381 |#1| |#2|) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 |#1|) . T) ((-730 |#1|) . T) ((-739) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-1624 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) 27) (((-3 (-576) "failed") $) 19)) (-2884 ((|#2| $) NIL) (((-419 (-576)) $) 24) (((-576) $) 14)) (-3501 (($ |#2|) NIL) (($ (-419 (-576))) 22) (($ (-576)) 11))) -(((-422 |#1| |#2|) (-10 -8 (-15 -3501 (|#1| (-576))) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -3501 (|#1| |#2|))) (-423 |#2|) (-1239)) (T -422)) -NIL -(-10 -8 (-15 -3501 (|#1| (-576))) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -3501 (|#1| |#2|))) -((-1624 (((-3 |#1| "failed") $) 9) (((-3 (-419 (-576)) "failed") $) 16 (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) 13 (|has| |#1| (-1060 (-576))))) (-2884 ((|#1| $) 8) (((-419 (-576)) $) 17 (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) 14 (|has| |#1| (-1060 (-576))))) (-3501 (($ |#1|) 6) (($ (-419 (-576))) 15 (|has| |#1| (-1060 (-419 (-576))))) (($ (-576)) 12 (|has| |#1| (-1060 (-576)))))) -(((-423 |#1|) (-141) (-1239)) (T -423)) -NIL -(-13 (-1060 |t#1|) (-10 -7 (IF (|has| |t#1| (-1060 (-576))) (-6 (-1060 (-576))) |%noBranch|) (IF (|has| |t#1| (-1060 (-419 (-576)))) (-6 (-1060 (-419 (-576)))) |%noBranch|))) -(((-628 #0=(-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-628 #1=(-576)) |has| |#1| (-1060 (-576))) ((-628 |#1|) . T) ((-1060 #0#) |has| |#1| (-1060 (-419 (-576)))) ((-1060 #1#) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T)) -((-4083 (((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)) 35))) -(((-424 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4083 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) (-317) (-1014 |#1|) (-1265 |#2|) (-13 (-421 |#2| |#3|) (-1060 |#2|)) (-317) (-1014 |#5|) (-1265 |#6|) (-13 (-421 |#6| |#7|) (-1060 |#6|))) (T -424)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) (-4 *6 (-1014 *5)) (-4 *7 (-1265 *6)) (-4 *8 (-13 (-421 *6 *7) (-1060 *6))) (-4 *9 (-317)) (-4 *10 (-1014 *9)) (-4 *11 (-1265 *10)) (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-421 *10 *11) (-1060 *10)))))) -(-10 -7 (-15 -4083 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) -((-3429 (((-112) $ $) NIL)) (-4359 (($) NIL T CONST)) (-3843 (((-3 $ "failed") $) NIL)) (-4139 ((|#4| (-784) (-1289 |#4|)) 55)) (-4094 (((-112) $) NIL)) (-1621 (((-1289 |#4|) $) 15)) (-2234 ((|#2| $) 53)) (-3703 (($ $) 157)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) 103)) (-2368 (($ (-1289 |#4|)) 102)) (-1471 (((-1142) $) NIL)) (-1635 ((|#1| $) 16)) (-3549 (($ $ $) NIL)) (-3544 (($ $ $) NIL)) (-3501 (((-877) $) 148)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 |#4|) $) 141)) (-2779 (($) 11 T CONST)) (-2933 (((-112) $ $) 39)) (-3034 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) 134)) (* (($ $ $) 130))) -(((-425 |#1| |#2| |#3| |#4|) (-13 (-485) (-10 -8 (-15 -2368 ($ (-1289 |#4|))) (-15 -1985 ((-1289 |#4|) $)) (-15 -2234 (|#2| $)) (-15 -1621 ((-1289 |#4|) $)) (-15 -1635 (|#1| $)) (-15 -3703 ($ $)) (-15 -4139 (|#4| (-784) (-1289 |#4|))))) (-317) (-1014 |#1|) (-1265 |#2|) (-13 (-421 |#2| |#3|) (-1060 |#2|))) (T -425)) -((-2368 (*1 *1 *2) (-12 (-5 *2 (-1289 *6)) (-4 *6 (-13 (-421 *4 *5) (-1060 *4))) (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) (-4 *3 (-317)) (-5 *1 (-425 *3 *4 *5 *6)))) (-1985 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) (-5 *2 (-1289 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1060 *4))))) (-2234 (*1 *2 *1) (-12 (-4 *4 (-1265 *2)) (-4 *2 (-1014 *3)) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1060 *2))))) (-1621 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) (-5 *2 (-1289 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1060 *4))))) (-1635 (*1 *2 *1) (-12 (-4 *3 (-1014 *2)) (-4 *4 (-1265 *3)) (-4 *2 (-317)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1060 *3))))) (-3703 (*1 *1 *1) (-12 (-4 *2 (-317)) (-4 *3 (-1014 *2)) (-4 *4 (-1265 *3)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1060 *3))))) (-4139 (*1 *2 *3 *4) (-12 (-5 *3 (-784)) (-5 *4 (-1289 *2)) (-4 *5 (-317)) (-4 *6 (-1014 *5)) (-4 *2 (-13 (-421 *6 *7) (-1060 *6))) (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1265 *6))))) -(-13 (-485) (-10 -8 (-15 -2368 ($ (-1289 |#4|))) (-15 -1985 ((-1289 |#4|) $)) (-15 -2234 (|#2| $)) (-15 -1621 ((-1289 |#4|) $)) (-15 -1635 (|#1| $)) (-15 -3703 ($ $)) (-15 -4139 (|#4| (-784) (-1289 |#4|))))) -((-3429 (((-112) $ $) NIL)) (-4359 (($) NIL T CONST)) (-3843 (((-3 $ "failed") $) NIL)) (-4094 (((-112) $) NIL)) (-2234 ((|#2| $) 71)) (-3695 (($ (-1289 |#4|)) 27) (($ (-425 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1060 |#2|)))) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 37)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 |#4|) $) 28)) (-2779 (($) 25 T CONST)) (-2933 (((-112) $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ $ $) 82))) -(((-426 |#1| |#2| |#3| |#4| |#5|) (-13 (-739) (-10 -8 (-15 -1985 ((-1289 |#4|) $)) (-15 -2234 (|#2| $)) (-15 -3695 ($ (-1289 |#4|))) (IF (|has| |#4| (-1060 |#2|)) (-15 -3695 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-317) (-1014 |#1|) (-1265 |#2|) (-421 |#2| |#3|) (-1289 |#4|)) (T -426)) -((-1985 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) (-5 *2 (-1289 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-4 *6 (-421 *4 *5)) (-14 *7 *2))) (-2234 (*1 *2 *1) (-12 (-4 *4 (-1265 *2)) (-4 *2 (-1014 *3)) (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) (-14 *6 (-1289 *5)))) (-3695 (*1 *1 *2) (-12 (-5 *2 (-1289 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3695 (*1 *1 *2) (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1060 *4)) (-4 *3 (-317)) (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) (-4 *6 (-421 *4 *5)) (-14 *7 (-1289 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7))))) -(-13 (-739) (-10 -8 (-15 -1985 ((-1289 |#4|) $)) (-15 -2234 (|#2| $)) (-15 -3695 ($ (-1289 |#4|))) (IF (|has| |#4| (-1060 |#2|)) (-15 -3695 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-4083 ((|#3| (-1 |#4| |#2|) |#1|) 29))) -(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4083 (|#3| (-1 |#4| |#2|) |#1|))) (-429 |#2|) (-174) (-429 |#4|) (-174)) (T -427)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5))))) -(-10 -7 (-15 -4083 (|#3| (-1 |#4| |#2|) |#1|))) -((-2824 (((-3 $ "failed")) 98)) (-3213 (((-1289 (-702 |#2|)) (-1289 $)) NIL) (((-1289 (-702 |#2|))) 103)) (-3090 (((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed")) 96)) (-2023 (((-3 $ "failed")) 95)) (-1703 (((-702 |#2|) (-1289 $)) NIL) (((-702 |#2|)) 114)) (-1575 (((-702 |#2|) $ (-1289 $)) NIL) (((-702 |#2|) $) 122)) (-2572 (((-1194 (-972 |#2|))) 63)) (-1427 ((|#2| (-1289 $)) NIL) ((|#2|) 118)) (-2613 (($ (-1289 |#2|) (-1289 $)) NIL) (($ (-1289 |#2|)) 124)) (-2765 (((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed")) 94)) (-3694 (((-3 $ "failed")) 86)) (-4427 (((-702 |#2|) (-1289 $)) NIL) (((-702 |#2|)) 112)) (-3346 (((-702 |#2|) $ (-1289 $)) NIL) (((-702 |#2|) $) 120)) (-2164 (((-1194 (-972 |#2|))) 62)) (-4408 ((|#2| (-1289 $)) NIL) ((|#2|) 116)) (-2795 (((-1289 |#2|) $ (-1289 $)) NIL) (((-702 |#2|) (-1289 $) (-1289 $)) NIL) (((-1289 |#2|) $) 123) (((-702 |#2|) (-1289 $)) 132)) (-4148 (((-1289 |#2|) $) 108) (($ (-1289 |#2|)) 110)) (-2929 (((-657 (-972 |#2|)) (-1289 $)) NIL) (((-657 (-972 |#2|))) 106)) (-3500 (($ (-702 |#2|) $) 102))) -(((-428 |#1| |#2|) (-10 -8 (-15 -3500 (|#1| (-702 |#2|) |#1|)) (-15 -2572 ((-1194 (-972 |#2|)))) (-15 -2164 ((-1194 (-972 |#2|)))) (-15 -1575 ((-702 |#2|) |#1|)) (-15 -3346 ((-702 |#2|) |#1|)) (-15 -1703 ((-702 |#2|))) (-15 -4427 ((-702 |#2|))) (-15 -1427 (|#2|)) (-15 -4408 (|#2|)) (-15 -4148 (|#1| (-1289 |#2|))) (-15 -4148 ((-1289 |#2|) |#1|)) (-15 -2613 (|#1| (-1289 |#2|))) (-15 -2929 ((-657 (-972 |#2|)))) (-15 -3213 ((-1289 (-702 |#2|)))) (-15 -2795 ((-702 |#2|) (-1289 |#1|))) (-15 -2795 ((-1289 |#2|) |#1|)) (-15 -2824 ((-3 |#1| "failed"))) (-15 -2023 ((-3 |#1| "failed"))) (-15 -3694 ((-3 |#1| "failed"))) (-15 -3090 ((-3 (-2 (|:| |particular| |#1|) (|:| -1985 (-657 |#1|))) "failed"))) (-15 -2765 ((-3 (-2 (|:| |particular| |#1|) (|:| -1985 (-657 |#1|))) "failed"))) (-15 -1703 ((-702 |#2|) (-1289 |#1|))) (-15 -4427 ((-702 |#2|) (-1289 |#1|))) (-15 -1427 (|#2| (-1289 |#1|))) (-15 -4408 (|#2| (-1289 |#1|))) (-15 -2613 (|#1| (-1289 |#2|) (-1289 |#1|))) (-15 -2795 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -2795 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -1575 ((-702 |#2|) |#1| (-1289 |#1|))) (-15 -3346 ((-702 |#2|) |#1| (-1289 |#1|))) (-15 -3213 ((-1289 (-702 |#2|)) (-1289 |#1|))) (-15 -2929 ((-657 (-972 |#2|)) (-1289 |#1|)))) (-429 |#2|) (-174)) (T -428)) -((-3213 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1289 (-702 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2929 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-657 (-972 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-4408 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-1427 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-4427 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-702 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-1703 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-702 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2164 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1194 (-972 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2572 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1194 (-972 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4))))) -(-10 -8 (-15 -3500 (|#1| (-702 |#2|) |#1|)) (-15 -2572 ((-1194 (-972 |#2|)))) (-15 -2164 ((-1194 (-972 |#2|)))) (-15 -1575 ((-702 |#2|) |#1|)) (-15 -3346 ((-702 |#2|) |#1|)) (-15 -1703 ((-702 |#2|))) (-15 -4427 ((-702 |#2|))) (-15 -1427 (|#2|)) (-15 -4408 (|#2|)) (-15 -4148 (|#1| (-1289 |#2|))) (-15 -4148 ((-1289 |#2|) |#1|)) (-15 -2613 (|#1| (-1289 |#2|))) (-15 -2929 ((-657 (-972 |#2|)))) (-15 -3213 ((-1289 (-702 |#2|)))) (-15 -2795 ((-702 |#2|) (-1289 |#1|))) (-15 -2795 ((-1289 |#2|) |#1|)) (-15 -2824 ((-3 |#1| "failed"))) (-15 -2023 ((-3 |#1| "failed"))) (-15 -3694 ((-3 |#1| "failed"))) (-15 -3090 ((-3 (-2 (|:| |particular| |#1|) (|:| -1985 (-657 |#1|))) "failed"))) (-15 -2765 ((-3 (-2 (|:| |particular| |#1|) (|:| -1985 (-657 |#1|))) "failed"))) (-15 -1703 ((-702 |#2|) (-1289 |#1|))) (-15 -4427 ((-702 |#2|) (-1289 |#1|))) (-15 -1427 (|#2| (-1289 |#1|))) (-15 -4408 (|#2| (-1289 |#1|))) (-15 -2613 (|#1| (-1289 |#2|) (-1289 |#1|))) (-15 -2795 ((-702 |#2|) (-1289 |#1|) (-1289 |#1|))) (-15 -2795 ((-1289 |#2|) |#1| (-1289 |#1|))) (-15 -1575 ((-702 |#2|) |#1| (-1289 |#1|))) (-15 -3346 ((-702 |#2|) |#1| (-1289 |#1|))) (-15 -3213 ((-1289 (-702 |#2|)) (-1289 |#1|))) (-15 -2929 ((-657 (-972 |#2|)) (-1289 |#1|)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2824 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-2721 (((-3 $ "failed") $ $) 20)) (-3213 (((-1289 (-702 |#1|)) (-1289 $)) 83) (((-1289 (-702 |#1|))) 106)) (-3348 (((-1289 $)) 86)) (-4359 (($) 18 T CONST)) (-3090 (((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed")) 45 (|has| |#1| (-568)))) (-2023 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-1703 (((-702 |#1|) (-1289 $)) 70) (((-702 |#1|)) 98)) (-1641 ((|#1| $) 79)) (-1575 (((-702 |#1|) $ (-1289 $)) 81) (((-702 |#1|) $) 96)) (-1498 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-2572 (((-1194 (-972 |#1|))) 94 (|has| |#1| (-374)))) (-2609 (($ $ (-941)) 31)) (-3195 ((|#1| $) 77)) (-1806 (((-1194 |#1|) $) 47 (|has| |#1| (-568)))) (-1427 ((|#1| (-1289 $)) 72) ((|#1|) 100)) (-2947 (((-1194 |#1|) $) 68)) (-4274 (((-112)) 62)) (-2613 (($ (-1289 |#1|) (-1289 $)) 74) (($ (-1289 |#1|)) 104)) (-3843 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-1542 (((-941)) 85)) (-1778 (((-112)) 59)) (-3490 (($ $ (-941)) 38)) (-2591 (((-112)) 55)) (-3089 (((-112)) 53)) (-1855 (((-112)) 57)) (-2765 (((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed")) 46 (|has| |#1| (-568)))) (-3694 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-4427 (((-702 |#1|) (-1289 $)) 71) (((-702 |#1|)) 99)) (-1425 ((|#1| $) 80)) (-3346 (((-702 |#1|) $ (-1289 $)) 82) (((-702 |#1|) $) 97)) (-2390 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-2164 (((-1194 (-972 |#1|))) 95 (|has| |#1| (-374)))) (-4404 (($ $ (-941)) 32)) (-2885 ((|#1| $) 78)) (-4234 (((-1194 |#1|) $) 48 (|has| |#1| (-568)))) (-4408 ((|#1| (-1289 $)) 73) ((|#1|) 101)) (-2444 (((-1194 |#1|) $) 69)) (-4199 (((-112)) 63)) (-2342 (((-1180) $) 10)) (-4396 (((-112)) 54)) (-3079 (((-112)) 56)) (-3729 (((-112)) 58)) (-1471 (((-1142) $) 11)) (-4005 (((-112)) 61)) (-2835 ((|#1| $ (-576)) 110)) (-2795 (((-1289 |#1|) $ (-1289 $)) 76) (((-702 |#1|) (-1289 $) (-1289 $)) 75) (((-1289 |#1|) $) 108) (((-702 |#1|) (-1289 $)) 107)) (-4148 (((-1289 |#1|) $) 103) (($ (-1289 |#1|)) 102)) (-2929 (((-657 (-972 |#1|)) (-1289 $)) 84) (((-657 (-972 |#1|))) 105)) (-3544 (($ $ $) 28)) (-2032 (((-112)) 67)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-1985 (((-1289 $)) 109)) (-1630 (((-657 (-1289 |#1|))) 49 (|has| |#1| (-568)))) (-4254 (($ $ $ $) 29)) (-3675 (((-112)) 65)) (-3500 (($ (-702 |#1|) $) 93)) (-3599 (($ $ $) 27)) (-4115 (((-112)) 66)) (-2102 (((-112)) 64)) (-1950 (((-112)) 60)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 33)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-429 |#1|) (-141) (-174)) (T -429)) -((-1985 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1289 *1)) (-4 *1 (-429 *3)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1289 *3)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) (-5 *2 (-702 *4)))) (-3213 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1289 (-702 *3))))) (-2929 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-657 (-972 *3))))) (-2613 (*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-4148 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1289 *3)))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-4408 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-1427 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-4427 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-702 *3)))) (-1703 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-702 *3)))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-702 *3)))) (-1575 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-702 *3)))) (-2164 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1194 (-972 *3))))) (-2572 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1194 (-972 *3))))) (-3500 (*1 *1 *2 *1) (-12 (-5 *2 (-702 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174))))) -(-13 (-378 |t#1|) (-296 (-576) |t#1|) (-10 -8 (-15 -1985 ((-1289 $))) (-15 -2795 ((-1289 |t#1|) $)) (-15 -2795 ((-702 |t#1|) (-1289 $))) (-15 -3213 ((-1289 (-702 |t#1|)))) (-15 -2929 ((-657 (-972 |t#1|)))) (-15 -2613 ($ (-1289 |t#1|))) (-15 -4148 ((-1289 |t#1|) $)) (-15 -4148 ($ (-1289 |t#1|))) (-15 -4408 (|t#1|)) (-15 -1427 (|t#1|)) (-15 -4427 ((-702 |t#1|))) (-15 -1703 ((-702 |t#1|))) (-15 -3346 ((-702 |t#1|) $)) (-15 -1575 ((-702 |t#1|) $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -2164 ((-1194 (-972 |t#1|)))) (-15 -2572 ((-1194 (-972 |t#1|))))) |%noBranch|) (-15 -3500 ($ (-702 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-877)) . T) ((-296 (-576) |#1|) . T) ((-378 |#1|) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) . T) ((-730 |#1|) . T) ((-733) . T) ((-757 |#1|) . T) ((-774) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 60)) (-1928 (($ $) 78)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 192)) (-3325 (($ $) NIL)) (-4306 (((-112) $) 48)) (-2824 ((|#1| $) 16)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL (|has| |#1| (-1243)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-1243)))) (-3477 (($ |#1| (-576)) 42)) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 149)) (-2884 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 74)) (-3843 (((-3 $ "failed") $) 165)) (-2775 (((-3 (-419 (-576)) "failed") $) 85 (|has| |#1| (-557)))) (-3112 (((-112) $) 81 (|has| |#1| (-557)))) (-4239 (((-419 (-576)) $) 92 (|has| |#1| (-557)))) (-2128 (($ |#1| (-576)) 44)) (-4257 (((-112) $) 212 (|has| |#1| (-1243)))) (-4094 (((-112) $) 62)) (-1539 (((-784) $) 51)) (-3692 (((-3 "nil" "sqfr" "irred" "prime") $ (-576)) 176)) (-3027 ((|#1| $ (-576)) 175)) (-3100 (((-576) $ (-576)) 174)) (-3967 (($ |#1| (-576)) 41)) (-4083 (($ (-1 |#1| |#1|) $) 184)) (-1535 (($ |#1| (-657 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576))))) 79)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2342 (((-1180) $) NIL)) (-2808 (($ |#1| (-576)) 43)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-464)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) 193 (|has| |#1| (-464)))) (-3730 (($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-2067 (((-657 (-2 (|:| -1885 |#1|) (|:| -1801 (-576)))) $) 73)) (-1953 (((-657 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $) 12)) (-1885 (((-430 $) $) NIL (|has| |#1| (-1243)))) (-3418 (((-3 $ "failed") $ $) 177)) (-1801 (((-576) $) 168)) (-1999 ((|#1| $) 75)) (-3236 (($ $ (-657 |#1|) (-657 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-657 (-304 |#1|))) 101 (|has| |#1| (-319 |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) 107 (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) |#1|) NIL (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) $) NIL (|has| |#1| (-526 (-1198) $))) (($ $ (-657 (-1198)) (-657 $)) 108 (|has| |#1| (-526 (-1198) $))) (($ $ (-657 (-304 $))) 104 (|has| |#1| (-319 $))) (($ $ (-304 $)) NIL (|has| |#1| (-319 $))) (($ $ $ $) NIL (|has| |#1| (-319 $))) (($ $ (-657 $) (-657 $)) NIL (|has| |#1| (-319 $)))) (-2835 (($ $ |#1|) 93 (|has| |#1| (-296 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-296 $ $)))) (-2815 (($ $ (-1 |#1| |#1|)) 183) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237))) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-4148 (((-548) $) 39 (|has| |#1| (-626 (-548)))) (((-390) $) 114 (|has| |#1| (-1044))) (((-227) $) 120 (|has| |#1| (-1044)))) (-3501 (((-877) $) 147) (($ (-576)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-419 (-576))) NIL (|has| |#1| (-1060 (-419 (-576)))))) (-1960 (((-784)) 67 T CONST)) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-2769 (($) 53 T CONST)) (-2779 (($) 52 T CONST)) (-2097 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237))) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-2933 (((-112) $ $) 160)) (-3022 (($ $) 162) (($ $ $) NIL)) (-3012 (($ $ $) 181)) (** (($ $ (-941)) NIL) (($ $ (-784)) 126)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) -(((-430 |#1|) (-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -1999 (|#1| $)) (-15 -1801 ((-576) $)) (-15 -1535 ($ |#1| (-657 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -1953 ((-657 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -3967 ($ |#1| (-576))) (-15 -2067 ((-657 (-2 (|:| -1885 |#1|) (|:| -1801 (-576)))) $)) (-15 -2808 ($ |#1| (-576))) (-15 -3100 ((-576) $ (-576))) (-15 -3027 (|#1| $ (-576))) (-15 -3692 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -1539 ((-784) $)) (-15 -2128 ($ |#1| (-576))) (-15 -3477 ($ |#1| (-576))) (-15 -3730 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2824 (|#1| $)) (-15 -1928 ($ $)) (-15 -4083 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1044)) (-6 (-1044)) |%noBranch|) (IF (|has| |#1| (-1243)) (-6 (-1243)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3112 ((-112) $)) (-15 -4239 ((-419 (-576)) $)) (-15 -2775 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1198) $)) (-6 (-526 (-1198) $)) |%noBranch|))) (-568)) (T -430)) -((-4083 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3)))) (-1999 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-1535 (*1 *1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-576))))) (-4 *2 (-568)) (-5 *1 (-430 *2)))) (-1953 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-3967 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2067 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| -1885 *3) (|:| -1801 (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2808 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3100 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-3027 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3692 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *4)) (-4 *4 (-568)))) (-1539 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2128 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3477 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3730 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2824 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1928 (*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3112 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-4239 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-2775 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568))))) -(-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -1999 (|#1| $)) (-15 -1801 ((-576) $)) (-15 -1535 ($ |#1| (-657 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -1953 ((-657 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -3967 ($ |#1| (-576))) (-15 -2067 ((-657 (-2 (|:| -1885 |#1|) (|:| -1801 (-576)))) $)) (-15 -2808 ($ |#1| (-576))) (-15 -3100 ((-576) $ (-576))) (-15 -3027 (|#1| $ (-576))) (-15 -3692 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -1539 ((-784) $)) (-15 -2128 ($ |#1| (-576))) (-15 -3477 ($ |#1| (-576))) (-15 -3730 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2824 (|#1| $)) (-15 -1928 ($ $)) (-15 -4083 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1044)) (-6 (-1044)) |%noBranch|) (IF (|has| |#1| (-1243)) (-6 (-1243)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3112 ((-112) $)) (-15 -4239 ((-419 (-576)) $)) (-15 -2775 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1198) $)) (-6 (-526 (-1198) $)) |%noBranch|))) -((-4189 (((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|)) 28)) (-2820 (((-430 |#1|) (-430 |#1|) (-430 |#1|)) 17))) -(((-431 |#1|) (-10 -7 (-15 -4189 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -2820 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) (-568)) (T -431)) -((-2820 (*1 *2 *2 *2) (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3)))) (-4189 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) (-5 *1 (-431 *4))))) -(-10 -7 (-15 -4189 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -2820 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) -((-3858 ((|#2| |#2|) 183)) (-1680 (((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-112)) 60))) -(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1680 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-112))) (-15 -3858 (|#2| |#2|))) (-13 (-464) (-1060 (-576)) (-652 (-576))) (-13 (-27) (-1224) (-442 |#1|)) (-1198) |#2|) (T -432)) -((-3858 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1224) (-442 *3))) (-14 *4 (-1198)) (-14 *5 *2))) (-1680 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180)))))) (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) (-14 *6 (-1198)) (-14 *7 *3)))) -(-10 -7 (-15 -1680 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-112))) (-15 -3858 (|#2| |#2|))) -((-4083 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4083 (|#4| (-1 |#3| |#1|) |#2|))) (-1071) (-442 |#1|) (-1071) (-442 |#3|)) (T -433)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5))))) -(-10 -7 (-15 -4083 (|#4| (-1 |#3| |#1|) |#2|))) -((-3858 ((|#2| |#2|) 106)) (-3736 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-112) (-1180)) 52)) (-2060 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-112) (-1180)) 170))) -(((-434 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3736 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-112) (-1180))) (-15 -2060 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-112) (-1180))) (-15 -3858 (|#2| |#2|))) (-13 (-464) (-1060 (-576)) (-652 (-576))) (-13 (-27) (-1224) (-442 |#1|) (-10 -8 (-15 -3501 ($ |#3|)))) (-861) (-13 (-1267 |#2| |#3|) (-374) (-1224) (-10 -8 (-15 -2815 ($ $)) (-15 -4190 ($ $)))) (-1005 |#4|) (-1198)) (T -434)) -((-3858 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-4 *2 (-13 (-27) (-1224) (-442 *3) (-10 -8 (-15 -3501 ($ *4))))) (-4 *4 (-861)) (-4 *5 (-13 (-1267 *2 *4) (-374) (-1224) (-10 -8 (-15 -2815 ($ $)) (-15 -4190 ($ $))))) (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1005 *5)) (-14 *7 (-1198)))) (-2060 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-4 *3 (-13 (-27) (-1224) (-442 *6) (-10 -8 (-15 -3501 ($ *7))))) (-4 *7 (-861)) (-4 *8 (-13 (-1267 *3 *7) (-374) (-1224) (-10 -8 (-15 -2815 ($ $)) (-15 -4190 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1180)) (-4 *9 (-1005 *8)) (-14 *10 (-1198)))) (-3736 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-4 *3 (-13 (-27) (-1224) (-442 *6) (-10 -8 (-15 -3501 ($ *7))))) (-4 *7 (-861)) (-4 *8 (-13 (-1267 *3 *7) (-374) (-1224) (-10 -8 (-15 -2815 ($ $)) (-15 -4190 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1180)) (-4 *9 (-1005 *8)) (-14 *10 (-1198))))) -(-10 -7 (-15 -3736 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-112) (-1180))) (-15 -2060 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-112) (-1180))) (-15 -3858 (|#2| |#2|))) -((-4417 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3622 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4083 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4083 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3622 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4417 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1122) (-437 |#1|) (-1122) (-437 |#3|)) (T -435)) -((-4417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1122)) (-4 *5 (-1122)) (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) (-3622 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1122)) (-4 *2 (-1122)) (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5))))) -(-10 -7 (-15 -4083 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3622 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4417 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1477 (($) 51)) (-1876 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-4356 (($ $ $) 46)) (-2197 (((-112) $ $) 35)) (-2193 (((-784)) 55)) (-2162 (($ (-657 |#2|)) 23) (($) NIL)) (-1892 (($) 66)) (-3635 (((-112) $ $) 15)) (-3707 ((|#2| $) 77)) (-1611 ((|#2| $) 75)) (-3007 (((-941) $) 70)) (-3107 (($ $ $) 42)) (-3178 (($ (-941)) 60)) (-3788 (($ $ |#2|) NIL) (($ $ $) 45)) (-1482 (((-784) (-1 (-112) |#2|) $) NIL) (((-784) |#2| $) 31)) (-3511 (($ (-657 |#2|)) 27)) (-3677 (($ $) 53)) (-3501 (((-877) $) 40)) (-4346 (((-784) $) 24)) (-1951 (($ (-657 |#2|)) 22) (($) NIL)) (-2933 (((-112) $ $) 19))) -(((-436 |#1| |#2|) (-10 -8 (-15 -2193 ((-784))) (-15 -3178 (|#1| (-941))) (-15 -3007 ((-941) |#1|)) (-15 -1892 (|#1|)) (-15 -3707 (|#2| |#1|)) (-15 -1611 (|#2| |#1|)) (-15 -1477 (|#1|)) (-15 -3677 (|#1| |#1|)) (-15 -4346 ((-784) |#1|)) (-15 -2933 ((-112) |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -3635 ((-112) |#1| |#1|)) (-15 -1951 (|#1|)) (-15 -1951 (|#1| (-657 |#2|))) (-15 -2162 (|#1|)) (-15 -2162 (|#1| (-657 |#2|))) (-15 -3107 (|#1| |#1| |#1|)) (-15 -3788 (|#1| |#1| |#1|)) (-15 -3788 (|#1| |#1| |#2|)) (-15 -4356 (|#1| |#1| |#1|)) (-15 -2197 ((-112) |#1| |#1|)) (-15 -1876 (|#1| |#1| |#1|)) (-15 -1876 (|#1| |#1| |#2|)) (-15 -1876 (|#1| |#2| |#1|)) (-15 -3511 (|#1| (-657 |#2|))) (-15 -1482 ((-784) |#2| |#1|)) (-15 -1482 ((-784) (-1 (-112) |#2|) |#1|))) (-437 |#2|) (-1122)) (T -436)) -((-2193 (*1 *2) (-12 (-4 *4 (-1122)) (-5 *2 (-784)) (-5 *1 (-436 *3 *4)) (-4 *3 (-437 *4))))) -(-10 -8 (-15 -2193 ((-784))) (-15 -3178 (|#1| (-941))) (-15 -3007 ((-941) |#1|)) (-15 -1892 (|#1|)) (-15 -3707 (|#2| |#1|)) (-15 -1611 (|#2| |#1|)) (-15 -1477 (|#1|)) (-15 -3677 (|#1| |#1|)) (-15 -4346 ((-784) |#1|)) (-15 -2933 ((-112) |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -3635 ((-112) |#1| |#1|)) (-15 -1951 (|#1|)) (-15 -1951 (|#1| (-657 |#2|))) (-15 -2162 (|#1|)) (-15 -2162 (|#1| (-657 |#2|))) (-15 -3107 (|#1| |#1| |#1|)) (-15 -3788 (|#1| |#1| |#1|)) (-15 -3788 (|#1| |#1| |#2|)) (-15 -4356 (|#1| |#1| |#1|)) (-15 -2197 ((-112) |#1| |#1|)) (-15 -1876 (|#1| |#1| |#1|)) (-15 -1876 (|#1| |#1| |#2|)) (-15 -1876 (|#1| |#2| |#1|)) (-15 -3511 (|#1| (-657 |#2|))) (-15 -1482 ((-784) |#2| |#1|)) (-15 -1482 ((-784) (-1 (-112) |#2|) |#1|))) -((-3429 (((-112) $ $) 20)) (-1477 (($) 68 (|has| |#1| (-379)))) (-1876 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-4356 (($ $ $) 79)) (-2197 (((-112) $ $) 80)) (-3793 (((-112) $ (-784)) 8)) (-2193 (((-784)) 62 (|has| |#1| (-379)))) (-2162 (($ (-657 |#1|)) 75) (($) 74)) (-3162 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4466)))) (-4359 (($) 7 T CONST)) (-3914 (($ $) 59 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3647 (($ |#1| $) 48 (|has| $ (-6 -4466))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4466)))) (-3895 (($ |#1| $) 58 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4466)))) (-1892 (($) 65 (|has| |#1| (-379)))) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-3635 (((-112) $ $) 71)) (-1833 (((-112) $ (-784)) 9)) (-3707 ((|#1| $) 66 (|has| |#1| (-862)))) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1611 ((|#1| $) 67 (|has| |#1| (-862)))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36)) (-3007 (((-941) $) 64 (|has| |#1| (-379)))) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23)) (-3107 (($ $ $) 76)) (-3050 ((|#1| $) 40)) (-2468 (($ |#1| $) 41)) (-3178 (($ (-941)) 63 (|has| |#1| (-379)))) (-1471 (((-1142) $) 22)) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2277 ((|#1| $) 42)) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-3788 (($ $ |#1|) 78) (($ $ $) 77)) (-1504 (($) 50) (($ (-657 |#1|)) 49)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-4148 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 51)) (-3677 (($ $) 69 (|has| |#1| (-379)))) (-3501 (((-877) $) 18)) (-4346 (((-784) $) 70)) (-1951 (($ (-657 |#1|)) 73) (($) 72)) (-2046 (((-112) $ $) 21)) (-4079 (($ (-657 |#1|)) 43)) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19)) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-437 |#1|) (-141) (-1122)) (T -437)) -((-4346 (*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1122)) (-5 *2 (-784)))) (-3677 (*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1122)) (-4 *2 (-379)))) (-1477 (*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1122)))) (-1611 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1122)) (-4 *2 (-862)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1122)) (-4 *2 (-862))))) -(-13 (-231 |t#1|) (-1120 |t#1|) (-10 -8 (-6 -4466) (-15 -4346 ((-784) $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-379)) (-15 -3677 ($ $)) (-15 -1477 ($))) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-15 -1611 (|t#1| $)) (-15 -3707 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-877)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-231 |#1|) . T) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-379) |has| |#1| (-379)) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1120 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-2165 (((-598 |#2|) |#2| (-1198)) 36)) (-1693 (((-598 |#2|) |#2| (-1198)) 21)) (-4118 ((|#2| |#2| (-1198)) 26))) -(((-438 |#1| |#2|) (-10 -7 (-15 -1693 ((-598 |#2|) |#2| (-1198))) (-15 -2165 ((-598 |#2|) |#2| (-1198))) (-15 -4118 (|#2| |#2| (-1198)))) (-13 (-317) (-148) (-1060 (-576)) (-652 (-576))) (-13 (-1224) (-29 |#1|))) (T -438)) -((-4118 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1224) (-29 *4))))) (-2165 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1224) (-29 *5))))) (-1693 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1224) (-29 *5)))))) -(-10 -7 (-15 -1693 ((-598 |#2|) |#2| (-1198))) (-15 -2165 ((-598 |#2|) |#2| (-1198))) (-15 -4118 (|#2| |#2| (-1198)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-3843 (((-3 $ "failed") $) NIL)) (-4094 (((-112) $) NIL)) (-4164 (($ |#2| |#1|) 37)) (-2628 (($ |#2| |#1|) 35)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-341 |#2|)) 25)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 10 T CONST)) (-2779 (($) 16 T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 36)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-439 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4453)) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|) |%noBranch|) (-15 -3501 ($ |#1|)) (-15 -3501 ($ (-341 |#2|))) (-15 -4164 ($ |#2| |#1|)) (-15 -2628 ($ |#2| |#1|)))) (-13 (-174) (-38 (-419 (-576)))) (-13 (-862) (-21))) (T -439)) -((-3501 (*1 *1 *2) (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576))))) (-4 *3 (-13 (-862) (-21))))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-862) (-21))) (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))))) (-4164 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-862) (-21))))) (-2628 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-862) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4453)) (IF (|has| |#1| (-6 -4453)) (-6 -4453) |%noBranch|) |%noBranch|) (-15 -3501 ($ |#1|)) (-15 -3501 ($ (-341 |#2|))) (-15 -4164 ($ |#2| |#1|)) (-15 -2628 ($ |#2| |#1|)))) -((-4190 (((-3 |#2| (-657 |#2|)) |#2| (-1198)) 115))) -(((-440 |#1| |#2|) (-10 -7 (-15 -4190 ((-3 |#2| (-657 |#2|)) |#2| (-1198)))) (-13 (-317) (-148) (-1060 (-576)) (-652 (-576))) (-13 (-1224) (-979) (-29 |#1|))) (T -440)) -((-4190 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 *3 (-657 *3))) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1224) (-979) (-29 *5)))))) -(-10 -7 (-15 -4190 ((-3 |#2| (-657 |#2|)) |#2| (-1198)))) -((-2029 (((-657 (-1198)) $) 81)) (-1849 (((-419 (-1194 $)) $ (-624 $)) 313)) (-4054 (($ $ (-304 $)) NIL) (($ $ (-657 (-304 $))) NIL) (($ $ (-657 (-624 $)) (-657 $)) 277)) (-1624 (((-3 (-624 $) "failed") $) NIL) (((-3 (-1198) "failed") $) 84) (((-3 (-576) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-419 (-972 |#2|)) "failed") $) 363) (((-3 (-972 |#2|) "failed") $) 275) (((-3 (-419 (-576)) "failed") $) NIL)) (-2884 (((-624 $) $) NIL) (((-1198) $) 28) (((-576) $) NIL) ((|#2| $) 271) (((-419 (-972 |#2|)) $) 345) (((-972 |#2|) $) 272) (((-419 (-576)) $) NIL)) (-1832 (((-115) (-115)) 47)) (-2752 (($ $) 99)) (-3398 (((-3 (-624 $) "failed") $) 268)) (-1817 (((-657 (-624 $)) $) 269)) (-1392 (((-3 (-657 $) "failed") $) 287)) (-3559 (((-3 (-2 (|:| |val| $) (|:| -1801 (-576))) "failed") $) 294)) (-2974 (((-3 (-657 $) "failed") $) 285)) (-4003 (((-3 (-2 (|:| -1771 (-576)) (|:| |var| (-624 $))) "failed") $) 304)) (-2999 (((-3 (-2 (|:| |var| (-624 $)) (|:| -1801 (-576))) "failed") $) 291) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1801 (-576))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1801 (-576))) "failed") $ (-1198)) 257)) (-2146 (((-112) $) 17)) (-2160 ((|#2| $) 19)) (-3236 (($ $ (-624 $) $) NIL) (($ $ (-657 (-624 $)) (-657 $)) 276) (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ $))) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ (-657 $)))) 109) (($ $ (-1198) (-1 $ (-657 $))) NIL) (($ $ (-1198) (-1 $ $)) NIL) (($ $ (-657 (-115)) (-657 (-1 $ $))) NIL) (($ $ (-657 (-115)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-115) (-1 $ (-657 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1198)) 62) (($ $ (-657 (-1198))) 280) (($ $) 281) (($ $ (-115) $ (-1198)) 65) (($ $ (-657 (-115)) (-657 $) (-1198)) 72) (($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ $))) 120) (($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ (-657 $)))) 282) (($ $ (-1198) (-784) (-1 $ (-657 $))) 105) (($ $ (-1198) (-784) (-1 $ $)) 104)) (-2835 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-657 $)) 119)) (-2815 (($ $ (-1198)) 278) (($ $ (-657 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL)) (-1396 (($ $) 324)) (-4148 (((-908 (-576)) $) 297) (((-908 (-390)) $) 301) (($ (-430 $)) 359) (((-548) $) NIL)) (-3501 (((-877) $) 279) (($ (-624 $)) 93) (($ (-1198)) 24) (($ |#2|) NIL) (($ (-1147 |#2| (-624 $))) NIL) (($ (-419 |#2|)) 329) (($ (-972 (-419 |#2|))) 368) (($ (-419 (-972 (-419 |#2|)))) 341) (($ (-419 (-972 |#2|))) 335) (($ $) NIL) (($ (-972 |#2|)) 216) (($ (-576)) NIL) (($ (-419 (-576))) 373)) (-1960 (((-784)) 88)) (-4159 (((-112) (-115)) 42)) (-4172 (($ (-1198) $) 31) (($ (-1198) $ $) 32) (($ (-1198) $ $ $) 33) (($ (-1198) $ $ $ $) 34) (($ (-1198) (-657 $)) 39)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-784) $) NIL) (($ (-941) $) NIL))) -(((-441 |#1| |#2|) (-10 -8 (-15 * (|#1| (-941) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3501 (|#1| (-576))) (-15 -1960 ((-784))) (-15 * (|#1| |#2| |#1|)) (-15 -4148 ((-548) |#1|)) (-15 -3501 (|#1| (-972 |#2|))) (-15 -1624 ((-3 (-972 |#2|) "failed") |#1|)) (-15 -2884 ((-972 |#2|) |#1|)) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198))) (-15 * (|#1| |#1| |#2|)) (-15 -3501 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3501 (|#1| (-419 (-972 |#2|)))) (-15 -1624 ((-3 (-419 (-972 |#2|)) "failed") |#1|)) (-15 -2884 ((-419 (-972 |#2|)) |#1|)) (-15 -1849 ((-419 (-1194 |#1|)) |#1| (-624 |#1|))) (-15 -3501 (|#1| (-419 (-972 (-419 |#2|))))) (-15 -3501 (|#1| (-972 (-419 |#2|)))) (-15 -3501 (|#1| (-419 |#2|))) (-15 -1396 (|#1| |#1|)) (-15 -4148 (|#1| (-430 |#1|))) (-15 -3236 (|#1| |#1| (-1198) (-784) (-1 |#1| |#1|))) (-15 -3236 (|#1| |#1| (-1198) (-784) (-1 |#1| (-657 |#1|)))) (-15 -3236 (|#1| |#1| (-657 (-1198)) (-657 (-784)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3236 (|#1| |#1| (-657 (-1198)) (-657 (-784)) (-657 (-1 |#1| |#1|)))) (-15 -3559 ((-3 (-2 (|:| |val| |#1|) (|:| -1801 (-576))) "failed") |#1|)) (-15 -2999 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -1801 (-576))) "failed") |#1| (-1198))) (-15 -2999 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -1801 (-576))) "failed") |#1| (-115))) (-15 -2752 (|#1| |#1|)) (-15 -3501 (|#1| (-1147 |#2| (-624 |#1|)))) (-15 -4003 ((-3 (-2 (|:| -1771 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -2974 ((-3 (-657 |#1|) "failed") |#1|)) (-15 -2999 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -1801 (-576))) "failed") |#1|)) (-15 -1392 ((-3 (-657 |#1|) "failed") |#1|)) (-15 -3236 (|#1| |#1| (-657 (-115)) (-657 |#1|) (-1198))) (-15 -3236 (|#1| |#1| (-115) |#1| (-1198))) (-15 -3236 (|#1| |#1|)) (-15 -3236 (|#1| |#1| (-657 (-1198)))) (-15 -3236 (|#1| |#1| (-1198))) (-15 -4172 (|#1| (-1198) (-657 |#1|))) (-15 -4172 (|#1| (-1198) |#1| |#1| |#1| |#1|)) (-15 -4172 (|#1| (-1198) |#1| |#1| |#1|)) (-15 -4172 (|#1| (-1198) |#1| |#1|)) (-15 -4172 (|#1| (-1198) |#1|)) (-15 -2029 ((-657 (-1198)) |#1|)) (-15 -2160 (|#2| |#1|)) (-15 -2146 ((-112) |#1|)) (-15 -3501 (|#1| |#2|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -4148 ((-908 (-390)) |#1|)) (-15 -4148 ((-908 (-576)) |#1|)) (-15 -3501 (|#1| (-1198))) (-15 -1624 ((-3 (-1198) "failed") |#1|)) (-15 -2884 ((-1198) |#1|)) (-15 -3236 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3236 (|#1| |#1| (-115) (-1 |#1| (-657 |#1|)))) (-15 -3236 (|#1| |#1| (-657 (-115)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3236 (|#1| |#1| (-657 (-115)) (-657 (-1 |#1| |#1|)))) (-15 -3236 (|#1| |#1| (-1198) (-1 |#1| |#1|))) (-15 -3236 (|#1| |#1| (-1198) (-1 |#1| (-657 |#1|)))) (-15 -3236 (|#1| |#1| (-657 (-1198)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3236 (|#1| |#1| (-657 (-1198)) (-657 (-1 |#1| |#1|)))) (-15 -4159 ((-112) (-115))) (-15 -1832 ((-115) (-115))) (-15 -1817 ((-657 (-624 |#1|)) |#1|)) (-15 -3398 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -4054 (|#1| |#1| (-657 (-624 |#1|)) (-657 |#1|))) (-15 -4054 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -4054 (|#1| |#1| (-304 |#1|))) (-15 -2835 (|#1| (-115) (-657 |#1|))) (-15 -2835 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2835 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2835 (|#1| (-115) |#1| |#1|)) (-15 -2835 (|#1| (-115) |#1|)) (-15 -3236 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3236 (|#1| |#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| (-304 |#1|))) (-15 -3236 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -3236 (|#1| |#1| (-657 (-624 |#1|)) (-657 |#1|))) (-15 -3236 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -3501 (|#1| (-624 |#1|))) (-15 -1624 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2884 ((-624 |#1|) |#1|)) (-15 -3501 ((-877) |#1|))) (-442 |#2|) (-1122)) (T -441)) -((-1832 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1122)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4)))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1122)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) (-1960 (*1 *2) (-12 (-4 *4 (-1122)) (-5 *2 (-784)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4))))) -(-10 -8 (-15 * (|#1| (-941) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3501 (|#1| (-576))) (-15 -1960 ((-784))) (-15 * (|#1| |#2| |#1|)) (-15 -4148 ((-548) |#1|)) (-15 -3501 (|#1| (-972 |#2|))) (-15 -1624 ((-3 (-972 |#2|) "failed") |#1|)) (-15 -2884 ((-972 |#2|) |#1|)) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198))) (-15 * (|#1| |#1| |#2|)) (-15 -3501 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3501 (|#1| (-419 (-972 |#2|)))) (-15 -1624 ((-3 (-419 (-972 |#2|)) "failed") |#1|)) (-15 -2884 ((-419 (-972 |#2|)) |#1|)) (-15 -1849 ((-419 (-1194 |#1|)) |#1| (-624 |#1|))) (-15 -3501 (|#1| (-419 (-972 (-419 |#2|))))) (-15 -3501 (|#1| (-972 (-419 |#2|)))) (-15 -3501 (|#1| (-419 |#2|))) (-15 -1396 (|#1| |#1|)) (-15 -4148 (|#1| (-430 |#1|))) (-15 -3236 (|#1| |#1| (-1198) (-784) (-1 |#1| |#1|))) (-15 -3236 (|#1| |#1| (-1198) (-784) (-1 |#1| (-657 |#1|)))) (-15 -3236 (|#1| |#1| (-657 (-1198)) (-657 (-784)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3236 (|#1| |#1| (-657 (-1198)) (-657 (-784)) (-657 (-1 |#1| |#1|)))) (-15 -3559 ((-3 (-2 (|:| |val| |#1|) (|:| -1801 (-576))) "failed") |#1|)) (-15 -2999 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -1801 (-576))) "failed") |#1| (-1198))) (-15 -2999 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -1801 (-576))) "failed") |#1| (-115))) (-15 -2752 (|#1| |#1|)) (-15 -3501 (|#1| (-1147 |#2| (-624 |#1|)))) (-15 -4003 ((-3 (-2 (|:| -1771 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -2974 ((-3 (-657 |#1|) "failed") |#1|)) (-15 -2999 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -1801 (-576))) "failed") |#1|)) (-15 -1392 ((-3 (-657 |#1|) "failed") |#1|)) (-15 -3236 (|#1| |#1| (-657 (-115)) (-657 |#1|) (-1198))) (-15 -3236 (|#1| |#1| (-115) |#1| (-1198))) (-15 -3236 (|#1| |#1|)) (-15 -3236 (|#1| |#1| (-657 (-1198)))) (-15 -3236 (|#1| |#1| (-1198))) (-15 -4172 (|#1| (-1198) (-657 |#1|))) (-15 -4172 (|#1| (-1198) |#1| |#1| |#1| |#1|)) (-15 -4172 (|#1| (-1198) |#1| |#1| |#1|)) (-15 -4172 (|#1| (-1198) |#1| |#1|)) (-15 -4172 (|#1| (-1198) |#1|)) (-15 -2029 ((-657 (-1198)) |#1|)) (-15 -2160 (|#2| |#1|)) (-15 -2146 ((-112) |#1|)) (-15 -3501 (|#1| |#2|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -4148 ((-908 (-390)) |#1|)) (-15 -4148 ((-908 (-576)) |#1|)) (-15 -3501 (|#1| (-1198))) (-15 -1624 ((-3 (-1198) "failed") |#1|)) (-15 -2884 ((-1198) |#1|)) (-15 -3236 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3236 (|#1| |#1| (-115) (-1 |#1| (-657 |#1|)))) (-15 -3236 (|#1| |#1| (-657 (-115)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3236 (|#1| |#1| (-657 (-115)) (-657 (-1 |#1| |#1|)))) (-15 -3236 (|#1| |#1| (-1198) (-1 |#1| |#1|))) (-15 -3236 (|#1| |#1| (-1198) (-1 |#1| (-657 |#1|)))) (-15 -3236 (|#1| |#1| (-657 (-1198)) (-657 (-1 |#1| (-657 |#1|))))) (-15 -3236 (|#1| |#1| (-657 (-1198)) (-657 (-1 |#1| |#1|)))) (-15 -4159 ((-112) (-115))) (-15 -1832 ((-115) (-115))) (-15 -1817 ((-657 (-624 |#1|)) |#1|)) (-15 -3398 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -4054 (|#1| |#1| (-657 (-624 |#1|)) (-657 |#1|))) (-15 -4054 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -4054 (|#1| |#1| (-304 |#1|))) (-15 -2835 (|#1| (-115) (-657 |#1|))) (-15 -2835 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2835 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2835 (|#1| (-115) |#1| |#1|)) (-15 -2835 (|#1| (-115) |#1|)) (-15 -3236 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3236 (|#1| |#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| (-304 |#1|))) (-15 -3236 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -3236 (|#1| |#1| (-657 (-624 |#1|)) (-657 |#1|))) (-15 -3236 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -3501 (|#1| (-624 |#1|))) (-15 -1624 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2884 ((-624 |#1|) |#1|)) (-15 -3501 ((-877) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 117 (|has| |#1| (-25)))) (-2029 (((-657 (-1198)) $) 208)) (-1849 (((-419 (-1194 $)) $ (-624 $)) 176 (|has| |#1| (-568)))) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 148 (|has| |#1| (-568)))) (-3325 (($ $) 149 (|has| |#1| (-568)))) (-4306 (((-112) $) 151 (|has| |#1| (-568)))) (-3946 (((-657 (-624 $)) $) 39)) (-2721 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)))) (-4054 (($ $ (-304 $)) 51) (($ $ (-657 (-304 $))) 50) (($ $ (-657 (-624 $)) (-657 $)) 49)) (-2638 (($ $) 168 (|has| |#1| (-568)))) (-4402 (((-430 $) $) 169 (|has| |#1| (-568)))) (-2864 (((-112) $ $) 159 (|has| |#1| (-568)))) (-4359 (($) 105 (-2802 (|has| |#1| (-1134)) (|has| |#1| (-25))) CONST)) (-1624 (((-3 (-624 $) "failed") $) 64) (((-3 (-1198) "failed") $) 221) (((-3 (-576) "failed") $) 215 (|has| |#1| (-1060 (-576)))) (((-3 |#1| "failed") $) 212) (((-3 (-419 (-972 |#1|)) "failed") $) 174 (|has| |#1| (-568))) (((-3 (-972 |#1|) "failed") $) 124 (|has| |#1| (-1071))) (((-3 (-419 (-576)) "failed") $) 99 (-2802 (-12 (|has| |#1| (-1060 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1060 (-419 (-576))))))) (-2884 (((-624 $) $) 65) (((-1198) $) 222) (((-576) $) 214 (|has| |#1| (-1060 (-576)))) ((|#1| $) 213) (((-419 (-972 |#1|)) $) 175 (|has| |#1| (-568))) (((-972 |#1|) $) 125 (|has| |#1| (-1071))) (((-419 (-576)) $) 100 (-2802 (-12 (|has| |#1| (-1060 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1060 (-419 (-576))))))) (-3373 (($ $ $) 163 (|has| |#1| (-568)))) (-3306 (((-702 (-576)) (-702 $)) 141 (-2724 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 140 (-2724 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 139 (|has| |#1| (-1071))) (((-702 |#1|) (-702 $)) 138 (|has| |#1| (-1071)))) (-3843 (((-3 $ "failed") $) 107 (|has| |#1| (-1134)))) (-3385 (($ $ $) 162 (|has| |#1| (-568)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 157 (|has| |#1| (-568)))) (-4257 (((-112) $) 170 (|has| |#1| (-568)))) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 217 (|has| |#1| (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 216 (|has| |#1| (-902 (-390))))) (-2887 (($ $) 46) (($ (-657 $)) 45)) (-1784 (((-657 (-115)) $) 38)) (-1832 (((-115) (-115)) 37)) (-4094 (((-112) $) 106 (|has| |#1| (-1134)))) (-2320 (((-112) $) 17 (|has| $ (-1060 (-576))))) (-2752 (($ $) 191 (|has| |#1| (-1071)))) (-1621 (((-1147 |#1| (-624 $)) $) 192 (|has| |#1| (-1071)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 166 (|has| |#1| (-568)))) (-4153 (((-1194 $) (-624 $)) 20 (|has| $ (-1071)))) (-4083 (($ (-1 $ $) (-624 $)) 31)) (-3398 (((-3 (-624 $) "failed") $) 41)) (-3101 (((-702 (-576)) (-1289 $)) 143 (-2724 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 142 (-2724 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 137 (|has| |#1| (-1071))) (((-702 |#1|) (-1289 $)) 136 (|has| |#1| (-1071)))) (-3402 (($ (-657 $)) 155 (|has| |#1| (-568))) (($ $ $) 154 (|has| |#1| (-568)))) (-2342 (((-1180) $) 10)) (-1817 (((-657 (-624 $)) $) 40)) (-1699 (($ (-115) $) 33) (($ (-115) (-657 $)) 32)) (-1392 (((-3 (-657 $) "failed") $) 197 (|has| |#1| (-1134)))) (-3559 (((-3 (-2 (|:| |val| $) (|:| -1801 (-576))) "failed") $) 188 (|has| |#1| (-1071)))) (-2974 (((-3 (-657 $) "failed") $) 195 (|has| |#1| (-25)))) (-4003 (((-3 (-2 (|:| -1771 (-576)) (|:| |var| (-624 $))) "failed") $) 194 (|has| |#1| (-25)))) (-2999 (((-3 (-2 (|:| |var| (-624 $)) (|:| -1801 (-576))) "failed") $) 196 (|has| |#1| (-1134))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1801 (-576))) "failed") $ (-115)) 190 (|has| |#1| (-1071))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -1801 (-576))) "failed") $ (-1198)) 189 (|has| |#1| (-1071)))) (-4412 (((-112) $ (-115)) 35) (((-112) $ (-1198)) 34)) (-2134 (($ $) 109 (-2802 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-2404 (((-784) $) 42)) (-1471 (((-1142) $) 11)) (-2146 (((-112) $) 210)) (-2160 ((|#1| $) 209)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 156 (|has| |#1| (-568)))) (-3436 (($ (-657 $)) 153 (|has| |#1| (-568))) (($ $ $) 152 (|has| |#1| (-568)))) (-3698 (((-112) $ $) 30) (((-112) $ (-1198)) 29)) (-1885 (((-430 $) $) 167 (|has| |#1| (-568)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 165 (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 164 (|has| |#1| (-568)))) (-3418 (((-3 $ "failed") $ $) 147 (|has| |#1| (-568)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 158 (|has| |#1| (-568)))) (-3593 (((-112) $) 18 (|has| $ (-1060 (-576))))) (-3236 (($ $ (-624 $) $) 62) (($ $ (-657 (-624 $)) (-657 $)) 61) (($ $ (-657 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-657 $) (-657 $)) 57) (($ $ (-657 (-1198)) (-657 (-1 $ $))) 28) (($ $ (-657 (-1198)) (-657 (-1 $ (-657 $)))) 27) (($ $ (-1198) (-1 $ (-657 $))) 26) (($ $ (-1198) (-1 $ $)) 25) (($ $ (-657 (-115)) (-657 (-1 $ $))) 24) (($ $ (-657 (-115)) (-657 (-1 $ (-657 $)))) 23) (($ $ (-115) (-1 $ (-657 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1198)) 202 (|has| |#1| (-626 (-548)))) (($ $ (-657 (-1198))) 201 (|has| |#1| (-626 (-548)))) (($ $) 200 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1198)) 199 (|has| |#1| (-626 (-548)))) (($ $ (-657 (-115)) (-657 $) (-1198)) 198 (|has| |#1| (-626 (-548)))) (($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ $))) 187 (|has| |#1| (-1071))) (($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ (-657 $)))) 186 (|has| |#1| (-1071))) (($ $ (-1198) (-784) (-1 $ (-657 $))) 185 (|has| |#1| (-1071))) (($ $ (-1198) (-784) (-1 $ $)) 184 (|has| |#1| (-1071)))) (-2034 (((-784) $) 160 (|has| |#1| (-568)))) (-2835 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-657 $)) 52)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 161 (|has| |#1| (-568)))) (-2445 (($ $) 44) (($ $ $) 43)) (-2815 (($ $ (-1198)) 134 (|has| |#1| (-1071))) (($ $ (-657 (-1198))) 132 (|has| |#1| (-1071))) (($ $ (-1198) (-784)) 131 (|has| |#1| (-1071))) (($ $ (-657 (-1198)) (-657 (-784))) 130 (|has| |#1| (-1071)))) (-1396 (($ $) 181 (|has| |#1| (-568)))) (-1635 (((-1147 |#1| (-624 $)) $) 182 (|has| |#1| (-568)))) (-3180 (($ $) 19 (|has| $ (-1071)))) (-4148 (((-908 (-576)) $) 219 (|has| |#1| (-626 (-908 (-576))))) (((-908 (-390)) $) 218 (|has| |#1| (-626 (-908 (-390))))) (($ (-430 $)) 183 (|has| |#1| (-568))) (((-548) $) 101 (|has| |#1| (-626 (-548))))) (-3549 (($ $ $) 112 (|has| |#1| (-485)))) (-3544 (($ $ $) 113 (|has| |#1| (-485)))) (-3501 (((-877) $) 12) (($ (-624 $)) 63) (($ (-1198)) 220) (($ |#1|) 211) (($ (-1147 |#1| (-624 $))) 193 (|has| |#1| (-1071))) (($ (-419 |#1|)) 179 (|has| |#1| (-568))) (($ (-972 (-419 |#1|))) 178 (|has| |#1| (-568))) (($ (-419 (-972 (-419 |#1|)))) 177 (|has| |#1| (-568))) (($ (-419 (-972 |#1|))) 173 (|has| |#1| (-568))) (($ $) 146 (|has| |#1| (-568))) (($ (-972 |#1|)) 123 (|has| |#1| (-1071))) (($ (-419 (-576))) 98 (-2802 (|has| |#1| (-568)) (-12 (|has| |#1| (-1060 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1060 (-419 (-576)))))) (($ (-576)) 97 (-2802 (|has| |#1| (-1071)) (|has| |#1| (-1060 (-576)))))) (-3096 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-1960 (((-784)) 126 (|has| |#1| (-1071)) CONST)) (-2139 (($ $) 48) (($ (-657 $)) 47)) (-4159 (((-112) (-115)) 36)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 150 (|has| |#1| (-568)))) (-4172 (($ (-1198) $) 207) (($ (-1198) $ $) 206) (($ (-1198) $ $ $) 205) (($ (-1198) $ $ $ $) 204) (($ (-1198) (-657 $)) 203)) (-2769 (($) 116 (|has| |#1| (-25)) CONST)) (-2779 (($) 104 (|has| |#1| (-1134)) CONST)) (-2097 (($ $ (-1198)) 133 (|has| |#1| (-1071))) (($ $ (-657 (-1198))) 129 (|has| |#1| (-1071))) (($ $ (-1198) (-784)) 128 (|has| |#1| (-1071))) (($ $ (-657 (-1198)) (-657 (-784))) 127 (|has| |#1| (-1071)))) (-2933 (((-112) $ $) 8)) (-3034 (($ (-1147 |#1| (-624 $)) (-1147 |#1| (-624 $))) 180 (|has| |#1| (-568))) (($ $ $) 110 (-2802 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-3022 (($ $ $) 122 (|has| |#1| (-21))) (($ $) 121 (|has| |#1| (-21)))) (-3012 (($ $ $) 114 (|has| |#1| (-25)))) (** (($ $ (-576)) 111 (-2802 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-784)) 108 (|has| |#1| (-1134))) (($ $ (-941)) 103 (|has| |#1| (-1134)))) (* (($ (-419 (-576)) $) 172 (|has| |#1| (-568))) (($ $ (-419 (-576))) 171 (|has| |#1| (-568))) (($ $ |#1|) 145 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1071))) (($ (-576) $) 120 (|has| |#1| (-21))) (($ (-784) $) 118 (|has| |#1| (-25))) (($ (-941) $) 115 (|has| |#1| (-25))) (($ $ $) 102 (|has| |#1| (-1134))))) -(((-442 |#1|) (-141) (-1122)) (T -442)) -((-2146 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1122)) (-5 *2 (-112)))) (-2160 (*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1122)))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1122)) (-5 *2 (-657 (-1198))))) (-4172 (*1 *1 *2 *1) (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122)))) (-4172 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122)))) (-4172 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122)))) (-4172 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122)))) (-4172 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-657 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1122)))) (-3236 (*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122)) (-4 *3 (-626 (-548))))) (-3236 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-1198))) (-4 *1 (-442 *3)) (-4 *3 (-1122)) (-4 *3 (-626 (-548))))) (-3236 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1122)) (-4 *2 (-626 (-548))))) (-3236 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1198)) (-4 *1 (-442 *4)) (-4 *4 (-1122)) (-4 *4 (-626 (-548))))) (-3236 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-657 (-115))) (-5 *3 (-657 *1)) (-5 *4 (-1198)) (-4 *1 (-442 *5)) (-4 *5 (-1122)) (-4 *5 (-626 (-548))))) (-1392 (*1 *2 *1) (|partial| -12 (-4 *3 (-1134)) (-4 *3 (-1122)) (-5 *2 (-657 *1)) (-4 *1 (-442 *3)))) (-2999 (*1 *2 *1) (|partial| -12 (-4 *3 (-1134)) (-4 *3 (-1122)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -1801 (-576)))) (-4 *1 (-442 *3)))) (-2974 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1122)) (-5 *2 (-657 *1)) (-4 *1 (-442 *3)))) (-4003 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1122)) (-5 *2 (-2 (|:| -1771 (-576)) (|:| |var| (-624 *1)))) (-4 *1 (-442 *3)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-1147 *3 (-624 *1))) (-4 *3 (-1071)) (-4 *3 (-1122)) (-4 *1 (-442 *3)))) (-1621 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-4 *3 (-1122)) (-5 *2 (-1147 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-2752 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1122)) (-4 *2 (-1071)))) (-2999 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1071)) (-4 *4 (-1122)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -1801 (-576)))) (-4 *1 (-442 *4)))) (-2999 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1198)) (-4 *4 (-1071)) (-4 *4 (-1122)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -1801 (-576)))) (-4 *1 (-442 *4)))) (-3559 (*1 *2 *1) (|partial| -12 (-4 *3 (-1071)) (-4 *3 (-1122)) (-5 *2 (-2 (|:| |val| *1) (|:| -1801 (-576)))) (-4 *1 (-442 *3)))) (-3236 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-657 (-784))) (-5 *4 (-657 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1122)) (-4 *5 (-1071)))) (-3236 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-657 (-784))) (-5 *4 (-657 (-1 *1 (-657 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1122)) (-4 *5 (-1071)))) (-3236 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-784)) (-5 *4 (-1 *1 (-657 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1122)) (-4 *5 (-1071)))) (-3236 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-784)) (-5 *4 (-1 *1 *1)) (-4 *1 (-442 *5)) (-4 *5 (-1122)) (-4 *5 (-1071)))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) (-4 *3 (-1122)))) (-1635 (*1 *2 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1122)) (-5 *2 (-1147 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-1396 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1122)) (-4 *2 (-568)))) (-3034 (*1 *1 *2 *2) (-12 (-5 *2 (-1147 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1122)) (-4 *1 (-442 *3)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1122)) (-4 *1 (-442 *3)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-972 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1122)) (-4 *1 (-442 *3)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-419 (-972 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1122)) (-4 *1 (-442 *3)))) (-1849 (*1 *2 *1 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1122)) (-4 *4 (-568)) (-5 *2 (-419 (-1194 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-442 *3)) (-4 *3 (-1122)) (-4 *3 (-1134))))) -(-13 (-312) (-1060 (-1198)) (-900 |t#1|) (-412 |t#1|) (-423 |t#1|) (-10 -8 (-15 -2146 ((-112) $)) (-15 -2160 (|t#1| $)) (-15 -2029 ((-657 (-1198)) $)) (-15 -4172 ($ (-1198) $)) (-15 -4172 ($ (-1198) $ $)) (-15 -4172 ($ (-1198) $ $ $)) (-15 -4172 ($ (-1198) $ $ $ $)) (-15 -4172 ($ (-1198) (-657 $))) (IF (|has| |t#1| (-626 (-548))) (PROGN (-6 (-626 (-548))) (-15 -3236 ($ $ (-1198))) (-15 -3236 ($ $ (-657 (-1198)))) (-15 -3236 ($ $)) (-15 -3236 ($ $ (-115) $ (-1198))) (-15 -3236 ($ $ (-657 (-115)) (-657 $) (-1198)))) |%noBranch|) (IF (|has| |t#1| (-1134)) (PROGN (-6 (-739)) (-15 ** ($ $ (-784))) (-15 -1392 ((-3 (-657 $) "failed") $)) (-15 -2999 ((-3 (-2 (|:| |var| (-624 $)) (|:| -1801 (-576))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-485)) (-6 (-485)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2974 ((-3 (-657 $) "failed") $)) (-15 -4003 ((-3 (-2 (|:| -1771 (-576)) (|:| |var| (-624 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1071)) (PROGN (-6 (-1071)) (-6 (-1060 (-972 |t#1|))) (-6 (-918 (-1198))) (-6 (-388 |t#1|)) (-15 -3501 ($ (-1147 |t#1| (-624 $)))) (-15 -1621 ((-1147 |t#1| (-624 $)) $)) (-15 -2752 ($ $)) (-15 -2999 ((-3 (-2 (|:| |var| (-624 $)) (|:| -1801 (-576))) "failed") $ (-115))) (-15 -2999 ((-3 (-2 (|:| |var| (-624 $)) (|:| -1801 (-576))) "failed") $ (-1198))) (-15 -3559 ((-3 (-2 (|:| |val| $) (|:| -1801 (-576))) "failed") $)) (-15 -3236 ($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ $)))) (-15 -3236 ($ $ (-657 (-1198)) (-657 (-784)) (-657 (-1 $ (-657 $))))) (-15 -3236 ($ $ (-1198) (-784) (-1 $ (-657 $)))) (-15 -3236 ($ $ (-1198) (-784) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-374)) (-6 (-1060 (-419 (-972 |t#1|)))) (-15 -4148 ($ (-430 $))) (-15 -1635 ((-1147 |t#1| (-624 $)) $)) (-15 -1396 ($ $)) (-15 -3034 ($ (-1147 |t#1| (-624 $)) (-1147 |t#1| (-624 $)))) (-15 -3501 ($ (-419 |t#1|))) (-15 -3501 ($ (-972 (-419 |t#1|)))) (-15 -3501 ($ (-419 (-972 (-419 |t#1|))))) (-15 -1849 ((-419 (-1194 $)) $ (-624 $))) (IF (|has| |t#1| (-1060 (-576))) (-6 (-1060 (-419 (-576)))) |%noBranch|)) |%noBranch|))) -(((-21) -2802 (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2802 (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2802 (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-419 (-576))) |has| |#1| (-568)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-568)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-568)) ((-132) -2802 (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2802 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-568))) ((-628 #1=(-419 (-972 |#1|))) |has| |#1| (-568)) ((-628 (-576)) -2802 (|has| |#1| (-1071)) (|has| |#1| (-1060 (-576))) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-628 #2=(-624 $)) . T) ((-628 #3=(-972 |#1|)) |has| |#1| (-1071)) ((-628 #4=(-1198)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-877)) . T) ((-174) |has| |#1| (-568)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-908 (-390))) |has| |#1| (-626 (-908 (-390)))) ((-626 (-908 (-576))) |has| |#1| (-626 (-908 (-576)))) ((-248) |has| |#1| (-568)) ((-300) |has| |#1| (-568)) ((-317) |has| |#1| (-568)) ((-319 $) . T) ((-312) . T) ((-374) |has| |#1| (-568)) ((-388 |#1|) |has| |#1| (-1071)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) |has| |#1| (-568)) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-659 #0#) |has| |#1| (-568)) ((-659 (-576)) -2802 (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-659 |#1|) -2802 (|has| |#1| (-1071)) (|has| |#1| (-174))) ((-659 $) -2802 (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-661 #0#) |has| |#1| (-568)) ((-661 #5=(-576)) -12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))) ((-661 |#1|) -2802 (|has| |#1| (-1071)) (|has| |#1| (-174))) ((-661 $) -2802 (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-653 #0#) |has| |#1| (-568)) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) |has| |#1| (-568)) ((-652 #5#) -12 (|has| |#1| (-652 (-576))) (|has| |#1| (-1071))) ((-652 |#1|) |has| |#1| (-1071)) ((-730 #0#) |has| |#1| (-568)) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) |has| |#1| (-568)) ((-739) -2802 (|has| |#1| (-1134)) (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-912 $ #6=(-1198)) |has| |#1| (-1071)) ((-918 #6#) |has| |#1| (-1071)) ((-920 #6#) |has| |#1| (-1071)) ((-902 (-390)) |has| |#1| (-902 (-390))) ((-902 (-576)) |has| |#1| (-902 (-576))) ((-900 |#1|) . T) ((-940) |has| |#1| (-568)) ((-1060 (-419 (-576))) -2802 (|has| |#1| (-1060 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1060 (-576))))) ((-1060 #1#) |has| |#1| (-568)) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 #2#) . T) ((-1060 #3#) |has| |#1| (-1071)) ((-1060 #4#) . T) ((-1060 |#1|) . T) ((-1073 #0#) |has| |#1| (-568)) ((-1073 |#1|) |has| |#1| (-174)) ((-1073 $) |has| |#1| (-568)) ((-1078 #0#) |has| |#1| (-568)) ((-1078 |#1|) |has| |#1| (-174)) ((-1078 $) |has| |#1| (-568)) ((-1071) -2802 (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1080) -2802 (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1134) -2802 (|has| |#1| (-1134)) (|has| |#1| (-1071)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1122) . T) ((-1239) . T) ((-1243) |has| |#1| (-568))) -((-4399 ((|#2| |#2| |#2|) 31)) (-1832 (((-115) (-115)) 43)) (-2242 ((|#2| |#2|) 63)) (-3882 ((|#2| |#2|) 66)) (-1379 ((|#2| |#2|) 30)) (-3806 ((|#2| |#2| |#2|) 33)) (-2751 ((|#2| |#2| |#2|) 35)) (-2239 ((|#2| |#2| |#2|) 32)) (-2467 ((|#2| |#2| |#2|) 34)) (-4159 (((-112) (-115)) 41)) (-3270 ((|#2| |#2|) 37)) (-3480 ((|#2| |#2|) 36)) (-1792 ((|#2| |#2|) 25)) (-2238 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-1717 ((|#2| |#2| |#2|) 29))) -(((-443 |#1| |#2|) (-10 -7 (-15 -4159 ((-112) (-115))) (-15 -1832 ((-115) (-115))) (-15 -1792 (|#2| |#2|)) (-15 -2238 (|#2| |#2|)) (-15 -2238 (|#2| |#2| |#2|)) (-15 -1717 (|#2| |#2| |#2|)) (-15 -1379 (|#2| |#2|)) (-15 -4399 (|#2| |#2| |#2|)) (-15 -2239 (|#2| |#2| |#2|)) (-15 -3806 (|#2| |#2| |#2|)) (-15 -2467 (|#2| |#2| |#2|)) (-15 -2751 (|#2| |#2| |#2|)) (-15 -3480 (|#2| |#2|)) (-15 -3270 (|#2| |#2|)) (-15 -3882 (|#2| |#2|)) (-15 -2242 (|#2| |#2|))) (-568) (-442 |#1|)) (T -443)) -((-2242 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3882 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3270 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2751 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2467 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3806 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2239 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-4399 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1379 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1717 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2238 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2238 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1792 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1832 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) (-4 *4 (-442 *3)))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4))))) -(-10 -7 (-15 -4159 ((-112) (-115))) (-15 -1832 ((-115) (-115))) (-15 -1792 (|#2| |#2|)) (-15 -2238 (|#2| |#2|)) (-15 -2238 (|#2| |#2| |#2|)) (-15 -1717 (|#2| |#2| |#2|)) (-15 -1379 (|#2| |#2|)) (-15 -4399 (|#2| |#2| |#2|)) (-15 -2239 (|#2| |#2| |#2|)) (-15 -3806 (|#2| |#2| |#2|)) (-15 -2467 (|#2| |#2| |#2|)) (-15 -2751 (|#2| |#2| |#2|)) (-15 -3480 (|#2| |#2|)) (-15 -3270 (|#2| |#2|)) (-15 -3882 (|#2| |#2|)) (-15 -2242 (|#2| |#2|))) -((-1367 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1194 |#2|)) (|:| |pol2| (-1194 |#2|)) (|:| |prim| (-1194 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-657 (-1194 |#2|))) (|:| |prim| (-1194 |#2|))) (-657 |#2|)) 65))) -(((-444 |#1| |#2|) (-10 -7 (-15 -1367 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-657 (-1194 |#2|))) (|:| |prim| (-1194 |#2|))) (-657 |#2|))) (IF (|has| |#2| (-27)) (-15 -1367 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1194 |#2|)) (|:| |pol2| (-1194 |#2|)) (|:| |prim| (-1194 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-568) (-148)) (-442 |#1|)) (T -444)) -((-1367 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1194 *3)) (|:| |pol2| (-1194 *3)) (|:| |prim| (-1194 *3)))) (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-657 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-657 (-1194 *5))) (|:| |prim| (-1194 *5)))) (-5 *1 (-444 *4 *5))))) -(-10 -7 (-15 -1367 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-657 (-1194 |#2|))) (|:| |prim| (-1194 |#2|))) (-657 |#2|))) (IF (|has| |#2| (-27)) (-15 -1367 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1194 |#2|)) (|:| |pol2| (-1194 |#2|)) (|:| |prim| (-1194 |#2|))) |#2| |#2|)) |%noBranch|)) -((-2990 (((-1294)) 18)) (-1728 (((-1194 (-419 (-576))) |#2| (-624 |#2|)) 40) (((-419 (-576)) |#2|) 24))) -(((-445 |#1| |#2|) (-10 -7 (-15 -1728 ((-419 (-576)) |#2|)) (-15 -1728 ((-1194 (-419 (-576))) |#2| (-624 |#2|))) (-15 -2990 ((-1294)))) (-13 (-568) (-1060 (-576))) (-442 |#1|)) (T -445)) -((-2990 (*1 *2) (-12 (-4 *3 (-13 (-568) (-1060 (-576)))) (-5 *2 (-1294)) (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) (-4 *5 (-13 (-568) (-1060 (-576)))) (-5 *2 (-1194 (-419 (-576)))) (-5 *1 (-445 *5 *3)))) (-1728 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4))))) -(-10 -7 (-15 -1728 ((-419 (-576)) |#2|)) (-15 -1728 ((-1194 (-419 (-576))) |#2| (-624 |#2|))) (-15 -2990 ((-1294)))) -((-3356 (((-112) $) 33)) (-1577 (((-112) $) 35)) (-3099 (((-112) $) 36)) (-2361 (((-112) $) 39)) (-2871 (((-112) $) 34)) (-1994 (((-112) $) 38)) (-3501 (((-877) $) 20) (($ (-1180)) 32) (($ (-1198)) 30) (((-1198) $) 24) (((-1126) $) 23)) (-3530 (((-112) $) 37)) (-2933 (((-112) $ $) 17))) -(((-446) (-13 (-625 (-877)) (-10 -8 (-15 -3501 ($ (-1180))) (-15 -3501 ($ (-1198))) (-15 -3501 ((-1198) $)) (-15 -3501 ((-1126) $)) (-15 -3356 ((-112) $)) (-15 -2871 ((-112) $)) (-15 -3099 ((-112) $)) (-15 -1994 ((-112) $)) (-15 -2361 ((-112) $)) (-15 -3530 ((-112) $)) (-15 -1577 ((-112) $)) (-15 -2933 ((-112) $ $))))) (T -446)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-446)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-446)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-446)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-446)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3099 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2361 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2933 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(-13 (-625 (-877)) (-10 -8 (-15 -3501 ($ (-1180))) (-15 -3501 ($ (-1198))) (-15 -3501 ((-1198) $)) (-15 -3501 ((-1126) $)) (-15 -3356 ((-112) $)) (-15 -2871 ((-112) $)) (-15 -3099 ((-112) $)) (-15 -1994 ((-112) $)) (-15 -2361 ((-112) $)) (-15 -3530 ((-112) $)) (-15 -1577 ((-112) $)) (-15 -2933 ((-112) $ $)))) -((-4326 (((-3 (-430 (-1194 (-419 (-576)))) "failed") |#3|) 72)) (-2987 (((-430 |#3|) |#3|) 34)) (-3525 (((-3 (-430 (-1194 (-48))) "failed") |#3|) 46 (|has| |#2| (-1060 (-48))))) (-2388 (((-3 (|:| |overq| (-1194 (-419 (-576)))) (|:| |overan| (-1194 (-48))) (|:| -4177 (-112))) |#3|) 37))) -(((-447 |#1| |#2| |#3|) (-10 -7 (-15 -2987 ((-430 |#3|) |#3|)) (-15 -4326 ((-3 (-430 (-1194 (-419 (-576)))) "failed") |#3|)) (-15 -2388 ((-3 (|:| |overq| (-1194 (-419 (-576)))) (|:| |overan| (-1194 (-48))) (|:| -4177 (-112))) |#3|)) (IF (|has| |#2| (-1060 (-48))) (-15 -3525 ((-3 (-430 (-1194 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-568) (-1060 (-576))) (-442 |#1|) (-1265 |#2|)) (T -447)) -((-3525 (*1 *2 *3) (|partial| -12 (-4 *5 (-1060 (-48))) (-4 *4 (-13 (-568) (-1060 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1194 (-48)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1265 *5)))) (-2388 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-3 (|:| |overq| (-1194 (-419 (-576)))) (|:| |overan| (-1194 (-48))) (|:| -4177 (-112)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1265 *5)))) (-4326 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1194 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1265 *5)))) (-2987 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1265 *5))))) -(-10 -7 (-15 -2987 ((-430 |#3|) |#3|)) (-15 -4326 ((-3 (-430 (-1194 (-419 (-576)))) "failed") |#3|)) (-15 -2388 ((-3 (|:| |overq| (-1194 (-419 (-576)))) (|:| |overan| (-1194 (-48))) (|:| -4177 (-112))) |#3|)) (IF (|has| |#2| (-1060 (-48))) (-15 -3525 ((-3 (-430 (-1194 (-48))) "failed") |#3|)) |%noBranch|)) -((-3429 (((-112) $ $) NIL)) (-2121 (((-1180) $ (-1180)) NIL)) (-1466 (($ $ (-1180)) NIL)) (-2144 (((-1180) $) NIL)) (-3486 (((-400) (-400) (-400)) 17) (((-400) (-400)) 15)) (-3209 (($ (-400)) NIL) (($ (-400) (-1180)) NIL)) (-2676 (((-400) $) NIL)) (-2342 (((-1180) $) NIL)) (-2316 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3896 (((-1294) (-1180)) 9)) (-1584 (((-1294) (-1180)) 10)) (-2402 (((-1294)) 11)) (-3501 (((-877) $) NIL)) (-3632 (($ $) 39)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-448) (-13 (-375 (-400) (-1180)) (-10 -7 (-15 -3486 ((-400) (-400) (-400))) (-15 -3486 ((-400) (-400))) (-15 -3896 ((-1294) (-1180))) (-15 -1584 ((-1294) (-1180))) (-15 -2402 ((-1294)))))) (T -448)) -((-3486 (*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-3896 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-448)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-448)))) (-2402 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-448))))) -(-13 (-375 (-400) (-1180)) (-10 -7 (-15 -3486 ((-400) (-400) (-400))) (-15 -3486 ((-400) (-400))) (-15 -3896 ((-1294) (-1180))) (-15 -1584 ((-1294) (-1180))) (-15 -2402 ((-1294))))) -((-3429 (((-112) $ $) NIL)) (-3574 (((-3 (|:| |fst| (-446)) (|:| -2927 "void")) $) 11)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3069 (($) 35)) (-1443 (($) 41)) (-2101 (($) 37)) (-3204 (($) 39)) (-2231 (($) 36)) (-1490 (($) 38)) (-1788 (($) 40)) (-3413 (((-112) $) 8)) (-1516 (((-657 (-972 (-576))) $) 19)) (-3511 (($ (-3 (|:| |fst| (-446)) (|:| -2927 "void")) (-657 (-1198)) (-112)) 29) (($ (-3 (|:| |fst| (-446)) (|:| -2927 "void")) (-657 (-972 (-576))) (-112)) 30)) (-3501 (((-877) $) 24) (($ (-446)) 32)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-449) (-13 (-1122) (-10 -8 (-15 -3501 ($ (-446))) (-15 -3574 ((-3 (|:| |fst| (-446)) (|:| -2927 "void")) $)) (-15 -1516 ((-657 (-972 (-576))) $)) (-15 -3413 ((-112) $)) (-15 -3511 ($ (-3 (|:| |fst| (-446)) (|:| -2927 "void")) (-657 (-1198)) (-112))) (-15 -3511 ($ (-3 (|:| |fst| (-446)) (|:| -2927 "void")) (-657 (-972 (-576))) (-112))) (-15 -3069 ($)) (-15 -2231 ($)) (-15 -2101 ($)) (-15 -1443 ($)) (-15 -1490 ($)) (-15 -3204 ($)) (-15 -1788 ($))))) (T -449)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-5 *1 (-449)))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-657 (-972 (-576)))) (-5 *1 (-449)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449)))) (-3511 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-5 *3 (-657 (-1198))) (-5 *4 (-112)) (-5 *1 (-449)))) (-3511 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) (-3069 (*1 *1) (-5 *1 (-449))) (-2231 (*1 *1) (-5 *1 (-449))) (-2101 (*1 *1) (-5 *1 (-449))) (-1443 (*1 *1) (-5 *1 (-449))) (-1490 (*1 *1) (-5 *1 (-449))) (-3204 (*1 *1) (-5 *1 (-449))) (-1788 (*1 *1) (-5 *1 (-449)))) -(-13 (-1122) (-10 -8 (-15 -3501 ($ (-446))) (-15 -3574 ((-3 (|:| |fst| (-446)) (|:| -2927 "void")) $)) (-15 -1516 ((-657 (-972 (-576))) $)) (-15 -3413 ((-112) $)) (-15 -3511 ($ (-3 (|:| |fst| (-446)) (|:| -2927 "void")) (-657 (-1198)) (-112))) (-15 -3511 ($ (-3 (|:| |fst| (-446)) (|:| -2927 "void")) (-657 (-972 (-576))) (-112))) (-15 -3069 ($)) (-15 -2231 ($)) (-15 -2101 ($)) (-15 -1443 ($)) (-15 -1490 ($)) (-15 -3204 ($)) (-15 -1788 ($)))) -((-3429 (((-112) $ $) NIL)) (-2676 (((-1198) $) 8)) (-2342 (((-1180) $) 17)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 11)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 14))) -(((-450 |#1|) (-13 (-1122) (-10 -8 (-15 -2676 ((-1198) $)))) (-1198)) (T -450)) -((-2676 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-450 *3)) (-14 *3 *2)))) -(-13 (-1122) (-10 -8 (-15 -2676 ((-1198) $)))) -((-3429 (((-112) $ $) NIL)) (-2753 (((-1140) $) 7)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 13)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 9))) -(((-451) (-13 (-1122) (-10 -8 (-15 -2753 ((-1140) $))))) (T -451)) -((-2753 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-451))))) -(-13 (-1122) (-10 -8 (-15 -2753 ((-1140) $)))) -((-2669 (((-1294) $) 7)) (-3501 (((-877) $) 8) (($ (-1289 (-712))) 14) (($ (-657 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 11))) -(((-452) (-141)) (T -452)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1289 (-712))) (-4 *1 (-452)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-452)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) (-4 *1 (-452))))) -(-13 (-407) (-10 -8 (-15 -3501 ($ (-1289 (-712)))) (-15 -3501 ($ (-657 (-340)))) (-15 -3501 ($ (-340))) (-15 -3501 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340)))))))) -(((-625 (-877)) . T) ((-407) . T) ((-1239) . T)) -((-1624 (((-3 $ "failed") (-1289 (-326 (-390)))) 21) (((-3 $ "failed") (-1289 (-326 (-576)))) 19) (((-3 $ "failed") (-1289 (-972 (-390)))) 17) (((-3 $ "failed") (-1289 (-972 (-576)))) 15) (((-3 $ "failed") (-1289 (-419 (-972 (-390))))) 13) (((-3 $ "failed") (-1289 (-419 (-972 (-576))))) 11)) (-2884 (($ (-1289 (-326 (-390)))) 22) (($ (-1289 (-326 (-576)))) 20) (($ (-1289 (-972 (-390)))) 18) (($ (-1289 (-972 (-576)))) 16) (($ (-1289 (-419 (-972 (-390))))) 14) (($ (-1289 (-419 (-972 (-576))))) 12)) (-2669 (((-1294) $) 7)) (-3501 (((-877) $) 8) (($ (-657 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) 23))) +((-2706 (*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-1297))))) +(-13 (-1242) (-626 (-880)) (-10 -8 (-15 -2706 ((-1297) $)))) +(((-626 (-880)) . T) ((-1242) . T)) +((-1628 (((-3 $ "failed") (-327 (-391))) 21) (((-3 $ "failed") (-327 (-577))) 19) (((-3 $ "failed") (-975 (-391))) 17) (((-3 $ "failed") (-975 (-577))) 15) (((-3 $ "failed") (-420 (-975 (-391)))) 13) (((-3 $ "failed") (-420 (-975 (-577)))) 11)) (-2921 (($ (-327 (-391))) 22) (($ (-327 (-577))) 20) (($ (-975 (-391))) 18) (($ (-975 (-577))) 16) (($ (-420 (-975 (-391)))) 14) (($ (-420 (-975 (-577)))) 12)) (-2706 (((-1297) $) 7)) (-3544 (((-880) $) 8) (($ (-660 (-341))) 25) (($ (-341)) 24) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 23))) +(((-409) (-141)) (T -409)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-409)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-409)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) (-4 *1 (-409)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-4 *1 (-409)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-391))) (-4 *1 (-409)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-4 *1 (-409)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-577))) (-4 *1 (-409)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-975 (-391))) (-4 *1 (-409)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-391))) (-4 *1 (-409)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-975 (-577))) (-4 *1 (-409)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-577))) (-4 *1 (-409)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-420 (-975 (-391)))) (-4 *1 (-409)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 (-975 (-391)))) (-4 *1 (-409)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-420 (-975 (-577)))) (-4 *1 (-409)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 (-975 (-577)))) (-4 *1 (-409))))) +(-13 (-408) (-10 -8 (-15 -3544 ($ (-660 (-341)))) (-15 -3544 ($ (-341))) (-15 -3544 ($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341)))))) (-15 -2921 ($ (-327 (-391)))) (-15 -1628 ((-3 $ "failed") (-327 (-391)))) (-15 -2921 ($ (-327 (-577)))) (-15 -1628 ((-3 $ "failed") (-327 (-577)))) (-15 -2921 ($ (-975 (-391)))) (-15 -1628 ((-3 $ "failed") (-975 (-391)))) (-15 -2921 ($ (-975 (-577)))) (-15 -1628 ((-3 $ "failed") (-975 (-577)))) (-15 -2921 ($ (-420 (-975 (-391))))) (-15 -1628 ((-3 $ "failed") (-420 (-975 (-391))))) (-15 -2921 ($ (-420 (-975 (-577))))) (-15 -1628 ((-3 $ "failed") (-420 (-975 (-577))))))) +(((-626 (-880)) . T) ((-408) . T) ((-1242) . T)) +((-3194 (((-660 (-1183)) (-660 (-1183))) 9)) (-2706 (((-1297) (-401)) 26)) (-3185 (((-1129) (-1201) (-660 (-1201)) (-1204) (-660 (-1201))) 59) (((-1129) (-1201) (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201)))) (-660 (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201))))) (-660 (-1201)) (-1201)) 34) (((-1129) (-1201) (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201)))) (-660 (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201))))) (-660 (-1201))) 33))) +(((-410) (-10 -7 (-15 -3185 ((-1129) (-1201) (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201)))) (-660 (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201))))) (-660 (-1201)))) (-15 -3185 ((-1129) (-1201) (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201)))) (-660 (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201))))) (-660 (-1201)) (-1201))) (-15 -3185 ((-1129) (-1201) (-660 (-1201)) (-1204) (-660 (-1201)))) (-15 -2706 ((-1297) (-401))) (-15 -3194 ((-660 (-1183)) (-660 (-1183)))))) (T -410)) +((-3194 (*1 *2 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-410)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1297)) (-5 *1 (-410)))) (-3185 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-660 (-1201))) (-5 *5 (-1204)) (-5 *3 (-1201)) (-5 *2 (-1129)) (-5 *1 (-410)))) (-3185 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-660 (-660 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-660 (-3 (|:| |array| (-660 *3)) (|:| |scalar| (-1201))))) (-5 *6 (-660 (-1201))) (-5 *3 (-1201)) (-5 *2 (-1129)) (-5 *1 (-410)))) (-3185 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-660 (-660 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-660 (-3 (|:| |array| (-660 *3)) (|:| |scalar| (-1201))))) (-5 *6 (-660 (-1201))) (-5 *3 (-1201)) (-5 *2 (-1129)) (-5 *1 (-410))))) +(-10 -7 (-15 -3185 ((-1129) (-1201) (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201)))) (-660 (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201))))) (-660 (-1201)))) (-15 -3185 ((-1129) (-1201) (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201)))) (-660 (-660 (-3 (|:| |array| (-660 (-1201))) (|:| |scalar| (-1201))))) (-660 (-1201)) (-1201))) (-15 -3185 ((-1129) (-1201) (-660 (-1201)) (-1204) (-660 (-1201)))) (-15 -2706 ((-1297) (-401))) (-15 -3194 ((-660 (-1183)) (-660 (-1183))))) +((-2706 (((-1297) $) 35)) (-3544 (((-880) $) 97) (($ (-341)) 99) (($ (-660 (-341))) 98) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 96) (($ (-327 (-717))) 52) (($ (-327 (-715))) 72) (($ (-327 (-710))) 85) (($ (-305 (-327 (-717)))) 67) (($ (-305 (-327 (-715)))) 80) (($ (-305 (-327 (-710)))) 93) (($ (-327 (-577))) 104) (($ (-327 (-391))) 117) (($ (-327 (-171 (-391)))) 130) (($ (-305 (-327 (-577)))) 112) (($ (-305 (-327 (-391)))) 125) (($ (-305 (-327 (-171 (-391))))) 138))) +(((-411 |#1| |#2| |#3| |#4|) (-13 (-408) (-10 -8 (-15 -3544 ($ (-341))) (-15 -3544 ($ (-660 (-341)))) (-15 -3544 ($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341)))))) (-15 -3544 ($ (-327 (-717)))) (-15 -3544 ($ (-327 (-715)))) (-15 -3544 ($ (-327 (-710)))) (-15 -3544 ($ (-305 (-327 (-717))))) (-15 -3544 ($ (-305 (-327 (-715))))) (-15 -3544 ($ (-305 (-327 (-710))))) (-15 -3544 ($ (-327 (-577)))) (-15 -3544 ($ (-327 (-391)))) (-15 -3544 ($ (-327 (-171 (-391))))) (-15 -3544 ($ (-305 (-327 (-577))))) (-15 -3544 ($ (-305 (-327 (-391))))) (-15 -3544 ($ (-305 (-327 (-171 (-391)))))))) (-1201) (-3 (|:| |fst| (-447)) (|:| -2963 "void")) (-660 (-1201)) (-1205)) (T -411)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-341)) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-327 (-717))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-327 (-715))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-327 (-710))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-717)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-715)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-710)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-327 (-171 (-391)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-577)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-391)))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-305 (-327 (-171 (-391))))) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-14 *5 (-660 (-1201))) (-14 *6 (-1205))))) +(-13 (-408) (-10 -8 (-15 -3544 ($ (-341))) (-15 -3544 ($ (-660 (-341)))) (-15 -3544 ($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341)))))) (-15 -3544 ($ (-327 (-717)))) (-15 -3544 ($ (-327 (-715)))) (-15 -3544 ($ (-327 (-710)))) (-15 -3544 ($ (-305 (-327 (-717))))) (-15 -3544 ($ (-305 (-327 (-715))))) (-15 -3544 ($ (-305 (-327 (-710))))) (-15 -3544 ($ (-327 (-577)))) (-15 -3544 ($ (-327 (-391)))) (-15 -3544 ($ (-327 (-171 (-391))))) (-15 -3544 ($ (-305 (-327 (-577))))) (-15 -3544 ($ (-305 (-327 (-391))))) (-15 -3544 ($ (-305 (-327 (-171 (-391)))))))) +((-3473 (((-112) $ $) NIL)) (-3213 ((|#2| $) 38)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3223 (($ (-420 |#2|)) 93)) (-3204 (((-660 (-2 (|:| -3556 (-787)) (|:| -3693 |#2|) (|:| |num| |#2|))) $) 39)) (-2852 (($ $ (-787)) 36) (($ $) 34)) (-4152 (((-420 |#2|) $) 49)) (-3553 (($ (-660 (-2 (|:| -3556 (-787)) (|:| -3693 |#2|) (|:| |num| |#2|)))) 33)) (-3544 (((-880) $) 131)) (-4448 (((-112) $ $) NIL)) (-2132 (($ $ (-787)) 37) (($ $) 35)) (-2970 (((-112) $ $) NIL)) (-3055 (($ |#2| $) 41))) +(((-412 |#1| |#2|) (-13 (-1125) (-238) (-627 (-420 |#2|)) (-10 -8 (-15 -3055 ($ |#2| $)) (-15 -3223 ($ (-420 |#2|))) (-15 -3213 (|#2| $)) (-15 -3204 ((-660 (-2 (|:| -3556 (-787)) (|:| -3693 |#2|) (|:| |num| |#2|))) $)) (-15 -3553 ($ (-660 (-2 (|:| -3556 (-787)) (|:| -3693 |#2|) (|:| |num| |#2|))))))) (-13 (-375) (-148)) (-1268 |#1|)) (T -412)) +((-3055 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *2)) (-4 *2 (-1268 *3)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-420 *4)) (-4 *4 (-1268 *3)) (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *4)))) (-3213 (*1 *2 *1) (-12 (-4 *2 (-1268 *3)) (-5 *1 (-412 *3 *2)) (-4 *3 (-13 (-375) (-148))))) (-3204 (*1 *2 *1) (-12 (-4 *3 (-13 (-375) (-148))) (-5 *2 (-660 (-2 (|:| -3556 (-787)) (|:| -3693 *4) (|:| |num| *4)))) (-5 *1 (-412 *3 *4)) (-4 *4 (-1268 *3)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -3556 (-787)) (|:| -3693 *4) (|:| |num| *4)))) (-4 *4 (-1268 *3)) (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *4))))) +(-13 (-1125) (-238) (-627 (-420 |#2|)) (-10 -8 (-15 -3055 ($ |#2| $)) (-15 -3223 ($ (-420 |#2|))) (-15 -3213 (|#2| $)) (-15 -3204 ((-660 (-2 (|:| -3556 (-787)) (|:| -3693 |#2|) (|:| |num| |#2|))) $)) (-15 -3553 ($ (-660 (-2 (|:| -3556 (-787)) (|:| -3693 |#2|) (|:| |num| |#2|))))))) +((-3473 (((-112) $ $) 10 (-2839 (|has| |#1| (-905 (-577))) (|has| |#1| (-905 (-391)))))) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 16 (|has| |#1| (-905 (-391)))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 15 (|has| |#1| (-905 (-577))))) (-2810 (((-1183) $) 14 (-2839 (|has| |#1| (-905 (-577))) (|has| |#1| (-905 (-391)))))) (-1474 (((-1145) $) 13 (-2839 (|has| |#1| (-905 (-577))) (|has| |#1| (-905 (-391)))))) (-3544 (((-880) $) 12 (-2839 (|has| |#1| (-905 (-577))) (|has| |#1| (-905 (-391)))))) (-4448 (((-112) $ $) 11 (-2839 (|has| |#1| (-905 (-577))) (|has| |#1| (-905 (-391)))))) (-2970 (((-112) $ $) 9 (-2839 (|has| |#1| (-905 (-577))) (|has| |#1| (-905 (-391))))))) +(((-413 |#1|) (-141) (-1242)) (T -413)) +NIL +(-13 (-1242) (-10 -7 (IF (|has| |t#1| (-905 (-577))) (-6 (-905 (-577))) |%noBranch|) (IF (|has| |t#1| (-905 (-391))) (-6 (-905 (-391))) |%noBranch|))) +(((-102) -2839 (|has| |#1| (-905 (-577))) (|has| |#1| (-905 (-391)))) ((-626 (-880)) -2839 (|has| |#1| (-905 (-577))) (|has| |#1| (-905 (-391)))) ((-905 (-391)) |has| |#1| (-905 (-391))) ((-905 (-577)) |has| |#1| (-905 (-577))) ((-1125) -2839 (|has| |#1| (-905 (-577))) (|has| |#1| (-905 (-391)))) ((-1242) . T)) +((-3233 (($ $) 10) (($ $ (-787)) 12))) +(((-414 |#1|) (-10 -8 (-15 -3233 (|#1| |#1| (-787))) (-15 -3233 (|#1| |#1|))) (-415)) (T -414)) +NIL +(-10 -8 (-15 -3233 (|#1| |#1| (-787))) (-15 -3233 (|#1| |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-1956 (((-3 $ "failed") $ $) 20)) (-3841 (($ $) 81)) (-3029 (((-431 $) $) 80)) (-1939 (((-112) $ $) 65)) (-1534 (($) 18 T CONST)) (-3418 (($ $ $) 61)) (-4187 (((-3 $ "failed") $) 37)) (-3429 (($ $ $) 62)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 57)) (-3233 (($ $) 87) (($ $ (-787)) 86)) (-1522 (((-112) $) 79)) (-3817 (((-849 (-944)) $) 89)) (-2487 (((-112) $) 35)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 58)) (-3446 (($ $ $) 52) (($ (-660 $)) 51)) (-2810 (((-1183) $) 10)) (-2171 (($ $) 78)) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 50)) (-3480 (($ $ $) 54) (($ (-660 $)) 53)) (-1902 (((-431 $) $) 82)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3462 (((-3 $ "failed") $ $) 48)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 56)) (-1927 (((-787) $) 64)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 63)) (-3243 (((-3 (-787) "failed") $ $) 88)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49) (($ (-420 (-577))) 74)) (-2233 (((-3 $ "failed") $) 90)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 45)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3077 (($ $ $) 73)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 77)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ (-420 (-577))) 76) (($ (-420 (-577)) $) 75))) +(((-415) (-141)) (T -415)) +((-3817 (*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-849 (-944))))) (-3243 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-415)) (-5 *2 (-787)))) (-3233 (*1 *1 *1) (-4 *1 (-415))) (-3233 (*1 *1 *1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-787))))) +(-13 (-375) (-146) (-10 -8 (-15 -3817 ((-849 (-944)) $)) (-15 -3243 ((-3 (-787) "failed") $ $)) (-15 -3233 ($ $)) (-15 -3233 ($ $ (-787))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-465) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-733 #0#) . T) ((-733 $) . T) ((-742) . T) ((-943) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) . T)) +((-3068 (($ (-577) (-577)) 11) (($ (-577) (-577) (-944)) NIL)) (-2596 (((-944)) 19) (((-944) (-944)) NIL))) +(((-416 |#1|) (-10 -8 (-15 -2596 ((-944) (-944))) (-15 -2596 ((-944))) (-15 -3068 (|#1| (-577) (-577) (-944))) (-15 -3068 (|#1| (-577) (-577)))) (-417)) (T -416)) +((-2596 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-416 *3)) (-4 *3 (-417)))) (-2596 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-416 *3)) (-4 *3 (-417))))) +(-10 -8 (-15 -2596 ((-944) (-944))) (-15 -2596 ((-944))) (-15 -3068 (|#1| (-577) (-577) (-944))) (-15 -3068 (|#1| (-577) (-577)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-4105 (((-577) $) 98)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-3804 (($ $) 96)) (-1956 (((-3 $ "failed") $ $) 20)) (-3841 (($ $) 81)) (-3029 (((-431 $) $) 80)) (-1913 (($ $) 106)) (-1939 (((-112) $ $) 65)) (-3010 (((-577) $) 123)) (-1534 (($) 18 T CONST)) (-4080 (($ $) 95)) (-1628 (((-3 (-577) "failed") $) 111) (((-3 (-420 (-577)) "failed") $) 108)) (-2921 (((-577) $) 112) (((-420 (-577)) $) 109)) (-3418 (($ $ $) 61)) (-4187 (((-3 $ "failed") $) 37)) (-3429 (($ $ $) 62)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 57)) (-1522 (((-112) $) 79)) (-4291 (((-944)) 139) (((-944) (-944)) 136 (|has| $ (-6 -4461)))) (-3567 (((-112) $) 121)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 102)) (-3817 (((-577) $) 145)) (-2487 (((-112) $) 35)) (-2381 (($ $ (-577)) 105)) (-4145 (($ $) 101)) (-3578 (((-112) $) 122)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 58)) (-3732 (($ $ $) 115) (($) 133 (-12 (-2749 (|has| $ (-6 -4461))) (-2749 (|has| $ (-6 -4453)))))) (-3201 (($ $ $) 116) (($) 132 (-12 (-2749 (|has| $ (-6 -4461))) (-2749 (|has| $ (-6 -4453)))))) (-1525 (((-577) $) 142)) (-3446 (($ $ $) 52) (($ (-660 $)) 51)) (-2810 (((-1183) $) 10)) (-2171 (($ $) 78)) (-3265 (((-944) (-577)) 135 (|has| $ (-6 -4461)))) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 50)) (-3480 (($ $ $) 54) (($ (-660 $)) 53)) (-4093 (($ $) 97)) (-4119 (($ $) 99)) (-3068 (($ (-577) (-577)) 147) (($ (-577) (-577) (-944)) 146)) (-1902 (((-431 $) $) 82)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3462 (((-3 $ "failed") $ $) 48)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 56)) (-3556 (((-577) $) 143)) (-1927 (((-787) $) 64)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 63)) (-2596 (((-944)) 140) (((-944) (-944)) 137 (|has| $ (-6 -4461)))) (-3255 (((-944) (-577)) 134 (|has| $ (-6 -4461)))) (-4152 (((-391) $) 114) (((-228) $) 113) (((-911 (-391)) $) 103)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49) (($ (-420 (-577))) 74) (($ (-577)) 110) (($ (-420 (-577))) 107)) (-4068 (((-787)) 32 T CONST)) (-4132 (($ $) 100)) (-3274 (((-944)) 141) (((-944) (-944)) 138 (|has| $ (-6 -4461)))) (-4448 (((-112) $ $) 6)) (-4146 (((-944)) 144)) (-3281 (((-112) $ $) 45)) (-1654 (($ $) 124)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-3025 (((-112) $ $) 117)) (-3000 (((-112) $ $) 119)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 118)) (-2990 (((-112) $ $) 120)) (-3077 (($ $ $) 73)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 77) (($ $ (-420 (-577))) 104)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ (-420 (-577))) 76) (($ (-420 (-577)) $) 75))) +(((-417) (-141)) (T -417)) +((-3068 (*1 *1 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-417)))) (-3068 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-944)) (-4 *1 (-417)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) (-4146 (*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-944)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) (-1525 (*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) (-3274 (*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-944)))) (-2596 (*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-944)))) (-4291 (*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-944)))) (-3274 (*1 *2 *2) (-12 (-5 *2 (-944)) (|has| *1 (-6 -4461)) (-4 *1 (-417)))) (-2596 (*1 *2 *2) (-12 (-5 *2 (-944)) (|has| *1 (-6 -4461)) (-4 *1 (-417)))) (-4291 (*1 *2 *2) (-12 (-5 *2 (-944)) (|has| *1 (-6 -4461)) (-4 *1 (-417)))) (-3265 (*1 *2 *3) (-12 (-5 *3 (-577)) (|has| *1 (-6 -4461)) (-4 *1 (-417)) (-5 *2 (-944)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-577)) (|has| *1 (-6 -4461)) (-4 *1 (-417)) (-5 *2 (-944)))) (-3732 (*1 *1) (-12 (-4 *1 (-417)) (-2749 (|has| *1 (-6 -4461))) (-2749 (|has| *1 (-6 -4453))))) (-3201 (*1 *1) (-12 (-4 *1 (-417)) (-2749 (|has| *1 (-6 -4461))) (-2749 (|has| *1 (-6 -4453)))))) +(-13 (-1085) (-10 -8 (-6 -4148) (-15 -3068 ($ (-577) (-577))) (-15 -3068 ($ (-577) (-577) (-944))) (-15 -3817 ((-577) $)) (-15 -4146 ((-944))) (-15 -3556 ((-577) $)) (-15 -1525 ((-577) $)) (-15 -3274 ((-944))) (-15 -2596 ((-944))) (-15 -4291 ((-944))) (IF (|has| $ (-6 -4461)) (PROGN (-15 -3274 ((-944) (-944))) (-15 -2596 ((-944) (-944))) (-15 -4291 ((-944) (-944))) (-15 -3265 ((-944) (-577))) (-15 -3255 ((-944) (-577)))) |%noBranch|) (IF (|has| $ (-6 -4453)) |%noBranch| (IF (|has| $ (-6 -4461)) |%noBranch| (PROGN (-15 -3732 ($)) (-15 -3201 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-627 (-228)) . T) ((-627 (-391)) . T) ((-627 (-911 (-391))) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-465) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-733 #0#) . T) ((-733 $) . T) ((-742) . T) ((-807) . T) ((-808) . T) ((-810) . T) ((-811) . T) ((-864) . T) ((-865) . T) ((-868) . T) ((-905 (-391)) . T) ((-943) . T) ((-1027) . T) ((-1047) . T) ((-1085) . T) ((-1063 (-420 (-577))) . T) ((-1063 (-577)) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) . T)) +((-4087 (((-431 |#2|) (-1 |#2| |#1|) (-431 |#1|)) 20))) +(((-418 |#1| |#2|) (-10 -7 (-15 -4087 ((-431 |#2|) (-1 |#2| |#1|) (-431 |#1|)))) (-569) (-569)) (T -418)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-431 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-5 *2 (-431 *6)) (-5 *1 (-418 *5 *6))))) +(-10 -7 (-15 -4087 ((-431 |#2|) (-1 |#2| |#1|) (-431 |#1|)))) +((-4087 (((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)) 13))) +(((-419 |#1| |#2|) (-10 -7 (-15 -4087 ((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)))) (-569) (-569)) (T -419)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-420 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-5 *2 (-420 *6)) (-5 *1 (-419 *5 *6))))) +(-10 -7 (-15 -4087 ((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 13)) (-4105 ((|#1| $) 21 (|has| |#1| (-318)))) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-1939 (((-112) $ $) NIL)) (-3010 (((-577) $) NIL (|has| |#1| (-836)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) 17) (((-3 (-1201) "failed") $) NIL (|has| |#1| (-1063 (-1201)))) (((-3 (-420 (-577)) "failed") $) 72 (|has| |#1| (-1063 (-577)))) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577))))) (-2921 ((|#1| $) 15) (((-1201) $) NIL (|has| |#1| (-1063 (-1201)))) (((-420 (-577)) $) 69 (|has| |#1| (-1063 (-577)))) (((-577) $) NIL (|has| |#1| (-1063 (-577))))) (-3418 (($ $ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL) (((-705 |#1|) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) 51)) (-1910 (($) NIL (|has| |#1| (-558)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-3567 (((-112) $) NIL (|has| |#1| (-836)))) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| |#1| (-905 (-577)))) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| |#1| (-905 (-391))))) (-2487 (((-112) $) 57)) (-2240 (($ $) NIL)) (-1623 ((|#1| $) 73)) (-4021 (((-3 $ "failed") $) NIL (|has| |#1| (-1177)))) (-3578 (((-112) $) NIL (|has| |#1| (-836)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3732 (($ $ $) NIL (|has| |#1| (-865)))) (-3201 (($ $ $) NIL (|has| |#1| (-865)))) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL) (((-705 |#1|) (-1292 $)) NIL)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1709 (($) NIL (|has| |#1| (-1177)) CONST)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 100)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-4093 (($ $) NIL (|has| |#1| (-318)))) (-4119 ((|#1| $) 28 (|has| |#1| (-558)))) (-2269 (((-431 (-1197 $)) (-1197 $)) 145 (|has| |#1| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) 138 (|has| |#1| (-932)))) (-1902 (((-431 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3280 (($ $ (-660 |#1|) (-660 |#1|)) NIL (|has| |#1| (-320 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|))) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|))) (($ $ (-660 (-305 |#1|))) NIL (|has| |#1| (-320 |#1|))) (($ $ (-660 (-1201)) (-660 |#1|)) NIL (|has| |#1| (-527 (-1201) |#1|))) (($ $ (-1201) |#1|) NIL (|has| |#1| (-527 (-1201) |#1|)))) (-1927 (((-787) $) NIL)) (-2872 (($ $ |#1|) NIL (|has| |#1| (-297 |#1| |#1|)))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2852 (($ $ (-1 |#1| |#1|)) 64) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201)))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-787)) NIL (|has| |#1| (-238)))) (-2227 (($ $) NIL)) (-1637 ((|#1| $) 75)) (-4152 (((-911 (-577)) $) NIL (|has| |#1| (-627 (-911 (-577))))) (((-911 (-391)) $) NIL (|has| |#1| (-627 (-911 (-391))))) (((-549) $) NIL (|has| |#1| (-627 (-549)))) (((-391) $) NIL (|has| |#1| (-1047))) (((-228) $) NIL (|has| |#1| (-1047)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-932))))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) NIL) (($ |#1|) 10) (($ (-1201)) NIL (|has| |#1| (-1063 (-1201))))) (-2233 (((-3 $ "failed") $) 102 (-2839 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))))) (-4068 (((-787)) 103 T CONST)) (-4132 ((|#1| $) 26 (|has| |#1| (-558)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-1654 (($ $) NIL (|has| |#1| (-836)))) (-2806 (($) 22 T CONST)) (-2816 (($) 8 T CONST)) (-4013 (((-1183) $) 44 (-12 (|has| |#1| (-558)) (|has| |#1| (-844)))) (((-1183) $ (-112)) 45 (-12 (|has| |#1| (-558)) (|has| |#1| (-844)))) (((-1297) (-838) $) 46 (-12 (|has| |#1| (-558)) (|has| |#1| (-844)))) (((-1297) (-838) $ (-112)) 47 (-12 (|has| |#1| (-558)) (|has| |#1| (-844))))) (-2132 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201)))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-787)) NIL (|has| |#1| (-238)))) (-3025 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2970 (((-112) $ $) 66)) (-3012 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2990 (((-112) $ $) 24 (|has| |#1| (-865)))) (-3077 (($ $ $) 133) (($ |#1| |#1|) 53)) (-3066 (($ $) 25) (($ $ $) 56)) (-3055 (($ $ $) 54)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) 132)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 61) (($ $ $) 58) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) +(((-420 |#1|) (-13 (-1017 |#1|) (-10 -7 (IF (|has| |#1| (-558)) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (IF (|has| |#1| (-465)) (IF (|has| |#1| (-6 -4468)) (-6 -4457) |%noBranch|) |%noBranch|) |%noBranch|))) (-569)) (T -420)) +NIL +(-13 (-1017 |#1|) (-10 -7 (IF (|has| |#1| (-558)) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4457)) (IF (|has| |#1| (-465)) (IF (|has| |#1| (-6 -4468)) (-6 -4457) |%noBranch|) |%noBranch|) |%noBranch|))) +((-3390 (((-705 |#2|) (-1292 $)) NIL) (((-705 |#2|)) 18)) (-3502 (($ (-1292 |#2|) (-1292 $)) NIL) (($ (-1292 |#2|)) 24)) (-3381 (((-705 |#2|) $ (-1292 $)) NIL) (((-705 |#2|) $) 40)) (-4084 ((|#3| $) 69)) (-1827 ((|#2| (-1292 $)) NIL) ((|#2|) 20)) (-2710 (((-1292 |#2|) $ (-1292 $)) NIL) (((-705 |#2|) (-1292 $) (-1292 $)) NIL) (((-1292 |#2|) $) 22) (((-705 |#2|) (-1292 $)) 38)) (-4152 (((-1292 |#2|) $) 11) (($ (-1292 |#2|)) 13)) (-3974 ((|#3| $) 55))) +(((-421 |#1| |#2| |#3|) (-10 -8 (-15 -3381 ((-705 |#2|) |#1|)) (-15 -1827 (|#2|)) (-15 -3390 ((-705 |#2|))) (-15 -4152 (|#1| (-1292 |#2|))) (-15 -4152 ((-1292 |#2|) |#1|)) (-15 -3502 (|#1| (-1292 |#2|))) (-15 -2710 ((-705 |#2|) (-1292 |#1|))) (-15 -2710 ((-1292 |#2|) |#1|)) (-15 -4084 (|#3| |#1|)) (-15 -3974 (|#3| |#1|)) (-15 -3390 ((-705 |#2|) (-1292 |#1|))) (-15 -1827 (|#2| (-1292 |#1|))) (-15 -3502 (|#1| (-1292 |#2|) (-1292 |#1|))) (-15 -2710 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2710 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -3381 ((-705 |#2|) |#1| (-1292 |#1|)))) (-422 |#2| |#3|) (-174) (-1268 |#2|)) (T -421)) +((-3390 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)) (-5 *1 (-421 *3 *4 *5)) (-4 *3 (-422 *4 *5)))) (-1827 (*1 *2) (-12 (-4 *4 (-1268 *2)) (-4 *2 (-174)) (-5 *1 (-421 *3 *2 *4)) (-4 *3 (-422 *2 *4))))) +(-10 -8 (-15 -3381 ((-705 |#2|) |#1|)) (-15 -1827 (|#2|)) (-15 -3390 ((-705 |#2|))) (-15 -4152 (|#1| (-1292 |#2|))) (-15 -4152 ((-1292 |#2|) |#1|)) (-15 -3502 (|#1| (-1292 |#2|))) (-15 -2710 ((-705 |#2|) (-1292 |#1|))) (-15 -2710 ((-1292 |#2|) |#1|)) (-15 -4084 (|#3| |#1|)) (-15 -3974 (|#3| |#1|)) (-15 -3390 ((-705 |#2|) (-1292 |#1|))) (-15 -1827 (|#2| (-1292 |#1|))) (-15 -3502 (|#1| (-1292 |#2|) (-1292 |#1|))) (-15 -2710 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2710 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -3381 ((-705 |#2|) |#1| (-1292 |#1|)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3390 (((-705 |#1|) (-1292 $)) 53) (((-705 |#1|)) 68)) (-2339 ((|#1| $) 59)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-3502 (($ (-1292 |#1|) (-1292 $)) 55) (($ (-1292 |#1|)) 71)) (-3381 (((-705 |#1|) $ (-1292 $)) 60) (((-705 |#1|) $) 66)) (-4187 (((-3 $ "failed") $) 37)) (-1545 (((-944)) 61)) (-2487 (((-112) $) 35)) (-4145 ((|#1| $) 58)) (-4084 ((|#2| $) 51 (|has| |#1| (-375)))) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-1827 ((|#1| (-1292 $)) 54) ((|#1|) 67)) (-2710 (((-1292 |#1|) $ (-1292 $)) 57) (((-705 |#1|) (-1292 $) (-1292 $)) 56) (((-1292 |#1|) $) 73) (((-705 |#1|) (-1292 $)) 72)) (-4152 (((-1292 |#1|) $) 70) (($ (-1292 |#1|)) 69)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 44)) (-2233 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-3974 ((|#2| $) 52)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-4060 (((-1292 $)) 74)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-422 |#1| |#2|) (-141) (-174) (-1268 |t#1|)) (T -422)) +((-4060 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1268 *3)) (-5 *2 (-1292 *1)) (-4 *1 (-422 *3 *4)))) (-2710 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) (-5 *2 (-1292 *3)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-422 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-174)) (-4 *1 (-422 *3 *4)) (-4 *4 (-1268 *3)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) (-5 *2 (-1292 *3)))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-174)) (-4 *1 (-422 *3 *4)) (-4 *4 (-1268 *3)))) (-3390 (*1 *2) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) (-5 *2 (-705 *3)))) (-1827 (*1 *2) (-12 (-4 *1 (-422 *2 *3)) (-4 *3 (-1268 *2)) (-4 *2 (-174)))) (-3381 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) (-5 *2 (-705 *3))))) +(-13 (-382 |t#1| |t#2|) (-10 -8 (-15 -4060 ((-1292 $))) (-15 -2710 ((-1292 |t#1|) $)) (-15 -2710 ((-705 |t#1|) (-1292 $))) (-15 -3502 ($ (-1292 |t#1|))) (-15 -4152 ((-1292 |t#1|) $)) (-15 -4152 ($ (-1292 |t#1|))) (-15 -3390 ((-705 |t#1|))) (-15 -1827 (|t#1|)) (-15 -3381 ((-705 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-382 |#1| |#2|) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 |#1|) . T) ((-733 |#1|) . T) ((-742) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-1628 (((-3 |#2| "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) 27) (((-3 (-577) "failed") $) 19)) (-2921 ((|#2| $) NIL) (((-420 (-577)) $) 24) (((-577) $) 14)) (-3544 (($ |#2|) NIL) (($ (-420 (-577))) 22) (($ (-577)) 11))) +(((-423 |#1| |#2|) (-10 -8 (-15 -3544 (|#1| (-577))) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -3544 (|#1| |#2|))) (-424 |#2|) (-1242)) (T -423)) +NIL +(-10 -8 (-15 -3544 (|#1| (-577))) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -3544 (|#1| |#2|))) +((-1628 (((-3 |#1| "failed") $) 9) (((-3 (-420 (-577)) "failed") $) 16 (|has| |#1| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) 13 (|has| |#1| (-1063 (-577))))) (-2921 ((|#1| $) 8) (((-420 (-577)) $) 17 (|has| |#1| (-1063 (-420 (-577))))) (((-577) $) 14 (|has| |#1| (-1063 (-577))))) (-3544 (($ |#1|) 6) (($ (-420 (-577))) 15 (|has| |#1| (-1063 (-420 (-577))))) (($ (-577)) 12 (|has| |#1| (-1063 (-577)))))) +(((-424 |#1|) (-141) (-1242)) (T -424)) +NIL +(-13 (-1063 |t#1|) (-10 -7 (IF (|has| |t#1| (-1063 (-577))) (-6 (-1063 (-577))) |%noBranch|) (IF (|has| |t#1| (-1063 (-420 (-577)))) (-6 (-1063 (-420 (-577)))) |%noBranch|))) +(((-629 #0=(-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-629 #1=(-577)) |has| |#1| (-1063 (-577))) ((-629 |#1|) . T) ((-1063 #0#) |has| |#1| (-1063 (-420 (-577)))) ((-1063 #1#) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T)) +((-4087 (((-426 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-426 |#1| |#2| |#3| |#4|)) 35))) +(((-425 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4087 ((-426 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-426 |#1| |#2| |#3| |#4|)))) (-318) (-1017 |#1|) (-1268 |#2|) (-13 (-422 |#2| |#3|) (-1063 |#2|)) (-318) (-1017 |#5|) (-1268 |#6|) (-13 (-422 |#6| |#7|) (-1063 |#6|))) (T -425)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-426 *5 *6 *7 *8)) (-4 *5 (-318)) (-4 *6 (-1017 *5)) (-4 *7 (-1268 *6)) (-4 *8 (-13 (-422 *6 *7) (-1063 *6))) (-4 *9 (-318)) (-4 *10 (-1017 *9)) (-4 *11 (-1268 *10)) (-5 *2 (-426 *9 *10 *11 *12)) (-5 *1 (-425 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-422 *10 *11) (-1063 *10)))))) +(-10 -7 (-15 -4087 ((-426 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-426 |#1| |#2| |#3| |#4|)))) +((-3473 (((-112) $ $) NIL)) (-1534 (($) NIL T CONST)) (-4187 (((-3 $ "failed") $) NIL)) (-3400 ((|#4| (-787) (-1292 |#4|)) 55)) (-2487 (((-112) $) NIL)) (-1623 (((-1292 |#4|) $) 15)) (-4145 ((|#2| $) 53)) (-3411 (($ $) 157)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) 103)) (-3597 (($ (-1292 |#4|)) 102)) (-1474 (((-1145) $) NIL)) (-1637 ((|#1| $) 16)) (-2360 (($ $ $) NIL)) (-3820 (($ $ $) NIL)) (-3544 (((-880) $) 148)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 |#4|) $) 141)) (-2816 (($) 11 T CONST)) (-2970 (((-112) $ $) 39)) (-3077 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) 134)) (* (($ $ $) 130))) +(((-426 |#1| |#2| |#3| |#4|) (-13 (-486) (-10 -8 (-15 -3597 ($ (-1292 |#4|))) (-15 -4060 ((-1292 |#4|) $)) (-15 -4145 (|#2| $)) (-15 -1623 ((-1292 |#4|) $)) (-15 -1637 (|#1| $)) (-15 -3411 ($ $)) (-15 -3400 (|#4| (-787) (-1292 |#4|))))) (-318) (-1017 |#1|) (-1268 |#2|) (-13 (-422 |#2| |#3|) (-1063 |#2|))) (T -426)) +((-3597 (*1 *1 *2) (-12 (-5 *2 (-1292 *6)) (-4 *6 (-13 (-422 *4 *5) (-1063 *4))) (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) (-4 *3 (-318)) (-5 *1 (-426 *3 *4 *5 *6)))) (-4060 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) (-5 *2 (-1292 *6)) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1063 *4))))) (-4145 (*1 *2 *1) (-12 (-4 *4 (-1268 *2)) (-4 *2 (-1017 *3)) (-5 *1 (-426 *3 *2 *4 *5)) (-4 *3 (-318)) (-4 *5 (-13 (-422 *2 *4) (-1063 *2))))) (-1623 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) (-5 *2 (-1292 *6)) (-5 *1 (-426 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1063 *4))))) (-1637 (*1 *2 *1) (-12 (-4 *3 (-1017 *2)) (-4 *4 (-1268 *3)) (-4 *2 (-318)) (-5 *1 (-426 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1063 *3))))) (-3411 (*1 *1 *1) (-12 (-4 *2 (-318)) (-4 *3 (-1017 *2)) (-4 *4 (-1268 *3)) (-5 *1 (-426 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1063 *3))))) (-3400 (*1 *2 *3 *4) (-12 (-5 *3 (-787)) (-5 *4 (-1292 *2)) (-4 *5 (-318)) (-4 *6 (-1017 *5)) (-4 *2 (-13 (-422 *6 *7) (-1063 *6))) (-5 *1 (-426 *5 *6 *7 *2)) (-4 *7 (-1268 *6))))) +(-13 (-486) (-10 -8 (-15 -3597 ($ (-1292 |#4|))) (-15 -4060 ((-1292 |#4|) $)) (-15 -4145 (|#2| $)) (-15 -1623 ((-1292 |#4|) $)) (-15 -1637 (|#1| $)) (-15 -3411 ($ $)) (-15 -3400 (|#4| (-787) (-1292 |#4|))))) +((-3473 (((-112) $ $) NIL)) (-1534 (($) NIL T CONST)) (-4187 (((-3 $ "failed") $) NIL)) (-2487 (((-112) $) NIL)) (-4145 ((|#2| $) 71)) (-3424 (($ (-1292 |#4|)) 27) (($ (-426 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1063 |#2|)))) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 37)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 |#4|) $) 28)) (-2816 (($) 25 T CONST)) (-2970 (((-112) $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ $ $) 82))) +(((-427 |#1| |#2| |#3| |#4| |#5|) (-13 (-742) (-10 -8 (-15 -4060 ((-1292 |#4|) $)) (-15 -4145 (|#2| $)) (-15 -3424 ($ (-1292 |#4|))) (IF (|has| |#4| (-1063 |#2|)) (-15 -3424 ($ (-426 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-318) (-1017 |#1|) (-1268 |#2|) (-422 |#2| |#3|) (-1292 |#4|)) (T -427)) +((-4060 (*1 *2 *1) (-12 (-4 *3 (-318)) (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) (-5 *2 (-1292 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-4 *6 (-422 *4 *5)) (-14 *7 *2))) (-4145 (*1 *2 *1) (-12 (-4 *4 (-1268 *2)) (-4 *2 (-1017 *3)) (-5 *1 (-427 *3 *2 *4 *5 *6)) (-4 *3 (-318)) (-4 *5 (-422 *2 *4)) (-14 *6 (-1292 *5)))) (-3424 (*1 *1 *2) (-12 (-5 *2 (-1292 *6)) (-4 *6 (-422 *4 *5)) (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) (-4 *3 (-318)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3424 (*1 *1 *2) (-12 (-5 *2 (-426 *3 *4 *5 *6)) (-4 *6 (-1063 *4)) (-4 *3 (-318)) (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) (-4 *6 (-422 *4 *5)) (-14 *7 (-1292 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7))))) +(-13 (-742) (-10 -8 (-15 -4060 ((-1292 |#4|) $)) (-15 -4145 (|#2| $)) (-15 -3424 ($ (-1292 |#4|))) (IF (|has| |#4| (-1063 |#2|)) (-15 -3424 ($ (-426 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-4087 ((|#3| (-1 |#4| |#2|) |#1|) 29))) +(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 (|#3| (-1 |#4| |#2|) |#1|))) (-430 |#2|) (-174) (-430 |#4|) (-174)) (T -428)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-430 *6)) (-5 *1 (-428 *4 *5 *2 *6)) (-4 *4 (-430 *5))))) +(-10 -7 (-15 -4087 (|#3| (-1 |#4| |#2|) |#1|))) +((-3294 (((-3 $ "failed")) 98)) (-2700 (((-1292 (-705 |#2|)) (-1292 $)) NIL) (((-1292 (-705 |#2|))) 103)) (-2364 (((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed")) 96)) (-3741 (((-3 $ "failed")) 95)) (-3457 (((-705 |#2|) (-1292 $)) NIL) (((-705 |#2|)) 114)) (-3436 (((-705 |#2|) $ (-1292 $)) NIL) (((-705 |#2|) $) 122)) (-2304 (((-1197 (-975 |#2|))) 63)) (-3478 ((|#2| (-1292 $)) NIL) ((|#2|) 118)) (-3502 (($ (-1292 |#2|) (-1292 $)) NIL) (($ (-1292 |#2|)) 124)) (-2373 (((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed")) 94)) (-3751 (((-3 $ "failed")) 86)) (-3467 (((-705 |#2|) (-1292 $)) NIL) (((-705 |#2|)) 112)) (-3445 (((-705 |#2|) $ (-1292 $)) NIL) (((-705 |#2|) $) 120)) (-2345 (((-1197 (-975 |#2|))) 62)) (-3490 ((|#2| (-1292 $)) NIL) ((|#2|) 116)) (-2710 (((-1292 |#2|) $ (-1292 $)) NIL) (((-705 |#2|) (-1292 $) (-1292 $)) NIL) (((-1292 |#2|) $) 123) (((-705 |#2|) (-1292 $)) 132)) (-4152 (((-1292 |#2|) $) 108) (($ (-1292 |#2|)) 110)) (-2206 (((-660 (-975 |#2|)) (-1292 $)) NIL) (((-660 (-975 |#2|))) 106)) (-3543 (($ (-705 |#2|) $) 102))) +(((-429 |#1| |#2|) (-10 -8 (-15 -3543 (|#1| (-705 |#2|) |#1|)) (-15 -2304 ((-1197 (-975 |#2|)))) (-15 -2345 ((-1197 (-975 |#2|)))) (-15 -3436 ((-705 |#2|) |#1|)) (-15 -3445 ((-705 |#2|) |#1|)) (-15 -3457 ((-705 |#2|))) (-15 -3467 ((-705 |#2|))) (-15 -3478 (|#2|)) (-15 -3490 (|#2|)) (-15 -4152 (|#1| (-1292 |#2|))) (-15 -4152 ((-1292 |#2|) |#1|)) (-15 -3502 (|#1| (-1292 |#2|))) (-15 -2206 ((-660 (-975 |#2|)))) (-15 -2700 ((-1292 (-705 |#2|)))) (-15 -2710 ((-705 |#2|) (-1292 |#1|))) (-15 -2710 ((-1292 |#2|) |#1|)) (-15 -3294 ((-3 |#1| "failed"))) (-15 -3741 ((-3 |#1| "failed"))) (-15 -3751 ((-3 |#1| "failed"))) (-15 -2364 ((-3 (-2 (|:| |particular| |#1|) (|:| -4060 (-660 |#1|))) "failed"))) (-15 -2373 ((-3 (-2 (|:| |particular| |#1|) (|:| -4060 (-660 |#1|))) "failed"))) (-15 -3457 ((-705 |#2|) (-1292 |#1|))) (-15 -3467 ((-705 |#2|) (-1292 |#1|))) (-15 -3478 (|#2| (-1292 |#1|))) (-15 -3490 (|#2| (-1292 |#1|))) (-15 -3502 (|#1| (-1292 |#2|) (-1292 |#1|))) (-15 -2710 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2710 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -3436 ((-705 |#2|) |#1| (-1292 |#1|))) (-15 -3445 ((-705 |#2|) |#1| (-1292 |#1|))) (-15 -2700 ((-1292 (-705 |#2|)) (-1292 |#1|))) (-15 -2206 ((-660 (-975 |#2|)) (-1292 |#1|)))) (-430 |#2|) (-174)) (T -429)) +((-2700 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1292 (-705 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2206 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-660 (-975 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-3490 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) (-3478 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) (-3467 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-705 *4)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-3457 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-705 *4)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2345 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1197 (-975 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2304 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1197 (-975 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4))))) +(-10 -8 (-15 -3543 (|#1| (-705 |#2|) |#1|)) (-15 -2304 ((-1197 (-975 |#2|)))) (-15 -2345 ((-1197 (-975 |#2|)))) (-15 -3436 ((-705 |#2|) |#1|)) (-15 -3445 ((-705 |#2|) |#1|)) (-15 -3457 ((-705 |#2|))) (-15 -3467 ((-705 |#2|))) (-15 -3478 (|#2|)) (-15 -3490 (|#2|)) (-15 -4152 (|#1| (-1292 |#2|))) (-15 -4152 ((-1292 |#2|) |#1|)) (-15 -3502 (|#1| (-1292 |#2|))) (-15 -2206 ((-660 (-975 |#2|)))) (-15 -2700 ((-1292 (-705 |#2|)))) (-15 -2710 ((-705 |#2|) (-1292 |#1|))) (-15 -2710 ((-1292 |#2|) |#1|)) (-15 -3294 ((-3 |#1| "failed"))) (-15 -3741 ((-3 |#1| "failed"))) (-15 -3751 ((-3 |#1| "failed"))) (-15 -2364 ((-3 (-2 (|:| |particular| |#1|) (|:| -4060 (-660 |#1|))) "failed"))) (-15 -2373 ((-3 (-2 (|:| |particular| |#1|) (|:| -4060 (-660 |#1|))) "failed"))) (-15 -3457 ((-705 |#2|) (-1292 |#1|))) (-15 -3467 ((-705 |#2|) (-1292 |#1|))) (-15 -3478 (|#2| (-1292 |#1|))) (-15 -3490 (|#2| (-1292 |#1|))) (-15 -3502 (|#1| (-1292 |#2|) (-1292 |#1|))) (-15 -2710 ((-705 |#2|) (-1292 |#1|) (-1292 |#1|))) (-15 -2710 ((-1292 |#2|) |#1| (-1292 |#1|))) (-15 -3436 ((-705 |#2|) |#1| (-1292 |#1|))) (-15 -3445 ((-705 |#2|) |#1| (-1292 |#1|))) (-15 -2700 ((-1292 (-705 |#2|)) (-1292 |#1|))) (-15 -2206 ((-660 (-975 |#2|)) (-1292 |#1|)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3294 (((-3 $ "failed")) 42 (|has| |#1| (-569)))) (-1956 (((-3 $ "failed") $ $) 20)) (-2700 (((-1292 (-705 |#1|)) (-1292 $)) 83) (((-1292 (-705 |#1|))) 106)) (-4043 (((-1292 $)) 86)) (-1534 (($) 18 T CONST)) (-2364 (((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed")) 45 (|has| |#1| (-569)))) (-3741 (((-3 $ "failed")) 43 (|has| |#1| (-569)))) (-3457 (((-705 |#1|) (-1292 $)) 70) (((-705 |#1|)) 98)) (-4022 ((|#1| $) 79)) (-3436 (((-705 |#1|) $ (-1292 $)) 81) (((-705 |#1|) $) 96)) (-3584 (((-3 $ "failed") $) 50 (|has| |#1| (-569)))) (-2304 (((-1197 (-975 |#1|))) 94 (|has| |#1| (-375)))) (-2470 (($ $ (-944)) 31)) (-3999 ((|#1| $) 77)) (-3762 (((-1197 |#1|) $) 47 (|has| |#1| (-569)))) (-3478 ((|#1| (-1292 $)) 72) ((|#1|) 100)) (-3976 (((-1197 |#1|) $) 68)) (-3905 (((-112)) 62)) (-3502 (($ (-1292 |#1|) (-1292 $)) 74) (($ (-1292 |#1|)) 104)) (-4187 (((-3 $ "failed") $) 52 (|has| |#1| (-569)))) (-1545 (((-944)) 85)) (-3870 (((-112)) 59)) (-2667 (($ $ (-944)) 38)) (-3824 (((-112)) 55)) (-3799 (((-112)) 53)) (-3847 (((-112)) 57)) (-2373 (((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed")) 46 (|has| |#1| (-569)))) (-3751 (((-3 $ "failed")) 44 (|has| |#1| (-569)))) (-3467 (((-705 |#1|) (-1292 $)) 71) (((-705 |#1|)) 99)) (-4032 ((|#1| $) 80)) (-3445 (((-705 |#1|) $ (-1292 $)) 82) (((-705 |#1|) $) 97)) (-3593 (((-3 $ "failed") $) 51 (|has| |#1| (-569)))) (-2345 (((-1197 (-975 |#1|))) 95 (|has| |#1| (-375)))) (-3604 (($ $ (-944)) 32)) (-4012 ((|#1| $) 78)) (-3774 (((-1197 |#1|) $) 48 (|has| |#1| (-569)))) (-3490 ((|#1| (-1292 $)) 73) ((|#1|) 101)) (-3987 (((-1197 |#1|) $) 69)) (-3916 (((-112)) 63)) (-2810 (((-1183) $) 10)) (-3812 (((-112)) 54)) (-3836 (((-112)) 56)) (-3859 (((-112)) 58)) (-1474 (((-1145) $) 11)) (-3892 (((-112)) 61)) (-2872 ((|#1| $ (-577)) 110)) (-2710 (((-1292 |#1|) $ (-1292 $)) 76) (((-705 |#1|) (-1292 $) (-1292 $)) 75) (((-1292 |#1|) $) 108) (((-705 |#1|) (-1292 $)) 107)) (-4152 (((-1292 |#1|) $) 103) (($ (-1292 |#1|)) 102)) (-2206 (((-660 (-975 |#1|)) (-1292 $)) 84) (((-660 (-975 |#1|))) 105)) (-3820 (($ $ $) 28)) (-3965 (((-112)) 67)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-4060 (((-1292 $)) 109)) (-3786 (((-660 (-1292 |#1|))) 49 (|has| |#1| (-569)))) (-3832 (($ $ $ $) 29)) (-3940 (((-112)) 65)) (-3543 (($ (-705 |#1|) $) 93)) (-3807 (($ $ $) 27)) (-3953 (((-112)) 66)) (-3928 (((-112)) 64)) (-3881 (((-112)) 60)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 33)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-430 |#1|) (-141) (-174)) (T -430)) +((-4060 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1292 *1)) (-4 *1 (-430 *3)))) (-2710 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1292 *3)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-430 *4)) (-4 *4 (-174)) (-5 *2 (-705 *4)))) (-2700 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1292 (-705 *3))))) (-2206 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-660 (-975 *3))))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-174)) (-4 *1 (-430 *3)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1292 *3)))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-174)) (-4 *1 (-430 *3)))) (-3490 (*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-174)))) (-3478 (*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-174)))) (-3467 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-705 *3)))) (-3457 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-705 *3)))) (-3445 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-705 *3)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-705 *3)))) (-2345 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-4 *3 (-375)) (-5 *2 (-1197 (-975 *3))))) (-2304 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-4 *3 (-375)) (-5 *2 (-1197 (-975 *3))))) (-3543 (*1 *1 *2 *1) (-12 (-5 *2 (-705 *3)) (-4 *1 (-430 *3)) (-4 *3 (-174))))) +(-13 (-379 |t#1|) (-297 (-577) |t#1|) (-10 -8 (-15 -4060 ((-1292 $))) (-15 -2710 ((-1292 |t#1|) $)) (-15 -2710 ((-705 |t#1|) (-1292 $))) (-15 -2700 ((-1292 (-705 |t#1|)))) (-15 -2206 ((-660 (-975 |t#1|)))) (-15 -3502 ($ (-1292 |t#1|))) (-15 -4152 ((-1292 |t#1|) $)) (-15 -4152 ($ (-1292 |t#1|))) (-15 -3490 (|t#1|)) (-15 -3478 (|t#1|)) (-15 -3467 ((-705 |t#1|))) (-15 -3457 ((-705 |t#1|))) (-15 -3445 ((-705 |t#1|) $)) (-15 -3436 ((-705 |t#1|) $)) (IF (|has| |t#1| (-375)) (PROGN (-15 -2345 ((-1197 (-975 |t#1|)))) (-15 -2304 ((-1197 (-975 |t#1|))))) |%noBranch|) (-15 -3543 ($ (-705 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-880)) . T) ((-297 (-577) |#1|) . T) ((-379 |#1|) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) . T) ((-733 |#1|) . T) ((-736) . T) ((-760 |#1|) . T) ((-777) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 60)) (-3284 (($ $) 78)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 192)) (-3290 (($ $) NIL)) (-3271 (((-112) $) 48)) (-3294 ((|#1| $) 16)) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL (|has| |#1| (-1246)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-1246)))) (-3314 (($ |#1| (-577)) 42)) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) 149)) (-2921 (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) 74)) (-4187 (((-3 $ "failed") $) 165)) (-4363 (((-3 (-420 (-577)) "failed") $) 85 (|has| |#1| (-558)))) (-4353 (((-112) $) 81 (|has| |#1| (-558)))) (-4341 (((-420 (-577)) $) 92 (|has| |#1| (-558)))) (-3323 (($ |#1| (-577)) 44)) (-1522 (((-112) $) 212 (|has| |#1| (-1246)))) (-2487 (((-112) $) 62)) (-2772 (((-787) $) 51)) (-3333 (((-3 "nil" "sqfr" "irred" "prime") $ (-577)) 176)) (-3657 ((|#1| $ (-577)) 175)) (-3343 (((-577) $ (-577)) 174)) (-3372 (($ |#1| (-577)) 41)) (-4087 (($ (-1 |#1| |#1|) $) 184)) (-2739 (($ |#1| (-660 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577))))) 79)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) NIL (|has| |#1| (-465)))) (-2810 (((-1183) $) NIL)) (-3353 (($ |#1| (-577)) 43)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-465)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) 193 (|has| |#1| (-465)))) (-3303 (($ |#1| (-577) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-3363 (((-660 (-2 (|:| -1902 |#1|) (|:| -3556 (-577)))) $) 73)) (-1558 (((-660 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))) $) 12)) (-1902 (((-431 $) $) NIL (|has| |#1| (-1246)))) (-3462 (((-3 $ "failed") $ $) 177)) (-3556 (((-577) $) 168)) (-2027 ((|#1| $) 75)) (-3280 (($ $ (-660 |#1|) (-660 |#1|)) NIL (|has| |#1| (-320 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|))) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|))) (($ $ (-660 (-305 |#1|))) 101 (|has| |#1| (-320 |#1|))) (($ $ (-660 (-1201)) (-660 |#1|)) 107 (|has| |#1| (-527 (-1201) |#1|))) (($ $ (-1201) |#1|) NIL (|has| |#1| (-527 (-1201) |#1|))) (($ $ (-1201) $) NIL (|has| |#1| (-527 (-1201) $))) (($ $ (-660 (-1201)) (-660 $)) 108 (|has| |#1| (-527 (-1201) $))) (($ $ (-660 (-305 $))) 104 (|has| |#1| (-320 $))) (($ $ (-305 $)) NIL (|has| |#1| (-320 $))) (($ $ $ $) NIL (|has| |#1| (-320 $))) (($ $ (-660 $) (-660 $)) NIL (|has| |#1| (-320 $)))) (-2872 (($ $ |#1|) 93 (|has| |#1| (-297 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-297 $ $)))) (-2852 (($ $ (-1 |#1| |#1|)) 183) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $) NIL (|has| |#1| (-238))) (($ $ (-787)) NIL (|has| |#1| (-238))) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))))) (-4152 (((-549) $) 39 (|has| |#1| (-627 (-549)))) (((-391) $) 114 (|has| |#1| (-1047))) (((-228) $) 120 (|has| |#1| (-1047)))) (-3544 (((-880) $) 147) (($ (-577)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-420 (-577))) NIL (|has| |#1| (-1063 (-420 (-577)))))) (-4068 (((-787)) 67 T CONST)) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-2806 (($) 53 T CONST)) (-2816 (($) 52 T CONST)) (-2132 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $) NIL (|has| |#1| (-238))) (($ $ (-787)) NIL (|has| |#1| (-238))) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))))) (-2970 (((-112) $ $) 160)) (-3066 (($ $) 162) (($ $ $) NIL)) (-3055 (($ $ $) 181)) (** (($ $ (-944)) NIL) (($ $ (-787)) 126)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) +(((-431 |#1|) (-13 (-569) (-233 |#1|) (-38 |#1|) (-350 |#1|) (-424 |#1|) (-10 -8 (-15 -2027 (|#1| $)) (-15 -3556 ((-577) $)) (-15 -2739 ($ |#1| (-660 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))))) (-15 -1558 ((-660 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))) $)) (-15 -3372 ($ |#1| (-577))) (-15 -3363 ((-660 (-2 (|:| -1902 |#1|) (|:| -3556 (-577)))) $)) (-15 -3353 ($ |#1| (-577))) (-15 -3343 ((-577) $ (-577))) (-15 -3657 (|#1| $ (-577))) (-15 -3333 ((-3 "nil" "sqfr" "irred" "prime") $ (-577))) (-15 -2772 ((-787) $)) (-15 -3323 ($ |#1| (-577))) (-15 -3314 ($ |#1| (-577))) (-15 -3303 ($ |#1| (-577) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3294 (|#1| $)) (-15 -3284 ($ $)) (-15 -4087 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-465)) (-6 (-465)) |%noBranch|) (IF (|has| |#1| (-1047)) (-6 (-1047)) |%noBranch|) (IF (|has| |#1| (-1246)) (-6 (-1246)) |%noBranch|) (IF (|has| |#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -4353 ((-112) $)) (-15 -4341 ((-420 (-577)) $)) (-15 -4363 ((-3 (-420 (-577)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-297 $ $)) (-6 (-297 $ $)) |%noBranch|) (IF (|has| |#1| (-320 $)) (-6 (-320 $)) |%noBranch|) (IF (|has| |#1| (-527 (-1201) $)) (-6 (-527 (-1201) $)) |%noBranch|))) (-569)) (T -431)) +((-4087 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-569)) (-5 *1 (-431 *3)))) (-2027 (*1 *2 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-2739 (*1 *1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-577))))) (-4 *2 (-569)) (-5 *1 (-431 *2)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-577))))) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-3372 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| -1902 *3) (|:| -3556 (-577))))) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-3353 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-3343 (*1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-3657 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-3333 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-431 *4)) (-4 *4 (-569)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) (-3323 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-3314 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-3303 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-577)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-3294 (*1 *2 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-3284 (*1 *1 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-431 *3)) (-4 *3 (-558)) (-4 *3 (-569)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-431 *3)) (-4 *3 (-558)) (-4 *3 (-569)))) (-4363 (*1 *2 *1) (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-431 *3)) (-4 *3 (-558)) (-4 *3 (-569))))) +(-13 (-569) (-233 |#1|) (-38 |#1|) (-350 |#1|) (-424 |#1|) (-10 -8 (-15 -2027 (|#1| $)) (-15 -3556 ((-577) $)) (-15 -2739 ($ |#1| (-660 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))))) (-15 -1558 ((-660 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-577)))) $)) (-15 -3372 ($ |#1| (-577))) (-15 -3363 ((-660 (-2 (|:| -1902 |#1|) (|:| -3556 (-577)))) $)) (-15 -3353 ($ |#1| (-577))) (-15 -3343 ((-577) $ (-577))) (-15 -3657 (|#1| $ (-577))) (-15 -3333 ((-3 "nil" "sqfr" "irred" "prime") $ (-577))) (-15 -2772 ((-787) $)) (-15 -3323 ($ |#1| (-577))) (-15 -3314 ($ |#1| (-577))) (-15 -3303 ($ |#1| (-577) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3294 (|#1| $)) (-15 -3284 ($ $)) (-15 -4087 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-465)) (-6 (-465)) |%noBranch|) (IF (|has| |#1| (-1047)) (-6 (-1047)) |%noBranch|) (IF (|has| |#1| (-1246)) (-6 (-1246)) |%noBranch|) (IF (|has| |#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -4353 ((-112) $)) (-15 -4341 ((-420 (-577)) $)) (-15 -4363 ((-3 (-420 (-577)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-297 $ $)) (-6 (-297 $ $)) |%noBranch|) (IF (|has| |#1| (-320 $)) (-6 (-320 $)) |%noBranch|) (IF (|has| |#1| (-527 (-1201) $)) (-6 (-527 (-1201) $)) |%noBranch|))) +((-4169 (((-431 |#1|) (-431 |#1|) (-1 (-431 |#1|) |#1|)) 28)) (-3511 (((-431 |#1|) (-431 |#1|) (-431 |#1|)) 17))) +(((-432 |#1|) (-10 -7 (-15 -4169 ((-431 |#1|) (-431 |#1|) (-1 (-431 |#1|) |#1|))) (-15 -3511 ((-431 |#1|) (-431 |#1|) (-431 |#1|)))) (-569)) (T -432)) +((-3511 (*1 *2 *2 *2) (-12 (-5 *2 (-431 *3)) (-4 *3 (-569)) (-5 *1 (-432 *3)))) (-4169 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-431 *4) *4)) (-4 *4 (-569)) (-5 *2 (-431 *4)) (-5 *1 (-432 *4))))) +(-10 -7 (-15 -4169 ((-431 |#1|) (-431 |#1|) (-1 (-431 |#1|) |#1|))) (-15 -3511 ((-431 |#1|) (-431 |#1|) (-431 |#1|)))) +((-2419 ((|#2| |#2|) 183)) (-3532 (((-3 (|:| |%expansion| (-324 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183))))) |#2| (-112)) 60))) +(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3532 ((-3 (|:| |%expansion| (-324 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183))))) |#2| (-112))) (-15 -2419 (|#2| |#2|))) (-13 (-465) (-1063 (-577)) (-654 (-577))) (-13 (-27) (-1227) (-443 |#1|)) (-1201) |#2|) (T -433)) +((-2419 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-433 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1227) (-443 *3))) (-14 *4 (-1201)) (-14 *5 *2))) (-3532 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 (|:| |%expansion| (-324 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183)))))) (-5 *1 (-433 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) (-14 *6 (-1201)) (-14 *7 *3)))) +(-10 -7 (-15 -3532 ((-3 (|:| |%expansion| (-324 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183))))) |#2| (-112))) (-15 -2419 (|#2| |#2|))) +((-4087 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 (|#4| (-1 |#3| |#1|) |#2|))) (-1074) (-443 |#1|) (-1074) (-443 |#3|)) (T -434)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-443 *6)) (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-443 *5))))) +(-10 -7 (-15 -4087 (|#4| (-1 |#3| |#1|) |#2|))) +((-2419 ((|#2| |#2|) 106)) (-2400 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183))))) |#2| (-112) (-1183)) 52)) (-2409 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183))))) |#2| (-112) (-1183)) 170))) +(((-435 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2400 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183))))) |#2| (-112) (-1183))) (-15 -2409 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183))))) |#2| (-112) (-1183))) (-15 -2419 (|#2| |#2|))) (-13 (-465) (-1063 (-577)) (-654 (-577))) (-13 (-27) (-1227) (-443 |#1|) (-10 -8 (-15 -3544 ($ |#3|)))) (-864) (-13 (-1270 |#2| |#3|) (-375) (-1227) (-10 -8 (-15 -2852 ($ $)) (-15 -4147 ($ $)))) (-1008 |#4|) (-1201)) (T -435)) +((-2419 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-4 *2 (-13 (-27) (-1227) (-443 *3) (-10 -8 (-15 -3544 ($ *4))))) (-4 *4 (-864)) (-4 *5 (-13 (-1270 *2 *4) (-375) (-1227) (-10 -8 (-15 -2852 ($ $)) (-15 -4147 ($ $))))) (-5 *1 (-435 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1008 *5)) (-14 *7 (-1201)))) (-2409 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-4 *3 (-13 (-27) (-1227) (-443 *6) (-10 -8 (-15 -3544 ($ *7))))) (-4 *7 (-864)) (-4 *8 (-13 (-1270 *3 *7) (-375) (-1227) (-10 -8 (-15 -2852 ($ $)) (-15 -4147 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183)))))) (-5 *1 (-435 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1183)) (-4 *9 (-1008 *8)) (-14 *10 (-1201)))) (-2400 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-4 *3 (-13 (-27) (-1227) (-443 *6) (-10 -8 (-15 -3544 ($ *7))))) (-4 *7 (-864)) (-4 *8 (-13 (-1270 *3 *7) (-375) (-1227) (-10 -8 (-15 -2852 ($ $)) (-15 -4147 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183)))))) (-5 *1 (-435 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1183)) (-4 *9 (-1008 *8)) (-14 *10 (-1201))))) +(-10 -7 (-15 -2400 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183))))) |#2| (-112) (-1183))) (-15 -2409 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183))))) |#2| (-112) (-1183))) (-15 -2419 (|#2| |#2|))) +((-3127 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3654 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4087 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-436 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3654 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3127 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1125) (-438 |#1|) (-1125) (-438 |#3|)) (T -436)) +((-3127 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1125)) (-4 *5 (-1125)) (-4 *2 (-438 *5)) (-5 *1 (-436 *6 *4 *5 *2)) (-4 *4 (-438 *6)))) (-3654 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1125)) (-4 *2 (-1125)) (-5 *1 (-436 *5 *4 *2 *6)) (-4 *4 (-438 *5)) (-4 *6 (-438 *2)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-438 *6)) (-5 *1 (-436 *5 *4 *6 *2)) (-4 *4 (-438 *5))))) +(-10 -7 (-15 -4087 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3654 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3127 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2427 (($) 51)) (-1892 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-2765 (($ $ $) 46)) (-2753 (((-112) $ $) 35)) (-2229 (((-787)) 55)) (-2198 (($ (-660 |#2|)) 23) (($) NIL)) (-1910 (($) 66)) (-2798 (((-112) $ $) 15)) (-3732 ((|#2| $) 77)) (-3201 ((|#2| $) 75)) (-4038 (((-944) $) 70)) (-2785 (($ $ $) 42)) (-3222 (($ (-944)) 60)) (-2775 (($ $ |#2|) NIL) (($ $ $) 45)) (-1485 (((-787) (-1 (-112) |#2|) $) NIL) (((-787) |#2| $) 31)) (-3553 (($ (-660 |#2|)) 27)) (-2437 (($ $) 53)) (-3544 (((-880) $) 40)) (-2449 (((-787) $) 24)) (-1973 (($ (-660 |#2|)) 22) (($) NIL)) (-2970 (((-112) $ $) 19))) +(((-437 |#1| |#2|) (-10 -8 (-15 -2229 ((-787))) (-15 -3222 (|#1| (-944))) (-15 -4038 ((-944) |#1|)) (-15 -1910 (|#1|)) (-15 -3732 (|#2| |#1|)) (-15 -3201 (|#2| |#1|)) (-15 -2427 (|#1|)) (-15 -2437 (|#1| |#1|)) (-15 -2449 ((-787) |#1|)) (-15 -2970 ((-112) |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -2798 ((-112) |#1| |#1|)) (-15 -1973 (|#1|)) (-15 -1973 (|#1| (-660 |#2|))) (-15 -2198 (|#1|)) (-15 -2198 (|#1| (-660 |#2|))) (-15 -2785 (|#1| |#1| |#1|)) (-15 -2775 (|#1| |#1| |#1|)) (-15 -2775 (|#1| |#1| |#2|)) (-15 -2765 (|#1| |#1| |#1|)) (-15 -2753 ((-112) |#1| |#1|)) (-15 -1892 (|#1| |#1| |#1|)) (-15 -1892 (|#1| |#1| |#2|)) (-15 -1892 (|#1| |#2| |#1|)) (-15 -3553 (|#1| (-660 |#2|))) (-15 -1485 ((-787) |#2| |#1|)) (-15 -1485 ((-787) (-1 (-112) |#2|) |#1|))) (-438 |#2|) (-1125)) (T -437)) +((-2229 (*1 *2) (-12 (-4 *4 (-1125)) (-5 *2 (-787)) (-5 *1 (-437 *3 *4)) (-4 *3 (-438 *4))))) +(-10 -8 (-15 -2229 ((-787))) (-15 -3222 (|#1| (-944))) (-15 -4038 ((-944) |#1|)) (-15 -1910 (|#1|)) (-15 -3732 (|#2| |#1|)) (-15 -3201 (|#2| |#1|)) (-15 -2427 (|#1|)) (-15 -2437 (|#1| |#1|)) (-15 -2449 ((-787) |#1|)) (-15 -2970 ((-112) |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -2798 ((-112) |#1| |#1|)) (-15 -1973 (|#1|)) (-15 -1973 (|#1| (-660 |#2|))) (-15 -2198 (|#1|)) (-15 -2198 (|#1| (-660 |#2|))) (-15 -2785 (|#1| |#1| |#1|)) (-15 -2775 (|#1| |#1| |#1|)) (-15 -2775 (|#1| |#1| |#2|)) (-15 -2765 (|#1| |#1| |#1|)) (-15 -2753 ((-112) |#1| |#1|)) (-15 -1892 (|#1| |#1| |#1|)) (-15 -1892 (|#1| |#1| |#2|)) (-15 -1892 (|#1| |#2| |#1|)) (-15 -3553 (|#1| (-660 |#2|))) (-15 -1485 ((-787) |#2| |#1|)) (-15 -1485 ((-787) (-1 (-112) |#2|) |#1|))) +((-3473 (((-112) $ $) 20)) (-2427 (($) 68 (|has| |#1| (-380)))) (-1892 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-2765 (($ $ $) 79)) (-2753 (((-112) $ $) 80)) (-3828 (((-112) $ (-787)) 8)) (-2229 (((-787)) 62 (|has| |#1| (-380)))) (-2198 (($ (-660 |#1|)) 75) (($) 74)) (-2463 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4470)))) (-1534 (($) 7 T CONST)) (-1817 (($ $) 59 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3719 (($ |#1| $) 48 (|has| $ (-6 -4470))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4470)))) (-3904 (($ |#1| $) 58 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4470)))) (-1910 (($) 65 (|has| |#1| (-380)))) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-2798 (((-112) $ $) 71)) (-1479 (((-112) $ (-787)) 9)) (-3732 ((|#1| $) 66 (|has| |#1| (-865)))) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3201 ((|#1| $) 67 (|has| |#1| (-865)))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36)) (-4038 (((-944) $) 64 (|has| |#1| (-380)))) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23)) (-2785 (($ $ $) 76)) (-4330 ((|#1| $) 40)) (-2881 (($ |#1| $) 41)) (-3222 (($ (-944)) 63 (|has| |#1| (-380)))) (-1474 (((-1145) $) 22)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3530 ((|#1| $) 42)) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2775 (($ $ |#1|) 78) (($ $ $) 77)) (-3736 (($) 50) (($ (-660 |#1|)) 49)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-4152 (((-549) $) 60 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 51)) (-2437 (($ $) 69 (|has| |#1| (-380)))) (-3544 (((-880) $) 18)) (-2449 (((-787) $) 70)) (-1973 (($ (-660 |#1|)) 73) (($) 72)) (-4448 (((-112) $ $) 21)) (-3541 (($ (-660 |#1|)) 43)) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19)) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-438 |#1|) (-141) (-1125)) (T -438)) +((-2449 (*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1125)) (-5 *2 (-787)))) (-2437 (*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1125)) (-4 *2 (-380)))) (-2427 (*1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-380)) (-4 *2 (-1125)))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1125)) (-4 *2 (-865)))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1125)) (-4 *2 (-865))))) +(-13 (-232 |t#1|) (-1123 |t#1|) (-10 -8 (-6 -4470) (-15 -2449 ((-787) $)) (IF (|has| |t#1| (-380)) (PROGN (-6 (-380)) (-15 -2437 ($ $)) (-15 -2427 ($))) |%noBranch|) (IF (|has| |t#1| (-865)) (PROGN (-15 -3201 (|t#1| $)) (-15 -3732 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-626 (-880)) . T) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-232 |#1|) . T) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-380) |has| |#1| (-380)) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1123 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-2459 (((-599 |#2|) |#2| (-1201)) 36)) (-2544 (((-599 |#2|) |#2| (-1201)) 21)) (-1813 ((|#2| |#2| (-1201)) 26))) +(((-439 |#1| |#2|) (-10 -7 (-15 -2544 ((-599 |#2|) |#2| (-1201))) (-15 -2459 ((-599 |#2|) |#2| (-1201))) (-15 -1813 (|#2| |#2| (-1201)))) (-13 (-318) (-148) (-1063 (-577)) (-654 (-577))) (-13 (-1227) (-29 |#1|))) (T -439)) +((-1813 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-439 *4 *2)) (-4 *2 (-13 (-1227) (-29 *4))))) (-2459 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-439 *5 *3)) (-4 *3 (-13 (-1227) (-29 *5))))) (-2544 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-439 *5 *3)) (-4 *3 (-13 (-1227) (-29 *5)))))) +(-10 -7 (-15 -2544 ((-599 |#2|) |#2| (-1201))) (-15 -2459 ((-599 |#2|) |#2| (-1201))) (-15 -1813 (|#2| |#2| (-1201)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-4187 (((-3 $ "failed") $) NIL)) (-2487 (((-112) $) NIL)) (-2476 (($ |#2| |#1|) 37)) (-2468 (($ |#2| |#1|) 35)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#1|) NIL) (($ (-342 |#2|)) 25)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 10 T CONST)) (-2816 (($) 16 T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) 36)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-440 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4457)) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|) |%noBranch|) (-15 -3544 ($ |#1|)) (-15 -3544 ($ (-342 |#2|))) (-15 -2476 ($ |#2| |#1|)) (-15 -2468 ($ |#2| |#1|)))) (-13 (-174) (-38 (-420 (-577)))) (-13 (-865) (-21))) (T -440)) +((-3544 (*1 *1 *2) (-12 (-5 *1 (-440 *2 *3)) (-4 *2 (-13 (-174) (-38 (-420 (-577))))) (-4 *3 (-13 (-865) (-21))))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-342 *4)) (-4 *4 (-13 (-865) (-21))) (-5 *1 (-440 *3 *4)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))))) (-2476 (*1 *1 *2 *3) (-12 (-5 *1 (-440 *3 *2)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))) (-4 *2 (-13 (-865) (-21))))) (-2468 (*1 *1 *2 *3) (-12 (-5 *1 (-440 *3 *2)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))) (-4 *2 (-13 (-865) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4457)) (IF (|has| |#1| (-6 -4457)) (-6 -4457) |%noBranch|) |%noBranch|) (-15 -3544 ($ |#1|)) (-15 -3544 ($ (-342 |#2|))) (-15 -2476 ($ |#2| |#1|)) (-15 -2468 ($ |#2| |#1|)))) +((-4147 (((-3 |#2| (-660 |#2|)) |#2| (-1201)) 115))) +(((-441 |#1| |#2|) (-10 -7 (-15 -4147 ((-3 |#2| (-660 |#2|)) |#2| (-1201)))) (-13 (-318) (-148) (-1063 (-577)) (-654 (-577))) (-13 (-1227) (-982) (-29 |#1|))) (T -441)) +((-4147 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 *3 (-660 *3))) (-5 *1 (-441 *5 *3)) (-4 *3 (-13 (-1227) (-982) (-29 *5)))))) +(-10 -7 (-15 -4147 ((-3 |#2| (-660 |#2|)) |#2| (-1201)))) +((-2058 (((-660 (-1201)) $) 81)) (-1867 (((-420 (-1197 $)) $ (-625 $)) 313)) (-4057 (($ $ (-305 $)) NIL) (($ $ (-660 (-305 $))) NIL) (($ $ (-660 (-625 $)) (-660 $)) 277)) (-1628 (((-3 (-625 $) "failed") $) NIL) (((-3 (-1201) "failed") $) 84) (((-3 (-577) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-420 (-975 |#2|)) "failed") $) 363) (((-3 (-975 |#2|) "failed") $) 275) (((-3 (-420 (-577)) "failed") $) NIL)) (-2921 (((-625 $) $) NIL) (((-1201) $) 28) (((-577) $) NIL) ((|#2| $) 271) (((-420 (-975 |#2|)) $) 345) (((-975 |#2|) $) 272) (((-420 (-577)) $) NIL)) (-1844 (((-115) (-115)) 47)) (-2240 (($ $) 99)) (-2702 (((-3 (-625 $) "failed") $) 268)) (-1829 (((-660 (-625 $)) $) 269)) (-4098 (((-3 (-660 $) "failed") $) 287)) (-4125 (((-3 (-2 (|:| |val| $) (|:| -3556 (-577))) "failed") $) 294)) (-4086 (((-3 (-660 $) "failed") $) 285)) (-3521 (((-3 (-2 (|:| -1777 (-577)) (|:| |var| (-625 $))) "failed") $) 304)) (-4111 (((-3 (-2 (|:| |var| (-625 $)) (|:| -3556 (-577))) "failed") $) 291) (((-3 (-2 (|:| |var| (-625 $)) (|:| -3556 (-577))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-625 $)) (|:| -3556 (-577))) "failed") $ (-1201)) 257)) (-2180 (((-112) $) 17)) (-2193 ((|#2| $) 19)) (-3280 (($ $ (-625 $) $) NIL) (($ $ (-660 (-625 $)) (-660 $)) 276) (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ (-660 (-1201)) (-660 (-1 $ $))) NIL) (($ $ (-660 (-1201)) (-660 (-1 $ (-660 $)))) 109) (($ $ (-1201) (-1 $ (-660 $))) NIL) (($ $ (-1201) (-1 $ $)) NIL) (($ $ (-660 (-115)) (-660 (-1 $ $))) NIL) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) NIL) (($ $ (-115) (-1 $ (-660 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1201)) 62) (($ $ (-660 (-1201))) 280) (($ $) 281) (($ $ (-115) $ (-1201)) 65) (($ $ (-660 (-115)) (-660 $) (-1201)) 72) (($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ $))) 120) (($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ (-660 $)))) 282) (($ $ (-1201) (-787) (-1 $ (-660 $))) 105) (($ $ (-1201) (-787) (-1 $ $)) 104)) (-2872 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-660 $)) 119)) (-2852 (($ $ (-1201)) 278) (($ $ (-660 (-1201))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL)) (-2227 (($ $) 324)) (-4152 (((-911 (-577)) $) 297) (((-911 (-391)) $) 301) (($ (-431 $)) 359) (((-549) $) NIL)) (-3544 (((-880) $) 279) (($ (-625 $)) 93) (($ (-1201)) 24) (($ |#2|) NIL) (($ (-1150 |#2| (-625 $))) NIL) (($ (-420 |#2|)) 329) (($ (-975 (-420 |#2|))) 368) (($ (-420 (-975 (-420 |#2|)))) 341) (($ (-420 (-975 |#2|))) 335) (($ $) NIL) (($ (-975 |#2|)) 216) (($ (-577)) NIL) (($ (-420 (-577))) 373)) (-4068 (((-787)) 88)) (-1409 (((-112) (-115)) 42)) (-4176 (($ (-1201) $) 31) (($ (-1201) $ $) 32) (($ (-1201) $ $ $) 33) (($ (-1201) $ $ $ $) 34) (($ (-1201) (-660 $)) 39)) (* (($ (-420 (-577)) $) NIL) (($ $ (-420 (-577))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-577) $) NIL) (($ (-787) $) NIL) (($ (-944) $) NIL))) +(((-442 |#1| |#2|) (-10 -8 (-15 * (|#1| (-944) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3544 (|#1| (-577))) (-15 -4068 ((-787))) (-15 * (|#1| |#2| |#1|)) (-15 -4152 ((-549) |#1|)) (-15 -3544 (|#1| (-975 |#2|))) (-15 -1628 ((-3 (-975 |#2|) "failed") |#1|)) (-15 -2921 ((-975 |#2|) |#1|)) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201))) (-15 * (|#1| |#1| |#2|)) (-15 -3544 (|#1| |#1|)) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -3544 (|#1| (-420 (-975 |#2|)))) (-15 -1628 ((-3 (-420 (-975 |#2|)) "failed") |#1|)) (-15 -2921 ((-420 (-975 |#2|)) |#1|)) (-15 -1867 ((-420 (-1197 |#1|)) |#1| (-625 |#1|))) (-15 -3544 (|#1| (-420 (-975 (-420 |#2|))))) (-15 -3544 (|#1| (-975 (-420 |#2|)))) (-15 -3544 (|#1| (-420 |#2|))) (-15 -2227 (|#1| |#1|)) (-15 -4152 (|#1| (-431 |#1|))) (-15 -3280 (|#1| |#1| (-1201) (-787) (-1 |#1| |#1|))) (-15 -3280 (|#1| |#1| (-1201) (-787) (-1 |#1| (-660 |#1|)))) (-15 -3280 (|#1| |#1| (-660 (-1201)) (-660 (-787)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3280 (|#1| |#1| (-660 (-1201)) (-660 (-787)) (-660 (-1 |#1| |#1|)))) (-15 -4125 ((-3 (-2 (|:| |val| |#1|) (|:| -3556 (-577))) "failed") |#1|)) (-15 -4111 ((-3 (-2 (|:| |var| (-625 |#1|)) (|:| -3556 (-577))) "failed") |#1| (-1201))) (-15 -4111 ((-3 (-2 (|:| |var| (-625 |#1|)) (|:| -3556 (-577))) "failed") |#1| (-115))) (-15 -2240 (|#1| |#1|)) (-15 -3544 (|#1| (-1150 |#2| (-625 |#1|)))) (-15 -3521 ((-3 (-2 (|:| -1777 (-577)) (|:| |var| (-625 |#1|))) "failed") |#1|)) (-15 -4086 ((-3 (-660 |#1|) "failed") |#1|)) (-15 -4111 ((-3 (-2 (|:| |var| (-625 |#1|)) (|:| -3556 (-577))) "failed") |#1|)) (-15 -4098 ((-3 (-660 |#1|) "failed") |#1|)) (-15 -3280 (|#1| |#1| (-660 (-115)) (-660 |#1|) (-1201))) (-15 -3280 (|#1| |#1| (-115) |#1| (-1201))) (-15 -3280 (|#1| |#1|)) (-15 -3280 (|#1| |#1| (-660 (-1201)))) (-15 -3280 (|#1| |#1| (-1201))) (-15 -4176 (|#1| (-1201) (-660 |#1|))) (-15 -4176 (|#1| (-1201) |#1| |#1| |#1| |#1|)) (-15 -4176 (|#1| (-1201) |#1| |#1| |#1|)) (-15 -4176 (|#1| (-1201) |#1| |#1|)) (-15 -4176 (|#1| (-1201) |#1|)) (-15 -2058 ((-660 (-1201)) |#1|)) (-15 -2193 (|#2| |#1|)) (-15 -2180 ((-112) |#1|)) (-15 -3544 (|#1| |#2|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -4152 ((-911 (-391)) |#1|)) (-15 -4152 ((-911 (-577)) |#1|)) (-15 -3544 (|#1| (-1201))) (-15 -1628 ((-3 (-1201) "failed") |#1|)) (-15 -2921 ((-1201) |#1|)) (-15 -3280 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3280 (|#1| |#1| (-115) (-1 |#1| (-660 |#1|)))) (-15 -3280 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3280 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| |#1|)))) (-15 -3280 (|#1| |#1| (-1201) (-1 |#1| |#1|))) (-15 -3280 (|#1| |#1| (-1201) (-1 |#1| (-660 |#1|)))) (-15 -3280 (|#1| |#1| (-660 (-1201)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3280 (|#1| |#1| (-660 (-1201)) (-660 (-1 |#1| |#1|)))) (-15 -1409 ((-112) (-115))) (-15 -1844 ((-115) (-115))) (-15 -1829 ((-660 (-625 |#1|)) |#1|)) (-15 -2702 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -4057 (|#1| |#1| (-660 (-625 |#1|)) (-660 |#1|))) (-15 -4057 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -4057 (|#1| |#1| (-305 |#1|))) (-15 -2872 (|#1| (-115) (-660 |#1|))) (-15 -2872 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2872 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2872 (|#1| (-115) |#1| |#1|)) (-15 -2872 (|#1| (-115) |#1|)) (-15 -3280 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3280 (|#1| |#1| |#1| |#1|)) (-15 -3280 (|#1| |#1| (-305 |#1|))) (-15 -3280 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -3280 (|#1| |#1| (-660 (-625 |#1|)) (-660 |#1|))) (-15 -3280 (|#1| |#1| (-625 |#1|) |#1|)) (-15 -3544 (|#1| (-625 |#1|))) (-15 -1628 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -2921 ((-625 |#1|) |#1|)) (-15 -3544 ((-880) |#1|))) (-443 |#2|) (-1125)) (T -442)) +((-1844 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1125)) (-5 *1 (-442 *3 *4)) (-4 *3 (-443 *4)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1125)) (-5 *2 (-112)) (-5 *1 (-442 *4 *5)) (-4 *4 (-443 *5)))) (-4068 (*1 *2) (-12 (-4 *4 (-1125)) (-5 *2 (-787)) (-5 *1 (-442 *3 *4)) (-4 *3 (-443 *4))))) +(-10 -8 (-15 * (|#1| (-944) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3544 (|#1| (-577))) (-15 -4068 ((-787))) (-15 * (|#1| |#2| |#1|)) (-15 -4152 ((-549) |#1|)) (-15 -3544 (|#1| (-975 |#2|))) (-15 -1628 ((-3 (-975 |#2|) "failed") |#1|)) (-15 -2921 ((-975 |#2|) |#1|)) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201))) (-15 * (|#1| |#1| |#2|)) (-15 -3544 (|#1| |#1|)) (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -3544 (|#1| (-420 (-975 |#2|)))) (-15 -1628 ((-3 (-420 (-975 |#2|)) "failed") |#1|)) (-15 -2921 ((-420 (-975 |#2|)) |#1|)) (-15 -1867 ((-420 (-1197 |#1|)) |#1| (-625 |#1|))) (-15 -3544 (|#1| (-420 (-975 (-420 |#2|))))) (-15 -3544 (|#1| (-975 (-420 |#2|)))) (-15 -3544 (|#1| (-420 |#2|))) (-15 -2227 (|#1| |#1|)) (-15 -4152 (|#1| (-431 |#1|))) (-15 -3280 (|#1| |#1| (-1201) (-787) (-1 |#1| |#1|))) (-15 -3280 (|#1| |#1| (-1201) (-787) (-1 |#1| (-660 |#1|)))) (-15 -3280 (|#1| |#1| (-660 (-1201)) (-660 (-787)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3280 (|#1| |#1| (-660 (-1201)) (-660 (-787)) (-660 (-1 |#1| |#1|)))) (-15 -4125 ((-3 (-2 (|:| |val| |#1|) (|:| -3556 (-577))) "failed") |#1|)) (-15 -4111 ((-3 (-2 (|:| |var| (-625 |#1|)) (|:| -3556 (-577))) "failed") |#1| (-1201))) (-15 -4111 ((-3 (-2 (|:| |var| (-625 |#1|)) (|:| -3556 (-577))) "failed") |#1| (-115))) (-15 -2240 (|#1| |#1|)) (-15 -3544 (|#1| (-1150 |#2| (-625 |#1|)))) (-15 -3521 ((-3 (-2 (|:| -1777 (-577)) (|:| |var| (-625 |#1|))) "failed") |#1|)) (-15 -4086 ((-3 (-660 |#1|) "failed") |#1|)) (-15 -4111 ((-3 (-2 (|:| |var| (-625 |#1|)) (|:| -3556 (-577))) "failed") |#1|)) (-15 -4098 ((-3 (-660 |#1|) "failed") |#1|)) (-15 -3280 (|#1| |#1| (-660 (-115)) (-660 |#1|) (-1201))) (-15 -3280 (|#1| |#1| (-115) |#1| (-1201))) (-15 -3280 (|#1| |#1|)) (-15 -3280 (|#1| |#1| (-660 (-1201)))) (-15 -3280 (|#1| |#1| (-1201))) (-15 -4176 (|#1| (-1201) (-660 |#1|))) (-15 -4176 (|#1| (-1201) |#1| |#1| |#1| |#1|)) (-15 -4176 (|#1| (-1201) |#1| |#1| |#1|)) (-15 -4176 (|#1| (-1201) |#1| |#1|)) (-15 -4176 (|#1| (-1201) |#1|)) (-15 -2058 ((-660 (-1201)) |#1|)) (-15 -2193 (|#2| |#1|)) (-15 -2180 ((-112) |#1|)) (-15 -3544 (|#1| |#2|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -4152 ((-911 (-391)) |#1|)) (-15 -4152 ((-911 (-577)) |#1|)) (-15 -3544 (|#1| (-1201))) (-15 -1628 ((-3 (-1201) "failed") |#1|)) (-15 -2921 ((-1201) |#1|)) (-15 -3280 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3280 (|#1| |#1| (-115) (-1 |#1| (-660 |#1|)))) (-15 -3280 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3280 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| |#1|)))) (-15 -3280 (|#1| |#1| (-1201) (-1 |#1| |#1|))) (-15 -3280 (|#1| |#1| (-1201) (-1 |#1| (-660 |#1|)))) (-15 -3280 (|#1| |#1| (-660 (-1201)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -3280 (|#1| |#1| (-660 (-1201)) (-660 (-1 |#1| |#1|)))) (-15 -1409 ((-112) (-115))) (-15 -1844 ((-115) (-115))) (-15 -1829 ((-660 (-625 |#1|)) |#1|)) (-15 -2702 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -4057 (|#1| |#1| (-660 (-625 |#1|)) (-660 |#1|))) (-15 -4057 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -4057 (|#1| |#1| (-305 |#1|))) (-15 -2872 (|#1| (-115) (-660 |#1|))) (-15 -2872 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2872 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2872 (|#1| (-115) |#1| |#1|)) (-15 -2872 (|#1| (-115) |#1|)) (-15 -3280 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3280 (|#1| |#1| |#1| |#1|)) (-15 -3280 (|#1| |#1| (-305 |#1|))) (-15 -3280 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -3280 (|#1| |#1| (-660 (-625 |#1|)) (-660 |#1|))) (-15 -3280 (|#1| |#1| (-625 |#1|) |#1|)) (-15 -3544 (|#1| (-625 |#1|))) (-15 -1628 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -2921 ((-625 |#1|) |#1|)) (-15 -3544 ((-880) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 117 (|has| |#1| (-25)))) (-2058 (((-660 (-1201)) $) 208)) (-1867 (((-420 (-1197 $)) $ (-625 $)) 176 (|has| |#1| (-569)))) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 148 (|has| |#1| (-569)))) (-3290 (($ $) 149 (|has| |#1| (-569)))) (-3271 (((-112) $) 151 (|has| |#1| (-569)))) (-3952 (((-660 (-625 $)) $) 39)) (-1956 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)))) (-4057 (($ $ (-305 $)) 51) (($ $ (-660 (-305 $))) 50) (($ $ (-660 (-625 $)) (-660 $)) 49)) (-3841 (($ $) 168 (|has| |#1| (-569)))) (-3029 (((-431 $) $) 169 (|has| |#1| (-569)))) (-1939 (((-112) $ $) 159 (|has| |#1| (-569)))) (-1534 (($) 105 (-2839 (|has| |#1| (-1137)) (|has| |#1| (-25))) CONST)) (-1628 (((-3 (-625 $) "failed") $) 64) (((-3 (-1201) "failed") $) 221) (((-3 (-577) "failed") $) 215 (|has| |#1| (-1063 (-577)))) (((-3 |#1| "failed") $) 212) (((-3 (-420 (-975 |#1|)) "failed") $) 174 (|has| |#1| (-569))) (((-3 (-975 |#1|) "failed") $) 124 (|has| |#1| (-1074))) (((-3 (-420 (-577)) "failed") $) 99 (-2839 (-12 (|has| |#1| (-1063 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1063 (-420 (-577))))))) (-2921 (((-625 $) $) 65) (((-1201) $) 222) (((-577) $) 214 (|has| |#1| (-1063 (-577)))) ((|#1| $) 213) (((-420 (-975 |#1|)) $) 175 (|has| |#1| (-569))) (((-975 |#1|) $) 125 (|has| |#1| (-1074))) (((-420 (-577)) $) 100 (-2839 (-12 (|has| |#1| (-1063 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1063 (-420 (-577))))))) (-3418 (($ $ $) 163 (|has| |#1| (-569)))) (-1647 (((-705 (-577)) (-705 $)) 141 (-2761 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 140 (-2761 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 139 (|has| |#1| (-1074))) (((-705 |#1|) (-705 $)) 138 (|has| |#1| (-1074)))) (-4187 (((-3 $ "failed") $) 107 (|has| |#1| (-1137)))) (-3429 (($ $ $) 162 (|has| |#1| (-569)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 157 (|has| |#1| (-569)))) (-1522 (((-112) $) 170 (|has| |#1| (-569)))) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 217 (|has| |#1| (-905 (-577)))) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 216 (|has| |#1| (-905 (-391))))) (-3401 (($ $) 46) (($ (-660 $)) 45)) (-2691 (((-660 (-115)) $) 38)) (-1844 (((-115) (-115)) 37)) (-2487 (((-112) $) 106 (|has| |#1| (-1137)))) (-1912 (((-112) $) 17 (|has| $ (-1063 (-577))))) (-2240 (($ $) 191 (|has| |#1| (-1074)))) (-1623 (((-1150 |#1| (-625 $)) $) 192 (|has| |#1| (-1074)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 166 (|has| |#1| (-569)))) (-2670 (((-1197 $) (-625 $)) 20 (|has| $ (-1074)))) (-4087 (($ (-1 $ $) (-625 $)) 31)) (-2702 (((-3 (-625 $) "failed") $) 41)) (-1657 (((-705 (-577)) (-1292 $)) 143 (-2761 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 142 (-2761 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 137 (|has| |#1| (-1074))) (((-705 |#1|) (-1292 $)) 136 (|has| |#1| (-1074)))) (-3446 (($ (-660 $)) 155 (|has| |#1| (-569))) (($ $ $) 154 (|has| |#1| (-569)))) (-2810 (((-1183) $) 10)) (-1829 (((-660 (-625 $)) $) 40)) (-1702 (($ (-115) $) 33) (($ (-115) (-660 $)) 32)) (-4098 (((-3 (-660 $) "failed") $) 197 (|has| |#1| (-1137)))) (-4125 (((-3 (-2 (|:| |val| $) (|:| -3556 (-577))) "failed") $) 188 (|has| |#1| (-1074)))) (-4086 (((-3 (-660 $) "failed") $) 195 (|has| |#1| (-25)))) (-3521 (((-3 (-2 (|:| -1777 (-577)) (|:| |var| (-625 $))) "failed") $) 194 (|has| |#1| (-25)))) (-4111 (((-3 (-2 (|:| |var| (-625 $)) (|:| -3556 (-577))) "failed") $) 196 (|has| |#1| (-1137))) (((-3 (-2 (|:| |var| (-625 $)) (|:| -3556 (-577))) "failed") $ (-115)) 190 (|has| |#1| (-1074))) (((-3 (-2 (|:| |var| (-625 $)) (|:| -3556 (-577))) "failed") $ (-1201)) 189 (|has| |#1| (-1074)))) (-2740 (((-112) $ (-115)) 35) (((-112) $ (-1201)) 34)) (-2171 (($ $) 109 (-2839 (|has| |#1| (-486)) (|has| |#1| (-569))))) (-2440 (((-787) $) 42)) (-1474 (((-1145) $) 11)) (-2180 (((-112) $) 210)) (-2193 ((|#1| $) 209)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 156 (|has| |#1| (-569)))) (-3480 (($ (-660 $)) 153 (|has| |#1| (-569))) (($ $ $) 152 (|has| |#1| (-569)))) (-2679 (((-112) $ $) 30) (((-112) $ (-1201)) 29)) (-1902 (((-431 $) $) 167 (|has| |#1| (-569)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 165 (|has| |#1| (-569))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 164 (|has| |#1| (-569)))) (-3462 (((-3 $ "failed") $ $) 147 (|has| |#1| (-569)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 158 (|has| |#1| (-569)))) (-1924 (((-112) $) 18 (|has| $ (-1063 (-577))))) (-3280 (($ $ (-625 $) $) 62) (($ $ (-660 (-625 $)) (-660 $)) 61) (($ $ (-660 (-305 $))) 60) (($ $ (-305 $)) 59) (($ $ $ $) 58) (($ $ (-660 $) (-660 $)) 57) (($ $ (-660 (-1201)) (-660 (-1 $ $))) 28) (($ $ (-660 (-1201)) (-660 (-1 $ (-660 $)))) 27) (($ $ (-1201) (-1 $ (-660 $))) 26) (($ $ (-1201) (-1 $ $)) 25) (($ $ (-660 (-115)) (-660 (-1 $ $))) 24) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) 23) (($ $ (-115) (-1 $ (-660 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1201)) 202 (|has| |#1| (-627 (-549)))) (($ $ (-660 (-1201))) 201 (|has| |#1| (-627 (-549)))) (($ $) 200 (|has| |#1| (-627 (-549)))) (($ $ (-115) $ (-1201)) 199 (|has| |#1| (-627 (-549)))) (($ $ (-660 (-115)) (-660 $) (-1201)) 198 (|has| |#1| (-627 (-549)))) (($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ $))) 187 (|has| |#1| (-1074))) (($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ (-660 $)))) 186 (|has| |#1| (-1074))) (($ $ (-1201) (-787) (-1 $ (-660 $))) 185 (|has| |#1| (-1074))) (($ $ (-1201) (-787) (-1 $ $)) 184 (|has| |#1| (-1074)))) (-1927 (((-787) $) 160 (|has| |#1| (-569)))) (-2872 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-660 $)) 52)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 161 (|has| |#1| (-569)))) (-2712 (($ $) 44) (($ $ $) 43)) (-2852 (($ $ (-1201)) 134 (|has| |#1| (-1074))) (($ $ (-660 (-1201))) 132 (|has| |#1| (-1074))) (($ $ (-1201) (-787)) 131 (|has| |#1| (-1074))) (($ $ (-660 (-1201)) (-660 (-787))) 130 (|has| |#1| (-1074)))) (-2227 (($ $) 181 (|has| |#1| (-569)))) (-1637 (((-1150 |#1| (-625 $)) $) 182 (|has| |#1| (-569)))) (-3557 (($ $) 19 (|has| $ (-1074)))) (-4152 (((-911 (-577)) $) 219 (|has| |#1| (-627 (-911 (-577))))) (((-911 (-391)) $) 218 (|has| |#1| (-627 (-911 (-391))))) (($ (-431 $)) 183 (|has| |#1| (-569))) (((-549) $) 101 (|has| |#1| (-627 (-549))))) (-2360 (($ $ $) 112 (|has| |#1| (-486)))) (-3820 (($ $ $) 113 (|has| |#1| (-486)))) (-3544 (((-880) $) 12) (($ (-625 $)) 63) (($ (-1201)) 220) (($ |#1|) 211) (($ (-1150 |#1| (-625 $))) 193 (|has| |#1| (-1074))) (($ (-420 |#1|)) 179 (|has| |#1| (-569))) (($ (-975 (-420 |#1|))) 178 (|has| |#1| (-569))) (($ (-420 (-975 (-420 |#1|)))) 177 (|has| |#1| (-569))) (($ (-420 (-975 |#1|))) 173 (|has| |#1| (-569))) (($ $) 146 (|has| |#1| (-569))) (($ (-975 |#1|)) 123 (|has| |#1| (-1074))) (($ (-420 (-577))) 98 (-2839 (|has| |#1| (-569)) (-12 (|has| |#1| (-1063 (-577))) (|has| |#1| (-569))) (|has| |#1| (-1063 (-420 (-577)))))) (($ (-577)) 97 (-2839 (|has| |#1| (-1074)) (|has| |#1| (-1063 (-577)))))) (-2233 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-4068 (((-787)) 126 (|has| |#1| (-1074)) CONST)) (-2251 (($ $) 48) (($ (-660 $)) 47)) (-1409 (((-112) (-115)) 36)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 150 (|has| |#1| (-569)))) (-4176 (($ (-1201) $) 207) (($ (-1201) $ $) 206) (($ (-1201) $ $ $) 205) (($ (-1201) $ $ $ $) 204) (($ (-1201) (-660 $)) 203)) (-2806 (($) 116 (|has| |#1| (-25)) CONST)) (-2816 (($) 104 (|has| |#1| (-1137)) CONST)) (-2132 (($ $ (-1201)) 133 (|has| |#1| (-1074))) (($ $ (-660 (-1201))) 129 (|has| |#1| (-1074))) (($ $ (-1201) (-787)) 128 (|has| |#1| (-1074))) (($ $ (-660 (-1201)) (-660 (-787))) 127 (|has| |#1| (-1074)))) (-2970 (((-112) $ $) 8)) (-3077 (($ (-1150 |#1| (-625 $)) (-1150 |#1| (-625 $))) 180 (|has| |#1| (-569))) (($ $ $) 110 (-2839 (|has| |#1| (-486)) (|has| |#1| (-569))))) (-3066 (($ $ $) 122 (|has| |#1| (-21))) (($ $) 121 (|has| |#1| (-21)))) (-3055 (($ $ $) 114 (|has| |#1| (-25)))) (** (($ $ (-577)) 111 (-2839 (|has| |#1| (-486)) (|has| |#1| (-569)))) (($ $ (-787)) 108 (|has| |#1| (-1137))) (($ $ (-944)) 103 (|has| |#1| (-1137)))) (* (($ (-420 (-577)) $) 172 (|has| |#1| (-569))) (($ $ (-420 (-577))) 171 (|has| |#1| (-569))) (($ $ |#1|) 145 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1074))) (($ (-577) $) 120 (|has| |#1| (-21))) (($ (-787) $) 118 (|has| |#1| (-25))) (($ (-944) $) 115 (|has| |#1| (-25))) (($ $ $) 102 (|has| |#1| (-1137))))) +(((-443 |#1|) (-141) (-1125)) (T -443)) +((-2180 (*1 *2 *1) (-12 (-4 *1 (-443 *3)) (-4 *3 (-1125)) (-5 *2 (-112)))) (-2193 (*1 *2 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1125)))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-443 *3)) (-4 *3 (-1125)) (-5 *2 (-660 (-1201))))) (-4176 (*1 *1 *2 *1) (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125)))) (-4176 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125)))) (-4176 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125)))) (-4176 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125)))) (-4176 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-660 *1)) (-4 *1 (-443 *4)) (-4 *4 (-1125)))) (-3280 (*1 *1 *1 *2) (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125)) (-4 *3 (-627 (-549))))) (-3280 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-1201))) (-4 *1 (-443 *3)) (-4 *3 (-1125)) (-4 *3 (-627 (-549))))) (-3280 (*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1125)) (-4 *2 (-627 (-549))))) (-3280 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1201)) (-4 *1 (-443 *4)) (-4 *4 (-1125)) (-4 *4 (-627 (-549))))) (-3280 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-660 (-115))) (-5 *3 (-660 *1)) (-5 *4 (-1201)) (-4 *1 (-443 *5)) (-4 *5 (-1125)) (-4 *5 (-627 (-549))))) (-4098 (*1 *2 *1) (|partial| -12 (-4 *3 (-1137)) (-4 *3 (-1125)) (-5 *2 (-660 *1)) (-4 *1 (-443 *3)))) (-4111 (*1 *2 *1) (|partial| -12 (-4 *3 (-1137)) (-4 *3 (-1125)) (-5 *2 (-2 (|:| |var| (-625 *1)) (|:| -3556 (-577)))) (-4 *1 (-443 *3)))) (-4086 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1125)) (-5 *2 (-660 *1)) (-4 *1 (-443 *3)))) (-3521 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1125)) (-5 *2 (-2 (|:| -1777 (-577)) (|:| |var| (-625 *1)))) (-4 *1 (-443 *3)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-1150 *3 (-625 *1))) (-4 *3 (-1074)) (-4 *3 (-1125)) (-4 *1 (-443 *3)))) (-1623 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *3 (-1125)) (-5 *2 (-1150 *3 (-625 *1))) (-4 *1 (-443 *3)))) (-2240 (*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1125)) (-4 *2 (-1074)))) (-4111 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1074)) (-4 *4 (-1125)) (-5 *2 (-2 (|:| |var| (-625 *1)) (|:| -3556 (-577)))) (-4 *1 (-443 *4)))) (-4111 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1201)) (-4 *4 (-1074)) (-4 *4 (-1125)) (-5 *2 (-2 (|:| |var| (-625 *1)) (|:| -3556 (-577)))) (-4 *1 (-443 *4)))) (-4125 (*1 *2 *1) (|partial| -12 (-4 *3 (-1074)) (-4 *3 (-1125)) (-5 *2 (-2 (|:| |val| *1) (|:| -3556 (-577)))) (-4 *1 (-443 *3)))) (-3280 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-660 (-787))) (-5 *4 (-660 (-1 *1 *1))) (-4 *1 (-443 *5)) (-4 *5 (-1125)) (-4 *5 (-1074)))) (-3280 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-660 (-787))) (-5 *4 (-660 (-1 *1 (-660 *1)))) (-4 *1 (-443 *5)) (-4 *5 (-1125)) (-4 *5 (-1074)))) (-3280 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1201)) (-5 *3 (-787)) (-5 *4 (-1 *1 (-660 *1))) (-4 *1 (-443 *5)) (-4 *5 (-1125)) (-4 *5 (-1074)))) (-3280 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1201)) (-5 *3 (-787)) (-5 *4 (-1 *1 *1)) (-4 *1 (-443 *5)) (-4 *5 (-1125)) (-4 *5 (-1074)))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-431 *1)) (-4 *1 (-443 *3)) (-4 *3 (-569)) (-4 *3 (-1125)))) (-1637 (*1 *2 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1125)) (-5 *2 (-1150 *3 (-625 *1))) (-4 *1 (-443 *3)))) (-2227 (*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1125)) (-4 *2 (-569)))) (-3077 (*1 *1 *2 *2) (-12 (-5 *2 (-1150 *3 (-625 *1))) (-4 *3 (-569)) (-4 *3 (-1125)) (-4 *1 (-443 *3)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-420 *3)) (-4 *3 (-569)) (-4 *3 (-1125)) (-4 *1 (-443 *3)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-975 (-420 *3))) (-4 *3 (-569)) (-4 *3 (-1125)) (-4 *1 (-443 *3)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-420 (-975 (-420 *3)))) (-4 *3 (-569)) (-4 *3 (-1125)) (-4 *1 (-443 *3)))) (-1867 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *1)) (-4 *1 (-443 *4)) (-4 *4 (-1125)) (-4 *4 (-569)) (-5 *2 (-420 (-1197 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-443 *3)) (-4 *3 (-1125)) (-4 *3 (-1137))))) +(-13 (-313) (-1063 (-1201)) (-903 |t#1|) (-413 |t#1|) (-424 |t#1|) (-10 -8 (-15 -2180 ((-112) $)) (-15 -2193 (|t#1| $)) (-15 -2058 ((-660 (-1201)) $)) (-15 -4176 ($ (-1201) $)) (-15 -4176 ($ (-1201) $ $)) (-15 -4176 ($ (-1201) $ $ $)) (-15 -4176 ($ (-1201) $ $ $ $)) (-15 -4176 ($ (-1201) (-660 $))) (IF (|has| |t#1| (-627 (-549))) (PROGN (-6 (-627 (-549))) (-15 -3280 ($ $ (-1201))) (-15 -3280 ($ $ (-660 (-1201)))) (-15 -3280 ($ $)) (-15 -3280 ($ $ (-115) $ (-1201))) (-15 -3280 ($ $ (-660 (-115)) (-660 $) (-1201)))) |%noBranch|) (IF (|has| |t#1| (-1137)) (PROGN (-6 (-742)) (-15 ** ($ $ (-787))) (-15 -4098 ((-3 (-660 $) "failed") $)) (-15 -4111 ((-3 (-2 (|:| |var| (-625 $)) (|:| -3556 (-577))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-486)) (-6 (-486)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -4086 ((-3 (-660 $) "failed") $)) (-15 -3521 ((-3 (-2 (|:| -1777 (-577)) (|:| |var| (-625 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1074)) (PROGN (-6 (-1074)) (-6 (-1063 (-975 |t#1|))) (-6 (-921 (-1201))) (-6 (-389 |t#1|)) (-15 -3544 ($ (-1150 |t#1| (-625 $)))) (-15 -1623 ((-1150 |t#1| (-625 $)) $)) (-15 -2240 ($ $)) (-15 -4111 ((-3 (-2 (|:| |var| (-625 $)) (|:| -3556 (-577))) "failed") $ (-115))) (-15 -4111 ((-3 (-2 (|:| |var| (-625 $)) (|:| -3556 (-577))) "failed") $ (-1201))) (-15 -4125 ((-3 (-2 (|:| |val| $) (|:| -3556 (-577))) "failed") $)) (-15 -3280 ($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ $)))) (-15 -3280 ($ $ (-660 (-1201)) (-660 (-787)) (-660 (-1 $ (-660 $))))) (-15 -3280 ($ $ (-1201) (-787) (-1 $ (-660 $)))) (-15 -3280 ($ $ (-1201) (-787) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-6 (-375)) (-6 (-1063 (-420 (-975 |t#1|)))) (-15 -4152 ($ (-431 $))) (-15 -1637 ((-1150 |t#1| (-625 $)) $)) (-15 -2227 ($ $)) (-15 -3077 ($ (-1150 |t#1| (-625 $)) (-1150 |t#1| (-625 $)))) (-15 -3544 ($ (-420 |t#1|))) (-15 -3544 ($ (-975 (-420 |t#1|)))) (-15 -3544 ($ (-420 (-975 (-420 |t#1|))))) (-15 -1867 ((-420 (-1197 $)) $ (-625 $))) (IF (|has| |t#1| (-1063 (-577))) (-6 (-1063 (-420 (-577)))) |%noBranch|)) |%noBranch|))) +(((-21) -2839 (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2839 (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2839 (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-420 (-577))) |has| |#1| (-569)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-569)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-569)) ((-132) -2839 (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) -2839 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-569))) ((-629 #1=(-420 (-975 |#1|))) |has| |#1| (-569)) ((-629 (-577)) -2839 (|has| |#1| (-1074)) (|has| |#1| (-1063 (-577))) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-629 #2=(-625 $)) . T) ((-629 #3=(-975 |#1|)) |has| |#1| (-1074)) ((-629 #4=(-1201)) . T) ((-629 |#1|) . T) ((-629 $) |has| |#1| (-569)) ((-626 (-880)) . T) ((-174) |has| |#1| (-569)) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-627 (-911 (-391))) |has| |#1| (-627 (-911 (-391)))) ((-627 (-911 (-577))) |has| |#1| (-627 (-911 (-577)))) ((-249) |has| |#1| (-569)) ((-301) |has| |#1| (-569)) ((-318) |has| |#1| (-569)) ((-320 $) . T) ((-313) . T) ((-375) |has| |#1| (-569)) ((-389 |#1|) |has| |#1| (-1074)) ((-413 |#1|) . T) ((-424 |#1|) . T) ((-465) |has| |#1| (-569)) ((-486) |has| |#1| (-486)) ((-527 (-625 $) $) . T) ((-527 $ $) . T) ((-569) |has| |#1| (-569)) ((-662 #0#) |has| |#1| (-569)) ((-662 (-577)) -2839 (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-662 |#1|) -2839 (|has| |#1| (-1074)) (|has| |#1| (-174))) ((-662 $) -2839 (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-664 #0#) |has| |#1| (-569)) ((-664 #5=(-577)) -12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))) ((-664 |#1|) -2839 (|has| |#1| (-1074)) (|has| |#1| (-174))) ((-664 $) -2839 (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-656 #0#) |has| |#1| (-569)) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) |has| |#1| (-569)) ((-654 #5#) -12 (|has| |#1| (-654 (-577))) (|has| |#1| (-1074))) ((-654 |#1|) |has| |#1| (-1074)) ((-733 #0#) |has| |#1| (-569)) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) |has| |#1| (-569)) ((-742) -2839 (|has| |#1| (-1137)) (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-486)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-915 $ #6=(-1201)) |has| |#1| (-1074)) ((-921 #6#) |has| |#1| (-1074)) ((-923 #6#) |has| |#1| (-1074)) ((-905 (-391)) |has| |#1| (-905 (-391))) ((-905 (-577)) |has| |#1| (-905 (-577))) ((-903 |#1|) . T) ((-943) |has| |#1| (-569)) ((-1063 (-420 (-577))) -2839 (|has| |#1| (-1063 (-420 (-577)))) (-12 (|has| |#1| (-569)) (|has| |#1| (-1063 (-577))))) ((-1063 #1#) |has| |#1| (-569)) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 #2#) . T) ((-1063 #3#) |has| |#1| (-1074)) ((-1063 #4#) . T) ((-1063 |#1|) . T) ((-1076 #0#) |has| |#1| (-569)) ((-1076 |#1|) |has| |#1| (-174)) ((-1076 $) |has| |#1| (-569)) ((-1081 #0#) |has| |#1| (-569)) ((-1081 |#1|) |has| |#1| (-174)) ((-1081 $) |has| |#1| (-569)) ((-1074) -2839 (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1083) -2839 (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1137) -2839 (|has| |#1| (-1137)) (|has| |#1| (-1074)) (|has| |#1| (-569)) (|has| |#1| (-486)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1125) . T) ((-1242) . T) ((-1246) |has| |#1| (-569))) +((-1689 ((|#2| |#2| |#2|) 31)) (-1844 (((-115) (-115)) 43)) (-2493 ((|#2| |#2|) 63)) (-2485 ((|#2| |#2|) 66)) (-1676 ((|#2| |#2|) 30)) (-1720 ((|#2| |#2| |#2|) 33)) (-1740 ((|#2| |#2| |#2|) 35)) (-1708 ((|#2| |#2| |#2|) 32)) (-1732 ((|#2| |#2| |#2|) 34)) (-1409 (((-112) (-115)) 41)) (-1761 ((|#2| |#2|) 37)) (-1749 ((|#2| |#2|) 36)) (-1654 ((|#2| |#2|) 25)) (-1699 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-1664 ((|#2| |#2| |#2|) 29))) +(((-444 |#1| |#2|) (-10 -7 (-15 -1409 ((-112) (-115))) (-15 -1844 ((-115) (-115))) (-15 -1654 (|#2| |#2|)) (-15 -1699 (|#2| |#2|)) (-15 -1699 (|#2| |#2| |#2|)) (-15 -1664 (|#2| |#2| |#2|)) (-15 -1676 (|#2| |#2|)) (-15 -1689 (|#2| |#2| |#2|)) (-15 -1708 (|#2| |#2| |#2|)) (-15 -1720 (|#2| |#2| |#2|)) (-15 -1732 (|#2| |#2| |#2|)) (-15 -1740 (|#2| |#2| |#2|)) (-15 -1749 (|#2| |#2|)) (-15 -1761 (|#2| |#2|)) (-15 -2485 (|#2| |#2|)) (-15 -2493 (|#2| |#2|))) (-569) (-443 |#1|)) (T -444)) +((-2493 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-2485 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-1761 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-1749 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-1740 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-1732 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-1720 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-1708 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-1689 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-1676 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-1664 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-1699 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-1699 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-1654 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) (-1844 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-444 *3 *4)) (-4 *4 (-443 *3)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-444 *4 *5)) (-4 *5 (-443 *4))))) +(-10 -7 (-15 -1409 ((-112) (-115))) (-15 -1844 ((-115) (-115))) (-15 -1654 (|#2| |#2|)) (-15 -1699 (|#2| |#2|)) (-15 -1699 (|#2| |#2| |#2|)) (-15 -1664 (|#2| |#2| |#2|)) (-15 -1676 (|#2| |#2|)) (-15 -1689 (|#2| |#2| |#2|)) (-15 -1708 (|#2| |#2| |#2|)) (-15 -1720 (|#2| |#2| |#2|)) (-15 -1732 (|#2| |#2| |#2|)) (-15 -1740 (|#2| |#2| |#2|)) (-15 -1749 (|#2| |#2|)) (-15 -1761 (|#2| |#2|)) (-15 -2485 (|#2| |#2|)) (-15 -2493 (|#2| |#2|))) +((-4205 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1197 |#2|)) (|:| |pol2| (-1197 |#2|)) (|:| |prim| (-1197 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-660 (-1197 |#2|))) (|:| |prim| (-1197 |#2|))) (-660 |#2|)) 65))) +(((-445 |#1| |#2|) (-10 -7 (-15 -4205 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-660 (-1197 |#2|))) (|:| |prim| (-1197 |#2|))) (-660 |#2|))) (IF (|has| |#2| (-27)) (-15 -4205 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1197 |#2|)) (|:| |pol2| (-1197 |#2|)) (|:| |prim| (-1197 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-569) (-148)) (-443 |#1|)) (T -445)) +((-4205 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-569) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1197 *3)) (|:| |pol2| (-1197 *3)) (|:| |prim| (-1197 *3)))) (-5 *1 (-445 *4 *3)) (-4 *3 (-27)) (-4 *3 (-443 *4)))) (-4205 (*1 *2 *3) (-12 (-5 *3 (-660 *5)) (-4 *5 (-443 *4)) (-4 *4 (-13 (-569) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-660 (-1197 *5))) (|:| |prim| (-1197 *5)))) (-5 *1 (-445 *4 *5))))) +(-10 -7 (-15 -4205 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-660 (-1197 |#2|))) (|:| |prim| (-1197 |#2|))) (-660 |#2|))) (IF (|has| |#2| (-27)) (-15 -4205 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1197 |#2|)) (|:| |pol2| (-1197 |#2|)) (|:| |prim| (-1197 |#2|))) |#2| |#2|)) |%noBranch|)) +((-2511 (((-1297)) 18)) (-2502 (((-1197 (-420 (-577))) |#2| (-625 |#2|)) 40) (((-420 (-577)) |#2|) 24))) +(((-446 |#1| |#2|) (-10 -7 (-15 -2502 ((-420 (-577)) |#2|)) (-15 -2502 ((-1197 (-420 (-577))) |#2| (-625 |#2|))) (-15 -2511 ((-1297)))) (-13 (-569) (-1063 (-577))) (-443 |#1|)) (T -446)) +((-2511 (*1 *2) (-12 (-4 *3 (-13 (-569) (-1063 (-577)))) (-5 *2 (-1297)) (-5 *1 (-446 *3 *4)) (-4 *4 (-443 *3)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *3)) (-4 *3 (-443 *5)) (-4 *5 (-13 (-569) (-1063 (-577)))) (-5 *2 (-1197 (-420 (-577)))) (-5 *1 (-446 *5 *3)))) (-2502 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-420 (-577))) (-5 *1 (-446 *4 *3)) (-4 *3 (-443 *4))))) +(-10 -7 (-15 -2502 ((-420 (-577)) |#2|)) (-15 -2502 ((-1197 (-420 (-577))) |#2| (-625 |#2|))) (-15 -2511 ((-1297)))) +((-1931 (((-112) $) 33)) (-2521 (((-112) $) 35)) (-2914 (((-112) $) 36)) (-2538 (((-112) $) 39)) (-2557 (((-112) $) 34)) (-2547 (((-112) $) 38)) (-3544 (((-880) $) 20) (($ (-1183)) 32) (($ (-1201)) 30) (((-1201) $) 24) (((-1129) $) 23)) (-2529 (((-112) $) 37)) (-2970 (((-112) $ $) 17))) +(((-447) (-13 (-626 (-880)) (-10 -8 (-15 -3544 ($ (-1183))) (-15 -3544 ($ (-1201))) (-15 -3544 ((-1201) $)) (-15 -3544 ((-1129) $)) (-15 -1931 ((-112) $)) (-15 -2557 ((-112) $)) (-15 -2914 ((-112) $)) (-15 -2547 ((-112) $)) (-15 -2538 ((-112) $)) (-15 -2529 ((-112) $)) (-15 -2521 ((-112) $)) (-15 -2970 ((-112) $ $))))) (T -447)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-447)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-447)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-447)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-447)))) (-1931 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-2557 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-2547 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-2538 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) (-2970 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) +(-13 (-626 (-880)) (-10 -8 (-15 -3544 ($ (-1183))) (-15 -3544 ($ (-1201))) (-15 -3544 ((-1201) $)) (-15 -3544 ((-1129) $)) (-15 -1931 ((-112) $)) (-15 -2557 ((-112) $)) (-15 -2914 ((-112) $)) (-15 -2547 ((-112) $)) (-15 -2538 ((-112) $)) (-15 -2529 ((-112) $)) (-15 -2521 ((-112) $)) (-15 -2970 ((-112) $ $)))) +((-2576 (((-3 (-431 (-1197 (-420 (-577)))) "failed") |#3|) 72)) (-2566 (((-431 |#3|) |#3|) 34)) (-2595 (((-3 (-431 (-1197 (-48))) "failed") |#3|) 46 (|has| |#2| (-1063 (-48))))) (-2586 (((-3 (|:| |overq| (-1197 (-420 (-577)))) (|:| |overan| (-1197 (-48))) (|:| -4181 (-112))) |#3|) 37))) +(((-448 |#1| |#2| |#3|) (-10 -7 (-15 -2566 ((-431 |#3|) |#3|)) (-15 -2576 ((-3 (-431 (-1197 (-420 (-577)))) "failed") |#3|)) (-15 -2586 ((-3 (|:| |overq| (-1197 (-420 (-577)))) (|:| |overan| (-1197 (-48))) (|:| -4181 (-112))) |#3|)) (IF (|has| |#2| (-1063 (-48))) (-15 -2595 ((-3 (-431 (-1197 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-569) (-1063 (-577))) (-443 |#1|) (-1268 |#2|)) (T -448)) +((-2595 (*1 *2 *3) (|partial| -12 (-4 *5 (-1063 (-48))) (-4 *4 (-13 (-569) (-1063 (-577)))) (-4 *5 (-443 *4)) (-5 *2 (-431 (-1197 (-48)))) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1268 *5)))) (-2586 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-4 *5 (-443 *4)) (-5 *2 (-3 (|:| |overq| (-1197 (-420 (-577)))) (|:| |overan| (-1197 (-48))) (|:| -4181 (-112)))) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1268 *5)))) (-2576 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-4 *5 (-443 *4)) (-5 *2 (-431 (-1197 (-420 (-577))))) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1268 *5)))) (-2566 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-4 *5 (-443 *4)) (-5 *2 (-431 *3)) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1268 *5))))) +(-10 -7 (-15 -2566 ((-431 |#3|) |#3|)) (-15 -2576 ((-3 (-431 (-1197 (-420 (-577)))) "failed") |#3|)) (-15 -2586 ((-3 (|:| |overq| (-1197 (-420 (-577)))) (|:| |overan| (-1197 (-48))) (|:| -4181 (-112))) |#3|)) (IF (|has| |#2| (-1063 (-48))) (-15 -2595 ((-3 (-431 (-1197 (-48))) "failed") |#3|)) |%noBranch|)) +((-3473 (((-112) $ $) NIL)) (-3687 (((-1183) $ (-1183)) NIL)) (-3730 (($ $ (-1183)) NIL)) (-3699 (((-1183) $) NIL)) (-2728 (((-401) (-401) (-401)) 17) (((-401) (-401)) 15)) (-3253 (($ (-401)) NIL) (($ (-401) (-1183)) NIL)) (-2713 (((-401) $) NIL)) (-2810 (((-1183) $) NIL)) (-3710 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2717 (((-1297) (-1183)) 9)) (-2707 (((-1297) (-1183)) 10)) (-2697 (((-1297)) 11)) (-3544 (((-880) $) NIL)) (-3720 (($ $) 39)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-449) (-13 (-376 (-401) (-1183)) (-10 -7 (-15 -2728 ((-401) (-401) (-401))) (-15 -2728 ((-401) (-401))) (-15 -2717 ((-1297) (-1183))) (-15 -2707 ((-1297) (-1183))) (-15 -2697 ((-1297)))))) (T -449)) +((-2728 (*1 *2 *2 *2) (-12 (-5 *2 (-401)) (-5 *1 (-449)))) (-2728 (*1 *2 *2) (-12 (-5 *2 (-401)) (-5 *1 (-449)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-449)))) (-2707 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-449)))) (-2697 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-449))))) +(-13 (-376 (-401) (-1183)) (-10 -7 (-15 -2728 ((-401) (-401) (-401))) (-15 -2728 ((-401) (-401))) (-15 -2717 ((-1297) (-1183))) (-15 -2707 ((-1297) (-1183))) (-15 -2697 ((-1297))))) +((-3473 (((-112) $ $) NIL)) (-2684 (((-3 (|:| |fst| (-447)) (|:| -2963 "void")) $) 11)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2665 (($) 35)) (-2632 (($) 41)) (-2641 (($) 37)) (-2614 (($) 39)) (-2651 (($) 36)) (-2623 (($) 38)) (-2604 (($) 40)) (-2674 (((-112) $) 8)) (-3782 (((-660 (-975 (-577))) $) 19)) (-3553 (($ (-3 (|:| |fst| (-447)) (|:| -2963 "void")) (-660 (-1201)) (-112)) 29) (($ (-3 (|:| |fst| (-447)) (|:| -2963 "void")) (-660 (-975 (-577))) (-112)) 30)) (-3544 (((-880) $) 24) (($ (-447)) 32)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-450) (-13 (-1125) (-10 -8 (-15 -3544 ($ (-447))) (-15 -2684 ((-3 (|:| |fst| (-447)) (|:| -2963 "void")) $)) (-15 -3782 ((-660 (-975 (-577))) $)) (-15 -2674 ((-112) $)) (-15 -3553 ($ (-3 (|:| |fst| (-447)) (|:| -2963 "void")) (-660 (-1201)) (-112))) (-15 -3553 ($ (-3 (|:| |fst| (-447)) (|:| -2963 "void")) (-660 (-975 (-577))) (-112))) (-15 -2665 ($)) (-15 -2651 ($)) (-15 -2641 ($)) (-15 -2632 ($)) (-15 -2623 ($)) (-15 -2614 ($)) (-15 -2604 ($))))) (T -450)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-450)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-5 *1 (-450)))) (-3782 (*1 *2 *1) (-12 (-5 *2 (-660 (-975 (-577)))) (-5 *1 (-450)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-450)))) (-3553 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-5 *3 (-660 (-1201))) (-5 *4 (-112)) (-5 *1 (-450)))) (-3553 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-112)) (-5 *1 (-450)))) (-2665 (*1 *1) (-5 *1 (-450))) (-2651 (*1 *1) (-5 *1 (-450))) (-2641 (*1 *1) (-5 *1 (-450))) (-2632 (*1 *1) (-5 *1 (-450))) (-2623 (*1 *1) (-5 *1 (-450))) (-2614 (*1 *1) (-5 *1 (-450))) (-2604 (*1 *1) (-5 *1 (-450)))) +(-13 (-1125) (-10 -8 (-15 -3544 ($ (-447))) (-15 -2684 ((-3 (|:| |fst| (-447)) (|:| -2963 "void")) $)) (-15 -3782 ((-660 (-975 (-577))) $)) (-15 -2674 ((-112) $)) (-15 -3553 ($ (-3 (|:| |fst| (-447)) (|:| -2963 "void")) (-660 (-1201)) (-112))) (-15 -3553 ($ (-3 (|:| |fst| (-447)) (|:| -2963 "void")) (-660 (-975 (-577))) (-112))) (-15 -2665 ($)) (-15 -2651 ($)) (-15 -2641 ($)) (-15 -2632 ($)) (-15 -2623 ($)) (-15 -2614 ($)) (-15 -2604 ($)))) +((-3473 (((-112) $ $) NIL)) (-2713 (((-1201) $) 8)) (-2810 (((-1183) $) 17)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 11)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 14))) +(((-451 |#1|) (-13 (-1125) (-10 -8 (-15 -2713 ((-1201) $)))) (-1201)) (T -451)) +((-2713 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-451 *3)) (-14 *3 *2)))) +(-13 (-1125) (-10 -8 (-15 -2713 ((-1201) $)))) +((-3473 (((-112) $ $) NIL)) (-2790 (((-1143) $) 7)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 13)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 9))) +(((-452) (-13 (-1125) (-10 -8 (-15 -2790 ((-1143) $))))) (T -452)) +((-2790 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-452))))) +(-13 (-1125) (-10 -8 (-15 -2790 ((-1143) $)))) +((-2706 (((-1297) $) 7)) (-3544 (((-880) $) 8) (($ (-1292 (-715))) 14) (($ (-660 (-341))) 13) (($ (-341)) 12) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 11))) (((-453) (-141)) (T -453)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-453)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) (-4 *1 (-453)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-1289 (-326 (-390)))) (-4 *1 (-453)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-1289 (-326 (-390)))) (-4 *1 (-453)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-1289 (-326 (-576)))) (-4 *1 (-453)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-1289 (-326 (-576)))) (-4 *1 (-453)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-1289 (-972 (-390)))) (-4 *1 (-453)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-1289 (-972 (-390)))) (-4 *1 (-453)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-1289 (-972 (-576)))) (-4 *1 (-453)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-1289 (-972 (-576)))) (-4 *1 (-453)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-1289 (-419 (-972 (-390))))) (-4 *1 (-453)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-1289 (-419 (-972 (-390))))) (-4 *1 (-453)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-1289 (-419 (-972 (-576))))) (-4 *1 (-453)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-1289 (-419 (-972 (-576))))) (-4 *1 (-453))))) -(-13 (-407) (-10 -8 (-15 -3501 ($ (-657 (-340)))) (-15 -3501 ($ (-340))) (-15 -3501 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340)))))) (-15 -2884 ($ (-1289 (-326 (-390))))) (-15 -1624 ((-3 $ "failed") (-1289 (-326 (-390))))) (-15 -2884 ($ (-1289 (-326 (-576))))) (-15 -1624 ((-3 $ "failed") (-1289 (-326 (-576))))) (-15 -2884 ($ (-1289 (-972 (-390))))) (-15 -1624 ((-3 $ "failed") (-1289 (-972 (-390))))) (-15 -2884 ($ (-1289 (-972 (-576))))) (-15 -1624 ((-3 $ "failed") (-1289 (-972 (-576))))) (-15 -2884 ($ (-1289 (-419 (-972 (-390)))))) (-15 -1624 ((-3 $ "failed") (-1289 (-419 (-972 (-390)))))) (-15 -2884 ($ (-1289 (-419 (-972 (-576)))))) (-15 -1624 ((-3 $ "failed") (-1289 (-419 (-972 (-576)))))))) -(((-625 (-877)) . T) ((-407) . T) ((-1239) . T)) -((-1913 (((-112)) 18)) (-3860 (((-112) (-112)) 19)) (-1697 (((-112)) 14)) (-3229 (((-112) (-112)) 15)) (-2474 (((-112)) 16)) (-2919 (((-112) (-112)) 17)) (-3135 (((-941) (-941)) 22) (((-941)) 21)) (-1539 (((-784) (-657 (-2 (|:| -1885 |#1|) (|:| -1770 (-576))))) 52)) (-3899 (((-941) (-941)) 24) (((-941)) 23)) (-3080 (((-2 (|:| -2899 (-576)) (|:| -2067 (-657 |#1|))) |#1|) 94)) (-1535 (((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -2067 (-657 (-2 (|:| |irr| |#1|) (|:| -1439 (-576))))))) 174)) (-2839 (((-2 (|:| |contp| (-576)) (|:| -2067 (-657 (-2 (|:| |irr| |#1|) (|:| -1439 (-576)))))) |#1| (-112)) 207)) (-1679 (((-430 |#1|) |#1| (-784) (-784)) 222) (((-430 |#1|) |#1| (-657 (-784)) (-784)) 219) (((-430 |#1|) |#1| (-657 (-784))) 221) (((-430 |#1|) |#1| (-784)) 220) (((-430 |#1|) |#1|) 218)) (-3450 (((-3 |#1| "failed") (-941) |#1| (-657 (-784)) (-784) (-112)) 224) (((-3 |#1| "failed") (-941) |#1| (-657 (-784)) (-784)) 225) (((-3 |#1| "failed") (-941) |#1| (-657 (-784))) 227) (((-3 |#1| "failed") (-941) |#1| (-784)) 226) (((-3 |#1| "failed") (-941) |#1|) 228)) (-1885 (((-430 |#1|) |#1| (-784) (-784)) 217) (((-430 |#1|) |#1| (-657 (-784)) (-784)) 213) (((-430 |#1|) |#1| (-657 (-784))) 215) (((-430 |#1|) |#1| (-784)) 214) (((-430 |#1|) |#1|) 212)) (-4047 (((-112) |#1|) 44)) (-2315 (((-750 (-784)) (-657 (-2 (|:| -1885 |#1|) (|:| -1770 (-576))))) 99)) (-3460 (((-2 (|:| |contp| (-576)) (|:| -2067 (-657 (-2 (|:| |irr| |#1|) (|:| -1439 (-576)))))) |#1| (-112) (-1124 (-784)) (-784)) 211))) -(((-454 |#1|) (-10 -7 (-15 -1535 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -2067 (-657 (-2 (|:| |irr| |#1|) (|:| -1439 (-576)))))))) (-15 -2315 ((-750 (-784)) (-657 (-2 (|:| -1885 |#1|) (|:| -1770 (-576)))))) (-15 -3899 ((-941))) (-15 -3899 ((-941) (-941))) (-15 -3135 ((-941))) (-15 -3135 ((-941) (-941))) (-15 -1539 ((-784) (-657 (-2 (|:| -1885 |#1|) (|:| -1770 (-576)))))) (-15 -3080 ((-2 (|:| -2899 (-576)) (|:| -2067 (-657 |#1|))) |#1|)) (-15 -1913 ((-112))) (-15 -3860 ((-112) (-112))) (-15 -1697 ((-112))) (-15 -3229 ((-112) (-112))) (-15 -4047 ((-112) |#1|)) (-15 -2474 ((-112))) (-15 -2919 ((-112) (-112))) (-15 -1885 ((-430 |#1|) |#1|)) (-15 -1885 ((-430 |#1|) |#1| (-784))) (-15 -1885 ((-430 |#1|) |#1| (-657 (-784)))) (-15 -1885 ((-430 |#1|) |#1| (-657 (-784)) (-784))) (-15 -1885 ((-430 |#1|) |#1| (-784) (-784))) (-15 -1679 ((-430 |#1|) |#1|)) (-15 -1679 ((-430 |#1|) |#1| (-784))) (-15 -1679 ((-430 |#1|) |#1| (-657 (-784)))) (-15 -1679 ((-430 |#1|) |#1| (-657 (-784)) (-784))) (-15 -1679 ((-430 |#1|) |#1| (-784) (-784))) (-15 -3450 ((-3 |#1| "failed") (-941) |#1|)) (-15 -3450 ((-3 |#1| "failed") (-941) |#1| (-784))) (-15 -3450 ((-3 |#1| "failed") (-941) |#1| (-657 (-784)))) (-15 -3450 ((-3 |#1| "failed") (-941) |#1| (-657 (-784)) (-784))) (-15 -3450 ((-3 |#1| "failed") (-941) |#1| (-657 (-784)) (-784) (-112))) (-15 -2839 ((-2 (|:| |contp| (-576)) (|:| -2067 (-657 (-2 (|:| |irr| |#1|) (|:| -1439 (-576)))))) |#1| (-112))) (-15 -3460 ((-2 (|:| |contp| (-576)) (|:| -2067 (-657 (-2 (|:| |irr| |#1|) (|:| -1439 (-576)))))) |#1| (-112) (-1124 (-784)) (-784)))) (-1265 (-576))) (T -454)) -((-3460 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1124 (-784))) (-5 *6 (-784)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -2067 (-657 (-2 (|:| |irr| *3) (|:| -1439 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-2839 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -2067 (-657 (-2 (|:| |irr| *3) (|:| -1439 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-3450 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-941)) (-5 *4 (-657 (-784))) (-5 *5 (-784)) (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1265 (-576))))) (-3450 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-941)) (-5 *4 (-657 (-784))) (-5 *5 (-784)) (-5 *1 (-454 *2)) (-4 *2 (-1265 (-576))))) (-3450 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-941)) (-5 *4 (-657 (-784))) (-5 *1 (-454 *2)) (-4 *2 (-1265 (-576))))) (-3450 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-941)) (-5 *4 (-784)) (-5 *1 (-454 *2)) (-4 *2 (-1265 (-576))))) (-3450 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-941)) (-5 *1 (-454 *2)) (-4 *2 (-1265 (-576))))) (-1679 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1679 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-657 (-784))) (-5 *5 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1679 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-784))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1679 (*1 *2 *3 *4) (-12 (-5 *4 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1679 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1885 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1885 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-657 (-784))) (-5 *5 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1885 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-784))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1885 (*1 *2 *3 *4) (-12 (-5 *4 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1885 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-2919 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-2474 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-4047 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-3229 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1697 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-3860 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1913 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-3080 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2899 (-576)) (|:| -2067 (-657 *3)))) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| -1885 *4) (|:| -1770 (-576))))) (-4 *4 (-1265 (-576))) (-5 *2 (-784)) (-5 *1 (-454 *4)))) (-3135 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-3135 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-3899 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| -1885 *4) (|:| -1770 (-576))))) (-4 *4 (-1265 (-576))) (-5 *2 (-750 (-784))) (-5 *1 (-454 *4)))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-576)) (|:| -2067 (-657 (-2 (|:| |irr| *4) (|:| -1439 (-576))))))) (-4 *4 (-1265 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) -(-10 -7 (-15 -1535 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -2067 (-657 (-2 (|:| |irr| |#1|) (|:| -1439 (-576)))))))) (-15 -2315 ((-750 (-784)) (-657 (-2 (|:| -1885 |#1|) (|:| -1770 (-576)))))) (-15 -3899 ((-941))) (-15 -3899 ((-941) (-941))) (-15 -3135 ((-941))) (-15 -3135 ((-941) (-941))) (-15 -1539 ((-784) (-657 (-2 (|:| -1885 |#1|) (|:| -1770 (-576)))))) (-15 -3080 ((-2 (|:| -2899 (-576)) (|:| -2067 (-657 |#1|))) |#1|)) (-15 -1913 ((-112))) (-15 -3860 ((-112) (-112))) (-15 -1697 ((-112))) (-15 -3229 ((-112) (-112))) (-15 -4047 ((-112) |#1|)) (-15 -2474 ((-112))) (-15 -2919 ((-112) (-112))) (-15 -1885 ((-430 |#1|) |#1|)) (-15 -1885 ((-430 |#1|) |#1| (-784))) (-15 -1885 ((-430 |#1|) |#1| (-657 (-784)))) (-15 -1885 ((-430 |#1|) |#1| (-657 (-784)) (-784))) (-15 -1885 ((-430 |#1|) |#1| (-784) (-784))) (-15 -1679 ((-430 |#1|) |#1|)) (-15 -1679 ((-430 |#1|) |#1| (-784))) (-15 -1679 ((-430 |#1|) |#1| (-657 (-784)))) (-15 -1679 ((-430 |#1|) |#1| (-657 (-784)) (-784))) (-15 -1679 ((-430 |#1|) |#1| (-784) (-784))) (-15 -3450 ((-3 |#1| "failed") (-941) |#1|)) (-15 -3450 ((-3 |#1| "failed") (-941) |#1| (-784))) (-15 -3450 ((-3 |#1| "failed") (-941) |#1| (-657 (-784)))) (-15 -3450 ((-3 |#1| "failed") (-941) |#1| (-657 (-784)) (-784))) (-15 -3450 ((-3 |#1| "failed") (-941) |#1| (-657 (-784)) (-784) (-112))) (-15 -2839 ((-2 (|:| |contp| (-576)) (|:| -2067 (-657 (-2 (|:| |irr| |#1|) (|:| -1439 (-576)))))) |#1| (-112))) (-15 -3460 ((-2 (|:| |contp| (-576)) (|:| -2067 (-657 (-2 (|:| |irr| |#1|) (|:| -1439 (-576)))))) |#1| (-112) (-1124 (-784)) (-784)))) -((-1487 (((-576) |#2|) 52) (((-576) |#2| (-784)) 51)) (-2483 (((-576) |#2|) 64)) (-1586 ((|#3| |#2|) 26)) (-2234 ((|#3| |#2| (-941)) 15)) (-3358 ((|#3| |#2|) 16)) (-3715 ((|#3| |#2|) 9)) (-2404 ((|#3| |#2|) 10)) (-3163 ((|#3| |#2| (-941)) 71) ((|#3| |#2|) 34)) (-1426 (((-576) |#2|) 66))) -(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -1426 ((-576) |#2|)) (-15 -3163 (|#3| |#2|)) (-15 -3163 (|#3| |#2| (-941))) (-15 -2483 ((-576) |#2|)) (-15 -1487 ((-576) |#2| (-784))) (-15 -1487 ((-576) |#2|)) (-15 -2234 (|#3| |#2| (-941))) (-15 -1586 (|#3| |#2|)) (-15 -3715 (|#3| |#2|)) (-15 -2404 (|#3| |#2|)) (-15 -3358 (|#3| |#2|))) (-1071) (-1265 |#1|) (-13 (-416) (-1060 |#1|) (-374) (-1224) (-294))) (T -455)) -((-3358 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4)))) (-2404 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4)))) (-3715 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4)))) (-1586 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4)))) (-2234 (*1 *2 *3 *4) (-12 (-5 *4 (-941)) (-4 *5 (-1071)) (-4 *2 (-13 (-416) (-1060 *5) (-374) (-1224) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1265 *5)))) (-1487 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1265 *4)) (-4 *5 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))))) (-1487 (*1 *2 *3 *4) (-12 (-5 *4 (-784)) (-4 *5 (-1071)) (-5 *2 (-576)) (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1265 *5)) (-4 *6 (-13 (-416) (-1060 *5) (-374) (-1224) (-294))))) (-2483 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1265 *4)) (-4 *5 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))))) (-3163 (*1 *2 *3 *4) (-12 (-5 *4 (-941)) (-4 *5 (-1071)) (-4 *2 (-13 (-416) (-1060 *5) (-374) (-1224) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1265 *5)))) (-3163 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4)))) (-1426 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1265 *4)) (-4 *5 (-13 (-416) (-1060 *4) (-374) (-1224) (-294)))))) -(-10 -7 (-15 -1426 ((-576) |#2|)) (-15 -3163 (|#3| |#2|)) (-15 -3163 (|#3| |#2| (-941))) (-15 -2483 ((-576) |#2|)) (-15 -1487 ((-576) |#2| (-784))) (-15 -1487 ((-576) |#2|)) (-15 -2234 (|#3| |#2| (-941))) (-15 -1586 (|#3| |#2|)) (-15 -3715 (|#3| |#2|)) (-15 -2404 (|#3| |#2|)) (-15 -3358 (|#3| |#2|))) -((-3539 ((|#2| (-1289 |#1|)) 42)) (-4025 ((|#2| |#2| |#1|) 58)) (-2182 ((|#2| |#2| |#1|) 49)) (-3768 ((|#2| |#2|) 44)) (-4064 (((-112) |#2|) 32)) (-3905 (((-657 |#2|) (-941) (-430 |#2|)) 21)) (-3450 ((|#2| (-941) (-430 |#2|)) 25)) (-2315 (((-750 (-784)) (-430 |#2|)) 29))) -(((-456 |#1| |#2|) (-10 -7 (-15 -4064 ((-112) |#2|)) (-15 -3539 (|#2| (-1289 |#1|))) (-15 -3768 (|#2| |#2|)) (-15 -2182 (|#2| |#2| |#1|)) (-15 -4025 (|#2| |#2| |#1|)) (-15 -2315 ((-750 (-784)) (-430 |#2|))) (-15 -3450 (|#2| (-941) (-430 |#2|))) (-15 -3905 ((-657 |#2|) (-941) (-430 |#2|)))) (-1071) (-1265 |#1|)) (T -456)) -((-3905 (*1 *2 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-430 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-1071)) (-5 *2 (-657 *6)) (-5 *1 (-456 *5 *6)))) (-3450 (*1 *2 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-430 *2)) (-4 *2 (-1265 *5)) (-5 *1 (-456 *5 *2)) (-4 *5 (-1071)))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-430 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-1071)) (-5 *2 (-750 (-784))) (-5 *1 (-456 *4 *5)))) (-4025 (*1 *2 *2 *3) (-12 (-4 *3 (-1071)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1265 *3)))) (-2182 (*1 *2 *2 *3) (-12 (-4 *3 (-1071)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1265 *3)))) (-3768 (*1 *2 *2) (-12 (-4 *3 (-1071)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1265 *3)))) (-3539 (*1 *2 *3) (-12 (-5 *3 (-1289 *4)) (-4 *4 (-1071)) (-4 *2 (-1265 *4)) (-5 *1 (-456 *4 *2)))) (-4064 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1265 *4))))) -(-10 -7 (-15 -4064 ((-112) |#2|)) (-15 -3539 (|#2| (-1289 |#1|))) (-15 -3768 (|#2| |#2|)) (-15 -2182 (|#2| |#2| |#1|)) (-15 -4025 (|#2| |#2| |#1|)) (-15 -2315 ((-750 (-784)) (-430 |#2|))) (-15 -3450 (|#2| (-941) (-430 |#2|))) (-15 -3905 ((-657 |#2|) (-941) (-430 |#2|)))) -((-1772 (((-784)) 59)) (-1436 (((-784)) 29 (|has| |#1| (-416))) (((-784) (-784)) 28 (|has| |#1| (-416)))) (-2554 (((-576) |#1|) 25 (|has| |#1| (-416)))) (-4258 (((-576) |#1|) 27 (|has| |#1| (-416)))) (-2567 (((-784)) 58) (((-784) (-784)) 57)) (-2470 ((|#1| (-784) (-576)) 37)) (-3621 (((-1294)) 61))) -(((-457 |#1|) (-10 -7 (-15 -2470 (|#1| (-784) (-576))) (-15 -2567 ((-784) (-784))) (-15 -2567 ((-784))) (-15 -1772 ((-784))) (-15 -3621 ((-1294))) (IF (|has| |#1| (-416)) (PROGN (-15 -4258 ((-576) |#1|)) (-15 -2554 ((-576) |#1|)) (-15 -1436 ((-784) (-784))) (-15 -1436 ((-784)))) |%noBranch|)) (-1071)) (T -457)) -((-1436 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1071)))) (-1436 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1071)))) (-2554 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1071)))) (-4258 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1071)))) (-3621 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-457 *3)) (-4 *3 (-1071)))) (-1772 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-1071)))) (-2567 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-1071)))) (-2567 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-1071)))) (-2470 (*1 *2 *3 *4) (-12 (-5 *3 (-784)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1071))))) -(-10 -7 (-15 -2470 (|#1| (-784) (-576))) (-15 -2567 ((-784) (-784))) (-15 -2567 ((-784))) (-15 -1772 ((-784))) (-15 -3621 ((-1294))) (IF (|has| |#1| (-416)) (PROGN (-15 -4258 ((-576) |#1|)) (-15 -2554 ((-576) |#1|)) (-15 -1436 ((-784) (-784))) (-15 -1436 ((-784)))) |%noBranch|)) -((-2872 (((-657 (-576)) (-576)) 76)) (-4257 (((-112) (-171 (-576))) 82)) (-1885 (((-430 (-171 (-576))) (-171 (-576))) 75))) -(((-458) (-10 -7 (-15 -1885 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -2872 ((-657 (-576)) (-576))) (-15 -4257 ((-112) (-171 (-576)))))) (T -458)) -((-4257 (*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) (-2872 (*1 *2 *3) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-458)) (-5 *3 (-576)))) (-1885 (*1 *2 *3) (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) (-5 *3 (-171 (-576)))))) -(-10 -7 (-15 -1885 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -2872 ((-657 (-576)) (-576))) (-15 -4257 ((-112) (-171 (-576))))) -((-3377 ((|#4| |#4| (-657 |#4|)) 82)) (-1662 (((-657 |#4|) (-657 |#4|) (-1180) (-1180)) 22) (((-657 |#4|) (-657 |#4|) (-1180)) 21) (((-657 |#4|) (-657 |#4|)) 13))) -(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3377 (|#4| |#4| (-657 |#4|))) (-15 -1662 ((-657 |#4|) (-657 |#4|))) (-15 -1662 ((-657 |#4|) (-657 |#4|) (-1180))) (-15 -1662 ((-657 |#4|) (-657 |#4|) (-1180) (-1180)))) (-317) (-806) (-862) (-969 |#1| |#2| |#3|)) (T -459)) -((-1662 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-657 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1662 (*1 *2 *2 *3) (-12 (-5 *2 (-657 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1662 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-317)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-459 *3 *4 *5 *6)))) (-3377 (*1 *2 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *2))))) -(-10 -7 (-15 -3377 (|#4| |#4| (-657 |#4|))) (-15 -1662 ((-657 |#4|) (-657 |#4|))) (-15 -1662 ((-657 |#4|) (-657 |#4|) (-1180))) (-15 -1662 ((-657 |#4|) (-657 |#4|) (-1180) (-1180)))) -((-2122 (((-657 (-657 |#4|)) (-657 |#4|) (-112)) 89) (((-657 (-657 |#4|)) (-657 |#4|)) 88) (((-657 (-657 |#4|)) (-657 |#4|) (-657 |#4|) (-112)) 82) (((-657 (-657 |#4|)) (-657 |#4|) (-657 |#4|)) 83)) (-3444 (((-657 (-657 |#4|)) (-657 |#4|) (-112)) 55) (((-657 (-657 |#4|)) (-657 |#4|)) 77))) -(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3444 ((-657 (-657 |#4|)) (-657 |#4|))) (-15 -3444 ((-657 (-657 |#4|)) (-657 |#4|) (-112))) (-15 -2122 ((-657 (-657 |#4|)) (-657 |#4|) (-657 |#4|))) (-15 -2122 ((-657 (-657 |#4|)) (-657 |#4|) (-657 |#4|) (-112))) (-15 -2122 ((-657 (-657 |#4|)) (-657 |#4|))) (-15 -2122 ((-657 (-657 |#4|)) (-657 |#4|) (-112)))) (-13 (-317) (-148)) (-806) (-862) (-969 |#1| |#2| |#3|)) (T -460)) -((-2122 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-657 (-657 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-657 *8)))) (-2122 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-657 (-657 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) (-2122 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-657 (-657 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-657 *8)))) (-2122 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-657 (-657 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) (-3444 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-657 (-657 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-657 *8)))) (-3444 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-657 (-657 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-657 *7))))) -(-10 -7 (-15 -3444 ((-657 (-657 |#4|)) (-657 |#4|))) (-15 -3444 ((-657 (-657 |#4|)) (-657 |#4|) (-112))) (-15 -2122 ((-657 (-657 |#4|)) (-657 |#4|) (-657 |#4|))) (-15 -2122 ((-657 (-657 |#4|)) (-657 |#4|) (-657 |#4|) (-112))) (-15 -2122 ((-657 (-657 |#4|)) (-657 |#4|))) (-15 -2122 ((-657 (-657 |#4|)) (-657 |#4|) (-112)))) -((-1864 (((-784) |#4|) 12)) (-3076 (((-657 (-2 (|:| |totdeg| (-784)) (|:| -4281 |#4|))) |#4| (-784) (-657 (-2 (|:| |totdeg| (-784)) (|:| -4281 |#4|)))) 39)) (-2381 (((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2152 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-3555 ((|#4| |#4| (-657 |#4|)) 54)) (-3197 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-657 |#4|)) 96)) (-3775 (((-1294) |#4|) 59)) (-2673 (((-1294) (-657 |#4|)) 69)) (-3751 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576)) 66)) (-2688 (((-1294) (-576)) 110)) (-3431 (((-657 |#4|) (-657 |#4|)) 104)) (-2477 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-784)) (|:| -4281 |#4|)) |#4| (-784)) 31)) (-2362 (((-576) |#4|) 109)) (-2838 ((|#4| |#4|) 37)) (-1762 (((-657 |#4|) (-657 |#4|) (-576) (-576)) 74)) (-2475 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576)) 123)) (-1964 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-1404 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-1672 (((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-2074 (((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-3323 (((-112) |#2| |#2|) 75)) (-3546 (((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-3230 (((-112) |#2| |#2| |#2| |#2|) 80)) (-3933 ((|#4| |#4| (-657 |#4|)) 97))) -(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3933 (|#4| |#4| (-657 |#4|))) (-15 -3555 (|#4| |#4| (-657 |#4|))) (-15 -1762 ((-657 |#4|) (-657 |#4|) (-576) (-576))) (-15 -1404 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3323 ((-112) |#2| |#2|)) (-15 -3230 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3546 ((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2074 ((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1672 ((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3197 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-657 |#4|))) (-15 -2838 (|#4| |#4|)) (-15 -3076 ((-657 (-2 (|:| |totdeg| (-784)) (|:| -4281 |#4|))) |#4| (-784) (-657 (-2 (|:| |totdeg| (-784)) (|:| -4281 |#4|))))) (-15 -2152 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2381 ((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3431 ((-657 |#4|) (-657 |#4|))) (-15 -2362 ((-576) |#4|)) (-15 -3775 ((-1294) |#4|)) (-15 -3751 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -2475 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -2673 ((-1294) (-657 |#4|))) (-15 -2688 ((-1294) (-576))) (-15 -1964 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2477 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-784)) (|:| -4281 |#4|)) |#4| (-784))) (-15 -1864 ((-784) |#4|))) (-464) (-806) (-862) (-969 |#1| |#2| |#3|)) (T -461)) -((-1864 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-784)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-784)) (|:| -4281 *4))) (-5 *5 (-784)) (-4 *4 (-969 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-461 *6 *7 *8 *4)))) (-1964 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-784)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-806)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1294)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6)))) (-2673 (*1 *2 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1294)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2475 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-784)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-806)) (-4 *4 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *4)))) (-3751 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-784)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-806)) (-4 *4 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *4)))) (-3775 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1294)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2362 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-576)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-3431 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-2381 (*1 *2 *2 *2) (-12 (-5 *2 (-657 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-784)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-806)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-784)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-806)) (-4 *2 (-969 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) (-4 *4 (-464)) (-4 *6 (-862)))) (-3076 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-657 (-2 (|:| |totdeg| (-784)) (|:| -4281 *3)))) (-5 *4 (-784)) (-4 *3 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *3)))) (-2838 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-969 *3 *4 *5)))) (-3197 (*1 *2 *3 *4) (-12 (-5 *4 (-657 *3)) (-4 *3 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-461 *5 *6 *7 *3)))) (-1672 (*1 *2 *3 *2) (-12 (-5 *2 (-657 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-784)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-806)) (-4 *6 (-969 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *4 *3 *5 *6)))) (-2074 (*1 *2 *2) (-12 (-5 *2 (-657 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-784)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-806)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-3546 (*1 *2 *3 *2) (-12 (-5 *2 (-657 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-784)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-806)) (-4 *3 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *3)))) (-3230 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-969 *4 *3 *5)))) (-3323 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-969 *4 *3 *5)))) (-1404 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-784)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-806)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-1762 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-657 *7)) (-5 *3 (-576)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3555 (*1 *2 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2)))) (-3933 (*1 *2 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2))))) -(-10 -7 (-15 -3933 (|#4| |#4| (-657 |#4|))) (-15 -3555 (|#4| |#4| (-657 |#4|))) (-15 -1762 ((-657 |#4|) (-657 |#4|) (-576) (-576))) (-15 -1404 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3323 ((-112) |#2| |#2|)) (-15 -3230 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3546 ((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2074 ((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1672 ((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3197 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-657 |#4|))) (-15 -2838 (|#4| |#4|)) (-15 -3076 ((-657 (-2 (|:| |totdeg| (-784)) (|:| -4281 |#4|))) |#4| (-784) (-657 (-2 (|:| |totdeg| (-784)) (|:| -4281 |#4|))))) (-15 -2152 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2381 ((-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-657 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3431 ((-657 |#4|) (-657 |#4|))) (-15 -2362 ((-576) |#4|)) (-15 -3775 ((-1294) |#4|)) (-15 -3751 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -2475 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -2673 ((-1294) (-657 |#4|))) (-15 -2688 ((-1294) (-576))) (-15 -1964 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2477 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-784)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-784)) (|:| -4281 |#4|)) |#4| (-784))) (-15 -1864 ((-784) |#4|))) -((-2031 ((|#4| |#4| (-657 |#4|)) 20 (|has| |#1| (-374)))) (-3276 (((-657 |#4|) (-657 |#4|) (-1180) (-1180)) 46) (((-657 |#4|) (-657 |#4|) (-1180)) 45) (((-657 |#4|) (-657 |#4|)) 34))) -(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3276 ((-657 |#4|) (-657 |#4|))) (-15 -3276 ((-657 |#4|) (-657 |#4|) (-1180))) (-15 -3276 ((-657 |#4|) (-657 |#4|) (-1180) (-1180))) (IF (|has| |#1| (-374)) (-15 -2031 (|#4| |#4| (-657 |#4|))) |%noBranch|)) (-464) (-806) (-862) (-969 |#1| |#2| |#3|)) (T -462)) -((-2031 (*1 *2 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-374)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *2)))) (-3276 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-657 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *7)))) (-3276 (*1 *2 *2 *3) (-12 (-5 *2 (-657 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *7)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-462 *3 *4 *5 *6))))) -(-10 -7 (-15 -3276 ((-657 |#4|) (-657 |#4|))) (-15 -3276 ((-657 |#4|) (-657 |#4|) (-1180))) (-15 -3276 ((-657 |#4|) (-657 |#4|) (-1180) (-1180))) (IF (|has| |#1| (-374)) (-15 -2031 (|#4| |#4| (-657 |#4|))) |%noBranch|)) -((-3402 (($ $ $) 14) (($ (-657 $)) 21)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 46)) (-3436 (($ $ $) NIL) (($ (-657 $)) 22))) -(((-463 |#1|) (-10 -8 (-15 -2226 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|))) (-15 -3402 (|#1| (-657 |#1|))) (-15 -3402 (|#1| |#1| |#1|)) (-15 -3436 (|#1| (-657 |#1|))) (-15 -3436 (|#1| |#1| |#1|))) (-464)) (T -463)) -NIL -(-10 -8 (-15 -2226 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|))) (-15 -3402 (|#1| (-657 |#1|))) (-15 -3402 (|#1| |#1| |#1|)) (-15 -3436 (|#1| (-657 |#1|))) (-15 -3436 (|#1| |#1| |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3843 (((-3 $ "failed") $) 37)) (-4094 (((-112) $) 35)) (-3402 (($ $ $) 52) (($ (-657 $)) 51)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3436 (($ $ $) 54) (($ (-657 $)) 53)) (-3418 (((-3 $ "failed") $ $) 48)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 45)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-464) (-141)) (T -464)) -((-3436 (*1 *1 *1 *1) (-4 *1 (-464))) (-3436 (*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-464)))) (-3402 (*1 *1 *1 *1) (-4 *1 (-464))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-464)))) (-2226 (*1 *2 *2 *2) (-12 (-5 *2 (-1194 *1)) (-4 *1 (-464))))) -(-13 (-568) (-10 -8 (-15 -3436 ($ $ $)) (-15 -3436 ($ (-657 $))) (-15 -3402 ($ $ $)) (-15 -3402 ($ (-657 $))) (-15 -2226 ((-1194 $) (-1194 $) (-1194 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2824 (((-3 $ "failed")) NIL (|has| (-419 (-972 |#1|)) (-568)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-3213 (((-1289 (-702 (-419 (-972 |#1|)))) (-1289 $)) NIL) (((-1289 (-702 (-419 (-972 |#1|))))) NIL)) (-3348 (((-1289 $)) NIL)) (-4359 (($) NIL T CONST)) (-3090 (((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed")) NIL)) (-2023 (((-3 $ "failed")) NIL (|has| (-419 (-972 |#1|)) (-568)))) (-1703 (((-702 (-419 (-972 |#1|))) (-1289 $)) NIL) (((-702 (-419 (-972 |#1|)))) NIL)) (-1641 (((-419 (-972 |#1|)) $) NIL)) (-1575 (((-702 (-419 (-972 |#1|))) $ (-1289 $)) NIL) (((-702 (-419 (-972 |#1|))) $) NIL)) (-1498 (((-3 $ "failed") $) NIL (|has| (-419 (-972 |#1|)) (-568)))) (-2572 (((-1194 (-972 (-419 (-972 |#1|))))) NIL (|has| (-419 (-972 |#1|)) (-374))) (((-1194 (-419 (-972 |#1|)))) 90 (|has| |#1| (-568)))) (-2609 (($ $ (-941)) NIL)) (-3195 (((-419 (-972 |#1|)) $) NIL)) (-1806 (((-1194 (-419 (-972 |#1|))) $) 88 (|has| (-419 (-972 |#1|)) (-568)))) (-1427 (((-419 (-972 |#1|)) (-1289 $)) NIL) (((-419 (-972 |#1|))) NIL)) (-2947 (((-1194 (-419 (-972 |#1|))) $) NIL)) (-4274 (((-112)) NIL)) (-2613 (($ (-1289 (-419 (-972 |#1|))) (-1289 $)) 114) (($ (-1289 (-419 (-972 |#1|)))) NIL)) (-3843 (((-3 $ "failed") $) NIL (|has| (-419 (-972 |#1|)) (-568)))) (-1542 (((-941)) NIL)) (-1778 (((-112)) NIL)) (-3490 (($ $ (-941)) NIL)) (-2591 (((-112)) NIL)) (-3089 (((-112)) NIL)) (-1855 (((-112)) NIL)) (-2765 (((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed")) NIL)) (-3694 (((-3 $ "failed")) NIL (|has| (-419 (-972 |#1|)) (-568)))) (-4427 (((-702 (-419 (-972 |#1|))) (-1289 $)) NIL) (((-702 (-419 (-972 |#1|)))) NIL)) (-1425 (((-419 (-972 |#1|)) $) NIL)) (-3346 (((-702 (-419 (-972 |#1|))) $ (-1289 $)) NIL) (((-702 (-419 (-972 |#1|))) $) NIL)) (-2390 (((-3 $ "failed") $) NIL (|has| (-419 (-972 |#1|)) (-568)))) (-2164 (((-1194 (-972 (-419 (-972 |#1|))))) NIL (|has| (-419 (-972 |#1|)) (-374))) (((-1194 (-419 (-972 |#1|)))) 89 (|has| |#1| (-568)))) (-4404 (($ $ (-941)) NIL)) (-2885 (((-419 (-972 |#1|)) $) NIL)) (-4234 (((-1194 (-419 (-972 |#1|))) $) 85 (|has| (-419 (-972 |#1|)) (-568)))) (-4408 (((-419 (-972 |#1|)) (-1289 $)) NIL) (((-419 (-972 |#1|))) NIL)) (-2444 (((-1194 (-419 (-972 |#1|))) $) NIL)) (-4199 (((-112)) NIL)) (-2342 (((-1180) $) NIL)) (-4396 (((-112)) NIL)) (-3079 (((-112)) NIL)) (-3729 (((-112)) NIL)) (-1471 (((-1142) $) NIL)) (-3415 (((-419 (-972 |#1|)) $ $) 76 (|has| |#1| (-568)))) (-3355 (((-419 (-972 |#1|)) $) 100 (|has| |#1| (-568)))) (-3991 (((-419 (-972 |#1|)) $) 104 (|has| |#1| (-568)))) (-3497 (((-1194 (-419 (-972 |#1|))) $) 94 (|has| |#1| (-568)))) (-2679 (((-419 (-972 |#1|))) 77 (|has| |#1| (-568)))) (-2379 (((-419 (-972 |#1|)) $ $) 69 (|has| |#1| (-568)))) (-3910 (((-419 (-972 |#1|)) $) 99 (|has| |#1| (-568)))) (-2431 (((-419 (-972 |#1|)) $) 103 (|has| |#1| (-568)))) (-3502 (((-1194 (-419 (-972 |#1|))) $) 93 (|has| |#1| (-568)))) (-1673 (((-419 (-972 |#1|))) 73 (|has| |#1| (-568)))) (-3977 (($) 110) (($ (-1198)) 118) (($ (-1289 (-1198))) 117) (($ (-1289 $)) 105) (($ (-1198) (-1289 $)) 116) (($ (-1289 (-1198)) (-1289 $)) 115)) (-4005 (((-112)) NIL)) (-2835 (((-419 (-972 |#1|)) $ (-576)) NIL)) (-2795 (((-1289 (-419 (-972 |#1|))) $ (-1289 $)) 107) (((-702 (-419 (-972 |#1|))) (-1289 $) (-1289 $)) NIL) (((-1289 (-419 (-972 |#1|))) $) 43) (((-702 (-419 (-972 |#1|))) (-1289 $)) NIL)) (-4148 (((-1289 (-419 (-972 |#1|))) $) NIL) (($ (-1289 (-419 (-972 |#1|)))) 40)) (-2929 (((-657 (-972 (-419 (-972 |#1|)))) (-1289 $)) NIL) (((-657 (-972 (-419 (-972 |#1|))))) NIL) (((-657 (-972 |#1|)) (-1289 $)) 108 (|has| |#1| (-568))) (((-657 (-972 |#1|))) 109 (|has| |#1| (-568)))) (-3544 (($ $ $) NIL)) (-2032 (((-112)) NIL)) (-3501 (((-877) $) NIL) (($ (-1289 (-419 (-972 |#1|)))) NIL)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) 65)) (-1630 (((-657 (-1289 (-419 (-972 |#1|))))) NIL (|has| (-419 (-972 |#1|)) (-568)))) (-4254 (($ $ $ $) NIL)) (-3675 (((-112)) NIL)) (-3500 (($ (-702 (-419 (-972 |#1|))) $) NIL)) (-3599 (($ $ $) NIL)) (-4115 (((-112)) NIL)) (-2102 (((-112)) NIL)) (-1950 (((-112)) NIL)) (-2769 (($) NIL T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) 106)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 61) (($ $ (-419 (-972 |#1|))) NIL) (($ (-419 (-972 |#1|)) $) NIL) (($ (-1164 |#2| (-419 (-972 |#1|))) $) NIL))) -(((-465 |#1| |#2| |#3| |#4|) (-13 (-429 (-419 (-972 |#1|))) (-661 (-1164 |#2| (-419 (-972 |#1|)))) (-10 -8 (-15 -3501 ($ (-1289 (-419 (-972 |#1|))))) (-15 -2765 ((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed"))) (-15 -3090 ((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed"))) (-15 -3977 ($)) (-15 -3977 ($ (-1198))) (-15 -3977 ($ (-1289 (-1198)))) (-15 -3977 ($ (-1289 $))) (-15 -3977 ($ (-1198) (-1289 $))) (-15 -3977 ($ (-1289 (-1198)) (-1289 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -2164 ((-1194 (-419 (-972 |#1|))))) (-15 -3502 ((-1194 (-419 (-972 |#1|))) $)) (-15 -3910 ((-419 (-972 |#1|)) $)) (-15 -2431 ((-419 (-972 |#1|)) $)) (-15 -2572 ((-1194 (-419 (-972 |#1|))))) (-15 -3497 ((-1194 (-419 (-972 |#1|))) $)) (-15 -3355 ((-419 (-972 |#1|)) $)) (-15 -3991 ((-419 (-972 |#1|)) $)) (-15 -2379 ((-419 (-972 |#1|)) $ $)) (-15 -1673 ((-419 (-972 |#1|)))) (-15 -3415 ((-419 (-972 |#1|)) $ $)) (-15 -2679 ((-419 (-972 |#1|)))) (-15 -2929 ((-657 (-972 |#1|)) (-1289 $))) (-15 -2929 ((-657 (-972 |#1|))))) |%noBranch|))) (-174) (-941) (-657 (-1198)) (-1289 (-702 |#1|))) (T -465)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1289 (-419 (-972 *3)))) (-4 *3 (-174)) (-14 *6 (-1289 (-702 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))))) (-2765 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -1985 (-657 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-3090 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -1985 (-657 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-3977 (*1 *1) (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-941)) (-14 *4 (-657 (-1198))) (-14 *5 (-1289 (-702 *2))))) (-3977 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 *2)) (-14 *6 (-1289 (-702 *3))))) (-3977 (*1 *1 *2) (-12 (-5 *2 (-1289 (-1198))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-3977 (*1 *1 *2) (-12 (-5 *2 (-1289 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-3977 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-941)) (-14 *6 (-657 *2)) (-14 *7 (-1289 (-702 *4))))) (-3977 (*1 *1 *2 *3) (-12 (-5 *2 (-1289 (-1198))) (-5 *3 (-1289 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-941)) (-14 *6 (-657 (-1198))) (-14 *7 (-1289 (-702 *4))))) (-2164 (*1 *2) (-12 (-5 *2 (-1194 (-419 (-972 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-1194 (-419 (-972 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-3910 (*1 *2 *1) (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-2431 (*1 *2 *1) (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-2572 (*1 *2) (-12 (-5 *2 (-1194 (-419 (-972 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-3497 (*1 *2 *1) (-12 (-5 *2 (-1194 (-419 (-972 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-2379 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-1673 (*1 *2) (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-3415 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-2679 (*1 *2) (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-1289 (-465 *4 *5 *6 *7))) (-5 *2 (-657 (-972 *4))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) (-14 *5 (-941)) (-14 *6 (-657 (-1198))) (-14 *7 (-1289 (-702 *4))))) (-2929 (*1 *2) (-12 (-5 *2 (-657 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) -(-13 (-429 (-419 (-972 |#1|))) (-661 (-1164 |#2| (-419 (-972 |#1|)))) (-10 -8 (-15 -3501 ($ (-1289 (-419 (-972 |#1|))))) (-15 -2765 ((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed"))) (-15 -3090 ((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed"))) (-15 -3977 ($)) (-15 -3977 ($ (-1198))) (-15 -3977 ($ (-1289 (-1198)))) (-15 -3977 ($ (-1289 $))) (-15 -3977 ($ (-1198) (-1289 $))) (-15 -3977 ($ (-1289 (-1198)) (-1289 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -2164 ((-1194 (-419 (-972 |#1|))))) (-15 -3502 ((-1194 (-419 (-972 |#1|))) $)) (-15 -3910 ((-419 (-972 |#1|)) $)) (-15 -2431 ((-419 (-972 |#1|)) $)) (-15 -2572 ((-1194 (-419 (-972 |#1|))))) (-15 -3497 ((-1194 (-419 (-972 |#1|))) $)) (-15 -3355 ((-419 (-972 |#1|)) $)) (-15 -3991 ((-419 (-972 |#1|)) $)) (-15 -2379 ((-419 (-972 |#1|)) $ $)) (-15 -1673 ((-419 (-972 |#1|)))) (-15 -3415 ((-419 (-972 |#1|)) $ $)) (-15 -2679 ((-419 (-972 |#1|)))) (-15 -2929 ((-657 (-972 |#1|)) (-1289 $))) (-15 -2929 ((-657 (-972 |#1|))))) |%noBranch|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 18)) (-2029 (((-657 (-879 |#1|)) $) 87)) (-1849 (((-1194 $) $ (-879 |#1|)) 52) (((-1194 |#2|) $) 138)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-3325 (($ $) NIL (|has| |#2| (-568)))) (-4306 (((-112) $) NIL (|has| |#2| (-568)))) (-1775 (((-784) $) 27) (((-784) $ (-657 (-879 |#1|))) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-2638 (($ $) NIL (|has| |#2| (-464)))) (-4402 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#2| "failed") $) 50) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1060 (-576)))) (((-3 (-879 |#1|) "failed") $) NIL)) (-2884 ((|#2| $) 48) (((-419 (-576)) $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1060 (-576)))) (((-879 |#1|) $) NIL)) (-3203 (($ $ $ (-879 |#1|)) NIL (|has| |#2| (-174)))) (-3462 (($ $ (-657 (-576))) 93)) (-2212 (($ $) 80)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL) (((-702 |#2|) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3813 (($ $) NIL (|has| |#2| (-464))) (($ $ (-879 |#1|)) NIL (|has| |#2| (-464)))) (-2199 (((-657 $) $) NIL)) (-4257 (((-112) $) NIL (|has| |#2| (-929)))) (-3124 (($ $ |#2| |#3| $) NIL)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-879 |#1|) (-902 (-390))) (|has| |#2| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-879 |#1|) (-902 (-576))) (|has| |#2| (-902 (-576)))))) (-4094 (((-112) $) NIL)) (-4334 (((-784) $) 65)) (-2014 (($ (-1194 |#2|) (-879 |#1|)) 143) (($ (-1194 $) (-879 |#1|)) 58)) (-3724 (((-657 $) $) NIL)) (-3157 (((-112) $) 68)) (-2003 (($ |#2| |#3|) 35) (($ $ (-879 |#1|) (-784)) 37) (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ (-879 |#1|)) NIL)) (-4436 ((|#3| $) NIL) (((-784) $ (-879 |#1|)) 56) (((-657 (-784)) $ (-657 (-879 |#1|))) 63)) (-4056 (($ (-1 |#3| |#3|) $) NIL)) (-4083 (($ (-1 |#2| |#2|) $) NIL)) (-2353 (((-3 (-879 |#1|) "failed") $) 45)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-2174 (($ $) NIL)) (-2186 ((|#2| $) 47)) (-3402 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2342 (((-1180) $) NIL)) (-1392 (((-3 (-657 $) "failed") $) NIL)) (-2974 (((-3 (-657 $) "failed") $) NIL)) (-2999 (((-3 (-2 (|:| |var| (-879 |#1|)) (|:| -1801 (-784))) "failed") $) NIL)) (-1471 (((-1142) $) NIL)) (-2146 (((-112) $) 46)) (-2160 ((|#2| $) 136)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#2| (-464)))) (-3436 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) 149 (|has| |#2| (-464)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-1885 (((-430 $) $) NIL (|has| |#2| (-929)))) (-3418 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3236 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-879 |#1|) |#2|) 100) (($ $ (-657 (-879 |#1|)) (-657 |#2|)) 106) (($ $ (-879 |#1|) $) 98) (($ $ (-657 (-879 |#1|)) (-657 $)) 124)) (-1701 (($ $ (-879 |#1|)) NIL (|has| |#2| (-174)))) (-2815 (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|))) NIL) (($ $ (-879 |#1|)) 59)) (-1770 ((|#3| $) 79) (((-784) $ (-879 |#1|)) 42) (((-657 (-784)) $ (-657 (-879 |#1|))) 62)) (-4148 (((-908 (-390)) $) NIL (-12 (|has| (-879 |#1|) (-626 (-908 (-390)))) (|has| |#2| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-879 |#1|) (-626 (-908 (-576)))) (|has| |#2| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-879 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1450 ((|#2| $) 145 (|has| |#2| (-464))) (($ $ (-879 |#1|)) NIL (|has| |#2| (-464)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-929))))) (-3501 (((-877) $) 173) (($ (-576)) NIL) (($ |#2|) 99) (($ (-879 |#1|)) 39) (($ (-419 (-576))) NIL (-2802 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-4037 (((-657 |#2|) $) NIL)) (-2313 ((|#2| $ |#3|) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| |#2| (-929))) (|has| |#2| (-146))))) (-1960 (((-784)) NIL T CONST)) (-2702 (($ $ $ (-784)) NIL (|has| |#2| (-174)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2769 (($) 22 T CONST)) (-2779 (($) 31 T CONST)) (-2097 (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|))) NIL) (($ $ (-879 |#1|)) NIL)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#2|) 76 (|has| |#2| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 131)) (** (($ $ (-941)) NIL) (($ $ (-784)) 129)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 36) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) 75) (($ $ |#2|) NIL))) -(((-466 |#1| |#2| |#3|) (-13 (-969 |#2| |#3| (-879 |#1|)) (-10 -8 (-15 -3462 ($ $ (-657 (-576)))))) (-657 (-1198)) (-1071) (-243 (-3440 |#1|) (-784))) (T -466)) -((-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-576))) (-14 *3 (-657 (-1198))) (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1071)) (-4 *5 (-243 (-3440 *3) (-784)))))) -(-13 (-969 |#2| |#3| (-879 |#1|)) (-10 -8 (-15 -3462 ($ $ (-657 (-576)))))) -((-1394 (((-112) |#1| (-657 |#2|)) 91)) (-1513 (((-3 (-1289 (-657 |#2|)) "failed") (-784) |#1| (-657 |#2|)) 100)) (-3261 (((-3 (-657 |#2|) "failed") |#2| |#1| (-1289 (-657 |#2|))) 102)) (-2921 ((|#2| |#2| |#1|) 35)) (-2177 (((-784) |#2| (-657 |#2|)) 26))) -(((-467 |#1| |#2|) (-10 -7 (-15 -2921 (|#2| |#2| |#1|)) (-15 -2177 ((-784) |#2| (-657 |#2|))) (-15 -1513 ((-3 (-1289 (-657 |#2|)) "failed") (-784) |#1| (-657 |#2|))) (-15 -3261 ((-3 (-657 |#2|) "failed") |#2| |#1| (-1289 (-657 |#2|)))) (-15 -1394 ((-112) |#1| (-657 |#2|)))) (-317) (-1265 |#1|)) (T -467)) -((-1394 (*1 *2 *3 *4) (-12 (-5 *4 (-657 *5)) (-4 *5 (-1265 *3)) (-4 *3 (-317)) (-5 *2 (-112)) (-5 *1 (-467 *3 *5)))) (-3261 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1289 (-657 *3))) (-4 *4 (-317)) (-5 *2 (-657 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1265 *4)))) (-1513 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-784)) (-4 *4 (-317)) (-4 *6 (-1265 *4)) (-5 *2 (-1289 (-657 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-657 *6)))) (-2177 (*1 *2 *3 *4) (-12 (-5 *4 (-657 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-317)) (-5 *2 (-784)) (-5 *1 (-467 *5 *3)))) (-2921 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1265 *3))))) -(-10 -7 (-15 -2921 (|#2| |#2| |#1|)) (-15 -2177 ((-784) |#2| (-657 |#2|))) (-15 -1513 ((-3 (-1289 (-657 |#2|)) "failed") (-784) |#1| (-657 |#2|))) (-15 -3261 ((-3 (-657 |#2|) "failed") |#2| |#1| (-1289 (-657 |#2|)))) (-15 -1394 ((-112) |#1| (-657 |#2|)))) -((-1885 (((-430 |#5|) |#5|) 24))) -(((-468 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1885 ((-430 |#5|) |#5|))) (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $)) (-15 -3032 ((-3 $ "failed") (-1198))))) (-806) (-568) (-568) (-969 |#4| |#2| |#1|)) (T -468)) -((-1885 (*1 *2 *3) (-12 (-4 *4 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $)) (-15 -3032 ((-3 $ "failed") (-1198)))))) (-4 *5 (-806)) (-4 *7 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) (-4 *3 (-969 *7 *5 *4))))) -(-10 -7 (-15 -1885 ((-430 |#5|) |#5|))) -((-1883 ((|#3|) 38)) (-2226 (((-1194 |#4|) (-1194 |#4|) (-1194 |#4|)) 34))) -(((-469 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2226 ((-1194 |#4|) (-1194 |#4|) (-1194 |#4|))) (-15 -1883 (|#3|))) (-806) (-862) (-929) (-969 |#3| |#1| |#2|)) (T -469)) -((-1883 (*1 *2) (-12 (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-929)) (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-969 *2 *3 *4)))) (-2226 (*1 *2 *2 *2) (-12 (-5 *2 (-1194 *6)) (-4 *6 (-969 *5 *3 *4)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-929)) (-5 *1 (-469 *3 *4 *5 *6))))) -(-10 -7 (-15 -2226 ((-1194 |#4|) (-1194 |#4|) (-1194 |#4|))) (-15 -1883 (|#3|))) -((-1885 (((-430 (-1194 |#1|)) (-1194 |#1|)) 43))) -(((-470 |#1|) (-10 -7 (-15 -1885 ((-430 (-1194 |#1|)) (-1194 |#1|)))) (-317)) (T -470)) -((-1885 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1194 *4))) (-5 *1 (-470 *4)) (-5 *3 (-1194 *4))))) -(-10 -7 (-15 -1885 ((-430 (-1194 |#1|)) (-1194 |#1|)))) -((-2084 (((-52) |#2| (-1198) (-304 |#2|) (-1256 (-784))) 44) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1256 (-784))) 43) (((-52) |#2| (-1198) (-304 |#2|)) 36) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 29)) (-3660 (((-52) |#2| (-1198) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576))) 88) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576))) 87) (((-52) |#2| (-1198) (-304 |#2|) (-1256 (-576))) 86) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1256 (-576))) 85) (((-52) |#2| (-1198) (-304 |#2|)) 80) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 79)) (-2111 (((-52) |#2| (-1198) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576))) 74) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576))) 72)) (-2098 (((-52) |#2| (-1198) (-304 |#2|) (-1256 (-576))) 51) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1256 (-576))) 50))) -(((-471 |#1| |#2|) (-10 -7 (-15 -2084 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -2084 ((-52) |#2| (-1198) (-304 |#2|))) (-15 -2084 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1256 (-784)))) (-15 -2084 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-784)))) (-15 -2098 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1256 (-576)))) (-15 -2098 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-576)))) (-15 -2111 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576)))) (-15 -2111 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576)))) (-15 -3660 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -3660 ((-52) |#2| (-1198) (-304 |#2|))) (-15 -3660 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1256 (-576)))) (-15 -3660 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-576)))) (-15 -3660 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576)))) (-15 -3660 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576))))) (-13 (-568) (-1060 (-576)) (-652 (-576))) (-13 (-27) (-1224) (-442 |#1|))) (T -471)) -((-3660 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1224) (-442 *8))) (-4 *8 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-3660 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1256 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1224) (-442 *7))) (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-3660 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-576))) (-4 *3 (-13 (-27) (-1224) (-442 *7))) (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-3660 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1256 (-576))) (-4 *7 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-3660 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-3660 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1224) (-442 *5))) (-4 *5 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6)))) (-2111 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1224) (-442 *8))) (-4 *8 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-2111 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1256 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1224) (-442 *7))) (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-2098 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-576))) (-4 *3 (-13 (-27) (-1224) (-442 *7))) (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-2098 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1256 (-576))) (-4 *7 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-2084 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-784))) (-4 *3 (-13 (-27) (-1224) (-442 *7))) (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-2084 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1256 (-784))) (-4 *7 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-2084 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-2084 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1224) (-442 *5))) (-4 *5 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6))))) -(-10 -7 (-15 -2084 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -2084 ((-52) |#2| (-1198) (-304 |#2|))) (-15 -2084 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1256 (-784)))) (-15 -2084 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-784)))) (-15 -2098 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1256 (-576)))) (-15 -2098 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-576)))) (-15 -2111 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576)))) (-15 -2111 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576)))) (-15 -3660 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -3660 ((-52) |#2| (-1198) (-304 |#2|))) (-15 -3660 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1256 (-576)))) (-15 -3660 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-576)))) (-15 -3660 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576)))) (-15 -3660 ((-52) |#2| (-1198) (-304 |#2|) (-1256 (-419 (-576))) (-419 (-576))))) -((-2921 ((|#2| |#2| |#1|) 15)) (-2889 (((-657 |#2|) |#2| (-657 |#2|) |#1| (-941)) 82)) (-2040 (((-2 (|:| |plist| (-657 |#2|)) (|:| |modulo| |#1|)) |#2| (-657 |#2|) |#1| (-941)) 72))) -(((-472 |#1| |#2|) (-10 -7 (-15 -2040 ((-2 (|:| |plist| (-657 |#2|)) (|:| |modulo| |#1|)) |#2| (-657 |#2|) |#1| (-941))) (-15 -2889 ((-657 |#2|) |#2| (-657 |#2|) |#1| (-941))) (-15 -2921 (|#2| |#2| |#1|))) (-317) (-1265 |#1|)) (T -472)) -((-2921 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1265 *3)))) (-2889 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-657 *3)) (-5 *5 (-941)) (-4 *3 (-1265 *4)) (-4 *4 (-317)) (-5 *1 (-472 *4 *3)))) (-2040 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-941)) (-4 *5 (-317)) (-4 *3 (-1265 *5)) (-5 *2 (-2 (|:| |plist| (-657 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) (-5 *4 (-657 *3))))) -(-10 -7 (-15 -2040 ((-2 (|:| |plist| (-657 |#2|)) (|:| |modulo| |#1|)) |#2| (-657 |#2|) |#1| (-941))) (-15 -2889 ((-657 |#2|) |#2| (-657 |#2|) |#1| (-941))) (-15 -2921 (|#2| |#2| |#1|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 28)) (-3110 (($ |#3|) 25)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-2212 (($ $) 32)) (-4392 (($ |#2| |#4| $) 33)) (-2003 (($ |#2| (-726 |#3| |#4| |#5|)) 24)) (-2174 (((-726 |#3| |#4| |#5|) $) 15)) (-2804 ((|#3| $) 19)) (-2512 ((|#4| $) 17)) (-2186 ((|#2| $) 29)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-3821 (($ |#2| |#3| |#4|) 26)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 36 T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 34)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-473 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-730 |#6|) (-730 |#2|) (-10 -8 (-15 -2186 (|#2| $)) (-15 -2174 ((-726 |#3| |#4| |#5|) $)) (-15 -2512 (|#4| $)) (-15 -2804 (|#3| $)) (-15 -2212 ($ $)) (-15 -2003 ($ |#2| (-726 |#3| |#4| |#5|))) (-15 -3110 ($ |#3|)) (-15 -3821 ($ |#2| |#3| |#4|)) (-15 -4392 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-657 (-1198)) (-174) (-862) (-243 (-3440 |#1|) (-784)) (-1 (-112) (-2 (|:| -3178 |#3|) (|:| -1801 |#4|)) (-2 (|:| -3178 |#3|) (|:| -1801 |#4|))) (-969 |#2| |#4| (-879 |#1|))) (T -473)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) (-4 *6 (-243 (-3440 *3) (-784))) (-14 *7 (-1 (-112) (-2 (|:| -3178 *5) (|:| -1801 *6)) (-2 (|:| -3178 *5) (|:| -1801 *6)))) (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-862)) (-4 *2 (-969 *4 *6 (-879 *3))))) (-2186 (*1 *2 *1) (-12 (-14 *3 (-657 (-1198))) (-4 *5 (-243 (-3440 *3) (-784))) (-14 *6 (-1 (-112) (-2 (|:| -3178 *4) (|:| -1801 *5)) (-2 (|:| -3178 *4) (|:| -1801 *5)))) (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-862)) (-4 *7 (-969 *2 *5 (-879 *3))))) (-2174 (*1 *2 *1) (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) (-4 *6 (-243 (-3440 *3) (-784))) (-14 *7 (-1 (-112) (-2 (|:| -3178 *5) (|:| -1801 *6)) (-2 (|:| -3178 *5) (|:| -1801 *6)))) (-5 *2 (-726 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-862)) (-4 *8 (-969 *4 *6 (-879 *3))))) (-2512 (*1 *2 *1) (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -3178 *5) (|:| -1801 *2)) (-2 (|:| -3178 *5) (|:| -1801 *2)))) (-4 *2 (-243 (-3440 *3) (-784))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) (-4 *5 (-862)) (-4 *7 (-969 *4 *2 (-879 *3))))) (-2804 (*1 *2 *1) (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) (-4 *5 (-243 (-3440 *3) (-784))) (-14 *6 (-1 (-112) (-2 (|:| -3178 *2) (|:| -1801 *5)) (-2 (|:| -3178 *2) (|:| -1801 *5)))) (-4 *2 (-862)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *7 (-969 *4 *5 (-879 *3))))) (-2212 (*1 *1 *1) (-12 (-14 *2 (-657 (-1198))) (-4 *3 (-174)) (-4 *5 (-243 (-3440 *2) (-784))) (-14 *6 (-1 (-112) (-2 (|:| -3178 *4) (|:| -1801 *5)) (-2 (|:| -3178 *4) (|:| -1801 *5)))) (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-862)) (-4 *7 (-969 *3 *5 (-879 *2))))) (-2003 (*1 *1 *2 *3) (-12 (-5 *3 (-726 *5 *6 *7)) (-4 *5 (-862)) (-4 *6 (-243 (-3440 *4) (-784))) (-14 *7 (-1 (-112) (-2 (|:| -3178 *5) (|:| -1801 *6)) (-2 (|:| -3178 *5) (|:| -1801 *6)))) (-14 *4 (-657 (-1198))) (-4 *2 (-174)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-969 *2 *6 (-879 *4))))) (-3110 (*1 *1 *2) (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) (-4 *5 (-243 (-3440 *3) (-784))) (-14 *6 (-1 (-112) (-2 (|:| -3178 *2) (|:| -1801 *5)) (-2 (|:| -3178 *2) (|:| -1801 *5)))) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-862)) (-4 *7 (-969 *4 *5 (-879 *3))))) (-3821 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-657 (-1198))) (-4 *2 (-174)) (-4 *4 (-243 (-3440 *5) (-784))) (-14 *6 (-1 (-112) (-2 (|:| -3178 *3) (|:| -1801 *4)) (-2 (|:| -3178 *3) (|:| -1801 *4)))) (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-862)) (-4 *7 (-969 *2 *4 (-879 *5))))) (-4392 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-657 (-1198))) (-4 *2 (-174)) (-4 *3 (-243 (-3440 *4) (-784))) (-14 *6 (-1 (-112) (-2 (|:| -3178 *5) (|:| -1801 *3)) (-2 (|:| -3178 *5) (|:| -1801 *3)))) (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-862)) (-4 *7 (-969 *2 *3 (-879 *4)))))) -(-13 (-730 |#6|) (-730 |#2|) (-10 -8 (-15 -2186 (|#2| $)) (-15 -2174 ((-726 |#3| |#4| |#5|) $)) (-15 -2512 (|#4| $)) (-15 -2804 (|#3| $)) (-15 -2212 ($ $)) (-15 -2003 ($ |#2| (-726 |#3| |#4| |#5|))) (-15 -3110 ($ |#3|)) (-15 -3821 ($ |#2| |#3| |#4|)) (-15 -4392 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-2636 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) -(((-474 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2636 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-806) (-862) (-568) (-969 |#3| |#1| |#2|) (-13 (-1060 (-419 (-576))) (-374) (-10 -8 (-15 -3501 ($ |#4|)) (-15 -1621 (|#4| $)) (-15 -1635 (|#4| $))))) (T -474)) -((-2636 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-862)) (-4 *5 (-806)) (-4 *6 (-568)) (-4 *7 (-969 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1060 (-419 (-576))) (-374) (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $)))))))) -(-10 -7 (-15 -2636 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-3429 (((-112) $ $) NIL)) (-2029 (((-657 |#3|) $) 41)) (-1626 (((-112) $) NIL)) (-3072 (((-112) $) NIL (|has| |#1| (-568)))) (-1850 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-2035 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-4359 (($) NIL T CONST)) (-2433 (((-112) $) NIL (|has| |#1| (-568)))) (-1688 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4058 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2995 (((-112) $) NIL (|has| |#1| (-568)))) (-1978 (((-657 |#4|) (-657 |#4|) $) NIL (|has| |#1| (-568)))) (-2410 (((-657 |#4|) (-657 |#4|) $) NIL (|has| |#1| (-568)))) (-1624 (((-3 $ "failed") (-657 |#4|)) 49)) (-2884 (($ (-657 |#4|)) NIL)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-3895 (($ |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3644 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3622 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4466)))) (-1458 (((-657 |#4|) $) 18 (|has| $ (-6 -4466)))) (-3627 ((|#3| $) 47)) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 |#4|) $) 14 (|has| $ (-6 -4466)))) (-1627 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-2148 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#4| |#4|) $) 21)) (-1746 (((-657 |#3|) $) NIL)) (-4089 (((-112) |#3| $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL)) (-3404 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1471 (((-1142) $) NIL)) (-2951 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3399 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 |#4|) (-657 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) 39)) (-3581 (($) 17)) (-1482 (((-784) |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (((-784) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) 16)) (-4148 (((-548) $) NIL (|has| |#4| (-626 (-548)))) (($ (-657 |#4|)) 51)) (-3511 (($ (-657 |#4|)) 13)) (-2956 (($ $ |#3|) NIL)) (-1664 (($ $ |#3|) NIL)) (-3604 (($ $ |#3|) NIL)) (-3501 (((-877) $) 38) (((-657 |#4|) $) 50)) (-2046 (((-112) $ $) NIL)) (-2147 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 30)) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-475 |#1| |#2| |#3| |#4|) (-13 (-998 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4148 ($ (-657 |#4|))) (-6 -4466) (-6 -4467))) (-1071) (-806) (-862) (-1087 |#1| |#2| |#3|)) (T -475)) -((-4148 (*1 *1 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-475 *3 *4 *5 *6))))) -(-13 (-998 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4148 ($ (-657 |#4|))) (-6 -4466) (-6 -4467))) -((-2769 (($) 11)) (-2779 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-476 |#1| |#2| |#3|) (-10 -8 (-15 -2779 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2769 (|#1|))) (-477 |#2| |#3|) (-174) (-23)) (T -476)) -NIL -(-10 -8 (-15 -2779 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2769 (|#1|))) -((-3429 (((-112) $ $) 7)) (-1624 (((-3 |#1| "failed") $) 27)) (-2884 ((|#1| $) 28)) (-3778 (($ $ $) 24)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-1770 ((|#2| $) 20)) (-3501 (((-877) $) 12) (($ |#1|) 26)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2779 (($) 25 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 16) (($ $ $) 14)) (-3012 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) -(((-477 |#1| |#2|) (-141) (-174) (-23)) (T -477)) -((-2779 (*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3778 (*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-482 |t#1| |t#2|) (-1060 |t#1|) (-10 -8 (-15 (-2779) ($) -1509) (-15 -3778 ($ $ $)))) -(((-102) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-482 |#1| |#2|) . T) ((-1060 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-1988 (((-1289 (-1289 (-576))) (-1289 (-1289 (-576))) (-941)) 26)) (-4034 (((-1289 (-1289 (-576))) (-941)) 21))) -(((-478) (-10 -7 (-15 -1988 ((-1289 (-1289 (-576))) (-1289 (-1289 (-576))) (-941))) (-15 -4034 ((-1289 (-1289 (-576))) (-941))))) (T -478)) -((-4034 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1289 (-1289 (-576)))) (-5 *1 (-478)))) (-1988 (*1 *2 *2 *3) (-12 (-5 *2 (-1289 (-1289 (-576)))) (-5 *3 (-941)) (-5 *1 (-478))))) -(-10 -7 (-15 -1988 ((-1289 (-1289 (-576))) (-1289 (-1289 (-576))) (-941))) (-15 -4034 ((-1289 (-1289 (-576))) (-941)))) -((-4043 (((-576) (-576)) 32) (((-576)) 24)) (-3425 (((-576) (-576)) 28) (((-576)) 20)) (-2723 (((-576) (-576)) 30) (((-576)) 22)) (-2412 (((-112) (-112)) 14) (((-112)) 12)) (-1947 (((-112) (-112)) 13) (((-112)) 11)) (-1402 (((-112) (-112)) 26) (((-112)) 17))) -(((-479) (-10 -7 (-15 -1947 ((-112))) (-15 -2412 ((-112))) (-15 -1947 ((-112) (-112))) (-15 -2412 ((-112) (-112))) (-15 -1402 ((-112))) (-15 -2723 ((-576))) (-15 -3425 ((-576))) (-15 -4043 ((-576))) (-15 -1402 ((-112) (-112))) (-15 -2723 ((-576) (-576))) (-15 -3425 ((-576) (-576))) (-15 -4043 ((-576) (-576))))) (T -479)) -((-4043 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3425 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2723 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-1402 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-4043 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3425 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2723 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-1402 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-2412 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-2412 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-1947 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(-10 -7 (-15 -1947 ((-112))) (-15 -2412 ((-112))) (-15 -1947 ((-112) (-112))) (-15 -2412 ((-112) (-112))) (-15 -1402 ((-112))) (-15 -2723 ((-576))) (-15 -3425 ((-576))) (-15 -4043 ((-576))) (-15 -1402 ((-112) (-112))) (-15 -2723 ((-576) (-576))) (-15 -3425 ((-576) (-576))) (-15 -4043 ((-576) (-576)))) -((-3429 (((-112) $ $) NIL)) (-2405 (((-657 (-390)) $) 34) (((-657 (-390)) $ (-657 (-390))) 146)) (-2006 (((-657 (-1116 (-390))) $) 16) (((-657 (-1116 (-390))) $ (-657 (-1116 (-390)))) 142)) (-4298 (((-657 (-657 (-963 (-227)))) (-657 (-657 (-963 (-227)))) (-657 (-889))) 58)) (-3832 (((-657 (-657 (-963 (-227)))) $) 137)) (-3624 (((-1294) $ (-963 (-227)) (-889)) 163)) (-2555 (($ $) 136) (($ (-657 (-657 (-963 (-227))))) 149) (($ (-657 (-657 (-963 (-227)))) (-657 (-889)) (-657 (-889)) (-657 (-941))) 148) (($ (-657 (-657 (-963 (-227)))) (-657 (-889)) (-657 (-889)) (-657 (-941)) (-657 (-270))) 150)) (-2342 (((-1180) $) NIL)) (-4291 (((-576) $) 110)) (-1471 (((-1142) $) NIL)) (-3893 (($) 147)) (-3740 (((-657 (-227)) (-657 (-657 (-963 (-227))))) 89)) (-1570 (((-1294) $ (-657 (-963 (-227))) (-889) (-889) (-941)) 155) (((-1294) $ (-963 (-227))) 157) (((-1294) $ (-963 (-227)) (-889) (-889) (-941)) 156)) (-3501 (((-877) $) 169) (($ (-657 (-657 (-963 (-227))))) 164)) (-2046 (((-112) $ $) NIL)) (-3723 (((-1294) $ (-963 (-227))) 162)) (-2933 (((-112) $ $) NIL))) -(((-480) (-13 (-1122) (-10 -8 (-15 -3893 ($)) (-15 -2555 ($ $)) (-15 -2555 ($ (-657 (-657 (-963 (-227)))))) (-15 -2555 ($ (-657 (-657 (-963 (-227)))) (-657 (-889)) (-657 (-889)) (-657 (-941)))) (-15 -2555 ($ (-657 (-657 (-963 (-227)))) (-657 (-889)) (-657 (-889)) (-657 (-941)) (-657 (-270)))) (-15 -3832 ((-657 (-657 (-963 (-227)))) $)) (-15 -4291 ((-576) $)) (-15 -2006 ((-657 (-1116 (-390))) $)) (-15 -2006 ((-657 (-1116 (-390))) $ (-657 (-1116 (-390))))) (-15 -2405 ((-657 (-390)) $)) (-15 -2405 ((-657 (-390)) $ (-657 (-390)))) (-15 -1570 ((-1294) $ (-657 (-963 (-227))) (-889) (-889) (-941))) (-15 -1570 ((-1294) $ (-963 (-227)))) (-15 -1570 ((-1294) $ (-963 (-227)) (-889) (-889) (-941))) (-15 -3723 ((-1294) $ (-963 (-227)))) (-15 -3624 ((-1294) $ (-963 (-227)) (-889))) (-15 -3501 ($ (-657 (-657 (-963 (-227)))))) (-15 -3501 ((-877) $)) (-15 -4298 ((-657 (-657 (-963 (-227)))) (-657 (-657 (-963 (-227)))) (-657 (-889)))) (-15 -3740 ((-657 (-227)) (-657 (-657 (-963 (-227))))))))) (T -480)) -((-3501 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-480)))) (-3893 (*1 *1) (-5 *1 (-480))) (-2555 (*1 *1 *1) (-5 *1 (-480))) (-2555 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *1 (-480)))) (-2555 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *3 (-657 (-889))) (-5 *4 (-657 (-941))) (-5 *1 (-480)))) (-2555 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *3 (-657 (-889))) (-5 *4 (-657 (-941))) (-5 *5 (-657 (-270))) (-5 *1 (-480)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *1 (-480)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-480)))) (-2006 (*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-480)))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-657 (-390))) (-5 *1 (-480)))) (-2405 (*1 *2 *1 *2) (-12 (-5 *2 (-657 (-390))) (-5 *1 (-480)))) (-1570 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-657 (-963 (-227)))) (-5 *4 (-889)) (-5 *5 (-941)) (-5 *2 (-1294)) (-5 *1 (-480)))) (-1570 (*1 *2 *1 *3) (-12 (-5 *3 (-963 (-227))) (-5 *2 (-1294)) (-5 *1 (-480)))) (-1570 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-963 (-227))) (-5 *4 (-889)) (-5 *5 (-941)) (-5 *2 (-1294)) (-5 *1 (-480)))) (-3723 (*1 *2 *1 *3) (-12 (-5 *3 (-963 (-227))) (-5 *2 (-1294)) (-5 *1 (-480)))) (-3624 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-963 (-227))) (-5 *4 (-889)) (-5 *2 (-1294)) (-5 *1 (-480)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *1 (-480)))) (-4298 (*1 *2 *2 *3) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *3 (-657 (-889))) (-5 *1 (-480)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *2 (-657 (-227))) (-5 *1 (-480))))) -(-13 (-1122) (-10 -8 (-15 -3893 ($)) (-15 -2555 ($ $)) (-15 -2555 ($ (-657 (-657 (-963 (-227)))))) (-15 -2555 ($ (-657 (-657 (-963 (-227)))) (-657 (-889)) (-657 (-889)) (-657 (-941)))) (-15 -2555 ($ (-657 (-657 (-963 (-227)))) (-657 (-889)) (-657 (-889)) (-657 (-941)) (-657 (-270)))) (-15 -3832 ((-657 (-657 (-963 (-227)))) $)) (-15 -4291 ((-576) $)) (-15 -2006 ((-657 (-1116 (-390))) $)) (-15 -2006 ((-657 (-1116 (-390))) $ (-657 (-1116 (-390))))) (-15 -2405 ((-657 (-390)) $)) (-15 -2405 ((-657 (-390)) $ (-657 (-390)))) (-15 -1570 ((-1294) $ (-657 (-963 (-227))) (-889) (-889) (-941))) (-15 -1570 ((-1294) $ (-963 (-227)))) (-15 -1570 ((-1294) $ (-963 (-227)) (-889) (-889) (-941))) (-15 -3723 ((-1294) $ (-963 (-227)))) (-15 -3624 ((-1294) $ (-963 (-227)) (-889))) (-15 -3501 ($ (-657 (-657 (-963 (-227)))))) (-15 -3501 ((-877) $)) (-15 -4298 ((-657 (-657 (-963 (-227)))) (-657 (-657 (-963 (-227)))) (-657 (-889)))) (-15 -3740 ((-657 (-227)) (-657 (-657 (-963 (-227)))))))) -((-3022 (($ $) NIL) (($ $ $) 11))) -(((-481 |#1| |#2| |#3|) (-10 -8 (-15 -3022 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|))) (-482 |#2| |#3|) (-174) (-23)) (T -481)) -NIL -(-10 -8 (-15 -3022 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|))) -((-3429 (((-112) $ $) 7)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-1770 ((|#2| $) 20)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 16) (($ $ $) 14)) (-3012 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) -(((-482 |#1| |#2|) (-141) (-174) (-23)) (T -482)) -((-1770 (*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2769 (*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3022 (*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3012 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3022 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-1122) (-10 -8 (-15 -1770 (|t#2| $)) (-15 (-2769) ($) -1509) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3022 ($ $)) (-15 -3012 ($ $ $)) (-15 -3022 ($ $ $)))) -(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-4179 (((-3 (-657 (-493 |#1| |#2|)) "failed") (-657 (-493 |#1| |#2|)) (-657 (-879 |#1|))) 134)) (-3543 (((-657 (-657 (-253 |#1| |#2|))) (-657 (-253 |#1| |#2|)) (-657 (-879 |#1|))) 131)) (-3457 (((-2 (|:| |dpolys| (-657 (-253 |#1| |#2|))) (|:| |coords| (-657 (-576)))) (-657 (-253 |#1| |#2|)) (-657 (-879 |#1|))) 86))) -(((-483 |#1| |#2| |#3|) (-10 -7 (-15 -3543 ((-657 (-657 (-253 |#1| |#2|))) (-657 (-253 |#1| |#2|)) (-657 (-879 |#1|)))) (-15 -4179 ((-3 (-657 (-493 |#1| |#2|)) "failed") (-657 (-493 |#1| |#2|)) (-657 (-879 |#1|)))) (-15 -3457 ((-2 (|:| |dpolys| (-657 (-253 |#1| |#2|))) (|:| |coords| (-657 (-576)))) (-657 (-253 |#1| |#2|)) (-657 (-879 |#1|))))) (-657 (-1198)) (-464) (-464)) (T -483)) -((-3457 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-879 *5))) (-14 *5 (-657 (-1198))) (-4 *6 (-464)) (-5 *2 (-2 (|:| |dpolys| (-657 (-253 *5 *6))) (|:| |coords| (-657 (-576))))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-657 (-253 *5 *6))) (-4 *7 (-464)))) (-4179 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-657 (-493 *4 *5))) (-5 *3 (-657 (-879 *4))) (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) (-4 *6 (-464)))) (-3543 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-879 *5))) (-14 *5 (-657 (-1198))) (-4 *6 (-464)) (-5 *2 (-657 (-657 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-657 (-253 *5 *6))) (-4 *7 (-464))))) -(-10 -7 (-15 -3543 ((-657 (-657 (-253 |#1| |#2|))) (-657 (-253 |#1| |#2|)) (-657 (-879 |#1|)))) (-15 -4179 ((-3 (-657 (-493 |#1| |#2|)) "failed") (-657 (-493 |#1| |#2|)) (-657 (-879 |#1|)))) (-15 -3457 ((-2 (|:| |dpolys| (-657 (-253 |#1| |#2|))) (|:| |coords| (-657 (-576)))) (-657 (-253 |#1| |#2|)) (-657 (-879 |#1|))))) -((-3843 (((-3 $ "failed") $) 11)) (-3549 (($ $ $) 23)) (-3544 (($ $ $) 24)) (-3034 (($ $ $) 9)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) 22))) -(((-484 |#1|) (-10 -8 (-15 -3544 (|#1| |#1| |#1|)) (-15 -3549 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3034 (|#1| |#1| |#1|)) (-15 -3843 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-784))) (-15 ** (|#1| |#1| (-941)))) (-485)) (T -484)) -NIL -(-10 -8 (-15 -3544 (|#1| |#1| |#1|)) (-15 -3549 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3034 (|#1| |#1| |#1|)) (-15 -3843 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-784))) (-15 ** (|#1| |#1| (-941)))) -((-3429 (((-112) $ $) 7)) (-4359 (($) 19 T CONST)) (-3843 (((-3 $ "failed") $) 16)) (-4094 (((-112) $) 18)) (-2342 (((-1180) $) 10)) (-2134 (($ $) 25)) (-1471 (((-1142) $) 11)) (-3549 (($ $ $) 22)) (-3544 (($ $ $) 21)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2779 (($) 20 T CONST)) (-2933 (((-112) $ $) 8)) (-3034 (($ $ $) 24)) (** (($ $ (-941)) 14) (($ $ (-784)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) -(((-485) (-141)) (T -485)) -((-2134 (*1 *1 *1) (-4 *1 (-485))) (-3034 (*1 *1 *1 *1) (-4 *1 (-485))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) (-3549 (*1 *1 *1 *1) (-4 *1 (-485))) (-3544 (*1 *1 *1 *1) (-4 *1 (-485)))) -(-13 (-739) (-10 -8 (-15 -2134 ($ $)) (-15 -3034 ($ $ $)) (-15 ** ($ $ (-576))) (-6 -4463) (-15 -3549 ($ $ $)) (-15 -3544 ($ $ $)))) -(((-102) . T) ((-625 (-877)) . T) ((-739) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2029 (((-657 (-1104)) $) NIL)) (-3032 (((-1198) $) 18)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-4374 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-2886 (((-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-2176 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2030 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL (|has| |#1| (-374)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1896 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2864 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2150 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2004 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3660 (($ (-784) (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-2201 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2052 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4359 (($) NIL T CONST)) (-3373 (($ $ $) NIL (|has| |#1| (-374)))) (-2212 (($ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3385 (($ $ $) NIL (|has| |#1| (-374)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-4257 (((-112) $) NIL (|has| |#1| (-374)))) (-2373 (((-112) $) NIL)) (-1657 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3182 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-4094 (((-112) $) NIL)) (-2082 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1525 (($ $ (-941)) NIL) (($ $ (-419 (-576))) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-419 (-576))) NIL) (($ $ (-1104) (-419 (-576))) NIL) (($ $ (-657 (-1104)) (-657 (-419 (-576)))) NIL)) (-4083 (($ (-1 |#1| |#1|) $) 25)) (-3670 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-374)))) (-4190 (($ $) 29 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) 35 (-2802 (-12 (|has| |#1| (-15 -4190 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -2029 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224))))) (($ $ (-1285 |#2|)) 30 (|has| |#1| (-38 (-419 (-576)))))) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1885 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-3926 (($ $ (-419 (-576))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3236 (((-1179 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2034 (((-784) $) NIL (|has| |#1| (-374)))) (-2835 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1134)))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-374)))) (-2815 (($ $ (-1198)) 28 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1285 |#2|)) 16)) (-1770 (((-419 (-576)) $) NIL)) (-2213 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2062 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2188 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2163 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1431 (($ $) NIL)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1285 |#2|)) NIL) (($ (-1274 |#1| |#2| |#3|)) 9) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2313 ((|#1| $ (-419 (-576))) NIL)) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) NIL T CONST)) (-3665 ((|#1| $) 21)) (-2046 (((-112) $ $) NIL)) (-4110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2225 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2072 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2125 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4144 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3501 (|#1| (-1198))))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4124 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2235 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2085 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1285 |#2|)) NIL)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) 27)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-486 |#1| |#2| |#3|) (-13 (-1270 |#1|) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3501 ($ (-1285 |#2|))) (-15 -3501 ($ (-1274 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4190 ($ $ (-1285 |#2|))) |%noBranch|))) (-1071) (-1198) |#1|) (T -486)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1071)) (-14 *5 *3))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-1274 *3 *4 *5)) (-4 *3 (-1071)) (-14 *4 (-1198)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) (-4190 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3)))) -(-13 (-1270 |#1|) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3501 ($ (-1285 |#2|))) (-15 -3501 ($ (-1274 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4190 ($ $ (-1285 |#2|))) |%noBranch|))) -((-3429 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4095 (($) NIL) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-4313 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 ((|#2| $ |#1| |#2|) 18)) (-3162 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2287 (((-3 |#2| "failed") |#1| $) 19)) (-4359 (($) NIL T CONST)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3647 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) 16)) (-3895 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3622 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2158 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#2| $ |#1|) NIL)) (-1458 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) NIL)) (-3853 ((|#1| $) NIL (|has| |#1| (-862)))) (-2070 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2272 ((|#1| $) NIL (|has| |#1| (-862)))) (-2148 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4467))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3159 (((-657 |#1|) $) NIL)) (-1708 (((-112) |#1| $) NIL)) (-3050 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2468 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-1430 (((-657 |#1|) $) NIL)) (-4242 (((-112) |#1| $) NIL)) (-1471 (((-1142) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3510 ((|#2| $) NIL (|has| |#1| (-862)))) (-2951 (((-3 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1987 (($ $ |#2|) NIL (|has| $ (-6 -4467)))) (-2277 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-3399 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2380 (((-657 |#2|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1504 (($) NIL) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-1482 (((-784) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3511 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-3501 (((-877) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-625 (-877))) (|has| |#2| (-625 (-877)))))) (-2046 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4079 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-2147 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-487 |#1| |#2| |#3| |#4|) (-1215 |#1| |#2|) (-1122) (-1122) (-1215 |#1| |#2|) |#2|) (T -487)) -NIL -(-1215 |#1| |#2|) -((-3429 (((-112) $ $) NIL)) (-2856 (((-657 (-2 (|:| -2016 $) (|:| -3209 (-657 |#4|)))) (-657 |#4|)) NIL)) (-3472 (((-657 $) (-657 |#4|)) NIL)) (-2029 (((-657 |#3|) $) NIL)) (-1626 (((-112) $) NIL)) (-3072 (((-112) $) NIL (|has| |#1| (-568)))) (-4021 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1329 ((|#4| |#4| $) NIL)) (-1850 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-2035 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4359 (($) NIL T CONST)) (-2433 (((-112) $) 29 (|has| |#1| (-568)))) (-1688 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4058 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2995 (((-112) $) NIL (|has| |#1| (-568)))) (-2292 (((-657 |#4|) (-657 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1978 (((-657 |#4|) (-657 |#4|) $) NIL (|has| |#1| (-568)))) (-2410 (((-657 |#4|) (-657 |#4|) $) NIL (|has| |#1| (-568)))) (-1624 (((-3 $ "failed") (-657 |#4|)) NIL)) (-2884 (($ (-657 |#4|)) NIL)) (-3522 (((-3 $ "failed") $) 45)) (-2073 ((|#4| |#4| $) NIL)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-3895 (($ |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3644 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3206 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3003 ((|#4| |#4| $) NIL)) (-3622 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4466))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1957 (((-2 (|:| -2016 (-657 |#4|)) (|:| -3209 (-657 |#4|))) $) NIL)) (-1458 (((-657 |#4|) $) 18 (|has| $ (-6 -4466)))) (-1878 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3627 ((|#3| $) 38)) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 |#4|) $) 19 (|has| $ (-6 -4466)))) (-1627 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-2148 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#4| |#4|) $) 23)) (-1746 (((-657 |#3|) $) NIL)) (-4089 (((-112) |#3| $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL)) (-3920 (((-3 |#4| "failed") $) 42)) (-1765 (((-657 |#4|) $) NIL)) (-4365 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2833 ((|#4| |#4| $) NIL)) (-4015 (((-112) $ $) NIL)) (-3404 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3965 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2843 ((|#4| |#4| $) NIL)) (-1471 (((-1142) $) NIL)) (-3510 (((-3 |#4| "failed") $) 40)) (-2951 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1548 (((-3 $ "failed") $ |#4|) 58)) (-3926 (($ $ |#4|) NIL)) (-3399 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 |#4|) (-657 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) 17)) (-3581 (($) 14)) (-1770 (((-784) $) NIL)) (-1482 (((-784) |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (((-784) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) 13)) (-4148 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3511 (($ (-657 |#4|)) 22)) (-2956 (($ $ |#3|) 52)) (-1664 (($ $ |#3|) 54)) (-3459 (($ $) NIL)) (-3604 (($ $ |#3|) NIL)) (-3501 (((-877) $) 35) (((-657 |#4|) $) 46)) (-3540 (((-784) $) NIL (|has| |#3| (-379)))) (-2046 (((-112) $ $) NIL)) (-2631 (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3302 (((-112) $ (-1 (-112) |#4| (-657 |#4|))) NIL)) (-2147 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3039 (((-657 |#3|) $) NIL)) (-1863 (((-112) |#3| $) NIL)) (-2933 (((-112) $ $) NIL)) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-488 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|) (-568) (-806) (-862) (-1087 |#1| |#2| |#3|)) (T -488)) -NIL -(-1232 |#1| |#2| |#3| |#4|) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-2864 (((-112) $ $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2884 (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-1657 (($) 17)) (-4094 (((-112) $) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1885 (((-430 $) $) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-4148 (((-390) $) 21) (((-227) $) 24) (((-419 (-1194 (-576))) $) 18) (((-548) $) 53)) (-3501 (((-877) $) 51) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (((-227) $) 23) (((-390) $) 20)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-2769 (($) 37 T CONST)) (-2779 (($) 8 T CONST)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-489) (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))) (-1044) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1194 (-576)))) (-626 (-548)) (-10 -8 (-15 -1657 ($))))) (T -489)) -((-1657 (*1 *1) (-5 *1 (-489)))) -(-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))) (-1044) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1194 (-576)))) (-626 (-548)) (-10 -8 (-15 -1657 ($)))) -((-3429 (((-112) $ $) NIL)) (-1730 (((-1157) $) 11)) (-1718 (((-1157) $) 9)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 17) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-490) (-13 (-1105) (-10 -8 (-15 -1718 ((-1157) $)) (-15 -1730 ((-1157) $))))) (T -490)) -((-1718 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-490)))) (-1730 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-490))))) -(-13 (-1105) (-10 -8 (-15 -1718 ((-1157) $)) (-15 -1730 ((-1157) $)))) -((-3429 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4095 (($) NIL) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-4313 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 ((|#2| $ |#1| |#2|) 16)) (-3162 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2287 (((-3 |#2| "failed") |#1| $) 20)) (-4359 (($) NIL T CONST)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3647 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) 18)) (-3895 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3622 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2158 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#2| $ |#1|) NIL)) (-1458 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) NIL)) (-3853 ((|#1| $) NIL (|has| |#1| (-862)))) (-2070 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2272 ((|#1| $) NIL (|has| |#1| (-862)))) (-2148 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4467))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3159 (((-657 |#1|) $) 13)) (-1708 (((-112) |#1| $) NIL)) (-3050 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2468 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-1430 (((-657 |#1|) $) NIL)) (-4242 (((-112) |#1| $) NIL)) (-1471 (((-1142) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3510 ((|#2| $) NIL (|has| |#1| (-862)))) (-2951 (((-3 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1987 (($ $ |#2|) NIL (|has| $ (-6 -4467)))) (-2277 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-3399 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2380 (((-657 |#2|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) 19)) (-2835 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1504 (($) NIL) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-1482 (((-784) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3511 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-3501 (((-877) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-625 (-877))) (|has| |#2| (-625 (-877)))))) (-2046 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4079 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-2147 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 11 (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3440 (((-784) $) 15 (|has| $ (-6 -4466))))) -(((-491 |#1| |#2| |#3|) (-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4466))) (-1122) (-1122) (-1180)) (T -491)) -NIL -(-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4466))) -((-3256 (((-576) (-576) (-576)) 19)) (-3541 (((-112) (-576) (-576) (-576) (-576)) 28)) (-4345 (((-1289 (-657 (-576))) (-784) (-784)) 41))) -(((-492) (-10 -7 (-15 -3256 ((-576) (-576) (-576))) (-15 -3541 ((-112) (-576) (-576) (-576) (-576))) (-15 -4345 ((-1289 (-657 (-576))) (-784) (-784))))) (T -492)) -((-4345 (*1 *2 *3 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1289 (-657 (-576)))) (-5 *1 (-492)))) (-3541 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492)))) (-3256 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) -(-10 -7 (-15 -3256 ((-576) (-576) (-576))) (-15 -3541 ((-112) (-576) (-576) (-576) (-576))) (-15 -4345 ((-1289 (-657 (-576))) (-784) (-784)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2029 (((-657 (-879 |#1|)) $) NIL)) (-1849 (((-1194 $) $ (-879 |#1|)) NIL) (((-1194 |#2|) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-3325 (($ $) NIL (|has| |#2| (-568)))) (-4306 (((-112) $) NIL (|has| |#2| (-568)))) (-1775 (((-784) $) NIL) (((-784) $ (-657 (-879 |#1|))) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-2638 (($ $) NIL (|has| |#2| (-464)))) (-4402 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1060 (-576)))) (((-3 (-879 |#1|) "failed") $) NIL)) (-2884 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1060 (-576)))) (((-879 |#1|) $) NIL)) (-3203 (($ $ $ (-879 |#1|)) NIL (|has| |#2| (-174)))) (-3462 (($ $ (-657 (-576))) NIL)) (-2212 (($ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL) (((-702 |#2|) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3813 (($ $) NIL (|has| |#2| (-464))) (($ $ (-879 |#1|)) NIL (|has| |#2| (-464)))) (-2199 (((-657 $) $) NIL)) (-4257 (((-112) $) NIL (|has| |#2| (-929)))) (-3124 (($ $ |#2| (-494 (-3440 |#1|) (-784)) $) NIL)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-879 |#1|) (-902 (-390))) (|has| |#2| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-879 |#1|) (-902 (-576))) (|has| |#2| (-902 (-576)))))) (-4094 (((-112) $) NIL)) (-4334 (((-784) $) NIL)) (-2014 (($ (-1194 |#2|) (-879 |#1|)) NIL) (($ (-1194 $) (-879 |#1|)) NIL)) (-3724 (((-657 $) $) NIL)) (-3157 (((-112) $) NIL)) (-2003 (($ |#2| (-494 (-3440 |#1|) (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ (-879 |#1|)) NIL)) (-4436 (((-494 (-3440 |#1|) (-784)) $) NIL) (((-784) $ (-879 |#1|)) NIL) (((-657 (-784)) $ (-657 (-879 |#1|))) NIL)) (-4056 (($ (-1 (-494 (-3440 |#1|) (-784)) (-494 (-3440 |#1|) (-784))) $) NIL)) (-4083 (($ (-1 |#2| |#2|) $) NIL)) (-2353 (((-3 (-879 |#1|) "failed") $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-2174 (($ $) NIL)) (-2186 ((|#2| $) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2342 (((-1180) $) NIL)) (-1392 (((-3 (-657 $) "failed") $) NIL)) (-2974 (((-3 (-657 $) "failed") $) NIL)) (-2999 (((-3 (-2 (|:| |var| (-879 |#1|)) (|:| -1801 (-784))) "failed") $) NIL)) (-1471 (((-1142) $) NIL)) (-2146 (((-112) $) NIL)) (-2160 ((|#2| $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#2| (-464)))) (-3436 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-1885 (((-430 $) $) NIL (|has| |#2| (-929)))) (-3418 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3236 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-879 |#1|) |#2|) NIL) (($ $ (-657 (-879 |#1|)) (-657 |#2|)) NIL) (($ $ (-879 |#1|) $) NIL) (($ $ (-657 (-879 |#1|)) (-657 $)) NIL)) (-1701 (($ $ (-879 |#1|)) NIL (|has| |#2| (-174)))) (-2815 (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|))) NIL) (($ $ (-879 |#1|)) NIL)) (-1770 (((-494 (-3440 |#1|) (-784)) $) NIL) (((-784) $ (-879 |#1|)) NIL) (((-657 (-784)) $ (-657 (-879 |#1|))) NIL)) (-4148 (((-908 (-390)) $) NIL (-12 (|has| (-879 |#1|) (-626 (-908 (-390)))) (|has| |#2| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-879 |#1|) (-626 (-908 (-576)))) (|has| |#2| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-879 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1450 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-879 |#1|)) NIL (|has| |#2| (-464)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-929))))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-879 |#1|)) NIL) (($ (-419 (-576))) NIL (-2802 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-4037 (((-657 |#2|) $) NIL)) (-2313 ((|#2| $ (-494 (-3440 |#1|) (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| |#2| (-929))) (|has| |#2| (-146))))) (-1960 (((-784)) NIL T CONST)) (-2702 (($ $ $ (-784)) NIL (|has| |#2| (-174)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|))) NIL) (($ $ (-879 |#1|)) NIL)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-493 |#1| |#2|) (-13 (-969 |#2| (-494 (-3440 |#1|) (-784)) (-879 |#1|)) (-10 -8 (-15 -3462 ($ $ (-657 (-576)))))) (-657 (-1198)) (-1071)) (T -493)) -((-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-493 *3 *4)) (-14 *3 (-657 (-1198))) (-4 *4 (-1071))))) -(-13 (-969 |#2| (-494 (-3440 |#1|) (-784)) (-879 |#1|)) (-10 -8 (-15 -3462 ($ $ (-657 (-576)))))) -((-3429 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2364 (((-112) $) NIL (|has| |#2| (-23)))) (-3110 (($ (-941)) NIL (|has| |#2| (-1071)))) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3733 (($ $ $) NIL (|has| |#2| (-806)))) (-2721 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3793 (((-112) $ (-784)) NIL)) (-2193 (((-784)) NIL (|has| |#2| (-379)))) (-3682 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4467)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1122)))) (-2884 (((-576) $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) ((|#2| $) NIL (|has| |#2| (-1122)))) (-3306 (((-702 (-576)) (-702 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL (|has| |#2| (-1071))) (((-702 |#2|) (-702 $)) NIL (|has| |#2| (-1071)))) (-3843 (((-3 $ "failed") $) NIL (|has| |#2| (-1071)))) (-1892 (($) NIL (|has| |#2| (-379)))) (-2158 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#2| $ (-576)) 11)) (-1458 (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-4094 (((-112) $) NIL (|has| |#2| (-1071)))) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) NIL (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| |#2| (-862)))) (-2070 (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2272 (((-576) $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| |#2| (-862)))) (-2148 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#2| |#2|) $) NIL)) (-3007 (((-941) $) NIL (|has| |#2| (-379)))) (-4261 (((-112) $ (-784)) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL (|has| |#2| (-1071))) (((-702 |#2|) (-1289 $)) NIL (|has| |#2| (-1071)))) (-2342 (((-1180) $) NIL (|has| |#2| (-1122)))) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-3178 (($ (-941)) NIL (|has| |#2| (-379)))) (-1471 (((-1142) $) NIL (|has| |#2| (-1122)))) (-3510 ((|#2| $) NIL (|has| (-576) (-862)))) (-1987 (($ $ |#2|) NIL (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2380 (((-657 |#2|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-1374 ((|#2| $ $) NIL (|has| |#2| (-1071)))) (-1924 (($ (-1289 |#2|)) NIL)) (-3863 (((-135)) NIL (|has| |#2| (-374)))) (-2815 (($ $ (-784)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1071))) (($ $ (-1 |#2| |#2|) (-784)) NIL (|has| |#2| (-1071)))) (-1482 (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1923 (($ $) NIL)) (-3501 (((-1289 |#2|) $) NIL) (($ (-576)) NIL (-2802 (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (|has| |#2| (-1071)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (($ |#2|) NIL (|has| |#2| (-1122))) (((-877) $) NIL (|has| |#2| (-625 (-877))))) (-1960 (((-784)) NIL (|has| |#2| (-1071)) CONST)) (-2046 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2147 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2769 (($) NIL (|has| |#2| (-23)) CONST)) (-2779 (($) NIL (|has| |#2| (-1071)) CONST)) (-2097 (($ $ (-784)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1071))) (($ $ (-1 |#2| |#2|) (-784)) NIL (|has| |#2| (-1071)))) (-2985 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2933 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2973 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2954 (((-112) $ $) 17 (|has| |#2| (-862)))) (-3034 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3022 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3012 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-784)) NIL (|has| |#2| (-1071))) (($ $ (-941)) NIL (|has| |#2| (-1071)))) (* (($ $ $) NIL (|has| |#2| (-1071))) (($ $ |#2|) NIL (|has| |#2| (-739))) (($ |#2| $) NIL (|has| |#2| (-739))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-784) $) NIL (|has| |#2| (-23))) (($ (-941) $) NIL (|has| |#2| (-25)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-494 |#1| |#2|) (-243 |#1| |#2|) (-784) (-806)) (T -494)) -NIL -(-243 |#1| |#2|) -((-3429 (((-112) $ $) NIL)) (-2200 (((-657 (-891)) $) 15)) (-2676 (((-518) $) 13)) (-2342 (((-1180) $) NIL)) (-3055 (($ (-518) (-657 (-891))) 11)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 22) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-495) (-13 (-1105) (-10 -8 (-15 -3055 ($ (-518) (-657 (-891)))) (-15 -2676 ((-518) $)) (-15 -2200 ((-657 (-891)) $))))) (T -495)) -((-3055 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-657 (-891))) (-5 *1 (-495)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) (-2200 (*1 *2 *1) (-12 (-5 *2 (-657 (-891))) (-5 *1 (-495))))) -(-13 (-1105) (-10 -8 (-15 -3055 ($ (-518) (-657 (-891)))) (-15 -2676 ((-518) $)) (-15 -2200 ((-657 (-891)) $)))) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3793 (((-112) $ (-784)) NIL)) (-4359 (($) NIL T CONST)) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) NIL)) (-4033 (($ $ $) 48)) (-3073 (($ $ $) 47)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1611 ((|#1| $) 40)) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3050 ((|#1| $) 41)) (-2468 (($ |#1| $) 18)) (-4018 (($ (-657 |#1|)) 19)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2277 ((|#1| $) 34)) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) 11)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) NIL)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4079 (($ (-657 |#1|)) 45)) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3440 (((-784) $) 29 (|has| $ (-6 -4466))))) -(((-496 |#1|) (-13 (-990 |#1|) (-10 -8 (-15 -4018 ($ (-657 |#1|))))) (-862)) (T -496)) -((-4018 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-496 *3))))) -(-13 (-990 |#1|) (-10 -8 (-15 -4018 ($ (-657 |#1|))))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-3622 (($ $) 71)) (-1456 (((-112) $) NIL)) (-2342 (((-1180) $) NIL)) (-2368 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 45)) (-1471 (((-1142) $) NIL)) (-4097 (((-3 |#4| "failed") $) 117)) (-1494 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-576)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-1954 (((-2 (|:| -3066 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-3501 (((-877) $) 110)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 32 T CONST)) (-2933 (((-112) $ $) 121)) (-3022 (($ $) 77) (($ $ $) NIL)) (-3012 (($ $ $) 72)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 78))) -(((-497 |#1| |#2| |#3| |#4|) (-346 |#1| |#2| |#3| |#4|) (-374) (-1265 |#1|) (-1265 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -497)) -NIL -(-346 |#1| |#2| |#3| |#4|) -((-2505 (((-576) (-657 (-576))) 53)) (-2599 ((|#1| (-657 |#1|)) 94)) (-2403 (((-657 |#1|) (-657 |#1|)) 95)) (-1644 (((-657 |#1|) (-657 |#1|)) 97)) (-3436 ((|#1| (-657 |#1|)) 96)) (-1450 (((-657 (-576)) (-657 |#1|)) 56))) -(((-498 |#1|) (-10 -7 (-15 -3436 (|#1| (-657 |#1|))) (-15 -2599 (|#1| (-657 |#1|))) (-15 -1644 ((-657 |#1|) (-657 |#1|))) (-15 -2403 ((-657 |#1|) (-657 |#1|))) (-15 -1450 ((-657 (-576)) (-657 |#1|))) (-15 -2505 ((-576) (-657 (-576))))) (-1265 (-576))) (T -498)) -((-2505 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) (-4 *4 (-1265 *2)))) (-1450 (*1 *2 *3) (-12 (-5 *3 (-657 *4)) (-4 *4 (-1265 (-576))) (-5 *2 (-657 (-576))) (-5 *1 (-498 *4)))) (-2403 (*1 *2 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1265 (-576))) (-5 *1 (-498 *3)))) (-1644 (*1 *2 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1265 (-576))) (-5 *1 (-498 *3)))) (-2599 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1265 (-576))))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1265 (-576)))))) -(-10 -7 (-15 -3436 (|#1| (-657 |#1|))) (-15 -2599 (|#1| (-657 |#1|))) (-15 -1644 ((-657 |#1|) (-657 |#1|))) (-15 -2403 ((-657 |#1|) (-657 |#1|))) (-15 -1450 ((-657 (-576)) (-657 |#1|))) (-15 -2505 ((-576) (-657 (-576))))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3931 (((-576) $) NIL (|has| (-576) (-317)))) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-2864 (((-112) $ $) NIL)) (-1536 (((-576) $) NIL (|has| (-576) (-833)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL) (((-3 (-1198) "failed") $) NIL (|has| (-576) (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1060 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1060 (-576))))) (-2884 (((-576) $) NIL) (((-1198) $) NIL (|has| (-576) (-1060 (-1198)))) (((-419 (-576)) $) NIL (|has| (-576) (-1060 (-576)))) (((-576) $) NIL (|has| (-576) (-1060 (-576))))) (-3373 (($ $ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-702 (-576)) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($) NIL (|has| (-576) (-557)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-2828 (((-112) $) NIL (|has| (-576) (-833)))) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| (-576) (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| (-576) (-902 (-390))))) (-4094 (((-112) $) NIL)) (-2752 (($ $) NIL)) (-1621 (((-576) $) NIL)) (-4019 (((-3 $ "failed") $) NIL (|has| (-576) (-1174)))) (-2881 (((-112) $) NIL (|has| (-576) (-833)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3707 (($ $ $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| (-576) (-862)))) (-4083 (($ (-1 (-576) (-576)) $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL) (((-702 (-576)) (-1289 $)) NIL)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1706 (($) NIL (|has| (-576) (-1174)) CONST)) (-3103 (($ (-419 (-576))) 9)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2900 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-3427 (((-576) $) NIL (|has| (-576) (-557)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-1885 (((-430 $) $) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3236 (($ $ (-657 (-576)) (-657 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-657 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-657 (-1198)) (-657 (-576))) NIL (|has| (-576) (-526 (-1198) (-576)))) (($ $ (-1198) (-576)) NIL (|has| (-576) (-526 (-1198) (-576))))) (-2034 (((-784) $) NIL)) (-2835 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2815 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-576) (-920 (-1198)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-784)) NIL (|has| (-576) (-237)))) (-1396 (($ $) NIL)) (-1635 (((-576) $) NIL)) (-4148 (((-908 (-576)) $) NIL (|has| (-576) (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| (-576) (-626 (-908 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1044))) (((-227) $) NIL (|has| (-576) (-1044)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-929))))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1198)) NIL (|has| (-576) (-1060 (-1198)))) (((-419 (-576)) $) NIL) (((-1026 16) $) 10)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| (-576) (-929))) (|has| (-576) (-146))))) (-1960 (((-784)) NIL T CONST)) (-1893 (((-576) $) NIL (|has| (-576) (-557)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-1792 (($ $) NIL (|has| (-576) (-833)))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-576) (-920 (-1198)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-784)) NIL (|has| (-576) (-237)))) (-2985 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2963 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2954 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3034 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) -(((-499) (-13 (-1014 (-576)) (-625 (-419 (-576))) (-625 (-1026 16)) (-10 -8 (-15 -2900 ((-419 (-576)) $)) (-15 -3103 ($ (-419 (-576))))))) (T -499)) -((-2900 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) (-3103 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) -(-13 (-1014 (-576)) (-625 (-419 (-576))) (-625 (-1026 16)) (-10 -8 (-15 -2900 ((-419 (-576)) $)) (-15 -3103 ($ (-419 (-576)))))) -((-2070 (((-657 |#2|) $) 31)) (-1627 (((-112) |#2| $) 39)) (-3399 (((-112) (-1 (-112) |#2|) $) 26)) (-3236 (($ $ (-657 (-304 |#2|))) 13) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-657 |#2|) (-657 |#2|)) NIL)) (-1482 (((-784) (-1 (-112) |#2|) $) 30) (((-784) |#2| $) 37)) (-3501 (((-877) $) 45)) (-2147 (((-112) (-1 (-112) |#2|) $) 23)) (-2933 (((-112) $ $) 35)) (-3440 (((-784) $) 18))) -(((-500 |#1| |#2|) (-10 -8 (-15 -2933 ((-112) |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -3236 (|#1| |#1| (-657 |#2|) (-657 |#2|))) (-15 -3236 (|#1| |#1| |#2| |#2|)) (-15 -3236 (|#1| |#1| (-304 |#2|))) (-15 -3236 (|#1| |#1| (-657 (-304 |#2|)))) (-15 -1627 ((-112) |#2| |#1|)) (-15 -1482 ((-784) |#2| |#1|)) (-15 -2070 ((-657 |#2|) |#1|)) (-15 -1482 ((-784) (-1 (-112) |#2|) |#1|)) (-15 -3399 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2147 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3440 ((-784) |#1|))) (-501 |#2|) (-1239)) (T -500)) -NIL -(-10 -8 (-15 -2933 ((-112) |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -3236 (|#1| |#1| (-657 |#2|) (-657 |#2|))) (-15 -3236 (|#1| |#1| |#2| |#2|)) (-15 -3236 (|#1| |#1| (-304 |#2|))) (-15 -3236 (|#1| |#1| (-657 (-304 |#2|)))) (-15 -1627 ((-112) |#2| |#1|)) (-15 -1482 ((-784) |#2| |#1|)) (-15 -2070 ((-657 |#2|) |#1|)) (-15 -1482 ((-784) (-1 (-112) |#2|) |#1|)) (-15 -3399 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2147 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3440 ((-784) |#1|))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3793 (((-112) $ (-784)) 8)) (-4359 (($) 7 T CONST)) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) 9)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-501 |#1|) (-141) (-1239)) (T -501)) -((-4083 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1239)))) (-2148 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4467)) (-4 *1 (-501 *3)) (-4 *3 (-1239)))) (-2147 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4466)) (-4 *1 (-501 *4)) (-4 *4 (-1239)) (-5 *2 (-112)))) (-3399 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4466)) (-4 *1 (-501 *4)) (-4 *4 (-1239)) (-5 *2 (-112)))) (-1482 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4466)) (-4 *1 (-501 *4)) (-4 *4 (-1239)) (-5 *2 (-784)))) (-1458 (*1 *2 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-501 *3)) (-4 *3 (-1239)) (-5 *2 (-657 *3)))) (-2070 (*1 *2 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-501 *3)) (-4 *3 (-1239)) (-5 *2 (-657 *3)))) (-1482 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-501 *3)) (-4 *3 (-1239)) (-4 *3 (-1122)) (-5 *2 (-784)))) (-1627 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-501 *3)) (-4 *3 (-1239)) (-4 *3 (-1122)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-625 (-877))) (-6 (-625 (-877))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |t#1| (-1122)) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4083 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4467)) (-15 -2148 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4466)) (PROGN (-15 -2147 ((-112) (-1 (-112) |t#1|) $)) (-15 -3399 ((-112) (-1 (-112) |t#1|) $)) (-15 -1482 ((-784) (-1 (-112) |t#1|) $)) (-15 -1458 ((-657 |t#1|) $)) (-15 -2070 ((-657 |t#1|) $)) (IF (|has| |t#1| (-1122)) (PROGN (-15 -1482 ((-784) |t#1| $)) (-15 -1627 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) -((-3501 ((|#1| $) 6) (($ |#1|) 9))) -(((-502 |#1|) (-141) (-1239)) (T -502)) -NIL -(-13 (-625 |t#1|) (-628 |t#1|)) -(((-628 |#1|) . T) ((-625 |#1|) . T)) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-3900 (($ (-1180)) 8)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 15) (((-1180) $) 12)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 11))) -(((-503) (-13 (-1122) (-625 (-1180)) (-10 -8 (-15 -3900 ($ (-1180)))))) (T -503)) -((-3900 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-503))))) -(-13 (-1122) (-625 (-1180)) (-10 -8 (-15 -3900 ($ (-1180))))) -((-2176 (($ $) 15)) (-2150 (($ $) 24)) (-2201 (($ $) 12)) (-2213 (($ $) 10)) (-2188 (($ $) 17)) (-2163 (($ $) 22))) -(((-504 |#1|) (-10 -8 (-15 -2163 (|#1| |#1|)) (-15 -2188 (|#1| |#1|)) (-15 -2213 (|#1| |#1|)) (-15 -2201 (|#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -2176 (|#1| |#1|))) (-505)) (T -504)) -NIL -(-10 -8 (-15 -2163 (|#1| |#1|)) (-15 -2188 (|#1| |#1|)) (-15 -2213 (|#1| |#1|)) (-15 -2201 (|#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -2176 (|#1| |#1|))) -((-2176 (($ $) 11)) (-2150 (($ $) 10)) (-2201 (($ $) 9)) (-2213 (($ $) 8)) (-2188 (($ $) 7)) (-2163 (($ $) 6))) -(((-505) (-141)) (T -505)) -((-2176 (*1 *1 *1) (-4 *1 (-505))) (-2150 (*1 *1 *1) (-4 *1 (-505))) (-2201 (*1 *1 *1) (-4 *1 (-505))) (-2213 (*1 *1 *1) (-4 *1 (-505))) (-2188 (*1 *1 *1) (-4 *1 (-505))) (-2163 (*1 *1 *1) (-4 *1 (-505)))) -(-13 (-10 -8 (-15 -2163 ($ $)) (-15 -2188 ($ $)) (-15 -2213 ($ $)) (-15 -2201 ($ $)) (-15 -2150 ($ $)) (-15 -2176 ($ $)))) -((-1885 (((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)) 54))) -(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1885 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) (-374) (-1265 |#1|) (-13 (-374) (-148) (-737 |#1| |#2|)) (-1265 |#3|)) (T -506)) -((-1885 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) (-4 *7 (-13 (-374) (-148) (-737 *5 *6))) (-5 *2 (-430 *3)) (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1265 *7))))) -(-10 -7 (-15 -1885 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) -((-3429 (((-112) $ $) NIL)) (-3128 (((-657 $) (-1194 $) (-1198)) NIL) (((-657 $) (-1194 $)) NIL) (((-657 $) (-972 $)) NIL)) (-1911 (($ (-1194 $) (-1198)) NIL) (($ (-1194 $)) NIL) (($ (-972 $)) NIL)) (-2364 (((-112) $) 39)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3879 (((-112) $ $) 73)) (-3946 (((-657 (-624 $)) $) 50)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4054 (($ $ (-304 $)) NIL) (($ $ (-657 (-304 $))) NIL) (($ $ (-657 (-624 $)) (-657 $)) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-1896 (($ $) NIL)) (-2864 (((-112) $ $) NIL)) (-4359 (($) NIL T CONST)) (-2708 (((-657 $) (-1194 $) (-1198)) NIL) (((-657 $) (-1194 $)) NIL) (((-657 $) (-972 $)) NIL)) (-3564 (($ (-1194 $) (-1198)) NIL) (($ (-1194 $)) NIL) (($ (-972 $)) NIL)) (-1624 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2884 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) 55)) (-3373 (($ $ $) NIL)) (-3306 (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-702 (-576)) (-702 $)) NIL) (((-2 (|:| -3750 (-702 (-419 (-576)))) (|:| |vec| (-1289 (-419 (-576))))) (-702 $) (-1289 $)) NIL) (((-702 (-419 (-576))) (-702 $)) NIL)) (-3622 (($ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-2887 (($ $) NIL) (($ (-657 $)) NIL)) (-1784 (((-657 (-115)) $) NIL)) (-1832 (((-115) (-115)) NIL)) (-4094 (((-112) $) 42)) (-2320 (((-112) $) NIL (|has| $ (-1060 (-576))))) (-1621 (((-1147 (-576) (-624 $)) $) 37)) (-2082 (($ $ (-576)) NIL)) (-2234 (((-1194 $) (-1194 $) (-624 $)) 87) (((-1194 $) (-1194 $) (-657 (-624 $))) 62) (($ $ (-624 $)) 76) (($ $ (-657 (-624 $))) 77)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4153 (((-1194 $) (-624 $)) 74 (|has| $ (-1071)))) (-4083 (($ (-1 $ $) (-624 $)) NIL)) (-3398 (((-3 (-624 $) "failed") $) NIL)) (-3101 (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL) (((-702 (-576)) (-1289 $)) NIL) (((-2 (|:| -3750 (-702 (-419 (-576)))) (|:| |vec| (-1289 (-419 (-576))))) (-1289 $) $) NIL) (((-702 (-419 (-576))) (-1289 $)) NIL)) (-3402 (($ (-657 $)) NIL) (($ $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1817 (((-657 (-624 $)) $) NIL)) (-1699 (($ (-115) $) NIL) (($ (-115) (-657 $)) NIL)) (-4412 (((-112) $ (-115)) NIL) (((-112) $ (-1198)) NIL)) (-2134 (($ $) NIL)) (-2404 (((-784) $) NIL)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ (-657 $)) NIL) (($ $ $) NIL)) (-3698 (((-112) $ $) NIL) (((-112) $ (-1198)) NIL)) (-1885 (((-430 $) $) NIL)) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3593 (((-112) $) NIL (|has| $ (-1060 (-576))))) (-3236 (($ $ (-624 $) $) NIL) (($ $ (-657 (-624 $)) (-657 $)) NIL) (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ $))) NIL) (($ $ (-657 (-1198)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-1198) (-1 $ (-657 $))) NIL) (($ $ (-1198) (-1 $ $)) NIL) (($ $ (-657 (-115)) (-657 (-1 $ $))) NIL) (($ $ (-657 (-115)) (-657 (-1 $ (-657 $)))) NIL) (($ $ (-115) (-1 $ (-657 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2034 (((-784) $) NIL)) (-2835 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-657 $)) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2445 (($ $) NIL) (($ $ $) NIL)) (-2815 (($ $) 36) (($ $ (-784)) NIL)) (-1635 (((-1147 (-576) (-624 $)) $) 20)) (-3180 (($ $) NIL (|has| $ (-1071)))) (-4148 (((-390) $) 101) (((-227) $) 109) (((-171 (-390)) $) 117)) (-3501 (((-877) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1147 (-576) (-624 $))) 21)) (-1960 (((-784)) NIL T CONST)) (-2139 (($ $) NIL) (($ (-657 $)) NIL)) (-4159 (((-112) (-115)) 93)) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-2769 (($) 10 T CONST)) (-2779 (($) 22 T CONST)) (-2097 (($ $) NIL) (($ $ (-784)) NIL)) (-2933 (((-112) $ $) 24)) (-3034 (($ $ $) 44)) (-3022 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) 48) (($ $ (-784)) NIL) (($ $ (-941)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) 27) (($ (-576) $) NIL) (($ (-784) $) NIL) (($ (-941) $) NIL))) -(((-507) (-13 (-312) (-27) (-1060 (-576)) (-1060 (-419 (-576))) (-652 (-576)) (-1044) (-652 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3501 ($ (-1147 (-576) (-624 $)))) (-15 -1621 ((-1147 (-576) (-624 $)) $)) (-15 -1635 ((-1147 (-576) (-624 $)) $)) (-15 -3622 ($ $)) (-15 -3879 ((-112) $ $)) (-15 -2234 ((-1194 $) (-1194 $) (-624 $))) (-15 -2234 ((-1194 $) (-1194 $) (-657 (-624 $)))) (-15 -2234 ($ $ (-624 $))) (-15 -2234 ($ $ (-657 (-624 $))))))) (T -507)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1147 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-1147 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-1635 (*1 *2 *1) (-12 (-5 *2 (-1147 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-3622 (*1 *1 *1) (-5 *1 (-507))) (-3879 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507)))) (-2234 (*1 *2 *2 *3) (-12 (-5 *2 (-1194 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) (-2234 (*1 *2 *2 *3) (-12 (-5 *2 (-1194 (-507))) (-5 *3 (-657 (-624 (-507)))) (-5 *1 (-507)))) (-2234 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) (-2234 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-624 (-507)))) (-5 *1 (-507))))) -(-13 (-312) (-27) (-1060 (-576)) (-1060 (-419 (-576))) (-652 (-576)) (-1044) (-652 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3501 ($ (-1147 (-576) (-624 $)))) (-15 -1621 ((-1147 (-576) (-624 $)) $)) (-15 -1635 ((-1147 (-576) (-624 $)) $)) (-15 -3622 ($ $)) (-15 -3879 ((-112) $ $)) (-15 -2234 ((-1194 $) (-1194 $) (-624 $))) (-15 -2234 ((-1194 $) (-1194 $) (-657 (-624 $)))) (-15 -2234 ($ $ (-624 $))) (-15 -2234 ($ $ (-657 (-624 $)))))) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-1568 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3363 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862))))) (-1850 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 ((|#1| $ (-576) |#1|) 44 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-4359 (($) NIL T CONST)) (-3606 (($ $) NIL (|has| $ (-6 -4467)))) (-3768 (($ $) NIL)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3895 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-2158 ((|#1| $ (-576) |#1|) 39 (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) 38)) (-3582 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122)))) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-4109 (($ (-784) |#1|) 21)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) 17 (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| |#1| (-862)))) (-3073 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2272 (((-576) $) 41 (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| |#1| (-862)))) (-2148 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2271 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3510 ((|#1| $) NIL (|has| (-576) (-862)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1987 (($ $ |#1|) 15 (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) 19)) (-2835 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 43) (($ $ (-1256 (-576))) NIL)) (-3409 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2114 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1923 (($ $) 13)) (-4148 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 24)) (-1674 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-657 $)) NIL)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2973 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3440 (((-784) $) 11 (|has| $ (-6 -4466))))) -(((-508 |#1| |#2|) (-19 |#1|) (-1239) (-576)) (T -508)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1292 (-715))) (-4 *1 (-453)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-453)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-453)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) (-4 *1 (-453))))) +(-13 (-408) (-10 -8 (-15 -3544 ($ (-1292 (-715)))) (-15 -3544 ($ (-660 (-341)))) (-15 -3544 ($ (-341))) (-15 -3544 ($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341)))))))) +(((-626 (-880)) . T) ((-408) . T) ((-1242) . T)) +((-1628 (((-3 $ "failed") (-1292 (-327 (-391)))) 21) (((-3 $ "failed") (-1292 (-327 (-577)))) 19) (((-3 $ "failed") (-1292 (-975 (-391)))) 17) (((-3 $ "failed") (-1292 (-975 (-577)))) 15) (((-3 $ "failed") (-1292 (-420 (-975 (-391))))) 13) (((-3 $ "failed") (-1292 (-420 (-975 (-577))))) 11)) (-2921 (($ (-1292 (-327 (-391)))) 22) (($ (-1292 (-327 (-577)))) 20) (($ (-1292 (-975 (-391)))) 18) (($ (-1292 (-975 (-577)))) 16) (($ (-1292 (-420 (-975 (-391))))) 14) (($ (-1292 (-420 (-975 (-577))))) 12)) (-2706 (((-1297) $) 7)) (-3544 (((-880) $) 8) (($ (-660 (-341))) 25) (($ (-341)) 24) (($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) 23))) +(((-454) (-141)) (T -454)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-454)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-454)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) (-4 *1 (-454)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-1292 (-327 (-391)))) (-4 *1 (-454)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-1292 (-327 (-391)))) (-4 *1 (-454)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-1292 (-327 (-577)))) (-4 *1 (-454)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-1292 (-327 (-577)))) (-4 *1 (-454)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-1292 (-975 (-391)))) (-4 *1 (-454)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-1292 (-975 (-391)))) (-4 *1 (-454)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-1292 (-975 (-577)))) (-4 *1 (-454)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-1292 (-975 (-577)))) (-4 *1 (-454)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-1292 (-420 (-975 (-391))))) (-4 *1 (-454)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-1292 (-420 (-975 (-391))))) (-4 *1 (-454)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-1292 (-420 (-975 (-577))))) (-4 *1 (-454)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-1292 (-420 (-975 (-577))))) (-4 *1 (-454))))) +(-13 (-408) (-10 -8 (-15 -3544 ($ (-660 (-341)))) (-15 -3544 ($ (-341))) (-15 -3544 ($ (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341)))))) (-15 -2921 ($ (-1292 (-327 (-391))))) (-15 -1628 ((-3 $ "failed") (-1292 (-327 (-391))))) (-15 -2921 ($ (-1292 (-327 (-577))))) (-15 -1628 ((-3 $ "failed") (-1292 (-327 (-577))))) (-15 -2921 ($ (-1292 (-975 (-391))))) (-15 -1628 ((-3 $ "failed") (-1292 (-975 (-391))))) (-15 -2921 ($ (-1292 (-975 (-577))))) (-15 -1628 ((-3 $ "failed") (-1292 (-975 (-577))))) (-15 -2921 ($ (-1292 (-420 (-975 (-391)))))) (-15 -1628 ((-3 $ "failed") (-1292 (-420 (-975 (-391)))))) (-15 -2921 ($ (-1292 (-420 (-975 (-577)))))) (-15 -1628 ((-3 $ "failed") (-1292 (-420 (-975 (-577)))))))) +(((-626 (-880)) . T) ((-408) . T) ((-1242) . T)) +((-2794 (((-112)) 18)) (-2807 (((-112) (-112)) 19)) (-2817 (((-112)) 14)) (-2829 (((-112) (-112)) 15)) (-2853 (((-112)) 16)) (-2862 (((-112) (-112)) 17)) (-2762 (((-944) (-944)) 22) (((-944)) 21)) (-2772 (((-787) (-660 (-2 (|:| -1902 |#1|) (|:| -2887 (-577))))) 52)) (-2750 (((-944) (-944)) 24) (((-944)) 23)) (-2782 (((-2 (|:| -3458 (-577)) (|:| -3363 (-660 |#1|))) |#1|) 94)) (-2739 (((-431 |#1|) (-2 (|:| |contp| (-577)) (|:| -3363 (-660 (-2 (|:| |irr| |#1|) (|:| -3504 (-577))))))) 174)) (-1599 (((-2 (|:| |contp| (-577)) (|:| -3363 (-660 (-2 (|:| |irr| |#1|) (|:| -3504 (-577)))))) |#1| (-112)) 207)) (-1589 (((-431 |#1|) |#1| (-787) (-787)) 222) (((-431 |#1|) |#1| (-660 (-787)) (-787)) 219) (((-431 |#1|) |#1| (-660 (-787))) 221) (((-431 |#1|) |#1| (-787)) 220) (((-431 |#1|) |#1|) 218)) (-1758 (((-3 |#1| "failed") (-944) |#1| (-660 (-787)) (-787) (-112)) 224) (((-3 |#1| "failed") (-944) |#1| (-660 (-787)) (-787)) 225) (((-3 |#1| "failed") (-944) |#1| (-660 (-787))) 227) (((-3 |#1| "failed") (-944) |#1| (-787)) 226) (((-3 |#1| "failed") (-944) |#1|) 228)) (-1902 (((-431 |#1|) |#1| (-787) (-787)) 217) (((-431 |#1|) |#1| (-660 (-787)) (-787)) 213) (((-431 |#1|) |#1| (-660 (-787))) 215) (((-431 |#1|) |#1| (-787)) 214) (((-431 |#1|) |#1|) 212)) (-2841 (((-112) |#1|) 44)) (-1746 (((-753 (-787)) (-660 (-2 (|:| -1902 |#1|) (|:| -2887 (-577))))) 99)) (-2873 (((-2 (|:| |contp| (-577)) (|:| -3363 (-660 (-2 (|:| |irr| |#1|) (|:| -3504 (-577)))))) |#1| (-112) (-1127 (-787)) (-787)) 211))) +(((-455 |#1|) (-10 -7 (-15 -2739 ((-431 |#1|) (-2 (|:| |contp| (-577)) (|:| -3363 (-660 (-2 (|:| |irr| |#1|) (|:| -3504 (-577)))))))) (-15 -1746 ((-753 (-787)) (-660 (-2 (|:| -1902 |#1|) (|:| -2887 (-577)))))) (-15 -2750 ((-944))) (-15 -2750 ((-944) (-944))) (-15 -2762 ((-944))) (-15 -2762 ((-944) (-944))) (-15 -2772 ((-787) (-660 (-2 (|:| -1902 |#1|) (|:| -2887 (-577)))))) (-15 -2782 ((-2 (|:| -3458 (-577)) (|:| -3363 (-660 |#1|))) |#1|)) (-15 -2794 ((-112))) (-15 -2807 ((-112) (-112))) (-15 -2817 ((-112))) (-15 -2829 ((-112) (-112))) (-15 -2841 ((-112) |#1|)) (-15 -2853 ((-112))) (-15 -2862 ((-112) (-112))) (-15 -1902 ((-431 |#1|) |#1|)) (-15 -1902 ((-431 |#1|) |#1| (-787))) (-15 -1902 ((-431 |#1|) |#1| (-660 (-787)))) (-15 -1902 ((-431 |#1|) |#1| (-660 (-787)) (-787))) (-15 -1902 ((-431 |#1|) |#1| (-787) (-787))) (-15 -1589 ((-431 |#1|) |#1|)) (-15 -1589 ((-431 |#1|) |#1| (-787))) (-15 -1589 ((-431 |#1|) |#1| (-660 (-787)))) (-15 -1589 ((-431 |#1|) |#1| (-660 (-787)) (-787))) (-15 -1589 ((-431 |#1|) |#1| (-787) (-787))) (-15 -1758 ((-3 |#1| "failed") (-944) |#1|)) (-15 -1758 ((-3 |#1| "failed") (-944) |#1| (-787))) (-15 -1758 ((-3 |#1| "failed") (-944) |#1| (-660 (-787)))) (-15 -1758 ((-3 |#1| "failed") (-944) |#1| (-660 (-787)) (-787))) (-15 -1758 ((-3 |#1| "failed") (-944) |#1| (-660 (-787)) (-787) (-112))) (-15 -1599 ((-2 (|:| |contp| (-577)) (|:| -3363 (-660 (-2 (|:| |irr| |#1|) (|:| -3504 (-577)))))) |#1| (-112))) (-15 -2873 ((-2 (|:| |contp| (-577)) (|:| -3363 (-660 (-2 (|:| |irr| |#1|) (|:| -3504 (-577)))))) |#1| (-112) (-1127 (-787)) (-787)))) (-1268 (-577))) (T -455)) +((-2873 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1127 (-787))) (-5 *6 (-787)) (-5 *2 (-2 (|:| |contp| (-577)) (|:| -3363 (-660 (-2 (|:| |irr| *3) (|:| -3504 (-577))))))) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-1599 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-577)) (|:| -3363 (-660 (-2 (|:| |irr| *3) (|:| -3504 (-577))))))) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-1758 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-944)) (-5 *4 (-660 (-787))) (-5 *5 (-787)) (-5 *6 (-112)) (-5 *1 (-455 *2)) (-4 *2 (-1268 (-577))))) (-1758 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-944)) (-5 *4 (-660 (-787))) (-5 *5 (-787)) (-5 *1 (-455 *2)) (-4 *2 (-1268 (-577))))) (-1758 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-944)) (-5 *4 (-660 (-787))) (-5 *1 (-455 *2)) (-4 *2 (-1268 (-577))))) (-1758 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-944)) (-5 *4 (-787)) (-5 *1 (-455 *2)) (-4 *2 (-1268 (-577))))) (-1758 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-944)) (-5 *1 (-455 *2)) (-4 *2 (-1268 (-577))))) (-1589 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-1589 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-660 (-787))) (-5 *5 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-1589 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-787))) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-1589 (*1 *2 *3 *4) (-12 (-5 *4 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-1589 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-1902 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-1902 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-660 (-787))) (-5 *5 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-1902 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-787))) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-1902 (*1 *2 *3 *4) (-12 (-5 *4 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-1902 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-2862 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-2853 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-2841 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-2829 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-2817 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-2807 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-2794 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-2782 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3458 (-577)) (|:| -3363 (-660 *3)))) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-2772 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -1902 *4) (|:| -2887 (-577))))) (-4 *4 (-1268 (-577))) (-5 *2 (-787)) (-5 *1 (-455 *4)))) (-2762 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-2762 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-2750 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-2750 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -1902 *4) (|:| -2887 (-577))))) (-4 *4 (-1268 (-577))) (-5 *2 (-753 (-787))) (-5 *1 (-455 *4)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-577)) (|:| -3363 (-660 (-2 (|:| |irr| *4) (|:| -3504 (-577))))))) (-4 *4 (-1268 (-577))) (-5 *2 (-431 *4)) (-5 *1 (-455 *4))))) +(-10 -7 (-15 -2739 ((-431 |#1|) (-2 (|:| |contp| (-577)) (|:| -3363 (-660 (-2 (|:| |irr| |#1|) (|:| -3504 (-577)))))))) (-15 -1746 ((-753 (-787)) (-660 (-2 (|:| -1902 |#1|) (|:| -2887 (-577)))))) (-15 -2750 ((-944))) (-15 -2750 ((-944) (-944))) (-15 -2762 ((-944))) (-15 -2762 ((-944) (-944))) (-15 -2772 ((-787) (-660 (-2 (|:| -1902 |#1|) (|:| -2887 (-577)))))) (-15 -2782 ((-2 (|:| -3458 (-577)) (|:| -3363 (-660 |#1|))) |#1|)) (-15 -2794 ((-112))) (-15 -2807 ((-112) (-112))) (-15 -2817 ((-112))) (-15 -2829 ((-112) (-112))) (-15 -2841 ((-112) |#1|)) (-15 -2853 ((-112))) (-15 -2862 ((-112) (-112))) (-15 -1902 ((-431 |#1|) |#1|)) (-15 -1902 ((-431 |#1|) |#1| (-787))) (-15 -1902 ((-431 |#1|) |#1| (-660 (-787)))) (-15 -1902 ((-431 |#1|) |#1| (-660 (-787)) (-787))) (-15 -1902 ((-431 |#1|) |#1| (-787) (-787))) (-15 -1589 ((-431 |#1|) |#1|)) (-15 -1589 ((-431 |#1|) |#1| (-787))) (-15 -1589 ((-431 |#1|) |#1| (-660 (-787)))) (-15 -1589 ((-431 |#1|) |#1| (-660 (-787)) (-787))) (-15 -1589 ((-431 |#1|) |#1| (-787) (-787))) (-15 -1758 ((-3 |#1| "failed") (-944) |#1|)) (-15 -1758 ((-3 |#1| "failed") (-944) |#1| (-787))) (-15 -1758 ((-3 |#1| "failed") (-944) |#1| (-660 (-787)))) (-15 -1758 ((-3 |#1| "failed") (-944) |#1| (-660 (-787)) (-787))) (-15 -1758 ((-3 |#1| "failed") (-944) |#1| (-660 (-787)) (-787) (-112))) (-15 -1599 ((-2 (|:| |contp| (-577)) (|:| -3363 (-660 (-2 (|:| |irr| |#1|) (|:| -3504 (-577)))))) |#1| (-112))) (-15 -2873 ((-2 (|:| |contp| (-577)) (|:| -3363 (-660 (-2 (|:| |irr| |#1|) (|:| -3504 (-577)))))) |#1| (-112) (-1127 (-787)) (-787)))) +((-2911 (((-577) |#2|) 52) (((-577) |#2| (-787)) 51)) (-2901 (((-577) |#2|) 64)) (-2922 ((|#3| |#2|) 26)) (-4145 ((|#3| |#2| (-944)) 15)) (-3402 ((|#3| |#2|) 16)) (-2930 ((|#3| |#2|) 9)) (-2440 ((|#3| |#2|) 10)) (-2892 ((|#3| |#2| (-944)) 71) ((|#3| |#2|) 34)) (-2882 (((-577) |#2|) 66))) +(((-456 |#1| |#2| |#3|) (-10 -7 (-15 -2882 ((-577) |#2|)) (-15 -2892 (|#3| |#2|)) (-15 -2892 (|#3| |#2| (-944))) (-15 -2901 ((-577) |#2|)) (-15 -2911 ((-577) |#2| (-787))) (-15 -2911 ((-577) |#2|)) (-15 -4145 (|#3| |#2| (-944))) (-15 -2922 (|#3| |#2|)) (-15 -2930 (|#3| |#2|)) (-15 -2440 (|#3| |#2|)) (-15 -3402 (|#3| |#2|))) (-1074) (-1268 |#1|) (-13 (-417) (-1063 |#1|) (-375) (-1227) (-295))) (T -456)) +((-3402 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4)))) (-2440 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4)))) (-2930 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4)))) (-2922 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4)))) (-4145 (*1 *2 *3 *4) (-12 (-5 *4 (-944)) (-4 *5 (-1074)) (-4 *2 (-13 (-417) (-1063 *5) (-375) (-1227) (-295))) (-5 *1 (-456 *5 *3 *2)) (-4 *3 (-1268 *5)))) (-2911 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) (-4 *3 (-1268 *4)) (-4 *5 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))))) (-2911 (*1 *2 *3 *4) (-12 (-5 *4 (-787)) (-4 *5 (-1074)) (-5 *2 (-577)) (-5 *1 (-456 *5 *3 *6)) (-4 *3 (-1268 *5)) (-4 *6 (-13 (-417) (-1063 *5) (-375) (-1227) (-295))))) (-2901 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) (-4 *3 (-1268 *4)) (-4 *5 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))))) (-2892 (*1 *2 *3 *4) (-12 (-5 *4 (-944)) (-4 *5 (-1074)) (-4 *2 (-13 (-417) (-1063 *5) (-375) (-1227) (-295))) (-5 *1 (-456 *5 *3 *2)) (-4 *3 (-1268 *5)))) (-2892 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4)))) (-2882 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) (-4 *3 (-1268 *4)) (-4 *5 (-13 (-417) (-1063 *4) (-375) (-1227) (-295)))))) +(-10 -7 (-15 -2882 ((-577) |#2|)) (-15 -2892 (|#3| |#2|)) (-15 -2892 (|#3| |#2| (-944))) (-15 -2901 ((-577) |#2|)) (-15 -2911 ((-577) |#2| (-787))) (-15 -2911 ((-577) |#2|)) (-15 -4145 (|#3| |#2| (-944))) (-15 -2922 (|#3| |#2|)) (-15 -2930 (|#3| |#2|)) (-15 -2440 (|#3| |#2|)) (-15 -3402 (|#3| |#2|))) +((-1370 ((|#2| (-1292 |#1|)) 42)) (-2951 ((|#2| |#2| |#1|) 58)) (-2941 ((|#2| |#2| |#1|) 49)) (-3787 ((|#2| |#2|) 44)) (-3449 (((-112) |#2|) 32)) (-1769 (((-660 |#2|) (-944) (-431 |#2|)) 21)) (-1758 ((|#2| (-944) (-431 |#2|)) 25)) (-1746 (((-753 (-787)) (-431 |#2|)) 29))) +(((-457 |#1| |#2|) (-10 -7 (-15 -3449 ((-112) |#2|)) (-15 -1370 (|#2| (-1292 |#1|))) (-15 -3787 (|#2| |#2|)) (-15 -2941 (|#2| |#2| |#1|)) (-15 -2951 (|#2| |#2| |#1|)) (-15 -1746 ((-753 (-787)) (-431 |#2|))) (-15 -1758 (|#2| (-944) (-431 |#2|))) (-15 -1769 ((-660 |#2|) (-944) (-431 |#2|)))) (-1074) (-1268 |#1|)) (T -457)) +((-1769 (*1 *2 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-431 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-1074)) (-5 *2 (-660 *6)) (-5 *1 (-457 *5 *6)))) (-1758 (*1 *2 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-431 *2)) (-4 *2 (-1268 *5)) (-5 *1 (-457 *5 *2)) (-4 *5 (-1074)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-431 *5)) (-4 *5 (-1268 *4)) (-4 *4 (-1074)) (-5 *2 (-753 (-787))) (-5 *1 (-457 *4 *5)))) (-2951 (*1 *2 *2 *3) (-12 (-4 *3 (-1074)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1268 *3)))) (-2941 (*1 *2 *2 *3) (-12 (-4 *3 (-1074)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1268 *3)))) (-3787 (*1 *2 *2) (-12 (-4 *3 (-1074)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1268 *3)))) (-1370 (*1 *2 *3) (-12 (-5 *3 (-1292 *4)) (-4 *4 (-1074)) (-4 *2 (-1268 *4)) (-5 *1 (-457 *4 *2)))) (-3449 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-5 *2 (-112)) (-5 *1 (-457 *4 *3)) (-4 *3 (-1268 *4))))) +(-10 -7 (-15 -3449 ((-112) |#2|)) (-15 -1370 (|#2| (-1292 |#1|))) (-15 -3787 (|#2| |#2|)) (-15 -2941 (|#2| |#2| |#1|)) (-15 -2951 (|#2| |#2| |#1|)) (-15 -1746 ((-753 (-787)) (-431 |#2|))) (-15 -1758 (|#2| (-944) (-431 |#2|))) (-15 -1769 ((-660 |#2|) (-944) (-431 |#2|)))) +((-1799 (((-787)) 59)) (-1840 (((-787)) 29 (|has| |#1| (-417))) (((-787) (-787)) 28 (|has| |#1| (-417)))) (-1830 (((-577) |#1|) 25 (|has| |#1| (-417)))) (-1818 (((-577) |#1|) 27 (|has| |#1| (-417)))) (-1789 (((-787)) 58) (((-787) (-787)) 57)) (-1779 ((|#1| (-787) (-577)) 37)) (-1809 (((-1297)) 61))) +(((-458 |#1|) (-10 -7 (-15 -1779 (|#1| (-787) (-577))) (-15 -1789 ((-787) (-787))) (-15 -1789 ((-787))) (-15 -1799 ((-787))) (-15 -1809 ((-1297))) (IF (|has| |#1| (-417)) (PROGN (-15 -1818 ((-577) |#1|)) (-15 -1830 ((-577) |#1|)) (-15 -1840 ((-787) (-787))) (-15 -1840 ((-787)))) |%noBranch|)) (-1074)) (T -458)) +((-1840 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1074)))) (-1840 (*1 *2 *2) (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1074)))) (-1830 (*1 *2 *3) (-12 (-5 *2 (-577)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1074)))) (-1818 (*1 *2 *3) (-12 (-5 *2 (-577)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1074)))) (-1809 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-458 *3)) (-4 *3 (-1074)))) (-1799 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-1074)))) (-1789 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-1074)))) (-1789 (*1 *2 *2) (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-1074)))) (-1779 (*1 *2 *3 *4) (-12 (-5 *3 (-787)) (-5 *4 (-577)) (-5 *1 (-458 *2)) (-4 *2 (-1074))))) +(-10 -7 (-15 -1779 (|#1| (-787) (-577))) (-15 -1789 ((-787) (-787))) (-15 -1789 ((-787))) (-15 -1799 ((-787))) (-15 -1809 ((-1297))) (IF (|has| |#1| (-417)) (PROGN (-15 -1818 ((-577) |#1|)) (-15 -1830 ((-577) |#1|)) (-15 -1840 ((-787) (-787))) (-15 -1840 ((-787)))) |%noBranch|)) +((-1852 (((-660 (-577)) (-577)) 76)) (-1522 (((-112) (-171 (-577))) 82)) (-1902 (((-431 (-171 (-577))) (-171 (-577))) 75))) +(((-459) (-10 -7 (-15 -1902 ((-431 (-171 (-577))) (-171 (-577)))) (-15 -1852 ((-660 (-577)) (-577))) (-15 -1522 ((-112) (-171 (-577)))))) (T -459)) +((-1522 (*1 *2 *3) (-12 (-5 *3 (-171 (-577))) (-5 *2 (-112)) (-5 *1 (-459)))) (-1852 (*1 *2 *3) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-459)) (-5 *3 (-577)))) (-1902 (*1 *2 *3) (-12 (-5 *2 (-431 (-171 (-577)))) (-5 *1 (-459)) (-5 *3 (-171 (-577)))))) +(-10 -7 (-15 -1902 ((-431 (-171 (-577))) (-171 (-577)))) (-15 -1852 ((-660 (-577)) (-577))) (-15 -1522 ((-112) (-171 (-577))))) +((-1863 ((|#4| |#4| (-660 |#4|)) 82)) (-1876 (((-660 |#4|) (-660 |#4|) (-1183) (-1183)) 22) (((-660 |#4|) (-660 |#4|) (-1183)) 21) (((-660 |#4|) (-660 |#4|)) 13))) +(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1863 (|#4| |#4| (-660 |#4|))) (-15 -1876 ((-660 |#4|) (-660 |#4|))) (-15 -1876 ((-660 |#4|) (-660 |#4|) (-1183))) (-15 -1876 ((-660 |#4|) (-660 |#4|) (-1183) (-1183)))) (-318) (-809) (-865) (-972 |#1| |#2| |#3|)) (T -460)) +((-1876 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-1183)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-318)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-460 *4 *5 *6 *7)))) (-1876 (*1 *2 *2 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-1183)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-318)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-460 *4 *5 *6 *7)))) (-1876 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-318)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-460 *3 *4 *5 *6)))) (-1863 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-318)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-460 *4 *5 *6 *2))))) +(-10 -7 (-15 -1863 (|#4| |#4| (-660 |#4|))) (-15 -1876 ((-660 |#4|) (-660 |#4|))) (-15 -1876 ((-660 |#4|) (-660 |#4|) (-1183))) (-15 -1876 ((-660 |#4|) (-660 |#4|) (-1183) (-1183)))) +((-1898 (((-660 (-660 |#4|)) (-660 |#4|) (-112)) 89) (((-660 (-660 |#4|)) (-660 |#4|)) 88) (((-660 (-660 |#4|)) (-660 |#4|) (-660 |#4|) (-112)) 82) (((-660 (-660 |#4|)) (-660 |#4|) (-660 |#4|)) 83)) (-1887 (((-660 (-660 |#4|)) (-660 |#4|) (-112)) 55) (((-660 (-660 |#4|)) (-660 |#4|)) 77))) +(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1887 ((-660 (-660 |#4|)) (-660 |#4|))) (-15 -1887 ((-660 (-660 |#4|)) (-660 |#4|) (-112))) (-15 -1898 ((-660 (-660 |#4|)) (-660 |#4|) (-660 |#4|))) (-15 -1898 ((-660 (-660 |#4|)) (-660 |#4|) (-660 |#4|) (-112))) (-15 -1898 ((-660 (-660 |#4|)) (-660 |#4|))) (-15 -1898 ((-660 (-660 |#4|)) (-660 |#4|) (-112)))) (-13 (-318) (-148)) (-809) (-865) (-972 |#1| |#2| |#3|)) (T -461)) +((-1898 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-660 (-660 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-660 *8)))) (-1898 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-660 (-660 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-1898 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-660 (-660 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-660 *8)))) (-1898 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-660 (-660 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-1887 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-660 (-660 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-660 *8)))) (-1887 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-660 (-660 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) +(-10 -7 (-15 -1887 ((-660 (-660 |#4|)) (-660 |#4|))) (-15 -1887 ((-660 (-660 |#4|)) (-660 |#4|) (-112))) (-15 -1898 ((-660 (-660 |#4|)) (-660 |#4|) (-660 |#4|))) (-15 -1898 ((-660 (-660 |#4|)) (-660 |#4|) (-660 |#4|) (-112))) (-15 -1898 ((-660 (-660 |#4|)) (-660 |#4|))) (-15 -1898 ((-660 (-660 |#4|)) (-660 |#4|) (-112)))) +((-2194 (((-787) |#4|) 12)) (-2039 (((-660 (-2 (|:| |totdeg| (-787)) (|:| -3972 |#4|))) |#4| (-787) (-660 (-2 (|:| |totdeg| (-787)) (|:| -3972 |#4|)))) 39)) (-2068 (((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2054 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-1922 ((|#4| |#4| (-660 |#4|)) 54)) (-2015 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-660 |#4|)) 96)) (-2102 (((-1297) |#4|) 59)) (-2143 (((-1297) (-660 |#4|)) 69)) (-2113 (((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577)) 66)) (-2157 (((-1297) (-577)) 110)) (-2080 (((-660 |#4|) (-660 |#4|)) 104)) (-2181 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-787)) (|:| -3972 |#4|)) |#4| (-787)) 31)) (-2091 (((-577) |#4|) 109)) (-2026 ((|#4| |#4|) 37)) (-1933 (((-660 |#4|) (-660 |#4|) (-577) (-577)) 74)) (-2129 (((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577) (-577)) 123)) (-2168 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-1947 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2005 (((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-1993 (((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-1959 (((-112) |#2| |#2|) 75)) (-1981 (((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-1970 (((-112) |#2| |#2| |#2| |#2|) 80)) (-1909 ((|#4| |#4| (-660 |#4|)) 97))) +(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1909 (|#4| |#4| (-660 |#4|))) (-15 -1922 (|#4| |#4| (-660 |#4|))) (-15 -1933 ((-660 |#4|) (-660 |#4|) (-577) (-577))) (-15 -1947 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1959 ((-112) |#2| |#2|)) (-15 -1970 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1981 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1993 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2005 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2015 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-660 |#4|))) (-15 -2026 (|#4| |#4|)) (-15 -2039 ((-660 (-2 (|:| |totdeg| (-787)) (|:| -3972 |#4|))) |#4| (-787) (-660 (-2 (|:| |totdeg| (-787)) (|:| -3972 |#4|))))) (-15 -2054 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2068 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2080 ((-660 |#4|) (-660 |#4|))) (-15 -2091 ((-577) |#4|)) (-15 -2102 ((-1297) |#4|)) (-15 -2113 ((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577))) (-15 -2129 ((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577) (-577))) (-15 -2143 ((-1297) (-660 |#4|))) (-15 -2157 ((-1297) (-577))) (-15 -2168 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2181 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-787)) (|:| -3972 |#4|)) |#4| (-787))) (-15 -2194 ((-787) |#4|))) (-465) (-809) (-865) (-972 |#1| |#2| |#3|)) (T -462)) +((-2194 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-787)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-2181 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-787)) (|:| -3972 *4))) (-5 *5 (-787)) (-4 *4 (-972 *6 *7 *8)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-462 *6 *7 *8 *4)))) (-2168 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-787)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-809)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2157 (*1 *2 *3) (-12 (-5 *3 (-577)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1297)) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *7 (-972 *4 *5 *6)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1297)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2129 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-787)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-809)) (-4 *4 (-972 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-865)) (-5 *1 (-462 *5 *6 *7 *4)))) (-2113 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-787)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-809)) (-4 *4 (-972 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-865)) (-5 *1 (-462 *5 *6 *7 *4)))) (-2102 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1297)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-2091 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-577)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-2080 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-462 *3 *4 *5 *6)))) (-2068 (*1 *2 *2 *2) (-12 (-5 *2 (-660 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-787)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-809)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-465)) (-4 *5 (-865)) (-5 *1 (-462 *3 *4 *5 *6)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-787)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-809)) (-4 *2 (-972 *4 *5 *6)) (-5 *1 (-462 *4 *5 *6 *2)) (-4 *4 (-465)) (-4 *6 (-865)))) (-2039 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-660 (-2 (|:| |totdeg| (-787)) (|:| -3972 *3)))) (-5 *4 (-787)) (-4 *3 (-972 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-462 *5 *6 *7 *3)))) (-2026 (*1 *2 *2) (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-972 *3 *4 *5)))) (-2015 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-972 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-462 *5 *6 *7 *3)))) (-2005 (*1 *2 *3 *2) (-12 (-5 *2 (-660 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-787)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-809)) (-4 *6 (-972 *4 *3 *5)) (-4 *4 (-465)) (-4 *5 (-865)) (-5 *1 (-462 *4 *3 *5 *6)))) (-1993 (*1 *2 *2) (-12 (-5 *2 (-660 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-787)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-809)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-465)) (-4 *5 (-865)) (-5 *1 (-462 *3 *4 *5 *6)))) (-1981 (*1 *2 *3 *2) (-12 (-5 *2 (-660 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-787)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-809)) (-4 *3 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-865)) (-5 *1 (-462 *4 *5 *6 *3)))) (-1970 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-465)) (-4 *3 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-972 *4 *3 *5)))) (-1959 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *3 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-972 *4 *3 *5)))) (-1947 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-787)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-809)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-462 *4 *5 *6 *7)))) (-1933 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-577)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-462 *4 *5 *6 *7)))) (-1922 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-462 *4 *5 *6 *2)))) (-1909 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-462 *4 *5 *6 *2))))) +(-10 -7 (-15 -1909 (|#4| |#4| (-660 |#4|))) (-15 -1922 (|#4| |#4| (-660 |#4|))) (-15 -1933 ((-660 |#4|) (-660 |#4|) (-577) (-577))) (-15 -1947 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1959 ((-112) |#2| |#2|)) (-15 -1970 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1981 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1993 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2005 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2015 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-660 |#4|))) (-15 -2026 (|#4| |#4|)) (-15 -2039 ((-660 (-2 (|:| |totdeg| (-787)) (|:| -3972 |#4|))) |#4| (-787) (-660 (-2 (|:| |totdeg| (-787)) (|:| -3972 |#4|))))) (-15 -2054 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2068 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2080 ((-660 |#4|) (-660 |#4|))) (-15 -2091 ((-577) |#4|)) (-15 -2102 ((-1297) |#4|)) (-15 -2113 ((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577))) (-15 -2129 ((-577) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-577) (-577) (-577) (-577))) (-15 -2143 ((-1297) (-660 |#4|))) (-15 -2157 ((-1297) (-577))) (-15 -2168 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2181 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-787)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-787)) (|:| -3972 |#4|)) |#4| (-787))) (-15 -2194 ((-787) |#4|))) +((-2890 ((|#4| |#4| (-660 |#4|)) 20 (|has| |#1| (-375)))) (-1374 (((-660 |#4|) (-660 |#4|) (-1183) (-1183)) 46) (((-660 |#4|) (-660 |#4|) (-1183)) 45) (((-660 |#4|) (-660 |#4|)) 34))) +(((-463 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1374 ((-660 |#4|) (-660 |#4|))) (-15 -1374 ((-660 |#4|) (-660 |#4|) (-1183))) (-15 -1374 ((-660 |#4|) (-660 |#4|) (-1183) (-1183))) (IF (|has| |#1| (-375)) (-15 -2890 (|#4| |#4| (-660 |#4|))) |%noBranch|)) (-465) (-809) (-865) (-972 |#1| |#2| |#3|)) (T -463)) +((-2890 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-375)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-463 *4 *5 *6 *2)))) (-1374 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-1183)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-463 *4 *5 *6 *7)))) (-1374 (*1 *2 *2 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-1183)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-463 *4 *5 *6 *7)))) (-1374 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-463 *3 *4 *5 *6))))) +(-10 -7 (-15 -1374 ((-660 |#4|) (-660 |#4|))) (-15 -1374 ((-660 |#4|) (-660 |#4|) (-1183))) (-15 -1374 ((-660 |#4|) (-660 |#4|) (-1183) (-1183))) (IF (|has| |#1| (-375)) (-15 -2890 (|#4| |#4| (-660 |#4|))) |%noBranch|)) +((-3446 (($ $ $) 14) (($ (-660 $)) 21)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 46)) (-3480 (($ $ $) NIL) (($ (-660 $)) 22))) +(((-464 |#1|) (-10 -8 (-15 -2305 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|))) (-15 -3446 (|#1| (-660 |#1|))) (-15 -3446 (|#1| |#1| |#1|)) (-15 -3480 (|#1| (-660 |#1|))) (-15 -3480 (|#1| |#1| |#1|))) (-465)) (T -464)) +NIL +(-10 -8 (-15 -2305 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|))) (-15 -3446 (|#1| (-660 |#1|))) (-15 -3446 (|#1| |#1| |#1|)) (-15 -3480 (|#1| (-660 |#1|))) (-15 -3480 (|#1| |#1| |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-4187 (((-3 $ "failed") $) 37)) (-2487 (((-112) $) 35)) (-3446 (($ $ $) 52) (($ (-660 $)) 51)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 50)) (-3480 (($ $ $) 54) (($ (-660 $)) 53)) (-3462 (((-3 $ "failed") $ $) 48)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 45)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) +(((-465) (-141)) (T -465)) +((-3480 (*1 *1 *1 *1) (-4 *1 (-465))) (-3480 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-465)))) (-3446 (*1 *1 *1 *1) (-4 *1 (-465))) (-3446 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-465)))) (-2305 (*1 *2 *2 *2) (-12 (-5 *2 (-1197 *1)) (-4 *1 (-465))))) +(-13 (-569) (-10 -8 (-15 -3480 ($ $ $)) (-15 -3480 ($ (-660 $))) (-15 -3446 ($ $ $)) (-15 -3446 ($ (-660 $))) (-15 -2305 ((-1197 $) (-1197 $) (-1197 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-301) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3294 (((-3 $ "failed")) NIL (|has| (-420 (-975 |#1|)) (-569)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-2700 (((-1292 (-705 (-420 (-975 |#1|)))) (-1292 $)) NIL) (((-1292 (-705 (-420 (-975 |#1|))))) NIL)) (-4043 (((-1292 $)) NIL)) (-1534 (($) NIL T CONST)) (-2364 (((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed")) NIL)) (-3741 (((-3 $ "failed")) NIL (|has| (-420 (-975 |#1|)) (-569)))) (-3457 (((-705 (-420 (-975 |#1|))) (-1292 $)) NIL) (((-705 (-420 (-975 |#1|)))) NIL)) (-4022 (((-420 (-975 |#1|)) $) NIL)) (-3436 (((-705 (-420 (-975 |#1|))) $ (-1292 $)) NIL) (((-705 (-420 (-975 |#1|))) $) NIL)) (-3584 (((-3 $ "failed") $) NIL (|has| (-420 (-975 |#1|)) (-569)))) (-2304 (((-1197 (-975 (-420 (-975 |#1|))))) NIL (|has| (-420 (-975 |#1|)) (-375))) (((-1197 (-420 (-975 |#1|)))) 90 (|has| |#1| (-569)))) (-2470 (($ $ (-944)) NIL)) (-3999 (((-420 (-975 |#1|)) $) NIL)) (-3762 (((-1197 (-420 (-975 |#1|))) $) 88 (|has| (-420 (-975 |#1|)) (-569)))) (-3478 (((-420 (-975 |#1|)) (-1292 $)) NIL) (((-420 (-975 |#1|))) NIL)) (-3976 (((-1197 (-420 (-975 |#1|))) $) NIL)) (-3905 (((-112)) NIL)) (-3502 (($ (-1292 (-420 (-975 |#1|))) (-1292 $)) 114) (($ (-1292 (-420 (-975 |#1|)))) NIL)) (-4187 (((-3 $ "failed") $) NIL (|has| (-420 (-975 |#1|)) (-569)))) (-1545 (((-944)) NIL)) (-3870 (((-112)) NIL)) (-2667 (($ $ (-944)) NIL)) (-3824 (((-112)) NIL)) (-3799 (((-112)) NIL)) (-3847 (((-112)) NIL)) (-2373 (((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed")) NIL)) (-3751 (((-3 $ "failed")) NIL (|has| (-420 (-975 |#1|)) (-569)))) (-3467 (((-705 (-420 (-975 |#1|))) (-1292 $)) NIL) (((-705 (-420 (-975 |#1|)))) NIL)) (-4032 (((-420 (-975 |#1|)) $) NIL)) (-3445 (((-705 (-420 (-975 |#1|))) $ (-1292 $)) NIL) (((-705 (-420 (-975 |#1|))) $) NIL)) (-3593 (((-3 $ "failed") $) NIL (|has| (-420 (-975 |#1|)) (-569)))) (-2345 (((-1197 (-975 (-420 (-975 |#1|))))) NIL (|has| (-420 (-975 |#1|)) (-375))) (((-1197 (-420 (-975 |#1|)))) 89 (|has| |#1| (-569)))) (-3604 (($ $ (-944)) NIL)) (-4012 (((-420 (-975 |#1|)) $) NIL)) (-3774 (((-1197 (-420 (-975 |#1|))) $) 85 (|has| (-420 (-975 |#1|)) (-569)))) (-3490 (((-420 (-975 |#1|)) (-1292 $)) NIL) (((-420 (-975 |#1|))) NIL)) (-3987 (((-1197 (-420 (-975 |#1|))) $) NIL)) (-3916 (((-112)) NIL)) (-2810 (((-1183) $) NIL)) (-3812 (((-112)) NIL)) (-3836 (((-112)) NIL)) (-3859 (((-112)) NIL)) (-1474 (((-1145) $) NIL)) (-2231 (((-420 (-975 |#1|)) $ $) 76 (|has| |#1| (-569)))) (-2280 (((-420 (-975 |#1|)) $) 100 (|has| |#1| (-569)))) (-2268 (((-420 (-975 |#1|)) $) 104 (|has| |#1| (-569)))) (-2293 (((-1197 (-420 (-975 |#1|))) $) 94 (|has| |#1| (-569)))) (-2218 (((-420 (-975 |#1|))) 77 (|has| |#1| (-569)))) (-2256 (((-420 (-975 |#1|)) $ $) 69 (|has| |#1| (-569)))) (-2324 (((-420 (-975 |#1|)) $) 99 (|has| |#1| (-569)))) (-2314 (((-420 (-975 |#1|)) $) 103 (|has| |#1| (-569)))) (-2335 (((-1197 (-420 (-975 |#1|))) $) 93 (|has| |#1| (-569)))) (-2243 (((-420 (-975 |#1|))) 73 (|has| |#1| (-569)))) (-2354 (($) 110) (($ (-1201)) 118) (($ (-1292 (-1201))) 117) (($ (-1292 $)) 105) (($ (-1201) (-1292 $)) 116) (($ (-1292 (-1201)) (-1292 $)) 115)) (-3892 (((-112)) NIL)) (-2872 (((-420 (-975 |#1|)) $ (-577)) NIL)) (-2710 (((-1292 (-420 (-975 |#1|))) $ (-1292 $)) 107) (((-705 (-420 (-975 |#1|))) (-1292 $) (-1292 $)) NIL) (((-1292 (-420 (-975 |#1|))) $) 43) (((-705 (-420 (-975 |#1|))) (-1292 $)) NIL)) (-4152 (((-1292 (-420 (-975 |#1|))) $) NIL) (($ (-1292 (-420 (-975 |#1|)))) 40)) (-2206 (((-660 (-975 (-420 (-975 |#1|)))) (-1292 $)) NIL) (((-660 (-975 (-420 (-975 |#1|))))) NIL) (((-660 (-975 |#1|)) (-1292 $)) 108 (|has| |#1| (-569))) (((-660 (-975 |#1|))) 109 (|has| |#1| (-569)))) (-3820 (($ $ $) NIL)) (-3965 (((-112)) NIL)) (-3544 (((-880) $) NIL) (($ (-1292 (-420 (-975 |#1|)))) NIL)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) 65)) (-3786 (((-660 (-1292 (-420 (-975 |#1|))))) NIL (|has| (-420 (-975 |#1|)) (-569)))) (-3832 (($ $ $ $) NIL)) (-3940 (((-112)) NIL)) (-3543 (($ (-705 (-420 (-975 |#1|))) $) NIL)) (-3807 (($ $ $) NIL)) (-3953 (((-112)) NIL)) (-3928 (((-112)) NIL)) (-3881 (((-112)) NIL)) (-2806 (($) NIL T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) 106)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 61) (($ $ (-420 (-975 |#1|))) NIL) (($ (-420 (-975 |#1|)) $) NIL) (($ (-1167 |#2| (-420 (-975 |#1|))) $) NIL))) +(((-466 |#1| |#2| |#3| |#4|) (-13 (-430 (-420 (-975 |#1|))) (-664 (-1167 |#2| (-420 (-975 |#1|)))) (-10 -8 (-15 -3544 ($ (-1292 (-420 (-975 |#1|))))) (-15 -2373 ((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed"))) (-15 -2364 ((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed"))) (-15 -2354 ($)) (-15 -2354 ($ (-1201))) (-15 -2354 ($ (-1292 (-1201)))) (-15 -2354 ($ (-1292 $))) (-15 -2354 ($ (-1201) (-1292 $))) (-15 -2354 ($ (-1292 (-1201)) (-1292 $))) (IF (|has| |#1| (-569)) (PROGN (-15 -2345 ((-1197 (-420 (-975 |#1|))))) (-15 -2335 ((-1197 (-420 (-975 |#1|))) $)) (-15 -2324 ((-420 (-975 |#1|)) $)) (-15 -2314 ((-420 (-975 |#1|)) $)) (-15 -2304 ((-1197 (-420 (-975 |#1|))))) (-15 -2293 ((-1197 (-420 (-975 |#1|))) $)) (-15 -2280 ((-420 (-975 |#1|)) $)) (-15 -2268 ((-420 (-975 |#1|)) $)) (-15 -2256 ((-420 (-975 |#1|)) $ $)) (-15 -2243 ((-420 (-975 |#1|)))) (-15 -2231 ((-420 (-975 |#1|)) $ $)) (-15 -2218 ((-420 (-975 |#1|)))) (-15 -2206 ((-660 (-975 |#1|)) (-1292 $))) (-15 -2206 ((-660 (-975 |#1|))))) |%noBranch|))) (-174) (-944) (-660 (-1201)) (-1292 (-705 |#1|))) (T -466)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1292 (-420 (-975 *3)))) (-4 *3 (-174)) (-14 *6 (-1292 (-705 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))))) (-2373 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-466 *3 *4 *5 *6)) (|:| -4060 (-660 (-466 *3 *4 *5 *6))))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2364 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-466 *3 *4 *5 *6)) (|:| -4060 (-660 (-466 *3 *4 *5 *6))))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2354 (*1 *1) (-12 (-5 *1 (-466 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-944)) (-14 *4 (-660 (-1201))) (-14 *5 (-1292 (-705 *2))))) (-2354 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 *2)) (-14 *6 (-1292 (-705 *3))))) (-2354 (*1 *1 *2) (-12 (-5 *2 (-1292 (-1201))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2354 (*1 *1 *2) (-12 (-5 *2 (-1292 (-466 *3 *4 *5 *6))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2354 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-466 *4 *5 *6 *7))) (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-944)) (-14 *6 (-660 *2)) (-14 *7 (-1292 (-705 *4))))) (-2354 (*1 *1 *2 *3) (-12 (-5 *2 (-1292 (-1201))) (-5 *3 (-1292 (-466 *4 *5 *6 *7))) (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-944)) (-14 *6 (-660 (-1201))) (-14 *7 (-1292 (-705 *4))))) (-2345 (*1 *2) (-12 (-5 *2 (-1197 (-420 (-975 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2335 (*1 *2 *1) (-12 (-5 *2 (-1197 (-420 (-975 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2314 (*1 *2 *1) (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2304 (*1 *2) (-12 (-5 *2 (-1197 (-420 (-975 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2293 (*1 *2 *1) (-12 (-5 *2 (-1197 (-420 (-975 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2280 (*1 *2 *1) (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2268 (*1 *2 *1) (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2256 (*1 *2 *1 *1) (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2243 (*1 *2) (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2231 (*1 *2 *1 *1) (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2218 (*1 *2) (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) (-2206 (*1 *2 *3) (-12 (-5 *3 (-1292 (-466 *4 *5 *6 *7))) (-5 *2 (-660 (-975 *4))) (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *4 (-174)) (-14 *5 (-944)) (-14 *6 (-660 (-1201))) (-14 *7 (-1292 (-705 *4))))) (-2206 (*1 *2) (-12 (-5 *2 (-660 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) +(-13 (-430 (-420 (-975 |#1|))) (-664 (-1167 |#2| (-420 (-975 |#1|)))) (-10 -8 (-15 -3544 ($ (-1292 (-420 (-975 |#1|))))) (-15 -2373 ((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed"))) (-15 -2364 ((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed"))) (-15 -2354 ($)) (-15 -2354 ($ (-1201))) (-15 -2354 ($ (-1292 (-1201)))) (-15 -2354 ($ (-1292 $))) (-15 -2354 ($ (-1201) (-1292 $))) (-15 -2354 ($ (-1292 (-1201)) (-1292 $))) (IF (|has| |#1| (-569)) (PROGN (-15 -2345 ((-1197 (-420 (-975 |#1|))))) (-15 -2335 ((-1197 (-420 (-975 |#1|))) $)) (-15 -2324 ((-420 (-975 |#1|)) $)) (-15 -2314 ((-420 (-975 |#1|)) $)) (-15 -2304 ((-1197 (-420 (-975 |#1|))))) (-15 -2293 ((-1197 (-420 (-975 |#1|))) $)) (-15 -2280 ((-420 (-975 |#1|)) $)) (-15 -2268 ((-420 (-975 |#1|)) $)) (-15 -2256 ((-420 (-975 |#1|)) $ $)) (-15 -2243 ((-420 (-975 |#1|)))) (-15 -2231 ((-420 (-975 |#1|)) $ $)) (-15 -2218 ((-420 (-975 |#1|)))) (-15 -2206 ((-660 (-975 |#1|)) (-1292 $))) (-15 -2206 ((-660 (-975 |#1|))))) |%noBranch|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 18)) (-2058 (((-660 (-882 |#1|)) $) 87)) (-1867 (((-1197 $) $ (-882 |#1|)) 52) (((-1197 |#2|) $) 138)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)))) (-3290 (($ $) NIL (|has| |#2| (-569)))) (-3271 (((-112) $) NIL (|has| |#2| (-569)))) (-4050 (((-787) $) 27) (((-787) $ (-660 (-882 |#1|))) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-3841 (($ $) NIL (|has| |#2| (-465)))) (-3029 (((-431 $) $) NIL (|has| |#2| (-465)))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#2| "failed") $) 50) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1063 (-577)))) (((-3 (-882 |#1|) "failed") $) NIL)) (-2921 ((|#2| $) 48) (((-420 (-577)) $) NIL (|has| |#2| (-1063 (-420 (-577))))) (((-577) $) NIL (|has| |#2| (-1063 (-577)))) (((-882 |#1|) $) NIL)) (-1816 (($ $ $ (-882 |#1|)) NIL (|has| |#2| (-174)))) (-1424 (($ $ (-660 (-577))) 93)) (-2248 (($ $) 80)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL) (((-705 |#2|) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3143 (($ $) NIL (|has| |#2| (-465))) (($ $ (-882 |#1|)) NIL (|has| |#2| (-465)))) (-2234 (((-660 $) $) NIL)) (-1522 (((-112) $) NIL (|has| |#2| (-932)))) (-2137 (($ $ |#2| |#3| $) NIL)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-882 |#1|) (-905 (-391))) (|has| |#2| (-905 (-391))))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-882 |#1|) (-905 (-577))) (|has| |#2| (-905 (-577)))))) (-2487 (((-112) $) NIL)) (-2548 (((-787) $) 65)) (-2043 (($ (-1197 |#2|) (-882 |#1|)) 143) (($ (-1197 $) (-882 |#1|)) 58)) (-4074 (((-660 $) $) NIL)) (-2811 (((-112) $) 68)) (-2030 (($ |#2| |#3|) 35) (($ $ (-882 |#1|) (-787)) 37) (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ (-882 |#1|)) NIL)) (-4061 ((|#3| $) NIL) (((-787) $ (-882 |#1|)) 56) (((-660 (-787)) $ (-660 (-882 |#1|))) 63)) (-2151 (($ (-1 |#3| |#3|) $) NIL)) (-4087 (($ (-1 |#2| |#2|) $) NIL)) (-3691 (((-3 (-882 |#1|) "failed") $) 45)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL) (((-705 |#2|) (-1292 $)) NIL)) (-2209 (($ $) NIL)) (-2221 ((|#2| $) 47)) (-3446 (($ (-660 $)) NIL (|has| |#2| (-465))) (($ $ $) NIL (|has| |#2| (-465)))) (-2810 (((-1183) $) NIL)) (-4098 (((-3 (-660 $) "failed") $) NIL)) (-4086 (((-3 (-660 $) "failed") $) NIL)) (-4111 (((-3 (-2 (|:| |var| (-882 |#1|)) (|:| -3556 (-787))) "failed") $) NIL)) (-1474 (((-1145) $) NIL)) (-2180 (((-112) $) 46)) (-2193 ((|#2| $) 136)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#2| (-465)))) (-3480 (($ (-660 $)) NIL (|has| |#2| (-465))) (($ $ $) 149 (|has| |#2| (-465)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-1902 (((-431 $) $) NIL (|has| |#2| (-932)))) (-3462 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)))) (-3280 (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ (-882 |#1|) |#2|) 100) (($ $ (-660 (-882 |#1|)) (-660 |#2|)) 106) (($ $ (-882 |#1|) $) 98) (($ $ (-660 (-882 |#1|)) (-660 $)) 124)) (-1827 (($ $ (-882 |#1|)) NIL (|has| |#2| (-174)))) (-2852 (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL) (($ $ (-882 |#1|) (-787)) NIL) (($ $ (-660 (-882 |#1|))) NIL) (($ $ (-882 |#1|)) 59)) (-2887 ((|#3| $) 79) (((-787) $ (-882 |#1|)) 42) (((-660 (-787)) $ (-660 (-882 |#1|))) 62)) (-4152 (((-911 (-391)) $) NIL (-12 (|has| (-882 |#1|) (-627 (-911 (-391)))) (|has| |#2| (-627 (-911 (-391)))))) (((-911 (-577)) $) NIL (-12 (|has| (-882 |#1|) (-627 (-911 (-577)))) (|has| |#2| (-627 (-911 (-577)))))) (((-549) $) NIL (-12 (|has| (-882 |#1|) (-627 (-549))) (|has| |#2| (-627 (-549)))))) (-4039 ((|#2| $) 145 (|has| |#2| (-465))) (($ $ (-882 |#1|)) NIL (|has| |#2| (-465)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-932))))) (-3544 (((-880) $) 173) (($ (-577)) NIL) (($ |#2|) 99) (($ (-882 |#1|)) 39) (($ (-420 (-577))) NIL (-2839 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577)))))) (($ $) NIL (|has| |#2| (-569)))) (-4182 (((-660 |#2|) $) NIL)) (-2322 ((|#2| $ |#3|) NIL) (($ $ (-882 |#1|) (-787)) NIL) (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| |#2| (-932))) (|has| |#2| (-146))))) (-4068 (((-787)) NIL T CONST)) (-2122 (($ $ $ (-787)) NIL (|has| |#2| (-174)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL (|has| |#2| (-569)))) (-2806 (($) 22 T CONST)) (-2816 (($) 31 T CONST)) (-2132 (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL) (($ $ (-882 |#1|) (-787)) NIL) (($ $ (-660 (-882 |#1|))) NIL) (($ $ (-882 |#1|)) NIL)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#2|) 76 (|has| |#2| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) 131)) (** (($ $ (-944)) NIL) (($ $ (-787)) 129)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 36) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577))))) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577))))) (($ |#2| $) 75) (($ $ |#2|) NIL))) +(((-467 |#1| |#2| |#3|) (-13 (-972 |#2| |#3| (-882 |#1|)) (-10 -8 (-15 -1424 ($ $ (-660 (-577)))))) (-660 (-1201)) (-1074) (-244 (-3484 |#1|) (-787))) (T -467)) +((-1424 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-577))) (-14 *3 (-660 (-1201))) (-5 *1 (-467 *3 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-244 (-3484 *3) (-787)))))) +(-13 (-972 |#2| |#3| (-882 |#1|)) (-10 -8 (-15 -1424 ($ $ (-660 (-577)))))) +((-4258 (((-112) |#1| (-660 |#2|)) 91)) (-4236 (((-3 (-1292 (-660 |#2|)) "failed") (-787) |#1| (-660 |#2|)) 100)) (-4248 (((-3 (-660 |#2|) "failed") |#2| |#1| (-1292 (-660 |#2|))) 102)) (-3062 ((|#2| |#2| |#1|) 35)) (-2384 (((-787) |#2| (-660 |#2|)) 26))) +(((-468 |#1| |#2|) (-10 -7 (-15 -3062 (|#2| |#2| |#1|)) (-15 -2384 ((-787) |#2| (-660 |#2|))) (-15 -4236 ((-3 (-1292 (-660 |#2|)) "failed") (-787) |#1| (-660 |#2|))) (-15 -4248 ((-3 (-660 |#2|) "failed") |#2| |#1| (-1292 (-660 |#2|)))) (-15 -4258 ((-112) |#1| (-660 |#2|)))) (-318) (-1268 |#1|)) (T -468)) +((-4258 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *5)) (-4 *5 (-1268 *3)) (-4 *3 (-318)) (-5 *2 (-112)) (-5 *1 (-468 *3 *5)))) (-4248 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1292 (-660 *3))) (-4 *4 (-318)) (-5 *2 (-660 *3)) (-5 *1 (-468 *4 *3)) (-4 *3 (-1268 *4)))) (-4236 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-787)) (-4 *4 (-318)) (-4 *6 (-1268 *4)) (-5 *2 (-1292 (-660 *6))) (-5 *1 (-468 *4 *6)) (-5 *5 (-660 *6)))) (-2384 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-318)) (-5 *2 (-787)) (-5 *1 (-468 *5 *3)))) (-3062 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-468 *3 *2)) (-4 *2 (-1268 *3))))) +(-10 -7 (-15 -3062 (|#2| |#2| |#1|)) (-15 -2384 ((-787) |#2| (-660 |#2|))) (-15 -4236 ((-3 (-1292 (-660 |#2|)) "failed") (-787) |#1| (-660 |#2|))) (-15 -4248 ((-3 (-660 |#2|) "failed") |#2| |#1| (-1292 (-660 |#2|)))) (-15 -4258 ((-112) |#1| (-660 |#2|)))) +((-1902 (((-431 |#5|) |#5|) 24))) +(((-469 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1902 ((-431 |#5|) |#5|))) (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $)) (-15 -3076 ((-3 $ "failed") (-1201))))) (-809) (-569) (-569) (-972 |#4| |#2| |#1|)) (T -469)) +((-1902 (*1 *2 *3) (-12 (-4 *4 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $)) (-15 -3076 ((-3 $ "failed") (-1201)))))) (-4 *5 (-809)) (-4 *7 (-569)) (-5 *2 (-431 *3)) (-5 *1 (-469 *4 *5 *6 *7 *3)) (-4 *6 (-569)) (-4 *3 (-972 *7 *5 *4))))) +(-10 -7 (-15 -1902 ((-431 |#5|) |#5|))) +((-2208 ((|#3|) 38)) (-2305 (((-1197 |#4|) (-1197 |#4|) (-1197 |#4|)) 34))) +(((-470 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2305 ((-1197 |#4|) (-1197 |#4|) (-1197 |#4|))) (-15 -2208 (|#3|))) (-809) (-865) (-932) (-972 |#3| |#1| |#2|)) (T -470)) +((-2208 (*1 *2) (-12 (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-932)) (-5 *1 (-470 *3 *4 *2 *5)) (-4 *5 (-972 *2 *3 *4)))) (-2305 (*1 *2 *2 *2) (-12 (-5 *2 (-1197 *6)) (-4 *6 (-972 *5 *3 *4)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-932)) (-5 *1 (-470 *3 *4 *5 *6))))) +(-10 -7 (-15 -2305 ((-1197 |#4|) (-1197 |#4|) (-1197 |#4|))) (-15 -2208 (|#3|))) +((-1902 (((-431 (-1197 |#1|)) (-1197 |#1|)) 43))) +(((-471 |#1|) (-10 -7 (-15 -1902 ((-431 (-1197 |#1|)) (-1197 |#1|)))) (-318)) (T -471)) +((-1902 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-431 (-1197 *4))) (-5 *1 (-471 *4)) (-5 *3 (-1197 *4))))) +(-10 -7 (-15 -1902 ((-431 (-1197 |#1|)) (-1197 |#1|)))) +((-2119 (((-52) |#2| (-1201) (-305 |#2|) (-1259 (-787))) 44) (((-52) (-1 |#2| (-577)) (-305 |#2|) (-1259 (-787))) 43) (((-52) |#2| (-1201) (-305 |#2|)) 36) (((-52) (-1 |#2| (-577)) (-305 |#2|)) 29)) (-3689 (((-52) |#2| (-1201) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577))) 88) (((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577))) 87) (((-52) |#2| (-1201) (-305 |#2|) (-1259 (-577))) 86) (((-52) (-1 |#2| (-577)) (-305 |#2|) (-1259 (-577))) 85) (((-52) |#2| (-1201) (-305 |#2|)) 80) (((-52) (-1 |#2| (-577)) (-305 |#2|)) 79)) (-2148 (((-52) |#2| (-1201) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577))) 74) (((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577))) 72)) (-2134 (((-52) |#2| (-1201) (-305 |#2|) (-1259 (-577))) 51) (((-52) (-1 |#2| (-577)) (-305 |#2|) (-1259 (-577))) 50))) +(((-472 |#1| |#2|) (-10 -7 (-15 -2119 ((-52) (-1 |#2| (-577)) (-305 |#2|))) (-15 -2119 ((-52) |#2| (-1201) (-305 |#2|))) (-15 -2119 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1259 (-787)))) (-15 -2119 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-787)))) (-15 -2134 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1259 (-577)))) (-15 -2134 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-577)))) (-15 -2148 ((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577)))) (-15 -2148 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577)))) (-15 -3689 ((-52) (-1 |#2| (-577)) (-305 |#2|))) (-15 -3689 ((-52) |#2| (-1201) (-305 |#2|))) (-15 -3689 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1259 (-577)))) (-15 -3689 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-577)))) (-15 -3689 ((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577)))) (-15 -3689 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577))))) (-13 (-569) (-1063 (-577)) (-654 (-577))) (-13 (-27) (-1227) (-443 |#1|))) (T -472)) +((-3689 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-420 (-577)))) (-5 *7 (-420 (-577))) (-4 *3 (-13 (-27) (-1227) (-443 *8))) (-4 *8 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *8 *3)))) (-3689 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-420 (-577)))) (-5 *4 (-305 *8)) (-5 *5 (-1259 (-420 (-577)))) (-5 *6 (-420 (-577))) (-4 *8 (-13 (-27) (-1227) (-443 *7))) (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *8)))) (-3689 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-577))) (-4 *3 (-13 (-27) (-1227) (-443 *7))) (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *3)))) (-3689 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1259 (-577))) (-4 *7 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *7)))) (-3689 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *3)))) (-3689 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-577))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1227) (-443 *5))) (-4 *5 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *5 *6)))) (-2148 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-420 (-577)))) (-5 *7 (-420 (-577))) (-4 *3 (-13 (-27) (-1227) (-443 *8))) (-4 *8 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *8 *3)))) (-2148 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-420 (-577)))) (-5 *4 (-305 *8)) (-5 *5 (-1259 (-420 (-577)))) (-5 *6 (-420 (-577))) (-4 *8 (-13 (-27) (-1227) (-443 *7))) (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *8)))) (-2134 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-577))) (-4 *3 (-13 (-27) (-1227) (-443 *7))) (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *3)))) (-2134 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1259 (-577))) (-4 *7 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *7)))) (-2119 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-787))) (-4 *3 (-13 (-27) (-1227) (-443 *7))) (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *7 *3)))) (-2119 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1259 (-787))) (-4 *7 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *7)))) (-2119 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *6 *3)))) (-2119 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-577))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1227) (-443 *5))) (-4 *5 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) (-5 *1 (-472 *5 *6))))) +(-10 -7 (-15 -2119 ((-52) (-1 |#2| (-577)) (-305 |#2|))) (-15 -2119 ((-52) |#2| (-1201) (-305 |#2|))) (-15 -2119 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1259 (-787)))) (-15 -2119 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-787)))) (-15 -2134 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1259 (-577)))) (-15 -2134 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-577)))) (-15 -2148 ((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577)))) (-15 -2148 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577)))) (-15 -3689 ((-52) (-1 |#2| (-577)) (-305 |#2|))) (-15 -3689 ((-52) |#2| (-1201) (-305 |#2|))) (-15 -3689 ((-52) (-1 |#2| (-577)) (-305 |#2|) (-1259 (-577)))) (-15 -3689 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-577)))) (-15 -3689 ((-52) (-1 |#2| (-420 (-577))) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577)))) (-15 -3689 ((-52) |#2| (-1201) (-305 |#2|) (-1259 (-420 (-577))) (-420 (-577))))) +((-3062 ((|#2| |#2| |#1|) 15)) (-4278 (((-660 |#2|) |#2| (-660 |#2|) |#1| (-944)) 82)) (-4268 (((-2 (|:| |plist| (-660 |#2|)) (|:| |modulo| |#1|)) |#2| (-660 |#2|) |#1| (-944)) 72))) +(((-473 |#1| |#2|) (-10 -7 (-15 -4268 ((-2 (|:| |plist| (-660 |#2|)) (|:| |modulo| |#1|)) |#2| (-660 |#2|) |#1| (-944))) (-15 -4278 ((-660 |#2|) |#2| (-660 |#2|) |#1| (-944))) (-15 -3062 (|#2| |#2| |#1|))) (-318) (-1268 |#1|)) (T -473)) +((-3062 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-5 *1 (-473 *3 *2)) (-4 *2 (-1268 *3)))) (-4278 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-660 *3)) (-5 *5 (-944)) (-4 *3 (-1268 *4)) (-4 *4 (-318)) (-5 *1 (-473 *4 *3)))) (-4268 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-944)) (-4 *5 (-318)) (-4 *3 (-1268 *5)) (-5 *2 (-2 (|:| |plist| (-660 *3)) (|:| |modulo| *5))) (-5 *1 (-473 *5 *3)) (-5 *4 (-660 *3))))) +(-10 -7 (-15 -4268 ((-2 (|:| |plist| (-660 |#2|)) (|:| |modulo| |#1|)) |#2| (-660 |#2|) |#1| (-944))) (-15 -4278 ((-660 |#2|) |#2| (-660 |#2|) |#1| (-944))) (-15 -3062 (|#2| |#2| |#1|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 28)) (-1352 (($ |#3|) 25)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-2248 (($ $) 32)) (-4290 (($ |#2| |#4| $) 33)) (-2030 (($ |#2| (-729 |#3| |#4| |#5|)) 24)) (-2209 (((-729 |#3| |#4| |#5|) $) 15)) (-4310 ((|#3| $) 19)) (-4322 ((|#4| $) 17)) (-2221 ((|#2| $) 29)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4302 (($ |#2| |#3| |#4|) 26)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 36 T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) 34)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-474 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-733 |#6|) (-733 |#2|) (-10 -8 (-15 -2221 (|#2| $)) (-15 -2209 ((-729 |#3| |#4| |#5|) $)) (-15 -4322 (|#4| $)) (-15 -4310 (|#3| $)) (-15 -2248 ($ $)) (-15 -2030 ($ |#2| (-729 |#3| |#4| |#5|))) (-15 -1352 ($ |#3|)) (-15 -4302 ($ |#2| |#3| |#4|)) (-15 -4290 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-660 (-1201)) (-174) (-865) (-244 (-3484 |#1|) (-787)) (-1 (-112) (-2 (|:| -3222 |#3|) (|:| -3556 |#4|)) (-2 (|:| -3222 |#3|) (|:| -3556 |#4|))) (-972 |#2| |#4| (-882 |#1|))) (T -474)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) (-4 *6 (-244 (-3484 *3) (-787))) (-14 *7 (-1 (-112) (-2 (|:| -3222 *5) (|:| -3556 *6)) (-2 (|:| -3222 *5) (|:| -3556 *6)))) (-5 *1 (-474 *3 *4 *5 *6 *7 *2)) (-4 *5 (-865)) (-4 *2 (-972 *4 *6 (-882 *3))))) (-2221 (*1 *2 *1) (-12 (-14 *3 (-660 (-1201))) (-4 *5 (-244 (-3484 *3) (-787))) (-14 *6 (-1 (-112) (-2 (|:| -3222 *4) (|:| -3556 *5)) (-2 (|:| -3222 *4) (|:| -3556 *5)))) (-4 *2 (-174)) (-5 *1 (-474 *3 *2 *4 *5 *6 *7)) (-4 *4 (-865)) (-4 *7 (-972 *2 *5 (-882 *3))))) (-2209 (*1 *2 *1) (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) (-4 *6 (-244 (-3484 *3) (-787))) (-14 *7 (-1 (-112) (-2 (|:| -3222 *5) (|:| -3556 *6)) (-2 (|:| -3222 *5) (|:| -3556 *6)))) (-5 *2 (-729 *5 *6 *7)) (-5 *1 (-474 *3 *4 *5 *6 *7 *8)) (-4 *5 (-865)) (-4 *8 (-972 *4 *6 (-882 *3))))) (-4322 (*1 *2 *1) (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -3222 *5) (|:| -3556 *2)) (-2 (|:| -3222 *5) (|:| -3556 *2)))) (-4 *2 (-244 (-3484 *3) (-787))) (-5 *1 (-474 *3 *4 *5 *2 *6 *7)) (-4 *5 (-865)) (-4 *7 (-972 *4 *2 (-882 *3))))) (-4310 (*1 *2 *1) (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) (-4 *5 (-244 (-3484 *3) (-787))) (-14 *6 (-1 (-112) (-2 (|:| -3222 *2) (|:| -3556 *5)) (-2 (|:| -3222 *2) (|:| -3556 *5)))) (-4 *2 (-865)) (-5 *1 (-474 *3 *4 *2 *5 *6 *7)) (-4 *7 (-972 *4 *5 (-882 *3))))) (-2248 (*1 *1 *1) (-12 (-14 *2 (-660 (-1201))) (-4 *3 (-174)) (-4 *5 (-244 (-3484 *2) (-787))) (-14 *6 (-1 (-112) (-2 (|:| -3222 *4) (|:| -3556 *5)) (-2 (|:| -3222 *4) (|:| -3556 *5)))) (-5 *1 (-474 *2 *3 *4 *5 *6 *7)) (-4 *4 (-865)) (-4 *7 (-972 *3 *5 (-882 *2))))) (-2030 (*1 *1 *2 *3) (-12 (-5 *3 (-729 *5 *6 *7)) (-4 *5 (-865)) (-4 *6 (-244 (-3484 *4) (-787))) (-14 *7 (-1 (-112) (-2 (|:| -3222 *5) (|:| -3556 *6)) (-2 (|:| -3222 *5) (|:| -3556 *6)))) (-14 *4 (-660 (-1201))) (-4 *2 (-174)) (-5 *1 (-474 *4 *2 *5 *6 *7 *8)) (-4 *8 (-972 *2 *6 (-882 *4))))) (-1352 (*1 *1 *2) (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) (-4 *5 (-244 (-3484 *3) (-787))) (-14 *6 (-1 (-112) (-2 (|:| -3222 *2) (|:| -3556 *5)) (-2 (|:| -3222 *2) (|:| -3556 *5)))) (-5 *1 (-474 *3 *4 *2 *5 *6 *7)) (-4 *2 (-865)) (-4 *7 (-972 *4 *5 (-882 *3))))) (-4302 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-660 (-1201))) (-4 *2 (-174)) (-4 *4 (-244 (-3484 *5) (-787))) (-14 *6 (-1 (-112) (-2 (|:| -3222 *3) (|:| -3556 *4)) (-2 (|:| -3222 *3) (|:| -3556 *4)))) (-5 *1 (-474 *5 *2 *3 *4 *6 *7)) (-4 *3 (-865)) (-4 *7 (-972 *2 *4 (-882 *5))))) (-4290 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-660 (-1201))) (-4 *2 (-174)) (-4 *3 (-244 (-3484 *4) (-787))) (-14 *6 (-1 (-112) (-2 (|:| -3222 *5) (|:| -3556 *3)) (-2 (|:| -3222 *5) (|:| -3556 *3)))) (-5 *1 (-474 *4 *2 *5 *3 *6 *7)) (-4 *5 (-865)) (-4 *7 (-972 *2 *3 (-882 *4)))))) +(-13 (-733 |#6|) (-733 |#2|) (-10 -8 (-15 -2221 (|#2| $)) (-15 -2209 ((-729 |#3| |#4| |#5|) $)) (-15 -4322 (|#4| $)) (-15 -4310 (|#3| $)) (-15 -2248 ($ $)) (-15 -2030 ($ |#2| (-729 |#3| |#4| |#5|))) (-15 -1352 ($ |#3|)) (-15 -4302 ($ |#2| |#3| |#4|)) (-15 -4290 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-4333 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) +(((-475 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4333 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-809) (-865) (-569) (-972 |#3| |#1| |#2|) (-13 (-1063 (-420 (-577))) (-375) (-10 -8 (-15 -3544 ($ |#4|)) (-15 -1623 (|#4| $)) (-15 -1637 (|#4| $))))) (T -475)) +((-4333 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-865)) (-4 *5 (-809)) (-4 *6 (-569)) (-4 *7 (-972 *6 *5 *3)) (-5 *1 (-475 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1063 (-420 (-577))) (-375) (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) (-15 -1637 (*7 $)))))))) +(-10 -7 (-15 -4333 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-3473 (((-112) $ $) NIL)) (-2058 (((-660 |#3|) $) 41)) (-2508 (((-112) $) NIL)) (-3572 (((-112) $) NIL (|has| |#1| (-569)))) (-1864 (((-2 (|:| |under| $) (|:| -4119 $) (|:| |upper| $)) $ |#3|) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-2067 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-1534 (($) NIL T CONST)) (-2474 (((-112) $) NIL (|has| |#1| (-569)))) (-2492 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2483 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2500 (((-112) $) NIL (|has| |#1| (-569)))) (-2434 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)))) (-2446 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)))) (-1628 (((-3 $ "failed") (-660 |#4|)) 49)) (-2921 (($ (-660 |#4|)) NIL)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))))) (-3904 (($ |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-2457 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)))) (-3654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4470))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4470)))) (-1461 (((-660 |#4|) $) 18 (|has| $ (-6 -4470)))) (-3514 ((|#3| $) 47)) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 |#4|) $) 14 (|has| $ (-6 -4470)))) (-2820 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))))) (-2182 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#4| |#4|) $) 21)) (-2555 (((-660 |#3|) $) NIL)) (-2545 (((-112) |#3| $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL)) (-2466 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)))) (-1474 (((-1145) $) NIL)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1514 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 |#4|) (-660 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-660 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) 39)) (-3639 (($) 17)) (-1485 (((-787) |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125)))) (((-787) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) 16)) (-4152 (((-549) $) NIL (|has| |#4| (-627 (-549)))) (($ (-660 |#4|)) 51)) (-3553 (($ (-660 |#4|)) 13)) (-2518 (($ $ |#3|) NIL)) (-2536 (($ $ |#3|) NIL)) (-2527 (($ $ |#3|) NIL)) (-3544 (((-880) $) 38) (((-660 |#4|) $) 50)) (-4448 (((-112) $ $) NIL)) (-1524 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 30)) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-476 |#1| |#2| |#3| |#4|) (-13 (-1001 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4152 ($ (-660 |#4|))) (-6 -4470) (-6 -4471))) (-1074) (-809) (-865) (-1090 |#1| |#2| |#3|)) (T -476)) +((-4152 (*1 *1 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-476 *3 *4 *5 *6))))) +(-13 (-1001 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4152 ($ (-660 |#4|))) (-6 -4470) (-6 -4471))) +((-2806 (($) 11)) (-2816 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-477 |#1| |#2| |#3|) (-10 -8 (-15 -2816 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2806 (|#1|))) (-478 |#2| |#3|) (-174) (-23)) (T -477)) +NIL +(-10 -8 (-15 -2816 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2806 (|#1|))) +((-3473 (((-112) $ $) 7)) (-1628 (((-3 |#1| "failed") $) 27)) (-2921 ((|#1| $) 28)) (-2857 (($ $ $) 24)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2887 ((|#2| $) 20)) (-3544 (((-880) $) 12) (($ |#1|) 26)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2816 (($) 25 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 16) (($ $ $) 14)) (-3055 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +(((-478 |#1| |#2|) (-141) (-174) (-23)) (T -478)) +((-2816 (*1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-2857 (*1 *1 *1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-483 |t#1| |t#2|) (-1063 |t#1|) (-10 -8 (-15 (-2816) ($) -1512) (-15 -2857 ($ $ $)))) +(((-102) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-483 |#1| |#2|) . T) ((-1063 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-4345 (((-1292 (-1292 (-577))) (-1292 (-1292 (-577))) (-944)) 26)) (-4356 (((-1292 (-1292 (-577))) (-944)) 21))) +(((-479) (-10 -7 (-15 -4345 ((-1292 (-1292 (-577))) (-1292 (-1292 (-577))) (-944))) (-15 -4356 ((-1292 (-1292 (-577))) (-944))))) (T -479)) +((-4356 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1292 (-1292 (-577)))) (-5 *1 (-479)))) (-4345 (*1 *2 *2 *3) (-12 (-5 *2 (-1292 (-1292 (-577)))) (-5 *3 (-944)) (-5 *1 (-479))))) +(-10 -7 (-15 -4345 ((-1292 (-1292 (-577))) (-1292 (-1292 (-577))) (-944))) (-15 -4356 ((-1292 (-1292 (-577))) (-944)))) +((-1697 (((-577) (-577)) 32) (((-577)) 24)) (-3589 (((-577) (-577)) 28) (((-577)) 20)) (-1718 (((-577) (-577)) 30) (((-577)) 22)) (-4377 (((-112) (-112)) 14) (((-112)) 12)) (-4366 (((-112) (-112)) 13) (((-112)) 11)) (-4387 (((-112) (-112)) 26) (((-112)) 17))) +(((-480) (-10 -7 (-15 -4366 ((-112))) (-15 -4377 ((-112))) (-15 -4366 ((-112) (-112))) (-15 -4377 ((-112) (-112))) (-15 -4387 ((-112))) (-15 -1718 ((-577))) (-15 -3589 ((-577))) (-15 -1697 ((-577))) (-15 -4387 ((-112) (-112))) (-15 -1718 ((-577) (-577))) (-15 -3589 ((-577) (-577))) (-15 -1697 ((-577) (-577))))) (T -480)) +((-1697 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-1718 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-4387 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-1697 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-3589 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-1718 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) (-4387 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-4377 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-4366 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-4377 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) (-4366 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480))))) +(-10 -7 (-15 -4366 ((-112))) (-15 -4377 ((-112))) (-15 -4366 ((-112) (-112))) (-15 -4377 ((-112) (-112))) (-15 -4387 ((-112))) (-15 -1718 ((-577))) (-15 -3589 ((-577))) (-15 -1697 ((-577))) (-15 -4387 ((-112) (-112))) (-15 -1718 ((-577) (-577))) (-15 -3589 ((-577) (-577))) (-15 -1697 ((-577) (-577)))) +((-3473 (((-112) $ $) NIL)) (-2442 (((-660 (-391)) $) 34) (((-660 (-391)) $ (-660 (-391))) 146)) (-4442 (((-660 (-1119 (-391))) $) 16) (((-660 (-1119 (-391))) $ (-660 (-1119 (-391)))) 142)) (-4408 (((-660 (-660 (-966 (-228)))) (-660 (-660 (-966 (-228)))) (-660 (-892))) 58)) (-1330 (((-660 (-660 (-966 (-228)))) $) 137)) (-3656 (((-1297) $ (-966 (-228)) (-892)) 163)) (-1343 (($ $) 136) (($ (-660 (-660 (-966 (-228))))) 149) (($ (-660 (-660 (-966 (-228)))) (-660 (-892)) (-660 (-892)) (-660 (-944))) 148) (($ (-660 (-660 (-966 (-228)))) (-660 (-892)) (-660 (-892)) (-660 (-944)) (-660 (-271))) 150)) (-2810 (((-1183) $) NIL)) (-4295 (((-577) $) 110)) (-1474 (((-1145) $) NIL)) (-1355 (($) 147)) (-4398 (((-660 (-228)) (-660 (-660 (-966 (-228))))) 89)) (-4432 (((-1297) $ (-660 (-966 (-228))) (-892) (-892) (-944)) 155) (((-1297) $ (-966 (-228))) 157) (((-1297) $ (-966 (-228)) (-892) (-892) (-944)) 156)) (-3544 (((-880) $) 169) (($ (-660 (-660 (-966 (-228))))) 164)) (-4448 (((-112) $ $) NIL)) (-4418 (((-1297) $ (-966 (-228))) 162)) (-2970 (((-112) $ $) NIL))) +(((-481) (-13 (-1125) (-10 -8 (-15 -1355 ($)) (-15 -1343 ($ $)) (-15 -1343 ($ (-660 (-660 (-966 (-228)))))) (-15 -1343 ($ (-660 (-660 (-966 (-228)))) (-660 (-892)) (-660 (-892)) (-660 (-944)))) (-15 -1343 ($ (-660 (-660 (-966 (-228)))) (-660 (-892)) (-660 (-892)) (-660 (-944)) (-660 (-271)))) (-15 -1330 ((-660 (-660 (-966 (-228)))) $)) (-15 -4295 ((-577) $)) (-15 -4442 ((-660 (-1119 (-391))) $)) (-15 -4442 ((-660 (-1119 (-391))) $ (-660 (-1119 (-391))))) (-15 -2442 ((-660 (-391)) $)) (-15 -2442 ((-660 (-391)) $ (-660 (-391)))) (-15 -4432 ((-1297) $ (-660 (-966 (-228))) (-892) (-892) (-944))) (-15 -4432 ((-1297) $ (-966 (-228)))) (-15 -4432 ((-1297) $ (-966 (-228)) (-892) (-892) (-944))) (-15 -4418 ((-1297) $ (-966 (-228)))) (-15 -3656 ((-1297) $ (-966 (-228)) (-892))) (-15 -3544 ($ (-660 (-660 (-966 (-228)))))) (-15 -3544 ((-880) $)) (-15 -4408 ((-660 (-660 (-966 (-228)))) (-660 (-660 (-966 (-228)))) (-660 (-892)))) (-15 -4398 ((-660 (-228)) (-660 (-660 (-966 (-228))))))))) (T -481)) +((-3544 (*1 *2 *1) (-12 (-5 *2 (-880)) (-5 *1 (-481)))) (-1355 (*1 *1) (-5 *1 (-481))) (-1343 (*1 *1 *1) (-5 *1 (-481))) (-1343 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *1 (-481)))) (-1343 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *3 (-660 (-892))) (-5 *4 (-660 (-944))) (-5 *1 (-481)))) (-1343 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *3 (-660 (-892))) (-5 *4 (-660 (-944))) (-5 *5 (-660 (-271))) (-5 *1 (-481)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *1 (-481)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-481)))) (-4442 (*1 *2 *1) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-481)))) (-4442 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-481)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-660 (-391))) (-5 *1 (-481)))) (-2442 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-391))) (-5 *1 (-481)))) (-4432 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-660 (-966 (-228)))) (-5 *4 (-892)) (-5 *5 (-944)) (-5 *2 (-1297)) (-5 *1 (-481)))) (-4432 (*1 *2 *1 *3) (-12 (-5 *3 (-966 (-228))) (-5 *2 (-1297)) (-5 *1 (-481)))) (-4432 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-966 (-228))) (-5 *4 (-892)) (-5 *5 (-944)) (-5 *2 (-1297)) (-5 *1 (-481)))) (-4418 (*1 *2 *1 *3) (-12 (-5 *3 (-966 (-228))) (-5 *2 (-1297)) (-5 *1 (-481)))) (-3656 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-966 (-228))) (-5 *4 (-892)) (-5 *2 (-1297)) (-5 *1 (-481)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *1 (-481)))) (-4408 (*1 *2 *2 *3) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *3 (-660 (-892))) (-5 *1 (-481)))) (-4398 (*1 *2 *3) (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *2 (-660 (-228))) (-5 *1 (-481))))) +(-13 (-1125) (-10 -8 (-15 -1355 ($)) (-15 -1343 ($ $)) (-15 -1343 ($ (-660 (-660 (-966 (-228)))))) (-15 -1343 ($ (-660 (-660 (-966 (-228)))) (-660 (-892)) (-660 (-892)) (-660 (-944)))) (-15 -1343 ($ (-660 (-660 (-966 (-228)))) (-660 (-892)) (-660 (-892)) (-660 (-944)) (-660 (-271)))) (-15 -1330 ((-660 (-660 (-966 (-228)))) $)) (-15 -4295 ((-577) $)) (-15 -4442 ((-660 (-1119 (-391))) $)) (-15 -4442 ((-660 (-1119 (-391))) $ (-660 (-1119 (-391))))) (-15 -2442 ((-660 (-391)) $)) (-15 -2442 ((-660 (-391)) $ (-660 (-391)))) (-15 -4432 ((-1297) $ (-660 (-966 (-228))) (-892) (-892) (-944))) (-15 -4432 ((-1297) $ (-966 (-228)))) (-15 -4432 ((-1297) $ (-966 (-228)) (-892) (-892) (-944))) (-15 -4418 ((-1297) $ (-966 (-228)))) (-15 -3656 ((-1297) $ (-966 (-228)) (-892))) (-15 -3544 ($ (-660 (-660 (-966 (-228)))))) (-15 -3544 ((-880) $)) (-15 -4408 ((-660 (-660 (-966 (-228)))) (-660 (-660 (-966 (-228)))) (-660 (-892)))) (-15 -4398 ((-660 (-228)) (-660 (-660 (-966 (-228)))))))) +((-3066 (($ $) NIL) (($ $ $) 11))) +(((-482 |#1| |#2| |#3|) (-10 -8 (-15 -3066 (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|))) (-483 |#2| |#3|) (-174) (-23)) (T -482)) +NIL +(-10 -8 (-15 -3066 (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|))) +((-3473 (((-112) $ $) 7)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2887 ((|#2| $) 20)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 16) (($ $ $) 14)) (-3055 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +(((-483 |#1| |#2|) (-141) (-174) (-23)) (T -483)) +((-2887 (*1 *2 *1) (-12 (-4 *1 (-483 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2806 (*1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3066 (*1 *1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3055 (*1 *1 *1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3066 (*1 *1 *1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-1125) (-10 -8 (-15 -2887 (|t#2| $)) (-15 (-2806) ($) -1512) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3066 ($ $)) (-15 -3055 ($ $ $)) (-15 -3066 ($ $ $)))) +(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-1379 (((-3 (-660 (-494 |#1| |#2|)) "failed") (-660 (-494 |#1| |#2|)) (-660 (-882 |#1|))) 134)) (-1366 (((-660 (-660 (-254 |#1| |#2|))) (-660 (-254 |#1| |#2|)) (-660 (-882 |#1|))) 131)) (-1390 (((-2 (|:| |dpolys| (-660 (-254 |#1| |#2|))) (|:| |coords| (-660 (-577)))) (-660 (-254 |#1| |#2|)) (-660 (-882 |#1|))) 86))) +(((-484 |#1| |#2| |#3|) (-10 -7 (-15 -1366 ((-660 (-660 (-254 |#1| |#2|))) (-660 (-254 |#1| |#2|)) (-660 (-882 |#1|)))) (-15 -1379 ((-3 (-660 (-494 |#1| |#2|)) "failed") (-660 (-494 |#1| |#2|)) (-660 (-882 |#1|)))) (-15 -1390 ((-2 (|:| |dpolys| (-660 (-254 |#1| |#2|))) (|:| |coords| (-660 (-577)))) (-660 (-254 |#1| |#2|)) (-660 (-882 |#1|))))) (-660 (-1201)) (-465) (-465)) (T -484)) +((-1390 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-882 *5))) (-14 *5 (-660 (-1201))) (-4 *6 (-465)) (-5 *2 (-2 (|:| |dpolys| (-660 (-254 *5 *6))) (|:| |coords| (-660 (-577))))) (-5 *1 (-484 *5 *6 *7)) (-5 *3 (-660 (-254 *5 *6))) (-4 *7 (-465)))) (-1379 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-494 *4 *5))) (-5 *3 (-660 (-882 *4))) (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *1 (-484 *4 *5 *6)) (-4 *6 (-465)))) (-1366 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-882 *5))) (-14 *5 (-660 (-1201))) (-4 *6 (-465)) (-5 *2 (-660 (-660 (-254 *5 *6)))) (-5 *1 (-484 *5 *6 *7)) (-5 *3 (-660 (-254 *5 *6))) (-4 *7 (-465))))) +(-10 -7 (-15 -1366 ((-660 (-660 (-254 |#1| |#2|))) (-660 (-254 |#1| |#2|)) (-660 (-882 |#1|)))) (-15 -1379 ((-3 (-660 (-494 |#1| |#2|)) "failed") (-660 (-494 |#1| |#2|)) (-660 (-882 |#1|)))) (-15 -1390 ((-2 (|:| |dpolys| (-660 (-254 |#1| |#2|))) (|:| |coords| (-660 (-577)))) (-660 (-254 |#1| |#2|)) (-660 (-882 |#1|))))) +((-4187 (((-3 $ "failed") $) 11)) (-2360 (($ $ $) 23)) (-3820 (($ $ $) 24)) (-3077 (($ $ $) 9)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) 22))) +(((-485 |#1|) (-10 -8 (-15 -3820 (|#1| |#1| |#1|)) (-15 -2360 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -3077 (|#1| |#1| |#1|)) (-15 -4187 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-787))) (-15 ** (|#1| |#1| (-944)))) (-486)) (T -485)) +NIL +(-10 -8 (-15 -3820 (|#1| |#1| |#1|)) (-15 -2360 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -3077 (|#1| |#1| |#1|)) (-15 -4187 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-787))) (-15 ** (|#1| |#1| (-944)))) +((-3473 (((-112) $ $) 7)) (-1534 (($) 19 T CONST)) (-4187 (((-3 $ "failed") $) 16)) (-2487 (((-112) $) 18)) (-2810 (((-1183) $) 10)) (-2171 (($ $) 25)) (-1474 (((-1145) $) 11)) (-2360 (($ $ $) 22)) (-3820 (($ $ $) 21)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2816 (($) 20 T CONST)) (-2970 (((-112) $ $) 8)) (-3077 (($ $ $) 24)) (** (($ $ (-944)) 14) (($ $ (-787)) 17) (($ $ (-577)) 23)) (* (($ $ $) 15))) +(((-486) (-141)) (T -486)) +((-2171 (*1 *1 *1) (-4 *1 (-486))) (-3077 (*1 *1 *1 *1) (-4 *1 (-486))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-486)) (-5 *2 (-577)))) (-2360 (*1 *1 *1 *1) (-4 *1 (-486))) (-3820 (*1 *1 *1 *1) (-4 *1 (-486)))) +(-13 (-742) (-10 -8 (-15 -2171 ($ $)) (-15 -3077 ($ $ $)) (-15 ** ($ $ (-577))) (-6 -4467) (-15 -2360 ($ $ $)) (-15 -3820 ($ $ $)))) +(((-102) . T) ((-626 (-880)) . T) ((-742) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-2058 (((-660 (-1107)) $) NIL)) (-3076 (((-1201) $) 18)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-3804 (($ $ (-420 (-577))) NIL) (($ $ (-420 (-577)) (-420 (-577))) NIL)) (-3829 (((-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) NIL)) (-2212 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2060 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL (|has| |#1| (-375)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-375)))) (-1913 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1939 (((-112) $ $) NIL (|has| |#1| (-375)))) (-2186 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2032 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3689 (($ (-787) (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) NIL)) (-2237 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2084 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1534 (($) NIL T CONST)) (-3418 (($ $ $) NIL (|has| |#1| (-375)))) (-2248 (($ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL (|has| |#1| (-375)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| |#1| (-375)))) (-1522 (((-112) $) NIL (|has| |#1| (-375)))) (-3550 (((-112) $) NIL)) (-1659 (($) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3817 (((-420 (-577)) $) NIL) (((-420 (-577)) $ (-420 (-577))) NIL)) (-2487 (((-112) $) NIL)) (-2381 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3864 (($ $ (-944)) NIL) (($ $ (-420 (-577))) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-420 (-577))) NIL) (($ $ (-1107) (-420 (-577))) NIL) (($ $ (-660 (-1107)) (-660 (-420 (-577)))) NIL)) (-4087 (($ (-1 |#1| |#1|) $) 25)) (-3698 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL (|has| |#1| (-375)))) (-4147 (($ $) 29 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-1201)) 35 (-2839 (-12 (|has| |#1| (-15 -4147 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -2058 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227))))) (($ $ (-1288 |#2|)) 30 (|has| |#1| (-38 (-420 (-577)))))) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-1902 (((-431 $) $) NIL (|has| |#1| (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3792 (($ $ (-420 (-577))) NIL)) (-3462 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-4072 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3280 (((-1182 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))))) (-1927 (((-787) $) NIL (|has| |#1| (-375)))) (-2872 ((|#1| $ (-420 (-577))) NIL) (($ $ $) NIL (|has| (-420 (-577)) (-1137)))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-375)))) (-2852 (($ $ (-1201)) 28 (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-1288 |#2|)) 16)) (-2887 (((-420 (-577)) $) NIL)) (-2249 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2095 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2073 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2199 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2046 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3540 (($ $) NIL)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1288 |#2|)) NIL) (($ (-1277 |#1| |#2| |#3|)) 9) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $) NIL (|has| |#1| (-569)))) (-2322 ((|#1| $ (-420 (-577))) NIL)) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) NIL T CONST)) (-3693 ((|#1| $) 21)) (-4448 (((-112) $ $) NIL)) (-4114 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2136 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2262 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2106 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4141 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2162 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4148 ((|#1| $ (-420 (-577))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3544 (|#1| (-1201))))))) (-2261 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2174 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4128 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2150 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2272 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2120 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-1288 |#2|)) NIL)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) 27)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))))) +(((-487 |#1| |#2| |#3|) (-13 (-1273 |#1|) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3544 ($ (-1288 |#2|))) (-15 -3544 ($ (-1277 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4147 ($ $ (-1288 |#2|))) |%noBranch|))) (-1074) (-1201) |#1|) (T -487)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-487 *3 *4 *5)) (-4 *3 (-1074)) (-14 *5 *3))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-1277 *3 *4 *5)) (-4 *3 (-1074)) (-14 *4 (-1201)) (-14 *5 *3) (-5 *1 (-487 *3 *4 *5)))) (-4147 (*1 *1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-487 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3)))) +(-13 (-1273 |#1|) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3544 ($ (-1288 |#2|))) (-15 -3544 ($ (-1277 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4147 ($ $ (-1288 |#2|))) |%noBranch|))) +((-3473 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-4100 (($) NIL) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-2389 (((-1297) $ |#1| |#1|) NIL (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 ((|#2| $ |#1| |#2|) 18)) (-2463 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2325 (((-3 |#2| "failed") |#1| $) 19)) (-1534 (($) NIL T CONST)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))))) (-3719 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (|has| $ (-6 -4470))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-3 |#2| "failed") |#1| $) 16)) (-3904 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-3654 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (|has| $ (-6 -4470))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2192 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#2| $ |#1|) NIL)) (-1461 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) NIL)) (-2406 ((|#1| $) NIL (|has| |#1| (-865)))) (-2530 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-2416 ((|#1| $) NIL (|has| |#1| (-865)))) (-2182 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4471))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| |#2| (-1125))))) (-3203 (((-660 |#1|) $) NIL)) (-4317 (((-112) |#1| $) NIL)) (-4330 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-2881 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-4285 (((-660 |#1|) $) NIL)) (-4298 (((-112) |#1| $) NIL)) (-1474 (((-1145) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| |#2| (-1125))))) (-3552 ((|#2| $) NIL (|has| |#1| (-865)))) (-1828 (((-3 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) "failed") (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL)) (-2397 (($ $ |#2|) NIL (|has| $ (-6 -4471)))) (-3530 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-1514 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-4306 (((-660 |#2|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3736 (($) NIL) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-1485 (((-787) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-787) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125)))) (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-627 (-549))))) (-3553 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-3544 (((-880) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-626 (-880))) (|has| |#2| (-626 (-880)))))) (-4448 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-3541 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-1524 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-488 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2|) (-1125) (-1125) (-1218 |#1| |#2|) |#2|) (T -488)) +NIL +(-1218 |#1| |#2|) +((-3473 (((-112) $ $) NIL)) (-2361 (((-660 (-2 (|:| -2045 $) (|:| -3253 (-660 |#4|)))) (-660 |#4|)) NIL)) (-2371 (((-660 $) (-660 |#4|)) NIL)) (-2058 (((-660 |#3|) $) NIL)) (-2508 (((-112) $) NIL)) (-3572 (((-112) $) NIL (|has| |#1| (-569)))) (-2475 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2426 ((|#4| |#4| $) NIL)) (-1864 (((-2 (|:| |under| $) (|:| -4119 $) (|:| |upper| $)) $ |#3|) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-2067 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1534 (($) NIL T CONST)) (-2474 (((-112) $) 29 (|has| |#1| (-569)))) (-2492 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2483 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2500 (((-112) $) NIL (|has| |#1| (-569)))) (-2435 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2434 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)))) (-2446 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)))) (-1628 (((-3 $ "failed") (-660 |#4|)) NIL)) (-2921 (($ (-660 |#4|)) NIL)) (-3563 (((-3 $ "failed") $) 45)) (-2399 ((|#4| |#4| $) NIL)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))))) (-3904 (($ |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-2457 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)))) (-2484 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2382 ((|#4| |#4| $) NIL)) (-3654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4470))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4470))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4364 (((-2 (|:| -2045 (-660 |#4|)) (|:| -3253 (-660 |#4|))) $) NIL)) (-1461 (((-660 |#4|) $) 18 (|has| $ (-6 -4470)))) (-4354 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3514 ((|#3| $) 38)) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 |#4|) $) 19 (|has| $ (-6 -4470)))) (-2820 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))))) (-2182 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#4| |#4|) $) 23)) (-2555 (((-660 |#3|) $) NIL)) (-2545 (((-112) |#3| $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL)) (-3927 (((-3 |#4| "failed") $) 42)) (-4375 (((-660 |#4|) $) NIL)) (-2458 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2408 ((|#4| |#4| $) NIL)) (-4396 (((-112) $ $) NIL)) (-2466 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)))) (-2467 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2418 ((|#4| |#4| $) NIL)) (-1474 (((-1145) $) NIL)) (-3552 (((-3 |#4| "failed") $) 40)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2343 (((-3 $ "failed") $ |#4|) 58)) (-3792 (($ $ |#4|) NIL)) (-1514 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 |#4|) (-660 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-660 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) 17)) (-3639 (($) 14)) (-2887 (((-787) $) NIL)) (-1485 (((-787) |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125)))) (((-787) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) 13)) (-4152 (((-549) $) NIL (|has| |#4| (-627 (-549))))) (-3553 (($ (-660 |#4|)) 22)) (-2518 (($ $ |#3|) 52)) (-2536 (($ $ |#3|) 54)) (-2391 (($ $) NIL)) (-2527 (($ $ |#3|) NIL)) (-3544 (((-880) $) 35) (((-660 |#4|) $) 46)) (-2332 (((-787) $) NIL (|has| |#3| (-380)))) (-4448 (((-112) $ $) NIL)) (-4385 (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2447 (((-112) $ (-1 (-112) |#4| (-660 |#4|))) NIL)) (-1524 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-2352 (((-660 |#3|) $) NIL)) (-2776 (((-112) |#3| $) NIL)) (-2970 (((-112) $ $) NIL)) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-489 |#1| |#2| |#3| |#4|) (-1235 |#1| |#2| |#3| |#4|) (-569) (-809) (-865) (-1090 |#1| |#2| |#3|)) (T -489)) +NIL +(-1235 |#1| |#2| |#3| |#4|) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1939 (((-112) $ $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL)) (-2921 (((-577) $) NIL) (((-420 (-577)) $) NIL)) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-1659 (($) 17)) (-2487 (((-112) $) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1902 (((-431 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-4152 (((-391) $) 21) (((-228) $) 24) (((-420 (-1197 (-577))) $) 18) (((-549) $) 53)) (-3544 (((-880) $) 51) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) NIL) (((-228) $) 23) (((-391) $) 20)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-2806 (($) 37 T CONST)) (-2816 (($) 8 T CONST)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL))) +(((-490) (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))) (-1047) (-626 (-228)) (-626 (-391)) (-627 (-420 (-1197 (-577)))) (-627 (-549)) (-10 -8 (-15 -1659 ($))))) (T -490)) +((-1659 (*1 *1) (-5 *1 (-490)))) +(-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))) (-1047) (-626 (-228)) (-626 (-391)) (-627 (-420 (-1197 (-577)))) (-627 (-549)) (-10 -8 (-15 -1659 ($)))) +((-3473 (((-112) $ $) NIL)) (-1733 (((-1160) $) 11)) (-1721 (((-1160) $) 9)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 17) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-491) (-13 (-1108) (-10 -8 (-15 -1721 ((-1160) $)) (-15 -1733 ((-1160) $))))) (T -491)) +((-1721 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-491)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-491))))) +(-13 (-1108) (-10 -8 (-15 -1721 ((-1160) $)) (-15 -1733 ((-1160) $)))) +((-3473 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-4100 (($) NIL) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-2389 (((-1297) $ |#1| |#1|) NIL (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 ((|#2| $ |#1| |#2|) 16)) (-2463 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2325 (((-3 |#2| "failed") |#1| $) 20)) (-1534 (($) NIL T CONST)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))))) (-3719 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (|has| $ (-6 -4470))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-3 |#2| "failed") |#1| $) 18)) (-3904 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-3654 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (|has| $ (-6 -4470))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2192 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#2| $ |#1|) NIL)) (-1461 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) NIL)) (-2406 ((|#1| $) NIL (|has| |#1| (-865)))) (-2530 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-2416 ((|#1| $) NIL (|has| |#1| (-865)))) (-2182 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4471))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| |#2| (-1125))))) (-3203 (((-660 |#1|) $) 13)) (-4317 (((-112) |#1| $) NIL)) (-4330 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-2881 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-4285 (((-660 |#1|) $) NIL)) (-4298 (((-112) |#1| $) NIL)) (-1474 (((-1145) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| |#2| (-1125))))) (-3552 ((|#2| $) NIL (|has| |#1| (-865)))) (-1828 (((-3 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) "failed") (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL)) (-2397 (($ $ |#2|) NIL (|has| $ (-6 -4471)))) (-3530 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-1514 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-4306 (((-660 |#2|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) 19)) (-2872 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3736 (($) NIL) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-1485 (((-787) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-787) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125)))) (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-627 (-549))))) (-3553 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-3544 (((-880) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-626 (-880))) (|has| |#2| (-626 (-880)))))) (-4448 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-3541 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-1524 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 11 (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-3484 (((-787) $) 15 (|has| $ (-6 -4470))))) +(((-492 |#1| |#2| |#3|) (-13 (-1218 |#1| |#2|) (-10 -7 (-6 -4470))) (-1125) (-1125) (-1183)) (T -492)) +NIL +(-13 (-1218 |#1| |#2|) (-10 -7 (-6 -4470))) +((-1403 (((-577) (-577) (-577)) 19)) (-1413 (((-112) (-577) (-577) (-577) (-577)) 28)) (-4349 (((-1292 (-660 (-577))) (-787) (-787)) 41))) +(((-493) (-10 -7 (-15 -1403 ((-577) (-577) (-577))) (-15 -1413 ((-112) (-577) (-577) (-577) (-577))) (-15 -4349 ((-1292 (-660 (-577))) (-787) (-787))))) (T -493)) +((-4349 (*1 *2 *3 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1292 (-660 (-577)))) (-5 *1 (-493)))) (-1413 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-112)) (-5 *1 (-493)))) (-1403 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-493))))) +(-10 -7 (-15 -1403 ((-577) (-577) (-577))) (-15 -1413 ((-112) (-577) (-577) (-577) (-577))) (-15 -4349 ((-1292 (-660 (-577))) (-787) (-787)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-2058 (((-660 (-882 |#1|)) $) NIL)) (-1867 (((-1197 $) $ (-882 |#1|)) NIL) (((-1197 |#2|) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)))) (-3290 (($ $) NIL (|has| |#2| (-569)))) (-3271 (((-112) $) NIL (|has| |#2| (-569)))) (-4050 (((-787) $) NIL) (((-787) $ (-660 (-882 |#1|))) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-3841 (($ $) NIL (|has| |#2| (-465)))) (-3029 (((-431 $) $) NIL (|has| |#2| (-465)))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#2| "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1063 (-577)))) (((-3 (-882 |#1|) "failed") $) NIL)) (-2921 ((|#2| $) NIL) (((-420 (-577)) $) NIL (|has| |#2| (-1063 (-420 (-577))))) (((-577) $) NIL (|has| |#2| (-1063 (-577)))) (((-882 |#1|) $) NIL)) (-1816 (($ $ $ (-882 |#1|)) NIL (|has| |#2| (-174)))) (-1424 (($ $ (-660 (-577))) NIL)) (-2248 (($ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL) (((-705 |#2|) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3143 (($ $) NIL (|has| |#2| (-465))) (($ $ (-882 |#1|)) NIL (|has| |#2| (-465)))) (-2234 (((-660 $) $) NIL)) (-1522 (((-112) $) NIL (|has| |#2| (-932)))) (-2137 (($ $ |#2| (-495 (-3484 |#1|) (-787)) $) NIL)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-882 |#1|) (-905 (-391))) (|has| |#2| (-905 (-391))))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-882 |#1|) (-905 (-577))) (|has| |#2| (-905 (-577)))))) (-2487 (((-112) $) NIL)) (-2548 (((-787) $) NIL)) (-2043 (($ (-1197 |#2|) (-882 |#1|)) NIL) (($ (-1197 $) (-882 |#1|)) NIL)) (-4074 (((-660 $) $) NIL)) (-2811 (((-112) $) NIL)) (-2030 (($ |#2| (-495 (-3484 |#1|) (-787))) NIL) (($ $ (-882 |#1|) (-787)) NIL) (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ (-882 |#1|)) NIL)) (-4061 (((-495 (-3484 |#1|) (-787)) $) NIL) (((-787) $ (-882 |#1|)) NIL) (((-660 (-787)) $ (-660 (-882 |#1|))) NIL)) (-2151 (($ (-1 (-495 (-3484 |#1|) (-787)) (-495 (-3484 |#1|) (-787))) $) NIL)) (-4087 (($ (-1 |#2| |#2|) $) NIL)) (-3691 (((-3 (-882 |#1|) "failed") $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL) (((-705 |#2|) (-1292 $)) NIL)) (-2209 (($ $) NIL)) (-2221 ((|#2| $) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#2| (-465))) (($ $ $) NIL (|has| |#2| (-465)))) (-2810 (((-1183) $) NIL)) (-4098 (((-3 (-660 $) "failed") $) NIL)) (-4086 (((-3 (-660 $) "failed") $) NIL)) (-4111 (((-3 (-2 (|:| |var| (-882 |#1|)) (|:| -3556 (-787))) "failed") $) NIL)) (-1474 (((-1145) $) NIL)) (-2180 (((-112) $) NIL)) (-2193 ((|#2| $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#2| (-465)))) (-3480 (($ (-660 $)) NIL (|has| |#2| (-465))) (($ $ $) NIL (|has| |#2| (-465)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-1902 (((-431 $) $) NIL (|has| |#2| (-932)))) (-3462 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)))) (-3280 (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ (-882 |#1|) |#2|) NIL) (($ $ (-660 (-882 |#1|)) (-660 |#2|)) NIL) (($ $ (-882 |#1|) $) NIL) (($ $ (-660 (-882 |#1|)) (-660 $)) NIL)) (-1827 (($ $ (-882 |#1|)) NIL (|has| |#2| (-174)))) (-2852 (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL) (($ $ (-882 |#1|) (-787)) NIL) (($ $ (-660 (-882 |#1|))) NIL) (($ $ (-882 |#1|)) NIL)) (-2887 (((-495 (-3484 |#1|) (-787)) $) NIL) (((-787) $ (-882 |#1|)) NIL) (((-660 (-787)) $ (-660 (-882 |#1|))) NIL)) (-4152 (((-911 (-391)) $) NIL (-12 (|has| (-882 |#1|) (-627 (-911 (-391)))) (|has| |#2| (-627 (-911 (-391)))))) (((-911 (-577)) $) NIL (-12 (|has| (-882 |#1|) (-627 (-911 (-577)))) (|has| |#2| (-627 (-911 (-577)))))) (((-549) $) NIL (-12 (|has| (-882 |#1|) (-627 (-549))) (|has| |#2| (-627 (-549)))))) (-4039 ((|#2| $) NIL (|has| |#2| (-465))) (($ $ (-882 |#1|)) NIL (|has| |#2| (-465)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-932))))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#2|) NIL) (($ (-882 |#1|)) NIL) (($ (-420 (-577))) NIL (-2839 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577)))))) (($ $) NIL (|has| |#2| (-569)))) (-4182 (((-660 |#2|) $) NIL)) (-2322 ((|#2| $ (-495 (-3484 |#1|) (-787))) NIL) (($ $ (-882 |#1|) (-787)) NIL) (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| |#2| (-932))) (|has| |#2| (-146))))) (-4068 (((-787)) NIL T CONST)) (-2122 (($ $ $ (-787)) NIL (|has| |#2| (-174)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL (|has| |#2| (-569)))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL) (($ $ (-882 |#1|) (-787)) NIL) (($ $ (-660 (-882 |#1|))) NIL) (($ $ (-882 |#1|)) NIL)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#2|) NIL (|has| |#2| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577))))) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-494 |#1| |#2|) (-13 (-972 |#2| (-495 (-3484 |#1|) (-787)) (-882 |#1|)) (-10 -8 (-15 -1424 ($ $ (-660 (-577)))))) (-660 (-1201)) (-1074)) (T -494)) +((-1424 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-494 *3 *4)) (-14 *3 (-660 (-1201))) (-4 *4 (-1074))))) +(-13 (-972 |#2| (-495 (-3484 |#1|) (-787)) (-882 |#1|)) (-10 -8 (-15 -1424 ($ $ (-660 (-577)))))) +((-3473 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3585 (((-112) $) NIL (|has| |#2| (-23)))) (-1352 (($ (-944)) NIL (|has| |#2| (-1074)))) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4243 (($ $ $) NIL (|has| |#2| (-809)))) (-1956 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3828 (((-112) $ (-787)) NIL)) (-2229 (((-787)) NIL (|has| |#2| (-380)))) (-3709 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4471)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125)))) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1125)))) (-2921 (((-577) $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125)))) (((-420 (-577)) $) NIL (-12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) ((|#2| $) NIL (|has| |#2| (-1125)))) (-1647 (((-705 (-577)) (-705 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL (|has| |#2| (-1074))) (((-705 |#2|) (-705 $)) NIL (|has| |#2| (-1074)))) (-4187 (((-3 $ "failed") $) NIL (|has| |#2| (-1074)))) (-1910 (($) NIL (|has| |#2| (-380)))) (-2192 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#2| $ (-577)) 11)) (-1461 (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-2487 (((-112) $) NIL (|has| |#2| (-1074)))) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) NIL (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| |#2| (-865)))) (-2530 (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-2416 (((-577) $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| |#2| (-865)))) (-2182 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#2| |#2|) $) NIL)) (-4038 (((-944) $) NIL (|has| |#2| (-380)))) (-1443 (((-112) $ (-787)) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL (|has| |#2| (-1074))) (((-705 |#2|) (-1292 $)) NIL (|has| |#2| (-1074)))) (-2810 (((-1183) $) NIL (|has| |#2| (-1125)))) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-3222 (($ (-944)) NIL (|has| |#2| (-380)))) (-1474 (((-1145) $) NIL (|has| |#2| (-1125)))) (-3552 ((|#2| $) NIL (|has| (-577) (-865)))) (-2397 (($ $ |#2|) NIL (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-4306 (((-660 |#2|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#2| $ (-577) |#2|) NIL) ((|#2| $ (-577)) NIL)) (-3116 ((|#2| $ $) NIL (|has| |#2| (-1074)))) (-1946 (($ (-1292 |#2|)) NIL)) (-2561 (((-135)) NIL (|has| |#2| (-375)))) (-2852 (($ $ (-787)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074)))) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1201)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1074))) (($ $ (-1 |#2| |#2|) (-787)) NIL (|has| |#2| (-1074)))) (-1485 (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470))) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-1944 (($ $) NIL)) (-3544 (((-1292 |#2|) $) NIL) (($ (-577)) NIL (-2839 (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (|has| |#2| (-1074)))) (($ (-420 (-577))) NIL (-12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) (($ |#2|) NIL (|has| |#2| (-1125))) (((-880) $) NIL (|has| |#2| (-626 (-880))))) (-4068 (((-787)) NIL (|has| |#2| (-1074)) CONST)) (-4448 (((-112) $ $) NIL (|has| |#2| (-102)))) (-1524 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-2806 (($) NIL (|has| |#2| (-23)) CONST)) (-2816 (($) NIL (|has| |#2| (-1074)) CONST)) (-2132 (($ $ (-787)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074)))) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1201)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1074))) (($ $ (-1 |#2| |#2|) (-787)) NIL (|has| |#2| (-1074)))) (-3025 (((-112) $ $) NIL (|has| |#2| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#2| (-865)))) (-2970 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3012 (((-112) $ $) NIL (|has| |#2| (-865)))) (-2990 (((-112) $ $) 17 (|has| |#2| (-865)))) (-3077 (($ $ |#2|) NIL (|has| |#2| (-375)))) (-3066 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3055 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-787)) NIL (|has| |#2| (-1074))) (($ $ (-944)) NIL (|has| |#2| (-1074)))) (* (($ $ $) NIL (|has| |#2| (-1074))) (($ $ |#2|) NIL (|has| |#2| (-742))) (($ |#2| $) NIL (|has| |#2| (-742))) (($ (-577) $) NIL (|has| |#2| (-21))) (($ (-787) $) NIL (|has| |#2| (-23))) (($ (-944) $) NIL (|has| |#2| (-25)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-495 |#1| |#2|) (-244 |#1| |#2|) (-787) (-809)) (T -495)) +NIL +(-244 |#1| |#2|) +((-3473 (((-112) $ $) NIL)) (-2236 (((-660 (-894)) $) 15)) (-2713 (((-519) $) 13)) (-2810 (((-1183) $) NIL)) (-1434 (($ (-519) (-660 (-894))) 11)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 22) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-496) (-13 (-1108) (-10 -8 (-15 -1434 ($ (-519) (-660 (-894)))) (-15 -2713 ((-519) $)) (-15 -2236 ((-660 (-894)) $))))) (T -496)) +((-1434 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-660 (-894))) (-5 *1 (-496)))) (-2713 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-496)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-660 (-894))) (-5 *1 (-496))))) +(-13 (-1108) (-10 -8 (-15 -1434 ($ (-519) (-660 (-894)))) (-15 -2713 ((-519) $)) (-15 -2236 ((-660 (-894)) $)))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3828 (((-112) $ (-787)) NIL)) (-1534 (($) NIL T CONST)) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) NIL)) (-3192 (($ $ $) 48)) (-3283 (($ $ $) 47)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3201 ((|#1| $) 40)) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-4330 ((|#1| $) 41)) (-2881 (($ |#1| $) 18)) (-1446 (($ (-660 |#1|)) 19)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-3530 ((|#1| $) 34)) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) 11)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) NIL)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3541 (($ (-660 |#1|)) 45)) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3484 (((-787) $) 29 (|has| $ (-6 -4470))))) +(((-497 |#1|) (-13 (-993 |#1|) (-10 -8 (-15 -1446 ($ (-660 |#1|))))) (-865)) (T -497)) +((-1446 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-497 *3))))) +(-13 (-993 |#1|) (-10 -8 (-15 -1446 ($ (-660 |#1|))))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-3654 (($ $) 71)) (-4283 (((-112) $) NIL)) (-2810 (((-1183) $) NIL)) (-3597 (((-426 |#2| (-420 |#2|) |#3| |#4|) $) 45)) (-1474 (((-1145) $) NIL)) (-4101 (((-3 |#4| "failed") $) 117)) (-4296 (($ (-426 |#2| (-420 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-577)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-3938 (((-2 (|:| -3110 (-426 |#2| (-420 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-3544 (((-880) $) 110)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 32 T CONST)) (-2970 (((-112) $ $) 121)) (-3066 (($ $) 77) (($ $ $) NIL)) (-3055 (($ $ $) 72)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 78))) +(((-498 |#1| |#2| |#3| |#4|) (-347 |#1| |#2| |#3| |#4|) (-375) (-1268 |#1|) (-1268 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -498)) +NIL +(-347 |#1| |#2| |#3| |#4|) +((-1493 (((-577) (-660 (-577))) 53)) (-1457 ((|#1| (-660 |#1|)) 94)) (-1481 (((-660 |#1|) (-660 |#1|)) 95)) (-1469 (((-660 |#1|) (-660 |#1|)) 97)) (-3480 ((|#1| (-660 |#1|)) 96)) (-4039 (((-660 (-577)) (-660 |#1|)) 56))) +(((-499 |#1|) (-10 -7 (-15 -3480 (|#1| (-660 |#1|))) (-15 -1457 (|#1| (-660 |#1|))) (-15 -1469 ((-660 |#1|) (-660 |#1|))) (-15 -1481 ((-660 |#1|) (-660 |#1|))) (-15 -4039 ((-660 (-577)) (-660 |#1|))) (-15 -1493 ((-577) (-660 (-577))))) (-1268 (-577))) (T -499)) +((-1493 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-577)) (-5 *1 (-499 *4)) (-4 *4 (-1268 *2)))) (-4039 (*1 *2 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-1268 (-577))) (-5 *2 (-660 (-577))) (-5 *1 (-499 *4)))) (-1481 (*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1268 (-577))) (-5 *1 (-499 *3)))) (-1469 (*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1268 (-577))) (-5 *1 (-499 *3)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-5 *1 (-499 *2)) (-4 *2 (-1268 (-577))))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-5 *1 (-499 *2)) (-4 *2 (-1268 (-577)))))) +(-10 -7 (-15 -3480 (|#1| (-660 |#1|))) (-15 -1457 (|#1| (-660 |#1|))) (-15 -1469 ((-660 |#1|) (-660 |#1|))) (-15 -1481 ((-660 |#1|) (-660 |#1|))) (-15 -4039 ((-660 (-577)) (-660 |#1|))) (-15 -1493 ((-577) (-660 (-577))))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-4105 (((-577) $) NIL (|has| (-577) (-318)))) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)))) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)))) (-1939 (((-112) $ $) NIL)) (-3010 (((-577) $) NIL (|has| (-577) (-836)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL) (((-3 (-1201) "failed") $) NIL (|has| (-577) (-1063 (-1201)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-577) (-1063 (-577)))) (((-3 (-577) "failed") $) NIL (|has| (-577) (-1063 (-577))))) (-2921 (((-577) $) NIL) (((-1201) $) NIL (|has| (-577) (-1063 (-1201)))) (((-420 (-577)) $) NIL (|has| (-577) (-1063 (-577)))) (((-577) $) NIL (|has| (-577) (-1063 (-577))))) (-3418 (($ $ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| (-577) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-577) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL) (((-705 (-577)) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($) NIL (|has| (-577) (-558)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-3567 (((-112) $) NIL (|has| (-577) (-836)))) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| (-577) (-905 (-577)))) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| (-577) (-905 (-391))))) (-2487 (((-112) $) NIL)) (-2240 (($ $) NIL)) (-1623 (((-577) $) NIL)) (-4021 (((-3 $ "failed") $) NIL (|has| (-577) (-1177)))) (-3578 (((-112) $) NIL (|has| (-577) (-836)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3732 (($ $ $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| (-577) (-865)))) (-4087 (($ (-1 (-577) (-577)) $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| (-577) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-577) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL) (((-705 (-577)) (-1292 $)) NIL)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1709 (($) NIL (|has| (-577) (-1177)) CONST)) (-1503 (($ (-420 (-577))) 9)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-4093 (($ $) NIL (|has| (-577) (-318))) (((-420 (-577)) $) NIL)) (-4119 (((-577) $) NIL (|has| (-577) (-558)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)))) (-1902 (((-431 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3280 (($ $ (-660 (-577)) (-660 (-577))) NIL (|has| (-577) (-320 (-577)))) (($ $ (-577) (-577)) NIL (|has| (-577) (-320 (-577)))) (($ $ (-305 (-577))) NIL (|has| (-577) (-320 (-577)))) (($ $ (-660 (-305 (-577)))) NIL (|has| (-577) (-320 (-577)))) (($ $ (-660 (-1201)) (-660 (-577))) NIL (|has| (-577) (-527 (-1201) (-577)))) (($ $ (-1201) (-577)) NIL (|has| (-577) (-527 (-1201) (-577))))) (-1927 (((-787) $) NIL)) (-2872 (($ $ (-577)) NIL (|has| (-577) (-297 (-577) (-577))))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2852 (($ $ (-1 (-577) (-577))) NIL) (($ $ (-1 (-577) (-577)) (-787)) NIL) (($ $ (-1201)) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-577) (-923 (-1201)))) (($ $) NIL (|has| (-577) (-238))) (($ $ (-787)) NIL (|has| (-577) (-238)))) (-2227 (($ $) NIL)) (-1637 (((-577) $) NIL)) (-4152 (((-911 (-577)) $) NIL (|has| (-577) (-627 (-911 (-577))))) (((-911 (-391)) $) NIL (|has| (-577) (-627 (-911 (-391))))) (((-549) $) NIL (|has| (-577) (-627 (-549)))) (((-391) $) NIL (|has| (-577) (-1047))) (((-228) $) NIL (|has| (-577) (-1047)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| (-577) (-932))))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) 8) (($ (-577)) NIL) (($ (-1201)) NIL (|has| (-577) (-1063 (-1201)))) (((-420 (-577)) $) NIL) (((-1029 16) $) 10)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| (-577) (-932))) (|has| (-577) (-146))))) (-4068 (((-787)) NIL T CONST)) (-4132 (((-577) $) NIL (|has| (-577) (-558)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-1654 (($ $) NIL (|has| (-577) (-836)))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-1 (-577) (-577))) NIL) (($ $ (-1 (-577) (-577)) (-787)) NIL) (($ $ (-1201)) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-577) (-923 (-1201)))) (($ $) NIL (|has| (-577) (-238))) (($ $ (-787)) NIL (|has| (-577) (-238)))) (-3025 (((-112) $ $) NIL (|has| (-577) (-865)))) (-3000 (((-112) $ $) NIL (|has| (-577) (-865)))) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-577) (-865)))) (-2990 (((-112) $ $) NIL (|has| (-577) (-865)))) (-3077 (($ $ $) NIL) (($ (-577) (-577)) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ (-577) $) NIL) (($ $ (-577)) NIL))) +(((-500) (-13 (-1017 (-577)) (-626 (-420 (-577))) (-626 (-1029 16)) (-10 -8 (-15 -4093 ((-420 (-577)) $)) (-15 -1503 ($ (-420 (-577))))))) (T -500)) +((-4093 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-500)))) (-1503 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-500))))) +(-13 (-1017 (-577)) (-626 (-420 (-577))) (-626 (-1029 16)) (-10 -8 (-15 -4093 ((-420 (-577)) $)) (-15 -1503 ($ (-420 (-577)))))) +((-2530 (((-660 |#2|) $) 31)) (-2820 (((-112) |#2| $) 39)) (-1514 (((-112) (-1 (-112) |#2|) $) 26)) (-3280 (($ $ (-660 (-305 |#2|))) 13) (($ $ (-305 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-660 |#2|) (-660 |#2|)) NIL)) (-1485 (((-787) (-1 (-112) |#2|) $) 30) (((-787) |#2| $) 37)) (-3544 (((-880) $) 45)) (-1524 (((-112) (-1 (-112) |#2|) $) 23)) (-2970 (((-112) $ $) 35)) (-3484 (((-787) $) 18))) +(((-501 |#1| |#2|) (-10 -8 (-15 -2970 ((-112) |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -3280 (|#1| |#1| (-660 |#2|) (-660 |#2|))) (-15 -3280 (|#1| |#1| |#2| |#2|)) (-15 -3280 (|#1| |#1| (-305 |#2|))) (-15 -3280 (|#1| |#1| (-660 (-305 |#2|)))) (-15 -2820 ((-112) |#2| |#1|)) (-15 -1485 ((-787) |#2| |#1|)) (-15 -2530 ((-660 |#2|) |#1|)) (-15 -1485 ((-787) (-1 (-112) |#2|) |#1|)) (-15 -1514 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1524 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3484 ((-787) |#1|))) (-502 |#2|) (-1242)) (T -501)) +NIL +(-10 -8 (-15 -2970 ((-112) |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -3280 (|#1| |#1| (-660 |#2|) (-660 |#2|))) (-15 -3280 (|#1| |#1| |#2| |#2|)) (-15 -3280 (|#1| |#1| (-305 |#2|))) (-15 -3280 (|#1| |#1| (-660 (-305 |#2|)))) (-15 -2820 ((-112) |#2| |#1|)) (-15 -1485 ((-787) |#2| |#1|)) (-15 -2530 ((-660 |#2|) |#1|)) (-15 -1485 ((-787) (-1 (-112) |#2|) |#1|)) (-15 -1514 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1524 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3484 ((-787) |#1|))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3828 (((-112) $ (-787)) 8)) (-1534 (($) 7 T CONST)) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) 9)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-502 |#1|) (-141) (-1242)) (T -502)) +((-4087 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-502 *3)) (-4 *3 (-1242)))) (-2182 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4471)) (-4 *1 (-502 *3)) (-4 *3 (-1242)))) (-1524 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4470)) (-4 *1 (-502 *4)) (-4 *4 (-1242)) (-5 *2 (-112)))) (-1514 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4470)) (-4 *1 (-502 *4)) (-4 *4 (-1242)) (-5 *2 (-112)))) (-1485 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4470)) (-4 *1 (-502 *4)) (-4 *4 (-1242)) (-5 *2 (-787)))) (-1461 (*1 *2 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-502 *3)) (-4 *3 (-1242)) (-5 *2 (-660 *3)))) (-2530 (*1 *2 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-502 *3)) (-4 *3 (-1242)) (-5 *2 (-660 *3)))) (-1485 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-502 *3)) (-4 *3 (-1242)) (-4 *3 (-1125)) (-5 *2 (-787)))) (-2820 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-502 *3)) (-4 *3 (-1242)) (-4 *3 (-1125)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-626 (-880))) (-6 (-626 (-880))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1125)) (-6 (-1125)) |%noBranch|) (IF (|has| |t#1| (-1125)) (IF (|has| |t#1| (-320 |t#1|)) (-6 (-320 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4087 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4471)) (-15 -2182 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4470)) (PROGN (-15 -1524 ((-112) (-1 (-112) |t#1|) $)) (-15 -1514 ((-112) (-1 (-112) |t#1|) $)) (-15 -1485 ((-787) (-1 (-112) |t#1|) $)) (-15 -1461 ((-660 |t#1|) $)) (-15 -2530 ((-660 |t#1|) $)) (IF (|has| |t#1| (-1125)) (PROGN (-15 -1485 ((-787) |t#1| $)) (-15 -2820 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) +((-3544 ((|#1| $) 6) (($ |#1|) 9))) +(((-503 |#1|) (-141) (-1242)) (T -503)) +NIL +(-13 (-626 |t#1|) (-629 |t#1|)) +(((-629 |#1|) . T) ((-626 |#1|) . T)) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1536 (($ (-1183)) 8)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 15) (((-1183) $) 12)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 11))) +(((-504) (-13 (-1125) (-626 (-1183)) (-10 -8 (-15 -1536 ($ (-1183)))))) (T -504)) +((-1536 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-504))))) +(-13 (-1125) (-626 (-1183)) (-10 -8 (-15 -1536 ($ (-1183))))) +((-2212 (($ $) 15)) (-2186 (($ $) 24)) (-2237 (($ $) 12)) (-2249 (($ $) 10)) (-2224 (($ $) 17)) (-2199 (($ $) 22))) +(((-505 |#1|) (-10 -8 (-15 -2199 (|#1| |#1|)) (-15 -2224 (|#1| |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -2237 (|#1| |#1|)) (-15 -2186 (|#1| |#1|)) (-15 -2212 (|#1| |#1|))) (-506)) (T -505)) +NIL +(-10 -8 (-15 -2199 (|#1| |#1|)) (-15 -2224 (|#1| |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -2237 (|#1| |#1|)) (-15 -2186 (|#1| |#1|)) (-15 -2212 (|#1| |#1|))) +((-2212 (($ $) 11)) (-2186 (($ $) 10)) (-2237 (($ $) 9)) (-2249 (($ $) 8)) (-2224 (($ $) 7)) (-2199 (($ $) 6))) +(((-506) (-141)) (T -506)) +((-2212 (*1 *1 *1) (-4 *1 (-506))) (-2186 (*1 *1 *1) (-4 *1 (-506))) (-2237 (*1 *1 *1) (-4 *1 (-506))) (-2249 (*1 *1 *1) (-4 *1 (-506))) (-2224 (*1 *1 *1) (-4 *1 (-506))) (-2199 (*1 *1 *1) (-4 *1 (-506)))) +(-13 (-10 -8 (-15 -2199 ($ $)) (-15 -2224 ($ $)) (-15 -2249 ($ $)) (-15 -2237 ($ $)) (-15 -2186 ($ $)) (-15 -2212 ($ $)))) +((-1902 (((-431 |#4|) |#4| (-1 (-431 |#2|) |#2|)) 54))) +(((-507 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1902 ((-431 |#4|) |#4| (-1 (-431 |#2|) |#2|)))) (-375) (-1268 |#1|) (-13 (-375) (-148) (-740 |#1| |#2|)) (-1268 |#3|)) (T -507)) +((-1902 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) (-4 *7 (-13 (-375) (-148) (-740 *5 *6))) (-5 *2 (-431 *3)) (-5 *1 (-507 *5 *6 *7 *3)) (-4 *3 (-1268 *7))))) +(-10 -7 (-15 -1902 ((-431 |#4|) |#4| (-1 (-431 |#2|) |#2|)))) +((-3473 (((-112) $ $) NIL)) (-2745 (((-660 $) (-1197 $) (-1201)) NIL) (((-660 $) (-1197 $)) NIL) (((-660 $) (-975 $)) NIL)) (-3755 (($ (-1197 $) (-1201)) NIL) (($ (-1197 $)) NIL) (($ (-975 $)) NIL)) (-3585 (((-112) $) 39)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1548 (((-112) $ $) 73)) (-3952 (((-660 (-625 $)) $) 50)) (-1956 (((-3 $ "failed") $ $) NIL)) (-4057 (($ $ (-305 $)) NIL) (($ $ (-660 (-305 $))) NIL) (($ $ (-660 (-625 $)) (-660 $)) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1913 (($ $) NIL)) (-1939 (((-112) $ $) NIL)) (-1534 (($) NIL T CONST)) (-3766 (((-660 $) (-1197 $) (-1201)) NIL) (((-660 $) (-1197 $)) NIL) (((-660 $) (-975 $)) NIL)) (-3535 (($ (-1197 $) (-1201)) NIL) (($ (-1197 $)) NIL) (($ (-975 $)) NIL)) (-1628 (((-3 (-625 $) "failed") $) NIL) (((-3 (-577) "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL)) (-2921 (((-625 $) $) NIL) (((-577) $) NIL) (((-420 (-577)) $) 55)) (-3418 (($ $ $) NIL)) (-1647 (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL) (((-705 (-577)) (-705 $)) NIL) (((-2 (|:| -1881 (-705 (-420 (-577)))) (|:| |vec| (-1292 (-420 (-577))))) (-705 $) (-1292 $)) NIL) (((-705 (-420 (-577))) (-705 $)) NIL)) (-3654 (($ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-3401 (($ $) NIL) (($ (-660 $)) NIL)) (-2691 (((-660 (-115)) $) NIL)) (-1844 (((-115) (-115)) NIL)) (-2487 (((-112) $) 42)) (-1912 (((-112) $) NIL (|has| $ (-1063 (-577))))) (-1623 (((-1150 (-577) (-625 $)) $) 37)) (-2381 (($ $ (-577)) NIL)) (-4145 (((-1197 $) (-1197 $) (-625 $)) 87) (((-1197 $) (-1197 $) (-660 (-625 $))) 62) (($ $ (-625 $)) 76) (($ $ (-660 (-625 $))) 77)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-2670 (((-1197 $) (-625 $)) 74 (|has| $ (-1074)))) (-4087 (($ (-1 $ $) (-625 $)) NIL)) (-2702 (((-3 (-625 $) "failed") $) NIL)) (-1657 (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL) (((-705 (-577)) (-1292 $)) NIL) (((-2 (|:| -1881 (-705 (-420 (-577)))) (|:| |vec| (-1292 (-420 (-577))))) (-1292 $) $) NIL) (((-705 (-420 (-577))) (-1292 $)) NIL)) (-3446 (($ (-660 $)) NIL) (($ $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1829 (((-660 (-625 $)) $) NIL)) (-1702 (($ (-115) $) NIL) (($ (-115) (-660 $)) NIL)) (-2740 (((-112) $ (-115)) NIL) (((-112) $ (-1201)) NIL)) (-2171 (($ $) NIL)) (-2440 (((-787) $) NIL)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ (-660 $)) NIL) (($ $ $) NIL)) (-2679 (((-112) $ $) NIL) (((-112) $ (-1201)) NIL)) (-1902 (((-431 $) $) NIL)) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1924 (((-112) $) NIL (|has| $ (-1063 (-577))))) (-3280 (($ $ (-625 $) $) NIL) (($ $ (-660 (-625 $)) (-660 $)) NIL) (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ (-660 (-1201)) (-660 (-1 $ $))) NIL) (($ $ (-660 (-1201)) (-660 (-1 $ (-660 $)))) NIL) (($ $ (-1201) (-1 $ (-660 $))) NIL) (($ $ (-1201) (-1 $ $)) NIL) (($ $ (-660 (-115)) (-660 (-1 $ $))) NIL) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) NIL) (($ $ (-115) (-1 $ (-660 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-1927 (((-787) $) NIL)) (-2872 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-660 $)) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2712 (($ $) NIL) (($ $ $) NIL)) (-2852 (($ $) 36) (($ $ (-787)) NIL)) (-1637 (((-1150 (-577) (-625 $)) $) 20)) (-3557 (($ $) NIL (|has| $ (-1074)))) (-4152 (((-391) $) 101) (((-228) $) 109) (((-171 (-391)) $) 117)) (-3544 (((-880) $) NIL) (($ (-625 $)) NIL) (($ (-420 (-577))) NIL) (($ $) NIL) (($ (-577)) NIL) (($ (-1150 (-577) (-625 $))) 21)) (-4068 (((-787)) NIL T CONST)) (-2251 (($ $) NIL) (($ (-660 $)) NIL)) (-1409 (((-112) (-115)) 93)) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-2806 (($) 10 T CONST)) (-2816 (($) 22 T CONST)) (-2132 (($ $) NIL) (($ $ (-787)) NIL)) (-2970 (((-112) $ $) 24)) (-3077 (($ $ $) 44)) (-3066 (($ $ $) NIL) (($ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-420 (-577))) NIL) (($ $ (-577)) 48) (($ $ (-787)) NIL) (($ $ (-944)) NIL)) (* (($ (-420 (-577)) $) NIL) (($ $ (-420 (-577))) NIL) (($ $ $) 27) (($ (-577) $) NIL) (($ (-787) $) NIL) (($ (-944) $) NIL))) +(((-508) (-13 (-313) (-27) (-1063 (-577)) (-1063 (-420 (-577))) (-654 (-577)) (-1047) (-654 (-420 (-577))) (-148) (-627 (-171 (-391))) (-239) (-10 -8 (-15 -3544 ($ (-1150 (-577) (-625 $)))) (-15 -1623 ((-1150 (-577) (-625 $)) $)) (-15 -1637 ((-1150 (-577) (-625 $)) $)) (-15 -3654 ($ $)) (-15 -1548 ((-112) $ $)) (-15 -4145 ((-1197 $) (-1197 $) (-625 $))) (-15 -4145 ((-1197 $) (-1197 $) (-660 (-625 $)))) (-15 -4145 ($ $ (-625 $))) (-15 -4145 ($ $ (-660 (-625 $))))))) (T -508)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1150 (-577) (-625 (-508)))) (-5 *1 (-508)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-1150 (-577) (-625 (-508)))) (-5 *1 (-508)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-1150 (-577) (-625 (-508)))) (-5 *1 (-508)))) (-3654 (*1 *1 *1) (-5 *1 (-508))) (-1548 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-508)))) (-4145 (*1 *2 *2 *3) (-12 (-5 *2 (-1197 (-508))) (-5 *3 (-625 (-508))) (-5 *1 (-508)))) (-4145 (*1 *2 *2 *3) (-12 (-5 *2 (-1197 (-508))) (-5 *3 (-660 (-625 (-508)))) (-5 *1 (-508)))) (-4145 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-508))) (-5 *1 (-508)))) (-4145 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-625 (-508)))) (-5 *1 (-508))))) +(-13 (-313) (-27) (-1063 (-577)) (-1063 (-420 (-577))) (-654 (-577)) (-1047) (-654 (-420 (-577))) (-148) (-627 (-171 (-391))) (-239) (-10 -8 (-15 -3544 ($ (-1150 (-577) (-625 $)))) (-15 -1623 ((-1150 (-577) (-625 $)) $)) (-15 -1637 ((-1150 (-577) (-625 $)) $)) (-15 -3654 ($ $)) (-15 -1548 ((-112) $ $)) (-15 -4145 ((-1197 $) (-1197 $) (-625 $))) (-15 -4145 ((-1197 $) (-1197 $) (-660 (-625 $)))) (-15 -4145 ($ $ (-625 $))) (-15 -4145 ($ $ (-660 (-625 $)))))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4077 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-865)))) (-4053 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471))) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))))) (-1864 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-865)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 ((|#1| $ (-577) |#1|) 44 (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-1534 (($) NIL T CONST)) (-3645 (($ $) NIL (|has| $ (-6 -4471)))) (-3787 (($ $) NIL)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3904 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)))) (-2192 ((|#1| $ (-577) |#1|) 39 (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) 38)) (-3618 (((-577) (-1 (-112) |#1|) $) NIL) (((-577) |#1| $) NIL (|has| |#1| (-1125))) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)))) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-4113 (($ (-787) |#1|) 21)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) 17 (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| |#1| (-865)))) (-3283 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-865)))) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2416 (((-577) $) 41 (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| |#1| (-865)))) (-2182 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-2308 (($ |#1| $ (-577)) NIL) (($ $ $ (-577)) NIL)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-3552 ((|#1| $) NIL (|has| (-577) (-865)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2397 (($ $ |#1|) 15 (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) 19)) (-2872 ((|#1| $ (-577) |#1|) NIL) ((|#1| $ (-577)) 43) (($ $ (-1259 (-577))) NIL)) (-3453 (($ $ (-577)) NIL) (($ $ (-1259 (-577))) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4064 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)))) (-1944 (($ $) 13)) (-4152 (((-549) $) NIL (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 24)) (-1677 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-660 $)) NIL)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3484 (((-787) $) 11 (|has| $ (-6 -4470))))) +(((-509 |#1| |#2|) (-19 |#1|) (-1242) (-577)) (T -509)) NIL (-19 |#1|) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3779 (($ $ (-576) (-508 |#1| |#3|)) NIL)) (-3726 (($ $ (-576) (-508 |#1| |#2|)) NIL)) (-4359 (($) NIL T CONST)) (-2911 (((-508 |#1| |#3|) $ (-576)) NIL)) (-2158 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2083 ((|#1| $ (-576) (-576)) NIL)) (-1458 (((-657 |#1|) $) NIL)) (-2377 (((-784) $) NIL)) (-4109 (($ (-784) (-784) |#1|) NIL)) (-2387 (((-784) $) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-2491 (((-576) $) NIL)) (-3770 (((-576) $) NIL)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3704 (((-576) $) NIL)) (-1429 (((-576) $) NIL)) (-2148 (($ (-1 |#1| |#1|) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-1987 (($ $ |#1|) NIL)) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) NIL)) (-3815 (((-508 |#1| |#2|) $ (-576)) NIL)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-509 |#1| |#2| |#3|) (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) (-1239) (-576) (-576)) (T -509)) -NIL -(-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) -((-4293 (((-657 (-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|)))) (-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) (-784) (-784)) 32)) (-1953 (((-657 (-1194 |#1|)) |#1| (-784) (-784) (-784)) 43)) (-4223 (((-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) (-657 |#3|) (-657 (-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|)))) (-784)) 107))) -(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -1953 ((-657 (-1194 |#1|)) |#1| (-784) (-784) (-784))) (-15 -4293 ((-657 (-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|)))) (-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) (-784) (-784))) (-15 -4223 ((-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) (-657 |#3|) (-657 (-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|)))) (-784)))) (-360) (-1265 |#1|) (-1265 |#2|)) (T -510)) -((-4223 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 (-2 (|:| -1985 (-702 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-702 *7))))) (-5 *5 (-784)) (-4 *8 (-1265 *7)) (-4 *7 (-1265 *6)) (-4 *6 (-360)) (-5 *2 (-2 (|:| -1985 (-702 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-702 *7)))) (-5 *1 (-510 *6 *7 *8)))) (-4293 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-784)) (-4 *5 (-360)) (-4 *6 (-1265 *5)) (-5 *2 (-657 (-2 (|:| -1985 (-702 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-702 *6))))) (-5 *1 (-510 *5 *6 *7)) (-5 *3 (-2 (|:| -1985 (-702 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-702 *6)))) (-4 *7 (-1265 *6)))) (-1953 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-784)) (-4 *3 (-360)) (-4 *5 (-1265 *3)) (-5 *2 (-657 (-1194 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1265 *5))))) -(-10 -7 (-15 -1953 ((-657 (-1194 |#1|)) |#1| (-784) (-784) (-784))) (-15 -4293 ((-657 (-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|)))) (-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) (-784) (-784))) (-15 -4223 ((-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) (-657 |#3|) (-657 (-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|)))) (-784)))) -((-2656 (((-2 (|:| -1985 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))) (-2 (|:| -1985 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))) (-2 (|:| -1985 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|)))) 70)) (-2683 ((|#1| (-702 |#1|) |#1| (-784)) 24)) (-1438 (((-784) (-784) (-784)) 34)) (-1386 (((-702 |#1|) (-702 |#1|) (-702 |#1|)) 50)) (-3514 (((-702 |#1|) (-702 |#1|) (-702 |#1|) |#1|) 58) (((-702 |#1|) (-702 |#1|) (-702 |#1|)) 55)) (-1437 ((|#1| (-702 |#1|) (-702 |#1|) |#1| (-576)) 28)) (-2550 ((|#1| (-702 |#1|)) 18))) -(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -2550 (|#1| (-702 |#1|))) (-15 -2683 (|#1| (-702 |#1|) |#1| (-784))) (-15 -1437 (|#1| (-702 |#1|) (-702 |#1|) |#1| (-576))) (-15 -1438 ((-784) (-784) (-784))) (-15 -3514 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -3514 ((-702 |#1|) (-702 |#1|) (-702 |#1|) |#1|)) (-15 -1386 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -2656 ((-2 (|:| -1985 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))) (-2 (|:| -1985 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))) (-2 (|:| -1985 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|)))))) (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $)))) (-1265 |#1|) (-421 |#1| |#2|)) (T -511)) -((-2656 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1985 (-702 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-702 *3)))) (-4 *3 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1386 (*1 *2 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3514 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-702 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-3514 (*1 *2 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1438 (*1 *2 *2 *2) (-12 (-5 *2 (-784)) (-4 *3 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1437 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-702 *2)) (-5 *4 (-576)) (-4 *2 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) (-4 *5 (-1265 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-2683 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-702 *2)) (-5 *4 (-784)) (-4 *2 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) (-4 *5 (-1265 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-702 *2)) (-4 *4 (-1265 *2)) (-4 *2 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4))))) -(-10 -7 (-15 -2550 (|#1| (-702 |#1|))) (-15 -2683 (|#1| (-702 |#1|) |#1| (-784))) (-15 -1437 (|#1| (-702 |#1|) (-702 |#1|) |#1| (-576))) (-15 -1438 ((-784) (-784) (-784))) (-15 -3514 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -3514 ((-702 |#1|) (-702 |#1|) (-702 |#1|) |#1|)) (-15 -1386 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -2656 ((-2 (|:| -1985 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))) (-2 (|:| -1985 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|))) (-2 (|:| -1985 (-702 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-702 |#1|)))))) -((-3429 (((-112) $ $) NIL)) (-3452 (($ $) NIL)) (-2744 (($ $ $) 40)) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-1568 (((-112) $) NIL (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3363 (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| (-112) (-862)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4467)))) (-1850 (($ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-3682 (((-112) $ (-1256 (-576)) (-112)) NIL (|has| $ (-6 -4467))) (((-112) $ (-576) (-112)) 42 (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-4359 (($) NIL T CONST)) (-3606 (($ $) NIL (|has| $ (-6 -4467)))) (-3768 (($ $) NIL)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-3895 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-3622 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-2158 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4467)))) (-2083 (((-112) $ (-576)) NIL)) (-3582 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1122))) (((-576) (-112) $) NIL (|has| (-112) (-1122))) (((-576) (-1 (-112) (-112)) $) NIL)) (-1458 (((-657 (-112)) $) NIL (|has| $ (-6 -4466)))) (-2734 (($ $ $) 38)) (-2712 (($ $) NIL)) (-3147 (($ $ $) NIL)) (-4109 (($ (-784) (-112)) 27)) (-1340 (($ $ $) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) 8 (|has| (-576) (-862)))) (-3707 (($ $ $) NIL)) (-3073 (($ $ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2070 (((-657 (-112)) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-2272 (((-576) $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL)) (-2148 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL)) (-2271 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-1471 (((-1142) $) NIL)) (-3510 (((-112) $) NIL (|has| (-576) (-862)))) (-2951 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1987 (($ $ (-112)) NIL (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-112)) (-657 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122)))) (($ $ (-657 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122))))) (-2380 (((-657 (-112)) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) 28)) (-2835 (($ $ (-1256 (-576))) NIL) (((-112) $ (-576)) 22) (((-112) $ (-576) (-112)) NIL)) (-3409 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-1482 (((-784) (-112) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-112) (-1122)))) (((-784) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-2114 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1923 (($ $) 29)) (-4148 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-3511 (($ (-657 (-112))) NIL)) (-1674 (($ (-657 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3501 (((-877) $) 26)) (-2046 (((-112) $ $) NIL)) (-2147 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4466)))) (-2724 (($ $ $) 36)) (-3494 (($ $ $) NIL)) (-3805 (($ $ $) 45)) (-3818 (($ $) 43)) (-3791 (($ $ $) 44)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 30)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 31)) (-3482 (($ $ $) NIL)) (-3440 (((-784) $) 13 (|has| $ (-6 -4466))))) -(((-512 |#1|) (-13 (-124) (-10 -8 (-15 -3818 ($ $)) (-15 -3805 ($ $ $)) (-15 -3791 ($ $ $)))) (-576)) (T -512)) -((-3818 (*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-3805 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-3791 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576))))) -(-13 (-124) (-10 -8 (-15 -3818 ($ $)) (-15 -3805 ($ $ $)) (-15 -3791 ($ $ $)))) -((-2401 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1194 |#4|)) 35)) (-3653 (((-1194 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1194 |#4|)) 22)) (-3250 (((-3 (-702 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-702 (-1194 |#4|))) 46)) (-2214 (((-1194 (-1194 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3653 (|#2| (-1 |#1| |#4|) (-1194 |#4|))) (-15 -3653 ((-1194 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2401 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1194 |#4|))) (-15 -3250 ((-3 (-702 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-702 (-1194 |#4|)))) (-15 -2214 ((-1194 (-1194 |#4|)) (-1 |#4| |#1|) |#3|))) (-1071) (-1265 |#1|) (-1265 |#2|) (-1071)) (T -513)) -((-2214 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1071)) (-4 *7 (-1071)) (-4 *6 (-1265 *5)) (-5 *2 (-1194 (-1194 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1265 *6)))) (-3250 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-702 (-1194 *8))) (-4 *5 (-1071)) (-4 *8 (-1071)) (-4 *6 (-1265 *5)) (-5 *2 (-702 *6)) (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1265 *6)))) (-2401 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1194 *7)) (-4 *5 (-1071)) (-4 *7 (-1071)) (-4 *2 (-1265 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1265 *2)))) (-3653 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1071)) (-4 *7 (-1071)) (-4 *4 (-1265 *5)) (-5 *2 (-1194 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1265 *4)))) (-3653 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1194 *7)) (-4 *5 (-1071)) (-4 *7 (-1071)) (-4 *2 (-1265 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1265 *2))))) -(-10 -7 (-15 -3653 (|#2| (-1 |#1| |#4|) (-1194 |#4|))) (-15 -3653 ((-1194 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2401 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1194 |#4|))) (-15 -3250 ((-3 (-702 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-702 (-1194 |#4|)))) (-15 -2214 ((-1194 (-1194 |#4|)) (-1 |#4| |#1|) |#3|))) -((-3429 (((-112) $ $) NIL)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-1729 (((-1294) $) 25)) (-2835 (((-1180) $ (-1198)) 30)) (-2041 (((-1294) $) 17)) (-3501 (((-877) $) 27) (($ (-1180)) 26)) (-2046 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 11)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 9))) -(((-514) (-13 (-862) (-10 -8 (-15 -2835 ((-1180) $ (-1198))) (-15 -2041 ((-1294) $)) (-15 -1729 ((-1294) $)) (-15 -3501 ($ (-1180)))))) (T -514)) -((-2835 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1180)) (-5 *1 (-514)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-514)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-514)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-514))))) -(-13 (-862) (-10 -8 (-15 -2835 ((-1180) $ (-1198))) (-15 -2041 ((-1294) $)) (-15 -1729 ((-1294) $)) (-15 -3501 ($ (-1180))))) -((-1460 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1591 ((|#1| |#4|) 10)) (-1671 ((|#3| |#4|) 17))) -(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1591 (|#1| |#4|)) (-15 -1671 (|#3| |#4|)) (-15 -1460 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-568) (-1014 |#1|) (-384 |#1|) (-384 |#2|)) (T -515)) -((-1460 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1014 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) (-1671 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1014 *4)) (-4 *2 (-384 *4)) (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) (-1591 (*1 *2 *3) (-12 (-4 *4 (-1014 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-384 *4))))) -(-10 -7 (-15 -1591 (|#1| |#4|)) (-15 -1671 (|#3| |#4|)) (-15 -1460 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-3429 (((-112) $ $) NIL)) (-1444 (((-112) $ (-657 |#3|)) 126) (((-112) $) 127)) (-2364 (((-112) $) 178)) (-2666 (($ $ |#4|) 117) (($ $ |#4| (-657 |#3|)) 121)) (-4259 (((-1187 (-657 (-972 |#1|)) (-657 (-304 (-972 |#1|)))) (-657 |#4|)) 171 (|has| |#3| (-626 (-1198))))) (-2335 (($ $ $) 107) (($ $ |#4|) 105)) (-4094 (((-112) $) 177)) (-3031 (($ $) 131)) (-2342 (((-1180) $) NIL)) (-3107 (($ $ $) 99) (($ (-657 $)) 101)) (-2478 (((-112) |#4| $) 129)) (-1658 (((-112) $ $) 82)) (-2368 (($ (-657 |#4|)) 106)) (-1471 (((-1142) $) NIL)) (-2893 (($ (-657 |#4|)) 175)) (-2534 (((-112) $) 176)) (-3276 (($ $) 85)) (-2536 (((-657 |#4|) $) 73)) (-3655 (((-2 (|:| |mval| (-702 |#1|)) (|:| |invmval| (-702 |#1|)) (|:| |genIdeal| $)) $ (-657 |#3|)) NIL)) (-3061 (((-112) |#4| $) 89)) (-3863 (((-576) $ (-657 |#3|)) 133) (((-576) $) 134)) (-3501 (((-877) $) 174) (($ (-657 |#4|)) 102)) (-2046 (((-112) $ $) NIL)) (-1385 (($ (-2 (|:| |mval| (-702 |#1|)) (|:| |invmval| (-702 |#1|)) (|:| |genIdeal| $))) NIL)) (-2933 (((-112) $ $) 84)) (-3012 (($ $ $) 109)) (** (($ $ (-784)) 115)) (* (($ $ $) 113))) -(((-516 |#1| |#2| |#3| |#4|) (-13 (-1122) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-784))) (-15 -3012 ($ $ $)) (-15 -4094 ((-112) $)) (-15 -2364 ((-112) $)) (-15 -3061 ((-112) |#4| $)) (-15 -1658 ((-112) $ $)) (-15 -2478 ((-112) |#4| $)) (-15 -1444 ((-112) $ (-657 |#3|))) (-15 -1444 ((-112) $)) (-15 -3107 ($ $ $)) (-15 -3107 ($ (-657 $))) (-15 -2335 ($ $ $)) (-15 -2335 ($ $ |#4|)) (-15 -3276 ($ $)) (-15 -3655 ((-2 (|:| |mval| (-702 |#1|)) (|:| |invmval| (-702 |#1|)) (|:| |genIdeal| $)) $ (-657 |#3|))) (-15 -1385 ($ (-2 (|:| |mval| (-702 |#1|)) (|:| |invmval| (-702 |#1|)) (|:| |genIdeal| $)))) (-15 -3863 ((-576) $ (-657 |#3|))) (-15 -3863 ((-576) $)) (-15 -3031 ($ $)) (-15 -2368 ($ (-657 |#4|))) (-15 -2893 ($ (-657 |#4|))) (-15 -2534 ((-112) $)) (-15 -2536 ((-657 |#4|) $)) (-15 -3501 ($ (-657 |#4|))) (-15 -2666 ($ $ |#4|)) (-15 -2666 ($ $ |#4| (-657 |#3|))) (IF (|has| |#3| (-626 (-1198))) (-15 -4259 ((-1187 (-657 (-972 |#1|)) (-657 (-304 (-972 |#1|)))) (-657 |#4|))) |%noBranch|))) (-374) (-806) (-862) (-969 |#1| |#2| |#3|)) (T -516)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-3012 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (-4094 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-2364 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-3061 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-1658 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-2478 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-1444 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-806)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6)))) (-1444 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-3107 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (-3107 (*1 *1 *2) (-12 (-5 *2 (-657 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-2335 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (-2335 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-969 *3 *4 *5)))) (-3276 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (-3655 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-806)) (-5 *2 (-2 (|:| |mval| (-702 *4)) (|:| |invmval| (-702 *4)) (|:| |genIdeal| (-516 *4 *5 *6 *7)))) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6)))) (-1385 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-702 *3)) (|:| |invmval| (-702 *3)) (|:| |genIdeal| (-516 *3 *4 *5 *6)))) (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-3863 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-806)) (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6)))) (-3863 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-576)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-3031 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (-2368 (*1 *1 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2893 (*1 *1 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2534 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-2536 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *6)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2666 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-969 *3 *4 *5)))) (-2666 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-657 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-806)) (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-969 *4 *5 *6)))) (-4259 (*1 *2 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *6 (-626 (-1198))) (-4 *4 (-374)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1187 (-657 (-972 *4)) (-657 (-304 (-972 *4))))) (-5 *1 (-516 *4 *5 *6 *7))))) -(-13 (-1122) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-784))) (-15 -3012 ($ $ $)) (-15 -4094 ((-112) $)) (-15 -2364 ((-112) $)) (-15 -3061 ((-112) |#4| $)) (-15 -1658 ((-112) $ $)) (-15 -2478 ((-112) |#4| $)) (-15 -1444 ((-112) $ (-657 |#3|))) (-15 -1444 ((-112) $)) (-15 -3107 ($ $ $)) (-15 -3107 ($ (-657 $))) (-15 -2335 ($ $ $)) (-15 -2335 ($ $ |#4|)) (-15 -3276 ($ $)) (-15 -3655 ((-2 (|:| |mval| (-702 |#1|)) (|:| |invmval| (-702 |#1|)) (|:| |genIdeal| $)) $ (-657 |#3|))) (-15 -1385 ($ (-2 (|:| |mval| (-702 |#1|)) (|:| |invmval| (-702 |#1|)) (|:| |genIdeal| $)))) (-15 -3863 ((-576) $ (-657 |#3|))) (-15 -3863 ((-576) $)) (-15 -3031 ($ $)) (-15 -2368 ($ (-657 |#4|))) (-15 -2893 ($ (-657 |#4|))) (-15 -2534 ((-112) $)) (-15 -2536 ((-657 |#4|) $)) (-15 -3501 ($ (-657 |#4|))) (-15 -2666 ($ $ |#4|)) (-15 -2666 ($ $ |#4| (-657 |#3|))) (IF (|has| |#3| (-626 (-1198))) (-15 -4259 ((-1187 (-657 (-972 |#1|)) (-657 (-304 (-972 |#1|)))) (-657 |#4|))) |%noBranch|))) -((-2366 (((-112) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576))))) 176)) (-2576 (((-112) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576))))) 177)) (-3198 (((-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576))))) 129)) (-4257 (((-112) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576))))) NIL)) (-1541 (((-657 (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576))))) 179)) (-3702 (((-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))) (-657 (-879 |#1|))) 195))) -(((-517 |#1| |#2|) (-10 -7 (-15 -2366 ((-112) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2576 ((-112) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4257 ((-112) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3198 ((-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -1541 ((-657 (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3702 ((-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))) (-657 (-879 |#1|))))) (-657 (-1198)) (-784)) (T -517)) -((-3702 (*1 *2 *2 *3) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) (-253 *4 (-419 (-576))))) (-5 *3 (-657 (-879 *4))) (-14 *4 (-657 (-1198))) (-14 *5 (-784)) (-5 *1 (-517 *4 *5)))) (-1541 (*1 *2 *3) (-12 (-14 *4 (-657 (-1198))) (-14 *5 (-784)) (-5 *2 (-657 (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) (-253 *4 (-419 (-576)))))) (-5 *1 (-517 *4 *5)) (-5 *3 (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) (-253 *4 (-419 (-576))))))) (-3198 (*1 *2 *2) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *4 (-784)) (-879 *3) (-253 *3 (-419 (-576))))) (-14 *3 (-657 (-1198))) (-14 *4 (-784)) (-5 *1 (-517 *3 *4)))) (-4257 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-657 (-1198))) (-14 *5 (-784)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-657 (-1198))) (-14 *5 (-784)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-657 (-1198))) (-14 *5 (-784)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5))))) -(-10 -7 (-15 -2366 ((-112) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2576 ((-112) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4257 ((-112) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3198 ((-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -1541 ((-657 (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3702 ((-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-784)) (-879 |#1|) (-253 |#1| (-419 (-576)))) (-657 (-879 |#1|))))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2930 (($) 6)) (-3501 (((-877) $) 12) (((-1198) $) 10)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 8))) -(((-518) (-13 (-1122) (-625 (-1198)) (-10 -8 (-15 -2930 ($))))) (T -518)) -((-2930 (*1 *1) (-5 *1 (-518)))) -(-13 (-1122) (-625 (-1198)) (-10 -8 (-15 -2930 ($)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2886 (((-657 (-888 |#2| |#1|)) $) 12)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-2212 (($ $) NIL)) (-2003 (($ |#1| |#2|) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-1390 ((|#2| $) NIL)) (-2186 ((|#1| $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 16 T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) 15) (($ $ $) 39)) (-3012 (($ $ $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 26))) -(((-519 |#1| |#2|) (-13 (-21) (-521 |#1| |#2|)) (-21) (-865)) (T -519)) -NIL -(-13 (-21) (-521 |#1| |#2|)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 17)) (-2886 (((-657 (-888 |#2| |#1|)) $) 14)) (-4359 (($) NIL T CONST)) (-2212 (($ $) 44)) (-2003 (($ |#1| |#2|) 41)) (-4083 (($ (-1 |#1| |#1|) $) 43)) (-1390 ((|#2| $) NIL)) (-2186 ((|#1| $) 45)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 13 T CONST)) (-2933 (((-112) $ $) NIL)) (-3012 (($ $ $) 31)) (* (($ (-941) $) NIL) (($ (-784) $) 40))) -(((-520 |#1| |#2|) (-13 (-23) (-521 |#1| |#2|)) (-23) (-865)) (T -520)) -NIL -(-13 (-23) (-521 |#1| |#2|)) -((-3429 (((-112) $ $) 7)) (-2886 (((-657 (-888 |#2| |#1|)) $) 14)) (-2212 (($ $) 15)) (-2003 (($ |#1| |#2|) 18)) (-4083 (($ (-1 |#1| |#1|) $) 19)) (-1390 ((|#2| $) 16)) (-2186 ((|#1| $) 17)) (-2342 (((-1180) $) 13 (-12 (|has| |#2| (-1122)) (|has| |#1| (-1122))))) (-1471 (((-1142) $) 12 (-12 (|has| |#2| (-1122)) (|has| |#1| (-1122))))) (-3501 (((-877) $) 11 (-12 (|has| |#2| (-1122)) (|has| |#1| (-1122))))) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8))) -(((-521 |#1| |#2|) (-141) (-102) (-865)) (T -521)) -((-4083 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-865)))) (-2003 (*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-865)))) (-2186 (*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-865)) (-4 *2 (-102)))) (-1390 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-102)) (-4 *2 (-865)))) (-2212 (*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-865)))) (-2886 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-865)) (-5 *2 (-657 (-888 *4 *3)))))) -(-13 (-102) (-10 -8 (IF (|has| |t#1| (-1122)) (IF (|has| |t#2| (-1122)) (-6 (-1122)) |%noBranch|) |%noBranch|) (-15 -4083 ($ (-1 |t#1| |t#1|) $)) (-15 -2003 ($ |t#1| |t#2|)) (-15 -2186 (|t#1| $)) (-15 -1390 (|t#2| $)) (-15 -2212 ($ $)) (-15 -2886 ((-657 (-888 |t#2| |t#1|)) $)))) -(((-102) . T) ((-625 (-877)) -12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) ((-1122) -12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2886 (((-657 (-888 |#2| |#1|)) $) NIL)) (-4359 (($) NIL T CONST)) (-2212 (($ $) NIL)) (-2003 (($ |#1| |#2|) NIL)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-1390 ((|#2| $) NIL)) (-2186 ((|#1| $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2769 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 22)) (-3012 (($ $ $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL))) -(((-522 |#1| |#2|) (-13 (-805) (-521 |#1| |#2|)) (-805) (-865)) (T -522)) -NIL -(-13 (-805) (-521 |#1| |#2|)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2886 (((-657 (-888 |#2| |#1|)) $) NIL)) (-3733 (($ $ $) 23)) (-2721 (((-3 $ "failed") $ $) 19)) (-4359 (($) NIL T CONST)) (-2212 (($ $) NIL)) (-2003 (($ |#1| |#2|) NIL)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-1390 ((|#2| $) NIL)) (-2186 ((|#1| $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2769 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-3012 (($ $ $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL))) -(((-523 |#1| |#2|) (-13 (-806) (-521 |#1| |#2|)) (-806) (-862)) (T -523)) -NIL -(-13 (-806) (-521 |#1| |#2|)) -((-3429 (((-112) $ $) NIL)) (-2886 (((-657 (-888 |#2| |#1|)) $) 39)) (-2212 (($ $) 34)) (-2003 (($ |#1| |#2|) 30)) (-4083 (($ (-1 |#1| |#1|) $) 32)) (-1390 ((|#2| $) 38)) (-2186 ((|#1| $) 37)) (-2342 (((-1180) $) NIL (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))))) (-1471 (((-1142) $) NIL (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))))) (-3501 (((-877) $) 28 (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))))) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 21))) -(((-524 |#1| |#2|) (-521 |#1| |#2|) (-102) (-865)) (T -524)) -NIL -(-521 |#1| |#2|) -((-3236 (($ $ (-657 |#2|) (-657 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-525 |#1| |#2| |#3|) (-10 -8 (-15 -3236 (|#1| |#1| |#2| |#3|)) (-15 -3236 (|#1| |#1| (-657 |#2|) (-657 |#3|)))) (-526 |#2| |#3|) (-1122) (-1239)) (T -525)) -NIL -(-10 -8 (-15 -3236 (|#1| |#1| |#2| |#3|)) (-15 -3236 (|#1| |#1| (-657 |#2|) (-657 |#3|)))) -((-3236 (($ $ (-657 |#1|) (-657 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-526 |#1| |#2|) (-141) (-1122) (-1239)) (T -526)) -((-3236 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1239)))) (-3236 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1239))))) -(-13 (-10 -8 (-15 -3236 ($ $ |t#1| |t#2|)) (-15 -3236 ($ $ (-657 |t#1|) (-657 |t#2|))))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 17)) (-2886 (((-657 (-2 (|:| |gen| |#1|) (|:| -4067 |#2|))) $) 19)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2193 (((-784) $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) NIL)) (-2884 ((|#1| $) NIL)) (-3027 ((|#1| $ (-576)) 24)) (-4073 ((|#2| $ (-576)) 22)) (-2183 (($ (-1 |#1| |#1|) $) 48)) (-2816 (($ (-1 |#2| |#2|) $) 45)) (-2342 (((-1180) $) NIL)) (-4361 (($ $ $) 55 (|has| |#2| (-805)))) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 44) (($ |#1|) NIL)) (-2313 ((|#2| |#1| $) 51)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 11 T CONST)) (-2933 (((-112) $ $) 30)) (-3012 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-941) $) NIL) (($ (-784) $) 37) (($ |#2| |#1|) 32))) -(((-527 |#1| |#2| |#3|) (-333 |#1| |#2|) (-1122) (-132) |#2|) (T -527)) -NIL -(-333 |#1| |#2|) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-1568 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3363 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862))))) (-1850 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3793 (((-112) $ (-784)) NIL)) (-2069 (((-112) (-112)) 32)) (-3682 ((|#1| $ (-576) |#1|) 42 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467)))) (-3162 (($ (-1 (-112) |#1|) $) 77)) (-2035 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-4359 (($) NIL T CONST)) (-3606 (($ $) NIL (|has| $ (-6 -4467)))) (-3768 (($ $) NIL)) (-4295 (($ $) 81 (|has| |#1| (-1122)))) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3647 (($ |#1| $) NIL (|has| |#1| (-1122))) (($ (-1 (-112) |#1|) $) 64)) (-3895 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-2158 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) NIL)) (-3582 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122)))) (-2009 (($ $ (-576)) 19)) (-1827 (((-784) $) 13)) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-4109 (($ (-784) |#1|) 31)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) 29 (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| |#1| (-862)))) (-4033 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-3073 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-862)))) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2272 (((-576) $) 28 (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| |#1| (-862)))) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2468 (($ $ $ (-576)) 73) (($ |#1| $ (-576)) 57)) (-2271 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3503 (($ (-657 |#1|)) 43)) (-3510 ((|#1| $) NIL (|has| (-576) (-862)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1987 (($ $ |#1|) 24 (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 60)) (-1515 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) 21)) (-2835 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 53) (($ $ (-1256 (-576))) NIL)) (-3449 (($ $ (-1256 (-576))) 71) (($ $ (-576)) 65)) (-3409 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2114 (($ $ $ (-576)) 61 (|has| $ (-6 -4467)))) (-1923 (($ $) 51)) (-4148 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) NIL)) (-2858 (($ $ $) 62) (($ $ |#1|) 59)) (-1674 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-657 $)) NIL)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2973 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3440 (((-784) $) 22 (|has| $ (-6 -4466))))) -(((-528 |#1| |#2|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -3503 ($ (-657 |#1|))) (-15 -1827 ((-784) $)) (-15 -2009 ($ $ (-576))) (-15 -2069 ((-112) (-112))))) (-1239) (-576)) (T -528)) -((-3503 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-528 *3 *4)) (-14 *4 (-576)))) (-1827 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1239)) (-14 *4 (-576)))) (-2009 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1239)) (-14 *4 *2))) (-2069 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1239)) (-14 *4 (-576))))) -(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -3503 ($ (-657 |#1|))) (-15 -1827 ((-784) $)) (-15 -2009 ($ $ (-576))) (-15 -2069 ((-112) (-112))))) -((-3429 (((-112) $ $) NIL)) (-3223 (((-1157) $) 11)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2543 (((-1157) $) 13)) (-3943 (((-1157) $) 9)) (-3501 (((-877) $) 19) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-529) (-13 (-1105) (-10 -8 (-15 -3943 ((-1157) $)) (-15 -3223 ((-1157) $)) (-15 -2543 ((-1157) $))))) (T -529)) -((-3943 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-529)))) (-3223 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-529)))) (-2543 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-529))))) -(-13 (-1105) (-10 -8 (-15 -3943 ((-1157) $)) (-15 -3223 ((-1157) $)) (-15 -2543 ((-1157) $)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2175 (((-112) $) NIL)) (-3158 (((-784)) NIL)) (-2302 (((-593 |#1|) $) NIL) (($ $ (-941)) NIL (|has| (-593 |#1|) (-379)))) (-3592 (((-1211 (-941) (-784)) (-576)) NIL (|has| (-593 |#1|) (-379)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-2864 (((-112) $ $) NIL)) (-2193 (((-784)) NIL (|has| (-593 |#1|) (-379)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-593 |#1|) "failed") $) NIL)) (-2884 (((-593 |#1|) $) NIL)) (-2613 (($ (-1289 (-593 |#1|))) NIL)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-593 |#1|) (-379)))) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($) NIL (|has| (-593 |#1|) (-379)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-1367 (($) NIL (|has| (-593 |#1|) (-379)))) (-2105 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-1780 (($ $ (-784)) NIL (-2802 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379)))) (($ $) NIL (-2802 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-4257 (((-112) $) NIL)) (-3182 (((-941) $) NIL (|has| (-593 |#1|) (-379))) (((-846 (-941)) $) NIL (-2802 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-4094 (((-112) $) NIL)) (-2615 (($) NIL (|has| (-593 |#1|) (-379)))) (-1974 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-2234 (((-593 |#1|) $) NIL) (($ $ (-941)) NIL (|has| (-593 |#1|) (-379)))) (-4019 (((-3 $ "failed") $) NIL (|has| (-593 |#1|) (-379)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1336 (((-1194 (-593 |#1|)) $) NIL) (((-1194 $) $ (-941)) NIL (|has| (-593 |#1|) (-379)))) (-3007 (((-941) $) NIL (|has| (-593 |#1|) (-379)))) (-4349 (((-1194 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379)))) (-3173 (((-1194 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-1194 (-593 |#1|)) "failed") $ $) NIL (|has| (-593 |#1|) (-379)))) (-1354 (($ $ (-1194 (-593 |#1|))) NIL (|has| (-593 |#1|) (-379)))) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1706 (($) NIL (|has| (-593 |#1|) (-379)) CONST)) (-3178 (($ (-941)) NIL (|has| (-593 |#1|) (-379)))) (-2463 (((-112) $) NIL)) (-1471 (((-1142) $) NIL)) (-4097 (($) NIL (|has| (-593 |#1|) (-379)))) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) NIL (|has| (-593 |#1|) (-379)))) (-1885 (((-430 $) $) NIL)) (-1453 (((-846 (-941))) NIL) (((-941)) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2284 (((-784) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-784) "failed") $ $) NIL (-2802 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-3863 (((-135)) NIL)) (-2815 (($ $ (-784)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-1770 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-3180 (((-1194 (-593 |#1|))) NIL)) (-2090 (($) NIL (|has| (-593 |#1|) (-379)))) (-3298 (($) NIL (|has| (-593 |#1|) (-379)))) (-2795 (((-1289 (-593 |#1|)) $) NIL) (((-702 (-593 |#1|)) (-1289 $)) NIL)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| (-593 |#1|) (-379)))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-593 |#1|)) NIL)) (-3096 (($ $) NIL (|has| (-593 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2802 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) NIL) (((-1289 $) (-941)) NIL)) (-4041 (((-112) $ $) NIL)) (-1863 (((-112) $) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-1508 (($ $) NIL (|has| (-593 |#1|) (-379))) (($ $ (-784)) NIL (|has| (-593 |#1|) (-379)))) (-2097 (($ $ (-784)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL) (($ $ (-593 |#1|)) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-593 |#1|)) NIL) (($ (-593 |#1|) $) NIL))) -(((-530 |#1| |#2|) (-339 (-593 |#1|)) (-941) (-941)) (T -530)) -NIL -(-339 (-593 |#1|)) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 ((|#1| $ (-576) (-576) |#1|) 51)) (-3779 (($ $ (-576) |#4|) NIL)) (-3726 (($ $ (-576) |#5|) NIL)) (-4359 (($) NIL T CONST)) (-2911 ((|#4| $ (-576)) NIL)) (-2158 ((|#1| $ (-576) (-576) |#1|) 50)) (-2083 ((|#1| $ (-576) (-576)) 45)) (-1458 (((-657 |#1|) $) NIL)) (-2377 (((-784) $) 33)) (-4109 (($ (-784) (-784) |#1|) 30)) (-2387 (((-784) $) 38)) (-1833 (((-112) $ (-784)) NIL)) (-2491 (((-576) $) 31)) (-3770 (((-576) $) 32)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3704 (((-576) $) 37)) (-1429 (((-576) $) 39)) (-2148 (($ (-1 |#1| |#1|) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) 55 (|has| |#1| (-1122)))) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-1987 (($ $ |#1|) NIL)) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) 14)) (-3581 (($) 16)) (-2835 ((|#1| $ (-576) (-576)) 48) ((|#1| $ (-576) (-576) |#1|) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) NIL)) (-3815 ((|#5| $ (-576)) NIL)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-531 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1239) (-576) (-576) (-384 |#1|) (-384 |#1|)) (T -531)) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 ((|#1| $ (-577) (-577) |#1|) NIL)) (-3419 (($ $ (-577) (-509 |#1| |#3|)) NIL)) (-2451 (($ $ (-577) (-509 |#1| |#2|)) NIL)) (-1534 (($) NIL T CONST)) (-3956 (((-509 |#1| |#3|) $ (-577)) NIL)) (-2192 ((|#1| $ (-577) (-577) |#1|) NIL)) (-2117 ((|#1| $ (-577) (-577)) NIL)) (-1461 (((-660 |#1|) $) NIL)) (-2414 (((-787) $) NIL)) (-4113 (($ (-787) (-787) |#1|) NIL)) (-2424 (((-787) $) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-4002 (((-577) $) NIL)) (-3979 (((-577) $) NIL)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3990 (((-577) $) NIL)) (-3968 (((-577) $) NIL)) (-2182 (($ (-1 |#1| |#1|) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-2397 (($ $ |#1|) NIL)) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#1| $ (-577) (-577)) NIL) ((|#1| $ (-577) (-577) |#1|) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) NIL)) (-3943 (((-509 |#1| |#2|) $ (-577)) NIL)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-510 |#1| |#2| |#3|) (-57 |#1| (-509 |#1| |#3|) (-509 |#1| |#2|)) (-1242) (-577) (-577)) (T -510)) +NIL +(-57 |#1| (-509 |#1| |#3|) (-509 |#1| |#2|)) +((-1569 (((-660 (-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|)))) (-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) (-787) (-787)) 32)) (-1558 (((-660 (-1197 |#1|)) |#1| (-787) (-787) (-787)) 43)) (-3464 (((-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) (-660 |#3|) (-660 (-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|)))) (-787)) 107))) +(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -1558 ((-660 (-1197 |#1|)) |#1| (-787) (-787) (-787))) (-15 -1569 ((-660 (-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|)))) (-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) (-787) (-787))) (-15 -3464 ((-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) (-660 |#3|) (-660 (-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|)))) (-787)))) (-361) (-1268 |#1|) (-1268 |#2|)) (T -511)) +((-3464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 (-2 (|:| -4060 (-705 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-705 *7))))) (-5 *5 (-787)) (-4 *8 (-1268 *7)) (-4 *7 (-1268 *6)) (-4 *6 (-361)) (-5 *2 (-2 (|:| -4060 (-705 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-705 *7)))) (-5 *1 (-511 *6 *7 *8)))) (-1569 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-787)) (-4 *5 (-361)) (-4 *6 (-1268 *5)) (-5 *2 (-660 (-2 (|:| -4060 (-705 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-705 *6))))) (-5 *1 (-511 *5 *6 *7)) (-5 *3 (-2 (|:| -4060 (-705 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-705 *6)))) (-4 *7 (-1268 *6)))) (-1558 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-787)) (-4 *3 (-361)) (-4 *5 (-1268 *3)) (-5 *2 (-660 (-1197 *3))) (-5 *1 (-511 *3 *5 *6)) (-4 *6 (-1268 *5))))) +(-10 -7 (-15 -1558 ((-660 (-1197 |#1|)) |#1| (-787) (-787) (-787))) (-15 -1569 ((-660 (-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|)))) (-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) (-787) (-787))) (-15 -3464 ((-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) (-660 |#3|) (-660 (-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|)))) (-787)))) +((-1641 (((-2 (|:| -4060 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))) (-2 (|:| -4060 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))) (-2 (|:| -4060 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|)))) 70)) (-1580 ((|#1| (-705 |#1|) |#1| (-787)) 24)) (-1602 (((-787) (-787) (-787)) 34)) (-1629 (((-705 |#1|) (-705 |#1|) (-705 |#1|)) 50)) (-1613 (((-705 |#1|) (-705 |#1|) (-705 |#1|) |#1|) 58) (((-705 |#1|) (-705 |#1|) (-705 |#1|)) 55)) (-1591 ((|#1| (-705 |#1|) (-705 |#1|) |#1| (-577)) 28)) (-2395 ((|#1| (-705 |#1|)) 18))) +(((-512 |#1| |#2| |#3|) (-10 -7 (-15 -2395 (|#1| (-705 |#1|))) (-15 -1580 (|#1| (-705 |#1|) |#1| (-787))) (-15 -1591 (|#1| (-705 |#1|) (-705 |#1|) |#1| (-577))) (-15 -1602 ((-787) (-787) (-787))) (-15 -1613 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -1613 ((-705 |#1|) (-705 |#1|) (-705 |#1|) |#1|)) (-15 -1629 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -1641 ((-2 (|:| -4060 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))) (-2 (|:| -4060 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))) (-2 (|:| -4060 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|)))))) (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $)))) (-1268 |#1|) (-422 |#1| |#2|)) (T -512)) +((-1641 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4060 (-705 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-705 *3)))) (-4 *3 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-1629 (*1 *2 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-1613 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-705 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-1613 (*1 *2 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-1602 (*1 *2 *2 *2) (-12 (-5 *2 (-787)) (-4 *3 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-1591 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-705 *2)) (-5 *4 (-577)) (-4 *2 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) (-4 *5 (-1268 *2)) (-5 *1 (-512 *2 *5 *6)) (-4 *6 (-422 *2 *5)))) (-1580 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-705 *2)) (-5 *4 (-787)) (-4 *2 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) (-4 *5 (-1268 *2)) (-5 *1 (-512 *2 *5 *6)) (-4 *6 (-422 *2 *5)))) (-2395 (*1 *2 *3) (-12 (-5 *3 (-705 *2)) (-4 *4 (-1268 *2)) (-4 *2 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) (-5 *1 (-512 *2 *4 *5)) (-4 *5 (-422 *2 *4))))) +(-10 -7 (-15 -2395 (|#1| (-705 |#1|))) (-15 -1580 (|#1| (-705 |#1|) |#1| (-787))) (-15 -1591 (|#1| (-705 |#1|) (-705 |#1|) |#1| (-577))) (-15 -1602 ((-787) (-787) (-787))) (-15 -1613 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -1613 ((-705 |#1|) (-705 |#1|) (-705 |#1|) |#1|)) (-15 -1629 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -1641 ((-2 (|:| -4060 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))) (-2 (|:| -4060 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|))) (-2 (|:| -4060 (-705 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-705 |#1|)))))) +((-3473 (((-112) $ $) NIL)) (-3496 (($ $) NIL)) (-2781 (($ $ $) 40)) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4077 (((-112) $) NIL (|has| (-112) (-865))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-4053 (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| (-112) (-865)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4471)))) (-1864 (($ $) NIL (|has| (-112) (-865))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-3709 (((-112) $ (-1259 (-577)) (-112)) NIL (|has| $ (-6 -4471))) (((-112) $ (-577) (-112)) 42 (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470)))) (-1534 (($) NIL T CONST)) (-3645 (($ $) NIL (|has| $ (-6 -4471)))) (-3787 (($ $) NIL)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))))) (-3904 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))))) (-3654 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))))) (-2192 (((-112) $ (-577) (-112)) NIL (|has| $ (-6 -4471)))) (-2117 (((-112) $ (-577)) NIL)) (-3618 (((-577) (-112) $ (-577)) NIL (|has| (-112) (-1125))) (((-577) (-112) $) NIL (|has| (-112) (-1125))) (((-577) (-1 (-112) (-112)) $) NIL)) (-1461 (((-660 (-112)) $) NIL (|has| $ (-6 -4470)))) (-2771 (($ $ $) 38)) (-2749 (($ $) NIL)) (-1837 (($ $ $) NIL)) (-4113 (($ (-787) (-112)) 27)) (-1848 (($ $ $) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) 8 (|has| (-577) (-865)))) (-3732 (($ $ $) NIL)) (-3283 (($ $ $) NIL (|has| (-112) (-865))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2530 (((-660 (-112)) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))))) (-2416 (((-577) $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL)) (-2182 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL)) (-2308 (($ $ $ (-577)) NIL) (($ (-112) $ (-577)) NIL)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-1474 (((-1145) $) NIL)) (-3552 (((-112) $) NIL (|has| (-577) (-865)))) (-1828 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2397 (($ $ (-112)) NIL (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-112)) (-660 (-112))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125)))) (($ $ (-305 (-112))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125)))) (($ $ (-660 (-305 (-112)))) NIL (-12 (|has| (-112) (-320 (-112))) (|has| (-112) (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125))))) (-4306 (((-660 (-112)) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) 28)) (-2872 (($ $ (-1259 (-577))) NIL) (((-112) $ (-577)) 22) (((-112) $ (-577) (-112)) NIL)) (-3453 (($ $ (-1259 (-577))) NIL) (($ $ (-577)) NIL)) (-1485 (((-787) (-112) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-112) (-1125)))) (((-787) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470)))) (-4064 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)))) (-1944 (($ $) 29)) (-4152 (((-549) $) NIL (|has| (-112) (-627 (-549))))) (-3553 (($ (-660 (-112))) NIL)) (-1677 (($ (-660 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3544 (((-880) $) 26)) (-4448 (((-112) $ $) NIL)) (-1524 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4470)))) (-2761 (($ $ $) 36)) (-3538 (($ $ $) NIL)) (-3822 (($ $ $) 45)) (-3834 (($ $) 43)) (-3809 (($ $ $) 44)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 30)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 31)) (-3527 (($ $ $) NIL)) (-3484 (((-787) $) 13 (|has| $ (-6 -4470))))) +(((-513 |#1|) (-13 (-124) (-10 -8 (-15 -3834 ($ $)) (-15 -3822 ($ $ $)) (-15 -3809 ($ $ $)))) (-577)) (T -513)) +((-3834 (*1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) (-3822 (*1 *1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) (-3809 (*1 *1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577))))) +(-13 (-124) (-10 -8 (-15 -3834 ($ $)) (-15 -3822 ($ $ $)) (-15 -3809 ($ $ $)))) +((-1661 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1197 |#4|)) 35)) (-1651 (((-1197 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1197 |#4|)) 22)) (-1673 (((-3 (-705 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-705 (-1197 |#4|))) 46)) (-1686 (((-1197 (-1197 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-514 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1651 (|#2| (-1 |#1| |#4|) (-1197 |#4|))) (-15 -1651 ((-1197 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1661 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1197 |#4|))) (-15 -1673 ((-3 (-705 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-705 (-1197 |#4|)))) (-15 -1686 ((-1197 (-1197 |#4|)) (-1 |#4| |#1|) |#3|))) (-1074) (-1268 |#1|) (-1268 |#2|) (-1074)) (T -514)) +((-1686 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1074)) (-4 *7 (-1074)) (-4 *6 (-1268 *5)) (-5 *2 (-1197 (-1197 *7))) (-5 *1 (-514 *5 *6 *4 *7)) (-4 *4 (-1268 *6)))) (-1673 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-705 (-1197 *8))) (-4 *5 (-1074)) (-4 *8 (-1074)) (-4 *6 (-1268 *5)) (-5 *2 (-705 *6)) (-5 *1 (-514 *5 *6 *7 *8)) (-4 *7 (-1268 *6)))) (-1661 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1197 *7)) (-4 *5 (-1074)) (-4 *7 (-1074)) (-4 *2 (-1268 *5)) (-5 *1 (-514 *5 *2 *6 *7)) (-4 *6 (-1268 *2)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1074)) (-4 *7 (-1074)) (-4 *4 (-1268 *5)) (-5 *2 (-1197 *7)) (-5 *1 (-514 *5 *4 *6 *7)) (-4 *6 (-1268 *4)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1197 *7)) (-4 *5 (-1074)) (-4 *7 (-1074)) (-4 *2 (-1268 *5)) (-5 *1 (-514 *5 *2 *6 *7)) (-4 *6 (-1268 *2))))) +(-10 -7 (-15 -1651 (|#2| (-1 |#1| |#4|) (-1197 |#4|))) (-15 -1651 ((-1197 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1661 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1197 |#4|))) (-15 -1673 ((-3 (-705 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-705 (-1197 |#4|)))) (-15 -1686 ((-1197 (-1197 |#4|)) (-1 |#4| |#1|) |#3|))) +((-3473 (((-112) $ $) NIL)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-1696 (((-1297) $) 25)) (-2872 (((-1183) $ (-1201)) 30)) (-2072 (((-1297) $) 17)) (-3544 (((-880) $) 27) (($ (-1183)) 26)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 11)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 9))) +(((-515) (-13 (-865) (-10 -8 (-15 -2872 ((-1183) $ (-1201))) (-15 -2072 ((-1297) $)) (-15 -1696 ((-1297) $)) (-15 -3544 ($ (-1183)))))) (T -515)) +((-2872 (*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1183)) (-5 *1 (-515)))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-515)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-515)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-515))))) +(-13 (-865) (-10 -8 (-15 -2872 ((-1183) $ (-1201))) (-15 -2072 ((-1297) $)) (-15 -1696 ((-1297) $)) (-15 -3544 ($ (-1183))))) +((-1660 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1638 ((|#1| |#4|) 10)) (-1649 ((|#3| |#4|) 17))) +(((-516 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1638 (|#1| |#4|)) (-15 -1649 (|#3| |#4|)) (-15 -1660 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-569) (-1017 |#1|) (-385 |#1|) (-385 |#2|)) (T -516)) +((-1660 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1017 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5)))) (-1649 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1017 *4)) (-4 *2 (-385 *4)) (-5 *1 (-516 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) (-1638 (*1 *2 *3) (-12 (-4 *4 (-1017 *2)) (-4 *2 (-569)) (-5 *1 (-516 *2 *4 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-385 *4))))) +(-10 -7 (-15 -1638 (|#1| |#4|)) (-15 -1649 (|#3| |#4|)) (-15 -1660 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-3473 (((-112) $ $) NIL)) (-3649 (((-112) $ (-660 |#3|)) 126) (((-112) $) 127)) (-3585 (((-112) $) 178)) (-1717 (($ $ |#4|) 117) (($ $ |#4| (-660 |#3|)) 121)) (-1705 (((-1190 (-660 (-975 |#1|)) (-660 (-305 (-975 |#1|)))) (-660 |#4|)) 171 (|has| |#3| (-627 (-1201))))) (-3637 (($ $ $) 107) (($ $ |#4|) 105)) (-2487 (((-112) $) 177)) (-3608 (($ $) 131)) (-2810 (((-1183) $) NIL)) (-2785 (($ $ $) 99) (($ (-660 $)) 101)) (-3661 (((-112) |#4| $) 129)) (-3672 (((-112) $ $) 82)) (-3597 (($ (-660 |#4|)) 106)) (-1474 (((-1145) $) NIL)) (-3588 (($ (-660 |#4|)) 175)) (-1728 (((-112) $) 176)) (-1374 (($ $) 85)) (-2145 (((-660 |#4|) $) 73)) (-3626 (((-2 (|:| |mval| (-705 |#1|)) (|:| |invmval| (-705 |#1|)) (|:| |genIdeal| $)) $ (-660 |#3|)) NIL)) (-3682 (((-112) |#4| $) 89)) (-2561 (((-577) $ (-660 |#3|)) 133) (((-577) $) 134)) (-3544 (((-880) $) 174) (($ (-660 |#4|)) 102)) (-4448 (((-112) $ $) NIL)) (-3615 (($ (-2 (|:| |mval| (-705 |#1|)) (|:| |invmval| (-705 |#1|)) (|:| |genIdeal| $))) NIL)) (-2970 (((-112) $ $) 84)) (-3055 (($ $ $) 109)) (** (($ $ (-787)) 115)) (* (($ $ $) 113))) +(((-517 |#1| |#2| |#3| |#4|) (-13 (-1125) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-787))) (-15 -3055 ($ $ $)) (-15 -2487 ((-112) $)) (-15 -3585 ((-112) $)) (-15 -3682 ((-112) |#4| $)) (-15 -3672 ((-112) $ $)) (-15 -3661 ((-112) |#4| $)) (-15 -3649 ((-112) $ (-660 |#3|))) (-15 -3649 ((-112) $)) (-15 -2785 ($ $ $)) (-15 -2785 ($ (-660 $))) (-15 -3637 ($ $ $)) (-15 -3637 ($ $ |#4|)) (-15 -1374 ($ $)) (-15 -3626 ((-2 (|:| |mval| (-705 |#1|)) (|:| |invmval| (-705 |#1|)) (|:| |genIdeal| $)) $ (-660 |#3|))) (-15 -3615 ($ (-2 (|:| |mval| (-705 |#1|)) (|:| |invmval| (-705 |#1|)) (|:| |genIdeal| $)))) (-15 -2561 ((-577) $ (-660 |#3|))) (-15 -2561 ((-577) $)) (-15 -3608 ($ $)) (-15 -3597 ($ (-660 |#4|))) (-15 -3588 ($ (-660 |#4|))) (-15 -1728 ((-112) $)) (-15 -2145 ((-660 |#4|) $)) (-15 -3544 ($ (-660 |#4|))) (-15 -1717 ($ $ |#4|)) (-15 -1717 ($ $ |#4| (-660 |#3|))) (IF (|has| |#3| (-627 (-1201))) (-15 -1705 ((-1190 (-660 (-975 |#1|)) (-660 (-305 (-975 |#1|)))) (-660 |#4|))) |%noBranch|))) (-375) (-809) (-865) (-972 |#1| |#2| |#3|)) (T -517)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-3055 (*1 *1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) (-2487 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-3585 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-3682 (*1 *2 *3 *1) (-12 (-4 *4 (-375)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-3672 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-3661 (*1 *2 *3 *1) (-12 (-4 *4 (-375)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-3649 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *6)) (-4 *6 (-865)) (-4 *4 (-375)) (-4 *5 (-809)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-972 *4 *5 *6)))) (-3649 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-2785 (*1 *1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) (-2785 (*1 *1 *2) (-12 (-5 *2 (-660 (-517 *3 *4 *5 *6))) (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-3637 (*1 *1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) (-3637 (*1 *1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *2)) (-4 *2 (-972 *3 *4 *5)))) (-1374 (*1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) (-3626 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *6)) (-4 *6 (-865)) (-4 *4 (-375)) (-4 *5 (-809)) (-5 *2 (-2 (|:| |mval| (-705 *4)) (|:| |invmval| (-705 *4)) (|:| |genIdeal| (-517 *4 *5 *6 *7)))) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-972 *4 *5 *6)))) (-3615 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-705 *3)) (|:| |invmval| (-705 *3)) (|:| |genIdeal| (-517 *3 *4 *5 *6)))) (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-2561 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *6)) (-4 *6 (-865)) (-4 *4 (-375)) (-4 *5 (-809)) (-5 *2 (-577)) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-972 *4 *5 *6)))) (-2561 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-577)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-3608 (*1 *1 *1) (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) (-3597 (*1 *1 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6)))) (-3588 (*1 *1 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6)))) (-1728 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-2145 (*1 *2 *1) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *6)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6)))) (-1717 (*1 *1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *2)) (-4 *2 (-972 *3 *4 *5)))) (-1717 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-660 *6)) (-4 *6 (-865)) (-4 *4 (-375)) (-4 *5 (-809)) (-5 *1 (-517 *4 *5 *6 *2)) (-4 *2 (-972 *4 *5 *6)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *6 (-627 (-1201))) (-4 *4 (-375)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1190 (-660 (-975 *4)) (-660 (-305 (-975 *4))))) (-5 *1 (-517 *4 *5 *6 *7))))) +(-13 (-1125) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-787))) (-15 -3055 ($ $ $)) (-15 -2487 ((-112) $)) (-15 -3585 ((-112) $)) (-15 -3682 ((-112) |#4| $)) (-15 -3672 ((-112) $ $)) (-15 -3661 ((-112) |#4| $)) (-15 -3649 ((-112) $ (-660 |#3|))) (-15 -3649 ((-112) $)) (-15 -2785 ($ $ $)) (-15 -2785 ($ (-660 $))) (-15 -3637 ($ $ $)) (-15 -3637 ($ $ |#4|)) (-15 -1374 ($ $)) (-15 -3626 ((-2 (|:| |mval| (-705 |#1|)) (|:| |invmval| (-705 |#1|)) (|:| |genIdeal| $)) $ (-660 |#3|))) (-15 -3615 ($ (-2 (|:| |mval| (-705 |#1|)) (|:| |invmval| (-705 |#1|)) (|:| |genIdeal| $)))) (-15 -2561 ((-577) $ (-660 |#3|))) (-15 -2561 ((-577) $)) (-15 -3608 ($ $)) (-15 -3597 ($ (-660 |#4|))) (-15 -3588 ($ (-660 |#4|))) (-15 -1728 ((-112) $)) (-15 -2145 ((-660 |#4|) $)) (-15 -3544 ($ (-660 |#4|))) (-15 -1717 ($ $ |#4|)) (-15 -1717 ($ $ |#4| (-660 |#3|))) (IF (|has| |#3| (-627 (-1201))) (-15 -1705 ((-1190 (-660 (-975 |#1|)) (-660 (-305 (-975 |#1|)))) (-660 |#4|))) |%noBranch|))) +((-3694 (((-112) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577))))) 176)) (-3705 (((-112) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577))))) 177)) (-3241 (((-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577))))) 129)) (-1522 (((-112) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577))))) NIL)) (-3716 (((-660 (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577))))) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577))))) 179)) (-3726 (((-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))) (-660 (-882 |#1|))) 195))) +(((-518 |#1| |#2|) (-10 -7 (-15 -3694 ((-112) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -3705 ((-112) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -1522 ((-112) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -3241 ((-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -3716 ((-660 (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577))))) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -3726 ((-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))) (-660 (-882 |#1|))))) (-660 (-1201)) (-787)) (T -518)) +((-3726 (*1 *2 *2 *3) (-12 (-5 *2 (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) (-254 *4 (-420 (-577))))) (-5 *3 (-660 (-882 *4))) (-14 *4 (-660 (-1201))) (-14 *5 (-787)) (-5 *1 (-518 *4 *5)))) (-3716 (*1 *2 *3) (-12 (-14 *4 (-660 (-1201))) (-14 *5 (-787)) (-5 *2 (-660 (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) (-254 *4 (-420 (-577)))))) (-5 *1 (-518 *4 *5)) (-5 *3 (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) (-254 *4 (-420 (-577))))))) (-3241 (*1 *2 *2) (-12 (-5 *2 (-517 (-420 (-577)) (-246 *4 (-787)) (-882 *3) (-254 *3 (-420 (-577))))) (-14 *3 (-660 (-1201))) (-14 *4 (-787)) (-5 *1 (-518 *3 *4)))) (-1522 (*1 *2 *3) (-12 (-5 *3 (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) (-254 *4 (-420 (-577))))) (-14 *4 (-660 (-1201))) (-14 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-518 *4 *5)))) (-3705 (*1 *2 *3) (-12 (-5 *3 (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) (-254 *4 (-420 (-577))))) (-14 *4 (-660 (-1201))) (-14 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-518 *4 *5)))) (-3694 (*1 *2 *3) (-12 (-5 *3 (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) (-254 *4 (-420 (-577))))) (-14 *4 (-660 (-1201))) (-14 *5 (-787)) (-5 *2 (-112)) (-5 *1 (-518 *4 *5))))) +(-10 -7 (-15 -3694 ((-112) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -3705 ((-112) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -1522 ((-112) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -3241 ((-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -3716 ((-660 (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577))))) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))))) (-15 -3726 ((-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))) (-517 (-420 (-577)) (-246 |#2| (-787)) (-882 |#1|) (-254 |#1| (-420 (-577)))) (-660 (-882 |#1|))))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3737 (($) 6)) (-3544 (((-880) $) 12) (((-1201) $) 10)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 8))) +(((-519) (-13 (-1125) (-626 (-1201)) (-10 -8 (-15 -3737 ($))))) (T -519)) +((-3737 (*1 *1) (-5 *1 (-519)))) +(-13 (-1125) (-626 (-1201)) (-10 -8 (-15 -3737 ($)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3829 (((-660 (-891 |#2| |#1|)) $) 12)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-2248 (($ $) NIL)) (-2030 (($ |#1| |#2|) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3747 ((|#2| $) NIL)) (-2221 ((|#1| $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 16 T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) 15) (($ $ $) 39)) (-3055 (($ $ $) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 26))) +(((-520 |#1| |#2|) (-13 (-21) (-522 |#1| |#2|)) (-21) (-868)) (T -520)) +NIL +(-13 (-21) (-522 |#1| |#2|)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 17)) (-3829 (((-660 (-891 |#2| |#1|)) $) 14)) (-1534 (($) NIL T CONST)) (-2248 (($ $) 44)) (-2030 (($ |#1| |#2|) 41)) (-4087 (($ (-1 |#1| |#1|) $) 43)) (-3747 ((|#2| $) NIL)) (-2221 ((|#1| $) 45)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 13 T CONST)) (-2970 (((-112) $ $) NIL)) (-3055 (($ $ $) 31)) (* (($ (-944) $) NIL) (($ (-787) $) 40))) +(((-521 |#1| |#2|) (-13 (-23) (-522 |#1| |#2|)) (-23) (-868)) (T -521)) +NIL +(-13 (-23) (-522 |#1| |#2|)) +((-3473 (((-112) $ $) 7)) (-3829 (((-660 (-891 |#2| |#1|)) $) 14)) (-2248 (($ $) 15)) (-2030 (($ |#1| |#2|) 18)) (-4087 (($ (-1 |#1| |#1|) $) 19)) (-3747 ((|#2| $) 16)) (-2221 ((|#1| $) 17)) (-2810 (((-1183) $) 13 (-12 (|has| |#2| (-1125)) (|has| |#1| (-1125))))) (-1474 (((-1145) $) 12 (-12 (|has| |#2| (-1125)) (|has| |#1| (-1125))))) (-3544 (((-880) $) 11 (-12 (|has| |#2| (-1125)) (|has| |#1| (-1125))))) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8))) +(((-522 |#1| |#2|) (-141) (-102) (-868)) (T -522)) +((-4087 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-522 *3 *4)) (-4 *3 (-102)) (-4 *4 (-868)))) (-2030 (*1 *1 *2 *3) (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-102)) (-4 *3 (-868)))) (-2221 (*1 *2 *1) (-12 (-4 *1 (-522 *2 *3)) (-4 *3 (-868)) (-4 *2 (-102)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-522 *3 *2)) (-4 *3 (-102)) (-4 *2 (-868)))) (-2248 (*1 *1 *1) (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-102)) (-4 *3 (-868)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-522 *3 *4)) (-4 *3 (-102)) (-4 *4 (-868)) (-5 *2 (-660 (-891 *4 *3)))))) +(-13 (-102) (-10 -8 (IF (|has| |t#1| (-1125)) (IF (|has| |t#2| (-1125)) (-6 (-1125)) |%noBranch|) |%noBranch|) (-15 -4087 ($ (-1 |t#1| |t#1|) $)) (-15 -2030 ($ |t#1| |t#2|)) (-15 -2221 (|t#1| $)) (-15 -3747 (|t#2| $)) (-15 -2248 ($ $)) (-15 -3829 ((-660 (-891 |t#2| |t#1|)) $)))) +(((-102) . T) ((-626 (-880)) -12 (|has| |#1| (-1125)) (|has| |#2| (-1125))) ((-1125) -12 (|has| |#1| (-1125)) (|has| |#2| (-1125))) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3829 (((-660 (-891 |#2| |#1|)) $) NIL)) (-1534 (($) NIL T CONST)) (-2248 (($ $) NIL)) (-2030 (($ |#1| |#2|) NIL)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3747 ((|#2| $) NIL)) (-2221 ((|#1| $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2806 (($) NIL T CONST)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 22)) (-3055 (($ $ $) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL))) +(((-523 |#1| |#2|) (-13 (-808) (-522 |#1| |#2|)) (-808) (-868)) (T -523)) +NIL +(-13 (-808) (-522 |#1| |#2|)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3829 (((-660 (-891 |#2| |#1|)) $) NIL)) (-4243 (($ $ $) 23)) (-1956 (((-3 $ "failed") $ $) 19)) (-1534 (($) NIL T CONST)) (-2248 (($ $) NIL)) (-2030 (($ |#1| |#2|) NIL)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3747 ((|#2| $) NIL)) (-2221 ((|#1| $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2806 (($) NIL T CONST)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-3055 (($ $ $) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL))) +(((-524 |#1| |#2|) (-13 (-809) (-522 |#1| |#2|)) (-809) (-865)) (T -524)) +NIL +(-13 (-809) (-522 |#1| |#2|)) +((-3473 (((-112) $ $) NIL)) (-3829 (((-660 (-891 |#2| |#1|)) $) 39)) (-2248 (($ $) 34)) (-2030 (($ |#1| |#2|) 30)) (-4087 (($ (-1 |#1| |#1|) $) 32)) (-3747 ((|#2| $) 38)) (-2221 ((|#1| $) 37)) (-2810 (((-1183) $) NIL (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))))) (-1474 (((-1145) $) NIL (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))))) (-3544 (((-880) $) 28 (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))))) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 21))) +(((-525 |#1| |#2|) (-522 |#1| |#2|) (-102) (-868)) (T -525)) +NIL +(-522 |#1| |#2|) +((-3280 (($ $ (-660 |#2|) (-660 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-526 |#1| |#2| |#3|) (-10 -8 (-15 -3280 (|#1| |#1| |#2| |#3|)) (-15 -3280 (|#1| |#1| (-660 |#2|) (-660 |#3|)))) (-527 |#2| |#3|) (-1125) (-1242)) (T -526)) +NIL +(-10 -8 (-15 -3280 (|#1| |#1| |#2| |#3|)) (-15 -3280 (|#1| |#1| (-660 |#2|) (-660 |#3|)))) +((-3280 (($ $ (-660 |#1|) (-660 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-527 |#1| |#2|) (-141) (-1125) (-1242)) (T -527)) +((-3280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 *5)) (-4 *1 (-527 *4 *5)) (-4 *4 (-1125)) (-4 *5 (-1242)))) (-3280 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-527 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1242))))) +(-13 (-10 -8 (-15 -3280 ($ $ |t#1| |t#2|)) (-15 -3280 ($ $ (-660 |t#1|) (-660 |t#2|))))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 17)) (-3829 (((-660 (-2 (|:| |gen| |#1|) (|:| -4072 |#2|))) $) 19)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2229 (((-787) $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) NIL)) (-2921 ((|#1| $) NIL)) (-3657 ((|#1| $ (-577)) 24)) (-2107 ((|#2| $ (-577)) 22)) (-1735 (($ (-1 |#1| |#1|) $) 48)) (-2096 (($ (-1 |#2| |#2|) $) 45)) (-2810 (((-1183) $) NIL)) (-2085 (($ $ $) 55 (|has| |#2| (-808)))) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 44) (($ |#1|) NIL)) (-2322 ((|#2| |#1| $) 51)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 11 T CONST)) (-2970 (((-112) $ $) 30)) (-3055 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-944) $) NIL) (($ (-787) $) 37) (($ |#2| |#1|) 32))) +(((-528 |#1| |#2| |#3|) (-334 |#1| |#2|) (-1125) (-132) |#2|) (T -528)) +NIL +(-334 |#1| |#2|) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4077 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-865)))) (-4053 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471))) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))))) (-1864 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-865)))) (-3828 (((-112) $ (-787)) NIL)) (-3758 (((-112) (-112)) 32)) (-3709 ((|#1| $ (-577) |#1|) 42 (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)))) (-2463 (($ (-1 (-112) |#1|) $) 77)) (-2067 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-1534 (($) NIL T CONST)) (-3645 (($ $) NIL (|has| $ (-6 -4471)))) (-3787 (($ $) NIL)) (-3215 (($ $) 81 (|has| |#1| (-1125)))) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3719 (($ |#1| $) NIL (|has| |#1| (-1125))) (($ (-1 (-112) |#1|) $) 64)) (-3904 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)))) (-2192 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) NIL)) (-3618 (((-577) (-1 (-112) |#1|) $) NIL) (((-577) |#1| $) NIL (|has| |#1| (-1125))) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)))) (-3769 (($ $ (-577)) 19)) (-3781 (((-787) $) 13)) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-4113 (($ (-787) |#1|) 31)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) 29 (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| |#1| (-865)))) (-3192 (($ $ $) NIL (|has| |#1| (-865))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-3283 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-865)))) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2416 (((-577) $) 28 (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| |#1| (-865)))) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-2881 (($ $ $ (-577)) 73) (($ |#1| $ (-577)) 57)) (-2308 (($ |#1| $ (-577)) NIL) (($ $ $ (-577)) NIL)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-3794 (($ (-660 |#1|)) 43)) (-3552 ((|#1| $) NIL (|has| (-577) (-865)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2397 (($ $ |#1|) 24 (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 60)) (-4274 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) 21)) (-2872 ((|#1| $ (-577) |#1|) NIL) ((|#1| $ (-577)) 53) (($ $ (-1259 (-577))) NIL)) (-2472 (($ $ (-1259 (-577))) 71) (($ $ (-577)) 65)) (-3453 (($ $ (-577)) NIL) (($ $ (-1259 (-577))) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4064 (($ $ $ (-577)) 61 (|has| $ (-6 -4471)))) (-1944 (($ $) 51)) (-4152 (((-549) $) NIL (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) NIL)) (-3992 (($ $ $) 62) (($ $ |#1|) 59)) (-1677 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-660 $)) NIL)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3484 (((-787) $) 22 (|has| $ (-6 -4470))))) +(((-529 |#1| |#2|) (-13 (-19 |#1|) (-293 |#1|) (-10 -8 (-15 -3794 ($ (-660 |#1|))) (-15 -3781 ((-787) $)) (-15 -3769 ($ $ (-577))) (-15 -3758 ((-112) (-112))))) (-1242) (-577)) (T -529)) +((-3794 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-529 *3 *4)) (-14 *4 (-577)))) (-3781 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1242)) (-14 *4 (-577)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1242)) (-14 *4 *2))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1242)) (-14 *4 (-577))))) +(-13 (-19 |#1|) (-293 |#1|) (-10 -8 (-15 -3794 ($ (-660 |#1|))) (-15 -3781 ((-787) $)) (-15 -3769 ($ $ (-577))) (-15 -3758 ((-112) (-112))))) +((-3473 (((-112) $ $) NIL)) (-3819 (((-1160) $) 11)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3806 (((-1160) $) 13)) (-3949 (((-1160) $) 9)) (-3544 (((-880) $) 19) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-530) (-13 (-1108) (-10 -8 (-15 -3949 ((-1160) $)) (-15 -3819 ((-1160) $)) (-15 -3806 ((-1160) $))))) (T -530)) +((-3949 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-530)))) (-3819 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-530)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-530))))) +(-13 (-1108) (-10 -8 (-15 -3949 ((-1160) $)) (-15 -3819 ((-1160) $)) (-15 -3806 ((-1160) $)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-2766 (((-112) $) NIL)) (-2732 (((-787)) NIL)) (-2339 (((-594 |#1|) $) NIL) (($ $ (-944)) NIL (|has| (-594 |#1|) (-380)))) (-1595 (((-1214 (-944) (-787)) (-577)) NIL (|has| (-594 |#1|) (-380)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1939 (((-112) $ $) NIL)) (-2229 (((-787)) NIL (|has| (-594 |#1|) (-380)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-594 |#1|) "failed") $) NIL)) (-2921 (((-594 |#1|) $) NIL)) (-3502 (($ (-1292 (-594 |#1|))) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-594 |#1|) (-380)))) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($) NIL (|has| (-594 |#1|) (-380)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-4205 (($) NIL (|has| (-594 |#1|) (-380)))) (-1655 (((-112) $) NIL (|has| (-594 |#1|) (-380)))) (-3233 (($ $ (-787)) NIL (-2839 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380)))) (($ $) NIL (-2839 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))))) (-1522 (((-112) $) NIL)) (-3817 (((-944) $) NIL (|has| (-594 |#1|) (-380))) (((-849 (-944)) $) NIL (-2839 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))))) (-2487 (((-112) $) NIL)) (-4073 (($) NIL (|has| (-594 |#1|) (-380)))) (-4049 (((-112) $) NIL (|has| (-594 |#1|) (-380)))) (-4145 (((-594 |#1|) $) NIL) (($ $ (-944)) NIL (|has| (-594 |#1|) (-380)))) (-4021 (((-3 $ "failed") $) NIL (|has| (-594 |#1|) (-380)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-4084 (((-1197 (-594 |#1|)) $) NIL) (((-1197 $) $ (-944)) NIL (|has| (-594 |#1|) (-380)))) (-4038 (((-944) $) NIL (|has| (-594 |#1|) (-380)))) (-2175 (((-1197 (-594 |#1|)) $) NIL (|has| (-594 |#1|) (-380)))) (-2163 (((-1197 (-594 |#1|)) $) NIL (|has| (-594 |#1|) (-380))) (((-3 (-1197 (-594 |#1|)) "failed") $ $) NIL (|has| (-594 |#1|) (-380)))) (-2187 (($ $ (-1197 (-594 |#1|))) NIL (|has| (-594 |#1|) (-380)))) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1709 (($) NIL (|has| (-594 |#1|) (-380)) CONST)) (-3222 (($ (-944)) NIL (|has| (-594 |#1|) (-380)))) (-2754 (((-112) $) NIL)) (-1474 (((-1145) $) NIL)) (-4101 (($) NIL (|has| (-594 |#1|) (-380)))) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) NIL (|has| (-594 |#1|) (-380)))) (-1902 (((-431 $) $) NIL)) (-2744 (((-849 (-944))) NIL) (((-944)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-3243 (((-787) $) NIL (|has| (-594 |#1|) (-380))) (((-3 (-787) "failed") $ $) NIL (-2839 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))))) (-2561 (((-135)) NIL)) (-2852 (($ $ (-787)) NIL (|has| (-594 |#1|) (-380))) (($ $) NIL (|has| (-594 |#1|) (-380)))) (-2887 (((-849 (-944)) $) NIL) (((-944) $) NIL)) (-3557 (((-1197 (-594 |#1|))) NIL)) (-1585 (($) NIL (|has| (-594 |#1|) (-380)))) (-2200 (($) NIL (|has| (-594 |#1|) (-380)))) (-2710 (((-1292 (-594 |#1|)) $) NIL) (((-705 (-594 |#1|)) (-1292 $)) NIL)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| (-594 |#1|) (-380)))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) NIL) (($ (-594 |#1|)) NIL)) (-2233 (($ $) NIL (|has| (-594 |#1|) (-380))) (((-3 $ "failed") $) NIL (-2839 (|has| (-594 |#1|) (-146)) (|has| (-594 |#1|) (-380))))) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) NIL) (((-1292 $) (-944)) NIL)) (-3281 (((-112) $ $) NIL)) (-2776 (((-112) $) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2721 (($ $) NIL (|has| (-594 |#1|) (-380))) (($ $ (-787)) NIL (|has| (-594 |#1|) (-380)))) (-2132 (($ $ (-787)) NIL (|has| (-594 |#1|) (-380))) (($ $) NIL (|has| (-594 |#1|) (-380)))) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL) (($ $ (-594 |#1|)) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ $ (-594 |#1|)) NIL) (($ (-594 |#1|) $) NIL))) +(((-531 |#1| |#2|) (-340 (-594 |#1|)) (-944) (-944)) (T -531)) +NIL +(-340 (-594 |#1|)) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 ((|#1| $ (-577) (-577) |#1|) 51)) (-3419 (($ $ (-577) |#4|) NIL)) (-2451 (($ $ (-577) |#5|) NIL)) (-1534 (($) NIL T CONST)) (-3956 ((|#4| $ (-577)) NIL)) (-2192 ((|#1| $ (-577) (-577) |#1|) 50)) (-2117 ((|#1| $ (-577) (-577)) 45)) (-1461 (((-660 |#1|) $) NIL)) (-2414 (((-787) $) 33)) (-4113 (($ (-787) (-787) |#1|) 30)) (-2424 (((-787) $) 38)) (-1479 (((-112) $ (-787)) NIL)) (-4002 (((-577) $) 31)) (-3979 (((-577) $) 32)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3990 (((-577) $) 37)) (-3968 (((-577) $) 39)) (-2182 (($ (-1 |#1| |#1|) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) 55 (|has| |#1| (-1125)))) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-2397 (($ $ |#1|) NIL)) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) 14)) (-3639 (($) 16)) (-2872 ((|#1| $ (-577) (-577)) 48) ((|#1| $ (-577) (-577) |#1|) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) NIL)) (-3943 ((|#5| $ (-577)) NIL)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-532 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1242) (-577) (-577) (-385 |#1|) (-385 |#1|)) (T -532)) NIL (-57 |#1| |#4| |#5|) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3071 ((|#1| $) NIL)) (-2913 ((|#1| $) NIL)) (-4424 (($ $) NIL)) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3605 (($ $ (-576)) 70 (|has| $ (-6 -4467)))) (-1568 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3363 (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4467)))) (-1850 (($ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-3734 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-2823 (($ $ $) 23 (|has| $ (-6 -4467)))) (-2045 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-4013 ((|#1| $ |#1|) 21 (|has| $ (-6 -4467)))) (-3682 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4467))) (($ $ "rest" $) 24 (|has| $ (-6 -4467))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-3162 (($ (-1 (-112) |#1|) $) NIL)) (-2035 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2902 ((|#1| $) NIL)) (-4359 (($) NIL T CONST)) (-3606 (($ $) 28 (|has| $ (-6 -4467)))) (-3768 (($ $) 29)) (-3522 (($ $) 18) (($ $ (-784)) 32)) (-4295 (($ $) 62 (|has| |#1| (-1122)))) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3647 (($ |#1| $) NIL (|has| |#1| (-1122))) (($ (-1 (-112) |#1|) $) NIL)) (-3895 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2158 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) NIL)) (-1628 (((-112) $) NIL)) (-3582 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122))) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) (-1 (-112) |#1|) $) NIL)) (-1458 (((-657 |#1|) $) 27 (|has| $ (-6 -4466)))) (-2877 (((-657 $) $) NIL)) (-1700 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-4109 (($ (-784) |#1|) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) 31 (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| |#1| (-862)))) (-4033 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-3073 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2272 (((-576) $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| |#1| (-862)))) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1710 (($ |#1|) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2424 (((-657 |#1|) $) NIL)) (-2633 (((-112) $) NIL)) (-2342 (((-1180) $) 58 (|has| |#1| (-1122)))) (-3920 ((|#1| $) NIL) (($ $ (-784)) NIL)) (-2468 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2271 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3510 ((|#1| $) 13) (($ $ (-784)) NIL)) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1987 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-4286 (((-112) $) NIL)) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 12)) (-1515 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) NIL)) (-3387 (((-112) $) 17)) (-3581 (($) 16)) (-2835 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1256 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL)) (-3883 (((-576) $ $) NIL)) (-3449 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-3409 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-3628 (((-112) $) 35)) (-3600 (($ $) NIL)) (-1921 (($ $) NIL (|has| $ (-6 -4467)))) (-4027 (((-784) $) NIL)) (-4087 (($ $) 40)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2114 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1923 (($ $) 36)) (-4148 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 26)) (-2858 (($ $ $) 61) (($ $ |#1|) NIL)) (-1674 (($ $ $) NIL) (($ |#1| $) 10) (($ (-657 $)) NIL) (($ $ |#1|) NIL)) (-3501 (((-877) $) 50 (|has| |#1| (-625 (-877))))) (-1986 (((-657 $) $) NIL)) (-1633 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2933 (((-112) $ $) 54 (|has| |#1| (-102)))) (-2973 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3440 (((-784) $) 9 (|has| $ (-6 -4466))))) -(((-532 |#1| |#2|) (-679 |#1|) (-1239) (-576)) (T -532)) -NIL -(-679 |#1|) -((-3590 ((|#4| |#4|) 38)) (-1542 (((-784) |#4|) 44)) (-3662 (((-784) |#4|) 45)) (-1345 (((-657 |#3|) |#4|) 55 (|has| |#3| (-6 -4467)))) (-3913 (((-3 |#4| "failed") |#4|) 67)) (-3754 ((|#4| |#4|) 59)) (-1493 ((|#1| |#4|) 58))) -(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3590 (|#4| |#4|)) (-15 -1542 ((-784) |#4|)) (-15 -3662 ((-784) |#4|)) (IF (|has| |#3| (-6 -4467)) (-15 -1345 ((-657 |#3|) |#4|)) |%noBranch|) (-15 -1493 (|#1| |#4|)) (-15 -3754 (|#4| |#4|)) (-15 -3913 ((-3 |#4| "failed") |#4|))) (-374) (-384 |#1|) (-384 |#1|) (-700 |#1| |#2| |#3|)) (T -533)) -((-3913 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) (-3754 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) (-1493 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-700 *2 *4 *5)))) (-1345 (*1 *2 *3) (-12 (|has| *6 (-6 -4467)) (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-657 *6)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) (-3662 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-784)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) (-1542 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-784)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) (-3590 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5))))) -(-10 -7 (-15 -3590 (|#4| |#4|)) (-15 -1542 ((-784) |#4|)) (-15 -3662 ((-784) |#4|)) (IF (|has| |#3| (-6 -4467)) (-15 -1345 ((-657 |#3|) |#4|)) |%noBranch|) (-15 -1493 (|#1| |#4|)) (-15 -3754 (|#4| |#4|)) (-15 -3913 ((-3 |#4| "failed") |#4|))) -((-3590 ((|#8| |#4|) 20)) (-1345 (((-657 |#3|) |#4|) 29 (|has| |#7| (-6 -4467)))) (-3913 (((-3 |#8| "failed") |#4|) 23))) -(((-534 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3590 (|#8| |#4|)) (-15 -3913 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4467)) (-15 -1345 ((-657 |#3|) |#4|)) |%noBranch|)) (-568) (-384 |#1|) (-384 |#1|) (-700 |#1| |#2| |#3|) (-1014 |#1|) (-384 |#5|) (-384 |#5|) (-700 |#5| |#6| |#7|)) (T -534)) -((-1345 (*1 *2 *3) (-12 (|has| *9 (-6 -4467)) (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1014 *4)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)) (-5 *2 (-657 *6)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-700 *4 *5 *6)) (-4 *10 (-700 *7 *8 *9)))) (-3913 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1014 *4)) (-4 *2 (-700 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-700 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) (-3590 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1014 *4)) (-4 *2 (-700 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-700 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7))))) -(-10 -7 (-15 -3590 (|#8| |#4|)) (-15 -3913 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4467)) (-15 -1345 ((-657 |#3|) |#4|)) |%noBranch|)) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3765 (($ (-784) (-784)) NIL)) (-2671 (($ $ $) NIL)) (-2153 (($ (-614 |#1| |#3|)) NIL) (($ $) NIL)) (-3864 (((-112) $) NIL)) (-1606 (($ $ (-576) (-576)) 21)) (-1371 (($ $ (-576) (-576)) NIL)) (-2351 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-1506 (($ $) NIL)) (-3186 (((-112) $) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-2337 (($ $ (-576) (-576) $) NIL)) (-3682 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-657 (-576)) (-657 (-576)) $) NIL)) (-3779 (($ $ (-576) (-614 |#1| |#3|)) NIL)) (-3726 (($ $ (-576) (-614 |#1| |#2|)) NIL)) (-1346 (($ (-784) |#1|) NIL)) (-4359 (($) NIL T CONST)) (-3590 (($ $) 30 (|has| |#1| (-317)))) (-2911 (((-614 |#1| |#3|) $ (-576)) NIL)) (-1542 (((-784) $) 33 (|has| |#1| (-568)))) (-2158 ((|#1| $ (-576) (-576) |#1|) NIL)) (-2083 ((|#1| $ (-576) (-576)) NIL)) (-1458 (((-657 |#1|) $) NIL)) (-3662 (((-784) $) 35 (|has| |#1| (-568)))) (-1345 (((-657 (-614 |#1| |#2|)) $) 38 (|has| |#1| (-568)))) (-2377 (((-784) $) NIL)) (-4109 (($ (-784) (-784) |#1|) NIL)) (-2387 (((-784) $) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-1969 ((|#1| $) 28 (|has| |#1| (-6 (-4468 "*"))))) (-2491 (((-576) $) 10)) (-3770 (((-576) $) NIL)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3704 (((-576) $) 13)) (-1429 (((-576) $) NIL)) (-2514 (($ (-657 (-657 |#1|))) NIL) (($ (-784) (-784) (-1 |#1| (-576) (-576))) NIL)) (-2148 (($ (-1 |#1| |#1|) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2339 (((-657 (-657 |#1|)) $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3913 (((-3 $ "failed") $) 42 (|has| |#1| (-374)))) (-1474 (($ $ $) NIL)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-1987 (($ $ |#1|) NIL)) (-3418 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-657 (-576)) (-657 (-576))) NIL)) (-4277 (($ (-657 |#1|)) NIL) (($ (-657 $)) NIL)) (-2049 (((-112) $) NIL)) (-1493 ((|#1| $) 26 (|has| |#1| (-6 (-4468 "*"))))) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) NIL)) (-3815 (((-614 |#1| |#2|) $ (-576)) NIL)) (-3501 (($ (-614 |#1| |#2|)) NIL) (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-4299 (((-112) $) NIL)) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3022 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-614 |#1| |#2|) $ (-614 |#1| |#2|)) NIL) (((-614 |#1| |#3|) (-614 |#1| |#3|) $) NIL)) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-535 |#1| |#2| |#3|) (-700 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) (-1071) (-576) (-576)) (T -535)) -NIL -(-700 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-3617 (((-657 (-1238)) $) 13)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 19) (($ (-1203)) NIL) (((-1203) $) NIL) (($ (-657 (-1238))) 11)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-536) (-13 (-1105) (-10 -8 (-15 -3501 ($ (-657 (-1238)))) (-15 -3617 ((-657 (-1238)) $))))) (T -536)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-536)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-536))))) -(-13 (-1105) (-10 -8 (-15 -3501 ($ (-657 (-1238)))) (-15 -3617 ((-657 (-1238)) $)))) -((-3429 (((-112) $ $) NIL)) (-3288 (((-1157) $) 14)) (-2342 (((-1180) $) NIL)) (-3142 (((-518) $) 11)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 21) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-537) (-13 (-1105) (-10 -8 (-15 -3142 ((-518) $)) (-15 -3288 ((-1157) $))))) (T -537)) -((-3142 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) (-3288 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-537))))) -(-13 (-1105) (-10 -8 (-15 -3142 ((-518) $)) (-15 -3288 ((-1157) $)))) -((-1447 (((-704 (-1247)) $) 15)) (-2953 (((-704 (-1245)) $) 38)) (-2522 (((-704 (-1244)) $) 29)) (-1890 (((-704 (-561)) $) 12)) (-2276 (((-704 (-559)) $) 42)) (-3453 (((-704 (-558)) $) 33)) (-2454 (((-784) $ (-129)) 54))) -(((-538 |#1|) (-10 -8 (-15 -2454 ((-784) |#1| (-129))) (-15 -2953 ((-704 (-1245)) |#1|)) (-15 -2276 ((-704 (-559)) |#1|)) (-15 -2522 ((-704 (-1244)) |#1|)) (-15 -3453 ((-704 (-558)) |#1|)) (-15 -1447 ((-704 (-1247)) |#1|)) (-15 -1890 ((-704 (-561)) |#1|))) (-539)) (T -538)) -NIL -(-10 -8 (-15 -2454 ((-784) |#1| (-129))) (-15 -2953 ((-704 (-1245)) |#1|)) (-15 -2276 ((-704 (-559)) |#1|)) (-15 -2522 ((-704 (-1244)) |#1|)) (-15 -3453 ((-704 (-558)) |#1|)) (-15 -1447 ((-704 (-1247)) |#1|)) (-15 -1890 ((-704 (-561)) |#1|))) -((-1447 (((-704 (-1247)) $) 12)) (-2953 (((-704 (-1245)) $) 8)) (-2522 (((-704 (-1244)) $) 10)) (-1890 (((-704 (-561)) $) 13)) (-2276 (((-704 (-559)) $) 9)) (-3453 (((-704 (-558)) $) 11)) (-2454 (((-784) $ (-129)) 7)) (-1866 (((-704 (-130)) $) 14)) (-3632 (($ $) 6))) -(((-539) (-141)) (T -539)) -((-1866 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-130))))) (-1890 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-561))))) (-1447 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-1247))))) (-3453 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-558))))) (-2522 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-1244))))) (-2276 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-559))))) (-2953 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-1245))))) (-2454 (*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-784))))) -(-13 (-175) (-10 -8 (-15 -1866 ((-704 (-130)) $)) (-15 -1890 ((-704 (-561)) $)) (-15 -1447 ((-704 (-1247)) $)) (-15 -3453 ((-704 (-558)) $)) (-15 -2522 ((-704 (-1244)) $)) (-15 -2276 ((-704 (-559)) $)) (-15 -2953 ((-704 (-1245)) $)) (-15 -2454 ((-784) $ (-129))))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3115 ((|#1| $) NIL)) (-2950 ((|#1| $) NIL)) (-4428 (($ $) NIL)) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-3933 (($ $ (-577)) 70 (|has| $ (-6 -4471)))) (-4077 (((-112) $) NIL (|has| |#1| (-865))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4053 (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4471)))) (-1864 (($ $) NIL (|has| |#1| (-865))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-4374 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)))) (-3958 (($ $ $) 23 (|has| $ (-6 -4471)))) (-3945 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)))) (-3969 ((|#1| $ |#1|) 21 (|has| $ (-6 -4471)))) (-3709 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4471))) (($ $ "rest" $) 24 (|has| $ (-6 -4471))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471))) ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)))) (-2463 (($ (-1 (-112) |#1|) $) NIL)) (-2067 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2939 ((|#1| $) NIL)) (-1534 (($) NIL T CONST)) (-3645 (($ $) 28 (|has| $ (-6 -4471)))) (-3787 (($ $) 29)) (-3563 (($ $) 18) (($ $ (-787)) 32)) (-3215 (($ $) 62 (|has| |#1| (-1125)))) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3719 (($ |#1| $) NIL (|has| |#1| (-1125))) (($ (-1 (-112) |#1|) $) NIL)) (-3904 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2192 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) NIL)) (-3998 (((-112) $) NIL)) (-3618 (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125))) (((-577) |#1| $) NIL (|has| |#1| (-1125))) (((-577) (-1 (-112) |#1|) $) NIL)) (-1461 (((-660 |#1|) $) 27 (|has| $ (-6 -4470)))) (-4426 (((-660 $) $) NIL)) (-4394 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-4113 (($ (-787) |#1|) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) 31 (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| |#1| (-865)))) (-3192 (($ $ $) NIL (|has| |#1| (-865))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-3283 (($ $ $) NIL (|has| |#1| (-865))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2416 (((-577) $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| |#1| (-865)))) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1712 (($ |#1|) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2461 (((-660 |#1|) $) NIL)) (-3371 (((-112) $) NIL)) (-2810 (((-1183) $) 58 (|has| |#1| (-1125)))) (-3927 ((|#1| $) NIL) (($ $ (-787)) NIL)) (-2881 (($ $ $ (-577)) NIL) (($ |#1| $ (-577)) NIL)) (-2308 (($ $ $ (-577)) NIL) (($ |#1| $ (-577)) NIL)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-3552 ((|#1| $) 13) (($ $ (-787)) NIL)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2397 (($ $ |#1|) NIL (|has| $ (-6 -4471)))) (-4010 (((-112) $) NIL)) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 12)) (-4274 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) NIL)) (-3697 (((-112) $) 17)) (-3639 (($) 16)) (-2872 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1259 (-577))) NIL) ((|#1| $ (-577)) NIL) ((|#1| $ (-577) |#1|) NIL)) (-4415 (((-577) $ $) NIL)) (-2472 (($ $ (-1259 (-577))) NIL) (($ $ (-577)) NIL)) (-3453 (($ $ (-1259 (-577))) NIL) (($ $ (-577)) NIL)) (-1885 (((-112) $) 35)) (-4004 (($ $) NIL)) (-3981 (($ $) NIL (|has| $ (-6 -4471)))) (-4016 (((-787) $) NIL)) (-4026 (($ $) 40)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4064 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)))) (-1944 (($ $) 36)) (-4152 (((-549) $) NIL (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 26)) (-3992 (($ $ $) 61) (($ $ |#1|) NIL)) (-1677 (($ $ $) NIL) (($ |#1| $) 10) (($ (-660 $)) NIL) (($ $ |#1|) NIL)) (-3544 (((-880) $) 50 (|has| |#1| (-626 (-880))))) (-3322 (((-660 $) $) NIL)) (-4405 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2970 (((-112) $ $) 54 (|has| |#1| (-102)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3484 (((-787) $) 9 (|has| $ (-6 -4470))))) +(((-533 |#1| |#2|) (-682 |#1|) (-1242) (-577)) (T -533)) +NIL +(-682 |#1|) +((-3931 ((|#4| |#4|) 38)) (-1545 (((-787) |#4|) 44)) (-3919 (((-787) |#4|) 45)) (-3908 (((-660 |#3|) |#4|) 55 (|has| |#3| (-6 -4471)))) (-2705 (((-3 |#4| "failed") |#4|) 67)) (-3831 ((|#4| |#4|) 59)) (-2387 ((|#1| |#4|) 58))) +(((-534 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3931 (|#4| |#4|)) (-15 -1545 ((-787) |#4|)) (-15 -3919 ((-787) |#4|)) (IF (|has| |#3| (-6 -4471)) (-15 -3908 ((-660 |#3|) |#4|)) |%noBranch|) (-15 -2387 (|#1| |#4|)) (-15 -3831 (|#4| |#4|)) (-15 -2705 ((-3 |#4| "failed") |#4|))) (-375) (-385 |#1|) (-385 |#1|) (-703 |#1| |#2| |#3|)) (T -534)) +((-2705 (*1 *2 *2) (|partial| -12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) (-3831 (*1 *2 *2) (-12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) (-2387 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-375)) (-5 *1 (-534 *2 *4 *5 *3)) (-4 *3 (-703 *2 *4 *5)))) (-3908 (*1 *2 *3) (-12 (|has| *6 (-6 -4471)) (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-660 *6)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-787)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) (-1545 (*1 *2 *3) (-12 (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-787)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) (-3931 (*1 *2 *2) (-12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5))))) +(-10 -7 (-15 -3931 (|#4| |#4|)) (-15 -1545 ((-787) |#4|)) (-15 -3919 ((-787) |#4|)) (IF (|has| |#3| (-6 -4471)) (-15 -3908 ((-660 |#3|) |#4|)) |%noBranch|) (-15 -2387 (|#1| |#4|)) (-15 -3831 (|#4| |#4|)) (-15 -2705 ((-3 |#4| "failed") |#4|))) +((-3931 ((|#8| |#4|) 20)) (-3908 (((-660 |#3|) |#4|) 29 (|has| |#7| (-6 -4471)))) (-2705 (((-3 |#8| "failed") |#4|) 23))) +(((-535 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3931 (|#8| |#4|)) (-15 -2705 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4471)) (-15 -3908 ((-660 |#3|) |#4|)) |%noBranch|)) (-569) (-385 |#1|) (-385 |#1|) (-703 |#1| |#2| |#3|) (-1017 |#1|) (-385 |#5|) (-385 |#5|) (-703 |#5| |#6| |#7|)) (T -535)) +((-3908 (*1 *2 *3) (-12 (|has| *9 (-6 -4471)) (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1017 *4)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)) (-5 *2 (-660 *6)) (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-703 *4 *5 *6)) (-4 *10 (-703 *7 *8 *9)))) (-2705 (*1 *2 *3) (|partial| -12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1017 *4)) (-4 *2 (-703 *7 *8 *9)) (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-703 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1017 *4)) (-4 *2 (-703 *7 *8 *9)) (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-703 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7))))) +(-10 -7 (-15 -3931 (|#8| |#4|)) (-15 -2705 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4471)) (-15 -3908 ((-660 |#3|) |#4|)) |%noBranch|)) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3785 (($ (-787) (-787)) NIL)) (-4189 (($ $ $) NIL)) (-3784 (($ (-615 |#1| |#3|)) NIL) (($ $) NIL)) (-4025 (((-112) $) NIL)) (-4179 (($ $ (-577) (-577)) 21)) (-4168 (($ $ (-577) (-577)) NIL)) (-4156 (($ $ (-577) (-577) (-577) (-577)) NIL)) (-4212 (($ $) NIL)) (-4046 (((-112) $) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-4144 (($ $ (-577) (-577) $) NIL)) (-3709 ((|#1| $ (-577) (-577) |#1|) NIL) (($ $ (-660 (-577)) (-660 (-577)) $) NIL)) (-3419 (($ $ (-577) (-615 |#1| |#3|)) NIL)) (-2451 (($ $ (-577) (-615 |#1| |#2|)) NIL)) (-2423 (($ (-787) |#1|) NIL)) (-1534 (($) NIL T CONST)) (-3931 (($ $) 30 (|has| |#1| (-318)))) (-3956 (((-615 |#1| |#3|) $ (-577)) NIL)) (-1545 (((-787) $) 33 (|has| |#1| (-569)))) (-2192 ((|#1| $ (-577) (-577) |#1|) NIL)) (-2117 ((|#1| $ (-577) (-577)) NIL)) (-1461 (((-660 |#1|) $) NIL)) (-3919 (((-787) $) 35 (|has| |#1| (-569)))) (-3908 (((-660 (-615 |#1| |#2|)) $) 38 (|has| |#1| (-569)))) (-2414 (((-787) $) NIL)) (-4113 (($ (-787) (-787) |#1|) NIL)) (-2424 (((-787) $) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2376 ((|#1| $) 28 (|has| |#1| (-6 (-4472 "*"))))) (-4002 (((-577) $) 10)) (-3979 (((-577) $) NIL)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3990 (((-577) $) 13)) (-3968 (((-577) $) NIL)) (-2550 (($ (-660 (-660 |#1|))) NIL) (($ (-787) (-787) (-1 |#1| (-577) (-577))) NIL)) (-2182 (($ (-1 |#1| |#1|) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2737 (((-660 (-660 |#1|)) $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-2705 (((-3 $ "failed") $) 42 (|has| |#1| (-375)))) (-4200 (($ $ $) NIL)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-2397 (($ $ |#1|) NIL)) (-3462 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)))) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#1| $ (-577) (-577)) NIL) ((|#1| $ (-577) (-577) |#1|) NIL) (($ $ (-660 (-577)) (-660 (-577))) NIL)) (-2413 (($ (-660 |#1|)) NIL) (($ (-660 $)) NIL)) (-4035 (((-112) $) NIL)) (-2387 ((|#1| $) 26 (|has| |#1| (-6 (-4472 "*"))))) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) NIL)) (-3943 (((-615 |#1| |#2|) $ (-577)) NIL)) (-3544 (($ (-615 |#1| |#2|)) NIL) (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-4015 (((-112) $) NIL)) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375)))) (-3066 (($ $ $) NIL) (($ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-787)) NIL) (($ $ (-577)) NIL (|has| |#1| (-375)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-577) $) NIL) (((-615 |#1| |#2|) $ (-615 |#1| |#2|)) NIL) (((-615 |#1| |#3|) (-615 |#1| |#3|) $) NIL)) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-536 |#1| |#2| |#3|) (-703 |#1| (-615 |#1| |#3|) (-615 |#1| |#2|)) (-1074) (-577) (-577)) (T -536)) +NIL +(-703 |#1| (-615 |#1| |#3|) (-615 |#1| |#2|)) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-3843 (((-660 (-1241)) $) 13)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 19) (($ (-1206)) NIL) (((-1206) $) NIL) (($ (-660 (-1241))) 11)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-537) (-13 (-1108) (-10 -8 (-15 -3544 ($ (-660 (-1241)))) (-15 -3843 ((-660 (-1241)) $))))) (T -537)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-537)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-537))))) +(-13 (-1108) (-10 -8 (-15 -3544 ($ (-660 (-1241)))) (-15 -3843 ((-660 (-1241)) $)))) +((-3473 (((-112) $ $) NIL)) (-3854 (((-1160) $) 14)) (-2810 (((-1183) $) NIL)) (-4052 (((-519) $) 11)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 21) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-538) (-13 (-1108) (-10 -8 (-15 -4052 ((-519) $)) (-15 -3854 ((-1160) $))))) (T -538)) +((-4052 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-538)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-538))))) +(-13 (-1108) (-10 -8 (-15 -4052 ((-519) $)) (-15 -3854 ((-1160) $)))) +((-3923 (((-707 (-1250)) $) 15)) (-3877 (((-707 (-1248)) $) 38)) (-3900 (((-707 (-1247)) $) 29)) (-3935 (((-707 (-562)) $) 12)) (-3888 (((-707 (-560)) $) 42)) (-3912 (((-707 (-559)) $) 33)) (-3866 (((-787) $ (-129)) 54))) +(((-539 |#1|) (-10 -8 (-15 -3866 ((-787) |#1| (-129))) (-15 -3877 ((-707 (-1248)) |#1|)) (-15 -3888 ((-707 (-560)) |#1|)) (-15 -3900 ((-707 (-1247)) |#1|)) (-15 -3912 ((-707 (-559)) |#1|)) (-15 -3923 ((-707 (-1250)) |#1|)) (-15 -3935 ((-707 (-562)) |#1|))) (-540)) (T -539)) +NIL +(-10 -8 (-15 -3866 ((-787) |#1| (-129))) (-15 -3877 ((-707 (-1248)) |#1|)) (-15 -3888 ((-707 (-560)) |#1|)) (-15 -3900 ((-707 (-1247)) |#1|)) (-15 -3912 ((-707 (-559)) |#1|)) (-15 -3923 ((-707 (-1250)) |#1|)) (-15 -3935 ((-707 (-562)) |#1|))) +((-3923 (((-707 (-1250)) $) 12)) (-3877 (((-707 (-1248)) $) 8)) (-3900 (((-707 (-1247)) $) 10)) (-3935 (((-707 (-562)) $) 13)) (-3888 (((-707 (-560)) $) 9)) (-3912 (((-707 (-559)) $) 11)) (-3866 (((-787) $ (-129)) 7)) (-3947 (((-707 (-130)) $) 14)) (-3720 (($ $) 6))) +(((-540) (-141)) (T -540)) +((-3947 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-130))))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-562))))) (-3923 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-1250))))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-559))))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-1247))))) (-3888 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-560))))) (-3877 (*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-1248))))) (-3866 (*1 *2 *1 *3) (-12 (-4 *1 (-540)) (-5 *3 (-129)) (-5 *2 (-787))))) +(-13 (-175) (-10 -8 (-15 -3947 ((-707 (-130)) $)) (-15 -3935 ((-707 (-562)) $)) (-15 -3923 ((-707 (-1250)) $)) (-15 -3912 ((-707 (-559)) $)) (-15 -3900 ((-707 (-1247)) $)) (-15 -3888 ((-707 (-560)) $)) (-15 -3877 ((-707 (-1248)) $)) (-15 -3866 ((-787) $ (-129))))) (((-175) . T)) -((-3365 (((-1194 |#1|) (-784)) 115)) (-2302 (((-1289 |#1|) (-1289 |#1|) (-941)) 108)) (-2130 (((-1294) (-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142))))) |#1|) 123)) (-3033 (((-1289 |#1|) (-1289 |#1|) (-784)) 53)) (-1892 (((-1289 |#1|) (-941)) 110)) (-4227 (((-1289 |#1|) (-1289 |#1|) (-576)) 30)) (-4281 (((-1194 |#1|) (-1289 |#1|)) 116)) (-2615 (((-1289 |#1|) (-941)) 137)) (-1974 (((-112) (-1289 |#1|)) 120)) (-2234 (((-1289 |#1|) (-1289 |#1|) (-941)) 100)) (-1336 (((-1194 |#1|) (-1289 |#1|)) 131)) (-3007 (((-941) (-1289 |#1|)) 96)) (-2134 (((-1289 |#1|) (-1289 |#1|)) 38)) (-3178 (((-1289 |#1|) (-941) (-941)) 140)) (-3673 (((-1289 |#1|) (-1289 |#1|) (-1142) (-1142)) 29)) (-3917 (((-1289 |#1|) (-1289 |#1|) (-784) (-1142)) 54)) (-1985 (((-1289 (-1289 |#1|)) (-941)) 136)) (-3034 (((-1289 |#1|) (-1289 |#1|) (-1289 |#1|)) 121)) (** (((-1289 |#1|) (-1289 |#1|) (-576)) 67)) (* (((-1289 |#1|) (-1289 |#1|) (-1289 |#1|)) 31))) -(((-540 |#1|) (-10 -7 (-15 -2130 ((-1294) (-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142))))) |#1|)) (-15 -1892 ((-1289 |#1|) (-941))) (-15 -3178 ((-1289 |#1|) (-941) (-941))) (-15 -4281 ((-1194 |#1|) (-1289 |#1|))) (-15 -3365 ((-1194 |#1|) (-784))) (-15 -3917 ((-1289 |#1|) (-1289 |#1|) (-784) (-1142))) (-15 -3033 ((-1289 |#1|) (-1289 |#1|) (-784))) (-15 -3673 ((-1289 |#1|) (-1289 |#1|) (-1142) (-1142))) (-15 -4227 ((-1289 |#1|) (-1289 |#1|) (-576))) (-15 ** ((-1289 |#1|) (-1289 |#1|) (-576))) (-15 * ((-1289 |#1|) (-1289 |#1|) (-1289 |#1|))) (-15 -3034 ((-1289 |#1|) (-1289 |#1|) (-1289 |#1|))) (-15 -2234 ((-1289 |#1|) (-1289 |#1|) (-941))) (-15 -2302 ((-1289 |#1|) (-1289 |#1|) (-941))) (-15 -2134 ((-1289 |#1|) (-1289 |#1|))) (-15 -3007 ((-941) (-1289 |#1|))) (-15 -1974 ((-112) (-1289 |#1|))) (-15 -1985 ((-1289 (-1289 |#1|)) (-941))) (-15 -2615 ((-1289 |#1|) (-941))) (-15 -1336 ((-1194 |#1|) (-1289 |#1|)))) (-360)) (T -540)) -((-1336 (*1 *2 *3) (-12 (-5 *3 (-1289 *4)) (-4 *4 (-360)) (-5 *2 (-1194 *4)) (-5 *1 (-540 *4)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1289 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1289 (-1289 *4))) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-1289 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-540 *4)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-1289 *4)) (-4 *4 (-360)) (-5 *2 (-941)) (-5 *1 (-540 *4)))) (-2134 (*1 *2 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (-2302 (*1 *2 *2 *3) (-12 (-5 *2 (-1289 *4)) (-5 *3 (-941)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2234 (*1 *2 *2 *3) (-12 (-5 *2 (-1289 *4)) (-5 *3 (-941)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3034 (*1 *2 *2 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1289 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-4227 (*1 *2 *2 *3) (-12 (-5 *2 (-1289 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3673 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1289 *4)) (-5 *3 (-1142)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3033 (*1 *2 *2 *3) (-12 (-5 *2 (-1289 *4)) (-5 *3 (-784)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3917 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1289 *5)) (-5 *3 (-784)) (-5 *4 (-1142)) (-4 *5 (-360)) (-5 *1 (-540 *5)))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1194 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-4281 (*1 *2 *3) (-12 (-5 *3 (-1289 *4)) (-4 *4 (-360)) (-5 *2 (-1194 *4)) (-5 *1 (-540 *4)))) (-3178 (*1 *2 *3 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1289 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1289 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-2130 (*1 *2 *3 *4) (-12 (-5 *3 (-1289 (-657 (-2 (|:| -3071 *4) (|:| -3178 (-1142)))))) (-4 *4 (-360)) (-5 *2 (-1294)) (-5 *1 (-540 *4))))) -(-10 -7 (-15 -2130 ((-1294) (-1289 (-657 (-2 (|:| -3071 |#1|) (|:| -3178 (-1142))))) |#1|)) (-15 -1892 ((-1289 |#1|) (-941))) (-15 -3178 ((-1289 |#1|) (-941) (-941))) (-15 -4281 ((-1194 |#1|) (-1289 |#1|))) (-15 -3365 ((-1194 |#1|) (-784))) (-15 -3917 ((-1289 |#1|) (-1289 |#1|) (-784) (-1142))) (-15 -3033 ((-1289 |#1|) (-1289 |#1|) (-784))) (-15 -3673 ((-1289 |#1|) (-1289 |#1|) (-1142) (-1142))) (-15 -4227 ((-1289 |#1|) (-1289 |#1|) (-576))) (-15 ** ((-1289 |#1|) (-1289 |#1|) (-576))) (-15 * ((-1289 |#1|) (-1289 |#1|) (-1289 |#1|))) (-15 -3034 ((-1289 |#1|) (-1289 |#1|) (-1289 |#1|))) (-15 -2234 ((-1289 |#1|) (-1289 |#1|) (-941))) (-15 -2302 ((-1289 |#1|) (-1289 |#1|) (-941))) (-15 -2134 ((-1289 |#1|) (-1289 |#1|))) (-15 -3007 ((-941) (-1289 |#1|))) (-15 -1974 ((-112) (-1289 |#1|))) (-15 -1985 ((-1289 (-1289 |#1|)) (-941))) (-15 -2615 ((-1289 |#1|) (-941))) (-15 -1336 ((-1194 |#1|) (-1289 |#1|)))) -((-1447 (((-704 (-1247)) $) NIL)) (-2953 (((-704 (-1245)) $) NIL)) (-2522 (((-704 (-1244)) $) NIL)) (-1890 (((-704 (-561)) $) NIL)) (-2276 (((-704 (-559)) $) NIL)) (-3453 (((-704 (-558)) $) NIL)) (-2454 (((-784) $ (-129)) NIL)) (-1866 (((-704 (-130)) $) 26)) (-3835 (((-1142) $ (-1142)) 31)) (-3582 (((-1142) $) 30)) (-2529 (((-112) $) 20)) (-3044 (($ (-400)) 14) (($ (-1180)) 16)) (-3231 (((-112) $) 27)) (-3501 (((-877) $) 34)) (-3632 (($ $) 28))) -(((-541) (-13 (-539) (-625 (-877)) (-10 -8 (-15 -3044 ($ (-400))) (-15 -3044 ($ (-1180))) (-15 -3231 ((-112) $)) (-15 -2529 ((-112) $)) (-15 -3582 ((-1142) $)) (-15 -3835 ((-1142) $ (-1142)))))) (T -541)) -((-3044 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541)))) (-3044 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-541)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-3582 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-541)))) (-3835 (*1 *2 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-541))))) -(-13 (-539) (-625 (-877)) (-10 -8 (-15 -3044 ($ (-400))) (-15 -3044 ($ (-1180))) (-15 -3231 ((-112) $)) (-15 -2529 ((-112) $)) (-15 -3582 ((-1142) $)) (-15 -3835 ((-1142) $ (-1142))))) -((-4366 (((-1 |#1| |#1|) |#1|) 11)) (-4168 (((-1 |#1| |#1|)) 10))) -(((-542 |#1|) (-10 -7 (-15 -4168 ((-1 |#1| |#1|))) (-15 -4366 ((-1 |#1| |#1|) |#1|))) (-13 (-739) (-25))) (T -542)) -((-4366 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-739) (-25))))) (-4168 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-739) (-25)))))) -(-10 -7 (-15 -4168 ((-1 |#1| |#1|))) (-15 -4366 ((-1 |#1| |#1|) |#1|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2886 (((-657 (-888 |#1| (-784))) $) NIL)) (-3733 (($ $ $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-2212 (($ $) NIL)) (-2003 (($ (-784) |#1|) NIL)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-4083 (($ (-1 (-784) (-784)) $) NIL)) (-1390 ((|#1| $) NIL)) (-2186 (((-784) $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 27)) (-2046 (((-112) $ $) NIL)) (-2769 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-3012 (($ $ $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL))) -(((-543 |#1|) (-13 (-806) (-521 (-784) |#1|)) (-862)) (T -543)) -NIL -(-13 (-806) (-521 (-784) |#1|)) -((-2725 (((-657 |#2|) (-1194 |#1|) |#3|) 98)) (-2749 (((-657 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 |#2|))))) (-702 |#1|) |#3| (-1 (-430 (-1194 |#1|)) (-1194 |#1|))) 114)) (-2348 (((-1194 |#1|) (-702 |#1|)) 110))) -(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -2348 ((-1194 |#1|) (-702 |#1|))) (-15 -2725 ((-657 |#2|) (-1194 |#1|) |#3|)) (-15 -2749 ((-657 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 |#2|))))) (-702 |#1|) |#3| (-1 (-430 (-1194 |#1|)) (-1194 |#1|))))) (-374) (-374) (-13 (-374) (-861))) (T -544)) -((-2749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-702 *6)) (-5 *5 (-1 (-430 (-1194 *6)) (-1194 *6))) (-4 *6 (-374)) (-5 *2 (-657 (-2 (|:| |outval| *7) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 *7)))))) (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-861))))) (-2725 (*1 *2 *3 *4) (-12 (-5 *3 (-1194 *5)) (-4 *5 (-374)) (-5 *2 (-657 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-861))))) (-2348 (*1 *2 *3) (-12 (-5 *3 (-702 *4)) (-4 *4 (-374)) (-5 *2 (-1194 *4)) (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-861)))))) -(-10 -7 (-15 -2348 ((-1194 |#1|) (-702 |#1|))) (-15 -2725 ((-657 |#2|) (-1194 |#1|) |#3|)) (-15 -2749 ((-657 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 |#2|))))) (-702 |#1|) |#3| (-1 (-430 (-1194 |#1|)) (-1194 |#1|))))) -((-3950 (((-704 (-1247)) $ (-1247)) NIL)) (-2359 (((-704 (-561)) $ (-561)) NIL)) (-1979 (((-784) $ (-129)) 39)) (-3245 (((-704 (-130)) $ (-130)) 40)) (-1447 (((-704 (-1247)) $) NIL)) (-2953 (((-704 (-1245)) $) NIL)) (-2522 (((-704 (-1244)) $) NIL)) (-1890 (((-704 (-561)) $) NIL)) (-2276 (((-704 (-559)) $) NIL)) (-3453 (((-704 (-558)) $) NIL)) (-2454 (((-784) $ (-129)) 35)) (-1866 (((-704 (-130)) $) 37)) (-3688 (((-112) $) 27)) (-4328 (((-704 $) (-591) (-974)) 18) (((-704 $) (-503) (-974)) 24)) (-3501 (((-877) $) 48)) (-3632 (($ $) 42))) -(((-545) (-13 (-780 (-591)) (-625 (-877)) (-10 -8 (-15 -4328 ((-704 $) (-503) (-974)))))) (T -545)) -((-4328 (*1 *2 *3 *4) (-12 (-5 *3 (-503)) (-5 *4 (-974)) (-5 *2 (-704 (-545))) (-5 *1 (-545))))) -(-13 (-780 (-591)) (-625 (-877)) (-10 -8 (-15 -4328 ((-704 $) (-503) (-974))))) -((-2958 (((-856 (-576))) 12)) (-2966 (((-856 (-576))) 14)) (-1666 (((-846 (-576))) 9))) -(((-546) (-10 -7 (-15 -1666 ((-846 (-576)))) (-15 -2958 ((-856 (-576)))) (-15 -2966 ((-856 (-576)))))) (T -546)) -((-2966 (*1 *2) (-12 (-5 *2 (-856 (-576))) (-5 *1 (-546)))) (-2958 (*1 *2) (-12 (-5 *2 (-856 (-576))) (-5 *1 (-546)))) (-1666 (*1 *2) (-12 (-5 *2 (-846 (-576))) (-5 *1 (-546))))) -(-10 -7 (-15 -1666 ((-846 (-576)))) (-15 -2958 ((-856 (-576)))) (-15 -2966 ((-856 (-576))))) -((-4065 (((-548) (-1198)) 15)) (-3263 ((|#1| (-548)) 20))) -(((-547 |#1|) (-10 -7 (-15 -4065 ((-548) (-1198))) (-15 -3263 (|#1| (-548)))) (-1239)) (T -547)) -((-3263 (*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1239)))) (-4065 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-548)) (-5 *1 (-547 *4)) (-4 *4 (-1239))))) -(-10 -7 (-15 -4065 ((-548) (-1198))) (-15 -3263 (|#1| (-548)))) -((-3429 (((-112) $ $) NIL)) (-3797 (((-1180) $) 55)) (-2515 (((-112) $) 51)) (-3077 (((-1198) $) 52)) (-3376 (((-112) $) 49)) (-1331 (((-1180) $) 50)) (-3979 (($ (-1180)) 56)) (-2568 (((-112) $) NIL)) (-2415 (((-112) $) NIL)) (-3144 (((-112) $) NIL)) (-2342 (((-1180) $) NIL)) (-4339 (($ $ (-657 (-1198))) 21)) (-3263 (((-52) $) 23)) (-3099 (((-112) $) NIL)) (-3098 (((-576) $) NIL)) (-1471 (((-1142) $) NIL)) (-3290 (($ $ (-657 (-1198)) (-1198)) 73)) (-3361 (((-112) $) NIL)) (-3023 (((-227) $) NIL)) (-2341 (($ $) 44)) (-2994 (((-877) $) NIL)) (-3989 (((-112) $ $) NIL)) (-2835 (($ $ (-576)) NIL) (($ $ (-657 (-576))) NIL)) (-1961 (((-657 $) $) 30)) (-2476 (((-1198) (-657 $)) 57)) (-4148 (($ (-1180)) NIL) (($ (-1198)) 19) (($ (-576)) 8) (($ (-227)) 28) (($ (-877)) NIL) (($ (-657 $)) 65) (((-1126) $) 12) (($ (-1126)) 13)) (-4117 (((-1198) (-1198) (-657 $)) 60)) (-3501 (((-877) $) 54)) (-1495 (($ $) 59)) (-2996 (($ $) 58)) (-2044 (($ $ (-657 $)) 66)) (-2046 (((-112) $ $) NIL)) (-2668 (((-112) $) 29)) (-2769 (($) 9 T CONST)) (-2779 (($) 11 T CONST)) (-2933 (((-112) $ $) 74)) (-3034 (($ $ $) 82)) (-3012 (($ $ $) 75)) (** (($ $ (-784)) 81) (($ $ (-576)) 80)) (* (($ $ $) 76)) (-3440 (((-576) $) NIL))) -(((-548) (-13 (-1125 (-1180) (-1198) (-576) (-227) (-877)) (-626 (-1126)) (-10 -8 (-15 -3263 ((-52) $)) (-15 -4148 ($ (-1126))) (-15 -2044 ($ $ (-657 $))) (-15 -3290 ($ $ (-657 (-1198)) (-1198))) (-15 -4339 ($ $ (-657 (-1198)))) (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 -3034 ($ $ $)) (-15 ** ($ $ (-784))) (-15 ** ($ $ (-576))) (-15 0 ($) -1509) (-15 1 ($) -1509) (-15 -2341 ($ $)) (-15 -3797 ((-1180) $)) (-15 -3979 ($ (-1180))) (-15 -2476 ((-1198) (-657 $))) (-15 -4117 ((-1198) (-1198) (-657 $)))))) (T -548)) -((-3263 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548)))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-548)))) (-2044 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-548))) (-5 *1 (-548)))) (-3290 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-1198)) (-5 *1 (-548)))) (-4339 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-548)))) (-3012 (*1 *1 *1 *1) (-5 *1 (-548))) (* (*1 *1 *1 *1) (-5 *1 (-548))) (-3034 (*1 *1 *1 *1) (-5 *1 (-548))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-548)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) (-2769 (*1 *1) (-5 *1 (-548))) (-2779 (*1 *1) (-5 *1 (-548))) (-2341 (*1 *1 *1) (-5 *1 (-548))) (-3797 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-548)))) (-3979 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-548)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-657 (-548))) (-5 *2 (-1198)) (-5 *1 (-548)))) (-4117 (*1 *2 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-548))) (-5 *1 (-548))))) -(-13 (-1125 (-1180) (-1198) (-576) (-227) (-877)) (-626 (-1126)) (-10 -8 (-15 -3263 ((-52) $)) (-15 -4148 ($ (-1126))) (-15 -2044 ($ $ (-657 $))) (-15 -3290 ($ $ (-657 (-1198)) (-1198))) (-15 -4339 ($ $ (-657 (-1198)))) (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 -3034 ($ $ $)) (-15 ** ($ $ (-784))) (-15 ** ($ $ (-576))) (-15 (-2769) ($) -1509) (-15 (-2779) ($) -1509) (-15 -2341 ($ $)) (-15 -3797 ((-1180) $)) (-15 -3979 ($ (-1180))) (-15 -2476 ((-1198) (-657 $))) (-15 -4117 ((-1198) (-1198) (-657 $))))) -((-1608 ((|#2| |#2|) 17)) (-2764 ((|#2| |#2|) 13)) (-1905 ((|#2| |#2| (-576) (-576)) 20)) (-3013 ((|#2| |#2|) 15))) -(((-549 |#1| |#2|) (-10 -7 (-15 -2764 (|#2| |#2|)) (-15 -3013 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -1905 (|#2| |#2| (-576) (-576)))) (-13 (-568) (-148)) (-1280 |#1|)) (T -549)) -((-1905 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) (-4 *2 (-1280 *4)))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1280 *3)))) (-3013 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1280 *3)))) (-2764 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1280 *3))))) -(-10 -7 (-15 -2764 (|#2| |#2|)) (-15 -3013 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -1905 (|#2| |#2| (-576) (-576)))) -((-3179 (((-657 (-304 (-972 |#2|))) (-657 |#2|) (-657 (-1198))) 32)) (-3498 (((-657 |#2|) (-972 |#1|) |#3|) 54) (((-657 |#2|) (-1194 |#1|) |#3|) 53)) (-3870 (((-657 (-657 |#2|)) (-657 (-972 |#1|)) (-657 (-972 |#1|)) (-657 (-1198)) |#3|) 106))) -(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -3498 ((-657 |#2|) (-1194 |#1|) |#3|)) (-15 -3498 ((-657 |#2|) (-972 |#1|) |#3|)) (-15 -3870 ((-657 (-657 |#2|)) (-657 (-972 |#1|)) (-657 (-972 |#1|)) (-657 (-1198)) |#3|)) (-15 -3179 ((-657 (-304 (-972 |#2|))) (-657 |#2|) (-657 (-1198))))) (-464) (-374) (-13 (-374) (-861))) (T -550)) -((-3179 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *6)) (-5 *4 (-657 (-1198))) (-4 *6 (-374)) (-5 *2 (-657 (-304 (-972 *6)))) (-5 *1 (-550 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-13 (-374) (-861))))) (-3870 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-657 (-972 *6))) (-5 *4 (-657 (-1198))) (-4 *6 (-464)) (-5 *2 (-657 (-657 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) (-4 *5 (-13 (-374) (-861))))) (-3498 (*1 *2 *3 *4) (-12 (-5 *3 (-972 *5)) (-4 *5 (-464)) (-5 *2 (-657 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-861))))) (-3498 (*1 *2 *3 *4) (-12 (-5 *3 (-1194 *5)) (-4 *5 (-464)) (-5 *2 (-657 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-861)))))) -(-10 -7 (-15 -3498 ((-657 |#2|) (-1194 |#1|) |#3|)) (-15 -3498 ((-657 |#2|) (-972 |#1|) |#3|)) (-15 -3870 ((-657 (-657 |#2|)) (-657 (-972 |#1|)) (-657 (-972 |#1|)) (-657 (-1198)) |#3|)) (-15 -3179 ((-657 (-304 (-972 |#2|))) (-657 |#2|) (-657 (-1198))))) -((-2921 ((|#2| |#2| |#1|) 17)) (-3491 ((|#2| (-657 |#2|)) 31)) (-4347 ((|#2| (-657 |#2|)) 52))) -(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3491 (|#2| (-657 |#2|))) (-15 -4347 (|#2| (-657 |#2|))) (-15 -2921 (|#2| |#2| |#1|))) (-317) (-1265 |#1|) |#1| (-1 |#1| |#1| (-784))) (T -551)) -((-2921 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-784))) (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1265 *3)))) (-4347 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-1265 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-784))))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-1265 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-784)))))) -(-10 -7 (-15 -3491 (|#2| (-657 |#2|))) (-15 -4347 (|#2| (-657 |#2|))) (-15 -2921 (|#2| |#2| |#1|))) -((-1885 (((-430 (-1194 |#4|)) (-1194 |#4|) (-1 (-430 (-1194 |#3|)) (-1194 |#3|))) 89) (((-430 |#4|) |#4| (-1 (-430 (-1194 |#3|)) (-1194 |#3|))) 210))) -(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1885 ((-430 |#4|) |#4| (-1 (-430 (-1194 |#3|)) (-1194 |#3|)))) (-15 -1885 ((-430 (-1194 |#4|)) (-1194 |#4|) (-1 (-430 (-1194 |#3|)) (-1194 |#3|))))) (-862) (-806) (-13 (-317) (-148)) (-969 |#3| |#2| |#1|)) (T -552)) -((-1885 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1194 *7)) (-1194 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-806)) (-4 *8 (-969 *7 *6 *5)) (-5 *2 (-430 (-1194 *8))) (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1194 *8)))) (-1885 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1194 *7)) (-1194 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-806)) (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3)) (-4 *3 (-969 *7 *6 *5))))) -(-10 -7 (-15 -1885 ((-430 |#4|) |#4| (-1 (-430 (-1194 |#3|)) (-1194 |#3|)))) (-15 -1885 ((-430 (-1194 |#4|)) (-1194 |#4|) (-1 (-430 (-1194 |#3|)) (-1194 |#3|))))) -((-1608 ((|#4| |#4|) 74)) (-2764 ((|#4| |#4|) 70)) (-1905 ((|#4| |#4| (-576) (-576)) 76)) (-3013 ((|#4| |#4|) 72))) -(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2764 (|#4| |#4|)) (-15 -3013 (|#4| |#4|)) (-15 -1608 (|#4| |#4|)) (-15 -1905 (|#4| |#4| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1265 |#1|) (-737 |#1| |#2|) (-1280 |#3|)) (T -553)) -((-1905 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-4 *5 (-1265 *4)) (-4 *6 (-737 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) (-4 *2 (-1280 *6)))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1265 *3)) (-4 *5 (-737 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1280 *5)))) (-3013 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1265 *3)) (-4 *5 (-737 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1280 *5)))) (-2764 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1265 *3)) (-4 *5 (-737 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1280 *5))))) -(-10 -7 (-15 -2764 (|#4| |#4|)) (-15 -3013 (|#4| |#4|)) (-15 -1608 (|#4| |#4|)) (-15 -1905 (|#4| |#4| (-576) (-576)))) -((-1608 ((|#2| |#2|) 27)) (-2764 ((|#2| |#2|) 23)) (-1905 ((|#2| |#2| (-576) (-576)) 29)) (-3013 ((|#2| |#2|) 25))) -(((-554 |#1| |#2|) (-10 -7 (-15 -2764 (|#2| |#2|)) (-15 -3013 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -1905 (|#2| |#2| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1280 |#1|)) (T -554)) -((-1905 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-5 *1 (-554 *4 *2)) (-4 *2 (-1280 *4)))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1280 *3)))) (-3013 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1280 *3)))) (-2764 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1280 *3))))) -(-10 -7 (-15 -2764 (|#2| |#2|)) (-15 -3013 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -1905 (|#2| |#2| (-576) (-576)))) -((-1422 (((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)) 18) (((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|)) 14) (((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|)) 32))) -(((-555 |#1| |#2|) (-10 -7 (-15 -1422 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -1422 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -1422 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) (-1071) (-1265 |#1|)) (T -555)) -((-1422 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1071)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1265 *4)))) (-1422 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1071)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1265 *4)))) (-1422 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1071)) (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1265 *5))))) -(-10 -7 (-15 -1422 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -1422 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -1422 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) -((-2061 (($ $ $) 84)) (-4402 (((-430 $) $) 52)) (-1624 (((-3 (-576) "failed") $) 64)) (-2884 (((-576) $) 42)) (-2775 (((-3 (-419 (-576)) "failed") $) 79)) (-3112 (((-112) $) 26)) (-4239 (((-419 (-576)) $) 77)) (-4257 (((-112) $) 55)) (-2798 (($ $ $ $) 92)) (-2828 (((-112) $) 17)) (-2194 (($ $ $) 62)) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 74)) (-4019 (((-3 $ "failed") $) 69)) (-4195 (($ $) 24)) (-2233 (($ $ $) 90)) (-1706 (($) 65)) (-3907 (($ $) 58)) (-1885 (((-430 $) $) 50)) (-3593 (((-112) $) 15)) (-2034 (((-784) $) 32)) (-2815 (($ $) 11) (($ $ (-784)) NIL)) (-1923 (($ $) 18)) (-4148 (((-576) $) NIL) (((-548) $) 41) (((-908 (-576)) $) 45) (((-390) $) 35) (((-227) $) 38)) (-1960 (((-784)) 9)) (-3091 (((-112) $ $) 21)) (-3871 (($ $ $) 60))) -(((-556 |#1|) (-10 -8 (-15 -2233 (|#1| |#1| |#1|)) (-15 -2798 (|#1| |#1| |#1| |#1|)) (-15 -4195 (|#1| |#1|)) (-15 -1923 (|#1| |#1|)) (-15 -2775 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4239 ((-419 (-576)) |#1|)) (-15 -3112 ((-112) |#1|)) (-15 -2061 (|#1| |#1| |#1|)) (-15 -3091 ((-112) |#1| |#1|)) (-15 -3593 ((-112) |#1|)) (-15 -1706 (|#1|)) (-15 -4019 ((-3 |#1| "failed") |#1|)) (-15 -4148 ((-227) |#1|)) (-15 -4148 ((-390) |#1|)) (-15 -2194 (|#1| |#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3871 (|#1| |#1| |#1|)) (-15 -3200 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|))) (-15 -4148 ((-908 (-576)) |#1|)) (-15 -4148 ((-548) |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -4148 ((-576) |#1|)) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1|)) (-15 -2828 ((-112) |#1|)) (-15 -2034 ((-784) |#1|)) (-15 -1885 ((-430 |#1|) |#1|)) (-15 -4402 ((-430 |#1|) |#1|)) (-15 -4257 ((-112) |#1|)) (-15 -1960 ((-784)))) (-557)) (T -556)) -((-1960 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-556 *3)) (-4 *3 (-557))))) -(-10 -8 (-15 -2233 (|#1| |#1| |#1|)) (-15 -2798 (|#1| |#1| |#1| |#1|)) (-15 -4195 (|#1| |#1|)) (-15 -1923 (|#1| |#1|)) (-15 -2775 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4239 ((-419 (-576)) |#1|)) (-15 -3112 ((-112) |#1|)) (-15 -2061 (|#1| |#1| |#1|)) (-15 -3091 ((-112) |#1| |#1|)) (-15 -3593 ((-112) |#1|)) (-15 -1706 (|#1|)) (-15 -4019 ((-3 |#1| "failed") |#1|)) (-15 -4148 ((-227) |#1|)) (-15 -4148 ((-390) |#1|)) (-15 -2194 (|#1| |#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3871 (|#1| |#1| |#1|)) (-15 -3200 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|))) (-15 -4148 ((-908 (-576)) |#1|)) (-15 -4148 ((-548) |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -4148 ((-576) |#1|)) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1|)) (-15 -2828 ((-112) |#1|)) (-15 -2034 ((-784) |#1|)) (-15 -1885 ((-430 |#1|) |#1|)) (-15 -4402 ((-430 |#1|) |#1|)) (-15 -4257 ((-112) |#1|)) (-15 -1960 ((-784)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-2061 (($ $ $) 93)) (-2721 (((-3 $ "failed") $ $) 20)) (-3578 (($ $ $ $) 82)) (-2638 (($ $) 57)) (-4402 (((-430 $) $) 58)) (-2864 (((-112) $ $) 136)) (-1536 (((-576) $) 125)) (-2790 (($ $ $) 96)) (-4359 (($) 18 T CONST)) (-1624 (((-3 (-576) "failed") $) 117)) (-2884 (((-576) $) 118)) (-3373 (($ $ $) 140)) (-3306 (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 115) (((-702 (-576)) (-702 $)) 114)) (-3843 (((-3 $ "failed") $) 37)) (-2775 (((-3 (-419 (-576)) "failed") $) 90)) (-3112 (((-112) $) 92)) (-4239 (((-419 (-576)) $) 91)) (-1892 (($) 89) (($ $) 88)) (-3385 (($ $ $) 139)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 134)) (-4257 (((-112) $) 59)) (-2798 (($ $ $ $) 80)) (-3211 (($ $ $) 94)) (-2828 (((-112) $) 127)) (-2194 (($ $ $) 105)) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 108)) (-4094 (((-112) $) 35)) (-2320 (((-112) $) 100)) (-4019 (((-3 $ "failed") $) 102)) (-2881 (((-112) $) 126)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 143)) (-3767 (($ $ $ $) 81)) (-3707 (($ $ $) 133)) (-1611 (($ $ $) 132)) (-4195 (($ $) 84)) (-3358 (($ $) 97)) (-3101 (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 113) (((-702 (-576)) (-1289 $)) 112)) (-3402 (($ $ $) 52) (($ (-657 $)) 51)) (-2342 (((-1180) $) 10)) (-2233 (($ $ $) 79)) (-1706 (($) 101 T CONST)) (-1380 (($ $) 86)) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3436 (($ $ $) 54) (($ (-657 $)) 53)) (-3907 (($ $) 106)) (-1885 (((-430 $) $) 56)) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 142) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 141)) (-3418 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 135)) (-3593 (((-112) $) 99)) (-2034 (((-784) $) 137)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 138)) (-2815 (($ $) 123) (($ $ (-784)) 121)) (-1862 (($ $) 85)) (-1923 (($ $) 87)) (-4148 (((-576) $) 119) (((-548) $) 110) (((-908 (-576)) $) 109) (((-390) $) 104) (((-227) $) 103)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 116)) (-1960 (((-784)) 32 T CONST)) (-3091 (((-112) $ $) 95)) (-3871 (($ $ $) 107)) (-2046 (((-112) $ $) 6)) (-4143 (($) 98)) (-4041 (((-112) $ $) 45)) (-2430 (($ $ $ $) 83)) (-1792 (($ $) 124)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $) 122) (($ $ (-784)) 120)) (-2985 (((-112) $ $) 131)) (-2963 (((-112) $ $) 129)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 130)) (-2954 (((-112) $ $) 128)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-576) $) 111))) -(((-557) (-141)) (T -557)) -((-2320 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-4143 (*1 *1) (-4 *1 (-557))) (-3358 (*1 *1 *1) (-4 *1 (-557))) (-2790 (*1 *1 *1 *1) (-4 *1 (-557))) (-3091 (*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3211 (*1 *1 *1 *1) (-4 *1 (-557))) (-2061 (*1 *1 *1 *1) (-4 *1 (-557))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-4239 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-2775 (*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-1892 (*1 *1) (-4 *1 (-557))) (-1892 (*1 *1 *1) (-4 *1 (-557))) (-1923 (*1 *1 *1) (-4 *1 (-557))) (-1380 (*1 *1 *1) (-4 *1 (-557))) (-1862 (*1 *1 *1) (-4 *1 (-557))) (-4195 (*1 *1 *1) (-4 *1 (-557))) (-2430 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-3578 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-3767 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2798 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2233 (*1 *1 *1 *1) (-4 *1 (-557)))) -(-13 (-1243) (-317) (-833) (-238) (-626 (-576)) (-1060 (-576)) (-652 (-576)) (-626 (-548)) (-626 (-908 (-576))) (-902 (-576)) (-144) (-1044) (-148) (-1174) (-10 -8 (-15 -2320 ((-112) $)) (-15 -3593 ((-112) $)) (-6 -4465) (-15 -4143 ($)) (-15 -3358 ($ $)) (-15 -2790 ($ $ $)) (-15 -3091 ((-112) $ $)) (-15 -3211 ($ $ $)) (-15 -2061 ($ $ $)) (-15 -3112 ((-112) $)) (-15 -4239 ((-419 (-576)) $)) (-15 -2775 ((-3 (-419 (-576)) "failed") $)) (-15 -1892 ($)) (-15 -1892 ($ $)) (-15 -1923 ($ $)) (-15 -1380 ($ $)) (-15 -1862 ($ $)) (-15 -4195 ($ $)) (-15 -2430 ($ $ $ $)) (-15 -3578 ($ $ $ $)) (-15 -3767 ($ $ $ $)) (-15 -2798 ($ $ $ $)) (-15 -2233 ($ $ $)) (-6 -4464))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-144) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-548)) . T) ((-626 (-576)) . T) ((-626 (-908 (-576))) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0=(-576)) . T) ((-661 $) . T) ((-653 $) . T) ((-652 #0#) . T) ((-730 $) . T) ((-739) . T) ((-804) . T) ((-805) . T) ((-807) . T) ((-808) . T) ((-833) . T) ((-861) . T) ((-862) . T) ((-865) . T) ((-902 (-576)) . T) ((-940) . T) ((-1044) . T) ((-1060 (-576)) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1174) . T) ((-1239) . T) ((-1243) . T)) -((-3429 (((-112) $ $) NIL)) (-2193 (((-784)) NIL)) (-4359 (($) NIL T CONST)) (-1892 (($) NIL)) (-3707 (($ $ $) NIL) (($) NIL T CONST)) (-1611 (($ $ $) NIL) (($) NIL T CONST)) (-3007 (((-941) $) NIL)) (-2342 (((-1180) $) NIL)) (-3178 (($ (-941)) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL))) -(((-558) (-13 (-857) (-10 -8 (-15 -4359 ($) -1509)))) (T -558)) -((-4359 (*1 *1) (-5 *1 (-558)))) -(-13 (-857) (-10 -8 (-15 -4359 ($) -1509))) +((-3983 (((-1197 |#1|) (-787)) 115)) (-2339 (((-1292 |#1|) (-1292 |#1|) (-944)) 108)) (-3960 (((-1297) (-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145))))) |#1|) 123)) (-4007 (((-1292 |#1|) (-1292 |#1|) (-787)) 53)) (-1910 (((-1292 |#1|) (-944)) 110)) (-4028 (((-1292 |#1|) (-1292 |#1|) (-577)) 30)) (-3972 (((-1197 |#1|) (-1292 |#1|)) 116)) (-4073 (((-1292 |#1|) (-944)) 137)) (-4049 (((-112) (-1292 |#1|)) 120)) (-4145 (((-1292 |#1|) (-1292 |#1|) (-944)) 100)) (-4084 (((-1197 |#1|) (-1292 |#1|)) 131)) (-4038 (((-944) (-1292 |#1|)) 96)) (-2171 (((-1292 |#1|) (-1292 |#1|)) 38)) (-3222 (((-1292 |#1|) (-944) (-944)) 140)) (-4018 (((-1292 |#1|) (-1292 |#1|) (-1145) (-1145)) 29)) (-3995 (((-1292 |#1|) (-1292 |#1|) (-787) (-1145)) 54)) (-4060 (((-1292 (-1292 |#1|)) (-944)) 136)) (-3077 (((-1292 |#1|) (-1292 |#1|) (-1292 |#1|)) 121)) (** (((-1292 |#1|) (-1292 |#1|) (-577)) 67)) (* (((-1292 |#1|) (-1292 |#1|) (-1292 |#1|)) 31))) +(((-541 |#1|) (-10 -7 (-15 -3960 ((-1297) (-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145))))) |#1|)) (-15 -1910 ((-1292 |#1|) (-944))) (-15 -3222 ((-1292 |#1|) (-944) (-944))) (-15 -3972 ((-1197 |#1|) (-1292 |#1|))) (-15 -3983 ((-1197 |#1|) (-787))) (-15 -3995 ((-1292 |#1|) (-1292 |#1|) (-787) (-1145))) (-15 -4007 ((-1292 |#1|) (-1292 |#1|) (-787))) (-15 -4018 ((-1292 |#1|) (-1292 |#1|) (-1145) (-1145))) (-15 -4028 ((-1292 |#1|) (-1292 |#1|) (-577))) (-15 ** ((-1292 |#1|) (-1292 |#1|) (-577))) (-15 * ((-1292 |#1|) (-1292 |#1|) (-1292 |#1|))) (-15 -3077 ((-1292 |#1|) (-1292 |#1|) (-1292 |#1|))) (-15 -4145 ((-1292 |#1|) (-1292 |#1|) (-944))) (-15 -2339 ((-1292 |#1|) (-1292 |#1|) (-944))) (-15 -2171 ((-1292 |#1|) (-1292 |#1|))) (-15 -4038 ((-944) (-1292 |#1|))) (-15 -4049 ((-112) (-1292 |#1|))) (-15 -4060 ((-1292 (-1292 |#1|)) (-944))) (-15 -4073 ((-1292 |#1|) (-944))) (-15 -4084 ((-1197 |#1|) (-1292 |#1|)))) (-361)) (T -541)) +((-4084 (*1 *2 *3) (-12 (-5 *3 (-1292 *4)) (-4 *4 (-361)) (-5 *2 (-1197 *4)) (-5 *1 (-541 *4)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1292 *4)) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-4060 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1292 (-1292 *4))) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-4049 (*1 *2 *3) (-12 (-5 *3 (-1292 *4)) (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-541 *4)))) (-4038 (*1 *2 *3) (-12 (-5 *3 (-1292 *4)) (-4 *4 (-361)) (-5 *2 (-944)) (-5 *1 (-541 *4)))) (-2171 (*1 *2 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) (-2339 (*1 *2 *2 *3) (-12 (-5 *2 (-1292 *4)) (-5 *3 (-944)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-4145 (*1 *2 *2 *3) (-12 (-5 *2 (-1292 *4)) (-5 *3 (-944)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-3077 (*1 *2 *2 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1292 *4)) (-5 *3 (-577)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-4028 (*1 *2 *2 *3) (-12 (-5 *2 (-1292 *4)) (-5 *3 (-577)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-4018 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1292 *4)) (-5 *3 (-1145)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-4007 (*1 *2 *2 *3) (-12 (-5 *2 (-1292 *4)) (-5 *3 (-787)) (-4 *4 (-361)) (-5 *1 (-541 *4)))) (-3995 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1292 *5)) (-5 *3 (-787)) (-5 *4 (-1145)) (-4 *5 (-361)) (-5 *1 (-541 *5)))) (-3983 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1197 *4)) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-1292 *4)) (-4 *4 (-361)) (-5 *2 (-1197 *4)) (-5 *1 (-541 *4)))) (-3222 (*1 *2 *3 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1292 *4)) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-1910 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1292 *4)) (-5 *1 (-541 *4)) (-4 *4 (-361)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1292 (-660 (-2 (|:| -3115 *4) (|:| -3222 (-1145)))))) (-4 *4 (-361)) (-5 *2 (-1297)) (-5 *1 (-541 *4))))) +(-10 -7 (-15 -3960 ((-1297) (-1292 (-660 (-2 (|:| -3115 |#1|) (|:| -3222 (-1145))))) |#1|)) (-15 -1910 ((-1292 |#1|) (-944))) (-15 -3222 ((-1292 |#1|) (-944) (-944))) (-15 -3972 ((-1197 |#1|) (-1292 |#1|))) (-15 -3983 ((-1197 |#1|) (-787))) (-15 -3995 ((-1292 |#1|) (-1292 |#1|) (-787) (-1145))) (-15 -4007 ((-1292 |#1|) (-1292 |#1|) (-787))) (-15 -4018 ((-1292 |#1|) (-1292 |#1|) (-1145) (-1145))) (-15 -4028 ((-1292 |#1|) (-1292 |#1|) (-577))) (-15 ** ((-1292 |#1|) (-1292 |#1|) (-577))) (-15 * ((-1292 |#1|) (-1292 |#1|) (-1292 |#1|))) (-15 -3077 ((-1292 |#1|) (-1292 |#1|) (-1292 |#1|))) (-15 -4145 ((-1292 |#1|) (-1292 |#1|) (-944))) (-15 -2339 ((-1292 |#1|) (-1292 |#1|) (-944))) (-15 -2171 ((-1292 |#1|) (-1292 |#1|))) (-15 -4038 ((-944) (-1292 |#1|))) (-15 -4049 ((-112) (-1292 |#1|))) (-15 -4060 ((-1292 (-1292 |#1|)) (-944))) (-15 -4073 ((-1292 |#1|) (-944))) (-15 -4084 ((-1197 |#1|) (-1292 |#1|)))) +((-3923 (((-707 (-1250)) $) NIL)) (-3877 (((-707 (-1248)) $) NIL)) (-3900 (((-707 (-1247)) $) NIL)) (-3935 (((-707 (-562)) $) NIL)) (-3888 (((-707 (-560)) $) NIL)) (-3912 (((-707 (-559)) $) NIL)) (-3866 (((-787) $ (-129)) NIL)) (-3947 (((-707 (-130)) $) 26)) (-4096 (((-1145) $ (-1145)) 31)) (-3618 (((-1145) $) 30)) (-3344 (((-112) $) 20)) (-4123 (($ (-401)) 14) (($ (-1183)) 16)) (-4109 (((-112) $) 27)) (-3544 (((-880) $) 34)) (-3720 (($ $) 28))) +(((-542) (-13 (-540) (-626 (-880)) (-10 -8 (-15 -4123 ($ (-401))) (-15 -4123 ($ (-1183))) (-15 -4109 ((-112) $)) (-15 -3344 ((-112) $)) (-15 -3618 ((-1145) $)) (-15 -4096 ((-1145) $ (-1145)))))) (T -542)) +((-4123 (*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-542)))) (-4123 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-542)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-542)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-542)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-542)))) (-4096 (*1 *2 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-542))))) +(-13 (-540) (-626 (-880)) (-10 -8 (-15 -4123 ($ (-401))) (-15 -4123 ($ (-1183))) (-15 -4109 ((-112) $)) (-15 -3344 ((-112) $)) (-15 -3618 ((-1145) $)) (-15 -4096 ((-1145) $ (-1145))))) +((-4370 (((-1 |#1| |#1|) |#1|) 11)) (-4137 (((-1 |#1| |#1|)) 10))) +(((-543 |#1|) (-10 -7 (-15 -4137 ((-1 |#1| |#1|))) (-15 -4370 ((-1 |#1| |#1|) |#1|))) (-13 (-742) (-25))) (T -543)) +((-4370 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-543 *3)) (-4 *3 (-13 (-742) (-25))))) (-4137 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-543 *3)) (-4 *3 (-13 (-742) (-25)))))) +(-10 -7 (-15 -4137 ((-1 |#1| |#1|))) (-15 -4370 ((-1 |#1| |#1|) |#1|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3829 (((-660 (-891 |#1| (-787))) $) NIL)) (-4243 (($ $ $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-2248 (($ $) NIL)) (-2030 (($ (-787) |#1|) NIL)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-4087 (($ (-1 (-787) (-787)) $) NIL)) (-3747 ((|#1| $) NIL)) (-2221 (((-787) $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 27)) (-4448 (((-112) $ $) NIL)) (-2806 (($) NIL T CONST)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-3055 (($ $ $) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL))) +(((-544 |#1|) (-13 (-809) (-522 (-787) |#1|)) (-865)) (T -544)) +NIL +(-13 (-809) (-522 (-787) |#1|)) +((-4161 (((-660 |#2|) (-1197 |#1|) |#3|) 98)) (-4172 (((-660 (-2 (|:| |outval| |#2|) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 |#2|))))) (-705 |#1|) |#3| (-1 (-431 (-1197 |#1|)) (-1197 |#1|))) 114)) (-4149 (((-1197 |#1|) (-705 |#1|)) 110))) +(((-545 |#1| |#2| |#3|) (-10 -7 (-15 -4149 ((-1197 |#1|) (-705 |#1|))) (-15 -4161 ((-660 |#2|) (-1197 |#1|) |#3|)) (-15 -4172 ((-660 (-2 (|:| |outval| |#2|) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 |#2|))))) (-705 |#1|) |#3| (-1 (-431 (-1197 |#1|)) (-1197 |#1|))))) (-375) (-375) (-13 (-375) (-864))) (T -545)) +((-4172 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-705 *6)) (-5 *5 (-1 (-431 (-1197 *6)) (-1197 *6))) (-4 *6 (-375)) (-5 *2 (-660 (-2 (|:| |outval| *7) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 *7)))))) (-5 *1 (-545 *6 *7 *4)) (-4 *7 (-375)) (-4 *4 (-13 (-375) (-864))))) (-4161 (*1 *2 *3 *4) (-12 (-5 *3 (-1197 *5)) (-4 *5 (-375)) (-5 *2 (-660 *6)) (-5 *1 (-545 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-864))))) (-4149 (*1 *2 *3) (-12 (-5 *3 (-705 *4)) (-4 *4 (-375)) (-5 *2 (-1197 *4)) (-5 *1 (-545 *4 *5 *6)) (-4 *5 (-375)) (-4 *6 (-13 (-375) (-864)))))) +(-10 -7 (-15 -4149 ((-1197 |#1|) (-705 |#1|))) (-15 -4161 ((-660 |#2|) (-1197 |#1|) |#3|)) (-15 -4172 ((-660 (-2 (|:| |outval| |#2|) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 |#2|))))) (-705 |#1|) |#3| (-1 (-431 (-1197 |#1|)) (-1197 |#1|))))) +((-3315 (((-707 (-1250)) $ (-1250)) NIL)) (-3324 (((-707 (-562)) $ (-562)) NIL)) (-3304 (((-787) $ (-129)) 39)) (-3335 (((-707 (-130)) $ (-130)) 40)) (-3923 (((-707 (-1250)) $) NIL)) (-3877 (((-707 (-1248)) $) NIL)) (-3900 (((-707 (-1247)) $) NIL)) (-3935 (((-707 (-562)) $) NIL)) (-3888 (((-707 (-560)) $) NIL)) (-3912 (((-707 (-559)) $) NIL)) (-3866 (((-787) $ (-129)) 35)) (-3947 (((-707 (-130)) $) 37)) (-3868 (((-112) $) 27)) (-3879 (((-707 $) (-592) (-977)) 18) (((-707 $) (-504) (-977)) 24)) (-3544 (((-880) $) 48)) (-3720 (($ $) 42))) +(((-546) (-13 (-783 (-592)) (-626 (-880)) (-10 -8 (-15 -3879 ((-707 $) (-504) (-977)))))) (T -546)) +((-3879 (*1 *2 *3 *4) (-12 (-5 *3 (-504)) (-5 *4 (-977)) (-5 *2 (-707 (-546))) (-5 *1 (-546))))) +(-13 (-783 (-592)) (-626 (-880)) (-10 -8 (-15 -3879 ((-707 $) (-504) (-977))))) +((-2996 (((-859 (-577))) 12)) (-3006 (((-859 (-577))) 14)) (-1669 (((-849 (-577))) 9))) +(((-547) (-10 -7 (-15 -1669 ((-849 (-577)))) (-15 -2996 ((-859 (-577)))) (-15 -3006 ((-859 (-577)))))) (T -547)) +((-3006 (*1 *2) (-12 (-5 *2 (-859 (-577))) (-5 *1 (-547)))) (-2996 (*1 *2) (-12 (-5 *2 (-859 (-577))) (-5 *1 (-547)))) (-1669 (*1 *2) (-12 (-5 *2 (-849 (-577))) (-5 *1 (-547))))) +(-10 -7 (-15 -1669 ((-849 (-577)))) (-15 -2996 ((-859 (-577)))) (-15 -3006 ((-859 (-577))))) +((-4216 (((-549) (-1201)) 15)) (-3307 ((|#1| (-549)) 20))) +(((-548 |#1|) (-10 -7 (-15 -4216 ((-549) (-1201))) (-15 -3307 (|#1| (-549)))) (-1242)) (T -548)) +((-3307 (*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-548 *2)) (-4 *2 (-1242)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-549)) (-5 *1 (-548 *4)) (-4 *4 (-1242))))) +(-10 -7 (-15 -4216 ((-549) (-1201))) (-15 -3307 (|#1| (-549)))) +((-3473 (((-112) $ $) NIL)) (-4193 (((-1183) $) 55)) (-2925 (((-112) $) 51)) (-3120 (((-1201) $) 52)) (-2933 (((-112) $) 49)) (-1335 (((-1183) $) 50)) (-4184 (($ (-1183)) 56)) (-2954 (((-112) $) NIL)) (-2973 (((-112) $) NIL)) (-2944 (((-112) $) NIL)) (-2810 (((-1183) $) NIL)) (-4344 (($ $ (-660 (-1201))) 21)) (-3307 (((-52) $) 23)) (-2914 (((-112) $) NIL)) (-3142 (((-577) $) NIL)) (-1474 (((-1145) $) NIL)) (-3334 (($ $ (-660 (-1201)) (-1201)) 73)) (-2904 (((-112) $) NIL)) (-3068 (((-228) $) NIL)) (-2378 (($ $) 44)) (-3035 (((-880) $) NIL)) (-3994 (((-112) $ $) NIL)) (-2872 (($ $ (-577)) NIL) (($ $ (-660 (-577))) NIL)) (-1984 (((-660 $) $) 30)) (-2512 (((-1201) (-660 $)) 57)) (-4152 (($ (-1183)) NIL) (($ (-1201)) 19) (($ (-577)) 8) (($ (-228)) 28) (($ (-880)) NIL) (($ (-660 $)) 65) (((-1129) $) 12) (($ (-1129)) 13)) (-4124 (((-1201) (-1201) (-660 $)) 60)) (-3544 (((-880) $) 54)) (-2885 (($ $) 59)) (-2895 (($ $) 58)) (-4204 (($ $ (-660 $)) 66)) (-4448 (((-112) $ $) NIL)) (-2961 (((-112) $) 29)) (-2806 (($) 9 T CONST)) (-2816 (($) 11 T CONST)) (-2970 (((-112) $ $) 74)) (-3077 (($ $ $) 82)) (-3055 (($ $ $) 75)) (** (($ $ (-787)) 81) (($ $ (-577)) 80)) (* (($ $ $) 76)) (-3484 (((-577) $) NIL))) +(((-549) (-13 (-1128 (-1183) (-1201) (-577) (-228) (-880)) (-627 (-1129)) (-10 -8 (-15 -3307 ((-52) $)) (-15 -4152 ($ (-1129))) (-15 -4204 ($ $ (-660 $))) (-15 -3334 ($ $ (-660 (-1201)) (-1201))) (-15 -4344 ($ $ (-660 (-1201)))) (-15 -3055 ($ $ $)) (-15 * ($ $ $)) (-15 -3077 ($ $ $)) (-15 ** ($ $ (-787))) (-15 ** ($ $ (-577))) (-15 0 ($) -1512) (-15 1 ($) -1512) (-15 -2378 ($ $)) (-15 -4193 ((-1183) $)) (-15 -4184 ($ (-1183))) (-15 -2512 ((-1201) (-660 $))) (-15 -4124 ((-1201) (-1201) (-660 $)))))) (T -549)) +((-3307 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-549)))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-549)))) (-4204 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-549))) (-5 *1 (-549)))) (-3334 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-1201)) (-5 *1 (-549)))) (-4344 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-549)))) (-3055 (*1 *1 *1 *1) (-5 *1 (-549))) (* (*1 *1 *1 *1) (-5 *1 (-549))) (-3077 (*1 *1 *1 *1) (-5 *1 (-549))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-549)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-549)))) (-2806 (*1 *1) (-5 *1 (-549))) (-2816 (*1 *1) (-5 *1 (-549))) (-2378 (*1 *1 *1) (-5 *1 (-549))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-549)))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-549)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-660 (-549))) (-5 *2 (-1201)) (-5 *1 (-549)))) (-4124 (*1 *2 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-549))) (-5 *1 (-549))))) +(-13 (-1128 (-1183) (-1201) (-577) (-228) (-880)) (-627 (-1129)) (-10 -8 (-15 -3307 ((-52) $)) (-15 -4152 ($ (-1129))) (-15 -4204 ($ $ (-660 $))) (-15 -3334 ($ $ (-660 (-1201)) (-1201))) (-15 -4344 ($ $ (-660 (-1201)))) (-15 -3055 ($ $ $)) (-15 * ($ $ $)) (-15 -3077 ($ $ $)) (-15 ** ($ $ (-787))) (-15 ** ($ $ (-577))) (-15 (-2806) ($) -1512) (-15 (-2816) ($) -1512) (-15 -2378 ($ $)) (-15 -4193 ((-1183) $)) (-15 -4184 ($ (-1183))) (-15 -2512 ((-1201) (-660 $))) (-15 -4124 ((-1201) (-1201) (-660 $))))) +((-4088 ((|#2| |#2|) 17)) (-4063 ((|#2| |#2|) 13)) (-4099 ((|#2| |#2| (-577) (-577)) 20)) (-4076 ((|#2| |#2|) 15))) +(((-550 |#1| |#2|) (-10 -7 (-15 -4063 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4099 (|#2| |#2| (-577) (-577)))) (-13 (-569) (-148)) (-1283 |#1|)) (T -550)) +((-4099 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-577)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-550 *4 *2)) (-4 *2 (-1283 *4)))) (-4088 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) (-4 *2 (-1283 *3)))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) (-4 *2 (-1283 *3)))) (-4063 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) (-4 *2 (-1283 *3))))) +(-10 -7 (-15 -4063 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4099 (|#2| |#2| (-577) (-577)))) +((-3031 (((-660 (-305 (-975 |#2|))) (-660 |#2|) (-660 (-1201))) 32)) (-3007 (((-660 |#2|) (-975 |#1|) |#3|) 54) (((-660 |#2|) (-1197 |#1|) |#3|) 53)) (-3020 (((-660 (-660 |#2|)) (-660 (-975 |#1|)) (-660 (-975 |#1|)) (-660 (-1201)) |#3|) 106))) +(((-551 |#1| |#2| |#3|) (-10 -7 (-15 -3007 ((-660 |#2|) (-1197 |#1|) |#3|)) (-15 -3007 ((-660 |#2|) (-975 |#1|) |#3|)) (-15 -3020 ((-660 (-660 |#2|)) (-660 (-975 |#1|)) (-660 (-975 |#1|)) (-660 (-1201)) |#3|)) (-15 -3031 ((-660 (-305 (-975 |#2|))) (-660 |#2|) (-660 (-1201))))) (-465) (-375) (-13 (-375) (-864))) (T -551)) +((-3031 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 (-1201))) (-4 *6 (-375)) (-5 *2 (-660 (-305 (-975 *6)))) (-5 *1 (-551 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-13 (-375) (-864))))) (-3020 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-660 (-975 *6))) (-5 *4 (-660 (-1201))) (-4 *6 (-465)) (-5 *2 (-660 (-660 *7))) (-5 *1 (-551 *6 *7 *5)) (-4 *7 (-375)) (-4 *5 (-13 (-375) (-864))))) (-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-975 *5)) (-4 *5 (-465)) (-5 *2 (-660 *6)) (-5 *1 (-551 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-864))))) (-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-1197 *5)) (-4 *5 (-465)) (-5 *2 (-660 *6)) (-5 *1 (-551 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-864)))))) +(-10 -7 (-15 -3007 ((-660 |#2|) (-1197 |#1|) |#3|)) (-15 -3007 ((-660 |#2|) (-975 |#1|) |#3|)) (-15 -3020 ((-660 (-660 |#2|)) (-660 (-975 |#1|)) (-660 (-975 |#1|)) (-660 (-1201)) |#3|)) (-15 -3031 ((-660 (-305 (-975 |#2|))) (-660 |#2|) (-660 (-1201))))) +((-3062 ((|#2| |#2| |#1|) 17)) (-3040 ((|#2| (-660 |#2|)) 31)) (-3050 ((|#2| (-660 |#2|)) 52))) +(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3040 (|#2| (-660 |#2|))) (-15 -3050 (|#2| (-660 |#2|))) (-15 -3062 (|#2| |#2| |#1|))) (-318) (-1268 |#1|) |#1| (-1 |#1| |#1| (-787))) (T -552)) +((-3062 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-787))) (-5 *1 (-552 *3 *2 *4 *5)) (-4 *2 (-1268 *3)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-1268 *4)) (-5 *1 (-552 *4 *2 *5 *6)) (-4 *4 (-318)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-787))))) (-3040 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-1268 *4)) (-5 *1 (-552 *4 *2 *5 *6)) (-4 *4 (-318)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-787)))))) +(-10 -7 (-15 -3040 (|#2| (-660 |#2|))) (-15 -3050 (|#2| (-660 |#2|))) (-15 -3062 (|#2| |#2| |#1|))) +((-1902 (((-431 (-1197 |#4|)) (-1197 |#4|) (-1 (-431 (-1197 |#3|)) (-1197 |#3|))) 89) (((-431 |#4|) |#4| (-1 (-431 (-1197 |#3|)) (-1197 |#3|))) 210))) +(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1902 ((-431 |#4|) |#4| (-1 (-431 (-1197 |#3|)) (-1197 |#3|)))) (-15 -1902 ((-431 (-1197 |#4|)) (-1197 |#4|) (-1 (-431 (-1197 |#3|)) (-1197 |#3|))))) (-865) (-809) (-13 (-318) (-148)) (-972 |#3| |#2| |#1|)) (T -553)) +((-1902 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-431 (-1197 *7)) (-1197 *7))) (-4 *7 (-13 (-318) (-148))) (-4 *5 (-865)) (-4 *6 (-809)) (-4 *8 (-972 *7 *6 *5)) (-5 *2 (-431 (-1197 *8))) (-5 *1 (-553 *5 *6 *7 *8)) (-5 *3 (-1197 *8)))) (-1902 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-431 (-1197 *7)) (-1197 *7))) (-4 *7 (-13 (-318) (-148))) (-4 *5 (-865)) (-4 *6 (-809)) (-5 *2 (-431 *3)) (-5 *1 (-553 *5 *6 *7 *3)) (-4 *3 (-972 *7 *6 *5))))) +(-10 -7 (-15 -1902 ((-431 |#4|) |#4| (-1 (-431 (-1197 |#3|)) (-1197 |#3|)))) (-15 -1902 ((-431 (-1197 |#4|)) (-1197 |#4|) (-1 (-431 (-1197 |#3|)) (-1197 |#3|))))) +((-4088 ((|#4| |#4|) 74)) (-4063 ((|#4| |#4|) 70)) (-4099 ((|#4| |#4| (-577) (-577)) 76)) (-4076 ((|#4| |#4|) 72))) +(((-554 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4063 (|#4| |#4|)) (-15 -4076 (|#4| |#4|)) (-15 -4088 (|#4| |#4|)) (-15 -4099 (|#4| |#4| (-577) (-577)))) (-13 (-375) (-380) (-627 (-577))) (-1268 |#1|) (-740 |#1| |#2|) (-1283 |#3|)) (T -554)) +((-4099 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-577)) (-4 *4 (-13 (-375) (-380) (-627 *3))) (-4 *5 (-1268 *4)) (-4 *6 (-740 *4 *5)) (-5 *1 (-554 *4 *5 *6 *2)) (-4 *2 (-1283 *6)))) (-4088 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-4 *4 (-1268 *3)) (-4 *5 (-740 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1283 *5)))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-4 *4 (-1268 *3)) (-4 *5 (-740 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1283 *5)))) (-4063 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-4 *4 (-1268 *3)) (-4 *5 (-740 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1283 *5))))) +(-10 -7 (-15 -4063 (|#4| |#4|)) (-15 -4076 (|#4| |#4|)) (-15 -4088 (|#4| |#4|)) (-15 -4099 (|#4| |#4| (-577) (-577)))) +((-4088 ((|#2| |#2|) 27)) (-4063 ((|#2| |#2|) 23)) (-4099 ((|#2| |#2| (-577) (-577)) 29)) (-4076 ((|#2| |#2|) 25))) +(((-555 |#1| |#2|) (-10 -7 (-15 -4063 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4099 (|#2| |#2| (-577) (-577)))) (-13 (-375) (-380) (-627 (-577))) (-1283 |#1|)) (T -555)) +((-4099 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-577)) (-4 *4 (-13 (-375) (-380) (-627 *3))) (-5 *1 (-555 *4 *2)) (-4 *2 (-1283 *4)))) (-4088 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-5 *1 (-555 *3 *2)) (-4 *2 (-1283 *3)))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-5 *1 (-555 *3 *2)) (-4 *2 (-1283 *3)))) (-4063 (*1 *2 *2) (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-5 *1 (-555 *3 *2)) (-4 *2 (-1283 *3))))) +(-10 -7 (-15 -4063 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4099 (|#2| |#2| (-577) (-577)))) +((-3072 (((-3 (-577) "failed") |#2| |#1| (-1 (-3 (-577) "failed") |#1|)) 18) (((-3 (-577) "failed") |#2| |#1| (-577) (-1 (-3 (-577) "failed") |#1|)) 14) (((-3 (-577) "failed") |#2| (-577) (-1 (-3 (-577) "failed") |#1|)) 32))) +(((-556 |#1| |#2|) (-10 -7 (-15 -3072 ((-3 (-577) "failed") |#2| (-577) (-1 (-3 (-577) "failed") |#1|))) (-15 -3072 ((-3 (-577) "failed") |#2| |#1| (-577) (-1 (-3 (-577) "failed") |#1|))) (-15 -3072 ((-3 (-577) "failed") |#2| |#1| (-1 (-3 (-577) "failed") |#1|)))) (-1074) (-1268 |#1|)) (T -556)) +((-3072 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-577) "failed") *4)) (-4 *4 (-1074)) (-5 *2 (-577)) (-5 *1 (-556 *4 *3)) (-4 *3 (-1268 *4)))) (-3072 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-577) "failed") *4)) (-4 *4 (-1074)) (-5 *2 (-577)) (-5 *1 (-556 *4 *3)) (-4 *3 (-1268 *4)))) (-3072 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-577) "failed") *5)) (-4 *5 (-1074)) (-5 *2 (-577)) (-5 *1 (-556 *5 *3)) (-4 *3 (-1268 *5))))) +(-10 -7 (-15 -3072 ((-3 (-577) "failed") |#2| (-577) (-1 (-3 (-577) "failed") |#1|))) (-15 -3072 ((-3 (-577) "failed") |#2| |#1| (-577) (-1 (-3 (-577) "failed") |#1|))) (-15 -3072 ((-3 (-577) "failed") |#2| |#1| (-1 (-3 (-577) "failed") |#1|)))) +((-3129 (($ $ $) 84)) (-3029 (((-431 $) $) 52)) (-1628 (((-3 (-577) "failed") $) 64)) (-2921 (((-577) $) 42)) (-4363 (((-3 (-420 (-577)) "failed") $) 79)) (-4353 (((-112) $) 26)) (-4341 (((-420 (-577)) $) 77)) (-1522 (((-112) $) 55)) (-3091 (($ $ $ $) 92)) (-3567 (((-112) $) 17)) (-1992 (($ $ $) 62)) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 74)) (-4021 (((-3 $ "failed") $) 69)) (-4199 (($ $) 24)) (-3082 (($ $ $) 90)) (-1709 (($) 65)) (-1969 (($ $) 58)) (-1902 (((-431 $) $) 50)) (-1924 (((-112) $) 15)) (-1927 (((-787) $) 32)) (-2852 (($ $) 11) (($ $ (-787)) NIL)) (-1944 (($ $) 18)) (-4152 (((-577) $) NIL) (((-549) $) 41) (((-911 (-577)) $) 45) (((-391) $) 35) (((-228) $) 38)) (-4068 (((-787)) 9)) (-3151 (((-112) $ $) 21)) (-3850 (($ $ $) 60))) +(((-557 |#1|) (-10 -8 (-15 -3082 (|#1| |#1| |#1|)) (-15 -3091 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -1944 (|#1| |#1|)) (-15 -4363 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -4341 ((-420 (-577)) |#1|)) (-15 -4353 ((-112) |#1|)) (-15 -3129 (|#1| |#1| |#1|)) (-15 -3151 ((-112) |#1| |#1|)) (-15 -1924 ((-112) |#1|)) (-15 -1709 (|#1|)) (-15 -4021 ((-3 |#1| "failed") |#1|)) (-15 -4152 ((-228) |#1|)) (-15 -4152 ((-391) |#1|)) (-15 -1992 (|#1| |#1| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -3850 (|#1| |#1| |#1|)) (-15 -3795 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|))) (-15 -4152 ((-911 (-577)) |#1|)) (-15 -4152 ((-549) |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -4152 ((-577) |#1|)) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1|)) (-15 -3567 ((-112) |#1|)) (-15 -1927 ((-787) |#1|)) (-15 -1902 ((-431 |#1|) |#1|)) (-15 -3029 ((-431 |#1|) |#1|)) (-15 -1522 ((-112) |#1|)) (-15 -4068 ((-787)))) (-558)) (T -557)) +((-4068 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-557 *3)) (-4 *3 (-558))))) +(-10 -8 (-15 -3082 (|#1| |#1| |#1|)) (-15 -3091 (|#1| |#1| |#1| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -1944 (|#1| |#1|)) (-15 -4363 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -4341 ((-420 (-577)) |#1|)) (-15 -4353 ((-112) |#1|)) (-15 -3129 (|#1| |#1| |#1|)) (-15 -3151 ((-112) |#1| |#1|)) (-15 -1924 ((-112) |#1|)) (-15 -1709 (|#1|)) (-15 -4021 ((-3 |#1| "failed") |#1|)) (-15 -4152 ((-228) |#1|)) (-15 -4152 ((-391) |#1|)) (-15 -1992 (|#1| |#1| |#1|)) (-15 -1969 (|#1| |#1|)) (-15 -3850 (|#1| |#1| |#1|)) (-15 -3795 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|))) (-15 -4152 ((-911 (-577)) |#1|)) (-15 -4152 ((-549) |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -4152 ((-577) |#1|)) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1|)) (-15 -3567 ((-112) |#1|)) (-15 -1927 ((-787) |#1|)) (-15 -1902 ((-431 |#1|) |#1|)) (-15 -3029 ((-431 |#1|) |#1|)) (-15 -1522 ((-112) |#1|)) (-15 -4068 ((-787)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-3129 (($ $ $) 93)) (-1956 (((-3 $ "failed") $ $) 20)) (-3107 (($ $ $ $) 82)) (-3841 (($ $) 57)) (-3029 (((-431 $) $) 58)) (-1939 (((-112) $ $) 136)) (-3010 (((-577) $) 125)) (-2826 (($ $ $) 96)) (-1534 (($) 18 T CONST)) (-1628 (((-3 (-577) "failed") $) 117)) (-2921 (((-577) $) 118)) (-3418 (($ $ $) 140)) (-1647 (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 115) (((-705 (-577)) (-705 $)) 114)) (-4187 (((-3 $ "failed") $) 37)) (-4363 (((-3 (-420 (-577)) "failed") $) 90)) (-4353 (((-112) $) 92)) (-4341 (((-420 (-577)) $) 91)) (-1910 (($) 89) (($ $) 88)) (-3429 (($ $ $) 139)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 134)) (-1522 (((-112) $) 59)) (-3091 (($ $ $ $) 80)) (-3140 (($ $ $) 94)) (-3567 (((-112) $) 127)) (-1992 (($ $ $) 105)) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 108)) (-2487 (((-112) $) 35)) (-1912 (((-112) $) 100)) (-4021 (((-3 $ "failed") $) 102)) (-3578 (((-112) $) 126)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 143)) (-3099 (($ $ $ $) 81)) (-3732 (($ $ $) 133)) (-3201 (($ $ $) 132)) (-4199 (($ $) 84)) (-3402 (($ $) 97)) (-1657 (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 113) (((-705 (-577)) (-1292 $)) 112)) (-3446 (($ $ $) 52) (($ (-660 $)) 51)) (-2810 (((-1183) $) 10)) (-3082 (($ $ $) 79)) (-1709 (($) 101 T CONST)) (-1383 (($ $) 86)) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 50)) (-3480 (($ $ $) 54) (($ (-660 $)) 53)) (-1969 (($ $) 106)) (-1902 (((-431 $) $) 56)) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 142) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 141)) (-3462 (((-3 $ "failed") $ $) 48)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 135)) (-1924 (((-112) $) 99)) (-1927 (((-787) $) 137)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 138)) (-2852 (($ $) 123) (($ $ (-787)) 121)) (-1877 (($ $) 85)) (-1944 (($ $) 87)) (-4152 (((-577) $) 119) (((-549) $) 110) (((-911 (-577)) $) 109) (((-391) $) 104) (((-228) $) 103)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49) (($ (-577)) 116)) (-4068 (((-787)) 32 T CONST)) (-3151 (((-112) $ $) 95)) (-3850 (($ $ $) 107)) (-4448 (((-112) $ $) 6)) (-4146 (($) 98)) (-3281 (((-112) $ $) 45)) (-3118 (($ $ $ $) 83)) (-1654 (($ $) 124)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $) 122) (($ $ (-787)) 120)) (-3025 (((-112) $ $) 131)) (-3000 (((-112) $ $) 129)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 130)) (-2990 (((-112) $ $) 128)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ (-577) $) 111))) +(((-558) (-141)) (T -558)) +((-1912 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-4146 (*1 *1) (-4 *1 (-558))) (-3402 (*1 *1 *1) (-4 *1 (-558))) (-2826 (*1 *1 *1 *1) (-4 *1 (-558))) (-3151 (*1 *2 *1 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-3140 (*1 *1 *1 *1) (-4 *1 (-558))) (-3129 (*1 *1 *1 *1) (-4 *1 (-558))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-4341 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-420 (-577))))) (-4363 (*1 *2 *1) (|partial| -12 (-4 *1 (-558)) (-5 *2 (-420 (-577))))) (-1910 (*1 *1) (-4 *1 (-558))) (-1910 (*1 *1 *1) (-4 *1 (-558))) (-1944 (*1 *1 *1) (-4 *1 (-558))) (-1383 (*1 *1 *1) (-4 *1 (-558))) (-1877 (*1 *1 *1) (-4 *1 (-558))) (-4199 (*1 *1 *1) (-4 *1 (-558))) (-3118 (*1 *1 *1 *1 *1) (-4 *1 (-558))) (-3107 (*1 *1 *1 *1 *1) (-4 *1 (-558))) (-3099 (*1 *1 *1 *1 *1) (-4 *1 (-558))) (-3091 (*1 *1 *1 *1 *1) (-4 *1 (-558))) (-3082 (*1 *1 *1 *1) (-4 *1 (-558)))) +(-13 (-1246) (-318) (-836) (-239) (-627 (-577)) (-1063 (-577)) (-654 (-577)) (-627 (-549)) (-627 (-911 (-577))) (-905 (-577)) (-144) (-1047) (-148) (-1177) (-10 -8 (-15 -1912 ((-112) $)) (-15 -1924 ((-112) $)) (-6 -4469) (-15 -4146 ($)) (-15 -3402 ($ $)) (-15 -2826 ($ $ $)) (-15 -3151 ((-112) $ $)) (-15 -3140 ($ $ $)) (-15 -3129 ($ $ $)) (-15 -4353 ((-112) $)) (-15 -4341 ((-420 (-577)) $)) (-15 -4363 ((-3 (-420 (-577)) "failed") $)) (-15 -1910 ($)) (-15 -1910 ($ $)) (-15 -1944 ($ $)) (-15 -1383 ($ $)) (-15 -1877 ($ $)) (-15 -4199 ($ $)) (-15 -3118 ($ $ $ $)) (-15 -3107 ($ $ $ $)) (-15 -3099 ($ $ $ $)) (-15 -3091 ($ $ $ $)) (-15 -3082 ($ $ $)) (-6 -4468))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-144) . T) ((-174) . T) ((-627 (-228)) . T) ((-627 (-391)) . T) ((-627 (-549)) . T) ((-627 (-577)) . T) ((-627 (-911 (-577))) . T) ((-235 $) . T) ((-239) . T) ((-238) . T) ((-301) . T) ((-318) . T) ((-465) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0=(-577)) . T) ((-664 $) . T) ((-656 $) . T) ((-654 #0#) . T) ((-733 $) . T) ((-742) . T) ((-807) . T) ((-808) . T) ((-810) . T) ((-811) . T) ((-836) . T) ((-864) . T) ((-865) . T) ((-868) . T) ((-905 (-577)) . T) ((-943) . T) ((-1047) . T) ((-1063 (-577)) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1177) . T) ((-1242) . T) ((-1246) . T)) +((-3473 (((-112) $ $) NIL)) (-2229 (((-787)) NIL)) (-1534 (($) NIL T CONST)) (-1910 (($) NIL)) (-3732 (($ $ $) NIL) (($) NIL T CONST)) (-3201 (($ $ $) NIL) (($) NIL T CONST)) (-4038 (((-944) $) NIL)) (-2810 (((-1183) $) NIL)) (-3222 (($ (-944)) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL))) +(((-559) (-13 (-860) (-10 -8 (-15 -1534 ($) -1512)))) (T -559)) +((-1534 (*1 *1) (-5 *1 (-559)))) +(-13 (-860) (-10 -8 (-15 -1534 ($) -1512))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-3429 (((-112) $ $) NIL)) (-2193 (((-784)) NIL)) (-4359 (($) NIL T CONST)) (-1892 (($) NIL)) (-3707 (($ $ $) NIL) (($) NIL T CONST)) (-1611 (($ $ $) NIL) (($) NIL T CONST)) (-3007 (((-941) $) NIL)) (-2342 (((-1180) $) NIL)) (-3178 (($ (-941)) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL))) -(((-559) (-13 (-857) (-10 -8 (-15 -4359 ($) -1509)))) (T -559)) -((-4359 (*1 *1) (-5 *1 (-559)))) -(-13 (-857) (-10 -8 (-15 -4359 ($) -1509))) +((-3473 (((-112) $ $) NIL)) (-2229 (((-787)) NIL)) (-1534 (($) NIL T CONST)) (-1910 (($) NIL)) (-3732 (($ $ $) NIL) (($) NIL T CONST)) (-3201 (($ $ $) NIL) (($) NIL T CONST)) (-4038 (((-944) $) NIL)) (-2810 (((-1183) $) NIL)) (-3222 (($ (-944)) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL))) +(((-560) (-13 (-860) (-10 -8 (-15 -1534 ($) -1512)))) (T -560)) +((-1534 (*1 *1) (-5 *1 (-560)))) +(-13 (-860) (-10 -8 (-15 -1534 ($) -1512))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-3429 (((-112) $ $) NIL)) (-2193 (((-784)) NIL)) (-4359 (($) NIL T CONST)) (-1892 (($) NIL)) (-3707 (($ $ $) NIL) (($) NIL T CONST)) (-1611 (($ $ $) NIL) (($) NIL T CONST)) (-3007 (((-941) $) NIL)) (-2342 (((-1180) $) NIL)) (-3178 (($ (-941)) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL))) -(((-560) (-13 (-857) (-10 -8 (-15 -4359 ($) -1509)))) (T -560)) -((-4359 (*1 *1) (-5 *1 (-560)))) -(-13 (-857) (-10 -8 (-15 -4359 ($) -1509))) +((-3473 (((-112) $ $) NIL)) (-2229 (((-787)) NIL)) (-1534 (($) NIL T CONST)) (-1910 (($) NIL)) (-3732 (($ $ $) NIL) (($) NIL T CONST)) (-3201 (($ $ $) NIL) (($) NIL T CONST)) (-4038 (((-944) $) NIL)) (-2810 (((-1183) $) NIL)) (-3222 (($ (-944)) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL))) +(((-561) (-13 (-860) (-10 -8 (-15 -1534 ($) -1512)))) (T -561)) +((-1534 (*1 *1) (-5 *1 (-561)))) +(-13 (-860) (-10 -8 (-15 -1534 ($) -1512))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-3429 (((-112) $ $) NIL)) (-2193 (((-784)) NIL)) (-4359 (($) NIL T CONST)) (-1892 (($) NIL)) (-3707 (($ $ $) NIL) (($) NIL T CONST)) (-1611 (($ $ $) NIL) (($) NIL T CONST)) (-3007 (((-941) $) NIL)) (-2342 (((-1180) $) NIL)) (-3178 (($ (-941)) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL))) -(((-561) (-13 (-857) (-10 -8 (-15 -4359 ($) -1509)))) (T -561)) -((-4359 (*1 *1) (-5 *1 (-561)))) -(-13 (-857) (-10 -8 (-15 -4359 ($) -1509))) +((-3473 (((-112) $ $) NIL)) (-2229 (((-787)) NIL)) (-1534 (($) NIL T CONST)) (-1910 (($) NIL)) (-3732 (($ $ $) NIL) (($) NIL T CONST)) (-3201 (($ $ $) NIL) (($) NIL T CONST)) (-4038 (((-944) $) NIL)) (-2810 (((-1183) $) NIL)) (-3222 (($ (-944)) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL))) +(((-562) (-13 (-860) (-10 -8 (-15 -1534 ($) -1512)))) (T -562)) +((-1534 (*1 *1) (-5 *1 (-562)))) +(-13 (-860) (-10 -8 (-15 -1534 ($) -1512))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-3429 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4095 (($) NIL) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-4313 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 ((|#2| $ |#1| |#2|) NIL)) (-3162 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2287 (((-3 |#2| "failed") |#1| $) NIL)) (-4359 (($) NIL T CONST)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3647 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) NIL)) (-3895 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3622 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2158 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#2| $ |#1|) NIL)) (-1458 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) NIL)) (-3853 ((|#1| $) NIL (|has| |#1| (-862)))) (-2070 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2272 ((|#1| $) NIL (|has| |#1| (-862)))) (-2148 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4467))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3159 (((-657 |#1|) $) NIL)) (-1708 (((-112) |#1| $) NIL)) (-3050 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2468 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-1430 (((-657 |#1|) $) NIL)) (-4242 (((-112) |#1| $) NIL)) (-1471 (((-1142) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3510 ((|#2| $) NIL (|has| |#1| (-862)))) (-2951 (((-3 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1987 (($ $ |#2|) NIL (|has| $ (-6 -4467)))) (-2277 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-3399 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2380 (((-657 |#2|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1504 (($) NIL) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-1482 (((-784) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3511 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-3501 (((-877) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-625 (-877))) (|has| |#2| (-625 (-877)))))) (-2046 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4079 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-2147 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-562 |#1| |#2| |#3|) (-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4466))) (-1122) (-1122) (-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4466)))) (T -562)) -NIL -(-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4466))) -((-1650 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1194 |#2|) (-1194 |#2|))) 50))) -(((-563 |#1| |#2|) (-10 -7 (-15 -1650 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1194 |#2|) (-1194 |#2|))))) (-568) (-13 (-27) (-442 |#1|))) (T -563)) -((-1650 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1194 *3) (-1194 *3))) (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) (-5 *1 (-563 *6 *3))))) -(-10 -7 (-15 -1650 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1194 |#2|) (-1194 |#2|))))) -((-2867 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-1449 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-1968 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 220))) -(((-564 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1968 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2867 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1449 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-568) (-1060 (-576))) (-13 (-27) (-442 |#1|)) (-1265 |#2|) (-1265 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -564)) -((-1449 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1060 (-576)))) (-4 *7 (-1265 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) (-4 *2 (-353 *5 *6 *7)))) (-2867 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1265 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1060 (-576)))) (-4 *8 (-1265 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8)))) (-1968 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1265 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1060 (-576)))) (-4 *8 (-1265 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) -(-10 -7 (-15 -1968 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2867 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1449 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-3114 (((-112) (-576) (-576)) 12)) (-2677 (((-576) (-576)) 7)) (-4430 (((-576) (-576) (-576)) 10))) -(((-565) (-10 -7 (-15 -2677 ((-576) (-576))) (-15 -4430 ((-576) (-576) (-576))) (-15 -3114 ((-112) (-576) (-576))))) (T -565)) -((-3114 (*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565)))) (-4430 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565)))) (-2677 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) -(-10 -7 (-15 -2677 ((-576) (-576))) (-15 -4430 ((-576) (-576) (-576))) (-15 -3114 ((-112) (-576) (-576)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3308 ((|#1| $) 68)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-2176 (($ $) 98)) (-2030 (($ $) 81)) (-3733 ((|#1| $) 69)) (-2721 (((-3 $ "failed") $ $) 20)) (-1896 (($ $) 80)) (-2150 (($ $) 97)) (-2004 (($ $) 82)) (-2201 (($ $) 96)) (-2052 (($ $) 83)) (-4359 (($) 18 T CONST)) (-1624 (((-3 (-576) "failed") $) 76)) (-2884 (((-576) $) 77)) (-3843 (((-3 $ "failed") $) 37)) (-2980 (($ |#1| |#1|) 73)) (-2828 (((-112) $) 67)) (-1657 (($) 108)) (-4094 (((-112) $) 35)) (-2082 (($ $ (-576)) 79)) (-2881 (((-112) $) 66)) (-3707 (($ $ $) 109)) (-1611 (($ $ $) 110)) (-3670 (($ $) 105)) (-3402 (($ $ $) 52) (($ (-657 $)) 51)) (-2342 (((-1180) $) 10)) (-3886 (($ |#1| |#1|) 74) (($ |#1|) 72) (($ (-419 (-576))) 71)) (-3408 ((|#1| $) 70)) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3436 (($ $ $) 54) (($ (-657 $)) 53)) (-3418 (((-3 $ "failed") $ $) 48)) (-4067 (($ $) 106)) (-2213 (($ $) 95)) (-2062 (($ $) 84)) (-2188 (($ $) 94)) (-2042 (($ $) 85)) (-2163 (($ $) 93)) (-2017 (($ $) 86)) (-3111 (((-112) $ |#1|) 65)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 75)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4110 (($ $) 104)) (-2100 (($ $) 92)) (-4041 (((-112) $ $) 45)) (-2225 (($ $) 103)) (-2072 (($ $) 91)) (-4137 (($ $) 102)) (-2125 (($ $) 90)) (-2224 (($ $) 101)) (-2137 (($ $) 89)) (-4124 (($ $) 100)) (-2113 (($ $) 88)) (-2235 (($ $) 99)) (-2085 (($ $) 87)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2985 (((-112) $ $) 111)) (-2963 (((-112) $ $) 113)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 112)) (-2954 (((-112) $ $) 114)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ $) 107) (($ $ (-419 (-576))) 78)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-566 |#1|) (-141) (-13 (-416) (-1224))) (T -566)) -((-3886 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224))))) (-2980 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224))))) (-3886 (*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224))))) (-3886 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1224))))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224))))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224))))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224))))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1224))) (-5 *2 (-112)))) (-2881 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1224))) (-5 *2 (-112)))) (-3111 (*1 *2 *1 *3) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1224))) (-5 *2 (-112))))) -(-13 (-464) (-862) (-1224) (-1024) (-1060 (-576)) (-10 -8 (-6 -4144) (-15 -3886 ($ |t#1| |t#1|)) (-15 -2980 ($ |t#1| |t#1|)) (-15 -3886 ($ |t#1|)) (-15 -3886 ($ (-419 (-576)))) (-15 -3408 (|t#1| $)) (-15 -3733 (|t#1| $)) (-15 -3308 (|t#1| $)) (-15 -2828 ((-112) $)) (-15 -2881 ((-112) $)) (-15 -3111 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-294) . T) ((-300) . T) ((-464) . T) ((-505) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-862) . T) ((-865) . T) ((-1024) . T) ((-1060 (-576)) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1224) . T) ((-1227) . T) ((-1239) . T)) -((-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 9)) (-3325 (($ $) 11)) (-4306 (((-112) $) 20)) (-3843 (((-3 $ "failed") $) 16)) (-4041 (((-112) $ $) 22))) -(((-567 |#1|) (-10 -8 (-15 -4306 ((-112) |#1|)) (-15 -4041 ((-112) |#1| |#1|)) (-15 -3325 (|#1| |#1|)) (-15 -3167 ((-2 (|:| -2824 |#1|) (|:| -4453 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3843 ((-3 |#1| "failed") |#1|))) (-568)) (T -567)) -NIL -(-10 -8 (-15 -4306 ((-112) |#1|)) (-15 -4041 ((-112) |#1| |#1|)) (-15 -3325 (|#1| |#1|)) (-15 -3167 ((-2 (|:| -2824 |#1|) (|:| -4453 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3843 ((-3 |#1| "failed") |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3843 (((-3 $ "failed") $) 37)) (-4094 (((-112) $) 35)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3418 (((-3 $ "failed") $ $) 48)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 45)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-568) (-141)) (T -568)) -((-3418 (*1 *1 *1 *1) (|partial| -4 *1 (-568))) (-3167 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2824 *1) (|:| -4453 *1) (|:| |associate| *1))) (-4 *1 (-568)))) (-3325 (*1 *1 *1) (-4 *1 (-568))) (-4041 (*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112)))) (-4306 (*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) -(-13 (-174) (-38 $) (-300) (-10 -8 (-15 -3418 ((-3 $ "failed") $ $)) (-15 -3167 ((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $)) (-15 -3325 ($ $)) (-15 -4041 ((-112) $ $)) (-15 -4306 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-300) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3299 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1198) (-657 |#2|)) 38)) (-1889 (((-598 |#2|) |#2| (-1198)) 63)) (-4020 (((-3 |#2| "failed") |#2| (-1198)) 156)) (-3394 (((-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1198) (-624 |#2|) (-657 (-624 |#2|))) 159)) (-3567 (((-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1198) |#2|) 41))) -(((-569 |#1| |#2|) (-10 -7 (-15 -3567 ((-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1198) |#2|)) (-15 -3299 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1198) (-657 |#2|))) (-15 -4020 ((-3 |#2| "failed") |#2| (-1198))) (-15 -1889 ((-598 |#2|) |#2| (-1198))) (-15 -3394 ((-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1198) (-624 |#2|) (-657 (-624 |#2|))))) (-13 (-464) (-148) (-1060 (-576)) (-652 (-576))) (-13 (-27) (-1224) (-442 |#1|))) (T -569)) -((-3394 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1198)) (-5 *6 (-657 (-624 *3))) (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *7))) (-4 *7 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-2 (|:| -2322 *3) (|:| |coeff| *3))) (-5 *1 (-569 *7 *3)))) (-1889 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) (-4020 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4))))) (-3299 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-657 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3)))) (-3567 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-2 (|:| -2322 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5)))))) -(-10 -7 (-15 -3567 ((-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1198) |#2|)) (-15 -3299 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1198) (-657 |#2|))) (-15 -4020 ((-3 |#2| "failed") |#2| (-1198))) (-15 -1889 ((-598 |#2|) |#2| (-1198))) (-15 -3394 ((-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1198) (-624 |#2|) (-657 (-624 |#2|))))) -((-4402 (((-430 |#1|) |#1|) 19)) (-1885 (((-430 |#1|) |#1|) 34)) (-2499 (((-3 |#1| "failed") |#1|) 49)) (-3410 (((-430 |#1|) |#1|) 60))) -(((-570 |#1|) (-10 -7 (-15 -1885 ((-430 |#1|) |#1|)) (-15 -4402 ((-430 |#1|) |#1|)) (-15 -3410 ((-430 |#1|) |#1|)) (-15 -2499 ((-3 |#1| "failed") |#1|))) (-557)) (T -570)) -((-2499 (*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557)))) (-3410 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-4402 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-1885 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) -(-10 -7 (-15 -1885 ((-430 |#1|) |#1|)) (-15 -4402 ((-430 |#1|) |#1|)) (-15 -3410 ((-430 |#1|) |#1|)) (-15 -2499 ((-3 |#1| "failed") |#1|))) -((-4350 (($) 9)) (-2647 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-3159 (((-657 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-2468 (($ (-2 (|:| -4291 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-2088 (($ (-657 (-2 (|:| -4291 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-4440 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-2380 (((-657 (-2 (|:| -4291 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-3416 (((-1294)) 11))) -(((-571) (-10 -8 (-15 -4350 ($)) (-15 -3416 ((-1294))) (-15 -3159 ((-657 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2088 ($ (-657 (-2 (|:| -4291 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2468 ($ (-2 (|:| -4291 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2647 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2380 ((-657 (-2 (|:| -4291 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4440 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -571)) -((-4440 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-2380 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| -4291 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-2647 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-2468 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4291 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-571)))) (-2088 (*1 *1 *2) (-12 (-5 *2 (-657 (-2 (|:| -4291 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-3159 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-571)))) (-3416 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-571)))) (-4350 (*1 *1) (-5 *1 (-571)))) -(-10 -8 (-15 -4350 ($)) (-15 -3416 ((-1294))) (-15 -3159 ((-657 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2088 ($ (-657 (-2 (|:| -4291 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2468 ($ (-2 (|:| -4291 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2647 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2380 ((-657 (-2 (|:| -4291 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4440 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1179 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1685 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-1849 (((-1194 (-419 (-1194 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1194 |#2|)) 35)) (-2797 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-657 |#2|) (-624 |#2|) |#2| (-419 (-1194 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-657 |#2|) |#2| (-1194 |#2|)) 115)) (-2569 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1194 |#2|))) 85) (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1194 |#2|)) 55)) (-1468 (((-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1194 |#2|))) 92) (((-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1194 |#2|)) 114)) (-1357 (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1198)) (-624 |#2|) |#2| (-419 (-1194 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1198)) |#2| (-1194 |#2|)) 116)) (-4098 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1985 (-657 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1194 |#2|))) 133 (|has| |#3| (-669 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1985 (-657 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1194 |#2|)) 132 (|has| |#3| (-669 |#2|)))) (-2014 ((|#2| (-1194 (-419 (-1194 |#2|))) (-624 |#2|) |#2|) 53)) (-3609 (((-1194 (-419 (-1194 |#2|))) (-1194 |#2|) (-624 |#2|)) 34))) -(((-572 |#1| |#2| |#3|) (-10 -7 (-15 -2569 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1194 |#2|))) (-15 -2569 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1194 |#2|)))) (-15 -1468 ((-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1194 |#2|))) (-15 -1468 ((-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1194 |#2|)))) (-15 -2797 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-657 |#2|) |#2| (-1194 |#2|))) (-15 -2797 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-657 |#2|) (-624 |#2|) |#2| (-419 (-1194 |#2|)))) (-15 -1357 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1198)) |#2| (-1194 |#2|))) (-15 -1357 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1198)) (-624 |#2|) |#2| (-419 (-1194 |#2|)))) (-15 -1849 ((-1194 (-419 (-1194 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1194 |#2|))) (-15 -2014 (|#2| (-1194 (-419 (-1194 |#2|))) (-624 |#2|) |#2|)) (-15 -3609 ((-1194 (-419 (-1194 |#2|))) (-1194 |#2|) (-624 |#2|))) (IF (|has| |#3| (-669 |#2|)) (PROGN (-15 -4098 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1985 (-657 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1194 |#2|))) (-15 -4098 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1985 (-657 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1194 |#2|))))) |%noBranch|)) (-13 (-464) (-1060 (-576)) (-148) (-652 (-576))) (-13 (-442 |#1|) (-27) (-1224)) (-1122)) (T -572)) -((-4098 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1194 *4))) (-4 *4 (-13 (-442 *7) (-27) (-1224))) (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1985 (-657 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-669 *4)) (-4 *3 (-1122)))) (-4098 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1194 *4)) (-4 *4 (-13 (-442 *7) (-27) (-1224))) (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1985 (-657 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-669 *4)) (-4 *3 (-1122)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1224))) (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-1194 (-419 (-1194 *6)))) (-5 *1 (-572 *5 *6 *7)) (-5 *3 (-1194 *6)) (-4 *7 (-1122)))) (-2014 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1194 (-419 (-1194 *2)))) (-5 *4 (-624 *2)) (-4 *2 (-13 (-442 *5) (-27) (-1224))) (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1122)))) (-1849 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-1194 (-419 (-1194 *3)))) (-5 *1 (-572 *6 *3 *7)) (-5 *5 (-1194 *3)) (-4 *7 (-1122)))) (-1357 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1198))) (-5 *5 (-419 (-1194 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1122)))) (-1357 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1198))) (-5 *5 (-1194 *2)) (-4 *2 (-13 (-442 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1122)))) (-2797 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-657 *3)) (-5 *6 (-419 (-1194 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1224))) (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1122)))) (-2797 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-657 *3)) (-5 *6 (-1194 *3)) (-4 *3 (-13 (-442 *7) (-27) (-1224))) (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1122)))) (-1468 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1194 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-2 (|:| -2322 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1122)))) (-1468 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1194 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-2 (|:| -2322 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1122)))) (-2569 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1194 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1122)))) (-2569 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1194 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1122))))) -(-10 -7 (-15 -2569 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1194 |#2|))) (-15 -2569 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1194 |#2|)))) (-15 -1468 ((-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1194 |#2|))) (-15 -1468 ((-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1194 |#2|)))) (-15 -2797 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-657 |#2|) |#2| (-1194 |#2|))) (-15 -2797 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-657 |#2|) (-624 |#2|) |#2| (-419 (-1194 |#2|)))) (-15 -1357 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1198)) |#2| (-1194 |#2|))) (-15 -1357 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1198)) (-624 |#2|) |#2| (-419 (-1194 |#2|)))) (-15 -1849 ((-1194 (-419 (-1194 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1194 |#2|))) (-15 -2014 (|#2| (-1194 (-419 (-1194 |#2|))) (-624 |#2|) |#2|)) (-15 -3609 ((-1194 (-419 (-1194 |#2|))) (-1194 |#2|) (-624 |#2|))) (IF (|has| |#3| (-669 |#2|)) (PROGN (-15 -4098 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1985 (-657 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1194 |#2|))) (-15 -4098 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1985 (-657 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1194 |#2|))))) |%noBranch|)) -((-2057 (((-576) (-576) (-784)) 85)) (-3063 (((-576) (-576)) 83)) (-3589 (((-576) (-576)) 81)) (-3489 (((-576) (-576)) 87)) (-1565 (((-576) (-576) (-576)) 65)) (-1668 (((-576) (-576) (-576)) 62)) (-1785 (((-419 (-576)) (-576)) 30)) (-2117 (((-576) (-576)) 34)) (-2997 (((-576) (-576)) 74)) (-2497 (((-576) (-576)) 46)) (-3042 (((-657 (-576)) (-576)) 80)) (-4223 (((-576) (-576) (-576) (-576) (-576)) 58)) (-2598 (((-419 (-576)) (-576)) 55))) -(((-573) (-10 -7 (-15 -2598 ((-419 (-576)) (-576))) (-15 -4223 ((-576) (-576) (-576) (-576) (-576))) (-15 -3042 ((-657 (-576)) (-576))) (-15 -2497 ((-576) (-576))) (-15 -2997 ((-576) (-576))) (-15 -2117 ((-576) (-576))) (-15 -1785 ((-419 (-576)) (-576))) (-15 -1668 ((-576) (-576) (-576))) (-15 -1565 ((-576) (-576) (-576))) (-15 -3489 ((-576) (-576))) (-15 -3589 ((-576) (-576))) (-15 -3063 ((-576) (-576))) (-15 -2057 ((-576) (-576) (-784))))) (T -573)) -((-2057 (*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-784)) (-5 *1 (-573)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1565 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1668 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1785 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-2117 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2997 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2497 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3042 (*1 *2 *3) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-4223 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2598 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) -(-10 -7 (-15 -2598 ((-419 (-576)) (-576))) (-15 -4223 ((-576) (-576) (-576) (-576) (-576))) (-15 -3042 ((-657 (-576)) (-576))) (-15 -2497 ((-576) (-576))) (-15 -2997 ((-576) (-576))) (-15 -2117 ((-576) (-576))) (-15 -1785 ((-419 (-576)) (-576))) (-15 -1668 ((-576) (-576) (-576))) (-15 -1565 ((-576) (-576) (-576))) (-15 -3489 ((-576) (-576))) (-15 -3589 ((-576) (-576))) (-15 -3063 ((-576) (-576))) (-15 -2057 ((-576) (-576) (-784)))) -((-2517 (((-2 (|:| |answer| |#4|) (|:| -3349 |#4|)) |#4| (-1 |#2| |#2|)) 56))) -(((-574 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2517 ((-2 (|:| |answer| |#4|) (|:| -3349 |#4|)) |#4| (-1 |#2| |#2|)))) (-374) (-1265 |#1|) (-1265 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -574)) -((-2517 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) (-4 *7 (-1265 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3349 *3))) (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7))))) -(-10 -7 (-15 -2517 ((-2 (|:| |answer| |#4|) (|:| -3349 |#4|)) |#4| (-1 |#2| |#2|)))) -((-2517 (((-2 (|:| |answer| (-419 |#2|)) (|:| -3349 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 18))) -(((-575 |#1| |#2|) (-10 -7 (-15 -2517 ((-2 (|:| |answer| (-419 |#2|)) (|:| -3349 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1265 |#1|)) (T -575)) -((-2517 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| (-419 *6)) (|:| -3349 (-419 *6)) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) -(-10 -7 (-15 -2517 ((-2 (|:| |answer| (-419 |#2|)) (|:| -3349 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 30)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 96)) (-3325 (($ $) 97)) (-4306 (((-112) $) NIL)) (-2061 (($ $ $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-3578 (($ $ $ $) 52)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-2864 (((-112) $ $) NIL)) (-1536 (((-576) $) NIL)) (-2790 (($ $ $) 91)) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL)) (-2884 (((-576) $) NIL)) (-3373 (($ $ $) 53)) (-3306 (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 76) (((-702 (-576)) (-702 $)) 72)) (-3843 (((-3 $ "failed") $) 93)) (-2775 (((-3 (-419 (-576)) "failed") $) NIL)) (-3112 (((-112) $) NIL)) (-4239 (((-419 (-576)) $) NIL)) (-1892 (($) 78) (($ $) 79)) (-3385 (($ $ $) 90)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-2798 (($ $ $ $) NIL)) (-3211 (($ $ $) 69)) (-2828 (((-112) $) NIL)) (-2194 (($ $ $) NIL)) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL)) (-4094 (((-112) $) 34)) (-2320 (((-112) $) 85)) (-4019 (((-3 $ "failed") $) NIL)) (-2881 (((-112) $) 43)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3767 (($ $ $ $) 54)) (-3707 (($ $ $) 87)) (-1611 (($ $ $) 86)) (-4195 (($ $) NIL)) (-3358 (($ $) 49)) (-3101 (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL) (((-702 (-576)) (-1289 $)) NIL)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) 68)) (-2233 (($ $ $) NIL)) (-1706 (($) NIL T CONST)) (-1380 (($ $) 38)) (-1471 (((-1142) $) 42)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 128)) (-3436 (($ $ $) 94) (($ (-657 $)) NIL)) (-3907 (($ $) NIL)) (-1885 (((-430 $) $) 114)) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL)) (-3418 (((-3 $ "failed") $ $) 112)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3593 (((-112) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 89)) (-2815 (($ $) NIL) (($ $ (-784)) NIL)) (-1862 (($ $) 40)) (-1923 (($ $) 36)) (-4148 (((-576) $) 48) (((-548) $) 63) (((-908 (-576)) $) NIL) (((-390) $) 57) (((-227) $) 60) (((-1180) $) 65)) (-3501 (((-877) $) 46) (($ (-576)) 47) (($ $) NIL) (($ (-576)) 47)) (-1960 (((-784)) NIL T CONST)) (-3091 (((-112) $ $) NIL)) (-3871 (($ $ $) NIL)) (-2046 (((-112) $ $) NIL)) (-4143 (($) 35)) (-4041 (((-112) $ $) NIL)) (-2430 (($ $ $ $) 51)) (-1792 (($ $) 77)) (-2769 (($) 6 T CONST)) (-2779 (($) 31 T CONST)) (-3095 (((-1180) $) 26) (((-1180) $ (-112)) 27) (((-1294) (-835) $) 28) (((-1294) (-835) $ (-112)) 29)) (-2097 (($ $) NIL) (($ $ (-784)) NIL)) (-2985 (((-112) $ $) 50)) (-2963 (((-112) $ $) 80)) (-2933 (((-112) $ $) 33)) (-2973 (((-112) $ $) 81)) (-2954 (((-112) $ $) 10)) (-3022 (($ $) 16) (($ $ $) 39)) (-3012 (($ $ $) 37)) (** (($ $ (-941)) NIL) (($ $ (-784)) 84)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 83) (($ $ $) 82) (($ (-576) $) 83))) -(((-576) (-13 (-557) (-626 (-1180)) (-841) (-10 -7 (-6 -4453) (-6 -4458) (-6 -4454) (-6 -4448)))) (T -576)) -NIL -(-13 (-557) (-626 (-1180)) (-841) (-10 -7 (-6 -4453) (-6 -4458) (-6 -4454) (-6 -4448))) -((-4209 (((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057))) (-782) (-1085)) 116) (((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057))) (-782)) 118)) (-4190 (((-3 (-1057) "failed") (-326 (-390)) (-1114 (-856 (-390))) (-1198)) 195) (((-3 (-1057) "failed") (-326 (-390)) (-1114 (-856 (-390))) (-1180)) 194) (((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))) (-390) (-390) (-1085)) 199) (((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))) (-390) (-390)) 200) (((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))) (-390)) 201) (((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390))))) 202) (((-1057) (-326 (-390)) (-1116 (-856 (-390)))) 190) (((-1057) (-326 (-390)) (-1116 (-856 (-390))) (-390)) 189) (((-1057) (-326 (-390)) (-1116 (-856 (-390))) (-390) (-390)) 185) (((-1057) (-782)) 177) (((-1057) (-326 (-390)) (-1116 (-856 (-390))) (-390) (-390) (-1085)) 184))) -(((-577) (-10 -7 (-15 -4190 ((-1057) (-326 (-390)) (-1116 (-856 (-390))) (-390) (-390) (-1085))) (-15 -4190 ((-1057) (-782))) (-15 -4190 ((-1057) (-326 (-390)) (-1116 (-856 (-390))) (-390) (-390))) (-15 -4190 ((-1057) (-326 (-390)) (-1116 (-856 (-390))) (-390))) (-15 -4190 ((-1057) (-326 (-390)) (-1116 (-856 (-390))))) (-15 -4190 ((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))))) (-15 -4190 ((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))) (-390))) (-15 -4190 ((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))) (-390) (-390))) (-15 -4190 ((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))) (-390) (-390) (-1085))) (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057))) (-782))) (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057))) (-782) (-1085))) (-15 -4190 ((-3 (-1057) "failed") (-326 (-390)) (-1114 (-856 (-390))) (-1180))) (-15 -4190 ((-3 (-1057) "failed") (-326 (-390)) (-1114 (-856 (-390))) (-1198))))) (T -577)) -((-4190 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1114 (-856 (-390)))) (-5 *5 (-1198)) (-5 *2 (-1057)) (-5 *1 (-577)))) (-4190 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1114 (-856 (-390)))) (-5 *5 (-1180)) (-5 *2 (-1057)) (-5 *1 (-577)))) (-4209 (*1 *2 *3 *4) (-12 (-5 *3 (-782)) (-5 *4 (-1085)) (-5 *2 (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057)))) (-5 *1 (-577)))) (-4209 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057)))) (-5 *1 (-577)))) (-4190 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-1116 (-856 (-390))))) (-5 *5 (-390)) (-5 *6 (-1085)) (-5 *2 (-1057)) (-5 *1 (-577)))) (-4190 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-1116 (-856 (-390))))) (-5 *5 (-390)) (-5 *2 (-1057)) (-5 *1 (-577)))) (-4190 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-1116 (-856 (-390))))) (-5 *5 (-390)) (-5 *2 (-1057)) (-5 *1 (-577)))) (-4190 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-1116 (-856 (-390))))) (-5 *2 (-1057)) (-5 *1 (-577)))) (-4190 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1116 (-856 (-390)))) (-5 *2 (-1057)) (-5 *1 (-577)))) (-4190 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1116 (-856 (-390)))) (-5 *5 (-390)) (-5 *2 (-1057)) (-5 *1 (-577)))) (-4190 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1116 (-856 (-390)))) (-5 *5 (-390)) (-5 *2 (-1057)) (-5 *1 (-577)))) (-4190 (*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1057)) (-5 *1 (-577)))) (-4190 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1116 (-856 (-390)))) (-5 *5 (-390)) (-5 *6 (-1085)) (-5 *2 (-1057)) (-5 *1 (-577))))) -(-10 -7 (-15 -4190 ((-1057) (-326 (-390)) (-1116 (-856 (-390))) (-390) (-390) (-1085))) (-15 -4190 ((-1057) (-782))) (-15 -4190 ((-1057) (-326 (-390)) (-1116 (-856 (-390))) (-390) (-390))) (-15 -4190 ((-1057) (-326 (-390)) (-1116 (-856 (-390))) (-390))) (-15 -4190 ((-1057) (-326 (-390)) (-1116 (-856 (-390))))) (-15 -4190 ((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))))) (-15 -4190 ((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))) (-390))) (-15 -4190 ((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))) (-390) (-390))) (-15 -4190 ((-1057) (-326 (-390)) (-657 (-1116 (-856 (-390)))) (-390) (-390) (-1085))) (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057))) (-782))) (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057))) (-782) (-1085))) (-15 -4190 ((-3 (-1057) "failed") (-326 (-390)) (-1114 (-856 (-390))) (-1180))) (-15 -4190 ((-3 (-1057) "failed") (-326 (-390)) (-1114 (-856 (-390))) (-1198)))) -((-3556 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-657 |#2|)) 195)) (-4185 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|)) 97)) (-4244 (((-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|) 191)) (-3952 (((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1198))) 200)) (-3710 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1985 (-657 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1198)) 209 (|has| |#3| (-669 |#2|))))) -(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -4185 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -4244 ((-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -3556 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-657 |#2|))) (-15 -3952 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1198)))) (IF (|has| |#3| (-669 |#2|)) (-15 -3710 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1985 (-657 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1198))) |%noBranch|)) (-13 (-464) (-1060 (-576)) (-148) (-652 (-576))) (-13 (-442 |#1|) (-27) (-1224)) (-1122)) (T -578)) -((-3710 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1198)) (-4 *4 (-13 (-442 *7) (-27) (-1224))) (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1985 (-657 *4)))) (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-669 *4)) (-4 *3 (-1122)))) (-3952 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1198))) (-4 *2 (-13 (-442 *5) (-27) (-1224))) (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1122)))) (-3556 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-657 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1122)))) (-4244 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1224))) (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-2 (|:| -2322 *3) (|:| |coeff| *3))) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1122)))) (-4185 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1224))) (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1122))))) -(-10 -7 (-15 -4185 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -4244 ((-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -3556 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-657 |#2|))) (-15 -3952 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1198)))) (IF (|has| |#3| (-669 |#2|)) (-15 -3710 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1985 (-657 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1198))) |%noBranch|)) -((-4395 (((-2 (|:| -3974 |#2|) (|:| |nconst| |#2|)) |#2| (-1198)) 64)) (-1418 (((-3 |#2| "failed") |#2| (-1198) (-856 |#2|) (-856 |#2|)) 175 (-12 (|has| |#2| (-1161)) (|has| |#1| (-626 (-908 (-576)))) (|has| |#1| (-902 (-576))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198)) 154 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-908 (-576)))) (|has| |#1| (-902 (-576)))))) (-4217 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198)) 156 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-908 (-576)))) (|has| |#1| (-902 (-576))))))) -(((-579 |#1| |#2|) (-10 -7 (-15 -4395 ((-2 (|:| -3974 |#2|) (|:| |nconst| |#2|)) |#2| (-1198))) (IF (|has| |#1| (-626 (-908 (-576)))) (IF (|has| |#1| (-902 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -4217 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198))) (-15 -1418 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198)))) |%noBranch|) (IF (|has| |#2| (-1161)) (-15 -1418 ((-3 |#2| "failed") |#2| (-1198) (-856 |#2|) (-856 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1060 (-576)) (-464) (-652 (-576))) (-13 (-27) (-1224) (-442 |#1|))) (T -579)) -((-1418 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1198)) (-5 *4 (-856 *2)) (-4 *2 (-1161)) (-4 *2 (-13 (-27) (-1224) (-442 *5))) (-4 *5 (-626 (-908 (-576)))) (-4 *5 (-902 (-576))) (-4 *5 (-13 (-1060 (-576)) (-464) (-652 (-576)))) (-5 *1 (-579 *5 *2)))) (-1418 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-626 (-908 (-576)))) (-4 *5 (-902 (-576))) (-4 *5 (-13 (-1060 (-576)) (-464) (-652 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) (-4217 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-626 (-908 (-576)))) (-4 *5 (-902 (-576))) (-4 *5 (-13 (-1060 (-576)) (-464) (-652 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) (-4395 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-1060 (-576)) (-464) (-652 (-576)))) (-5 *2 (-2 (|:| -3974 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5)))))) -(-10 -7 (-15 -4395 ((-2 (|:| -3974 |#2|) (|:| |nconst| |#2|)) |#2| (-1198))) (IF (|has| |#1| (-626 (-908 (-576)))) (IF (|has| |#1| (-902 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -4217 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198))) (-15 -1418 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198)))) |%noBranch|) (IF (|has| |#2| (-1161)) (-15 -1418 ((-3 |#2| "failed") |#2| (-1198) (-856 |#2|) (-856 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-1793 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-657 (-419 |#2|))) 41)) (-4190 (((-598 (-419 |#2|)) (-419 |#2|)) 28)) (-3669 (((-3 (-419 |#2|) "failed") (-419 |#2|)) 17)) (-2581 (((-3 (-2 (|:| -2322 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|)) 48))) -(((-580 |#1| |#2|) (-10 -7 (-15 -4190 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -3669 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -2581 ((-3 (-2 (|:| -2322 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -1793 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-657 (-419 |#2|))))) (-13 (-374) (-148) (-1060 (-576))) (-1265 |#1|)) (T -580)) -((-1793 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-657 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *5 *6)))) (-2581 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1060 (-576)))) (-4 *5 (-1265 *4)) (-5 *2 (-2 (|:| -2322 (-419 *5)) (|:| |coeff| (-419 *5)))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) (-3669 (*1 *2 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1265 *3)) (-4 *3 (-13 (-374) (-148) (-1060 (-576)))) (-5 *1 (-580 *3 *4)))) (-4190 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-576)))) (-4 *5 (-1265 *4)) (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) -(-10 -7 (-15 -4190 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -3669 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -2581 ((-3 (-2 (|:| -2322 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -1793 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-657 (-419 |#2|))))) -((-2817 (((-3 (-576) "failed") |#1|) 14)) (-3099 (((-112) |#1|) 13)) (-3098 (((-576) |#1|) 9))) -(((-581 |#1|) (-10 -7 (-15 -3098 ((-576) |#1|)) (-15 -3099 ((-112) |#1|)) (-15 -2817 ((-3 (-576) "failed") |#1|))) (-1060 (-576))) (T -581)) -((-2817 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1060 *2)))) (-3099 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1060 (-576))))) (-3098 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1060 *2))))) -(-10 -7 (-15 -3098 ((-576) |#1|)) (-15 -3099 ((-112) |#1|)) (-15 -2817 ((-3 (-576) "failed") |#1|))) -((-2245 (((-3 (-2 (|:| |mainpart| (-419 (-972 |#1|))) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 (-972 |#1|))) (|:| |logand| (-419 (-972 |#1|))))))) "failed") (-419 (-972 |#1|)) (-1198) (-657 (-419 (-972 |#1|)))) 48)) (-1693 (((-598 (-419 (-972 |#1|))) (-419 (-972 |#1|)) (-1198)) 28)) (-3395 (((-3 (-419 (-972 |#1|)) "failed") (-419 (-972 |#1|)) (-1198)) 23)) (-2544 (((-3 (-2 (|:| -2322 (-419 (-972 |#1|))) (|:| |coeff| (-419 (-972 |#1|)))) "failed") (-419 (-972 |#1|)) (-1198) (-419 (-972 |#1|))) 35))) -(((-582 |#1|) (-10 -7 (-15 -1693 ((-598 (-419 (-972 |#1|))) (-419 (-972 |#1|)) (-1198))) (-15 -3395 ((-3 (-419 (-972 |#1|)) "failed") (-419 (-972 |#1|)) (-1198))) (-15 -2245 ((-3 (-2 (|:| |mainpart| (-419 (-972 |#1|))) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 (-972 |#1|))) (|:| |logand| (-419 (-972 |#1|))))))) "failed") (-419 (-972 |#1|)) (-1198) (-657 (-419 (-972 |#1|))))) (-15 -2544 ((-3 (-2 (|:| -2322 (-419 (-972 |#1|))) (|:| |coeff| (-419 (-972 |#1|)))) "failed") (-419 (-972 |#1|)) (-1198) (-419 (-972 |#1|))))) (-13 (-568) (-1060 (-576)) (-148))) (T -582)) -((-2544 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-13 (-568) (-1060 (-576)) (-148))) (-5 *2 (-2 (|:| -2322 (-419 (-972 *5))) (|:| |coeff| (-419 (-972 *5))))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-972 *5))))) (-2245 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-657 (-419 (-972 *6)))) (-5 *3 (-419 (-972 *6))) (-4 *6 (-13 (-568) (-1060 (-576)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6)))) (-3395 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-419 (-972 *4))) (-5 *3 (-1198)) (-4 *4 (-13 (-568) (-1060 (-576)) (-148))) (-5 *1 (-582 *4)))) (-1693 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-568) (-1060 (-576)) (-148))) (-5 *2 (-598 (-419 (-972 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-972 *5)))))) -(-10 -7 (-15 -1693 ((-598 (-419 (-972 |#1|))) (-419 (-972 |#1|)) (-1198))) (-15 -3395 ((-3 (-419 (-972 |#1|)) "failed") (-419 (-972 |#1|)) (-1198))) (-15 -2245 ((-3 (-2 (|:| |mainpart| (-419 (-972 |#1|))) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 (-972 |#1|))) (|:| |logand| (-419 (-972 |#1|))))))) "failed") (-419 (-972 |#1|)) (-1198) (-657 (-419 (-972 |#1|))))) (-15 -2544 ((-3 (-2 (|:| -2322 (-419 (-972 |#1|))) (|:| |coeff| (-419 (-972 |#1|)))) "failed") (-419 (-972 |#1|)) (-1198) (-419 (-972 |#1|))))) -((-3429 (((-112) $ $) 75)) (-2364 (((-112) $) 48)) (-3308 ((|#1| $) 39)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) 79)) (-2176 (($ $) 139)) (-2030 (($ $) 118)) (-3733 ((|#1| $) 37)) (-2721 (((-3 $ "failed") $ $) NIL)) (-1896 (($ $) NIL)) (-2150 (($ $) 141)) (-2004 (($ $) 114)) (-2201 (($ $) 143)) (-2052 (($ $) 122)) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) 93)) (-2884 (((-576) $) 95)) (-3843 (((-3 $ "failed") $) 78)) (-2980 (($ |#1| |#1|) 35)) (-2828 (((-112) $) 44)) (-1657 (($) 104)) (-4094 (((-112) $) 55)) (-2082 (($ $ (-576)) NIL)) (-2881 (((-112) $) 45)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-3670 (($ $) 106)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-3886 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-419 (-576))) 92)) (-3408 ((|#1| $) 36)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) 81) (($ (-657 $)) NIL)) (-3418 (((-3 $ "failed") $ $) 80)) (-4067 (($ $) 108)) (-2213 (($ $) 147)) (-2062 (($ $) 120)) (-2188 (($ $) 149)) (-2042 (($ $) 124)) (-2163 (($ $) 145)) (-2017 (($ $) 116)) (-3111 (((-112) $ |#1|) 42)) (-3501 (((-877) $) 100) (($ (-576)) 83) (($ $) NIL) (($ (-576)) 83)) (-1960 (((-784)) 102 T CONST)) (-2046 (((-112) $ $) NIL)) (-4110 (($ $) 161)) (-2100 (($ $) 130)) (-4041 (((-112) $ $) NIL)) (-2225 (($ $) 159)) (-2072 (($ $) 126)) (-4137 (($ $) 157)) (-2125 (($ $) 137)) (-2224 (($ $) 155)) (-2137 (($ $) 135)) (-4124 (($ $) 153)) (-2113 (($ $) 132)) (-2235 (($ $) 151)) (-2085 (($ $) 128)) (-2769 (($) 30 T CONST)) (-2779 (($) 10 T CONST)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 49)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 47)) (-3022 (($ $) 53) (($ $ $) 54)) (-3012 (($ $ $) 52)) (** (($ $ (-941)) 71) (($ $ (-784)) NIL) (($ $ $) 110) (($ $ (-419 (-576))) 163)) (* (($ (-941) $) 66) (($ (-784) $) NIL) (($ (-576) $) 65) (($ $ $) 61))) -(((-583 |#1|) (-566 |#1|) (-13 (-416) (-1224))) (T -583)) -NIL -(-566 |#1|) -((-1359 (((-3 (-657 (-1194 (-576))) "failed") (-657 (-1194 (-576))) (-1194 (-576))) 27))) -(((-584) (-10 -7 (-15 -1359 ((-3 (-657 (-1194 (-576))) "failed") (-657 (-1194 (-576))) (-1194 (-576)))))) (T -584)) -((-1359 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-657 (-1194 (-576)))) (-5 *3 (-1194 (-576))) (-5 *1 (-584))))) -(-10 -7 (-15 -1359 ((-3 (-657 (-1194 (-576))) "failed") (-657 (-1194 (-576))) (-1194 (-576))))) -((-3513 (((-657 (-624 |#2|)) (-657 (-624 |#2|)) (-1198)) 19)) (-2586 (((-657 (-624 |#2|)) (-657 |#2|) (-1198)) 23)) (-1876 (((-657 (-624 |#2|)) (-657 (-624 |#2|)) (-657 (-624 |#2|))) 11)) (-1714 ((|#2| |#2| (-1198)) 59 (|has| |#1| (-568)))) (-2998 ((|#2| |#2| (-1198)) 87 (-12 (|has| |#2| (-294)) (|has| |#1| (-464))))) (-3923 (((-624 |#2|) (-624 |#2|) (-657 (-624 |#2|)) (-1198)) 25)) (-3216 (((-624 |#2|) (-657 (-624 |#2|))) 24)) (-2219 (((-598 |#2|) |#2| (-1198) (-1 (-598 |#2|) |#2| (-1198)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198))) 115 (-12 (|has| |#2| (-294)) (|has| |#2| (-641)) (|has| |#2| (-1060 (-1198))) (|has| |#1| (-626 (-908 (-576)))) (|has| |#1| (-464)) (|has| |#1| (-902 (-576))))))) -(((-585 |#1| |#2|) (-10 -7 (-15 -3513 ((-657 (-624 |#2|)) (-657 (-624 |#2|)) (-1198))) (-15 -3216 ((-624 |#2|) (-657 (-624 |#2|)))) (-15 -3923 ((-624 |#2|) (-624 |#2|) (-657 (-624 |#2|)) (-1198))) (-15 -1876 ((-657 (-624 |#2|)) (-657 (-624 |#2|)) (-657 (-624 |#2|)))) (-15 -2586 ((-657 (-624 |#2|)) (-657 |#2|) (-1198))) (IF (|has| |#1| (-568)) (-15 -1714 (|#2| |#2| (-1198))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -2998 (|#2| |#2| (-1198))) (IF (|has| |#1| (-626 (-908 (-576)))) (IF (|has| |#1| (-902 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1060 (-1198))) (-15 -2219 ((-598 |#2|) |#2| (-1198) (-1 (-598 |#2|) |#2| (-1198)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1122) (-442 |#1|)) (T -585)) -((-2219 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-598 *3) *3 (-1198))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1198))) (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1060 *4)) (-4 *3 (-442 *7)) (-5 *4 (-1198)) (-4 *7 (-626 (-908 (-576)))) (-4 *7 (-464)) (-4 *7 (-902 (-576))) (-4 *7 (-1122)) (-5 *2 (-598 *3)) (-5 *1 (-585 *7 *3)))) (-2998 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-464)) (-4 *4 (-1122)) (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4)))) (-1714 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-4 *4 (-1122)) (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4)))) (-2586 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *6)) (-5 *4 (-1198)) (-4 *6 (-442 *5)) (-4 *5 (-1122)) (-5 *2 (-657 (-624 *6))) (-5 *1 (-585 *5 *6)))) (-1876 (*1 *2 *2 *2) (-12 (-5 *2 (-657 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1122)) (-5 *1 (-585 *3 *4)))) (-3923 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-657 (-624 *6))) (-5 *4 (-1198)) (-5 *2 (-624 *6)) (-4 *6 (-442 *5)) (-4 *5 (-1122)) (-5 *1 (-585 *5 *6)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-657 (-624 *5))) (-4 *4 (-1122)) (-5 *2 (-624 *5)) (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4)))) (-3513 (*1 *2 *2 *3) (-12 (-5 *2 (-657 (-624 *5))) (-5 *3 (-1198)) (-4 *5 (-442 *4)) (-4 *4 (-1122)) (-5 *1 (-585 *4 *5))))) -(-10 -7 (-15 -3513 ((-657 (-624 |#2|)) (-657 (-624 |#2|)) (-1198))) (-15 -3216 ((-624 |#2|) (-657 (-624 |#2|)))) (-15 -3923 ((-624 |#2|) (-624 |#2|) (-657 (-624 |#2|)) (-1198))) (-15 -1876 ((-657 (-624 |#2|)) (-657 (-624 |#2|)) (-657 (-624 |#2|)))) (-15 -2586 ((-657 (-624 |#2|)) (-657 |#2|) (-1198))) (IF (|has| |#1| (-568)) (-15 -1714 (|#2| |#2| (-1198))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -2998 (|#2| |#2| (-1198))) (IF (|has| |#1| (-626 (-908 (-576)))) (IF (|has| |#1| (-902 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1060 (-1198))) (-15 -2219 ((-598 |#2|) |#2| (-1198) (-1 (-598 |#2|) |#2| (-1198)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2343 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-657 |#1|) "failed") (-576) |#1| |#1|)) 199)) (-3177 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2322 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-657 (-419 |#2|))) 174)) (-1499 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-657 (-419 |#2|))) 171)) (-3955 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2322 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-3319 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2322 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-2754 (((-3 (-2 (|:| -2322 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|)) 202)) (-4245 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2322 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2322 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|)) 205)) (-4001 (((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 88)) (-4287 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-2457 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4236 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-657 (-419 |#2|))) 178)) (-1777 (((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4236 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 166)) (-3246 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4236 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 189)) (-2189 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2322 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4236 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|)) 210))) -(((-586 |#1| |#2|) (-10 -7 (-15 -3319 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2322 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3246 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4236 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -2343 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-657 |#1|) "failed") (-576) |#1| |#1|))) (-15 -4245 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2322 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2322 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -2189 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2322 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4236 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -3177 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2322 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-657 (-419 |#2|)))) (-15 -2457 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4236 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-657 (-419 |#2|)))) (-15 -2754 ((-3 (-2 (|:| -2322 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -1499 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-657 (-419 |#2|)))) (-15 -3955 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2322 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1777 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4236 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -4001 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -4287 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-374) (-1265 |#1|)) (T -586)) -((-4287 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-586 *5 *3)))) (-4001 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-1777 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4236 *4) (|:| |sol?| (-112))) (-576) *4)) (-4 *4 (-374)) (-4 *5 (-1265 *4)) (-5 *1 (-586 *4 *5)))) (-3955 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2322 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1265 *4)))) (-1499 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-657 (-419 *7))) (-4 *7 (-1265 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-586 *6 *7)))) (-2754 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -2322 (-419 *6)) (|:| |coeff| (-419 *6)))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-2457 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4236 *7) (|:| |sol?| (-112))) (-576) *7)) (-5 *6 (-657 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1265 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-3177 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2322 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-657 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1265 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-2189 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4236 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1265 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -2322 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-4245 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2322 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1265 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -2322 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2343 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-657 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) (-4 *7 (-1265 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3246 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4236 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1265 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3319 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2322 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1265 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(-10 -7 (-15 -3319 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2322 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3246 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4236 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -2343 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-657 |#1|) "failed") (-576) |#1| |#1|))) (-15 -4245 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2322 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2322 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -2189 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2322 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4236 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -3177 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2322 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-657 (-419 |#2|)))) (-15 -2457 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4236 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-657 (-419 |#2|)))) (-15 -2754 ((-3 (-2 (|:| -2322 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -1499 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-657 (-419 |#2|)))) (-15 -3955 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2322 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1777 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4236 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -4001 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -4287 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-3537 (((-3 |#2| "failed") |#2| (-1198) (-1198)) 10))) -(((-587 |#1| |#2|) (-10 -7 (-15 -3537 ((-3 |#2| "failed") |#2| (-1198) (-1198)))) (-13 (-317) (-148) (-1060 (-576)) (-652 (-576))) (-13 (-1224) (-979) (-1161) (-29 |#1|))) (T -587)) -((-3537 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1198)) (-4 *4 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-587 *4 *2)) (-4 *2 (-13 (-1224) (-979) (-1161) (-29 *4)))))) -(-10 -7 (-15 -3537 ((-3 |#2| "failed") |#2| (-1198) (-1198)))) -((-3950 (((-704 (-1247)) $ (-1247)) 26)) (-2359 (((-704 (-561)) $ (-561)) 25)) (-1979 (((-784) $ (-129)) 27)) (-3245 (((-704 (-130)) $ (-130)) 24)) (-1447 (((-704 (-1247)) $) 12)) (-2953 (((-704 (-1245)) $) 8)) (-2522 (((-704 (-1244)) $) 10)) (-1890 (((-704 (-561)) $) 13)) (-2276 (((-704 (-559)) $) 9)) (-3453 (((-704 (-558)) $) 11)) (-2454 (((-784) $ (-129)) 7)) (-1866 (((-704 (-130)) $) 14)) (-3632 (($ $) 6))) -(((-588) (-141)) (T -588)) -NIL -(-13 (-539) (-875)) -(((-175) . T) ((-539) . T) ((-875) . T)) -((-3950 (((-704 (-1247)) $ (-1247)) NIL)) (-2359 (((-704 (-561)) $ (-561)) NIL)) (-1979 (((-784) $ (-129)) NIL)) (-3245 (((-704 (-130)) $ (-130)) NIL)) (-1447 (((-704 (-1247)) $) NIL)) (-2953 (((-704 (-1245)) $) NIL)) (-2522 (((-704 (-1244)) $) NIL)) (-1890 (((-704 (-561)) $) NIL)) (-2276 (((-704 (-559)) $) NIL)) (-3453 (((-704 (-558)) $) NIL)) (-2454 (((-784) $ (-129)) NIL)) (-1866 (((-704 (-130)) $) NIL)) (-2529 (((-112) $) NIL)) (-3310 (($ (-400)) 14) (($ (-1180)) 16)) (-3501 (((-877) $) NIL)) (-3632 (($ $) NIL))) -(((-589) (-13 (-588) (-625 (-877)) (-10 -8 (-15 -3310 ($ (-400))) (-15 -3310 ($ (-1180))) (-15 -2529 ((-112) $))))) (T -589)) -((-3310 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589)))) (-3310 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-589)))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589))))) -(-13 (-588) (-625 (-877)) (-10 -8 (-15 -3310 ($ (-400))) (-15 -3310 ($ (-1180))) (-15 -2529 ((-112) $)))) -((-3429 (((-112) $ $) NIL)) (-2796 (($) 7 T CONST)) (-2342 (((-1180) $) NIL)) (-2099 (($) 6 T CONST)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 15)) (-3507 (($) 9 T CONST)) (-3164 (($) 8 T CONST)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 11))) -(((-590) (-13 (-1122) (-10 -8 (-15 -2099 ($) -1509) (-15 -2796 ($) -1509) (-15 -3164 ($) -1509) (-15 -3507 ($) -1509)))) (T -590)) -((-2099 (*1 *1) (-5 *1 (-590))) (-2796 (*1 *1) (-5 *1 (-590))) (-3164 (*1 *1) (-5 *1 (-590))) (-3507 (*1 *1) (-5 *1 (-590)))) -(-13 (-1122) (-10 -8 (-15 -2099 ($) -1509) (-15 -2796 ($) -1509) (-15 -3164 ($) -1509) (-15 -3507 ($) -1509))) -((-3429 (((-112) $ $) NIL)) (-2221 (((-704 $) (-503)) 21)) (-2342 (((-1180) $) NIL)) (-1505 (($ (-1180)) 14)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 33)) (-3552 (((-215 4 (-130)) $) 24)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 26))) -(((-591) (-13 (-1122) (-10 -8 (-15 -1505 ($ (-1180))) (-15 -3552 ((-215 4 (-130)) $)) (-15 -2221 ((-704 $) (-503)))))) (T -591)) -((-1505 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-591)))) (-3552 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591)))) (-2221 (*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-704 (-591))) (-5 *1 (-591))))) -(-13 (-1122) (-10 -8 (-15 -1505 ($ (-1180))) (-15 -3552 ((-215 4 (-130)) $)) (-15 -2221 ((-704 $) (-503))))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-1896 (($ $ (-576)) 75)) (-2864 (((-112) $ $) NIL)) (-4359 (($) NIL T CONST)) (-2012 (($ (-1194 (-576)) (-576)) 81)) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) 66)) (-2530 (($ $) 43)) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-3182 (((-784) $) 16)) (-4094 (((-112) $) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2948 (((-576)) 37)) (-3731 (((-576) $) 41)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3926 (($ $ (-576)) 24)) (-3418 (((-3 $ "failed") $ $) 71)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) 17)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 72)) (-4039 (((-1179 (-576)) $) 19)) (-1431 (($ $) 26)) (-3501 (((-877) $) 102) (($ (-576)) 61) (($ $) NIL)) (-1960 (((-784)) 15 T CONST)) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-4144 (((-576) $ (-576)) 46)) (-2769 (($) 44 T CONST)) (-2779 (($) 21 T CONST)) (-2933 (((-112) $ $) 52)) (-3022 (($ $) 60) (($ $ $) 48)) (-3012 (($ $ $) 59)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 62) (($ $ $) 63))) -(((-592 |#1| |#2|) (-884 |#1|) (-576) (-112)) (T -592)) -NIL -(-884 |#1|) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 30)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2175 (((-112) $) NIL)) (-3158 (((-784)) NIL)) (-2302 (($ $ (-941)) NIL (|has| $ (-379))) (($ $) NIL)) (-3592 (((-1211 (-941) (-784)) (-576)) 59)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-2864 (((-112) $ $) NIL)) (-2193 (((-784)) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 $ "failed") $) 95)) (-2884 (($ $) 94)) (-2613 (($ (-1289 $)) 93)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) 44)) (-1892 (($) NIL)) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-1367 (($) 61)) (-2105 (((-112) $) NIL)) (-1780 (($ $) NIL) (($ $ (-784)) NIL)) (-4257 (((-112) $) NIL)) (-3182 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-4094 (((-112) $) NIL)) (-2615 (($) 49 (|has| $ (-379)))) (-1974 (((-112) $) NIL (|has| $ (-379)))) (-2234 (($ $ (-941)) NIL (|has| $ (-379))) (($ $) NIL)) (-4019 (((-3 $ "failed") $) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1336 (((-1194 $) $ (-941)) NIL (|has| $ (-379))) (((-1194 $) $) 104)) (-3007 (((-941) $) 67)) (-4349 (((-1194 $) $) NIL (|has| $ (-379)))) (-3173 (((-3 (-1194 $) "failed") $ $) NIL (|has| $ (-379))) (((-1194 $) $) NIL (|has| $ (-379)))) (-1354 (($ $ (-1194 $)) NIL (|has| $ (-379)))) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1706 (($) NIL T CONST)) (-3178 (($ (-941)) 60)) (-2463 (((-112) $) 87)) (-1471 (((-1142) $) NIL)) (-4097 (($) 28 (|has| $ (-379)))) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) 54)) (-1885 (((-430 $) $) NIL)) (-1453 (((-941)) 86) (((-846 (-941))) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2284 (((-3 (-784) "failed") $ $) NIL) (((-784) $) NIL)) (-3863 (((-135)) NIL)) (-2815 (($ $) NIL) (($ $ (-784)) NIL)) (-1770 (((-941) $) 85) (((-846 (-941)) $) NIL)) (-3180 (((-1194 $)) 102)) (-2090 (($) 66)) (-3298 (($) 50 (|has| $ (-379)))) (-2795 (((-702 $) (-1289 $)) NIL) (((-1289 $) $) 91)) (-4148 (((-576) $) 40)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL)) (-3501 (((-877) $) NIL) (($ (-576)) 42) (($ $) NIL) (($ (-419 (-576))) NIL)) (-3096 (((-3 $ "failed") $) NIL) (($ $) 105)) (-1960 (((-784)) 51 T CONST)) (-2046 (((-112) $ $) 107)) (-1985 (((-1289 $) (-941)) 97) (((-1289 $)) 96)) (-4041 (((-112) $ $) NIL)) (-1863 (((-112) $) NIL)) (-2769 (($) 31 T CONST)) (-2779 (($) 27 T CONST)) (-1508 (($ $ (-784)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-2097 (($ $) NIL) (($ $ (-784)) NIL)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) 34)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 81) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-593 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-941)) (T -593)) -NIL -(-13 (-360) (-339 $) (-626 (-576))) -((-1877 (((-1294) (-1180)) 10))) -(((-594) (-10 -7 (-15 -1877 ((-1294) (-1180))))) (T -594)) -((-1877 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-594))))) -(-10 -7 (-15 -1877 ((-1294) (-1180)))) -((-1407 (((-598 |#2|) (-598 |#2|)) 42)) (-1999 (((-657 |#2|) (-598 |#2|)) 44)) (-3267 ((|#2| (-598 |#2|)) 50))) -(((-595 |#1| |#2|) (-10 -7 (-15 -1407 ((-598 |#2|) (-598 |#2|))) (-15 -1999 ((-657 |#2|) (-598 |#2|))) (-15 -3267 (|#2| (-598 |#2|)))) (-13 (-464) (-1060 (-576)) (-652 (-576))) (-13 (-29 |#1|) (-1224))) (T -595)) -((-3267 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1224))) (-5 *1 (-595 *4 *2)) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1224))) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-657 *5)) (-5 *1 (-595 *4 *5)))) (-1407 (*1 *2 *2) (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1224))) (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-595 *3 *4))))) -(-10 -7 (-15 -1407 ((-598 |#2|) (-598 |#2|))) (-15 -1999 ((-657 |#2|) (-598 |#2|))) (-15 -3267 (|#2| (-598 |#2|)))) -((-4083 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2322 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 30))) -(((-596 |#1| |#2|) (-10 -7 (-15 -4083 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -4083 ((-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2322 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4083 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4083 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-374) (-374)) (T -596)) -((-4083 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-596 *5 *6)))) (-4083 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2)))) (-4083 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2322 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| -2322 *6) (|:| |coeff| *6))) (-5 *1 (-596 *5 *6)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6))))) -(-10 -7 (-15 -4083 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -4083 ((-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2322 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4083 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4083 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-3434 (($ (-518) (-609)) 14)) (-2095 (($ (-518) (-609) $) 16)) (-3535 (($ (-518) (-609)) 15)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL) (($ (-1203)) 7) (((-1203) $) 6)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-597) (-13 (-1122) (-502 (-1203)) (-10 -8 (-15 -3434 ($ (-518) (-609))) (-15 -3535 ($ (-518) (-609))) (-15 -2095 ($ (-518) (-609) $))))) (T -597)) -((-3434 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-3535 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-2095 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(-13 (-1122) (-502 (-1203)) (-10 -8 (-15 -3434 ($ (-518) (-609))) (-15 -3535 ($ (-518) (-609))) (-15 -2095 ($ (-518) (-609) $)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) 76)) (-2884 ((|#1| $) NIL)) (-2322 ((|#1| $) 30)) (-1839 (((-657 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-3538 (($ |#1| (-657 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 |#1|)) (|:| |logand| (-1194 |#1|)))) (-657 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-3349 (((-657 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 |#1|)) (|:| |logand| (-1194 |#1|)))) $) 31)) (-2342 (((-1180) $) NIL)) (-2774 (($ |#1| |#1|) 38) (($ |#1| (-1198)) 49 (|has| |#1| (-1060 (-1198))))) (-1471 (((-1142) $) NIL)) (-2159 (((-112) $) 35)) (-2815 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1198)) 89 (|has| |#1| (-918 (-1198))))) (-3501 (((-877) $) 110) (($ |#1|) 29)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 18 T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) 17) (($ $ $) NIL)) (-3012 (($ $ $) 85)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 16) (($ (-419 (-576)) $) 41) (($ $ (-419 (-576))) NIL))) -(((-598 |#1|) (-13 (-730 (-419 (-576))) (-1060 |#1|) (-10 -8 (-15 -3538 ($ |#1| (-657 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 |#1|)) (|:| |logand| (-1194 |#1|)))) (-657 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2322 (|#1| $)) (-15 -3349 ((-657 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 |#1|)) (|:| |logand| (-1194 |#1|)))) $)) (-15 -1839 ((-657 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2159 ((-112) $)) (-15 -2774 ($ |#1| |#1|)) (-15 -2815 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-918 (-1198))) (-15 -2815 (|#1| $ (-1198))) |%noBranch|) (IF (|has| |#1| (-1060 (-1198))) (-15 -2774 ($ |#1| (-1198))) |%noBranch|))) (-374)) (T -598)) -((-3538 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-657 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 *2)) (|:| |logand| (-1194 *2))))) (-5 *4 (-657 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-374)) (-5 *1 (-598 *2)))) (-2322 (*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-3349 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 *3)) (|:| |logand| (-1194 *3))))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-2159 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-2774 (*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2815 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2815 (*1 *2 *1 *3) (-12 (-4 *2 (-374)) (-4 *2 (-918 *3)) (-5 *1 (-598 *2)) (-5 *3 (-1198)))) (-2774 (*1 *1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *1 (-598 *2)) (-4 *2 (-1060 *3)) (-4 *2 (-374))))) -(-13 (-730 (-419 (-576))) (-1060 |#1|) (-10 -8 (-15 -3538 ($ |#1| (-657 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 |#1|)) (|:| |logand| (-1194 |#1|)))) (-657 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2322 (|#1| $)) (-15 -3349 ((-657 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 |#1|)) (|:| |logand| (-1194 |#1|)))) $)) (-15 -1839 ((-657 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2159 ((-112) $)) (-15 -2774 ($ |#1| |#1|)) (-15 -2815 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-918 (-1198))) (-15 -2815 (|#1| $ (-1198))) |%noBranch|) (IF (|has| |#1| (-1060 (-1198))) (-15 -2774 ($ |#1| (-1198))) |%noBranch|))) -((-3446 (((-112) |#1|) 16)) (-1955 (((-3 |#1| "failed") |#1|) 14)) (-4026 (((-2 (|:| -4143 |#1|) (|:| -1801 (-784))) |#1|) 38) (((-3 |#1| "failed") |#1| (-784)) 18)) (-2087 (((-112) |#1| (-784)) 19)) (-3822 ((|#1| |#1|) 42)) (-4300 ((|#1| |#1| (-784)) 45))) -(((-599 |#1|) (-10 -7 (-15 -2087 ((-112) |#1| (-784))) (-15 -4026 ((-3 |#1| "failed") |#1| (-784))) (-15 -4026 ((-2 (|:| -4143 |#1|) (|:| -1801 (-784))) |#1|)) (-15 -4300 (|#1| |#1| (-784))) (-15 -3446 ((-112) |#1|)) (-15 -1955 ((-3 |#1| "failed") |#1|)) (-15 -3822 (|#1| |#1|))) (-557)) (T -599)) -((-3822 (*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-1955 (*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-3446 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-4300 (*1 *2 *2 *3) (-12 (-5 *3 (-784)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-4026 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4143 *3) (|:| -1801 (-784)))) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-4026 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-784)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2087 (*1 *2 *3 *4) (-12 (-5 *4 (-784)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -(-10 -7 (-15 -2087 ((-112) |#1| (-784))) (-15 -4026 ((-3 |#1| "failed") |#1| (-784))) (-15 -4026 ((-2 (|:| -4143 |#1|) (|:| -1801 (-784))) |#1|)) (-15 -4300 (|#1| |#1| (-784))) (-15 -3446 ((-112) |#1|)) (-15 -1955 ((-3 |#1| "failed") |#1|)) (-15 -3822 (|#1| |#1|))) -((-3075 (((-1194 |#1|) (-941)) 44))) -(((-600 |#1|) (-10 -7 (-15 -3075 ((-1194 |#1|) (-941)))) (-360)) (T -600)) -((-3075 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-600 *4)) (-4 *4 (-360))))) -(-10 -7 (-15 -3075 ((-1194 |#1|) (-941)))) -((-1407 (((-598 (-419 (-972 |#1|))) (-598 (-419 (-972 |#1|)))) 27)) (-4190 (((-3 (-326 |#1|) (-657 (-326 |#1|))) (-419 (-972 |#1|)) (-1198)) 34 (|has| |#1| (-148)))) (-1999 (((-657 (-326 |#1|)) (-598 (-419 (-972 |#1|)))) 19)) (-4118 (((-326 |#1|) (-419 (-972 |#1|)) (-1198)) 32 (|has| |#1| (-148)))) (-3267 (((-326 |#1|) (-598 (-419 (-972 |#1|)))) 21))) -(((-601 |#1|) (-10 -7 (-15 -1407 ((-598 (-419 (-972 |#1|))) (-598 (-419 (-972 |#1|))))) (-15 -1999 ((-657 (-326 |#1|)) (-598 (-419 (-972 |#1|))))) (-15 -3267 ((-326 |#1|) (-598 (-419 (-972 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -4190 ((-3 (-326 |#1|) (-657 (-326 |#1|))) (-419 (-972 |#1|)) (-1198))) (-15 -4118 ((-326 |#1|) (-419 (-972 |#1|)) (-1198)))) |%noBranch|)) (-13 (-464) (-1060 (-576)) (-652 (-576)))) (T -601)) -((-4118 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-326 *5)) (-5 *1 (-601 *5)))) (-4190 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 (-326 *5) (-657 (-326 *5)))) (-5 *1 (-601 *5)))) (-3267 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-972 *4)))) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-601 *4)))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-972 *4)))) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-657 (-326 *4))) (-5 *1 (-601 *4)))) (-1407 (*1 *2 *2) (-12 (-5 *2 (-598 (-419 (-972 *3)))) (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-601 *3))))) -(-10 -7 (-15 -1407 ((-598 (-419 (-972 |#1|))) (-598 (-419 (-972 |#1|))))) (-15 -1999 ((-657 (-326 |#1|)) (-598 (-419 (-972 |#1|))))) (-15 -3267 ((-326 |#1|) (-598 (-419 (-972 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -4190 ((-3 (-326 |#1|) (-657 (-326 |#1|))) (-419 (-972 |#1|)) (-1198))) (-15 -4118 ((-326 |#1|) (-419 (-972 |#1|)) (-1198)))) |%noBranch|)) -((-3370 (((-657 (-702 (-576))) (-657 (-941)) (-657 (-925 (-576)))) 78) (((-657 (-702 (-576))) (-657 (-941))) 79) (((-702 (-576)) (-657 (-941)) (-925 (-576))) 72)) (-4165 (((-784) (-657 (-941))) 69))) -(((-602) (-10 -7 (-15 -4165 ((-784) (-657 (-941)))) (-15 -3370 ((-702 (-576)) (-657 (-941)) (-925 (-576)))) (-15 -3370 ((-657 (-702 (-576))) (-657 (-941)))) (-15 -3370 ((-657 (-702 (-576))) (-657 (-941)) (-657 (-925 (-576))))))) (T -602)) -((-3370 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-941))) (-5 *4 (-657 (-925 (-576)))) (-5 *2 (-657 (-702 (-576)))) (-5 *1 (-602)))) (-3370 (*1 *2 *3) (-12 (-5 *3 (-657 (-941))) (-5 *2 (-657 (-702 (-576)))) (-5 *1 (-602)))) (-3370 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-941))) (-5 *4 (-925 (-576))) (-5 *2 (-702 (-576))) (-5 *1 (-602)))) (-4165 (*1 *2 *3) (-12 (-5 *3 (-657 (-941))) (-5 *2 (-784)) (-5 *1 (-602))))) -(-10 -7 (-15 -4165 ((-784) (-657 (-941)))) (-15 -3370 ((-702 (-576)) (-657 (-941)) (-925 (-576)))) (-15 -3370 ((-657 (-702 (-576))) (-657 (-941)))) (-15 -3370 ((-657 (-702 (-576))) (-657 (-941)) (-657 (-925 (-576)))))) -((-1925 (((-657 |#5|) |#5| (-112)) 100)) (-4369 (((-112) |#5| (-657 |#5|)) 34))) -(((-603 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1925 ((-657 |#5|) |#5| (-112))) (-15 -4369 ((-112) |#5| (-657 |#5|)))) (-13 (-317) (-148)) (-806) (-862) (-1087 |#1| |#2| |#3|) (-1131 |#1| |#2| |#3| |#4|)) (T -603)) -((-4369 (*1 *2 *3 *4) (-12 (-5 *4 (-657 *3)) (-4 *3 (-1131 *5 *6 *7 *8)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-603 *5 *6 *7 *8 *3)))) (-1925 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)) (-5 *2 (-657 *3)) (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1131 *5 *6 *7 *8))))) -(-10 -7 (-15 -1925 ((-657 |#5|) |#5| (-112))) (-15 -4369 ((-112) |#5| (-657 |#5|)))) -((-3429 (((-112) $ $) NIL)) (-1730 (((-1157) $) 11)) (-1718 (((-1157) $) 9)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 17) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-604) (-13 (-1105) (-10 -8 (-15 -1718 ((-1157) $)) (-15 -1730 ((-1157) $))))) (T -604)) -((-1718 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-604)))) (-1730 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-604))))) -(-13 (-1105) (-10 -8 (-15 -1718 ((-1157) $)) (-15 -1730 ((-1157) $)))) -((-3429 (((-112) $ $) NIL (|has| (-145) (-102)))) (-1335 (($ $) 38)) (-1973 (($ $) NIL)) (-1906 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-4085 (((-112) $ $) 67)) (-4060 (((-112) $ $ (-576)) 62)) (-1407 (((-657 $) $ (-145)) 75) (((-657 $) $ (-142)) 76)) (-1568 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-862)))) (-3363 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| (-145) (-862))))) (-1850 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-862)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 (((-145) $ (-576) (-145)) 59 (|has| $ (-6 -4467))) (((-145) $ (-1256 (-576)) (-145)) NIL (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-4359 (($) NIL T CONST)) (-2685 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-3606 (($ $) NIL (|has| $ (-6 -4467)))) (-3768 (($ $) NIL)) (-2846 (($ $ (-1256 (-576)) $) 57)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-3895 (($ (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-3622 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4466))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4466)))) (-2158 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4467)))) (-2083 (((-145) $ (-576)) NIL)) (-4112 (((-112) $ $) 88)) (-3582 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1122))) (((-576) (-145) $ (-576)) 64 (|has| (-145) (-1122))) (((-576) $ $ (-576)) 63) (((-576) (-142) $ (-576)) 66)) (-1458 (((-657 (-145)) $) NIL (|has| $ (-6 -4466)))) (-4109 (($ (-784) (-145)) 9)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) 32 (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| (-145) (-862)))) (-3073 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-862)))) (-2070 (((-657 (-145)) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-2272 (((-576) $) 47 (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| (-145) (-862)))) (-1972 (((-112) $ $ (-145)) 89)) (-1364 (((-784) $ $ (-145)) 86)) (-2148 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-4380 (($ $) 41)) (-4378 (($ $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2696 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-2342 (((-1180) $) 43 (|has| (-145) (-1122)))) (-2271 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) 27)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-1471 (((-1142) $) 85 (|has| (-145) (-1122)))) (-3510 (((-145) $) NIL (|has| (-576) (-862)))) (-2951 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-1987 (($ $ (-145)) NIL (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-657 (-145)) (-657 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-2380 (((-657 (-145)) $) NIL)) (-3387 (((-112) $) 15)) (-3581 (($) 10)) (-2835 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) 68) (($ $ (-1256 (-576))) 25) (($ $ $) NIL)) (-3409 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-1482 (((-784) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466))) (((-784) (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-2114 (($ $ $ (-576)) 81 (|has| $ (-6 -4467)))) (-1923 (($ $) 20)) (-4148 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-3511 (($ (-657 (-145))) NIL)) (-1674 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-657 $)) 82)) (-3501 (($ (-145)) NIL) (((-877) $) 31 (|has| (-145) (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2147 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2963 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2933 (((-112) $ $) 17 (|has| (-145) (-102)))) (-2973 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2954 (((-112) $ $) 18 (|has| (-145) (-862)))) (-3440 (((-784) $) 16 (|has| $ (-6 -4466))))) -(((-605 |#1|) (-1166) (-576)) (T -605)) -NIL -(-1166) -((-2619 (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1116 |#4|)) 32))) -(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2619 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1116 |#4|))) (-15 -2619 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) (-806) (-862) (-568) (-969 |#3| |#1| |#2|)) (T -606)) -((-2619 (*1 *2 *3 *4) (-12 (-4 *5 (-806)) (-4 *4 (-862)) (-4 *6 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-969 *6 *5 *4)))) (-2619 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1116 *3)) (-4 *3 (-969 *7 *6 *4)) (-4 *6 (-806)) (-4 *4 (-862)) (-4 *7 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *6 *4 *7 *3))))) -(-10 -7 (-15 -2619 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1116 |#4|))) (-15 -2619 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 71)) (-2029 (((-657 (-1104)) $) NIL)) (-3032 (((-1198) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-4374 (($ $ (-576)) 58) (($ $ (-576) (-576)) 59)) (-2886 (((-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 65)) (-4308 (($ $) 109)) (-2721 (((-3 $ "failed") $ $) NIL)) (-1919 (((-877) (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1048 (-856 (-576))) (-1198) |#1| (-419 (-576))) 241)) (-3660 (($ (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 36)) (-4359 (($) NIL T CONST)) (-2212 (($ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-2373 (((-112) $) NIL)) (-3182 (((-576) $) 63) (((-576) $ (-576)) 64)) (-4094 (((-112) $) NIL)) (-1525 (($ $ (-941)) 83)) (-2008 (($ (-1 |#1| (-576)) $) 80)) (-3157 (((-112) $) 26)) (-2003 (($ |#1| (-576)) 22) (($ $ (-1104) (-576)) NIL) (($ $ (-657 (-1104)) (-657 (-576))) NIL)) (-4083 (($ (-1 |#1| |#1|) $) 75)) (-2190 (($ (-1048 (-856 (-576))) (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 13)) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-2342 (((-1180) $) NIL)) (-4190 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-4442 (((-3 $ "failed") $ $ (-112)) 108)) (-2962 (($ $ $) 116)) (-1471 (((-1142) $) NIL)) (-3837 (((-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 15)) (-3232 (((-1048 (-856 (-576))) $) 14)) (-3926 (($ $ (-576)) 47)) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3236 (((-1179 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-2835 ((|#1| $ (-576)) 62) (($ $ $) NIL (|has| (-576) (-1134)))) (-2815 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-1770 (((-576) $) NIL)) (-1431 (($ $) 48)) (-3501 (((-877) $) NIL) (($ (-576)) 29) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 28 (|has| |#1| (-174)))) (-2313 ((|#1| $ (-576)) 61)) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) 39 T CONST)) (-3665 ((|#1| $) NIL)) (-2304 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-2623 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-2892 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3872 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-2223 (($ $) 201 (|has| |#1| (-38 (-419 (-576)))))) (-2583 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-1634 (($ $ (-419 (-576))) 177 (|has| |#1| (-38 (-419 (-576)))))) (-1590 (($ $ |#1|) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2439 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3678 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-4401 (($ $) 203 (|has| |#1| (-38 (-419 (-576)))))) (-1821 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-3191 (($ $) 199 (|has| |#1| (-38 (-419 (-576)))))) (-3331 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-1846 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-3390 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-2715 (($ $) 209 (|has| |#1| (-38 (-419 (-576)))))) (-2106 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-4275 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-2667 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-1829 (($ $) 213 (|has| |#1| (-38 (-419 (-576)))))) (-2372 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-3295 (($ $) 215 (|has| |#1| (-38 (-419 (-576)))))) (-2154 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-2825 (($ $) 211 (|has| |#1| (-38 (-419 (-576)))))) (-4169 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-3911 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-2145 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4144 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3501 (|#1| (-1198))))))) (-2769 (($) 30 T CONST)) (-2779 (($) 40 T CONST)) (-2097 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2933 (((-112) $ $) 73)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3022 (($ $) 91) (($ $ $) 72)) (-3012 (($ $ $) 88)) (** (($ $ (-941)) NIL) (($ $ (-784)) 111)) (* (($ (-941) $) 98) (($ (-784) $) 96) (($ (-576) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-607 |#1|) (-13 (-1267 |#1| (-576)) (-10 -8 (-15 -2190 ($ (-1048 (-856 (-576))) (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -3232 ((-1048 (-856 (-576))) $)) (-15 -3837 ((-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -3660 ($ (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -3157 ((-112) $)) (-15 -2008 ($ (-1 |#1| (-576)) $)) (-15 -4442 ((-3 $ "failed") $ $ (-112))) (-15 -4308 ($ $)) (-15 -2962 ($ $ $)) (-15 -1919 ((-877) (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1048 (-856 (-576))) (-1198) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4190 ($ $)) (-15 -1590 ($ $ |#1|)) (-15 -1634 ($ $ (-419 (-576)))) (-15 -3678 ($ $)) (-15 -2439 ($ $)) (-15 -3872 ($ $)) (-15 -3390 ($ $)) (-15 -2623 ($ $)) (-15 -3331 ($ $)) (-15 -2583 ($ $)) (-15 -1821 ($ $)) (-15 -2667 ($ $)) (-15 -2145 ($ $)) (-15 -2106 ($ $)) (-15 -4169 ($ $)) (-15 -2372 ($ $)) (-15 -2154 ($ $)) (-15 -2892 ($ $)) (-15 -1846 ($ $)) (-15 -2304 ($ $)) (-15 -3191 ($ $)) (-15 -2223 ($ $)) (-15 -4401 ($ $)) (-15 -4275 ($ $)) (-15 -3911 ($ $)) (-15 -2715 ($ $)) (-15 -2825 ($ $)) (-15 -1829 ($ $)) (-15 -3295 ($ $))) |%noBranch|))) (-1071)) (T -607)) -((-3157 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1071)))) (-2190 (*1 *1 *2 *3) (-12 (-5 *2 (-1048 (-856 (-576)))) (-5 *3 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1071)) (-5 *1 (-607 *4)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-1048 (-856 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1071)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-5 *1 (-607 *3)) (-4 *3 (-1071)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1071)) (-5 *1 (-607 *3)))) (-2008 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1071)) (-5 *1 (-607 *3)))) (-4442 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1071)))) (-4308 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1071)))) (-2962 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1071)))) (-1919 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *6)))) (-5 *4 (-1048 (-856 (-576)))) (-5 *5 (-1198)) (-5 *7 (-419 (-576))) (-4 *6 (-1071)) (-5 *2 (-877)) (-5 *1 (-607 *6)))) (-4190 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-1590 (*1 *1 *1 *2) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-1634 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1071)))) (-3678 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2439 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-3872 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-3390 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2623 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-3331 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2583 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-1821 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2667 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2145 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2106 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-4169 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2372 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2892 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-1846 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2304 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-3191 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2223 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-4401 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-4275 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-3911 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2715 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-2825 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-1829 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) (-3295 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(-13 (-1267 |#1| (-576)) (-10 -8 (-15 -2190 ($ (-1048 (-856 (-576))) (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -3232 ((-1048 (-856 (-576))) $)) (-15 -3837 ((-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -3660 ($ (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -3157 ((-112) $)) (-15 -2008 ($ (-1 |#1| (-576)) $)) (-15 -4442 ((-3 $ "failed") $ $ (-112))) (-15 -4308 ($ $)) (-15 -2962 ($ $ $)) (-15 -1919 ((-877) (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1048 (-856 (-576))) (-1198) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4190 ($ $)) (-15 -1590 ($ $ |#1|)) (-15 -1634 ($ $ (-419 (-576)))) (-15 -3678 ($ $)) (-15 -2439 ($ $)) (-15 -3872 ($ $)) (-15 -3390 ($ $)) (-15 -2623 ($ $)) (-15 -3331 ($ $)) (-15 -2583 ($ $)) (-15 -1821 ($ $)) (-15 -2667 ($ $)) (-15 -2145 ($ $)) (-15 -2106 ($ $)) (-15 -4169 ($ $)) (-15 -2372 ($ $)) (-15 -2154 ($ $)) (-15 -2892 ($ $)) (-15 -1846 ($ $)) (-15 -2304 ($ $)) (-15 -3191 ($ $)) (-15 -2223 ($ $)) (-15 -4401 ($ $)) (-15 -4275 ($ $)) (-15 -3911 ($ $)) (-15 -2715 ($ $)) (-15 -2825 ($ $)) (-15 -1829 ($ $)) (-15 -3295 ($ $))) |%noBranch|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 63)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-3660 (($ (-1179 |#1|)) 9)) (-4359 (($) NIL T CONST)) (-3843 (((-3 $ "failed") $) 44)) (-2373 (((-112) $) 56)) (-3182 (((-784) $) 61) (((-784) $ (-784)) 60)) (-4094 (((-112) $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3418 (((-3 $ "failed") $ $) 46 (|has| |#1| (-568)))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568)))) (-4037 (((-1179 |#1|) $) 25)) (-1960 (((-784)) 55 T CONST)) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2769 (($) 10 T CONST)) (-2779 (($) 14 T CONST)) (-2933 (((-112) $ $) 24)) (-3022 (($ $) 32) (($ $ $) 16)) (-3012 (($ $ $) 27)) (** (($ $ (-941)) NIL) (($ $ (-784)) 53)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-576)) 38))) -(((-608 |#1|) (-13 (-1071) (-111 |#1| |#1|) (-10 -8 (-15 -4037 ((-1179 |#1|) $)) (-15 -3660 ($ (-1179 |#1|))) (-15 -2373 ((-112) $)) (-15 -3182 ((-784) $)) (-15 -3182 ((-784) $ (-784))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) (-1071)) (T -608)) -((-4037 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1071)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-608 *3)))) (-2373 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1071)))) (-3182 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-608 *3)) (-4 *3 (-1071)))) (-3182 (*1 *2 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-608 *3)) (-4 *3 (-1071)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1071))))) -(-13 (-1071) (-111 |#1| |#1|) (-10 -8 (-15 -4037 ((-1179 |#1|) $)) (-15 -3660 ($ (-1179 |#1|))) (-15 -2373 ((-112) $)) (-15 -3182 ((-784) $)) (-15 -3182 ((-784) $ (-784))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) -((-3429 (((-112) $ $) NIL)) (-2336 (($) 8 T CONST)) (-1966 (($) 7 T CONST)) (-2949 (($ $ (-657 $)) 16)) (-2342 (((-1180) $) NIL)) (-2126 (($) 6 T CONST)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL) (($ (-1203)) 15) (((-1203) $) 10)) (-2579 (($) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-609) (-13 (-1122) (-502 (-1203)) (-10 -8 (-15 -2126 ($) -1509) (-15 -1966 ($) -1509) (-15 -2336 ($) -1509) (-15 -2579 ($) -1509) (-15 -2949 ($ $ (-657 $)))))) (T -609)) -((-2126 (*1 *1) (-5 *1 (-609))) (-1966 (*1 *1) (-5 *1 (-609))) (-2336 (*1 *1) (-5 *1 (-609))) (-2579 (*1 *1) (-5 *1 (-609))) (-2949 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-609))) (-5 *1 (-609))))) -(-13 (-1122) (-502 (-1203)) (-10 -8 (-15 -2126 ($) -1509) (-15 -1966 ($) -1509) (-15 -2336 ($) -1509) (-15 -2579 ($) -1509) (-15 -2949 ($ $ (-657 $))))) -((-4083 (((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)) 15))) -(((-610 |#1| |#2|) (-10 -7 (-15 -4083 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) (-1239) (-1239)) (T -610)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6))))) -(-10 -7 (-15 -4083 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) -((-4083 (((-1179 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1179 |#2|)) 20) (((-1179 |#3|) (-1 |#3| |#1| |#2|) (-1179 |#1|) (-613 |#2|)) 19) (((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|)) 18))) -(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -4083 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -4083 ((-1179 |#3|) (-1 |#3| |#1| |#2|) (-1179 |#1|) (-613 |#2|))) (-15 -4083 ((-1179 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1179 |#2|)))) (-1239) (-1239) (-1239)) (T -611)) -((-4083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1179 *7)) (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-1179 *8)) (-5 *1 (-611 *6 *7 *8)))) (-4083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1179 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-1179 *8)) (-5 *1 (-611 *6 *7 *8)))) (-4083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-613 *8)) (-5 *1 (-611 *6 *7 *8))))) -(-10 -7 (-15 -4083 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -4083 ((-1179 |#3|) (-1 |#3| |#1| |#2|) (-1179 |#1|) (-613 |#2|))) (-15 -4083 ((-1179 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1179 |#2|)))) -((-1651 ((|#3| |#3| (-657 (-624 |#3|)) (-657 (-1198))) 57)) (-2932 (((-171 |#2|) |#3|) 122)) (-1579 ((|#3| (-171 |#2|)) 46)) (-3839 ((|#2| |#3|) 21)) (-1571 ((|#3| |#2|) 35))) -(((-612 |#1| |#2| |#3|) (-10 -7 (-15 -1579 (|#3| (-171 |#2|))) (-15 -3839 (|#2| |#3|)) (-15 -1571 (|#3| |#2|)) (-15 -2932 ((-171 |#2|) |#3|)) (-15 -1651 (|#3| |#3| (-657 (-624 |#3|)) (-657 (-1198))))) (-568) (-13 (-442 |#1|) (-1024) (-1224)) (-13 (-442 (-171 |#1|)) (-1024) (-1224))) (T -612)) -((-1651 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-657 (-624 *2))) (-5 *4 (-657 (-1198))) (-4 *2 (-13 (-442 (-171 *5)) (-1024) (-1224))) (-4 *5 (-568)) (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1024) (-1224))))) (-2932 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) (-4 *5 (-13 (-442 *4) (-1024) (-1224))) (-4 *3 (-13 (-442 (-171 *4)) (-1024) (-1224))))) (-1571 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1024) (-1224))) (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1024) (-1224))))) (-3839 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1024) (-1224))) (-5 *1 (-612 *4 *2 *3)) (-4 *3 (-13 (-442 (-171 *4)) (-1024) (-1224))))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1024) (-1224))) (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1024) (-1224))) (-5 *1 (-612 *4 *5 *2))))) -(-10 -7 (-15 -1579 (|#3| (-171 |#2|))) (-15 -3839 (|#2| |#3|)) (-15 -1571 (|#3| |#2|)) (-15 -2932 ((-171 |#2|) |#3|)) (-15 -1651 (|#3| |#3| (-657 (-624 |#3|)) (-657 (-1198))))) -((-2035 (($ (-1 (-112) |#1|) $) 17)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-4345 (($ (-1 |#1| |#1|) |#1|) 9)) (-2011 (($ (-1 (-112) |#1|) $) 13)) (-2024 (($ (-1 (-112) |#1|) $) 15)) (-3511 (((-1179 |#1|) $) 18)) (-3501 (((-877) $) NIL))) -(((-613 |#1|) (-13 (-625 (-877)) (-10 -8 (-15 -4083 ($ (-1 |#1| |#1|) $)) (-15 -2011 ($ (-1 (-112) |#1|) $)) (-15 -2024 ($ (-1 (-112) |#1|) $)) (-15 -2035 ($ (-1 (-112) |#1|) $)) (-15 -4345 ($ (-1 |#1| |#1|) |#1|)) (-15 -3511 ((-1179 |#1|) $)))) (-1239)) (T -613)) -((-4083 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) (-2011 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) (-2024 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) (-2035 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) (-4345 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1239))))) -(-13 (-625 (-877)) (-10 -8 (-15 -4083 ($ (-1 |#1| |#1|) $)) (-15 -2011 ($ (-1 (-112) |#1|) $)) (-15 -2024 ($ (-1 (-112) |#1|) $)) (-15 -2035 ($ (-1 (-112) |#1|) $)) (-15 -4345 ($ (-1 |#1| |#1|) |#1|)) (-15 -3511 ((-1179 |#1|) $)))) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3765 (($ (-784)) NIL (|has| |#1| (-23)))) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-1568 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3363 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862))))) (-1850 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-4359 (($) NIL T CONST)) (-3606 (($ $) NIL (|has| $ (-6 -4467)))) (-3768 (($ $) NIL)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3895 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-2158 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) NIL)) (-3582 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122)))) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2425 (((-702 |#1|) $ $) NIL (|has| |#1| (-1071)))) (-4109 (($ (-784) |#1|) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) NIL (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| |#1| (-862)))) (-3073 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2272 (((-576) $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| |#1| (-862)))) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2742 ((|#1| $) NIL (-12 (|has| |#1| (-1024)) (|has| |#1| (-1071))))) (-4261 (((-112) $ (-784)) NIL)) (-3358 ((|#1| $) NIL (-12 (|has| |#1| (-1024)) (|has| |#1| (-1071))))) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2271 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3510 ((|#1| $) NIL (|has| (-576) (-862)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1987 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-1374 ((|#1| $ $) NIL (|has| |#1| (-1071)))) (-3409 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-3461 (($ $ $) NIL (|has| |#1| (-1071)))) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2114 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) NIL)) (-1674 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-657 $)) NIL)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2973 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3022 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3012 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-739))) (($ $ |#1|) NIL (|has| |#1| (-739)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-614 |#1| |#2|) (-1287 |#1|) (-1239) (-576)) (T -614)) -NIL -(-1287 |#1|) -((-4313 (((-1294) $ |#2| |#2|) 35)) (-3853 ((|#2| $) 23)) (-2272 ((|#2| $) 21)) (-2148 (($ (-1 |#3| |#3|) $) 32)) (-4083 (($ (-1 |#3| |#3|) $) 30)) (-3510 ((|#3| $) 26)) (-1987 (($ $ |#3|) 33)) (-1515 (((-112) |#3| $) 17)) (-2380 (((-657 |#3|) $) 15)) (-2835 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-615 |#1| |#2| |#3|) (-10 -8 (-15 -4313 ((-1294) |#1| |#2| |#2|)) (-15 -1987 (|#1| |#1| |#3|)) (-15 -3510 (|#3| |#1|)) (-15 -3853 (|#2| |#1|)) (-15 -2272 (|#2| |#1|)) (-15 -1515 ((-112) |#3| |#1|)) (-15 -2380 ((-657 |#3|) |#1|)) (-15 -2835 (|#3| |#1| |#2|)) (-15 -2835 (|#3| |#1| |#2| |#3|)) (-15 -2148 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4083 (|#1| (-1 |#3| |#3|) |#1|))) (-616 |#2| |#3|) (-1122) (-1239)) (T -615)) -NIL -(-10 -8 (-15 -4313 ((-1294) |#1| |#2| |#2|)) (-15 -1987 (|#1| |#1| |#3|)) (-15 -3510 (|#3| |#1|)) (-15 -3853 (|#2| |#1|)) (-15 -2272 (|#2| |#1|)) (-15 -1515 ((-112) |#3| |#1|)) (-15 -2380 ((-657 |#3|) |#1|)) (-15 -2835 (|#3| |#1| |#2|)) (-15 -2835 (|#3| |#1| |#2| |#3|)) (-15 -2148 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4083 (|#1| (-1 |#3| |#3|) |#1|))) -((-3429 (((-112) $ $) 20 (|has| |#2| (-102)))) (-4313 (((-1294) $ |#1| |#1|) 41 (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) 8)) (-3682 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4467)))) (-4359 (($) 7 T CONST)) (-2158 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4467)))) (-2083 ((|#2| $ |#1|) 52)) (-1458 (((-657 |#2|) $) 31 (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) 9)) (-3853 ((|#1| $) 44 (|has| |#1| (-862)))) (-2070 (((-657 |#2|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466))))) (-2272 ((|#1| $) 45 (|has| |#1| (-862)))) (-2148 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#2| |#2|) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23 (|has| |#2| (-1122)))) (-1430 (((-657 |#1|) $) 47)) (-4242 (((-112) |#1| $) 48)) (-1471 (((-1142) $) 22 (|has| |#2| (-1122)))) (-3510 ((|#2| $) 43 (|has| |#1| (-862)))) (-1987 (($ $ |#2|) 42 (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-2806 (((-112) $ $) 14)) (-1515 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2380 (((-657 |#2|) $) 49)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-1482 (((-784) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4466))) (((-784) |#2| $) 29 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-3501 (((-877) $) 18 (|has| |#2| (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| |#2| (-102)))) (-2147 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#2| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-616 |#1| |#2|) (-141) (-1122) (-1239)) (T -616)) -((-2380 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1239)) (-5 *2 (-657 *4)))) (-4242 (*1 *2 *3 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1239)) (-5 *2 (-112)))) (-1430 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1239)) (-5 *2 (-657 *3)))) (-1515 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1122)) (-4 *3 (-1239)) (-4 *3 (-1122)) (-5 *2 (-112)))) (-2272 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1239)) (-4 *2 (-1122)) (-4 *2 (-862)))) (-3853 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1239)) (-4 *2 (-1122)) (-4 *2 (-862)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1122)) (-4 *3 (-862)) (-4 *2 (-1239)))) (-1987 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1239)))) (-4313 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1239)) (-5 *2 (-1294))))) -(-13 (-501 |t#2|) (-298 |t#1| |t#2|) (-10 -8 (-15 -2380 ((-657 |t#2|) $)) (-15 -4242 ((-112) |t#1| $)) (-15 -1430 ((-657 |t#1|) $)) (IF (|has| |t#2| (-1122)) (IF (|has| $ (-6 -4466)) (-15 -1515 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-15 -2272 (|t#1| $)) (-15 -3853 (|t#1| $)) (-15 -3510 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4467)) (PROGN (-15 -1987 ($ $ |t#2|)) (-15 -4313 ((-1294) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) -2802 (|has| |#2| (-1122)) (|has| |#2| (-102))) ((-625 (-877)) -2802 (|has| |#2| (-1122)) (|has| |#2| (-625 (-877)))) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-1122) |has| |#2| (-1122)) ((-1239) . T)) -((-3501 (((-877) $) 19) (($ (-130)) 13) (((-130) $) 14))) -(((-617) (-13 (-625 (-877)) (-502 (-130)))) (T -617)) -NIL -(-13 (-625 (-877)) (-502 (-130))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL) (($ (-1203)) NIL) (((-1203) $) NIL) (((-1238) $) 14) (($ (-657 (-1238))) 13)) (-1615 (((-657 (-1238)) $) 10)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-618) (-13 (-1105) (-625 (-1238)) (-10 -8 (-15 -3501 ($ (-657 (-1238)))) (-15 -1615 ((-657 (-1238)) $))))) (T -618)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-618)))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-618))))) -(-13 (-1105) (-625 (-1238)) (-10 -8 (-15 -3501 ($ (-657 (-1238)))) (-15 -1615 ((-657 (-1238)) $)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2824 (((-3 $ "failed")) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2721 (((-3 $ "failed") $ $) NIL)) (-3213 (((-1289 (-702 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1289 (-702 |#1|)) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-3348 (((-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-4359 (($) NIL T CONST)) (-3090 (((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed")) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2023 (((-3 $ "failed")) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1703 (((-702 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-1641 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-1575 (((-702 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) $ (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-1498 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2572 (((-1194 (-972 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-2609 (($ $ (-941)) NIL)) (-3195 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-1806 (((-1194 |#1|) $) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1427 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-2947 (((-1194 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-4274 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2613 (($ (-1289 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1289 |#1|) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-3843 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1542 (((-941)) NIL (|has| |#2| (-378 |#1|)))) (-1778 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3490 (($ $ (-941)) NIL)) (-2591 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3089 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1855 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2765 (((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed")) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3694 (((-3 $ "failed")) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4427 (((-702 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-1425 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3346 (((-702 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) $ (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-2390 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2164 (((-1194 (-972 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-4404 (($ $ (-941)) NIL)) (-2885 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4234 (((-1194 |#1|) $) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4408 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-2444 (((-1194 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-4199 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2342 (((-1180) $) NIL)) (-4396 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3079 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3729 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1471 (((-1142) $) NIL)) (-4005 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2835 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-2795 (((-702 |#1|) (-1289 $)) NIL (|has| |#2| (-429 |#1|))) (((-1289 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) (-1289 $) (-1289 $)) NIL (|has| |#2| (-378 |#1|))) (((-1289 |#1|) $ (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-4148 (($ (-1289 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1289 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2929 (((-657 (-972 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-657 (-972 |#1|)) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-3544 (($ $ $) NIL)) (-2032 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3501 (((-877) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) NIL (|has| |#2| (-429 |#1|)))) (-1630 (((-657 (-1289 |#1|))) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4254 (($ $ $ $) NIL)) (-3675 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3500 (($ (-702 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-3599 (($ $ $) NIL)) (-4115 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2102 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1950 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2769 (($) NIL T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) 24)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-619 |#1| |#2|) (-13 (-757 |#1|) (-625 |#2|) (-10 -8 (-15 -3501 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-757 |#1|)) (T -619)) -((-3501 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-757 *3))))) -(-13 (-757 |#1|) (-625 |#2|) (-10 -8 (-15 -3501 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) -((-3429 (((-112) $ $) NIL)) (-2121 (((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) $ (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) 39)) (-4095 (($ (-657 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) NIL) (($) NIL)) (-4313 (((-1294) $ (-1180) (-1180)) NIL (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 ((|#1| $ (-1180) |#1|) 49)) (-3162 (($ (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-2287 (((-3 |#1| "failed") (-1180) $) 52)) (-4359 (($) NIL T CONST)) (-1466 (($ $ (-1180)) 25)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122))))) (-3647 (((-3 |#1| "failed") (-1180) $) 53) (($ (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (($ (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) $) NIL (|has| $ (-6 -4466)))) (-3895 (($ (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (($ (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122))))) (-3622 (((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $ (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $ (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122))))) (-2144 (((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) $) 38)) (-2158 ((|#1| $ (-1180) |#1|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-1180)) NIL)) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466))) (((-657 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-1902 (($ $) 54)) (-3209 (($ (-400)) 23) (($ (-400) (-1180)) 22)) (-2676 (((-400) $) 40)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-1180) $) NIL (|has| (-1180) (-862)))) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466))) (((-657 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (((-112) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122))))) (-2272 (((-1180) $) NIL (|has| (-1180) (-862)))) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467))) (($ (-1 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL)) (-3159 (((-657 (-1180)) $) 45)) (-1708 (((-112) (-1180) $) NIL)) (-2316 (((-1180) $) 41)) (-3050 (((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) $) NIL)) (-2468 (($ (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) $) NIL)) (-1430 (((-657 (-1180)) $) NIL)) (-4242 (((-112) (-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3510 ((|#1| $) NIL (|has| (-1180) (-862)))) (-2951 (((-3 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) "failed") (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL)) (-1987 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-2277 (((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) $) NIL)) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) (-657 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) NIL (-12 (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122)))) (($ $ (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) NIL (-12 (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122)))) (($ $ (-304 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) NIL (-12 (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122)))) (($ $ (-657 (-304 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))))) NIL (-12 (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) 43)) (-2835 ((|#1| $ (-1180) |#1|) NIL) ((|#1| $ (-1180)) 48)) (-1504 (($ (-657 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) NIL) (($) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (((-784) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122)))) (((-784) (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-626 (-548))))) (-3511 (($ (-657 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) NIL)) (-3501 (((-877) $) 21)) (-3632 (($ $) 26)) (-2046 (((-112) $ $) NIL)) (-4079 (($ (-657 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) NIL)) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 20)) (-3440 (((-784) $) 47 (|has| $ (-6 -4466))))) -(((-620 |#1|) (-13 (-375 (-400) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) (-1215 (-1180) |#1|) (-10 -8 (-6 -4466) (-15 -1902 ($ $)))) (-1122)) (T -620)) -((-1902 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1122))))) -(-13 (-375 (-400) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) (-1215 (-1180) |#1|) (-10 -8 (-6 -4466) (-15 -1902 ($ $)))) -((-1627 (((-112) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) $) 16)) (-3159 (((-657 |#2|) $) 20)) (-1708 (((-112) |#2| $) 12))) -(((-621 |#1| |#2| |#3|) (-10 -8 (-15 -3159 ((-657 |#2|) |#1|)) (-15 -1708 ((-112) |#2| |#1|)) (-15 -1627 ((-112) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) |#1|))) (-622 |#2| |#3|) (-1122) (-1122)) (T -621)) -NIL -(-10 -8 (-15 -3159 ((-657 |#2|) |#1|)) (-15 -1708 ((-112) |#2| |#1|)) (-15 -1627 ((-112) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) |#1|))) -((-3429 (((-112) $ $) 20 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)))) (-3793 (((-112) $ (-784)) 8)) (-3162 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 46 (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 56 (|has| $ (-6 -4466)))) (-2287 (((-3 |#2| "failed") |#1| $) 62)) (-4359 (($) 7 T CONST)) (-3914 (($ $) 59 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466))))) (-3647 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 48 (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 47 (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) 63)) (-3895 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 55 (|has| $ (-6 -4466)))) (-3622 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 57 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 54 (|has| $ (-6 -4466))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 53 (|has| $ (-6 -4466)))) (-1458 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 31 (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) 9)) (-2070 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (-3159 (((-657 |#1|) $) 64)) (-1708 (((-112) |#1| $) 65)) (-3050 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 40)) (-2468 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 41)) (-1471 (((-1142) $) 22 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (-2951 (((-3 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 52)) (-2277 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 42)) (-3399 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) 27 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 26 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 25 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 24 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-1504 (($) 50) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 49)) (-1482 (((-784) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 32 (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-4148 (((-548) $) 60 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3511 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 51)) (-3501 (((-877) $) 18 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)))) (-4079 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 43)) (-2147 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-622 |#1| |#2|) (-141) (-1122) (-1122)) (T -622)) -((-1708 (*1 *2 *3 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-5 *2 (-112)))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-5 *2 (-657 *3)))) (-3647 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122)))) (-2287 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122))))) -(-13 (-231 (-2 (|:| -4291 |t#1|) (|:| -4440 |t#2|))) (-10 -8 (-15 -1708 ((-112) |t#1| $)) (-15 -3159 ((-657 |t#1|) $)) (-15 -3647 ((-3 |t#2| "failed") |t#1| $)) (-15 -2287 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T) ((-102) -2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102))) ((-625 (-877)) -2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-625 (-877)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-319 #0#) -12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))) ((-501 #0#) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))) ((-1122) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) ((-1239) . T)) -((-1741 (((-624 |#2|) |#1|) 17)) (-4146 (((-3 |#1| "failed") (-624 |#2|)) 21))) -(((-623 |#1| |#2|) (-10 -7 (-15 -1741 ((-624 |#2|) |#1|)) (-15 -4146 ((-3 |#1| "failed") (-624 |#2|)))) (-1122) (-1122)) (T -623)) -((-4146 (*1 *2 *3) (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1122)) (-4 *2 (-1122)) (-5 *1 (-623 *2 *4)))) (-1741 (*1 *2 *3) (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) -(-10 -7 (-15 -1741 ((-624 |#2|) |#1|)) (-15 -4146 ((-3 |#1| "failed") (-624 |#2|)))) -((-3429 (((-112) $ $) NIL)) (-3303 (((-3 (-1198) "failed") $) 46)) (-4206 (((-1294) $ (-784)) 22)) (-3582 (((-784) $) 20)) (-1832 (((-115) $) 9)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1699 (($ (-115) (-657 |#1|) (-784)) 32) (($ (-1198)) 33)) (-4412 (((-112) $ (-115)) 15) (((-112) $ (-1198)) 13)) (-2404 (((-784) $) 17)) (-1471 (((-1142) $) NIL)) (-4148 (((-908 (-576)) $) 95 (|has| |#1| (-626 (-908 (-576))))) (((-908 (-390)) $) 102 (|has| |#1| (-626 (-908 (-390))))) (((-548) $) 88 (|has| |#1| (-626 (-548))))) (-3501 (((-877) $) 72)) (-2046 (((-112) $ $) NIL)) (-2196 (((-657 |#1|) $) 19)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 51)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 53))) -(((-624 |#1|) (-13 (-133) (-862) (-900 |#1|) (-10 -8 (-15 -1832 ((-115) $)) (-15 -2196 ((-657 |#1|) $)) (-15 -2404 ((-784) $)) (-15 -1699 ($ (-115) (-657 |#1|) (-784))) (-15 -1699 ($ (-1198))) (-15 -3303 ((-3 (-1198) "failed") $)) (-15 -4412 ((-112) $ (-115))) (-15 -4412 ((-112) $ (-1198))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-1122)) (T -624)) -((-1832 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1122)))) (-2196 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1122)))) (-2404 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-624 *3)) (-4 *3 (-1122)))) (-1699 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-657 *5)) (-5 *4 (-784)) (-4 *5 (-1122)) (-5 *1 (-624 *5)))) (-1699 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-624 *3)) (-4 *3 (-1122)))) (-3303 (*1 *2 *1) (|partial| -12 (-5 *2 (-1198)) (-5 *1 (-624 *3)) (-4 *3 (-1122)))) (-4412 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1122)))) (-4412 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1122))))) -(-13 (-133) (-862) (-900 |#1|) (-10 -8 (-15 -1832 ((-115) $)) (-15 -2196 ((-657 |#1|) $)) (-15 -2404 ((-784) $)) (-15 -1699 ($ (-115) (-657 |#1|) (-784))) (-15 -1699 ($ (-1198))) (-15 -3303 ((-3 (-1198) "failed") $)) (-15 -4412 ((-112) $ (-115))) (-15 -4412 ((-112) $ (-1198))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) -((-3501 ((|#1| $) 6))) -(((-625 |#1|) (-141) (-1239)) (T -625)) -((-3501 (*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1239))))) -(-13 (-10 -8 (-15 -3501 (|t#1| $)))) -((-4148 ((|#1| $) 6))) -(((-626 |#1|) (-141) (-1239)) (T -626)) -((-4148 (*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1239))))) -(-13 (-10 -8 (-15 -4148 (|t#1| $)))) -((-3906 (((-3 (-1194 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)) 15) (((-3 (-1194 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 16))) -(((-627 |#1| |#2|) (-10 -7 (-15 -3906 ((-3 (-1194 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -3906 ((-3 (-1194 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) (-13 (-148) (-27) (-1060 (-576)) (-1060 (-419 (-576)))) (-1265 |#1|)) (T -627)) -((-3906 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-148) (-27) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-1194 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6)))) (-3906 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *5 (-1265 *4)) (-5 *2 (-1194 (-419 *5))) (-5 *1 (-627 *4 *5)) (-5 *3 (-419 *5))))) -(-10 -7 (-15 -3906 ((-3 (-1194 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -3906 ((-3 (-1194 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) -((-3501 (($ |#1|) 6))) -(((-628 |#1|) (-141) (-1239)) (T -628)) -((-3501 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1239))))) -(-13 (-10 -8 (-15 -3501 ($ |t#1|)))) -((-3429 (((-112) $ $) NIL)) (-3799 (($) 14 T CONST)) (-2236 (($) 15 T CONST)) (-2734 (($ $ $) 29)) (-2712 (($ $) 27)) (-2342 (((-1180) $) NIL)) (-1552 (($ $ $) 30)) (-1471 (((-1142) $) NIL)) (-3447 (($) 11 T CONST)) (-4420 (($ $ $) 31)) (-3501 (((-877) $) 35)) (-2756 (((-112) $ (|[\|\|]| -3447)) 24) (((-112) $ (|[\|\|]| -3799)) 26) (((-112) $ (|[\|\|]| -2236)) 21)) (-2046 (((-112) $ $) NIL)) (-2724 (($ $ $) 28)) (-2933 (((-112) $ $) 18))) -(((-629) (-13 (-989) (-10 -8 (-15 -3799 ($) -1509) (-15 -2756 ((-112) $ (|[\|\|]| -3447))) (-15 -2756 ((-112) $ (|[\|\|]| -3799))) (-15 -2756 ((-112) $ (|[\|\|]| -2236)))))) (T -629)) -((-3799 (*1 *1) (-5 *1 (-629))) (-2756 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3447)) (-5 *2 (-112)) (-5 *1 (-629)))) (-2756 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3799)) (-5 *2 (-112)) (-5 *1 (-629)))) (-2756 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2236)) (-5 *2 (-112)) (-5 *1 (-629))))) -(-13 (-989) (-10 -8 (-15 -3799 ($) -1509) (-15 -2756 ((-112) $ (|[\|\|]| -3447))) (-15 -2756 ((-112) $ (|[\|\|]| -3799))) (-15 -2756 ((-112) $ (|[\|\|]| -2236))))) -((-4148 (($ |#1|) 6))) -(((-630 |#1|) (-141) (-1239)) (T -630)) -((-4148 (*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1239))))) -(-13 (-10 -8 (-15 -4148 ($ |t#1|)))) -((-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) -(((-631 |#1| |#2|) (-10 -8 (-15 -3501 (|#1| |#2|)) (-15 -3501 (|#1| (-576))) (-15 -3501 ((-877) |#1|))) (-632 |#2|) (-1071)) (T -631)) -NIL -(-10 -8 (-15 -3501 (|#1| |#2|)) (-15 -3501 (|#1| (-576))) (-15 -3501 ((-877) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3843 (((-3 $ "failed") $) 37)) (-4094 (((-112) $) 35)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 41)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#1| $) 42))) -(((-632 |#1|) (-141) (-1071)) (T -632)) -((-3501 (*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1071))))) -(-13 (-1071) (-661 |t#1|) (-10 -8 (-15 -3501 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-739) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-1536 (((-576) $) NIL (|has| |#1| (-861)))) (-4359 (($) NIL T CONST)) (-3843 (((-3 $ "failed") $) NIL)) (-2828 (((-112) $) NIL (|has| |#1| (-861)))) (-4094 (((-112) $) NIL)) (-1621 ((|#1| $) 13)) (-2881 (((-112) $) NIL (|has| |#1| (-861)))) (-3707 (($ $ $) NIL (|has| |#1| (-861)))) (-1611 (($ $ $) NIL (|has| |#1| (-861)))) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-1635 ((|#3| $) 15)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL)) (-1960 (((-784)) 20 T CONST)) (-2046 (((-112) $ $) NIL)) (-1792 (($ $) NIL (|has| |#1| (-861)))) (-2769 (($) NIL T CONST)) (-2779 (($) 12 T CONST)) (-2985 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-861)))) (-3034 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-633 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|) (-15 -3034 ($ $ |#3|)) (-15 -3034 ($ |#1| |#3|)) (-15 -1621 (|#1| $)) (-15 -1635 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-739) |#2|)) (T -633)) -((-3034 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-739) *4)))) (-3034 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-739) *4)))) (-1621 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-739) *3)))) (-1635 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-739) *4)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|) (-15 -3034 ($ $ |#3|)) (-15 -3034 ($ |#1| |#3|)) (-15 -1621 (|#1| $)) (-15 -1635 (|#3| $)))) -((-1622 ((|#2| |#2| (-1198) (-1198)) 16))) -(((-634 |#1| |#2|) (-10 -7 (-15 -1622 (|#2| |#2| (-1198) (-1198)))) (-13 (-317) (-148) (-1060 (-576)) (-652 (-576))) (-13 (-1224) (-979) (-29 |#1|))) (T -634)) -((-1622 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1224) (-979) (-29 *4)))))) -(-10 -7 (-15 -1622 (|#2| |#2| (-1198) (-1198)))) -((-3429 (((-112) $ $) 64)) (-2364 (((-112) $) 58)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-1428 ((|#1| $) 55)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2864 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3757 (((-2 (|:| -3783 $) (|:| -4036 (-419 |#2|))) (-419 |#2|)) 111 (|has| |#1| (-374)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2884 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3373 (($ $ $) NIL (|has| |#1| (-374)))) (-2212 (($ $) 27)) (-3843 (((-3 $ "failed") $) 88)) (-3385 (($ $ $) NIL (|has| |#1| (-374)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-3182 (((-576) $) 22)) (-4094 (((-112) $) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3157 (((-112) $) 40)) (-2003 (($ |#1| (-576)) 24)) (-2186 ((|#1| $) 57)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) 101 (|has| |#1| (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-3418 (((-3 $ "failed") $ $) 93)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-2034 (((-784) $) 115 (|has| |#1| (-374)))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 114 (|has| |#1| (-374)))) (-2815 (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1 |#2| |#2|)) 75) (($ $) NIL (|has| |#2| (-237))) (($ $ (-784)) NIL (|has| |#2| (-237))) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198))))) (-1770 (((-576) $) 38)) (-4148 (((-419 |#2|) $) 47)) (-3501 (((-877) $) 69) (($ (-576)) 35) (($ $) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1060 (-419 (-576))))) (($ |#1|) 34) (($ |#2|) 25)) (-2313 ((|#1| $ (-576)) 72)) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-2769 (($) 9 T CONST)) (-2779 (($) 14 T CONST)) (-2097 (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-784)) NIL (|has| |#2| (-237))) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198))))) (-2933 (((-112) $ $) 21)) (-3022 (($ $) 51) (($ $ $) NIL)) (-3012 (($ $ $) 90)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 29) (($ $ $) 49))) -(((-635 |#1| |#2|) (-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1060 |#2|) (-10 -8 (-15 -3157 ((-112) $)) (-15 -1770 ((-576) $)) (-15 -3182 ((-576) $)) (-15 -2212 ($ $)) (-15 -2186 (|#1| $)) (-15 -1428 (|#1| $)) (-15 -2313 (|#1| $ (-576))) (-15 -2003 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -3757 ((-2 (|:| -3783 $) (|:| -4036 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) (-568) (-1265 |#1|)) (T -635)) -((-3157 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1265 *3)))) (-1770 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1265 *3)))) (-3182 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1265 *3)))) (-2212 (*1 *1 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1265 *2)))) (-2186 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1265 *2)))) (-1428 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1265 *2)))) (-2313 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1265 *2)))) (-2003 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1265 *2)))) (-3757 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1265 *4)) (-5 *2 (-2 (|:| -3783 (-635 *4 *5)) (|:| -4036 (-419 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5))))) -(-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1060 |#2|) (-10 -8 (-15 -3157 ((-112) $)) (-15 -1770 ((-576) $)) (-15 -3182 ((-576) $)) (-15 -2212 ($ $)) (-15 -2186 (|#1| $)) (-15 -1428 (|#1| $)) (-15 -2313 (|#1| $ (-576))) (-15 -2003 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -3757 ((-2 (|:| -3783 $) (|:| -4036 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) -((-3472 (((-657 |#6|) (-657 |#4|) (-112)) 54)) (-4045 ((|#6| |#6|) 48))) -(((-636 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4045 (|#6| |#6|)) (-15 -3472 ((-657 |#6|) (-657 |#4|) (-112)))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3| |#4|) (-1131 |#1| |#2| |#3| |#4|)) (T -636)) -((-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 *10)) (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *10 (-1131 *5 *6 *7 *8)))) (-4045 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *2 (-1131 *3 *4 *5 *6))))) -(-10 -7 (-15 -4045 (|#6| |#6|)) (-15 -3472 ((-657 |#6|) (-657 |#4|) (-112)))) -((-3634 (((-112) |#3| (-784) (-657 |#3|)) 29)) (-3136 (((-3 (-2 (|:| |polfac| (-657 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-657 (-1194 |#3|)))) "failed") |#3| (-657 (-1194 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2067 (-657 (-2 (|:| |irr| |#4|) (|:| -1439 (-576)))))) (-657 |#3|) (-657 |#1|) (-657 |#3|)) 69))) -(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3634 ((-112) |#3| (-784) (-657 |#3|))) (-15 -3136 ((-3 (-2 (|:| |polfac| (-657 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-657 (-1194 |#3|)))) "failed") |#3| (-657 (-1194 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2067 (-657 (-2 (|:| |irr| |#4|) (|:| -1439 (-576)))))) (-657 |#3|) (-657 |#1|) (-657 |#3|)))) (-862) (-806) (-317) (-969 |#3| |#2| |#1|)) (T -637)) -((-3136 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2067 (-657 (-2 (|:| |irr| *10) (|:| -1439 (-576))))))) (-5 *6 (-657 *3)) (-5 *7 (-657 *8)) (-4 *8 (-862)) (-4 *3 (-317)) (-4 *10 (-969 *3 *9 *8)) (-4 *9 (-806)) (-5 *2 (-2 (|:| |polfac| (-657 *10)) (|:| |correct| *3) (|:| |corrfact| (-657 (-1194 *3))))) (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-657 (-1194 *3))))) (-3634 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-784)) (-5 *5 (-657 *3)) (-4 *3 (-317)) (-4 *6 (-862)) (-4 *7 (-806)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) (-4 *8 (-969 *3 *7 *6))))) -(-10 -7 (-15 -3634 ((-112) |#3| (-784) (-657 |#3|))) (-15 -3136 ((-3 (-2 (|:| |polfac| (-657 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-657 (-1194 |#3|)))) "failed") |#3| (-657 (-1194 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2067 (-657 (-2 (|:| |irr| |#4|) (|:| -1439 (-576)))))) (-657 |#3|) (-657 |#1|) (-657 |#3|)))) -((-3429 (((-112) $ $) NIL)) (-1730 (((-1157) $) 11)) (-1718 (((-1157) $) 9)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 17) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-638) (-13 (-1105) (-10 -8 (-15 -1718 ((-1157) $)) (-15 -1730 ((-1157) $))))) (T -638)) -((-1718 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-638)))) (-1730 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-638))))) -(-13 (-1105) (-10 -8 (-15 -1718 ((-1157) $)) (-15 -1730 ((-1157) $)))) -((-3429 (((-112) $ $) NIL)) (-3391 (((-657 |#1|) $) NIL)) (-4359 (($) NIL T CONST)) (-3843 (((-3 $ "failed") $) NIL)) (-4094 (((-112) $) NIL)) (-1874 (($ $) 77)) (-3670 (((-677 |#1| |#2|) $) 60)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) 81)) (-2772 (((-657 (-304 |#2|)) $ $) 42)) (-1471 (((-1142) $) NIL)) (-4067 (($ (-677 |#1| |#2|)) 56)) (-3549 (($ $ $) NIL)) (-3544 (($ $ $) NIL)) (-3501 (((-877) $) 66) (((-1304 |#1| |#2|) $) NIL) (((-1309 |#1| |#2|) $) 74)) (-2046 (((-112) $ $) NIL)) (-2779 (($) 61 T CONST)) (-2854 (((-657 (-2 (|:| |k| (-685 |#1|)) (|:| |c| |#2|))) $) 41)) (-4127 (((-657 (-677 |#1| |#2|)) (-657 |#1|)) 73)) (-2329 (((-657 (-2 (|:| |k| (-909 |#1|)) (|:| |c| |#2|))) $) 46)) (-2933 (((-112) $ $) 62)) (-3034 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 52))) -(((-639 |#1| |#2| |#3|) (-13 (-485) (-10 -8 (-15 -4067 ($ (-677 |#1| |#2|))) (-15 -3670 ((-677 |#1| |#2|) $)) (-15 -2329 ((-657 (-2 (|:| |k| (-909 |#1|)) (|:| |c| |#2|))) $)) (-15 -3501 ((-1304 |#1| |#2|) $)) (-15 -3501 ((-1309 |#1| |#2|) $)) (-15 -1874 ($ $)) (-15 -3391 ((-657 |#1|) $)) (-15 -4127 ((-657 (-677 |#1| |#2|)) (-657 |#1|))) (-15 -2854 ((-657 (-2 (|:| |k| (-685 |#1|)) (|:| |c| |#2|))) $)) (-15 -2772 ((-657 (-304 |#2|)) $ $)))) (-862) (-13 (-174) (-730 (-419 (-576)))) (-941)) (T -639)) -((-4067 (*1 *1 *2) (-12 (-5 *2 (-677 *3 *4)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) (-14 *5 (-941)))) (-3670 (*1 *2 *1) (-12 (-5 *2 (-677 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) (-2329 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |k| (-909 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-1309 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) (-1874 (*1 *1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-13 (-174) (-730 (-419 (-576))))) (-14 *4 (-941)))) (-3391 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-657 *4)) (-4 *4 (-862)) (-5 *2 (-657 (-677 *4 *5))) (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-730 (-419 (-576))))) (-14 *6 (-941)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |k| (-685 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) (-2772 (*1 *2 *1 *1) (-12 (-5 *2 (-657 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941))))) -(-13 (-485) (-10 -8 (-15 -4067 ($ (-677 |#1| |#2|))) (-15 -3670 ((-677 |#1| |#2|) $)) (-15 -2329 ((-657 (-2 (|:| |k| (-909 |#1|)) (|:| |c| |#2|))) $)) (-15 -3501 ((-1304 |#1| |#2|) $)) (-15 -3501 ((-1309 |#1| |#2|) $)) (-15 -1874 ($ $)) (-15 -3391 ((-657 |#1|) $)) (-15 -4127 ((-657 (-677 |#1| |#2|)) (-657 |#1|))) (-15 -2854 ((-657 (-2 (|:| |k| (-685 |#1|)) (|:| |c| |#2|))) $)) (-15 -2772 ((-657 (-304 |#2|)) $ $)))) -((-3472 (((-657 (-1168 |#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|)))) (-657 (-793 |#1| (-879 |#2|))) (-112)) 103) (((-657 (-1068 |#1| |#2|)) (-657 (-793 |#1| (-879 |#2|))) (-112)) 77)) (-2311 (((-112) (-657 (-793 |#1| (-879 |#2|)))) 26)) (-1479 (((-657 (-1168 |#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|)))) (-657 (-793 |#1| (-879 |#2|))) (-112)) 102)) (-3279 (((-657 (-1068 |#1| |#2|)) (-657 (-793 |#1| (-879 |#2|))) (-112)) 76)) (-3276 (((-657 (-793 |#1| (-879 |#2|))) (-657 (-793 |#1| (-879 |#2|)))) 30)) (-2227 (((-3 (-657 (-793 |#1| (-879 |#2|))) "failed") (-657 (-793 |#1| (-879 |#2|)))) 29))) -(((-640 |#1| |#2|) (-10 -7 (-15 -2311 ((-112) (-657 (-793 |#1| (-879 |#2|))))) (-15 -2227 ((-3 (-657 (-793 |#1| (-879 |#2|))) "failed") (-657 (-793 |#1| (-879 |#2|))))) (-15 -3276 ((-657 (-793 |#1| (-879 |#2|))) (-657 (-793 |#1| (-879 |#2|))))) (-15 -3279 ((-657 (-1068 |#1| |#2|)) (-657 (-793 |#1| (-879 |#2|))) (-112))) (-15 -1479 ((-657 (-1168 |#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|)))) (-657 (-793 |#1| (-879 |#2|))) (-112))) (-15 -3472 ((-657 (-1068 |#1| |#2|)) (-657 (-793 |#1| (-879 |#2|))) (-112))) (-15 -3472 ((-657 (-1168 |#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|)))) (-657 (-793 |#1| (-879 |#2|))) (-112)))) (-464) (-657 (-1198))) (T -640)) -((-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-657 (-1198))) (-5 *2 (-657 (-1168 *5 (-543 (-879 *6)) (-879 *6) (-793 *5 (-879 *6))))) (-5 *1 (-640 *5 *6)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-657 (-1198))) (-5 *2 (-657 (-1068 *5 *6))) (-5 *1 (-640 *5 *6)))) (-1479 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-657 (-1198))) (-5 *2 (-657 (-1168 *5 (-543 (-879 *6)) (-879 *6) (-793 *5 (-879 *6))))) (-5 *1 (-640 *5 *6)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-657 (-1198))) (-5 *2 (-657 (-1068 *5 *6))) (-5 *1 (-640 *5 *6)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-657 (-793 *3 (-879 *4)))) (-4 *3 (-464)) (-14 *4 (-657 (-1198))) (-5 *1 (-640 *3 *4)))) (-2227 (*1 *2 *2) (|partial| -12 (-5 *2 (-657 (-793 *3 (-879 *4)))) (-4 *3 (-464)) (-14 *4 (-657 (-1198))) (-5 *1 (-640 *3 *4)))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-657 (-793 *4 (-879 *5)))) (-4 *4 (-464)) (-14 *5 (-657 (-1198))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) -(-10 -7 (-15 -2311 ((-112) (-657 (-793 |#1| (-879 |#2|))))) (-15 -2227 ((-3 (-657 (-793 |#1| (-879 |#2|))) "failed") (-657 (-793 |#1| (-879 |#2|))))) (-15 -3276 ((-657 (-793 |#1| (-879 |#2|))) (-657 (-793 |#1| (-879 |#2|))))) (-15 -3279 ((-657 (-1068 |#1| |#2|)) (-657 (-793 |#1| (-879 |#2|))) (-112))) (-15 -1479 ((-657 (-1168 |#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|)))) (-657 (-793 |#1| (-879 |#2|))) (-112))) (-15 -3472 ((-657 (-1068 |#1| |#2|)) (-657 (-793 |#1| (-879 |#2|))) (-112))) (-15 -3472 ((-657 (-1168 |#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|)))) (-657 (-793 |#1| (-879 |#2|))) (-112)))) -((-2176 (($ $) 38)) (-2030 (($ $) 21)) (-2150 (($ $) 37)) (-2004 (($ $) 22)) (-2201 (($ $) 36)) (-2052 (($ $) 23)) (-1657 (($) 48)) (-3670 (($ $) 45)) (-3785 (($ $) 17)) (-2774 (($ $ (-1114 $)) 7) (($ $ (-1198)) 6)) (-4067 (($ $) 46)) (-1962 (($ $) 15)) (-1992 (($ $) 16)) (-2213 (($ $) 35)) (-2062 (($ $) 24)) (-2188 (($ $) 34)) (-2042 (($ $) 25)) (-2163 (($ $) 33)) (-2017 (($ $) 26)) (-4110 (($ $) 44)) (-2100 (($ $) 32)) (-2225 (($ $) 43)) (-2072 (($ $) 31)) (-4137 (($ $) 42)) (-2125 (($ $) 30)) (-2224 (($ $) 41)) (-2137 (($ $) 29)) (-4124 (($ $) 40)) (-2113 (($ $) 28)) (-2235 (($ $) 39)) (-2085 (($ $) 27)) (-2528 (($ $) 19)) (-4006 (($ $) 20)) (-2438 (($ $) 18)) (** (($ $ $) 47))) -(((-641) (-141)) (T -641)) -((-4006 (*1 *1 *1) (-4 *1 (-641))) (-2528 (*1 *1 *1) (-4 *1 (-641))) (-2438 (*1 *1 *1) (-4 *1 (-641))) (-3785 (*1 *1 *1) (-4 *1 (-641))) (-1992 (*1 *1 *1) (-4 *1 (-641))) (-1962 (*1 *1 *1) (-4 *1 (-641)))) -(-13 (-979) (-1224) (-10 -8 (-15 -4006 ($ $)) (-15 -2528 ($ $)) (-15 -2438 ($ $)) (-15 -3785 ($ $)) (-15 -1992 ($ $)) (-15 -1962 ($ $)))) -(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-979) . T) ((-1224) . T) ((-1227) . T)) -((-1832 (((-115) (-115)) 88)) (-3785 ((|#2| |#2|) 28)) (-2774 ((|#2| |#2| (-1114 |#2|)) 84) ((|#2| |#2| (-1198)) 50)) (-1962 ((|#2| |#2|) 27)) (-1992 ((|#2| |#2|) 29)) (-4159 (((-112) (-115)) 33)) (-2528 ((|#2| |#2|) 24)) (-4006 ((|#2| |#2|) 26)) (-2438 ((|#2| |#2|) 25))) -(((-642 |#1| |#2|) (-10 -7 (-15 -4159 ((-112) (-115))) (-15 -1832 ((-115) (-115))) (-15 -4006 (|#2| |#2|)) (-15 -2528 (|#2| |#2|)) (-15 -2438 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -1962 (|#2| |#2|)) (-15 -1992 (|#2| |#2|)) (-15 -2774 (|#2| |#2| (-1198))) (-15 -2774 (|#2| |#2| (-1114 |#2|)))) (-568) (-13 (-442 |#1|) (-1024) (-1224))) (T -642)) -((-2774 (*1 *2 *2 *3) (-12 (-5 *3 (-1114 *2)) (-4 *2 (-13 (-442 *4) (-1024) (-1224))) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) (-2774 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) (-4 *2 (-13 (-442 *4) (-1024) (-1224))))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024) (-1224))))) (-1962 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024) (-1224))))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024) (-1224))))) (-2438 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024) (-1224))))) (-2528 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024) (-1224))))) (-4006 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1024) (-1224))))) (-1832 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) (-4 *4 (-13 (-442 *3) (-1024) (-1224))))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1024) (-1224)))))) -(-10 -7 (-15 -4159 ((-112) (-115))) (-15 -1832 ((-115) (-115))) (-15 -4006 (|#2| |#2|)) (-15 -2528 (|#2| |#2|)) (-15 -2438 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -1962 (|#2| |#2|)) (-15 -1992 (|#2| |#2|)) (-15 -2774 (|#2| |#2| (-1198))) (-15 -2774 (|#2| |#2| (-1114 |#2|)))) -((-4212 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 63)) (-2972 (((-657 (-253 |#1| |#2|)) (-657 (-493 |#1| |#2|))) 89)) (-2570 (((-493 |#1| |#2|) (-657 (-493 |#1| |#2|)) (-879 |#1|)) 91) (((-493 |#1| |#2|) (-657 (-493 |#1| |#2|)) (-657 (-493 |#1| |#2|)) (-879 |#1|)) 90)) (-2709 (((-2 (|:| |gblist| (-657 (-253 |#1| |#2|))) (|:| |gvlist| (-657 (-576)))) (-657 (-493 |#1| |#2|))) 134)) (-3397 (((-657 (-493 |#1| |#2|)) (-879 |#1|) (-657 (-493 |#1| |#2|)) (-657 (-493 |#1| |#2|))) 104)) (-2208 (((-2 (|:| |glbase| (-657 (-253 |#1| |#2|))) (|:| |glval| (-657 (-576)))) (-657 (-253 |#1| |#2|))) 145)) (-2868 (((-1289 |#2|) (-493 |#1| |#2|) (-657 (-493 |#1| |#2|))) 68)) (-1766 (((-657 (-493 |#1| |#2|)) (-657 (-493 |#1| |#2|))) 47)) (-4307 (((-253 |#1| |#2|) (-253 |#1| |#2|) (-657 (-253 |#1| |#2|))) 60)) (-2447 (((-253 |#1| |#2|) (-657 |#2|) (-253 |#1| |#2|) (-657 (-253 |#1| |#2|))) 112))) -(((-643 |#1| |#2|) (-10 -7 (-15 -2709 ((-2 (|:| |gblist| (-657 (-253 |#1| |#2|))) (|:| |gvlist| (-657 (-576)))) (-657 (-493 |#1| |#2|)))) (-15 -2208 ((-2 (|:| |glbase| (-657 (-253 |#1| |#2|))) (|:| |glval| (-657 (-576)))) (-657 (-253 |#1| |#2|)))) (-15 -2972 ((-657 (-253 |#1| |#2|)) (-657 (-493 |#1| |#2|)))) (-15 -2570 ((-493 |#1| |#2|) (-657 (-493 |#1| |#2|)) (-657 (-493 |#1| |#2|)) (-879 |#1|))) (-15 -2570 ((-493 |#1| |#2|) (-657 (-493 |#1| |#2|)) (-879 |#1|))) (-15 -1766 ((-657 (-493 |#1| |#2|)) (-657 (-493 |#1| |#2|)))) (-15 -2868 ((-1289 |#2|) (-493 |#1| |#2|) (-657 (-493 |#1| |#2|)))) (-15 -2447 ((-253 |#1| |#2|) (-657 |#2|) (-253 |#1| |#2|) (-657 (-253 |#1| |#2|)))) (-15 -3397 ((-657 (-493 |#1| |#2|)) (-879 |#1|) (-657 (-493 |#1| |#2|)) (-657 (-493 |#1| |#2|)))) (-15 -4307 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-657 (-253 |#1| |#2|)))) (-15 -4212 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) (-657 (-1198)) (-464)) (T -643)) -((-4212 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5)))) (-4307 (*1 *2 *2 *3) (-12 (-5 *3 (-657 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-3397 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-657 (-493 *4 *5))) (-5 *3 (-879 *4)) (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-2447 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-657 *6)) (-5 *4 (-657 (-253 *5 *6))) (-4 *6 (-464)) (-5 *2 (-253 *5 *6)) (-14 *5 (-657 (-1198))) (-5 *1 (-643 *5 *6)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-657 (-1198))) (-4 *6 (-464)) (-5 *2 (-1289 *6)) (-5 *1 (-643 *5 *6)))) (-1766 (*1 *2 *2) (-12 (-5 *2 (-657 (-493 *3 *4))) (-14 *3 (-657 (-1198))) (-4 *4 (-464)) (-5 *1 (-643 *3 *4)))) (-2570 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-493 *5 *6))) (-5 *4 (-879 *5)) (-14 *5 (-657 (-1198))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-2570 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-657 (-493 *5 *6))) (-5 *4 (-879 *5)) (-14 *5 (-657 (-1198))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-657 (-493 *4 *5))) (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *2 (-657 (-253 *4 *5))) (-5 *1 (-643 *4 *5)))) (-2208 (*1 *2 *3) (-12 (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |glbase| (-657 (-253 *4 *5))) (|:| |glval| (-657 (-576))))) (-5 *1 (-643 *4 *5)) (-5 *3 (-657 (-253 *4 *5))))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-657 (-493 *4 *5))) (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |gblist| (-657 (-253 *4 *5))) (|:| |gvlist| (-657 (-576))))) (-5 *1 (-643 *4 *5))))) -(-10 -7 (-15 -2709 ((-2 (|:| |gblist| (-657 (-253 |#1| |#2|))) (|:| |gvlist| (-657 (-576)))) (-657 (-493 |#1| |#2|)))) (-15 -2208 ((-2 (|:| |glbase| (-657 (-253 |#1| |#2|))) (|:| |glval| (-657 (-576)))) (-657 (-253 |#1| |#2|)))) (-15 -2972 ((-657 (-253 |#1| |#2|)) (-657 (-493 |#1| |#2|)))) (-15 -2570 ((-493 |#1| |#2|) (-657 (-493 |#1| |#2|)) (-657 (-493 |#1| |#2|)) (-879 |#1|))) (-15 -2570 ((-493 |#1| |#2|) (-657 (-493 |#1| |#2|)) (-879 |#1|))) (-15 -1766 ((-657 (-493 |#1| |#2|)) (-657 (-493 |#1| |#2|)))) (-15 -2868 ((-1289 |#2|) (-493 |#1| |#2|) (-657 (-493 |#1| |#2|)))) (-15 -2447 ((-253 |#1| |#2|) (-657 |#2|) (-253 |#1| |#2|) (-657 (-253 |#1| |#2|)))) (-15 -3397 ((-657 (-493 |#1| |#2|)) (-879 |#1|) (-657 (-493 |#1| |#2|)) (-657 (-493 |#1| |#2|)))) (-15 -4307 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-657 (-253 |#1| |#2|)))) (-15 -4212 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) -((-3429 (((-112) $ $) NIL (-2802 (|has| (-52) (-102)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-102))))) (-4095 (($) NIL) (($ (-657 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))))) NIL)) (-4313 (((-1294) $ (-1180) (-1180)) NIL (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 (((-52) $ (-1180) (-52)) 16) (((-52) $ (-1198) (-52)) 17)) (-3162 (($ (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-2287 (((-3 (-52) "failed") (-1180) $) NIL)) (-4359 (($) NIL T CONST)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-1122))))) (-3647 (($ (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-3 (-52) "failed") (-1180) $) NIL)) (-3895 (($ (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-1122)))) (($ (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-3622 (((-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-1 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) $ (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-1122)))) (((-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-1 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) $ (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-1 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-2158 (((-52) $ (-1180) (-52)) NIL (|has| $ (-6 -4467)))) (-2083 (((-52) $ (-1180)) NIL)) (-1458 (((-657 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-657 (-52)) $) NIL (|has| $ (-6 -4466)))) (-1902 (($ $) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-1180) $) NIL (|has| (-1180) (-862)))) (-2070 (((-657 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-657 (-52)) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-1122)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-52) (-1122))))) (-2272 (((-1180) $) NIL (|has| (-1180) (-862)))) (-2148 (($ (-1 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4467))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2112 (($ (-400)) 9)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (-2802 (|has| (-52) (-1122)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-1122))))) (-3159 (((-657 (-1180)) $) NIL)) (-1708 (((-112) (-1180) $) NIL)) (-3050 (((-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) $) NIL)) (-2468 (($ (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) $) NIL)) (-1430 (((-657 (-1180)) $) NIL)) (-4242 (((-112) (-1180) $) NIL)) (-1471 (((-1142) $) NIL (-2802 (|has| (-52) (-1122)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-1122))))) (-3510 (((-52) $) NIL (|has| (-1180) (-862)))) (-2951 (((-3 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) "failed") (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) $) NIL)) (-1987 (($ $ (-52)) NIL (|has| $ (-6 -4467)))) (-2277 (((-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) $) NIL)) (-3399 (((-112) (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))))) NIL (-12 (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-319 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-1122)))) (($ $ (-304 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))))) NIL (-12 (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-319 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-1122)))) (($ $ (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) NIL (-12 (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-319 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-1122)))) (($ $ (-657 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) (-657 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))))) NIL (-12 (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-319 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-1122)))) (($ $ (-657 (-52)) (-657 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122)))) (($ $ (-657 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-52) (-1122))))) (-2380 (((-657 (-52)) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 (((-52) $ (-1180)) 14) (((-52) $ (-1180) (-52)) NIL) (((-52) $ (-1198)) 15)) (-1504 (($) NIL) (($ (-657 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))))) NIL)) (-1482 (((-784) (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-1122)))) (((-784) (-52) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-52) (-1122)))) (((-784) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-626 (-548))))) (-3511 (($ (-657 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))))) NIL)) (-3501 (((-877) $) NIL (-2802 (|has| (-52) (-625 (-877))) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-625 (-877)))))) (-2046 (((-112) $ $) NIL (-2802 (|has| (-52) (-102)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-102))))) (-4079 (($ (-657 (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))))) NIL)) (-2147 (((-112) (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (-2802 (|has| (-52) (-102)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 (-52))) (-102))))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-644) (-13 (-1215 (-1180) (-52)) (-296 (-1198) (-52)) (-10 -8 (-15 -2112 ($ (-400))) (-15 -1902 ($ $)) (-15 -3682 ((-52) $ (-1198) (-52)))))) (T -644)) -((-2112 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644)))) (-1902 (*1 *1 *1) (-5 *1 (-644))) (-3682 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1198)) (-5 *1 (-644))))) -(-13 (-1215 (-1180) (-52)) (-296 (-1198) (-52)) (-10 -8 (-15 -2112 ($ (-400))) (-15 -1902 ($ $)) (-15 -3682 ((-52) $ (-1198) (-52))))) -((-3034 (($ $ |#2|) 10))) -(((-645 |#1| |#2|) (-10 -8 (-15 -3034 (|#1| |#1| |#2|))) (-646 |#2|) (-174)) (T -645)) -NIL -(-10 -8 (-15 -3034 (|#1| |#1| |#2|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3511 (($ $ $) 34)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3034 (($ $ |#1|) 33 (|has| |#1| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-646 |#1|) (-141) (-174)) (T -646)) -((-3511 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) (-3034 (*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) -(-13 (-730 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3511 ($ $ $)) (IF (|has| |t#1| (-374)) (-15 -3034 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) . T) ((-730 |#1|) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2824 (((-3 $ "failed")) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2721 (((-3 $ "failed") $ $) NIL)) (-3213 (((-1289 (-702 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1289 (-702 |#1|)) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-3348 (((-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-4359 (($) NIL T CONST)) (-3090 (((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed")) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2023 (((-3 $ "failed")) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1703 (((-702 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-1641 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-1575 (((-702 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) $ (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-1498 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2572 (((-1194 (-972 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-2609 (($ $ (-941)) NIL)) (-3195 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-1806 (((-1194 |#1|) $) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1427 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-2947 (((-1194 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-4274 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2613 (($ (-1289 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1289 |#1|) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-3843 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1542 (((-941)) NIL (|has| |#2| (-378 |#1|)))) (-1778 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3490 (($ $ (-941)) NIL)) (-2591 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3089 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1855 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2765 (((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed")) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3694 (((-3 $ "failed")) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4427 (((-702 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-1425 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3346 (((-702 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) $ (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-2390 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2164 (((-1194 (-972 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-4404 (($ $ (-941)) NIL)) (-2885 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4234 (((-1194 |#1|) $) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4408 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-2444 (((-1194 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-4199 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2342 (((-1180) $) NIL)) (-4396 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3079 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3729 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1471 (((-1142) $) NIL)) (-4005 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2835 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-2795 (((-702 |#1|) (-1289 $)) NIL (|has| |#2| (-429 |#1|))) (((-1289 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-702 |#1|) (-1289 $) (-1289 $)) NIL (|has| |#2| (-378 |#1|))) (((-1289 |#1|) $ (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-4148 (($ (-1289 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1289 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2929 (((-657 (-972 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-657 (-972 |#1|)) (-1289 $)) NIL (|has| |#2| (-378 |#1|)))) (-3544 (($ $ $) NIL)) (-2032 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3501 (((-877) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) NIL (|has| |#2| (-429 |#1|)))) (-1630 (((-657 (-1289 |#1|))) NIL (-2802 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4254 (($ $ $ $) NIL)) (-3675 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3500 (($ (-702 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-3599 (($ $ $) NIL)) (-4115 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2102 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1950 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) 20)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-647 |#1| |#2|) (-13 (-757 |#1|) (-625 |#2|) (-10 -8 (-15 -3501 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-757 |#1|)) (T -647)) -((-3501 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-757 *3))))) -(-13 (-757 |#1|) (-625 |#2|) (-10 -8 (-15 -3501 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) -((-3970 (((-3 (-856 |#2|) "failed") |#2| (-304 |#2|) (-1180)) 106) (((-3 (-856 |#2|) (-2 (|:| |leftHandLimit| (-3 (-856 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-856 |#2|) "failed"))) "failed") |#2| (-304 (-856 |#2|))) 131)) (-3833 (((-3 (-846 |#2|) "failed") |#2| (-304 (-846 |#2|))) 136))) -(((-648 |#1| |#2|) (-10 -7 (-15 -3970 ((-3 (-856 |#2|) (-2 (|:| |leftHandLimit| (-3 (-856 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-856 |#2|) "failed"))) "failed") |#2| (-304 (-856 |#2|)))) (-15 -3833 ((-3 (-846 |#2|) "failed") |#2| (-304 (-846 |#2|)))) (-15 -3970 ((-3 (-856 |#2|) "failed") |#2| (-304 |#2|) (-1180)))) (-13 (-464) (-1060 (-576)) (-652 (-576))) (-13 (-27) (-1224) (-442 |#1|))) (T -648)) -((-3970 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1180)) (-4 *3 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-856 *3)) (-5 *1 (-648 *6 *3)))) (-3833 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-304 (-846 *3))) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-846 *3)) (-5 *1 (-648 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) (-3970 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-856 *3))) (-4 *3 (-13 (-27) (-1224) (-442 *5))) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-3 (-856 *3) (-2 (|:| |leftHandLimit| (-3 (-856 *3) "failed")) (|:| |rightHandLimit| (-3 (-856 *3) "failed"))) "failed")) (-5 *1 (-648 *5 *3))))) -(-10 -7 (-15 -3970 ((-3 (-856 |#2|) (-2 (|:| |leftHandLimit| (-3 (-856 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-856 |#2|) "failed"))) "failed") |#2| (-304 (-856 |#2|)))) (-15 -3833 ((-3 (-846 |#2|) "failed") |#2| (-304 (-846 |#2|)))) (-15 -3970 ((-3 (-856 |#2|) "failed") |#2| (-304 |#2|) (-1180)))) -((-3970 (((-3 (-856 (-419 (-972 |#1|))) "failed") (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|))) (-1180)) 86) (((-3 (-856 (-419 (-972 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed"))) "failed") (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|)))) 20) (((-3 (-856 (-419 (-972 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed"))) "failed") (-419 (-972 |#1|)) (-304 (-856 (-972 |#1|)))) 35)) (-3833 (((-846 (-419 (-972 |#1|))) (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|)))) 23) (((-846 (-419 (-972 |#1|))) (-419 (-972 |#1|)) (-304 (-846 (-972 |#1|)))) 43))) -(((-649 |#1|) (-10 -7 (-15 -3970 ((-3 (-856 (-419 (-972 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed"))) "failed") (-419 (-972 |#1|)) (-304 (-856 (-972 |#1|))))) (-15 -3970 ((-3 (-856 (-419 (-972 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed"))) "failed") (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|))))) (-15 -3833 ((-846 (-419 (-972 |#1|))) (-419 (-972 |#1|)) (-304 (-846 (-972 |#1|))))) (-15 -3833 ((-846 (-419 (-972 |#1|))) (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|))))) (-15 -3970 ((-3 (-856 (-419 (-972 |#1|))) "failed") (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|))) (-1180)))) (-464)) (T -649)) -((-3970 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 (-419 (-972 *6)))) (-5 *5 (-1180)) (-5 *3 (-419 (-972 *6))) (-4 *6 (-464)) (-5 *2 (-856 *3)) (-5 *1 (-649 *6)))) (-3833 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-972 *5)))) (-5 *3 (-419 (-972 *5))) (-4 *5 (-464)) (-5 *2 (-846 *3)) (-5 *1 (-649 *5)))) (-3833 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-846 (-972 *5)))) (-4 *5 (-464)) (-5 *2 (-846 (-419 (-972 *5)))) (-5 *1 (-649 *5)) (-5 *3 (-419 (-972 *5))))) (-3970 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-972 *5)))) (-5 *3 (-419 (-972 *5))) (-4 *5 (-464)) (-5 *2 (-3 (-856 *3) (-2 (|:| |leftHandLimit| (-3 (-856 *3) "failed")) (|:| |rightHandLimit| (-3 (-856 *3) "failed"))) "failed")) (-5 *1 (-649 *5)))) (-3970 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-856 (-972 *5)))) (-4 *5 (-464)) (-5 *2 (-3 (-856 (-419 (-972 *5))) (-2 (|:| |leftHandLimit| (-3 (-856 (-419 (-972 *5))) "failed")) (|:| |rightHandLimit| (-3 (-856 (-419 (-972 *5))) "failed"))) "failed")) (-5 *1 (-649 *5)) (-5 *3 (-419 (-972 *5)))))) -(-10 -7 (-15 -3970 ((-3 (-856 (-419 (-972 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed"))) "failed") (-419 (-972 |#1|)) (-304 (-856 (-972 |#1|))))) (-15 -3970 ((-3 (-856 (-419 (-972 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-856 (-419 (-972 |#1|))) "failed"))) "failed") (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|))))) (-15 -3833 ((-846 (-419 (-972 |#1|))) (-419 (-972 |#1|)) (-304 (-846 (-972 |#1|))))) (-15 -3833 ((-846 (-419 (-972 |#1|))) (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|))))) (-15 -3970 ((-3 (-856 (-419 (-972 |#1|))) "failed") (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|))) (-1180)))) -((-1350 (((-3 (-1289 (-419 |#1|)) "failed") (-1289 |#2|) |#2|) 64 (-2712 (|has| |#1| (-374)))) (((-3 (-1289 |#1|) "failed") (-1289 |#2|) |#2|) 49 (|has| |#1| (-374)))) (-2484 (((-112) (-1289 |#2|)) 33)) (-1448 (((-3 (-1289 |#1|) "failed") (-1289 |#2|)) 40))) -(((-650 |#1| |#2|) (-10 -7 (-15 -2484 ((-112) (-1289 |#2|))) (-15 -1448 ((-3 (-1289 |#1|) "failed") (-1289 |#2|))) (IF (|has| |#1| (-374)) (-15 -1350 ((-3 (-1289 |#1|) "failed") (-1289 |#2|) |#2|)) (-15 -1350 ((-3 (-1289 (-419 |#1|)) "failed") (-1289 |#2|) |#2|)))) (-568) (-13 (-1071) (-652 |#1|))) (T -650)) -((-1350 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 *5))) (-2712 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1289 (-419 *5))) (-5 *1 (-650 *5 *4)))) (-1350 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 *5))) (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1289 *5)) (-5 *1 (-650 *5 *4)))) (-1448 (*1 *2 *3) (|partial| -12 (-5 *3 (-1289 *5)) (-4 *5 (-13 (-1071) (-652 *4))) (-4 *4 (-568)) (-5 *2 (-1289 *4)) (-5 *1 (-650 *4 *5)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-1289 *5)) (-4 *5 (-13 (-1071) (-652 *4))) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) -(-10 -7 (-15 -2484 ((-112) (-1289 |#2|))) (-15 -1448 ((-3 (-1289 |#1|) "failed") (-1289 |#2|))) (IF (|has| |#1| (-374)) (-15 -1350 ((-3 (-1289 |#1|) "failed") (-1289 |#2|) |#2|)) (-15 -1350 ((-3 (-1289 (-419 |#1|)) "failed") (-1289 |#2|) |#2|)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-1483 (($ (-657 |#1|) (-657 (-879 |#2|))) 27)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3863 (((-135)) 16)) (-2795 (((-1289 |#1|) $) 46)) (-3501 (((-877) $) NIL) (($ (-879 |#2|)) 11)) (-2046 (((-112) $ $) NIL)) (-2769 (($) NIL T CONST)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 23)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-651 |#1| |#2|) (-13 (-1296 |#1|) (-628 (-879 |#2|)) (-10 -8 (-15 -1483 ($ (-657 |#1|) (-657 (-879 |#2|)))) (-15 -2795 ((-1289 |#1|) $)))) (-374) (-657 (-1198))) (T -651)) -((-1483 (*1 *1 *2 *3) (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 (-879 *5))) (-4 *4 (-374)) (-14 *5 (-657 (-1198))) (-5 *1 (-651 *4 *5)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-1289 *3)) (-5 *1 (-651 *3 *4)) (-4 *3 (-374)) (-14 *4 (-657 (-1198)))))) -(-13 (-1296 |#1|) (-628 (-879 |#2|)) (-10 -8 (-15 -1483 ($ (-657 |#1|) (-657 (-879 |#2|)))) (-15 -2795 ((-1289 |#1|) $)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3306 (((-702 |#1|) (-702 $)) 30) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 29)) (-3101 (((-702 |#1|) (-1289 $)) 32) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 31)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) -(((-652 |#1|) (-141) (-1071)) (T -652)) -((-3101 (*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-652 *4)) (-4 *4 (-1071)) (-5 *2 (-702 *4)))) (-3101 (*1 *2 *3 *1) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-652 *4)) (-4 *4 (-1071)) (-5 *2 (-2 (|:| -3750 (-702 *4)) (|:| |vec| (-1289 *4)))))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-702 *1)) (-4 *1 (-652 *4)) (-4 *4 (-1071)) (-5 *2 (-702 *4)))) (-3306 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *1)) (-5 *4 (-1289 *1)) (-4 *1 (-652 *5)) (-4 *5 (-1071)) (-5 *2 (-2 (|:| -3750 (-702 *5)) (|:| |vec| (-1289 *5))))))) -(-13 (-661 |t#1|) (-10 -8 (-15 -3101 ((-702 |t#1|) (-1289 $))) (-15 -3101 ((-2 (|:| -3750 (-702 |t#1|)) (|:| |vec| (-1289 |t#1|))) (-1289 $) $)) (-15 -3306 ((-702 |t#1|) (-702 $))) (-15 -3306 ((-2 (|:| -3750 (-702 |t#1|)) (|:| |vec| (-1289 |t#1|))) (-702 $) (-1289 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) 7)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8)) (* (($ |#1| $) 14) (($ $ |#1|) 17))) -(((-653 |#1|) (-141) (-1134)) (T -653)) -NIL -(-13 (-659 |t#1|) (-1073 |t#1|)) -(((-102) . T) ((-625 (-877)) . T) ((-659 |#1|) . T) ((-1073 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-1364 ((|#2| (-657 |#1|) (-657 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-657 |#1|) (-657 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-657 |#1|) (-657 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-657 |#1|) (-657 |#2|) |#2|) 17) ((|#2| (-657 |#1|) (-657 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-657 |#1|) (-657 |#2|)) 12))) -(((-654 |#1| |#2|) (-10 -7 (-15 -1364 ((-1 |#2| |#1|) (-657 |#1|) (-657 |#2|))) (-15 -1364 (|#2| (-657 |#1|) (-657 |#2|) |#1|)) (-15 -1364 ((-1 |#2| |#1|) (-657 |#1|) (-657 |#2|) |#2|)) (-15 -1364 (|#2| (-657 |#1|) (-657 |#2|) |#1| |#2|)) (-15 -1364 ((-1 |#2| |#1|) (-657 |#1|) (-657 |#2|) (-1 |#2| |#1|))) (-15 -1364 (|#2| (-657 |#1|) (-657 |#2|) |#1| (-1 |#2| |#1|)))) (-1122) (-1239)) (T -654)) -((-1364 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1122)) (-4 *2 (-1239)) (-5 *1 (-654 *5 *2)))) (-1364 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-657 *5)) (-5 *4 (-657 *6)) (-4 *5 (-1122)) (-4 *6 (-1239)) (-5 *1 (-654 *5 *6)))) (-1364 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 *2)) (-4 *5 (-1122)) (-4 *2 (-1239)) (-5 *1 (-654 *5 *2)))) (-1364 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 *6)) (-5 *4 (-657 *5)) (-4 *6 (-1122)) (-4 *5 (-1239)) (-5 *2 (-1 *5 *6)) (-5 *1 (-654 *6 *5)))) (-1364 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 *2)) (-4 *5 (-1122)) (-4 *2 (-1239)) (-5 *1 (-654 *5 *2)))) (-1364 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 *6)) (-4 *5 (-1122)) (-4 *6 (-1239)) (-5 *2 (-1 *6 *5)) (-5 *1 (-654 *5 *6))))) -(-10 -7 (-15 -1364 ((-1 |#2| |#1|) (-657 |#1|) (-657 |#2|))) (-15 -1364 (|#2| (-657 |#1|) (-657 |#2|) |#1|)) (-15 -1364 ((-1 |#2| |#1|) (-657 |#1|) (-657 |#2|) |#2|)) (-15 -1364 (|#2| (-657 |#1|) (-657 |#2|) |#1| |#2|)) (-15 -1364 ((-1 |#2| |#1|) (-657 |#1|) (-657 |#2|) (-1 |#2| |#1|))) (-15 -1364 (|#2| (-657 |#1|) (-657 |#2|) |#1| (-1 |#2| |#1|)))) -((-4417 (((-657 |#2|) (-1 |#2| |#1| |#2|) (-657 |#1|) |#2|) 16)) (-3622 ((|#2| (-1 |#2| |#1| |#2|) (-657 |#1|) |#2|) 18)) (-4083 (((-657 |#2|) (-1 |#2| |#1|) (-657 |#1|)) 13))) -(((-655 |#1| |#2|) (-10 -7 (-15 -4417 ((-657 |#2|) (-1 |#2| |#1| |#2|) (-657 |#1|) |#2|)) (-15 -3622 (|#2| (-1 |#2| |#1| |#2|) (-657 |#1|) |#2|)) (-15 -4083 ((-657 |#2|) (-1 |#2| |#1|) (-657 |#1|)))) (-1239) (-1239)) (T -655)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-657 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-657 *6)) (-5 *1 (-655 *5 *6)))) (-3622 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-657 *5)) (-4 *5 (-1239)) (-4 *2 (-1239)) (-5 *1 (-655 *5 *2)))) (-4417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-657 *6)) (-4 *6 (-1239)) (-4 *5 (-1239)) (-5 *2 (-657 *5)) (-5 *1 (-655 *6 *5))))) -(-10 -7 (-15 -4417 ((-657 |#2|) (-1 |#2| |#1| |#2|) (-657 |#1|) |#2|)) (-15 -3622 (|#2| (-1 |#2| |#1| |#2|) (-657 |#1|) |#2|)) (-15 -4083 ((-657 |#2|) (-1 |#2| |#1|) (-657 |#1|)))) -((-4083 (((-657 |#3|) (-1 |#3| |#1| |#2|) (-657 |#1|) (-657 |#2|)) 21))) -(((-656 |#1| |#2| |#3|) (-10 -7 (-15 -4083 ((-657 |#3|) (-1 |#3| |#1| |#2|) (-657 |#1|) (-657 |#2|)))) (-1239) (-1239) (-1239)) (T -656)) -((-4083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-657 *6)) (-5 *5 (-657 *7)) (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-657 *8)) (-5 *1 (-656 *6 *7 *8))))) -(-10 -7 (-15 -4083 ((-657 |#3|) (-1 |#3| |#1| |#2|) (-657 |#1|) (-657 |#2|)))) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3071 ((|#1| $) NIL)) (-2913 ((|#1| $) NIL)) (-4424 (($ $) NIL)) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3605 (($ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1568 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3363 (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-1850 (($ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-3734 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-2823 (($ $ $) NIL (|has| $ (-6 -4467)))) (-2045 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-4013 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-3682 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4467))) (($ $ "rest" $) NIL (|has| $ (-6 -4467))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-3240 (($ $ $) 37 (|has| |#1| (-1122)))) (-2396 (($ $ $) 41 (|has| |#1| (-1122)))) (-4004 (($ $ $) 44 (|has| |#1| (-1122)))) (-3162 (($ (-1 (-112) |#1|) $) NIL)) (-2035 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2902 ((|#1| $) NIL)) (-4359 (($) NIL T CONST)) (-3606 (($ $) NIL (|has| $ (-6 -4467)))) (-3768 (($ $) NIL)) (-3522 (($ $) 23) (($ $ (-784)) NIL)) (-4295 (($ $) NIL (|has| |#1| (-1122)))) (-3914 (($ $) 36 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3647 (($ |#1| $) NIL (|has| |#1| (-1122))) (($ (-1 (-112) |#1|) $) NIL)) (-3895 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2158 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) NIL)) (-1628 (((-112) $) NIL)) (-3582 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122))) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) (-1 (-112) |#1|) $) NIL)) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2701 (((-112) $) 11)) (-2877 (((-657 $) $) NIL)) (-1700 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-4103 (($) 9 T CONST)) (-4109 (($ (-784) |#1|) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) NIL (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| |#1| (-862)))) (-4033 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3073 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2272 (((-576) $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| |#1| (-862)))) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1710 (($ |#1|) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2424 (((-657 |#1|) $) NIL)) (-2633 (((-112) $) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3920 ((|#1| $) NIL) (($ $ (-784)) NIL)) (-2468 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2271 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3510 ((|#1| $) 20) (($ $ (-784)) NIL)) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1987 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-4286 (((-112) $) NIL)) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) NIL)) (-3387 (((-112) $) 39)) (-3581 (($) 38)) (-2835 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1256 (-576))) NIL) ((|#1| $ (-576)) 42) ((|#1| $ (-576) |#1|) NIL)) (-3883 (((-576) $ $) NIL)) (-3449 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-3409 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-3628 (((-112) $) NIL)) (-3600 (($ $) NIL)) (-1921 (($ $) NIL (|has| $ (-6 -4467)))) (-4027 (((-784) $) NIL)) (-4087 (($ $) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2114 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) 53 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) NIL)) (-2869 (($ |#1| $) 12)) (-2858 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1674 (($ $ $) 35) (($ |#1| $) 43) (($ (-657 $)) NIL) (($ $ |#1|) NIL)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-1986 (((-657 $) $) NIL)) (-1633 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3424 (($ $ $) 13)) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3095 (((-1180) $) 31 (|has| |#1| (-841))) (((-1180) $ (-112)) 32 (|has| |#1| (-841))) (((-1294) (-835) $) 33 (|has| |#1| (-841))) (((-1294) (-835) $ (-112)) 34 (|has| |#1| (-841)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2973 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-657 |#1|) (-13 (-679 |#1|) (-10 -8 (-15 -4103 ($) -1509) (-15 -2701 ((-112) $)) (-15 -2869 ($ |#1| $)) (-15 -3424 ($ $ $)) (IF (|has| |#1| (-1122)) (PROGN (-15 -3240 ($ $ $)) (-15 -2396 ($ $ $)) (-15 -4004 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|))) (-1239)) (T -657)) -((-4103 (*1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1239)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-1239)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1239)))) (-3424 (*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1239)))) (-3240 (*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1122)) (-4 *2 (-1239)))) (-2396 (*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1122)) (-4 *2 (-1239)))) (-4004 (*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1122)) (-4 *2 (-1239))))) -(-13 (-679 |#1|) (-10 -8 (-15 -4103 ($) -1509) (-15 -2701 ((-112) $)) (-15 -2869 ($ |#1| $)) (-15 -3424 ($ $ $)) (IF (|has| |#1| (-1122)) (PROGN (-15 -3240 ($ $ $)) (-15 -2396 ($ $ $)) (-15 -4004 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-841)) (-6 (-841)) |%noBranch|))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 11) (($ (-1203)) NIL) (((-1203) $) NIL) ((|#1| $) 8)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-658 |#1|) (-13 (-1105) (-625 |#1|)) (-1122)) (T -658)) -NIL -(-13 (-1105) (-625 |#1|)) -((-3429 (((-112) $ $) 7)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8)) (* (($ |#1| $) 14))) -(((-659 |#1|) (-141) (-1134)) (T -659)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1134))))) -(-13 (-1122) (-10 -8 (-15 * ($ |t#1| $)))) -(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2616 (($ |#1| |#1| $) 43)) (-3793 (((-112) $ (-784)) NIL)) (-3162 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-4359 (($) NIL T CONST)) (-4295 (($ $) 45)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3647 (($ |#1| $) 56 (|has| $ (-6 -4466))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4466)))) (-3895 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-1458 (((-657 |#1|) $) 9 (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2148 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 37)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3050 ((|#1| $) 47)) (-2468 (($ |#1| $) 29) (($ |#1| $ (-784)) 42)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2277 ((|#1| $) 50)) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) 23)) (-3581 (($) 28)) (-2674 (((-112) $) 54)) (-2691 (((-657 (-2 (|:| -4440 |#1|) (|:| -1482 (-784)))) $) 67)) (-1504 (($) 26) (($ (-657 |#1|)) 19)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) 63 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) 20)) (-4148 (((-548) $) 34 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) NIL)) (-3501 (((-877) $) 14 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4079 (($ (-657 |#1|)) 24)) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 69 (|has| |#1| (-102)))) (-3440 (((-784) $) 17 (|has| $ (-6 -4466))))) -(((-660 |#1|) (-13 (-708 |#1|) (-10 -8 (-6 -4466) (-15 -2674 ((-112) $)) (-15 -2616 ($ |#1| |#1| $)))) (-1122)) (T -660)) -((-2674 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-660 *3)) (-4 *3 (-1122)))) (-2616 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1122))))) -(-13 (-708 |#1|) (-10 -8 (-6 -4466) (-15 -2674 ((-112) $)) (-15 -2616 ($ |#1| |#1| $)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) -(((-661 |#1|) (-141) (-1080)) (T -661)) -NIL -(-13 (-21) (-659 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2193 (((-784) $) 17)) (-1875 (($ $ |#1|) 69)) (-3606 (($ $) 39)) (-3768 (($ $) 37)) (-1624 (((-3 |#1| "failed") $) 61)) (-2884 ((|#1| $) NIL)) (-3533 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3716 (((-877) $ (-1 (-877) (-877) (-877)) (-1 (-877) (-877) (-877)) (-576)) 56)) (-3027 ((|#1| $ (-576)) 35)) (-1732 ((|#2| $ (-576)) 34)) (-2183 (($ (-1 |#1| |#1|) $) 41)) (-1409 (($ (-1 |#2| |#2|) $) 47)) (-3311 (($) 11)) (-1489 (($ |#1| |#2|) 24)) (-2767 (($ (-657 (-2 (|:| |gen| |#1|) (|:| -4067 |#2|)))) 25)) (-2578 (((-657 (-2 (|:| |gen| |#1|) (|:| -4067 |#2|))) $) 14)) (-3572 (($ |#1| $) 71)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-1518 (((-112) $ $) 76)) (-3501 (((-877) $) 21) (($ |#1|) 18)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 27))) -(((-662 |#1| |#2| |#3|) (-13 (-1122) (-1060 |#1|) (-10 -8 (-15 -3716 ((-877) $ (-1 (-877) (-877) (-877)) (-1 (-877) (-877) (-877)) (-576))) (-15 -2578 ((-657 (-2 (|:| |gen| |#1|) (|:| -4067 |#2|))) $)) (-15 -1489 ($ |#1| |#2|)) (-15 -2767 ($ (-657 (-2 (|:| |gen| |#1|) (|:| -4067 |#2|))))) (-15 -1732 (|#2| $ (-576))) (-15 -3027 (|#1| $ (-576))) (-15 -3768 ($ $)) (-15 -3606 ($ $)) (-15 -2193 ((-784) $)) (-15 -3311 ($)) (-15 -1875 ($ $ |#1|)) (-15 -3572 ($ |#1| $)) (-15 -3533 ($ |#1| |#2| $)) (-15 -3533 ($ $ $)) (-15 -1518 ((-112) $ $)) (-15 -1409 ($ (-1 |#2| |#2|) $)) (-15 -2183 ($ (-1 |#1| |#1|) $)))) (-1122) (-23) |#2|) (T -662)) -((-3716 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-877) (-877) (-877))) (-5 *4 (-576)) (-5 *2 (-877)) (-5 *1 (-662 *5 *6 *7)) (-4 *5 (-1122)) (-4 *6 (-23)) (-14 *7 *6))) (-2578 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4067 *4)))) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-23)) (-14 *5 *4))) (-1489 (*1 *1 *2 *3) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-2767 (*1 *1 *2) (-12 (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4067 *4)))) (-4 *3 (-1122)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-662 *3 *4 *5)))) (-1732 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-662 *4 *2 *5)) (-4 *4 (-1122)) (-14 *5 *2))) (-3027 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-1122)) (-5 *1 (-662 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3768 (*1 *1 *1) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-3606 (*1 *1 *1) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-23)) (-14 *5 *4))) (-3311 (*1 *1) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-1875 (*1 *1 *1 *2) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-3572 (*1 *1 *2 *1) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-3533 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-3533 (*1 *1 *1 *1) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-1518 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-23)) (-14 *5 *4))) (-1409 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-1122)))) (-2183 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-662 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1122) (-1060 |#1|) (-10 -8 (-15 -3716 ((-877) $ (-1 (-877) (-877) (-877)) (-1 (-877) (-877) (-877)) (-576))) (-15 -2578 ((-657 (-2 (|:| |gen| |#1|) (|:| -4067 |#2|))) $)) (-15 -1489 ($ |#1| |#2|)) (-15 -2767 ($ (-657 (-2 (|:| |gen| |#1|) (|:| -4067 |#2|))))) (-15 -1732 (|#2| $ (-576))) (-15 -3027 (|#1| $ (-576))) (-15 -3768 ($ $)) (-15 -3606 ($ $)) (-15 -2193 ((-784) $)) (-15 -3311 ($)) (-15 -1875 ($ $ |#1|)) (-15 -3572 ($ |#1| $)) (-15 -3533 ($ |#1| |#2| $)) (-15 -3533 ($ $ $)) (-15 -1518 ((-112) $ $)) (-15 -1409 ($ (-1 |#2| |#2|) $)) (-15 -2183 ($ (-1 |#1| |#1|) $)))) -((-2272 (((-576) $) 31)) (-2271 (($ |#2| $ (-576)) 27) (($ $ $ (-576)) NIL)) (-1430 (((-657 (-576)) $) 12)) (-4242 (((-112) (-576) $) 18)) (-1674 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-657 $)) NIL))) -(((-663 |#1| |#2|) (-10 -8 (-15 -2271 (|#1| |#1| |#1| (-576))) (-15 -2271 (|#1| |#2| |#1| (-576))) (-15 -1674 (|#1| (-657 |#1|))) (-15 -1674 (|#1| |#1| |#1|)) (-15 -1674 (|#1| |#2| |#1|)) (-15 -1674 (|#1| |#1| |#2|)) (-15 -2272 ((-576) |#1|)) (-15 -1430 ((-657 (-576)) |#1|)) (-15 -4242 ((-112) (-576) |#1|))) (-664 |#2|) (-1239)) (T -663)) -NIL -(-10 -8 (-15 -2271 (|#1| |#1| |#1| (-576))) (-15 -2271 (|#1| |#2| |#1| (-576))) (-15 -1674 (|#1| (-657 |#1|))) (-15 -1674 (|#1| |#1| |#1|)) (-15 -1674 (|#1| |#2| |#1|)) (-15 -1674 (|#1| |#1| |#2|)) (-15 -2272 ((-576) |#1|)) (-15 -1430 ((-657 (-576)) |#1|)) (-15 -4242 ((-112) (-576) |#1|))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-4313 (((-1294) $ (-576) (-576)) 41 (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) 8)) (-3682 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 60 (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4466)))) (-4359 (($) 7 T CONST)) (-3914 (($ $) 80 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3895 (($ |#1| $) 79 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4466)))) (-2158 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) 52)) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-4109 (($ (-784) |#1|) 70)) (-1833 (((-112) $ (-784)) 9)) (-3853 (((-576) $) 44 (|has| (-576) (-862)))) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2272 (((-576) $) 45 (|has| (-576) (-862)))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-2271 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-1430 (((-657 (-576)) $) 47)) (-4242 (((-112) (-576) $) 48)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3510 ((|#1| $) 43 (|has| (-576) (-862)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1987 (($ $ |#1|) 42 (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-1515 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) 49)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1256 (-576))) 71)) (-3409 (($ $ (-576)) 64) (($ $ (-1256 (-576))) 63)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-4148 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 72)) (-1674 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-657 $)) 66)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-664 |#1|) (-141) (-1239)) (T -664)) -((-4109 (*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) (-1674 (*1 *1 *1 *2) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1239)))) (-1674 (*1 *1 *2 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1239)))) (-1674 (*1 *1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1239)))) (-1674 (*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) (-4083 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) (-3409 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) (-3409 (*1 *1 *1 *2) (-12 (-5 *2 (-1256 (-576))) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) (-2271 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-664 *2)) (-4 *2 (-1239)))) (-2271 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) (-3682 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1256 (-576))) (|has| *1 (-6 -4467)) (-4 *1 (-664 *2)) (-4 *2 (-1239))))) -(-13 (-616 (-576) |t#1|) (-152 |t#1|) (-296 (-1256 (-576)) $) (-10 -8 (-15 -4109 ($ (-784) |t#1|)) (-15 -1674 ($ $ |t#1|)) (-15 -1674 ($ |t#1| $)) (-15 -1674 ($ $ $)) (-15 -1674 ($ (-657 $))) (-15 -4083 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3409 ($ $ (-576))) (-15 -3409 ($ $ (-1256 (-576)))) (-15 -2271 ($ |t#1| $ (-576))) (-15 -2271 ($ $ $ (-576))) (IF (|has| $ (-6 -4467)) (-15 -3682 (|t#1| $ (-1256 (-576)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) -((-3036 (((-3 |#2| "failed") |#3| |#2| (-1198) |#2| (-657 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -1985 (-657 |#2|))) "failed") |#3| |#2| (-1198)) 44))) -(((-665 |#1| |#2| |#3|) (-10 -7 (-15 -3036 ((-3 (-2 (|:| |particular| |#2|) (|:| -1985 (-657 |#2|))) "failed") |#3| |#2| (-1198))) (-15 -3036 ((-3 |#2| "failed") |#3| |#2| (-1198) |#2| (-657 |#2|)))) (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148)) (-13 (-29 |#1|) (-1224) (-979)) (-669 |#2|)) (T -665)) -((-3036 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-657 *2)) (-4 *2 (-13 (-29 *6) (-1224) (-979))) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *1 (-665 *6 *2 *3)) (-4 *3 (-669 *2)))) (-3036 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1198)) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1224) (-979))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1985 (-657 *4)))) (-5 *1 (-665 *6 *4 *3)) (-4 *3 (-669 *4))))) -(-10 -7 (-15 -3036 ((-3 (-2 (|:| |particular| |#2|) (|:| -1985 (-657 |#2|))) "failed") |#3| |#2| (-1198))) (-15 -3036 ((-3 |#2| "failed") |#3| |#2| (-1198) |#2| (-657 |#2|)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-1952 (($ $) NIL (|has| |#1| (-374)))) (-3292 (($ $ $) NIL (|has| |#1| (-374)))) (-2945 (($ $ (-784)) NIL (|has| |#1| (-374)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-3328 (($ $ $) NIL (|has| |#1| (-374)))) (-3207 (($ $ $) NIL (|has| |#1| (-374)))) (-4057 (($ $ $) NIL (|has| |#1| (-374)))) (-3046 (($ $ $) NIL (|has| |#1| (-374)))) (-2170 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-2590 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2455 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-374)))) (-1624 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2884 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL)) (-2212 (($ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3813 (($ $) NIL (|has| |#1| (-464)))) (-4094 (((-112) $) NIL)) (-2003 (($ |#1| (-784)) NIL)) (-3430 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-568)))) (-2733 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-568)))) (-4436 (((-784) $) NIL)) (-3826 (($ $ $) NIL (|has| |#1| (-374)))) (-4269 (($ $ $) NIL (|has| |#1| (-374)))) (-3938 (($ $ $) NIL (|has| |#1| (-374)))) (-3359 (($ $ $) NIL (|has| |#1| (-374)))) (-3978 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-2129 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2026 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-374)))) (-2186 ((|#1| $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3418 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2835 ((|#1| $ |#1|) NIL)) (-4132 (($ $ $) NIL (|has| |#1| (-374)))) (-1770 (((-784) $) NIL)) (-1450 ((|#1| $) NIL (|has| |#1| (-464)))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1060 (-419 (-576))))) (($ |#1|) NIL)) (-4037 (((-657 |#1|) $) NIL)) (-2313 ((|#1| $ (-784)) NIL)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-3500 ((|#1| $ |#1| |#1|) NIL)) (-3247 (($ $) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($) NIL)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-666 |#1|) (-669 |#1|) (-238)) (T -666)) -NIL -(-669 |#1|) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-1952 (($ $) NIL (|has| |#1| (-374)))) (-3292 (($ $ $) NIL (|has| |#1| (-374)))) (-2945 (($ $ (-784)) NIL (|has| |#1| (-374)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-3328 (($ $ $) NIL (|has| |#1| (-374)))) (-3207 (($ $ $) NIL (|has| |#1| (-374)))) (-4057 (($ $ $) NIL (|has| |#1| (-374)))) (-3046 (($ $ $) NIL (|has| |#1| (-374)))) (-2170 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-2590 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2455 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-374)))) (-1624 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2884 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL)) (-2212 (($ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3813 (($ $) NIL (|has| |#1| (-464)))) (-4094 (((-112) $) NIL)) (-2003 (($ |#1| (-784)) NIL)) (-3430 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-568)))) (-2733 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-568)))) (-4436 (((-784) $) NIL)) (-3826 (($ $ $) NIL (|has| |#1| (-374)))) (-4269 (($ $ $) NIL (|has| |#1| (-374)))) (-3938 (($ $ $) NIL (|has| |#1| (-374)))) (-3359 (($ $ $) NIL (|has| |#1| (-374)))) (-3978 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-2129 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2026 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-374)))) (-2186 ((|#1| $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3418 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2835 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-4132 (($ $ $) NIL (|has| |#1| (-374)))) (-1770 (((-784) $) NIL)) (-1450 ((|#1| $) NIL (|has| |#1| (-464)))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1060 (-419 (-576))))) (($ |#1|) NIL)) (-4037 (((-657 |#1|) $) NIL)) (-2313 ((|#1| $ (-784)) NIL)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-3500 ((|#1| $ |#1| |#1|) NIL)) (-3247 (($ $) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($) NIL)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-667 |#1| |#2|) (-13 (-669 |#1|) (-296 |#2| |#2|)) (-238) (-13 (-661 |#1|) (-10 -8 (-15 -2815 ($ $))))) (T -667)) -NIL -(-13 (-669 |#1|) (-296 |#2| |#2|)) -((-1952 (($ $) 29)) (-3247 (($ $) 27)) (-2097 (($) 13))) -(((-668 |#1| |#2|) (-10 -8 (-15 -1952 (|#1| |#1|)) (-15 -3247 (|#1| |#1|)) (-15 -2097 (|#1|))) (-669 |#2|) (-1071)) (T -668)) -NIL -(-10 -8 (-15 -1952 (|#1| |#1|)) (-15 -3247 (|#1| |#1|)) (-15 -2097 (|#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-1952 (($ $) 87 (|has| |#1| (-374)))) (-3292 (($ $ $) 89 (|has| |#1| (-374)))) (-2945 (($ $ (-784)) 88 (|has| |#1| (-374)))) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3328 (($ $ $) 50 (|has| |#1| (-374)))) (-3207 (($ $ $) 51 (|has| |#1| (-374)))) (-4057 (($ $ $) 53 (|has| |#1| (-374)))) (-3046 (($ $ $) 48 (|has| |#1| (-374)))) (-2170 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 47 (|has| |#1| (-374)))) (-2590 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-2455 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 52 (|has| |#1| (-374)))) (-1624 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-2884 (((-576) $) 79 (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 75)) (-2212 (($ $) 69)) (-3843 (((-3 $ "failed") $) 37)) (-3813 (($ $) 60 (|has| |#1| (-464)))) (-4094 (((-112) $) 35)) (-2003 (($ |#1| (-784)) 67)) (-3430 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 62 (|has| |#1| (-568)))) (-2733 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 63 (|has| |#1| (-568)))) (-4436 (((-784) $) 71)) (-3826 (($ $ $) 57 (|has| |#1| (-374)))) (-4269 (($ $ $) 58 (|has| |#1| (-374)))) (-3938 (($ $ $) 46 (|has| |#1| (-374)))) (-3359 (($ $ $) 55 (|has| |#1| (-374)))) (-3978 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 54 (|has| |#1| (-374)))) (-2129 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-2026 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 59 (|has| |#1| (-374)))) (-2186 ((|#1| $) 70)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3418 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-2835 ((|#1| $ |#1|) 92)) (-4132 (($ $ $) 86 (|has| |#1| (-374)))) (-1770 (((-784) $) 72)) (-1450 ((|#1| $) 61 (|has| |#1| (-464)))) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1060 (-419 (-576))))) (($ |#1|) 73)) (-4037 (((-657 |#1|) $) 66)) (-2313 ((|#1| $ (-784)) 68)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-3500 ((|#1| $ |#1| |#1|) 65)) (-3247 (($ $) 90)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($) 91)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-669 |#1|) (-141) (-1071)) (T -669)) -((-2097 (*1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)))) (-3247 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)))) (-3292 (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-2945 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-669 *3)) (-4 *3 (-1071)) (-4 *3 (-374)))) (-1952 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-4132 (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) -(-13 (-867 |t#1|) (-296 |t#1| |t#1|) (-10 -8 (-15 -2097 ($)) (-15 -3247 ($ $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -3292 ($ $ $)) (-15 -2945 ($ $ (-784))) (-15 -1952 ($ $)) (-15 -4132 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-296 |#1| |#1|) . T) ((-423 |#1|) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 |#1|) |has| |#1| (-174)) ((-730 |#1|) |has| |#1| (-174)) ((-739) . T) ((-1060 #0#) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-867 |#1|) . T)) -((-4375 (((-657 (-666 (-419 |#2|))) (-666 (-419 |#2|))) 85 (|has| |#1| (-27)))) (-1885 (((-657 (-666 (-419 |#2|))) (-666 (-419 |#2|))) 84 (|has| |#1| (-27))) (((-657 (-666 (-419 |#2|))) (-666 (-419 |#2|)) (-1 (-657 |#1|) |#2|)) 19))) -(((-670 |#1| |#2|) (-10 -7 (-15 -1885 ((-657 (-666 (-419 |#2|))) (-666 (-419 |#2|)) (-1 (-657 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1885 ((-657 (-666 (-419 |#2|))) (-666 (-419 |#2|)))) (-15 -4375 ((-657 (-666 (-419 |#2|))) (-666 (-419 |#2|))))) |%noBranch|)) (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576)))) (-1265 |#1|)) (T -670)) -((-4375 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *5 (-1265 *4)) (-5 *2 (-657 (-666 (-419 *5)))) (-5 *1 (-670 *4 *5)) (-5 *3 (-666 (-419 *5))))) (-1885 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *5 (-1265 *4)) (-5 *2 (-657 (-666 (-419 *5)))) (-5 *1 (-670 *4 *5)) (-5 *3 (-666 (-419 *5))))) (-1885 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-657 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) (-5 *2 (-657 (-666 (-419 *6)))) (-5 *1 (-670 *5 *6)) (-5 *3 (-666 (-419 *6)))))) -(-10 -7 (-15 -1885 ((-657 (-666 (-419 |#2|))) (-666 (-419 |#2|)) (-1 (-657 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1885 ((-657 (-666 (-419 |#2|))) (-666 (-419 |#2|)))) (-15 -4375 ((-657 (-666 (-419 |#2|))) (-666 (-419 |#2|))))) |%noBranch|)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-1952 (($ $) NIL (|has| |#1| (-374)))) (-3292 (($ $ $) 28 (|has| |#1| (-374)))) (-2945 (($ $ (-784)) 31 (|has| |#1| (-374)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-3328 (($ $ $) NIL (|has| |#1| (-374)))) (-3207 (($ $ $) NIL (|has| |#1| (-374)))) (-4057 (($ $ $) NIL (|has| |#1| (-374)))) (-3046 (($ $ $) NIL (|has| |#1| (-374)))) (-2170 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-2590 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2455 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-374)))) (-1624 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2884 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL)) (-2212 (($ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3813 (($ $) NIL (|has| |#1| (-464)))) (-4094 (((-112) $) NIL)) (-2003 (($ |#1| (-784)) NIL)) (-3430 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-568)))) (-2733 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-568)))) (-4436 (((-784) $) NIL)) (-3826 (($ $ $) NIL (|has| |#1| (-374)))) (-4269 (($ $ $) NIL (|has| |#1| (-374)))) (-3938 (($ $ $) NIL (|has| |#1| (-374)))) (-3359 (($ $ $) NIL (|has| |#1| (-374)))) (-3978 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-2129 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2026 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-374)))) (-2186 ((|#1| $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3418 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2835 ((|#1| $ |#1|) 24)) (-4132 (($ $ $) 33 (|has| |#1| (-374)))) (-1770 (((-784) $) NIL)) (-1450 ((|#1| $) NIL (|has| |#1| (-464)))) (-3501 (((-877) $) 20) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1060 (-419 (-576))))) (($ |#1|) NIL)) (-4037 (((-657 |#1|) $) NIL)) (-2313 ((|#1| $ (-784)) NIL)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-3500 ((|#1| $ |#1| |#1|) 23)) (-3247 (($ $) NIL)) (-2769 (($) 21 T CONST)) (-2779 (($) 8 T CONST)) (-2097 (($) NIL)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-671 |#1| |#2|) (-669 |#1|) (-1071) (-1 |#1| |#1|)) (T -671)) -NIL -(-669 |#1|) -((-3292 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-2945 ((|#2| |#2| (-784) (-1 |#1| |#1|)) 45)) (-4132 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67))) -(((-672 |#1| |#2|) (-10 -7 (-15 -3292 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2945 (|#2| |#2| (-784) (-1 |#1| |#1|))) (-15 -4132 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-374) (-669 |#1|)) (T -672)) -((-4132 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-672 *4 *2)) (-4 *2 (-669 *4)))) (-2945 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-784)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-672 *5 *2)) (-4 *2 (-669 *5)))) (-3292 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-672 *4 *2)) (-4 *2 (-669 *4))))) -(-10 -7 (-15 -3292 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2945 (|#2| |#2| (-784) (-1 |#1| |#1|))) (-15 -4132 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-3494 (($ $ $) 9))) -(((-673 |#1|) (-10 -8 (-15 -3494 (|#1| |#1| |#1|))) (-674)) (T -673)) -NIL -(-10 -8 (-15 -3494 (|#1| |#1| |#1|))) -((-3429 (((-112) $ $) 7)) (-3452 (($ $) 11)) (-2046 (((-112) $ $) 6)) (-3494 (($ $ $) 9)) (-2933 (((-112) $ $) 8)) (-3482 (($ $ $) 10))) -(((-674) (-141)) (T -674)) -((-3452 (*1 *1 *1) (-4 *1 (-674))) (-3482 (*1 *1 *1 *1) (-4 *1 (-674))) (-3494 (*1 *1 *1 *1) (-4 *1 (-674)))) -(-13 (-102) (-10 -8 (-15 -3452 ($ $)) (-15 -3482 ($ $ $)) (-15 -3494 ($ $ $)))) -(((-102) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 15)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-1621 ((|#1| $) 23)) (-3707 (($ $ $) NIL (|has| |#1| (-804)))) (-1611 (($ $ $) NIL (|has| |#1| (-804)))) (-2342 (((-1180) $) 48)) (-1471 (((-1142) $) NIL)) (-1635 ((|#3| $) 24)) (-3501 (((-877) $) 43)) (-2046 (((-112) $ $) 22)) (-2769 (($) 10 T CONST)) (-2985 (((-112) $ $) NIL (|has| |#1| (-804)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-804)))) (-2933 (((-112) $ $) 20)) (-2973 (((-112) $ $) NIL (|has| |#1| (-804)))) (-2954 (((-112) $ $) 26 (|has| |#1| (-804)))) (-3034 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3022 (($ $) 17) (($ $ $) NIL)) (-3012 (($ $ $) 29)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) -(((-675 |#1| |#2| |#3|) (-13 (-730 |#2|) (-10 -8 (IF (|has| |#1| (-804)) (-6 (-804)) |%noBranch|) (-15 -3034 ($ $ |#3|)) (-15 -3034 ($ |#1| |#3|)) (-15 -1621 (|#1| $)) (-15 -1635 (|#3| $)))) (-730 |#2|) (-174) (|SubsetCategory| (-739) |#2|)) (T -675)) -((-3034 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-675 *3 *4 *2)) (-4 *3 (-730 *4)) (-4 *2 (|SubsetCategory| (-739) *4)))) (-3034 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-675 *2 *4 *3)) (-4 *2 (-730 *4)) (-4 *3 (|SubsetCategory| (-739) *4)))) (-1621 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-730 *3)) (-5 *1 (-675 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-739) *3)))) (-1635 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-739) *4)) (-5 *1 (-675 *3 *4 *2)) (-4 *3 (-730 *4))))) -(-13 (-730 |#2|) (-10 -8 (IF (|has| |#1| (-804)) (-6 (-804)) |%noBranch|) (-15 -3034 ($ $ |#3|)) (-15 -3034 ($ |#1| |#3|)) (-15 -1621 (|#1| $)) (-15 -1635 (|#3| $)))) -((-3343 (((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|)) 33))) -(((-676 |#1|) (-10 -7 (-15 -3343 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|)))) (-929)) (T -676)) -((-3343 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-657 (-1194 *4))) (-5 *3 (-1194 *4)) (-4 *4 (-929)) (-5 *1 (-676 *4))))) -(-10 -7 (-15 -3343 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3391 (((-657 |#1|) $) 84)) (-1332 (($ $ (-784)) 94)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-2299 (((-1313 |#1| |#2|) (-1313 |#1| |#2|) $) 50)) (-1624 (((-3 (-685 |#1|) "failed") $) NIL)) (-2884 (((-685 |#1|) $) NIL)) (-2212 (($ $) 93)) (-4334 (((-784) $) NIL)) (-3724 (((-657 $) $) NIL)) (-3157 (((-112) $) NIL)) (-3607 (($ (-685 |#1|) |#2|) 70)) (-1874 (($ $) 89)) (-4083 (($ (-1 |#2| |#2|) $) NIL)) (-1825 (((-1313 |#1| |#2|) (-1313 |#1| |#2|) $) 49)) (-4063 (((-2 (|:| |k| (-685 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2174 (((-685 |#1|) $) NIL)) (-2186 ((|#2| $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3236 (($ $ |#1| $) 32) (($ $ (-657 |#1|) (-657 $)) 34)) (-1770 (((-784) $) 91)) (-3511 (($ $ $) 20) (($ (-685 |#1|) (-685 |#1|)) 79) (($ (-685 |#1|) $) 77) (($ $ (-685 |#1|)) 78)) (-3501 (((-877) $) NIL) (($ |#1|) 76) (((-1304 |#1| |#2|) $) 60) (((-1313 |#1| |#2|) $) 43) (($ (-685 |#1|)) 27)) (-4037 (((-657 |#2|) $) NIL)) (-2313 ((|#2| $ (-685 |#1|)) NIL)) (-1771 ((|#2| (-1313 |#1| |#2|) $) 45)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 23 T CONST)) (-2329 (((-657 (-2 (|:| |k| (-685 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4046 (((-3 $ "failed") (-1304 |#1| |#2|)) 62)) (-3400 (($ (-685 |#1|)) 14)) (-2933 (((-112) $ $) 46)) (-3034 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3022 (($ $) 68) (($ $ $) NIL)) (-3012 (($ $ $) 31)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-685 |#1|)) NIL))) -(((-677 |#1| |#2|) (-13 (-385 |#1| |#2|) (-393 |#2| (-685 |#1|)) (-10 -8 (-15 -4046 ((-3 $ "failed") (-1304 |#1| |#2|))) (-15 -3511 ($ (-685 |#1|) (-685 |#1|))) (-15 -3511 ($ (-685 |#1|) $)) (-15 -3511 ($ $ (-685 |#1|))))) (-862) (-174)) (T -677)) -((-4046 (*1 *1 *2) (|partial| -12 (-5 *2 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *1 (-677 *3 *4)))) (-3511 (*1 *1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-862)) (-5 *1 (-677 *3 *4)) (-4 *4 (-174)))) (-3511 (*1 *1 *2 *1) (-12 (-5 *2 (-685 *3)) (-4 *3 (-862)) (-5 *1 (-677 *3 *4)) (-4 *4 (-174)))) (-3511 (*1 *1 *1 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-862)) (-5 *1 (-677 *3 *4)) (-4 *4 (-174))))) -(-13 (-385 |#1| |#2|) (-393 |#2| (-685 |#1|)) (-10 -8 (-15 -4046 ((-3 $ "failed") (-1304 |#1| |#2|))) (-15 -3511 ($ (-685 |#1|) (-685 |#1|))) (-15 -3511 ($ (-685 |#1|) $)) (-15 -3511 ($ $ (-685 |#1|))))) -((-1568 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-3363 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-3162 (($ (-1 (-112) |#2|) $) 29)) (-3606 (($ $) 65)) (-4295 (($ $) 74)) (-3647 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-3622 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-3582 (((-576) |#2| $ (-576)) 71) (((-576) |#2| $) NIL) (((-576) (-1 (-112) |#2|) $) 54)) (-4109 (($ (-784) |#2|) 63)) (-4033 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-3073 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4083 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1710 (($ |#2|) 15)) (-2468 (($ $ $ (-576)) 42) (($ |#2| $ (-576)) 40)) (-2951 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-3449 (($ $ (-1256 (-576))) 51) (($ $ (-576)) 44)) (-2114 (($ $ $ (-576)) 70)) (-1923 (($ $) 68)) (-2954 (((-112) $ $) 76))) -(((-678 |#1| |#2|) (-10 -8 (-15 -1710 (|#1| |#2|)) (-15 -3449 (|#1| |#1| (-576))) (-15 -3449 (|#1| |#1| (-1256 (-576)))) (-15 -3647 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2468 (|#1| |#2| |#1| (-576))) (-15 -2468 (|#1| |#1| |#1| (-576))) (-15 -4033 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3162 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3647 (|#1| |#2| |#1|)) (-15 -4295 (|#1| |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -3073 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1568 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3582 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3582 ((-576) |#2| |#1|)) (-15 -3582 ((-576) |#2| |#1| (-576))) (-15 -3073 (|#1| |#1| |#1|)) (-15 -1568 ((-112) |#1|)) (-15 -2114 (|#1| |#1| |#1| (-576))) (-15 -3606 (|#1| |#1|)) (-15 -3363 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3363 (|#1| |#1|)) (-15 -2954 ((-112) |#1| |#1|)) (-15 -3622 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3622 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3622 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2951 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4109 (|#1| (-784) |#2|)) (-15 -4083 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4083 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1923 (|#1| |#1|))) (-679 |#2|) (-1239)) (T -678)) -NIL -(-10 -8 (-15 -1710 (|#1| |#2|)) (-15 -3449 (|#1| |#1| (-576))) (-15 -3449 (|#1| |#1| (-1256 (-576)))) (-15 -3647 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2468 (|#1| |#2| |#1| (-576))) (-15 -2468 (|#1| |#1| |#1| (-576))) (-15 -4033 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3162 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3647 (|#1| |#2| |#1|)) (-15 -4295 (|#1| |#1|)) (-15 -4033 (|#1| |#1| |#1|)) (-15 -3073 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1568 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3582 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3582 ((-576) |#2| |#1|)) (-15 -3582 ((-576) |#2| |#1| (-576))) (-15 -3073 (|#1| |#1| |#1|)) (-15 -1568 ((-112) |#1|)) (-15 -2114 (|#1| |#1| |#1| (-576))) (-15 -3606 (|#1| |#1|)) (-15 -3363 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3363 (|#1| |#1|)) (-15 -2954 ((-112) |#1| |#1|)) (-15 -3622 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3622 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3622 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2951 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4109 (|#1| (-784) |#2|)) (-15 -4083 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4083 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1923 (|#1| |#1|))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3071 ((|#1| $) 49)) (-2913 ((|#1| $) 66)) (-4424 (($ $) 68)) (-4313 (((-1294) $ (-576) (-576)) 99 (|has| $ (-6 -4467)))) (-3605 (($ $ (-576)) 53 (|has| $ (-6 -4467)))) (-1568 (((-112) $) 144 (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-3363 (($ $) 148 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4467)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4467)))) (-1850 (($ $) 143 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-3793 (((-112) $ (-784)) 8)) (-3734 ((|#1| $ |#1|) 40 (|has| $ (-6 -4467)))) (-2823 (($ $ $) 57 (|has| $ (-6 -4467)))) (-2045 ((|#1| $ |#1|) 55 (|has| $ (-6 -4467)))) (-4013 ((|#1| $ |#1|) 59 (|has| $ (-6 -4467)))) (-3682 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4467))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4467))) (($ $ "rest" $) 56 (|has| $ (-6 -4467))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 119 (|has| $ (-6 -4467))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) 42 (|has| $ (-6 -4467)))) (-3162 (($ (-1 (-112) |#1|) $) 131)) (-2035 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4466)))) (-2902 ((|#1| $) 67)) (-4359 (($) 7 T CONST)) (-3606 (($ $) 146 (|has| $ (-6 -4467)))) (-3768 (($ $) 136)) (-3522 (($ $) 74) (($ $ (-784)) 72)) (-4295 (($ $) 133 (|has| |#1| (-1122)))) (-3914 (($ $) 101 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3647 (($ |#1| $) 132 (|has| |#1| (-1122))) (($ (-1 (-112) |#1|) $) 127)) (-3895 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4466))) (($ |#1| $) 102 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2158 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) 89)) (-1628 (((-112) $) 85)) (-3582 (((-576) |#1| $ (-576)) 141 (|has| |#1| (-1122))) (((-576) |#1| $) 140 (|has| |#1| (-1122))) (((-576) (-1 (-112) |#1|) $) 139)) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-2877 (((-657 $) $) 51)) (-1700 (((-112) $ $) 43 (|has| |#1| (-1122)))) (-4109 (($ (-784) |#1|) 111)) (-1833 (((-112) $ (-784)) 9)) (-3853 (((-576) $) 97 (|has| (-576) (-862)))) (-3707 (($ $ $) 154 (|has| |#1| (-862)))) (-4033 (($ $ $) 134 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-3073 (($ $ $) 142 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2272 (((-576) $) 96 (|has| (-576) (-862)))) (-1611 (($ $ $) 153 (|has| |#1| (-862)))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1710 (($ |#1|) 124)) (-4261 (((-112) $ (-784)) 10)) (-2424 (((-657 |#1|) $) 46)) (-2633 (((-112) $) 50)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3920 ((|#1| $) 71) (($ $ (-784)) 69)) (-2468 (($ $ $ (-576)) 129) (($ |#1| $ (-576)) 128)) (-2271 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-1430 (((-657 (-576)) $) 94)) (-4242 (((-112) (-576) $) 93)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3510 ((|#1| $) 77) (($ $ (-784)) 75)) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1987 (($ $ |#1|) 98 (|has| $ (-6 -4467)))) (-4286 (((-112) $) 86)) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-1515 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) 92)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1256 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3883 (((-576) $ $) 45)) (-3449 (($ $ (-1256 (-576))) 126) (($ $ (-576)) 125)) (-3409 (($ $ (-1256 (-576))) 116) (($ $ (-576)) 115)) (-3628 (((-112) $) 47)) (-3600 (($ $) 63)) (-1921 (($ $) 60 (|has| $ (-6 -4467)))) (-4027 (((-784) $) 64)) (-4087 (($ $) 65)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2114 (($ $ $ (-576)) 145 (|has| $ (-6 -4467)))) (-1923 (($ $) 13)) (-4148 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 109)) (-2858 (($ $ $) 62) (($ $ |#1|) 61)) (-1674 (($ $ $) 79) (($ |#1| $) 78) (($ (-657 $)) 113) (($ $ |#1|) 112)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-1986 (((-657 $) $) 52)) (-1633 (((-112) $ $) 44 (|has| |#1| (-1122)))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) 152 (|has| |#1| (-862)))) (-2963 (((-112) $ $) 150 (|has| |#1| (-862)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2973 (((-112) $ $) 151 (|has| |#1| (-862)))) (-2954 (((-112) $ $) 149 (|has| |#1| (-862)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-679 |#1|) (-141) (-1239)) (T -679)) -((-1710 (*1 *1 *2) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1239))))) -(-13 (-1171 |t#1|) (-384 |t#1|) (-292 |t#1|) (-10 -8 (-15 -1710 ($ |t#1|)))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-292 |#1|) . T) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-664 |#1|) . T) ((-862) |has| |#1| (-862)) ((-865) |has| |#1| (-862)) ((-1032 |#1|) . T) ((-1122) -2802 (|has| |#1| (-1122)) (|has| |#1| (-862))) ((-1171 |#1|) . T) ((-1239) . T) ((-1277 |#1|) . T)) -((-3036 (((-657 (-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -1985 (-657 (-1289 |#1|))))) (-657 (-657 |#1|)) (-657 (-1289 |#1|))) 22) (((-657 (-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -1985 (-657 (-1289 |#1|))))) (-702 |#1|) (-657 (-1289 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -1985 (-657 (-1289 |#1|)))) (-657 (-657 |#1|)) (-1289 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -1985 (-657 (-1289 |#1|)))) (-702 |#1|) (-1289 |#1|)) 14)) (-1542 (((-784) (-702 |#1|) (-1289 |#1|)) 30)) (-4178 (((-3 (-1289 |#1|) "failed") (-702 |#1|) (-1289 |#1|)) 24)) (-3712 (((-112) (-702 |#1|) (-1289 |#1|)) 27))) -(((-680 |#1|) (-10 -7 (-15 -3036 ((-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -1985 (-657 (-1289 |#1|)))) (-702 |#1|) (-1289 |#1|))) (-15 -3036 ((-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -1985 (-657 (-1289 |#1|)))) (-657 (-657 |#1|)) (-1289 |#1|))) (-15 -3036 ((-657 (-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -1985 (-657 (-1289 |#1|))))) (-702 |#1|) (-657 (-1289 |#1|)))) (-15 -3036 ((-657 (-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -1985 (-657 (-1289 |#1|))))) (-657 (-657 |#1|)) (-657 (-1289 |#1|)))) (-15 -4178 ((-3 (-1289 |#1|) "failed") (-702 |#1|) (-1289 |#1|))) (-15 -3712 ((-112) (-702 |#1|) (-1289 |#1|))) (-15 -1542 ((-784) (-702 |#1|) (-1289 |#1|)))) (-374)) (T -680)) -((-1542 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *5)) (-5 *4 (-1289 *5)) (-4 *5 (-374)) (-5 *2 (-784)) (-5 *1 (-680 *5)))) (-3712 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *5)) (-5 *4 (-1289 *5)) (-4 *5 (-374)) (-5 *2 (-112)) (-5 *1 (-680 *5)))) (-4178 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1289 *4)) (-5 *3 (-702 *4)) (-4 *4 (-374)) (-5 *1 (-680 *4)))) (-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-657 *5))) (-4 *5 (-374)) (-5 *2 (-657 (-2 (|:| |particular| (-3 (-1289 *5) "failed")) (|:| -1985 (-657 (-1289 *5)))))) (-5 *1 (-680 *5)) (-5 *4 (-657 (-1289 *5))))) (-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *5)) (-4 *5 (-374)) (-5 *2 (-657 (-2 (|:| |particular| (-3 (-1289 *5) "failed")) (|:| -1985 (-657 (-1289 *5)))))) (-5 *1 (-680 *5)) (-5 *4 (-657 (-1289 *5))))) (-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-657 *5))) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1289 *5) "failed")) (|:| -1985 (-657 (-1289 *5))))) (-5 *1 (-680 *5)) (-5 *4 (-1289 *5)))) (-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1289 *5) "failed")) (|:| -1985 (-657 (-1289 *5))))) (-5 *1 (-680 *5)) (-5 *4 (-1289 *5))))) -(-10 -7 (-15 -3036 ((-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -1985 (-657 (-1289 |#1|)))) (-702 |#1|) (-1289 |#1|))) (-15 -3036 ((-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -1985 (-657 (-1289 |#1|)))) (-657 (-657 |#1|)) (-1289 |#1|))) (-15 -3036 ((-657 (-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -1985 (-657 (-1289 |#1|))))) (-702 |#1|) (-657 (-1289 |#1|)))) (-15 -3036 ((-657 (-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -1985 (-657 (-1289 |#1|))))) (-657 (-657 |#1|)) (-657 (-1289 |#1|)))) (-15 -4178 ((-3 (-1289 |#1|) "failed") (-702 |#1|) (-1289 |#1|))) (-15 -3712 ((-112) (-702 |#1|) (-1289 |#1|))) (-15 -1542 ((-784) (-702 |#1|) (-1289 |#1|)))) -((-3036 (((-657 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1985 (-657 |#3|)))) |#4| (-657 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1985 (-657 |#3|))) |#4| |#3|) 60)) (-1542 (((-784) |#4| |#3|) 18)) (-4178 (((-3 |#3| "failed") |#4| |#3|) 21)) (-3712 (((-112) |#4| |#3|) 14))) -(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3036 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1985 (-657 |#3|))) |#4| |#3|)) (-15 -3036 ((-657 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1985 (-657 |#3|)))) |#4| (-657 |#3|))) (-15 -4178 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3712 ((-112) |#4| |#3|)) (-15 -1542 ((-784) |#4| |#3|))) (-374) (-13 (-384 |#1|) (-10 -7 (-6 -4467))) (-13 (-384 |#1|) (-10 -7 (-6 -4467))) (-700 |#1| |#2| |#3|)) (T -681)) -((-1542 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-5 *2 (-784)) (-5 *1 (-681 *5 *6 *4 *3)) (-4 *3 (-700 *5 *6 *4)))) (-3712 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-5 *2 (-112)) (-5 *1 (-681 *5 *6 *4 *3)) (-4 *3 (-700 *5 *6 *4)))) (-4178 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-374)) (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4467)))) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4467)))) (-5 *1 (-681 *4 *5 *2 *3)) (-4 *3 (-700 *4 *5 *2)))) (-3036 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-5 *2 (-657 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1985 (-657 *7))))) (-5 *1 (-681 *5 *6 *7 *3)) (-5 *4 (-657 *7)) (-4 *3 (-700 *5 *6 *7)))) (-3036 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1985 (-657 *4)))) (-5 *1 (-681 *5 *6 *4 *3)) (-4 *3 (-700 *5 *6 *4))))) -(-10 -7 (-15 -3036 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1985 (-657 |#3|))) |#4| |#3|)) (-15 -3036 ((-657 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1985 (-657 |#3|)))) |#4| (-657 |#3|))) (-15 -4178 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3712 ((-112) |#4| |#3|)) (-15 -1542 ((-784) |#4| |#3|))) -((-2450 (((-2 (|:| |particular| (-3 (-1289 (-419 |#4|)) "failed")) (|:| -1985 (-657 (-1289 (-419 |#4|))))) (-657 |#4|) (-657 |#3|)) 51))) -(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2450 ((-2 (|:| |particular| (-3 (-1289 (-419 |#4|)) "failed")) (|:| -1985 (-657 (-1289 (-419 |#4|))))) (-657 |#4|) (-657 |#3|)))) (-568) (-806) (-862) (-969 |#1| |#2| |#3|)) (T -682)) -((-2450 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *7)) (-4 *7 (-862)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-5 *2 (-2 (|:| |particular| (-3 (-1289 (-419 *8)) "failed")) (|:| -1985 (-657 (-1289 (-419 *8)))))) (-5 *1 (-682 *5 *6 *7 *8))))) -(-10 -7 (-15 -2450 ((-2 (|:| |particular| (-3 (-1289 (-419 |#4|)) "failed")) (|:| -1985 (-657 (-1289 (-419 |#4|))))) (-657 |#4|) (-657 |#3|)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2824 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-2302 ((|#2| $) NIL)) (-3864 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-3213 (((-1289 (-702 |#2|))) NIL) (((-1289 (-702 |#2|)) (-1289 $)) NIL)) (-3186 (((-112) $) NIL)) (-3348 (((-1289 $)) 42)) (-3793 (((-112) $ (-784)) NIL)) (-1346 (($ |#2|) NIL)) (-4359 (($) NIL T CONST)) (-3590 (($ $) NIL (|has| |#2| (-317)))) (-2911 (((-245 |#1| |#2|) $ (-576)) NIL)) (-3090 (((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed")) NIL (|has| |#2| (-568)))) (-2023 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-1703 (((-702 |#2|)) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-1641 ((|#2| $) NIL)) (-1575 (((-702 |#2|) $) NIL) (((-702 |#2|) $ (-1289 $)) NIL)) (-1498 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-2572 (((-1194 (-972 |#2|))) NIL (|has| |#2| (-374)))) (-2609 (($ $ (-941)) NIL)) (-3195 ((|#2| $) NIL)) (-1806 (((-1194 |#2|) $) NIL (|has| |#2| (-568)))) (-1427 ((|#2|) NIL) ((|#2| (-1289 $)) NIL)) (-2947 (((-1194 |#2|) $) NIL)) (-4274 (((-112)) NIL)) (-1624 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2884 (((-576) $) NIL (|has| |#2| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1060 (-419 (-576))))) ((|#2| $) NIL)) (-2613 (($ (-1289 |#2|)) NIL) (($ (-1289 |#2|) (-1289 $)) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL) (((-702 |#2|) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1542 (((-784) $) NIL (|has| |#2| (-568))) (((-941)) 43)) (-2083 ((|#2| $ (-576) (-576)) NIL)) (-1778 (((-112)) NIL)) (-3490 (($ $ (-941)) NIL)) (-1458 (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-4094 (((-112) $) NIL)) (-3662 (((-784) $) NIL (|has| |#2| (-568)))) (-1345 (((-657 (-245 |#1| |#2|)) $) NIL (|has| |#2| (-568)))) (-2377 (((-784) $) NIL)) (-2591 (((-112)) NIL)) (-2387 (((-784) $) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-1969 ((|#2| $) NIL (|has| |#2| (-6 (-4468 "*"))))) (-2491 (((-576) $) NIL)) (-3770 (((-576) $) NIL)) (-2070 (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-3704 (((-576) $) NIL)) (-1429 (((-576) $) NIL)) (-2514 (($ (-657 (-657 |#2|))) NIL)) (-2148 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2339 (((-657 (-657 |#2|)) $) NIL)) (-3089 (((-112)) NIL)) (-1855 (((-112)) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2765 (((-3 (-2 (|:| |particular| $) (|:| -1985 (-657 $))) "failed")) NIL (|has| |#2| (-568)))) (-3694 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-4427 (((-702 |#2|)) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-1425 ((|#2| $) NIL)) (-3346 (((-702 |#2|) $) NIL) (((-702 |#2|) $ (-1289 $)) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-2390 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-2164 (((-1194 (-972 |#2|))) NIL (|has| |#2| (-374)))) (-4404 (($ $ (-941)) NIL)) (-2885 ((|#2| $) NIL)) (-4234 (((-1194 |#2|) $) NIL (|has| |#2| (-568)))) (-4408 ((|#2|) NIL) ((|#2| (-1289 $)) NIL)) (-2444 (((-1194 |#2|) $) NIL)) (-4199 (((-112)) NIL)) (-2342 (((-1180) $) NIL)) (-4396 (((-112)) NIL)) (-3079 (((-112)) NIL)) (-3729 (((-112)) NIL)) (-3913 (((-3 $ "failed") $) NIL (|has| |#2| (-374)))) (-1471 (((-1142) $) NIL)) (-4005 (((-112)) NIL)) (-3418 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-3399 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) 28) ((|#2| $ (-576)) NIL)) (-2815 (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-784)) NIL (|has| |#2| (-237))) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198))))) (-2550 ((|#2| $) NIL)) (-4277 (($ (-657 |#2|)) NIL)) (-2049 (((-112) $) NIL)) (-2732 (((-245 |#1| |#2|) $) NIL)) (-1493 ((|#2| $) NIL (|has| |#2| (-6 (-4468 "*"))))) (-1482 (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1923 (($ $) NIL)) (-2795 (((-702 |#2|) (-1289 $)) NIL) (((-1289 |#2|) $) NIL) (((-702 |#2|) (-1289 $) (-1289 $)) NIL) (((-1289 |#2|) $ (-1289 $)) 31)) (-4148 (($ (-1289 |#2|)) NIL) (((-1289 |#2|) $) NIL)) (-2929 (((-657 (-972 |#2|))) NIL) (((-657 (-972 |#2|)) (-1289 $)) NIL)) (-3544 (($ $ $) NIL)) (-2032 (((-112)) NIL)) (-3815 (((-245 |#1| |#2|) $ (-576)) NIL)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1060 (-419 (-576))))) (($ |#2|) NIL) (((-702 |#2|) $) NIL)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) 41)) (-1630 (((-657 (-1289 |#2|))) NIL (|has| |#2| (-568)))) (-4254 (($ $ $ $) NIL)) (-3675 (((-112)) NIL)) (-3500 (($ (-702 |#2|) $) NIL)) (-2147 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-4299 (((-112) $) NIL)) (-3599 (($ $ $) NIL)) (-4115 (((-112)) NIL)) (-2102 (((-112)) NIL)) (-1950 (((-112)) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-784)) NIL (|has| |#2| (-237))) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198))))) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#2| (-374)))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) NIL) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) NIL)) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-683 |#1| |#2|) (-13 (-1145 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-702 |#2|)) (-429 |#2|)) (-941) (-174)) (T -683)) -NIL -(-13 (-1145 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-702 |#2|)) (-429 |#2|)) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2448 (((-657 (-1157)) $) 10)) (-3501 (((-877) $) 16) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-684) (-13 (-1105) (-10 -8 (-15 -2448 ((-657 (-1157)) $))))) (T -684)) -((-2448 (*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-684))))) -(-13 (-1105) (-10 -8 (-15 -2448 ((-657 (-1157)) $)))) -((-3429 (((-112) $ $) NIL)) (-3391 (((-657 |#1|) $) NIL)) (-4236 (($ $) 62)) (-2991 (((-112) $) NIL)) (-1624 (((-3 |#1| "failed") $) NIL)) (-2884 ((|#1| $) NIL)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-3171 (((-3 $ "failed") (-832 |#1|)) 27)) (-4093 (((-112) (-832 |#1|)) 17)) (-2371 (($ (-832 |#1|)) 28)) (-1619 (((-112) $ $) 36)) (-3358 (((-941) $) 43)) (-4224 (($ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-1885 (((-657 $) (-832 |#1|)) 19)) (-3501 (((-877) $) 51) (($ |#1|) 40) (((-832 |#1|) $) 47) (((-690 |#1|) $) 52)) (-2046 (((-112) $ $) NIL)) (-2792 (((-59 (-657 $)) (-657 |#1|) (-941)) 67)) (-1873 (((-657 $) (-657 |#1|) (-941)) 70)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 63)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 46))) -(((-685 |#1|) (-13 (-862) (-1060 |#1|) (-10 -8 (-15 -2991 ((-112) $)) (-15 -4224 ($ $)) (-15 -4236 ($ $)) (-15 -3358 ((-941) $)) (-15 -1619 ((-112) $ $)) (-15 -3501 ((-832 |#1|) $)) (-15 -3501 ((-690 |#1|) $)) (-15 -1885 ((-657 $) (-832 |#1|))) (-15 -4093 ((-112) (-832 |#1|))) (-15 -2371 ($ (-832 |#1|))) (-15 -3171 ((-3 $ "failed") (-832 |#1|))) (-15 -3391 ((-657 |#1|) $)) (-15 -2792 ((-59 (-657 $)) (-657 |#1|) (-941))) (-15 -1873 ((-657 $) (-657 |#1|) (-941))))) (-862)) (T -685)) -((-2991 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) (-4224 (*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-862)))) (-4236 (*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-862)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-941)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) (-1619 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-832 *3)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-690 *3)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-832 *4)) (-4 *4 (-862)) (-5 *2 (-657 (-685 *4))) (-5 *1 (-685 *4)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-832 *4)) (-4 *4 (-862)) (-5 *2 (-112)) (-5 *1 (-685 *4)))) (-2371 (*1 *1 *2) (-12 (-5 *2 (-832 *3)) (-4 *3 (-862)) (-5 *1 (-685 *3)))) (-3171 (*1 *1 *2) (|partial| -12 (-5 *2 (-832 *3)) (-4 *3 (-862)) (-5 *1 (-685 *3)))) (-3391 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) (-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *5)) (-5 *4 (-941)) (-4 *5 (-862)) (-5 *2 (-59 (-657 (-685 *5)))) (-5 *1 (-685 *5)))) (-1873 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *5)) (-5 *4 (-941)) (-4 *5 (-862)) (-5 *2 (-657 (-685 *5))) (-5 *1 (-685 *5))))) -(-13 (-862) (-1060 |#1|) (-10 -8 (-15 -2991 ((-112) $)) (-15 -4224 ($ $)) (-15 -4236 ($ $)) (-15 -3358 ((-941) $)) (-15 -1619 ((-112) $ $)) (-15 -3501 ((-832 |#1|) $)) (-15 -3501 ((-690 |#1|) $)) (-15 -1885 ((-657 $) (-832 |#1|))) (-15 -4093 ((-112) (-832 |#1|))) (-15 -2371 ($ (-832 |#1|))) (-15 -3171 ((-3 $ "failed") (-832 |#1|))) (-15 -3391 ((-657 |#1|) $)) (-15 -2792 ((-59 (-657 $)) (-657 |#1|) (-941))) (-15 -1873 ((-657 $) (-657 |#1|) (-941))))) -((-3071 ((|#2| $) 100)) (-4424 (($ $) 121)) (-3793 (((-112) $ (-784)) 35)) (-3522 (($ $) 109) (($ $ (-784)) 112)) (-1628 (((-112) $) 122)) (-2877 (((-657 $) $) 96)) (-1700 (((-112) $ $) 92)) (-1833 (((-112) $ (-784)) 33)) (-3853 (((-576) $) 66)) (-2272 (((-576) $) 65)) (-4261 (((-112) $ (-784)) 31)) (-2633 (((-112) $) 98)) (-3920 ((|#2| $) 113) (($ $ (-784)) 117)) (-2271 (($ $ $ (-576)) 83) (($ |#2| $ (-576)) 82)) (-1430 (((-657 (-576)) $) 64)) (-4242 (((-112) (-576) $) 59)) (-3510 ((|#2| $) NIL) (($ $ (-784)) 108)) (-3926 (($ $ (-576)) 125)) (-4286 (((-112) $) 124)) (-3399 (((-112) (-1 (-112) |#2|) $) 42)) (-2380 (((-657 |#2|) $) 46)) (-2835 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1256 (-576))) 79) ((|#2| $ (-576)) 57) ((|#2| $ (-576) |#2|) 58)) (-3883 (((-576) $ $) 91)) (-3409 (($ $ (-1256 (-576))) 78) (($ $ (-576)) 72)) (-3628 (((-112) $) 87)) (-3600 (($ $) 105)) (-4027 (((-784) $) 104)) (-4087 (($ $) 103)) (-3511 (($ (-657 |#2|)) 53)) (-1431 (($ $) 126)) (-1986 (((-657 $) $) 90)) (-1633 (((-112) $ $) 89)) (-2147 (((-112) (-1 (-112) |#2|) $) 41)) (-2933 (((-112) $ $) 20)) (-3440 (((-784) $) 39))) -(((-686 |#1| |#2|) (-10 -8 (-15 -2933 ((-112) |#1| |#1|)) (-15 -1431 (|#1| |#1|)) (-15 -3926 (|#1| |#1| (-576))) (-15 -1628 ((-112) |#1|)) (-15 -4286 ((-112) |#1|)) (-15 -2835 (|#2| |#1| (-576) |#2|)) (-15 -2835 (|#2| |#1| (-576))) (-15 -2380 ((-657 |#2|) |#1|)) (-15 -4242 ((-112) (-576) |#1|)) (-15 -1430 ((-657 (-576)) |#1|)) (-15 -2272 ((-576) |#1|)) (-15 -3853 ((-576) |#1|)) (-15 -3511 (|#1| (-657 |#2|))) (-15 -2835 (|#1| |#1| (-1256 (-576)))) (-15 -3409 (|#1| |#1| (-576))) (-15 -3409 (|#1| |#1| (-1256 (-576)))) (-15 -2271 (|#1| |#2| |#1| (-576))) (-15 -2271 (|#1| |#1| |#1| (-576))) (-15 -3600 (|#1| |#1|)) (-15 -4027 ((-784) |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -3920 (|#1| |#1| (-784))) (-15 -2835 (|#2| |#1| "last")) (-15 -3920 (|#2| |#1|)) (-15 -3522 (|#1| |#1| (-784))) (-15 -2835 (|#1| |#1| "rest")) (-15 -3522 (|#1| |#1|)) (-15 -3510 (|#1| |#1| (-784))) (-15 -2835 (|#2| |#1| "first")) (-15 -3510 (|#2| |#1|)) (-15 -1700 ((-112) |#1| |#1|)) (-15 -1633 ((-112) |#1| |#1|)) (-15 -3883 ((-576) |#1| |#1|)) (-15 -3628 ((-112) |#1|)) (-15 -2835 (|#2| |#1| "value")) (-15 -3071 (|#2| |#1|)) (-15 -2633 ((-112) |#1|)) (-15 -2877 ((-657 |#1|) |#1|)) (-15 -1986 ((-657 |#1|) |#1|)) (-15 -3399 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2147 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3440 ((-784) |#1|)) (-15 -3793 ((-112) |#1| (-784))) (-15 -1833 ((-112) |#1| (-784))) (-15 -4261 ((-112) |#1| (-784)))) (-687 |#2|) (-1239)) (T -686)) -NIL -(-10 -8 (-15 -2933 ((-112) |#1| |#1|)) (-15 -1431 (|#1| |#1|)) (-15 -3926 (|#1| |#1| (-576))) (-15 -1628 ((-112) |#1|)) (-15 -4286 ((-112) |#1|)) (-15 -2835 (|#2| |#1| (-576) |#2|)) (-15 -2835 (|#2| |#1| (-576))) (-15 -2380 ((-657 |#2|) |#1|)) (-15 -4242 ((-112) (-576) |#1|)) (-15 -1430 ((-657 (-576)) |#1|)) (-15 -2272 ((-576) |#1|)) (-15 -3853 ((-576) |#1|)) (-15 -3511 (|#1| (-657 |#2|))) (-15 -2835 (|#1| |#1| (-1256 (-576)))) (-15 -3409 (|#1| |#1| (-576))) (-15 -3409 (|#1| |#1| (-1256 (-576)))) (-15 -2271 (|#1| |#2| |#1| (-576))) (-15 -2271 (|#1| |#1| |#1| (-576))) (-15 -3600 (|#1| |#1|)) (-15 -4027 ((-784) |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -3920 (|#1| |#1| (-784))) (-15 -2835 (|#2| |#1| "last")) (-15 -3920 (|#2| |#1|)) (-15 -3522 (|#1| |#1| (-784))) (-15 -2835 (|#1| |#1| "rest")) (-15 -3522 (|#1| |#1|)) (-15 -3510 (|#1| |#1| (-784))) (-15 -2835 (|#2| |#1| "first")) (-15 -3510 (|#2| |#1|)) (-15 -1700 ((-112) |#1| |#1|)) (-15 -1633 ((-112) |#1| |#1|)) (-15 -3883 ((-576) |#1| |#1|)) (-15 -3628 ((-112) |#1|)) (-15 -2835 (|#2| |#1| "value")) (-15 -3071 (|#2| |#1|)) (-15 -2633 ((-112) |#1|)) (-15 -2877 ((-657 |#1|) |#1|)) (-15 -1986 ((-657 |#1|) |#1|)) (-15 -3399 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2147 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3440 ((-784) |#1|)) (-15 -3793 ((-112) |#1| (-784))) (-15 -1833 ((-112) |#1| (-784))) (-15 -4261 ((-112) |#1| (-784)))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3071 ((|#1| $) 49)) (-2913 ((|#1| $) 66)) (-4424 (($ $) 68)) (-4313 (((-1294) $ (-576) (-576)) 99 (|has| $ (-6 -4467)))) (-3605 (($ $ (-576)) 53 (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) 8)) (-3734 ((|#1| $ |#1|) 40 (|has| $ (-6 -4467)))) (-2823 (($ $ $) 57 (|has| $ (-6 -4467)))) (-2045 ((|#1| $ |#1|) 55 (|has| $ (-6 -4467)))) (-4013 ((|#1| $ |#1|) 59 (|has| $ (-6 -4467)))) (-3682 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4467))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4467))) (($ $ "rest" $) 56 (|has| $ (-6 -4467))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 119 (|has| $ (-6 -4467))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) 42 (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) |#1|) $) 104)) (-2902 ((|#1| $) 67)) (-4359 (($) 7 T CONST)) (-3219 (($ $) 126)) (-3522 (($ $) 74) (($ $ (-784)) 72)) (-3914 (($ $) 101 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3895 (($ |#1| $) 102 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 105)) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2158 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) 89)) (-1628 (((-112) $) 85)) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1870 (((-784) $) 125)) (-2877 (((-657 $) $) 51)) (-1700 (((-112) $ $) 43 (|has| |#1| (-1122)))) (-4109 (($ (-784) |#1|) 111)) (-1833 (((-112) $ (-784)) 9)) (-3853 (((-576) $) 97 (|has| (-576) (-862)))) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2272 (((-576) $) 96 (|has| (-576) (-862)))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-4261 (((-112) $ (-784)) 10)) (-2424 (((-657 |#1|) $) 46)) (-2633 (((-112) $) 50)) (-1533 (($ $) 128)) (-2507 (((-112) $) 129)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3920 ((|#1| $) 71) (($ $ (-784)) 69)) (-2271 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-1430 (((-657 (-576)) $) 94)) (-4242 (((-112) (-576) $) 93)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-1605 ((|#1| $) 127)) (-3510 ((|#1| $) 77) (($ $ (-784)) 75)) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1987 (($ $ |#1|) 98 (|has| $ (-6 -4467)))) (-3926 (($ $ (-576)) 124)) (-4286 (((-112) $) 86)) (-4104 (((-112) $) 130)) (-3324 (((-112) $) 131)) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-1515 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) 92)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1256 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3883 (((-576) $ $) 45)) (-3409 (($ $ (-1256 (-576))) 116) (($ $ (-576)) 115)) (-3628 (((-112) $) 47)) (-3600 (($ $) 63)) (-1921 (($ $) 60 (|has| $ (-6 -4467)))) (-4027 (((-784) $) 64)) (-4087 (($ $) 65)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-4148 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 109)) (-2858 (($ $ $) 62 (|has| $ (-6 -4467))) (($ $ |#1|) 61 (|has| $ (-6 -4467)))) (-1674 (($ $ $) 79) (($ |#1| $) 78) (($ (-657 $)) 113) (($ $ |#1|) 112)) (-1431 (($ $) 123)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-1986 (((-657 $) $) 52)) (-1633 (((-112) $ $) 44 (|has| |#1| (-1122)))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-687 |#1|) (-141) (-1239)) (T -687)) -((-3895 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-687 *3)) (-4 *3 (-1239)))) (-2035 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-687 *3)) (-4 *3 (-1239)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1239)) (-5 *2 (-112)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1239)) (-5 *2 (-112)))) (-2507 (*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1239)) (-5 *2 (-112)))) (-1533 (*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1239)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1239)))) (-3219 (*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1239)))) (-1870 (*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1239)) (-5 *2 (-784)))) (-3926 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-687 *3)) (-4 *3 (-1239)))) (-1431 (*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1239))))) -(-13 (-1171 |t#1|) (-10 -8 (-15 -3895 ($ (-1 (-112) |t#1|) $)) (-15 -2035 ($ (-1 (-112) |t#1|) $)) (-15 -3324 ((-112) $)) (-15 -4104 ((-112) $)) (-15 -2507 ((-112) $)) (-15 -1533 ($ $)) (-15 -1605 (|t#1| $)) (-15 -3219 ($ $)) (-15 -1870 ((-784) $)) (-15 -3926 ($ $ (-576))) (-15 -1431 ($ $)))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-664 |#1|) . T) ((-1032 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1171 |#1|) . T) ((-1239) . T) ((-1277 |#1|) . T)) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3656 (($ (-784) (-784) (-784)) 53 (|has| |#1| (-1071)))) (-3793 (((-112) $ (-784)) NIL)) (-3131 ((|#1| $ (-784) (-784) (-784) |#1|) 47)) (-4359 (($) NIL T CONST)) (-3533 (($ $ $) 57 (|has| |#1| (-1071)))) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3304 (((-1289 (-784)) $) 12)) (-1352 (($ (-1198) $ $) 34)) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2918 (($ (-784)) 55 (|has| |#1| (-1071)))) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#1| $ (-784) (-784) (-784)) 44)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) NIL)) (-3511 (($ (-657 (-657 (-657 |#1|)))) 67)) (-3501 (($ (-978 (-978 (-978 |#1|)))) 23) (((-978 (-978 (-978 |#1|))) $) 19) (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-688 |#1|) (-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1071)) (PROGN (-15 -3656 ($ (-784) (-784) (-784))) (-15 -2918 ($ (-784))) (-15 -3533 ($ $ $))) |%noBranch|) (-15 -3511 ($ (-657 (-657 (-657 |#1|))))) (-15 -2835 (|#1| $ (-784) (-784) (-784))) (-15 -3131 (|#1| $ (-784) (-784) (-784) |#1|)) (-15 -3501 ($ (-978 (-978 (-978 |#1|))))) (-15 -3501 ((-978 (-978 (-978 |#1|))) $)) (-15 -1352 ($ (-1198) $ $)) (-15 -3304 ((-1289 (-784)) $)))) (-1122)) (T -688)) -((-3656 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-688 *3)) (-4 *3 (-1071)) (-4 *3 (-1122)))) (-2918 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-688 *3)) (-4 *3 (-1071)) (-4 *3 (-1122)))) (-3533 (*1 *1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-1071)) (-4 *2 (-1122)))) (-3511 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 (-657 *3)))) (-4 *3 (-1122)) (-5 *1 (-688 *3)))) (-2835 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-784)) (-5 *1 (-688 *2)) (-4 *2 (-1122)))) (-3131 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-688 *2)) (-4 *2 (-1122)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-978 (-978 (-978 *3)))) (-4 *3 (-1122)) (-5 *1 (-688 *3)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-978 (-978 (-978 *3)))) (-5 *1 (-688 *3)) (-4 *3 (-1122)))) (-1352 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-688 *3)) (-4 *3 (-1122)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-1289 (-784))) (-5 *1 (-688 *3)) (-4 *3 (-1122))))) -(-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1071)) (PROGN (-15 -3656 ($ (-784) (-784) (-784))) (-15 -2918 ($ (-784))) (-15 -3533 ($ $ $))) |%noBranch|) (-15 -3511 ($ (-657 (-657 (-657 |#1|))))) (-15 -2835 (|#1| $ (-784) (-784) (-784))) (-15 -3131 (|#1| $ (-784) (-784) (-784) |#1|)) (-15 -3501 ($ (-978 (-978 (-978 |#1|))))) (-15 -3501 ((-978 (-978 (-978 |#1|))) $)) (-15 -1352 ($ (-1198) $ $)) (-15 -3304 ((-1289 (-784)) $)))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-4229 (((-495) $) 10)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 19) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2687 (((-1157) $) 12)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-689) (-13 (-1105) (-10 -8 (-15 -4229 ((-495) $)) (-15 -2687 ((-1157) $))))) (T -689)) -((-4229 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-689)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-689))))) -(-13 (-1105) (-10 -8 (-15 -4229 ((-495) $)) (-15 -2687 ((-1157) $)))) -((-3429 (((-112) $ $) NIL)) (-3391 (((-657 |#1|) $) 15)) (-4236 (($ $) 19)) (-2991 (((-112) $) 20)) (-1624 (((-3 |#1| "failed") $) 23)) (-2884 ((|#1| $) 21)) (-3522 (($ $) 37)) (-1874 (($ $) 25)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-1619 (((-112) $ $) 47)) (-3358 (((-941) $) 40)) (-4224 (($ $) 18)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3510 ((|#1| $) 36)) (-3501 (((-877) $) 32) (($ |#1|) 24) (((-832 |#1|) $) 28)) (-2046 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 13)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 44)) (* (($ $ $) 35))) -(((-690 |#1|) (-13 (-862) (-1060 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3501 ((-832 |#1|) $)) (-15 -3510 (|#1| $)) (-15 -4224 ($ $)) (-15 -3358 ((-941) $)) (-15 -1619 ((-112) $ $)) (-15 -1874 ($ $)) (-15 -3522 ($ $)) (-15 -2991 ((-112) $)) (-15 -4236 ($ $)) (-15 -3391 ((-657 |#1|) $)))) (-862)) (T -690)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-832 *3)) (-5 *1 (-690 *3)) (-4 *3 (-862)))) (-3510 (*1 *2 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) (-4224 (*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-941)) (-5 *1 (-690 *3)) (-4 *3 (-862)))) (-1619 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-690 *3)) (-4 *3 (-862)))) (-1874 (*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) (-3522 (*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-690 *3)) (-4 *3 (-862)))) (-4236 (*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) (-3391 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-690 *3)) (-4 *3 (-862))))) -(-13 (-862) (-1060 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3501 ((-832 |#1|) $)) (-15 -3510 (|#1| $)) (-15 -4224 ($ $)) (-15 -3358 ((-941) $)) (-15 -1619 ((-112) $ $)) (-15 -1874 ($ $)) (-15 -3522 ($ $)) (-15 -2991 ((-112) $)) (-15 -4236 ($ $)) (-15 -3391 ((-657 |#1|) $)))) -((-3596 ((|#1| (-1 |#1| (-784) |#1|) (-784) |#1|) 11)) (-4002 ((|#1| (-1 |#1| |#1|) (-784) |#1|) 9))) -(((-691 |#1|) (-10 -7 (-15 -4002 (|#1| (-1 |#1| |#1|) (-784) |#1|)) (-15 -3596 (|#1| (-1 |#1| (-784) |#1|) (-784) |#1|))) (-1122)) (T -691)) -((-3596 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-784) *2)) (-5 *4 (-784)) (-4 *2 (-1122)) (-5 *1 (-691 *2)))) (-4002 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-784)) (-4 *2 (-1122)) (-5 *1 (-691 *2))))) -(-10 -7 (-15 -4002 (|#1| (-1 |#1| |#1|) (-784) |#1|)) (-15 -3596 (|#1| (-1 |#1| (-784) |#1|) (-784) |#1|))) -((-1327 ((|#2| |#1| |#2|) 9)) (-4438 ((|#1| |#1| |#2|) 8))) -(((-692 |#1| |#2|) (-10 -7 (-15 -4438 (|#1| |#1| |#2|)) (-15 -1327 (|#2| |#1| |#2|))) (-1122) (-1122)) (T -692)) -((-1327 (*1 *2 *3 *2) (-12 (-5 *1 (-692 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122)))) (-4438 (*1 *2 *2 *3) (-12 (-5 *1 (-692 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) -(-10 -7 (-15 -4438 (|#1| |#1| |#2|)) (-15 -1327 (|#2| |#1| |#2|))) -((-1901 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-693 |#1| |#2| |#3|) (-10 -7 (-15 -1901 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1122) (-1122) (-1122)) (T -693)) -((-1901 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)) (-5 *1 (-693 *5 *6 *2))))) -(-10 -7 (-15 -1901 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-3429 (((-112) $ $) NIL)) (-2978 (((-1238) $) 21)) (-2926 (((-657 (-1238)) $) 19)) (-3456 (($ (-657 (-1238)) (-1238)) 14)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 29) (($ (-1203)) NIL) (((-1203) $) NIL) (((-1238) $) 22) (($ (-1140)) 10)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-694) (-13 (-1105) (-625 (-1238)) (-10 -8 (-15 -3501 ($ (-1140))) (-15 -3456 ($ (-657 (-1238)) (-1238))) (-15 -2926 ((-657 (-1238)) $)) (-15 -2978 ((-1238) $))))) (T -694)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-694)))) (-3456 (*1 *1 *2 *3) (-12 (-5 *2 (-657 (-1238))) (-5 *3 (-1238)) (-5 *1 (-694)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-694)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-694))))) -(-13 (-1105) (-625 (-1238)) (-10 -8 (-15 -3501 ($ (-1140))) (-15 -3456 ($ (-657 (-1238)) (-1238))) (-15 -2926 ((-657 (-1238)) $)) (-15 -2978 ((-1238) $)))) -((-3596 (((-1 |#1| (-784) |#1|) (-1 |#1| (-784) |#1|)) 26)) (-4038 (((-1 |#1|) |#1|) 8)) (-3066 ((|#1| |#1|) 19)) (-2184 (((-657 |#1|) (-1 (-657 |#1|) (-657 |#1|)) (-576)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-3501 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-784)) 23))) -(((-695 |#1|) (-10 -7 (-15 -4038 ((-1 |#1|) |#1|)) (-15 -3501 ((-1 |#1|) |#1|)) (-15 -2184 (|#1| (-1 |#1| |#1|))) (-15 -2184 ((-657 |#1|) (-1 (-657 |#1|) (-657 |#1|)) (-576))) (-15 -3066 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-784))) (-15 -3596 ((-1 |#1| (-784) |#1|) (-1 |#1| (-784) |#1|)))) (-1122)) (T -695)) -((-3596 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-784) *3)) (-4 *3 (-1122)) (-5 *1 (-695 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-784)) (-4 *4 (-1122)) (-5 *1 (-695 *4)))) (-3066 (*1 *2 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-1122)))) (-2184 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-657 *5) (-657 *5))) (-5 *4 (-576)) (-5 *2 (-657 *5)) (-5 *1 (-695 *5)) (-4 *5 (-1122)))) (-2184 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-695 *2)) (-4 *2 (-1122)))) (-3501 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-695 *3)) (-4 *3 (-1122)))) (-4038 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-695 *3)) (-4 *3 (-1122))))) -(-10 -7 (-15 -4038 ((-1 |#1|) |#1|)) (-15 -3501 ((-1 |#1|) |#1|)) (-15 -2184 (|#1| (-1 |#1| |#1|))) (-15 -2184 ((-657 |#1|) (-1 (-657 |#1|) (-657 |#1|)) (-576))) (-15 -3066 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-784))) (-15 -3596 ((-1 |#1| (-784) |#1|) (-1 |#1| (-784) |#1|)))) -((-4332 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2830 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1509 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3974 (((-1 |#2| |#1|) |#2|) 11))) -(((-696 |#1| |#2|) (-10 -7 (-15 -3974 ((-1 |#2| |#1|) |#2|)) (-15 -2830 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1509 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4332 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1122) (-1122)) (T -696)) -((-4332 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-5 *2 (-1 *5 *4)) (-5 *1 (-696 *4 *5)))) (-1509 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1122)) (-5 *2 (-1 *5 *4)) (-5 *1 (-696 *4 *5)) (-4 *4 (-1122)))) (-2830 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-5 *2 (-1 *5)) (-5 *1 (-696 *4 *5)))) (-3974 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-696 *4 *3)) (-4 *4 (-1122)) (-4 *3 (-1122))))) -(-10 -7 (-15 -3974 ((-1 |#2| |#1|) |#2|)) (-15 -2830 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1509 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4332 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-2518 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2738 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2220 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3010 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-4385 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-697 |#1| |#2| |#3|) (-10 -7 (-15 -2738 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2220 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3010 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4385 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2518 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1122) (-1122) (-1122)) (T -697)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-1 *7 *5)) (-5 *1 (-697 *5 *6 *7)))) (-2518 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-697 *4 *5 *6)))) (-4385 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-697 *4 *5 *6)) (-4 *4 (-1122)))) (-3010 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-697 *4 *5 *6)) (-4 *5 (-1122)))) (-2220 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *5)) (-5 *1 (-697 *4 *5 *6)))) (-2738 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1122)) (-4 *4 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *5)) (-5 *1 (-697 *5 *4 *6))))) -(-10 -7 (-15 -2738 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2220 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3010 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4385 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2518 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-3622 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4083 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-698 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4083 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4083 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3622 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1071) (-384 |#1|) (-384 |#1|) (-700 |#1| |#2| |#3|) (-1071) (-384 |#5|) (-384 |#5|) (-700 |#5| |#6| |#7|)) (T -698)) -((-3622 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1071)) (-4 *2 (-1071)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) (-4 *9 (-384 *2)) (-5 *1 (-698 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-700 *5 *6 *7)) (-4 *10 (-700 *2 *8 *9)))) (-4083 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1071)) (-4 *8 (-1071)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-700 *8 *9 *10)) (-5 *1 (-698 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-700 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1071)) (-4 *8 (-1071)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-700 *8 *9 *10)) (-5 *1 (-698 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-700 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8))))) -(-10 -7 (-15 -4083 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4083 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3622 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-3765 (($ (-784) (-784)) 42)) (-2671 (($ $ $) 73)) (-2153 (($ |#3|) 68) (($ $) 69)) (-3864 (((-112) $) 36)) (-1606 (($ $ (-576) (-576)) 84)) (-1371 (($ $ (-576) (-576)) 85)) (-2351 (($ $ (-576) (-576) (-576) (-576)) 90)) (-1506 (($ $) 71)) (-3186 (((-112) $) 15)) (-2337 (($ $ (-576) (-576) $) 91)) (-3682 ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-657 (-576)) (-657 (-576)) $) 89)) (-1346 (($ (-784) |#2|) 55)) (-2514 (($ (-657 (-657 |#2|))) 51) (($ (-784) (-784) (-1 |#2| (-576) (-576))) 53)) (-2339 (((-657 (-657 |#2|)) $) 80)) (-1474 (($ $ $) 72)) (-3418 (((-3 $ "failed") $ |#2|) 122)) (-2835 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-657 (-576)) (-657 (-576))) 88)) (-4277 (($ (-657 |#2|)) 56) (($ (-657 $)) 58)) (-2049 (((-112) $) 28)) (-3501 (($ |#4|) 63) (((-877) $) NIL)) (-4299 (((-112) $) 38)) (-3034 (($ $ |#2|) 124)) (-3022 (($ $ $) 95) (($ $) 98)) (-3012 (($ $ $) 93)) (** (($ $ (-784)) 111) (($ $ (-576)) 128)) (* (($ $ $) 104) (($ |#2| $) 100) (($ $ |#2|) 101) (($ (-576) $) 103) ((|#4| $ |#4|) 115) ((|#3| |#3| $) 119))) -(((-699 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3501 ((-877) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3034 (|#1| |#1| |#2|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-784))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 -3022 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -2337 (|#1| |#1| (-576) (-576) |#1|)) (-15 -2351 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -1371 (|#1| |#1| (-576) (-576))) (-15 -1606 (|#1| |#1| (-576) (-576))) (-15 -3682 (|#1| |#1| (-657 (-576)) (-657 (-576)) |#1|)) (-15 -2835 (|#1| |#1| (-657 (-576)) (-657 (-576)))) (-15 -2339 ((-657 (-657 |#2|)) |#1|)) (-15 -2671 (|#1| |#1| |#1|)) (-15 -1474 (|#1| |#1| |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -2153 (|#1| |#3|)) (-15 -3501 (|#1| |#4|)) (-15 -4277 (|#1| (-657 |#1|))) (-15 -4277 (|#1| (-657 |#2|))) (-15 -1346 (|#1| (-784) |#2|)) (-15 -2514 (|#1| (-784) (-784) (-1 |#2| (-576) (-576)))) (-15 -2514 (|#1| (-657 (-657 |#2|)))) (-15 -3765 (|#1| (-784) (-784))) (-15 -4299 ((-112) |#1|)) (-15 -3864 ((-112) |#1|)) (-15 -2049 ((-112) |#1|)) (-15 -3186 ((-112) |#1|)) (-15 -3682 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2835 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2835 (|#2| |#1| (-576) (-576)))) (-700 |#2| |#3| |#4|) (-1071) (-384 |#2|) (-384 |#2|)) (T -699)) -NIL -(-10 -8 (-15 -3501 ((-877) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3034 (|#1| |#1| |#2|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-784))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 -3022 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -2337 (|#1| |#1| (-576) (-576) |#1|)) (-15 -2351 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -1371 (|#1| |#1| (-576) (-576))) (-15 -1606 (|#1| |#1| (-576) (-576))) (-15 -3682 (|#1| |#1| (-657 (-576)) (-657 (-576)) |#1|)) (-15 -2835 (|#1| |#1| (-657 (-576)) (-657 (-576)))) (-15 -2339 ((-657 (-657 |#2|)) |#1|)) (-15 -2671 (|#1| |#1| |#1|)) (-15 -1474 (|#1| |#1| |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -2153 (|#1| |#3|)) (-15 -3501 (|#1| |#4|)) (-15 -4277 (|#1| (-657 |#1|))) (-15 -4277 (|#1| (-657 |#2|))) (-15 -1346 (|#1| (-784) |#2|)) (-15 -2514 (|#1| (-784) (-784) (-1 |#2| (-576) (-576)))) (-15 -2514 (|#1| (-657 (-657 |#2|)))) (-15 -3765 (|#1| (-784) (-784))) (-15 -4299 ((-112) |#1|)) (-15 -3864 ((-112) |#1|)) (-15 -2049 ((-112) |#1|)) (-15 -3186 ((-112) |#1|)) (-15 -3682 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2835 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2835 (|#2| |#1| (-576) (-576)))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3765 (($ (-784) (-784)) 99)) (-2671 (($ $ $) 88)) (-2153 (($ |#2|) 92) (($ $) 91)) (-3864 (((-112) $) 101)) (-1606 (($ $ (-576) (-576)) 84)) (-1371 (($ $ (-576) (-576)) 83)) (-2351 (($ $ (-576) (-576) (-576) (-576)) 82)) (-1506 (($ $) 90)) (-3186 (((-112) $) 103)) (-3793 (((-112) $ (-784)) 8)) (-2337 (($ $ (-576) (-576) $) 81)) (-3682 ((|#1| $ (-576) (-576) |#1|) 45) (($ $ (-657 (-576)) (-657 (-576)) $) 85)) (-3779 (($ $ (-576) |#2|) 43)) (-3726 (($ $ (-576) |#3|) 42)) (-1346 (($ (-784) |#1|) 96)) (-4359 (($) 7 T CONST)) (-3590 (($ $) 68 (|has| |#1| (-317)))) (-2911 ((|#2| $ (-576)) 47)) (-1542 (((-784) $) 67 (|has| |#1| (-568)))) (-2158 ((|#1| $ (-576) (-576) |#1|) 44)) (-2083 ((|#1| $ (-576) (-576)) 49)) (-1458 (((-657 |#1|) $) 31)) (-3662 (((-784) $) 66 (|has| |#1| (-568)))) (-1345 (((-657 |#3|) $) 65 (|has| |#1| (-568)))) (-2377 (((-784) $) 52)) (-4109 (($ (-784) (-784) |#1|) 58)) (-2387 (((-784) $) 51)) (-1833 (((-112) $ (-784)) 9)) (-1969 ((|#1| $) 63 (|has| |#1| (-6 (-4468 "*"))))) (-2491 (((-576) $) 56)) (-3770 (((-576) $) 54)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3704 (((-576) $) 55)) (-1429 (((-576) $) 53)) (-2514 (($ (-657 (-657 |#1|))) 98) (($ (-784) (-784) (-1 |#1| (-576) (-576))) 97)) (-2148 (($ (-1 |#1| |#1|) $) 35)) (-4083 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2339 (((-657 (-657 |#1|)) $) 87)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3913 (((-3 $ "failed") $) 62 (|has| |#1| (-374)))) (-1474 (($ $ $) 89)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-1987 (($ $ |#1|) 57)) (-3418 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-568)))) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48) (($ $ (-657 (-576)) (-657 (-576))) 86)) (-4277 (($ (-657 |#1|)) 95) (($ (-657 $)) 94)) (-2049 (((-112) $) 102)) (-1493 ((|#1| $) 64 (|has| |#1| (-6 (-4468 "*"))))) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-3815 ((|#3| $ (-576)) 46)) (-3501 (($ |#3|) 93) (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-4299 (((-112) $) 100)) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3034 (($ $ |#1|) 69 (|has| |#1| (-374)))) (-3022 (($ $ $) 79) (($ $) 78)) (-3012 (($ $ $) 80)) (** (($ $ (-784)) 71) (($ $ (-576)) 61 (|has| |#1| (-374)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-576) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-700 |#1| |#2| |#3|) (-141) (-1071) (-384 |t#1|) (-384 |t#1|)) (T -700)) -((-3186 (*1 *2 *1) (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-2049 (*1 *2 *1) (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-3765 (*1 *1 *2 *2) (-12 (-5 *2 (-784)) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2514 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2514 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-784)) (-5 *3 (-1 *4 (-576) (-576))) (-4 *4 (-1071)) (-4 *1 (-700 *4 *5 *6)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-1346 (*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4277 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4277 (*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3501 (*1 *1 *2) (-12 (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *2)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (-2153 (*1 *1 *2) (-12 (-4 *3 (-1071)) (-4 *1 (-700 *3 *2 *4)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (-2153 (*1 *1 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-1506 (*1 *1 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-1474 (*1 *1 *1 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2671 (*1 *1 *1 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2339 (*1 *2 *1) (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-657 (-657 *3))))) (-2835 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-657 (-576))) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3682 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-657 (-576))) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1606 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1371 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2351 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2337 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3012 (*1 *1 *1 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3022 (*1 *1 *1 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3022 (*1 *1 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-700 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-700 *3 *2 *4)) (-4 *3 (-1071)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3418 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) (-3034 (*1 *1 *1 *2) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (-3590 (*1 *1 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-317)))) (-1542 (*1 *2 *1) (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-784)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-784)))) (-1345 (*1 *2 *1) (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-657 *5)))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4468 "*"))) (-4 *2 (-1071)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4468 "*"))) (-4 *2 (-1071)))) (-3913 (*1 *1 *1) (|partial| -12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4467) (-6 -4466) (-15 -3186 ((-112) $)) (-15 -2049 ((-112) $)) (-15 -3864 ((-112) $)) (-15 -4299 ((-112) $)) (-15 -3765 ($ (-784) (-784))) (-15 -2514 ($ (-657 (-657 |t#1|)))) (-15 -2514 ($ (-784) (-784) (-1 |t#1| (-576) (-576)))) (-15 -1346 ($ (-784) |t#1|)) (-15 -4277 ($ (-657 |t#1|))) (-15 -4277 ($ (-657 $))) (-15 -3501 ($ |t#3|)) (-15 -2153 ($ |t#2|)) (-15 -2153 ($ $)) (-15 -1506 ($ $)) (-15 -1474 ($ $ $)) (-15 -2671 ($ $ $)) (-15 -2339 ((-657 (-657 |t#1|)) $)) (-15 -2835 ($ $ (-657 (-576)) (-657 (-576)))) (-15 -3682 ($ $ (-657 (-576)) (-657 (-576)) $)) (-15 -1606 ($ $ (-576) (-576))) (-15 -1371 ($ $ (-576) (-576))) (-15 -2351 ($ $ (-576) (-576) (-576) (-576))) (-15 -2337 ($ $ (-576) (-576) $)) (-15 -3012 ($ $ $)) (-15 -3022 ($ $ $)) (-15 -3022 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-576) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-784))) (IF (|has| |t#1| (-568)) (-15 -3418 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -3034 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-317)) (-15 -3590 ($ $)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -1542 ((-784) $)) (-15 -3662 ((-784) $)) (-15 -1345 ((-657 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4468 "*"))) (PROGN (-15 -1493 (|t#1| $)) (-15 -1969 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -3913 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-57 |#1| |#2| |#3|) . T) ((-1239) . T)) -((-3590 ((|#4| |#4|) 92 (|has| |#1| (-317)))) (-1542 (((-784) |#4|) 120 (|has| |#1| (-568)))) (-3662 (((-784) |#4|) 96 (|has| |#1| (-568)))) (-1345 (((-657 |#3|) |#4|) 103 (|has| |#1| (-568)))) (-1580 (((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|) 135 (|has| |#1| (-317)))) (-1969 ((|#1| |#4|) 52)) (-2910 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-568)))) (-3913 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-374)))) (-1981 ((|#4| |#4|) 88 (|has| |#1| (-568)))) (-2508 ((|#4| |#4| |#1| (-576) (-576)) 60)) (-4202 ((|#4| |#4| (-576) (-576)) 55)) (-4388 ((|#4| |#4| |#1| (-576) (-576)) 65)) (-1493 ((|#1| |#4|) 98)) (-3247 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-568))))) -(((-701 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1493 (|#1| |#4|)) (-15 -1969 (|#1| |#4|)) (-15 -4202 (|#4| |#4| (-576) (-576))) (-15 -2508 (|#4| |#4| |#1| (-576) (-576))) (-15 -4388 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -1542 ((-784) |#4|)) (-15 -3662 ((-784) |#4|)) (-15 -1345 ((-657 |#3|) |#4|)) (-15 -1981 (|#4| |#4|)) (-15 -2910 ((-3 |#4| "failed") |#4|)) (-15 -3247 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -3590 (|#4| |#4|)) (-15 -1580 ((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3913 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-384 |#1|) (-384 |#1|) (-700 |#1| |#2| |#3|)) (T -701)) -((-3913 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-701 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) (-1580 (*1 *2 *3 *3) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -2335 *3) (|:| -3644 *3))) (-5 *1 (-701 *3 *4 *5 *6)) (-4 *6 (-700 *3 *4 *5)))) (-3590 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-701 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) (-3247 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-701 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) (-2910 (*1 *2 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-701 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) (-1981 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-701 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) (-1345 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-657 *6)) (-5 *1 (-701 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) (-3662 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-784)) (-5 *1 (-701 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) (-1542 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-784)) (-5 *1 (-701 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) (-4388 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-701 *3 *5 *6 *2)) (-4 *2 (-700 *3 *5 *6)))) (-2508 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-701 *3 *5 *6 *2)) (-4 *2 (-700 *3 *5 *6)))) (-4202 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *1 (-701 *4 *5 *6 *2)) (-4 *2 (-700 *4 *5 *6)))) (-1969 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-701 *2 *4 *5 *3)) (-4 *3 (-700 *2 *4 *5)))) (-1493 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-701 *2 *4 *5 *3)) (-4 *3 (-700 *2 *4 *5))))) -(-10 -7 (-15 -1493 (|#1| |#4|)) (-15 -1969 (|#1| |#4|)) (-15 -4202 (|#4| |#4| (-576) (-576))) (-15 -2508 (|#4| |#4| |#1| (-576) (-576))) (-15 -4388 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -1542 ((-784) |#4|)) (-15 -3662 ((-784) |#4|)) (-15 -1345 ((-657 |#3|) |#4|)) (-15 -1981 (|#4| |#4|)) (-15 -2910 ((-3 |#4| "failed") |#4|)) (-15 -3247 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -3590 (|#4| |#4|)) (-15 -1580 ((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3913 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3765 (($ (-784) (-784)) 64)) (-2671 (($ $ $) NIL)) (-2153 (($ (-1289 |#1|)) NIL) (($ $) NIL)) (-3864 (((-112) $) NIL)) (-1606 (($ $ (-576) (-576)) 22)) (-1371 (($ $ (-576) (-576)) NIL)) (-2351 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-1506 (($ $) NIL)) (-3186 (((-112) $) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-2337 (($ $ (-576) (-576) $) NIL)) (-3682 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-657 (-576)) (-657 (-576)) $) NIL)) (-3779 (($ $ (-576) (-1289 |#1|)) NIL)) (-3726 (($ $ (-576) (-1289 |#1|)) NIL)) (-1346 (($ (-784) |#1|) 37)) (-4359 (($) NIL T CONST)) (-3590 (($ $) 46 (|has| |#1| (-317)))) (-2911 (((-1289 |#1|) $ (-576)) NIL)) (-1542 (((-784) $) 48 (|has| |#1| (-568)))) (-2158 ((|#1| $ (-576) (-576) |#1|) 69)) (-2083 ((|#1| $ (-576) (-576)) NIL)) (-1458 (((-657 |#1|) $) NIL)) (-3662 (((-784) $) 50 (|has| |#1| (-568)))) (-1345 (((-657 (-1289 |#1|)) $) 53 (|has| |#1| (-568)))) (-2377 (((-784) $) 32)) (-4109 (($ (-784) (-784) |#1|) 28)) (-2387 (((-784) $) 33)) (-1833 (((-112) $ (-784)) NIL)) (-1969 ((|#1| $) 44 (|has| |#1| (-6 (-4468 "*"))))) (-2491 (((-576) $) 10)) (-3770 (((-576) $) 11)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3704 (((-576) $) 14)) (-1429 (((-576) $) 65)) (-2514 (($ (-657 (-657 |#1|))) NIL) (($ (-784) (-784) (-1 |#1| (-576) (-576))) NIL)) (-2148 (($ (-1 |#1| |#1|) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2339 (((-657 (-657 |#1|)) $) 76)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3913 (((-3 $ "failed") $) 60 (|has| |#1| (-374)))) (-1474 (($ $ $) NIL)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-1987 (($ $ |#1|) NIL)) (-3418 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-657 (-576)) (-657 (-576))) NIL)) (-4277 (($ (-657 |#1|)) NIL) (($ (-657 $)) NIL) (($ (-1289 |#1|)) 70)) (-2049 (((-112) $) NIL)) (-1493 ((|#1| $) 42 (|has| |#1| (-6 (-4468 "*"))))) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) NIL)) (-4148 (((-548) $) 80 (|has| |#1| (-626 (-548))))) (-3815 (((-1289 |#1|) $ (-576)) NIL)) (-3501 (($ (-1289 |#1|)) NIL) (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-4299 (((-112) $) NIL)) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3022 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-784)) 38) (($ $ (-576)) 62 (|has| |#1| (-374)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1289 |#1|) $ (-1289 |#1|)) NIL) (((-1289 |#1|) (-1289 |#1|) $) NIL)) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-702 |#1|) (-13 (-700 |#1| (-1289 |#1|) (-1289 |#1|)) (-10 -8 (-15 -4277 ($ (-1289 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3913 ((-3 $ "failed") $)) |%noBranch|))) (-1071)) (T -702)) -((-3913 (*1 *1 *1) (|partial| -12 (-5 *1 (-702 *2)) (-4 *2 (-374)) (-4 *2 (-1071)))) (-4277 (*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-1071)) (-5 *1 (-702 *3))))) -(-13 (-700 |#1| (-1289 |#1|) (-1289 |#1|)) (-10 -8 (-15 -4277 ($ (-1289 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3913 ((-3 $ "failed") $)) |%noBranch|))) -((-4309 (((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|)) 37)) (-3816 (((-702 |#1|) (-702 |#1|) (-702 |#1|) |#1|) 32)) (-3623 (((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|) (-784)) 43)) (-3226 (((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|)) 25)) (-2065 (((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|)) 29) (((-702 |#1|) (-702 |#1|) (-702 |#1|)) 27)) (-2894 (((-702 |#1|) (-702 |#1|) |#1| (-702 |#1|)) 31)) (-1496 (((-702 |#1|) (-702 |#1|) (-702 |#1|)) 23)) (** (((-702 |#1|) (-702 |#1|) (-784)) 46))) -(((-703 |#1|) (-10 -7 (-15 -1496 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -3226 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -2065 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -2065 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -2894 ((-702 |#1|) (-702 |#1|) |#1| (-702 |#1|))) (-15 -3816 ((-702 |#1|) (-702 |#1|) (-702 |#1|) |#1|)) (-15 -4309 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -3623 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|) (-784))) (-15 ** ((-702 |#1|) (-702 |#1|) (-784)))) (-1071)) (T -703)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-702 *4)) (-5 *3 (-784)) (-4 *4 (-1071)) (-5 *1 (-703 *4)))) (-3623 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-702 *4)) (-5 *3 (-784)) (-4 *4 (-1071)) (-5 *1 (-703 *4)))) (-4309 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3)))) (-3816 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3)))) (-2894 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3)))) (-2065 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3)))) (-2065 (*1 *2 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3)))) (-3226 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3)))) (-1496 (*1 *2 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3))))) -(-10 -7 (-15 -1496 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -3226 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -2065 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -2065 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -2894 ((-702 |#1|) (-702 |#1|) |#1| (-702 |#1|))) (-15 -3816 ((-702 |#1|) (-702 |#1|) (-702 |#1|) |#1|)) (-15 -4309 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -3623 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|) (-702 |#1|) (-784))) (-15 ** ((-702 |#1|) (-702 |#1|) (-784)))) -((-1624 (((-3 |#1| "failed") $) 18)) (-2884 ((|#1| $) NIL)) (-1410 (($) 7 T CONST)) (-4154 (($ |#1|) 8)) (-3501 (($ |#1|) 16) (((-877) $) 23)) (-2756 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -1410)) 11)) (-1977 ((|#1| $) 15))) -(((-704 |#1|) (-13 (-1284) (-1060 |#1|) (-625 (-877)) (-10 -8 (-15 -4154 ($ |#1|)) (-15 -2756 ((-112) $ (|[\|\|]| |#1|))) (-15 -2756 ((-112) $ (|[\|\|]| -1410))) (-15 -1977 (|#1| $)) (-15 -1410 ($) -1509))) (-625 (-877))) (T -704)) -((-4154 (*1 *1 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-625 (-877))))) (-2756 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-877))) (-5 *2 (-112)) (-5 *1 (-704 *4)))) (-2756 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1410)) (-5 *2 (-112)) (-5 *1 (-704 *4)) (-4 *4 (-625 (-877))))) (-1977 (*1 *2 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-625 (-877))))) (-1410 (*1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-625 (-877)))))) -(-13 (-1284) (-1060 |#1|) (-625 (-877)) (-10 -8 (-15 -4154 ($ |#1|)) (-15 -2756 ((-112) $ (|[\|\|]| |#1|))) (-15 -2756 ((-112) $ (|[\|\|]| -1410))) (-15 -1977 (|#1| $)) (-15 -1410 ($) -1509))) -((-2589 ((|#2| |#2| |#4|) 29)) (-2442 (((-702 |#2|) |#3| |#4|) 35)) (-1395 (((-702 |#2|) |#2| |#4|) 34)) (-3862 (((-1289 |#2|) |#2| |#4|) 16)) (-2440 ((|#2| |#3| |#4|) 28)) (-3259 (((-702 |#2|) |#3| |#4| (-784) (-784)) 47)) (-1492 (((-702 |#2|) |#2| |#4| (-784)) 46))) -(((-705 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3862 ((-1289 |#2|) |#2| |#4|)) (-15 -2440 (|#2| |#3| |#4|)) (-15 -2589 (|#2| |#2| |#4|)) (-15 -1395 ((-702 |#2|) |#2| |#4|)) (-15 -1492 ((-702 |#2|) |#2| |#4| (-784))) (-15 -2442 ((-702 |#2|) |#3| |#4|)) (-15 -3259 ((-702 |#2|) |#3| |#4| (-784) (-784)))) (-1122) (-918 |#1|) (-384 |#2|) (-13 (-384 |#1|) (-10 -7 (-6 -4466)))) (T -705)) -((-3259 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-784)) (-4 *6 (-1122)) (-4 *7 (-918 *6)) (-5 *2 (-702 *7)) (-5 *1 (-705 *6 *7 *3 *4)) (-4 *3 (-384 *7)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4466)))))) (-2442 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-4 *6 (-918 *5)) (-5 *2 (-702 *6)) (-5 *1 (-705 *5 *6 *3 *4)) (-4 *3 (-384 *6)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466)))))) (-1492 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-784)) (-4 *6 (-1122)) (-4 *3 (-918 *6)) (-5 *2 (-702 *3)) (-5 *1 (-705 *6 *3 *7 *4)) (-4 *7 (-384 *3)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4466)))))) (-1395 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-4 *3 (-918 *5)) (-5 *2 (-702 *3)) (-5 *1 (-705 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466)))))) (-2589 (*1 *2 *2 *3) (-12 (-4 *4 (-1122)) (-4 *2 (-918 *4)) (-5 *1 (-705 *4 *2 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4466)))))) (-2440 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-4 *2 (-918 *5)) (-5 *1 (-705 *5 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466)))))) (-3862 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-4 *3 (-918 *5)) (-5 *2 (-1289 *3)) (-5 *1 (-705 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466))))))) -(-10 -7 (-15 -3862 ((-1289 |#2|) |#2| |#4|)) (-15 -2440 (|#2| |#3| |#4|)) (-15 -2589 (|#2| |#2| |#4|)) (-15 -1395 ((-702 |#2|) |#2| |#4|)) (-15 -1492 ((-702 |#2|) |#2| |#4| (-784))) (-15 -2442 ((-702 |#2|) |#3| |#4|)) (-15 -3259 ((-702 |#2|) |#3| |#4| (-784) (-784)))) -((-1460 (((-2 (|:| |num| (-702 |#1|)) (|:| |den| |#1|)) (-702 |#2|)) 20)) (-1591 ((|#1| (-702 |#2|)) 9)) (-1671 (((-702 |#1|) (-702 |#2|)) 18))) -(((-706 |#1| |#2|) (-10 -7 (-15 -1591 (|#1| (-702 |#2|))) (-15 -1671 ((-702 |#1|) (-702 |#2|))) (-15 -1460 ((-2 (|:| |num| (-702 |#1|)) (|:| |den| |#1|)) (-702 |#2|)))) (-568) (-1014 |#1|)) (T -706)) -((-1460 (*1 *2 *3) (-12 (-5 *3 (-702 *5)) (-4 *5 (-1014 *4)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| (-702 *4)) (|:| |den| *4))) (-5 *1 (-706 *4 *5)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-702 *5)) (-4 *5 (-1014 *4)) (-4 *4 (-568)) (-5 *2 (-702 *4)) (-5 *1 (-706 *4 *5)))) (-1591 (*1 *2 *3) (-12 (-5 *3 (-702 *4)) (-4 *4 (-1014 *2)) (-4 *2 (-568)) (-5 *1 (-706 *2 *4))))) -(-10 -7 (-15 -1591 (|#1| (-702 |#2|))) (-15 -1671 ((-702 |#1|) (-702 |#2|))) (-15 -1460 ((-2 (|:| |num| (-702 |#1|)) (|:| |den| |#1|)) (-702 |#2|)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-1527 (((-702 (-712))) NIL) (((-702 (-712)) (-1289 $)) NIL)) (-2302 (((-712) $) NIL)) (-2176 (($ $) NIL (|has| (-712) (-1224)))) (-2030 (($ $) NIL (|has| (-712) (-1224)))) (-3592 (((-1211 (-941) (-784)) (-576)) NIL (|has| (-712) (-360)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-712) (-317)) (|has| (-712) (-929))))) (-2638 (($ $) NIL (-2802 (-12 (|has| (-712) (-317)) (|has| (-712) (-929))) (|has| (-712) (-374))))) (-4402 (((-430 $) $) NIL (-2802 (-12 (|has| (-712) (-317)) (|has| (-712) (-929))) (|has| (-712) (-374))))) (-1896 (($ $) NIL (-12 (|has| (-712) (-1024)) (|has| (-712) (-1224))))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-712) (-317)) (|has| (-712) (-929))))) (-2864 (((-112) $ $) NIL (|has| (-712) (-317)))) (-2193 (((-784)) NIL (|has| (-712) (-379)))) (-2150 (($ $) NIL (|has| (-712) (-1224)))) (-2004 (($ $) NIL (|has| (-712) (-1224)))) (-2201 (($ $) NIL (|has| (-712) (-1224)))) (-2052 (($ $) NIL (|has| (-712) (-1224)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL) (((-3 (-712) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-712) (-1060 (-419 (-576)))))) (-2884 (((-576) $) NIL) (((-712) $) NIL) (((-419 (-576)) $) NIL (|has| (-712) (-1060 (-419 (-576)))))) (-2613 (($ (-1289 (-712))) NIL) (($ (-1289 (-712)) (-1289 $)) NIL)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-712) (-360)))) (-3373 (($ $ $) NIL (|has| (-712) (-317)))) (-3529 (((-702 (-712)) $) NIL) (((-702 (-712)) $ (-1289 $)) NIL)) (-3306 (((-702 (-712)) (-702 $)) NIL) (((-2 (|:| -3750 (-702 (-712))) (|:| |vec| (-1289 (-712)))) (-702 $) (-1289 $)) NIL) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-712) (-652 (-576)))) (((-702 (-576)) (-702 $)) NIL (|has| (-712) (-652 (-576))))) (-3622 (((-3 $ "failed") (-419 (-1194 (-712)))) NIL (|has| (-712) (-374))) (($ (-1194 (-712))) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1907 (((-712) $) 29)) (-2775 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-712) (-557)))) (-3112 (((-112) $) NIL (|has| (-712) (-557)))) (-4239 (((-419 (-576)) $) NIL (|has| (-712) (-557)))) (-1542 (((-941)) NIL)) (-1892 (($) NIL (|has| (-712) (-379)))) (-3385 (($ $ $) NIL (|has| (-712) (-317)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| (-712) (-317)))) (-1367 (($) NIL (|has| (-712) (-360)))) (-2105 (((-112) $) NIL (|has| (-712) (-360)))) (-1780 (($ $) NIL (|has| (-712) (-360))) (($ $ (-784)) NIL (|has| (-712) (-360)))) (-4257 (((-112) $) NIL (-2802 (-12 (|has| (-712) (-317)) (|has| (-712) (-929))) (|has| (-712) (-374))))) (-3065 (((-2 (|:| |r| (-712)) (|:| |phi| (-712))) $) NIL (-12 (|has| (-712) (-1082)) (|has| (-712) (-1224))))) (-1657 (($) NIL (|has| (-712) (-1224)))) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| (-712) (-902 (-390)))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| (-712) (-902 (-576))))) (-3182 (((-846 (-941)) $) NIL (|has| (-712) (-360))) (((-941) $) NIL (|has| (-712) (-360)))) (-4094 (((-112) $) NIL)) (-2082 (($ $ (-576)) NIL (-12 (|has| (-712) (-1024)) (|has| (-712) (-1224))))) (-2234 (((-712) $) NIL)) (-4019 (((-3 $ "failed") $) NIL (|has| (-712) (-360)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| (-712) (-317)))) (-1336 (((-1194 (-712)) $) NIL (|has| (-712) (-374)))) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-4083 (($ (-1 (-712) (-712)) $) NIL)) (-3007 (((-941) $) NIL (|has| (-712) (-379)))) (-3670 (($ $) NIL (|has| (-712) (-1224)))) (-3609 (((-1194 (-712)) $) NIL)) (-3101 (((-702 (-712)) (-1289 $)) NIL) (((-2 (|:| -3750 (-702 (-712))) (|:| |vec| (-1289 (-712)))) (-1289 $) $) NIL) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-712) (-652 (-576)))) (((-702 (-576)) (-1289 $)) NIL (|has| (-712) (-652 (-576))))) (-3402 (($ (-657 $)) NIL (|has| (-712) (-317))) (($ $ $) NIL (|has| (-712) (-317)))) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL (|has| (-712) (-374)))) (-1706 (($) NIL (|has| (-712) (-360)) CONST)) (-3178 (($ (-941)) NIL (|has| (-712) (-379)))) (-2489 (($) NIL)) (-1916 (((-712) $) 31)) (-1471 (((-1142) $) NIL)) (-4097 (($) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| (-712) (-317)))) (-3436 (($ (-657 $)) NIL (|has| (-712) (-317))) (($ $ $) NIL (|has| (-712) (-317)))) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) NIL (|has| (-712) (-360)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-712) (-317)) (|has| (-712) (-929))))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-712) (-317)) (|has| (-712) (-929))))) (-1885 (((-430 $) $) NIL (-2802 (-12 (|has| (-712) (-317)) (|has| (-712) (-929))) (|has| (-712) (-374))))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-712) (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| (-712) (-317)))) (-3418 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-712)) NIL (|has| (-712) (-568)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| (-712) (-317)))) (-4067 (($ $) NIL (|has| (-712) (-1224)))) (-3236 (($ $ (-1198) (-712)) NIL (|has| (-712) (-526 (-1198) (-712)))) (($ $ (-657 (-1198)) (-657 (-712))) NIL (|has| (-712) (-526 (-1198) (-712)))) (($ $ (-657 (-304 (-712)))) NIL (|has| (-712) (-319 (-712)))) (($ $ (-304 (-712))) NIL (|has| (-712) (-319 (-712)))) (($ $ (-712) (-712)) NIL (|has| (-712) (-319 (-712)))) (($ $ (-657 (-712)) (-657 (-712))) NIL (|has| (-712) (-319 (-712))))) (-2034 (((-784) $) NIL (|has| (-712) (-317)))) (-2835 (($ $ (-712)) NIL (|has| (-712) (-296 (-712) (-712))))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| (-712) (-317)))) (-1701 (((-712)) NIL) (((-712) (-1289 $)) NIL)) (-2284 (((-3 (-784) "failed") $ $) NIL (|has| (-712) (-360))) (((-784) $) NIL (|has| (-712) (-360)))) (-2815 (($ $ (-1 (-712) (-712)) (-784)) NIL) (($ $ (-1 (-712) (-712))) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2802 (-12 (|has| (-712) (-374)) (|has| (-712) (-918 (-1198)))) (|has| (-712) (-920 (-1198))))) (($ $ (-1198) (-784)) NIL (-2802 (-12 (|has| (-712) (-374)) (|has| (-712) (-918 (-1198)))) (|has| (-712) (-920 (-1198))))) (($ $ (-657 (-1198))) NIL (-2802 (-12 (|has| (-712) (-374)) (|has| (-712) (-918 (-1198)))) (|has| (-712) (-920 (-1198))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| (-712) (-374)) (|has| (-712) (-918 (-1198)))) (|has| (-712) (-920 (-1198))))) (($ $ (-784)) NIL (-2802 (-12 (|has| (-712) (-238)) (|has| (-712) (-374))) (|has| (-712) (-237)))) (($ $) NIL (-2802 (-12 (|has| (-712) (-238)) (|has| (-712) (-374))) (|has| (-712) (-237))))) (-3988 (((-702 (-712)) (-1289 $) (-1 (-712) (-712))) NIL (|has| (-712) (-374)))) (-3180 (((-1194 (-712))) NIL)) (-2213 (($ $) NIL (|has| (-712) (-1224)))) (-2062 (($ $) NIL (|has| (-712) (-1224)))) (-2090 (($) NIL (|has| (-712) (-360)))) (-2188 (($ $) NIL (|has| (-712) (-1224)))) (-2042 (($ $) NIL (|has| (-712) (-1224)))) (-2163 (($ $) NIL (|has| (-712) (-1224)))) (-2017 (($ $) NIL (|has| (-712) (-1224)))) (-2795 (((-702 (-712)) (-1289 $)) NIL) (((-1289 (-712)) $) NIL) (((-702 (-712)) (-1289 $) (-1289 $)) NIL) (((-1289 (-712)) $ (-1289 $)) NIL)) (-4148 (((-548) $) NIL (|has| (-712) (-626 (-548)))) (((-171 (-227)) $) NIL (|has| (-712) (-1044))) (((-171 (-390)) $) NIL (|has| (-712) (-1044))) (((-908 (-390)) $) NIL (|has| (-712) (-626 (-908 (-390))))) (((-908 (-576)) $) NIL (|has| (-712) (-626 (-908 (-576))))) (($ (-1194 (-712))) NIL) (((-1194 (-712)) $) NIL) (($ (-1289 (-712))) NIL) (((-1289 (-712)) $) NIL)) (-3549 (($ $) NIL)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-2802 (-12 (|has| (-712) (-317)) (|has| $ (-146)) (|has| (-712) (-929))) (|has| (-712) (-360))))) (-4155 (($ (-712) (-712)) 12)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-712)) NIL) (($ (-171 (-390))) 13) (($ (-171 (-576))) 19) (($ (-171 (-712))) 28) (($ (-171 (-714))) 25) (((-171 (-390)) $) 33) (($ (-419 (-576))) NIL (-2802 (|has| (-712) (-1060 (-419 (-576)))) (|has| (-712) (-374))))) (-3096 (($ $) NIL (|has| (-712) (-360))) (((-3 $ "failed") $) NIL (-2802 (-12 (|has| (-712) (-317)) (|has| $ (-146)) (|has| (-712) (-929))) (|has| (-712) (-146))))) (-4182 (((-1194 (-712)) $) NIL)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) NIL)) (-4110 (($ $) NIL (|has| (-712) (-1224)))) (-2100 (($ $) NIL (|has| (-712) (-1224)))) (-4041 (((-112) $ $) NIL)) (-2225 (($ $) NIL (|has| (-712) (-1224)))) (-2072 (($ $) NIL (|has| (-712) (-1224)))) (-4137 (($ $) NIL (|has| (-712) (-1224)))) (-2125 (($ $) NIL (|has| (-712) (-1224)))) (-2196 (((-712) $) NIL (|has| (-712) (-1224)))) (-2224 (($ $) NIL (|has| (-712) (-1224)))) (-2137 (($ $) NIL (|has| (-712) (-1224)))) (-4124 (($ $) NIL (|has| (-712) (-1224)))) (-2113 (($ $) NIL (|has| (-712) (-1224)))) (-2235 (($ $) NIL (|has| (-712) (-1224)))) (-2085 (($ $) NIL (|has| (-712) (-1224)))) (-1792 (($ $) NIL (|has| (-712) (-1082)))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-1 (-712) (-712)) (-784)) NIL) (($ $ (-1 (-712) (-712))) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2802 (-12 (|has| (-712) (-374)) (|has| (-712) (-918 (-1198)))) (|has| (-712) (-920 (-1198))))) (($ $ (-1198) (-784)) NIL (-2802 (-12 (|has| (-712) (-374)) (|has| (-712) (-918 (-1198)))) (|has| (-712) (-920 (-1198))))) (($ $ (-657 (-1198))) NIL (-2802 (-12 (|has| (-712) (-374)) (|has| (-712) (-918 (-1198)))) (|has| (-712) (-920 (-1198))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| (-712) (-374)) (|has| (-712) (-918 (-1198)))) (|has| (-712) (-920 (-1198))))) (($ $ (-784)) NIL (-2802 (-12 (|has| (-712) (-238)) (|has| (-712) (-374))) (|has| (-712) (-237)))) (($ $) NIL (-2802 (-12 (|has| (-712) (-238)) (|has| (-712) (-374))) (|has| (-712) (-237))))) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL (|has| (-712) (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ $) NIL (|has| (-712) (-1224))) (($ $ (-419 (-576))) NIL (-12 (|has| (-712) (-1024)) (|has| (-712) (-1224)))) (($ $ (-576)) NIL (|has| (-712) (-374)))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-712) $) NIL) (($ $ (-712)) NIL) (($ (-419 (-576)) $) NIL (|has| (-712) (-374))) (($ $ (-419 (-576))) NIL (|has| (-712) (-374))))) -(((-707) (-13 (-399) (-167 (-712)) (-10 -8 (-15 -3501 ($ (-171 (-390)))) (-15 -3501 ($ (-171 (-576)))) (-15 -3501 ($ (-171 (-712)))) (-15 -3501 ($ (-171 (-714)))) (-15 -3501 ((-171 (-390)) $))))) (T -707)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-707)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-707)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-171 (-712))) (-5 *1 (-707)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-171 (-714))) (-5 *1 (-707)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-707))))) -(-13 (-399) (-167 (-712)) (-10 -8 (-15 -3501 ($ (-171 (-390)))) (-15 -3501 ($ (-171 (-576)))) (-15 -3501 ($ (-171 (-712)))) (-15 -3501 ($ (-171 (-714)))) (-15 -3501 ((-171 (-390)) $)))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3793 (((-112) $ (-784)) 8)) (-3162 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4466)))) (-4359 (($) 7 T CONST)) (-4295 (($ $) 63)) (-3914 (($ $) 59 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3647 (($ |#1| $) 48 (|has| $ (-6 -4466))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4466)))) (-3895 (($ |#1| $) 58 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4466)))) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) 9)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3050 ((|#1| $) 40)) (-2468 (($ |#1| $) 41) (($ |#1| $ (-784)) 64)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2277 ((|#1| $) 42)) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2691 (((-657 (-2 (|:| -4440 |#1|) (|:| -1482 (-784)))) $) 62)) (-1504 (($) 50) (($ (-657 |#1|)) 49)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-4148 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 51)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-4079 (($ (-657 |#1|)) 43)) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-708 |#1|) (-141) (-1122)) (T -708)) -((-2468 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *1 (-708 *2)) (-4 *2 (-1122)))) (-4295 (*1 *1 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1122)))) (-2691 (*1 *2 *1) (-12 (-4 *1 (-708 *3)) (-4 *3 (-1122)) (-5 *2 (-657 (-2 (|:| -4440 *3) (|:| -1482 (-784)))))))) -(-13 (-240 |t#1|) (-10 -8 (-15 -2468 ($ |t#1| $ (-784))) (-15 -4295 ($ $)) (-15 -2691 ((-657 (-2 (|:| -4440 |t#1|) (|:| -1482 (-784)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) -((-1485 (((-657 |#1|) (-657 (-2 (|:| -1885 |#1|) (|:| -1770 (-576)))) (-576)) 65)) (-1734 ((|#1| |#1| (-576)) 62)) (-3436 ((|#1| |#1| |#1| (-576)) 46)) (-1885 (((-657 |#1|) |#1| (-576)) 49)) (-2493 ((|#1| |#1| (-576) |#1| (-576)) 40)) (-1408 (((-657 (-2 (|:| -1885 |#1|) (|:| -1770 (-576)))) |#1| (-576)) 61))) -(((-709 |#1|) (-10 -7 (-15 -3436 (|#1| |#1| |#1| (-576))) (-15 -1734 (|#1| |#1| (-576))) (-15 -1885 ((-657 |#1|) |#1| (-576))) (-15 -1408 ((-657 (-2 (|:| -1885 |#1|) (|:| -1770 (-576)))) |#1| (-576))) (-15 -1485 ((-657 |#1|) (-657 (-2 (|:| -1885 |#1|) (|:| -1770 (-576)))) (-576))) (-15 -2493 (|#1| |#1| (-576) |#1| (-576)))) (-1265 (-576))) (T -709)) -((-2493 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-709 *2)) (-4 *2 (-1265 *3)))) (-1485 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-2 (|:| -1885 *5) (|:| -1770 (-576))))) (-5 *4 (-576)) (-4 *5 (-1265 *4)) (-5 *2 (-657 *5)) (-5 *1 (-709 *5)))) (-1408 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-657 (-2 (|:| -1885 *3) (|:| -1770 *4)))) (-5 *1 (-709 *3)) (-4 *3 (-1265 *4)))) (-1885 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-657 *3)) (-5 *1 (-709 *3)) (-4 *3 (-1265 *4)))) (-1734 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-709 *2)) (-4 *2 (-1265 *3)))) (-3436 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-709 *2)) (-4 *2 (-1265 *3))))) -(-10 -7 (-15 -3436 (|#1| |#1| |#1| (-576))) (-15 -1734 (|#1| |#1| (-576))) (-15 -1885 ((-657 |#1|) |#1| (-576))) (-15 -1408 ((-657 (-2 (|:| -1885 |#1|) (|:| -1770 (-576)))) |#1| (-576))) (-15 -1485 ((-657 |#1|) (-657 (-2 (|:| -1885 |#1|) (|:| -1770 (-576)))) (-576))) (-15 -2493 (|#1| |#1| (-576) |#1| (-576)))) -((-4403 (((-1 (-963 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-4421 (((-1155 (-227)) (-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-657 (-270))) 53) (((-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-657 (-270))) 55) (((-1155 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1116 (-227)) (-1116 (-227)) (-657 (-270))) 57)) (-3547 (((-1155 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-657 (-270))) NIL)) (-3992 (((-1155 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1116 (-227)) (-1116 (-227)) (-657 (-270))) 58))) -(((-710) (-10 -7 (-15 -4421 ((-1155 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1116 (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -4421 ((-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -4421 ((-1155 (-227)) (-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -3992 ((-1155 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1116 (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -3547 ((-1155 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -4403 ((-1 (-963 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -710)) -((-4403 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-963 (-227)) (-227) (-227))) (-5 *1 (-710)))) (-3547 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1116 (-227))) (-5 *6 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-710)))) (-3992 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1116 (-227))) (-5 *6 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-710)))) (-4421 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1155 (-227))) (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-227))) (-5 *5 (-657 (-270))) (-5 *1 (-710)))) (-4421 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-227))) (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-710)))) (-4421 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1116 (-227))) (-5 *6 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-710))))) -(-10 -7 (-15 -4421 ((-1155 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1116 (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -4421 ((-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -4421 ((-1155 (-227)) (-1155 (-227)) (-1 (-963 (-227)) (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -3992 ((-1155 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1116 (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -3547 ((-1155 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1116 (-227)) (-657 (-270)))) (-15 -4403 ((-1 (-963 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) -((-1885 (((-430 (-1194 |#4|)) (-1194 |#4|)) 86) (((-430 |#4|) |#4|) 266))) -(((-711 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1885 ((-430 |#4|) |#4|)) (-15 -1885 ((-430 (-1194 |#4|)) (-1194 |#4|)))) (-862) (-806) (-360) (-969 |#3| |#2| |#1|)) (T -711)) -((-1885 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-360)) (-4 *7 (-969 *6 *5 *4)) (-5 *2 (-430 (-1194 *7))) (-5 *1 (-711 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) (-1885 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-969 *6 *5 *4))))) -(-10 -7 (-15 -1885 ((-430 |#4|) |#4|)) (-15 -1885 ((-430 (-1194 |#4|)) (-1194 |#4|)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 97)) (-3931 (((-576) $) 34)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4374 (($ $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-1896 (($ $) NIL)) (-2864 (((-112) $ $) NIL)) (-1536 (((-576) $) NIL)) (-4359 (($) NIL T CONST)) (-1886 (($ $) NIL)) (-1624 (((-3 (-576) "failed") $) 85) (((-3 (-419 (-576)) "failed") $) 28) (((-3 (-390) "failed") $) 82)) (-2884 (((-576) $) 87) (((-419 (-576)) $) 79) (((-390) $) 80)) (-3373 (($ $ $) 109)) (-3843 (((-3 $ "failed") $) 100)) (-3385 (($ $ $) 108)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-4288 (((-941)) 89) (((-941) (-941)) 88)) (-2828 (((-112) $) NIL)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL)) (-3182 (((-576) $) NIL)) (-4094 (((-112) $) NIL)) (-2082 (($ $ (-576)) NIL)) (-2234 (($ $) NIL)) (-2881 (((-112) $) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-4415 (((-576) (-576)) 94) (((-576)) 95)) (-3707 (($ $ $) NIL) (($) NIL (-12 (-2712 (|has| $ (-6 -4449))) (-2712 (|has| $ (-6 -4457)))))) (-1375 (((-576) (-576)) 92) (((-576)) 93)) (-1611 (($ $ $) NIL) (($) NIL (-12 (-2712 (|has| $ (-6 -4449))) (-2712 (|has| $ (-6 -4457)))))) (-1522 (((-576) $) 17)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) 104)) (-3803 (((-941) (-576)) NIL (|has| $ (-6 -4457)))) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2900 (($ $) NIL)) (-3427 (($ $) NIL)) (-3023 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-941)) NIL)) (-1885 (((-430 $) $) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) 105)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1801 (((-576) $) 24)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 107)) (-4039 (((-941)) NIL) (((-941) (-941)) NIL (|has| $ (-6 -4457)))) (-1572 (((-941) (-576)) NIL (|has| $ (-6 -4457)))) (-4148 (((-390) $) NIL) (((-227) $) NIL) (((-908 (-390)) $) NIL)) (-3501 (((-877) $) 63) (($ (-576)) 75) (($ $) NIL) (($ (-419 (-576))) 78) (($ (-576)) 75) (($ (-419 (-576))) 78) (($ (-390)) 72) (((-390) $) 61) (($ (-714)) 66)) (-1960 (((-784)) 119 T CONST)) (-2392 (($ (-576) (-576) (-941)) 54)) (-1893 (($ $) NIL)) (-3960 (((-941)) NIL) (((-941) (-941)) NIL (|has| $ (-6 -4457)))) (-2046 (((-112) $ $) NIL)) (-4143 (((-941)) 91) (((-941) (-941)) 90)) (-4041 (((-112) $ $) NIL)) (-1792 (($ $) NIL)) (-2769 (($) 37 T CONST)) (-2779 (($) 18 T CONST)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 96)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 118)) (-3034 (($ $ $) 77)) (-3022 (($ $) 115) (($ $ $) 116)) (-3012 (($ $ $) 114)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 103)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 110) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-712) (-13 (-416) (-399) (-374) (-1060 (-390)) (-1060 (-419 (-576))) (-148) (-10 -8 (-15 -4288 ((-941) (-941))) (-15 -4288 ((-941))) (-15 -4143 ((-941) (-941))) (-15 -1375 ((-576) (-576))) (-15 -1375 ((-576))) (-15 -4415 ((-576) (-576))) (-15 -4415 ((-576))) (-15 -3501 ((-390) $)) (-15 -3501 ($ (-714))) (-15 -1522 ((-576) $)) (-15 -1801 ((-576) $)) (-15 -2392 ($ (-576) (-576) (-941)))))) (T -712)) -((-1801 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-712)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-712)))) (-4288 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-712)))) (-4288 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-712)))) (-4143 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-712)))) (-1375 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-712)))) (-1375 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-712)))) (-4415 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-712)))) (-4415 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-712)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-712)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-712)))) (-2392 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-941)) (-5 *1 (-712))))) -(-13 (-416) (-399) (-374) (-1060 (-390)) (-1060 (-419 (-576))) (-148) (-10 -8 (-15 -4288 ((-941) (-941))) (-15 -4288 ((-941))) (-15 -4143 ((-941) (-941))) (-15 -1375 ((-576) (-576))) (-15 -1375 ((-576))) (-15 -4415 ((-576) (-576))) (-15 -4415 ((-576))) (-15 -3501 ((-390) $)) (-15 -3501 ($ (-714))) (-15 -1522 ((-576) $)) (-15 -1801 ((-576) $)) (-15 -2392 ($ (-576) (-576) (-941))))) -((-2010 (((-702 |#1|) (-702 |#1|) |#1| |#1|) 85)) (-3590 (((-702 |#1|) (-702 |#1|) |#1|) 66)) (-3466 (((-702 |#1|) (-702 |#1|) |#1|) 86)) (-4248 (((-702 |#1|) (-702 |#1|)) 67)) (-1580 (((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|) 84))) -(((-713 |#1|) (-10 -7 (-15 -4248 ((-702 |#1|) (-702 |#1|))) (-15 -3590 ((-702 |#1|) (-702 |#1|) |#1|)) (-15 -3466 ((-702 |#1|) (-702 |#1|) |#1|)) (-15 -2010 ((-702 |#1|) (-702 |#1|) |#1| |#1|)) (-15 -1580 ((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|))) (-317)) (T -713)) -((-1580 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2335 *3) (|:| -3644 *3))) (-5 *1 (-713 *3)) (-4 *3 (-317)))) (-2010 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-702 *3)) (-4 *3 (-317)) (-5 *1 (-713 *3)))) (-3466 (*1 *2 *2 *3) (-12 (-5 *2 (-702 *3)) (-4 *3 (-317)) (-5 *1 (-713 *3)))) (-3590 (*1 *2 *2 *3) (-12 (-5 *2 (-702 *3)) (-4 *3 (-317)) (-5 *1 (-713 *3)))) (-4248 (*1 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-317)) (-5 *1 (-713 *3))))) -(-10 -7 (-15 -4248 ((-702 |#1|) (-702 |#1|))) (-15 -3590 ((-702 |#1|) (-702 |#1|) |#1|)) (-15 -3466 ((-702 |#1|) (-702 |#1|) |#1|)) (-15 -2010 ((-702 |#1|) (-702 |#1|) |#1| |#1|)) (-15 -1580 ((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2061 (($ $ $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-3578 (($ $ $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-2864 (((-112) $ $) NIL)) (-1536 (((-576) $) NIL)) (-2790 (($ $ $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) 31)) (-2884 (((-576) $) 29)) (-3373 (($ $ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-2775 (((-3 (-419 (-576)) "failed") $) NIL)) (-3112 (((-112) $) NIL)) (-4239 (((-419 (-576)) $) NIL)) (-1892 (($ $) NIL) (($) NIL)) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-2798 (($ $ $ $) NIL)) (-3211 (($ $ $) NIL)) (-2828 (((-112) $) NIL)) (-2194 (($ $ $) NIL)) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL)) (-4094 (((-112) $) NIL)) (-2320 (((-112) $) NIL)) (-4019 (((-3 $ "failed") $) NIL)) (-2881 (((-112) $) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3767 (($ $ $ $) NIL)) (-3707 (($ $ $) NIL)) (-3051 (((-941) (-941)) 10) (((-941)) 9)) (-1611 (($ $ $) NIL)) (-4195 (($ $) NIL)) (-3358 (($ $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL)) (-3402 (($ (-657 $)) NIL) (($ $ $) NIL)) (-2342 (((-1180) $) NIL)) (-2233 (($ $ $) NIL)) (-1706 (($) NIL T CONST)) (-1380 (($ $) NIL)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ (-657 $)) NIL) (($ $ $) NIL)) (-3907 (($ $) NIL)) (-1885 (((-430 $) $) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3593 (((-112) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2815 (($ $ (-784)) NIL) (($ $) NIL)) (-1862 (($ $) NIL)) (-1923 (($ $) NIL)) (-4148 (((-227) $) NIL) (((-390) $) NIL) (((-908 (-576)) $) NIL) (((-548) $) NIL) (((-576) $) NIL)) (-3501 (((-877) $) NIL) (($ (-576)) 28) (($ $) NIL) (($ (-576)) 28) (((-326 $) (-326 (-576))) 18)) (-1960 (((-784)) NIL T CONST)) (-3091 (((-112) $ $) NIL)) (-3871 (($ $ $) NIL)) (-2046 (((-112) $ $) NIL)) (-4143 (($) NIL)) (-4041 (((-112) $ $) NIL)) (-2430 (($ $ $ $) NIL)) (-1792 (($ $) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-784)) NIL) (($ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) -(((-714) (-13 (-399) (-557) (-10 -8 (-15 -3051 ((-941) (-941))) (-15 -3051 ((-941))) (-15 -3501 ((-326 $) (-326 (-576))))))) (T -714)) -((-3051 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-714)))) (-3051 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-714)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-714))) (-5 *1 (-714))))) -(-13 (-399) (-557) (-10 -8 (-15 -3051 ((-941) (-941))) (-15 -3051 ((-941))) (-15 -3501 ((-326 $) (-326 (-576)))))) -((-3084 (((-1 |#4| |#2| |#3|) |#1| (-1198) (-1198)) 19)) (-2037 (((-1 |#4| |#2| |#3|) (-1198)) 12))) -(((-715 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2037 ((-1 |#4| |#2| |#3|) (-1198))) (-15 -3084 ((-1 |#4| |#2| |#3|) |#1| (-1198) (-1198)))) (-626 (-548)) (-1239) (-1239) (-1239)) (T -715)) -((-3084 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1198)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-715 *3 *5 *6 *7)) (-4 *3 (-626 (-548))) (-4 *5 (-1239)) (-4 *6 (-1239)) (-4 *7 (-1239)))) (-2037 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-715 *4 *5 *6 *7)) (-4 *4 (-626 (-548))) (-4 *5 (-1239)) (-4 *6 (-1239)) (-4 *7 (-1239))))) -(-10 -7 (-15 -2037 ((-1 |#4| |#2| |#3|) (-1198))) (-15 -3084 ((-1 |#4| |#2| |#3|) |#1| (-1198) (-1198)))) -((-3237 (((-1 (-227) (-227) (-227)) |#1| (-1198) (-1198)) 43) (((-1 (-227) (-227)) |#1| (-1198)) 48))) -(((-716 |#1|) (-10 -7 (-15 -3237 ((-1 (-227) (-227)) |#1| (-1198))) (-15 -3237 ((-1 (-227) (-227) (-227)) |#1| (-1198) (-1198)))) (-626 (-548))) (T -716)) -((-3237 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1198)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3237 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))) -(-10 -7 (-15 -3237 ((-1 (-227) (-227)) |#1| (-1198))) (-15 -3237 ((-1 (-227) (-227) (-227)) |#1| (-1198) (-1198)))) -((-3290 (((-1198) |#1| (-1198) (-657 (-1198))) 10) (((-1198) |#1| (-1198) (-1198) (-1198)) 13) (((-1198) |#1| (-1198) (-1198)) 12) (((-1198) |#1| (-1198)) 11))) -(((-717 |#1|) (-10 -7 (-15 -3290 ((-1198) |#1| (-1198))) (-15 -3290 ((-1198) |#1| (-1198) (-1198))) (-15 -3290 ((-1198) |#1| (-1198) (-1198) (-1198))) (-15 -3290 ((-1198) |#1| (-1198) (-657 (-1198))))) (-626 (-548))) (T -717)) -((-3290 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-657 (-1198))) (-5 *2 (-1198)) (-5 *1 (-717 *3)) (-4 *3 (-626 (-548))))) (-3290 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-717 *3)) (-4 *3 (-626 (-548))))) (-3290 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-717 *3)) (-4 *3 (-626 (-548))))) (-3290 (*1 *2 *3 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-717 *3)) (-4 *3 (-626 (-548)))))) -(-10 -7 (-15 -3290 ((-1198) |#1| (-1198))) (-15 -3290 ((-1198) |#1| (-1198) (-1198))) (-15 -3290 ((-1198) |#1| (-1198) (-1198) (-1198))) (-15 -3290 ((-1198) |#1| (-1198) (-657 (-1198))))) -((-2657 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-718 |#1| |#2|) (-10 -7 (-15 -2657 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1239) (-1239)) (T -718)) -((-2657 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-718 *3 *4)) (-4 *3 (-1239)) (-4 *4 (-1239))))) -(-10 -7 (-15 -2657 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-1682 (((-1 |#3| |#2|) (-1198)) 11)) (-3084 (((-1 |#3| |#2|) |#1| (-1198)) 21))) -(((-719 |#1| |#2| |#3|) (-10 -7 (-15 -1682 ((-1 |#3| |#2|) (-1198))) (-15 -3084 ((-1 |#3| |#2|) |#1| (-1198)))) (-626 (-548)) (-1239) (-1239)) (T -719)) -((-3084 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-5 *2 (-1 *6 *5)) (-5 *1 (-719 *3 *5 *6)) (-4 *3 (-626 (-548))) (-4 *5 (-1239)) (-4 *6 (-1239)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1 *6 *5)) (-5 *1 (-719 *4 *5 *6)) (-4 *4 (-626 (-548))) (-4 *5 (-1239)) (-4 *6 (-1239))))) -(-10 -7 (-15 -1682 ((-1 |#3| |#2|) (-1198))) (-15 -3084 ((-1 |#3| |#2|) |#1| (-1198)))) -((-4092 (((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-657 |#2|) (-657 (-1194 |#4|)) (-657 |#3|) (-657 |#4|) (-657 (-657 (-2 (|:| -2096 (-784)) (|:| |pcoef| |#4|)))) (-657 (-784)) (-1289 (-657 (-1194 |#3|))) |#3|) 92)) (-1904 (((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-657 |#2|) (-657 (-1194 |#3|)) (-657 |#3|) (-657 |#4|) (-657 (-784)) |#3|) 110)) (-4323 (((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-657 |#2|) (-657 |#3|) (-657 (-784)) (-657 (-1194 |#4|)) (-1289 (-657 (-1194 |#3|))) |#3|) 47))) -(((-720 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4323 ((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-657 |#2|) (-657 |#3|) (-657 (-784)) (-657 (-1194 |#4|)) (-1289 (-657 (-1194 |#3|))) |#3|)) (-15 -1904 ((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-657 |#2|) (-657 (-1194 |#3|)) (-657 |#3|) (-657 |#4|) (-657 (-784)) |#3|)) (-15 -4092 ((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-657 |#2|) (-657 (-1194 |#4|)) (-657 |#3|) (-657 |#4|) (-657 (-657 (-2 (|:| -2096 (-784)) (|:| |pcoef| |#4|)))) (-657 (-784)) (-1289 (-657 (-1194 |#3|))) |#3|))) (-806) (-862) (-317) (-969 |#3| |#1| |#2|)) (T -720)) -((-4092 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-657 (-1194 *13))) (-5 *3 (-1194 *13)) (-5 *4 (-657 *12)) (-5 *5 (-657 *10)) (-5 *6 (-657 *13)) (-5 *7 (-657 (-657 (-2 (|:| -2096 (-784)) (|:| |pcoef| *13))))) (-5 *8 (-657 (-784))) (-5 *9 (-1289 (-657 (-1194 *10)))) (-4 *12 (-862)) (-4 *10 (-317)) (-4 *13 (-969 *10 *11 *12)) (-4 *11 (-806)) (-5 *1 (-720 *11 *12 *10 *13)))) (-1904 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-657 *11)) (-5 *5 (-657 (-1194 *9))) (-5 *6 (-657 *9)) (-5 *7 (-657 *12)) (-5 *8 (-657 (-784))) (-4 *11 (-862)) (-4 *9 (-317)) (-4 *12 (-969 *9 *10 *11)) (-4 *10 (-806)) (-5 *2 (-657 (-1194 *12))) (-5 *1 (-720 *10 *11 *9 *12)) (-5 *3 (-1194 *12)))) (-4323 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-657 (-1194 *11))) (-5 *3 (-1194 *11)) (-5 *4 (-657 *10)) (-5 *5 (-657 *8)) (-5 *6 (-657 (-784))) (-5 *7 (-1289 (-657 (-1194 *8)))) (-4 *10 (-862)) (-4 *8 (-317)) (-4 *11 (-969 *8 *9 *10)) (-4 *9 (-806)) (-5 *1 (-720 *9 *10 *8 *11))))) -(-10 -7 (-15 -4323 ((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-657 |#2|) (-657 |#3|) (-657 (-784)) (-657 (-1194 |#4|)) (-1289 (-657 (-1194 |#3|))) |#3|)) (-15 -1904 ((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-657 |#2|) (-657 (-1194 |#3|)) (-657 |#3|) (-657 |#4|) (-657 (-784)) |#3|)) (-15 -4092 ((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-657 |#2|) (-657 (-1194 |#4|)) (-657 |#3|) (-657 |#4|) (-657 (-657 (-2 (|:| -2096 (-784)) (|:| |pcoef| |#4|)))) (-657 (-784)) (-1289 (-657 (-1194 |#3|))) |#3|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2212 (($ $) 48)) (-3843 (((-3 $ "failed") $) 37)) (-4094 (((-112) $) 35)) (-2003 (($ |#1| (-784)) 46)) (-4436 (((-784) $) 50)) (-2186 ((|#1| $) 49)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-1770 (((-784) $) 51)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-2313 ((|#1| $ (-784)) 47)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) -(((-721 |#1|) (-141) (-1071)) (T -721)) -((-1770 (*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) (-4436 (*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) (-2186 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-1071)))) (-2212 (*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-1071)))) (-2313 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *1 (-721 *2)) (-4 *2 (-1071)))) (-2003 (*1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-721 *2)) (-4 *2 (-1071))))) -(-13 (-1071) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -1770 ((-784) $)) (-15 -4436 ((-784) $)) (-15 -2186 (|t#1| $)) (-15 -2212 ($ $)) (-15 -2313 (|t#1| $ (-784))) (-15 -2003 ($ |t#1| (-784))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 |#1|) |has| |#1| (-174)) ((-730 |#1|) |has| |#1| (-174)) ((-739) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-4083 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-722 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4083 (|#6| (-1 |#4| |#1|) |#3|))) (-568) (-1265 |#1|) (-1265 (-419 |#2|)) (-568) (-1265 |#4|) (-1265 (-419 |#5|))) (T -722)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) (-4 *6 (-1265 *5)) (-4 *2 (-1265 (-419 *8))) (-5 *1 (-722 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1265 (-419 *6))) (-4 *8 (-1265 *7))))) -(-10 -7 (-15 -4083 (|#6| (-1 |#4| |#1|) |#3|))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-4072 (((-1180) (-877)) 38)) (-2041 (((-1294) (-1180)) 31)) (-1618 (((-1180) (-877)) 28)) (-3995 (((-1180) (-877)) 29)) (-3501 (((-877) $) NIL) (((-1180) (-877)) 27)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-723) (-13 (-1122) (-10 -7 (-15 -3501 ((-1180) (-877))) (-15 -1618 ((-1180) (-877))) (-15 -3995 ((-1180) (-877))) (-15 -4072 ((-1180) (-877))) (-15 -2041 ((-1294) (-1180)))))) (T -723)) -((-3501 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-723)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-723)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-723)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-723)))) (-2041 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-723))))) -(-13 (-1122) (-10 -7 (-15 -3501 ((-1180) (-877))) (-15 -1618 ((-1180) (-877))) (-15 -3995 ((-1180) (-877))) (-15 -4072 ((-1180) (-877))) (-15 -2041 ((-1294) (-1180))))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-2864 (((-112) $ $) NIL)) (-4359 (($) NIL T CONST)) (-3373 (($ $ $) NIL)) (-3622 (($ |#1| |#2|) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-4094 (((-112) $) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2948 ((|#2| $) NIL)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-1885 (((-430 $) $) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3020 (((-3 $ "failed") $ $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) ((|#1| $) NIL)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-724 |#1| |#2| |#3| |#4| |#5|) (-13 (-374) (-10 -8 (-15 -2948 (|#2| $)) (-15 -3501 (|#1| $)) (-15 -3622 ($ |#1| |#2|)) (-15 -3020 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -724)) -((-2948 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-724 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3501 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3622 (*1 *1 *2 *3) (-12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3020 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-374) (-10 -8 (-15 -2948 (|#2| $)) (-15 -3501 (|#1| $)) (-15 -3622 ($ |#1| |#2|)) (-15 -3020 ((-3 $ "failed") $ $)))) -((-3429 (((-112) $ $) 87)) (-2364 (((-112) $) 36)) (-2266 (((-1289 |#1|) $ (-784)) NIL)) (-2029 (((-657 (-1104)) $) NIL)) (-3745 (($ (-1194 |#1|)) NIL)) (-1849 (((-1194 $) $ (-1104)) NIL) (((-1194 |#1|) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-1775 (((-784) $) NIL) (((-784) $ (-657 (-1104))) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-1558 (($ $ $) NIL (|has| |#1| (-568)))) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2638 (($ $) NIL (|has| |#1| (-464)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2864 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2193 (((-784)) 54 (|has| |#1| (-379)))) (-2794 (($ $ (-784)) NIL)) (-1462 (($ $ (-784)) NIL)) (-3109 ((|#2| |#2|) 50)) (-3757 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-1104) "failed") $) NIL)) (-2884 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-1104) $) NIL)) (-3203 (($ $ $ (-1104)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-3373 (($ $ $) NIL (|has| |#1| (-374)))) (-2212 (($ $) 40)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3622 (($ |#2|) 48)) (-3843 (((-3 $ "failed") $) 97)) (-1892 (($) 58 (|has| |#1| (-379)))) (-3385 (($ $ $) NIL (|has| |#1| (-374)))) (-3327 (($ $ $) NIL)) (-2432 (($ $ $) NIL (|has| |#1| (-568)))) (-4267 (((-2 (|:| -1771 |#1|) (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-568)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-3813 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1104)) NIL (|has| |#1| (-464)))) (-2199 (((-657 $) $) NIL)) (-4257 (((-112) $) NIL (|has| |#1| (-929)))) (-1439 (((-978 $)) 89)) (-3124 (($ $ |#1| (-784) $) NIL)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-1104) (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-1104) (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-3182 (((-784) $ $) NIL (|has| |#1| (-568)))) (-4094 (((-112) $) NIL)) (-4334 (((-784) $) NIL)) (-4019 (((-3 $ "failed") $) NIL (|has| |#1| (-1174)))) (-2014 (($ (-1194 |#1|) (-1104)) NIL) (($ (-1194 $) (-1104)) NIL)) (-1525 (($ $ (-784)) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3724 (((-657 $) $) NIL)) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-784)) 85) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ (-1104)) NIL) (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2948 ((|#2|) 51)) (-4436 (((-784) $) NIL) (((-784) $ (-1104)) NIL) (((-657 (-784)) $ (-657 (-1104))) NIL)) (-4056 (($ (-1 (-784) (-784)) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-2890 (((-1194 |#1|) $) NIL)) (-2353 (((-3 (-1104) "failed") $) NIL)) (-3007 (((-941) $) NIL (|has| |#1| (-379)))) (-3609 ((|#2| $) 47)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-2174 (($ $) NIL)) (-2186 ((|#1| $) 34)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2342 (((-1180) $) NIL)) (-2025 (((-2 (|:| -2335 $) (|:| -3644 $)) $ (-784)) NIL)) (-1392 (((-3 (-657 $) "failed") $) NIL)) (-2974 (((-3 (-657 $) "failed") $) NIL)) (-2999 (((-3 (-2 (|:| |var| (-1104)) (|:| -1801 (-784))) "failed") $) NIL)) (-4190 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1706 (($) NIL (|has| |#1| (-1174)) CONST)) (-3178 (($ (-941)) NIL (|has| |#1| (-379)))) (-1471 (((-1142) $) NIL)) (-2146 (((-112) $) NIL)) (-2160 ((|#1| $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-464)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3646 (($ $) 88 (|has| |#1| (-360)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1885 (((-430 $) $) NIL (|has| |#1| (-929)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-3418 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-568)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3236 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-1104) |#1|) NIL) (($ $ (-657 (-1104)) (-657 |#1|)) NIL) (($ $ (-1104) $) NIL) (($ $ (-657 (-1104)) (-657 $)) NIL)) (-2034 (((-784) $) NIL (|has| |#1| (-374)))) (-2835 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-4337 (((-3 $ "failed") $ (-784)) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 98 (|has| |#1| (-374)))) (-1701 (($ $ (-1104)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2815 (($ $ (-657 (-1104)) (-657 (-784))) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104))) NIL) (($ $ (-1104)) NIL) (($ $) NIL) (($ $ (-784)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-1770 (((-784) $) 38) (((-784) $ (-1104)) NIL) (((-657 (-784)) $ (-657 (-1104))) NIL)) (-4148 (((-908 (-390)) $) NIL (-12 (|has| (-1104) (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-1104) (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-1104) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1450 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1104)) NIL (|has| |#1| (-464)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-3553 (((-978 $)) 42)) (-3432 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-3501 (((-877) $) 68) (($ (-576)) NIL) (($ |#1|) 65) (($ (-1104)) NIL) (($ |#2|) 75) (($ (-419 (-576))) NIL (-2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-4037 (((-657 |#1|) $) NIL)) (-2313 ((|#1| $ (-784)) 70) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-1960 (((-784)) NIL T CONST)) (-2702 (($ $ $ (-784)) NIL (|has| |#1| (-174)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2769 (($) 25 T CONST)) (-1435 (((-1289 |#1|) $) 83)) (-2054 (($ (-1289 |#1|)) 57)) (-2779 (($) 8 T CONST)) (-2097 (($ $ (-657 (-1104)) (-657 (-784))) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104))) NIL) (($ $ (-1104)) NIL) (($ $) NIL) (($ $ (-784)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-2847 (((-1289 |#1|) $) NIL)) (-2933 (((-112) $ $) 76)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3022 (($ $) 79) (($ $ $) NIL)) (-3012 (($ $ $) 39)) (** (($ $ (-941)) NIL) (($ $ (-784)) 92)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 64) (($ $ $) 82) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 62) (($ $ |#1|) NIL))) -(((-725 |#1| |#2|) (-13 (-1265 |#1|) (-628 |#2|) (-10 -8 (-15 -3109 (|#2| |#2|)) (-15 -2948 (|#2|)) (-15 -3622 ($ |#2|)) (-15 -3609 (|#2| $)) (-15 -1435 ((-1289 |#1|) $)) (-15 -2054 ($ (-1289 |#1|))) (-15 -2847 ((-1289 |#1|) $)) (-15 -1439 ((-978 $))) (-15 -3553 ((-978 $))) (IF (|has| |#1| (-360)) (-15 -3646 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) (-1071) (-1265 |#1|)) (T -725)) -((-3109 (*1 *2 *2) (-12 (-4 *3 (-1071)) (-5 *1 (-725 *3 *2)) (-4 *2 (-1265 *3)))) (-2948 (*1 *2) (-12 (-4 *2 (-1265 *3)) (-5 *1 (-725 *3 *2)) (-4 *3 (-1071)))) (-3622 (*1 *1 *2) (-12 (-4 *3 (-1071)) (-5 *1 (-725 *3 *2)) (-4 *2 (-1265 *3)))) (-3609 (*1 *2 *1) (-12 (-4 *2 (-1265 *3)) (-5 *1 (-725 *3 *2)) (-4 *3 (-1071)))) (-1435 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-5 *2 (-1289 *3)) (-5 *1 (-725 *3 *4)) (-4 *4 (-1265 *3)))) (-2054 (*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-1071)) (-5 *1 (-725 *3 *4)) (-4 *4 (-1265 *3)))) (-2847 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-5 *2 (-1289 *3)) (-5 *1 (-725 *3 *4)) (-4 *4 (-1265 *3)))) (-1439 (*1 *2) (-12 (-4 *3 (-1071)) (-5 *2 (-978 (-725 *3 *4))) (-5 *1 (-725 *3 *4)) (-4 *4 (-1265 *3)))) (-3553 (*1 *2) (-12 (-4 *3 (-1071)) (-5 *2 (-978 (-725 *3 *4))) (-5 *1 (-725 *3 *4)) (-4 *4 (-1265 *3)))) (-3646 (*1 *1 *1) (-12 (-4 *2 (-360)) (-4 *2 (-1071)) (-5 *1 (-725 *2 *3)) (-4 *3 (-1265 *2))))) -(-13 (-1265 |#1|) (-628 |#2|) (-10 -8 (-15 -3109 (|#2| |#2|)) (-15 -2948 (|#2|)) (-15 -3622 ($ |#2|)) (-15 -3609 (|#2| $)) (-15 -1435 ((-1289 |#1|) $)) (-15 -2054 ($ (-1289 |#1|))) (-15 -2847 ((-1289 |#1|) $)) (-15 -1439 ((-978 $))) (-15 -3553 ((-978 $))) (IF (|has| |#1| (-360)) (-15 -3646 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) -((-3429 (((-112) $ $) NIL)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-2342 (((-1180) $) NIL)) (-3178 ((|#1| $) 13)) (-1471 (((-1142) $) NIL)) (-1801 ((|#2| $) 12)) (-3511 (($ |#1| |#2|) 16)) (-3501 (((-877) $) NIL) (($ (-2 (|:| -3178 |#1|) (|:| -1801 |#2|))) 15) (((-2 (|:| -3178 |#1|) (|:| -1801 |#2|)) $) 14)) (-2046 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 11))) -(((-726 |#1| |#2| |#3|) (-13 (-862) (-502 (-2 (|:| -3178 |#1|) (|:| -1801 |#2|))) (-10 -8 (-15 -1801 (|#2| $)) (-15 -3178 (|#1| $)) (-15 -3511 ($ |#1| |#2|)))) (-862) (-1122) (-1 (-112) (-2 (|:| -3178 |#1|) (|:| -1801 |#2|)) (-2 (|:| -3178 |#1|) (|:| -1801 |#2|)))) (T -726)) -((-1801 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-726 *3 *2 *4)) (-4 *3 (-862)) (-14 *4 (-1 (-112) (-2 (|:| -3178 *3) (|:| -1801 *2)) (-2 (|:| -3178 *3) (|:| -1801 *2)))))) (-3178 (*1 *2 *1) (-12 (-4 *2 (-862)) (-5 *1 (-726 *2 *3 *4)) (-4 *3 (-1122)) (-14 *4 (-1 (-112) (-2 (|:| -3178 *2) (|:| -1801 *3)) (-2 (|:| -3178 *2) (|:| -1801 *3)))))) (-3511 (*1 *1 *2 *3) (-12 (-5 *1 (-726 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-1122)) (-14 *4 (-1 (-112) (-2 (|:| -3178 *2) (|:| -1801 *3)) (-2 (|:| -3178 *2) (|:| -1801 *3))))))) -(-13 (-862) (-502 (-2 (|:| -3178 |#1|) (|:| -1801 |#2|))) (-10 -8 (-15 -1801 (|#2| $)) (-15 -3178 (|#1| $)) (-15 -3511 ($ |#1| |#2|)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 66)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2884 ((|#1| $) NIL) (((-115) $) 39)) (-3843 (((-3 $ "failed") $) 103)) (-2743 ((|#2| (-115) |#2|) 93)) (-4094 (((-112) $) NIL)) (-2939 (($ |#1| (-372 (-115))) 14)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2216 (($ $ (-1 |#2| |#2|)) 65)) (-1803 (($ $ (-1 |#2| |#2|)) 44)) (-2835 ((|#2| $ |#2|) 33)) (-3999 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-3501 (((-877) $) 73) (($ (-576)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) 37 T CONST)) (-2046 (((-112) $ $) NIL)) (-3247 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2769 (($) 21 T CONST)) (-2779 (($) 9 T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) 48) (($ $ $) NIL)) (-3012 (($ $ $) 83)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) 64)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174))))) -(((-727 |#1| |#2|) (-13 (-1071) (-1060 |#1|) (-1060 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3247 ($ $)) (-15 -3247 ($ $ $)) (-15 -3999 (|#1| |#1|))) |%noBranch|) (-15 -1803 ($ $ (-1 |#2| |#2|))) (-15 -2216 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -2743 (|#2| (-115) |#2|)) (-15 -2939 ($ |#1| (-372 (-115)))))) (-1071) (-661 |#1|)) (T -727)) -((-3247 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1071)) (-5 *1 (-727 *2 *3)) (-4 *3 (-661 *2)))) (-3247 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1071)) (-5 *1 (-727 *2 *3)) (-4 *3 (-661 *2)))) (-3999 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1071)) (-5 *1 (-727 *2 *3)) (-4 *3 (-661 *2)))) (-1803 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-661 *3)) (-4 *3 (-1071)) (-5 *1 (-727 *3 *4)))) (-2216 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-661 *3)) (-4 *3 (-1071)) (-5 *1 (-727 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1071)) (-5 *1 (-727 *4 *5)) (-4 *5 (-661 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *3 (-1071)) (-5 *1 (-727 *3 *4)) (-4 *4 (-661 *3)))) (-2743 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1071)) (-5 *1 (-727 *4 *2)) (-4 *2 (-661 *4)))) (-2939 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1071)) (-5 *1 (-727 *2 *4)) (-4 *4 (-661 *2))))) -(-13 (-1071) (-1060 |#1|) (-1060 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3247 ($ $)) (-15 -3247 ($ $ $)) (-15 -3999 (|#1| |#1|))) |%noBranch|) (-15 -1803 ($ $ (-1 |#2| |#2|))) (-15 -2216 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -2743 (|#2| (-115) |#2|)) (-15 -2939 ($ |#1| (-372 (-115)))))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 33)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-3622 (($ |#1| |#2|) 25)) (-3843 (((-3 $ "failed") $) 51)) (-4094 (((-112) $) 35)) (-2948 ((|#2| $) 12)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) 52)) (-1471 (((-1142) $) NIL)) (-3020 (((-3 $ "failed") $ $) 50)) (-3501 (((-877) $) 24) (($ (-576)) 19) ((|#1| $) 13)) (-1960 (((-784)) 28 T CONST)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 16 T CONST)) (-2779 (($) 30 T CONST)) (-2933 (((-112) $ $) 41)) (-3022 (($ $) 46) (($ $ $) 40)) (-3012 (($ $ $) 43)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 21) (($ $ $) 20))) -(((-728 |#1| |#2| |#3| |#4| |#5|) (-13 (-1071) (-10 -8 (-15 -2948 (|#2| $)) (-15 -3501 (|#1| $)) (-15 -3622 ($ |#1| |#2|)) (-15 -3020 ((-3 $ "failed") $ $)) (-15 -3843 ((-3 $ "failed") $)) (-15 -2134 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -728)) -((-3843 (*1 *1 *1) (|partial| -12 (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2948 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-728 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3501 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3622 (*1 *1 *2 *3) (-12 (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3020 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2134 (*1 *1 *1) (-12 (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1071) (-10 -8 (-15 -2948 (|#2| $)) (-15 -3501 (|#1| $)) (-15 -3622 ($ |#1| |#2|)) (-15 -3020 ((-3 $ "failed") $ $)) (-15 -3843 ((-3 $ "failed") $)) (-15 -2134 ($ $)))) -((* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-729 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) (-730 |#2|) (-174)) (T -729)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-730 |#1|) (-141) (-174)) (T -730)) -NIL -(-13 (-111 |t#1| |t#1|) (-653 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2790 (($ |#1|) 17) (($ $ |#1|) 20)) (-3243 (($ |#1|) 18) (($ $ |#1|) 21)) (-4359 (($) NIL T CONST)) (-3843 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-4094 (((-112) $) NIL)) (-4431 (($ |#1| |#1| |#1| |#1|) 8)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) 16)) (-1471 (((-1142) $) NIL)) (-3236 ((|#1| $ |#1|) 24) (((-846 |#1|) $ (-846 |#1|)) 32)) (-3549 (($ $ $) NIL)) (-3544 (($ $ $) NIL)) (-3501 (((-877) $) 39)) (-2046 (((-112) $ $) NIL)) (-2779 (($) 9 T CONST)) (-2933 (((-112) $ $) 48)) (-3034 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 14))) -(((-731 |#1|) (-13 (-485) (-10 -8 (-15 -4431 ($ |#1| |#1| |#1| |#1|)) (-15 -2790 ($ |#1|)) (-15 -3243 ($ |#1|)) (-15 -3843 ($)) (-15 -2790 ($ $ |#1|)) (-15 -3243 ($ $ |#1|)) (-15 -3843 ($ $)) (-15 -3236 (|#1| $ |#1|)) (-15 -3236 ((-846 |#1|) $ (-846 |#1|))))) (-374)) (T -731)) -((-4431 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) (-2790 (*1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) (-3243 (*1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) (-3843 (*1 *1) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) (-2790 (*1 *1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) (-3243 (*1 *1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) (-3843 (*1 *1 *1) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) (-3236 (*1 *2 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) (-3236 (*1 *2 *1 *2) (-12 (-5 *2 (-846 *3)) (-4 *3 (-374)) (-5 *1 (-731 *3))))) -(-13 (-485) (-10 -8 (-15 -4431 ($ |#1| |#1| |#1| |#1|)) (-15 -2790 ($ |#1|)) (-15 -3243 ($ |#1|)) (-15 -3843 ($)) (-15 -2790 ($ $ |#1|)) (-15 -3243 ($ $ |#1|)) (-15 -3843 ($ $)) (-15 -3236 (|#1| $ |#1|)) (-15 -3236 ((-846 |#1|) $ (-846 |#1|))))) -((-2609 (($ $ (-941)) 19)) (-4404 (($ $ (-941)) 20)) (** (($ $ (-941)) 10))) -(((-732 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-941))) (-15 -4404 (|#1| |#1| (-941))) (-15 -2609 (|#1| |#1| (-941)))) (-733)) (T -732)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-941))) (-15 -4404 (|#1| |#1| (-941))) (-15 -2609 (|#1| |#1| (-941)))) -((-3429 (((-112) $ $) 7)) (-2609 (($ $ (-941)) 16)) (-4404 (($ $ (-941)) 15)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8)) (** (($ $ (-941)) 14)) (* (($ $ $) 17))) -(((-733) (-141)) (T -733)) -((* (*1 *1 *1 *1) (-4 *1 (-733))) (-2609 (*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-941)))) (-4404 (*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-941)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-941))))) -(-13 (-1122) (-10 -8 (-15 * ($ $ $)) (-15 -2609 ($ $ (-941))) (-15 -4404 ($ $ (-941))) (-15 ** ($ $ (-941))))) -(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-2609 (($ $ (-941)) NIL) (($ $ (-784)) 18)) (-4094 (((-112) $) 10)) (-4404 (($ $ (-941)) NIL) (($ $ (-784)) 19)) (** (($ $ (-941)) NIL) (($ $ (-784)) 16))) -(((-734 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-784))) (-15 -4404 (|#1| |#1| (-784))) (-15 -2609 (|#1| |#1| (-784))) (-15 -4094 ((-112) |#1|)) (-15 ** (|#1| |#1| (-941))) (-15 -4404 (|#1| |#1| (-941))) (-15 -2609 (|#1| |#1| (-941)))) (-735)) (T -734)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-784))) (-15 -4404 (|#1| |#1| (-784))) (-15 -2609 (|#1| |#1| (-784))) (-15 -4094 ((-112) |#1|)) (-15 ** (|#1| |#1| (-941))) (-15 -4404 (|#1| |#1| (-941))) (-15 -2609 (|#1| |#1| (-941)))) -((-3429 (((-112) $ $) 7)) (-1498 (((-3 $ "failed") $) 18)) (-2609 (($ $ (-941)) 16) (($ $ (-784)) 23)) (-3843 (((-3 $ "failed") $) 20)) (-4094 (((-112) $) 24)) (-2390 (((-3 $ "failed") $) 19)) (-4404 (($ $ (-941)) 15) (($ $ (-784)) 22)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2779 (($) 25 T CONST)) (-2933 (((-112) $ $) 8)) (** (($ $ (-941)) 14) (($ $ (-784)) 21)) (* (($ $ $) 17))) -(((-735) (-141)) (T -735)) -((-2779 (*1 *1) (-4 *1 (-735))) (-4094 (*1 *2 *1) (-12 (-4 *1 (-735)) (-5 *2 (-112)))) (-2609 (*1 *1 *1 *2) (-12 (-4 *1 (-735)) (-5 *2 (-784)))) (-4404 (*1 *1 *1 *2) (-12 (-4 *1 (-735)) (-5 *2 (-784)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-735)) (-5 *2 (-784)))) (-3843 (*1 *1 *1) (|partial| -4 *1 (-735))) (-2390 (*1 *1 *1) (|partial| -4 *1 (-735))) (-1498 (*1 *1 *1) (|partial| -4 *1 (-735)))) -(-13 (-733) (-10 -8 (-15 (-2779) ($) -1509) (-15 -4094 ((-112) $)) (-15 -2609 ($ $ (-784))) (-15 -4404 ($ $ (-784))) (-15 ** ($ $ (-784))) (-15 -3843 ((-3 $ "failed") $)) (-15 -2390 ((-3 $ "failed") $)) (-15 -1498 ((-3 $ "failed") $)))) -(((-102) . T) ((-625 (-877)) . T) ((-733) . T) ((-1122) . T) ((-1239) . T)) -((-2193 (((-784)) 39)) (-1624 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2884 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 23)) (-3622 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) 49)) (-3843 (((-3 $ "failed") $) 69)) (-1892 (($) 43)) (-2234 ((|#2| $) 21)) (-4097 (($) 18)) (-2815 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) NIL) (($ $ (-784)) NIL) (($ $) NIL)) (-3988 (((-702 |#2|) (-1289 $) (-1 |#2| |#2|)) 64)) (-4148 (((-1289 |#2|) $) NIL) (($ (-1289 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-4182 ((|#3| $) 36)) (-1985 (((-1289 $)) 33))) -(((-736 |#1| |#2| |#3|) (-10 -8 (-15 -2815 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -1892 (|#1|)) (-15 -2193 ((-784))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3988 ((-702 |#2|) (-1289 |#1|) (-1 |#2| |#2|))) (-15 -3622 ((-3 |#1| "failed") (-419 |#3|))) (-15 -4148 (|#1| |#3|)) (-15 -3622 (|#1| |#3|)) (-15 -4097 (|#1|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -4148 (|#3| |#1|)) (-15 -4148 (|#1| (-1289 |#2|))) (-15 -4148 ((-1289 |#2|) |#1|)) (-15 -1985 ((-1289 |#1|))) (-15 -4182 (|#3| |#1|)) (-15 -2234 (|#2| |#1|)) (-15 -3843 ((-3 |#1| "failed") |#1|))) (-737 |#2| |#3|) (-174) (-1265 |#2|)) (T -736)) -((-2193 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1265 *4)) (-5 *2 (-784)) (-5 *1 (-736 *3 *4 *5)) (-4 *3 (-737 *4 *5))))) -(-10 -8 (-15 -2815 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -1892 (|#1|)) (-15 -2193 ((-784))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3988 ((-702 |#2|) (-1289 |#1|) (-1 |#2| |#2|))) (-15 -3622 ((-3 |#1| "failed") (-419 |#3|))) (-15 -4148 (|#1| |#3|)) (-15 -3622 (|#1| |#3|)) (-15 -4097 (|#1|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -4148 (|#3| |#1|)) (-15 -4148 (|#1| (-1289 |#2|))) (-15 -4148 ((-1289 |#2|) |#1|)) (-15 -1985 ((-1289 |#1|))) (-15 -4182 (|#3| |#1|)) (-15 -2234 (|#2| |#1|)) (-15 -3843 ((-3 |#1| "failed") |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 105 (|has| |#1| (-374)))) (-3325 (($ $) 106 (|has| |#1| (-374)))) (-4306 (((-112) $) 108 (|has| |#1| (-374)))) (-1527 (((-702 |#1|) (-1289 $)) 53) (((-702 |#1|)) 68)) (-2302 ((|#1| $) 59)) (-3592 (((-1211 (-941) (-784)) (-576)) 158 (|has| |#1| (-360)))) (-2721 (((-3 $ "failed") $ $) 20)) (-2638 (($ $) 125 (|has| |#1| (-374)))) (-4402 (((-430 $) $) 126 (|has| |#1| (-374)))) (-2864 (((-112) $ $) 116 (|has| |#1| (-374)))) (-2193 (((-784)) 99 (|has| |#1| (-379)))) (-4359 (($) 18 T CONST)) (-1624 (((-3 (-576) "failed") $) 185 (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 180)) (-2884 (((-576) $) 184 (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) 182 (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 181)) (-2613 (($ (-1289 |#1|) (-1289 $)) 55) (($ (-1289 |#1|)) 71)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-3373 (($ $ $) 120 (|has| |#1| (-374)))) (-3529 (((-702 |#1|) $ (-1289 $)) 60) (((-702 |#1|) $) 66)) (-3306 (((-702 (-576)) (-702 $)) 177 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 176 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 175) (((-702 |#1|) (-702 $)) 174)) (-3622 (($ |#2|) 169) (((-3 $ "failed") (-419 |#2|)) 166 (|has| |#1| (-374)))) (-3843 (((-3 $ "failed") $) 37)) (-1542 (((-941)) 61)) (-1892 (($) 102 (|has| |#1| (-379)))) (-3385 (($ $ $) 119 (|has| |#1| (-374)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 114 (|has| |#1| (-374)))) (-1367 (($) 160 (|has| |#1| (-360)))) (-2105 (((-112) $) 161 (|has| |#1| (-360)))) (-1780 (($ $ (-784)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-4257 (((-112) $) 127 (|has| |#1| (-374)))) (-3182 (((-941) $) 163 (|has| |#1| (-360))) (((-846 (-941)) $) 149 (|has| |#1| (-360)))) (-4094 (((-112) $) 35)) (-2234 ((|#1| $) 58)) (-4019 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 123 (|has| |#1| (-374)))) (-1336 ((|#2| $) 51 (|has| |#1| (-374)))) (-3007 (((-941) $) 101 (|has| |#1| (-379)))) (-3609 ((|#2| $) 167)) (-3101 (((-702 (-576)) (-1289 $)) 179 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 178 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 173) (((-702 |#1|) (-1289 $)) 172)) (-3402 (($ (-657 $)) 112 (|has| |#1| (-374))) (($ $ $) 111 (|has| |#1| (-374)))) (-2342 (((-1180) $) 10)) (-2134 (($ $) 128 (|has| |#1| (-374)))) (-1706 (($) 154 (|has| |#1| (-360)) CONST)) (-3178 (($ (-941)) 100 (|has| |#1| (-379)))) (-1471 (((-1142) $) 11)) (-4097 (($) 171)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 113 (|has| |#1| (-374)))) (-3436 (($ (-657 $)) 110 (|has| |#1| (-374))) (($ $ $) 109 (|has| |#1| (-374)))) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) 157 (|has| |#1| (-360)))) (-1885 (((-430 $) $) 124 (|has| |#1| (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 121 (|has| |#1| (-374)))) (-3418 (((-3 $ "failed") $ $) 104 (|has| |#1| (-374)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 115 (|has| |#1| (-374)))) (-2034 (((-784) $) 117 (|has| |#1| (-374)))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 118 (|has| |#1| (-374)))) (-1701 ((|#1| (-1289 $)) 54) ((|#1|) 67)) (-2284 (((-784) $) 162 (|has| |#1| (-360))) (((-3 (-784) "failed") $ $) 150 (|has| |#1| (-360)))) (-2815 (($ $ (-784)) 147 (-2802 (-2724 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 145 (-2802 (-2724 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-657 (-1198)) (-657 (-784))) 141 (-2724 (|has| |#1| (-920 (-1198))) (|has| |#1| (-374)))) (($ $ (-1198) (-784)) 140 (-2724 (|has| |#1| (-920 (-1198))) (|has| |#1| (-374)))) (($ $ (-657 (-1198))) 139 (-2724 (|has| |#1| (-920 (-1198))) (|has| |#1| (-374)))) (($ $ (-1198)) 137 (-2724 (|has| |#1| (-920 (-1198))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-784)) 135 (|has| |#1| (-374)))) (-3988 (((-702 |#1|) (-1289 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-3180 ((|#2|) 170)) (-2090 (($) 159 (|has| |#1| (-360)))) (-2795 (((-1289 |#1|) $ (-1289 $)) 57) (((-702 |#1|) (-1289 $) (-1289 $)) 56) (((-1289 |#1|) $) 73) (((-702 |#1|) (-1289 $)) 72)) (-4148 (((-1289 |#1|) $) 70) (($ (-1289 |#1|)) 69) ((|#2| $) 186) (($ |#2|) 168)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) 156 (|has| |#1| (-360)))) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ $) 103 (|has| |#1| (-374))) (($ (-419 (-576))) 98 (-2802 (|has| |#1| (-374)) (|has| |#1| (-1060 (-419 (-576))))))) (-3096 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4182 ((|#2| $) 52)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-1985 (((-1289 $)) 74)) (-4041 (((-112) $ $) 107 (|has| |#1| (-374)))) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-784)) 148 (-2802 (-2724 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 146 (-2802 (-2724 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-657 (-1198)) (-657 (-784))) 144 (-2724 (|has| |#1| (-920 (-1198))) (|has| |#1| (-374)))) (($ $ (-1198) (-784)) 143 (-2724 (|has| |#1| (-920 (-1198))) (|has| |#1| (-374)))) (($ $ (-657 (-1198))) 142 (-2724 (|has| |#1| (-920 (-1198))) (|has| |#1| (-374)))) (($ $ (-1198)) 138 (-2724 (|has| |#1| (-920 (-1198))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-784)) 133 (|has| |#1| (-374)))) (-2933 (((-112) $ $) 8)) (-3034 (($ $ $) 132 (|has| |#1| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374))))) -(((-737 |#1| |#2|) (-141) (-174) (-1265 |t#1|)) (T -737)) -((-4097 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-737 *2 *3)) (-4 *3 (-1265 *2)))) (-3180 (*1 *2) (-12 (-4 *1 (-737 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1265 *3)))) (-3622 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-737 *3 *2)) (-4 *2 (-1265 *3)))) (-4148 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-737 *3 *2)) (-4 *2 (-1265 *3)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-737 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1265 *3)))) (-3622 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1265 *3)) (-4 *3 (-374)) (-4 *3 (-174)) (-4 *1 (-737 *3 *4)))) (-3988 (*1 *2 *3 *4) (-12 (-5 *3 (-1289 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-4 *1 (-737 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1265 *5)) (-5 *2 (-702 *5))))) -(-13 (-421 |t#1| |t#2|) (-174) (-626 |t#2|) (-423 |t#1|) (-388 |t#1|) (-10 -8 (-15 -4097 ($)) (-15 -3180 (|t#2|)) (-15 -3622 ($ |t#2|)) (-15 -4148 ($ |t#2|)) (-15 -3609 (|t#2| $)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-374)) (-6 (-232 |t#1|)) (-15 -3622 ((-3 $ "failed") (-419 |t#2|))) (-15 -3988 ((-702 |t#1|) (-1289 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-360)) (-6 (-360)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-102) . T) ((-111 #0# #0#) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2802 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -2802 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-625 (-877)) . T) ((-174) . T) ((-626 |#2|) . T) ((-234 $) -2802 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-232 |#1|) |has| |#1| (-374)) ((-238) -2802 (|has| |#1| (-360)) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-237) -2802 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-272 |#1|) |has| |#1| (-374)) ((-248) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-300) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-317) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-374) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -2802 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| |#2|) . T) ((-421 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-568) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-659 #0#) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-661 #1=(-576)) |has| |#1| (-652 (-576))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-653 |#1|) . T) ((-653 $) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 #1#) |has| |#1| (-652 (-576))) ((-652 |#1|) . T) ((-730 #0#) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-730 |#1|) . T) ((-730 $) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-739) . T) ((-912 $ #2=(-1198)) -2802 (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198))))) ((-918 (-1198)) -12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198)))) ((-920 #2#) -2802 (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-918 (-1198))))) ((-940) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1060 (-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1073 #0#) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1078 #0#) -2802 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1078 |#1|) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1174) |has| |#1| (-360)) ((-1239) . T) ((-1243) -2802 (|has| |#1| (-360)) (|has| |#1| (-374)))) -((-4359 (($) 11)) (-3843 (((-3 $ "failed") $) 14)) (-4094 (((-112) $) 10)) (** (($ $ (-941)) NIL) (($ $ (-784)) 20))) -(((-738 |#1|) (-10 -8 (-15 -3843 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-784))) (-15 -4094 ((-112) |#1|)) (-15 -4359 (|#1|)) (-15 ** (|#1| |#1| (-941)))) (-739)) (T -738)) -NIL -(-10 -8 (-15 -3843 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-784))) (-15 -4094 ((-112) |#1|)) (-15 -4359 (|#1|)) (-15 ** (|#1| |#1| (-941)))) -((-3429 (((-112) $ $) 7)) (-4359 (($) 19 T CONST)) (-3843 (((-3 $ "failed") $) 16)) (-4094 (((-112) $) 18)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2779 (($) 20 T CONST)) (-2933 (((-112) $ $) 8)) (** (($ $ (-941)) 14) (($ $ (-784)) 17)) (* (($ $ $) 15))) -(((-739) (-141)) (T -739)) -((-2779 (*1 *1) (-4 *1 (-739))) (-4359 (*1 *1) (-4 *1 (-739))) (-4094 (*1 *2 *1) (-12 (-4 *1 (-739)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-739)) (-5 *2 (-784)))) (-3843 (*1 *1 *1) (|partial| -4 *1 (-739)))) -(-13 (-1134) (-10 -8 (-15 (-2779) ($) -1509) (-15 -4359 ($) -1509) (-15 -4094 ((-112) $)) (-15 ** ($ $ (-784))) (-15 -3843 ((-3 $ "failed") $)))) -(((-102) . T) ((-625 (-877)) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-2481 (((-2 (|:| -3000 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-1407 (((-2 (|:| -3000 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3936 ((|#2| (-419 |#2|) (-1 |#2| |#2|)) 13)) (-1954 (((-2 (|:| |poly| |#2|) (|:| -3000 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)) 48))) -(((-740 |#1| |#2|) (-10 -7 (-15 -1407 ((-2 (|:| -3000 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2481 ((-2 (|:| -3000 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3936 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -1954 ((-2 (|:| |poly| |#2|) (|:| -3000 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1265 |#1|)) (T -740)) -((-1954 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3000 (-419 *6)) (|:| |special| (-419 *6)))) (-5 *1 (-740 *5 *6)) (-5 *3 (-419 *6)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1265 *5)) (-5 *1 (-740 *5 *2)) (-4 *5 (-374)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -3000 (-430 *3)) (|:| |special| (-430 *3)))) (-5 *1 (-740 *5 *3)))) (-1407 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -3000 *3) (|:| |special| *3))) (-5 *1 (-740 *5 *3))))) -(-10 -7 (-15 -1407 ((-2 (|:| -3000 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2481 ((-2 (|:| -3000 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3936 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -1954 ((-2 (|:| |poly| |#2|) (|:| -3000 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) -((-3475 ((|#7| (-657 |#5|) |#6|) NIL)) (-4083 ((|#7| (-1 |#5| |#4|) |#6|) 27))) -(((-741 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4083 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3475 (|#7| (-657 |#5|) |#6|))) (-862) (-806) (-806) (-1071) (-1071) (-969 |#4| |#2| |#1|) (-969 |#5| |#3| |#1|)) (T -741)) -((-3475 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *9)) (-4 *9 (-1071)) (-4 *5 (-862)) (-4 *6 (-806)) (-4 *8 (-1071)) (-4 *2 (-969 *9 *7 *5)) (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-806)) (-4 *4 (-969 *8 *6 *5)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1071)) (-4 *9 (-1071)) (-4 *5 (-862)) (-4 *6 (-806)) (-4 *2 (-969 *9 *7 *5)) (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-806)) (-4 *4 (-969 *8 *6 *5))))) -(-10 -7 (-15 -4083 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3475 (|#7| (-657 |#5|) |#6|))) -((-4083 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-742 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4083 (|#7| (-1 |#2| |#1|) |#6|))) (-862) (-862) (-806) (-806) (-1071) (-969 |#5| |#3| |#1|) (-969 |#5| |#4| |#2|)) (T -742)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-862)) (-4 *6 (-862)) (-4 *7 (-806)) (-4 *9 (-1071)) (-4 *2 (-969 *9 *8 *6)) (-5 *1 (-742 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-806)) (-4 *4 (-969 *9 *7 *5))))) -(-10 -7 (-15 -4083 (|#7| (-1 |#2| |#1|) |#6|))) -((-1885 (((-430 |#4|) |#4|) 42))) -(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1885 ((-430 |#4|) |#4|))) (-806) (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $)) (-15 -3032 ((-3 $ "failed") (-1198))))) (-317) (-969 (-972 |#3|) |#1| |#2|)) (T -743)) -((-1885 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $)) (-15 -3032 ((-3 $ "failed") (-1198)))))) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-969 (-972 *6) *4 *5))))) -(-10 -7 (-15 -1885 ((-430 |#4|) |#4|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2029 (((-657 (-879 |#1|)) $) NIL)) (-1849 (((-1194 $) $ (-879 |#1|)) NIL) (((-1194 |#2|) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-3325 (($ $) NIL (|has| |#2| (-568)))) (-4306 (((-112) $) NIL (|has| |#2| (-568)))) (-1775 (((-784) $) NIL) (((-784) $ (-657 (-879 |#1|))) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-2638 (($ $) NIL (|has| |#2| (-464)))) (-4402 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1060 (-576)))) (((-3 (-879 |#1|) "failed") $) NIL)) (-2884 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1060 (-576)))) (((-879 |#1|) $) NIL)) (-3203 (($ $ $ (-879 |#1|)) NIL (|has| |#2| (-174)))) (-2212 (($ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL) (((-702 |#2|) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3813 (($ $) NIL (|has| |#2| (-464))) (($ $ (-879 |#1|)) NIL (|has| |#2| (-464)))) (-2199 (((-657 $) $) NIL)) (-4257 (((-112) $) NIL (|has| |#2| (-929)))) (-3124 (($ $ |#2| (-543 (-879 |#1|)) $) NIL)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-879 |#1|) (-902 (-390))) (|has| |#2| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-879 |#1|) (-902 (-576))) (|has| |#2| (-902 (-576)))))) (-4094 (((-112) $) NIL)) (-4334 (((-784) $) NIL)) (-2014 (($ (-1194 |#2|) (-879 |#1|)) NIL) (($ (-1194 $) (-879 |#1|)) NIL)) (-3724 (((-657 $) $) NIL)) (-3157 (((-112) $) NIL)) (-2003 (($ |#2| (-543 (-879 |#1|))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ (-879 |#1|)) NIL)) (-4436 (((-543 (-879 |#1|)) $) NIL) (((-784) $ (-879 |#1|)) NIL) (((-657 (-784)) $ (-657 (-879 |#1|))) NIL)) (-4056 (($ (-1 (-543 (-879 |#1|)) (-543 (-879 |#1|))) $) NIL)) (-4083 (($ (-1 |#2| |#2|) $) NIL)) (-2353 (((-3 (-879 |#1|) "failed") $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-2174 (($ $) NIL)) (-2186 ((|#2| $) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2342 (((-1180) $) NIL)) (-1392 (((-3 (-657 $) "failed") $) NIL)) (-2974 (((-3 (-657 $) "failed") $) NIL)) (-2999 (((-3 (-2 (|:| |var| (-879 |#1|)) (|:| -1801 (-784))) "failed") $) NIL)) (-1471 (((-1142) $) NIL)) (-2146 (((-112) $) NIL)) (-2160 ((|#2| $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#2| (-464)))) (-3436 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-1885 (((-430 $) $) NIL (|has| |#2| (-929)))) (-3418 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3236 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-879 |#1|) |#2|) NIL) (($ $ (-657 (-879 |#1|)) (-657 |#2|)) NIL) (($ $ (-879 |#1|) $) NIL) (($ $ (-657 (-879 |#1|)) (-657 $)) NIL)) (-1701 (($ $ (-879 |#1|)) NIL (|has| |#2| (-174)))) (-2815 (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|))) NIL) (($ $ (-879 |#1|)) NIL)) (-1770 (((-543 (-879 |#1|)) $) NIL) (((-784) $ (-879 |#1|)) NIL) (((-657 (-784)) $ (-657 (-879 |#1|))) NIL)) (-4148 (((-908 (-390)) $) NIL (-12 (|has| (-879 |#1|) (-626 (-908 (-390)))) (|has| |#2| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-879 |#1|) (-626 (-908 (-576)))) (|has| |#2| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-879 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1450 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-879 |#1|)) NIL (|has| |#2| (-464)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-929))))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-879 |#1|)) NIL) (($ $) NIL (|has| |#2| (-568))) (($ (-419 (-576))) NIL (-2802 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576))))))) (-4037 (((-657 |#2|) $) NIL)) (-2313 ((|#2| $ (-543 (-879 |#1|))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| |#2| (-929))) (|has| |#2| (-146))))) (-1960 (((-784)) NIL T CONST)) (-2702 (($ $ $ (-784)) NIL (|has| |#2| (-174)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-657 (-879 |#1|)) (-657 (-784))) NIL) (($ $ (-879 |#1|) (-784)) NIL) (($ $ (-657 (-879 |#1|))) NIL) (($ $ (-879 |#1|)) NIL)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-744 |#1| |#2|) (-969 |#2| (-543 (-879 |#1|)) (-879 |#1|)) (-657 (-1198)) (-1071)) (T -744)) -NIL -(-969 |#2| (-543 (-879 |#1|)) (-879 |#1|)) -((-3735 (((-2 (|:| -3733 (-972 |#3|)) (|:| -3408 (-972 |#3|))) |#4|) 14)) (-2055 ((|#4| |#4| |#2|) 33)) (-3671 ((|#4| (-419 (-972 |#3|)) |#2|) 64)) (-1653 ((|#4| (-1194 (-972 |#3|)) |#2|) 77)) (-3193 ((|#4| (-1194 |#4|) |#2|) 51)) (-2928 ((|#4| |#4| |#2|) 54)) (-1885 (((-430 |#4|) |#4|) 40))) -(((-745 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3735 ((-2 (|:| -3733 (-972 |#3|)) (|:| -3408 (-972 |#3|))) |#4|)) (-15 -2928 (|#4| |#4| |#2|)) (-15 -3193 (|#4| (-1194 |#4|) |#2|)) (-15 -2055 (|#4| |#4| |#2|)) (-15 -1653 (|#4| (-1194 (-972 |#3|)) |#2|)) (-15 -3671 (|#4| (-419 (-972 |#3|)) |#2|)) (-15 -1885 ((-430 |#4|) |#4|))) (-806) (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $)))) (-568) (-969 (-419 (-972 |#3|)) |#1| |#2|)) (T -745)) -((-1885 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $))))) (-4 *6 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-969 (-419 (-972 *6)) *4 *5)))) (-3671 (*1 *2 *3 *4) (-12 (-4 *6 (-568)) (-4 *2 (-969 *3 *5 *4)) (-5 *1 (-745 *5 *4 *6 *2)) (-5 *3 (-419 (-972 *6))) (-4 *5 (-806)) (-4 *4 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $))))))) (-1653 (*1 *2 *3 *4) (-12 (-5 *3 (-1194 (-972 *6))) (-4 *6 (-568)) (-4 *2 (-969 (-419 (-972 *6)) *5 *4)) (-5 *1 (-745 *5 *4 *6 *2)) (-4 *5 (-806)) (-4 *4 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $))))))) (-2055 (*1 *2 *2 *3) (-12 (-4 *4 (-806)) (-4 *3 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $))))) (-4 *5 (-568)) (-5 *1 (-745 *4 *3 *5 *2)) (-4 *2 (-969 (-419 (-972 *5)) *4 *3)))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-1194 *2)) (-4 *2 (-969 (-419 (-972 *6)) *5 *4)) (-5 *1 (-745 *5 *4 *6 *2)) (-4 *5 (-806)) (-4 *4 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $))))) (-4 *6 (-568)))) (-2928 (*1 *2 *2 *3) (-12 (-4 *4 (-806)) (-4 *3 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $))))) (-4 *5 (-568)) (-5 *1 (-745 *4 *3 *5 *2)) (-4 *2 (-969 (-419 (-972 *5)) *4 *3)))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $))))) (-4 *6 (-568)) (-5 *2 (-2 (|:| -3733 (-972 *6)) (|:| -3408 (-972 *6)))) (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-969 (-419 (-972 *6)) *4 *5))))) -(-10 -7 (-15 -3735 ((-2 (|:| -3733 (-972 |#3|)) (|:| -3408 (-972 |#3|))) |#4|)) (-15 -2928 (|#4| |#4| |#2|)) (-15 -3193 (|#4| (-1194 |#4|) |#2|)) (-15 -2055 (|#4| |#4| |#2|)) (-15 -1653 (|#4| (-1194 (-972 |#3|)) |#2|)) (-15 -3671 (|#4| (-419 (-972 |#3|)) |#2|)) (-15 -1885 ((-430 |#4|) |#4|))) -((-1885 (((-430 |#4|) |#4|) 54))) -(((-746 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1885 ((-430 |#4|) |#4|))) (-806) (-862) (-13 (-317) (-148)) (-969 (-419 |#3|) |#1| |#2|)) (T -746)) -((-1885 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-746 *4 *5 *6 *3)) (-4 *3 (-969 (-419 *6) *4 *5))))) -(-10 -7 (-15 -1885 ((-430 |#4|) |#4|))) -((-4083 (((-748 |#2| |#3|) (-1 |#2| |#1|) (-748 |#1| |#3|)) 18))) -(((-747 |#1| |#2| |#3|) (-10 -7 (-15 -4083 ((-748 |#2| |#3|) (-1 |#2| |#1|) (-748 |#1| |#3|)))) (-1071) (-1071) (-739)) (T -747)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-748 *5 *7)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-4 *7 (-739)) (-5 *2 (-748 *6 *7)) (-5 *1 (-747 *5 *6 *7))))) -(-10 -7 (-15 -4083 ((-748 |#2| |#3|) (-1 |#2| |#1|) (-748 |#1| |#3|)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 36)) (-2886 (((-657 (-2 (|:| -1771 |#1|) (|:| -3607 |#2|))) $) 37)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2193 (((-784)) 22 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2884 ((|#2| $) NIL) ((|#1| $) NIL)) (-2212 (($ $) 102 (|has| |#2| (-862)))) (-3843 (((-3 $ "failed") $) 85)) (-1892 (($) 48 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-4094 (((-112) $) NIL)) (-4334 (((-784) $) 70)) (-3724 (((-657 $) $) 52)) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| |#2|) 17)) (-4083 (($ (-1 |#1| |#1|) $) 68)) (-3007 (((-941) $) 43 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-2174 ((|#2| $) 101 (|has| |#2| (-862)))) (-2186 ((|#1| $) 100 (|has| |#2| (-862)))) (-2342 (((-1180) $) NIL)) (-3178 (($ (-941)) 35 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 99) (($ (-576)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-657 (-2 (|:| -1771 |#1|) (|:| -3607 |#2|)))) 11)) (-4037 (((-657 |#1|) $) 54)) (-2313 ((|#1| $ |#2|) 115)) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 12 T CONST)) (-2779 (($) 44 T CONST)) (-2933 (((-112) $ $) 105)) (-3022 (($ $) 61) (($ $ $) NIL)) (-3012 (($ $ $) 33)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-748 |#1| |#2|) (-13 (-1071) (-1060 |#2|) (-1060 |#1|) (-10 -8 (-15 -2003 ($ |#1| |#2|)) (-15 -2313 (|#1| $ |#2|)) (-15 -3501 ($ (-657 (-2 (|:| -1771 |#1|) (|:| -3607 |#2|))))) (-15 -2886 ((-657 (-2 (|:| -1771 |#1|) (|:| -3607 |#2|))) $)) (-15 -4083 ($ (-1 |#1| |#1|) $)) (-15 -3157 ((-112) $)) (-15 -4037 ((-657 |#1|) $)) (-15 -3724 ((-657 $) $)) (-15 -4334 ((-784) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-862)) (PROGN (-15 -2174 (|#2| $)) (-15 -2186 (|#1| $)) (-15 -2212 ($ $))) |%noBranch|))) (-1071) (-739)) (T -748)) -((-2003 (*1 *1 *2 *3) (-12 (-5 *1 (-748 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-739)))) (-2313 (*1 *2 *1 *3) (-12 (-4 *2 (-1071)) (-5 *1 (-748 *2 *3)) (-4 *3 (-739)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-657 (-2 (|:| -1771 *3) (|:| -3607 *4)))) (-4 *3 (-1071)) (-4 *4 (-739)) (-5 *1 (-748 *3 *4)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| -1771 *3) (|:| -3607 *4)))) (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-739)))) (-4083 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-748 *3 *4)) (-4 *4 (-739)))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-739)))) (-4037 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-739)))) (-3724 (*1 *2 *1) (-12 (-5 *2 (-657 (-748 *3 *4))) (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-739)))) (-4334 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-739)))) (-2174 (*1 *2 *1) (-12 (-4 *2 (-739)) (-4 *2 (-862)) (-5 *1 (-748 *3 *2)) (-4 *3 (-1071)))) (-2186 (*1 *2 *1) (-12 (-4 *2 (-1071)) (-5 *1 (-748 *2 *3)) (-4 *3 (-862)) (-4 *3 (-739)))) (-2212 (*1 *1 *1) (-12 (-5 *1 (-748 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1071)) (-4 *3 (-739))))) -(-13 (-1071) (-1060 |#2|) (-1060 |#1|) (-10 -8 (-15 -2003 ($ |#1| |#2|)) (-15 -2313 (|#1| $ |#2|)) (-15 -3501 ($ (-657 (-2 (|:| -1771 |#1|) (|:| -3607 |#2|))))) (-15 -2886 ((-657 (-2 (|:| -1771 |#1|) (|:| -3607 |#2|))) $)) (-15 -4083 ($ (-1 |#1| |#1|) $)) (-15 -3157 ((-112) $)) (-15 -4037 ((-657 |#1|) $)) (-15 -3724 ((-657 $) $)) (-15 -4334 ((-784) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-862)) (PROGN (-15 -2174 (|#2| $)) (-15 -2186 (|#1| $)) (-15 -2212 ($ $))) |%noBranch|))) -((-3429 (((-112) $ $) 20)) (-1876 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-4356 (($ $ $) 73)) (-2197 (((-112) $ $) 74)) (-3793 (((-112) $ (-784)) 8)) (-2162 (($ (-657 |#1|)) 69) (($) 68)) (-3162 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4466)))) (-4359 (($) 7 T CONST)) (-4295 (($ $) 63)) (-3914 (($ $) 59 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3647 (($ |#1| $) 48 (|has| $ (-6 -4466))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4466)))) (-3895 (($ |#1| $) 58 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4466)))) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-3635 (((-112) $ $) 65)) (-1833 (((-112) $ (-784)) 9)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23)) (-3107 (($ $ $) 70)) (-3050 ((|#1| $) 40)) (-2468 (($ |#1| $) 41) (($ |#1| $ (-784)) 64)) (-1471 (((-1142) $) 22)) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2277 ((|#1| $) 42)) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2691 (((-657 (-2 (|:| -4440 |#1|) (|:| -1482 (-784)))) $) 62)) (-3788 (($ $ |#1|) 72) (($ $ $) 71)) (-1504 (($) 50) (($ (-657 |#1|)) 49)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-4148 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 51)) (-3501 (((-877) $) 18)) (-1951 (($ (-657 |#1|)) 67) (($) 66)) (-2046 (((-112) $ $) 21)) (-4079 (($ (-657 |#1|)) 43)) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19)) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-749 |#1|) (-141) (-1122)) (T -749)) -NIL -(-13 (-708 |t#1|) (-1120 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-877)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-708 |#1|) . T) ((-1120 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-1876 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-4356 (($ $ $) 96)) (-2197 (((-112) $ $) 104)) (-3793 (((-112) $ (-784)) NIL)) (-2162 (($ (-657 |#1|)) 26) (($) 17)) (-3162 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-4359 (($) NIL T CONST)) (-4295 (($ $) 85)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3647 (($ |#1| $) 70 (|has| $ (-6 -4466))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4466))) (($ |#1| $ (-576)) 75) (($ (-1 (-112) |#1|) $ (-576)) 78)) (-3895 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (($ |#1| $ (-576)) 80) (($ (-1 (-112) |#1|) $ (-576)) 81)) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-1458 (((-657 |#1|) $) 32 (|has| $ (-6 -4466)))) (-3635 (((-112) $ $) 103)) (-2819 (($) 15) (($ |#1|) 28) (($ (-657 |#1|)) 23)) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 |#1|) $) 38)) (-1627 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2148 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 89)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL)) (-3107 (($ $ $) 94)) (-3050 ((|#1| $) 62)) (-2468 (($ |#1| $) 63) (($ |#1| $ (-784)) 86)) (-1471 (((-1142) $) NIL)) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2277 ((|#1| $) 61)) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) 56)) (-3581 (($) 14)) (-2691 (((-657 (-2 (|:| -4440 |#1|) (|:| -1482 (-784)))) $) 55)) (-3788 (($ $ |#1|) NIL) (($ $ $) 95)) (-1504 (($) 16) (($ (-657 |#1|)) 25)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) 68 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) 79)) (-4148 (((-548) $) 36 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 22)) (-3501 (((-877) $) 49)) (-1951 (($ (-657 |#1|)) 27) (($) 18)) (-2046 (((-112) $ $) NIL)) (-4079 (($ (-657 |#1|)) 24)) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 100)) (-3440 (((-784) $) 67 (|has| $ (-6 -4466))))) -(((-750 |#1|) (-13 (-749 |#1|) (-10 -8 (-6 -4466) (-6 -4467) (-15 -2819 ($)) (-15 -2819 ($ |#1|)) (-15 -2819 ($ (-657 |#1|))) (-15 -2070 ((-657 |#1|) $)) (-15 -3895 ($ |#1| $ (-576))) (-15 -3895 ($ (-1 (-112) |#1|) $ (-576))) (-15 -3647 ($ |#1| $ (-576))) (-15 -3647 ($ (-1 (-112) |#1|) $ (-576))))) (-1122)) (T -750)) -((-2819 (*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1122)))) (-2819 (*1 *1 *2) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1122)))) (-2819 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-750 *3)))) (-2070 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-750 *3)) (-4 *3 (-1122)))) (-3895 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-750 *2)) (-4 *2 (-1122)))) (-3895 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1122)) (-5 *1 (-750 *4)))) (-3647 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-750 *2)) (-4 *2 (-1122)))) (-3647 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1122)) (-5 *1 (-750 *4))))) -(-13 (-749 |#1|) (-10 -8 (-6 -4466) (-6 -4467) (-15 -2819 ($)) (-15 -2819 ($ |#1|)) (-15 -2819 ($ (-657 |#1|))) (-15 -2070 ((-657 |#1|) $)) (-15 -3895 ($ |#1| $ (-576))) (-15 -3895 ($ (-1 (-112) |#1|) $ (-576))) (-15 -3647 ($ |#1| $ (-576))) (-15 -3647 ($ (-1 (-112) |#1|) $ (-576))))) -((-2970 (((-1294) (-1180)) 8))) -(((-751) (-10 -7 (-15 -2970 ((-1294) (-1180))))) (T -751)) -((-2970 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-751))))) -(-10 -7 (-15 -2970 ((-1294) (-1180)))) -((-2680 (((-657 |#1|) (-657 |#1|) (-657 |#1|)) 15))) -(((-752 |#1|) (-10 -7 (-15 -2680 ((-657 |#1|) (-657 |#1|) (-657 |#1|)))) (-862)) (T -752)) -((-2680 (*1 *2 *2 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-752 *3))))) -(-10 -7 (-15 -2680 ((-657 |#1|) (-657 |#1|) (-657 |#1|)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2029 (((-657 |#2|) $) 149)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 142 (|has| |#1| (-568)))) (-3325 (($ $) 141 (|has| |#1| (-568)))) (-4306 (((-112) $) 139 (|has| |#1| (-568)))) (-2176 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-2030 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (((-3 $ "failed") $ $) 20)) (-1896 (($ $) 80 (|has| |#1| (-38 (-419 (-576)))))) (-2150 (($ $) 97 (|has| |#1| (-38 (-419 (-576)))))) (-2004 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-2201 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-2052 (($ $) 83 (|has| |#1| (-38 (-419 (-576)))))) (-4359 (($) 18 T CONST)) (-2212 (($ $) 133)) (-3843 (((-3 $ "failed") $) 37)) (-3030 (((-972 |#1|) $ (-784)) 111) (((-972 |#1|) $ (-784) (-784)) 110)) (-2373 (((-112) $) 150)) (-1657 (($) 108 (|has| |#1| (-38 (-419 (-576)))))) (-3182 (((-784) $ |#2|) 113) (((-784) $ |#2| (-784)) 112)) (-4094 (((-112) $) 35)) (-2082 (($ $ (-576)) 79 (|has| |#1| (-38 (-419 (-576)))))) (-3157 (((-112) $) 131)) (-2003 (($ $ (-657 |#2|) (-657 (-543 |#2|))) 148) (($ $ |#2| (-543 |#2|)) 147) (($ |#1| (-543 |#2|)) 132) (($ $ |#2| (-784)) 115) (($ $ (-657 |#2|) (-657 (-784))) 114)) (-4083 (($ (-1 |#1| |#1|) $) 130)) (-3670 (($ $) 105 (|has| |#1| (-38 (-419 (-576)))))) (-2174 (($ $) 128)) (-2186 ((|#1| $) 127)) (-2342 (((-1180) $) 10)) (-4190 (($ $ |#2|) 109 (|has| |#1| (-38 (-419 (-576)))))) (-1471 (((-1142) $) 11)) (-3926 (($ $ (-784)) 116)) (-3418 (((-3 $ "failed") $ $) 143 (|has| |#1| (-568)))) (-4067 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-3236 (($ $ |#2| $) 124) (($ $ (-657 |#2|) (-657 $)) 123) (($ $ (-657 (-304 $))) 122) (($ $ (-304 $)) 121) (($ $ $ $) 120) (($ $ (-657 $) (-657 $)) 119)) (-2815 (($ $ (-657 |#2|) (-657 (-784))) 44) (($ $ |#2| (-784)) 43) (($ $ (-657 |#2|)) 42) (($ $ |#2|) 40)) (-1770 (((-543 |#2|) $) 129)) (-2213 (($ $) 95 (|has| |#1| (-38 (-419 (-576)))))) (-2062 (($ $) 84 (|has| |#1| (-38 (-419 (-576)))))) (-2188 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 85 (|has| |#1| (-38 (-419 (-576)))))) (-2163 (($ $) 93 (|has| |#1| (-38 (-419 (-576)))))) (-2017 (($ $) 86 (|has| |#1| (-38 (-419 (-576)))))) (-1431 (($ $) 151)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 146 (|has| |#1| (-174))) (($ $) 144 (|has| |#1| (-568))) (($ (-419 (-576))) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2313 ((|#1| $ (-543 |#2|)) 134) (($ $ |#2| (-784)) 118) (($ $ (-657 |#2|) (-657 (-784))) 117)) (-3096 (((-3 $ "failed") $) 145 (|has| |#1| (-146)))) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4110 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-4041 (((-112) $ $) 140 (|has| |#1| (-568)))) (-2225 (($ $) 103 (|has| |#1| (-38 (-419 (-576)))))) (-2072 (($ $) 91 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-2125 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-2224 (($ $) 101 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 89 (|has| |#1| (-38 (-419 (-576)))))) (-4124 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-2235 (($ $) 99 (|has| |#1| (-38 (-419 (-576)))))) (-2085 (($ $) 87 (|has| |#1| (-38 (-419 (-576)))))) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-657 |#2|) (-657 (-784))) 47) (($ $ |#2| (-784)) 46) (($ $ (-657 |#2|)) 45) (($ $ |#2|) 41)) (-2933 (((-112) $ $) 8)) (-3034 (($ $ |#1|) 135 (|has| |#1| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ $) 107 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 78 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 138 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 137 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 126) (($ $ |#1|) 125))) -(((-753 |#1| |#2|) (-141) (-1071) (-862)) (T -753)) -((-2313 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-753 *4 *2)) (-4 *4 (-1071)) (-4 *2 (-862)))) (-2313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 *5)) (-5 *3 (-657 (-784))) (-4 *1 (-753 *4 *5)) (-4 *4 (-1071)) (-4 *5 (-862)))) (-3926 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-753 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-862)))) (-2003 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-753 *4 *2)) (-4 *4 (-1071)) (-4 *2 (-862)))) (-2003 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 *5)) (-5 *3 (-657 (-784))) (-4 *1 (-753 *4 *5)) (-4 *4 (-1071)) (-4 *5 (-862)))) (-3182 (*1 *2 *1 *3) (-12 (-4 *1 (-753 *4 *3)) (-4 *4 (-1071)) (-4 *3 (-862)) (-5 *2 (-784)))) (-3182 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-784)) (-4 *1 (-753 *4 *3)) (-4 *4 (-1071)) (-4 *3 (-862)))) (-3030 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *1 (-753 *4 *5)) (-4 *4 (-1071)) (-4 *5 (-862)) (-5 *2 (-972 *4)))) (-3030 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-784)) (-4 *1 (-753 *4 *5)) (-4 *4 (-1071)) (-4 *5 (-862)) (-5 *2 (-972 *4)))) (-4190 (*1 *1 *1 *2) (-12 (-4 *1 (-753 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-862)) (-4 *3 (-38 (-419 (-576))))))) -(-13 (-918 |t#2|) (-995 |t#1| (-543 |t#2|) |t#2|) (-526 |t#2| $) (-319 $) (-10 -8 (-15 -2313 ($ $ |t#2| (-784))) (-15 -2313 ($ $ (-657 |t#2|) (-657 (-784)))) (-15 -3926 ($ $ (-784))) (-15 -2003 ($ $ |t#2| (-784))) (-15 -2003 ($ $ (-657 |t#2|) (-657 (-784)))) (-15 -3182 ((-784) $ |t#2|)) (-15 -3182 ((-784) $ |t#2| (-784))) (-15 -3030 ((-972 |t#1|) $ (-784))) (-15 -3030 ((-972 |t#1|) $ (-784) (-784))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -4190 ($ $ |t#2|)) (-6 (-1024)) (-6 (-1224))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-543 |#2|)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-877)) . T) ((-174) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-300) |has| |#1| (-568)) ((-319 $) . T) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 |#2| $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-659 #1#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #1#) |has| |#1| (-38 (-419 (-576)))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #1#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) |has| |#1| (-568)) ((-730 #1#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) |has| |#1| (-568)) ((-739) . T) ((-912 $ |#2|) . T) ((-918 |#2|) . T) ((-920 |#2|) . T) ((-995 |#1| #0# |#2|) . T) ((-1024) |has| |#1| (-38 (-419 (-576)))) ((-1073 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1078 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1227) |has| |#1| (-38 (-419 (-576)))) ((-1239) . T)) -((-1885 (((-430 (-1194 |#4|)) (-1194 |#4|)) 30) (((-430 |#4|) |#4|) 26))) -(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1885 ((-430 |#4|) |#4|)) (-15 -1885 ((-430 (-1194 |#4|)) (-1194 |#4|)))) (-862) (-806) (-13 (-317) (-148)) (-969 |#3| |#2| |#1|)) (T -754)) -((-1885 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-969 *6 *5 *4)) (-5 *2 (-430 (-1194 *7))) (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) (-1885 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-969 *6 *5 *4))))) -(-10 -7 (-15 -1885 ((-430 |#4|) |#4|)) (-15 -1885 ((-430 (-1194 |#4|)) (-1194 |#4|)))) -((-4163 (((-430 |#4|) |#4| |#2|) 140)) (-2641 (((-430 |#4|) |#4|) NIL)) (-4402 (((-430 (-1194 |#4|)) (-1194 |#4|)) 127) (((-430 |#4|) |#4|) 52)) (-1656 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-657 (-2 (|:| -1885 (-1194 |#4|)) (|:| -1801 (-576)))))) (-1194 |#4|) (-657 |#2|) (-657 (-657 |#3|))) 81)) (-2873 (((-1194 |#3|) (-1194 |#3|) (-576)) 166)) (-3776 (((-657 (-784)) (-1194 |#4|) (-657 |#2|) (-784)) 75)) (-3609 (((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-1194 |#3|) (-1194 |#3|) |#4| (-657 |#2|) (-657 (-784)) (-657 |#3|)) 79)) (-4303 (((-2 (|:| |upol| (-1194 |#3|)) (|:| |Lval| (-657 |#3|)) (|:| |Lfact| (-657 (-2 (|:| -1885 (-1194 |#3|)) (|:| -1801 (-576))))) (|:| |ctpol| |#3|)) (-1194 |#4|) (-657 |#2|) (-657 (-657 |#3|))) 27)) (-4266 (((-2 (|:| -4281 (-1194 |#4|)) (|:| |polval| (-1194 |#3|))) (-1194 |#4|) (-1194 |#3|) (-576)) 72)) (-2460 (((-576) (-657 (-2 (|:| -1885 (-1194 |#3|)) (|:| -1801 (-576))))) 162)) (-3934 ((|#4| (-576) (-430 |#4|)) 73)) (-1554 (((-112) (-657 (-2 (|:| -1885 (-1194 |#3|)) (|:| -1801 (-576)))) (-657 (-2 (|:| -1885 (-1194 |#3|)) (|:| -1801 (-576))))) NIL))) -(((-755 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4402 ((-430 |#4|) |#4|)) (-15 -4402 ((-430 (-1194 |#4|)) (-1194 |#4|))) (-15 -2641 ((-430 |#4|) |#4|)) (-15 -2460 ((-576) (-657 (-2 (|:| -1885 (-1194 |#3|)) (|:| -1801 (-576)))))) (-15 -4163 ((-430 |#4|) |#4| |#2|)) (-15 -4266 ((-2 (|:| -4281 (-1194 |#4|)) (|:| |polval| (-1194 |#3|))) (-1194 |#4|) (-1194 |#3|) (-576))) (-15 -1656 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-657 (-2 (|:| -1885 (-1194 |#4|)) (|:| -1801 (-576)))))) (-1194 |#4|) (-657 |#2|) (-657 (-657 |#3|)))) (-15 -4303 ((-2 (|:| |upol| (-1194 |#3|)) (|:| |Lval| (-657 |#3|)) (|:| |Lfact| (-657 (-2 (|:| -1885 (-1194 |#3|)) (|:| -1801 (-576))))) (|:| |ctpol| |#3|)) (-1194 |#4|) (-657 |#2|) (-657 (-657 |#3|)))) (-15 -3934 (|#4| (-576) (-430 |#4|))) (-15 -1554 ((-112) (-657 (-2 (|:| -1885 (-1194 |#3|)) (|:| -1801 (-576)))) (-657 (-2 (|:| -1885 (-1194 |#3|)) (|:| -1801 (-576)))))) (-15 -3609 ((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-1194 |#3|) (-1194 |#3|) |#4| (-657 |#2|) (-657 (-784)) (-657 |#3|))) (-15 -3776 ((-657 (-784)) (-1194 |#4|) (-657 |#2|) (-784))) (-15 -2873 ((-1194 |#3|) (-1194 |#3|) (-576)))) (-806) (-862) (-317) (-969 |#3| |#1| |#2|)) (T -755)) -((-2873 (*1 *2 *2 *3) (-12 (-5 *2 (-1194 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-755 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) (-3776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1194 *9)) (-5 *4 (-657 *7)) (-4 *7 (-862)) (-4 *9 (-969 *8 *6 *7)) (-4 *6 (-806)) (-4 *8 (-317)) (-5 *2 (-657 (-784))) (-5 *1 (-755 *6 *7 *8 *9)) (-5 *5 (-784)))) (-3609 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1194 *11)) (-5 *6 (-657 *10)) (-5 *7 (-657 (-784))) (-5 *8 (-657 *11)) (-4 *10 (-862)) (-4 *11 (-317)) (-4 *9 (-806)) (-4 *5 (-969 *11 *9 *10)) (-5 *2 (-657 (-1194 *5))) (-5 *1 (-755 *9 *10 *11 *5)) (-5 *3 (-1194 *5)))) (-1554 (*1 *2 *3 *3) (-12 (-5 *3 (-657 (-2 (|:| -1885 (-1194 *6)) (|:| -1801 (-576))))) (-4 *6 (-317)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-755 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-969 *7 *5 *6)) (-5 *1 (-755 *5 *6 *7 *2)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-317)))) (-4303 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1194 *9)) (-5 *4 (-657 *7)) (-5 *5 (-657 (-657 *8))) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-969 *8 *6 *7)) (-4 *6 (-806)) (-5 *2 (-2 (|:| |upol| (-1194 *8)) (|:| |Lval| (-657 *8)) (|:| |Lfact| (-657 (-2 (|:| -1885 (-1194 *8)) (|:| -1801 (-576))))) (|:| |ctpol| *8))) (-5 *1 (-755 *6 *7 *8 *9)))) (-1656 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-657 *7)) (-5 *5 (-657 (-657 *8))) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *6 (-806)) (-4 *9 (-969 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-657 (-2 (|:| -1885 (-1194 *9)) (|:| -1801 (-576))))))) (-5 *1 (-755 *6 *7 *8 *9)) (-5 *3 (-1194 *9)))) (-4266 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-576)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-969 *8 *6 *7)) (-5 *2 (-2 (|:| -4281 (-1194 *9)) (|:| |polval| (-1194 *8)))) (-5 *1 (-755 *6 *7 *8 *9)) (-5 *3 (-1194 *9)) (-5 *4 (-1194 *8)))) (-4163 (*1 *2 *3 *4) (-12 (-4 *5 (-806)) (-4 *4 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-755 *5 *4 *6 *3)) (-4 *3 (-969 *6 *5 *4)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| -1885 (-1194 *6)) (|:| -1801 (-576))))) (-4 *6 (-317)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-576)) (-5 *1 (-755 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) (-2641 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-755 *4 *5 *6 *3)) (-4 *3 (-969 *6 *4 *5)))) (-4402 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-430 (-1194 *7))) (-5 *1 (-755 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) (-4402 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-755 *4 *5 *6 *3)) (-4 *3 (-969 *6 *4 *5))))) -(-10 -7 (-15 -4402 ((-430 |#4|) |#4|)) (-15 -4402 ((-430 (-1194 |#4|)) (-1194 |#4|))) (-15 -2641 ((-430 |#4|) |#4|)) (-15 -2460 ((-576) (-657 (-2 (|:| -1885 (-1194 |#3|)) (|:| -1801 (-576)))))) (-15 -4163 ((-430 |#4|) |#4| |#2|)) (-15 -4266 ((-2 (|:| -4281 (-1194 |#4|)) (|:| |polval| (-1194 |#3|))) (-1194 |#4|) (-1194 |#3|) (-576))) (-15 -1656 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-657 (-2 (|:| -1885 (-1194 |#4|)) (|:| -1801 (-576)))))) (-1194 |#4|) (-657 |#2|) (-657 (-657 |#3|)))) (-15 -4303 ((-2 (|:| |upol| (-1194 |#3|)) (|:| |Lval| (-657 |#3|)) (|:| |Lfact| (-657 (-2 (|:| -1885 (-1194 |#3|)) (|:| -1801 (-576))))) (|:| |ctpol| |#3|)) (-1194 |#4|) (-657 |#2|) (-657 (-657 |#3|)))) (-15 -3934 (|#4| (-576) (-430 |#4|))) (-15 -1554 ((-112) (-657 (-2 (|:| -1885 (-1194 |#3|)) (|:| -1801 (-576)))) (-657 (-2 (|:| -1885 (-1194 |#3|)) (|:| -1801 (-576)))))) (-15 -3609 ((-3 (-657 (-1194 |#4|)) "failed") (-1194 |#4|) (-1194 |#3|) (-1194 |#3|) |#4| (-657 |#2|) (-657 (-784)) (-657 |#3|))) (-15 -3776 ((-657 (-784)) (-1194 |#4|) (-657 |#2|) (-784))) (-15 -2873 ((-1194 |#3|) (-1194 |#3|) (-576)))) -((-3490 (($ $ (-941)) 17))) -(((-756 |#1| |#2|) (-10 -8 (-15 -3490 (|#1| |#1| (-941)))) (-757 |#2|) (-174)) (T -756)) -NIL -(-10 -8 (-15 -3490 (|#1| |#1| (-941)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2609 (($ $ (-941)) 31)) (-3490 (($ $ (-941)) 38)) (-4404 (($ $ (-941)) 32)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3544 (($ $ $) 28)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-4254 (($ $ $ $) 29)) (-3599 (($ $ $) 27)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 33)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-757 |#1|) (-141) (-174)) (T -757)) -((-3490 (*1 *1 *1 *2) (-12 (-5 *2 (-941)) (-4 *1 (-757 *3)) (-4 *3 (-174))))) -(-13 (-774) (-730 |t#1|) (-10 -8 (-15 -3490 ($ $ (-941))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) . T) ((-730 |#1|) . T) ((-733) . T) ((-774) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-3719 (((-1057) (-702 (-227)) (-576) (-112) (-576)) 25)) (-3940 (((-1057) (-702 (-227)) (-576) (-112) (-576)) 24))) -(((-758) (-10 -7 (-15 -3940 ((-1057) (-702 (-227)) (-576) (-112) (-576))) (-15 -3719 ((-1057) (-702 (-227)) (-576) (-112) (-576))))) (T -758)) -((-3719 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1057)) (-5 *1 (-758)))) (-3940 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1057)) (-5 *1 (-758))))) -(-10 -7 (-15 -3940 ((-1057) (-702 (-227)) (-576) (-112) (-576))) (-15 -3719 ((-1057) (-702 (-227)) (-576) (-112) (-576)))) -((-2140 (((-1057) (-576) (-576) (-576) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) 43)) (-1884 (((-1057) (-576) (-576) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) 39)) (-1828 (((-1057) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022)))) 32))) -(((-759) (-10 -7 (-15 -1828 ((-1057) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022))))) (-15 -1884 ((-1057) (-576) (-576) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -2140 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN))))))) (T -759)) -((-2140 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1057)) (-5 *1 (-759)))) (-1884 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1057)) (-5 *1 (-759)))) (-1828 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022)))) (-5 *2 (-1057)) (-5 *1 (-759))))) -(-10 -7 (-15 -1828 ((-1057) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022))))) (-15 -1884 ((-1057) (-576) (-576) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -2140 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))))) -((-3143 (((-1057) (-576) (-576) (-702 (-227)) (-576)) 34)) (-4133 (((-1057) (-576) (-576) (-702 (-227)) (-576)) 33)) (-1545 (((-1057) (-576) (-702 (-227)) (-576)) 32)) (-3937 (((-1057) (-576) (-702 (-227)) (-576)) 31)) (-2301 (((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576)) 30)) (-4439 (((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576)) 29)) (-2389 (((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-576)) 28)) (-1537 (((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-576)) 27)) (-3568 (((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576)) 24)) (-2501 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576)) 23)) (-4311 (((-1057) (-576) (-702 (-227)) (-576)) 22)) (-4214 (((-1057) (-576) (-702 (-227)) (-576)) 21))) -(((-760) (-10 -7 (-15 -4214 ((-1057) (-576) (-702 (-227)) (-576))) (-15 -4311 ((-1057) (-576) (-702 (-227)) (-576))) (-15 -2501 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3568 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1537 ((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2389 ((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-576))) (-15 -4439 ((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2301 ((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3937 ((-1057) (-576) (-702 (-227)) (-576))) (-15 -1545 ((-1057) (-576) (-702 (-227)) (-576))) (-15 -4133 ((-1057) (-576) (-576) (-702 (-227)) (-576))) (-15 -3143 ((-1057) (-576) (-576) (-702 (-227)) (-576))))) (T -760)) -((-3143 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-4133 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-1545 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-3937 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-2301 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1180)) (-5 *5 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-4439 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1180)) (-5 *5 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-2389 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1180)) (-5 *5 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-1537 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1180)) (-5 *5 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-3568 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-2501 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-4311 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760)))) (-4214 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-760))))) -(-10 -7 (-15 -4214 ((-1057) (-576) (-702 (-227)) (-576))) (-15 -4311 ((-1057) (-576) (-702 (-227)) (-576))) (-15 -2501 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3568 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1537 ((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2389 ((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-576))) (-15 -4439 ((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2301 ((-1057) (-576) (-576) (-1180) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3937 ((-1057) (-576) (-702 (-227)) (-576))) (-15 -1545 ((-1057) (-576) (-702 (-227)) (-576))) (-15 -4133 ((-1057) (-576) (-576) (-702 (-227)) (-576))) (-15 -3143 ((-1057) (-576) (-576) (-702 (-227)) (-576)))) -((-4160 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576) (-227) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 52)) (-2649 (((-1057) (-702 (-227)) (-702 (-227)) (-576) (-576)) 51)) (-3509 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2597 (((-1057) (-227) (-227) (-576) (-576) (-576) (-576)) 46)) (-2678 (((-1057) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 45)) (-1469 (((-1057) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 44)) (-4397 (((-1057) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 43)) (-2209 (((-1057) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 42)) (-4081 (((-1057) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022)))) 38)) (-1958 (((-1057) (-227) (-227) (-576) (-702 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022)))) 37)) (-4166 (((-1057) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022)))) 33)) (-3834 (((-1057) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022)))) 32))) -(((-761) (-10 -7 (-15 -3834 ((-1057) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022))))) (-15 -4166 ((-1057) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022))))) (-15 -1958 ((-1057) (-227) (-227) (-576) (-702 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022))))) (-15 -4081 ((-1057) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022))))) (-15 -2209 ((-1057) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -4397 ((-1057) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -1469 ((-1057) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2678 ((-1057) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2597 ((-1057) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -3509 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -2649 ((-1057) (-702 (-227)) (-702 (-227)) (-576) (-576))) (-15 -4160 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576) (-227) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))))) (T -761)) -((-4160 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1057)) (-5 *1 (-761)))) (-2649 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-761)))) (-3509 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1057)) (-5 *1 (-761)))) (-2597 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-761)))) (-2678 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1057)) (-5 *1 (-761)))) (-1469 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1057)) (-5 *1 (-761)))) (-4397 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1057)) (-5 *1 (-761)))) (-2209 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1057)) (-5 *1 (-761)))) (-4081 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022)))) (-5 *2 (-1057)) (-5 *1 (-761)))) (-1958 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022)))) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-761)))) (-4166 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022)))) (-5 *2 (-1057)) (-5 *1 (-761)))) (-3834 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022)))) (-5 *2 (-1057)) (-5 *1 (-761))))) -(-10 -7 (-15 -3834 ((-1057) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022))))) (-15 -4166 ((-1057) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022))))) (-15 -1958 ((-1057) (-227) (-227) (-576) (-702 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022))))) (-15 -4081 ((-1057) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022))))) (-15 -2209 ((-1057) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -4397 ((-1057) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -1469 ((-1057) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2678 ((-1057) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2597 ((-1057) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -3509 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -2649 ((-1057) (-702 (-227)) (-702 (-227)) (-576) (-576))) (-15 -4160 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576) (-227) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))))) -((-2585 (((-1057) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2513 (((-1057) (-702 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400)) 69) (((-1057) (-702 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2494 (((-1057) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) 57)) (-2349 (((-1057) (-702 (-227)) (-702 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 50)) (-2428 (((-1057) (-227) (-576) (-576) (-1180) (-576) (-227) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2729 (((-1057) (-227) (-576) (-576) (-227) (-1180) (-227) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2965 (((-1057) (-227) (-576) (-576) (-227) (-227) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 42)) (-1358 (((-1057) (-227) (-576) (-576) (-576) (-227) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 38))) -(((-762) (-10 -7 (-15 -1358 ((-1057) (-227) (-576) (-576) (-576) (-227) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2965 ((-1057) (-227) (-576) (-576) (-227) (-227) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -2729 ((-1057) (-227) (-576) (-576) (-227) (-1180) (-227) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2428 ((-1057) (-227) (-576) (-576) (-1180) (-576) (-227) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2349 ((-1057) (-702 (-227)) (-702 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -2494 ((-1057) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -2513 ((-1057) (-702 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -2513 ((-1057) (-702 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -2585 ((-1057) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -762)) -((-2585 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-762)))) (-2513 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-400)) (-5 *2 (-1057)) (-5 *1 (-762)))) (-2513 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1057)) (-5 *1 (-762)))) (-2494 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-762)))) (-2349 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1057)) (-5 *1 (-762)))) (-2428 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-576)) (-5 *5 (-1180)) (-5 *6 (-702 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-762)))) (-2729 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-576)) (-5 *5 (-1180)) (-5 *6 (-702 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-762)))) (-2965 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-762)))) (-1358 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-762))))) -(-10 -7 (-15 -1358 ((-1057) (-227) (-576) (-576) (-576) (-227) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2965 ((-1057) (-227) (-576) (-576) (-227) (-227) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -2729 ((-1057) (-227) (-576) (-576) (-227) (-1180) (-227) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2428 ((-1057) (-227) (-576) (-576) (-1180) (-576) (-227) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2349 ((-1057) (-702 (-227)) (-702 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -2494 ((-1057) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -2513 ((-1057) (-702 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -2513 ((-1057) (-702 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -2585 ((-1057) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-3558 (((-1057) (-227) (-227) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-227) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-227) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-688 (-227)) (-576)) 45)) (-3748 (((-1057) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1180) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) 41)) (-1982 (((-1057) (-576) (-576) (-576) (-576) (-227) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576)) 23))) -(((-763) (-10 -7 (-15 -1982 ((-1057) (-576) (-576) (-576) (-576) (-227) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3748 ((-1057) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1180) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -3558 ((-1057) (-227) (-227) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-227) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-227) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-688 (-227)) (-576))))) (T -763)) -((-3558 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-688 (-227))) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-763)))) (-3748 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1180)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1057)) (-5 *1 (-763)))) (-1982 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-763))))) -(-10 -7 (-15 -1982 ((-1057) (-576) (-576) (-576) (-576) (-227) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3748 ((-1057) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1180) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -3558 ((-1057) (-227) (-227) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-227) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-227) (-576) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-688 (-227)) (-576)))) -((-1446 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-702 (-227)) (-227) (-227) (-576)) 35)) (-3961 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-227) (-227) (-576)) 34)) (-2319 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-702 (-227)) (-227) (-227) (-576)) 33)) (-1546 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576)) 29)) (-2157 (((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576)) 28)) (-1406 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-227) (-576)) 27)) (-4324 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-576)) 24)) (-1910 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-576)) 23)) (-4376 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576)) 22)) (-4009 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576) (-576) (-576)) 21))) -(((-764) (-10 -7 (-15 -4009 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576) (-576) (-576))) (-15 -4376 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1910 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-576))) (-15 -4324 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-576))) (-15 -1406 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-227) (-576))) (-15 -2157 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1546 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2319 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-702 (-227)) (-227) (-227) (-576))) (-15 -3961 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -1446 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-702 (-227)) (-227) (-227) (-576))))) (T -764)) -((-1446 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *2 (-1057)) (-5 *1 (-764)))) (-3961 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *2 (-1057)) (-5 *1 (-764)))) (-2319 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-764)))) (-1546 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-764)))) (-2157 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-764)))) (-1406 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *2 (-1057)) (-5 *1 (-764)))) (-4324 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-764)))) (-1910 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-764)))) (-4376 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-764)))) (-4009 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-764))))) -(-10 -7 (-15 -4009 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576) (-576) (-576))) (-15 -4376 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1910 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-576))) (-15 -4324 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-576))) (-15 -1406 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-227) (-576))) (-15 -2157 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1546 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2319 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-702 (-227)) (-227) (-227) (-576))) (-15 -3961 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -1446 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-702 (-227)) (-227) (-227) (-576)))) -((-2694 (((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-576) (-576) (-576)) 45)) (-3125 (((-1057) (-576) (-576) (-576) (-227) (-702 (-227)) (-702 (-227)) (-576)) 44)) (-1965 (((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-576)) 43)) (-4434 (((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576)) 42)) (-2629 (((-1057) (-1180) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-576)) 41)) (-3478 (((-1057) (-1180) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-576)) 40)) (-2215 (((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-576) (-576) (-576) (-227) (-702 (-227)) (-576)) 39)) (-3996 (((-1057) (-1180) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-576))) 38)) (-1598 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576)) 35)) (-4416 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576)) 34)) (-3336 (((-1057) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576)) 33)) (-3867 (((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576)) 32)) (-1442 (((-1057) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-227) (-576)) 31)) (-1376 (((-1057) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-227) (-576) (-576) (-576)) 30)) (-3396 (((-1057) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-576) (-576) (-576)) 29)) (-3471 (((-1057) (-576) (-576) (-576) (-227) (-227) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-576) (-702 (-576)) (-576) (-576) (-576)) 28)) (-4028 (((-1057) (-576) (-702 (-227)) (-227) (-576)) 24)) (-2526 (((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576)) 21))) -(((-765) (-10 -7 (-15 -2526 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -4028 ((-1057) (-576) (-702 (-227)) (-227) (-576))) (-15 -3471 ((-1057) (-576) (-576) (-576) (-227) (-227) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-576) (-702 (-576)) (-576) (-576) (-576))) (-15 -3396 ((-1057) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -1376 ((-1057) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -1442 ((-1057) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-227) (-576))) (-15 -3867 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3336 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576))) (-15 -4416 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576))) (-15 -1598 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3996 ((-1057) (-1180) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-576)))) (-15 -2215 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-576) (-576) (-576) (-227) (-702 (-227)) (-576))) (-15 -3478 ((-1057) (-1180) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-576))) (-15 -2629 ((-1057) (-1180) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -4434 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1965 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-576))) (-15 -3125 ((-1057) (-576) (-576) (-576) (-227) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2694 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-576) (-576) (-576))))) (T -765)) -((-2694 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-765)))) (-3125 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-1965 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-765)))) (-4434 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-765)))) (-2629 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-227)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-3478 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1180)) (-5 *5 (-702 (-227))) (-5 *6 (-227)) (-5 *7 (-702 (-576))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-2215 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-3996 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1180)) (-5 *5 (-702 (-227))) (-5 *6 (-227)) (-5 *7 (-702 (-576))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-1598 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-765)))) (-4416 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-3336 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-3867 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-765)))) (-1442 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-1376 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-3396 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-3471 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-702 (-227))) (-5 *6 (-702 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-4028 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) (-5 *2 (-1057)) (-5 *1 (-765)))) (-2526 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-765))))) -(-10 -7 (-15 -2526 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -4028 ((-1057) (-576) (-702 (-227)) (-227) (-576))) (-15 -3471 ((-1057) (-576) (-576) (-576) (-227) (-227) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-576) (-702 (-576)) (-576) (-576) (-576))) (-15 -3396 ((-1057) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -1376 ((-1057) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -1442 ((-1057) (-576) (-227) (-227) (-702 (-227)) (-576) (-576) (-227) (-576))) (-15 -3867 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3336 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576))) (-15 -4416 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576))) (-15 -1598 ((-1057) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3996 ((-1057) (-1180) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-576)))) (-15 -2215 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-576) (-576) (-576) (-227) (-702 (-227)) (-576))) (-15 -3478 ((-1057) (-1180) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-576))) (-15 -2629 ((-1057) (-1180) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -4434 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1965 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-576))) (-15 -3125 ((-1057) (-576) (-576) (-576) (-227) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2694 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576) (-702 (-227)) (-702 (-227)) (-576) (-576) (-576)))) -((-4128 (((-1057) (-576) (-576) (-576) (-227) (-702 (-227)) (-576) (-702 (-227)) (-576)) 63)) (-1415 (((-1057) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-702 (-576)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 62)) (-3925 (((-1057) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-112) (-112) (-112) (-576) (-576) (-702 (-227)) (-702 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) 58)) (-3260 (((-1057) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-112) (-576) (-576) (-702 (-227)) (-576)) 51)) (-3234 (((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2630 (((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2704 (((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2938 (((-1057) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-766) (-10 -7 (-15 -2938 ((-1057) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2704 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -2630 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -3234 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -3260 ((-1057) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-112) (-576) (-576) (-702 (-227)) (-576))) (-15 -3925 ((-1057) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-112) (-112) (-112) (-576) (-576) (-702 (-227)) (-702 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -1415 ((-1057) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-702 (-576)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -4128 ((-1057) (-576) (-576) (-576) (-227) (-702 (-227)) (-576) (-702 (-227)) (-576))))) (T -766)) -((-4128 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-766)))) (-1415 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-702 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-702 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-766)))) (-3925 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-702 (-227))) (-5 *6 (-112)) (-5 *7 (-702 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-766)))) (-3260 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-112)) (-5 *2 (-1057)) (-5 *1 (-766)))) (-3234 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1057)) (-5 *1 (-766)))) (-2630 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1057)) (-5 *1 (-766)))) (-2704 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1057)) (-5 *1 (-766)))) (-2938 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-702 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-766))))) -(-10 -7 (-15 -2938 ((-1057) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2704 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -2630 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -3234 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -3260 ((-1057) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-112) (-576) (-576) (-702 (-227)) (-576))) (-15 -3925 ((-1057) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-112) (-112) (-112) (-576) (-576) (-702 (-227)) (-702 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -1415 ((-1057) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-702 (-576)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -4128 ((-1057) (-576) (-576) (-576) (-227) (-702 (-227)) (-576) (-702 (-227)) (-576)))) -((-1731 (((-1057) (-1180) (-576) (-576) (-576) (-576) (-702 (-171 (-227))) (-702 (-171 (-227))) (-576)) 47)) (-1419 (((-1057) (-1180) (-1180) (-576) (-576) (-702 (-171 (-227))) (-576) (-702 (-171 (-227))) (-576) (-576) (-702 (-171 (-227))) (-576)) 46)) (-4044 (((-1057) (-576) (-576) (-576) (-702 (-171 (-227))) (-576)) 45)) (-4215 (((-1057) (-1180) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576)) 40)) (-1589 (((-1057) (-1180) (-1180) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-576) (-576) (-702 (-227)) (-576)) 39)) (-3117 (((-1057) (-576) (-576) (-576) (-702 (-227)) (-576)) 36)) (-3861 (((-1057) (-576) (-702 (-227)) (-576) (-702 (-576)) (-576)) 35)) (-3747 (((-1057) (-576) (-576) (-576) (-576) (-657 (-112)) (-702 (-227)) (-702 (-576)) (-702 (-576)) (-227) (-227) (-576)) 34)) (-3741 (((-1057) (-576) (-576) (-576) (-702 (-576)) (-702 (-576)) (-702 (-576)) (-702 (-576)) (-112) (-227) (-112) (-702 (-576)) (-702 (-227)) (-576)) 33)) (-4329 (((-1057) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-657 (-112)) (-702 (-227)) (-702 (-576)) (-702 (-576)) (-576)) 32))) -(((-767) (-10 -7 (-15 -4329 ((-1057) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-657 (-112)) (-702 (-227)) (-702 (-576)) (-702 (-576)) (-576))) (-15 -3741 ((-1057) (-576) (-576) (-576) (-702 (-576)) (-702 (-576)) (-702 (-576)) (-702 (-576)) (-112) (-227) (-112) (-702 (-576)) (-702 (-227)) (-576))) (-15 -3747 ((-1057) (-576) (-576) (-576) (-576) (-657 (-112)) (-702 (-227)) (-702 (-576)) (-702 (-576)) (-227) (-227) (-576))) (-15 -3861 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-576)) (-576))) (-15 -3117 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-576))) (-15 -1589 ((-1057) (-1180) (-1180) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-576) (-576) (-702 (-227)) (-576))) (-15 -4215 ((-1057) (-1180) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -4044 ((-1057) (-576) (-576) (-576) (-702 (-171 (-227))) (-576))) (-15 -1419 ((-1057) (-1180) (-1180) (-576) (-576) (-702 (-171 (-227))) (-576) (-702 (-171 (-227))) (-576) (-576) (-702 (-171 (-227))) (-576))) (-15 -1731 ((-1057) (-1180) (-576) (-576) (-576) (-576) (-702 (-171 (-227))) (-702 (-171 (-227))) (-576))))) (T -767)) -((-1731 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-171 (-227)))) (-5 *2 (-1057)) (-5 *1 (-767)))) (-1419 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-171 (-227)))) (-5 *2 (-1057)) (-5 *1 (-767)))) (-4044 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-171 (-227)))) (-5 *2 (-1057)) (-5 *1 (-767)))) (-4215 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-767)))) (-1589 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-767)))) (-3117 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-767)))) (-3861 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-767)))) (-3747 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-657 (-112))) (-5 *5 (-702 (-227))) (-5 *6 (-702 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-767)))) (-3741 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-702 (-576))) (-5 *5 (-112)) (-5 *7 (-702 (-227))) (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1057)) (-5 *1 (-767)))) (-4329 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-657 (-112))) (-5 *7 (-702 (-227))) (-5 *8 (-702 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1057)) (-5 *1 (-767))))) -(-10 -7 (-15 -4329 ((-1057) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-657 (-112)) (-702 (-227)) (-702 (-576)) (-702 (-576)) (-576))) (-15 -3741 ((-1057) (-576) (-576) (-576) (-702 (-576)) (-702 (-576)) (-702 (-576)) (-702 (-576)) (-112) (-227) (-112) (-702 (-576)) (-702 (-227)) (-576))) (-15 -3747 ((-1057) (-576) (-576) (-576) (-576) (-657 (-112)) (-702 (-227)) (-702 (-576)) (-702 (-576)) (-227) (-227) (-576))) (-15 -3861 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-576)) (-576))) (-15 -3117 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-576))) (-15 -1589 ((-1057) (-1180) (-1180) (-576) (-576) (-702 (-227)) (-576) (-702 (-227)) (-576) (-576) (-702 (-227)) (-576))) (-15 -4215 ((-1057) (-1180) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -4044 ((-1057) (-576) (-576) (-576) (-702 (-171 (-227))) (-576))) (-15 -1419 ((-1057) (-1180) (-1180) (-576) (-576) (-702 (-171 (-227))) (-576) (-702 (-171 (-227))) (-576) (-576) (-702 (-171 (-227))) (-576))) (-15 -1731 ((-1057) (-1180) (-576) (-576) (-576) (-576) (-702 (-171 (-227))) (-702 (-171 (-227))) (-576)))) -((-2104 (((-1057) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-702 (-171 (-227))) (-702 (-171 (-227))) (-576)) 79)) (-3087 (((-1057) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-702 (-227)) (-702 (-227)) (-576)) 68)) (-2592 (((-1057) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400)) 56) (((-1057) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) 55)) (-3029 (((-1057) (-576) (-576) (-576) (-227) (-112) (-576) (-702 (-227)) (-702 (-227)) (-576)) 37)) (-4297 (((-1057) (-576) (-576) (-227) (-227) (-576) (-576) (-702 (-227)) (-576)) 33)) (-3057 (((-1057) (-702 (-227)) (-576) (-702 (-227)) (-576) (-576) (-576) (-576) (-576)) 30)) (-3666 (((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576)) 29)) (-1401 (((-1057) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576)) 28)) (-1573 (((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576)) 27)) (-1328 (((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-576)) 26)) (-1940 (((-1057) (-576) (-576) (-702 (-227)) (-576)) 25)) (-1363 (((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576)) 24)) (-2471 (((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576)) 23)) (-3874 (((-1057) (-702 (-227)) (-576) (-576) (-576) (-576)) 22)) (-1459 (((-1057) (-576) (-576) (-702 (-227)) (-576)) 21))) -(((-768) (-10 -7 (-15 -1459 ((-1057) (-576) (-576) (-702 (-227)) (-576))) (-15 -3874 ((-1057) (-702 (-227)) (-576) (-576) (-576) (-576))) (-15 -2471 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1363 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1940 ((-1057) (-576) (-576) (-702 (-227)) (-576))) (-15 -1328 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-576))) (-15 -1573 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1401 ((-1057) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3666 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3057 ((-1057) (-702 (-227)) (-576) (-702 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -4297 ((-1057) (-576) (-576) (-227) (-227) (-576) (-576) (-702 (-227)) (-576))) (-15 -3029 ((-1057) (-576) (-576) (-576) (-227) (-112) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2592 ((-1057) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -2592 ((-1057) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -3087 ((-1057) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2104 ((-1057) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-702 (-171 (-227))) (-702 (-171 (-227))) (-576))))) (T -768)) -((-2104 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-702 (-171 (-227)))) (-5 *2 (-1057)) (-5 *1 (-768)))) (-3087 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-768)))) (-2592 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-768)))) (-2592 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-768)))) (-3029 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-702 (-227))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-768)))) (-4297 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-768)))) (-3057 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-768)))) (-3666 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-768)))) (-1401 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-768)))) (-1573 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-768)))) (-1328 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-768)))) (-1940 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-768)))) (-1363 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-768)))) (-2471 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-768)))) (-3874 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-768)))) (-1459 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-768))))) -(-10 -7 (-15 -1459 ((-1057) (-576) (-576) (-702 (-227)) (-576))) (-15 -3874 ((-1057) (-702 (-227)) (-576) (-576) (-576) (-576))) (-15 -2471 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1363 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1940 ((-1057) (-576) (-576) (-702 (-227)) (-576))) (-15 -1328 ((-1057) (-576) (-576) (-576) (-576) (-702 (-227)) (-576))) (-15 -1573 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -1401 ((-1057) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3666 ((-1057) (-576) (-576) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3057 ((-1057) (-702 (-227)) (-576) (-702 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -4297 ((-1057) (-576) (-576) (-227) (-227) (-576) (-576) (-702 (-227)) (-576))) (-15 -3029 ((-1057) (-576) (-576) (-576) (-227) (-112) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2592 ((-1057) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -2592 ((-1057) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -3087 ((-1057) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2104 ((-1057) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-702 (-171 (-227))) (-702 (-171 (-227))) (-576)))) -((-2288 (((-1057) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) 64)) (-3519 (((-1057) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-576)) (-576) (-702 (-227)) (-576) (-576) (-576) (-576)) 60)) (-1709 (((-1057) (-576) (-702 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) 59)) (-2799 (((-1057) (-576) (-576) (-702 (-227)) (-576) (-702 (-576)) (-576) (-702 (-576)) (-702 (-227)) (-702 (-576)) (-702 (-576)) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-576)) 37)) (-3654 (((-1057) (-576) (-576) (-576) (-227) (-576) (-702 (-227)) (-702 (-227)) (-576)) 36)) (-2625 (((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576)) 33)) (-3487 (((-1057) (-576) (-702 (-227)) (-576) (-702 (-576)) (-702 (-576)) (-576) (-702 (-576)) (-702 (-227))) 32)) (-1497 (((-1057) (-702 (-227)) (-576) (-702 (-227)) (-576) (-576) (-576)) 28)) (-2247 (((-1057) (-576) (-702 (-227)) (-576) (-702 (-227)) (-576)) 27)) (-4441 (((-1057) (-576) (-702 (-227)) (-576) (-702 (-227)) (-576)) 26)) (-1432 (((-1057) (-576) (-702 (-171 (-227))) (-576) (-576) (-576) (-576) (-702 (-171 (-227))) (-576)) 22))) -(((-769) (-10 -7 (-15 -1432 ((-1057) (-576) (-702 (-171 (-227))) (-576) (-576) (-576) (-576) (-702 (-171 (-227))) (-576))) (-15 -4441 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-227)) (-576))) (-15 -2247 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-227)) (-576))) (-15 -1497 ((-1057) (-702 (-227)) (-576) (-702 (-227)) (-576) (-576) (-576))) (-15 -3487 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-576)) (-702 (-576)) (-576) (-702 (-576)) (-702 (-227)))) (-15 -2625 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3654 ((-1057) (-576) (-576) (-576) (-227) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2799 ((-1057) (-576) (-576) (-702 (-227)) (-576) (-702 (-576)) (-576) (-702 (-576)) (-702 (-227)) (-702 (-576)) (-702 (-576)) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-576))) (-15 -1709 ((-1057) (-576) (-702 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -3519 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-576)) (-576) (-702 (-227)) (-576) (-576) (-576) (-576))) (-15 -2288 ((-1057) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD))))))) (T -769)) -((-2288 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-769)))) (-3519 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-769)))) (-1709 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1057)) (-5 *1 (-769)))) (-2799 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-769)))) (-3654 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-769)))) (-2625 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-769)))) (-3487 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-769)))) (-1497 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-769)))) (-2247 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-769)))) (-4441 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-769)))) (-1432 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-171 (-227)))) (-5 *2 (-1057)) (-5 *1 (-769))))) -(-10 -7 (-15 -1432 ((-1057) (-576) (-702 (-171 (-227))) (-576) (-576) (-576) (-576) (-702 (-171 (-227))) (-576))) (-15 -4441 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-227)) (-576))) (-15 -2247 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-227)) (-576))) (-15 -1497 ((-1057) (-702 (-227)) (-576) (-702 (-227)) (-576) (-576) (-576))) (-15 -3487 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-576)) (-702 (-576)) (-576) (-702 (-576)) (-702 (-227)))) (-15 -2625 ((-1057) (-576) (-576) (-702 (-227)) (-702 (-227)) (-702 (-227)) (-576))) (-15 -3654 ((-1057) (-576) (-576) (-576) (-227) (-576) (-702 (-227)) (-702 (-227)) (-576))) (-15 -2799 ((-1057) (-576) (-576) (-702 (-227)) (-576) (-702 (-576)) (-576) (-702 (-576)) (-702 (-227)) (-702 (-576)) (-702 (-576)) (-702 (-227)) (-702 (-227)) (-702 (-576)) (-576))) (-15 -1709 ((-1057) (-576) (-702 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -3519 ((-1057) (-576) (-702 (-227)) (-576) (-702 (-227)) (-702 (-576)) (-576) (-702 (-227)) (-576) (-576) (-576) (-576))) (-15 -2288 ((-1057) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-702 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))))) -((-4042 (((-1057) (-1180) (-576) (-576) (-702 (-227)) (-576) (-576) (-702 (-227))) 29)) (-3526 (((-1057) (-1180) (-576) (-576) (-702 (-227))) 28)) (-2246 (((-1057) (-1180) (-576) (-576) (-702 (-227)) (-576) (-702 (-576)) (-576) (-702 (-227))) 27)) (-3575 (((-1057) (-576) (-576) (-576) (-702 (-227))) 21))) -(((-770) (-10 -7 (-15 -3575 ((-1057) (-576) (-576) (-576) (-702 (-227)))) (-15 -2246 ((-1057) (-1180) (-576) (-576) (-702 (-227)) (-576) (-702 (-576)) (-576) (-702 (-227)))) (-15 -3526 ((-1057) (-1180) (-576) (-576) (-702 (-227)))) (-15 -4042 ((-1057) (-1180) (-576) (-576) (-702 (-227)) (-576) (-576) (-702 (-227)))))) (T -770)) -((-4042 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-770)))) (-3526 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-770)))) (-2246 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1180)) (-5 *5 (-702 (-227))) (-5 *6 (-702 (-576))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-770)))) (-3575 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) (-5 *1 (-770))))) -(-10 -7 (-15 -3575 ((-1057) (-576) (-576) (-576) (-702 (-227)))) (-15 -2246 ((-1057) (-1180) (-576) (-576) (-702 (-227)) (-576) (-702 (-576)) (-576) (-702 (-227)))) (-15 -3526 ((-1057) (-1180) (-576) (-576) (-702 (-227)))) (-15 -4042 ((-1057) (-1180) (-576) (-576) (-702 (-227)) (-576) (-576) (-702 (-227))))) -((-3064 (((-1057) (-227) (-227) (-227) (-227) (-576)) 62)) (-4290 (((-1057) (-227) (-227) (-227) (-576)) 61)) (-4122 (((-1057) (-227) (-227) (-227) (-576)) 60)) (-1670 (((-1057) (-227) (-227) (-576)) 59)) (-3971 (((-1057) (-227) (-576)) 58)) (-2204 (((-1057) (-227) (-576)) 57)) (-4070 (((-1057) (-227) (-576)) 56)) (-2644 (((-1057) (-227) (-576)) 55)) (-2716 (((-1057) (-227) (-576)) 54)) (-3094 (((-1057) (-227) (-576)) 53)) (-3586 (((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576)) 52)) (-3021 (((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576)) 51)) (-2367 (((-1057) (-227) (-576)) 50)) (-1840 (((-1057) (-227) (-576)) 49)) (-1475 (((-1057) (-227) (-576)) 48)) (-1388 (((-1057) (-227) (-576)) 47)) (-3189 (((-1057) (-576) (-227) (-171 (-227)) (-576) (-1180) (-576)) 46)) (-2605 (((-1057) (-1180) (-171 (-227)) (-1180) (-576)) 45)) (-1995 (((-1057) (-1180) (-171 (-227)) (-1180) (-576)) 44)) (-2968 (((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576)) 43)) (-3687 (((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576)) 42)) (-2904 (((-1057) (-227) (-576)) 39)) (-1900 (((-1057) (-227) (-576)) 38)) (-3002 (((-1057) (-227) (-576)) 37)) (-4280 (((-1057) (-227) (-576)) 36)) (-2982 (((-1057) (-227) (-576)) 35)) (-2413 (((-1057) (-227) (-576)) 34)) (-3504 (((-1057) (-227) (-576)) 33)) (-1403 (((-1057) (-227) (-576)) 32)) (-3442 (((-1057) (-227) (-576)) 31)) (-1726 (((-1057) (-227) (-576)) 30)) (-1636 (((-1057) (-227) (-227) (-227) (-576)) 29)) (-4088 (((-1057) (-227) (-576)) 28)) (-4221 (((-1057) (-227) (-576)) 27)) (-2766 (((-1057) (-227) (-576)) 26)) (-2787 (((-1057) (-227) (-576)) 25)) (-2750 (((-1057) (-227) (-576)) 24)) (-2876 (((-1057) (-171 (-227)) (-576)) 21))) -(((-771) (-10 -7 (-15 -2876 ((-1057) (-171 (-227)) (-576))) (-15 -2750 ((-1057) (-227) (-576))) (-15 -2787 ((-1057) (-227) (-576))) (-15 -2766 ((-1057) (-227) (-576))) (-15 -4221 ((-1057) (-227) (-576))) (-15 -4088 ((-1057) (-227) (-576))) (-15 -1636 ((-1057) (-227) (-227) (-227) (-576))) (-15 -1726 ((-1057) (-227) (-576))) (-15 -3442 ((-1057) (-227) (-576))) (-15 -1403 ((-1057) (-227) (-576))) (-15 -3504 ((-1057) (-227) (-576))) (-15 -2413 ((-1057) (-227) (-576))) (-15 -2982 ((-1057) (-227) (-576))) (-15 -4280 ((-1057) (-227) (-576))) (-15 -3002 ((-1057) (-227) (-576))) (-15 -1900 ((-1057) (-227) (-576))) (-15 -2904 ((-1057) (-227) (-576))) (-15 -3687 ((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -2968 ((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -1995 ((-1057) (-1180) (-171 (-227)) (-1180) (-576))) (-15 -2605 ((-1057) (-1180) (-171 (-227)) (-1180) (-576))) (-15 -3189 ((-1057) (-576) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -1388 ((-1057) (-227) (-576))) (-15 -1475 ((-1057) (-227) (-576))) (-15 -1840 ((-1057) (-227) (-576))) (-15 -2367 ((-1057) (-227) (-576))) (-15 -3021 ((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -3586 ((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -3094 ((-1057) (-227) (-576))) (-15 -2716 ((-1057) (-227) (-576))) (-15 -2644 ((-1057) (-227) (-576))) (-15 -4070 ((-1057) (-227) (-576))) (-15 -2204 ((-1057) (-227) (-576))) (-15 -3971 ((-1057) (-227) (-576))) (-15 -1670 ((-1057) (-227) (-227) (-576))) (-15 -4122 ((-1057) (-227) (-227) (-227) (-576))) (-15 -4290 ((-1057) (-227) (-227) (-227) (-576))) (-15 -3064 ((-1057) (-227) (-227) (-227) (-227) (-576))))) (T -771)) -((-3064 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-4290 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-4122 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-1670 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3971 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2204 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2716 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3094 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3586 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1180)) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3021 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1180)) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2367 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-1475 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3189 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1180)) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2605 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1180)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-1995 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1180)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2968 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1180)) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3687 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1180)) (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2904 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3002 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-4280 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2982 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3504 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-1403 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-1726 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-1636 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-4088 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-4221 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2787 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771)))) (-2876 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(-10 -7 (-15 -2876 ((-1057) (-171 (-227)) (-576))) (-15 -2750 ((-1057) (-227) (-576))) (-15 -2787 ((-1057) (-227) (-576))) (-15 -2766 ((-1057) (-227) (-576))) (-15 -4221 ((-1057) (-227) (-576))) (-15 -4088 ((-1057) (-227) (-576))) (-15 -1636 ((-1057) (-227) (-227) (-227) (-576))) (-15 -1726 ((-1057) (-227) (-576))) (-15 -3442 ((-1057) (-227) (-576))) (-15 -1403 ((-1057) (-227) (-576))) (-15 -3504 ((-1057) (-227) (-576))) (-15 -2413 ((-1057) (-227) (-576))) (-15 -2982 ((-1057) (-227) (-576))) (-15 -4280 ((-1057) (-227) (-576))) (-15 -3002 ((-1057) (-227) (-576))) (-15 -1900 ((-1057) (-227) (-576))) (-15 -2904 ((-1057) (-227) (-576))) (-15 -3687 ((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -2968 ((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -1995 ((-1057) (-1180) (-171 (-227)) (-1180) (-576))) (-15 -2605 ((-1057) (-1180) (-171 (-227)) (-1180) (-576))) (-15 -3189 ((-1057) (-576) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -1388 ((-1057) (-227) (-576))) (-15 -1475 ((-1057) (-227) (-576))) (-15 -1840 ((-1057) (-227) (-576))) (-15 -2367 ((-1057) (-227) (-576))) (-15 -3021 ((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -3586 ((-1057) (-227) (-171 (-227)) (-576) (-1180) (-576))) (-15 -3094 ((-1057) (-227) (-576))) (-15 -2716 ((-1057) (-227) (-576))) (-15 -2644 ((-1057) (-227) (-576))) (-15 -4070 ((-1057) (-227) (-576))) (-15 -2204 ((-1057) (-227) (-576))) (-15 -3971 ((-1057) (-227) (-576))) (-15 -1670 ((-1057) (-227) (-227) (-576))) (-15 -4122 ((-1057) (-227) (-227) (-227) (-576))) (-15 -4290 ((-1057) (-227) (-227) (-227) (-576))) (-15 -3064 ((-1057) (-227) (-227) (-227) (-227) (-576)))) -((-1786 (((-1294)) 20)) (-2131 (((-1180)) 34)) (-3227 (((-1180)) 33)) (-1516 (((-1126) (-1198) (-702 (-576))) 47) (((-1126) (-1198) (-702 (-227))) 43)) (-1581 (((-112)) 19)) (-3318 (((-1180) (-1180)) 37))) -(((-772) (-10 -7 (-15 -3227 ((-1180))) (-15 -2131 ((-1180))) (-15 -3318 ((-1180) (-1180))) (-15 -1516 ((-1126) (-1198) (-702 (-227)))) (-15 -1516 ((-1126) (-1198) (-702 (-576)))) (-15 -1581 ((-112))) (-15 -1786 ((-1294))))) (T -772)) -((-1786 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-772)))) (-1581 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-772)))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-702 (-576))) (-5 *2 (-1126)) (-5 *1 (-772)))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-702 (-227))) (-5 *2 (-1126)) (-5 *1 (-772)))) (-3318 (*1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-772)))) (-2131 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-772)))) (-3227 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-772))))) -(-10 -7 (-15 -3227 ((-1180))) (-15 -2131 ((-1180))) (-15 -3318 ((-1180) (-1180))) (-15 -1516 ((-1126) (-1198) (-702 (-227)))) (-15 -1516 ((-1126) (-1198) (-702 (-576)))) (-15 -1581 ((-112))) (-15 -1786 ((-1294)))) -((-3544 (($ $ $) 10)) (-4254 (($ $ $ $) 9)) (-3599 (($ $ $) 12))) -(((-773 |#1|) (-10 -8 (-15 -3599 (|#1| |#1| |#1|)) (-15 -3544 (|#1| |#1| |#1|)) (-15 -4254 (|#1| |#1| |#1| |#1|))) (-774)) (T -773)) -NIL -(-10 -8 (-15 -3599 (|#1| |#1| |#1|)) (-15 -3544 (|#1| |#1| |#1|)) (-15 -4254 (|#1| |#1| |#1| |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2609 (($ $ (-941)) 31)) (-4404 (($ $ (-941)) 32)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3544 (($ $ $) 28)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-4254 (($ $ $ $) 29)) (-3599 (($ $ $) 27)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 33)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 30))) -(((-774) (-141)) (T -774)) -((-4254 (*1 *1 *1 *1 *1) (-4 *1 (-774))) (-3544 (*1 *1 *1 *1) (-4 *1 (-774))) (-3599 (*1 *1 *1 *1) (-4 *1 (-774)))) -(-13 (-21) (-733) (-10 -8 (-15 -4254 ($ $ $ $)) (-15 -3544 ($ $ $)) (-15 -3599 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-733) . T) ((-1122) . T) ((-1239) . T)) -((-3501 (((-877) $) NIL) (($ (-576)) 10))) -(((-775 |#1|) (-10 -8 (-15 -3501 (|#1| (-576))) (-15 -3501 ((-877) |#1|))) (-776)) (T -775)) -NIL -(-10 -8 (-15 -3501 (|#1| (-576))) (-15 -3501 ((-877) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-1498 (((-3 $ "failed") $) 43)) (-2609 (($ $ (-941)) 31) (($ $ (-784)) 38)) (-3843 (((-3 $ "failed") $) 41)) (-4094 (((-112) $) 37)) (-2390 (((-3 $ "failed") $) 42)) (-4404 (($ $ (-941)) 32) (($ $ (-784)) 39)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3544 (($ $ $) 28)) (-3501 (((-877) $) 12) (($ (-576)) 34)) (-1960 (((-784)) 35 T CONST)) (-2046 (((-112) $ $) 6)) (-4254 (($ $ $ $) 29)) (-3599 (($ $ $) 27)) (-2769 (($) 19 T CONST)) (-2779 (($) 36 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 33) (($ $ (-784)) 40)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 30))) -(((-776) (-141)) (T -776)) -((-1960 (*1 *2) (-12 (-4 *1 (-776)) (-5 *2 (-784)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-776))))) -(-13 (-774) (-735) (-10 -8 (-15 -1960 ((-784)) -1509) (-15 -3501 ($ (-576))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-733) . T) ((-735) . T) ((-774) . T) ((-1122) . T) ((-1239) . T)) -((-3468 (((-657 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 (-171 |#1|)))))) (-702 (-171 (-419 (-576)))) |#1|) 33)) (-1637 (((-657 (-171 |#1|)) (-702 (-171 (-419 (-576)))) |#1|) 23)) (-4182 (((-972 (-171 (-419 (-576)))) (-702 (-171 (-419 (-576)))) (-1198)) 20) (((-972 (-171 (-419 (-576)))) (-702 (-171 (-419 (-576))))) 19))) -(((-777 |#1|) (-10 -7 (-15 -4182 ((-972 (-171 (-419 (-576)))) (-702 (-171 (-419 (-576)))))) (-15 -4182 ((-972 (-171 (-419 (-576)))) (-702 (-171 (-419 (-576)))) (-1198))) (-15 -1637 ((-657 (-171 |#1|)) (-702 (-171 (-419 (-576)))) |#1|)) (-15 -3468 ((-657 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 (-171 |#1|)))))) (-702 (-171 (-419 (-576)))) |#1|))) (-13 (-374) (-861))) (T -777)) -((-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-702 (-171 (-419 (-576))))) (-5 *2 (-657 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 (-171 *4))))))) (-5 *1 (-777 *4)) (-4 *4 (-13 (-374) (-861))))) (-1637 (*1 *2 *3 *4) (-12 (-5 *3 (-702 (-171 (-419 (-576))))) (-5 *2 (-657 (-171 *4))) (-5 *1 (-777 *4)) (-4 *4 (-13 (-374) (-861))))) (-4182 (*1 *2 *3 *4) (-12 (-5 *3 (-702 (-171 (-419 (-576))))) (-5 *4 (-1198)) (-5 *2 (-972 (-171 (-419 (-576))))) (-5 *1 (-777 *5)) (-4 *5 (-13 (-374) (-861))))) (-4182 (*1 *2 *3) (-12 (-5 *3 (-702 (-171 (-419 (-576))))) (-5 *2 (-972 (-171 (-419 (-576))))) (-5 *1 (-777 *4)) (-4 *4 (-13 (-374) (-861)))))) -(-10 -7 (-15 -4182 ((-972 (-171 (-419 (-576)))) (-702 (-171 (-419 (-576)))))) (-15 -4182 ((-972 (-171 (-419 (-576)))) (-702 (-171 (-419 (-576)))) (-1198))) (-15 -1637 ((-657 (-171 |#1|)) (-702 (-171 (-419 (-576)))) |#1|)) (-15 -3468 ((-657 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 (-171 |#1|)))))) (-702 (-171 (-419 (-576)))) |#1|))) -((-1690 (((-176 (-576)) |#1|) 27))) -(((-778 |#1|) (-10 -7 (-15 -1690 ((-176 (-576)) |#1|))) (-416)) (T -778)) -((-1690 (*1 *2 *3) (-12 (-5 *2 (-176 (-576))) (-5 *1 (-778 *3)) (-4 *3 (-416))))) -(-10 -7 (-15 -1690 ((-176 (-576)) |#1|))) -((-3826 ((|#1| |#1| |#1|) 28)) (-4269 ((|#1| |#1| |#1|) 27)) (-3938 ((|#1| |#1| |#1|) 38)) (-3359 ((|#1| |#1| |#1|) 34)) (-2129 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2026 (((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|) 26))) -(((-779 |#1| |#2|) (-10 -7 (-15 -2026 ((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -3826 (|#1| |#1| |#1|)) (-15 -2129 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3359 (|#1| |#1| |#1|)) (-15 -3938 (|#1| |#1| |#1|))) (-721 |#2|) (-374)) (T -779)) -((-3938 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) (-3359 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) (-2129 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) (-3826 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) (-4269 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) (-2026 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -2335 *3) (|:| -3644 *3))) (-5 *1 (-779 *3 *4)) (-4 *3 (-721 *4))))) -(-10 -7 (-15 -2026 ((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -3826 (|#1| |#1| |#1|)) (-15 -2129 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3359 (|#1| |#1| |#1|)) (-15 -3938 (|#1| |#1| |#1|))) -((-3950 (((-704 (-1247)) $ (-1247)) 26)) (-2359 (((-704 (-561)) $ (-561)) 25)) (-1979 (((-784) $ (-129)) 27)) (-3245 (((-704 (-130)) $ (-130)) 24)) (-1447 (((-704 (-1247)) $) 12)) (-2953 (((-704 (-1245)) $) 8)) (-2522 (((-704 (-1244)) $) 10)) (-1890 (((-704 (-561)) $) 13)) (-2276 (((-704 (-559)) $) 9)) (-3453 (((-704 (-558)) $) 11)) (-2454 (((-784) $ (-129)) 7)) (-1866 (((-704 (-130)) $) 14)) (-3688 (((-112) $) 31)) (-4328 (((-704 $) |#1| (-974)) 32)) (-3632 (($ $) 6))) -(((-780 |#1|) (-141) (-1122)) (T -780)) -((-4328 (*1 *2 *3 *4) (-12 (-5 *4 (-974)) (-4 *3 (-1122)) (-5 *2 (-704 *1)) (-4 *1 (-780 *3)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-4 *3 (-1122)) (-5 *2 (-112))))) -(-13 (-588) (-10 -8 (-15 -4328 ((-704 $) |t#1| (-974))) (-15 -3688 ((-112) $)))) -(((-175) . T) ((-539) . T) ((-588) . T) ((-875) . T)) -((-3984 (((-2 (|:| -1985 (-702 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-702 (-576)))) (-576)) 71)) (-1613 (((-2 (|:| -1985 (-702 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-702 (-576))))) 69)) (-1701 (((-576)) 85))) -(((-781 |#1| |#2|) (-10 -7 (-15 -1701 ((-576))) (-15 -1613 ((-2 (|:| -1985 (-702 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-702 (-576)))))) (-15 -3984 ((-2 (|:| -1985 (-702 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-702 (-576)))) (-576)))) (-1265 (-576)) (-421 (-576) |#1|)) (T -781)) -((-3984 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1265 *3)) (-5 *2 (-2 (|:| -1985 (-702 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-702 *3)))) (-5 *1 (-781 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1613 (*1 *2) (-12 (-4 *3 (-1265 (-576))) (-5 *2 (-2 (|:| -1985 (-702 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-702 (-576))))) (-5 *1 (-781 *3 *4)) (-4 *4 (-421 (-576) *3)))) (-1701 (*1 *2) (-12 (-4 *3 (-1265 *2)) (-5 *2 (-576)) (-5 *1 (-781 *3 *4)) (-4 *4 (-421 *2 *3))))) -(-10 -7 (-15 -1701 ((-576))) (-15 -1613 ((-2 (|:| -1985 (-702 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-702 (-576)))))) (-15 -3984 ((-2 (|:| -1985 (-702 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-702 (-576)))) (-576)))) -((-3429 (((-112) $ $) NIL)) (-2884 (((-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 20) (($ (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-782) (-13 (-1122) (-10 -8 (-15 -3501 ($ (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3501 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3501 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2884 ((-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -782)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-782)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-782)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-782)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-782))))) -(-13 (-1122) (-10 -8 (-15 -3501 ($ (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3501 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3501 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2884 ((-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $)))) -((-4017 (((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|))) 18) (((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|)) (-657 (-1198))) 17)) (-3036 (((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|))) 20) (((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|)) (-657 (-1198))) 19))) -(((-783 |#1|) (-10 -7 (-15 -4017 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|)) (-657 (-1198)))) (-15 -4017 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|)))) (-15 -3036 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|)) (-657 (-1198)))) (-15 -3036 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|))))) (-568)) (T -783)) -((-3036 (*1 *2 *3) (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *4)))))) (-5 *1 (-783 *4)))) (-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-657 (-1198))) (-4 *5 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *5)))))) (-5 *1 (-783 *5)))) (-4017 (*1 *2 *3) (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *4)))))) (-5 *1 (-783 *4)))) (-4017 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-657 (-1198))) (-4 *5 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *5)))))) (-5 *1 (-783 *5))))) -(-10 -7 (-15 -4017 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|)) (-657 (-1198)))) (-15 -4017 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|)))) (-15 -3036 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|)) (-657 (-1198)))) (-15 -3036 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-972 |#1|))))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3733 (($ $ $) 10)) (-2721 (((-3 $ "failed") $ $) 15)) (-2790 (($ $ (-576)) 11)) (-4359 (($) NIL T CONST)) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($ $) NIL)) (-3385 (($ $ $) NIL)) (-4094 (((-112) $) NIL)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3436 (($ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 6 T CONST)) (-2779 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-784)) NIL) (($ $ (-941)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ $ $) NIL))) -(((-784) (-13 (-806) (-739) (-10 -8 (-15 -3385 ($ $ $)) (-15 -3373 ($ $ $)) (-15 -3436 ($ $ $)) (-15 -3944 ((-2 (|:| -2335 $) (|:| -3644 $)) $ $)) (-15 -3418 ((-3 $ "failed") $ $)) (-15 -2790 ($ $ (-576))) (-15 -1892 ($ $)) (-6 (-4468 "*"))))) (T -784)) -((-3385 (*1 *1 *1 *1) (-5 *1 (-784))) (-3373 (*1 *1 *1 *1) (-5 *1 (-784))) (-3436 (*1 *1 *1 *1) (-5 *1 (-784))) (-3944 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2335 (-784)) (|:| -3644 (-784)))) (-5 *1 (-784)))) (-3418 (*1 *1 *1 *1) (|partial| -5 *1 (-784))) (-2790 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-784)))) (-1892 (*1 *1 *1) (-5 *1 (-784)))) -(-13 (-806) (-739) (-10 -8 (-15 -3385 ($ $ $)) (-15 -3373 ($ $ $)) (-15 -3436 ($ $ $)) (-15 -3944 ((-2 (|:| -2335 $) (|:| -3644 $)) $ $)) (-15 -3418 ((-3 $ "failed") $ $)) (-15 -2790 ($ $ (-576))) (-15 -1892 ($ $)) (-6 (-4468 "*")))) +((-3473 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-4100 (($) NIL) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-2389 (((-1297) $ |#1| |#1|) NIL (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 ((|#2| $ |#1| |#2|) NIL)) (-2463 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2325 (((-3 |#2| "failed") |#1| $) NIL)) (-1534 (($) NIL T CONST)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))))) (-3719 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (|has| $ (-6 -4470))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-3 |#2| "failed") |#1| $) NIL)) (-3904 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-3654 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (|has| $ (-6 -4470))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2192 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#2| $ |#1|) NIL)) (-1461 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) NIL)) (-2406 ((|#1| $) NIL (|has| |#1| (-865)))) (-2530 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-2416 ((|#1| $) NIL (|has| |#1| (-865)))) (-2182 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4471))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| |#2| (-1125))))) (-3203 (((-660 |#1|) $) NIL)) (-4317 (((-112) |#1| $) NIL)) (-4330 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-2881 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-4285 (((-660 |#1|) $) NIL)) (-4298 (((-112) |#1| $) NIL)) (-1474 (((-1145) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| |#2| (-1125))))) (-3552 ((|#2| $) NIL (|has| |#1| (-865)))) (-1828 (((-3 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) "failed") (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL)) (-2397 (($ $ |#2|) NIL (|has| $ (-6 -4471)))) (-3530 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-1514 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-4306 (((-660 |#2|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3736 (($) NIL) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-1485 (((-787) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-787) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125)))) (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-627 (-549))))) (-3553 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-3544 (((-880) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-626 (-880))) (|has| |#2| (-626 (-880)))))) (-4448 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-3541 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-1524 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-563 |#1| |#2| |#3|) (-13 (-1218 |#1| |#2|) (-10 -7 (-6 -4470))) (-1125) (-1125) (-13 (-1218 |#1| |#2|) (-10 -7 (-6 -4470)))) (T -563)) +NIL +(-13 (-1218 |#1| |#2|) (-10 -7 (-6 -4470))) +((-3162 (((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|) (-1 (-1197 |#2|) (-1197 |#2|))) 50))) +(((-564 |#1| |#2|) (-10 -7 (-15 -3162 ((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|) (-1 (-1197 |#2|) (-1197 |#2|))))) (-569) (-13 (-27) (-443 |#1|))) (T -564)) +((-3162 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-625 *3)) (-5 *5 (-1 (-1197 *3) (-1197 *3))) (-4 *3 (-13 (-27) (-443 *6))) (-4 *6 (-569)) (-5 *2 (-599 *3)) (-5 *1 (-564 *6 *3))))) +(-10 -7 (-15 -3162 ((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|) (-1 (-1197 |#2|) (-1197 |#2|))))) +((-3182 (((-599 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-3191 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-3172 (((-599 |#5|) |#5| (-1 |#3| |#3|)) 220))) +(((-565 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3172 ((-599 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3182 ((-599 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3191 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-569) (-1063 (-577))) (-13 (-27) (-443 |#1|)) (-1268 |#2|) (-1268 (-420 |#3|)) (-354 |#2| |#3| |#4|)) (T -565)) +((-3191 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-27) (-443 *4))) (-4 *4 (-13 (-569) (-1063 (-577)))) (-4 *7 (-1268 (-420 *6))) (-5 *1 (-565 *4 *5 *6 *7 *2)) (-4 *2 (-354 *5 *6 *7)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1268 *6)) (-4 *6 (-13 (-27) (-443 *5))) (-4 *5 (-13 (-569) (-1063 (-577)))) (-4 *8 (-1268 (-420 *7))) (-5 *2 (-599 *3)) (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-354 *6 *7 *8)))) (-3172 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1268 *6)) (-4 *6 (-13 (-27) (-443 *5))) (-4 *5 (-13 (-569) (-1063 (-577)))) (-4 *8 (-1268 (-420 *7))) (-5 *2 (-599 *3)) (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-354 *6 *7 *8))))) +(-10 -7 (-15 -3172 ((-599 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3182 ((-599 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3191 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-3219 (((-112) (-577) (-577)) 12)) (-3200 (((-577) (-577)) 7)) (-3210 (((-577) (-577) (-577)) 10))) +(((-566) (-10 -7 (-15 -3200 ((-577) (-577))) (-15 -3210 ((-577) (-577) (-577))) (-15 -3219 ((-112) (-577) (-577))))) (T -566)) +((-3219 (*1 *2 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-112)) (-5 *1 (-566)))) (-3210 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-566)))) (-3200 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-566))))) +(-10 -7 (-15 -3200 ((-577) (-577))) (-15 -3210 ((-577) (-577) (-577))) (-15 -3219 ((-112) (-577) (-577)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3352 ((|#1| $) 68)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-2212 (($ $) 98)) (-2060 (($ $) 81)) (-4243 ((|#1| $) 69)) (-1956 (((-3 $ "failed") $ $) 20)) (-1913 (($ $) 80)) (-2186 (($ $) 97)) (-2032 (($ $) 82)) (-2237 (($ $) 96)) (-2084 (($ $) 83)) (-1534 (($) 18 T CONST)) (-1628 (((-3 (-577) "failed") $) 76)) (-2921 (((-577) $) 77)) (-4187 (((-3 $ "failed") $) 37)) (-3249 (($ |#1| |#1|) 73)) (-3567 (((-112) $) 67)) (-1659 (($) 108)) (-2487 (((-112) $) 35)) (-2381 (($ $ (-577)) 79)) (-3578 (((-112) $) 66)) (-3732 (($ $ $) 109)) (-3201 (($ $ $) 110)) (-3698 (($ $) 105)) (-3446 (($ $ $) 52) (($ (-660 $)) 51)) (-2810 (((-1183) $) 10)) (-3262 (($ |#1| |#1|) 74) (($ |#1|) 72) (($ (-420 (-577))) 71)) (-3239 ((|#1| $) 70)) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 50)) (-3480 (($ $ $) 54) (($ (-660 $)) 53)) (-3462 (((-3 $ "failed") $ $) 48)) (-4072 (($ $) 106)) (-2249 (($ $) 95)) (-2095 (($ $) 84)) (-2224 (($ $) 94)) (-2073 (($ $) 85)) (-2199 (($ $) 93)) (-2046 (($ $) 86)) (-3229 (((-112) $ |#1|) 65)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49) (($ (-577)) 75)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-4114 (($ $) 104)) (-2136 (($ $) 92)) (-3281 (((-112) $ $) 45)) (-2262 (($ $) 103)) (-2106 (($ $) 91)) (-4141 (($ $) 102)) (-2162 (($ $) 90)) (-2261 (($ $) 101)) (-2174 (($ $) 89)) (-4128 (($ $) 100)) (-2150 (($ $) 88)) (-2272 (($ $) 99)) (-2120 (($ $) 87)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-3025 (((-112) $ $) 111)) (-3000 (((-112) $ $) 113)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 112)) (-2990 (((-112) $ $) 114)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ $) 107) (($ $ (-420 (-577))) 78)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) +(((-567 |#1|) (-141) (-13 (-417) (-1227))) (T -567)) +((-3262 (*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227))))) (-3249 (*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227))))) (-3262 (*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227))))) (-3262 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1227))))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227))))) (-4243 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227))))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227))))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1227))) (-5 *2 (-112)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1227))) (-5 *2 (-112)))) (-3229 (*1 *2 *1 *3) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1227))) (-5 *2 (-112))))) +(-13 (-465) (-865) (-1227) (-1027) (-1063 (-577)) (-10 -8 (-6 -4148) (-15 -3262 ($ |t#1| |t#1|)) (-15 -3249 ($ |t#1| |t#1|)) (-15 -3262 ($ |t#1|)) (-15 -3262 ($ (-420 (-577)))) (-15 -3239 (|t#1| $)) (-15 -4243 (|t#1| $)) (-15 -3352 (|t#1| $)) (-15 -3567 ((-112) $)) (-15 -3578 ((-112) $)) (-15 -3229 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-295) . T) ((-301) . T) ((-465) . T) ((-506) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-865) . T) ((-868) . T) ((-1027) . T) ((-1063 (-577)) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1227) . T) ((-1230) . T) ((-1242) . T)) +((-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 9)) (-3290 (($ $) 11)) (-3271 (((-112) $) 20)) (-4187 (((-3 $ "failed") $) 16)) (-3281 (((-112) $ $) 22))) +(((-568 |#1|) (-10 -8 (-15 -3271 ((-112) |#1|)) (-15 -3281 ((-112) |#1| |#1|)) (-15 -3290 (|#1| |#1|)) (-15 -3300 ((-2 (|:| -3294 |#1|) (|:| -4457 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4187 ((-3 |#1| "failed") |#1|))) (-569)) (T -568)) +NIL +(-10 -8 (-15 -3271 ((-112) |#1|)) (-15 -3281 ((-112) |#1| |#1|)) (-15 -3290 (|#1| |#1|)) (-15 -3300 ((-2 (|:| -3294 |#1|) (|:| -4457 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4187 ((-3 |#1| "failed") |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-4187 (((-3 $ "failed") $) 37)) (-2487 (((-112) $) 35)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3462 (((-3 $ "failed") $ $) 48)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 45)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) +(((-569) (-141)) (T -569)) +((-3462 (*1 *1 *1 *1) (|partial| -4 *1 (-569))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3294 *1) (|:| -4457 *1) (|:| |associate| *1))) (-4 *1 (-569)))) (-3290 (*1 *1 *1) (-4 *1 (-569))) (-3281 (*1 *2 *1 *1) (-12 (-4 *1 (-569)) (-5 *2 (-112)))) (-3271 (*1 *2 *1) (-12 (-4 *1 (-569)) (-5 *2 (-112))))) +(-13 (-174) (-38 $) (-301) (-10 -8 (-15 -3462 ((-3 $ "failed") $ $)) (-15 -3300 ((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $)) (-15 -3290 ($ $)) (-15 -3281 ((-112) $ $)) (-15 -3271 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-301) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3320 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1201) (-660 |#2|)) 38)) (-3340 (((-599 |#2|) |#2| (-1201)) 63)) (-3330 (((-3 |#2| "failed") |#2| (-1201)) 156)) (-3349 (((-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1201) (-625 |#2|) (-660 (-625 |#2|))) 159)) (-3311 (((-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1201) |#2|) 41))) +(((-570 |#1| |#2|) (-10 -7 (-15 -3311 ((-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1201) |#2|)) (-15 -3320 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1201) (-660 |#2|))) (-15 -3330 ((-3 |#2| "failed") |#2| (-1201))) (-15 -3340 ((-599 |#2|) |#2| (-1201))) (-15 -3349 ((-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1201) (-625 |#2|) (-660 (-625 |#2|))))) (-13 (-465) (-148) (-1063 (-577)) (-654 (-577))) (-13 (-27) (-1227) (-443 |#1|))) (T -570)) +((-3349 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1201)) (-5 *6 (-660 (-625 *3))) (-5 *5 (-625 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *7))) (-4 *7 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-2 (|:| -2898 *3) (|:| |coeff| *3))) (-5 *1 (-570 *7 *3)))) (-3340 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) (-3330 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1201)) (-4 *4 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4))))) (-3320 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-660 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6 *3)))) (-3311 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1201)) (-4 *5 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-2 (|:| -2898 *3) (|:| |coeff| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5)))))) +(-10 -7 (-15 -3311 ((-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1201) |#2|)) (-15 -3320 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1201) (-660 |#2|))) (-15 -3330 ((-3 |#2| "failed") |#2| (-1201))) (-15 -3340 ((-599 |#2|) |#2| (-1201))) (-15 -3349 ((-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1201) (-625 |#2|) (-660 (-625 |#2|))))) +((-3029 (((-431 |#1|) |#1|) 19)) (-1902 (((-431 |#1|) |#1|) 34)) (-3369 (((-3 |#1| "failed") |#1|) 49)) (-3359 (((-431 |#1|) |#1|) 60))) +(((-571 |#1|) (-10 -7 (-15 -1902 ((-431 |#1|) |#1|)) (-15 -3029 ((-431 |#1|) |#1|)) (-15 -3359 ((-431 |#1|) |#1|)) (-15 -3369 ((-3 |#1| "failed") |#1|))) (-558)) (T -571)) +((-3369 (*1 *2 *2) (|partial| -12 (-5 *1 (-571 *2)) (-4 *2 (-558)))) (-3359 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558)))) (-3029 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558)))) (-1902 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558))))) +(-10 -7 (-15 -1902 ((-431 |#1|) |#1|)) (-15 -3029 ((-431 |#1|) |#1|)) (-15 -3359 ((-431 |#1|) |#1|)) (-15 -3369 ((-3 |#1| "failed") |#1|))) +((-3378 (($) 9)) (-2686 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 34)) (-3203 (((-660 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $) 31)) (-2881 (($ (-2 (|:| -4295 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-3397 (($ (-660 (-2 (|:| -4295 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-4444 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 38)) (-4306 (((-660 (-2 (|:| -4295 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-3387 (((-1297)) 11))) +(((-572) (-10 -8 (-15 -3378 ($)) (-15 -3387 ((-1297))) (-15 -3203 ((-660 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $)) (-15 -3397 ($ (-660 (-2 (|:| -4295 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2881 ($ (-2 (|:| -4295 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2686 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -4306 ((-660 (-2 (|:| -4295 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4444 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (T -572)) +((-4444 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-572)))) (-4306 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| -4295 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-572)))) (-2686 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-572)))) (-2881 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4295 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-572)))) (-3397 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -4295 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-572)))) (-3203 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-5 *1 (-572)))) (-3387 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-572)))) (-3378 (*1 *1) (-5 *1 (-572)))) +(-10 -8 (-15 -3378 ($)) (-15 -3387 ((-1297))) (-15 -3203 ((-660 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $)) (-15 -3397 ($ (-660 (-2 (|:| -4295 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2881 ($ (-2 (|:| -4295 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2686 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -4306 ((-660 (-2 (|:| -4295 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4444 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) +((-1867 (((-1197 (-420 (-1197 |#2|))) |#2| (-625 |#2|) (-625 |#2|) (-1197 |#2|)) 35)) (-3432 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|) (-625 |#2|) (-660 |#2|) (-625 |#2|) |#2| (-420 (-1197 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|) (-625 |#2|) (-660 |#2|) |#2| (-1197 |#2|)) 115)) (-3408 (((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|) (-625 |#2|) |#2| (-420 (-1197 |#2|))) 85) (((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|) |#2| (-1197 |#2|)) 55)) (-3421 (((-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-625 |#2|) (-625 |#2|) |#2| (-625 |#2|) |#2| (-420 (-1197 |#2|))) 92) (((-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-625 |#2|) (-625 |#2|) |#2| |#2| (-1197 |#2|)) 114)) (-3442 (((-3 |#2| "failed") |#2| |#2| (-625 |#2|) (-625 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1201)) (-625 |#2|) |#2| (-420 (-1197 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-625 |#2|) (-625 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1201)) |#2| (-1197 |#2|)) 116)) (-3454 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4060 (-660 |#2|))) |#3| |#2| (-625 |#2|) (-625 |#2|) (-625 |#2|) |#2| (-420 (-1197 |#2|))) 133 (|has| |#3| (-672 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4060 (-660 |#2|))) |#3| |#2| (-625 |#2|) (-625 |#2|) |#2| (-1197 |#2|)) 132 (|has| |#3| (-672 |#2|)))) (-2043 ((|#2| (-1197 (-420 (-1197 |#2|))) (-625 |#2|) |#2|) 53)) (-3642 (((-1197 (-420 (-1197 |#2|))) (-1197 |#2|) (-625 |#2|)) 34))) +(((-573 |#1| |#2| |#3|) (-10 -7 (-15 -3408 ((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|) |#2| (-1197 |#2|))) (-15 -3408 ((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|) (-625 |#2|) |#2| (-420 (-1197 |#2|)))) (-15 -3421 ((-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-625 |#2|) (-625 |#2|) |#2| |#2| (-1197 |#2|))) (-15 -3421 ((-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-625 |#2|) (-625 |#2|) |#2| (-625 |#2|) |#2| (-420 (-1197 |#2|)))) (-15 -3432 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|) (-625 |#2|) (-660 |#2|) |#2| (-1197 |#2|))) (-15 -3432 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|) (-625 |#2|) (-660 |#2|) (-625 |#2|) |#2| (-420 (-1197 |#2|)))) (-15 -3442 ((-3 |#2| "failed") |#2| |#2| (-625 |#2|) (-625 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1201)) |#2| (-1197 |#2|))) (-15 -3442 ((-3 |#2| "failed") |#2| |#2| (-625 |#2|) (-625 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1201)) (-625 |#2|) |#2| (-420 (-1197 |#2|)))) (-15 -1867 ((-1197 (-420 (-1197 |#2|))) |#2| (-625 |#2|) (-625 |#2|) (-1197 |#2|))) (-15 -2043 (|#2| (-1197 (-420 (-1197 |#2|))) (-625 |#2|) |#2|)) (-15 -3642 ((-1197 (-420 (-1197 |#2|))) (-1197 |#2|) (-625 |#2|))) (IF (|has| |#3| (-672 |#2|)) (PROGN (-15 -3454 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4060 (-660 |#2|))) |#3| |#2| (-625 |#2|) (-625 |#2|) |#2| (-1197 |#2|))) (-15 -3454 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4060 (-660 |#2|))) |#3| |#2| (-625 |#2|) (-625 |#2|) (-625 |#2|) |#2| (-420 (-1197 |#2|))))) |%noBranch|)) (-13 (-465) (-1063 (-577)) (-148) (-654 (-577))) (-13 (-443 |#1|) (-27) (-1227)) (-1125)) (T -573)) +((-3454 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-625 *4)) (-5 *6 (-420 (-1197 *4))) (-4 *4 (-13 (-443 *7) (-27) (-1227))) (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4060 (-660 *4)))) (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-672 *4)) (-4 *3 (-1125)))) (-3454 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-625 *4)) (-5 *6 (-1197 *4)) (-4 *4 (-13 (-443 *7) (-27) (-1227))) (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4060 (-660 *4)))) (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-672 *4)) (-4 *3 (-1125)))) (-3642 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *6)) (-4 *6 (-13 (-443 *5) (-27) (-1227))) (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-1197 (-420 (-1197 *6)))) (-5 *1 (-573 *5 *6 *7)) (-5 *3 (-1197 *6)) (-4 *7 (-1125)))) (-2043 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1197 (-420 (-1197 *2)))) (-5 *4 (-625 *2)) (-4 *2 (-13 (-443 *5) (-27) (-1227))) (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *1 (-573 *5 *2 *6)) (-4 *6 (-1125)))) (-1867 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-625 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1227))) (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-1197 (-420 (-1197 *3)))) (-5 *1 (-573 *6 *3 *7)) (-5 *5 (-1197 *3)) (-4 *7 (-1125)))) (-3442 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-625 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1201))) (-5 *5 (-420 (-1197 *2))) (-4 *2 (-13 (-443 *6) (-27) (-1227))) (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1125)))) (-3442 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-625 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1201))) (-5 *5 (-1197 *2)) (-4 *2 (-13 (-443 *6) (-27) (-1227))) (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1125)))) (-3432 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-660 *3)) (-5 *6 (-420 (-1197 *3))) (-4 *3 (-13 (-443 *7) (-27) (-1227))) (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1125)))) (-3432 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-660 *3)) (-5 *6 (-1197 *3)) (-4 *3 (-13 (-443 *7) (-27) (-1227))) (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1125)))) (-3421 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-420 (-1197 *3))) (-4 *3 (-13 (-443 *6) (-27) (-1227))) (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-2 (|:| -2898 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1125)))) (-3421 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-1197 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1227))) (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-2 (|:| -2898 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1125)))) (-3408 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-625 *3)) (-5 *5 (-420 (-1197 *3))) (-4 *3 (-13 (-443 *6) (-27) (-1227))) (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1125)))) (-3408 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-625 *3)) (-5 *5 (-1197 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1227))) (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1125))))) +(-10 -7 (-15 -3408 ((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|) |#2| (-1197 |#2|))) (-15 -3408 ((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|) (-625 |#2|) |#2| (-420 (-1197 |#2|)))) (-15 -3421 ((-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-625 |#2|) (-625 |#2|) |#2| |#2| (-1197 |#2|))) (-15 -3421 ((-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-625 |#2|) (-625 |#2|) |#2| (-625 |#2|) |#2| (-420 (-1197 |#2|)))) (-15 -3432 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|) (-625 |#2|) (-660 |#2|) |#2| (-1197 |#2|))) (-15 -3432 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|) (-625 |#2|) (-660 |#2|) (-625 |#2|) |#2| (-420 (-1197 |#2|)))) (-15 -3442 ((-3 |#2| "failed") |#2| |#2| (-625 |#2|) (-625 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1201)) |#2| (-1197 |#2|))) (-15 -3442 ((-3 |#2| "failed") |#2| |#2| (-625 |#2|) (-625 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1201)) (-625 |#2|) |#2| (-420 (-1197 |#2|)))) (-15 -1867 ((-1197 (-420 (-1197 |#2|))) |#2| (-625 |#2|) (-625 |#2|) (-1197 |#2|))) (-15 -2043 (|#2| (-1197 (-420 (-1197 |#2|))) (-625 |#2|) |#2|)) (-15 -3642 ((-1197 (-420 (-1197 |#2|))) (-1197 |#2|) (-625 |#2|))) (IF (|has| |#3| (-672 |#2|)) (PROGN (-15 -3454 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4060 (-660 |#2|))) |#3| |#2| (-625 |#2|) (-625 |#2|) |#2| (-1197 |#2|))) (-15 -3454 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4060 (-660 |#2|))) |#3| |#2| (-625 |#2|) (-625 |#2|) (-625 |#2|) |#2| (-420 (-1197 |#2|))))) |%noBranch|)) +((-3560 (((-577) (-577) (-787)) 85)) (-3549 (((-577) (-577)) 83)) (-3539 (((-577) (-577)) 81)) (-3528 (((-577) (-577)) 87)) (-3901 (((-577) (-577) (-577)) 65)) (-3517 (((-577) (-577) (-577)) 62)) (-3507 (((-420 (-577)) (-577)) 30)) (-3498 (((-577) (-577)) 34)) (-3486 (((-577) (-577)) 74)) (-3867 (((-577) (-577)) 46)) (-3475 (((-660 (-577)) (-577)) 80)) (-3464 (((-577) (-577) (-577) (-577) (-577)) 58)) (-3821 (((-420 (-577)) (-577)) 55))) +(((-574) (-10 -7 (-15 -3821 ((-420 (-577)) (-577))) (-15 -3464 ((-577) (-577) (-577) (-577) (-577))) (-15 -3475 ((-660 (-577)) (-577))) (-15 -3867 ((-577) (-577))) (-15 -3486 ((-577) (-577))) (-15 -3498 ((-577) (-577))) (-15 -3507 ((-420 (-577)) (-577))) (-15 -3517 ((-577) (-577) (-577))) (-15 -3901 ((-577) (-577) (-577))) (-15 -3528 ((-577) (-577))) (-15 -3539 ((-577) (-577))) (-15 -3549 ((-577) (-577))) (-15 -3560 ((-577) (-577) (-787))))) (T -574)) +((-3560 (*1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-787)) (-5 *1 (-574)))) (-3549 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-3539 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-3528 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-3901 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-3517 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-3507 (*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-574)) (-5 *3 (-577)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-3867 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-3475 (*1 *2 *3) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-574)) (-5 *3 (-577)))) (-3464 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) (-3821 (*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-574)) (-5 *3 (-577))))) +(-10 -7 (-15 -3821 ((-420 (-577)) (-577))) (-15 -3464 ((-577) (-577) (-577) (-577) (-577))) (-15 -3475 ((-660 (-577)) (-577))) (-15 -3867 ((-577) (-577))) (-15 -3486 ((-577) (-577))) (-15 -3498 ((-577) (-577))) (-15 -3507 ((-420 (-577)) (-577))) (-15 -3517 ((-577) (-577) (-577))) (-15 -3901 ((-577) (-577) (-577))) (-15 -3528 ((-577) (-577))) (-15 -3539 ((-577) (-577))) (-15 -3549 ((-577) (-577))) (-15 -3560 ((-577) (-577) (-787)))) +((-3570 (((-2 (|:| |answer| |#4|) (|:| -2889 |#4|)) |#4| (-1 |#2| |#2|)) 56))) +(((-575 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3570 ((-2 (|:| |answer| |#4|) (|:| -2889 |#4|)) |#4| (-1 |#2| |#2|)))) (-375) (-1268 |#1|) (-1268 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -575)) +((-3570 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) (-4 *7 (-1268 (-420 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2889 *3))) (-5 *1 (-575 *5 *6 *7 *3)) (-4 *3 (-354 *5 *6 *7))))) +(-10 -7 (-15 -3570 ((-2 (|:| |answer| |#4|) (|:| -2889 |#4|)) |#4| (-1 |#2| |#2|)))) +((-3570 (((-2 (|:| |answer| (-420 |#2|)) (|:| -2889 (-420 |#2|)) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|)) 18))) +(((-576 |#1| |#2|) (-10 -7 (-15 -3570 ((-2 (|:| |answer| (-420 |#2|)) (|:| -2889 (-420 |#2|)) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|)))) (-375) (-1268 |#1|)) (T -576)) +((-3570 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |answer| (-420 *6)) (|:| -2889 (-420 *6)) (|:| |specpart| (-420 *6)) (|:| |polypart| *6))) (-5 *1 (-576 *5 *6)) (-5 *3 (-420 *6))))) +(-10 -7 (-15 -3570 ((-2 (|:| |answer| (-420 |#2|)) (|:| -2889 (-420 |#2|)) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 30)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 96)) (-3290 (($ $) 97)) (-3271 (((-112) $) NIL)) (-3129 (($ $ $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-3107 (($ $ $ $) 52)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1939 (((-112) $ $) NIL)) (-3010 (((-577) $) NIL)) (-2826 (($ $ $) 91)) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL)) (-2921 (((-577) $) NIL)) (-3418 (($ $ $) 53)) (-1647 (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 76) (((-705 (-577)) (-705 $)) 72)) (-4187 (((-3 $ "failed") $) 93)) (-4363 (((-3 (-420 (-577)) "failed") $) NIL)) (-4353 (((-112) $) NIL)) (-4341 (((-420 (-577)) $) NIL)) (-1910 (($) 78) (($ $) 79)) (-3429 (($ $ $) 90)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-3091 (($ $ $ $) NIL)) (-3140 (($ $ $) 69)) (-3567 (((-112) $) NIL)) (-1992 (($ $ $) NIL)) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL)) (-2487 (((-112) $) 34)) (-1912 (((-112) $) 85)) (-4021 (((-3 $ "failed") $) NIL)) (-3578 (((-112) $) 43)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3099 (($ $ $ $) 54)) (-3732 (($ $ $) 87)) (-3201 (($ $ $) 86)) (-4199 (($ $) NIL)) (-3402 (($ $) 49)) (-1657 (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL) (((-705 (-577)) (-1292 $)) NIL)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) 68)) (-3082 (($ $ $) NIL)) (-1709 (($) NIL T CONST)) (-1383 (($ $) 38)) (-1474 (((-1145) $) 42)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 128)) (-3480 (($ $ $) 94) (($ (-660 $)) NIL)) (-1969 (($ $) NIL)) (-1902 (((-431 $) $) 114)) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL)) (-3462 (((-3 $ "failed") $ $) 112)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1924 (((-112) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 89)) (-2852 (($ $) NIL) (($ $ (-787)) NIL)) (-1877 (($ $) 40)) (-1944 (($ $) 36)) (-4152 (((-577) $) 48) (((-549) $) 63) (((-911 (-577)) $) NIL) (((-391) $) 57) (((-228) $) 60) (((-1183) $) 65)) (-3544 (((-880) $) 46) (($ (-577)) 47) (($ $) NIL) (($ (-577)) 47)) (-4068 (((-787)) NIL T CONST)) (-3151 (((-112) $ $) NIL)) (-3850 (($ $ $) NIL)) (-4448 (((-112) $ $) NIL)) (-4146 (($) 35)) (-3281 (((-112) $ $) NIL)) (-3118 (($ $ $ $) 51)) (-1654 (($ $) 77)) (-2806 (($) 6 T CONST)) (-2816 (($) 31 T CONST)) (-4013 (((-1183) $) 26) (((-1183) $ (-112)) 27) (((-1297) (-838) $) 28) (((-1297) (-838) $ (-112)) 29)) (-2132 (($ $) NIL) (($ $ (-787)) NIL)) (-3025 (((-112) $ $) 50)) (-3000 (((-112) $ $) 80)) (-2970 (((-112) $ $) 33)) (-3012 (((-112) $ $) 81)) (-2990 (((-112) $ $) 10)) (-3066 (($ $) 16) (($ $ $) 39)) (-3055 (($ $ $) 37)) (** (($ $ (-944)) NIL) (($ $ (-787)) 84)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 83) (($ $ $) 82) (($ (-577) $) 83))) +(((-577) (-13 (-558) (-627 (-1183)) (-844) (-10 -7 (-6 -4457) (-6 -4462) (-6 -4458) (-6 -4452)))) (T -577)) +NIL +(-13 (-558) (-627 (-1183)) (-844) (-10 -7 (-6 -4457) (-6 -4462) (-6 -4458) (-6 -4452))) +((-1878 (((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060))) (-785) (-1088)) 116) (((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060))) (-785)) 118)) (-4147 (((-3 (-1060) "failed") (-327 (-391)) (-1117 (-859 (-391))) (-1201)) 195) (((-3 (-1060) "failed") (-327 (-391)) (-1117 (-859 (-391))) (-1183)) 194) (((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))) (-391) (-391) (-1088)) 199) (((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))) (-391) (-391)) 200) (((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))) (-391)) 201) (((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391))))) 202) (((-1060) (-327 (-391)) (-1119 (-859 (-391)))) 190) (((-1060) (-327 (-391)) (-1119 (-859 (-391))) (-391)) 189) (((-1060) (-327 (-391)) (-1119 (-859 (-391))) (-391) (-391)) 185) (((-1060) (-785)) 177) (((-1060) (-327 (-391)) (-1119 (-859 (-391))) (-391) (-391) (-1088)) 184))) +(((-578) (-10 -7 (-15 -4147 ((-1060) (-327 (-391)) (-1119 (-859 (-391))) (-391) (-391) (-1088))) (-15 -4147 ((-1060) (-785))) (-15 -4147 ((-1060) (-327 (-391)) (-1119 (-859 (-391))) (-391) (-391))) (-15 -4147 ((-1060) (-327 (-391)) (-1119 (-859 (-391))) (-391))) (-15 -4147 ((-1060) (-327 (-391)) (-1119 (-859 (-391))))) (-15 -4147 ((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))))) (-15 -4147 ((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))) (-391))) (-15 -4147 ((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))) (-391) (-391))) (-15 -4147 ((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))) (-391) (-391) (-1088))) (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060))) (-785))) (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060))) (-785) (-1088))) (-15 -4147 ((-3 (-1060) "failed") (-327 (-391)) (-1117 (-859 (-391))) (-1183))) (-15 -4147 ((-3 (-1060) "failed") (-327 (-391)) (-1117 (-859 (-391))) (-1201))))) (T -578)) +((-4147 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-327 (-391))) (-5 *4 (-1117 (-859 (-391)))) (-5 *5 (-1201)) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4147 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-327 (-391))) (-5 *4 (-1117 (-859 (-391)))) (-5 *5 (-1183)) (-5 *2 (-1060)) (-5 *1 (-578)))) (-1878 (*1 *2 *3 *4) (-12 (-5 *3 (-785)) (-5 *4 (-1088)) (-5 *2 (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060)))) (-5 *1 (-578)))) (-1878 (*1 *2 *3) (-12 (-5 *3 (-785)) (-5 *2 (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060)))) (-5 *1 (-578)))) (-4147 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-1119 (-859 (-391))))) (-5 *5 (-391)) (-5 *6 (-1088)) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4147 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-1119 (-859 (-391))))) (-5 *5 (-391)) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4147 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-1119 (-859 (-391))))) (-5 *5 (-391)) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-1119 (-859 (-391))))) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1119 (-859 (-391)))) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4147 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1119 (-859 (-391)))) (-5 *5 (-391)) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4147 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1119 (-859 (-391)))) (-5 *5 (-391)) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-785)) (-5 *2 (-1060)) (-5 *1 (-578)))) (-4147 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1119 (-859 (-391)))) (-5 *5 (-391)) (-5 *6 (-1088)) (-5 *2 (-1060)) (-5 *1 (-578))))) +(-10 -7 (-15 -4147 ((-1060) (-327 (-391)) (-1119 (-859 (-391))) (-391) (-391) (-1088))) (-15 -4147 ((-1060) (-785))) (-15 -4147 ((-1060) (-327 (-391)) (-1119 (-859 (-391))) (-391) (-391))) (-15 -4147 ((-1060) (-327 (-391)) (-1119 (-859 (-391))) (-391))) (-15 -4147 ((-1060) (-327 (-391)) (-1119 (-859 (-391))))) (-15 -4147 ((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))))) (-15 -4147 ((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))) (-391))) (-15 -4147 ((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))) (-391) (-391))) (-15 -4147 ((-1060) (-327 (-391)) (-660 (-1119 (-859 (-391)))) (-391) (-391) (-1088))) (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060))) (-785))) (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060))) (-785) (-1088))) (-15 -4147 ((-3 (-1060) "failed") (-327 (-391)) (-1117 (-859 (-391))) (-1183))) (-15 -4147 ((-3 (-1060) "failed") (-327 (-391)) (-1117 (-859 (-391))) (-1201)))) +((-2456 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|) (-625 |#2|) (-660 |#2|)) 195)) (-2433 (((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|)) 97)) (-2445 (((-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-625 |#2|) (-625 |#2|) |#2|) 191)) (-2465 (((-3 |#2| "failed") |#2| |#2| |#2| (-625 |#2|) (-625 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1201))) 200)) (-2473 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4060 (-660 |#2|))) |#3| |#2| (-625 |#2|) (-625 |#2|) (-1201)) 209 (|has| |#3| (-672 |#2|))))) +(((-579 |#1| |#2| |#3|) (-10 -7 (-15 -2433 ((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|))) (-15 -2445 ((-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-625 |#2|) (-625 |#2|) |#2|)) (-15 -2456 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|) (-625 |#2|) (-660 |#2|))) (-15 -2465 ((-3 |#2| "failed") |#2| |#2| |#2| (-625 |#2|) (-625 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1201)))) (IF (|has| |#3| (-672 |#2|)) (-15 -2473 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4060 (-660 |#2|))) |#3| |#2| (-625 |#2|) (-625 |#2|) (-1201))) |%noBranch|)) (-13 (-465) (-1063 (-577)) (-148) (-654 (-577))) (-13 (-443 |#1|) (-27) (-1227)) (-1125)) (T -579)) +((-2473 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-625 *4)) (-5 *6 (-1201)) (-4 *4 (-13 (-443 *7) (-27) (-1227))) (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4060 (-660 *4)))) (-5 *1 (-579 *7 *4 *3)) (-4 *3 (-672 *4)) (-4 *3 (-1125)))) (-2465 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-625 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1201))) (-4 *2 (-13 (-443 *5) (-27) (-1227))) (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *1 (-579 *5 *2 *6)) (-4 *6 (-1125)))) (-2456 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-660 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1227))) (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-579 *6 *3 *7)) (-4 *7 (-1125)))) (-2445 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-625 *3)) (-4 *3 (-13 (-443 *5) (-27) (-1227))) (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-2 (|:| -2898 *3) (|:| |coeff| *3))) (-5 *1 (-579 *5 *3 *6)) (-4 *6 (-1125)))) (-2433 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-625 *3)) (-4 *3 (-13 (-443 *5) (-27) (-1227))) (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) (-5 *2 (-599 *3)) (-5 *1 (-579 *5 *3 *6)) (-4 *6 (-1125))))) +(-10 -7 (-15 -2433 ((-599 |#2|) |#2| (-625 |#2|) (-625 |#2|))) (-15 -2445 ((-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-625 |#2|) (-625 |#2|) |#2|)) (-15 -2456 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|) (-625 |#2|) (-660 |#2|))) (-15 -2465 ((-3 |#2| "failed") |#2| |#2| |#2| (-625 |#2|) (-625 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1201)))) (IF (|has| |#3| (-672 |#2|)) (-15 -2473 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4060 (-660 |#2|))) |#3| |#2| (-625 |#2|) (-625 |#2|) (-1201))) |%noBranch|)) +((-2482 (((-2 (|:| -4045 |#2|) (|:| |nconst| |#2|)) |#2| (-1201)) 64)) (-2499 (((-3 |#2| "failed") |#2| (-1201) (-859 |#2|) (-859 |#2|)) 175 (-12 (|has| |#2| (-1164)) (|has| |#1| (-627 (-911 (-577)))) (|has| |#1| (-905 (-577))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1201)) 154 (-12 (|has| |#2| (-642)) (|has| |#1| (-627 (-911 (-577)))) (|has| |#1| (-905 (-577)))))) (-2491 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1201)) 156 (-12 (|has| |#2| (-642)) (|has| |#1| (-627 (-911 (-577)))) (|has| |#1| (-905 (-577))))))) +(((-580 |#1| |#2|) (-10 -7 (-15 -2482 ((-2 (|:| -4045 |#2|) (|:| |nconst| |#2|)) |#2| (-1201))) (IF (|has| |#1| (-627 (-911 (-577)))) (IF (|has| |#1| (-905 (-577))) (PROGN (IF (|has| |#2| (-642)) (PROGN (-15 -2491 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1201))) (-15 -2499 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1201)))) |%noBranch|) (IF (|has| |#2| (-1164)) (-15 -2499 ((-3 |#2| "failed") |#2| (-1201) (-859 |#2|) (-859 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1063 (-577)) (-465) (-654 (-577))) (-13 (-27) (-1227) (-443 |#1|))) (T -580)) +((-2499 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1201)) (-5 *4 (-859 *2)) (-4 *2 (-1164)) (-4 *2 (-13 (-27) (-1227) (-443 *5))) (-4 *5 (-627 (-911 (-577)))) (-4 *5 (-905 (-577))) (-4 *5 (-13 (-1063 (-577)) (-465) (-654 (-577)))) (-5 *1 (-580 *5 *2)))) (-2499 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1201)) (-4 *5 (-627 (-911 (-577)))) (-4 *5 (-905 (-577))) (-4 *5 (-13 (-1063 (-577)) (-465) (-654 (-577)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-580 *5 *3)) (-4 *3 (-642)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) (-2491 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1201)) (-4 *5 (-627 (-911 (-577)))) (-4 *5 (-905 (-577))) (-4 *5 (-13 (-1063 (-577)) (-465) (-654 (-577)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-580 *5 *3)) (-4 *3 (-642)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) (-2482 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-1063 (-577)) (-465) (-654 (-577)))) (-5 *2 (-2 (|:| -4045 *3) (|:| |nconst| *3))) (-5 *1 (-580 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5)))))) +(-10 -7 (-15 -2482 ((-2 (|:| -4045 |#2|) (|:| |nconst| |#2|)) |#2| (-1201))) (IF (|has| |#1| (-627 (-911 (-577)))) (IF (|has| |#1| (-905 (-577))) (PROGN (IF (|has| |#2| (-642)) (PROGN (-15 -2491 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1201))) (-15 -2499 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1201)))) |%noBranch|) (IF (|has| |#2| (-1164)) (-15 -2499 ((-3 |#2| "failed") |#2| (-1201) (-859 |#2|) (-859 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2526 (((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-660 (-420 |#2|))) 41)) (-4147 (((-599 (-420 |#2|)) (-420 |#2|)) 28)) (-2507 (((-3 (-420 |#2|) "failed") (-420 |#2|)) 17)) (-2517 (((-3 (-2 (|:| -2898 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-420 |#2|)) 48))) +(((-581 |#1| |#2|) (-10 -7 (-15 -4147 ((-599 (-420 |#2|)) (-420 |#2|))) (-15 -2507 ((-3 (-420 |#2|) "failed") (-420 |#2|))) (-15 -2517 ((-3 (-2 (|:| -2898 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-420 |#2|))) (-15 -2526 ((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-660 (-420 |#2|))))) (-13 (-375) (-148) (-1063 (-577))) (-1268 |#1|)) (T -581)) +((-2526 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-660 (-420 *6))) (-5 *3 (-420 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-581 *5 *6)))) (-2517 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-375) (-148) (-1063 (-577)))) (-4 *5 (-1268 *4)) (-5 *2 (-2 (|:| -2898 (-420 *5)) (|:| |coeff| (-420 *5)))) (-5 *1 (-581 *4 *5)) (-5 *3 (-420 *5)))) (-2507 (*1 *2 *2) (|partial| -12 (-5 *2 (-420 *4)) (-4 *4 (-1268 *3)) (-4 *3 (-13 (-375) (-148) (-1063 (-577)))) (-5 *1 (-581 *3 *4)))) (-4147 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-577)))) (-4 *5 (-1268 *4)) (-5 *2 (-599 (-420 *5))) (-5 *1 (-581 *4 *5)) (-5 *3 (-420 *5))))) +(-10 -7 (-15 -4147 ((-599 (-420 |#2|)) (-420 |#2|))) (-15 -2507 ((-3 (-420 |#2|) "failed") (-420 |#2|))) (-15 -2517 ((-3 (-2 (|:| -2898 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-420 |#2|))) (-15 -2526 ((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-660 (-420 |#2|))))) +((-2535 (((-3 (-577) "failed") |#1|) 14)) (-2914 (((-112) |#1|) 13)) (-3142 (((-577) |#1|) 9))) +(((-582 |#1|) (-10 -7 (-15 -3142 ((-577) |#1|)) (-15 -2914 ((-112) |#1|)) (-15 -2535 ((-3 (-577) "failed") |#1|))) (-1063 (-577))) (T -582)) +((-2535 (*1 *2 *3) (|partial| -12 (-5 *2 (-577)) (-5 *1 (-582 *3)) (-4 *3 (-1063 *2)))) (-2914 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-582 *3)) (-4 *3 (-1063 (-577))))) (-3142 (*1 *2 *3) (-12 (-5 *2 (-577)) (-5 *1 (-582 *3)) (-4 *3 (-1063 *2))))) +(-10 -7 (-15 -3142 ((-577) |#1|)) (-15 -2914 ((-112) |#1|)) (-15 -2535 ((-3 (-577) "failed") |#1|))) +((-2563 (((-3 (-2 (|:| |mainpart| (-420 (-975 |#1|))) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 (-975 |#1|))) (|:| |logand| (-420 (-975 |#1|))))))) "failed") (-420 (-975 |#1|)) (-1201) (-660 (-420 (-975 |#1|)))) 48)) (-2544 (((-599 (-420 (-975 |#1|))) (-420 (-975 |#1|)) (-1201)) 28)) (-2554 (((-3 (-420 (-975 |#1|)) "failed") (-420 (-975 |#1|)) (-1201)) 23)) (-2572 (((-3 (-2 (|:| -2898 (-420 (-975 |#1|))) (|:| |coeff| (-420 (-975 |#1|)))) "failed") (-420 (-975 |#1|)) (-1201) (-420 (-975 |#1|))) 35))) +(((-583 |#1|) (-10 -7 (-15 -2544 ((-599 (-420 (-975 |#1|))) (-420 (-975 |#1|)) (-1201))) (-15 -2554 ((-3 (-420 (-975 |#1|)) "failed") (-420 (-975 |#1|)) (-1201))) (-15 -2563 ((-3 (-2 (|:| |mainpart| (-420 (-975 |#1|))) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 (-975 |#1|))) (|:| |logand| (-420 (-975 |#1|))))))) "failed") (-420 (-975 |#1|)) (-1201) (-660 (-420 (-975 |#1|))))) (-15 -2572 ((-3 (-2 (|:| -2898 (-420 (-975 |#1|))) (|:| |coeff| (-420 (-975 |#1|)))) "failed") (-420 (-975 |#1|)) (-1201) (-420 (-975 |#1|))))) (-13 (-569) (-1063 (-577)) (-148))) (T -583)) +((-2572 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1201)) (-4 *5 (-13 (-569) (-1063 (-577)) (-148))) (-5 *2 (-2 (|:| -2898 (-420 (-975 *5))) (|:| |coeff| (-420 (-975 *5))))) (-5 *1 (-583 *5)) (-5 *3 (-420 (-975 *5))))) (-2563 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-660 (-420 (-975 *6)))) (-5 *3 (-420 (-975 *6))) (-4 *6 (-13 (-569) (-1063 (-577)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-583 *6)))) (-2554 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-420 (-975 *4))) (-5 *3 (-1201)) (-4 *4 (-13 (-569) (-1063 (-577)) (-148))) (-5 *1 (-583 *4)))) (-2544 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-569) (-1063 (-577)) (-148))) (-5 *2 (-599 (-420 (-975 *5)))) (-5 *1 (-583 *5)) (-5 *3 (-420 (-975 *5)))))) +(-10 -7 (-15 -2544 ((-599 (-420 (-975 |#1|))) (-420 (-975 |#1|)) (-1201))) (-15 -2554 ((-3 (-420 (-975 |#1|)) "failed") (-420 (-975 |#1|)) (-1201))) (-15 -2563 ((-3 (-2 (|:| |mainpart| (-420 (-975 |#1|))) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 (-975 |#1|))) (|:| |logand| (-420 (-975 |#1|))))))) "failed") (-420 (-975 |#1|)) (-1201) (-660 (-420 (-975 |#1|))))) (-15 -2572 ((-3 (-2 (|:| -2898 (-420 (-975 |#1|))) (|:| |coeff| (-420 (-975 |#1|)))) "failed") (-420 (-975 |#1|)) (-1201) (-420 (-975 |#1|))))) +((-3473 (((-112) $ $) 75)) (-3585 (((-112) $) 48)) (-3352 ((|#1| $) 39)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) 79)) (-2212 (($ $) 139)) (-2060 (($ $) 118)) (-4243 ((|#1| $) 37)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1913 (($ $) NIL)) (-2186 (($ $) 141)) (-2032 (($ $) 114)) (-2237 (($ $) 143)) (-2084 (($ $) 122)) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) 93)) (-2921 (((-577) $) 95)) (-4187 (((-3 $ "failed") $) 78)) (-3249 (($ |#1| |#1|) 35)) (-3567 (((-112) $) 44)) (-1659 (($) 104)) (-2487 (((-112) $) 55)) (-2381 (($ $ (-577)) NIL)) (-3578 (((-112) $) 45)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-3698 (($ $) 106)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-3262 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-420 (-577))) 92)) (-3239 ((|#1| $) 36)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) 81) (($ (-660 $)) NIL)) (-3462 (((-3 $ "failed") $ $) 80)) (-4072 (($ $) 108)) (-2249 (($ $) 147)) (-2095 (($ $) 120)) (-2224 (($ $) 149)) (-2073 (($ $) 124)) (-2199 (($ $) 145)) (-2046 (($ $) 116)) (-3229 (((-112) $ |#1|) 42)) (-3544 (((-880) $) 100) (($ (-577)) 83) (($ $) NIL) (($ (-577)) 83)) (-4068 (((-787)) 102 T CONST)) (-4448 (((-112) $ $) NIL)) (-4114 (($ $) 161)) (-2136 (($ $) 130)) (-3281 (((-112) $ $) NIL)) (-2262 (($ $) 159)) (-2106 (($ $) 126)) (-4141 (($ $) 157)) (-2162 (($ $) 137)) (-2261 (($ $) 155)) (-2174 (($ $) 135)) (-4128 (($ $) 153)) (-2150 (($ $) 132)) (-2272 (($ $) 151)) (-2120 (($ $) 128)) (-2806 (($) 30 T CONST)) (-2816 (($) 10 T CONST)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 49)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 47)) (-3066 (($ $) 53) (($ $ $) 54)) (-3055 (($ $ $) 52)) (** (($ $ (-944)) 71) (($ $ (-787)) NIL) (($ $ $) 110) (($ $ (-420 (-577))) 163)) (* (($ (-944) $) 66) (($ (-787) $) NIL) (($ (-577) $) 65) (($ $ $) 61))) +(((-584 |#1|) (-567 |#1|) (-13 (-417) (-1227))) (T -584)) +NIL +(-567 |#1|) +((-2259 (((-3 (-660 (-1197 (-577))) "failed") (-660 (-1197 (-577))) (-1197 (-577))) 27))) +(((-585) (-10 -7 (-15 -2259 ((-3 (-660 (-1197 (-577))) "failed") (-660 (-1197 (-577))) (-1197 (-577)))))) (T -585)) +((-2259 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-1197 (-577)))) (-5 *3 (-1197 (-577))) (-5 *1 (-585))))) +(-10 -7 (-15 -2259 ((-3 (-660 (-1197 (-577))) "failed") (-660 (-1197 (-577))) (-1197 (-577))))) +((-2582 (((-660 (-625 |#2|)) (-660 (-625 |#2|)) (-1201)) 19)) (-2610 (((-660 (-625 |#2|)) (-660 |#2|) (-1201)) 23)) (-1892 (((-660 (-625 |#2|)) (-660 (-625 |#2|)) (-660 (-625 |#2|))) 11)) (-2620 ((|#2| |#2| (-1201)) 59 (|has| |#1| (-569)))) (-2629 ((|#2| |#2| (-1201)) 87 (-12 (|has| |#2| (-295)) (|has| |#1| (-465))))) (-2601 (((-625 |#2|) (-625 |#2|) (-660 (-625 |#2|)) (-1201)) 25)) (-2592 (((-625 |#2|) (-660 (-625 |#2|))) 24)) (-2638 (((-599 |#2|) |#2| (-1201) (-1 (-599 |#2|) |#2| (-1201)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1201))) 115 (-12 (|has| |#2| (-295)) (|has| |#2| (-642)) (|has| |#2| (-1063 (-1201))) (|has| |#1| (-627 (-911 (-577)))) (|has| |#1| (-465)) (|has| |#1| (-905 (-577))))))) +(((-586 |#1| |#2|) (-10 -7 (-15 -2582 ((-660 (-625 |#2|)) (-660 (-625 |#2|)) (-1201))) (-15 -2592 ((-625 |#2|) (-660 (-625 |#2|)))) (-15 -2601 ((-625 |#2|) (-625 |#2|) (-660 (-625 |#2|)) (-1201))) (-15 -1892 ((-660 (-625 |#2|)) (-660 (-625 |#2|)) (-660 (-625 |#2|)))) (-15 -2610 ((-660 (-625 |#2|)) (-660 |#2|) (-1201))) (IF (|has| |#1| (-569)) (-15 -2620 (|#2| |#2| (-1201))) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-295)) (PROGN (-15 -2629 (|#2| |#2| (-1201))) (IF (|has| |#1| (-627 (-911 (-577)))) (IF (|has| |#1| (-905 (-577))) (IF (|has| |#2| (-642)) (IF (|has| |#2| (-1063 (-1201))) (-15 -2638 ((-599 |#2|) |#2| (-1201) (-1 (-599 |#2|) |#2| (-1201)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1201)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1125) (-443 |#1|)) (T -586)) +((-2638 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-599 *3) *3 (-1201))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1201))) (-4 *3 (-295)) (-4 *3 (-642)) (-4 *3 (-1063 *4)) (-4 *3 (-443 *7)) (-5 *4 (-1201)) (-4 *7 (-627 (-911 (-577)))) (-4 *7 (-465)) (-4 *7 (-905 (-577))) (-4 *7 (-1125)) (-5 *2 (-599 *3)) (-5 *1 (-586 *7 *3)))) (-2629 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-465)) (-4 *4 (-1125)) (-5 *1 (-586 *4 *2)) (-4 *2 (-295)) (-4 *2 (-443 *4)))) (-2620 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-4 *4 (-1125)) (-5 *1 (-586 *4 *2)) (-4 *2 (-443 *4)))) (-2610 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6)) (-5 *4 (-1201)) (-4 *6 (-443 *5)) (-4 *5 (-1125)) (-5 *2 (-660 (-625 *6))) (-5 *1 (-586 *5 *6)))) (-1892 (*1 *2 *2 *2) (-12 (-5 *2 (-660 (-625 *4))) (-4 *4 (-443 *3)) (-4 *3 (-1125)) (-5 *1 (-586 *3 *4)))) (-2601 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-660 (-625 *6))) (-5 *4 (-1201)) (-5 *2 (-625 *6)) (-4 *6 (-443 *5)) (-4 *5 (-1125)) (-5 *1 (-586 *5 *6)))) (-2592 (*1 *2 *3) (-12 (-5 *3 (-660 (-625 *5))) (-4 *4 (-1125)) (-5 *2 (-625 *5)) (-5 *1 (-586 *4 *5)) (-4 *5 (-443 *4)))) (-2582 (*1 *2 *2 *3) (-12 (-5 *2 (-660 (-625 *5))) (-5 *3 (-1201)) (-4 *5 (-443 *4)) (-4 *4 (-1125)) (-5 *1 (-586 *4 *5))))) +(-10 -7 (-15 -2582 ((-660 (-625 |#2|)) (-660 (-625 |#2|)) (-1201))) (-15 -2592 ((-625 |#2|) (-660 (-625 |#2|)))) (-15 -2601 ((-625 |#2|) (-625 |#2|) (-660 (-625 |#2|)) (-1201))) (-15 -1892 ((-660 (-625 |#2|)) (-660 (-625 |#2|)) (-660 (-625 |#2|)))) (-15 -2610 ((-660 (-625 |#2|)) (-660 |#2|) (-1201))) (IF (|has| |#1| (-569)) (-15 -2620 (|#2| |#2| (-1201))) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-295)) (PROGN (-15 -2629 (|#2| |#2| (-1201))) (IF (|has| |#1| (-627 (-911 (-577)))) (IF (|has| |#1| (-905 (-577))) (IF (|has| |#2| (-642)) (IF (|has| |#2| (-1063 (-1201))) (-15 -2638 ((-599 |#2|) |#2| (-1201) (-1 (-599 |#2|) |#2| (-1201)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1201)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2671 (((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-660 |#1|) "failed") (-577) |#1| |#1|)) 199)) (-2703 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2898 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-660 (-420 |#2|))) 174)) (-2735 (((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-660 (-420 |#2|))) 171)) (-2746 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2898 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-2648 (((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2898 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-2725 (((-3 (-2 (|:| -2898 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-420 |#2|)) 202)) (-2680 (((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2898 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2898 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-420 |#2|)) 205)) (-2768 (((-2 (|:| |ir| (-599 (-420 |#2|))) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|)) 88)) (-2778 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-2714 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4239 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-660 (-420 |#2|))) 178)) (-2758 (((-3 (-636 |#1| |#2|) "failed") (-636 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4239 |#1|) (|:| |sol?| (-112))) (-577) |#1|)) 166)) (-2659 (((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4239 |#1|) (|:| |sol?| (-112))) (-577) |#1|)) 189)) (-2692 (((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2898 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4239 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-420 |#2|)) 210))) +(((-587 |#1| |#2|) (-10 -7 (-15 -2648 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2898 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2659 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4239 |#1|) (|:| |sol?| (-112))) (-577) |#1|))) (-15 -2671 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-660 |#1|) "failed") (-577) |#1| |#1|))) (-15 -2680 ((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2898 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2898 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-420 |#2|))) (-15 -2692 ((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2898 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4239 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-420 |#2|))) (-15 -2703 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2898 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-660 (-420 |#2|)))) (-15 -2714 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4239 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-660 (-420 |#2|)))) (-15 -2725 ((-3 (-2 (|:| -2898 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-420 |#2|))) (-15 -2735 ((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-660 (-420 |#2|)))) (-15 -2746 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2898 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2758 ((-3 (-636 |#1| |#2|) "failed") (-636 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4239 |#1|) (|:| |sol?| (-112))) (-577) |#1|))) (-15 -2768 ((-2 (|:| |ir| (-599 (-420 |#2|))) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|))) (-15 -2778 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-375) (-1268 |#1|)) (T -587)) +((-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-587 *5 *3)))) (-2768 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |ir| (-599 (-420 *6))) (|:| |specpart| (-420 *6)) (|:| |polypart| *6))) (-5 *1 (-587 *5 *6)) (-5 *3 (-420 *6)))) (-2758 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-636 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4239 *4) (|:| |sol?| (-112))) (-577) *4)) (-4 *4 (-375)) (-4 *5 (-1268 *4)) (-5 *1 (-587 *4 *5)))) (-2746 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2898 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-375)) (-5 *1 (-587 *4 *2)) (-4 *2 (-1268 *4)))) (-2735 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-660 (-420 *7))) (-4 *7 (-1268 *6)) (-5 *3 (-420 *7)) (-4 *6 (-375)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-587 *6 *7)))) (-2725 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| -2898 (-420 *6)) (|:| |coeff| (-420 *6)))) (-5 *1 (-587 *5 *6)) (-5 *3 (-420 *6)))) (-2714 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4239 *7) (|:| |sol?| (-112))) (-577) *7)) (-5 *6 (-660 (-420 *8))) (-4 *7 (-375)) (-4 *8 (-1268 *7)) (-5 *3 (-420 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-587 *7 *8)))) (-2703 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2898 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-660 (-420 *8))) (-4 *7 (-375)) (-4 *8 (-1268 *7)) (-5 *3 (-420 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-587 *7 *8)))) (-2692 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4239 *6) (|:| |sol?| (-112))) (-577) *6)) (-4 *6 (-375)) (-4 *7 (-1268 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-420 *7)) (|:| |a0| *6)) (-2 (|:| -2898 (-420 *7)) (|:| |coeff| (-420 *7))) "failed")) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7)))) (-2680 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2898 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-375)) (-4 *7 (-1268 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-420 *7)) (|:| |a0| *6)) (-2 (|:| -2898 (-420 *7)) (|:| |coeff| (-420 *7))) "failed")) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7)))) (-2671 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-660 *6) "failed") (-577) *6 *6)) (-4 *6 (-375)) (-4 *7 (-1268 *6)) (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7)))) (-2659 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4239 *6) (|:| |sol?| (-112))) (-577) *6)) (-4 *6 (-375)) (-4 *7 (-1268 *6)) (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7)))) (-2648 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2898 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-375)) (-4 *7 (-1268 *6)) (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) +(-10 -7 (-15 -2648 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2898 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2659 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4239 |#1|) (|:| |sol?| (-112))) (-577) |#1|))) (-15 -2671 ((-2 (|:| |answer| (-599 (-420 |#2|))) (|:| |a0| |#1|)) (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-660 |#1|) "failed") (-577) |#1| |#1|))) (-15 -2680 ((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2898 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2898 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-420 |#2|))) (-15 -2692 ((-3 (-2 (|:| |answer| (-420 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2898 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4239 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-420 |#2|))) (-15 -2703 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2898 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-660 (-420 |#2|)))) (-15 -2714 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|))))))) (|:| |a0| |#1|)) "failed") (-420 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4239 |#1|) (|:| |sol?| (-112))) (-577) |#1|) (-660 (-420 |#2|)))) (-15 -2725 ((-3 (-2 (|:| -2898 (-420 |#2|)) (|:| |coeff| (-420 |#2|))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-420 |#2|))) (-15 -2735 ((-3 (-2 (|:| |mainpart| (-420 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-420 |#2|)) (|:| |logand| (-420 |#2|)))))) "failed") (-420 |#2|) (-1 |#2| |#2|) (-660 (-420 |#2|)))) (-15 -2746 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2898 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2758 ((-3 (-636 |#1| |#2|) "failed") (-636 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4239 |#1|) (|:| |sol?| (-112))) (-577) |#1|))) (-15 -2768 ((-2 (|:| |ir| (-599 (-420 |#2|))) (|:| |specpart| (-420 |#2|)) (|:| |polypart| |#2|)) (-420 |#2|) (-1 |#2| |#2|))) (-15 -2778 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-2788 (((-3 |#2| "failed") |#2| (-1201) (-1201)) 10))) +(((-588 |#1| |#2|) (-10 -7 (-15 -2788 ((-3 |#2| "failed") |#2| (-1201) (-1201)))) (-13 (-318) (-148) (-1063 (-577)) (-654 (-577))) (-13 (-1227) (-982) (-1164) (-29 |#1|))) (T -588)) +((-2788 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1201)) (-4 *4 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-588 *4 *2)) (-4 *2 (-13 (-1227) (-982) (-1164) (-29 *4)))))) +(-10 -7 (-15 -2788 ((-3 |#2| "failed") |#2| (-1201) (-1201)))) +((-3315 (((-707 (-1250)) $ (-1250)) 26)) (-3324 (((-707 (-562)) $ (-562)) 25)) (-3304 (((-787) $ (-129)) 27)) (-3335 (((-707 (-130)) $ (-130)) 24)) (-3923 (((-707 (-1250)) $) 12)) (-3877 (((-707 (-1248)) $) 8)) (-3900 (((-707 (-1247)) $) 10)) (-3935 (((-707 (-562)) $) 13)) (-3888 (((-707 (-560)) $) 9)) (-3912 (((-707 (-559)) $) 11)) (-3866 (((-787) $ (-129)) 7)) (-3947 (((-707 (-130)) $) 14)) (-3720 (($ $) 6))) +(((-589) (-141)) (T -589)) +NIL +(-13 (-540) (-878)) +(((-175) . T) ((-540) . T) ((-878) . T)) +((-3315 (((-707 (-1250)) $ (-1250)) NIL)) (-3324 (((-707 (-562)) $ (-562)) NIL)) (-3304 (((-787) $ (-129)) NIL)) (-3335 (((-707 (-130)) $ (-130)) NIL)) (-3923 (((-707 (-1250)) $) NIL)) (-3877 (((-707 (-1248)) $) NIL)) (-3900 (((-707 (-1247)) $) NIL)) (-3935 (((-707 (-562)) $) NIL)) (-3888 (((-707 (-560)) $) NIL)) (-3912 (((-707 (-559)) $) NIL)) (-3866 (((-787) $ (-129)) NIL)) (-3947 (((-707 (-130)) $) NIL)) (-3344 (((-112) $) NIL)) (-2802 (($ (-401)) 14) (($ (-1183)) 16)) (-3544 (((-880) $) NIL)) (-3720 (($ $) NIL))) +(((-590) (-13 (-589) (-626 (-880)) (-10 -8 (-15 -2802 ($ (-401))) (-15 -2802 ($ (-1183))) (-15 -3344 ((-112) $))))) (T -590)) +((-2802 (*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-590)))) (-2802 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-590)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-590))))) +(-13 (-589) (-626 (-880)) (-10 -8 (-15 -2802 ($ (-401))) (-15 -2802 ($ (-1183))) (-15 -3344 ((-112) $)))) +((-3473 (((-112) $ $) NIL)) (-2833 (($) 7 T CONST)) (-2810 (((-1183) $) NIL)) (-2135 (($) 6 T CONST)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 15)) (-2813 (($) 9 T CONST)) (-2824 (($) 8 T CONST)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 11))) +(((-591) (-13 (-1125) (-10 -8 (-15 -2135 ($) -1512) (-15 -2833 ($) -1512) (-15 -2824 ($) -1512) (-15 -2813 ($) -1512)))) (T -591)) +((-2135 (*1 *1) (-5 *1 (-591))) (-2833 (*1 *1) (-5 *1 (-591))) (-2824 (*1 *1) (-5 *1 (-591))) (-2813 (*1 *1) (-5 *1 (-591)))) +(-13 (-1125) (-10 -8 (-15 -2135 ($) -1512) (-15 -2833 ($) -1512) (-15 -2824 ($) -1512) (-15 -2813 ($) -1512))) +((-3473 (((-112) $ $) NIL)) (-2257 (((-707 $) (-504)) 21)) (-2810 (((-1183) $) NIL)) (-2847 (($ (-1183)) 14)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 33)) (-2836 (((-215 4 (-130)) $) 24)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 26))) +(((-592) (-13 (-1125) (-10 -8 (-15 -2847 ($ (-1183))) (-15 -2836 ((-215 4 (-130)) $)) (-15 -2257 ((-707 $) (-504)))))) (T -592)) +((-2847 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-592)))) (-2836 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-592)))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-504)) (-5 *2 (-707 (-592))) (-5 *1 (-592))))) +(-13 (-1125) (-10 -8 (-15 -2847 ($ (-1183))) (-15 -2836 ((-215 4 (-130)) $)) (-15 -2257 ((-707 $) (-504))))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1913 (($ $ (-577)) 75)) (-1939 (((-112) $ $) NIL)) (-1534 (($) NIL T CONST)) (-2558 (($ (-1197 (-577)) (-577)) 81)) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) 66)) (-2567 (($ $) 43)) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-3817 (((-787) $) 16)) (-2487 (((-112) $) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-2587 (((-577)) 37)) (-2577 (((-577) $) 41)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3792 (($ $ (-577)) 24)) (-3462 (((-3 $ "failed") $ $) 71)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) 17)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 72)) (-2596 (((-1182 (-577)) $) 19)) (-3540 (($ $) 26)) (-3544 (((-880) $) 102) (($ (-577)) 61) (($ $) NIL)) (-4068 (((-787)) 15 T CONST)) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-4148 (((-577) $ (-577)) 46)) (-2806 (($) 44 T CONST)) (-2816 (($) 21 T CONST)) (-2970 (((-112) $ $) 52)) (-3066 (($ $) 60) (($ $ $) 48)) (-3055 (($ $ $) 59)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 62) (($ $ $) 63))) +(((-593 |#1| |#2|) (-887 |#1|) (-577) (-112)) (T -593)) +NIL +(-887 |#1|) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 30)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-2766 (((-112) $) NIL)) (-2732 (((-787)) NIL)) (-2339 (($ $ (-944)) NIL (|has| $ (-380))) (($ $) NIL)) (-1595 (((-1214 (-944) (-787)) (-577)) 59)) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1939 (((-112) $ $) NIL)) (-2229 (((-787)) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 $ "failed") $) 95)) (-2921 (($ $) 94)) (-3502 (($ (-1292 $)) 93)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) 44)) (-1910 (($) NIL)) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-4205 (($) 61)) (-1655 (((-112) $) NIL)) (-3233 (($ $) NIL) (($ $ (-787)) NIL)) (-1522 (((-112) $) NIL)) (-3817 (((-849 (-944)) $) NIL) (((-944) $) NIL)) (-2487 (((-112) $) NIL)) (-4073 (($) 49 (|has| $ (-380)))) (-4049 (((-112) $) NIL (|has| $ (-380)))) (-4145 (($ $ (-944)) NIL (|has| $ (-380))) (($ $) NIL)) (-4021 (((-3 $ "failed") $) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-4084 (((-1197 $) $ (-944)) NIL (|has| $ (-380))) (((-1197 $) $) 104)) (-4038 (((-944) $) 67)) (-2175 (((-1197 $) $) NIL (|has| $ (-380)))) (-2163 (((-3 (-1197 $) "failed") $ $) NIL (|has| $ (-380))) (((-1197 $) $) NIL (|has| $ (-380)))) (-2187 (($ $ (-1197 $)) NIL (|has| $ (-380)))) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1709 (($) NIL T CONST)) (-3222 (($ (-944)) 60)) (-2754 (((-112) $) 87)) (-1474 (((-1145) $) NIL)) (-4101 (($) 28 (|has| $ (-380)))) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) 54)) (-1902 (((-431 $) $) NIL)) (-2744 (((-944)) 86) (((-849 (-944))) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-3243 (((-3 (-787) "failed") $ $) NIL) (((-787) $) NIL)) (-2561 (((-135)) NIL)) (-2852 (($ $) NIL) (($ $ (-787)) NIL)) (-2887 (((-944) $) 85) (((-849 (-944)) $) NIL)) (-3557 (((-1197 $)) 102)) (-1585 (($) 66)) (-2200 (($) 50 (|has| $ (-380)))) (-2710 (((-705 $) (-1292 $)) NIL) (((-1292 $) $) 91)) (-4152 (((-577) $) 40)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL)) (-3544 (((-880) $) NIL) (($ (-577)) 42) (($ $) NIL) (($ (-420 (-577))) NIL)) (-2233 (((-3 $ "failed") $) NIL) (($ $) 105)) (-4068 (((-787)) 51 T CONST)) (-4448 (((-112) $ $) 107)) (-4060 (((-1292 $) (-944)) 97) (((-1292 $)) 96)) (-3281 (((-112) $ $) NIL)) (-2776 (((-112) $) NIL)) (-2806 (($) 31 T CONST)) (-2816 (($) 27 T CONST)) (-2721 (($ $ (-787)) NIL (|has| $ (-380))) (($ $) NIL (|has| $ (-380)))) (-2132 (($ $) NIL) (($ $ (-787)) NIL)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) 34)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 81) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL))) +(((-594 |#1|) (-13 (-361) (-340 $) (-627 (-577))) (-944)) (T -594)) +NIL +(-13 (-361) (-340 $) (-627 (-577))) +((-2859 (((-1297) (-1183)) 10))) +(((-595) (-10 -7 (-15 -2859 ((-1297) (-1183))))) (T -595)) +((-2859 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-595))))) +(-10 -7 (-15 -2859 ((-1297) (-1183)))) +((-3810 (((-599 |#2|) (-599 |#2|)) 42)) (-2027 (((-660 |#2|) (-599 |#2|)) 44)) (-1804 ((|#2| (-599 |#2|)) 50))) +(((-596 |#1| |#2|) (-10 -7 (-15 -3810 ((-599 |#2|) (-599 |#2|))) (-15 -2027 ((-660 |#2|) (-599 |#2|))) (-15 -1804 (|#2| (-599 |#2|)))) (-13 (-465) (-1063 (-577)) (-654 (-577))) (-13 (-29 |#1|) (-1227))) (T -596)) +((-1804 (*1 *2 *3) (-12 (-5 *3 (-599 *2)) (-4 *2 (-13 (-29 *4) (-1227))) (-5 *1 (-596 *4 *2)) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-599 *5)) (-4 *5 (-13 (-29 *4) (-1227))) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-660 *5)) (-5 *1 (-596 *4 *5)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-599 *4)) (-4 *4 (-13 (-29 *3) (-1227))) (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-596 *3 *4))))) +(-10 -7 (-15 -3810 ((-599 |#2|) (-599 |#2|))) (-15 -2027 ((-660 |#2|) (-599 |#2|))) (-15 -1804 (|#2| (-599 |#2|)))) +((-4087 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2898 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)) 30))) +(((-597 |#1| |#2|) (-10 -7 (-15 -4087 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|))) (-15 -4087 ((-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2898 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4087 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4087 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-375) (-375)) (T -597)) +((-4087 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-375)) (-4 *6 (-375)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-597 *5 *6)))) (-4087 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-375)) (-4 *2 (-375)) (-5 *1 (-597 *5 *2)))) (-4087 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2898 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-375)) (-4 *6 (-375)) (-5 *2 (-2 (|:| -2898 *6) (|:| |coeff| *6))) (-5 *1 (-597 *5 *6)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-375)) (-4 *6 (-375)) (-5 *2 (-599 *6)) (-5 *1 (-597 *5 *6))))) +(-10 -7 (-15 -4087 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|))) (-15 -4087 ((-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2898 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4087 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4087 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-2936 (($ (-519) (-610)) 14)) (-2918 (($ (-519) (-610) $) 16)) (-2927 (($ (-519) (-610)) 15)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL) (($ (-1206)) 7) (((-1206) $) 6)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-598) (-13 (-1125) (-503 (-1206)) (-10 -8 (-15 -2936 ($ (-519) (-610))) (-15 -2927 ($ (-519) (-610))) (-15 -2918 ($ (-519) (-610) $))))) (T -598)) +((-2936 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598)))) (-2927 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598)))) (-2918 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598))))) +(-13 (-1125) (-503 (-1206)) (-10 -8 (-15 -2936 ($ (-519) (-610))) (-15 -2927 ($ (-519) (-610))) (-15 -2918 ($ (-519) (-610) $)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) 76)) (-2921 ((|#1| $) NIL)) (-2898 ((|#1| $) 30)) (-2879 (((-660 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2908 (($ |#1| (-660 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 |#1|)) (|:| |logand| (-1197 |#1|)))) (-660 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2889 (((-660 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 |#1|)) (|:| |logand| (-1197 |#1|)))) $) 31)) (-2810 (((-1183) $) NIL)) (-4194 (($ |#1| |#1|) 38) (($ |#1| (-1201)) 49 (|has| |#1| (-1063 (-1201))))) (-1474 (((-1145) $) NIL)) (-2869 (((-112) $) 35)) (-2852 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1201)) 89 (|has| |#1| (-921 (-1201))))) (-3544 (((-880) $) 110) (($ |#1|) 29)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 18 T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) 17) (($ $ $) NIL)) (-3055 (($ $ $) 85)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 16) (($ (-420 (-577)) $) 41) (($ $ (-420 (-577))) NIL))) +(((-599 |#1|) (-13 (-733 (-420 (-577))) (-1063 |#1|) (-10 -8 (-15 -2908 ($ |#1| (-660 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 |#1|)) (|:| |logand| (-1197 |#1|)))) (-660 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2898 (|#1| $)) (-15 -2889 ((-660 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 |#1|)) (|:| |logand| (-1197 |#1|)))) $)) (-15 -2879 ((-660 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2869 ((-112) $)) (-15 -4194 ($ |#1| |#1|)) (-15 -2852 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-921 (-1201))) (-15 -2852 (|#1| $ (-1201))) |%noBranch|) (IF (|has| |#1| (-1063 (-1201))) (-15 -4194 ($ |#1| (-1201))) |%noBranch|))) (-375)) (T -599)) +((-2908 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-660 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 *2)) (|:| |logand| (-1197 *2))))) (-5 *4 (-660 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-375)) (-5 *1 (-599 *2)))) (-2898 (*1 *2 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-375)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 *3)) (|:| |logand| (-1197 *3))))) (-5 *1 (-599 *3)) (-4 *3 (-375)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-599 *3)) (-4 *3 (-375)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-375)))) (-4194 (*1 *1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-375)))) (-2852 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-599 *2)) (-4 *2 (-375)))) (-2852 (*1 *2 *1 *3) (-12 (-4 *2 (-375)) (-4 *2 (-921 *3)) (-5 *1 (-599 *2)) (-5 *3 (-1201)))) (-4194 (*1 *1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *1 (-599 *2)) (-4 *2 (-1063 *3)) (-4 *2 (-375))))) +(-13 (-733 (-420 (-577))) (-1063 |#1|) (-10 -8 (-15 -2908 ($ |#1| (-660 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 |#1|)) (|:| |logand| (-1197 |#1|)))) (-660 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2898 (|#1| $)) (-15 -2889 ((-660 (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 |#1|)) (|:| |logand| (-1197 |#1|)))) $)) (-15 -2879 ((-660 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2869 ((-112) $)) (-15 -4194 ($ |#1| |#1|)) (-15 -2852 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-921 (-1201))) (-15 -2852 (|#1| $ (-1201))) |%noBranch|) (IF (|has| |#1| (-1063 (-1201))) (-15 -4194 ($ |#1| (-1201))) |%noBranch|))) +((-2976 (((-112) |#1|) 16)) (-2986 (((-3 |#1| "failed") |#1|) 14)) (-2957 (((-2 (|:| -4146 |#1|) (|:| -3556 (-787))) |#1|) 38) (((-3 |#1| "failed") |#1| (-787)) 18)) (-2947 (((-112) |#1| (-787)) 19)) (-1784 ((|#1| |#1|) 42)) (-2966 ((|#1| |#1| (-787)) 45))) +(((-600 |#1|) (-10 -7 (-15 -2947 ((-112) |#1| (-787))) (-15 -2957 ((-3 |#1| "failed") |#1| (-787))) (-15 -2957 ((-2 (|:| -4146 |#1|) (|:| -3556 (-787))) |#1|)) (-15 -2966 (|#1| |#1| (-787))) (-15 -2976 ((-112) |#1|)) (-15 -2986 ((-3 |#1| "failed") |#1|)) (-15 -1784 (|#1| |#1|))) (-558)) (T -600)) +((-1784 (*1 *2 *2) (-12 (-5 *1 (-600 *2)) (-4 *2 (-558)))) (-2986 (*1 *2 *2) (|partial| -12 (-5 *1 (-600 *2)) (-4 *2 (-558)))) (-2976 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-558)))) (-2966 (*1 *2 *2 *3) (-12 (-5 *3 (-787)) (-5 *1 (-600 *2)) (-4 *2 (-558)))) (-2957 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4146 *3) (|:| -3556 (-787)))) (-5 *1 (-600 *3)) (-4 *3 (-558)))) (-2957 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-787)) (-5 *1 (-600 *2)) (-4 *2 (-558)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *4 (-787)) (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-558))))) +(-10 -7 (-15 -2947 ((-112) |#1| (-787))) (-15 -2957 ((-3 |#1| "failed") |#1| (-787))) (-15 -2957 ((-2 (|:| -4146 |#1|) (|:| -3556 (-787))) |#1|)) (-15 -2966 (|#1| |#1| (-787))) (-15 -2976 ((-112) |#1|)) (-15 -2986 ((-3 |#1| "failed") |#1|)) (-15 -1784 (|#1| |#1|))) +((-1794 (((-1197 |#1|) (-944)) 44))) +(((-601 |#1|) (-10 -7 (-15 -1794 ((-1197 |#1|) (-944)))) (-361)) (T -601)) +((-1794 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-601 *4)) (-4 *4 (-361))))) +(-10 -7 (-15 -1794 ((-1197 |#1|) (-944)))) +((-3810 (((-599 (-420 (-975 |#1|))) (-599 (-420 (-975 |#1|)))) 27)) (-4147 (((-3 (-327 |#1|) (-660 (-327 |#1|))) (-420 (-975 |#1|)) (-1201)) 34 (|has| |#1| (-148)))) (-2027 (((-660 (-327 |#1|)) (-599 (-420 (-975 |#1|)))) 19)) (-1813 (((-327 |#1|) (-420 (-975 |#1|)) (-1201)) 32 (|has| |#1| (-148)))) (-1804 (((-327 |#1|) (-599 (-420 (-975 |#1|)))) 21))) +(((-602 |#1|) (-10 -7 (-15 -3810 ((-599 (-420 (-975 |#1|))) (-599 (-420 (-975 |#1|))))) (-15 -2027 ((-660 (-327 |#1|)) (-599 (-420 (-975 |#1|))))) (-15 -1804 ((-327 |#1|) (-599 (-420 (-975 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -4147 ((-3 (-327 |#1|) (-660 (-327 |#1|))) (-420 (-975 |#1|)) (-1201))) (-15 -1813 ((-327 |#1|) (-420 (-975 |#1|)) (-1201)))) |%noBranch|)) (-13 (-465) (-1063 (-577)) (-654 (-577)))) (T -602)) +((-1813 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) (-4 *5 (-148)) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-327 *5)) (-5 *1 (-602 *5)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) (-4 *5 (-148)) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 (-327 *5) (-660 (-327 *5)))) (-5 *1 (-602 *5)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-599 (-420 (-975 *4)))) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-327 *4)) (-5 *1 (-602 *4)))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-599 (-420 (-975 *4)))) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-660 (-327 *4))) (-5 *1 (-602 *4)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-599 (-420 (-975 *3)))) (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-602 *3))))) +(-10 -7 (-15 -3810 ((-599 (-420 (-975 |#1|))) (-599 (-420 (-975 |#1|))))) (-15 -2027 ((-660 (-327 |#1|)) (-599 (-420 (-975 |#1|))))) (-15 -1804 ((-327 |#1|) (-599 (-420 (-975 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -4147 ((-3 (-327 |#1|) (-660 (-327 |#1|))) (-420 (-975 |#1|)) (-1201))) (-15 -1813 ((-327 |#1|) (-420 (-975 |#1|)) (-1201)))) |%noBranch|)) +((-1835 (((-660 (-705 (-577))) (-660 (-944)) (-660 (-928 (-577)))) 78) (((-660 (-705 (-577))) (-660 (-944))) 79) (((-705 (-577)) (-660 (-944)) (-928 (-577))) 72)) (-1824 (((-787) (-660 (-944))) 69))) +(((-603) (-10 -7 (-15 -1824 ((-787) (-660 (-944)))) (-15 -1835 ((-705 (-577)) (-660 (-944)) (-928 (-577)))) (-15 -1835 ((-660 (-705 (-577))) (-660 (-944)))) (-15 -1835 ((-660 (-705 (-577))) (-660 (-944)) (-660 (-928 (-577))))))) (T -603)) +((-1835 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-944))) (-5 *4 (-660 (-928 (-577)))) (-5 *2 (-660 (-705 (-577)))) (-5 *1 (-603)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-660 (-944))) (-5 *2 (-660 (-705 (-577)))) (-5 *1 (-603)))) (-1835 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-944))) (-5 *4 (-928 (-577))) (-5 *2 (-705 (-577))) (-5 *1 (-603)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-660 (-944))) (-5 *2 (-787)) (-5 *1 (-603))))) +(-10 -7 (-15 -1824 ((-787) (-660 (-944)))) (-15 -1835 ((-705 (-577)) (-660 (-944)) (-928 (-577)))) (-15 -1835 ((-660 (-705 (-577))) (-660 (-944)))) (-15 -1835 ((-660 (-705 (-577))) (-660 (-944)) (-660 (-928 (-577)))))) +((-2617 (((-660 |#5|) |#5| (-112)) 100)) (-1846 (((-112) |#5| (-660 |#5|)) 34))) +(((-604 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2617 ((-660 |#5|) |#5| (-112))) (-15 -1846 ((-112) |#5| (-660 |#5|)))) (-13 (-318) (-148)) (-809) (-865) (-1090 |#1| |#2| |#3|) (-1134 |#1| |#2| |#3| |#4|)) (T -604)) +((-1846 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-1134 *5 *6 *7 *8)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-604 *5 *6 *7 *8 *3)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)) (-5 *2 (-660 *3)) (-5 *1 (-604 *5 *6 *7 *8 *3)) (-4 *3 (-1134 *5 *6 *7 *8))))) +(-10 -7 (-15 -2617 ((-660 |#5|) |#5| (-112))) (-15 -1846 ((-112) |#5| (-660 |#5|)))) +((-3473 (((-112) $ $) NIL)) (-1733 (((-1160) $) 11)) (-1721 (((-1160) $) 9)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 17) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-605) (-13 (-1108) (-10 -8 (-15 -1721 ((-1160) $)) (-15 -1733 ((-1160) $))))) (T -605)) +((-1721 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-605)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-605))))) +(-13 (-1108) (-10 -8 (-15 -1721 ((-1160) $)) (-15 -1733 ((-1160) $)))) +((-3473 (((-112) $ $) NIL (|has| (-145) (-102)))) (-3835 (($ $) 38)) (-3846 (($ $) NIL)) (-3797 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4090 (((-112) $ $) 67)) (-4065 (((-112) $ $ (-577)) 62)) (-3810 (((-660 $) $ (-145)) 75) (((-660 $) $ (-142)) 76)) (-4077 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-865)))) (-4053 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4471))) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| (-145) (-865))))) (-1864 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-865)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 (((-145) $ (-577) (-145)) 59 (|has| $ (-6 -4471))) (((-145) $ (-1259 (-577)) (-145)) NIL (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)))) (-1534 (($) NIL T CONST)) (-2722 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-3645 (($ $) NIL (|has| $ (-6 -4471)))) (-3787 (($ $) NIL)) (-3823 (($ $ (-1259 (-577)) $) 57)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))))) (-3904 (($ (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)))) (-3654 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4470))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4470)))) (-2192 (((-145) $ (-577) (-145)) NIL (|has| $ (-6 -4471)))) (-2117 (((-145) $ (-577)) NIL)) (-4116 (((-112) $ $) 88)) (-3618 (((-577) (-1 (-112) (-145)) $) NIL) (((-577) (-145) $) NIL (|has| (-145) (-1125))) (((-577) (-145) $ (-577)) 64 (|has| (-145) (-1125))) (((-577) $ $ (-577)) 63) (((-577) (-142) $ (-577)) 66)) (-1461 (((-660 (-145)) $) NIL (|has| $ (-6 -4470)))) (-4113 (($ (-787) (-145)) 9)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) 32 (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| (-145) (-865)))) (-3283 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-865)))) (-2530 (((-660 (-145)) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))))) (-2416 (((-577) $) 47 (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| (-145) (-865)))) (-1997 (((-112) $ $ (-145)) 89)) (-1367 (((-787) $ $ (-145)) 86)) (-2182 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-3857 (($ $) 41)) (-3869 (($ $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2733 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-2810 (((-1183) $) 43 (|has| (-145) (-1125)))) (-2308 (($ (-145) $ (-577)) NIL) (($ $ $ (-577)) 27)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-1474 (((-1145) $) 85 (|has| (-145) (-1125)))) (-3552 (((-145) $) NIL (|has| (-577) (-865)))) (-1828 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2397 (($ $ (-145)) NIL (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-145)))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125)))) (($ $ (-305 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125)))) (($ $ (-660 (-145)) (-660 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))))) (-4306 (((-660 (-145)) $) NIL)) (-3697 (((-112) $) 15)) (-3639 (($) 10)) (-2872 (((-145) $ (-577) (-145)) NIL) (((-145) $ (-577)) 68) (($ $ (-1259 (-577))) 25) (($ $ $) NIL)) (-3453 (($ $ (-577)) NIL) (($ $ (-1259 (-577))) NIL)) (-1485 (((-787) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470))) (((-787) (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))))) (-4064 (($ $ $ (-577)) 81 (|has| $ (-6 -4471)))) (-1944 (($ $) 20)) (-4152 (((-549) $) NIL (|has| (-145) (-627 (-549))))) (-3553 (($ (-660 (-145))) NIL)) (-1677 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-660 $)) 82)) (-3544 (($ (-145)) NIL) (((-880) $) 31 (|has| (-145) (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| (-145) (-102)))) (-1524 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) NIL (|has| (-145) (-865)))) (-3000 (((-112) $ $) NIL (|has| (-145) (-865)))) (-2970 (((-112) $ $) 17 (|has| (-145) (-102)))) (-3012 (((-112) $ $) NIL (|has| (-145) (-865)))) (-2990 (((-112) $ $) 18 (|has| (-145) (-865)))) (-3484 (((-787) $) 16 (|has| $ (-6 -4470))))) +(((-606 |#1|) (-1169) (-577)) (T -606)) +NIL +(-1169) +((-2656 (((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2| (-1119 |#4|)) 32))) +(((-607 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2656 ((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2| (-1119 |#4|))) (-15 -2656 ((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2|))) (-809) (-865) (-569) (-972 |#3| |#1| |#2|)) (T -607)) +((-2656 (*1 *2 *3 *4) (-12 (-4 *5 (-809)) (-4 *4 (-865)) (-4 *6 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-577)))) (-5 *1 (-607 *5 *4 *6 *3)) (-4 *3 (-972 *6 *5 *4)))) (-2656 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1119 *3)) (-4 *3 (-972 *7 *6 *4)) (-4 *6 (-809)) (-4 *4 (-865)) (-4 *7 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-577)))) (-5 *1 (-607 *6 *4 *7 *3))))) +(-10 -7 (-15 -2656 ((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2| (-1119 |#4|))) (-15 -2656 ((-2 (|:| |num| |#4|) (|:| |den| (-577))) |#4| |#2|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 71)) (-2058 (((-660 (-1107)) $) NIL)) (-3076 (((-1201) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-3804 (($ $ (-577)) 58) (($ $ (-577) (-577)) 59)) (-3829 (((-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 65)) (-2226 (($ $) 109)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2201 (((-880) (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) (-1051 (-859 (-577))) (-1201) |#1| (-420 (-577))) 241)) (-3689 (($ (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 36)) (-1534 (($) NIL T CONST)) (-2248 (($ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3550 (((-112) $) NIL)) (-3817 (((-577) $) 63) (((-577) $ (-577)) 64)) (-2487 (((-112) $) NIL)) (-3864 (($ $ (-944)) 83)) (-4158 (($ (-1 |#1| (-577)) $) 80)) (-2811 (((-112) $) 26)) (-2030 (($ |#1| (-577)) 22) (($ $ (-1107) (-577)) NIL) (($ $ (-660 (-1107)) (-660 (-577))) NIL)) (-4087 (($ (-1 |#1| |#1|) $) 75)) (-2275 (($ (-1051 (-859 (-577))) (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 13)) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-2810 (((-1183) $) NIL)) (-4147 (($ $) 161 (|has| |#1| (-38 (-420 (-577)))))) (-2239 (((-3 $ "failed") $ $ (-112)) 108)) (-2214 (($ $ $) 116)) (-1474 (((-1145) $) NIL)) (-2252 (((-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 15)) (-2264 (((-1051 (-859 (-577))) $) 14)) (-3792 (($ $ (-577)) 47)) (-3462 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)))) (-3280 (((-1182 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-577)))))) (-2872 ((|#1| $ (-577)) 62) (($ $ $) NIL (|has| (-577) (-1137)))) (-2852 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-577) |#1|)))) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (-2887 (((-577) $) NIL)) (-3540 (($ $) 48)) (-3544 (((-880) $) NIL) (($ (-577)) 29) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $) NIL (|has| |#1| (-569))) (($ |#1|) 28 (|has| |#1| (-174)))) (-2322 ((|#1| $ (-577)) 61)) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) 39 T CONST)) (-3693 ((|#1| $) NIL)) (-1964 (($ $) 198 (|has| |#1| (-38 (-420 (-577)))))) (-2108 (($ $) 169 (|has| |#1| (-38 (-420 (-577)))))) (-1988 (($ $) 202 (|has| |#1| (-38 (-420 (-577)))))) (-2138 (($ $) 174 (|has| |#1| (-38 (-420 (-577)))))) (-1940 (($ $) 201 (|has| |#1| (-38 (-420 (-577)))))) (-2086 (($ $) 173 (|has| |#1| (-38 (-420 (-577)))))) (-2176 (($ $ (-420 (-577))) 177 (|has| |#1| (-38 (-420 (-577)))))) (-2188 (($ $ |#1|) 157 (|has| |#1| (-38 (-420 (-577)))))) (-2152 (($ $) 204 (|has| |#1| (-38 (-420 (-577)))))) (-2164 (($ $) 160 (|has| |#1| (-38 (-420 (-577)))))) (-1928 (($ $) 203 (|has| |#1| (-38 (-420 (-577)))))) (-2075 (($ $) 175 (|has| |#1| (-38 (-420 (-577)))))) (-1953 (($ $) 199 (|has| |#1| (-38 (-420 (-577)))))) (-2097 (($ $) 171 (|has| |#1| (-38 (-420 (-577)))))) (-1976 (($ $) 200 (|has| |#1| (-38 (-420 (-577)))))) (-2123 (($ $) 172 (|has| |#1| (-38 (-420 (-577)))))) (-1893 (($ $) 209 (|has| |#1| (-38 (-420 (-577)))))) (-2034 (($ $) 185 (|has| |#1| (-38 (-420 (-577)))))) (-1916 (($ $) 206 (|has| |#1| (-38 (-420 (-577)))))) (-2062 (($ $) 181 (|has| |#1| (-38 (-420 (-577)))))) (-1871 (($ $) 213 (|has| |#1| (-38 (-420 (-577)))))) (-2010 (($ $) 189 (|has| |#1| (-38 (-420 (-577)))))) (-1857 (($ $) 215 (|has| |#1| (-38 (-420 (-577)))))) (-1999 (($ $) 191 (|has| |#1| (-38 (-420 (-577)))))) (-1882 (($ $) 211 (|has| |#1| (-38 (-420 (-577)))))) (-2021 (($ $) 187 (|has| |#1| (-38 (-420 (-577)))))) (-1904 (($ $) 208 (|has| |#1| (-38 (-420 (-577)))))) (-2049 (($ $) 183 (|has| |#1| (-38 (-420 (-577)))))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-4148 ((|#1| $ (-577)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -3544 (|#1| (-1201))))))) (-2806 (($) 30 T CONST)) (-2816 (($) 40 T CONST)) (-2132 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-577) |#1|)))) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (-2970 (((-112) $ $) 73)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375)))) (-3066 (($ $) 91) (($ $ $) 72)) (-3055 (($ $ $) 88)) (** (($ $ (-944)) NIL) (($ $ (-787)) 111)) (* (($ (-944) $) 98) (($ (-787) $) 96) (($ (-577) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))))) +(((-608 |#1|) (-13 (-1270 |#1| (-577)) (-10 -8 (-15 -2275 ($ (-1051 (-859 (-577))) (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))))) (-15 -2264 ((-1051 (-859 (-577))) $)) (-15 -2252 ((-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $)) (-15 -3689 ($ (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))))) (-15 -2811 ((-112) $)) (-15 -4158 ($ (-1 |#1| (-577)) $)) (-15 -2239 ((-3 $ "failed") $ $ (-112))) (-15 -2226 ($ $)) (-15 -2214 ($ $ $)) (-15 -2201 ((-880) (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) (-1051 (-859 (-577))) (-1201) |#1| (-420 (-577)))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4147 ($ $)) (-15 -2188 ($ $ |#1|)) (-15 -2176 ($ $ (-420 (-577)))) (-15 -2164 ($ $)) (-15 -2152 ($ $)) (-15 -2138 ($ $)) (-15 -2123 ($ $)) (-15 -2108 ($ $)) (-15 -2097 ($ $)) (-15 -2086 ($ $)) (-15 -2075 ($ $)) (-15 -2062 ($ $)) (-15 -2049 ($ $)) (-15 -2034 ($ $)) (-15 -2021 ($ $)) (-15 -2010 ($ $)) (-15 -1999 ($ $)) (-15 -1988 ($ $)) (-15 -1976 ($ $)) (-15 -1964 ($ $)) (-15 -1953 ($ $)) (-15 -1940 ($ $)) (-15 -1928 ($ $)) (-15 -1916 ($ $)) (-15 -1904 ($ $)) (-15 -1893 ($ $)) (-15 -1882 ($ $)) (-15 -1871 ($ $)) (-15 -1857 ($ $))) |%noBranch|))) (-1074)) (T -608)) +((-2811 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1074)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-1051 (-859 (-577)))) (-5 *3 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *4)))) (-4 *4 (-1074)) (-5 *1 (-608 *4)))) (-2264 (*1 *2 *1) (-12 (-5 *2 (-1051 (-859 (-577)))) (-5 *1 (-608 *3)) (-4 *3 (-1074)))) (-2252 (*1 *2 *1) (-12 (-5 *2 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *3)))) (-5 *1 (-608 *3)) (-4 *3 (-1074)))) (-3689 (*1 *1 *2) (-12 (-5 *2 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *3)))) (-4 *3 (-1074)) (-5 *1 (-608 *3)))) (-4158 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-577))) (-4 *3 (-1074)) (-5 *1 (-608 *3)))) (-2239 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1074)))) (-2226 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1074)))) (-2214 (*1 *1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1074)))) (-2201 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *6)))) (-5 *4 (-1051 (-859 (-577)))) (-5 *5 (-1201)) (-5 *7 (-420 (-577))) (-4 *6 (-1074)) (-5 *2 (-880)) (-5 *1 (-608 *6)))) (-4147 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2188 (*1 *1 *1 *2) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2176 (*1 *1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-608 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1074)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2152 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2138 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2123 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2108 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2097 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2086 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2075 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2062 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2049 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2034 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2021 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-2010 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-1999 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-1988 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-1976 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-1964 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-1953 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-1940 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-1928 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-1916 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-1904 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-1893 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-1882 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-1871 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) (-1857 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(-13 (-1270 |#1| (-577)) (-10 -8 (-15 -2275 ($ (-1051 (-859 (-577))) (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))))) (-15 -2264 ((-1051 (-859 (-577))) $)) (-15 -2252 ((-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $)) (-15 -3689 ($ (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))))) (-15 -2811 ((-112) $)) (-15 -4158 ($ (-1 |#1| (-577)) $)) (-15 -2239 ((-3 $ "failed") $ $ (-112))) (-15 -2226 ($ $)) (-15 -2214 ($ $ $)) (-15 -2201 ((-880) (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) (-1051 (-859 (-577))) (-1201) |#1| (-420 (-577)))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4147 ($ $)) (-15 -2188 ($ $ |#1|)) (-15 -2176 ($ $ (-420 (-577)))) (-15 -2164 ($ $)) (-15 -2152 ($ $)) (-15 -2138 ($ $)) (-15 -2123 ($ $)) (-15 -2108 ($ $)) (-15 -2097 ($ $)) (-15 -2086 ($ $)) (-15 -2075 ($ $)) (-15 -2062 ($ $)) (-15 -2049 ($ $)) (-15 -2034 ($ $)) (-15 -2021 ($ $)) (-15 -2010 ($ $)) (-15 -1999 ($ $)) (-15 -1988 ($ $)) (-15 -1976 ($ $)) (-15 -1964 ($ $)) (-15 -1953 ($ $)) (-15 -1940 ($ $)) (-15 -1928 ($ $)) (-15 -1916 ($ $)) (-15 -1904 ($ $)) (-15 -1893 ($ $)) (-15 -1882 ($ $)) (-15 -1871 ($ $)) (-15 -1857 ($ $))) |%noBranch|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 63)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3689 (($ (-1182 |#1|)) 9)) (-1534 (($) NIL T CONST)) (-4187 (((-3 $ "failed") $) 44)) (-3550 (((-112) $) 56)) (-3817 (((-787) $) 61) (((-787) $ (-787)) 60)) (-2487 (((-112) $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3462 (((-3 $ "failed") $ $) 46 (|has| |#1| (-569)))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL (|has| |#1| (-569)))) (-4182 (((-1182 |#1|) $) 25)) (-4068 (((-787)) 55 T CONST)) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2806 (($) 10 T CONST)) (-2816 (($) 14 T CONST)) (-2970 (((-112) $ $) 24)) (-3066 (($ $) 32) (($ $ $) 16)) (-3055 (($ $ $) 27)) (** (($ $ (-944)) NIL) (($ $ (-787)) 53)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-577)) 38))) +(((-609 |#1|) (-13 (-1074) (-111 |#1| |#1|) (-10 -8 (-15 -4182 ((-1182 |#1|) $)) (-15 -3689 ($ (-1182 |#1|))) (-15 -3550 ((-112) $)) (-15 -3817 ((-787) $)) (-15 -3817 ((-787) $ (-787))) (-15 * ($ $ (-577))) (IF (|has| |#1| (-569)) (-6 (-569)) |%noBranch|))) (-1074)) (T -609)) +((-4182 (*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-609 *3)) (-4 *3 (-1074)))) (-3689 (*1 *1 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-609 *3)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-609 *3)) (-4 *3 (-1074)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-609 *3)) (-4 *3 (-1074)))) (-3817 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-609 *3)) (-4 *3 (-1074)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-609 *3)) (-4 *3 (-1074))))) +(-13 (-1074) (-111 |#1| |#1|) (-10 -8 (-15 -4182 ((-1182 |#1|) $)) (-15 -3689 ($ (-1182 |#1|))) (-15 -3550 ((-112) $)) (-15 -3817 ((-787) $)) (-15 -3817 ((-787) $ (-787))) (-15 * ($ $ (-577))) (IF (|has| |#1| (-569)) (-6 (-569)) |%noBranch|))) +((-3473 (((-112) $ $) NIL)) (-2310 (($) 8 T CONST)) (-2320 (($) 7 T CONST)) (-2287 (($ $ (-660 $)) 16)) (-2810 (((-1183) $) NIL)) (-2330 (($) 6 T CONST)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL) (($ (-1206)) 15) (((-1206) $) 10)) (-2299 (($) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-610) (-13 (-1125) (-503 (-1206)) (-10 -8 (-15 -2330 ($) -1512) (-15 -2320 ($) -1512) (-15 -2310 ($) -1512) (-15 -2299 ($) -1512) (-15 -2287 ($ $ (-660 $)))))) (T -610)) +((-2330 (*1 *1) (-5 *1 (-610))) (-2320 (*1 *1) (-5 *1 (-610))) (-2310 (*1 *1) (-5 *1 (-610))) (-2299 (*1 *1) (-5 *1 (-610))) (-2287 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-610))) (-5 *1 (-610))))) +(-13 (-1125) (-503 (-1206)) (-10 -8 (-15 -2330 ($) -1512) (-15 -2320 ($) -1512) (-15 -2310 ($) -1512) (-15 -2299 ($) -1512) (-15 -2287 ($ $ (-660 $))))) +((-4087 (((-614 |#2|) (-1 |#2| |#1|) (-614 |#1|)) 15))) +(((-611 |#1| |#2|) (-10 -7 (-15 -4087 ((-614 |#2|) (-1 |#2| |#1|) (-614 |#1|)))) (-1242) (-1242)) (T -611)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-614 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-614 *6)) (-5 *1 (-611 *5 *6))))) +(-10 -7 (-15 -4087 ((-614 |#2|) (-1 |#2| |#1|) (-614 |#1|)))) +((-4087 (((-1182 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-1182 |#2|)) 20) (((-1182 |#3|) (-1 |#3| |#1| |#2|) (-1182 |#1|) (-614 |#2|)) 19) (((-614 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-614 |#2|)) 18))) +(((-612 |#1| |#2| |#3|) (-10 -7 (-15 -4087 ((-614 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-614 |#2|))) (-15 -4087 ((-1182 |#3|) (-1 |#3| |#1| |#2|) (-1182 |#1|) (-614 |#2|))) (-15 -4087 ((-1182 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-1182 |#2|)))) (-1242) (-1242) (-1242)) (T -612)) +((-4087 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-614 *6)) (-5 *5 (-1182 *7)) (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-1182 *8)) (-5 *1 (-612 *6 *7 *8)))) (-4087 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1182 *6)) (-5 *5 (-614 *7)) (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-1182 *8)) (-5 *1 (-612 *6 *7 *8)))) (-4087 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-614 *6)) (-5 *5 (-614 *7)) (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-614 *8)) (-5 *1 (-612 *6 *7 *8))))) +(-10 -7 (-15 -4087 ((-614 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-614 |#2|))) (-15 -4087 ((-1182 |#3|) (-1 |#3| |#1| |#2|) (-1182 |#1|) (-614 |#2|))) (-15 -4087 ((-1182 |#3|) (-1 |#3| |#1| |#2|) (-614 |#1|) (-1182 |#2|)))) +((-2380 ((|#3| |#3| (-660 (-625 |#3|)) (-660 (-1201))) 57)) (-2369 (((-171 |#2|) |#3|) 122)) (-2341 ((|#3| (-171 |#2|)) 46)) (-2350 ((|#2| |#3|) 21)) (-2359 ((|#3| |#2|) 35))) +(((-613 |#1| |#2| |#3|) (-10 -7 (-15 -2341 (|#3| (-171 |#2|))) (-15 -2350 (|#2| |#3|)) (-15 -2359 (|#3| |#2|)) (-15 -2369 ((-171 |#2|) |#3|)) (-15 -2380 (|#3| |#3| (-660 (-625 |#3|)) (-660 (-1201))))) (-569) (-13 (-443 |#1|) (-1027) (-1227)) (-13 (-443 (-171 |#1|)) (-1027) (-1227))) (T -613)) +((-2380 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-660 (-625 *2))) (-5 *4 (-660 (-1201))) (-4 *2 (-13 (-443 (-171 *5)) (-1027) (-1227))) (-4 *5 (-569)) (-5 *1 (-613 *5 *6 *2)) (-4 *6 (-13 (-443 *5) (-1027) (-1227))))) (-2369 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-171 *5)) (-5 *1 (-613 *4 *5 *3)) (-4 *5 (-13 (-443 *4) (-1027) (-1227))) (-4 *3 (-13 (-443 (-171 *4)) (-1027) (-1227))))) (-2359 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *2 (-13 (-443 (-171 *4)) (-1027) (-1227))) (-5 *1 (-613 *4 *3 *2)) (-4 *3 (-13 (-443 *4) (-1027) (-1227))))) (-2350 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *2 (-13 (-443 *4) (-1027) (-1227))) (-5 *1 (-613 *4 *2 *3)) (-4 *3 (-13 (-443 (-171 *4)) (-1027) (-1227))))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-443 *4) (-1027) (-1227))) (-4 *4 (-569)) (-4 *2 (-13 (-443 (-171 *4)) (-1027) (-1227))) (-5 *1 (-613 *4 *5 *2))))) +(-10 -7 (-15 -2341 (|#3| (-171 |#2|))) (-15 -2350 (|#2| |#3|)) (-15 -2359 (|#3| |#2|)) (-15 -2369 ((-171 |#2|) |#3|)) (-15 -2380 (|#3| |#3| (-660 (-625 |#3|)) (-660 (-1201))))) +((-2067 (($ (-1 (-112) |#1|) $) 17)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-4349 (($ (-1 |#1| |#1|) |#1|) 9)) (-2040 (($ (-1 (-112) |#1|) $) 13)) (-2055 (($ (-1 (-112) |#1|) $) 15)) (-3553 (((-1182 |#1|) $) 18)) (-3544 (((-880) $) NIL))) +(((-614 |#1|) (-13 (-626 (-880)) (-10 -8 (-15 -4087 ($ (-1 |#1| |#1|) $)) (-15 -2040 ($ (-1 (-112) |#1|) $)) (-15 -2055 ($ (-1 (-112) |#1|) $)) (-15 -2067 ($ (-1 (-112) |#1|) $)) (-15 -4349 ($ (-1 |#1| |#1|) |#1|)) (-15 -3553 ((-1182 |#1|) $)))) (-1242)) (T -614)) +((-4087 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) (-2040 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) (-2055 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) (-2067 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) (-4349 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) (-3553 (*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-614 *3)) (-4 *3 (-1242))))) +(-13 (-626 (-880)) (-10 -8 (-15 -4087 ($ (-1 |#1| |#1|) $)) (-15 -2040 ($ (-1 (-112) |#1|) $)) (-15 -2055 ($ (-1 (-112) |#1|) $)) (-15 -2067 ($ (-1 (-112) |#1|) $)) (-15 -4349 ($ (-1 |#1| |#1|) |#1|)) (-15 -3553 ((-1182 |#1|) $)))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3785 (($ (-787)) NIL (|has| |#1| (-23)))) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4077 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-865)))) (-4053 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471))) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))))) (-1864 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-865)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-1534 (($) NIL T CONST)) (-3645 (($ $) NIL (|has| $ (-6 -4471)))) (-3787 (($ $) NIL)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3904 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)))) (-2192 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) NIL)) (-3618 (((-577) (-1 (-112) |#1|) $) NIL) (((-577) |#1| $) NIL (|has| |#1| (-1125))) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)))) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2462 (((-705 |#1|) $ $) NIL (|has| |#1| (-1074)))) (-4113 (($ (-787) |#1|) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) NIL (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| |#1| (-865)))) (-3283 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-865)))) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2416 (((-577) $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| |#1| (-865)))) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4320 ((|#1| $) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1074))))) (-1443 (((-112) $ (-787)) NIL)) (-3402 ((|#1| $) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1074))))) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-2308 (($ |#1| $ (-577)) NIL) (($ $ $ (-577)) NIL)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-3552 ((|#1| $) NIL (|has| (-577) (-865)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2397 (($ $ |#1|) NIL (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#1| $ (-577) |#1|) NIL) ((|#1| $ (-577)) NIL) (($ $ (-1259 (-577))) NIL)) (-3116 ((|#1| $ $) NIL (|has| |#1| (-1074)))) (-3453 (($ $ (-577)) NIL) (($ $ (-1259 (-577))) NIL)) (-4331 (($ $ $) NIL (|has| |#1| (-1074)))) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4064 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) NIL)) (-1677 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-660 $)) NIL)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3066 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3055 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-577) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-742))) (($ $ |#1|) NIL (|has| |#1| (-742)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-615 |#1| |#2|) (-1290 |#1|) (-1242) (-577)) (T -615)) +NIL +(-1290 |#1|) +((-2389 (((-1297) $ |#2| |#2|) 35)) (-2406 ((|#2| $) 23)) (-2416 ((|#2| $) 21)) (-2182 (($ (-1 |#3| |#3|) $) 32)) (-4087 (($ (-1 |#3| |#3|) $) 30)) (-3552 ((|#3| $) 26)) (-2397 (($ $ |#3|) 33)) (-4274 (((-112) |#3| $) 17)) (-4306 (((-660 |#3|) $) 15)) (-2872 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-616 |#1| |#2| |#3|) (-10 -8 (-15 -2389 ((-1297) |#1| |#2| |#2|)) (-15 -2397 (|#1| |#1| |#3|)) (-15 -3552 (|#3| |#1|)) (-15 -2406 (|#2| |#1|)) (-15 -2416 (|#2| |#1|)) (-15 -4274 ((-112) |#3| |#1|)) (-15 -4306 ((-660 |#3|) |#1|)) (-15 -2872 (|#3| |#1| |#2|)) (-15 -2872 (|#3| |#1| |#2| |#3|)) (-15 -2182 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4087 (|#1| (-1 |#3| |#3|) |#1|))) (-617 |#2| |#3|) (-1125) (-1242)) (T -616)) +NIL +(-10 -8 (-15 -2389 ((-1297) |#1| |#2| |#2|)) (-15 -2397 (|#1| |#1| |#3|)) (-15 -3552 (|#3| |#1|)) (-15 -2406 (|#2| |#1|)) (-15 -2416 (|#2| |#1|)) (-15 -4274 ((-112) |#3| |#1|)) (-15 -4306 ((-660 |#3|) |#1|)) (-15 -2872 (|#3| |#1| |#2|)) (-15 -2872 (|#3| |#1| |#2| |#3|)) (-15 -2182 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4087 (|#1| (-1 |#3| |#3|) |#1|))) +((-3473 (((-112) $ $) 20 (|has| |#2| (-102)))) (-2389 (((-1297) $ |#1| |#1|) 41 (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) 8)) (-3709 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4471)))) (-1534 (($) 7 T CONST)) (-2192 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4471)))) (-2117 ((|#2| $ |#1|) 52)) (-1461 (((-660 |#2|) $) 31 (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) 9)) (-2406 ((|#1| $) 44 (|has| |#1| (-865)))) (-2530 (((-660 |#2|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470))))) (-2416 ((|#1| $) 45 (|has| |#1| (-865)))) (-2182 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#2| |#2|) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23 (|has| |#2| (-1125)))) (-4285 (((-660 |#1|) $) 47)) (-4298 (((-112) |#1| $) 48)) (-1474 (((-1145) $) 22 (|has| |#2| (-1125)))) (-3552 ((|#2| $) 43 (|has| |#1| (-865)))) (-2397 (($ $ |#2|) 42 (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#2|))) 27 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-305 |#2|)) 26 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 |#2|) (-660 |#2|)) 24 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))))) (-3840 (((-112) $ $) 14)) (-4274 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-4306 (((-660 |#2|) $) 49)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-1485 (((-787) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4470))) (((-787) |#2| $) 29 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-3544 (((-880) $) 18 (|has| |#2| (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| |#2| (-102)))) (-1524 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#2| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-617 |#1| |#2|) (-141) (-1125) (-1242)) (T -617)) +((-4306 (*1 *2 *1) (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1242)) (-5 *2 (-660 *4)))) (-4298 (*1 *2 *3 *1) (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1242)) (-5 *2 (-112)))) (-4285 (*1 *2 *1) (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1242)) (-5 *2 (-660 *3)))) (-4274 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-617 *4 *3)) (-4 *4 (-1125)) (-4 *3 (-1242)) (-4 *3 (-1125)) (-5 *2 (-112)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-617 *2 *3)) (-4 *3 (-1242)) (-4 *2 (-1125)) (-4 *2 (-865)))) (-2406 (*1 *2 *1) (-12 (-4 *1 (-617 *2 *3)) (-4 *3 (-1242)) (-4 *2 (-1125)) (-4 *2 (-865)))) (-3552 (*1 *2 *1) (-12 (-4 *1 (-617 *3 *2)) (-4 *3 (-1125)) (-4 *3 (-865)) (-4 *2 (-1242)))) (-2397 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-617 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1242)))) (-2389 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-617 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1242)) (-5 *2 (-1297))))) +(-13 (-502 |t#2|) (-299 |t#1| |t#2|) (-10 -8 (-15 -4306 ((-660 |t#2|) $)) (-15 -4298 ((-112) |t#1| $)) (-15 -4285 ((-660 |t#1|) $)) (IF (|has| |t#2| (-1125)) (IF (|has| $ (-6 -4470)) (-15 -4274 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-865)) (PROGN (-15 -2416 (|t#1| $)) (-15 -2406 (|t#1| $)) (-15 -3552 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4471)) (PROGN (-15 -2397 ($ $ |t#2|)) (-15 -2389 ((-1297) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) -2839 (|has| |#2| (-1125)) (|has| |#2| (-102))) ((-626 (-880)) -2839 (|has| |#2| (-1125)) (|has| |#2| (-626 (-880)))) ((-297 |#1| |#2|) . T) ((-299 |#1| |#2|) . T) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-502 |#2|) . T) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-1125) |has| |#2| (-1125)) ((-1242) . T)) +((-3544 (((-880) $) 19) (($ (-130)) 13) (((-130) $) 14))) +(((-618) (-13 (-626 (-880)) (-503 (-130)))) (T -618)) +NIL +(-13 (-626 (-880)) (-503 (-130))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL) (($ (-1206)) NIL) (((-1206) $) NIL) (((-1241) $) 14) (($ (-660 (-1241))) 13)) (-1619 (((-660 (-1241)) $) 10)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-619) (-13 (-1108) (-626 (-1241)) (-10 -8 (-15 -3544 ($ (-660 (-1241)))) (-15 -1619 ((-660 (-1241)) $))))) (T -619)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-619)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-619))))) +(-13 (-1108) (-626 (-1241)) (-10 -8 (-15 -3544 ($ (-660 (-1241)))) (-15 -1619 ((-660 (-1241)) $)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3294 (((-3 $ "failed")) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-1956 (((-3 $ "failed") $ $) NIL)) (-2700 (((-1292 (-705 |#1|))) NIL (|has| |#2| (-430 |#1|))) (((-1292 (-705 |#1|)) (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-4043 (((-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-1534 (($) NIL T CONST)) (-2364 (((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed")) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-3741 (((-3 $ "failed")) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-3457 (((-705 |#1|)) NIL (|has| |#2| (-430 |#1|))) (((-705 |#1|) (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-4022 ((|#1| $) NIL (|has| |#2| (-379 |#1|)))) (-3436 (((-705 |#1|) $) NIL (|has| |#2| (-430 |#1|))) (((-705 |#1|) $ (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-3584 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-2304 (((-1197 (-975 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-375))))) (-2470 (($ $ (-944)) NIL)) (-3999 ((|#1| $) NIL (|has| |#2| (-379 |#1|)))) (-3762 (((-1197 |#1|) $) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-3478 ((|#1|) NIL (|has| |#2| (-430 |#1|))) ((|#1| (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-3976 (((-1197 |#1|) $) NIL (|has| |#2| (-379 |#1|)))) (-3905 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-3502 (($ (-1292 |#1|)) NIL (|has| |#2| (-430 |#1|))) (($ (-1292 |#1|) (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-4187 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-1545 (((-944)) NIL (|has| |#2| (-379 |#1|)))) (-3870 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-2667 (($ $ (-944)) NIL)) (-3824 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-3799 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-3847 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-2373 (((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed")) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-3751 (((-3 $ "failed")) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-3467 (((-705 |#1|)) NIL (|has| |#2| (-430 |#1|))) (((-705 |#1|) (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-4032 ((|#1| $) NIL (|has| |#2| (-379 |#1|)))) (-3445 (((-705 |#1|) $) NIL (|has| |#2| (-430 |#1|))) (((-705 |#1|) $ (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-3593 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-2345 (((-1197 (-975 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-375))))) (-3604 (($ $ (-944)) NIL)) (-4012 ((|#1| $) NIL (|has| |#2| (-379 |#1|)))) (-3774 (((-1197 |#1|) $) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-3490 ((|#1|) NIL (|has| |#2| (-430 |#1|))) ((|#1| (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-3987 (((-1197 |#1|) $) NIL (|has| |#2| (-379 |#1|)))) (-3916 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-2810 (((-1183) $) NIL)) (-3812 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-3836 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-3859 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-1474 (((-1145) $) NIL)) (-3892 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-2872 ((|#1| $ (-577)) NIL (|has| |#2| (-430 |#1|)))) (-2710 (((-705 |#1|) (-1292 $)) NIL (|has| |#2| (-430 |#1|))) (((-1292 |#1|) $) NIL (|has| |#2| (-430 |#1|))) (((-705 |#1|) (-1292 $) (-1292 $)) NIL (|has| |#2| (-379 |#1|))) (((-1292 |#1|) $ (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-4152 (($ (-1292 |#1|)) NIL (|has| |#2| (-430 |#1|))) (((-1292 |#1|) $) NIL (|has| |#2| (-430 |#1|)))) (-2206 (((-660 (-975 |#1|))) NIL (|has| |#2| (-430 |#1|))) (((-660 (-975 |#1|)) (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-3820 (($ $ $) NIL)) (-3965 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-3544 (((-880) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) NIL (|has| |#2| (-430 |#1|)))) (-3786 (((-660 (-1292 |#1|))) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-3832 (($ $ $ $) NIL)) (-3940 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-3543 (($ (-705 |#1|) $) NIL (|has| |#2| (-430 |#1|)))) (-3807 (($ $ $) NIL)) (-3953 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-3928 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-3881 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-2806 (($) NIL T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) 24)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-620 |#1| |#2|) (-13 (-760 |#1|) (-626 |#2|) (-10 -8 (-15 -3544 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-379 |#1|)) (-6 (-379 |#1|)) |%noBranch|))) (-174) (-760 |#1|)) (T -620)) +((-3544 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-620 *3 *2)) (-4 *2 (-760 *3))))) +(-13 (-760 |#1|) (-626 |#2|) (-10 -8 (-15 -3544 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-379 |#1|)) (-6 (-379 |#1|)) |%noBranch|))) +((-3473 (((-112) $ $) NIL)) (-3687 (((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) $ (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) 39)) (-4100 (($ (-660 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) NIL) (($) NIL)) (-2389 (((-1297) $ (-1183) (-1183)) NIL (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 ((|#1| $ (-1183) |#1|) 49)) (-2463 (($ (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470)))) (-2325 (((-3 |#1| "failed") (-1183) $) 52)) (-1534 (($) NIL T CONST)) (-3730 (($ $ (-1183)) 25)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125))))) (-3719 (((-3 |#1| "failed") (-1183) $) 53) (($ (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470))) (($ (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) $) NIL (|has| $ (-6 -4470)))) (-3904 (($ (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470))) (($ (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125))))) (-3654 (((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470))) (((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $ (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) NIL (|has| $ (-6 -4470))) (((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $ (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125))))) (-3699 (((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) $) 38)) (-2192 ((|#1| $ (-1183) |#1|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-1183)) NIL)) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470))) (((-660 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470)))) (-1564 (($ $) 54)) (-3253 (($ (-401)) 23) (($ (-401) (-1183)) 22)) (-2713 (((-401) $) 40)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-1183) $) NIL (|has| (-1183) (-865)))) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470))) (((-660 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) (((-112) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125))))) (-2416 (((-1183) $) NIL (|has| (-1183) (-865)))) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471))) (($ (-1 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL)) (-3203 (((-660 (-1183)) $) 45)) (-4317 (((-112) (-1183) $) NIL)) (-3710 (((-1183) $) 41)) (-4330 (((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) $) NIL)) (-2881 (($ (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) $) NIL)) (-4285 (((-660 (-1183)) $) NIL)) (-4298 (((-112) (-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3552 ((|#1| $) NIL (|has| (-1183) (-865)))) (-1828 (((-3 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) "failed") (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL)) (-2397 (($ $ |#1|) NIL (|has| $ (-6 -4471)))) (-3530 (((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) $) NIL)) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) (-660 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) NIL (-12 (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-320 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125)))) (($ $ (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) NIL (-12 (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-320 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125)))) (($ $ (-305 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) NIL (-12 (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-320 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125)))) (($ $ (-660 (-305 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))))) NIL (-12 (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-320 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) 43)) (-2872 ((|#1| $ (-1183) |#1|) NIL) ((|#1| $ (-1183)) 48)) (-3736 (($ (-660 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) NIL) (($) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) (((-787) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125)))) (((-787) (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-627 (-549))))) (-3553 (($ (-660 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) NIL)) (-3544 (((-880) $) 21)) (-3720 (($ $) 26)) (-4448 (((-112) $ $) NIL)) (-3541 (($ (-660 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) NIL)) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 20)) (-3484 (((-787) $) 47 (|has| $ (-6 -4470))))) +(((-621 |#1|) (-13 (-376 (-401) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) (-1218 (-1183) |#1|) (-10 -8 (-6 -4470) (-15 -1564 ($ $)))) (-1125)) (T -621)) +((-1564 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1125))))) +(-13 (-376 (-401) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) (-1218 (-1183) |#1|) (-10 -8 (-6 -4470) (-15 -1564 ($ $)))) +((-2820 (((-112) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) $) 16)) (-3203 (((-660 |#2|) $) 20)) (-4317 (((-112) |#2| $) 12))) +(((-622 |#1| |#2| |#3|) (-10 -8 (-15 -3203 ((-660 |#2|) |#1|)) (-15 -4317 ((-112) |#2| |#1|)) (-15 -2820 ((-112) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) |#1|))) (-623 |#2| |#3|) (-1125) (-1125)) (T -622)) +NIL +(-10 -8 (-15 -3203 ((-660 |#2|) |#1|)) (-15 -4317 ((-112) |#2| |#1|)) (-15 -2820 ((-112) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) |#1|))) +((-3473 (((-112) $ $) 20 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)))) (-3828 (((-112) $ (-787)) 8)) (-2463 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 46 (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 56 (|has| $ (-6 -4470)))) (-2325 (((-3 |#2| "failed") |#1| $) 62)) (-1534 (($) 7 T CONST)) (-1817 (($ $) 59 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470))))) (-3719 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 48 (|has| $ (-6 -4470))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 47 (|has| $ (-6 -4470))) (((-3 |#2| "failed") |#1| $) 63)) (-3904 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 55 (|has| $ (-6 -4470)))) (-3654 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 57 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470)))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 54 (|has| $ (-6 -4470))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 53 (|has| $ (-6 -4470)))) (-1461 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 31 (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) 9)) (-2530 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (-3203 (((-660 |#1|) $) 64)) (-4317 (((-112) |#1| $) 65)) (-4330 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 40)) (-2881 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 41)) (-1474 (((-1145) $) 22 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (-1828 (((-3 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) "failed") (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 52)) (-3530 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 42)) (-1514 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) 27 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 26 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 25 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 24 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-3736 (($) 50) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 49)) (-1485 (((-787) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 32 (|has| $ (-6 -4470))) (((-787) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-4152 (((-549) $) 60 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-627 (-549))))) (-3553 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 51)) (-3544 (((-880) $) 18 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)))) (-3541 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 43)) (-1524 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-623 |#1| |#2|) (-141) (-1125) (-1125)) (T -623)) +((-4317 (*1 *2 *3 *1) (-12 (-4 *1 (-623 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-5 *2 (-112)))) (-3203 (*1 *2 *1) (-12 (-4 *1 (-623 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-5 *2 (-660 *3)))) (-3719 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-623 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125)))) (-2325 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-623 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125))))) +(-13 (-232 (-2 (|:| -4295 |t#1|) (|:| -4444 |t#2|))) (-10 -8 (-15 -4317 ((-112) |t#1| $)) (-15 -3203 ((-660 |t#1|) $)) (-15 -3719 ((-3 |t#2| "failed") |t#1| $)) (-15 -2325 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T) ((-102) -2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102))) ((-626 (-880)) -2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-626 (-880)))) ((-152 #0#) . T) ((-627 (-549)) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-627 (-549))) ((-232 #0#) . T) ((-241 #0#) . T) ((-320 #0#) -12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))) ((-502 #0#) . T) ((-527 #0# #0#) -12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))) ((-1125) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) ((-1242) . T)) +((-4352 (((-625 |#2|) |#1|) 17)) (-4362 (((-3 |#1| "failed") (-625 |#2|)) 21))) +(((-624 |#1| |#2|) (-10 -7 (-15 -4352 ((-625 |#2|) |#1|)) (-15 -4362 ((-3 |#1| "failed") (-625 |#2|)))) (-1125) (-1125)) (T -624)) +((-4362 (*1 *2 *3) (|partial| -12 (-5 *3 (-625 *4)) (-4 *4 (-1125)) (-4 *2 (-1125)) (-5 *1 (-624 *2 *4)))) (-4352 (*1 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *1 (-624 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125))))) +(-10 -7 (-15 -4352 ((-625 |#2|) |#1|)) (-15 -4362 ((-3 |#1| "failed") (-625 |#2|)))) +((-3473 (((-112) $ $) NIL)) (-4328 (((-3 (-1201) "failed") $) 46)) (-1967 (((-1297) $ (-787)) 22)) (-3618 (((-787) $) 20)) (-1844 (((-115) $) 9)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1702 (($ (-115) (-660 |#1|) (-787)) 32) (($ (-1201)) 33)) (-2740 (((-112) $ (-115)) 15) (((-112) $ (-1201)) 13)) (-2440 (((-787) $) 17)) (-1474 (((-1145) $) NIL)) (-4152 (((-911 (-577)) $) 95 (|has| |#1| (-627 (-911 (-577))))) (((-911 (-391)) $) 102 (|has| |#1| (-627 (-911 (-391))))) (((-549) $) 88 (|has| |#1| (-627 (-549))))) (-3544 (((-880) $) 72)) (-4448 (((-112) $ $) NIL)) (-4340 (((-660 |#1|) $) 19)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 51)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 53))) +(((-625 |#1|) (-13 (-133) (-865) (-903 |#1|) (-10 -8 (-15 -1844 ((-115) $)) (-15 -4340 ((-660 |#1|) $)) (-15 -2440 ((-787) $)) (-15 -1702 ($ (-115) (-660 |#1|) (-787))) (-15 -1702 ($ (-1201))) (-15 -4328 ((-3 (-1201) "failed") $)) (-15 -2740 ((-112) $ (-115))) (-15 -2740 ((-112) $ (-1201))) (IF (|has| |#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|))) (-1125)) (T -625)) +((-1844 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-625 *3)) (-4 *3 (-1125)))) (-4340 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1125)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-625 *3)) (-4 *3 (-1125)))) (-1702 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-660 *5)) (-5 *4 (-787)) (-4 *5 (-1125)) (-5 *1 (-625 *5)))) (-1702 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-625 *3)) (-4 *3 (-1125)))) (-4328 (*1 *2 *1) (|partial| -12 (-5 *2 (-1201)) (-5 *1 (-625 *3)) (-4 *3 (-1125)))) (-2740 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-625 *4)) (-4 *4 (-1125)))) (-2740 (*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-112)) (-5 *1 (-625 *4)) (-4 *4 (-1125))))) +(-13 (-133) (-865) (-903 |#1|) (-10 -8 (-15 -1844 ((-115) $)) (-15 -4340 ((-660 |#1|) $)) (-15 -2440 ((-787) $)) (-15 -1702 ($ (-115) (-660 |#1|) (-787))) (-15 -1702 ($ (-1201))) (-15 -4328 ((-3 (-1201) "failed") $)) (-15 -2740 ((-112) $ (-115))) (-15 -2740 ((-112) $ (-1201))) (IF (|has| |#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|))) +((-3544 ((|#1| $) 6))) +(((-626 |#1|) (-141) (-1242)) (T -626)) +((-3544 (*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1242))))) +(-13 (-10 -8 (-15 -3544 (|t#1| $)))) +((-4152 ((|#1| $) 6))) +(((-627 |#1|) (-141) (-1242)) (T -627)) +((-4152 (*1 *2 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1242))))) +(-13 (-10 -8 (-15 -4152 (|t#1| $)))) +((-4373 (((-3 (-1197 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 (-431 |#2|) |#2|)) 15) (((-3 (-1197 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|)) 16))) +(((-628 |#1| |#2|) (-10 -7 (-15 -4373 ((-3 (-1197 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|))) (-15 -4373 ((-3 (-1197 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 (-431 |#2|) |#2|)))) (-13 (-148) (-27) (-1063 (-577)) (-1063 (-420 (-577)))) (-1268 |#1|)) (T -628)) +((-4373 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-148) (-27) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-1197 (-420 *6))) (-5 *1 (-628 *5 *6)) (-5 *3 (-420 *6)))) (-4373 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *5 (-1268 *4)) (-5 *2 (-1197 (-420 *5))) (-5 *1 (-628 *4 *5)) (-5 *3 (-420 *5))))) +(-10 -7 (-15 -4373 ((-3 (-1197 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|))) (-15 -4373 ((-3 (-1197 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 (-431 |#2|) |#2|)))) +((-3544 (($ |#1|) 6))) +(((-629 |#1|) (-141) (-1242)) (T -629)) +((-3544 (*1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1242))))) +(-13 (-10 -8 (-15 -3544 ($ |t#1|)))) +((-3473 (((-112) $ $) NIL)) (-3816 (($) 14 T CONST)) (-2274 (($) 15 T CONST)) (-2771 (($ $ $) 29)) (-2749 (($ $) 27)) (-2810 (((-1183) $) NIL)) (-3183 (($ $ $) 30)) (-1474 (((-1145) $) NIL)) (-3492 (($) 11 T CONST)) (-3173 (($ $ $) 31)) (-3544 (((-880) $) 35)) (-2793 (((-112) $ (|[\|\|]| -3492)) 24) (((-112) $ (|[\|\|]| -3816)) 26) (((-112) $ (|[\|\|]| -2274)) 21)) (-4448 (((-112) $ $) NIL)) (-2761 (($ $ $) 28)) (-2970 (((-112) $ $) 18))) +(((-630) (-13 (-992) (-10 -8 (-15 -3816 ($) -1512) (-15 -2793 ((-112) $ (|[\|\|]| -3492))) (-15 -2793 ((-112) $ (|[\|\|]| -3816))) (-15 -2793 ((-112) $ (|[\|\|]| -2274)))))) (T -630)) +((-3816 (*1 *1) (-5 *1 (-630))) (-2793 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3492)) (-5 *2 (-112)) (-5 *1 (-630)))) (-2793 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3816)) (-5 *2 (-112)) (-5 *1 (-630)))) (-2793 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2274)) (-5 *2 (-112)) (-5 *1 (-630))))) +(-13 (-992) (-10 -8 (-15 -3816 ($) -1512) (-15 -2793 ((-112) $ (|[\|\|]| -3492))) (-15 -2793 ((-112) $ (|[\|\|]| -3816))) (-15 -2793 ((-112) $ (|[\|\|]| -2274))))) +((-4152 (($ |#1|) 6))) +(((-631 |#1|) (-141) (-1242)) (T -631)) +((-4152 (*1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1242))))) +(-13 (-10 -8 (-15 -4152 ($ |t#1|)))) +((-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#2|) 10))) +(((-632 |#1| |#2|) (-10 -8 (-15 -3544 (|#1| |#2|)) (-15 -3544 (|#1| (-577))) (-15 -3544 ((-880) |#1|))) (-633 |#2|) (-1074)) (T -632)) +NIL +(-10 -8 (-15 -3544 (|#1| |#2|)) (-15 -3544 (|#1| (-577))) (-15 -3544 ((-880) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-4187 (((-3 $ "failed") $) 37)) (-2487 (((-112) $) 35)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 41)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ |#1| $) 42))) +(((-633 |#1|) (-141) (-1074)) (T -633)) +((-3544 (*1 *1 *2) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1074))))) +(-13 (-1074) (-664 |t#1|) (-10 -8 (-15 -3544 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-742) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-3010 (((-577) $) NIL (|has| |#1| (-864)))) (-1534 (($) NIL T CONST)) (-4187 (((-3 $ "failed") $) NIL)) (-3567 (((-112) $) NIL (|has| |#1| (-864)))) (-2487 (((-112) $) NIL)) (-1623 ((|#1| $) 13)) (-3578 (((-112) $) NIL (|has| |#1| (-864)))) (-3732 (($ $ $) NIL (|has| |#1| (-864)))) (-3201 (($ $ $) NIL (|has| |#1| (-864)))) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-1637 ((|#3| $) 15)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#2|) NIL)) (-4068 (((-787)) 20 T CONST)) (-4448 (((-112) $ $) NIL)) (-1654 (($ $) NIL (|has| |#1| (-864)))) (-2806 (($) NIL T CONST)) (-2816 (($) 12 T CONST)) (-3025 (((-112) $ $) NIL (|has| |#1| (-864)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-864)))) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-864)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-864)))) (-3077 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-634 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-864)) (-6 (-864)) |%noBranch|) (-15 -3077 ($ $ |#3|)) (-15 -3077 ($ |#1| |#3|)) (-15 -1623 (|#1| $)) (-15 -1637 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-742) |#2|)) (T -634)) +((-3077 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-634 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-742) *4)))) (-3077 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-634 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-742) *4)))) (-1623 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-634 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-742) *3)))) (-1637 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-742) *4)) (-5 *1 (-634 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-864)) (-6 (-864)) |%noBranch|) (-15 -3077 ($ $ |#3|)) (-15 -3077 ($ |#1| |#3|)) (-15 -1623 (|#1| $)) (-15 -1637 (|#3| $)))) +((-4383 ((|#2| |#2| (-1201) (-1201)) 16))) +(((-635 |#1| |#2|) (-10 -7 (-15 -4383 (|#2| |#2| (-1201) (-1201)))) (-13 (-318) (-148) (-1063 (-577)) (-654 (-577))) (-13 (-1227) (-982) (-29 |#1|))) (T -635)) +((-4383 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-635 *4 *2)) (-4 *2 (-13 (-1227) (-982) (-29 *4)))))) +(-10 -7 (-15 -4383 (|#2| |#2| (-1201) (-1201)))) +((-3473 (((-112) $ $) 64)) (-3585 (((-112) $) 58)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-4392 ((|#1| $) 55)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1939 (((-112) $ $) NIL (|has| |#1| (-375)))) (-1767 (((-2 (|:| -3213 $) (|:| -3204 (-420 |#2|))) (-420 |#2|)) 111 (|has| |#1| (-375)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2921 (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3418 (($ $ $) NIL (|has| |#1| (-375)))) (-2248 (($ $) 27)) (-4187 (((-3 $ "failed") $) 88)) (-3429 (($ $ $) NIL (|has| |#1| (-375)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| |#1| (-375)))) (-3817 (((-577) $) 22)) (-2487 (((-112) $) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-2811 (((-112) $) 40)) (-2030 (($ |#1| (-577)) 24)) (-2221 ((|#1| $) 57)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) 101 (|has| |#1| (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3462 (((-3 $ "failed") $ $) 93)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-1927 (((-787) $) 115 (|has| |#1| (-375)))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 114 (|has| |#1| (-375)))) (-2852 (($ $ (-1 |#2| |#2|) (-787)) NIL) (($ $ (-1 |#2| |#2|)) 75) (($ $) NIL (|has| |#2| (-238))) (($ $ (-787)) NIL (|has| |#2| (-238))) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201))))) (-2887 (((-577) $) 38)) (-4152 (((-420 |#2|) $) 47)) (-3544 (((-880) $) 69) (($ (-577)) 35) (($ $) NIL) (($ (-420 (-577))) NIL (|has| |#1| (-1063 (-420 (-577))))) (($ |#1|) 34) (($ |#2|) 25)) (-2322 ((|#1| $ (-577)) 72)) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-2806 (($) 9 T CONST)) (-2816 (($) 14 T CONST)) (-2132 (($ $ (-1 |#2| |#2|) (-787)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-238))) (($ $ (-787)) NIL (|has| |#2| (-238))) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201))))) (-2970 (((-112) $ $) 21)) (-3066 (($ $) 51) (($ $ $) NIL)) (-3055 (($ $ $) 90)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 29) (($ $ $) 49))) +(((-636 |#1| |#2|) (-13 (-233 |#2|) (-569) (-627 (-420 |#2|)) (-424 |#1|) (-1063 |#2|) (-10 -8 (-15 -2811 ((-112) $)) (-15 -2887 ((-577) $)) (-15 -3817 ((-577) $)) (-15 -2248 ($ $)) (-15 -2221 (|#1| $)) (-15 -4392 (|#1| $)) (-15 -2322 (|#1| $ (-577))) (-15 -2030 ($ |#1| (-577))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-6 (-318)) (-15 -1767 ((-2 (|:| -3213 $) (|:| -3204 (-420 |#2|))) (-420 |#2|)))) |%noBranch|))) (-569) (-1268 |#1|)) (T -636)) +((-2811 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-636 *3 *4)) (-4 *4 (-1268 *3)))) (-2887 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-577)) (-5 *1 (-636 *3 *4)) (-4 *4 (-1268 *3)))) (-3817 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-577)) (-5 *1 (-636 *3 *4)) (-4 *4 (-1268 *3)))) (-2248 (*1 *1 *1) (-12 (-4 *2 (-569)) (-5 *1 (-636 *2 *3)) (-4 *3 (-1268 *2)))) (-2221 (*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-636 *2 *3)) (-4 *3 (-1268 *2)))) (-4392 (*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-636 *2 *3)) (-4 *3 (-1268 *2)))) (-2322 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *2 (-569)) (-5 *1 (-636 *2 *4)) (-4 *4 (-1268 *2)))) (-2030 (*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-4 *2 (-569)) (-5 *1 (-636 *2 *4)) (-4 *4 (-1268 *2)))) (-1767 (*1 *2 *3) (-12 (-4 *4 (-375)) (-4 *4 (-569)) (-4 *5 (-1268 *4)) (-5 *2 (-2 (|:| -3213 (-636 *4 *5)) (|:| -3204 (-420 *5)))) (-5 *1 (-636 *4 *5)) (-5 *3 (-420 *5))))) +(-13 (-233 |#2|) (-569) (-627 (-420 |#2|)) (-424 |#1|) (-1063 |#2|) (-10 -8 (-15 -2811 ((-112) $)) (-15 -2887 ((-577) $)) (-15 -3817 ((-577) $)) (-15 -2248 ($ $)) (-15 -2221 (|#1| $)) (-15 -4392 (|#1| $)) (-15 -2322 (|#1| $ (-577))) (-15 -2030 ($ |#1| (-577))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-6 (-318)) (-15 -1767 ((-2 (|:| -3213 $) (|:| -3204 (-420 |#2|))) (-420 |#2|)))) |%noBranch|))) +((-2371 (((-660 |#6|) (-660 |#4|) (-112)) 54)) (-4404 ((|#6| |#6|) 48))) +(((-637 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4404 (|#6| |#6|)) (-15 -2371 ((-660 |#6|) (-660 |#4|) (-112)))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3| |#4|) (-1134 |#1| |#2| |#3| |#4|)) (T -637)) +((-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 *10)) (-5 *1 (-637 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *10 (-1134 *5 *6 *7 *8)))) (-4404 (*1 *2 *2) (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *1 (-637 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *2 (-1134 *3 *4 *5 *6))))) +(-10 -7 (-15 -4404 (|#6| |#6|)) (-15 -2371 ((-660 |#6|) (-660 |#4|) (-112)))) +((-4414 (((-112) |#3| (-787) (-660 |#3|)) 29)) (-4425 (((-3 (-2 (|:| |polfac| (-660 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-660 (-1197 |#3|)))) "failed") |#3| (-660 (-1197 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3363 (-660 (-2 (|:| |irr| |#4|) (|:| -3504 (-577)))))) (-660 |#3|) (-660 |#1|) (-660 |#3|)) 69))) +(((-638 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4414 ((-112) |#3| (-787) (-660 |#3|))) (-15 -4425 ((-3 (-2 (|:| |polfac| (-660 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-660 (-1197 |#3|)))) "failed") |#3| (-660 (-1197 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3363 (-660 (-2 (|:| |irr| |#4|) (|:| -3504 (-577)))))) (-660 |#3|) (-660 |#1|) (-660 |#3|)))) (-865) (-809) (-318) (-972 |#3| |#2| |#1|)) (T -638)) +((-4425 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3363 (-660 (-2 (|:| |irr| *10) (|:| -3504 (-577))))))) (-5 *6 (-660 *3)) (-5 *7 (-660 *8)) (-4 *8 (-865)) (-4 *3 (-318)) (-4 *10 (-972 *3 *9 *8)) (-4 *9 (-809)) (-5 *2 (-2 (|:| |polfac| (-660 *10)) (|:| |correct| *3) (|:| |corrfact| (-660 (-1197 *3))))) (-5 *1 (-638 *8 *9 *3 *10)) (-5 *4 (-660 (-1197 *3))))) (-4414 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-787)) (-5 *5 (-660 *3)) (-4 *3 (-318)) (-4 *6 (-865)) (-4 *7 (-809)) (-5 *2 (-112)) (-5 *1 (-638 *6 *7 *3 *8)) (-4 *8 (-972 *3 *7 *6))))) +(-10 -7 (-15 -4414 ((-112) |#3| (-787) (-660 |#3|))) (-15 -4425 ((-3 (-2 (|:| |polfac| (-660 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-660 (-1197 |#3|)))) "failed") |#3| (-660 (-1197 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3363 (-660 (-2 (|:| |irr| |#4|) (|:| -3504 (-577)))))) (-660 |#3|) (-660 |#1|) (-660 |#3|)))) +((-3473 (((-112) $ $) NIL)) (-1733 (((-1160) $) 11)) (-1721 (((-1160) $) 9)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 17) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-639) (-13 (-1108) (-10 -8 (-15 -1721 ((-1160) $)) (-15 -1733 ((-1160) $))))) (T -639)) +((-1721 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-639)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-639))))) +(-13 (-1108) (-10 -8 (-15 -1721 ((-1160) $)) (-15 -1733 ((-1160) $)))) +((-3473 (((-112) $ $) NIL)) (-3435 (((-660 |#1|) $) NIL)) (-1534 (($) NIL T CONST)) (-4187 (((-3 $ "failed") $) NIL)) (-2487 (((-112) $) NIL)) (-2799 (($ $) 77)) (-3698 (((-680 |#1| |#2|) $) 60)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) 81)) (-4438 (((-660 (-305 |#2|)) $ $) 42)) (-1474 (((-1145) $) NIL)) (-4072 (($ (-680 |#1| |#2|)) 56)) (-2360 (($ $ $) NIL)) (-3820 (($ $ $) NIL)) (-3544 (((-880) $) 66) (((-1307 |#1| |#2|) $) NIL) (((-1312 |#1| |#2|) $) 74)) (-4448 (((-112) $ $) NIL)) (-2816 (($) 61 T CONST)) (-1326 (((-660 (-2 (|:| |k| (-688 |#1|)) (|:| |c| |#2|))) $) 41)) (-1339 (((-660 (-680 |#1| |#2|)) (-660 |#1|)) 73)) (-1831 (((-660 (-2 (|:| |k| (-912 |#1|)) (|:| |c| |#2|))) $) 46)) (-2970 (((-112) $ $) 62)) (-3077 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ $ $) 52))) +(((-640 |#1| |#2| |#3|) (-13 (-486) (-10 -8 (-15 -4072 ($ (-680 |#1| |#2|))) (-15 -3698 ((-680 |#1| |#2|) $)) (-15 -1831 ((-660 (-2 (|:| |k| (-912 |#1|)) (|:| |c| |#2|))) $)) (-15 -3544 ((-1307 |#1| |#2|) $)) (-15 -3544 ((-1312 |#1| |#2|) $)) (-15 -2799 ($ $)) (-15 -3435 ((-660 |#1|) $)) (-15 -1339 ((-660 (-680 |#1| |#2|)) (-660 |#1|))) (-15 -1326 ((-660 (-2 (|:| |k| (-688 |#1|)) (|:| |c| |#2|))) $)) (-15 -4438 ((-660 (-305 |#2|)) $ $)))) (-865) (-13 (-174) (-733 (-420 (-577)))) (-944)) (T -640)) +((-4072 (*1 *1 *2) (-12 (-5 *2 (-680 *3 *4)) (-4 *3 (-865)) (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-5 *1 (-640 *3 *4 *5)) (-14 *5 (-944)))) (-3698 (*1 *2 *1) (-12 (-5 *2 (-680 *3 *4)) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |k| (-912 *3)) (|:| |c| *4)))) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) (-2799 (*1 *1 *1) (-12 (-5 *1 (-640 *2 *3 *4)) (-4 *2 (-865)) (-4 *3 (-13 (-174) (-733 (-420 (-577))))) (-14 *4 (-944)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-865)) (-5 *2 (-660 (-680 *4 *5))) (-5 *1 (-640 *4 *5 *6)) (-4 *5 (-13 (-174) (-733 (-420 (-577))))) (-14 *6 (-944)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |k| (-688 *3)) (|:| |c| *4)))) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) (-4438 (*1 *2 *1 *1) (-12 (-5 *2 (-660 (-305 *4))) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944))))) +(-13 (-486) (-10 -8 (-15 -4072 ($ (-680 |#1| |#2|))) (-15 -3698 ((-680 |#1| |#2|) $)) (-15 -1831 ((-660 (-2 (|:| |k| (-912 |#1|)) (|:| |c| |#2|))) $)) (-15 -3544 ((-1307 |#1| |#2|) $)) (-15 -3544 ((-1312 |#1| |#2|) $)) (-15 -2799 ($ $)) (-15 -3435 ((-660 |#1|) $)) (-15 -1339 ((-660 (-680 |#1| |#2|)) (-660 |#1|))) (-15 -1326 ((-660 (-2 (|:| |k| (-688 |#1|)) (|:| |c| |#2|))) $)) (-15 -4438 ((-660 (-305 |#2|)) $ $)))) +((-2371 (((-660 (-1171 |#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|)))) (-660 (-796 |#1| (-882 |#2|))) (-112)) 103) (((-660 (-1071 |#1| |#2|)) (-660 (-796 |#1| (-882 |#2|))) (-112)) 77)) (-1350 (((-112) (-660 (-796 |#1| (-882 |#2|)))) 26)) (-1397 (((-660 (-1171 |#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|)))) (-660 (-796 |#1| (-882 |#2|))) (-112)) 102)) (-1386 (((-660 (-1071 |#1| |#2|)) (-660 (-796 |#1| (-882 |#2|))) (-112)) 76)) (-1374 (((-660 (-796 |#1| (-882 |#2|))) (-660 (-796 |#1| (-882 |#2|)))) 30)) (-1361 (((-3 (-660 (-796 |#1| (-882 |#2|))) "failed") (-660 (-796 |#1| (-882 |#2|)))) 29))) +(((-641 |#1| |#2|) (-10 -7 (-15 -1350 ((-112) (-660 (-796 |#1| (-882 |#2|))))) (-15 -1361 ((-3 (-660 (-796 |#1| (-882 |#2|))) "failed") (-660 (-796 |#1| (-882 |#2|))))) (-15 -1374 ((-660 (-796 |#1| (-882 |#2|))) (-660 (-796 |#1| (-882 |#2|))))) (-15 -1386 ((-660 (-1071 |#1| |#2|)) (-660 (-796 |#1| (-882 |#2|))) (-112))) (-15 -1397 ((-660 (-1171 |#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|)))) (-660 (-796 |#1| (-882 |#2|))) (-112))) (-15 -2371 ((-660 (-1071 |#1| |#2|)) (-660 (-796 |#1| (-882 |#2|))) (-112))) (-15 -2371 ((-660 (-1171 |#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|)))) (-660 (-796 |#1| (-882 |#2|))) (-112)))) (-465) (-660 (-1201))) (T -641)) +((-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-660 (-1201))) (-5 *2 (-660 (-1171 *5 (-544 (-882 *6)) (-882 *6) (-796 *5 (-882 *6))))) (-5 *1 (-641 *5 *6)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-660 (-1201))) (-5 *2 (-660 (-1071 *5 *6))) (-5 *1 (-641 *5 *6)))) (-1397 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-660 (-1201))) (-5 *2 (-660 (-1171 *5 (-544 (-882 *6)) (-882 *6) (-796 *5 (-882 *6))))) (-5 *1 (-641 *5 *6)))) (-1386 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-660 (-1201))) (-5 *2 (-660 (-1071 *5 *6))) (-5 *1 (-641 *5 *6)))) (-1374 (*1 *2 *2) (-12 (-5 *2 (-660 (-796 *3 (-882 *4)))) (-4 *3 (-465)) (-14 *4 (-660 (-1201))) (-5 *1 (-641 *3 *4)))) (-1361 (*1 *2 *2) (|partial| -12 (-5 *2 (-660 (-796 *3 (-882 *4)))) (-4 *3 (-465)) (-14 *4 (-660 (-1201))) (-5 *1 (-641 *3 *4)))) (-1350 (*1 *2 *3) (-12 (-5 *3 (-660 (-796 *4 (-882 *5)))) (-4 *4 (-465)) (-14 *5 (-660 (-1201))) (-5 *2 (-112)) (-5 *1 (-641 *4 *5))))) +(-10 -7 (-15 -1350 ((-112) (-660 (-796 |#1| (-882 |#2|))))) (-15 -1361 ((-3 (-660 (-796 |#1| (-882 |#2|))) "failed") (-660 (-796 |#1| (-882 |#2|))))) (-15 -1374 ((-660 (-796 |#1| (-882 |#2|))) (-660 (-796 |#1| (-882 |#2|))))) (-15 -1386 ((-660 (-1071 |#1| |#2|)) (-660 (-796 |#1| (-882 |#2|))) (-112))) (-15 -1397 ((-660 (-1171 |#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|)))) (-660 (-796 |#1| (-882 |#2|))) (-112))) (-15 -2371 ((-660 (-1071 |#1| |#2|)) (-660 (-796 |#1| (-882 |#2|))) (-112))) (-15 -2371 ((-660 (-1171 |#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|)))) (-660 (-796 |#1| (-882 |#2|))) (-112)))) +((-2212 (($ $) 38)) (-2060 (($ $) 21)) (-2186 (($ $) 37)) (-2032 (($ $) 22)) (-2237 (($ $) 36)) (-2084 (($ $) 23)) (-1659 (($) 48)) (-3698 (($ $) 45)) (-3803 (($ $) 17)) (-4194 (($ $ (-1117 $)) 7) (($ $ (-1201)) 6)) (-4072 (($ $) 46)) (-1986 (($ $) 15)) (-2019 (($ $) 16)) (-2249 (($ $) 35)) (-2095 (($ $) 24)) (-2224 (($ $) 34)) (-2073 (($ $) 25)) (-2199 (($ $) 33)) (-2046 (($ $) 26)) (-4114 (($ $) 44)) (-2136 (($ $) 32)) (-2262 (($ $) 43)) (-2106 (($ $) 31)) (-4141 (($ $) 42)) (-2162 (($ $) 30)) (-2261 (($ $) 41)) (-2174 (($ $) 29)) (-4128 (($ $) 40)) (-2150 (($ $) 28)) (-2272 (($ $) 39)) (-2120 (($ $) 27)) (-1430 (($ $) 19)) (-1441 (($ $) 20)) (-1420 (($ $) 18)) (** (($ $ $) 47))) +(((-642) (-141)) (T -642)) +((-1441 (*1 *1 *1) (-4 *1 (-642))) (-1430 (*1 *1 *1) (-4 *1 (-642))) (-1420 (*1 *1 *1) (-4 *1 (-642))) (-3803 (*1 *1 *1) (-4 *1 (-642))) (-2019 (*1 *1 *1) (-4 *1 (-642))) (-1986 (*1 *1 *1) (-4 *1 (-642)))) +(-13 (-982) (-1227) (-10 -8 (-15 -1441 ($ $)) (-15 -1430 ($ $)) (-15 -1420 ($ $)) (-15 -3803 ($ $)) (-15 -2019 ($ $)) (-15 -1986 ($ $)))) +(((-35) . T) ((-95) . T) ((-295) . T) ((-506) . T) ((-982) . T) ((-1227) . T) ((-1230) . T)) +((-1844 (((-115) (-115)) 88)) (-3803 ((|#2| |#2|) 28)) (-4194 ((|#2| |#2| (-1117 |#2|)) 84) ((|#2| |#2| (-1201)) 50)) (-1986 ((|#2| |#2|) 27)) (-2019 ((|#2| |#2|) 29)) (-1409 (((-112) (-115)) 33)) (-1430 ((|#2| |#2|) 24)) (-1441 ((|#2| |#2|) 26)) (-1420 ((|#2| |#2|) 25))) +(((-643 |#1| |#2|) (-10 -7 (-15 -1409 ((-112) (-115))) (-15 -1844 ((-115) (-115))) (-15 -1441 (|#2| |#2|)) (-15 -1430 (|#2| |#2|)) (-15 -1420 (|#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -1986 (|#2| |#2|)) (-15 -2019 (|#2| |#2|)) (-15 -4194 (|#2| |#2| (-1201))) (-15 -4194 (|#2| |#2| (-1117 |#2|)))) (-569) (-13 (-443 |#1|) (-1027) (-1227))) (T -643)) +((-4194 (*1 *2 *2 *3) (-12 (-5 *3 (-1117 *2)) (-4 *2 (-13 (-443 *4) (-1027) (-1227))) (-4 *4 (-569)) (-5 *1 (-643 *4 *2)))) (-4194 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *1 (-643 *4 *2)) (-4 *2 (-13 (-443 *4) (-1027) (-1227))))) (-2019 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027) (-1227))))) (-1986 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027) (-1227))))) (-3803 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027) (-1227))))) (-1420 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027) (-1227))))) (-1430 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027) (-1227))))) (-1441 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) (-4 *2 (-13 (-443 *3) (-1027) (-1227))))) (-1844 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-643 *3 *4)) (-4 *4 (-13 (-443 *3) (-1027) (-1227))))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-643 *4 *5)) (-4 *5 (-13 (-443 *4) (-1027) (-1227)))))) +(-10 -7 (-15 -1409 ((-112) (-115))) (-15 -1844 ((-115) (-115))) (-15 -1441 (|#2| |#2|)) (-15 -1430 (|#2| |#2|)) (-15 -1420 (|#2| |#2|)) (-15 -3803 (|#2| |#2|)) (-15 -1986 (|#2| |#2|)) (-15 -2019 (|#2| |#2|)) (-15 -4194 (|#2| |#2| (-1201))) (-15 -4194 (|#2| |#2| (-1117 |#2|)))) +((-1554 (((-494 |#1| |#2|) (-254 |#1| |#2|)) 63)) (-1477 (((-660 (-254 |#1| |#2|)) (-660 (-494 |#1| |#2|))) 89)) (-1488 (((-494 |#1| |#2|) (-660 (-494 |#1| |#2|)) (-882 |#1|)) 91) (((-494 |#1| |#2|) (-660 (-494 |#1| |#2|)) (-660 (-494 |#1| |#2|)) (-882 |#1|)) 90)) (-1452 (((-2 (|:| |gblist| (-660 (-254 |#1| |#2|))) (|:| |gvlist| (-660 (-577)))) (-660 (-494 |#1| |#2|))) 134)) (-1532 (((-660 (-494 |#1| |#2|)) (-882 |#1|) (-660 (-494 |#1| |#2|)) (-660 (-494 |#1| |#2|))) 104)) (-1464 (((-2 (|:| |glbase| (-660 (-254 |#1| |#2|))) (|:| |glval| (-660 (-577)))) (-660 (-254 |#1| |#2|))) 145)) (-1509 (((-1292 |#2|) (-494 |#1| |#2|) (-660 (-494 |#1| |#2|))) 68)) (-1499 (((-660 (-494 |#1| |#2|)) (-660 (-494 |#1| |#2|))) 47)) (-1542 (((-254 |#1| |#2|) (-254 |#1| |#2|) (-660 (-254 |#1| |#2|))) 60)) (-1520 (((-254 |#1| |#2|) (-660 |#2|) (-254 |#1| |#2|) (-660 (-254 |#1| |#2|))) 112))) +(((-644 |#1| |#2|) (-10 -7 (-15 -1452 ((-2 (|:| |gblist| (-660 (-254 |#1| |#2|))) (|:| |gvlist| (-660 (-577)))) (-660 (-494 |#1| |#2|)))) (-15 -1464 ((-2 (|:| |glbase| (-660 (-254 |#1| |#2|))) (|:| |glval| (-660 (-577)))) (-660 (-254 |#1| |#2|)))) (-15 -1477 ((-660 (-254 |#1| |#2|)) (-660 (-494 |#1| |#2|)))) (-15 -1488 ((-494 |#1| |#2|) (-660 (-494 |#1| |#2|)) (-660 (-494 |#1| |#2|)) (-882 |#1|))) (-15 -1488 ((-494 |#1| |#2|) (-660 (-494 |#1| |#2|)) (-882 |#1|))) (-15 -1499 ((-660 (-494 |#1| |#2|)) (-660 (-494 |#1| |#2|)))) (-15 -1509 ((-1292 |#2|) (-494 |#1| |#2|) (-660 (-494 |#1| |#2|)))) (-15 -1520 ((-254 |#1| |#2|) (-660 |#2|) (-254 |#1| |#2|) (-660 (-254 |#1| |#2|)))) (-15 -1532 ((-660 (-494 |#1| |#2|)) (-882 |#1|) (-660 (-494 |#1| |#2|)) (-660 (-494 |#1| |#2|)))) (-15 -1542 ((-254 |#1| |#2|) (-254 |#1| |#2|) (-660 (-254 |#1| |#2|)))) (-15 -1554 ((-494 |#1| |#2|) (-254 |#1| |#2|)))) (-660 (-1201)) (-465)) (T -644)) +((-1554 (*1 *2 *3) (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *2 (-494 *4 *5)) (-5 *1 (-644 *4 *5)))) (-1542 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-254 *4 *5))) (-5 *2 (-254 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *1 (-644 *4 *5)))) (-1532 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-660 (-494 *4 *5))) (-5 *3 (-882 *4)) (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *1 (-644 *4 *5)))) (-1520 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 (-254 *5 *6))) (-4 *6 (-465)) (-5 *2 (-254 *5 *6)) (-14 *5 (-660 (-1201))) (-5 *1 (-644 *5 *6)))) (-1509 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-494 *5 *6))) (-5 *3 (-494 *5 *6)) (-14 *5 (-660 (-1201))) (-4 *6 (-465)) (-5 *2 (-1292 *6)) (-5 *1 (-644 *5 *6)))) (-1499 (*1 *2 *2) (-12 (-5 *2 (-660 (-494 *3 *4))) (-14 *3 (-660 (-1201))) (-4 *4 (-465)) (-5 *1 (-644 *3 *4)))) (-1488 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-494 *5 *6))) (-5 *4 (-882 *5)) (-14 *5 (-660 (-1201))) (-5 *2 (-494 *5 *6)) (-5 *1 (-644 *5 *6)) (-4 *6 (-465)))) (-1488 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-660 (-494 *5 *6))) (-5 *4 (-882 *5)) (-14 *5 (-660 (-1201))) (-5 *2 (-494 *5 *6)) (-5 *1 (-644 *5 *6)) (-4 *6 (-465)))) (-1477 (*1 *2 *3) (-12 (-5 *3 (-660 (-494 *4 *5))) (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *2 (-660 (-254 *4 *5))) (-5 *1 (-644 *4 *5)))) (-1464 (*1 *2 *3) (-12 (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *2 (-2 (|:| |glbase| (-660 (-254 *4 *5))) (|:| |glval| (-660 (-577))))) (-5 *1 (-644 *4 *5)) (-5 *3 (-660 (-254 *4 *5))))) (-1452 (*1 *2 *3) (-12 (-5 *3 (-660 (-494 *4 *5))) (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *2 (-2 (|:| |gblist| (-660 (-254 *4 *5))) (|:| |gvlist| (-660 (-577))))) (-5 *1 (-644 *4 *5))))) +(-10 -7 (-15 -1452 ((-2 (|:| |gblist| (-660 (-254 |#1| |#2|))) (|:| |gvlist| (-660 (-577)))) (-660 (-494 |#1| |#2|)))) (-15 -1464 ((-2 (|:| |glbase| (-660 (-254 |#1| |#2|))) (|:| |glval| (-660 (-577)))) (-660 (-254 |#1| |#2|)))) (-15 -1477 ((-660 (-254 |#1| |#2|)) (-660 (-494 |#1| |#2|)))) (-15 -1488 ((-494 |#1| |#2|) (-660 (-494 |#1| |#2|)) (-660 (-494 |#1| |#2|)) (-882 |#1|))) (-15 -1488 ((-494 |#1| |#2|) (-660 (-494 |#1| |#2|)) (-882 |#1|))) (-15 -1499 ((-660 (-494 |#1| |#2|)) (-660 (-494 |#1| |#2|)))) (-15 -1509 ((-1292 |#2|) (-494 |#1| |#2|) (-660 (-494 |#1| |#2|)))) (-15 -1520 ((-254 |#1| |#2|) (-660 |#2|) (-254 |#1| |#2|) (-660 (-254 |#1| |#2|)))) (-15 -1532 ((-660 (-494 |#1| |#2|)) (-882 |#1|) (-660 (-494 |#1| |#2|)) (-660 (-494 |#1| |#2|)))) (-15 -1542 ((-254 |#1| |#2|) (-254 |#1| |#2|) (-660 (-254 |#1| |#2|)))) (-15 -1554 ((-494 |#1| |#2|) (-254 |#1| |#2|)))) +((-3473 (((-112) $ $) NIL (-2839 (|has| (-52) (-102)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-102))))) (-4100 (($) NIL) (($ (-660 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))))) NIL)) (-2389 (((-1297) $ (-1183) (-1183)) NIL (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 (((-52) $ (-1183) (-52)) 16) (((-52) $ (-1201) (-52)) 17)) (-2463 (($ (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470)))) (-2325 (((-3 (-52) "failed") (-1183) $) NIL)) (-1534 (($) NIL T CONST)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-1125))))) (-3719 (($ (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) $) NIL (|has| $ (-6 -4470))) (($ (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470))) (((-3 (-52) "failed") (-1183) $) NIL)) (-3904 (($ (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-1125)))) (($ (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470)))) (-3654 (((-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-1 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) $ (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-1125)))) (((-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-1 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) $ (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) NIL (|has| $ (-6 -4470))) (((-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-1 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470)))) (-2192 (((-52) $ (-1183) (-52)) NIL (|has| $ (-6 -4471)))) (-2117 (((-52) $ (-1183)) NIL)) (-1461 (((-660 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470))) (((-660 (-52)) $) NIL (|has| $ (-6 -4470)))) (-1564 (($ $) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-1183) $) NIL (|has| (-1183) (-865)))) (-2530 (((-660 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470))) (((-660 (-52)) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-1125)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-52) (-1125))))) (-2416 (((-1183) $) NIL (|has| (-1183) (-865)))) (-2182 (($ (-1 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4471))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2149 (($ (-401)) 9)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (-2839 (|has| (-52) (-1125)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-1125))))) (-3203 (((-660 (-1183)) $) NIL)) (-4317 (((-112) (-1183) $) NIL)) (-4330 (((-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) $) NIL)) (-2881 (($ (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) $) NIL)) (-4285 (((-660 (-1183)) $) NIL)) (-4298 (((-112) (-1183) $) NIL)) (-1474 (((-1145) $) NIL (-2839 (|has| (-52) (-1125)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-1125))))) (-3552 (((-52) $) NIL (|has| (-1183) (-865)))) (-1828 (((-3 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) "failed") (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) $) NIL)) (-2397 (($ $ (-52)) NIL (|has| $ (-6 -4471)))) (-3530 (((-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) $) NIL)) (-1514 (((-112) (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))))) NIL (-12 (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-320 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))))) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-1125)))) (($ $ (-305 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))))) NIL (-12 (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-320 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))))) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-1125)))) (($ $ (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) NIL (-12 (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-320 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))))) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-1125)))) (($ $ (-660 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) (-660 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))))) NIL (-12 (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-320 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))))) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-1125)))) (($ $ (-660 (-52)) (-660 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125)))) (($ $ (-305 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125)))) (($ $ (-660 (-305 (-52)))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-52) (-1125))))) (-4306 (((-660 (-52)) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 (((-52) $ (-1183)) 14) (((-52) $ (-1183) (-52)) NIL) (((-52) $ (-1201)) 15)) (-3736 (($) NIL) (($ (-660 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))))) NIL)) (-1485 (((-787) (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470))) (((-787) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-1125)))) (((-787) (-52) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-52) (-1125)))) (((-787) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-627 (-549))))) (-3553 (($ (-660 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))))) NIL)) (-3544 (((-880) $) NIL (-2839 (|has| (-52) (-626 (-880))) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-626 (-880)))))) (-4448 (((-112) $ $) NIL (-2839 (|has| (-52) (-102)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-102))))) (-3541 (($ (-660 (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))))) NIL)) (-1524 (((-112) (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (-2839 (|has| (-52) (-102)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 (-52))) (-102))))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-645) (-13 (-1218 (-1183) (-52)) (-297 (-1201) (-52)) (-10 -8 (-15 -2149 ($ (-401))) (-15 -1564 ($ $)) (-15 -3709 ((-52) $ (-1201) (-52)))))) (T -645)) +((-2149 (*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-645)))) (-1564 (*1 *1 *1) (-5 *1 (-645))) (-3709 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1201)) (-5 *1 (-645))))) +(-13 (-1218 (-1183) (-52)) (-297 (-1201) (-52)) (-10 -8 (-15 -2149 ($ (-401))) (-15 -1564 ($ $)) (-15 -3709 ((-52) $ (-1201) (-52))))) +((-3077 (($ $ |#2|) 10))) +(((-646 |#1| |#2|) (-10 -8 (-15 -3077 (|#1| |#1| |#2|))) (-647 |#2|) (-174)) (T -646)) +NIL +(-10 -8 (-15 -3077 (|#1| |#1| |#2|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3553 (($ $ $) 34)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3077 (($ $ |#1|) 33 (|has| |#1| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-647 |#1|) (-141) (-174)) (T -647)) +((-3553 (*1 *1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-174)))) (-3077 (*1 *1 *1 *2) (-12 (-4 *1 (-647 *2)) (-4 *2 (-174)) (-4 *2 (-375))))) +(-13 (-733 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3553 ($ $ $)) (IF (|has| |t#1| (-375)) (-15 -3077 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) . T) ((-733 |#1|) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3294 (((-3 $ "failed")) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-1956 (((-3 $ "failed") $ $) NIL)) (-2700 (((-1292 (-705 |#1|))) NIL (|has| |#2| (-430 |#1|))) (((-1292 (-705 |#1|)) (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-4043 (((-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-1534 (($) NIL T CONST)) (-2364 (((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed")) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-3741 (((-3 $ "failed")) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-3457 (((-705 |#1|)) NIL (|has| |#2| (-430 |#1|))) (((-705 |#1|) (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-4022 ((|#1| $) NIL (|has| |#2| (-379 |#1|)))) (-3436 (((-705 |#1|) $) NIL (|has| |#2| (-430 |#1|))) (((-705 |#1|) $ (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-3584 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-2304 (((-1197 (-975 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-375))))) (-2470 (($ $ (-944)) NIL)) (-3999 ((|#1| $) NIL (|has| |#2| (-379 |#1|)))) (-3762 (((-1197 |#1|) $) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-3478 ((|#1|) NIL (|has| |#2| (-430 |#1|))) ((|#1| (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-3976 (((-1197 |#1|) $) NIL (|has| |#2| (-379 |#1|)))) (-3905 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-3502 (($ (-1292 |#1|)) NIL (|has| |#2| (-430 |#1|))) (($ (-1292 |#1|) (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-4187 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-1545 (((-944)) NIL (|has| |#2| (-379 |#1|)))) (-3870 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-2667 (($ $ (-944)) NIL)) (-3824 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-3799 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-3847 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-2373 (((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed")) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-3751 (((-3 $ "failed")) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-3467 (((-705 |#1|)) NIL (|has| |#2| (-430 |#1|))) (((-705 |#1|) (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-4032 ((|#1| $) NIL (|has| |#2| (-379 |#1|)))) (-3445 (((-705 |#1|) $) NIL (|has| |#2| (-430 |#1|))) (((-705 |#1|) $ (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-3593 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-2345 (((-1197 (-975 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-375))))) (-3604 (($ $ (-944)) NIL)) (-4012 ((|#1| $) NIL (|has| |#2| (-379 |#1|)))) (-3774 (((-1197 |#1|) $) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-3490 ((|#1|) NIL (|has| |#2| (-430 |#1|))) ((|#1| (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-3987 (((-1197 |#1|) $) NIL (|has| |#2| (-379 |#1|)))) (-3916 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-2810 (((-1183) $) NIL)) (-3812 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-3836 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-3859 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-1474 (((-1145) $) NIL)) (-3892 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-2872 ((|#1| $ (-577)) NIL (|has| |#2| (-430 |#1|)))) (-2710 (((-705 |#1|) (-1292 $)) NIL (|has| |#2| (-430 |#1|))) (((-1292 |#1|) $) NIL (|has| |#2| (-430 |#1|))) (((-705 |#1|) (-1292 $) (-1292 $)) NIL (|has| |#2| (-379 |#1|))) (((-1292 |#1|) $ (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-4152 (($ (-1292 |#1|)) NIL (|has| |#2| (-430 |#1|))) (((-1292 |#1|) $) NIL (|has| |#2| (-430 |#1|)))) (-2206 (((-660 (-975 |#1|))) NIL (|has| |#2| (-430 |#1|))) (((-660 (-975 |#1|)) (-1292 $)) NIL (|has| |#2| (-379 |#1|)))) (-3820 (($ $ $) NIL)) (-3965 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-3544 (((-880) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) NIL (|has| |#2| (-430 |#1|)))) (-3786 (((-660 (-1292 |#1|))) NIL (-2839 (-12 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))))) (-3832 (($ $ $ $) NIL)) (-3940 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-3543 (($ (-705 |#1|) $) NIL (|has| |#2| (-430 |#1|)))) (-3807 (($ $ $) NIL)) (-3953 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-3928 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-3881 (((-112)) NIL (|has| |#2| (-379 |#1|)))) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) 20)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-648 |#1| |#2|) (-13 (-760 |#1|) (-626 |#2|) (-10 -8 (-15 -3544 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-379 |#1|)) (-6 (-379 |#1|)) |%noBranch|))) (-174) (-760 |#1|)) (T -648)) +((-3544 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-648 *3 *2)) (-4 *2 (-760 *3))))) +(-13 (-760 |#1|) (-626 |#2|) (-10 -8 (-15 -3544 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-379 |#1|)) (-6 (-379 |#1|)) |%noBranch|))) +((-1587 (((-3 (-859 |#2|) "failed") |#2| (-305 |#2|) (-1183)) 106) (((-3 (-859 |#2|) (-2 (|:| |leftHandLimit| (-3 (-859 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-859 |#2|) "failed"))) "failed") |#2| (-305 (-859 |#2|))) 131)) (-1575 (((-3 (-849 |#2|) "failed") |#2| (-305 (-849 |#2|))) 136))) +(((-649 |#1| |#2|) (-10 -7 (-15 -1587 ((-3 (-859 |#2|) (-2 (|:| |leftHandLimit| (-3 (-859 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-859 |#2|) "failed"))) "failed") |#2| (-305 (-859 |#2|)))) (-15 -1575 ((-3 (-849 |#2|) "failed") |#2| (-305 (-849 |#2|)))) (-15 -1587 ((-3 (-859 |#2|) "failed") |#2| (-305 |#2|) (-1183)))) (-13 (-465) (-1063 (-577)) (-654 (-577))) (-13 (-27) (-1227) (-443 |#1|))) (T -649)) +((-1587 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1183)) (-4 *3 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-859 *3)) (-5 *1 (-649 *6 *3)))) (-1575 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-305 (-849 *3))) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-849 *3)) (-5 *1 (-649 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) (-1587 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-859 *3))) (-4 *3 (-13 (-27) (-1227) (-443 *5))) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-3 (-859 *3) (-2 (|:| |leftHandLimit| (-3 (-859 *3) "failed")) (|:| |rightHandLimit| (-3 (-859 *3) "failed"))) "failed")) (-5 *1 (-649 *5 *3))))) +(-10 -7 (-15 -1587 ((-3 (-859 |#2|) (-2 (|:| |leftHandLimit| (-3 (-859 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-859 |#2|) "failed"))) "failed") |#2| (-305 (-859 |#2|)))) (-15 -1575 ((-3 (-849 |#2|) "failed") |#2| (-305 (-849 |#2|)))) (-15 -1587 ((-3 (-859 |#2|) "failed") |#2| (-305 |#2|) (-1183)))) +((-1587 (((-3 (-859 (-420 (-975 |#1|))) "failed") (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|))) (-1183)) 86) (((-3 (-859 (-420 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed"))) "failed") (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|)))) 20) (((-3 (-859 (-420 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed"))) "failed") (-420 (-975 |#1|)) (-305 (-859 (-975 |#1|)))) 35)) (-1575 (((-849 (-420 (-975 |#1|))) (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|)))) 23) (((-849 (-420 (-975 |#1|))) (-420 (-975 |#1|)) (-305 (-849 (-975 |#1|)))) 43))) +(((-650 |#1|) (-10 -7 (-15 -1587 ((-3 (-859 (-420 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed"))) "failed") (-420 (-975 |#1|)) (-305 (-859 (-975 |#1|))))) (-15 -1587 ((-3 (-859 (-420 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed"))) "failed") (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|))))) (-15 -1575 ((-849 (-420 (-975 |#1|))) (-420 (-975 |#1|)) (-305 (-849 (-975 |#1|))))) (-15 -1575 ((-849 (-420 (-975 |#1|))) (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|))))) (-15 -1587 ((-3 (-859 (-420 (-975 |#1|))) "failed") (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|))) (-1183)))) (-465)) (T -650)) +((-1587 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 (-420 (-975 *6)))) (-5 *5 (-1183)) (-5 *3 (-420 (-975 *6))) (-4 *6 (-465)) (-5 *2 (-859 *3)) (-5 *1 (-650 *6)))) (-1575 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-420 (-975 *5)))) (-5 *3 (-420 (-975 *5))) (-4 *5 (-465)) (-5 *2 (-849 *3)) (-5 *1 (-650 *5)))) (-1575 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-849 (-975 *5)))) (-4 *5 (-465)) (-5 *2 (-849 (-420 (-975 *5)))) (-5 *1 (-650 *5)) (-5 *3 (-420 (-975 *5))))) (-1587 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-420 (-975 *5)))) (-5 *3 (-420 (-975 *5))) (-4 *5 (-465)) (-5 *2 (-3 (-859 *3) (-2 (|:| |leftHandLimit| (-3 (-859 *3) "failed")) (|:| |rightHandLimit| (-3 (-859 *3) "failed"))) "failed")) (-5 *1 (-650 *5)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-859 (-975 *5)))) (-4 *5 (-465)) (-5 *2 (-3 (-859 (-420 (-975 *5))) (-2 (|:| |leftHandLimit| (-3 (-859 (-420 (-975 *5))) "failed")) (|:| |rightHandLimit| (-3 (-859 (-420 (-975 *5))) "failed"))) "failed")) (-5 *1 (-650 *5)) (-5 *3 (-420 (-975 *5)))))) +(-10 -7 (-15 -1587 ((-3 (-859 (-420 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed"))) "failed") (-420 (-975 |#1|)) (-305 (-859 (-975 |#1|))))) (-15 -1587 ((-3 (-859 (-420 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-859 (-420 (-975 |#1|))) "failed"))) "failed") (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|))))) (-15 -1575 ((-849 (-420 (-975 |#1|))) (-420 (-975 |#1|)) (-305 (-849 (-975 |#1|))))) (-15 -1575 ((-849 (-420 (-975 |#1|))) (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|))))) (-15 -1587 ((-3 (-859 (-420 (-975 |#1|))) "failed") (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|))) (-1183)))) +((-3473 (((-112) $ $) NIL)) (-2229 (((-787)) NIL)) (-1910 (($) NIL)) (-3732 (($ $ $) NIL) (($) NIL T CONST)) (-3201 (($ $ $) NIL) (($) NIL T CONST)) (-4038 (((-944) $) NIL)) (-2810 (((-1183) $) NIL)) (-3222 (($ (-944)) 11)) (-1474 (((-1145) $) NIL)) (-3163 (($ (-217 |#1|)) 12)) (-3544 (((-880) $) NIL) (($ (-882 |#1|)) 7)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL))) +(((-651 |#1|) (-13 (-860) (-629 (-882 |#1|)) (-10 -8 (-15 -3163 ($ (-217 |#1|))))) (-660 (-1201))) (T -651)) +((-3163 (*1 *1 *2) (-12 (-5 *2 (-217 *3)) (-14 *3 (-660 (-1201))) (-5 *1 (-651 *3))))) +(-13 (-860) (-629 (-882 |#1|)) (-10 -8 (-15 -3163 ($ (-217 |#1|))))) +((-1621 (((-3 (-1292 (-420 |#1|)) "failed") (-1292 |#2|) |#2|) 64 (-2749 (|has| |#1| (-375)))) (((-3 (-1292 |#1|) "failed") (-1292 |#2|) |#2|) 49 (|has| |#1| (-375)))) (-1597 (((-112) (-1292 |#2|)) 33)) (-1608 (((-3 (-1292 |#1|) "failed") (-1292 |#2|)) 40))) +(((-652 |#1| |#2|) (-10 -7 (-15 -1597 ((-112) (-1292 |#2|))) (-15 -1608 ((-3 (-1292 |#1|) "failed") (-1292 |#2|))) (IF (|has| |#1| (-375)) (-15 -1621 ((-3 (-1292 |#1|) "failed") (-1292 |#2|) |#2|)) (-15 -1621 ((-3 (-1292 (-420 |#1|)) "failed") (-1292 |#2|) |#2|)))) (-569) (-13 (-1074) (-654 |#1|))) (T -652)) +((-1621 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 *5))) (-2749 (-4 *5 (-375))) (-4 *5 (-569)) (-5 *2 (-1292 (-420 *5))) (-5 *1 (-652 *5 *4)))) (-1621 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 *5))) (-4 *5 (-375)) (-4 *5 (-569)) (-5 *2 (-1292 *5)) (-5 *1 (-652 *5 *4)))) (-1608 (*1 *2 *3) (|partial| -12 (-5 *3 (-1292 *5)) (-4 *5 (-13 (-1074) (-654 *4))) (-4 *4 (-569)) (-5 *2 (-1292 *4)) (-5 *1 (-652 *4 *5)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-1292 *5)) (-4 *5 (-13 (-1074) (-654 *4))) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-652 *4 *5))))) +(-10 -7 (-15 -1597 ((-112) (-1292 |#2|))) (-15 -1608 ((-3 (-1292 |#1|) "failed") (-1292 |#2|))) (IF (|has| |#1| (-375)) (-15 -1621 ((-3 (-1292 |#1|) "failed") (-1292 |#2|) |#2|)) (-15 -1621 ((-3 (-1292 (-420 |#1|)) "failed") (-1292 |#2|) |#2|)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3829 (((-660 (-891 (-651 |#2|) |#1|)) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-2248 (($ $) NIL)) (-2030 (($ |#1| (-651 |#2|)) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-1635 (($ (-660 |#1|)) 25)) (-3747 (((-651 |#2|) $) NIL)) (-2221 ((|#1| $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2561 (((-135)) 16)) (-2710 (((-1292 |#1|) $) 44)) (-3544 (((-880) $) NIL) (($ (-651 |#2|)) 11)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 20 T CONST)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) 17)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-653 |#1| |#2|) (-13 (-1299 |#1|) (-629 (-651 |#2|)) (-522 |#1| (-651 |#2|)) (-10 -8 (-15 -1635 ($ (-660 |#1|))) (-15 -2710 ((-1292 |#1|) $)))) (-375) (-660 (-1201))) (T -653)) +((-1635 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-375)) (-5 *1 (-653 *3 *4)) (-14 *4 (-660 (-1201))))) (-2710 (*1 *2 *1) (-12 (-5 *2 (-1292 *3)) (-5 *1 (-653 *3 *4)) (-4 *3 (-375)) (-14 *4 (-660 (-1201)))))) +(-13 (-1299 |#1|) (-629 (-651 |#2|)) (-522 |#1| (-651 |#2|)) (-10 -8 (-15 -1635 ($ (-660 |#1|))) (-15 -2710 ((-1292 |#1|) $)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-1647 (((-705 |#1|) (-705 $)) 30) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 29)) (-1657 (((-705 |#1|) (-1292 $)) 32) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 31)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ |#1| $) 27))) +(((-654 |#1|) (-141) (-1074)) (T -654)) +((-1657 (*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-654 *4)) (-4 *4 (-1074)) (-5 *2 (-705 *4)))) (-1657 (*1 *2 *3 *1) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-654 *4)) (-4 *4 (-1074)) (-5 *2 (-2 (|:| -1881 (-705 *4)) (|:| |vec| (-1292 *4)))))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-705 *1)) (-4 *1 (-654 *4)) (-4 *4 (-1074)) (-5 *2 (-705 *4)))) (-1647 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *1)) (-5 *4 (-1292 *1)) (-4 *1 (-654 *5)) (-4 *5 (-1074)) (-5 *2 (-2 (|:| -1881 (-705 *5)) (|:| |vec| (-1292 *5))))))) +(-13 (-664 |t#1|) (-10 -8 (-15 -1657 ((-705 |t#1|) (-1292 $))) (-15 -1657 ((-2 (|:| -1881 (-705 |t#1|)) (|:| |vec| (-1292 |t#1|))) (-1292 $) $)) (-15 -1647 ((-705 |t#1|) (-705 $))) (-15 -1647 ((-2 (|:| -1881 (-705 |t#1|)) (|:| |vec| (-1292 |t#1|))) (-705 $) (-1292 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-1667 (($ (-660 |#1|)) 23)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2872 ((|#1| $ (-653 |#1| |#2|)) 46)) (-2561 (((-135)) 13)) (-2710 (((-1292 |#1|) $) 42)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 18 T CONST)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) 14)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-655 |#1| |#2|) (-13 (-1299 |#1|) (-297 (-653 |#1| |#2|) |#1|) (-10 -8 (-15 -1667 ($ (-660 |#1|))) (-15 -2710 ((-1292 |#1|) $)))) (-375) (-660 (-1201))) (T -655)) +((-1667 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-375)) (-5 *1 (-655 *3 *4)) (-14 *4 (-660 (-1201))))) (-2710 (*1 *2 *1) (-12 (-5 *2 (-1292 *3)) (-5 *1 (-655 *3 *4)) (-4 *3 (-375)) (-14 *4 (-660 (-1201)))))) +(-13 (-1299 |#1|) (-297 (-653 |#1| |#2|) |#1|) (-10 -8 (-15 -1667 ($ (-660 |#1|))) (-15 -2710 ((-1292 |#1|) $)))) +((-3473 (((-112) $ $) 7)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8)) (* (($ |#1| $) 14) (($ $ |#1|) 17))) +(((-656 |#1|) (-141) (-1137)) (T -656)) +NIL +(-13 (-662 |t#1|) (-1076 |t#1|)) +(((-102) . T) ((-626 (-880)) . T) ((-662 |#1|) . T) ((-1076 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-1367 ((|#2| (-660 |#1|) (-660 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-660 |#1|) (-660 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|) |#2|) 17) ((|#2| (-660 |#1|) (-660 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|)) 12))) +(((-657 |#1| |#2|) (-10 -7 (-15 -1367 ((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|))) (-15 -1367 (|#2| (-660 |#1|) (-660 |#2|) |#1|)) (-15 -1367 ((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|) |#2|)) (-15 -1367 (|#2| (-660 |#1|) (-660 |#2|) |#1| |#2|)) (-15 -1367 ((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|) (-1 |#2| |#1|))) (-15 -1367 (|#2| (-660 |#1|) (-660 |#2|) |#1| (-1 |#2| |#1|)))) (-1125) (-1242)) (T -657)) +((-1367 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1125)) (-4 *2 (-1242)) (-5 *1 (-657 *5 *2)))) (-1367 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-660 *5)) (-5 *4 (-660 *6)) (-4 *5 (-1125)) (-4 *6 (-1242)) (-5 *1 (-657 *5 *6)))) (-1367 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *2)) (-4 *5 (-1125)) (-4 *2 (-1242)) (-5 *1 (-657 *5 *2)))) (-1367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 *5)) (-4 *6 (-1125)) (-4 *5 (-1242)) (-5 *2 (-1 *5 *6)) (-5 *1 (-657 *6 *5)))) (-1367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *2)) (-4 *5 (-1125)) (-4 *2 (-1242)) (-5 *1 (-657 *5 *2)))) (-1367 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *6)) (-4 *5 (-1125)) (-4 *6 (-1242)) (-5 *2 (-1 *6 *5)) (-5 *1 (-657 *5 *6))))) +(-10 -7 (-15 -1367 ((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|))) (-15 -1367 (|#2| (-660 |#1|) (-660 |#2|) |#1|)) (-15 -1367 ((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|) |#2|)) (-15 -1367 (|#2| (-660 |#1|) (-660 |#2|) |#1| |#2|)) (-15 -1367 ((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|) (-1 |#2| |#1|))) (-15 -1367 (|#2| (-660 |#1|) (-660 |#2|) |#1| (-1 |#2| |#1|)))) +((-3127 (((-660 |#2|) (-1 |#2| |#1| |#2|) (-660 |#1|) |#2|) 16)) (-3654 ((|#2| (-1 |#2| |#1| |#2|) (-660 |#1|) |#2|) 18)) (-4087 (((-660 |#2|) (-1 |#2| |#1|) (-660 |#1|)) 13))) +(((-658 |#1| |#2|) (-10 -7 (-15 -3127 ((-660 |#2|) (-1 |#2| |#1| |#2|) (-660 |#1|) |#2|)) (-15 -3654 (|#2| (-1 |#2| |#1| |#2|) (-660 |#1|) |#2|)) (-15 -4087 ((-660 |#2|) (-1 |#2| |#1|) (-660 |#1|)))) (-1242) (-1242)) (T -658)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-660 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-660 *6)) (-5 *1 (-658 *5 *6)))) (-3654 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-660 *5)) (-4 *5 (-1242)) (-4 *2 (-1242)) (-5 *1 (-658 *5 *2)))) (-3127 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-660 *6)) (-4 *6 (-1242)) (-4 *5 (-1242)) (-5 *2 (-660 *5)) (-5 *1 (-658 *6 *5))))) +(-10 -7 (-15 -3127 ((-660 |#2|) (-1 |#2| |#1| |#2|) (-660 |#1|) |#2|)) (-15 -3654 (|#2| (-1 |#2| |#1| |#2|) (-660 |#1|) |#2|)) (-15 -4087 ((-660 |#2|) (-1 |#2| |#1|) (-660 |#1|)))) +((-4087 (((-660 |#3|) (-1 |#3| |#1| |#2|) (-660 |#1|) (-660 |#2|)) 21))) +(((-659 |#1| |#2| |#3|) (-10 -7 (-15 -4087 ((-660 |#3|) (-1 |#3| |#1| |#2|) (-660 |#1|) (-660 |#2|)))) (-1242) (-1242) (-1242)) (T -659)) +((-4087 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-660 *6)) (-5 *5 (-660 *7)) (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-660 *8)) (-5 *1 (-659 *6 *7 *8))))) +(-10 -7 (-15 -4087 ((-660 |#3|) (-1 |#3| |#1| |#2|) (-660 |#1|) (-660 |#2|)))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3115 ((|#1| $) NIL)) (-2950 ((|#1| $) NIL)) (-4428 (($ $) NIL)) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-3933 (($ $ (-577)) NIL (|has| $ (-6 -4471)))) (-4077 (((-112) $) NIL (|has| |#1| (-865))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-4053 (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-1864 (($ $) NIL (|has| |#1| (-865))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-4374 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)))) (-3958 (($ $ $) NIL (|has| $ (-6 -4471)))) (-3945 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)))) (-3969 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)))) (-3709 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4471))) (($ $ "rest" $) NIL (|has| $ (-6 -4471))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471))) ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)))) (-1700 (($ $ $) 37 (|has| |#1| (-1125)))) (-1692 (($ $ $) 41 (|has| |#1| (-1125)))) (-1681 (($ $ $) 44 (|has| |#1| (-1125)))) (-2463 (($ (-1 (-112) |#1|) $) NIL)) (-2067 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2939 ((|#1| $) NIL)) (-1534 (($) NIL T CONST)) (-3645 (($ $) NIL (|has| $ (-6 -4471)))) (-3787 (($ $) NIL)) (-3563 (($ $) 23) (($ $ (-787)) NIL)) (-3215 (($ $) NIL (|has| |#1| (-1125)))) (-1817 (($ $) 36 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3719 (($ |#1| $) NIL (|has| |#1| (-1125))) (($ (-1 (-112) |#1|) $) NIL)) (-3904 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2192 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) NIL)) (-3998 (((-112) $) NIL)) (-3618 (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125))) (((-577) |#1| $) NIL (|has| |#1| (-1125))) (((-577) (-1 (-112) |#1|) $) NIL)) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2738 (((-112) $) 11)) (-4426 (((-660 $) $) NIL)) (-4394 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-4107 (($) 9 T CONST)) (-4113 (($ (-787) |#1|) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) NIL (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| |#1| (-865)))) (-3192 (($ $ $) NIL (|has| |#1| (-865))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3283 (($ $ $) NIL (|has| |#1| (-865))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2416 (((-577) $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| |#1| (-865)))) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1712 (($ |#1|) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2461 (((-660 |#1|) $) NIL)) (-3371 (((-112) $) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-3927 ((|#1| $) NIL) (($ $ (-787)) NIL)) (-2881 (($ $ $ (-577)) NIL) (($ |#1| $ (-577)) NIL)) (-2308 (($ $ $ (-577)) NIL) (($ |#1| $ (-577)) NIL)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-3552 ((|#1| $) 20) (($ $ (-787)) NIL)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2397 (($ $ |#1|) NIL (|has| $ (-6 -4471)))) (-4010 (((-112) $) NIL)) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) NIL)) (-3697 (((-112) $) 39)) (-3639 (($) 38)) (-2872 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1259 (-577))) NIL) ((|#1| $ (-577)) 42) ((|#1| $ (-577) |#1|) NIL)) (-4415 (((-577) $ $) NIL)) (-2472 (($ $ (-1259 (-577))) NIL) (($ $ (-577)) NIL)) (-3453 (($ $ (-1259 (-577))) NIL) (($ $ (-577)) NIL)) (-1885 (((-112) $) NIL)) (-4004 (($ $) NIL)) (-3981 (($ $) NIL (|has| $ (-6 -4471)))) (-4016 (((-787) $) NIL)) (-4026 (($ $) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4064 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) 53 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) NIL)) (-2905 (($ |#1| $) 12)) (-3992 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1677 (($ $ $) 35) (($ |#1| $) 43) (($ (-660 $)) NIL) (($ $ |#1|) NIL)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-3322 (((-660 $) $) NIL)) (-4405 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3468 (($ $ $) 13)) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-4013 (((-1183) $) 31 (|has| |#1| (-844))) (((-1183) $ (-112)) 32 (|has| |#1| (-844))) (((-1297) (-838) $) 33 (|has| |#1| (-844))) (((-1297) (-838) $ (-112)) 34 (|has| |#1| (-844)))) (-3025 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-660 |#1|) (-13 (-682 |#1|) (-10 -8 (-15 -4107 ($) -1512) (-15 -2738 ((-112) $)) (-15 -2905 ($ |#1| $)) (-15 -3468 ($ $ $)) (IF (|has| |#1| (-1125)) (PROGN (-15 -1700 ($ $ $)) (-15 -1692 ($ $ $)) (-15 -1681 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|))) (-1242)) (T -660)) +((-4107 (*1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1242)))) (-2738 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-660 *3)) (-4 *3 (-1242)))) (-2905 (*1 *1 *2 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1242)))) (-3468 (*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1242)))) (-1700 (*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1125)) (-4 *2 (-1242)))) (-1692 (*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1125)) (-4 *2 (-1242)))) (-1681 (*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1125)) (-4 *2 (-1242))))) +(-13 (-682 |#1|) (-10 -8 (-15 -4107 ($) -1512) (-15 -2738 ((-112) $)) (-15 -2905 ($ |#1| $)) (-15 -3468 ($ $ $)) (IF (|has| |#1| (-1125)) (PROGN (-15 -1700 ($ $ $)) (-15 -1692 ($ $ $)) (-15 -1681 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 11) (($ (-1206)) NIL) (((-1206) $) NIL) ((|#1| $) 8)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-661 |#1|) (-13 (-1108) (-626 |#1|)) (-1125)) (T -661)) +NIL +(-13 (-1108) (-626 |#1|)) +((-3473 (((-112) $ $) 7)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8)) (* (($ |#1| $) 14))) +(((-662 |#1|) (-141) (-1137)) (T -662)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1137))))) +(-13 (-1125) (-10 -8 (-15 * ($ |t#1| $)))) +(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1711 (($ |#1| |#1| $) 43)) (-3828 (((-112) $ (-787)) NIL)) (-2463 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-1534 (($) NIL T CONST)) (-3215 (($ $) 45)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3719 (($ |#1| $) 56 (|has| $ (-6 -4470))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4470)))) (-3904 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)))) (-1461 (((-660 |#1|) $) 9 (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2182 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 37)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-4330 ((|#1| $) 47)) (-2881 (($ |#1| $) 29) (($ |#1| $ (-787)) 42)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3530 ((|#1| $) 50)) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) 23)) (-3639 (($) 28)) (-1723 (((-112) $) 54)) (-3206 (((-660 (-2 (|:| -4444 |#1|) (|:| -1485 (-787)))) $) 67)) (-3736 (($) 26) (($ (-660 |#1|)) 19)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) 63 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) 20)) (-4152 (((-549) $) 34 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) NIL)) (-3544 (((-880) $) 14 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3541 (($ (-660 |#1|)) 24)) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 69 (|has| |#1| (-102)))) (-3484 (((-787) $) 17 (|has| $ (-6 -4470))))) +(((-663 |#1|) (-13 (-711 |#1|) (-10 -8 (-6 -4470) (-15 -1723 ((-112) $)) (-15 -1711 ($ |#1| |#1| $)))) (-1125)) (T -663)) +((-1723 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-663 *3)) (-4 *3 (-1125)))) (-1711 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1125))))) +(-13 (-711 |#1|) (-10 -8 (-6 -4470) (-15 -1723 ((-112) $)) (-15 -1711 ($ |#1| |#1| $)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ |#1| $) 27))) +(((-664 |#1|) (-141) (-1083)) (T -664)) +NIL +(-13 (-21) (-662 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-2229 (((-787) $) 17)) (-3622 (($ $ |#1|) 69)) (-3645 (($ $) 39)) (-3787 (($ $) 37)) (-1628 (((-3 |#1| "failed") $) 61)) (-2921 ((|#1| $) NIL)) (-3571 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3380 (((-880) $ (-1 (-880) (-880) (-880)) (-1 (-880) (-880) (-880)) (-577)) 56)) (-3657 ((|#1| $ (-577)) 35)) (-3668 ((|#2| $ (-577)) 34)) (-1735 (($ (-1 |#1| |#1|) $) 41)) (-1742 (($ (-1 |#2| |#2|) $) 47)) (-3633 (($) 11)) (-3690 (($ |#1| |#2|) 24)) (-3678 (($ (-660 (-2 (|:| |gen| |#1|) (|:| -4072 |#2|)))) 25)) (-3701 (((-660 (-2 (|:| |gen| |#1|) (|:| -4072 |#2|))) $) 14)) (-1764 (($ |#1| $) 71)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-1753 (((-112) $ $) 76)) (-3544 (((-880) $) 21) (($ |#1|) 18)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 27))) +(((-665 |#1| |#2| |#3|) (-13 (-1125) (-1063 |#1|) (-10 -8 (-15 -3380 ((-880) $ (-1 (-880) (-880) (-880)) (-1 (-880) (-880) (-880)) (-577))) (-15 -3701 ((-660 (-2 (|:| |gen| |#1|) (|:| -4072 |#2|))) $)) (-15 -3690 ($ |#1| |#2|)) (-15 -3678 ($ (-660 (-2 (|:| |gen| |#1|) (|:| -4072 |#2|))))) (-15 -3668 (|#2| $ (-577))) (-15 -3657 (|#1| $ (-577))) (-15 -3787 ($ $)) (-15 -3645 ($ $)) (-15 -2229 ((-787) $)) (-15 -3633 ($)) (-15 -3622 ($ $ |#1|)) (-15 -1764 ($ |#1| $)) (-15 -3571 ($ |#1| |#2| $)) (-15 -3571 ($ $ $)) (-15 -1753 ((-112) $ $)) (-15 -1742 ($ (-1 |#2| |#2|) $)) (-15 -1735 ($ (-1 |#1| |#1|) $)))) (-1125) (-23) |#2|) (T -665)) +((-3380 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-880) (-880) (-880))) (-5 *4 (-577)) (-5 *2 (-880)) (-5 *1 (-665 *5 *6 *7)) (-4 *5 (-1125)) (-4 *6 (-23)) (-14 *7 *6))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4072 *4)))) (-5 *1 (-665 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-23)) (-14 *5 *4))) (-3690 (*1 *1 *2 *3) (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3))) (-3678 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4072 *4)))) (-4 *3 (-1125)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-665 *3 *4 *5)))) (-3668 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *2 (-23)) (-5 *1 (-665 *4 *2 *5)) (-4 *4 (-1125)) (-14 *5 *2))) (-3657 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *2 (-1125)) (-5 *1 (-665 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3787 (*1 *1 *1) (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3))) (-3645 (*1 *1 *1) (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3))) (-2229 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-665 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-23)) (-14 *5 *4))) (-3633 (*1 *1) (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3))) (-3622 (*1 *1 *1 *2) (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3))) (-1764 (*1 *1 *2 *1) (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3))) (-3571 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3))) (-3571 (*1 *1 *1 *1) (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3))) (-1753 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-665 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-23)) (-14 *5 *4))) (-1742 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-665 *3 *4 *5)) (-4 *3 (-1125)))) (-1735 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-665 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1125) (-1063 |#1|) (-10 -8 (-15 -3380 ((-880) $ (-1 (-880) (-880) (-880)) (-1 (-880) (-880) (-880)) (-577))) (-15 -3701 ((-660 (-2 (|:| |gen| |#1|) (|:| -4072 |#2|))) $)) (-15 -3690 ($ |#1| |#2|)) (-15 -3678 ($ (-660 (-2 (|:| |gen| |#1|) (|:| -4072 |#2|))))) (-15 -3668 (|#2| $ (-577))) (-15 -3657 (|#1| $ (-577))) (-15 -3787 ($ $)) (-15 -3645 ($ $)) (-15 -2229 ((-787) $)) (-15 -3633 ($)) (-15 -3622 ($ $ |#1|)) (-15 -1764 ($ |#1| $)) (-15 -3571 ($ |#1| |#2| $)) (-15 -3571 ($ $ $)) (-15 -1753 ((-112) $ $)) (-15 -1742 ($ (-1 |#2| |#2|) $)) (-15 -1735 ($ (-1 |#1| |#1|) $)))) +((-2416 (((-577) $) 31)) (-2308 (($ |#2| $ (-577)) 27) (($ $ $ (-577)) NIL)) (-4285 (((-660 (-577)) $) 12)) (-4298 (((-112) (-577) $) 18)) (-1677 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-660 $)) NIL))) +(((-666 |#1| |#2|) (-10 -8 (-15 -2308 (|#1| |#1| |#1| (-577))) (-15 -2308 (|#1| |#2| |#1| (-577))) (-15 -1677 (|#1| (-660 |#1|))) (-15 -1677 (|#1| |#1| |#1|)) (-15 -1677 (|#1| |#2| |#1|)) (-15 -1677 (|#1| |#1| |#2|)) (-15 -2416 ((-577) |#1|)) (-15 -4285 ((-660 (-577)) |#1|)) (-15 -4298 ((-112) (-577) |#1|))) (-667 |#2|) (-1242)) (T -666)) +NIL +(-10 -8 (-15 -2308 (|#1| |#1| |#1| (-577))) (-15 -2308 (|#1| |#2| |#1| (-577))) (-15 -1677 (|#1| (-660 |#1|))) (-15 -1677 (|#1| |#1| |#1|)) (-15 -1677 (|#1| |#2| |#1|)) (-15 -1677 (|#1| |#1| |#2|)) (-15 -2416 ((-577) |#1|)) (-15 -4285 ((-660 (-577)) |#1|)) (-15 -4298 ((-112) (-577) |#1|))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-2389 (((-1297) $ (-577) (-577)) 41 (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) 8)) (-3709 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) 60 (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4470)))) (-1534 (($) 7 T CONST)) (-1817 (($ $) 80 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3904 (($ |#1| $) 79 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4470)))) (-2192 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) 52)) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-4113 (($ (-787) |#1|) 70)) (-1479 (((-112) $ (-787)) 9)) (-2406 (((-577) $) 44 (|has| (-577) (-865)))) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2416 (((-577) $) 45 (|has| (-577) (-865)))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-2308 (($ |#1| $ (-577)) 62) (($ $ $ (-577)) 61)) (-4285 (((-660 (-577)) $) 47)) (-4298 (((-112) (-577) $) 48)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-3552 ((|#1| $) 43 (|has| (-577) (-865)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2397 (($ $ |#1|) 42 (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-4274 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) 49)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#1| $ (-577) |#1|) 51) ((|#1| $ (-577)) 50) (($ $ (-1259 (-577))) 71)) (-3453 (($ $ (-577)) 64) (($ $ (-1259 (-577))) 63)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-4152 (((-549) $) 81 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 72)) (-1677 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-660 $)) 66)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-667 |#1|) (-141) (-1242)) (T -667)) +((-4113 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) (-1677 (*1 *1 *1 *2) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1242)))) (-1677 (*1 *1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1242)))) (-1677 (*1 *1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1242)))) (-1677 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) (-4087 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) (-3453 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) (-3453 (*1 *1 *1 *2) (-12 (-5 *2 (-1259 (-577))) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) (-2308 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-667 *2)) (-4 *2 (-1242)))) (-2308 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) (-3709 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1259 (-577))) (|has| *1 (-6 -4471)) (-4 *1 (-667 *2)) (-4 *2 (-1242))))) +(-13 (-617 (-577) |t#1|) (-152 |t#1|) (-297 (-1259 (-577)) $) (-10 -8 (-15 -4113 ($ (-787) |t#1|)) (-15 -1677 ($ $ |t#1|)) (-15 -1677 ($ |t#1| $)) (-15 -1677 ($ $ $)) (-15 -1677 ($ (-660 $))) (-15 -4087 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3453 ($ $ (-577))) (-15 -3453 ($ $ (-1259 (-577)))) (-15 -2308 ($ |t#1| $ (-577))) (-15 -2308 ($ $ $ (-577))) (IF (|has| $ (-6 -4471)) (-15 -3709 (|t#1| $ (-1259 (-577)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) +((-2546 (((-3 |#2| "failed") |#3| |#2| (-1201) |#2| (-660 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -4060 (-660 |#2|))) "failed") |#3| |#2| (-1201)) 44))) +(((-668 |#1| |#2| |#3|) (-10 -7 (-15 -2546 ((-3 (-2 (|:| |particular| |#2|) (|:| -4060 (-660 |#2|))) "failed") |#3| |#2| (-1201))) (-15 -2546 ((-3 |#2| "failed") |#3| |#2| (-1201) |#2| (-660 |#2|)))) (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148)) (-13 (-29 |#1|) (-1227) (-982)) (-672 |#2|)) (T -668)) +((-2546 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-660 *2)) (-4 *2 (-13 (-29 *6) (-1227) (-982))) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *1 (-668 *6 *2 *3)) (-4 *3 (-672 *2)))) (-2546 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1201)) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-4 *4 (-13 (-29 *6) (-1227) (-982))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4060 (-660 *4)))) (-5 *1 (-668 *6 *4 *3)) (-4 *3 (-672 *4))))) +(-10 -7 (-15 -2546 ((-3 (-2 (|:| |particular| |#2|) (|:| -4060 (-660 |#2|))) "failed") |#3| |#2| (-1201))) (-15 -2546 ((-3 |#2| "failed") |#3| |#2| (-1201) |#2| (-660 |#2|)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3712 (($ $) NIL (|has| |#1| (-375)))) (-3733 (($ $ $) NIL (|has| |#1| (-375)))) (-3743 (($ $ (-787)) NIL (|has| |#1| (-375)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-3156 (($ $ $) NIL (|has| |#1| (-375)))) (-3166 (($ $ $) NIL (|has| |#1| (-375)))) (-3176 (($ $ $) NIL (|has| |#1| (-375)))) (-3134 (($ $ $) NIL (|has| |#1| (-375)))) (-3124 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3145 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)))) (-3266 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-375)))) (-1628 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) NIL)) (-2921 (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) NIL)) (-2248 (($ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3143 (($ $) NIL (|has| |#1| (-465)))) (-2487 (((-112) $) NIL)) (-2030 (($ |#1| (-787)) NIL)) (-3244 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-569)))) (-3234 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-569)))) (-4061 (((-787) $) NIL)) (-3214 (($ $ $) NIL (|has| |#1| (-375)))) (-3224 (($ $ $) NIL (|has| |#1| (-375)))) (-3112 (($ $ $) NIL (|has| |#1| (-375)))) (-3195 (($ $ $) NIL (|has| |#1| (-375)))) (-3186 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3205 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)))) (-3256 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-375)))) (-2221 ((|#1| $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3462 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)))) (-2872 ((|#1| $ |#1|) NIL)) (-3753 (($ $ $) NIL (|has| |#1| (-375)))) (-2887 (((-787) $) NIL)) (-4039 ((|#1| $) NIL (|has| |#1| (-465)))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ (-420 (-577))) NIL (|has| |#1| (-1063 (-420 (-577))))) (($ |#1|) NIL)) (-4182 (((-660 |#1|) $) NIL)) (-2322 ((|#1| $ (-787)) NIL)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-3543 ((|#1| $ |#1| |#1|) NIL)) (-3001 (($ $) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($) NIL)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-669 |#1|) (-672 |#1|) (-239)) (T -669)) +NIL +(-672 |#1|) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3712 (($ $) NIL (|has| |#1| (-375)))) (-3733 (($ $ $) NIL (|has| |#1| (-375)))) (-3743 (($ $ (-787)) NIL (|has| |#1| (-375)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-3156 (($ $ $) NIL (|has| |#1| (-375)))) (-3166 (($ $ $) NIL (|has| |#1| (-375)))) (-3176 (($ $ $) NIL (|has| |#1| (-375)))) (-3134 (($ $ $) NIL (|has| |#1| (-375)))) (-3124 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3145 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)))) (-3266 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-375)))) (-1628 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) NIL)) (-2921 (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) NIL)) (-2248 (($ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3143 (($ $) NIL (|has| |#1| (-465)))) (-2487 (((-112) $) NIL)) (-2030 (($ |#1| (-787)) NIL)) (-3244 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-569)))) (-3234 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-569)))) (-4061 (((-787) $) NIL)) (-3214 (($ $ $) NIL (|has| |#1| (-375)))) (-3224 (($ $ $) NIL (|has| |#1| (-375)))) (-3112 (($ $ $) NIL (|has| |#1| (-375)))) (-3195 (($ $ $) NIL (|has| |#1| (-375)))) (-3186 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3205 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)))) (-3256 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-375)))) (-2221 ((|#1| $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3462 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)))) (-2872 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3753 (($ $ $) NIL (|has| |#1| (-375)))) (-2887 (((-787) $) NIL)) (-4039 ((|#1| $) NIL (|has| |#1| (-465)))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ (-420 (-577))) NIL (|has| |#1| (-1063 (-420 (-577))))) (($ |#1|) NIL)) (-4182 (((-660 |#1|) $) NIL)) (-2322 ((|#1| $ (-787)) NIL)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-3543 ((|#1| $ |#1| |#1|) NIL)) (-3001 (($ $) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($) NIL)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-670 |#1| |#2|) (-13 (-672 |#1|) (-297 |#2| |#2|)) (-239) (-13 (-664 |#1|) (-10 -8 (-15 -2852 ($ $))))) (T -670)) +NIL +(-13 (-672 |#1|) (-297 |#2| |#2|)) +((-3712 (($ $) 29)) (-3001 (($ $) 27)) (-2132 (($) 13))) +(((-671 |#1| |#2|) (-10 -8 (-15 -3712 (|#1| |#1|)) (-15 -3001 (|#1| |#1|)) (-15 -2132 (|#1|))) (-672 |#2|) (-1074)) (T -671)) +NIL +(-10 -8 (-15 -3712 (|#1| |#1|)) (-15 -3001 (|#1| |#1|)) (-15 -2132 (|#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3712 (($ $) 87 (|has| |#1| (-375)))) (-3733 (($ $ $) 89 (|has| |#1| (-375)))) (-3743 (($ $ (-787)) 88 (|has| |#1| (-375)))) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-3156 (($ $ $) 50 (|has| |#1| (-375)))) (-3166 (($ $ $) 51 (|has| |#1| (-375)))) (-3176 (($ $ $) 53 (|has| |#1| (-375)))) (-3134 (($ $ $) 48 (|has| |#1| (-375)))) (-3124 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 47 (|has| |#1| (-375)))) (-3145 (((-3 $ "failed") $ $) 49 (|has| |#1| (-375)))) (-3266 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 52 (|has| |#1| (-375)))) (-1628 (((-3 (-577) "failed") $) 80 (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) 77 (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) 74)) (-2921 (((-577) $) 79 (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) 76 (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) 75)) (-2248 (($ $) 69)) (-4187 (((-3 $ "failed") $) 37)) (-3143 (($ $) 60 (|has| |#1| (-465)))) (-2487 (((-112) $) 35)) (-2030 (($ |#1| (-787)) 67)) (-3244 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 62 (|has| |#1| (-569)))) (-3234 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 63 (|has| |#1| (-569)))) (-4061 (((-787) $) 71)) (-3214 (($ $ $) 57 (|has| |#1| (-375)))) (-3224 (($ $ $) 58 (|has| |#1| (-375)))) (-3112 (($ $ $) 46 (|has| |#1| (-375)))) (-3195 (($ $ $) 55 (|has| |#1| (-375)))) (-3186 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 54 (|has| |#1| (-375)))) (-3205 (((-3 $ "failed") $ $) 56 (|has| |#1| (-375)))) (-3256 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 59 (|has| |#1| (-375)))) (-2221 ((|#1| $) 70)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3462 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-569)))) (-2872 ((|#1| $ |#1|) 92)) (-3753 (($ $ $) 86 (|has| |#1| (-375)))) (-2887 (((-787) $) 72)) (-4039 ((|#1| $) 61 (|has| |#1| (-465)))) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ (-420 (-577))) 78 (|has| |#1| (-1063 (-420 (-577))))) (($ |#1|) 73)) (-4182 (((-660 |#1|) $) 66)) (-2322 ((|#1| $ (-787)) 68)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3543 ((|#1| $ |#1| |#1|) 65)) (-3001 (($ $) 90)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($) 91)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-672 |#1|) (-141) (-1074)) (T -672)) +((-2132 (*1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)))) (-3001 (*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)))) (-3733 (*1 *1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-3743 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-672 *3)) (-4 *3 (-1074)) (-4 *3 (-375)))) (-3712 (*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-3753 (*1 *1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) +(-13 (-870 |t#1|) (-297 |t#1| |t#1|) (-10 -8 (-15 -2132 ($)) (-15 -3001 ($ $)) (IF (|has| |t#1| (-375)) (PROGN (-15 -3733 ($ $ $)) (-15 -3743 ($ $ (-787))) (-15 -3712 ($ $)) (-15 -3753 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-629 #0=(-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-297 |#1| |#1|) . T) ((-424 |#1|) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 |#1|) |has| |#1| (-174)) ((-733 |#1|) |has| |#1| (-174)) ((-742) . T) ((-1063 #0#) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-870 |#1|) . T)) +((-3722 (((-660 (-669 (-420 |#2|))) (-669 (-420 |#2|))) 85 (|has| |#1| (-27)))) (-1902 (((-660 (-669 (-420 |#2|))) (-669 (-420 |#2|))) 84 (|has| |#1| (-27))) (((-660 (-669 (-420 |#2|))) (-669 (-420 |#2|)) (-1 (-660 |#1|) |#2|)) 19))) +(((-673 |#1| |#2|) (-10 -7 (-15 -1902 ((-660 (-669 (-420 |#2|))) (-669 (-420 |#2|)) (-1 (-660 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1902 ((-660 (-669 (-420 |#2|))) (-669 (-420 |#2|)))) (-15 -3722 ((-660 (-669 (-420 |#2|))) (-669 (-420 |#2|))))) |%noBranch|)) (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577)))) (-1268 |#1|)) (T -673)) +((-3722 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *5 (-1268 *4)) (-5 *2 (-660 (-669 (-420 *5)))) (-5 *1 (-673 *4 *5)) (-5 *3 (-669 (-420 *5))))) (-1902 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *5 (-1268 *4)) (-5 *2 (-660 (-669 (-420 *5)))) (-5 *1 (-673 *4 *5)) (-5 *3 (-669 (-420 *5))))) (-1902 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-660 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) (-5 *2 (-660 (-669 (-420 *6)))) (-5 *1 (-673 *5 *6)) (-5 *3 (-669 (-420 *6)))))) +(-10 -7 (-15 -1902 ((-660 (-669 (-420 |#2|))) (-669 (-420 |#2|)) (-1 (-660 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1902 ((-660 (-669 (-420 |#2|))) (-669 (-420 |#2|)))) (-15 -3722 ((-660 (-669 (-420 |#2|))) (-669 (-420 |#2|))))) |%noBranch|)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3712 (($ $) NIL (|has| |#1| (-375)))) (-3733 (($ $ $) 28 (|has| |#1| (-375)))) (-3743 (($ $ (-787)) 31 (|has| |#1| (-375)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-3156 (($ $ $) NIL (|has| |#1| (-375)))) (-3166 (($ $ $) NIL (|has| |#1| (-375)))) (-3176 (($ $ $) NIL (|has| |#1| (-375)))) (-3134 (($ $ $) NIL (|has| |#1| (-375)))) (-3124 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3145 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)))) (-3266 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-375)))) (-1628 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) NIL)) (-2921 (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) NIL)) (-2248 (($ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3143 (($ $) NIL (|has| |#1| (-465)))) (-2487 (((-112) $) NIL)) (-2030 (($ |#1| (-787)) NIL)) (-3244 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-569)))) (-3234 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-569)))) (-4061 (((-787) $) NIL)) (-3214 (($ $ $) NIL (|has| |#1| (-375)))) (-3224 (($ $ $) NIL (|has| |#1| (-375)))) (-3112 (($ $ $) NIL (|has| |#1| (-375)))) (-3195 (($ $ $) NIL (|has| |#1| (-375)))) (-3186 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3205 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)))) (-3256 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-375)))) (-2221 ((|#1| $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3462 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)))) (-2872 ((|#1| $ |#1|) 24)) (-3753 (($ $ $) 33 (|has| |#1| (-375)))) (-2887 (((-787) $) NIL)) (-4039 ((|#1| $) NIL (|has| |#1| (-465)))) (-3544 (((-880) $) 20) (($ (-577)) NIL) (($ (-420 (-577))) NIL (|has| |#1| (-1063 (-420 (-577))))) (($ |#1|) NIL)) (-4182 (((-660 |#1|) $) NIL)) (-2322 ((|#1| $ (-787)) NIL)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-3543 ((|#1| $ |#1| |#1|) 23)) (-3001 (($ $) NIL)) (-2806 (($) 21 T CONST)) (-2816 (($) 8 T CONST)) (-2132 (($) NIL)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-674 |#1| |#2|) (-672 |#1|) (-1074) (-1 |#1| |#1|)) (T -674)) +NIL +(-672 |#1|) +((-3733 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-3743 ((|#2| |#2| (-787) (-1 |#1| |#1|)) 45)) (-3753 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67))) +(((-675 |#1| |#2|) (-10 -7 (-15 -3733 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3743 (|#2| |#2| (-787) (-1 |#1| |#1|))) (-15 -3753 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-375) (-672 |#1|)) (T -675)) +((-3753 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-375)) (-5 *1 (-675 *4 *2)) (-4 *2 (-672 *4)))) (-3743 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-787)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) (-5 *1 (-675 *5 *2)) (-4 *2 (-672 *5)))) (-3733 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-375)) (-5 *1 (-675 *4 *2)) (-4 *2 (-672 *4))))) +(-10 -7 (-15 -3733 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3743 (|#2| |#2| (-787) (-1 |#1| |#1|))) (-15 -3753 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-3538 (($ $ $) 9))) +(((-676 |#1|) (-10 -8 (-15 -3538 (|#1| |#1| |#1|))) (-677)) (T -676)) +NIL +(-10 -8 (-15 -3538 (|#1| |#1| |#1|))) +((-3473 (((-112) $ $) 7)) (-3496 (($ $) 11)) (-4448 (((-112) $ $) 6)) (-3538 (($ $ $) 9)) (-2970 (((-112) $ $) 8)) (-3527 (($ $ $) 10))) +(((-677) (-141)) (T -677)) +((-3496 (*1 *1 *1) (-4 *1 (-677))) (-3527 (*1 *1 *1 *1) (-4 *1 (-677))) (-3538 (*1 *1 *1 *1) (-4 *1 (-677)))) +(-13 (-102) (-10 -8 (-15 -3496 ($ $)) (-15 -3527 ($ $ $)) (-15 -3538 ($ $ $)))) +(((-102) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 15)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-1623 ((|#1| $) 23)) (-3732 (($ $ $) NIL (|has| |#1| (-807)))) (-3201 (($ $ $) NIL (|has| |#1| (-807)))) (-2810 (((-1183) $) 48)) (-1474 (((-1145) $) NIL)) (-1637 ((|#3| $) 24)) (-3544 (((-880) $) 43)) (-4448 (((-112) $ $) 22)) (-2806 (($) 10 T CONST)) (-3025 (((-112) $ $) NIL (|has| |#1| (-807)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-807)))) (-2970 (((-112) $ $) 20)) (-3012 (((-112) $ $) NIL (|has| |#1| (-807)))) (-2990 (((-112) $ $) 26 (|has| |#1| (-807)))) (-3077 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3066 (($ $) 17) (($ $ $) NIL)) (-3055 (($ $ $) 29)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) +(((-678 |#1| |#2| |#3|) (-13 (-733 |#2|) (-10 -8 (IF (|has| |#1| (-807)) (-6 (-807)) |%noBranch|) (-15 -3077 ($ $ |#3|)) (-15 -3077 ($ |#1| |#3|)) (-15 -1623 (|#1| $)) (-15 -1637 (|#3| $)))) (-733 |#2|) (-174) (|SubsetCategory| (-742) |#2|)) (T -678)) +((-3077 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-678 *3 *4 *2)) (-4 *3 (-733 *4)) (-4 *2 (|SubsetCategory| (-742) *4)))) (-3077 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-678 *2 *4 *3)) (-4 *2 (-733 *4)) (-4 *3 (|SubsetCategory| (-742) *4)))) (-1623 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-733 *3)) (-5 *1 (-678 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-742) *3)))) (-1637 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-742) *4)) (-5 *1 (-678 *3 *4 *2)) (-4 *3 (-733 *4))))) +(-13 (-733 |#2|) (-10 -8 (IF (|has| |#1| (-807)) (-6 (-807)) |%noBranch|) (-15 -3077 ($ $ |#3|)) (-15 -3077 ($ |#1| |#3|)) (-15 -1623 (|#1| $)) (-15 -1637 (|#3| $)))) +((-3764 (((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|)) 33))) +(((-679 |#1|) (-10 -7 (-15 -3764 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|)))) (-932)) (T -679)) +((-3764 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-1197 *4))) (-5 *3 (-1197 *4)) (-4 *4 (-932)) (-5 *1 (-679 *4))))) +(-10 -7 (-15 -3764 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3435 (((-660 |#1|) $) 84)) (-2877 (($ $ (-787)) 94)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-2821 (((-1316 |#1| |#2|) (-1316 |#1| |#2|) $) 50)) (-1628 (((-3 (-688 |#1|) "failed") $) NIL)) (-2921 (((-688 |#1|) $) NIL)) (-2248 (($ $) 93)) (-2548 (((-787) $) NIL)) (-4074 (((-660 $) $) NIL)) (-2811 (((-112) $) NIL)) (-3640 (($ (-688 |#1|) |#2|) 70)) (-2799 (($ $) 89)) (-4087 (($ (-1 |#2| |#2|) $) NIL)) (-2834 (((-1316 |#1| |#2|) (-1316 |#1| |#2|) $) 49)) (-3044 (((-2 (|:| |k| (-688 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2209 (((-688 |#1|) $) NIL)) (-2221 ((|#2| $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3280 (($ $ |#1| $) 32) (($ $ (-660 |#1|) (-660 $)) 34)) (-2887 (((-787) $) 91)) (-3553 (($ $ $) 20) (($ (-688 |#1|) (-688 |#1|)) 79) (($ (-688 |#1|) $) 77) (($ $ (-688 |#1|)) 78)) (-3544 (((-880) $) NIL) (($ |#1|) 76) (((-1307 |#1| |#2|) $) 60) (((-1316 |#1| |#2|) $) 43) (($ (-688 |#1|)) 27)) (-4182 (((-660 |#2|) $) NIL)) (-2322 ((|#2| $ (-688 |#1|)) NIL)) (-1777 ((|#2| (-1316 |#1| |#2|) $) 45)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 23 T CONST)) (-1831 (((-660 (-2 (|:| |k| (-688 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2867 (((-3 $ "failed") (-1307 |#1| |#2|)) 62)) (-4089 (($ (-688 |#1|)) 14)) (-2970 (((-112) $ $) 46)) (-3077 (($ $ |#2|) NIL (|has| |#2| (-375)))) (-3066 (($ $) 68) (($ $ $) NIL)) (-3055 (($ $ $) 31)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-688 |#1|)) NIL))) +(((-680 |#1| |#2|) (-13 (-386 |#1| |#2|) (-394 |#2| (-688 |#1|)) (-10 -8 (-15 -2867 ((-3 $ "failed") (-1307 |#1| |#2|))) (-15 -3553 ($ (-688 |#1|) (-688 |#1|))) (-15 -3553 ($ (-688 |#1|) $)) (-15 -3553 ($ $ (-688 |#1|))))) (-865) (-174)) (T -680)) +((-2867 (*1 *1 *2) (|partial| -12 (-5 *2 (-1307 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) (-5 *1 (-680 *3 *4)))) (-3553 (*1 *1 *2 *2) (-12 (-5 *2 (-688 *3)) (-4 *3 (-865)) (-5 *1 (-680 *3 *4)) (-4 *4 (-174)))) (-3553 (*1 *1 *2 *1) (-12 (-5 *2 (-688 *3)) (-4 *3 (-865)) (-5 *1 (-680 *3 *4)) (-4 *4 (-174)))) (-3553 (*1 *1 *1 *2) (-12 (-5 *2 (-688 *3)) (-4 *3 (-865)) (-5 *1 (-680 *3 *4)) (-4 *4 (-174))))) +(-13 (-386 |#1| |#2|) (-394 |#2| (-688 |#1|)) (-10 -8 (-15 -2867 ((-3 $ "failed") (-1307 |#1| |#2|))) (-15 -3553 ($ (-688 |#1|) (-688 |#1|))) (-15 -3553 ($ (-688 |#1|) $)) (-15 -3553 ($ $ (-688 |#1|))))) +((-4077 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-4053 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2463 (($ (-1 (-112) |#2|) $) 29)) (-3645 (($ $) 65)) (-3215 (($ $) 74)) (-3719 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-3654 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-3618 (((-577) |#2| $ (-577)) 71) (((-577) |#2| $) NIL) (((-577) (-1 (-112) |#2|) $) 54)) (-4113 (($ (-787) |#2|) 63)) (-3192 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-3283 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4087 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1712 (($ |#2|) 15)) (-2881 (($ $ $ (-577)) 42) (($ |#2| $ (-577)) 40)) (-1828 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-2472 (($ $ (-1259 (-577))) 51) (($ $ (-577)) 44)) (-4064 (($ $ $ (-577)) 70)) (-1944 (($ $) 68)) (-2990 (((-112) $ $) 76))) +(((-681 |#1| |#2|) (-10 -8 (-15 -1712 (|#1| |#2|)) (-15 -2472 (|#1| |#1| (-577))) (-15 -2472 (|#1| |#1| (-1259 (-577)))) (-15 -3719 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2881 (|#1| |#2| |#1| (-577))) (-15 -2881 (|#1| |#1| |#1| (-577))) (-15 -3192 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2463 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3719 (|#1| |#2| |#1|)) (-15 -3215 (|#1| |#1|)) (-15 -3192 (|#1| |#1| |#1|)) (-15 -3283 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4077 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3618 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -3618 ((-577) |#2| |#1|)) (-15 -3618 ((-577) |#2| |#1| (-577))) (-15 -3283 (|#1| |#1| |#1|)) (-15 -4077 ((-112) |#1|)) (-15 -4064 (|#1| |#1| |#1| (-577))) (-15 -3645 (|#1| |#1|)) (-15 -4053 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4053 (|#1| |#1|)) (-15 -2990 ((-112) |#1| |#1|)) (-15 -3654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3654 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1828 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4113 (|#1| (-787) |#2|)) (-15 -4087 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4087 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1944 (|#1| |#1|))) (-682 |#2|) (-1242)) (T -681)) +NIL +(-10 -8 (-15 -1712 (|#1| |#2|)) (-15 -2472 (|#1| |#1| (-577))) (-15 -2472 (|#1| |#1| (-1259 (-577)))) (-15 -3719 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2881 (|#1| |#2| |#1| (-577))) (-15 -2881 (|#1| |#1| |#1| (-577))) (-15 -3192 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2463 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3719 (|#1| |#2| |#1|)) (-15 -3215 (|#1| |#1|)) (-15 -3192 (|#1| |#1| |#1|)) (-15 -3283 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4077 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3618 ((-577) (-1 (-112) |#2|) |#1|)) (-15 -3618 ((-577) |#2| |#1|)) (-15 -3618 ((-577) |#2| |#1| (-577))) (-15 -3283 (|#1| |#1| |#1|)) (-15 -4077 ((-112) |#1|)) (-15 -4064 (|#1| |#1| |#1| (-577))) (-15 -3645 (|#1| |#1|)) (-15 -4053 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4053 (|#1| |#1|)) (-15 -2990 ((-112) |#1| |#1|)) (-15 -3654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3654 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3654 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1828 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4113 (|#1| (-787) |#2|)) (-15 -4087 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4087 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1944 (|#1| |#1|))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3115 ((|#1| $) 49)) (-2950 ((|#1| $) 66)) (-4428 (($ $) 68)) (-2389 (((-1297) $ (-577) (-577)) 99 (|has| $ (-6 -4471)))) (-3933 (($ $ (-577)) 53 (|has| $ (-6 -4471)))) (-4077 (((-112) $) 144 (|has| |#1| (-865))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-4053 (($ $) 148 (-12 (|has| |#1| (-865)) (|has| $ (-6 -4471)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4471)))) (-1864 (($ $) 143 (|has| |#1| (-865))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-3828 (((-112) $ (-787)) 8)) (-4374 ((|#1| $ |#1|) 40 (|has| $ (-6 -4471)))) (-3958 (($ $ $) 57 (|has| $ (-6 -4471)))) (-3945 ((|#1| $ |#1|) 55 (|has| $ (-6 -4471)))) (-3969 ((|#1| $ |#1|) 59 (|has| $ (-6 -4471)))) (-3709 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4471))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4471))) (($ $ "rest" $) 56 (|has| $ (-6 -4471))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) 119 (|has| $ (-6 -4471))) ((|#1| $ (-577) |#1|) 88 (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) 42 (|has| $ (-6 -4471)))) (-2463 (($ (-1 (-112) |#1|) $) 131)) (-2067 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4470)))) (-2939 ((|#1| $) 67)) (-1534 (($) 7 T CONST)) (-3645 (($ $) 146 (|has| $ (-6 -4471)))) (-3787 (($ $) 136)) (-3563 (($ $) 74) (($ $ (-787)) 72)) (-3215 (($ $) 133 (|has| |#1| (-1125)))) (-1817 (($ $) 101 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3719 (($ |#1| $) 132 (|has| |#1| (-1125))) (($ (-1 (-112) |#1|) $) 127)) (-3904 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4470))) (($ |#1| $) 102 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2192 ((|#1| $ (-577) |#1|) 87 (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) 89)) (-3998 (((-112) $) 85)) (-3618 (((-577) |#1| $ (-577)) 141 (|has| |#1| (-1125))) (((-577) |#1| $) 140 (|has| |#1| (-1125))) (((-577) (-1 (-112) |#1|) $) 139)) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-4426 (((-660 $) $) 51)) (-4394 (((-112) $ $) 43 (|has| |#1| (-1125)))) (-4113 (($ (-787) |#1|) 111)) (-1479 (((-112) $ (-787)) 9)) (-2406 (((-577) $) 97 (|has| (-577) (-865)))) (-3732 (($ $ $) 154 (|has| |#1| (-865)))) (-3192 (($ $ $) 134 (|has| |#1| (-865))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-3283 (($ $ $) 142 (|has| |#1| (-865))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2416 (((-577) $) 96 (|has| (-577) (-865)))) (-3201 (($ $ $) 153 (|has| |#1| (-865)))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1712 (($ |#1|) 124)) (-1443 (((-112) $ (-787)) 10)) (-2461 (((-660 |#1|) $) 46)) (-3371 (((-112) $) 50)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-3927 ((|#1| $) 71) (($ $ (-787)) 69)) (-2881 (($ $ $ (-577)) 129) (($ |#1| $ (-577)) 128)) (-2308 (($ $ $ (-577)) 118) (($ |#1| $ (-577)) 117)) (-4285 (((-660 (-577)) $) 94)) (-4298 (((-112) (-577) $) 93)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-3552 ((|#1| $) 77) (($ $ (-787)) 75)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2397 (($ $ |#1|) 98 (|has| $ (-6 -4471)))) (-4010 (((-112) $) 86)) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-4274 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) 92)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1259 (-577))) 110) ((|#1| $ (-577)) 91) ((|#1| $ (-577) |#1|) 90)) (-4415 (((-577) $ $) 45)) (-2472 (($ $ (-1259 (-577))) 126) (($ $ (-577)) 125)) (-3453 (($ $ (-1259 (-577))) 116) (($ $ (-577)) 115)) (-1885 (((-112) $) 47)) (-4004 (($ $) 63)) (-3981 (($ $) 60 (|has| $ (-6 -4471)))) (-4016 (((-787) $) 64)) (-4026 (($ $) 65)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-4064 (($ $ $ (-577)) 145 (|has| $ (-6 -4471)))) (-1944 (($ $) 13)) (-4152 (((-549) $) 100 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 109)) (-3992 (($ $ $) 62) (($ $ |#1|) 61)) (-1677 (($ $ $) 79) (($ |#1| $) 78) (($ (-660 $)) 113) (($ $ |#1|) 112)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-3322 (((-660 $) $) 52)) (-4405 (((-112) $ $) 44 (|has| |#1| (-1125)))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) 152 (|has| |#1| (-865)))) (-3000 (((-112) $ $) 150 (|has| |#1| (-865)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3012 (((-112) $ $) 151 (|has| |#1| (-865)))) (-2990 (((-112) $ $) 149 (|has| |#1| (-865)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-682 |#1|) (-141) (-1242)) (T -682)) +((-1712 (*1 *1 *2) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1242))))) +(-13 (-1174 |t#1|) (-385 |t#1|) (-293 |t#1|) (-10 -8 (-15 -1712 ($ |t#1|)))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-293 |#1|) . T) ((-385 |#1|) . T) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-667 |#1|) . T) ((-865) |has| |#1| (-865)) ((-868) |has| |#1| (-865)) ((-1035 |#1|) . T) ((-1125) -2839 (|has| |#1| (-1125)) (|has| |#1| (-865))) ((-1174 |#1|) . T) ((-1242) . T) ((-1280 |#1|) . T)) +((-2546 (((-660 (-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -4060 (-660 (-1292 |#1|))))) (-660 (-660 |#1|)) (-660 (-1292 |#1|))) 22) (((-660 (-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -4060 (-660 (-1292 |#1|))))) (-705 |#1|) (-660 (-1292 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -4060 (-660 (-1292 |#1|)))) (-660 (-660 |#1|)) (-1292 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -4060 (-660 (-1292 |#1|)))) (-705 |#1|) (-1292 |#1|)) 14)) (-1545 (((-787) (-705 |#1|) (-1292 |#1|)) 30)) (-4348 (((-3 (-1292 |#1|) "failed") (-705 |#1|) (-1292 |#1|)) 24)) (-3776 (((-112) (-705 |#1|) (-1292 |#1|)) 27))) +(((-683 |#1|) (-10 -7 (-15 -2546 ((-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -4060 (-660 (-1292 |#1|)))) (-705 |#1|) (-1292 |#1|))) (-15 -2546 ((-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -4060 (-660 (-1292 |#1|)))) (-660 (-660 |#1|)) (-1292 |#1|))) (-15 -2546 ((-660 (-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -4060 (-660 (-1292 |#1|))))) (-705 |#1|) (-660 (-1292 |#1|)))) (-15 -2546 ((-660 (-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -4060 (-660 (-1292 |#1|))))) (-660 (-660 |#1|)) (-660 (-1292 |#1|)))) (-15 -4348 ((-3 (-1292 |#1|) "failed") (-705 |#1|) (-1292 |#1|))) (-15 -3776 ((-112) (-705 |#1|) (-1292 |#1|))) (-15 -1545 ((-787) (-705 |#1|) (-1292 |#1|)))) (-375)) (T -683)) +((-1545 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *5)) (-5 *4 (-1292 *5)) (-4 *5 (-375)) (-5 *2 (-787)) (-5 *1 (-683 *5)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *5)) (-5 *4 (-1292 *5)) (-4 *5 (-375)) (-5 *2 (-112)) (-5 *1 (-683 *5)))) (-4348 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1292 *4)) (-5 *3 (-705 *4)) (-4 *4 (-375)) (-5 *1 (-683 *4)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-660 *5))) (-4 *5 (-375)) (-5 *2 (-660 (-2 (|:| |particular| (-3 (-1292 *5) "failed")) (|:| -4060 (-660 (-1292 *5)))))) (-5 *1 (-683 *5)) (-5 *4 (-660 (-1292 *5))))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *5)) (-4 *5 (-375)) (-5 *2 (-660 (-2 (|:| |particular| (-3 (-1292 *5) "failed")) (|:| -4060 (-660 (-1292 *5)))))) (-5 *1 (-683 *5)) (-5 *4 (-660 (-1292 *5))))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-660 *5))) (-4 *5 (-375)) (-5 *2 (-2 (|:| |particular| (-3 (-1292 *5) "failed")) (|:| -4060 (-660 (-1292 *5))))) (-5 *1 (-683 *5)) (-5 *4 (-1292 *5)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |particular| (-3 (-1292 *5) "failed")) (|:| -4060 (-660 (-1292 *5))))) (-5 *1 (-683 *5)) (-5 *4 (-1292 *5))))) +(-10 -7 (-15 -2546 ((-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -4060 (-660 (-1292 |#1|)))) (-705 |#1|) (-1292 |#1|))) (-15 -2546 ((-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -4060 (-660 (-1292 |#1|)))) (-660 (-660 |#1|)) (-1292 |#1|))) (-15 -2546 ((-660 (-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -4060 (-660 (-1292 |#1|))))) (-705 |#1|) (-660 (-1292 |#1|)))) (-15 -2546 ((-660 (-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -4060 (-660 (-1292 |#1|))))) (-660 (-660 |#1|)) (-660 (-1292 |#1|)))) (-15 -4348 ((-3 (-1292 |#1|) "failed") (-705 |#1|) (-1292 |#1|))) (-15 -3776 ((-112) (-705 |#1|) (-1292 |#1|))) (-15 -1545 ((-787) (-705 |#1|) (-1292 |#1|)))) +((-2546 (((-660 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4060 (-660 |#3|)))) |#4| (-660 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4060 (-660 |#3|))) |#4| |#3|) 60)) (-1545 (((-787) |#4| |#3|) 18)) (-4348 (((-3 |#3| "failed") |#4| |#3|) 21)) (-3776 (((-112) |#4| |#3|) 14))) +(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2546 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4060 (-660 |#3|))) |#4| |#3|)) (-15 -2546 ((-660 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4060 (-660 |#3|)))) |#4| (-660 |#3|))) (-15 -4348 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3776 ((-112) |#4| |#3|)) (-15 -1545 ((-787) |#4| |#3|))) (-375) (-13 (-385 |#1|) (-10 -7 (-6 -4471))) (-13 (-385 |#1|) (-10 -7 (-6 -4471))) (-703 |#1| |#2| |#3|)) (T -684)) +((-1545 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-5 *2 (-787)) (-5 *1 (-684 *5 *6 *4 *3)) (-4 *3 (-703 *5 *6 *4)))) (-3776 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-5 *2 (-112)) (-5 *1 (-684 *5 *6 *4 *3)) (-4 *3 (-703 *5 *6 *4)))) (-4348 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-375)) (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4471)))) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4471)))) (-5 *1 (-684 *4 *5 *2 *3)) (-4 *3 (-703 *4 *5 *2)))) (-2546 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-5 *2 (-660 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4060 (-660 *7))))) (-5 *1 (-684 *5 *6 *7 *3)) (-5 *4 (-660 *7)) (-4 *3 (-703 *5 *6 *7)))) (-2546 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4060 (-660 *4)))) (-5 *1 (-684 *5 *6 *4 *3)) (-4 *3 (-703 *5 *6 *4))))) +(-10 -7 (-15 -2546 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4060 (-660 |#3|))) |#4| |#3|)) (-15 -2546 ((-660 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4060 (-660 |#3|)))) |#4| (-660 |#3|))) (-15 -4348 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3776 ((-112) |#4| |#3|)) (-15 -1545 ((-787) |#4| |#3|))) +((-3789 (((-2 (|:| |particular| (-3 (-1292 (-420 |#4|)) "failed")) (|:| -4060 (-660 (-1292 (-420 |#4|))))) (-660 |#4|) (-660 |#3|)) 51))) +(((-685 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3789 ((-2 (|:| |particular| (-3 (-1292 (-420 |#4|)) "failed")) (|:| -4060 (-660 (-1292 (-420 |#4|))))) (-660 |#4|) (-660 |#3|)))) (-569) (-809) (-865) (-972 |#1| |#2| |#3|)) (T -685)) +((-3789 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *7)) (-4 *7 (-865)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-5 *2 (-2 (|:| |particular| (-3 (-1292 (-420 *8)) "failed")) (|:| -4060 (-660 (-1292 (-420 *8)))))) (-5 *1 (-685 *5 *6 *7 *8))))) +(-10 -7 (-15 -3789 ((-2 (|:| |particular| (-3 (-1292 (-420 |#4|)) "failed")) (|:| -4060 (-660 (-1292 (-420 |#4|))))) (-660 |#4|) (-660 |#3|)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3294 (((-3 $ "failed")) NIL (|has| |#2| (-569)))) (-2339 ((|#2| $) NIL)) (-4025 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2700 (((-1292 (-705 |#2|))) NIL) (((-1292 (-705 |#2|)) (-1292 $)) NIL)) (-4046 (((-112) $) NIL)) (-4043 (((-1292 $)) 42)) (-3828 (((-112) $ (-787)) NIL)) (-2423 (($ |#2|) NIL)) (-1534 (($) NIL T CONST)) (-3931 (($ $) NIL (|has| |#2| (-318)))) (-3956 (((-246 |#1| |#2|) $ (-577)) NIL)) (-2364 (((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed")) NIL (|has| |#2| (-569)))) (-3741 (((-3 $ "failed")) NIL (|has| |#2| (-569)))) (-3457 (((-705 |#2|)) NIL) (((-705 |#2|) (-1292 $)) NIL)) (-4022 ((|#2| $) NIL)) (-3436 (((-705 |#2|) $) NIL) (((-705 |#2|) $ (-1292 $)) NIL)) (-3584 (((-3 $ "failed") $) NIL (|has| |#2| (-569)))) (-2304 (((-1197 (-975 |#2|))) NIL (|has| |#2| (-375)))) (-2470 (($ $ (-944)) NIL)) (-3999 ((|#2| $) NIL)) (-3762 (((-1197 |#2|) $) NIL (|has| |#2| (-569)))) (-3478 ((|#2|) NIL) ((|#2| (-1292 $)) NIL)) (-3976 (((-1197 |#2|) $) NIL)) (-3905 (((-112)) NIL)) (-1628 (((-3 (-577) "failed") $) NIL (|has| |#2| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1063 (-420 (-577))))) (((-3 |#2| "failed") $) NIL)) (-2921 (((-577) $) NIL (|has| |#2| (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| |#2| (-1063 (-420 (-577))))) ((|#2| $) NIL)) (-3502 (($ (-1292 |#2|)) NIL) (($ (-1292 |#2|) (-1292 $)) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL) (((-705 |#2|) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1545 (((-787) $) NIL (|has| |#2| (-569))) (((-944)) 43)) (-2117 ((|#2| $ (-577) (-577)) NIL)) (-3870 (((-112)) NIL)) (-2667 (($ $ (-944)) NIL)) (-1461 (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-2487 (((-112) $) NIL)) (-3919 (((-787) $) NIL (|has| |#2| (-569)))) (-3908 (((-660 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-569)))) (-2414 (((-787) $) NIL)) (-3824 (((-112)) NIL)) (-2424 (((-787) $) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2376 ((|#2| $) NIL (|has| |#2| (-6 (-4472 "*"))))) (-4002 (((-577) $) NIL)) (-3979 (((-577) $) NIL)) (-2530 (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-3990 (((-577) $) NIL)) (-3968 (((-577) $) NIL)) (-2550 (($ (-660 (-660 |#2|))) NIL)) (-2182 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2737 (((-660 (-660 |#2|)) $) NIL)) (-3799 (((-112)) NIL)) (-3847 (((-112)) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2373 (((-3 (-2 (|:| |particular| $) (|:| -4060 (-660 $))) "failed")) NIL (|has| |#2| (-569)))) (-3751 (((-3 $ "failed")) NIL (|has| |#2| (-569)))) (-3467 (((-705 |#2|)) NIL) (((-705 |#2|) (-1292 $)) NIL)) (-4032 ((|#2| $) NIL)) (-3445 (((-705 |#2|) $) NIL) (((-705 |#2|) $ (-1292 $)) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL) (((-705 |#2|) (-1292 $)) NIL)) (-3593 (((-3 $ "failed") $) NIL (|has| |#2| (-569)))) (-2345 (((-1197 (-975 |#2|))) NIL (|has| |#2| (-375)))) (-3604 (($ $ (-944)) NIL)) (-4012 ((|#2| $) NIL)) (-3774 (((-1197 |#2|) $) NIL (|has| |#2| (-569)))) (-3490 ((|#2|) NIL) ((|#2| (-1292 $)) NIL)) (-3987 (((-1197 |#2|) $) NIL)) (-3916 (((-112)) NIL)) (-2810 (((-1183) $) NIL)) (-3812 (((-112)) NIL)) (-3836 (((-112)) NIL)) (-3859 (((-112)) NIL)) (-2705 (((-3 $ "failed") $) NIL (|has| |#2| (-375)))) (-1474 (((-1145) $) NIL)) (-3892 (((-112)) NIL)) (-3462 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)))) (-1514 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#2| $ (-577) (-577) |#2|) NIL) ((|#2| $ (-577) (-577)) 28) ((|#2| $ (-577)) NIL)) (-2852 (($ $ (-1 |#2| |#2|) (-787)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-238))) (($ $ (-787)) NIL (|has| |#2| (-238))) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201))))) (-2395 ((|#2| $) NIL)) (-2413 (($ (-660 |#2|)) NIL)) (-4035 (((-112) $) NIL)) (-2404 (((-246 |#1| |#2|) $) NIL)) (-2387 ((|#2| $) NIL (|has| |#2| (-6 (-4472 "*"))))) (-1485 (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470))) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-1944 (($ $) NIL)) (-2710 (((-705 |#2|) (-1292 $)) NIL) (((-1292 |#2|) $) NIL) (((-705 |#2|) (-1292 $) (-1292 $)) NIL) (((-1292 |#2|) $ (-1292 $)) 31)) (-4152 (($ (-1292 |#2|)) NIL) (((-1292 |#2|) $) NIL)) (-2206 (((-660 (-975 |#2|))) NIL) (((-660 (-975 |#2|)) (-1292 $)) NIL)) (-3820 (($ $ $) NIL)) (-3965 (((-112)) NIL)) (-3943 (((-246 |#1| |#2|) $ (-577)) NIL)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ (-420 (-577))) NIL (|has| |#2| (-1063 (-420 (-577))))) (($ |#2|) NIL) (((-705 |#2|) $) NIL)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) 41)) (-3786 (((-660 (-1292 |#2|))) NIL (|has| |#2| (-569)))) (-3832 (($ $ $ $) NIL)) (-3940 (((-112)) NIL)) (-3543 (($ (-705 |#2|) $) NIL)) (-1524 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-4015 (((-112) $) NIL)) (-3807 (($ $ $) NIL)) (-3953 (((-112)) NIL)) (-3928 (((-112)) NIL)) (-3881 (((-112)) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-1 |#2| |#2|) (-787)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-238))) (($ $ (-787)) NIL (|has| |#2| (-238))) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201))))) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#2|) NIL (|has| |#2| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL (|has| |#2| (-375)))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL)) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-686 |#1| |#2|) (-13 (-1148 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-626 (-705 |#2|)) (-430 |#2|)) (-944) (-174)) (T -686)) +NIL +(-13 (-1148 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-626 (-705 |#2|)) (-430 |#2|)) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2856 (((-660 (-1160)) $) 10)) (-3544 (((-880) $) 16) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-687) (-13 (-1108) (-10 -8 (-15 -2856 ((-660 (-1160)) $))))) (T -687)) +((-2856 (*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-687))))) +(-13 (-1108) (-10 -8 (-15 -2856 ((-660 (-1160)) $)))) +((-3473 (((-112) $ $) NIL)) (-3435 (((-660 |#1|) $) NIL)) (-4239 (($ $) 62)) (-1819 (((-112) $) NIL)) (-1628 (((-3 |#1| "failed") $) NIL)) (-2921 ((|#1| $) NIL)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-3826 (((-3 $ "failed") (-835 |#1|)) 27)) (-3849 (((-112) (-835 |#1|)) 17)) (-3838 (($ (-835 |#1|)) 28)) (-1476 (((-112) $ $) 36)) (-3402 (((-944) $) 43)) (-4228 (($ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-1902 (((-660 $) (-835 |#1|)) 19)) (-3544 (((-880) $) 51) (($ |#1|) 40) (((-835 |#1|) $) 47) (((-693 |#1|) $) 52)) (-4448 (((-112) $ $) NIL)) (-3814 (((-59 (-660 $)) (-660 |#1|) (-944)) 67)) (-3801 (((-660 $) (-660 |#1|) (-944)) 70)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 63)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 46))) +(((-688 |#1|) (-13 (-865) (-1063 |#1|) (-10 -8 (-15 -1819 ((-112) $)) (-15 -4228 ($ $)) (-15 -4239 ($ $)) (-15 -3402 ((-944) $)) (-15 -1476 ((-112) $ $)) (-15 -3544 ((-835 |#1|) $)) (-15 -3544 ((-693 |#1|) $)) (-15 -1902 ((-660 $) (-835 |#1|))) (-15 -3849 ((-112) (-835 |#1|))) (-15 -3838 ($ (-835 |#1|))) (-15 -3826 ((-3 $ "failed") (-835 |#1|))) (-15 -3435 ((-660 |#1|) $)) (-15 -3814 ((-59 (-660 $)) (-660 |#1|) (-944))) (-15 -3801 ((-660 $) (-660 |#1|) (-944))))) (-865)) (T -688)) +((-1819 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) (-4228 (*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-865)))) (-4239 (*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-865)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-944)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) (-1476 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-835 *3)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-693 *3)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-835 *4)) (-4 *4 (-865)) (-5 *2 (-660 (-688 *4))) (-5 *1 (-688 *4)))) (-3849 (*1 *2 *3) (-12 (-5 *3 (-835 *4)) (-4 *4 (-865)) (-5 *2 (-112)) (-5 *1 (-688 *4)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-835 *3)) (-4 *3 (-865)) (-5 *1 (-688 *3)))) (-3826 (*1 *1 *2) (|partial| -12 (-5 *2 (-835 *3)) (-4 *3 (-865)) (-5 *1 (-688 *3)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *5)) (-5 *4 (-944)) (-4 *5 (-865)) (-5 *2 (-59 (-660 (-688 *5)))) (-5 *1 (-688 *5)))) (-3801 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *5)) (-5 *4 (-944)) (-4 *5 (-865)) (-5 *2 (-660 (-688 *5))) (-5 *1 (-688 *5))))) +(-13 (-865) (-1063 |#1|) (-10 -8 (-15 -1819 ((-112) $)) (-15 -4228 ($ $)) (-15 -4239 ($ $)) (-15 -3402 ((-944) $)) (-15 -1476 ((-112) $ $)) (-15 -3544 ((-835 |#1|) $)) (-15 -3544 ((-693 |#1|) $)) (-15 -1902 ((-660 $) (-835 |#1|))) (-15 -3849 ((-112) (-835 |#1|))) (-15 -3838 ($ (-835 |#1|))) (-15 -3826 ((-3 $ "failed") (-835 |#1|))) (-15 -3435 ((-660 |#1|) $)) (-15 -3814 ((-59 (-660 $)) (-660 |#1|) (-944))) (-15 -3801 ((-660 $) (-660 |#1|) (-944))))) +((-3115 ((|#2| $) 100)) (-4428 (($ $) 121)) (-3828 (((-112) $ (-787)) 35)) (-3563 (($ $) 109) (($ $ (-787)) 112)) (-3998 (((-112) $) 122)) (-4426 (((-660 $) $) 96)) (-4394 (((-112) $ $) 92)) (-1479 (((-112) $ (-787)) 33)) (-2406 (((-577) $) 66)) (-2416 (((-577) $) 65)) (-1443 (((-112) $ (-787)) 31)) (-3371 (((-112) $) 98)) (-3927 ((|#2| $) 113) (($ $ (-787)) 117)) (-2308 (($ $ $ (-577)) 83) (($ |#2| $ (-577)) 82)) (-4285 (((-660 (-577)) $) 64)) (-4298 (((-112) (-577) $) 59)) (-3552 ((|#2| $) NIL) (($ $ (-787)) 108)) (-3792 (($ $ (-577)) 125)) (-4010 (((-112) $) 124)) (-1514 (((-112) (-1 (-112) |#2|) $) 42)) (-4306 (((-660 |#2|) $) 46)) (-2872 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1259 (-577))) 79) ((|#2| $ (-577)) 57) ((|#2| $ (-577) |#2|) 58)) (-4415 (((-577) $ $) 91)) (-3453 (($ $ (-1259 (-577))) 78) (($ $ (-577)) 72)) (-1885 (((-112) $) 87)) (-4004 (($ $) 105)) (-4016 (((-787) $) 104)) (-4026 (($ $) 103)) (-3553 (($ (-660 |#2|)) 53)) (-3540 (($ $) 126)) (-3322 (((-660 $) $) 90)) (-4405 (((-112) $ $) 89)) (-1524 (((-112) (-1 (-112) |#2|) $) 41)) (-2970 (((-112) $ $) 20)) (-3484 (((-787) $) 39))) +(((-689 |#1| |#2|) (-10 -8 (-15 -2970 ((-112) |#1| |#1|)) (-15 -3540 (|#1| |#1|)) (-15 -3792 (|#1| |#1| (-577))) (-15 -3998 ((-112) |#1|)) (-15 -4010 ((-112) |#1|)) (-15 -2872 (|#2| |#1| (-577) |#2|)) (-15 -2872 (|#2| |#1| (-577))) (-15 -4306 ((-660 |#2|) |#1|)) (-15 -4298 ((-112) (-577) |#1|)) (-15 -4285 ((-660 (-577)) |#1|)) (-15 -2416 ((-577) |#1|)) (-15 -2406 ((-577) |#1|)) (-15 -3553 (|#1| (-660 |#2|))) (-15 -2872 (|#1| |#1| (-1259 (-577)))) (-15 -3453 (|#1| |#1| (-577))) (-15 -3453 (|#1| |#1| (-1259 (-577)))) (-15 -2308 (|#1| |#2| |#1| (-577))) (-15 -2308 (|#1| |#1| |#1| (-577))) (-15 -4004 (|#1| |#1|)) (-15 -4016 ((-787) |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -4428 (|#1| |#1|)) (-15 -3927 (|#1| |#1| (-787))) (-15 -2872 (|#2| |#1| "last")) (-15 -3927 (|#2| |#1|)) (-15 -3563 (|#1| |#1| (-787))) (-15 -2872 (|#1| |#1| "rest")) (-15 -3563 (|#1| |#1|)) (-15 -3552 (|#1| |#1| (-787))) (-15 -2872 (|#2| |#1| "first")) (-15 -3552 (|#2| |#1|)) (-15 -4394 ((-112) |#1| |#1|)) (-15 -4405 ((-112) |#1| |#1|)) (-15 -4415 ((-577) |#1| |#1|)) (-15 -1885 ((-112) |#1|)) (-15 -2872 (|#2| |#1| "value")) (-15 -3115 (|#2| |#1|)) (-15 -3371 ((-112) |#1|)) (-15 -4426 ((-660 |#1|) |#1|)) (-15 -3322 ((-660 |#1|) |#1|)) (-15 -1514 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1524 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3484 ((-787) |#1|)) (-15 -3828 ((-112) |#1| (-787))) (-15 -1479 ((-112) |#1| (-787))) (-15 -1443 ((-112) |#1| (-787)))) (-690 |#2|) (-1242)) (T -689)) +NIL +(-10 -8 (-15 -2970 ((-112) |#1| |#1|)) (-15 -3540 (|#1| |#1|)) (-15 -3792 (|#1| |#1| (-577))) (-15 -3998 ((-112) |#1|)) (-15 -4010 ((-112) |#1|)) (-15 -2872 (|#2| |#1| (-577) |#2|)) (-15 -2872 (|#2| |#1| (-577))) (-15 -4306 ((-660 |#2|) |#1|)) (-15 -4298 ((-112) (-577) |#1|)) (-15 -4285 ((-660 (-577)) |#1|)) (-15 -2416 ((-577) |#1|)) (-15 -2406 ((-577) |#1|)) (-15 -3553 (|#1| (-660 |#2|))) (-15 -2872 (|#1| |#1| (-1259 (-577)))) (-15 -3453 (|#1| |#1| (-577))) (-15 -3453 (|#1| |#1| (-1259 (-577)))) (-15 -2308 (|#1| |#2| |#1| (-577))) (-15 -2308 (|#1| |#1| |#1| (-577))) (-15 -4004 (|#1| |#1|)) (-15 -4016 ((-787) |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -4428 (|#1| |#1|)) (-15 -3927 (|#1| |#1| (-787))) (-15 -2872 (|#2| |#1| "last")) (-15 -3927 (|#2| |#1|)) (-15 -3563 (|#1| |#1| (-787))) (-15 -2872 (|#1| |#1| "rest")) (-15 -3563 (|#1| |#1|)) (-15 -3552 (|#1| |#1| (-787))) (-15 -2872 (|#2| |#1| "first")) (-15 -3552 (|#2| |#1|)) (-15 -4394 ((-112) |#1| |#1|)) (-15 -4405 ((-112) |#1| |#1|)) (-15 -4415 ((-577) |#1| |#1|)) (-15 -1885 ((-112) |#1|)) (-15 -2872 (|#2| |#1| "value")) (-15 -3115 (|#2| |#1|)) (-15 -3371 ((-112) |#1|)) (-15 -4426 ((-660 |#1|) |#1|)) (-15 -3322 ((-660 |#1|) |#1|)) (-15 -1514 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1524 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3484 ((-787) |#1|)) (-15 -3828 ((-112) |#1| (-787))) (-15 -1479 ((-112) |#1| (-787))) (-15 -1443 ((-112) |#1| (-787)))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3115 ((|#1| $) 49)) (-2950 ((|#1| $) 66)) (-4428 (($ $) 68)) (-2389 (((-1297) $ (-577) (-577)) 99 (|has| $ (-6 -4471)))) (-3933 (($ $ (-577)) 53 (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) 8)) (-4374 ((|#1| $ |#1|) 40 (|has| $ (-6 -4471)))) (-3958 (($ $ $) 57 (|has| $ (-6 -4471)))) (-3945 ((|#1| $ |#1|) 55 (|has| $ (-6 -4471)))) (-3969 ((|#1| $ |#1|) 59 (|has| $ (-6 -4471)))) (-3709 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4471))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4471))) (($ $ "rest" $) 56 (|has| $ (-6 -4471))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) 119 (|has| $ (-6 -4471))) ((|#1| $ (-577) |#1|) 88 (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) 42 (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) |#1|) $) 104)) (-2939 ((|#1| $) 67)) (-1534 (($) 7 T CONST)) (-3872 (($ $) 126)) (-3563 (($ $) 74) (($ $ (-787)) 72)) (-1817 (($ $) 101 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3904 (($ |#1| $) 102 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#1|) $) 105)) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2192 ((|#1| $ (-577) |#1|) 87 (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) 89)) (-3998 (((-112) $) 85)) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-3861 (((-787) $) 125)) (-4426 (((-660 $) $) 51)) (-4394 (((-112) $ $) 43 (|has| |#1| (-1125)))) (-4113 (($ (-787) |#1|) 111)) (-1479 (((-112) $ (-787)) 9)) (-2406 (((-577) $) 97 (|has| (-577) (-865)))) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2416 (((-577) $) 96 (|has| (-577) (-865)))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1443 (((-112) $ (-787)) 10)) (-2461 (((-660 |#1|) $) 46)) (-3371 (((-112) $) 50)) (-3894 (($ $) 128)) (-3907 (((-112) $) 129)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-3927 ((|#1| $) 71) (($ $ (-787)) 69)) (-2308 (($ $ $ (-577)) 118) (($ |#1| $ (-577)) 117)) (-4285 (((-660 (-577)) $) 94)) (-4298 (((-112) (-577) $) 93)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-3883 ((|#1| $) 127)) (-3552 ((|#1| $) 77) (($ $ (-787)) 75)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2397 (($ $ |#1|) 98 (|has| $ (-6 -4471)))) (-3792 (($ $ (-577)) 124)) (-4010 (((-112) $) 86)) (-3918 (((-112) $) 130)) (-3930 (((-112) $) 131)) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-4274 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) 92)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1259 (-577))) 110) ((|#1| $ (-577)) 91) ((|#1| $ (-577) |#1|) 90)) (-4415 (((-577) $ $) 45)) (-3453 (($ $ (-1259 (-577))) 116) (($ $ (-577)) 115)) (-1885 (((-112) $) 47)) (-4004 (($ $) 63)) (-3981 (($ $) 60 (|has| $ (-6 -4471)))) (-4016 (((-787) $) 64)) (-4026 (($ $) 65)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-4152 (((-549) $) 100 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 109)) (-3992 (($ $ $) 62 (|has| $ (-6 -4471))) (($ $ |#1|) 61 (|has| $ (-6 -4471)))) (-1677 (($ $ $) 79) (($ |#1| $) 78) (($ (-660 $)) 113) (($ $ |#1|) 112)) (-3540 (($ $) 123)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-3322 (((-660 $) $) 52)) (-4405 (((-112) $ $) 44 (|has| |#1| (-1125)))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-690 |#1|) (-141) (-1242)) (T -690)) +((-3904 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-690 *3)) (-4 *3 (-1242)))) (-2067 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-690 *3)) (-4 *3 (-1242)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1242)) (-5 *2 (-112)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1242)) (-5 *2 (-112)))) (-3907 (*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1242)) (-5 *2 (-112)))) (-3894 (*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1242)))) (-3883 (*1 *2 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1242)))) (-3872 (*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1242)))) (-3861 (*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1242)) (-5 *2 (-787)))) (-3792 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-690 *3)) (-4 *3 (-1242)))) (-3540 (*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1242))))) +(-13 (-1174 |t#1|) (-10 -8 (-15 -3904 ($ (-1 (-112) |t#1|) $)) (-15 -2067 ($ (-1 (-112) |t#1|) $)) (-15 -3930 ((-112) $)) (-15 -3918 ((-112) $)) (-15 -3907 ((-112) $)) (-15 -3894 ($ $)) (-15 -3883 (|t#1| $)) (-15 -3872 ($ $)) (-15 -3861 ((-787) $)) (-15 -3792 ($ $ (-577))) (-15 -3540 ($ $)))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-667 |#1|) . T) ((-1035 |#1|) . T) ((-1125) |has| |#1| (-1125)) ((-1174 |#1|) . T) ((-1242) . T) ((-1280 |#1|) . T)) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3989 (($ (-787) (-787) (-787)) 53 (|has| |#1| (-1074)))) (-3828 (((-112) $ (-787)) NIL)) (-3967 ((|#1| $ (-787) (-787) (-787) |#1|) 47)) (-1534 (($) NIL T CONST)) (-3571 (($ $ $) 57 (|has| |#1| (-1074)))) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3942 (((-1292 (-787)) $) 12)) (-3955 (($ (-1201) $ $) 34)) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-3978 (($ (-787)) 55 (|has| |#1| (-1074)))) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#1| $ (-787) (-787) (-787)) 44)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) NIL)) (-3553 (($ (-660 (-660 (-660 |#1|)))) 67)) (-3544 (($ (-981 (-981 (-981 |#1|)))) 23) (((-981 (-981 (-981 |#1|))) $) 19) (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-691 |#1|) (-13 (-502 |#1|) (-10 -8 (IF (|has| |#1| (-1074)) (PROGN (-15 -3989 ($ (-787) (-787) (-787))) (-15 -3978 ($ (-787))) (-15 -3571 ($ $ $))) |%noBranch|) (-15 -3553 ($ (-660 (-660 (-660 |#1|))))) (-15 -2872 (|#1| $ (-787) (-787) (-787))) (-15 -3967 (|#1| $ (-787) (-787) (-787) |#1|)) (-15 -3544 ($ (-981 (-981 (-981 |#1|))))) (-15 -3544 ((-981 (-981 (-981 |#1|))) $)) (-15 -3955 ($ (-1201) $ $)) (-15 -3942 ((-1292 (-787)) $)))) (-1125)) (T -691)) +((-3989 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-787)) (-5 *1 (-691 *3)) (-4 *3 (-1074)) (-4 *3 (-1125)))) (-3978 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-691 *3)) (-4 *3 (-1074)) (-4 *3 (-1125)))) (-3571 (*1 *1 *1 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-1074)) (-4 *2 (-1125)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-660 *3)))) (-4 *3 (-1125)) (-5 *1 (-691 *3)))) (-2872 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-787)) (-5 *1 (-691 *2)) (-4 *2 (-1125)))) (-3967 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-691 *2)) (-4 *2 (-1125)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-981 (-981 (-981 *3)))) (-4 *3 (-1125)) (-5 *1 (-691 *3)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-981 (-981 (-981 *3)))) (-5 *1 (-691 *3)) (-4 *3 (-1125)))) (-3955 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-691 *3)) (-4 *3 (-1125)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-1292 (-787))) (-5 *1 (-691 *3)) (-4 *3 (-1125))))) +(-13 (-502 |#1|) (-10 -8 (IF (|has| |#1| (-1074)) (PROGN (-15 -3989 ($ (-787) (-787) (-787))) (-15 -3978 ($ (-787))) (-15 -3571 ($ $ $))) |%noBranch|) (-15 -3553 ($ (-660 (-660 (-660 |#1|))))) (-15 -2872 (|#1| $ (-787) (-787) (-787))) (-15 -3967 (|#1| $ (-787) (-787) (-787) |#1|)) (-15 -3544 ($ (-981 (-981 (-981 |#1|))))) (-15 -3544 ((-981 (-981 (-981 |#1|))) $)) (-15 -3955 ($ (-1201) $ $)) (-15 -3942 ((-1292 (-787)) $)))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-3494 (((-496) $) 10)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 19) (($ (-1206)) NIL) (((-1206) $) NIL)) (-2724 (((-1160) $) 12)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-692) (-13 (-1108) (-10 -8 (-15 -3494 ((-496) $)) (-15 -2724 ((-1160) $))))) (T -692)) +((-3494 (*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-692)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-692))))) +(-13 (-1108) (-10 -8 (-15 -3494 ((-496) $)) (-15 -2724 ((-1160) $)))) +((-3473 (((-112) $ $) NIL)) (-3435 (((-660 |#1|) $) 15)) (-4239 (($ $) 19)) (-1819 (((-112) $) 20)) (-1628 (((-3 |#1| "failed") $) 23)) (-2921 ((|#1| $) 21)) (-3563 (($ $) 37)) (-2799 (($ $) 25)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-1476 (((-112) $ $) 47)) (-3402 (((-944) $) 40)) (-4228 (($ $) 18)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3552 ((|#1| $) 36)) (-3544 (((-880) $) 32) (($ |#1|) 24) (((-835 |#1|) $) 28)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 13)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 44)) (* (($ $ $) 35))) +(((-693 |#1|) (-13 (-865) (-1063 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3544 ((-835 |#1|) $)) (-15 -3552 (|#1| $)) (-15 -4228 ($ $)) (-15 -3402 ((-944) $)) (-15 -1476 ((-112) $ $)) (-15 -2799 ($ $)) (-15 -3563 ($ $)) (-15 -1819 ((-112) $)) (-15 -4239 ($ $)) (-15 -3435 ((-660 |#1|) $)))) (-865)) (T -693)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-835 *3)) (-5 *1 (-693 *3)) (-4 *3 (-865)))) (-3552 (*1 *2 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) (-4228 (*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-944)) (-5 *1 (-693 *3)) (-4 *3 (-865)))) (-1476 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-693 *3)) (-4 *3 (-865)))) (-2799 (*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) (-3563 (*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-693 *3)) (-4 *3 (-865)))) (-4239 (*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-693 *3)) (-4 *3 (-865))))) +(-13 (-865) (-1063 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3544 ((-835 |#1|) $)) (-15 -3552 (|#1| $)) (-15 -4228 ($ $)) (-15 -3402 ((-944) $)) (-15 -1476 ((-112) $ $)) (-15 -2799 ($ $)) (-15 -3563 ($ $)) (-15 -1819 ((-112) $)) (-15 -4239 ($ $)) (-15 -3435 ((-660 |#1|) $)))) +((-4034 ((|#1| (-1 |#1| (-787) |#1|) (-787) |#1|) 11)) (-4006 ((|#1| (-1 |#1| |#1|) (-787) |#1|) 9))) +(((-694 |#1|) (-10 -7 (-15 -4006 (|#1| (-1 |#1| |#1|) (-787) |#1|)) (-15 -4034 (|#1| (-1 |#1| (-787) |#1|) (-787) |#1|))) (-1125)) (T -694)) +((-4034 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-787) *2)) (-5 *4 (-787)) (-4 *2 (-1125)) (-5 *1 (-694 *2)))) (-4006 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-787)) (-4 *2 (-1125)) (-5 *1 (-694 *2))))) +(-10 -7 (-15 -4006 (|#1| (-1 |#1| |#1|) (-787) |#1|)) (-15 -4034 (|#1| (-1 |#1| (-787) |#1|) (-787) |#1|))) +((-1331 ((|#2| |#1| |#2|) 9)) (-4443 ((|#1| |#1| |#2|) 8))) +(((-695 |#1| |#2|) (-10 -7 (-15 -4443 (|#1| |#1| |#2|)) (-15 -1331 (|#2| |#1| |#2|))) (-1125) (-1125)) (T -695)) +((-1331 (*1 *2 *3 *2) (-12 (-5 *1 (-695 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125)))) (-4443 (*1 *2 *2 *3) (-12 (-5 *1 (-695 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125))))) +(-10 -7 (-15 -4443 (|#1| |#1| |#2|)) (-15 -1331 (|#2| |#1| |#2|))) +((-1920 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-696 |#1| |#2| |#3|) (-10 -7 (-15 -1920 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1125) (-1125) (-1125)) (T -696)) +((-1920 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125)) (-5 *1 (-696 *5 *6 *2))))) +(-10 -7 (-15 -1920 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-3473 (((-112) $ $) NIL)) (-3017 (((-1241) $) 21)) (-2962 (((-660 (-1241)) $) 19)) (-4001 (($ (-660 (-1241)) (-1241)) 14)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 29) (($ (-1206)) NIL) (((-1206) $) NIL) (((-1241) $) 22) (($ (-1143)) 10)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-697) (-13 (-1108) (-626 (-1241)) (-10 -8 (-15 -3544 ($ (-1143))) (-15 -4001 ($ (-660 (-1241)) (-1241))) (-15 -2962 ((-660 (-1241)) $)) (-15 -3017 ((-1241) $))))) (T -697)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-697)))) (-4001 (*1 *1 *2 *3) (-12 (-5 *2 (-660 (-1241))) (-5 *3 (-1241)) (-5 *1 (-697)))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-697)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-697))))) +(-13 (-1108) (-626 (-1241)) (-10 -8 (-15 -3544 ($ (-1143))) (-15 -4001 ($ (-660 (-1241)) (-1241))) (-15 -2962 ((-660 (-1241)) $)) (-15 -3017 ((-1241) $)))) +((-4034 (((-1 |#1| (-787) |#1|) (-1 |#1| (-787) |#1|)) 26)) (-4014 (((-1 |#1|) |#1|) 8)) (-3110 ((|#1| |#1|) 19)) (-4024 (((-660 |#1|) (-1 (-660 |#1|) (-660 |#1|)) (-577)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-3544 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-787)) 23))) +(((-698 |#1|) (-10 -7 (-15 -4014 ((-1 |#1|) |#1|)) (-15 -3544 ((-1 |#1|) |#1|)) (-15 -4024 (|#1| (-1 |#1| |#1|))) (-15 -4024 ((-660 |#1|) (-1 (-660 |#1|) (-660 |#1|)) (-577))) (-15 -3110 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-787))) (-15 -4034 ((-1 |#1| (-787) |#1|) (-1 |#1| (-787) |#1|)))) (-1125)) (T -698)) +((-4034 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-787) *3)) (-4 *3 (-1125)) (-5 *1 (-698 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-787)) (-4 *4 (-1125)) (-5 *1 (-698 *4)))) (-3110 (*1 *2 *2) (-12 (-5 *1 (-698 *2)) (-4 *2 (-1125)))) (-4024 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-660 *5) (-660 *5))) (-5 *4 (-577)) (-5 *2 (-660 *5)) (-5 *1 (-698 *5)) (-4 *5 (-1125)))) (-4024 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-698 *2)) (-4 *2 (-1125)))) (-3544 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-698 *3)) (-4 *3 (-1125)))) (-4014 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-698 *3)) (-4 *3 (-1125))))) +(-10 -7 (-15 -4014 ((-1 |#1|) |#1|)) (-15 -3544 ((-1 |#1|) |#1|)) (-15 -4024 (|#1| (-1 |#1| |#1|))) (-15 -4024 ((-660 |#1|) (-1 (-660 |#1|) (-660 |#1|)) (-577))) (-15 -3110 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-787))) (-15 -4034 ((-1 |#1| (-787) |#1|) (-1 |#1| (-787) |#1|)))) +((-4067 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-4055 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1512 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-4045 (((-1 |#2| |#1|) |#2|) 11))) +(((-699 |#1| |#2|) (-10 -7 (-15 -4045 ((-1 |#2| |#1|) |#2|)) (-15 -4055 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1512 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4067 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1125) (-1125)) (T -699)) +((-4067 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-5 *2 (-1 *5 *4)) (-5 *1 (-699 *4 *5)))) (-1512 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1125)) (-5 *2 (-1 *5 *4)) (-5 *1 (-699 *4 *5)) (-4 *4 (-1125)))) (-4055 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-5 *2 (-1 *5)) (-5 *1 (-699 *4 *5)))) (-4045 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-699 *4 *3)) (-4 *4 (-1125)) (-4 *3 (-1125))))) +(-10 -7 (-15 -4045 ((-1 |#2| |#1|) |#2|)) (-15 -4055 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1512 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4067 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-4131 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-4079 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-4092 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-4104 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-4118 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-700 |#1| |#2| |#3|) (-10 -7 (-15 -4079 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4092 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4104 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4118 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4131 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1125) (-1125) (-1125)) (T -700)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-1 *7 *5)) (-5 *1 (-700 *5 *6 *7)))) (-4131 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-700 *4 *5 *6)))) (-4118 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-700 *4 *5 *6)) (-4 *4 (-1125)))) (-4104 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-700 *4 *5 *6)) (-4 *5 (-1125)))) (-4092 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *4 *5 *6)))) (-4079 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1125)) (-4 *4 (-1125)) (-4 *6 (-1125)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *5 *4 *6))))) +(-10 -7 (-15 -4079 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4092 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4104 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4118 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4131 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-3654 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4087 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-701 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4087 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4087 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3654 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1074) (-385 |#1|) (-385 |#1|) (-703 |#1| |#2| |#3|) (-1074) (-385 |#5|) (-385 |#5|) (-703 |#5| |#6| |#7|)) (T -701)) +((-3654 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1074)) (-4 *2 (-1074)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2)) (-4 *9 (-385 *2)) (-5 *1 (-701 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-703 *5 *6 *7)) (-4 *10 (-703 *2 *8 *9)))) (-4087 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1074)) (-4 *8 (-1074)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-703 *8 *9 *10)) (-5 *1 (-701 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-703 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1074)) (-4 *8 (-1074)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-703 *8 *9 *10)) (-5 *1 (-701 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-703 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8))))) +(-10 -7 (-15 -4087 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4087 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3654 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3785 (($ (-787) (-787)) 42)) (-4189 (($ $ $) 73)) (-3784 (($ |#3|) 68) (($ $) 69)) (-4025 (((-112) $) 36)) (-4179 (($ $ (-577) (-577)) 84)) (-4168 (($ $ (-577) (-577)) 85)) (-4156 (($ $ (-577) (-577) (-577) (-577)) 90)) (-4212 (($ $) 71)) (-4046 (((-112) $) 15)) (-4144 (($ $ (-577) (-577) $) 91)) (-3709 ((|#2| $ (-577) (-577) |#2|) NIL) (($ $ (-660 (-577)) (-660 (-577)) $) 89)) (-2423 (($ (-787) |#2|) 55)) (-2550 (($ (-660 (-660 |#2|))) 51) (($ (-787) (-787) (-1 |#2| (-577) (-577))) 53)) (-2737 (((-660 (-660 |#2|)) $) 80)) (-4200 (($ $ $) 72)) (-3462 (((-3 $ "failed") $ |#2|) 122)) (-2872 ((|#2| $ (-577) (-577)) NIL) ((|#2| $ (-577) (-577) |#2|) NIL) (($ $ (-660 (-577)) (-660 (-577))) 88)) (-2413 (($ (-660 |#2|)) 56) (($ (-660 $)) 58)) (-4035 (((-112) $) 28)) (-3544 (($ |#4|) 63) (((-880) $) NIL)) (-4015 (((-112) $) 38)) (-3077 (($ $ |#2|) 124)) (-3066 (($ $ $) 95) (($ $) 98)) (-3055 (($ $ $) 93)) (** (($ $ (-787)) 111) (($ $ (-577)) 128)) (* (($ $ $) 104) (($ |#2| $) 100) (($ $ |#2|) 101) (($ (-577) $) 103) ((|#4| $ |#4|) 115) ((|#3| |#3| $) 119))) +(((-702 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3544 ((-880) |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -3077 (|#1| |#1| |#2|)) (-15 -3462 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-787))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -3066 (|#1| |#1| |#1|)) (-15 -3055 (|#1| |#1| |#1|)) (-15 -4144 (|#1| |#1| (-577) (-577) |#1|)) (-15 -4156 (|#1| |#1| (-577) (-577) (-577) (-577))) (-15 -4168 (|#1| |#1| (-577) (-577))) (-15 -4179 (|#1| |#1| (-577) (-577))) (-15 -3709 (|#1| |#1| (-660 (-577)) (-660 (-577)) |#1|)) (-15 -2872 (|#1| |#1| (-660 (-577)) (-660 (-577)))) (-15 -2737 ((-660 (-660 |#2|)) |#1|)) (-15 -4189 (|#1| |#1| |#1|)) (-15 -4200 (|#1| |#1| |#1|)) (-15 -4212 (|#1| |#1|)) (-15 -3784 (|#1| |#1|)) (-15 -3784 (|#1| |#3|)) (-15 -3544 (|#1| |#4|)) (-15 -2413 (|#1| (-660 |#1|))) (-15 -2413 (|#1| (-660 |#2|))) (-15 -2423 (|#1| (-787) |#2|)) (-15 -2550 (|#1| (-787) (-787) (-1 |#2| (-577) (-577)))) (-15 -2550 (|#1| (-660 (-660 |#2|)))) (-15 -3785 (|#1| (-787) (-787))) (-15 -4015 ((-112) |#1|)) (-15 -4025 ((-112) |#1|)) (-15 -4035 ((-112) |#1|)) (-15 -4046 ((-112) |#1|)) (-15 -3709 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2872 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2872 (|#2| |#1| (-577) (-577)))) (-703 |#2| |#3| |#4|) (-1074) (-385 |#2|) (-385 |#2|)) (T -702)) +NIL +(-10 -8 (-15 -3544 ((-880) |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -3077 (|#1| |#1| |#2|)) (-15 -3462 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-787))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -3066 (|#1| |#1| |#1|)) (-15 -3055 (|#1| |#1| |#1|)) (-15 -4144 (|#1| |#1| (-577) (-577) |#1|)) (-15 -4156 (|#1| |#1| (-577) (-577) (-577) (-577))) (-15 -4168 (|#1| |#1| (-577) (-577))) (-15 -4179 (|#1| |#1| (-577) (-577))) (-15 -3709 (|#1| |#1| (-660 (-577)) (-660 (-577)) |#1|)) (-15 -2872 (|#1| |#1| (-660 (-577)) (-660 (-577)))) (-15 -2737 ((-660 (-660 |#2|)) |#1|)) (-15 -4189 (|#1| |#1| |#1|)) (-15 -4200 (|#1| |#1| |#1|)) (-15 -4212 (|#1| |#1|)) (-15 -3784 (|#1| |#1|)) (-15 -3784 (|#1| |#3|)) (-15 -3544 (|#1| |#4|)) (-15 -2413 (|#1| (-660 |#1|))) (-15 -2413 (|#1| (-660 |#2|))) (-15 -2423 (|#1| (-787) |#2|)) (-15 -2550 (|#1| (-787) (-787) (-1 |#2| (-577) (-577)))) (-15 -2550 (|#1| (-660 (-660 |#2|)))) (-15 -3785 (|#1| (-787) (-787))) (-15 -4015 ((-112) |#1|)) (-15 -4025 ((-112) |#1|)) (-15 -4035 ((-112) |#1|)) (-15 -4046 ((-112) |#1|)) (-15 -3709 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2872 (|#2| |#1| (-577) (-577) |#2|)) (-15 -2872 (|#2| |#1| (-577) (-577)))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3785 (($ (-787) (-787)) 99)) (-4189 (($ $ $) 88)) (-3784 (($ |#2|) 92) (($ $) 91)) (-4025 (((-112) $) 101)) (-4179 (($ $ (-577) (-577)) 84)) (-4168 (($ $ (-577) (-577)) 83)) (-4156 (($ $ (-577) (-577) (-577) (-577)) 82)) (-4212 (($ $) 90)) (-4046 (((-112) $) 103)) (-3828 (((-112) $ (-787)) 8)) (-4144 (($ $ (-577) (-577) $) 81)) (-3709 ((|#1| $ (-577) (-577) |#1|) 45) (($ $ (-660 (-577)) (-660 (-577)) $) 85)) (-3419 (($ $ (-577) |#2|) 43)) (-2451 (($ $ (-577) |#3|) 42)) (-2423 (($ (-787) |#1|) 96)) (-1534 (($) 7 T CONST)) (-3931 (($ $) 68 (|has| |#1| (-318)))) (-3956 ((|#2| $ (-577)) 47)) (-1545 (((-787) $) 67 (|has| |#1| (-569)))) (-2192 ((|#1| $ (-577) (-577) |#1|) 44)) (-2117 ((|#1| $ (-577) (-577)) 49)) (-1461 (((-660 |#1|) $) 31)) (-3919 (((-787) $) 66 (|has| |#1| (-569)))) (-3908 (((-660 |#3|) $) 65 (|has| |#1| (-569)))) (-2414 (((-787) $) 52)) (-4113 (($ (-787) (-787) |#1|) 58)) (-2424 (((-787) $) 51)) (-1479 (((-112) $ (-787)) 9)) (-2376 ((|#1| $) 63 (|has| |#1| (-6 (-4472 "*"))))) (-4002 (((-577) $) 56)) (-3979 (((-577) $) 54)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3990 (((-577) $) 55)) (-3968 (((-577) $) 53)) (-2550 (($ (-660 (-660 |#1|))) 98) (($ (-787) (-787) (-1 |#1| (-577) (-577))) 97)) (-2182 (($ (-1 |#1| |#1|) $) 35)) (-4087 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2737 (((-660 (-660 |#1|)) $) 87)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-2705 (((-3 $ "failed") $) 62 (|has| |#1| (-375)))) (-4200 (($ $ $) 89)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-2397 (($ $ |#1|) 57)) (-3462 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-569)))) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#1| $ (-577) (-577)) 50) ((|#1| $ (-577) (-577) |#1|) 48) (($ $ (-660 (-577)) (-660 (-577))) 86)) (-2413 (($ (-660 |#1|)) 95) (($ (-660 $)) 94)) (-4035 (((-112) $) 102)) (-2387 ((|#1| $) 64 (|has| |#1| (-6 (-4472 "*"))))) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-3943 ((|#3| $ (-577)) 46)) (-3544 (($ |#3|) 93) (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-4015 (((-112) $) 100)) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3077 (($ $ |#1|) 69 (|has| |#1| (-375)))) (-3066 (($ $ $) 79) (($ $) 78)) (-3055 (($ $ $) 80)) (** (($ $ (-787)) 71) (($ $ (-577)) 61 (|has| |#1| (-375)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-577) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-703 |#1| |#2| |#3|) (-141) (-1074) (-385 |t#1|) (-385 |t#1|)) (T -703)) +((-4046 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-112)))) (-4035 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-112)))) (-4025 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-112)))) (-4015 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-112)))) (-3785 (*1 *1 *2 *2) (-12 (-5 *2 (-787)) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2550 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2550 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-1 *4 (-577) (-577))) (-4 *4 (-1074)) (-4 *1 (-703 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-2423 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2413 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2413 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3544 (*1 *1 *2) (-12 (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *2)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (-3784 (*1 *1 *2) (-12 (-4 *3 (-1074)) (-4 *1 (-703 *3 *2 *4)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (-3784 (*1 *1 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4212 (*1 *1 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4200 (*1 *1 *1 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4189 (*1 *1 *1 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2737 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-660 (-660 *3))))) (-2872 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-660 (-577))) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3709 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-660 (-577))) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4179 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4168 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4156 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4144 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3055 (*1 *1 *1 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-3066 (*1 *1 *1 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-3066 (*1 *1 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-703 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-703 *3 *2 *4)) (-4 *3 (-1074)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3462 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-569)))) (-3077 (*1 *1 *1 *2) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-375)))) (-3931 (*1 *1 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-318)))) (-1545 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-787)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-787)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-660 *5)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4472 "*"))) (-4 *2 (-1074)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4472 "*"))) (-4 *2 (-1074)))) (-2705 (*1 *1 *1) (|partial| -12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-375)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-375))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4471) (-6 -4470) (-15 -4046 ((-112) $)) (-15 -4035 ((-112) $)) (-15 -4025 ((-112) $)) (-15 -4015 ((-112) $)) (-15 -3785 ($ (-787) (-787))) (-15 -2550 ($ (-660 (-660 |t#1|)))) (-15 -2550 ($ (-787) (-787) (-1 |t#1| (-577) (-577)))) (-15 -2423 ($ (-787) |t#1|)) (-15 -2413 ($ (-660 |t#1|))) (-15 -2413 ($ (-660 $))) (-15 -3544 ($ |t#3|)) (-15 -3784 ($ |t#2|)) (-15 -3784 ($ $)) (-15 -4212 ($ $)) (-15 -4200 ($ $ $)) (-15 -4189 ($ $ $)) (-15 -2737 ((-660 (-660 |t#1|)) $)) (-15 -2872 ($ $ (-660 (-577)) (-660 (-577)))) (-15 -3709 ($ $ (-660 (-577)) (-660 (-577)) $)) (-15 -4179 ($ $ (-577) (-577))) (-15 -4168 ($ $ (-577) (-577))) (-15 -4156 ($ $ (-577) (-577) (-577) (-577))) (-15 -4144 ($ $ (-577) (-577) $)) (-15 -3055 ($ $ $)) (-15 -3066 ($ $ $)) (-15 -3066 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-577) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-787))) (IF (|has| |t#1| (-569)) (-15 -3462 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-375)) (-15 -3077 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-318)) (-15 -3931 ($ $)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -1545 ((-787) $)) (-15 -3919 ((-787) $)) (-15 -3908 ((-660 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4472 "*"))) (PROGN (-15 -2387 (|t#1| $)) (-15 -2376 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-375)) (PROGN (-15 -2705 ((-3 $ "failed") $)) (-15 ** ($ $ (-577)))) |%noBranch|))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-57 |#1| |#2| |#3|) . T) ((-1242) . T)) +((-3931 ((|#4| |#4|) 92 (|has| |#1| (-318)))) (-1545 (((-787) |#4|) 120 (|has| |#1| (-569)))) (-3919 (((-787) |#4|) 96 (|has| |#1| (-569)))) (-3908 (((-660 |#3|) |#4|) 103 (|has| |#1| (-569)))) (-3355 (((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|) 135 (|has| |#1| (-318)))) (-2376 ((|#1| |#4|) 52)) (-3046 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-569)))) (-2705 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-375)))) (-4254 ((|#4| |#4|) 88 (|has| |#1| (-569)))) (-4232 ((|#4| |#4| |#1| (-577) (-577)) 60)) (-4223 ((|#4| |#4| (-577) (-577)) 55)) (-4244 ((|#4| |#4| |#1| (-577) (-577)) 65)) (-2387 ((|#1| |#4|) 98)) (-3001 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-569))))) +(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2387 (|#1| |#4|)) (-15 -2376 (|#1| |#4|)) (-15 -4223 (|#4| |#4| (-577) (-577))) (-15 -4232 (|#4| |#4| |#1| (-577) (-577))) (-15 -4244 (|#4| |#4| |#1| (-577) (-577))) (IF (|has| |#1| (-569)) (PROGN (-15 -1545 ((-787) |#4|)) (-15 -3919 ((-787) |#4|)) (-15 -3908 ((-660 |#3|) |#4|)) (-15 -4254 (|#4| |#4|)) (-15 -3046 ((-3 |#4| "failed") |#4|)) (-15 -3001 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-318)) (PROGN (-15 -3931 (|#4| |#4|)) (-15 -3355 ((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -2705 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-385 |#1|) (-385 |#1|) (-703 |#1| |#2| |#3|)) (T -704)) +((-2705 (*1 *2 *2) (|partial| -12 (-4 *3 (-375)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-704 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) (-3355 (*1 *2 *3 *3) (-12 (-4 *3 (-318)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-2 (|:| -3637 *3) (|:| -2457 *3))) (-5 *1 (-704 *3 *4 *5 *6)) (-4 *6 (-703 *3 *4 *5)))) (-3931 (*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-704 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) (-3001 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-704 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) (-3046 (*1 *2 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-704 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) (-4254 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *3 (-174)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-704 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) (-3908 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-660 *6)) (-5 *1 (-704 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) (-3919 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-787)) (-5 *1 (-704 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) (-1545 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-787)) (-5 *1 (-704 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) (-4244 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-577)) (-4 *3 (-174)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-704 *3 *5 *6 *2)) (-4 *2 (-703 *3 *5 *6)))) (-4232 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-577)) (-4 *3 (-174)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-704 *3 *5 *6 *2)) (-4 *2 (-703 *3 *5 *6)))) (-4223 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-577)) (-4 *4 (-174)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *1 (-704 *4 *5 *6 *2)) (-4 *2 (-703 *4 *5 *6)))) (-2376 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-174)) (-5 *1 (-704 *2 *4 *5 *3)) (-4 *3 (-703 *2 *4 *5)))) (-2387 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-174)) (-5 *1 (-704 *2 *4 *5 *3)) (-4 *3 (-703 *2 *4 *5))))) +(-10 -7 (-15 -2387 (|#1| |#4|)) (-15 -2376 (|#1| |#4|)) (-15 -4223 (|#4| |#4| (-577) (-577))) (-15 -4232 (|#4| |#4| |#1| (-577) (-577))) (-15 -4244 (|#4| |#4| |#1| (-577) (-577))) (IF (|has| |#1| (-569)) (PROGN (-15 -1545 ((-787) |#4|)) (-15 -3919 ((-787) |#4|)) (-15 -3908 ((-660 |#3|) |#4|)) (-15 -4254 (|#4| |#4|)) (-15 -3046 ((-3 |#4| "failed") |#4|)) (-15 -3001 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-318)) (PROGN (-15 -3931 (|#4| |#4|)) (-15 -3355 ((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -2705 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3785 (($ (-787) (-787)) 64)) (-4189 (($ $ $) NIL)) (-3784 (($ (-1292 |#1|)) NIL) (($ $) NIL)) (-4025 (((-112) $) NIL)) (-4179 (($ $ (-577) (-577)) 22)) (-4168 (($ $ (-577) (-577)) NIL)) (-4156 (($ $ (-577) (-577) (-577) (-577)) NIL)) (-4212 (($ $) NIL)) (-4046 (((-112) $) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-4144 (($ $ (-577) (-577) $) NIL)) (-3709 ((|#1| $ (-577) (-577) |#1|) NIL) (($ $ (-660 (-577)) (-660 (-577)) $) NIL)) (-3419 (($ $ (-577) (-1292 |#1|)) NIL)) (-2451 (($ $ (-577) (-1292 |#1|)) NIL)) (-2423 (($ (-787) |#1|) 37)) (-1534 (($) NIL T CONST)) (-3931 (($ $) 46 (|has| |#1| (-318)))) (-3956 (((-1292 |#1|) $ (-577)) NIL)) (-1545 (((-787) $) 48 (|has| |#1| (-569)))) (-2192 ((|#1| $ (-577) (-577) |#1|) 69)) (-2117 ((|#1| $ (-577) (-577)) NIL)) (-1461 (((-660 |#1|) $) NIL)) (-3919 (((-787) $) 50 (|has| |#1| (-569)))) (-3908 (((-660 (-1292 |#1|)) $) 53 (|has| |#1| (-569)))) (-2414 (((-787) $) 32)) (-4113 (($ (-787) (-787) |#1|) 28)) (-2424 (((-787) $) 33)) (-1479 (((-112) $ (-787)) NIL)) (-2376 ((|#1| $) 44 (|has| |#1| (-6 (-4472 "*"))))) (-4002 (((-577) $) 10)) (-3979 (((-577) $) 11)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3990 (((-577) $) 14)) (-3968 (((-577) $) 65)) (-2550 (($ (-660 (-660 |#1|))) NIL) (($ (-787) (-787) (-1 |#1| (-577) (-577))) NIL)) (-2182 (($ (-1 |#1| |#1|) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2737 (((-660 (-660 |#1|)) $) 76)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-2705 (((-3 $ "failed") $) 60 (|has| |#1| (-375)))) (-4200 (($ $ $) NIL)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-2397 (($ $ |#1|) NIL)) (-3462 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)))) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#1| $ (-577) (-577)) NIL) ((|#1| $ (-577) (-577) |#1|) NIL) (($ $ (-660 (-577)) (-660 (-577))) NIL)) (-2413 (($ (-660 |#1|)) NIL) (($ (-660 $)) NIL) (($ (-1292 |#1|)) 70)) (-4035 (((-112) $) NIL)) (-2387 ((|#1| $) 42 (|has| |#1| (-6 (-4472 "*"))))) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) NIL)) (-4152 (((-549) $) 80 (|has| |#1| (-627 (-549))))) (-3943 (((-1292 |#1|) $ (-577)) NIL)) (-3544 (($ (-1292 |#1|)) NIL) (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-4015 (((-112) $) NIL)) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375)))) (-3066 (($ $ $) NIL) (($ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-787)) 38) (($ $ (-577)) 62 (|has| |#1| (-375)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-577) $) NIL) (((-1292 |#1|) $ (-1292 |#1|)) NIL) (((-1292 |#1|) (-1292 |#1|) $) NIL)) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-705 |#1|) (-13 (-703 |#1| (-1292 |#1|) (-1292 |#1|)) (-10 -8 (-15 -2413 ($ (-1292 |#1|))) (IF (|has| |#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -2705 ((-3 $ "failed") $)) |%noBranch|))) (-1074)) (T -705)) +((-2705 (*1 *1 *1) (|partial| -12 (-5 *1 (-705 *2)) (-4 *2 (-375)) (-4 *2 (-1074)))) (-2413 (*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-1074)) (-5 *1 (-705 *3))))) +(-13 (-703 |#1| (-1292 |#1|) (-1292 |#1|)) (-10 -8 (-15 -2413 ($ (-1292 |#1|))) (IF (|has| |#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -2705 ((-3 $ "failed") $)) |%noBranch|))) +((-3104 (((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|)) 37)) (-3096 (((-705 |#1|) (-705 |#1|) (-705 |#1|) |#1|) 32)) (-3113 (((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|) (-787)) 43)) (-3069 (((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|)) 25)) (-3079 (((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|)) 29) (((-705 |#1|) (-705 |#1|) (-705 |#1|)) 27)) (-3088 (((-705 |#1|) (-705 |#1|) |#1| (-705 |#1|)) 31)) (-3057 (((-705 |#1|) (-705 |#1|) (-705 |#1|)) 23)) (** (((-705 |#1|) (-705 |#1|) (-787)) 46))) +(((-706 |#1|) (-10 -7 (-15 -3057 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -3069 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -3079 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -3079 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -3088 ((-705 |#1|) (-705 |#1|) |#1| (-705 |#1|))) (-15 -3096 ((-705 |#1|) (-705 |#1|) (-705 |#1|) |#1|)) (-15 -3104 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -3113 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|) (-787))) (-15 ** ((-705 |#1|) (-705 |#1|) (-787)))) (-1074)) (T -706)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-705 *4)) (-5 *3 (-787)) (-4 *4 (-1074)) (-5 *1 (-706 *4)))) (-3113 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-705 *4)) (-5 *3 (-787)) (-4 *4 (-1074)) (-5 *1 (-706 *4)))) (-3104 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3)))) (-3096 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3)))) (-3088 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3)))) (-3079 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3)))) (-3079 (*1 *2 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3)))) (-3069 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3)))) (-3057 (*1 *2 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3))))) +(-10 -7 (-15 -3057 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -3069 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -3079 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -3079 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -3088 ((-705 |#1|) (-705 |#1|) |#1| (-705 |#1|))) (-15 -3096 ((-705 |#1|) (-705 |#1|) (-705 |#1|) |#1|)) (-15 -3104 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -3113 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|) (-705 |#1|) (-787))) (-15 ** ((-705 |#1|) (-705 |#1|) (-787)))) +((-1628 (((-3 |#1| "failed") $) 18)) (-2921 ((|#1| $) NIL)) (-1414 (($) 7 T CONST)) (-3125 (($ |#1|) 8)) (-3544 (($ |#1|) 16) (((-880) $) 23)) (-2793 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -1414)) 11)) (-2003 ((|#1| $) 15))) +(((-707 |#1|) (-13 (-1287) (-1063 |#1|) (-626 (-880)) (-10 -8 (-15 -3125 ($ |#1|)) (-15 -2793 ((-112) $ (|[\|\|]| |#1|))) (-15 -2793 ((-112) $ (|[\|\|]| -1414))) (-15 -2003 (|#1| $)) (-15 -1414 ($) -1512))) (-626 (-880))) (T -707)) +((-3125 (*1 *1 *2) (-12 (-5 *1 (-707 *2)) (-4 *2 (-626 (-880))))) (-2793 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-626 (-880))) (-5 *2 (-112)) (-5 *1 (-707 *4)))) (-2793 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1414)) (-5 *2 (-112)) (-5 *1 (-707 *4)) (-4 *4 (-626 (-880))))) (-2003 (*1 *2 *1) (-12 (-5 *1 (-707 *2)) (-4 *2 (-626 (-880))))) (-1414 (*1 *1) (-12 (-5 *1 (-707 *2)) (-4 *2 (-626 (-880)))))) +(-13 (-1287) (-1063 |#1|) (-626 (-880)) (-10 -8 (-15 -3125 ($ |#1|)) (-15 -2793 ((-112) $ (|[\|\|]| |#1|))) (-15 -2793 ((-112) $ (|[\|\|]| -1414))) (-15 -2003 (|#1| $)) (-15 -1414 ($) -1512))) +((-3158 ((|#2| |#2| |#4|) 29)) (-3187 (((-705 |#2|) |#3| |#4|) 35)) (-3168 (((-705 |#2|) |#2| |#4|) 34)) (-3135 (((-1292 |#2|) |#2| |#4|) 16)) (-3147 ((|#2| |#3| |#4|) 28)) (-3196 (((-705 |#2|) |#3| |#4| (-787) (-787)) 47)) (-3178 (((-705 |#2|) |#2| |#4| (-787)) 46))) +(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3135 ((-1292 |#2|) |#2| |#4|)) (-15 -3147 (|#2| |#3| |#4|)) (-15 -3158 (|#2| |#2| |#4|)) (-15 -3168 ((-705 |#2|) |#2| |#4|)) (-15 -3178 ((-705 |#2|) |#2| |#4| (-787))) (-15 -3187 ((-705 |#2|) |#3| |#4|)) (-15 -3196 ((-705 |#2|) |#3| |#4| (-787) (-787)))) (-1125) (-921 |#1|) (-385 |#2|) (-13 (-385 |#1|) (-10 -7 (-6 -4470)))) (T -708)) +((-3196 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-787)) (-4 *6 (-1125)) (-4 *7 (-921 *6)) (-5 *2 (-705 *7)) (-5 *1 (-708 *6 *7 *3 *4)) (-4 *3 (-385 *7)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4470)))))) (-3187 (*1 *2 *3 *4) (-12 (-4 *5 (-1125)) (-4 *6 (-921 *5)) (-5 *2 (-705 *6)) (-5 *1 (-708 *5 *6 *3 *4)) (-4 *3 (-385 *6)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4470)))))) (-3178 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-787)) (-4 *6 (-1125)) (-4 *3 (-921 *6)) (-5 *2 (-705 *3)) (-5 *1 (-708 *6 *3 *7 *4)) (-4 *7 (-385 *3)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4470)))))) (-3168 (*1 *2 *3 *4) (-12 (-4 *5 (-1125)) (-4 *3 (-921 *5)) (-5 *2 (-705 *3)) (-5 *1 (-708 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4470)))))) (-3158 (*1 *2 *2 *3) (-12 (-4 *4 (-1125)) (-4 *2 (-921 *4)) (-5 *1 (-708 *4 *2 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4470)))))) (-3147 (*1 *2 *3 *4) (-12 (-4 *5 (-1125)) (-4 *2 (-921 *5)) (-5 *1 (-708 *5 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4470)))))) (-3135 (*1 *2 *3 *4) (-12 (-4 *5 (-1125)) (-4 *3 (-921 *5)) (-5 *2 (-1292 *3)) (-5 *1 (-708 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4470))))))) +(-10 -7 (-15 -3135 ((-1292 |#2|) |#2| |#4|)) (-15 -3147 (|#2| |#3| |#4|)) (-15 -3158 (|#2| |#2| |#4|)) (-15 -3168 ((-705 |#2|) |#2| |#4|)) (-15 -3178 ((-705 |#2|) |#2| |#4| (-787))) (-15 -3187 ((-705 |#2|) |#3| |#4|)) (-15 -3196 ((-705 |#2|) |#3| |#4| (-787) (-787)))) +((-1660 (((-2 (|:| |num| (-705 |#1|)) (|:| |den| |#1|)) (-705 |#2|)) 20)) (-1638 ((|#1| (-705 |#2|)) 9)) (-1649 (((-705 |#1|) (-705 |#2|)) 18))) +(((-709 |#1| |#2|) (-10 -7 (-15 -1638 (|#1| (-705 |#2|))) (-15 -1649 ((-705 |#1|) (-705 |#2|))) (-15 -1660 ((-2 (|:| |num| (-705 |#1|)) (|:| |den| |#1|)) (-705 |#2|)))) (-569) (-1017 |#1|)) (T -709)) +((-1660 (*1 *2 *3) (-12 (-5 *3 (-705 *5)) (-4 *5 (-1017 *4)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |num| (-705 *4)) (|:| |den| *4))) (-5 *1 (-709 *4 *5)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-705 *5)) (-4 *5 (-1017 *4)) (-4 *4 (-569)) (-5 *2 (-705 *4)) (-5 *1 (-709 *4 *5)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-705 *4)) (-4 *4 (-1017 *2)) (-4 *2 (-569)) (-5 *1 (-709 *2 *4))))) +(-10 -7 (-15 -1638 (|#1| (-705 |#2|))) (-15 -1649 ((-705 |#1|) (-705 |#2|))) (-15 -1660 ((-2 (|:| |num| (-705 |#1|)) (|:| |den| |#1|)) (-705 |#2|)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-3390 (((-705 (-715))) NIL) (((-705 (-715)) (-1292 $)) NIL)) (-2339 (((-715) $) NIL)) (-2212 (($ $) NIL (|has| (-715) (-1227)))) (-2060 (($ $) NIL (|has| (-715) (-1227)))) (-1595 (((-1214 (-944) (-787)) (-577)) NIL (|has| (-715) (-361)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-715) (-318)) (|has| (-715) (-932))))) (-3841 (($ $) NIL (-2839 (-12 (|has| (-715) (-318)) (|has| (-715) (-932))) (|has| (-715) (-375))))) (-3029 (((-431 $) $) NIL (-2839 (-12 (|has| (-715) (-318)) (|has| (-715) (-932))) (|has| (-715) (-375))))) (-1913 (($ $) NIL (-12 (|has| (-715) (-1027)) (|has| (-715) (-1227))))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-715) (-318)) (|has| (-715) (-932))))) (-1939 (((-112) $ $) NIL (|has| (-715) (-318)))) (-2229 (((-787)) NIL (|has| (-715) (-380)))) (-2186 (($ $) NIL (|has| (-715) (-1227)))) (-2032 (($ $) NIL (|has| (-715) (-1227)))) (-2237 (($ $) NIL (|has| (-715) (-1227)))) (-2084 (($ $) NIL (|has| (-715) (-1227)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL) (((-3 (-715) "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-715) (-1063 (-420 (-577)))))) (-2921 (((-577) $) NIL) (((-715) $) NIL) (((-420 (-577)) $) NIL (|has| (-715) (-1063 (-420 (-577)))))) (-3502 (($ (-1292 (-715))) NIL) (($ (-1292 (-715)) (-1292 $)) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-715) (-361)))) (-3418 (($ $ $) NIL (|has| (-715) (-318)))) (-3381 (((-705 (-715)) $) NIL) (((-705 (-715)) $ (-1292 $)) NIL)) (-1647 (((-705 (-715)) (-705 $)) NIL) (((-2 (|:| -1881 (-705 (-715))) (|:| |vec| (-1292 (-715)))) (-705 $) (-1292 $)) NIL) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-715) (-654 (-577)))) (((-705 (-577)) (-705 $)) NIL (|has| (-715) (-654 (-577))))) (-3654 (((-3 $ "failed") (-420 (-1197 (-715)))) NIL (|has| (-715) (-375))) (($ (-1197 (-715))) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1926 (((-715) $) 29)) (-4363 (((-3 (-420 (-577)) "failed") $) NIL (|has| (-715) (-558)))) (-4353 (((-112) $) NIL (|has| (-715) (-558)))) (-4341 (((-420 (-577)) $) NIL (|has| (-715) (-558)))) (-1545 (((-944)) NIL)) (-1910 (($) NIL (|has| (-715) (-380)))) (-3429 (($ $ $) NIL (|has| (-715) (-318)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| (-715) (-318)))) (-4205 (($) NIL (|has| (-715) (-361)))) (-1655 (((-112) $) NIL (|has| (-715) (-361)))) (-3233 (($ $) NIL (|has| (-715) (-361))) (($ $ (-787)) NIL (|has| (-715) (-361)))) (-1522 (((-112) $) NIL (-2839 (-12 (|has| (-715) (-318)) (|has| (-715) (-932))) (|has| (-715) (-375))))) (-2066 (((-2 (|:| |r| (-715)) (|:| |phi| (-715))) $) NIL (-12 (|has| (-715) (-1085)) (|has| (-715) (-1227))))) (-1659 (($) NIL (|has| (-715) (-1227)))) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| (-715) (-905 (-391)))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| (-715) (-905 (-577))))) (-3817 (((-849 (-944)) $) NIL (|has| (-715) (-361))) (((-944) $) NIL (|has| (-715) (-361)))) (-2487 (((-112) $) NIL)) (-2381 (($ $ (-577)) NIL (-12 (|has| (-715) (-1027)) (|has| (-715) (-1227))))) (-4145 (((-715) $) NIL)) (-4021 (((-3 $ "failed") $) NIL (|has| (-715) (-361)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| (-715) (-318)))) (-4084 (((-1197 (-715)) $) NIL (|has| (-715) (-375)))) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-4087 (($ (-1 (-715) (-715)) $) NIL)) (-4038 (((-944) $) NIL (|has| (-715) (-380)))) (-3698 (($ $) NIL (|has| (-715) (-1227)))) (-3642 (((-1197 (-715)) $) NIL)) (-1657 (((-705 (-715)) (-1292 $)) NIL) (((-2 (|:| -1881 (-705 (-715))) (|:| |vec| (-1292 (-715)))) (-1292 $) $) NIL) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-715) (-654 (-577)))) (((-705 (-577)) (-1292 $)) NIL (|has| (-715) (-654 (-577))))) (-3446 (($ (-660 $)) NIL (|has| (-715) (-318))) (($ $ $) NIL (|has| (-715) (-318)))) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL (|has| (-715) (-375)))) (-1709 (($) NIL (|has| (-715) (-361)) CONST)) (-3222 (($ (-944)) NIL (|has| (-715) (-380)))) (-2079 (($) NIL)) (-1937 (((-715) $) 31)) (-1474 (((-1145) $) NIL)) (-4101 (($) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| (-715) (-318)))) (-3480 (($ (-660 $)) NIL (|has| (-715) (-318))) (($ $ $) NIL (|has| (-715) (-318)))) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) NIL (|has| (-715) (-361)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-715) (-318)) (|has| (-715) (-932))))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-715) (-318)) (|has| (-715) (-932))))) (-1902 (((-431 $) $) NIL (-2839 (-12 (|has| (-715) (-318)) (|has| (-715) (-932))) (|has| (-715) (-375))))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-715) (-318))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| (-715) (-318)))) (-3462 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-715)) NIL (|has| (-715) (-569)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| (-715) (-318)))) (-4072 (($ $) NIL (|has| (-715) (-1227)))) (-3280 (($ $ (-1201) (-715)) NIL (|has| (-715) (-527 (-1201) (-715)))) (($ $ (-660 (-1201)) (-660 (-715))) NIL (|has| (-715) (-527 (-1201) (-715)))) (($ $ (-660 (-305 (-715)))) NIL (|has| (-715) (-320 (-715)))) (($ $ (-305 (-715))) NIL (|has| (-715) (-320 (-715)))) (($ $ (-715) (-715)) NIL (|has| (-715) (-320 (-715)))) (($ $ (-660 (-715)) (-660 (-715))) NIL (|has| (-715) (-320 (-715))))) (-1927 (((-787) $) NIL (|has| (-715) (-318)))) (-2872 (($ $ (-715)) NIL (|has| (-715) (-297 (-715) (-715))))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| (-715) (-318)))) (-1827 (((-715)) NIL) (((-715) (-1292 $)) NIL)) (-3243 (((-3 (-787) "failed") $ $) NIL (|has| (-715) (-361))) (((-787) $) NIL (|has| (-715) (-361)))) (-2852 (($ $ (-1 (-715) (-715)) (-787)) NIL) (($ $ (-1 (-715) (-715))) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2839 (-12 (|has| (-715) (-375)) (|has| (-715) (-921 (-1201)))) (|has| (-715) (-923 (-1201))))) (($ $ (-1201) (-787)) NIL (-2839 (-12 (|has| (-715) (-375)) (|has| (-715) (-921 (-1201)))) (|has| (-715) (-923 (-1201))))) (($ $ (-660 (-1201))) NIL (-2839 (-12 (|has| (-715) (-375)) (|has| (-715) (-921 (-1201)))) (|has| (-715) (-923 (-1201))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| (-715) (-375)) (|has| (-715) (-921 (-1201)))) (|has| (-715) (-923 (-1201))))) (($ $ (-787)) NIL (-2839 (-12 (|has| (-715) (-239)) (|has| (-715) (-375))) (|has| (-715) (-238)))) (($ $) NIL (-2839 (-12 (|has| (-715) (-239)) (|has| (-715) (-375))) (|has| (-715) (-238))))) (-2478 (((-705 (-715)) (-1292 $) (-1 (-715) (-715))) NIL (|has| (-715) (-375)))) (-3557 (((-1197 (-715))) NIL)) (-2249 (($ $) NIL (|has| (-715) (-1227)))) (-2095 (($ $) NIL (|has| (-715) (-1227)))) (-1585 (($) NIL (|has| (-715) (-361)))) (-2224 (($ $) NIL (|has| (-715) (-1227)))) (-2073 (($ $) NIL (|has| (-715) (-1227)))) (-2199 (($ $) NIL (|has| (-715) (-1227)))) (-2046 (($ $) NIL (|has| (-715) (-1227)))) (-2710 (((-705 (-715)) (-1292 $)) NIL) (((-1292 (-715)) $) NIL) (((-705 (-715)) (-1292 $) (-1292 $)) NIL) (((-1292 (-715)) $ (-1292 $)) NIL)) (-4152 (((-549) $) NIL (|has| (-715) (-627 (-549)))) (((-171 (-228)) $) NIL (|has| (-715) (-1047))) (((-171 (-391)) $) NIL (|has| (-715) (-1047))) (((-911 (-391)) $) NIL (|has| (-715) (-627 (-911 (-391))))) (((-911 (-577)) $) NIL (|has| (-715) (-627 (-911 (-577))))) (($ (-1197 (-715))) NIL) (((-1197 (-715)) $) NIL) (($ (-1292 (-715))) NIL) (((-1292 (-715)) $) NIL)) (-2360 (($ $) NIL)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-2839 (-12 (|has| (-715) (-318)) (|has| $ (-146)) (|has| (-715) (-932))) (|has| (-715) (-361))))) (-4159 (($ (-715) (-715)) 12)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-577)) NIL) (($ (-715)) NIL) (($ (-171 (-391))) 13) (($ (-171 (-577))) 19) (($ (-171 (-715))) 28) (($ (-171 (-717))) 25) (((-171 (-391)) $) 33) (($ (-420 (-577))) NIL (-2839 (|has| (-715) (-1063 (-420 (-577)))) (|has| (-715) (-375))))) (-2233 (($ $) NIL (|has| (-715) (-361))) (((-3 $ "failed") $) NIL (-2839 (-12 (|has| (-715) (-318)) (|has| $ (-146)) (|has| (-715) (-932))) (|has| (-715) (-146))))) (-3974 (((-1197 (-715)) $) NIL)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) NIL)) (-4114 (($ $) NIL (|has| (-715) (-1227)))) (-2136 (($ $) NIL (|has| (-715) (-1227)))) (-3281 (((-112) $ $) NIL)) (-2262 (($ $) NIL (|has| (-715) (-1227)))) (-2106 (($ $) NIL (|has| (-715) (-1227)))) (-4141 (($ $) NIL (|has| (-715) (-1227)))) (-2162 (($ $) NIL (|has| (-715) (-1227)))) (-4340 (((-715) $) NIL (|has| (-715) (-1227)))) (-2261 (($ $) NIL (|has| (-715) (-1227)))) (-2174 (($ $) NIL (|has| (-715) (-1227)))) (-4128 (($ $) NIL (|has| (-715) (-1227)))) (-2150 (($ $) NIL (|has| (-715) (-1227)))) (-2272 (($ $) NIL (|has| (-715) (-1227)))) (-2120 (($ $) NIL (|has| (-715) (-1227)))) (-1654 (($ $) NIL (|has| (-715) (-1085)))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-1 (-715) (-715)) (-787)) NIL) (($ $ (-1 (-715) (-715))) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2839 (-12 (|has| (-715) (-375)) (|has| (-715) (-921 (-1201)))) (|has| (-715) (-923 (-1201))))) (($ $ (-1201) (-787)) NIL (-2839 (-12 (|has| (-715) (-375)) (|has| (-715) (-921 (-1201)))) (|has| (-715) (-923 (-1201))))) (($ $ (-660 (-1201))) NIL (-2839 (-12 (|has| (-715) (-375)) (|has| (-715) (-921 (-1201)))) (|has| (-715) (-923 (-1201))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| (-715) (-375)) (|has| (-715) (-921 (-1201)))) (|has| (-715) (-923 (-1201))))) (($ $ (-787)) NIL (-2839 (-12 (|has| (-715) (-239)) (|has| (-715) (-375))) (|has| (-715) (-238)))) (($ $) NIL (-2839 (-12 (|has| (-715) (-239)) (|has| (-715) (-375))) (|has| (-715) (-238))))) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL (|has| (-715) (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ $) NIL (|has| (-715) (-1227))) (($ $ (-420 (-577))) NIL (-12 (|has| (-715) (-1027)) (|has| (-715) (-1227)))) (($ $ (-577)) NIL (|has| (-715) (-375)))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ (-715) $) NIL) (($ $ (-715)) NIL) (($ (-420 (-577)) $) NIL (|has| (-715) (-375))) (($ $ (-420 (-577))) NIL (|has| (-715) (-375))))) +(((-710) (-13 (-400) (-167 (-715)) (-10 -8 (-15 -3544 ($ (-171 (-391)))) (-15 -3544 ($ (-171 (-577)))) (-15 -3544 ($ (-171 (-715)))) (-15 -3544 ($ (-171 (-717)))) (-15 -3544 ((-171 (-391)) $))))) (T -710)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-710)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-171 (-577))) (-5 *1 (-710)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-171 (-715))) (-5 *1 (-710)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-171 (-717))) (-5 *1 (-710)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-710))))) +(-13 (-400) (-167 (-715)) (-10 -8 (-15 -3544 ($ (-171 (-391)))) (-15 -3544 ($ (-171 (-577)))) (-15 -3544 ($ (-171 (-715)))) (-15 -3544 ($ (-171 (-717)))) (-15 -3544 ((-171 (-391)) $)))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3828 (((-112) $ (-787)) 8)) (-2463 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4470)))) (-1534 (($) 7 T CONST)) (-3215 (($ $) 63)) (-1817 (($ $) 59 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3719 (($ |#1| $) 48 (|has| $ (-6 -4470))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4470)))) (-3904 (($ |#1| $) 58 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4470)))) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) 9)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-4330 ((|#1| $) 40)) (-2881 (($ |#1| $) 41) (($ |#1| $ (-787)) 64)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3530 ((|#1| $) 42)) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-3206 (((-660 (-2 (|:| -4444 |#1|) (|:| -1485 (-787)))) $) 62)) (-3736 (($) 50) (($ (-660 |#1|)) 49)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-4152 (((-549) $) 60 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 51)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3541 (($ (-660 |#1|)) 43)) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-711 |#1|) (-141) (-1125)) (T -711)) +((-2881 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *1 (-711 *2)) (-4 *2 (-1125)))) (-3215 (*1 *1 *1) (-12 (-4 *1 (-711 *2)) (-4 *2 (-1125)))) (-3206 (*1 *2 *1) (-12 (-4 *1 (-711 *3)) (-4 *3 (-1125)) (-5 *2 (-660 (-2 (|:| -4444 *3) (|:| -1485 (-787)))))))) +(-13 (-241 |t#1|) (-10 -8 (-15 -2881 ($ |t#1| $ (-787))) (-15 -3215 ($ $)) (-15 -3206 ((-660 (-2 (|:| -4444 |t#1|) (|:| -1485 (-787)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) +((-3245 (((-660 |#1|) (-660 (-2 (|:| -1902 |#1|) (|:| -2887 (-577)))) (-577)) 65)) (-3225 ((|#1| |#1| (-577)) 62)) (-3480 ((|#1| |#1| |#1| (-577)) 46)) (-1902 (((-660 |#1|) |#1| (-577)) 49)) (-3257 ((|#1| |#1| (-577) |#1| (-577)) 40)) (-3235 (((-660 (-2 (|:| -1902 |#1|) (|:| -2887 (-577)))) |#1| (-577)) 61))) +(((-712 |#1|) (-10 -7 (-15 -3480 (|#1| |#1| |#1| (-577))) (-15 -3225 (|#1| |#1| (-577))) (-15 -1902 ((-660 |#1|) |#1| (-577))) (-15 -3235 ((-660 (-2 (|:| -1902 |#1|) (|:| -2887 (-577)))) |#1| (-577))) (-15 -3245 ((-660 |#1|) (-660 (-2 (|:| -1902 |#1|) (|:| -2887 (-577)))) (-577))) (-15 -3257 (|#1| |#1| (-577) |#1| (-577)))) (-1268 (-577))) (T -712)) +((-3257 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-712 *2)) (-4 *2 (-1268 *3)))) (-3245 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-2 (|:| -1902 *5) (|:| -2887 (-577))))) (-5 *4 (-577)) (-4 *5 (-1268 *4)) (-5 *2 (-660 *5)) (-5 *1 (-712 *5)))) (-3235 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-5 *2 (-660 (-2 (|:| -1902 *3) (|:| -2887 *4)))) (-5 *1 (-712 *3)) (-4 *3 (-1268 *4)))) (-1902 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-5 *2 (-660 *3)) (-5 *1 (-712 *3)) (-4 *3 (-1268 *4)))) (-3225 (*1 *2 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-712 *2)) (-4 *2 (-1268 *3)))) (-3480 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-712 *2)) (-4 *2 (-1268 *3))))) +(-10 -7 (-15 -3480 (|#1| |#1| |#1| (-577))) (-15 -3225 (|#1| |#1| (-577))) (-15 -1902 ((-660 |#1|) |#1| (-577))) (-15 -3235 ((-660 (-2 (|:| -1902 |#1|) (|:| -2887 (-577)))) |#1| (-577))) (-15 -3245 ((-660 |#1|) (-660 (-2 (|:| -1902 |#1|) (|:| -2887 (-577)))) (-577))) (-15 -3257 (|#1| |#1| (-577) |#1| (-577)))) +((-3296 (((-1 (-966 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228) (-228))) 17)) (-3267 (((-1158 (-228)) (-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-660 (-271))) 53) (((-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-660 (-271))) 55) (((-1158 (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1119 (-228)) (-1119 (-228)) (-660 (-271))) 57)) (-3286 (((-1158 (-228)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-660 (-271))) NIL)) (-3276 (((-1158 (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1119 (-228)) (-1119 (-228)) (-660 (-271))) 58))) +(((-713) (-10 -7 (-15 -3267 ((-1158 (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1119 (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -3267 ((-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -3267 ((-1158 (-228)) (-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -3276 ((-1158 (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1119 (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -3286 ((-1158 (-228)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -3296 ((-1 (-966 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228) (-228)))))) (T -713)) +((-3296 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1 (-228) (-228) (-228) (-228))) (-5 *2 (-1 (-966 (-228)) (-228) (-228))) (-5 *1 (-713)))) (-3286 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) (-5 *5 (-1119 (-228))) (-5 *6 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-713)))) (-3276 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-3 (-1 (-228) (-228) (-228) (-228)) "undefined")) (-5 *5 (-1119 (-228))) (-5 *6 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-713)))) (-3267 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1158 (-228))) (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-228))) (-5 *5 (-660 (-271))) (-5 *1 (-713)))) (-3267 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-228))) (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-713)))) (-3267 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-3 (-1 (-228) (-228) (-228) (-228)) "undefined")) (-5 *5 (-1119 (-228))) (-5 *6 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-713))))) +(-10 -7 (-15 -3267 ((-1158 (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1119 (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -3267 ((-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -3267 ((-1158 (-228)) (-1158 (-228)) (-1 (-966 (-228)) (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -3276 ((-1158 (-228)) (-1 (-228) (-228) (-228)) (-3 (-1 (-228) (-228) (-228) (-228)) "undefined") (-1119 (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -3286 ((-1158 (-228)) (-327 (-577)) (-327 (-577)) (-327 (-577)) (-1 (-228) (-228)) (-1119 (-228)) (-660 (-271)))) (-15 -3296 ((-1 (-966 (-228)) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228)) (-1 (-228) (-228) (-228) (-228))))) +((-1902 (((-431 (-1197 |#4|)) (-1197 |#4|)) 86) (((-431 |#4|) |#4|) 266))) +(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1902 ((-431 |#4|) |#4|)) (-15 -1902 ((-431 (-1197 |#4|)) (-1197 |#4|)))) (-865) (-809) (-361) (-972 |#3| |#2| |#1|)) (T -714)) +((-1902 (*1 *2 *3) (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-361)) (-4 *7 (-972 *6 *5 *4)) (-5 *2 (-431 (-1197 *7))) (-5 *1 (-714 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) (-1902 (*1 *2 *3) (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-714 *4 *5 *6 *3)) (-4 *3 (-972 *6 *5 *4))))) +(-10 -7 (-15 -1902 ((-431 |#4|) |#4|)) (-15 -1902 ((-431 (-1197 |#4|)) (-1197 |#4|)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 97)) (-4105 (((-577) $) 34)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-3804 (($ $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1913 (($ $) NIL)) (-1939 (((-112) $ $) NIL)) (-3010 (((-577) $) NIL)) (-1534 (($) NIL T CONST)) (-4080 (($ $) NIL)) (-1628 (((-3 (-577) "failed") $) 85) (((-3 (-420 (-577)) "failed") $) 28) (((-3 (-391) "failed") $) 82)) (-2921 (((-577) $) 87) (((-420 (-577)) $) 79) (((-391) $) 80)) (-3418 (($ $ $) 109)) (-4187 (((-3 $ "failed") $) 100)) (-3429 (($ $ $) 108)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-4291 (((-944)) 89) (((-944) (-944)) 88)) (-3567 (((-112) $) NIL)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL)) (-3817 (((-577) $) NIL)) (-2487 (((-112) $) NIL)) (-2381 (($ $ (-577)) NIL)) (-4145 (($ $) NIL)) (-3578 (((-112) $) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3305 (((-577) (-577)) 94) (((-577)) 95)) (-3732 (($ $ $) NIL) (($) NIL (-12 (-2749 (|has| $ (-6 -4453))) (-2749 (|has| $ (-6 -4461)))))) (-3316 (((-577) (-577)) 92) (((-577)) 93)) (-3201 (($ $ $) NIL) (($) NIL (-12 (-2749 (|has| $ (-6 -4453))) (-2749 (|has| $ (-6 -4461)))))) (-1525 (((-577) $) 17)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) 104)) (-3265 (((-944) (-577)) NIL (|has| $ (-6 -4461)))) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-4093 (($ $) NIL)) (-4119 (($ $) NIL)) (-3068 (($ (-577) (-577)) NIL) (($ (-577) (-577) (-944)) NIL)) (-1902 (((-431 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) 105)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3556 (((-577) $) 24)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 107)) (-2596 (((-944)) NIL) (((-944) (-944)) NIL (|has| $ (-6 -4461)))) (-3255 (((-944) (-577)) NIL (|has| $ (-6 -4461)))) (-4152 (((-391) $) NIL) (((-228) $) NIL) (((-911 (-391)) $) NIL)) (-3544 (((-880) $) 63) (($ (-577)) 75) (($ $) NIL) (($ (-420 (-577))) 78) (($ (-577)) 75) (($ (-420 (-577))) 78) (($ (-391)) 72) (((-391) $) 61) (($ (-717)) 66)) (-4068 (((-787)) 119 T CONST)) (-2899 (($ (-577) (-577) (-944)) 54)) (-4132 (($ $) NIL)) (-3274 (((-944)) NIL) (((-944) (-944)) NIL (|has| $ (-6 -4461)))) (-4448 (((-112) $ $) NIL)) (-4146 (((-944)) 91) (((-944) (-944)) 90)) (-3281 (((-112) $ $) NIL)) (-1654 (($ $) NIL)) (-2806 (($) 37 T CONST)) (-2816 (($) 18 T CONST)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 96)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 118)) (-3077 (($ $ $) 77)) (-3066 (($ $) 115) (($ $ $) 116)) (-3055 (($ $ $) 114)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL) (($ $ (-420 (-577))) 103)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 110) (($ $ $) 101) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL))) +(((-715) (-13 (-417) (-400) (-375) (-1063 (-391)) (-1063 (-420 (-577))) (-148) (-10 -8 (-15 -4291 ((-944) (-944))) (-15 -4291 ((-944))) (-15 -4146 ((-944) (-944))) (-15 -3316 ((-577) (-577))) (-15 -3316 ((-577))) (-15 -3305 ((-577) (-577))) (-15 -3305 ((-577))) (-15 -3544 ((-391) $)) (-15 -3544 ($ (-717))) (-15 -1525 ((-577) $)) (-15 -3556 ((-577) $)) (-15 -2899 ($ (-577) (-577) (-944)))))) (T -715)) +((-3556 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-715)))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-715)))) (-4291 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-715)))) (-4291 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-715)))) (-4146 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-715)))) (-3316 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-715)))) (-3316 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-715)))) (-3305 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-715)))) (-3305 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-715)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-715)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-715)))) (-2899 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-944)) (-5 *1 (-715))))) +(-13 (-417) (-400) (-375) (-1063 (-391)) (-1063 (-420 (-577))) (-148) (-10 -8 (-15 -4291 ((-944) (-944))) (-15 -4291 ((-944))) (-15 -4146 ((-944) (-944))) (-15 -3316 ((-577) (-577))) (-15 -3316 ((-577))) (-15 -3305 ((-577) (-577))) (-15 -3305 ((-577))) (-15 -3544 ((-391) $)) (-15 -3544 ($ (-717))) (-15 -1525 ((-577) $)) (-15 -3556 ((-577) $)) (-15 -2899 ($ (-577) (-577) (-944))))) +((-3345 (((-705 |#1|) (-705 |#1|) |#1| |#1|) 85)) (-3931 (((-705 |#1|) (-705 |#1|) |#1|) 66)) (-3336 (((-705 |#1|) (-705 |#1|) |#1|) 86)) (-3325 (((-705 |#1|) (-705 |#1|)) 67)) (-3355 (((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|) 84))) +(((-716 |#1|) (-10 -7 (-15 -3325 ((-705 |#1|) (-705 |#1|))) (-15 -3931 ((-705 |#1|) (-705 |#1|) |#1|)) (-15 -3336 ((-705 |#1|) (-705 |#1|) |#1|)) (-15 -3345 ((-705 |#1|) (-705 |#1|) |#1| |#1|)) (-15 -3355 ((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|))) (-318)) (T -716)) +((-3355 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3637 *3) (|:| -2457 *3))) (-5 *1 (-716 *3)) (-4 *3 (-318)))) (-3345 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-705 *3)) (-4 *3 (-318)) (-5 *1 (-716 *3)))) (-3336 (*1 *2 *2 *3) (-12 (-5 *2 (-705 *3)) (-4 *3 (-318)) (-5 *1 (-716 *3)))) (-3931 (*1 *2 *2 *3) (-12 (-5 *2 (-705 *3)) (-4 *3 (-318)) (-5 *1 (-716 *3)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-318)) (-5 *1 (-716 *3))))) +(-10 -7 (-15 -3325 ((-705 |#1|) (-705 |#1|))) (-15 -3931 ((-705 |#1|) (-705 |#1|) |#1|)) (-15 -3336 ((-705 |#1|) (-705 |#1|) |#1|)) (-15 -3345 ((-705 |#1|) (-705 |#1|) |#1| |#1|)) (-15 -3355 ((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-3129 (($ $ $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-3107 (($ $ $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1939 (((-112) $ $) NIL)) (-3010 (((-577) $) NIL)) (-2826 (($ $ $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) 31)) (-2921 (((-577) $) 29)) (-3418 (($ $ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-4363 (((-3 (-420 (-577)) "failed") $) NIL)) (-4353 (((-112) $) NIL)) (-4341 (((-420 (-577)) $) NIL)) (-1910 (($ $) NIL) (($) NIL)) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-3091 (($ $ $ $) NIL)) (-3140 (($ $ $) NIL)) (-3567 (((-112) $) NIL)) (-1992 (($ $ $) NIL)) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL)) (-2487 (((-112) $) NIL)) (-1912 (((-112) $) NIL)) (-4021 (((-3 $ "failed") $) NIL)) (-3578 (((-112) $) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3099 (($ $ $ $) NIL)) (-3732 (($ $ $) NIL)) (-3365 (((-944) (-944)) 10) (((-944)) 9)) (-3201 (($ $ $) NIL)) (-4199 (($ $) NIL)) (-3402 (($ $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL)) (-3446 (($ (-660 $)) NIL) (($ $ $) NIL)) (-2810 (((-1183) $) NIL)) (-3082 (($ $ $) NIL)) (-1709 (($) NIL T CONST)) (-1383 (($ $) NIL)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ (-660 $)) NIL) (($ $ $) NIL)) (-1969 (($ $) NIL)) (-1902 (((-431 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1924 (((-112) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2852 (($ $ (-787)) NIL) (($ $) NIL)) (-1877 (($ $) NIL)) (-1944 (($ $) NIL)) (-4152 (((-228) $) NIL) (((-391) $) NIL) (((-911 (-577)) $) NIL) (((-549) $) NIL) (((-577) $) NIL)) (-3544 (((-880) $) NIL) (($ (-577)) 28) (($ $) NIL) (($ (-577)) 28) (((-327 $) (-327 (-577))) 18)) (-4068 (((-787)) NIL T CONST)) (-3151 (((-112) $ $) NIL)) (-3850 (($ $ $) NIL)) (-4448 (((-112) $ $) NIL)) (-4146 (($) NIL)) (-3281 (((-112) $ $) NIL)) (-3118 (($ $ $ $) NIL)) (-1654 (($ $) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-787)) NIL) (($ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL))) +(((-717) (-13 (-400) (-558) (-10 -8 (-15 -3365 ((-944) (-944))) (-15 -3365 ((-944))) (-15 -3544 ((-327 $) (-327 (-577))))))) (T -717)) +((-3365 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-717)))) (-3365 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-717)))) (-3544 (*1 *2 *3) (-12 (-5 *3 (-327 (-577))) (-5 *2 (-327 (-717))) (-5 *1 (-717))))) +(-13 (-400) (-558) (-10 -8 (-15 -3365 ((-944) (-944))) (-15 -3365 ((-944))) (-15 -3544 ((-327 $) (-327 (-577)))))) +((-3403 (((-1 |#4| |#2| |#3|) |#1| (-1201) (-1201)) 19)) (-3374 (((-1 |#4| |#2| |#3|) (-1201)) 12))) +(((-718 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3374 ((-1 |#4| |#2| |#3|) (-1201))) (-15 -3403 ((-1 |#4| |#2| |#3|) |#1| (-1201) (-1201)))) (-627 (-549)) (-1242) (-1242) (-1242)) (T -718)) +((-3403 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1201)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-718 *3 *5 *6 *7)) (-4 *3 (-627 (-549))) (-4 *5 (-1242)) (-4 *6 (-1242)) (-4 *7 (-1242)))) (-3374 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-718 *4 *5 *6 *7)) (-4 *4 (-627 (-549))) (-4 *5 (-1242)) (-4 *6 (-1242)) (-4 *7 (-1242))))) +(-10 -7 (-15 -3374 ((-1 |#4| |#2| |#3|) (-1201))) (-15 -3403 ((-1 |#4| |#2| |#3|) |#1| (-1201) (-1201)))) +((-3383 (((-1 (-228) (-228) (-228)) |#1| (-1201) (-1201)) 43) (((-1 (-228) (-228)) |#1| (-1201)) 48))) +(((-719 |#1|) (-10 -7 (-15 -3383 ((-1 (-228) (-228)) |#1| (-1201))) (-15 -3383 ((-1 (-228) (-228) (-228)) |#1| (-1201) (-1201)))) (-627 (-549))) (T -719)) +((-3383 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1201)) (-5 *2 (-1 (-228) (-228) (-228))) (-5 *1 (-719 *3)) (-4 *3 (-627 (-549))))) (-3383 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-5 *2 (-1 (-228) (-228))) (-5 *1 (-719 *3)) (-4 *3 (-627 (-549)))))) +(-10 -7 (-15 -3383 ((-1 (-228) (-228)) |#1| (-1201))) (-15 -3383 ((-1 (-228) (-228) (-228)) |#1| (-1201) (-1201)))) +((-3334 (((-1201) |#1| (-1201) (-660 (-1201))) 10) (((-1201) |#1| (-1201) (-1201) (-1201)) 13) (((-1201) |#1| (-1201) (-1201)) 12) (((-1201) |#1| (-1201)) 11))) +(((-720 |#1|) (-10 -7 (-15 -3334 ((-1201) |#1| (-1201))) (-15 -3334 ((-1201) |#1| (-1201) (-1201))) (-15 -3334 ((-1201) |#1| (-1201) (-1201) (-1201))) (-15 -3334 ((-1201) |#1| (-1201) (-660 (-1201))))) (-627 (-549))) (T -720)) +((-3334 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-660 (-1201))) (-5 *2 (-1201)) (-5 *1 (-720 *3)) (-4 *3 (-627 (-549))))) (-3334 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-720 *3)) (-4 *3 (-627 (-549))))) (-3334 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-720 *3)) (-4 *3 (-627 (-549))))) (-3334 (*1 *2 *3 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-720 *3)) (-4 *3 (-627 (-549)))))) +(-10 -7 (-15 -3334 ((-1201) |#1| (-1201))) (-15 -3334 ((-1201) |#1| (-1201) (-1201))) (-15 -3334 ((-1201) |#1| (-1201) (-1201) (-1201))) (-15 -3334 ((-1201) |#1| (-1201) (-660 (-1201))))) +((-2694 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-721 |#1| |#2|) (-10 -7 (-15 -2694 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1242) (-1242)) (T -721)) +((-2694 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-721 *3 *4)) (-4 *3 (-1242)) (-4 *4 (-1242))))) +(-10 -7 (-15 -2694 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-3392 (((-1 |#3| |#2|) (-1201)) 11)) (-3403 (((-1 |#3| |#2|) |#1| (-1201)) 21))) +(((-722 |#1| |#2| |#3|) (-10 -7 (-15 -3392 ((-1 |#3| |#2|) (-1201))) (-15 -3403 ((-1 |#3| |#2|) |#1| (-1201)))) (-627 (-549)) (-1242) (-1242)) (T -722)) +((-3403 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-5 *2 (-1 *6 *5)) (-5 *1 (-722 *3 *5 *6)) (-4 *3 (-627 (-549))) (-4 *5 (-1242)) (-4 *6 (-1242)))) (-3392 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1 *6 *5)) (-5 *1 (-722 *4 *5 *6)) (-4 *4 (-627 (-549))) (-4 *5 (-1242)) (-4 *6 (-1242))))) +(-10 -7 (-15 -3392 ((-1 |#3| |#2|) (-1201))) (-15 -3403 ((-1 |#3| |#2|) |#1| (-1201)))) +((-3438 (((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-660 |#2|) (-660 (-1197 |#4|)) (-660 |#3|) (-660 |#4|) (-660 (-660 (-2 (|:| -3646 (-787)) (|:| |pcoef| |#4|)))) (-660 (-787)) (-1292 (-660 (-1197 |#3|))) |#3|) 92)) (-3426 (((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-660 |#2|) (-660 (-1197 |#3|)) (-660 |#3|) (-660 |#4|) (-660 (-787)) |#3|) 110)) (-3414 (((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-660 |#2|) (-660 |#3|) (-660 (-787)) (-660 (-1197 |#4|)) (-1292 (-660 (-1197 |#3|))) |#3|) 47))) +(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3414 ((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-660 |#2|) (-660 |#3|) (-660 (-787)) (-660 (-1197 |#4|)) (-1292 (-660 (-1197 |#3|))) |#3|)) (-15 -3426 ((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-660 |#2|) (-660 (-1197 |#3|)) (-660 |#3|) (-660 |#4|) (-660 (-787)) |#3|)) (-15 -3438 ((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-660 |#2|) (-660 (-1197 |#4|)) (-660 |#3|) (-660 |#4|) (-660 (-660 (-2 (|:| -3646 (-787)) (|:| |pcoef| |#4|)))) (-660 (-787)) (-1292 (-660 (-1197 |#3|))) |#3|))) (-809) (-865) (-318) (-972 |#3| |#1| |#2|)) (T -723)) +((-3438 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-660 (-1197 *13))) (-5 *3 (-1197 *13)) (-5 *4 (-660 *12)) (-5 *5 (-660 *10)) (-5 *6 (-660 *13)) (-5 *7 (-660 (-660 (-2 (|:| -3646 (-787)) (|:| |pcoef| *13))))) (-5 *8 (-660 (-787))) (-5 *9 (-1292 (-660 (-1197 *10)))) (-4 *12 (-865)) (-4 *10 (-318)) (-4 *13 (-972 *10 *11 *12)) (-4 *11 (-809)) (-5 *1 (-723 *11 *12 *10 *13)))) (-3426 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-660 *11)) (-5 *5 (-660 (-1197 *9))) (-5 *6 (-660 *9)) (-5 *7 (-660 *12)) (-5 *8 (-660 (-787))) (-4 *11 (-865)) (-4 *9 (-318)) (-4 *12 (-972 *9 *10 *11)) (-4 *10 (-809)) (-5 *2 (-660 (-1197 *12))) (-5 *1 (-723 *10 *11 *9 *12)) (-5 *3 (-1197 *12)))) (-3414 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-660 (-1197 *11))) (-5 *3 (-1197 *11)) (-5 *4 (-660 *10)) (-5 *5 (-660 *8)) (-5 *6 (-660 (-787))) (-5 *7 (-1292 (-660 (-1197 *8)))) (-4 *10 (-865)) (-4 *8 (-318)) (-4 *11 (-972 *8 *9 *10)) (-4 *9 (-809)) (-5 *1 (-723 *9 *10 *8 *11))))) +(-10 -7 (-15 -3414 ((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-660 |#2|) (-660 |#3|) (-660 (-787)) (-660 (-1197 |#4|)) (-1292 (-660 (-1197 |#3|))) |#3|)) (-15 -3426 ((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-660 |#2|) (-660 (-1197 |#3|)) (-660 |#3|) (-660 |#4|) (-660 (-787)) |#3|)) (-15 -3438 ((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-660 |#2|) (-660 (-1197 |#4|)) (-660 |#3|) (-660 |#4|) (-660 (-660 (-2 (|:| -3646 (-787)) (|:| |pcoef| |#4|)))) (-660 (-787)) (-1292 (-660 (-1197 |#3|))) |#3|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2248 (($ $) 48)) (-4187 (((-3 $ "failed") $) 37)) (-2487 (((-112) $) 35)) (-2030 (($ |#1| (-787)) 46)) (-4061 (((-787) $) 50)) (-2221 ((|#1| $) 49)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2887 (((-787) $) 51)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-2322 ((|#1| $ (-787)) 47)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) +(((-724 |#1|) (-141) (-1074)) (T -724)) +((-2887 (*1 *2 *1) (-12 (-4 *1 (-724 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-724 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) (-2221 (*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-1074)))) (-2248 (*1 *1 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-1074)))) (-2322 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *1 (-724 *2)) (-4 *2 (-1074)))) (-2030 (*1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-724 *2)) (-4 *2 (-1074))))) +(-13 (-1074) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2887 ((-787) $)) (-15 -4061 ((-787) $)) (-15 -2221 (|t#1| $)) (-15 -2248 ($ $)) (-15 -2322 (|t#1| $ (-787))) (-15 -2030 ($ |t#1| (-787))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 |#1|) |has| |#1| (-174)) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 |#1|) |has| |#1| (-174)) ((-733 |#1|) |has| |#1| (-174)) ((-742) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-4087 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-725 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4087 (|#6| (-1 |#4| |#1|) |#3|))) (-569) (-1268 |#1|) (-1268 (-420 |#2|)) (-569) (-1268 |#4|) (-1268 (-420 |#5|))) (T -725)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-569)) (-4 *7 (-569)) (-4 *6 (-1268 *5)) (-4 *2 (-1268 (-420 *8))) (-5 *1 (-725 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1268 (-420 *6))) (-4 *8 (-1268 *7))))) +(-10 -7 (-15 -4087 (|#6| (-1 |#4| |#1|) |#3|))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3448 (((-1183) (-880)) 38)) (-2072 (((-1297) (-1183)) 31)) (-3470 (((-1183) (-880)) 28)) (-3459 (((-1183) (-880)) 29)) (-3544 (((-880) $) NIL) (((-1183) (-880)) 27)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-726) (-13 (-1125) (-10 -7 (-15 -3544 ((-1183) (-880))) (-15 -3470 ((-1183) (-880))) (-15 -3459 ((-1183) (-880))) (-15 -3448 ((-1183) (-880))) (-15 -2072 ((-1297) (-1183)))))) (T -726)) +((-3544 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1183)) (-5 *1 (-726)))) (-3470 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1183)) (-5 *1 (-726)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1183)) (-5 *1 (-726)))) (-3448 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1183)) (-5 *1 (-726)))) (-2072 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-726))))) +(-13 (-1125) (-10 -7 (-15 -3544 ((-1183) (-880))) (-15 -3470 ((-1183) (-880))) (-15 -3459 ((-1183) (-880))) (-15 -3448 ((-1183) (-880))) (-15 -2072 ((-1297) (-1183))))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1939 (((-112) $ $) NIL)) (-1534 (($) NIL T CONST)) (-3418 (($ $ $) NIL)) (-3654 (($ |#1| |#2|) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-2487 (((-112) $) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-2587 ((|#2| $) NIL)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1902 (((-431 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3566 (((-3 $ "failed") $ $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) NIL) ((|#1| $) NIL)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL))) +(((-727 |#1| |#2| |#3| |#4| |#5|) (-13 (-375) (-10 -8 (-15 -2587 (|#2| $)) (-15 -3544 (|#1| $)) (-15 -3654 ($ |#1| |#2|)) (-15 -3566 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -727)) +((-2587 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3544 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3654 (*1 *1 *2 *3) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3566 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-375) (-10 -8 (-15 -2587 (|#2| $)) (-15 -3544 (|#1| $)) (-15 -3654 ($ |#1| |#2|)) (-15 -3566 ((-3 $ "failed") $ $)))) +((-3473 (((-112) $ $) 87)) (-3585 (((-112) $) 36)) (-3779 (((-1292 |#1|) $ (-787)) NIL)) (-2058 (((-660 (-1107)) $) NIL)) (-3756 (($ (-1197 |#1|)) NIL)) (-1867 (((-1197 $) $ (-1107)) NIL) (((-1197 |#1|) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-4050 (((-787) $) NIL) (((-787) $ (-660 (-1107))) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1807 (($ $ $) NIL (|has| |#1| (-569)))) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-3841 (($ $) NIL (|has| |#1| (-465)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-465)))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-1939 (((-112) $ $) NIL (|has| |#1| (-375)))) (-2229 (((-787)) 54 (|has| |#1| (-380)))) (-3714 (($ $ (-787)) NIL)) (-3703 (($ $ (-787)) NIL)) (-3545 ((|#2| |#2|) 50)) (-1767 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-465)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-1107) "failed") $) NIL)) (-2921 ((|#1| $) NIL) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-1107) $) NIL)) (-1816 (($ $ $ (-1107)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-3418 (($ $ $) NIL (|has| |#1| (-375)))) (-2248 (($ $) 40)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL) (((-705 |#1|) (-705 $)) NIL)) (-3654 (($ |#2|) 48)) (-4187 (((-3 $ "failed") $) 97)) (-1910 (($) 58 (|has| |#1| (-380)))) (-3429 (($ $ $) NIL (|has| |#1| (-375)))) (-1838 (($ $ $) NIL)) (-1787 (($ $ $) NIL (|has| |#1| (-569)))) (-1776 (((-2 (|:| -1777 |#1|) (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-569)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| |#1| (-375)))) (-3143 (($ $) NIL (|has| |#1| (-465))) (($ $ (-1107)) NIL (|has| |#1| (-465)))) (-2234 (((-660 $) $) NIL)) (-1522 (((-112) $) NIL (|has| |#1| (-932)))) (-3504 (((-981 $)) 89)) (-2137 (($ $ |#1| (-787) $) NIL)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-1107) (-905 (-391))) (|has| |#1| (-905 (-391))))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-1107) (-905 (-577))) (|has| |#1| (-905 (-577)))))) (-3817 (((-787) $ $) NIL (|has| |#1| (-569)))) (-2487 (((-112) $) NIL)) (-2548 (((-787) $) NIL)) (-4021 (((-3 $ "failed") $) NIL (|has| |#1| (-1177)))) (-2043 (($ (-1197 |#1|) (-1107)) NIL) (($ (-1197 $) (-1107)) NIL)) (-3864 (($ $ (-787)) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-4074 (((-660 $) $) NIL)) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-787)) 85) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107)) (-660 (-787))) NIL)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ (-1107)) NIL) (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2587 ((|#2|) 51)) (-4061 (((-787) $) NIL) (((-787) $ (-1107)) NIL) (((-660 (-787)) $ (-660 (-1107))) NIL)) (-2151 (($ (-1 (-787) (-787)) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3767 (((-1197 |#1|) $) NIL)) (-3691 (((-3 (-1107) "failed") $) NIL)) (-4038 (((-944) $) NIL (|has| |#1| (-380)))) (-3642 ((|#2| $) 47)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL) (((-705 |#1|) (-1292 $)) NIL)) (-2209 (($ $) NIL)) (-2221 ((|#1| $) 34)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) NIL (|has| |#1| (-465)))) (-2810 (((-1183) $) NIL)) (-3724 (((-2 (|:| -3637 $) (|:| -2457 $)) $ (-787)) NIL)) (-4098 (((-3 (-660 $) "failed") $) NIL)) (-4086 (((-3 (-660 $) "failed") $) NIL)) (-4111 (((-3 (-2 (|:| |var| (-1107)) (|:| -3556 (-787))) "failed") $) NIL)) (-4147 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1709 (($) NIL (|has| |#1| (-1177)) CONST)) (-3222 (($ (-944)) NIL (|has| |#1| (-380)))) (-1474 (((-1145) $) NIL)) (-2180 (((-112) $) NIL)) (-2193 ((|#1| $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-465)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) NIL (|has| |#1| (-465)))) (-3481 (($ $) 88 (|has| |#1| (-361)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-1902 (((-431 $) $) NIL (|has| |#1| (-932)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3462 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-569)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-3280 (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ (-1107) |#1|) NIL) (($ $ (-660 (-1107)) (-660 |#1|)) NIL) (($ $ (-1107) $) NIL) (($ $ (-660 (-1107)) (-660 $)) NIL)) (-1927 (((-787) $) NIL (|has| |#1| (-375)))) (-2872 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-420 $) (-420 $) (-420 $)) NIL (|has| |#1| (-569))) ((|#1| (-420 $) |#1|) NIL (|has| |#1| (-375))) (((-420 $) $ (-420 $)) NIL (|has| |#1| (-569)))) (-3745 (((-3 $ "failed") $ (-787)) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 98 (|has| |#1| (-375)))) (-1827 (($ $ (-1107)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2852 (($ $ (-660 (-1107)) (-660 (-787))) NIL) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107))) NIL) (($ $ (-1107)) NIL) (($ $) NIL) (($ $ (-787)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))))) (-2887 (((-787) $) 38) (((-787) $ (-1107)) NIL) (((-660 (-787)) $ (-660 (-1107))) NIL)) (-4152 (((-911 (-391)) $) NIL (-12 (|has| (-1107) (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391)))))) (((-911 (-577)) $) NIL (-12 (|has| (-1107) (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577)))))) (((-549) $) NIL (-12 (|has| (-1107) (-627 (-549))) (|has| |#1| (-627 (-549)))))) (-4039 ((|#1| $) NIL (|has| |#1| (-465))) (($ $ (-1107)) NIL (|has| |#1| (-465)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-932))))) (-3493 (((-981 $)) 42)) (-1797 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569))) (((-3 (-420 $) "failed") (-420 $) $) NIL (|has| |#1| (-569)))) (-3544 (((-880) $) 68) (($ (-577)) NIL) (($ |#1|) 65) (($ (-1107)) NIL) (($ |#2|) 75) (($ (-420 (-577))) NIL (-2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577)))))) (($ $) NIL (|has| |#1| (-569)))) (-4182 (((-660 |#1|) $) NIL)) (-2322 ((|#1| $ (-787)) 70) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107)) (-660 (-787))) NIL)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))))) (-4068 (((-787)) NIL T CONST)) (-2122 (($ $ $ (-787)) NIL (|has| |#1| (-174)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2806 (($) 25 T CONST)) (-3534 (((-1292 |#1|) $) 83)) (-3523 (($ (-1292 |#1|)) 57)) (-2816 (($) 8 T CONST)) (-2132 (($ $ (-660 (-1107)) (-660 (-787))) NIL) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107))) NIL) (($ $ (-1107)) NIL) (($ $) NIL) (($ $ (-787)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))))) (-3513 (((-1292 |#1|) $) NIL)) (-2970 (((-112) $ $) 76)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375)))) (-3066 (($ $) 79) (($ $ $) NIL)) (-3055 (($ $ $) 39)) (** (($ $ (-944)) NIL) (($ $ (-787)) 92)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 64) (($ $ $) 82) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ |#1| $) 62) (($ $ |#1|) NIL))) +(((-728 |#1| |#2|) (-13 (-1268 |#1|) (-629 |#2|) (-10 -8 (-15 -3545 (|#2| |#2|)) (-15 -2587 (|#2|)) (-15 -3654 ($ |#2|)) (-15 -3642 (|#2| $)) (-15 -3534 ((-1292 |#1|) $)) (-15 -3523 ($ (-1292 |#1|))) (-15 -3513 ((-1292 |#1|) $)) (-15 -3504 ((-981 $))) (-15 -3493 ((-981 $))) (IF (|has| |#1| (-361)) (-15 -3481 ($ $)) |%noBranch|) (IF (|has| |#1| (-380)) (-6 (-380)) |%noBranch|))) (-1074) (-1268 |#1|)) (T -728)) +((-3545 (*1 *2 *2) (-12 (-4 *3 (-1074)) (-5 *1 (-728 *3 *2)) (-4 *2 (-1268 *3)))) (-2587 (*1 *2) (-12 (-4 *2 (-1268 *3)) (-5 *1 (-728 *3 *2)) (-4 *3 (-1074)))) (-3654 (*1 *1 *2) (-12 (-4 *3 (-1074)) (-5 *1 (-728 *3 *2)) (-4 *2 (-1268 *3)))) (-3642 (*1 *2 *1) (-12 (-4 *2 (-1268 *3)) (-5 *1 (-728 *3 *2)) (-4 *3 (-1074)))) (-3534 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-5 *2 (-1292 *3)) (-5 *1 (-728 *3 *4)) (-4 *4 (-1268 *3)))) (-3523 (*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-1074)) (-5 *1 (-728 *3 *4)) (-4 *4 (-1268 *3)))) (-3513 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-5 *2 (-1292 *3)) (-5 *1 (-728 *3 *4)) (-4 *4 (-1268 *3)))) (-3504 (*1 *2) (-12 (-4 *3 (-1074)) (-5 *2 (-981 (-728 *3 *4))) (-5 *1 (-728 *3 *4)) (-4 *4 (-1268 *3)))) (-3493 (*1 *2) (-12 (-4 *3 (-1074)) (-5 *2 (-981 (-728 *3 *4))) (-5 *1 (-728 *3 *4)) (-4 *4 (-1268 *3)))) (-3481 (*1 *1 *1) (-12 (-4 *2 (-361)) (-4 *2 (-1074)) (-5 *1 (-728 *2 *3)) (-4 *3 (-1268 *2))))) +(-13 (-1268 |#1|) (-629 |#2|) (-10 -8 (-15 -3545 (|#2| |#2|)) (-15 -2587 (|#2|)) (-15 -3654 ($ |#2|)) (-15 -3642 (|#2| $)) (-15 -3534 ((-1292 |#1|) $)) (-15 -3523 ($ (-1292 |#1|))) (-15 -3513 ((-1292 |#1|) $)) (-15 -3504 ((-981 $))) (-15 -3493 ((-981 $))) (IF (|has| |#1| (-361)) (-15 -3481 ($ $)) |%noBranch|) (IF (|has| |#1| (-380)) (-6 (-380)) |%noBranch|))) +((-3473 (((-112) $ $) NIL)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-2810 (((-1183) $) NIL)) (-3222 ((|#1| $) 13)) (-1474 (((-1145) $) NIL)) (-3556 ((|#2| $) 12)) (-3553 (($ |#1| |#2|) 16)) (-3544 (((-880) $) NIL) (($ (-2 (|:| -3222 |#1|) (|:| -3556 |#2|))) 15) (((-2 (|:| -3222 |#1|) (|:| -3556 |#2|)) $) 14)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 11))) +(((-729 |#1| |#2| |#3|) (-13 (-865) (-503 (-2 (|:| -3222 |#1|) (|:| -3556 |#2|))) (-10 -8 (-15 -3556 (|#2| $)) (-15 -3222 (|#1| $)) (-15 -3553 ($ |#1| |#2|)))) (-865) (-1125) (-1 (-112) (-2 (|:| -3222 |#1|) (|:| -3556 |#2|)) (-2 (|:| -3222 |#1|) (|:| -3556 |#2|)))) (T -729)) +((-3556 (*1 *2 *1) (-12 (-4 *2 (-1125)) (-5 *1 (-729 *3 *2 *4)) (-4 *3 (-865)) (-14 *4 (-1 (-112) (-2 (|:| -3222 *3) (|:| -3556 *2)) (-2 (|:| -3222 *3) (|:| -3556 *2)))))) (-3222 (*1 *2 *1) (-12 (-4 *2 (-865)) (-5 *1 (-729 *2 *3 *4)) (-4 *3 (-1125)) (-14 *4 (-1 (-112) (-2 (|:| -3222 *2) (|:| -3556 *3)) (-2 (|:| -3222 *2) (|:| -3556 *3)))))) (-3553 (*1 *1 *2 *3) (-12 (-5 *1 (-729 *2 *3 *4)) (-4 *2 (-865)) (-4 *3 (-1125)) (-14 *4 (-1 (-112) (-2 (|:| -3222 *2) (|:| -3556 *3)) (-2 (|:| -3222 *2) (|:| -3556 *3))))))) +(-13 (-865) (-503 (-2 (|:| -3222 |#1|) (|:| -3556 |#2|))) (-10 -8 (-15 -3556 (|#2| $)) (-15 -3222 (|#1| $)) (-15 -3553 ($ |#1| |#2|)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 66)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2921 ((|#1| $) NIL) (((-115) $) 39)) (-4187 (((-3 $ "failed") $) 103)) (-4178 ((|#2| (-115) |#2|) 93)) (-2487 (((-112) $) NIL)) (-4167 (($ |#1| (-373 (-115))) 14)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2971 (($ $ (-1 |#2| |#2|)) 65)) (-2980 (($ $ (-1 |#2| |#2|)) 44)) (-2872 ((|#2| $ |#2|) 33)) (-2991 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-3544 (((-880) $) 73) (($ (-577)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) 37 T CONST)) (-4448 (((-112) $ $) NIL)) (-3001 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2806 (($) 21 T CONST)) (-2816 (($) 9 T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) 48) (($ $ $) NIL)) (-3055 (($ $ $) 83)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ (-115) (-577)) NIL) (($ $ (-577)) 64)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174))))) +(((-730 |#1| |#2|) (-13 (-1074) (-1063 |#1|) (-1063 (-115)) (-297 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3001 ($ $)) (-15 -3001 ($ $ $)) (-15 -2991 (|#1| |#1|))) |%noBranch|) (-15 -2980 ($ $ (-1 |#2| |#2|))) (-15 -2971 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-577))) (-15 ** ($ $ (-577))) (-15 -4178 (|#2| (-115) |#2|)) (-15 -4167 ($ |#1| (-373 (-115)))))) (-1074) (-664 |#1|)) (T -730)) +((-3001 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1074)) (-5 *1 (-730 *2 *3)) (-4 *3 (-664 *2)))) (-3001 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1074)) (-5 *1 (-730 *2 *3)) (-4 *3 (-664 *2)))) (-2991 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1074)) (-5 *1 (-730 *2 *3)) (-4 *3 (-664 *2)))) (-2980 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-664 *3)) (-4 *3 (-1074)) (-5 *1 (-730 *3 *4)))) (-2971 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-664 *3)) (-4 *3 (-1074)) (-5 *1 (-730 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-577)) (-4 *4 (-1074)) (-5 *1 (-730 *4 *5)) (-4 *5 (-664 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *3 (-1074)) (-5 *1 (-730 *3 *4)) (-4 *4 (-664 *3)))) (-4178 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1074)) (-5 *1 (-730 *4 *2)) (-4 *2 (-664 *4)))) (-4167 (*1 *1 *2 *3) (-12 (-5 *3 (-373 (-115))) (-4 *2 (-1074)) (-5 *1 (-730 *2 *4)) (-4 *4 (-664 *2))))) +(-13 (-1074) (-1063 |#1|) (-1063 (-115)) (-297 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3001 ($ $)) (-15 -3001 ($ $ $)) (-15 -2991 (|#1| |#1|))) |%noBranch|) (-15 -2980 ($ $ (-1 |#2| |#2|))) (-15 -2971 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-577))) (-15 ** ($ $ (-577))) (-15 -4178 (|#2| (-115) |#2|)) (-15 -4167 ($ |#1| (-373 (-115)))))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 33)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-3654 (($ |#1| |#2|) 25)) (-4187 (((-3 $ "failed") $) 51)) (-2487 (((-112) $) 35)) (-2587 ((|#2| $) 12)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) 52)) (-1474 (((-1145) $) NIL)) (-3566 (((-3 $ "failed") $ $) 50)) (-3544 (((-880) $) 24) (($ (-577)) 19) ((|#1| $) 13)) (-4068 (((-787)) 28 T CONST)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 16 T CONST)) (-2816 (($) 30 T CONST)) (-2970 (((-112) $ $) 41)) (-3066 (($ $) 46) (($ $ $) 40)) (-3055 (($ $ $) 43)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 21) (($ $ $) 20))) +(((-731 |#1| |#2| |#3| |#4| |#5|) (-13 (-1074) (-10 -8 (-15 -2587 (|#2| $)) (-15 -3544 (|#1| $)) (-15 -3654 ($ |#1| |#2|)) (-15 -3566 ((-3 $ "failed") $ $)) (-15 -4187 ((-3 $ "failed") $)) (-15 -2171 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -731)) +((-4187 (*1 *1 *1) (|partial| -12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2587 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-731 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3544 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3654 (*1 *1 *2 *3) (-12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3566 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1074) (-10 -8 (-15 -2587 (|#2| $)) (-15 -3544 (|#1| $)) (-15 -3654 ($ |#1| |#2|)) (-15 -3566 ((-3 $ "failed") $ $)) (-15 -4187 ((-3 $ "failed") $)) (-15 -2171 ($ $)))) +((* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-732 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) (-733 |#2|) (-174)) (T -732)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-733 |#1|) (-141) (-174)) (T -733)) +NIL +(-13 (-111 |t#1| |t#1|) (-656 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-2826 (($ |#1|) 17) (($ $ |#1|) 20)) (-3160 (($ |#1|) 18) (($ $ |#1|) 21)) (-1534 (($) NIL T CONST)) (-4187 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2487 (((-112) $) NIL)) (-3577 (($ |#1| |#1| |#1| |#1|) 8)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) 16)) (-1474 (((-1145) $) NIL)) (-3280 ((|#1| $ |#1|) 24) (((-849 |#1|) $ (-849 |#1|)) 32)) (-2360 (($ $ $) NIL)) (-3820 (($ $ $) NIL)) (-3544 (((-880) $) 39)) (-4448 (((-112) $ $) NIL)) (-2816 (($) 9 T CONST)) (-2970 (((-112) $ $) 48)) (-3077 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ $ $) 14))) +(((-734 |#1|) (-13 (-486) (-10 -8 (-15 -3577 ($ |#1| |#1| |#1| |#1|)) (-15 -2826 ($ |#1|)) (-15 -3160 ($ |#1|)) (-15 -4187 ($)) (-15 -2826 ($ $ |#1|)) (-15 -3160 ($ $ |#1|)) (-15 -4187 ($ $)) (-15 -3280 (|#1| $ |#1|)) (-15 -3280 ((-849 |#1|) $ (-849 |#1|))))) (-375)) (T -734)) +((-3577 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) (-2826 (*1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) (-3160 (*1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) (-4187 (*1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) (-2826 (*1 *1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) (-3160 (*1 *1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) (-4187 (*1 *1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) (-3280 (*1 *2 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) (-3280 (*1 *2 *1 *2) (-12 (-5 *2 (-849 *3)) (-4 *3 (-375)) (-5 *1 (-734 *3))))) +(-13 (-486) (-10 -8 (-15 -3577 ($ |#1| |#1| |#1| |#1|)) (-15 -2826 ($ |#1|)) (-15 -3160 ($ |#1|)) (-15 -4187 ($)) (-15 -2826 ($ $ |#1|)) (-15 -3160 ($ $ |#1|)) (-15 -4187 ($ $)) (-15 -3280 (|#1| $ |#1|)) (-15 -3280 ((-849 |#1|) $ (-849 |#1|))))) +((-2470 (($ $ (-944)) 19)) (-3604 (($ $ (-944)) 20)) (** (($ $ (-944)) 10))) +(((-735 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-944))) (-15 -3604 (|#1| |#1| (-944))) (-15 -2470 (|#1| |#1| (-944)))) (-736)) (T -735)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-944))) (-15 -3604 (|#1| |#1| (-944))) (-15 -2470 (|#1| |#1| (-944)))) +((-3473 (((-112) $ $) 7)) (-2470 (($ $ (-944)) 16)) (-3604 (($ $ (-944)) 15)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8)) (** (($ $ (-944)) 14)) (* (($ $ $) 17))) +(((-736) (-141)) (T -736)) +((* (*1 *1 *1 *1) (-4 *1 (-736))) (-2470 (*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-944)))) (-3604 (*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-944)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-944))))) +(-13 (-1125) (-10 -8 (-15 * ($ $ $)) (-15 -2470 ($ $ (-944))) (-15 -3604 ($ $ (-944))) (-15 ** ($ $ (-944))))) +(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-2470 (($ $ (-944)) NIL) (($ $ (-787)) 18)) (-2487 (((-112) $) 10)) (-3604 (($ $ (-944)) NIL) (($ $ (-787)) 19)) (** (($ $ (-944)) NIL) (($ $ (-787)) 16))) +(((-737 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-787))) (-15 -3604 (|#1| |#1| (-787))) (-15 -2470 (|#1| |#1| (-787))) (-15 -2487 ((-112) |#1|)) (-15 ** (|#1| |#1| (-944))) (-15 -3604 (|#1| |#1| (-944))) (-15 -2470 (|#1| |#1| (-944)))) (-738)) (T -737)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-787))) (-15 -3604 (|#1| |#1| (-787))) (-15 -2470 (|#1| |#1| (-787))) (-15 -2487 ((-112) |#1|)) (-15 ** (|#1| |#1| (-944))) (-15 -3604 (|#1| |#1| (-944))) (-15 -2470 (|#1| |#1| (-944)))) +((-3473 (((-112) $ $) 7)) (-3584 (((-3 $ "failed") $) 18)) (-2470 (($ $ (-944)) 16) (($ $ (-787)) 23)) (-4187 (((-3 $ "failed") $) 20)) (-2487 (((-112) $) 24)) (-3593 (((-3 $ "failed") $) 19)) (-3604 (($ $ (-944)) 15) (($ $ (-787)) 22)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2816 (($) 25 T CONST)) (-2970 (((-112) $ $) 8)) (** (($ $ (-944)) 14) (($ $ (-787)) 21)) (* (($ $ $) 17))) +(((-738) (-141)) (T -738)) +((-2816 (*1 *1) (-4 *1 (-738))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112)))) (-2470 (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-787)))) (-3604 (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-787)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-787)))) (-4187 (*1 *1 *1) (|partial| -4 *1 (-738))) (-3593 (*1 *1 *1) (|partial| -4 *1 (-738))) (-3584 (*1 *1 *1) (|partial| -4 *1 (-738)))) +(-13 (-736) (-10 -8 (-15 (-2816) ($) -1512) (-15 -2487 ((-112) $)) (-15 -2470 ($ $ (-787))) (-15 -3604 ($ $ (-787))) (-15 ** ($ $ (-787))) (-15 -4187 ((-3 $ "failed") $)) (-15 -3593 ((-3 $ "failed") $)) (-15 -3584 ((-3 $ "failed") $)))) +(((-102) . T) ((-626 (-880)) . T) ((-736) . T) ((-1125) . T) ((-1242) . T)) +((-2229 (((-787)) 39)) (-1628 (((-3 (-577) "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2921 (((-577) $) NIL) (((-420 (-577)) $) NIL) ((|#2| $) 23)) (-3654 (($ |#3|) NIL) (((-3 $ "failed") (-420 |#3|)) 49)) (-4187 (((-3 $ "failed") $) 69)) (-1910 (($) 43)) (-4145 ((|#2| $) 21)) (-4101 (($) 18)) (-2852 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-787)) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201))) NIL) (($ $ (-1201)) NIL) (($ $ (-787)) NIL) (($ $) NIL)) (-2478 (((-705 |#2|) (-1292 $) (-1 |#2| |#2|)) 64)) (-4152 (((-1292 |#2|) $) NIL) (($ (-1292 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3974 ((|#3| $) 36)) (-4060 (((-1292 $)) 33))) +(((-739 |#1| |#2| |#3|) (-10 -8 (-15 -2852 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -1910 (|#1|)) (-15 -2229 ((-787))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2478 ((-705 |#2|) (-1292 |#1|) (-1 |#2| |#2|))) (-15 -3654 ((-3 |#1| "failed") (-420 |#3|))) (-15 -4152 (|#1| |#3|)) (-15 -3654 (|#1| |#3|)) (-15 -4101 (|#1|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -4152 (|#3| |#1|)) (-15 -4152 (|#1| (-1292 |#2|))) (-15 -4152 ((-1292 |#2|) |#1|)) (-15 -4060 ((-1292 |#1|))) (-15 -3974 (|#3| |#1|)) (-15 -4145 (|#2| |#1|)) (-15 -4187 ((-3 |#1| "failed") |#1|))) (-740 |#2| |#3|) (-174) (-1268 |#2|)) (T -739)) +((-2229 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1268 *4)) (-5 *2 (-787)) (-5 *1 (-739 *3 *4 *5)) (-4 *3 (-740 *4 *5))))) +(-10 -8 (-15 -2852 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -1910 (|#1|)) (-15 -2229 ((-787))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2478 ((-705 |#2|) (-1292 |#1|) (-1 |#2| |#2|))) (-15 -3654 ((-3 |#1| "failed") (-420 |#3|))) (-15 -4152 (|#1| |#3|)) (-15 -3654 (|#1| |#3|)) (-15 -4101 (|#1|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -4152 (|#3| |#1|)) (-15 -4152 (|#1| (-1292 |#2|))) (-15 -4152 ((-1292 |#2|) |#1|)) (-15 -4060 ((-1292 |#1|))) (-15 -3974 (|#3| |#1|)) (-15 -4145 (|#2| |#1|)) (-15 -4187 ((-3 |#1| "failed") |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 105 (|has| |#1| (-375)))) (-3290 (($ $) 106 (|has| |#1| (-375)))) (-3271 (((-112) $) 108 (|has| |#1| (-375)))) (-3390 (((-705 |#1|) (-1292 $)) 53) (((-705 |#1|)) 68)) (-2339 ((|#1| $) 59)) (-1595 (((-1214 (-944) (-787)) (-577)) 158 (|has| |#1| (-361)))) (-1956 (((-3 $ "failed") $ $) 20)) (-3841 (($ $) 125 (|has| |#1| (-375)))) (-3029 (((-431 $) $) 126 (|has| |#1| (-375)))) (-1939 (((-112) $ $) 116 (|has| |#1| (-375)))) (-2229 (((-787)) 99 (|has| |#1| (-380)))) (-1534 (($) 18 T CONST)) (-1628 (((-3 (-577) "failed") $) 185 (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) 183 (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) 180)) (-2921 (((-577) $) 184 (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) 182 (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) 181)) (-3502 (($ (-1292 |#1|) (-1292 $)) 55) (($ (-1292 |#1|)) 71)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-361)))) (-3418 (($ $ $) 120 (|has| |#1| (-375)))) (-3381 (((-705 |#1|) $ (-1292 $)) 60) (((-705 |#1|) $) 66)) (-1647 (((-705 (-577)) (-705 $)) 177 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 176 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 175) (((-705 |#1|) (-705 $)) 174)) (-3654 (($ |#2|) 169) (((-3 $ "failed") (-420 |#2|)) 166 (|has| |#1| (-375)))) (-4187 (((-3 $ "failed") $) 37)) (-1545 (((-944)) 61)) (-1910 (($) 102 (|has| |#1| (-380)))) (-3429 (($ $ $) 119 (|has| |#1| (-375)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 114 (|has| |#1| (-375)))) (-4205 (($) 160 (|has| |#1| (-361)))) (-1655 (((-112) $) 161 (|has| |#1| (-361)))) (-3233 (($ $ (-787)) 152 (|has| |#1| (-361))) (($ $) 151 (|has| |#1| (-361)))) (-1522 (((-112) $) 127 (|has| |#1| (-375)))) (-3817 (((-944) $) 163 (|has| |#1| (-361))) (((-849 (-944)) $) 149 (|has| |#1| (-361)))) (-2487 (((-112) $) 35)) (-4145 ((|#1| $) 58)) (-4021 (((-3 $ "failed") $) 153 (|has| |#1| (-361)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 123 (|has| |#1| (-375)))) (-4084 ((|#2| $) 51 (|has| |#1| (-375)))) (-4038 (((-944) $) 101 (|has| |#1| (-380)))) (-3642 ((|#2| $) 167)) (-1657 (((-705 (-577)) (-1292 $)) 179 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 178 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 173) (((-705 |#1|) (-1292 $)) 172)) (-3446 (($ (-660 $)) 112 (|has| |#1| (-375))) (($ $ $) 111 (|has| |#1| (-375)))) (-2810 (((-1183) $) 10)) (-2171 (($ $) 128 (|has| |#1| (-375)))) (-1709 (($) 154 (|has| |#1| (-361)) CONST)) (-3222 (($ (-944)) 100 (|has| |#1| (-380)))) (-1474 (((-1145) $) 11)) (-4101 (($) 171)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 113 (|has| |#1| (-375)))) (-3480 (($ (-660 $)) 110 (|has| |#1| (-375))) (($ $ $) 109 (|has| |#1| (-375)))) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) 157 (|has| |#1| (-361)))) (-1902 (((-431 $) $) 124 (|has| |#1| (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 121 (|has| |#1| (-375)))) (-3462 (((-3 $ "failed") $ $) 104 (|has| |#1| (-375)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 115 (|has| |#1| (-375)))) (-1927 (((-787) $) 117 (|has| |#1| (-375)))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 118 (|has| |#1| (-375)))) (-1827 ((|#1| (-1292 $)) 54) ((|#1|) 67)) (-3243 (((-787) $) 162 (|has| |#1| (-361))) (((-3 (-787) "failed") $ $) 150 (|has| |#1| (-361)))) (-2852 (($ $ (-787)) 147 (-2839 (-2761 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361)))) (($ $) 145 (-2839 (-2761 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361)))) (($ $ (-660 (-1201)) (-660 (-787))) 141 (-2761 (|has| |#1| (-923 (-1201))) (|has| |#1| (-375)))) (($ $ (-1201) (-787)) 140 (-2761 (|has| |#1| (-923 (-1201))) (|has| |#1| (-375)))) (($ $ (-660 (-1201))) 139 (-2761 (|has| |#1| (-923 (-1201))) (|has| |#1| (-375)))) (($ $ (-1201)) 137 (-2761 (|has| |#1| (-923 (-1201))) (|has| |#1| (-375)))) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-375))) (($ $ (-1 |#1| |#1|) (-787)) 135 (|has| |#1| (-375)))) (-2478 (((-705 |#1|) (-1292 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-375)))) (-3557 ((|#2|) 170)) (-1585 (($) 159 (|has| |#1| (-361)))) (-2710 (((-1292 |#1|) $ (-1292 $)) 57) (((-705 |#1|) (-1292 $) (-1292 $)) 56) (((-1292 |#1|) $) 73) (((-705 |#1|) (-1292 $)) 72)) (-4152 (((-1292 |#1|) $) 70) (($ (-1292 |#1|)) 69) ((|#2| $) 186) (($ |#2|) 168)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) 156 (|has| |#1| (-361)))) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 44) (($ $) 103 (|has| |#1| (-375))) (($ (-420 (-577))) 98 (-2839 (|has| |#1| (-375)) (|has| |#1| (-1063 (-420 (-577))))))) (-2233 (($ $) 155 (|has| |#1| (-361))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-3974 ((|#2| $) 52)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-4060 (((-1292 $)) 74)) (-3281 (((-112) $ $) 107 (|has| |#1| (-375)))) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-787)) 148 (-2839 (-2761 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361)))) (($ $) 146 (-2839 (-2761 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361)))) (($ $ (-660 (-1201)) (-660 (-787))) 144 (-2761 (|has| |#1| (-923 (-1201))) (|has| |#1| (-375)))) (($ $ (-1201) (-787)) 143 (-2761 (|has| |#1| (-923 (-1201))) (|has| |#1| (-375)))) (($ $ (-660 (-1201))) 142 (-2761 (|has| |#1| (-923 (-1201))) (|has| |#1| (-375)))) (($ $ (-1201)) 138 (-2761 (|has| |#1| (-923 (-1201))) (|has| |#1| (-375)))) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-375))) (($ $ (-1 |#1| |#1|) (-787)) 133 (|has| |#1| (-375)))) (-2970 (((-112) $ $) 8)) (-3077 (($ $ $) 132 (|has| |#1| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 129 (|has| |#1| (-375)))) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-420 (-577)) $) 131 (|has| |#1| (-375))) (($ $ (-420 (-577))) 130 (|has| |#1| (-375))))) +(((-740 |#1| |#2|) (-141) (-174) (-1268 |t#1|)) (T -740)) +((-4101 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-740 *2 *3)) (-4 *3 (-1268 *2)))) (-3557 (*1 *2) (-12 (-4 *1 (-740 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1268 *3)))) (-3654 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-740 *3 *2)) (-4 *2 (-1268 *3)))) (-4152 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-740 *3 *2)) (-4 *2 (-1268 *3)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-740 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1268 *3)))) (-3654 (*1 *1 *2) (|partial| -12 (-5 *2 (-420 *4)) (-4 *4 (-1268 *3)) (-4 *3 (-375)) (-4 *3 (-174)) (-4 *1 (-740 *3 *4)))) (-2478 (*1 *2 *3 *4) (-12 (-5 *3 (-1292 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) (-4 *1 (-740 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1268 *5)) (-5 *2 (-705 *5))))) +(-13 (-422 |t#1| |t#2|) (-174) (-627 |t#2|) (-424 |t#1|) (-389 |t#1|) (-10 -8 (-15 -4101 ($)) (-15 -3557 (|t#2|)) (-15 -3654 ($ |t#2|)) (-15 -4152 ($ |t#2|)) (-15 -3642 (|t#2| $)) (IF (|has| |t#1| (-380)) (-6 (-380)) |%noBranch|) (IF (|has| |t#1| (-375)) (PROGN (-6 (-375)) (-6 (-233 |t#1|)) (-15 -3654 ((-3 $ "failed") (-420 |t#2|))) (-15 -2478 ((-705 |t#1|) (-1292 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-38 |#1|) . T) ((-38 $) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-102) . T) ((-111 #0# #0#) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2839 (|has| |#1| (-361)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-629 #0#) -2839 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-361)) (|has| |#1| (-375))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-629 $) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-626 (-880)) . T) ((-174) . T) ((-627 |#2|) . T) ((-235 $) -2839 (|has| |#1| (-361)) (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (-12 (|has| |#1| (-239)) (|has| |#1| (-375)))) ((-233 |#1|) |has| |#1| (-375)) ((-239) -2839 (|has| |#1| (-361)) (-12 (|has| |#1| (-239)) (|has| |#1| (-375)))) ((-238) -2839 (|has| |#1| (-361)) (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (-12 (|has| |#1| (-239)) (|has| |#1| (-375)))) ((-273 |#1|) |has| |#1| (-375)) ((-249) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-301) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-318) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-375) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-415) |has| |#1| (-361)) ((-380) -2839 (|has| |#1| (-380)) (|has| |#1| (-361))) ((-361) |has| |#1| (-361)) ((-382 |#1| |#2|) . T) ((-422 |#1| |#2|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-569) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-662 #0#) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-664 #1=(-577)) |has| |#1| (-654 (-577))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-656 |#1|) . T) ((-656 $) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-654 #1#) |has| |#1| (-654 (-577))) ((-654 |#1|) . T) ((-733 #0#) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-733 |#1|) . T) ((-733 $) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-742) . T) ((-915 $ #2=(-1201)) -2839 (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201))))) ((-921 (-1201)) -12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201)))) ((-923 #2#) -2839 (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#1| (-921 (-1201))))) ((-943) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1063 (-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1076 #0#) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1081 #0#) -2839 (|has| |#1| (-361)) (|has| |#1| (-375))) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1177) |has| |#1| (-361)) ((-1242) . T) ((-1246) -2839 (|has| |#1| (-361)) (|has| |#1| (-375)))) +((-1534 (($) 11)) (-4187 (((-3 $ "failed") $) 14)) (-2487 (((-112) $) 10)) (** (($ $ (-944)) NIL) (($ $ (-787)) 20))) +(((-741 |#1|) (-10 -8 (-15 -4187 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-787))) (-15 -2487 ((-112) |#1|)) (-15 -1534 (|#1|)) (-15 ** (|#1| |#1| (-944)))) (-742)) (T -741)) +NIL +(-10 -8 (-15 -4187 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-787))) (-15 -2487 ((-112) |#1|)) (-15 -1534 (|#1|)) (-15 ** (|#1| |#1| (-944)))) +((-3473 (((-112) $ $) 7)) (-1534 (($) 19 T CONST)) (-4187 (((-3 $ "failed") $) 16)) (-2487 (((-112) $) 18)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2816 (($) 20 T CONST)) (-2970 (((-112) $ $) 8)) (** (($ $ (-944)) 14) (($ $ (-787)) 17)) (* (($ $ $) 15))) +(((-742) (-141)) (T -742)) +((-2816 (*1 *1) (-4 *1 (-742))) (-1534 (*1 *1) (-4 *1 (-742))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-742)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-787)))) (-4187 (*1 *1 *1) (|partial| -4 *1 (-742)))) +(-13 (-1137) (-10 -8 (-15 (-2816) ($) -1512) (-15 -1534 ($) -1512) (-15 -2487 ((-112) $)) (-15 ** ($ $ (-787))) (-15 -4187 ((-3 $ "failed") $)))) +(((-102) . T) ((-626 (-880)) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-2495 (((-2 (|:| -3042 (-431 |#2|)) (|:| |special| (-431 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3810 (((-2 (|:| -3042 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2504 ((|#2| (-420 |#2|) (-1 |#2| |#2|)) 13)) (-3938 (((-2 (|:| |poly| |#2|) (|:| -3042 (-420 |#2|)) (|:| |special| (-420 |#2|))) (-420 |#2|) (-1 |#2| |#2|)) 48))) +(((-743 |#1| |#2|) (-10 -7 (-15 -3810 ((-2 (|:| -3042 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2495 ((-2 (|:| -3042 (-431 |#2|)) (|:| |special| (-431 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2504 (|#2| (-420 |#2|) (-1 |#2| |#2|))) (-15 -3938 ((-2 (|:| |poly| |#2|) (|:| -3042 (-420 |#2|)) (|:| |special| (-420 |#2|))) (-420 |#2|) (-1 |#2| |#2|)))) (-375) (-1268 |#1|)) (T -743)) +((-3938 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3042 (-420 *6)) (|:| |special| (-420 *6)))) (-5 *1 (-743 *5 *6)) (-5 *3 (-420 *6)))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-420 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1268 *5)) (-5 *1 (-743 *5 *2)) (-4 *5 (-375)))) (-2495 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| -3042 (-431 *3)) (|:| |special| (-431 *3)))) (-5 *1 (-743 *5 *3)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-375)) (-5 *2 (-2 (|:| -3042 *3) (|:| |special| *3))) (-5 *1 (-743 *5 *3))))) +(-10 -7 (-15 -3810 ((-2 (|:| -3042 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2495 ((-2 (|:| -3042 (-431 |#2|)) (|:| |special| (-431 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2504 (|#2| (-420 |#2|) (-1 |#2| |#2|))) (-15 -3938 ((-2 (|:| |poly| |#2|) (|:| -3042 (-420 |#2|)) (|:| |special| (-420 |#2|))) (-420 |#2|) (-1 |#2| |#2|)))) +((-3519 ((|#7| (-660 |#5|) |#6|) NIL)) (-4087 ((|#7| (-1 |#5| |#4|) |#6|) 27))) +(((-744 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4087 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3519 (|#7| (-660 |#5|) |#6|))) (-865) (-809) (-809) (-1074) (-1074) (-972 |#4| |#2| |#1|) (-972 |#5| |#3| |#1|)) (T -744)) +((-3519 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *9)) (-4 *9 (-1074)) (-4 *5 (-865)) (-4 *6 (-809)) (-4 *8 (-1074)) (-4 *2 (-972 *9 *7 *5)) (-5 *1 (-744 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-809)) (-4 *4 (-972 *8 *6 *5)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1074)) (-4 *9 (-1074)) (-4 *5 (-865)) (-4 *6 (-809)) (-4 *2 (-972 *9 *7 *5)) (-5 *1 (-744 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-809)) (-4 *4 (-972 *8 *6 *5))))) +(-10 -7 (-15 -4087 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3519 (|#7| (-660 |#5|) |#6|))) +((-4087 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-745 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4087 (|#7| (-1 |#2| |#1|) |#6|))) (-865) (-865) (-809) (-809) (-1074) (-972 |#5| |#3| |#1|) (-972 |#5| |#4| |#2|)) (T -745)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-865)) (-4 *6 (-865)) (-4 *7 (-809)) (-4 *9 (-1074)) (-4 *2 (-972 *9 *8 *6)) (-5 *1 (-745 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-809)) (-4 *4 (-972 *9 *7 *5))))) +(-10 -7 (-15 -4087 (|#7| (-1 |#2| |#1|) |#6|))) +((-1902 (((-431 |#4|) |#4|) 42))) +(((-746 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1902 ((-431 |#4|) |#4|))) (-809) (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $)) (-15 -3076 ((-3 $ "failed") (-1201))))) (-318) (-972 (-975 |#3|) |#1| |#2|)) (T -746)) +((-1902 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $)) (-15 -3076 ((-3 $ "failed") (-1201)))))) (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-746 *4 *5 *6 *3)) (-4 *3 (-972 (-975 *6) *4 *5))))) +(-10 -7 (-15 -1902 ((-431 |#4|) |#4|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-2058 (((-660 (-882 |#1|)) $) NIL)) (-1867 (((-1197 $) $ (-882 |#1|)) NIL) (((-1197 |#2|) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)))) (-3290 (($ $) NIL (|has| |#2| (-569)))) (-3271 (((-112) $) NIL (|has| |#2| (-569)))) (-4050 (((-787) $) NIL) (((-787) $ (-660 (-882 |#1|))) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-3841 (($ $) NIL (|has| |#2| (-465)))) (-3029 (((-431 $) $) NIL (|has| |#2| (-465)))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#2| "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1063 (-577)))) (((-3 (-882 |#1|) "failed") $) NIL)) (-2921 ((|#2| $) NIL) (((-420 (-577)) $) NIL (|has| |#2| (-1063 (-420 (-577))))) (((-577) $) NIL (|has| |#2| (-1063 (-577)))) (((-882 |#1|) $) NIL)) (-1816 (($ $ $ (-882 |#1|)) NIL (|has| |#2| (-174)))) (-2248 (($ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL) (((-705 |#2|) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3143 (($ $) NIL (|has| |#2| (-465))) (($ $ (-882 |#1|)) NIL (|has| |#2| (-465)))) (-2234 (((-660 $) $) NIL)) (-1522 (((-112) $) NIL (|has| |#2| (-932)))) (-2137 (($ $ |#2| (-544 (-882 |#1|)) $) NIL)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-882 |#1|) (-905 (-391))) (|has| |#2| (-905 (-391))))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-882 |#1|) (-905 (-577))) (|has| |#2| (-905 (-577)))))) (-2487 (((-112) $) NIL)) (-2548 (((-787) $) NIL)) (-2043 (($ (-1197 |#2|) (-882 |#1|)) NIL) (($ (-1197 $) (-882 |#1|)) NIL)) (-4074 (((-660 $) $) NIL)) (-2811 (((-112) $) NIL)) (-2030 (($ |#2| (-544 (-882 |#1|))) NIL) (($ $ (-882 |#1|) (-787)) NIL) (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ (-882 |#1|)) NIL)) (-4061 (((-544 (-882 |#1|)) $) NIL) (((-787) $ (-882 |#1|)) NIL) (((-660 (-787)) $ (-660 (-882 |#1|))) NIL)) (-2151 (($ (-1 (-544 (-882 |#1|)) (-544 (-882 |#1|))) $) NIL)) (-4087 (($ (-1 |#2| |#2|) $) NIL)) (-3691 (((-3 (-882 |#1|) "failed") $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL) (((-705 |#2|) (-1292 $)) NIL)) (-2209 (($ $) NIL)) (-2221 ((|#2| $) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#2| (-465))) (($ $ $) NIL (|has| |#2| (-465)))) (-2810 (((-1183) $) NIL)) (-4098 (((-3 (-660 $) "failed") $) NIL)) (-4086 (((-3 (-660 $) "failed") $) NIL)) (-4111 (((-3 (-2 (|:| |var| (-882 |#1|)) (|:| -3556 (-787))) "failed") $) NIL)) (-1474 (((-1145) $) NIL)) (-2180 (((-112) $) NIL)) (-2193 ((|#2| $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#2| (-465)))) (-3480 (($ (-660 $)) NIL (|has| |#2| (-465))) (($ $ $) NIL (|has| |#2| (-465)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-1902 (((-431 $) $) NIL (|has| |#2| (-932)))) (-3462 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)))) (-3280 (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ (-882 |#1|) |#2|) NIL) (($ $ (-660 (-882 |#1|)) (-660 |#2|)) NIL) (($ $ (-882 |#1|) $) NIL) (($ $ (-660 (-882 |#1|)) (-660 $)) NIL)) (-1827 (($ $ (-882 |#1|)) NIL (|has| |#2| (-174)))) (-2852 (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL) (($ $ (-882 |#1|) (-787)) NIL) (($ $ (-660 (-882 |#1|))) NIL) (($ $ (-882 |#1|)) NIL)) (-2887 (((-544 (-882 |#1|)) $) NIL) (((-787) $ (-882 |#1|)) NIL) (((-660 (-787)) $ (-660 (-882 |#1|))) NIL)) (-4152 (((-911 (-391)) $) NIL (-12 (|has| (-882 |#1|) (-627 (-911 (-391)))) (|has| |#2| (-627 (-911 (-391)))))) (((-911 (-577)) $) NIL (-12 (|has| (-882 |#1|) (-627 (-911 (-577)))) (|has| |#2| (-627 (-911 (-577)))))) (((-549) $) NIL (-12 (|has| (-882 |#1|) (-627 (-549))) (|has| |#2| (-627 (-549)))))) (-4039 ((|#2| $) NIL (|has| |#2| (-465))) (($ $ (-882 |#1|)) NIL (|has| |#2| (-465)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-932))))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#2|) NIL) (($ (-882 |#1|)) NIL) (($ $) NIL (|has| |#2| (-569))) (($ (-420 (-577))) NIL (-2839 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577))))))) (-4182 (((-660 |#2|) $) NIL)) (-2322 ((|#2| $ (-544 (-882 |#1|))) NIL) (($ $ (-882 |#1|) (-787)) NIL) (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| |#2| (-932))) (|has| |#2| (-146))))) (-4068 (((-787)) NIL T CONST)) (-2122 (($ $ $ (-787)) NIL (|has| |#2| (-174)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL (|has| |#2| (-569)))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-660 (-882 |#1|)) (-660 (-787))) NIL) (($ $ (-882 |#1|) (-787)) NIL) (($ $ (-660 (-882 |#1|))) NIL) (($ $ (-882 |#1|)) NIL)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#2|) NIL (|has| |#2| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577))))) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-747 |#1| |#2|) (-972 |#2| (-544 (-882 |#1|)) (-882 |#1|)) (-660 (-1201)) (-1074)) (T -747)) +NIL +(-972 |#2| (-544 (-882 |#1|)) (-882 |#1|)) +((-2514 (((-2 (|:| -4243 (-975 |#3|)) (|:| -3239 (-975 |#3|))) |#4|) 14)) (-2124 ((|#4| |#4| |#2|) 33)) (-2540 ((|#4| (-420 (-975 |#3|)) |#2|) 64)) (-2531 ((|#4| (-1197 (-975 |#3|)) |#2|) 77)) (-2523 ((|#4| (-1197 |#4|) |#2|) 51)) (-2109 ((|#4| |#4| |#2|) 54)) (-1902 (((-431 |#4|) |#4|) 40))) +(((-748 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2514 ((-2 (|:| -4243 (-975 |#3|)) (|:| -3239 (-975 |#3|))) |#4|)) (-15 -2109 (|#4| |#4| |#2|)) (-15 -2523 (|#4| (-1197 |#4|) |#2|)) (-15 -2124 (|#4| |#4| |#2|)) (-15 -2531 (|#4| (-1197 (-975 |#3|)) |#2|)) (-15 -2540 (|#4| (-420 (-975 |#3|)) |#2|)) (-15 -1902 ((-431 |#4|) |#4|))) (-809) (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $)))) (-569) (-972 (-420 (-975 |#3|)) |#1| |#2|)) (T -748)) +((-1902 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $))))) (-4 *6 (-569)) (-5 *2 (-431 *3)) (-5 *1 (-748 *4 *5 *6 *3)) (-4 *3 (-972 (-420 (-975 *6)) *4 *5)))) (-2540 (*1 *2 *3 *4) (-12 (-4 *6 (-569)) (-4 *2 (-972 *3 *5 *4)) (-5 *1 (-748 *5 *4 *6 *2)) (-5 *3 (-420 (-975 *6))) (-4 *5 (-809)) (-4 *4 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $))))))) (-2531 (*1 *2 *3 *4) (-12 (-5 *3 (-1197 (-975 *6))) (-4 *6 (-569)) (-4 *2 (-972 (-420 (-975 *6)) *5 *4)) (-5 *1 (-748 *5 *4 *6 *2)) (-4 *5 (-809)) (-4 *4 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $))))))) (-2124 (*1 *2 *2 *3) (-12 (-4 *4 (-809)) (-4 *3 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $))))) (-4 *5 (-569)) (-5 *1 (-748 *4 *3 *5 *2)) (-4 *2 (-972 (-420 (-975 *5)) *4 *3)))) (-2523 (*1 *2 *3 *4) (-12 (-5 *3 (-1197 *2)) (-4 *2 (-972 (-420 (-975 *6)) *5 *4)) (-5 *1 (-748 *5 *4 *6 *2)) (-4 *5 (-809)) (-4 *4 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $))))) (-4 *6 (-569)))) (-2109 (*1 *2 *2 *3) (-12 (-4 *4 (-809)) (-4 *3 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $))))) (-4 *5 (-569)) (-5 *1 (-748 *4 *3 *5 *2)) (-4 *2 (-972 (-420 (-975 *5)) *4 *3)))) (-2514 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $))))) (-4 *6 (-569)) (-5 *2 (-2 (|:| -4243 (-975 *6)) (|:| -3239 (-975 *6)))) (-5 *1 (-748 *4 *5 *6 *3)) (-4 *3 (-972 (-420 (-975 *6)) *4 *5))))) +(-10 -7 (-15 -2514 ((-2 (|:| -4243 (-975 |#3|)) (|:| -3239 (-975 |#3|))) |#4|)) (-15 -2109 (|#4| |#4| |#2|)) (-15 -2523 (|#4| (-1197 |#4|) |#2|)) (-15 -2124 (|#4| |#4| |#2|)) (-15 -2531 (|#4| (-1197 (-975 |#3|)) |#2|)) (-15 -2540 (|#4| (-420 (-975 |#3|)) |#2|)) (-15 -1902 ((-431 |#4|) |#4|))) +((-1902 (((-431 |#4|) |#4|) 54))) +(((-749 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1902 ((-431 |#4|) |#4|))) (-809) (-865) (-13 (-318) (-148)) (-972 (-420 |#3|) |#1| |#2|)) (T -749)) +((-1902 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-13 (-318) (-148))) (-5 *2 (-431 *3)) (-5 *1 (-749 *4 *5 *6 *3)) (-4 *3 (-972 (-420 *6) *4 *5))))) +(-10 -7 (-15 -1902 ((-431 |#4|) |#4|))) +((-4087 (((-751 |#2| |#3|) (-1 |#2| |#1|) (-751 |#1| |#3|)) 18))) +(((-750 |#1| |#2| |#3|) (-10 -7 (-15 -4087 ((-751 |#2| |#3|) (-1 |#2| |#1|) (-751 |#1| |#3|)))) (-1074) (-1074) (-742)) (T -750)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5 *7)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-742)) (-5 *2 (-751 *6 *7)) (-5 *1 (-750 *5 *6 *7))))) +(-10 -7 (-15 -4087 ((-751 |#2| |#3|) (-1 |#2| |#1|) (-751 |#1| |#3|)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 36)) (-3829 (((-660 (-2 (|:| -1777 |#1|) (|:| -3640 |#2|))) $) 37)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2229 (((-787)) 22 (-12 (|has| |#2| (-380)) (|has| |#1| (-380))))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2921 ((|#2| $) NIL) ((|#1| $) NIL)) (-2248 (($ $) 102 (|has| |#2| (-865)))) (-4187 (((-3 $ "failed") $) 85)) (-1910 (($) 48 (-12 (|has| |#2| (-380)) (|has| |#1| (-380))))) (-2487 (((-112) $) NIL)) (-2548 (((-787) $) 70)) (-4074 (((-660 $) $) 52)) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| |#2|) 17)) (-4087 (($ (-1 |#1| |#1|) $) 68)) (-4038 (((-944) $) 43 (-12 (|has| |#2| (-380)) (|has| |#1| (-380))))) (-2209 ((|#2| $) 101 (|has| |#2| (-865)))) (-2221 ((|#1| $) 100 (|has| |#2| (-865)))) (-2810 (((-1183) $) NIL)) (-3222 (($ (-944)) 35 (-12 (|has| |#2| (-380)) (|has| |#1| (-380))))) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 99) (($ (-577)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-660 (-2 (|:| -1777 |#1|) (|:| -3640 |#2|)))) 11)) (-4182 (((-660 |#1|) $) 54)) (-2322 ((|#1| $ |#2|) 115)) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 12 T CONST)) (-2816 (($) 44 T CONST)) (-2970 (((-112) $ $) 105)) (-3066 (($ $) 61) (($ $ $) NIL)) (-3055 (($ $ $) 33)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-751 |#1| |#2|) (-13 (-1074) (-1063 |#2|) (-1063 |#1|) (-10 -8 (-15 -2030 ($ |#1| |#2|)) (-15 -2322 (|#1| $ |#2|)) (-15 -3544 ($ (-660 (-2 (|:| -1777 |#1|) (|:| -3640 |#2|))))) (-15 -3829 ((-660 (-2 (|:| -1777 |#1|) (|:| -3640 |#2|))) $)) (-15 -4087 ($ (-1 |#1| |#1|) $)) (-15 -2811 ((-112) $)) (-15 -4182 ((-660 |#1|) $)) (-15 -4074 ((-660 $) $)) (-15 -2548 ((-787) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-380)) (IF (|has| |#2| (-380)) (-6 (-380)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-865)) (PROGN (-15 -2209 (|#2| $)) (-15 -2221 (|#1| $)) (-15 -2248 ($ $))) |%noBranch|))) (-1074) (-742)) (T -751)) +((-2030 (*1 *1 *2 *3) (-12 (-5 *1 (-751 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-742)))) (-2322 (*1 *2 *1 *3) (-12 (-4 *2 (-1074)) (-5 *1 (-751 *2 *3)) (-4 *3 (-742)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -1777 *3) (|:| -3640 *4)))) (-4 *3 (-1074)) (-4 *4 (-742)) (-5 *1 (-751 *3 *4)))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| -1777 *3) (|:| -3640 *4)))) (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-742)))) (-4087 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-751 *3 *4)) (-4 *4 (-742)))) (-2811 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-742)))) (-4182 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-742)))) (-4074 (*1 *2 *1) (-12 (-5 *2 (-660 (-751 *3 *4))) (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-742)))) (-2548 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-742)))) (-2209 (*1 *2 *1) (-12 (-4 *2 (-742)) (-4 *2 (-865)) (-5 *1 (-751 *3 *2)) (-4 *3 (-1074)))) (-2221 (*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-751 *2 *3)) (-4 *3 (-865)) (-4 *3 (-742)))) (-2248 (*1 *1 *1) (-12 (-5 *1 (-751 *2 *3)) (-4 *3 (-865)) (-4 *2 (-1074)) (-4 *3 (-742))))) +(-13 (-1074) (-1063 |#2|) (-1063 |#1|) (-10 -8 (-15 -2030 ($ |#1| |#2|)) (-15 -2322 (|#1| $ |#2|)) (-15 -3544 ($ (-660 (-2 (|:| -1777 |#1|) (|:| -3640 |#2|))))) (-15 -3829 ((-660 (-2 (|:| -1777 |#1|) (|:| -3640 |#2|))) $)) (-15 -4087 ($ (-1 |#1| |#1|) $)) (-15 -2811 ((-112) $)) (-15 -4182 ((-660 |#1|) $)) (-15 -4074 ((-660 $) $)) (-15 -2548 ((-787) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-380)) (IF (|has| |#2| (-380)) (-6 (-380)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-865)) (PROGN (-15 -2209 (|#2| $)) (-15 -2221 (|#1| $)) (-15 -2248 ($ $))) |%noBranch|))) +((-3473 (((-112) $ $) 20)) (-1892 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2765 (($ $ $) 73)) (-2753 (((-112) $ $) 74)) (-3828 (((-112) $ (-787)) 8)) (-2198 (($ (-660 |#1|)) 69) (($) 68)) (-2463 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4470)))) (-1534 (($) 7 T CONST)) (-3215 (($ $) 63)) (-1817 (($ $) 59 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3719 (($ |#1| $) 48 (|has| $ (-6 -4470))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4470)))) (-3904 (($ |#1| $) 58 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4470)))) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-2798 (((-112) $ $) 65)) (-1479 (((-112) $ (-787)) 9)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23)) (-2785 (($ $ $) 70)) (-4330 ((|#1| $) 40)) (-2881 (($ |#1| $) 41) (($ |#1| $ (-787)) 64)) (-1474 (((-1145) $) 22)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3530 ((|#1| $) 42)) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-3206 (((-660 (-2 (|:| -4444 |#1|) (|:| -1485 (-787)))) $) 62)) (-2775 (($ $ |#1|) 72) (($ $ $) 71)) (-3736 (($) 50) (($ (-660 |#1|)) 49)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-4152 (((-549) $) 60 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 51)) (-3544 (((-880) $) 18)) (-1973 (($ (-660 |#1|)) 67) (($) 66)) (-4448 (((-112) $ $) 21)) (-3541 (($ (-660 |#1|)) 43)) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19)) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-752 |#1|) (-141) (-1125)) (T -752)) +NIL +(-13 (-711 |t#1|) (-1123 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-626 (-880)) . T) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-711 |#1|) . T) ((-1123 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-1892 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-2765 (($ $ $) 96)) (-2753 (((-112) $ $) 104)) (-3828 (((-112) $ (-787)) NIL)) (-2198 (($ (-660 |#1|)) 26) (($) 17)) (-2463 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-1534 (($) NIL T CONST)) (-3215 (($ $) 85)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3719 (($ |#1| $) 70 (|has| $ (-6 -4470))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4470))) (($ |#1| $ (-577)) 75) (($ (-1 (-112) |#1|) $ (-577)) 78)) (-3904 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (($ |#1| $ (-577)) 80) (($ (-1 (-112) |#1|) $ (-577)) 81)) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)))) (-1461 (((-660 |#1|) $) 32 (|has| $ (-6 -4470)))) (-2798 (((-112) $ $) 103)) (-2559 (($) 15) (($ |#1|) 28) (($ (-660 |#1|)) 23)) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 |#1|) $) 38)) (-2820 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2182 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 89)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL)) (-2785 (($ $ $) 94)) (-4330 ((|#1| $) 62)) (-2881 (($ |#1| $) 63) (($ |#1| $ (-787)) 86)) (-1474 (((-1145) $) NIL)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3530 ((|#1| $) 61)) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) 56)) (-3639 (($) 14)) (-3206 (((-660 (-2 (|:| -4444 |#1|) (|:| -1485 (-787)))) $) 55)) (-2775 (($ $ |#1|) NIL) (($ $ $) 95)) (-3736 (($) 16) (($ (-660 |#1|)) 25)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) 68 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) 79)) (-4152 (((-549) $) 36 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 22)) (-3544 (((-880) $) 49)) (-1973 (($ (-660 |#1|)) 27) (($) 18)) (-4448 (((-112) $ $) NIL)) (-3541 (($ (-660 |#1|)) 24)) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 100)) (-3484 (((-787) $) 67 (|has| $ (-6 -4470))))) +(((-753 |#1|) (-13 (-752 |#1|) (-10 -8 (-6 -4470) (-6 -4471) (-15 -2559 ($)) (-15 -2559 ($ |#1|)) (-15 -2559 ($ (-660 |#1|))) (-15 -2530 ((-660 |#1|) $)) (-15 -3904 ($ |#1| $ (-577))) (-15 -3904 ($ (-1 (-112) |#1|) $ (-577))) (-15 -3719 ($ |#1| $ (-577))) (-15 -3719 ($ (-1 (-112) |#1|) $ (-577))))) (-1125)) (T -753)) +((-2559 (*1 *1) (-12 (-5 *1 (-753 *2)) (-4 *2 (-1125)))) (-2559 (*1 *1 *2) (-12 (-5 *1 (-753 *2)) (-4 *2 (-1125)))) (-2559 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-753 *3)))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-753 *3)) (-4 *3 (-1125)))) (-3904 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-753 *2)) (-4 *2 (-1125)))) (-3904 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-577)) (-4 *4 (-1125)) (-5 *1 (-753 *4)))) (-3719 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-753 *2)) (-4 *2 (-1125)))) (-3719 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-577)) (-4 *4 (-1125)) (-5 *1 (-753 *4))))) +(-13 (-752 |#1|) (-10 -8 (-6 -4470) (-6 -4471) (-15 -2559 ($)) (-15 -2559 ($ |#1|)) (-15 -2559 ($ (-660 |#1|))) (-15 -2530 ((-660 |#1|) $)) (-15 -3904 ($ |#1| $ (-577))) (-15 -3904 ($ (-1 (-112) |#1|) $ (-577))) (-15 -3719 ($ |#1| $ (-577))) (-15 -3719 ($ (-1 (-112) |#1|) $ (-577))))) +((-3009 (((-1297) (-1183)) 8))) +(((-754) (-10 -7 (-15 -3009 ((-1297) (-1183))))) (T -754)) +((-3009 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-754))))) +(-10 -7 (-15 -3009 ((-1297) (-1183)))) +((-2568 (((-660 |#1|) (-660 |#1|) (-660 |#1|)) 15))) +(((-755 |#1|) (-10 -7 (-15 -2568 ((-660 |#1|) (-660 |#1|) (-660 |#1|)))) (-865)) (T -755)) +((-2568 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-755 *3))))) +(-10 -7 (-15 -2568 ((-660 |#1|) (-660 |#1|) (-660 |#1|)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-2058 (((-660 |#2|) $) 149)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 142 (|has| |#1| (-569)))) (-3290 (($ $) 141 (|has| |#1| (-569)))) (-3271 (((-112) $) 139 (|has| |#1| (-569)))) (-2212 (($ $) 98 (|has| |#1| (-38 (-420 (-577)))))) (-2060 (($ $) 81 (|has| |#1| (-38 (-420 (-577)))))) (-1956 (((-3 $ "failed") $ $) 20)) (-1913 (($ $) 80 (|has| |#1| (-38 (-420 (-577)))))) (-2186 (($ $) 97 (|has| |#1| (-38 (-420 (-577)))))) (-2032 (($ $) 82 (|has| |#1| (-38 (-420 (-577)))))) (-2237 (($ $) 96 (|has| |#1| (-38 (-420 (-577)))))) (-2084 (($ $) 83 (|has| |#1| (-38 (-420 (-577)))))) (-1534 (($) 18 T CONST)) (-2248 (($ $) 133)) (-4187 (((-3 $ "failed") $) 37)) (-3074 (((-975 |#1|) $ (-787)) 111) (((-975 |#1|) $ (-787) (-787)) 110)) (-3550 (((-112) $) 150)) (-1659 (($) 108 (|has| |#1| (-38 (-420 (-577)))))) (-3817 (((-787) $ |#2|) 113) (((-787) $ |#2| (-787)) 112)) (-2487 (((-112) $) 35)) (-2381 (($ $ (-577)) 79 (|has| |#1| (-38 (-420 (-577)))))) (-2811 (((-112) $) 131)) (-2030 (($ $ (-660 |#2|) (-660 (-544 |#2|))) 148) (($ $ |#2| (-544 |#2|)) 147) (($ |#1| (-544 |#2|)) 132) (($ $ |#2| (-787)) 115) (($ $ (-660 |#2|) (-660 (-787))) 114)) (-4087 (($ (-1 |#1| |#1|) $) 130)) (-3698 (($ $) 105 (|has| |#1| (-38 (-420 (-577)))))) (-2209 (($ $) 128)) (-2221 ((|#1| $) 127)) (-2810 (((-1183) $) 10)) (-4147 (($ $ |#2|) 109 (|has| |#1| (-38 (-420 (-577)))))) (-1474 (((-1145) $) 11)) (-3792 (($ $ (-787)) 116)) (-3462 (((-3 $ "failed") $ $) 143 (|has| |#1| (-569)))) (-4072 (($ $) 106 (|has| |#1| (-38 (-420 (-577)))))) (-3280 (($ $ |#2| $) 124) (($ $ (-660 |#2|) (-660 $)) 123) (($ $ (-660 (-305 $))) 122) (($ $ (-305 $)) 121) (($ $ $ $) 120) (($ $ (-660 $) (-660 $)) 119)) (-2852 (($ $ (-660 |#2|) (-660 (-787))) 44) (($ $ |#2| (-787)) 43) (($ $ (-660 |#2|)) 42) (($ $ |#2|) 40)) (-2887 (((-544 |#2|) $) 129)) (-2249 (($ $) 95 (|has| |#1| (-38 (-420 (-577)))))) (-2095 (($ $) 84 (|has| |#1| (-38 (-420 (-577)))))) (-2224 (($ $) 94 (|has| |#1| (-38 (-420 (-577)))))) (-2073 (($ $) 85 (|has| |#1| (-38 (-420 (-577)))))) (-2199 (($ $) 93 (|has| |#1| (-38 (-420 (-577)))))) (-2046 (($ $) 86 (|has| |#1| (-38 (-420 (-577)))))) (-3540 (($ $) 151)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 146 (|has| |#1| (-174))) (($ $) 144 (|has| |#1| (-569))) (($ (-420 (-577))) 136 (|has| |#1| (-38 (-420 (-577)))))) (-2322 ((|#1| $ (-544 |#2|)) 134) (($ $ |#2| (-787)) 118) (($ $ (-660 |#2|) (-660 (-787))) 117)) (-2233 (((-3 $ "failed") $) 145 (|has| |#1| (-146)))) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-4114 (($ $) 104 (|has| |#1| (-38 (-420 (-577)))))) (-2136 (($ $) 92 (|has| |#1| (-38 (-420 (-577)))))) (-3281 (((-112) $ $) 140 (|has| |#1| (-569)))) (-2262 (($ $) 103 (|has| |#1| (-38 (-420 (-577)))))) (-2106 (($ $) 91 (|has| |#1| (-38 (-420 (-577)))))) (-4141 (($ $) 102 (|has| |#1| (-38 (-420 (-577)))))) (-2162 (($ $) 90 (|has| |#1| (-38 (-420 (-577)))))) (-2261 (($ $) 101 (|has| |#1| (-38 (-420 (-577)))))) (-2174 (($ $) 89 (|has| |#1| (-38 (-420 (-577)))))) (-4128 (($ $) 100 (|has| |#1| (-38 (-420 (-577)))))) (-2150 (($ $) 88 (|has| |#1| (-38 (-420 (-577)))))) (-2272 (($ $) 99 (|has| |#1| (-38 (-420 (-577)))))) (-2120 (($ $) 87 (|has| |#1| (-38 (-420 (-577)))))) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-660 |#2|) (-660 (-787))) 47) (($ $ |#2| (-787)) 46) (($ $ (-660 |#2|)) 45) (($ $ |#2|) 41)) (-2970 (((-112) $ $) 8)) (-3077 (($ $ |#1|) 135 (|has| |#1| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ $) 107 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 78 (|has| |#1| (-38 (-420 (-577)))))) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ (-420 (-577))) 138 (|has| |#1| (-38 (-420 (-577))))) (($ (-420 (-577)) $) 137 (|has| |#1| (-38 (-420 (-577))))) (($ |#1| $) 126) (($ $ |#1|) 125))) +(((-756 |#1| |#2|) (-141) (-1074) (-865)) (T -756)) +((-2322 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-756 *4 *2)) (-4 *4 (-1074)) (-4 *2 (-865)))) (-2322 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *5)) (-5 *3 (-660 (-787))) (-4 *1 (-756 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-865)))) (-3792 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-756 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-865)))) (-2030 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-756 *4 *2)) (-4 *4 (-1074)) (-4 *2 (-865)))) (-2030 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *5)) (-5 *3 (-660 (-787))) (-4 *1 (-756 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-865)))) (-3817 (*1 *2 *1 *3) (-12 (-4 *1 (-756 *4 *3)) (-4 *4 (-1074)) (-4 *3 (-865)) (-5 *2 (-787)))) (-3817 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-787)) (-4 *1 (-756 *4 *3)) (-4 *4 (-1074)) (-4 *3 (-865)))) (-3074 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *1 (-756 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-865)) (-5 *2 (-975 *4)))) (-3074 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-787)) (-4 *1 (-756 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-865)) (-5 *2 (-975 *4)))) (-4147 (*1 *1 *1 *2) (-12 (-4 *1 (-756 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-865)) (-4 *3 (-38 (-420 (-577))))))) +(-13 (-921 |t#2|) (-998 |t#1| (-544 |t#2|) |t#2|) (-527 |t#2| $) (-320 $) (-10 -8 (-15 -2322 ($ $ |t#2| (-787))) (-15 -2322 ($ $ (-660 |t#2|) (-660 (-787)))) (-15 -3792 ($ $ (-787))) (-15 -2030 ($ $ |t#2| (-787))) (-15 -2030 ($ $ (-660 |t#2|) (-660 (-787)))) (-15 -3817 ((-787) $ |t#2|)) (-15 -3817 ((-787) $ |t#2| (-787))) (-15 -3074 ((-975 |t#1|) $ (-787))) (-15 -3074 ((-975 |t#1|) $ (-787) (-787))) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -4147 ($ $ |t#2|)) (-6 (-1027)) (-6 (-1227))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-544 |#2|)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #1#) |has| |#1| (-38 (-420 (-577)))) ((-629 (-577)) . T) ((-629 |#1|) |has| |#1| (-174)) ((-629 $) |has| |#1| (-569)) ((-626 (-880)) . T) ((-174) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-301) |has| |#1| (-569)) ((-320 $) . T) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-527 |#2| $) . T) ((-527 $ $) . T) ((-569) |has| |#1| (-569)) ((-662 #1#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #1#) |has| |#1| (-38 (-420 (-577)))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #1#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) |has| |#1| (-569)) ((-733 #1#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) |has| |#1| (-569)) ((-742) . T) ((-915 $ |#2|) . T) ((-921 |#2|) . T) ((-923 |#2|) . T) ((-998 |#1| #0# |#2|) . T) ((-1027) |has| |#1| (-38 (-420 (-577)))) ((-1076 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1081 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1227) |has| |#1| (-38 (-420 (-577)))) ((-1230) |has| |#1| (-38 (-420 (-577)))) ((-1242) . T)) +((-1902 (((-431 (-1197 |#4|)) (-1197 |#4|)) 30) (((-431 |#4|) |#4|) 26))) +(((-757 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1902 ((-431 |#4|) |#4|)) (-15 -1902 ((-431 (-1197 |#4|)) (-1197 |#4|)))) (-865) (-809) (-13 (-318) (-148)) (-972 |#3| |#2| |#1|)) (T -757)) +((-1902 (*1 *2 *3) (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-972 *6 *5 *4)) (-5 *2 (-431 (-1197 *7))) (-5 *1 (-757 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) (-1902 (*1 *2 *3) (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-13 (-318) (-148))) (-5 *2 (-431 *3)) (-5 *1 (-757 *4 *5 *6 *3)) (-4 *3 (-972 *6 *5 *4))))) +(-10 -7 (-15 -1902 ((-431 |#4|) |#4|)) (-15 -1902 ((-431 (-1197 |#4|)) (-1197 |#4|)))) +((-2597 (((-431 |#4|) |#4| |#2|) 140)) (-2578 (((-431 |#4|) |#4|) NIL)) (-3029 (((-431 (-1197 |#4|)) (-1197 |#4|)) 127) (((-431 |#4|) |#4|) 52)) (-2616 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-660 (-2 (|:| -1902 (-1197 |#4|)) (|:| -3556 (-577)))))) (-1197 |#4|) (-660 |#2|) (-660 (-660 |#3|))) 81)) (-2653 (((-1197 |#3|) (-1197 |#3|) (-577)) 166)) (-2643 (((-660 (-787)) (-1197 |#4|) (-660 |#2|) (-787)) 75)) (-3642 (((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-1197 |#3|) (-1197 |#3|) |#4| (-660 |#2|) (-660 (-787)) (-660 |#3|)) 79)) (-2625 (((-2 (|:| |upol| (-1197 |#3|)) (|:| |Lval| (-660 |#3|)) (|:| |Lfact| (-660 (-2 (|:| -1902 (-1197 |#3|)) (|:| -3556 (-577))))) (|:| |ctpol| |#3|)) (-1197 |#4|) (-660 |#2|) (-660 (-660 |#3|))) 27)) (-2606 (((-2 (|:| -3972 (-1197 |#4|)) (|:| |polval| (-1197 |#3|))) (-1197 |#4|) (-1197 |#3|) (-577)) 72)) (-2588 (((-577) (-660 (-2 (|:| -1902 (-1197 |#3|)) (|:| -3556 (-577))))) 162)) (-2634 ((|#4| (-577) (-431 |#4|)) 73)) (-1406 (((-112) (-660 (-2 (|:| -1902 (-1197 |#3|)) (|:| -3556 (-577)))) (-660 (-2 (|:| -1902 (-1197 |#3|)) (|:| -3556 (-577))))) NIL))) +(((-758 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3029 ((-431 |#4|) |#4|)) (-15 -3029 ((-431 (-1197 |#4|)) (-1197 |#4|))) (-15 -2578 ((-431 |#4|) |#4|)) (-15 -2588 ((-577) (-660 (-2 (|:| -1902 (-1197 |#3|)) (|:| -3556 (-577)))))) (-15 -2597 ((-431 |#4|) |#4| |#2|)) (-15 -2606 ((-2 (|:| -3972 (-1197 |#4|)) (|:| |polval| (-1197 |#3|))) (-1197 |#4|) (-1197 |#3|) (-577))) (-15 -2616 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-660 (-2 (|:| -1902 (-1197 |#4|)) (|:| -3556 (-577)))))) (-1197 |#4|) (-660 |#2|) (-660 (-660 |#3|)))) (-15 -2625 ((-2 (|:| |upol| (-1197 |#3|)) (|:| |Lval| (-660 |#3|)) (|:| |Lfact| (-660 (-2 (|:| -1902 (-1197 |#3|)) (|:| -3556 (-577))))) (|:| |ctpol| |#3|)) (-1197 |#4|) (-660 |#2|) (-660 (-660 |#3|)))) (-15 -2634 (|#4| (-577) (-431 |#4|))) (-15 -1406 ((-112) (-660 (-2 (|:| -1902 (-1197 |#3|)) (|:| -3556 (-577)))) (-660 (-2 (|:| -1902 (-1197 |#3|)) (|:| -3556 (-577)))))) (-15 -3642 ((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-1197 |#3|) (-1197 |#3|) |#4| (-660 |#2|) (-660 (-787)) (-660 |#3|))) (-15 -2643 ((-660 (-787)) (-1197 |#4|) (-660 |#2|) (-787))) (-15 -2653 ((-1197 |#3|) (-1197 |#3|) (-577)))) (-809) (-865) (-318) (-972 |#3| |#1| |#2|)) (T -758)) +((-2653 (*1 *2 *2 *3) (-12 (-5 *2 (-1197 *6)) (-5 *3 (-577)) (-4 *6 (-318)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-758 *4 *5 *6 *7)) (-4 *7 (-972 *6 *4 *5)))) (-2643 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1197 *9)) (-5 *4 (-660 *7)) (-4 *7 (-865)) (-4 *9 (-972 *8 *6 *7)) (-4 *6 (-809)) (-4 *8 (-318)) (-5 *2 (-660 (-787))) (-5 *1 (-758 *6 *7 *8 *9)) (-5 *5 (-787)))) (-3642 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1197 *11)) (-5 *6 (-660 *10)) (-5 *7 (-660 (-787))) (-5 *8 (-660 *11)) (-4 *10 (-865)) (-4 *11 (-318)) (-4 *9 (-809)) (-4 *5 (-972 *11 *9 *10)) (-5 *2 (-660 (-1197 *5))) (-5 *1 (-758 *9 *10 *11 *5)) (-5 *3 (-1197 *5)))) (-1406 (*1 *2 *3 *3) (-12 (-5 *3 (-660 (-2 (|:| -1902 (-1197 *6)) (|:| -3556 (-577))))) (-4 *6 (-318)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) (-5 *1 (-758 *4 *5 *6 *7)) (-4 *7 (-972 *6 *4 *5)))) (-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-577)) (-5 *4 (-431 *2)) (-4 *2 (-972 *7 *5 *6)) (-5 *1 (-758 *5 *6 *7 *2)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-318)))) (-2625 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1197 *9)) (-5 *4 (-660 *7)) (-5 *5 (-660 (-660 *8))) (-4 *7 (-865)) (-4 *8 (-318)) (-4 *9 (-972 *8 *6 *7)) (-4 *6 (-809)) (-5 *2 (-2 (|:| |upol| (-1197 *8)) (|:| |Lval| (-660 *8)) (|:| |Lfact| (-660 (-2 (|:| -1902 (-1197 *8)) (|:| -3556 (-577))))) (|:| |ctpol| *8))) (-5 *1 (-758 *6 *7 *8 *9)))) (-2616 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-660 *7)) (-5 *5 (-660 (-660 *8))) (-4 *7 (-865)) (-4 *8 (-318)) (-4 *6 (-809)) (-4 *9 (-972 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-660 (-2 (|:| -1902 (-1197 *9)) (|:| -3556 (-577))))))) (-5 *1 (-758 *6 *7 *8 *9)) (-5 *3 (-1197 *9)))) (-2606 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-577)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-318)) (-4 *9 (-972 *8 *6 *7)) (-5 *2 (-2 (|:| -3972 (-1197 *9)) (|:| |polval| (-1197 *8)))) (-5 *1 (-758 *6 *7 *8 *9)) (-5 *3 (-1197 *9)) (-5 *4 (-1197 *8)))) (-2597 (*1 *2 *3 *4) (-12 (-4 *5 (-809)) (-4 *4 (-865)) (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-758 *5 *4 *6 *3)) (-4 *3 (-972 *6 *5 *4)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -1902 (-1197 *6)) (|:| -3556 (-577))))) (-4 *6 (-318)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-577)) (-5 *1 (-758 *4 *5 *6 *7)) (-4 *7 (-972 *6 *4 *5)))) (-2578 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-758 *4 *5 *6 *3)) (-4 *3 (-972 *6 *4 *5)))) (-3029 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)) (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-431 (-1197 *7))) (-5 *1 (-758 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) (-3029 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-758 *4 *5 *6 *3)) (-4 *3 (-972 *6 *4 *5))))) +(-10 -7 (-15 -3029 ((-431 |#4|) |#4|)) (-15 -3029 ((-431 (-1197 |#4|)) (-1197 |#4|))) (-15 -2578 ((-431 |#4|) |#4|)) (-15 -2588 ((-577) (-660 (-2 (|:| -1902 (-1197 |#3|)) (|:| -3556 (-577)))))) (-15 -2597 ((-431 |#4|) |#4| |#2|)) (-15 -2606 ((-2 (|:| -3972 (-1197 |#4|)) (|:| |polval| (-1197 |#3|))) (-1197 |#4|) (-1197 |#3|) (-577))) (-15 -2616 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-660 (-2 (|:| -1902 (-1197 |#4|)) (|:| -3556 (-577)))))) (-1197 |#4|) (-660 |#2|) (-660 (-660 |#3|)))) (-15 -2625 ((-2 (|:| |upol| (-1197 |#3|)) (|:| |Lval| (-660 |#3|)) (|:| |Lfact| (-660 (-2 (|:| -1902 (-1197 |#3|)) (|:| -3556 (-577))))) (|:| |ctpol| |#3|)) (-1197 |#4|) (-660 |#2|) (-660 (-660 |#3|)))) (-15 -2634 (|#4| (-577) (-431 |#4|))) (-15 -1406 ((-112) (-660 (-2 (|:| -1902 (-1197 |#3|)) (|:| -3556 (-577)))) (-660 (-2 (|:| -1902 (-1197 |#3|)) (|:| -3556 (-577)))))) (-15 -3642 ((-3 (-660 (-1197 |#4|)) "failed") (-1197 |#4|) (-1197 |#3|) (-1197 |#3|) |#4| (-660 |#2|) (-660 (-787)) (-660 |#3|))) (-15 -2643 ((-660 (-787)) (-1197 |#4|) (-660 |#2|) (-787))) (-15 -2653 ((-1197 |#3|) (-1197 |#3|) (-577)))) +((-2667 (($ $ (-944)) 17))) +(((-759 |#1| |#2|) (-10 -8 (-15 -2667 (|#1| |#1| (-944)))) (-760 |#2|) (-174)) (T -759)) +NIL +(-10 -8 (-15 -2667 (|#1| |#1| (-944)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2470 (($ $ (-944)) 31)) (-2667 (($ $ (-944)) 38)) (-3604 (($ $ (-944)) 32)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3820 (($ $ $) 28)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-3832 (($ $ $ $) 29)) (-3807 (($ $ $) 27)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 33)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-760 |#1|) (-141) (-174)) (T -760)) +((-2667 (*1 *1 *1 *2) (-12 (-5 *2 (-944)) (-4 *1 (-760 *3)) (-4 *3 (-174))))) +(-13 (-777) (-733 |t#1|) (-10 -8 (-15 -2667 ($ $ (-944))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) . T) ((-733 |#1|) . T) ((-736) . T) ((-777) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-2688 (((-1060) (-705 (-228)) (-577) (-112) (-577)) 25)) (-2676 (((-1060) (-705 (-228)) (-577) (-112) (-577)) 24))) +(((-761) (-10 -7 (-15 -2676 ((-1060) (-705 (-228)) (-577) (-112) (-577))) (-15 -2688 ((-1060) (-705 (-228)) (-577) (-112) (-577))))) (T -761)) +((-2688 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-112)) (-5 *2 (-1060)) (-5 *1 (-761)))) (-2676 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-112)) (-5 *2 (-1060)) (-5 *1 (-761))))) +(-10 -7 (-15 -2676 ((-1060) (-705 (-228)) (-577) (-112) (-577))) (-15 -2688 ((-1060) (-705 (-228)) (-577) (-112) (-577)))) +((-2719 (((-1060) (-577) (-577) (-577) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN)))) 43)) (-2709 (((-1060) (-577) (-577) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN)))) 39)) (-2699 (((-1060) (-228) (-228) (-228) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051)))) 32))) +(((-762) (-10 -7 (-15 -2699 ((-1060) (-228) (-228) (-228) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051))))) (-15 -2709 ((-1060) (-577) (-577) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN))))) (-15 -2719 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN))))))) (T -762)) +((-2719 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1060)) (-5 *1 (-762)))) (-2709 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1060)) (-5 *1 (-762)))) (-2699 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051)))) (-5 *2 (-1060)) (-5 *1 (-762))))) +(-10 -7 (-15 -2699 ((-1060) (-228) (-228) (-228) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051))))) (-15 -2709 ((-1060) (-577) (-577) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN))))) (-15 -2719 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN)))))) +((-2855 (((-1060) (-577) (-577) (-705 (-228)) (-577)) 34)) (-2843 (((-1060) (-577) (-577) (-705 (-228)) (-577)) 33)) (-2830 (((-1060) (-577) (-705 (-228)) (-577)) 32)) (-2819 (((-1060) (-577) (-705 (-228)) (-577)) 31)) (-2809 (((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577)) 30)) (-2797 (((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577)) 29)) (-2784 (((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-577)) 28)) (-2774 (((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-577)) 27)) (-2764 (((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577)) 24)) (-2752 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577)) 23)) (-2741 (((-1060) (-577) (-705 (-228)) (-577)) 22)) (-2730 (((-1060) (-577) (-705 (-228)) (-577)) 21))) +(((-763) (-10 -7 (-15 -2730 ((-1060) (-577) (-705 (-228)) (-577))) (-15 -2741 ((-1060) (-577) (-705 (-228)) (-577))) (-15 -2752 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2764 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2774 ((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2784 ((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2797 ((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2809 ((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2819 ((-1060) (-577) (-705 (-228)) (-577))) (-15 -2830 ((-1060) (-577) (-705 (-228)) (-577))) (-15 -2843 ((-1060) (-577) (-577) (-705 (-228)) (-577))) (-15 -2855 ((-1060) (-577) (-577) (-705 (-228)) (-577))))) (T -763)) +((-2855 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-2843 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-2830 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-2819 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-2809 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-1183)) (-5 *5 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-2797 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-1183)) (-5 *5 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-2784 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-1183)) (-5 *5 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-2774 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-1183)) (-5 *5 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-2764 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-2752 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-2741 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763)))) (-2730 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-763))))) +(-10 -7 (-15 -2730 ((-1060) (-577) (-705 (-228)) (-577))) (-15 -2741 ((-1060) (-577) (-705 (-228)) (-577))) (-15 -2752 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2764 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2774 ((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2784 ((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2797 ((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2809 ((-1060) (-577) (-577) (-1183) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2819 ((-1060) (-577) (-705 (-228)) (-577))) (-15 -2830 ((-1060) (-577) (-705 (-228)) (-577))) (-15 -2843 ((-1060) (-577) (-577) (-705 (-228)) (-577))) (-15 -2855 ((-1060) (-577) (-577) (-705 (-228)) (-577)))) +((-2972 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577) (-228) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) 52)) (-2960 (((-1060) (-705 (-228)) (-705 (-228)) (-577) (-577)) 51)) (-2953 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2943 (((-1060) (-228) (-228) (-577) (-577) (-577) (-577)) 46)) (-2932 (((-1060) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) 45)) (-2924 (((-1060) (-228) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) 44)) (-2913 (((-1060) (-228) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) 43)) (-2903 (((-1060) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) 42)) (-2894 (((-1060) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051)))) 38)) (-2884 (((-1060) (-228) (-228) (-577) (-705 (-228)) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051)))) 37)) (-2875 (((-1060) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051)))) 33)) (-2863 (((-1060) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051)))) 32))) +(((-764) (-10 -7 (-15 -2863 ((-1060) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051))))) (-15 -2875 ((-1060) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051))))) (-15 -2884 ((-1060) (-228) (-228) (-577) (-705 (-228)) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051))))) (-15 -2894 ((-1060) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051))))) (-15 -2903 ((-1060) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2913 ((-1060) (-228) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2924 ((-1060) (-228) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2932 ((-1060) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2943 ((-1060) (-228) (-228) (-577) (-577) (-577) (-577))) (-15 -2953 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN))))) (-15 -2960 ((-1060) (-705 (-228)) (-705 (-228)) (-577) (-577))) (-15 -2972 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577) (-228) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN))))))) (T -764)) +((-2972 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1060)) (-5 *1 (-764)))) (-2960 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-764)))) (-2953 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1060)) (-5 *1 (-764)))) (-2943 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-764)))) (-2932 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1060)) (-5 *1 (-764)))) (-2924 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1060)) (-5 *1 (-764)))) (-2913 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1060)) (-5 *1 (-764)))) (-2903 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1060)) (-5 *1 (-764)))) (-2894 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051)))) (-5 *2 (-1060)) (-5 *1 (-764)))) (-2884 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051)))) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-764)))) (-2875 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051)))) (-5 *2 (-1060)) (-5 *1 (-764)))) (-2863 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051)))) (-5 *2 (-1060)) (-5 *1 (-764))))) +(-10 -7 (-15 -2863 ((-1060) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051))))) (-15 -2875 ((-1060) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051))))) (-15 -2884 ((-1060) (-228) (-228) (-577) (-705 (-228)) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051))))) (-15 -2894 ((-1060) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051))))) (-15 -2903 ((-1060) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2913 ((-1060) (-228) (-228) (-228) (-228) (-577) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2924 ((-1060) (-228) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2932 ((-1060) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G))))) (-15 -2943 ((-1060) (-228) (-228) (-577) (-577) (-577) (-577))) (-15 -2953 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577) (-228) (-577) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN))))) (-15 -2960 ((-1060) (-705 (-228)) (-705 (-228)) (-577) (-577))) (-15 -2972 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577) (-228) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))))) +((-1841 (((-1060) (-577) (-577) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-1832 (((-1060) (-705 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))) (-401) (-401)) 69) (((-1060) (-705 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) 68)) (-1820 (((-1060) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG)))) 57)) (-3027 (((-1060) (-705 (-228)) (-705 (-228)) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) 50)) (-3014 (((-1060) (-228) (-577) (-577) (-1183) (-577) (-228) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3002 (((-1060) (-228) (-577) (-577) (-228) (-1183) (-228) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2992 (((-1060) (-228) (-577) (-577) (-228) (-228) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) 42)) (-2981 (((-1060) (-228) (-577) (-577) (-577) (-228) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) 38))) +(((-765) (-10 -7 (-15 -2981 ((-1060) (-228) (-577) (-577) (-577) (-228) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -2992 ((-1060) (-228) (-577) (-577) (-228) (-228) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))))) (-15 -3002 ((-1060) (-228) (-577) (-577) (-228) (-1183) (-228) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -3014 ((-1060) (-228) (-577) (-577) (-1183) (-577) (-228) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -3027 ((-1060) (-705 (-228)) (-705 (-228)) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))))) (-15 -1820 ((-1060) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG))))) (-15 -1832 ((-1060) (-705 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))))) (-15 -1832 ((-1060) (-705 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))) (-401) (-401))) (-15 -1841 ((-1060) (-577) (-577) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -765)) +((-1841 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-765)))) (-1832 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-401)) (-5 *2 (-1060)) (-5 *1 (-765)))) (-1832 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1060)) (-5 *1 (-765)))) (-1820 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-765)))) (-3027 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1060)) (-5 *1 (-765)))) (-3014 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-577)) (-5 *5 (-1183)) (-5 *6 (-705 (-228))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-765)))) (-3002 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-577)) (-5 *5 (-1183)) (-5 *6 (-705 (-228))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-765)))) (-2992 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-765)))) (-2981 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-765))))) +(-10 -7 (-15 -2981 ((-1060) (-228) (-577) (-577) (-577) (-228) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -2992 ((-1060) (-228) (-577) (-577) (-228) (-228) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))))) (-15 -3002 ((-1060) (-228) (-577) (-577) (-228) (-1183) (-228) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -3014 ((-1060) (-228) (-577) (-577) (-1183) (-577) (-228) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT))))) (-15 -3027 ((-1060) (-705 (-228)) (-705 (-228)) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN))))) (-15 -1820 ((-1060) (-228) (-228) (-577) (-228) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG))))) (-15 -1832 ((-1060) (-705 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))))) (-15 -1832 ((-1060) (-705 (-228)) (-577) (-577) (-228) (-577) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL))) (-401) (-401))) (-15 -1841 ((-1060) (-577) (-577) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-1879 (((-1060) (-228) (-228) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-228) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-228) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-691 (-228)) (-577)) 45)) (-1865 (((-1060) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-1183) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY)))) 41)) (-1854 (((-1060) (-577) (-577) (-577) (-577) (-228) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577)) 23))) +(((-766) (-10 -7 (-15 -1854 ((-1060) (-577) (-577) (-577) (-577) (-228) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1865 ((-1060) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-1183) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY))))) (-15 -1879 ((-1060) (-228) (-228) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-228) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-228) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-691 (-228)) (-577))))) (T -766)) +((-1879 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-691 (-228))) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-766)))) (-1865 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-1183)) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1060)) (-5 *1 (-766)))) (-1854 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-766))))) +(-10 -7 (-15 -1854 ((-1060) (-577) (-577) (-577) (-577) (-228) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1865 ((-1060) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-1183) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY))))) (-15 -1879 ((-1060) (-228) (-228) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-228) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-228) (-577) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-691 (-228)) (-577)))) +((-1995 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-705 (-228)) (-228) (-228) (-577)) 35)) (-1982 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-228) (-228) (-577)) 34)) (-1971 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-705 (-228)) (-228) (-228) (-577)) 33)) (-1961 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577)) 29)) (-1949 (((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577)) 28)) (-1934 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-228) (-577)) 27)) (-1923 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-577)) 24)) (-1911 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-577)) 23)) (-1899 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577)) 22)) (-1889 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577) (-577) (-577)) 21))) +(((-767) (-10 -7 (-15 -1889 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577) (-577) (-577))) (-15 -1899 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1911 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-577))) (-15 -1923 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-577))) (-15 -1934 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-228) (-577))) (-15 -1949 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1961 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1971 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-705 (-228)) (-228) (-228) (-577))) (-15 -1982 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-228) (-228) (-577))) (-15 -1995 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-705 (-228)) (-228) (-228) (-577))))) (T -767)) +((-1995 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *2 (-1060)) (-5 *1 (-767)))) (-1982 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *2 (-1060)) (-5 *1 (-767)))) (-1971 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *6 (-228)) (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-767)))) (-1961 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-767)))) (-1949 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-767)))) (-1934 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *2 (-1060)) (-5 *1 (-767)))) (-1923 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-767)))) (-1911 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-767)))) (-1899 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-767)))) (-1889 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-767))))) +(-10 -7 (-15 -1889 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577) (-577) (-577))) (-15 -1899 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1911 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-577))) (-15 -1923 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-577))) (-15 -1934 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-228) (-577))) (-15 -1949 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1961 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1971 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-705 (-228)) (-228) (-228) (-577))) (-15 -1982 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-228) (-228) (-577))) (-15 -1995 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-705 (-228)) (-228) (-228) (-577)))) +((-2219 (((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-577) (-577) (-577)) 45)) (-2207 (((-1060) (-577) (-577) (-577) (-228) (-705 (-228)) (-705 (-228)) (-577)) 44)) (-2196 (((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-577)) 43)) (-2184 (((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577)) 42)) (-2169 (((-1060) (-1183) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-577)) 41)) (-2158 (((-1060) (-1183) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-577)) 40)) (-2144 (((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-577) (-577) (-577) (-228) (-705 (-228)) (-577)) 39)) (-2130 (((-1060) (-1183) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-577))) 38)) (-2114 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577)) 35)) (-2104 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577)) 34)) (-2093 (((-1060) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577)) 33)) (-2082 (((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577)) 32)) (-2070 (((-1060) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-228) (-577)) 31)) (-2056 (((-1060) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-228) (-577) (-577) (-577)) 30)) (-2041 (((-1060) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-577) (-577) (-577)) 29)) (-2028 (((-1060) (-577) (-577) (-577) (-228) (-228) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-577) (-705 (-577)) (-577) (-577) (-577)) 28)) (-2017 (((-1060) (-577) (-705 (-228)) (-228) (-577)) 24)) (-2007 (((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577)) 21))) +(((-768) (-10 -7 (-15 -2007 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2017 ((-1060) (-577) (-705 (-228)) (-228) (-577))) (-15 -2028 ((-1060) (-577) (-577) (-577) (-228) (-228) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-577) (-705 (-577)) (-577) (-577) (-577))) (-15 -2041 ((-1060) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-577) (-577) (-577))) (-15 -2056 ((-1060) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-228) (-577) (-577) (-577))) (-15 -2070 ((-1060) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-228) (-577))) (-15 -2082 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2093 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577))) (-15 -2104 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577))) (-15 -2114 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2130 ((-1060) (-1183) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-577)))) (-15 -2144 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-577) (-577) (-577) (-228) (-705 (-228)) (-577))) (-15 -2158 ((-1060) (-1183) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-577))) (-15 -2169 ((-1060) (-1183) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2184 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2196 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-577))) (-15 -2207 ((-1060) (-577) (-577) (-577) (-228) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2219 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-577) (-577) (-577))))) (T -768)) +((-2219 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2207 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2196 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2184 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2169 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-228)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2158 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1183)) (-5 *5 (-705 (-228))) (-5 *6 (-228)) (-5 *7 (-705 (-577))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2144 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *6 (-228)) (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2130 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1183)) (-5 *5 (-705 (-228))) (-5 *6 (-228)) (-5 *7 (-705 (-577))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2114 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2104 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2093 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2082 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2070 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2056 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2041 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2028 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-705 (-228))) (-5 *6 (-705 (-577))) (-5 *3 (-577)) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2017 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) (-5 *2 (-1060)) (-5 *1 (-768)))) (-2007 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-768))))) +(-10 -7 (-15 -2007 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2017 ((-1060) (-577) (-705 (-228)) (-228) (-577))) (-15 -2028 ((-1060) (-577) (-577) (-577) (-228) (-228) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-577) (-705 (-577)) (-577) (-577) (-577))) (-15 -2041 ((-1060) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-577) (-577) (-577))) (-15 -2056 ((-1060) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-228) (-577) (-577) (-577))) (-15 -2070 ((-1060) (-577) (-228) (-228) (-705 (-228)) (-577) (-577) (-228) (-577))) (-15 -2082 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2093 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577))) (-15 -2104 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577))) (-15 -2114 ((-1060) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2130 ((-1060) (-1183) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-577)))) (-15 -2144 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-577) (-577) (-577) (-228) (-705 (-228)) (-577))) (-15 -2158 ((-1060) (-1183) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-577))) (-15 -2169 ((-1060) (-1183) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-228) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2184 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2196 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-577))) (-15 -2207 ((-1060) (-577) (-577) (-577) (-228) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2219 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577) (-705 (-228)) (-705 (-228)) (-577) (-577) (-577)))) +((-2316 (((-1060) (-577) (-577) (-577) (-228) (-705 (-228)) (-577) (-705 (-228)) (-577)) 63)) (-2306 (((-1060) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-112) (-228) (-577) (-228) (-228) (-112) (-228) (-228) (-228) (-228) (-112) (-577) (-577) (-577) (-577) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-577) (-705 (-577)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2295 (((-1060) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-228) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-112) (-112) (-112) (-577) (-577) (-705 (-228)) (-705 (-577)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS)))) 58)) (-2282 (((-1060) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-112) (-577) (-577) (-705 (-228)) (-577)) 51)) (-2270 (((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2258 (((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2244 (((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1)))) 42)) (-2232 (((-1060) (-577) (-228) (-228) (-577) (-228) (-112) (-228) (-228) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-769) (-10 -7 (-15 -2232 ((-1060) (-577) (-228) (-228) (-577) (-228) (-112) (-228) (-228) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN))))) (-15 -2244 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1))))) (-15 -2258 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2))))) (-15 -2270 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1))))) (-15 -2282 ((-1060) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-112) (-577) (-577) (-705 (-228)) (-577))) (-15 -2295 ((-1060) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-228) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-112) (-112) (-112) (-577) (-577) (-705 (-228)) (-705 (-577)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS))))) (-15 -2306 ((-1060) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-112) (-228) (-577) (-228) (-228) (-112) (-228) (-228) (-228) (-228) (-112) (-577) (-577) (-577) (-577) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-577) (-705 (-577)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN))))) (-15 -2316 ((-1060) (-577) (-577) (-577) (-228) (-705 (-228)) (-577) (-705 (-228)) (-577))))) (T -769)) +((-2316 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-769)))) (-2306 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-705 (-228))) (-5 *5 (-112)) (-5 *6 (-228)) (-5 *7 (-705 (-577))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-769)))) (-2295 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-705 (-228))) (-5 *6 (-112)) (-5 *7 (-705 (-577))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-577)) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-769)))) (-2282 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-112)) (-5 *2 (-1060)) (-5 *1 (-769)))) (-2270 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1060)) (-5 *1 (-769)))) (-2258 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1060)) (-5 *1 (-769)))) (-2244 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1060)) (-5 *1 (-769)))) (-2232 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-577)) (-5 *5 (-112)) (-5 *6 (-705 (-228))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-769))))) +(-10 -7 (-15 -2232 ((-1060) (-577) (-228) (-228) (-577) (-228) (-112) (-228) (-228) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN))))) (-15 -2244 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1))))) (-15 -2258 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2))))) (-15 -2270 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1))))) (-15 -2282 ((-1060) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-112) (-577) (-577) (-705 (-228)) (-577))) (-15 -2295 ((-1060) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-228) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-112) (-112) (-112) (-577) (-577) (-705 (-228)) (-705 (-577)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS))))) (-15 -2306 ((-1060) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-577) (-112) (-228) (-577) (-228) (-228) (-112) (-228) (-228) (-228) (-228) (-112) (-577) (-577) (-577) (-577) (-577) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-577) (-705 (-577)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN))))) (-15 -2316 ((-1060) (-577) (-577) (-577) (-228) (-705 (-228)) (-577) (-705 (-228)) (-577)))) +((-2412 (((-1060) (-1183) (-577) (-577) (-577) (-577) (-705 (-171 (-228))) (-705 (-171 (-228))) (-577)) 47)) (-2403 (((-1060) (-1183) (-1183) (-577) (-577) (-705 (-171 (-228))) (-577) (-705 (-171 (-228))) (-577) (-577) (-705 (-171 (-228))) (-577)) 46)) (-2393 (((-1060) (-577) (-577) (-577) (-705 (-171 (-228))) (-577)) 45)) (-2386 (((-1060) (-1183) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577)) 40)) (-2375 (((-1060) (-1183) (-1183) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-577) (-577) (-705 (-228)) (-577)) 39)) (-2366 (((-1060) (-577) (-577) (-577) (-705 (-228)) (-577)) 36)) (-2356 (((-1060) (-577) (-705 (-228)) (-577) (-705 (-577)) (-577)) 35)) (-2347 (((-1060) (-577) (-577) (-577) (-577) (-660 (-112)) (-705 (-228)) (-705 (-577)) (-705 (-577)) (-228) (-228) (-577)) 34)) (-2337 (((-1060) (-577) (-577) (-577) (-705 (-577)) (-705 (-577)) (-705 (-577)) (-705 (-577)) (-112) (-228) (-112) (-705 (-577)) (-705 (-228)) (-577)) 33)) (-2327 (((-1060) (-577) (-577) (-577) (-577) (-228) (-112) (-112) (-660 (-112)) (-705 (-228)) (-705 (-577)) (-705 (-577)) (-577)) 32))) +(((-770) (-10 -7 (-15 -2327 ((-1060) (-577) (-577) (-577) (-577) (-228) (-112) (-112) (-660 (-112)) (-705 (-228)) (-705 (-577)) (-705 (-577)) (-577))) (-15 -2337 ((-1060) (-577) (-577) (-577) (-705 (-577)) (-705 (-577)) (-705 (-577)) (-705 (-577)) (-112) (-228) (-112) (-705 (-577)) (-705 (-228)) (-577))) (-15 -2347 ((-1060) (-577) (-577) (-577) (-577) (-660 (-112)) (-705 (-228)) (-705 (-577)) (-705 (-577)) (-228) (-228) (-577))) (-15 -2356 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-577)) (-577))) (-15 -2366 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-577))) (-15 -2375 ((-1060) (-1183) (-1183) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-577) (-577) (-705 (-228)) (-577))) (-15 -2386 ((-1060) (-1183) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2393 ((-1060) (-577) (-577) (-577) (-705 (-171 (-228))) (-577))) (-15 -2403 ((-1060) (-1183) (-1183) (-577) (-577) (-705 (-171 (-228))) (-577) (-705 (-171 (-228))) (-577) (-577) (-705 (-171 (-228))) (-577))) (-15 -2412 ((-1060) (-1183) (-577) (-577) (-577) (-577) (-705 (-171 (-228))) (-705 (-171 (-228))) (-577))))) (T -770)) +((-2412 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-171 (-228)))) (-5 *2 (-1060)) (-5 *1 (-770)))) (-2403 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-171 (-228)))) (-5 *2 (-1060)) (-5 *1 (-770)))) (-2393 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-171 (-228)))) (-5 *2 (-1060)) (-5 *1 (-770)))) (-2386 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-770)))) (-2375 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-770)))) (-2366 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-770)))) (-2356 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-770)))) (-2347 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-660 (-112))) (-5 *5 (-705 (-228))) (-5 *6 (-705 (-577))) (-5 *7 (-228)) (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-770)))) (-2337 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-705 (-577))) (-5 *5 (-112)) (-5 *7 (-705 (-228))) (-5 *3 (-577)) (-5 *6 (-228)) (-5 *2 (-1060)) (-5 *1 (-770)))) (-2327 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-660 (-112))) (-5 *7 (-705 (-228))) (-5 *8 (-705 (-577))) (-5 *3 (-577)) (-5 *4 (-228)) (-5 *5 (-112)) (-5 *2 (-1060)) (-5 *1 (-770))))) +(-10 -7 (-15 -2327 ((-1060) (-577) (-577) (-577) (-577) (-228) (-112) (-112) (-660 (-112)) (-705 (-228)) (-705 (-577)) (-705 (-577)) (-577))) (-15 -2337 ((-1060) (-577) (-577) (-577) (-705 (-577)) (-705 (-577)) (-705 (-577)) (-705 (-577)) (-112) (-228) (-112) (-705 (-577)) (-705 (-228)) (-577))) (-15 -2347 ((-1060) (-577) (-577) (-577) (-577) (-660 (-112)) (-705 (-228)) (-705 (-577)) (-705 (-577)) (-228) (-228) (-577))) (-15 -2356 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-577)) (-577))) (-15 -2366 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-577))) (-15 -2375 ((-1060) (-1183) (-1183) (-577) (-577) (-705 (-228)) (-577) (-705 (-228)) (-577) (-577) (-705 (-228)) (-577))) (-15 -2386 ((-1060) (-1183) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2393 ((-1060) (-577) (-577) (-577) (-705 (-171 (-228))) (-577))) (-15 -2403 ((-1060) (-1183) (-1183) (-577) (-577) (-705 (-171 (-228))) (-577) (-705 (-171 (-228))) (-577) (-577) (-705 (-171 (-228))) (-577))) (-15 -2412 ((-1060) (-1183) (-577) (-577) (-577) (-577) (-705 (-171 (-228))) (-705 (-171 (-228))) (-577)))) +((-4419 (((-1060) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-705 (-171 (-228))) (-705 (-171 (-228))) (-577)) 79)) (-4410 (((-1060) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-705 (-228)) (-705 (-228)) (-577)) 68)) (-4400 (((-1060) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))) (-401)) 56) (((-1060) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) 55)) (-4389 (((-1060) (-577) (-577) (-577) (-228) (-112) (-577) (-705 (-228)) (-705 (-228)) (-577)) 37)) (-4379 (((-1060) (-577) (-577) (-228) (-228) (-577) (-577) (-705 (-228)) (-577)) 33)) (-4368 (((-1060) (-705 (-228)) (-577) (-705 (-228)) (-577) (-577) (-577) (-577) (-577)) 30)) (-4358 (((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577)) 29)) (-4347 (((-1060) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577)) 28)) (-4335 (((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577)) 27)) (-4324 (((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-577)) 26)) (-4312 (((-1060) (-577) (-577) (-705 (-228)) (-577)) 25)) (-2452 (((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577)) 24)) (-2439 (((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577)) 23)) (-2430 (((-1060) (-705 (-228)) (-577) (-577) (-577) (-577)) 22)) (-2422 (((-1060) (-577) (-577) (-705 (-228)) (-577)) 21))) +(((-771) (-10 -7 (-15 -2422 ((-1060) (-577) (-577) (-705 (-228)) (-577))) (-15 -2430 ((-1060) (-705 (-228)) (-577) (-577) (-577) (-577))) (-15 -2439 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2452 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4312 ((-1060) (-577) (-577) (-705 (-228)) (-577))) (-15 -4324 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-577))) (-15 -4335 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4347 ((-1060) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4358 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4368 ((-1060) (-705 (-228)) (-577) (-705 (-228)) (-577) (-577) (-577) (-577) (-577))) (-15 -4379 ((-1060) (-577) (-577) (-228) (-228) (-577) (-577) (-705 (-228)) (-577))) (-15 -4389 ((-1060) (-577) (-577) (-577) (-228) (-112) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4400 ((-1060) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))))) (-15 -4400 ((-1060) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))) (-401))) (-15 -4410 ((-1060) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4419 ((-1060) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-705 (-171 (-228))) (-705 (-171 (-228))) (-577))))) (T -771)) +((-4419 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-112)) (-5 *5 (-705 (-171 (-228)))) (-5 *2 (-1060)) (-5 *1 (-771)))) (-4410 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *4 (-112)) (-5 *5 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-771)))) (-4400 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-401)) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-771)))) (-4400 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-771)))) (-4389 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-577)) (-5 *5 (-112)) (-5 *6 (-705 (-228))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-771)))) (-4379 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-771)))) (-4368 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-771)))) (-4358 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-771)))) (-4347 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-771)))) (-4335 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-771)))) (-4324 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-771)))) (-4312 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-771)))) (-2452 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-771)))) (-2439 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-771)))) (-2430 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-771)))) (-2422 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-771))))) +(-10 -7 (-15 -2422 ((-1060) (-577) (-577) (-705 (-228)) (-577))) (-15 -2430 ((-1060) (-705 (-228)) (-577) (-577) (-577) (-577))) (-15 -2439 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -2452 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4312 ((-1060) (-577) (-577) (-705 (-228)) (-577))) (-15 -4324 ((-1060) (-577) (-577) (-577) (-577) (-705 (-228)) (-577))) (-15 -4335 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4347 ((-1060) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4358 ((-1060) (-577) (-577) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4368 ((-1060) (-705 (-228)) (-577) (-705 (-228)) (-577) (-577) (-577) (-577) (-577))) (-15 -4379 ((-1060) (-577) (-577) (-228) (-228) (-577) (-577) (-705 (-228)) (-577))) (-15 -4389 ((-1060) (-577) (-577) (-577) (-228) (-112) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4400 ((-1060) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))))) (-15 -4400 ((-1060) (-577) (-577) (-228) (-577) (-577) (-577) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE))) (-401))) (-15 -4410 ((-1060) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -4419 ((-1060) (-577) (-577) (-577) (-577) (-577) (-112) (-577) (-112) (-577) (-705 (-171 (-228))) (-705 (-171 (-228))) (-577)))) +((-1426 (((-1060) (-577) (-577) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD)))) 64)) (-1416 (((-1060) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-577)) (-577) (-705 (-228)) (-577) (-577) (-577) (-577)) 60)) (-1405 (((-1060) (-577) (-705 (-228)) (-112) (-228) (-577) (-577) (-577) (-577) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE)))) 59)) (-1391 (((-1060) (-577) (-577) (-705 (-228)) (-577) (-705 (-577)) (-577) (-705 (-577)) (-705 (-228)) (-705 (-577)) (-705 (-577)) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-577)) 37)) (-1381 (((-1060) (-577) (-577) (-577) (-228) (-577) (-705 (-228)) (-705 (-228)) (-577)) 36)) (-1368 (((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577)) 33)) (-1357 (((-1060) (-577) (-705 (-228)) (-577) (-705 (-577)) (-705 (-577)) (-577) (-705 (-577)) (-705 (-228))) 32)) (-1345 (((-1060) (-705 (-228)) (-577) (-705 (-228)) (-577) (-577) (-577)) 28)) (-1332 (((-1060) (-577) (-705 (-228)) (-577) (-705 (-228)) (-577)) 27)) (-4446 (((-1060) (-577) (-705 (-228)) (-577) (-705 (-228)) (-577)) 26)) (-4434 (((-1060) (-577) (-705 (-171 (-228))) (-577) (-577) (-577) (-577) (-705 (-171 (-228))) (-577)) 22))) +(((-772) (-10 -7 (-15 -4434 ((-1060) (-577) (-705 (-171 (-228))) (-577) (-577) (-577) (-577) (-705 (-171 (-228))) (-577))) (-15 -4446 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-228)) (-577))) (-15 -1332 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-228)) (-577))) (-15 -1345 ((-1060) (-705 (-228)) (-577) (-705 (-228)) (-577) (-577) (-577))) (-15 -1357 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-577)) (-705 (-577)) (-577) (-705 (-577)) (-705 (-228)))) (-15 -1368 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1381 ((-1060) (-577) (-577) (-577) (-228) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1391 ((-1060) (-577) (-577) (-705 (-228)) (-577) (-705 (-577)) (-577) (-705 (-577)) (-705 (-228)) (-705 (-577)) (-705 (-577)) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-577))) (-15 -1405 ((-1060) (-577) (-705 (-228)) (-112) (-228) (-577) (-577) (-577) (-577) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE))))) (-15 -1416 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-577)) (-577) (-705 (-228)) (-577) (-577) (-577) (-577))) (-15 -1426 ((-1060) (-577) (-577) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD))))))) (T -772)) +((-1426 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD)))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-772)))) (-1416 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-772)))) (-1405 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-112)) (-5 *6 (-228)) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1060)) (-5 *1 (-772)))) (-1391 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-772)))) (-1381 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-772)))) (-1368 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-772)))) (-1357 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-772)))) (-1345 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-772)))) (-1332 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-772)))) (-4446 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-772)))) (-4434 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-171 (-228)))) (-5 *2 (-1060)) (-5 *1 (-772))))) +(-10 -7 (-15 -4434 ((-1060) (-577) (-705 (-171 (-228))) (-577) (-577) (-577) (-577) (-705 (-171 (-228))) (-577))) (-15 -4446 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-228)) (-577))) (-15 -1332 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-228)) (-577))) (-15 -1345 ((-1060) (-705 (-228)) (-577) (-705 (-228)) (-577) (-577) (-577))) (-15 -1357 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-577)) (-705 (-577)) (-577) (-705 (-577)) (-705 (-228)))) (-15 -1368 ((-1060) (-577) (-577) (-705 (-228)) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1381 ((-1060) (-577) (-577) (-577) (-228) (-577) (-705 (-228)) (-705 (-228)) (-577))) (-15 -1391 ((-1060) (-577) (-577) (-705 (-228)) (-577) (-705 (-577)) (-577) (-705 (-577)) (-705 (-228)) (-705 (-577)) (-705 (-577)) (-705 (-228)) (-705 (-228)) (-705 (-577)) (-577))) (-15 -1405 ((-1060) (-577) (-705 (-228)) (-112) (-228) (-577) (-577) (-577) (-577) (-228) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE))))) (-15 -1416 ((-1060) (-577) (-705 (-228)) (-577) (-705 (-228)) (-705 (-577)) (-577) (-705 (-228)) (-577) (-577) (-577) (-577))) (-15 -1426 ((-1060) (-577) (-577) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-705 (-228)) (-577) (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD)))))) +((-1471 (((-1060) (-1183) (-577) (-577) (-705 (-228)) (-577) (-577) (-705 (-228))) 29)) (-1459 (((-1060) (-1183) (-577) (-577) (-705 (-228))) 28)) (-1448 (((-1060) (-1183) (-577) (-577) (-705 (-228)) (-577) (-705 (-577)) (-577) (-705 (-228))) 27)) (-1437 (((-1060) (-577) (-577) (-577) (-705 (-228))) 21))) +(((-773) (-10 -7 (-15 -1437 ((-1060) (-577) (-577) (-577) (-705 (-228)))) (-15 -1448 ((-1060) (-1183) (-577) (-577) (-705 (-228)) (-577) (-705 (-577)) (-577) (-705 (-228)))) (-15 -1459 ((-1060) (-1183) (-577) (-577) (-705 (-228)))) (-15 -1471 ((-1060) (-1183) (-577) (-577) (-705 (-228)) (-577) (-577) (-705 (-228)))))) (T -773)) +((-1471 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-773)))) (-1459 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-773)))) (-1448 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1183)) (-5 *5 (-705 (-228))) (-5 *6 (-705 (-577))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-773)))) (-1437 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) (-5 *1 (-773))))) +(-10 -7 (-15 -1437 ((-1060) (-577) (-577) (-577) (-705 (-228)))) (-15 -1448 ((-1060) (-1183) (-577) (-577) (-705 (-228)) (-577) (-705 (-577)) (-577) (-705 (-228)))) (-15 -1459 ((-1060) (-1183) (-577) (-577) (-705 (-228)))) (-15 -1471 ((-1060) (-1183) (-577) (-577) (-705 (-228)) (-577) (-577) (-705 (-228))))) +((-3739 (((-1060) (-228) (-228) (-228) (-228) (-577)) 62)) (-3728 (((-1060) (-228) (-228) (-228) (-577)) 61)) (-3718 (((-1060) (-228) (-228) (-228) (-577)) 60)) (-3707 (((-1060) (-228) (-228) (-577)) 59)) (-3696 (((-1060) (-228) (-577)) 58)) (-3684 (((-1060) (-228) (-577)) 57)) (-3674 (((-1060) (-228) (-577)) 56)) (-3663 (((-1060) (-228) (-577)) 55)) (-1801 (((-1060) (-228) (-577)) 54)) (-1791 (((-1060) (-228) (-577)) 53)) (-1781 (((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577)) 52)) (-1771 (((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577)) 51)) (-1760 (((-1060) (-228) (-577)) 50)) (-1748 (((-1060) (-228) (-577)) 49)) (-1739 (((-1060) (-228) (-577)) 48)) (-1731 (((-1060) (-228) (-577)) 47)) (-1719 (((-1060) (-577) (-228) (-171 (-228)) (-577) (-1183) (-577)) 46)) (-1707 (((-1060) (-1183) (-171 (-228)) (-1183) (-577)) 45)) (-1698 (((-1060) (-1183) (-171 (-228)) (-1183) (-577)) 44)) (-1688 (((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577)) 43)) (-1675 (((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577)) 42)) (-1663 (((-1060) (-228) (-577)) 39)) (-1653 (((-1060) (-228) (-577)) 38)) (-1643 (((-1060) (-228) (-577)) 37)) (-1631 (((-1060) (-228) (-577)) 36)) (-1615 (((-1060) (-228) (-577)) 35)) (-1604 (((-1060) (-228) (-577)) 34)) (-1593 (((-1060) (-228) (-577)) 33)) (-1582 (((-1060) (-228) (-577)) 32)) (-1571 (((-1060) (-228) (-577)) 31)) (-1560 (((-1060) (-228) (-577)) 30)) (-1550 (((-1060) (-228) (-228) (-228) (-577)) 29)) (-1538 (((-1060) (-228) (-577)) 28)) (-1527 (((-1060) (-228) (-577)) 27)) (-1516 (((-1060) (-228) (-577)) 26)) (-1505 (((-1060) (-228) (-577)) 25)) (-1495 (((-1060) (-228) (-577)) 24)) (-1483 (((-1060) (-171 (-228)) (-577)) 21))) +(((-774) (-10 -7 (-15 -1483 ((-1060) (-171 (-228)) (-577))) (-15 -1495 ((-1060) (-228) (-577))) (-15 -1505 ((-1060) (-228) (-577))) (-15 -1516 ((-1060) (-228) (-577))) (-15 -1527 ((-1060) (-228) (-577))) (-15 -1538 ((-1060) (-228) (-577))) (-15 -1550 ((-1060) (-228) (-228) (-228) (-577))) (-15 -1560 ((-1060) (-228) (-577))) (-15 -1571 ((-1060) (-228) (-577))) (-15 -1582 ((-1060) (-228) (-577))) (-15 -1593 ((-1060) (-228) (-577))) (-15 -1604 ((-1060) (-228) (-577))) (-15 -1615 ((-1060) (-228) (-577))) (-15 -1631 ((-1060) (-228) (-577))) (-15 -1643 ((-1060) (-228) (-577))) (-15 -1653 ((-1060) (-228) (-577))) (-15 -1663 ((-1060) (-228) (-577))) (-15 -1675 ((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -1688 ((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -1698 ((-1060) (-1183) (-171 (-228)) (-1183) (-577))) (-15 -1707 ((-1060) (-1183) (-171 (-228)) (-1183) (-577))) (-15 -1719 ((-1060) (-577) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -1731 ((-1060) (-228) (-577))) (-15 -1739 ((-1060) (-228) (-577))) (-15 -1748 ((-1060) (-228) (-577))) (-15 -1760 ((-1060) (-228) (-577))) (-15 -1771 ((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -1781 ((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -1791 ((-1060) (-228) (-577))) (-15 -1801 ((-1060) (-228) (-577))) (-15 -3663 ((-1060) (-228) (-577))) (-15 -3674 ((-1060) (-228) (-577))) (-15 -3684 ((-1060) (-228) (-577))) (-15 -3696 ((-1060) (-228) (-577))) (-15 -3707 ((-1060) (-228) (-228) (-577))) (-15 -3718 ((-1060) (-228) (-228) (-228) (-577))) (-15 -3728 ((-1060) (-228) (-228) (-228) (-577))) (-15 -3739 ((-1060) (-228) (-228) (-228) (-228) (-577))))) (T -774)) +((-3739 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-3728 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-3718 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-3707 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-3696 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-3684 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-3674 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-3663 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1801 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1781 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1183)) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1771 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1183)) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1760 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1748 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1739 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1731 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1719 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-577)) (-5 *5 (-171 (-228))) (-5 *6 (-1183)) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1707 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1183)) (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1698 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1183)) (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1688 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1183)) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1675 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1183)) (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1663 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1653 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1631 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1615 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1604 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1593 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1582 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1571 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1560 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1550 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1538 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1527 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1495 (*1 *2 *3 *4) (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(-10 -7 (-15 -1483 ((-1060) (-171 (-228)) (-577))) (-15 -1495 ((-1060) (-228) (-577))) (-15 -1505 ((-1060) (-228) (-577))) (-15 -1516 ((-1060) (-228) (-577))) (-15 -1527 ((-1060) (-228) (-577))) (-15 -1538 ((-1060) (-228) (-577))) (-15 -1550 ((-1060) (-228) (-228) (-228) (-577))) (-15 -1560 ((-1060) (-228) (-577))) (-15 -1571 ((-1060) (-228) (-577))) (-15 -1582 ((-1060) (-228) (-577))) (-15 -1593 ((-1060) (-228) (-577))) (-15 -1604 ((-1060) (-228) (-577))) (-15 -1615 ((-1060) (-228) (-577))) (-15 -1631 ((-1060) (-228) (-577))) (-15 -1643 ((-1060) (-228) (-577))) (-15 -1653 ((-1060) (-228) (-577))) (-15 -1663 ((-1060) (-228) (-577))) (-15 -1675 ((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -1688 ((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -1698 ((-1060) (-1183) (-171 (-228)) (-1183) (-577))) (-15 -1707 ((-1060) (-1183) (-171 (-228)) (-1183) (-577))) (-15 -1719 ((-1060) (-577) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -1731 ((-1060) (-228) (-577))) (-15 -1739 ((-1060) (-228) (-577))) (-15 -1748 ((-1060) (-228) (-577))) (-15 -1760 ((-1060) (-228) (-577))) (-15 -1771 ((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -1781 ((-1060) (-228) (-171 (-228)) (-577) (-1183) (-577))) (-15 -1791 ((-1060) (-228) (-577))) (-15 -1801 ((-1060) (-228) (-577))) (-15 -3663 ((-1060) (-228) (-577))) (-15 -3674 ((-1060) (-228) (-577))) (-15 -3684 ((-1060) (-228) (-577))) (-15 -3696 ((-1060) (-228) (-577))) (-15 -3707 ((-1060) (-228) (-228) (-577))) (-15 -3718 ((-1060) (-228) (-228) (-228) (-577))) (-15 -3728 ((-1060) (-228) (-228) (-228) (-577))) (-15 -3739 ((-1060) (-228) (-228) (-228) (-228) (-577)))) +((-3796 (((-1297)) 20)) (-3760 (((-1183)) 34)) (-3749 (((-1183)) 33)) (-3782 (((-1129) (-1201) (-705 (-577))) 47) (((-1129) (-1201) (-705 (-228))) 43)) (-1584 (((-112)) 19)) (-3771 (((-1183) (-1183)) 37))) +(((-775) (-10 -7 (-15 -3749 ((-1183))) (-15 -3760 ((-1183))) (-15 -3771 ((-1183) (-1183))) (-15 -3782 ((-1129) (-1201) (-705 (-228)))) (-15 -3782 ((-1129) (-1201) (-705 (-577)))) (-15 -1584 ((-112))) (-15 -3796 ((-1297))))) (T -775)) +((-3796 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-775)))) (-1584 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-775)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-705 (-577))) (-5 *2 (-1129)) (-5 *1 (-775)))) (-3782 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-705 (-228))) (-5 *2 (-1129)) (-5 *1 (-775)))) (-3771 (*1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-775)))) (-3760 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-775)))) (-3749 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-775))))) +(-10 -7 (-15 -3749 ((-1183))) (-15 -3760 ((-1183))) (-15 -3771 ((-1183) (-1183))) (-15 -3782 ((-1129) (-1201) (-705 (-228)))) (-15 -3782 ((-1129) (-1201) (-705 (-577)))) (-15 -1584 ((-112))) (-15 -3796 ((-1297)))) +((-3820 (($ $ $) 10)) (-3832 (($ $ $ $) 9)) (-3807 (($ $ $) 12))) +(((-776 |#1|) (-10 -8 (-15 -3807 (|#1| |#1| |#1|)) (-15 -3820 (|#1| |#1| |#1|)) (-15 -3832 (|#1| |#1| |#1| |#1|))) (-777)) (T -776)) +NIL +(-10 -8 (-15 -3807 (|#1| |#1| |#1|)) (-15 -3820 (|#1| |#1| |#1|)) (-15 -3832 (|#1| |#1| |#1| |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2470 (($ $ (-944)) 31)) (-3604 (($ $ (-944)) 32)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3820 (($ $ $) 28)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-3832 (($ $ $ $) 29)) (-3807 (($ $ $) 27)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 33)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 30))) +(((-777) (-141)) (T -777)) +((-3832 (*1 *1 *1 *1 *1) (-4 *1 (-777))) (-3820 (*1 *1 *1 *1) (-4 *1 (-777))) (-3807 (*1 *1 *1 *1) (-4 *1 (-777)))) +(-13 (-21) (-736) (-10 -8 (-15 -3832 ($ $ $ $)) (-15 -3820 ($ $ $)) (-15 -3807 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-736) . T) ((-1125) . T) ((-1242) . T)) +((-3544 (((-880) $) NIL) (($ (-577)) 10))) +(((-778 |#1|) (-10 -8 (-15 -3544 (|#1| (-577))) (-15 -3544 ((-880) |#1|))) (-779)) (T -778)) +NIL +(-10 -8 (-15 -3544 (|#1| (-577))) (-15 -3544 ((-880) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-3584 (((-3 $ "failed") $) 43)) (-2470 (($ $ (-944)) 31) (($ $ (-787)) 38)) (-4187 (((-3 $ "failed") $) 41)) (-2487 (((-112) $) 37)) (-3593 (((-3 $ "failed") $) 42)) (-3604 (($ $ (-944)) 32) (($ $ (-787)) 39)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3820 (($ $ $) 28)) (-3544 (((-880) $) 12) (($ (-577)) 34)) (-4068 (((-787)) 35 T CONST)) (-4448 (((-112) $ $) 6)) (-3832 (($ $ $ $) 29)) (-3807 (($ $ $) 27)) (-2806 (($) 19 T CONST)) (-2816 (($) 36 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 33) (($ $ (-787)) 40)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 30))) +(((-779) (-141)) (T -779)) +((-4068 (*1 *2) (-12 (-4 *1 (-779)) (-5 *2 (-787)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-779))))) +(-13 (-777) (-738) (-10 -8 (-15 -4068 ((-787)) -1512) (-15 -3544 ($ (-577))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-736) . T) ((-738) . T) ((-777) . T) ((-1125) . T) ((-1242) . T)) +((-3856 (((-660 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 (-171 |#1|)))))) (-705 (-171 (-420 (-577)))) |#1|) 33)) (-3845 (((-660 (-171 |#1|)) (-705 (-171 (-420 (-577)))) |#1|) 23)) (-3974 (((-975 (-171 (-420 (-577)))) (-705 (-171 (-420 (-577)))) (-1201)) 20) (((-975 (-171 (-420 (-577)))) (-705 (-171 (-420 (-577))))) 19))) +(((-780 |#1|) (-10 -7 (-15 -3974 ((-975 (-171 (-420 (-577)))) (-705 (-171 (-420 (-577)))))) (-15 -3974 ((-975 (-171 (-420 (-577)))) (-705 (-171 (-420 (-577)))) (-1201))) (-15 -3845 ((-660 (-171 |#1|)) (-705 (-171 (-420 (-577)))) |#1|)) (-15 -3856 ((-660 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 (-171 |#1|)))))) (-705 (-171 (-420 (-577)))) |#1|))) (-13 (-375) (-864))) (T -780)) +((-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-705 (-171 (-420 (-577))))) (-5 *2 (-660 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 (-171 *4))))))) (-5 *1 (-780 *4)) (-4 *4 (-13 (-375) (-864))))) (-3845 (*1 *2 *3 *4) (-12 (-5 *3 (-705 (-171 (-420 (-577))))) (-5 *2 (-660 (-171 *4))) (-5 *1 (-780 *4)) (-4 *4 (-13 (-375) (-864))))) (-3974 (*1 *2 *3 *4) (-12 (-5 *3 (-705 (-171 (-420 (-577))))) (-5 *4 (-1201)) (-5 *2 (-975 (-171 (-420 (-577))))) (-5 *1 (-780 *5)) (-4 *5 (-13 (-375) (-864))))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-705 (-171 (-420 (-577))))) (-5 *2 (-975 (-171 (-420 (-577))))) (-5 *1 (-780 *4)) (-4 *4 (-13 (-375) (-864)))))) +(-10 -7 (-15 -3974 ((-975 (-171 (-420 (-577)))) (-705 (-171 (-420 (-577)))))) (-15 -3974 ((-975 (-171 (-420 (-577)))) (-705 (-171 (-420 (-577)))) (-1201))) (-15 -3845 ((-660 (-171 |#1|)) (-705 (-171 (-420 (-577)))) |#1|)) (-15 -3856 ((-660 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 (-171 |#1|)))))) (-705 (-171 (-420 (-577)))) |#1|))) +((-2605 (((-176 (-577)) |#1|) 27))) +(((-781 |#1|) (-10 -7 (-15 -2605 ((-176 (-577)) |#1|))) (-417)) (T -781)) +((-2605 (*1 *2 *3) (-12 (-5 *2 (-176 (-577))) (-5 *1 (-781 *3)) (-4 *3 (-417))))) +(-10 -7 (-15 -2605 ((-176 (-577)) |#1|))) +((-3214 ((|#1| |#1| |#1|) 28)) (-3224 ((|#1| |#1| |#1|) 27)) (-3112 ((|#1| |#1| |#1|) 38)) (-3195 ((|#1| |#1| |#1|) 34)) (-3205 (((-3 |#1| "failed") |#1| |#1|) 31)) (-3256 (((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|) 26))) +(((-782 |#1| |#2|) (-10 -7 (-15 -3256 ((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|)) (-15 -3224 (|#1| |#1| |#1|)) (-15 -3214 (|#1| |#1| |#1|)) (-15 -3205 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3195 (|#1| |#1| |#1|)) (-15 -3112 (|#1| |#1| |#1|))) (-724 |#2|) (-375)) (T -782)) +((-3112 (*1 *2 *2 *2) (-12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) (-3195 (*1 *2 *2 *2) (-12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) (-3205 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) (-3214 (*1 *2 *2 *2) (-12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) (-3224 (*1 *2 *2 *2) (-12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) (-3256 (*1 *2 *3 *3) (-12 (-4 *4 (-375)) (-5 *2 (-2 (|:| -3637 *3) (|:| -2457 *3))) (-5 *1 (-782 *3 *4)) (-4 *3 (-724 *4))))) +(-10 -7 (-15 -3256 ((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|)) (-15 -3224 (|#1| |#1| |#1|)) (-15 -3214 (|#1| |#1| |#1|)) (-15 -3205 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3195 (|#1| |#1| |#1|)) (-15 -3112 (|#1| |#1| |#1|))) +((-3315 (((-707 (-1250)) $ (-1250)) 26)) (-3324 (((-707 (-562)) $ (-562)) 25)) (-3304 (((-787) $ (-129)) 27)) (-3335 (((-707 (-130)) $ (-130)) 24)) (-3923 (((-707 (-1250)) $) 12)) (-3877 (((-707 (-1248)) $) 8)) (-3900 (((-707 (-1247)) $) 10)) (-3935 (((-707 (-562)) $) 13)) (-3888 (((-707 (-560)) $) 9)) (-3912 (((-707 (-559)) $) 11)) (-3866 (((-787) $ (-129)) 7)) (-3947 (((-707 (-130)) $) 14)) (-3868 (((-112) $) 31)) (-3879 (((-707 $) |#1| (-977)) 32)) (-3720 (($ $) 6))) +(((-783 |#1|) (-141) (-1125)) (T -783)) +((-3879 (*1 *2 *3 *4) (-12 (-5 *4 (-977)) (-4 *3 (-1125)) (-5 *2 (-707 *1)) (-4 *1 (-783 *3)))) (-3868 (*1 *2 *1) (-12 (-4 *1 (-783 *3)) (-4 *3 (-1125)) (-5 *2 (-112))))) +(-13 (-589) (-10 -8 (-15 -3879 ((-707 $) |t#1| (-977))) (-15 -3868 ((-112) $)))) +(((-175) . T) ((-540) . T) ((-589) . T) ((-878) . T)) +((-2636 (((-2 (|:| -4060 (-705 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-705 (-577)))) (-577)) 71)) (-2627 (((-2 (|:| -4060 (-705 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-705 (-577))))) 69)) (-1827 (((-577)) 85))) +(((-784 |#1| |#2|) (-10 -7 (-15 -1827 ((-577))) (-15 -2627 ((-2 (|:| -4060 (-705 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-705 (-577)))))) (-15 -2636 ((-2 (|:| -4060 (-705 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-705 (-577)))) (-577)))) (-1268 (-577)) (-422 (-577) |#1|)) (T -784)) +((-2636 (*1 *2 *3) (-12 (-5 *3 (-577)) (-4 *4 (-1268 *3)) (-5 *2 (-2 (|:| -4060 (-705 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-705 *3)))) (-5 *1 (-784 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2627 (*1 *2) (-12 (-4 *3 (-1268 (-577))) (-5 *2 (-2 (|:| -4060 (-705 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-705 (-577))))) (-5 *1 (-784 *3 *4)) (-4 *4 (-422 (-577) *3)))) (-1827 (*1 *2) (-12 (-4 *3 (-1268 *2)) (-5 *2 (-577)) (-5 *1 (-784 *3 *4)) (-4 *4 (-422 *2 *3))))) +(-10 -7 (-15 -1827 ((-577))) (-15 -2627 ((-2 (|:| -4060 (-705 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-705 (-577)))))) (-15 -2636 ((-2 (|:| -4060 (-705 (-577))) (|:| |basisDen| (-577)) (|:| |basisInv| (-705 (-577)))) (-577)))) +((-3473 (((-112) $ $) NIL)) (-2921 (((-3 (|:| |nia| (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) $) 21)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 20) (($ (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 13) (($ (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) 18)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-785) (-13 (-1125) (-10 -8 (-15 -3544 ($ (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3544 ($ (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3544 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (-15 -2921 ((-3 (|:| |nia| (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) $))))) (T -785)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *1 (-785)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *1 (-785)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) (-5 *1 (-785)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) (-5 *1 (-785))))) +(-13 (-1125) (-10 -8 (-15 -3544 ($ (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3544 ($ (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -3544 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (-15 -2921 ((-3 (|:| |nia| (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| |mdnia| (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) $)))) +((-1440 (((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|))) 18) (((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|)) (-660 (-1201))) 17)) (-2546 (((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|))) 20) (((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|)) (-660 (-1201))) 19))) +(((-786 |#1|) (-10 -7 (-15 -1440 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|)) (-660 (-1201)))) (-15 -1440 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|)))) (-15 -2546 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|)) (-660 (-1201)))) (-15 -2546 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|))))) (-569)) (T -786)) +((-2546 (*1 *2 *3) (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *4)))))) (-5 *1 (-786 *4)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-660 (-1201))) (-4 *5 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *5)))))) (-5 *1 (-786 *5)))) (-1440 (*1 *2 *3) (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *4)))))) (-5 *1 (-786 *4)))) (-1440 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-660 (-1201))) (-4 *5 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *5)))))) (-5 *1 (-786 *5))))) +(-10 -7 (-15 -1440 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|)) (-660 (-1201)))) (-15 -1440 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|)))) (-15 -2546 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|)) (-660 (-1201)))) (-15 -2546 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-975 |#1|))))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-4243 (($ $ $) 10)) (-1956 (((-3 $ "failed") $ $) 15)) (-2826 (($ $ (-577)) 11)) (-1534 (($) NIL T CONST)) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($ $) NIL)) (-3429 (($ $ $) NIL)) (-2487 (((-112) $) NIL)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3480 (($ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 6 T CONST)) (-2816 (($) NIL T CONST)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-787)) NIL) (($ $ (-944)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ $ $) NIL))) +(((-787) (-13 (-809) (-742) (-10 -8 (-15 -3429 ($ $ $)) (-15 -3418 ($ $ $)) (-15 -3480 ($ $ $)) (-15 -3422 ((-2 (|:| -3637 $) (|:| -2457 $)) $ $)) (-15 -3462 ((-3 $ "failed") $ $)) (-15 -2826 ($ $ (-577))) (-15 -1910 ($ $)) (-6 (-4472 "*"))))) (T -787)) +((-3429 (*1 *1 *1 *1) (-5 *1 (-787))) (-3418 (*1 *1 *1 *1) (-5 *1 (-787))) (-3480 (*1 *1 *1 *1) (-5 *1 (-787))) (-3422 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3637 (-787)) (|:| -2457 (-787)))) (-5 *1 (-787)))) (-3462 (*1 *1 *1 *1) (|partial| -5 *1 (-787))) (-2826 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-787)))) (-1910 (*1 *1 *1) (-5 *1 (-787)))) +(-13 (-809) (-742) (-10 -8 (-15 -3429 ($ $ $)) (-15 -3418 ($ $ $)) (-15 -3480 ($ $ $)) (-15 -3422 ((-2 (|:| -3637 $) (|:| -2457 $)) $ $)) (-15 -3462 ((-3 $ "failed") $ $)) (-15 -2826 ($ $ (-577))) (-15 -1910 ($ $)) (-6 (-4472 "*")))) ((|Integer|) (|%ige| |#1| 0)) -((-3036 (((-3 |#2| "failed") |#2| |#2| (-115) (-1198)) 37))) -(((-785 |#1| |#2|) (-10 -7 (-15 -3036 ((-3 |#2| "failed") |#2| |#2| (-115) (-1198)))) (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148)) (-13 (-29 |#1|) (-1224) (-979))) (T -785)) -((-3036 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *1 (-785 *5 *2)) (-4 *2 (-13 (-29 *5) (-1224) (-979)))))) -(-10 -7 (-15 -3036 ((-3 |#2| "failed") |#2| |#2| (-115) (-1198)))) -((-3501 (((-787) |#1|) 8))) -(((-786 |#1|) (-10 -7 (-15 -3501 ((-787) |#1|))) (-1239)) (T -786)) -((-3501 (*1 *2 *3) (-12 (-5 *2 (-787)) (-5 *1 (-786 *3)) (-4 *3 (-1239))))) -(-10 -7 (-15 -3501 ((-787) |#1|))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 7)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 9))) -(((-787) (-1122)) (T -787)) -NIL -(-1122) -((-2234 ((|#2| |#4|) 35))) -(((-788 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2234 (|#2| |#4|))) (-464) (-1265 |#1|) (-737 |#1| |#2|) (-1265 |#3|)) (T -788)) -((-2234 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-737 *4 *2)) (-4 *2 (-1265 *4)) (-5 *1 (-788 *4 *2 *5 *3)) (-4 *3 (-1265 *5))))) -(-10 -7 (-15 -2234 (|#2| |#4|))) -((-3843 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2285 (((-1294) (-1180) (-1180) |#4| |#5|) 33)) (-4222 ((|#4| |#4| |#5|) 74)) (-3277 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#5|) 79)) (-4134 (((-657 (-2 (|:| |val| (-112)) (|:| -3946 |#5|))) |#4| |#5|) 16))) -(((-789 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3843 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4222 (|#4| |#4| |#5|)) (-15 -3277 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#5|)) (-15 -2285 ((-1294) (-1180) (-1180) |#4| |#5|)) (-15 -4134 ((-657 (-2 (|:| |val| (-112)) (|:| -3946 |#5|))) |#4| |#5|))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3| |#4|)) (T -789)) -((-4134 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3946 *4)))) (-5 *1 (-789 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-2285 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1180)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *4 (-1087 *6 *7 *8)) (-5 *2 (-1294)) (-5 *1 (-789 *6 *7 *8 *4 *5)) (-4 *5 (-1093 *6 *7 *8 *4)))) (-3277 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) (-5 *1 (-789 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-4222 (*1 *2 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *2 (-1087 *4 *5 *6)) (-5 *1 (-789 *4 *5 *6 *2 *3)) (-4 *3 (-1093 *4 *5 *6 *2)))) (-3843 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-789 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) -(-10 -7 (-15 -3843 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4222 (|#4| |#4| |#5|)) (-15 -3277 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#5|)) (-15 -2285 ((-1294) (-1180) (-1180) |#4| |#5|)) (-15 -4134 ((-657 (-2 (|:| |val| (-112)) (|:| -3946 |#5|))) |#4| |#5|))) -((-1624 (((-3 (-1194 (-1194 |#1|)) "failed") |#4|) 51)) (-2747 (((-657 |#4|) |#4|) 22)) (-1508 ((|#4| |#4|) 17))) -(((-790 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2747 ((-657 |#4|) |#4|)) (-15 -1624 ((-3 (-1194 (-1194 |#1|)) "failed") |#4|)) (-15 -1508 (|#4| |#4|))) (-360) (-339 |#1|) (-1265 |#2|) (-1265 |#3|) (-941)) (T -790)) -((-1508 (*1 *2 *2) (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1265 *4)) (-5 *1 (-790 *3 *4 *5 *2 *6)) (-4 *2 (-1265 *5)) (-14 *6 (-941)))) (-1624 (*1 *2 *3) (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1265 *5)) (-5 *2 (-1194 (-1194 *4))) (-5 *1 (-790 *4 *5 *6 *3 *7)) (-4 *3 (-1265 *6)) (-14 *7 (-941)))) (-2747 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1265 *5)) (-5 *2 (-657 *3)) (-5 *1 (-790 *4 *5 *6 *3 *7)) (-4 *3 (-1265 *6)) (-14 *7 (-941))))) -(-10 -7 (-15 -2747 ((-657 |#4|) |#4|)) (-15 -1624 ((-3 (-1194 (-1194 |#1|)) "failed") |#4|)) (-15 -1508 (|#4| |#4|))) -((-3378 (((-2 (|:| |deter| (-657 (-1194 |#5|))) (|:| |dterm| (-657 (-657 (-2 (|:| -2096 (-784)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-657 |#1|)) (|:| |nlead| (-657 |#5|))) (-1194 |#5|) (-657 |#1|) (-657 |#5|)) 72)) (-3518 (((-657 (-784)) |#1|) 20))) -(((-791 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3378 ((-2 (|:| |deter| (-657 (-1194 |#5|))) (|:| |dterm| (-657 (-657 (-2 (|:| -2096 (-784)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-657 |#1|)) (|:| |nlead| (-657 |#5|))) (-1194 |#5|) (-657 |#1|) (-657 |#5|))) (-15 -3518 ((-657 (-784)) |#1|))) (-1265 |#4|) (-806) (-862) (-317) (-969 |#4| |#2| |#3|)) (T -791)) -((-3518 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-657 (-784))) (-5 *1 (-791 *3 *4 *5 *6 *7)) (-4 *3 (-1265 *6)) (-4 *7 (-969 *6 *4 *5)))) (-3378 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1265 *9)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *9 (-317)) (-4 *10 (-969 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-657 (-1194 *10))) (|:| |dterm| (-657 (-657 (-2 (|:| -2096 (-784)) (|:| |pcoef| *10))))) (|:| |nfacts| (-657 *6)) (|:| |nlead| (-657 *10)))) (-5 *1 (-791 *6 *7 *8 *9 *10)) (-5 *3 (-1194 *10)) (-5 *4 (-657 *6)) (-5 *5 (-657 *10))))) -(-10 -7 (-15 -3378 ((-2 (|:| |deter| (-657 (-1194 |#5|))) (|:| |dterm| (-657 (-657 (-2 (|:| -2096 (-784)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-657 |#1|)) (|:| |nlead| (-657 |#5|))) (-1194 |#5|) (-657 |#1|) (-657 |#5|))) (-15 -3518 ((-657 (-784)) |#1|))) -((-2504 (((-657 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 |#1|))))) (-702 (-419 (-576))) |#1|) 31)) (-3454 (((-657 |#1|) (-702 (-419 (-576))) |#1|) 21)) (-4182 (((-972 (-419 (-576))) (-702 (-419 (-576))) (-1198)) 18) (((-972 (-419 (-576))) (-702 (-419 (-576)))) 17))) -(((-792 |#1|) (-10 -7 (-15 -4182 ((-972 (-419 (-576))) (-702 (-419 (-576))))) (-15 -4182 ((-972 (-419 (-576))) (-702 (-419 (-576))) (-1198))) (-15 -3454 ((-657 |#1|) (-702 (-419 (-576))) |#1|)) (-15 -2504 ((-657 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 |#1|))))) (-702 (-419 (-576))) |#1|))) (-13 (-374) (-861))) (T -792)) -((-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-702 (-419 (-576)))) (-5 *2 (-657 (-2 (|:| |outval| *4) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 *4)))))) (-5 *1 (-792 *4)) (-4 *4 (-13 (-374) (-861))))) (-3454 (*1 *2 *3 *4) (-12 (-5 *3 (-702 (-419 (-576)))) (-5 *2 (-657 *4)) (-5 *1 (-792 *4)) (-4 *4 (-13 (-374) (-861))))) (-4182 (*1 *2 *3 *4) (-12 (-5 *3 (-702 (-419 (-576)))) (-5 *4 (-1198)) (-5 *2 (-972 (-419 (-576)))) (-5 *1 (-792 *5)) (-4 *5 (-13 (-374) (-861))))) (-4182 (*1 *2 *3) (-12 (-5 *3 (-702 (-419 (-576)))) (-5 *2 (-972 (-419 (-576)))) (-5 *1 (-792 *4)) (-4 *4 (-13 (-374) (-861)))))) -(-10 -7 (-15 -4182 ((-972 (-419 (-576))) (-702 (-419 (-576))))) (-15 -4182 ((-972 (-419 (-576))) (-702 (-419 (-576))) (-1198))) (-15 -3454 ((-657 |#1|) (-702 (-419 (-576))) |#1|)) (-15 -2504 ((-657 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-657 (-702 |#1|))))) (-702 (-419 (-576))) |#1|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 36)) (-2029 (((-657 |#2|) $) NIL)) (-1849 (((-1194 $) $ |#2|) NIL) (((-1194 |#1|) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-1775 (((-784) $) NIL) (((-784) $ (-657 |#2|)) NIL)) (-4424 (($ $) 30)) (-3873 (((-112) $ $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-1558 (($ $ $) 110 (|has| |#1| (-568)))) (-1574 (((-657 $) $ $) 123 (|has| |#1| (-568)))) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2638 (($ $) NIL (|has| |#1| (-464)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-972 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1198))))) (((-3 $ "failed") (-972 (-576))) NIL (-2802 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1198))) (-2712 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1198)))))) (((-3 $ "failed") (-972 |#1|)) NIL (-2802 (-12 (|has| |#2| (-626 (-1198))) (-2712 (|has| |#1| (-38 (-419 (-576))))) (-2712 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1198))) (-2712 (|has| |#1| (-38 (-419 (-576))))) (-2712 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1198))) (-2712 (|has| |#1| (-1014 (-576))))))) (((-3 (-1147 |#1| |#2|) "failed") $) 21)) (-2884 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) ((|#2| $) NIL) (($ (-972 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1198))))) (($ (-972 (-576))) NIL (-2802 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1198))) (-2712 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1198)))))) (($ (-972 |#1|)) NIL (-2802 (-12 (|has| |#2| (-626 (-1198))) (-2712 (|has| |#1| (-38 (-419 (-576))))) (-2712 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1198))) (-2712 (|has| |#1| (-38 (-419 (-576))))) (-2712 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1198))) (-2712 (|has| |#1| (-1014 (-576))))))) (((-1147 |#1| |#2|) $) NIL)) (-3203 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-568)))) (-2212 (($ $) NIL) (($ $ |#2|) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3206 (((-112) $ $) NIL) (((-112) $ (-657 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-4121 (((-112) $) NIL)) (-4267 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 81)) (-2133 (($ $) 136 (|has| |#1| (-464)))) (-3813 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-2199 (((-657 $) $) NIL)) (-4257 (((-112) $) NIL (|has| |#1| (-929)))) (-1807 (($ $) NIL (|has| |#1| (-568)))) (-3212 (($ $) NIL (|has| |#1| (-568)))) (-3372 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-1704 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-3124 (($ $ |#1| (-543 |#2|) $) NIL)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| |#1| (-902 (-390))) (|has| |#2| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| |#1| (-902 (-576))) (|has| |#2| (-902 (-576)))))) (-4094 (((-112) $) 57)) (-4334 (((-784) $) NIL)) (-1878 (((-112) $ $) NIL) (((-112) $ (-657 $)) NIL)) (-4249 (($ $ $ $ $) 107 (|has| |#1| (-568)))) (-3627 ((|#2| $) 22)) (-2014 (($ (-1194 |#1|) |#2|) NIL) (($ (-1194 $) |#2|) NIL)) (-3724 (((-657 $) $) NIL)) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-784)) 38) (($ $ (-657 |#2|) (-657 (-784))) NIL)) (-4176 (($ $ $) 63)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ |#2|) NIL)) (-4064 (((-112) $) NIL)) (-4436 (((-543 |#2|) $) NIL) (((-784) $ |#2|) NIL) (((-657 (-784)) $ (-657 |#2|)) NIL)) (-1465 (((-784) $) 23)) (-4056 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-2353 (((-3 |#2| "failed") $) NIL)) (-2841 (($ $) NIL (|has| |#1| (-464)))) (-1691 (($ $) NIL (|has| |#1| (-464)))) (-3829 (((-657 $) $) NIL)) (-2485 (($ $) 39)) (-1377 (($ $) NIL (|has| |#1| (-464)))) (-3699 (((-657 $) $) 43)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-4149 (($ $) 41)) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL) (($ $ |#2|) 48)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3641 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3897 (-784))) $ $) 96)) (-2781 (((-2 (|:| -1771 $) (|:| |gap| (-784)) (|:| -2335 $) (|:| -3644 $)) $ $) 78) (((-2 (|:| -1771 $) (|:| |gap| (-784)) (|:| -2335 $) (|:| -3644 $)) $ $ |#2|) NIL)) (-2291 (((-2 (|:| -1771 $) (|:| |gap| (-784)) (|:| -3644 $)) $ $) NIL) (((-2 (|:| -1771 $) (|:| |gap| (-784)) (|:| -3644 $)) $ $ |#2|) NIL)) (-2386 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2826 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-2342 (((-1180) $) NIL)) (-2382 (($ $ $) 125 (|has| |#1| (-568)))) (-1733 (((-657 $) $) 32)) (-1392 (((-3 (-657 $) "failed") $) NIL)) (-2974 (((-3 (-657 $) "failed") $) NIL)) (-2999 (((-3 (-2 (|:| |var| |#2|) (|:| -1801 (-784))) "failed") $) NIL)) (-4365 (((-112) $ $) NIL) (((-112) $ (-657 $)) NIL)) (-2833 (($ $ $) NIL)) (-1706 (($ $) 24)) (-4015 (((-112) $ $) NIL)) (-3965 (((-112) $ $) NIL) (((-112) $ (-657 $)) NIL)) (-2843 (($ $ $) NIL)) (-4229 (($ $) 26)) (-1471 (((-1142) $) NIL)) (-2244 (((-2 (|:| -3436 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-568)))) (-4141 (((-2 (|:| -3436 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-568)))) (-2146 (((-112) $) 56)) (-2160 ((|#1| $) 58)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-464)))) (-3436 ((|#1| |#1| $) 133 (|has| |#1| (-464))) (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1885 (((-430 $) $) NIL (|has| |#1| (-929)))) (-3335 (((-2 (|:| -3436 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-568)))) (-3418 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-568)))) (-3019 (($ $ |#1|) 129 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-1773 (($ $ |#1|) 128 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-3236 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-657 |#2|) (-657 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-657 |#2|) (-657 $)) NIL)) (-1701 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2815 (($ $ (-657 |#2|) (-657 (-784))) NIL) (($ $ |#2| (-784)) NIL) (($ $ (-657 |#2|)) NIL) (($ $ |#2|) NIL)) (-1770 (((-543 |#2|) $) NIL) (((-784) $ |#2|) 45) (((-657 (-784)) $ (-657 |#2|)) NIL)) (-2038 (($ $) NIL)) (-2255 (($ $) 35)) (-4148 (((-908 (-390)) $) NIL (-12 (|has| |#1| (-626 (-908 (-390)))) (|has| |#2| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| |#1| (-626 (-908 (-576)))) (|has| |#2| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) (($ (-972 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1198))))) (($ (-972 (-576))) NIL (-2802 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1198))) (-2712 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1198)))))) (($ (-972 |#1|)) NIL (|has| |#2| (-626 (-1198)))) (((-1180) $) NIL (-12 (|has| |#1| (-1060 (-576))) (|has| |#2| (-626 (-1198))))) (((-972 |#1|) $) NIL (|has| |#2| (-626 (-1198))))) (-1450 ((|#1| $) 132 (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-972 |#1|) $) NIL (|has| |#2| (-626 (-1198)))) (((-1147 |#1| |#2|) $) 18) (($ (-1147 |#1| |#2|)) 19) (($ (-419 (-576))) NIL (-2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-4037 (((-657 |#1|) $) NIL)) (-2313 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-784)) 47) (($ $ (-657 |#2|) (-657 (-784))) NIL)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-1960 (((-784)) NIL T CONST)) (-2702 (($ $ $ (-784)) NIL (|has| |#1| (-174)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2769 (($) 13 T CONST)) (-1544 (((-3 (-112) "failed") $ $) NIL)) (-2779 (($) 37 T CONST)) (-1831 (($ $ $ $ (-784)) 105 (|has| |#1| (-568)))) (-4228 (($ $ $ (-784)) 104 (|has| |#1| (-568)))) (-2097 (($ $ (-657 |#2|) (-657 (-784))) NIL) (($ $ |#2| (-784)) NIL) (($ $ (-657 |#2|)) NIL) (($ $ |#2|) NIL)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) 75)) (-3012 (($ $ $) 85)) (** (($ $ (-941)) NIL) (($ $ (-784)) 70)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 62) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) -(((-793 |#1| |#2|) (-13 (-1087 |#1| (-543 |#2|) |#2|) (-625 (-1147 |#1| |#2|)) (-1060 (-1147 |#1| |#2|))) (-1071) (-862)) (T -793)) -NIL -(-13 (-1087 |#1| (-543 |#2|) |#2|) (-625 (-1147 |#1| |#2|)) (-1060 (-1147 |#1| |#2|))) -((-4083 (((-795 |#2|) (-1 |#2| |#1|) (-795 |#1|)) 13))) -(((-794 |#1| |#2|) (-10 -7 (-15 -4083 ((-795 |#2|) (-1 |#2| |#1|) (-795 |#1|)))) (-1071) (-1071)) (T -794)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-795 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-5 *2 (-795 *6)) (-5 *1 (-794 *5 *6))))) -(-10 -7 (-15 -4083 ((-795 |#2|) (-1 |#2| |#1|) (-795 |#1|)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 12)) (-2266 (((-1289 |#1|) $ (-784)) NIL)) (-2029 (((-657 (-1104)) $) NIL)) (-3745 (($ (-1194 |#1|)) NIL)) (-1849 (((-1194 $) $ (-1104)) NIL) (((-1194 |#1|) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-1775 (((-784) $) NIL) (((-784) $ (-657 (-1104))) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2905 (((-657 $) $ $) 54 (|has| |#1| (-568)))) (-1558 (($ $ $) 50 (|has| |#1| (-568)))) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2638 (($ $) NIL (|has| |#1| (-464)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2864 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2794 (($ $ (-784)) NIL)) (-1462 (($ $ (-784)) NIL)) (-3757 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-1104) "failed") $) NIL) (((-3 (-1194 |#1|) "failed") $) 10)) (-2884 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-1104) $) NIL) (((-1194 |#1|) $) NIL)) (-3203 (($ $ $ (-1104)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-3373 (($ $ $) NIL (|has| |#1| (-374)))) (-2212 (($ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3385 (($ $ $) NIL (|has| |#1| (-374)))) (-3327 (($ $ $) NIL)) (-2432 (($ $ $) 87 (|has| |#1| (-568)))) (-4267 (((-2 (|:| -1771 |#1|) (|:| -2335 $) (|:| -3644 $)) $ $) 86 (|has| |#1| (-568)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-3813 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1104)) NIL (|has| |#1| (-464)))) (-2199 (((-657 $) $) NIL)) (-4257 (((-112) $) NIL (|has| |#1| (-929)))) (-3124 (($ $ |#1| (-784) $) NIL)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-1104) (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-1104) (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-3182 (((-784) $ $) NIL (|has| |#1| (-568)))) (-4094 (((-112) $) NIL)) (-4334 (((-784) $) NIL)) (-4019 (((-3 $ "failed") $) NIL (|has| |#1| (-1174)))) (-2014 (($ (-1194 |#1|) (-1104)) NIL) (($ (-1194 $) (-1104)) NIL)) (-1525 (($ $ (-784)) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3724 (((-657 $) $) NIL)) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-784)) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-4176 (($ $ $) 27)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ (-1104)) NIL) (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-4436 (((-784) $) NIL) (((-784) $ (-1104)) NIL) (((-657 (-784)) $ (-657 (-1104))) NIL)) (-4056 (($ (-1 (-784) (-784)) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-2890 (((-1194 |#1|) $) NIL)) (-2353 (((-3 (-1104) "failed") $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3641 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3897 (-784))) $ $) 37)) (-2018 (($ $ $) 41)) (-4377 (($ $ $) 47)) (-2781 (((-2 (|:| -1771 |#1|) (|:| |gap| (-784)) (|:| -2335 $) (|:| -3644 $)) $ $) 46)) (-2342 (((-1180) $) NIL)) (-2382 (($ $ $) 56 (|has| |#1| (-568)))) (-2025 (((-2 (|:| -2335 $) (|:| -3644 $)) $ (-784)) NIL)) (-1392 (((-3 (-657 $) "failed") $) NIL)) (-2974 (((-3 (-657 $) "failed") $) NIL)) (-2999 (((-3 (-2 (|:| |var| (-1104)) (|:| -1801 (-784))) "failed") $) NIL)) (-4190 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1706 (($) NIL (|has| |#1| (-1174)) CONST)) (-1471 (((-1142) $) NIL)) (-2244 (((-2 (|:| -3436 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-568)))) (-4141 (((-2 (|:| -3436 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-568)))) (-4271 (((-2 (|:| -3203 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-568)))) (-3709 (((-2 (|:| -3203 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-568)))) (-2146 (((-112) $) 13)) (-2160 ((|#1| $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-464)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2303 (($ $ (-784) |#1| $) 26)) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1885 (((-430 $) $) NIL (|has| |#1| (-929)))) (-3335 (((-2 (|:| -3436 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-568)))) (-1903 (((-2 (|:| -3203 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-568)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-3418 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3236 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-1104) |#1|) NIL) (($ $ (-657 (-1104)) (-657 |#1|)) NIL) (($ $ (-1104) $) NIL) (($ $ (-657 (-1104)) (-657 $)) NIL)) (-2034 (((-784) $) NIL (|has| |#1| (-374)))) (-2835 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-4337 (((-3 $ "failed") $ (-784)) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-374)))) (-1701 (($ $ (-1104)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2815 (($ $ (-657 (-1104)) (-657 (-784))) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104))) NIL) (($ $ (-1104)) NIL) (($ $) NIL) (($ $ (-784)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-1770 (((-784) $) NIL) (((-784) $ (-1104)) NIL) (((-657 (-784)) $ (-657 (-1104))) NIL)) (-4148 (((-908 (-390)) $) NIL (-12 (|has| (-1104) (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-1104) (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-1104) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1450 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1104)) NIL (|has| |#1| (-464)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-3432 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1104)) NIL) (((-1194 |#1|) $) 7) (($ (-1194 |#1|)) 8) (($ (-419 (-576))) NIL (-2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-4037 (((-657 |#1|) $) NIL)) (-2313 ((|#1| $ (-784)) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-1960 (((-784)) NIL T CONST)) (-2702 (($ $ $ (-784)) NIL (|has| |#1| (-174)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2769 (($) 28 T CONST)) (-2779 (($) 32 T CONST)) (-2097 (($ $ (-657 (-1104)) (-657 (-784))) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104))) NIL) (($ $ (-1104)) NIL) (($ $) NIL) (($ $ (-784)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3022 (($ $) 40) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) -(((-795 |#1|) (-13 (-1265 |#1|) (-625 (-1194 |#1|)) (-1060 (-1194 |#1|)) (-10 -8 (-15 -2303 ($ $ (-784) |#1| $)) (-15 -4176 ($ $ $)) (-15 -3641 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3897 (-784))) $ $)) (-15 -2018 ($ $ $)) (-15 -2781 ((-2 (|:| -1771 |#1|) (|:| |gap| (-784)) (|:| -2335 $) (|:| -3644 $)) $ $)) (-15 -4377 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -2905 ((-657 $) $ $)) (-15 -2382 ($ $ $)) (-15 -3335 ((-2 (|:| -3436 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4141 ((-2 (|:| -3436 $) (|:| |coef1| $)) $ $)) (-15 -2244 ((-2 (|:| -3436 $) (|:| |coef2| $)) $ $)) (-15 -1903 ((-2 (|:| -3203 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3709 ((-2 (|:| -3203 |#1|) (|:| |coef1| $)) $ $)) (-15 -4271 ((-2 (|:| -3203 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1071)) (T -795)) -((-2303 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-784)) (-5 *1 (-795 *3)) (-4 *3 (-1071)))) (-4176 (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1071)))) (-3641 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-795 *3)) (|:| |polden| *3) (|:| -3897 (-784)))) (-5 *1 (-795 *3)) (-4 *3 (-1071)))) (-2018 (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1071)))) (-2781 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1771 *3) (|:| |gap| (-784)) (|:| -2335 (-795 *3)) (|:| -3644 (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-1071)))) (-4377 (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1071)))) (-2905 (*1 *2 *1 *1) (-12 (-5 *2 (-657 (-795 *3))) (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071)))) (-2382 (*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-568)) (-4 *2 (-1071)))) (-3335 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3436 (-795 *3)) (|:| |coef1| (-795 *3)) (|:| |coef2| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071)))) (-4141 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3436 (-795 *3)) (|:| |coef1| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071)))) (-2244 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3436 (-795 *3)) (|:| |coef2| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071)))) (-1903 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3203 *3) (|:| |coef1| (-795 *3)) (|:| |coef2| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071)))) (-3709 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3203 *3) (|:| |coef1| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071)))) (-4271 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3203 *3) (|:| |coef2| (-795 *3)))) (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071))))) -(-13 (-1265 |#1|) (-625 (-1194 |#1|)) (-1060 (-1194 |#1|)) (-10 -8 (-15 -2303 ($ $ (-784) |#1| $)) (-15 -4176 ($ $ $)) (-15 -3641 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3897 (-784))) $ $)) (-15 -2018 ($ $ $)) (-15 -2781 ((-2 (|:| -1771 |#1|) (|:| |gap| (-784)) (|:| -2335 $) (|:| -3644 $)) $ $)) (-15 -4377 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -2905 ((-657 $) $ $)) (-15 -2382 ($ $ $)) (-15 -3335 ((-2 (|:| -3436 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4141 ((-2 (|:| -3436 $) (|:| |coef1| $)) $ $)) (-15 -2244 ((-2 (|:| -3436 $) (|:| |coef2| $)) $ $)) (-15 -1903 ((-2 (|:| -3203 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3709 ((-2 (|:| -3203 |#1|) (|:| |coef1| $)) $ $)) (-15 -4271 ((-2 (|:| -3203 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-1887 ((|#1| (-784) |#1|) 33 (|has| |#1| (-38 (-419 (-576)))))) (-4207 ((|#1| (-784) |#1|) 23)) (-1689 ((|#1| (-784) |#1|) 35 (|has| |#1| (-38 (-419 (-576))))))) -(((-796 |#1|) (-10 -7 (-15 -4207 (|#1| (-784) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1689 (|#1| (-784) |#1|)) (-15 -1887 (|#1| (-784) |#1|))) |%noBranch|)) (-174)) (T -796)) -((-1887 (*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-796 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-1689 (*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-796 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-4207 (*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-796 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -4207 (|#1| (-784) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -1689 (|#1| (-784) |#1|)) (-15 -1887 (|#1| (-784) |#1|))) |%noBranch|)) -((-3429 (((-112) $ $) 7)) (-2856 (((-657 (-2 (|:| -2016 $) (|:| -3209 (-657 |#4|)))) (-657 |#4|)) 86)) (-3472 (((-657 $) (-657 |#4|)) 87) (((-657 $) (-657 |#4|) (-112)) 112)) (-2029 (((-657 |#3|) $) 34)) (-1626 (((-112) $) 27)) (-3072 (((-112) $) 18 (|has| |#1| (-568)))) (-4021 (((-112) |#4| $) 102) (((-112) $) 98)) (-1329 ((|#4| |#4| $) 93)) (-2638 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 $))) |#4| $) 127)) (-1850 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) 28)) (-3793 (((-112) $ (-784)) 45)) (-2035 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4466))) (((-3 |#4| "failed") $ |#3|) 80)) (-4359 (($) 46 T CONST)) (-2433 (((-112) $) 23 (|has| |#1| (-568)))) (-1688 (((-112) $ $) 25 (|has| |#1| (-568)))) (-4058 (((-112) $ $) 24 (|has| |#1| (-568)))) (-2995 (((-112) $) 26 (|has| |#1| (-568)))) (-2292 (((-657 |#4|) (-657 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1978 (((-657 |#4|) (-657 |#4|) $) 19 (|has| |#1| (-568)))) (-2410 (((-657 |#4|) (-657 |#4|) $) 20 (|has| |#1| (-568)))) (-1624 (((-3 $ "failed") (-657 |#4|)) 37)) (-2884 (($ (-657 |#4|)) 36)) (-3522 (((-3 $ "failed") $) 83)) (-2073 ((|#4| |#4| $) 90)) (-3914 (($ $) 69 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-3895 (($ |#4| $) 68 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4466)))) (-3644 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3206 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3003 ((|#4| |#4| $) 88)) (-3622 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4466))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1957 (((-2 (|:| -2016 (-657 |#4|)) (|:| -3209 (-657 |#4|))) $) 106)) (-3374 (((-112) |#4| $) 137)) (-4211 (((-112) |#4| $) 134)) (-2376 (((-112) |#4| $) 138) (((-112) $) 135)) (-1458 (((-657 |#4|) $) 53 (|has| $ (-6 -4466)))) (-1878 (((-112) |#4| $) 105) (((-112) $) 104)) (-3627 ((|#3| $) 35)) (-1833 (((-112) $ (-784)) 44)) (-2070 (((-657 |#4|) $) 54 (|has| $ (-6 -4466)))) (-1627 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#4| |#4|) $) 48)) (-1746 (((-657 |#3|) $) 33)) (-4089 (((-112) |#3| $) 32)) (-4261 (((-112) $ (-784)) 43)) (-2342 (((-1180) $) 10)) (-3674 (((-3 |#4| (-657 $)) |#4| |#4| $) 129)) (-2382 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 $))) |#4| |#4| $) 128)) (-3920 (((-3 |#4| "failed") $) 84)) (-3149 (((-657 $) |#4| $) 130)) (-1971 (((-3 (-112) (-657 $)) |#4| $) 133)) (-4183 (((-657 (-2 (|:| |val| (-112)) (|:| -3946 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3107 (((-657 $) |#4| $) 126) (((-657 $) (-657 |#4|) $) 125) (((-657 $) (-657 |#4|) (-657 $)) 124) (((-657 $) |#4| (-657 $)) 123)) (-4062 (($ |#4| $) 118) (($ (-657 |#4|) $) 117)) (-1765 (((-657 |#4|) $) 108)) (-4365 (((-112) |#4| $) 100) (((-112) $) 96)) (-2833 ((|#4| |#4| $) 91)) (-4015 (((-112) $ $) 111)) (-3404 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3965 (((-112) |#4| $) 101) (((-112) $) 97)) (-2843 ((|#4| |#4| $) 92)) (-1471 (((-1142) $) 11)) (-3510 (((-3 |#4| "failed") $) 85)) (-2951 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1548 (((-3 $ "failed") $ |#4|) 79)) (-3926 (($ $ |#4|) 78) (((-657 $) |#4| $) 116) (((-657 $) |#4| (-657 $)) 115) (((-657 $) (-657 |#4|) $) 114) (((-657 $) (-657 |#4|) (-657 $)) 113)) (-3399 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 |#4|) (-657 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-2806 (((-112) $ $) 39)) (-3387 (((-112) $) 42)) (-3581 (($) 41)) (-1770 (((-784) $) 107)) (-1482 (((-784) |#4| $) 55 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4466)))) (-1923 (($ $) 40)) (-4148 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3511 (($ (-657 |#4|)) 61)) (-2956 (($ $ |#3|) 29)) (-1664 (($ $ |#3|) 31)) (-3459 (($ $) 89)) (-3604 (($ $ |#3|) 30)) (-3501 (((-877) $) 12) (((-657 |#4|) $) 38)) (-3540 (((-784) $) 77 (|has| |#3| (-379)))) (-2046 (((-112) $ $) 6)) (-2631 (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3302 (((-112) $ (-1 (-112) |#4| (-657 |#4|))) 99)) (-2375 (((-657 $) |#4| $) 122) (((-657 $) |#4| (-657 $)) 121) (((-657 $) (-657 |#4|) $) 120) (((-657 $) (-657 |#4|) (-657 $)) 119)) (-2147 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4466)))) (-3039 (((-657 |#3|) $) 82)) (-3421 (((-112) |#4| $) 136)) (-1863 (((-112) |#3| $) 81)) (-2933 (((-112) $ $) 8)) (-3440 (((-784) $) 47 (|has| $ (-6 -4466))))) -(((-797 |#1| |#2| |#3| |#4|) (-141) (-464) (-806) (-862) (-1087 |t#1| |t#2| |t#3|)) (T -797)) -NIL -(-13 (-1093 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-625 (-657 |#4|)) . T) ((-625 (-877)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-998 |#1| |#2| |#3| |#4|) . T) ((-1093 |#1| |#2| |#3| |#4|) . T) ((-1122) . T) ((-1232 |#1| |#2| |#3| |#4|) . T) ((-1239) . T)) -((-1810 (((-3 (-390) "failed") (-326 |#1|) (-941)) 62 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-390) "failed") (-326 |#1|)) 54 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-390) "failed") (-419 (-972 |#1|)) (-941)) 41 (|has| |#1| (-568))) (((-3 (-390) "failed") (-419 (-972 |#1|))) 40 (|has| |#1| (-568))) (((-3 (-390) "failed") (-972 |#1|) (-941)) 31 (|has| |#1| (-1071))) (((-3 (-390) "failed") (-972 |#1|)) 30 (|has| |#1| (-1071)))) (-3188 (((-390) (-326 |#1|) (-941)) 99 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-390) (-326 |#1|)) 94 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-390) (-419 (-972 |#1|)) (-941)) 91 (|has| |#1| (-568))) (((-390) (-419 (-972 |#1|))) 90 (|has| |#1| (-568))) (((-390) (-972 |#1|) (-941)) 86 (|has| |#1| (-1071))) (((-390) (-972 |#1|)) 85 (|has| |#1| (-1071))) (((-390) |#1| (-941)) 76) (((-390) |#1|) 22)) (-1669 (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-941)) 71 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 |#1|) (-941)) 63 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 |#1|)) 61 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-419 (-972 (-171 |#1|))) (-941)) 46 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-972 (-171 |#1|)))) 45 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-972 |#1|)) (-941)) 39 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-972 |#1|))) 38 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-972 |#1|) (-941)) 28 (|has| |#1| (-1071))) (((-3 (-171 (-390)) "failed") (-972 |#1|)) 26 (|has| |#1| (-1071))) (((-3 (-171 (-390)) "failed") (-972 (-171 |#1|)) (-941)) 18 (|has| |#1| (-174))) (((-3 (-171 (-390)) "failed") (-972 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-4007 (((-171 (-390)) (-326 (-171 |#1|)) (-941)) 102 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 |#1|) (-941)) 100 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 |#1|)) 98 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-419 (-972 (-171 |#1|))) (-941)) 93 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-972 (-171 |#1|)))) 92 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-972 |#1|)) (-941)) 89 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-972 |#1|))) 88 (|has| |#1| (-568))) (((-171 (-390)) (-972 |#1|) (-941)) 84 (|has| |#1| (-1071))) (((-171 (-390)) (-972 |#1|)) 83 (|has| |#1| (-1071))) (((-171 (-390)) (-972 (-171 |#1|)) (-941)) 78 (|has| |#1| (-174))) (((-171 (-390)) (-972 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|) (-941)) 80 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-390)) |#1| (-941)) 27) (((-171 (-390)) |#1|) 25))) -(((-798 |#1|) (-10 -7 (-15 -3188 ((-390) |#1|)) (-15 -3188 ((-390) |#1| (-941))) (-15 -4007 ((-171 (-390)) |#1|)) (-15 -4007 ((-171 (-390)) |#1| (-941))) (IF (|has| |#1| (-174)) (PROGN (-15 -4007 ((-171 (-390)) (-171 |#1|))) (-15 -4007 ((-171 (-390)) (-171 |#1|) (-941))) (-15 -4007 ((-171 (-390)) (-972 (-171 |#1|)))) (-15 -4007 ((-171 (-390)) (-972 (-171 |#1|)) (-941)))) |%noBranch|) (IF (|has| |#1| (-1071)) (PROGN (-15 -3188 ((-390) (-972 |#1|))) (-15 -3188 ((-390) (-972 |#1|) (-941))) (-15 -4007 ((-171 (-390)) (-972 |#1|))) (-15 -4007 ((-171 (-390)) (-972 |#1|) (-941)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -3188 ((-390) (-419 (-972 |#1|)))) (-15 -3188 ((-390) (-419 (-972 |#1|)) (-941))) (-15 -4007 ((-171 (-390)) (-419 (-972 |#1|)))) (-15 -4007 ((-171 (-390)) (-419 (-972 |#1|)) (-941))) (-15 -4007 ((-171 (-390)) (-419 (-972 (-171 |#1|))))) (-15 -4007 ((-171 (-390)) (-419 (-972 (-171 |#1|))) (-941))) (IF (|has| |#1| (-862)) (PROGN (-15 -3188 ((-390) (-326 |#1|))) (-15 -3188 ((-390) (-326 |#1|) (-941))) (-15 -4007 ((-171 (-390)) (-326 |#1|))) (-15 -4007 ((-171 (-390)) (-326 |#1|) (-941))) (-15 -4007 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -4007 ((-171 (-390)) (-326 (-171 |#1|)) (-941)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -1669 ((-3 (-171 (-390)) "failed") (-972 (-171 |#1|)))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-972 (-171 |#1|)) (-941)))) |%noBranch|) (IF (|has| |#1| (-1071)) (PROGN (-15 -1810 ((-3 (-390) "failed") (-972 |#1|))) (-15 -1810 ((-3 (-390) "failed") (-972 |#1|) (-941))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-972 |#1|))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-972 |#1|) (-941)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -1810 ((-3 (-390) "failed") (-419 (-972 |#1|)))) (-15 -1810 ((-3 (-390) "failed") (-419 (-972 |#1|)) (-941))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-419 (-972 |#1|)))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-419 (-972 |#1|)) (-941))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-419 (-972 (-171 |#1|))))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-419 (-972 (-171 |#1|))) (-941))) (IF (|has| |#1| (-862)) (PROGN (-15 -1810 ((-3 (-390) "failed") (-326 |#1|))) (-15 -1810 ((-3 (-390) "failed") (-326 |#1|) (-941))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-941))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-941)))) |%noBranch|)) |%noBranch|)) (-626 (-390))) (T -798)) -((-1669 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-1669 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-1669 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-1669 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-1810 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) (-1810 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *4)))) (-1669 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-972 (-171 *5)))) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-1669 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-972 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-1669 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-1669 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-1810 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) (-1810 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *4)))) (-1669 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-972 *5)) (-5 *4 (-941)) (-4 *5 (-1071)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-1669 (*1 *2 *3) (|partial| -12 (-5 *3 (-972 *4)) (-4 *4 (-1071)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-1810 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-972 *5)) (-5 *4 (-941)) (-4 *5 (-1071)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) (-1810 (*1 *2 *3) (|partial| -12 (-5 *3 (-972 *4)) (-4 *4 (-1071)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *4)))) (-1669 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-972 (-171 *5))) (-5 *4 (-941)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-1669 (*1 *2 *3) (|partial| -12 (-5 *3 (-972 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-4007 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-4007 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *4)))) (-4007 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 (-171 *5)))) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-419 (-972 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-4007 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *4)))) (-4007 (*1 *2 *3 *4) (-12 (-5 *3 (-972 *5)) (-5 *4 (-941)) (-4 *5 (-1071)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-972 *4)) (-4 *4 (-1071)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *3 (-972 *5)) (-5 *4 (-941)) (-4 *5 (-1071)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-972 *4)) (-4 *4 (-1071)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *4)))) (-4007 (*1 *2 *3 *4) (-12 (-5 *3 (-972 (-171 *5))) (-5 *4 (-941)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-972 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-4007 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-941)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) (-4007 (*1 *2 *3 *4) (-12 (-5 *4 (-941)) (-5 *2 (-171 (-390))) (-5 *1 (-798 *3)) (-4 *3 (-626 (-390))))) (-4007 (*1 *2 *3) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-798 *3)) (-4 *3 (-626 (-390))))) (-3188 (*1 *2 *3 *4) (-12 (-5 *4 (-941)) (-5 *2 (-390)) (-5 *1 (-798 *3)) (-4 *3 (-626 *2)))) (-3188 (*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-798 *3)) (-4 *3 (-626 *2))))) -(-10 -7 (-15 -3188 ((-390) |#1|)) (-15 -3188 ((-390) |#1| (-941))) (-15 -4007 ((-171 (-390)) |#1|)) (-15 -4007 ((-171 (-390)) |#1| (-941))) (IF (|has| |#1| (-174)) (PROGN (-15 -4007 ((-171 (-390)) (-171 |#1|))) (-15 -4007 ((-171 (-390)) (-171 |#1|) (-941))) (-15 -4007 ((-171 (-390)) (-972 (-171 |#1|)))) (-15 -4007 ((-171 (-390)) (-972 (-171 |#1|)) (-941)))) |%noBranch|) (IF (|has| |#1| (-1071)) (PROGN (-15 -3188 ((-390) (-972 |#1|))) (-15 -3188 ((-390) (-972 |#1|) (-941))) (-15 -4007 ((-171 (-390)) (-972 |#1|))) (-15 -4007 ((-171 (-390)) (-972 |#1|) (-941)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -3188 ((-390) (-419 (-972 |#1|)))) (-15 -3188 ((-390) (-419 (-972 |#1|)) (-941))) (-15 -4007 ((-171 (-390)) (-419 (-972 |#1|)))) (-15 -4007 ((-171 (-390)) (-419 (-972 |#1|)) (-941))) (-15 -4007 ((-171 (-390)) (-419 (-972 (-171 |#1|))))) (-15 -4007 ((-171 (-390)) (-419 (-972 (-171 |#1|))) (-941))) (IF (|has| |#1| (-862)) (PROGN (-15 -3188 ((-390) (-326 |#1|))) (-15 -3188 ((-390) (-326 |#1|) (-941))) (-15 -4007 ((-171 (-390)) (-326 |#1|))) (-15 -4007 ((-171 (-390)) (-326 |#1|) (-941))) (-15 -4007 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -4007 ((-171 (-390)) (-326 (-171 |#1|)) (-941)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -1669 ((-3 (-171 (-390)) "failed") (-972 (-171 |#1|)))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-972 (-171 |#1|)) (-941)))) |%noBranch|) (IF (|has| |#1| (-1071)) (PROGN (-15 -1810 ((-3 (-390) "failed") (-972 |#1|))) (-15 -1810 ((-3 (-390) "failed") (-972 |#1|) (-941))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-972 |#1|))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-972 |#1|) (-941)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -1810 ((-3 (-390) "failed") (-419 (-972 |#1|)))) (-15 -1810 ((-3 (-390) "failed") (-419 (-972 |#1|)) (-941))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-419 (-972 |#1|)))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-419 (-972 |#1|)) (-941))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-419 (-972 (-171 |#1|))))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-419 (-972 (-171 |#1|))) (-941))) (IF (|has| |#1| (-862)) (PROGN (-15 -1810 ((-3 (-390) "failed") (-326 |#1|))) (-15 -1810 ((-3 (-390) "failed") (-326 |#1|) (-941))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-941))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -1669 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-941)))) |%noBranch|)) |%noBranch|)) -((-2788 (((-941) (-1180)) 89)) (-2397 (((-3 (-390) "failed") (-1180)) 36)) (-4371 (((-390) (-1180)) 34)) (-4090 (((-941) (-1180)) 63)) (-3228 (((-1180) (-941)) 73)) (-2793 (((-1180) (-941)) 62))) -(((-799) (-10 -7 (-15 -2793 ((-1180) (-941))) (-15 -4090 ((-941) (-1180))) (-15 -3228 ((-1180) (-941))) (-15 -2788 ((-941) (-1180))) (-15 -4371 ((-390) (-1180))) (-15 -2397 ((-3 (-390) "failed") (-1180))))) (T -799)) -((-2397 (*1 *2 *3) (|partial| -12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-799)))) (-4371 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-799)))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-941)) (-5 *1 (-799)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1180)) (-5 *1 (-799)))) (-4090 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-941)) (-5 *1 (-799)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1180)) (-5 *1 (-799))))) -(-10 -7 (-15 -2793 ((-1180) (-941))) (-15 -4090 ((-941) (-1180))) (-15 -3228 ((-1180) (-941))) (-15 -2788 ((-941) (-1180))) (-15 -4371 ((-390) (-1180))) (-15 -2397 ((-3 (-390) "failed") (-1180)))) -((-3429 (((-112) $ $) 7)) (-1677 (((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 16) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057)) 14)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8))) -(((-800) (-141)) (T -800)) -((-4209 (*1 *2 *3 *4) (-12 (-4 *1 (-800)) (-5 *3 (-1085)) (-5 *4 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057)))))) (-1677 (*1 *2 *3 *2) (-12 (-4 *1 (-800)) (-5 *2 (-1057)) (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-4209 (*1 *2 *3 *4) (-12 (-4 *1 (-800)) (-5 *3 (-1085)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057)))))) (-1677 (*1 *2 *3 *2) (-12 (-4 *1 (-800)) (-5 *2 (-1057)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) -(-13 (-1122) (-10 -7 (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1677 ((-1057) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057))) (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) (|:| |extra| (-1057))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1677 ((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1057))))) -(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-3877 (((-1294) (-1289 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4283 (-390))) (-390) (-1289 (-390)) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390))) 55) (((-1294) (-1289 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4283 (-390))) (-390) (-1289 (-390)) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390))) 52)) (-3473 (((-1294) (-1289 (-390)) (-576) (-390) (-390) (-576) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390))) 61)) (-1372 (((-1294) (-1289 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390))) 50)) (-1721 (((-1294) (-1289 (-390)) (-576) (-390) (-390) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390))) 63) (((-1294) (-1289 (-390)) (-576) (-390) (-390) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390))) 62))) -(((-801) (-10 -7 (-15 -1721 ((-1294) (-1289 (-390)) (-576) (-390) (-390) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)))) (-15 -1721 ((-1294) (-1289 (-390)) (-576) (-390) (-390) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)))) (-15 -1372 ((-1294) (-1289 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)))) (-15 -3877 ((-1294) (-1289 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4283 (-390))) (-390) (-1289 (-390)) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)))) (-15 -3877 ((-1294) (-1289 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4283 (-390))) (-390) (-1289 (-390)) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)))) (-15 -3473 ((-1294) (-1289 (-390)) (-576) (-390) (-390) (-576) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)))))) (T -801)) -((-3473 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) (-5 *1 (-801)))) (-3877 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4283 (-390)))) (-5 *7 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) (-5 *1 (-801)))) (-3877 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4283 (-390)))) (-5 *7 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) (-5 *1 (-801)))) (-1372 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) (-5 *1 (-801)))) (-1721 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) (-5 *1 (-801)))) (-1721 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) (-5 *1 (-801))))) -(-10 -7 (-15 -1721 ((-1294) (-1289 (-390)) (-576) (-390) (-390) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)))) (-15 -1721 ((-1294) (-1289 (-390)) (-576) (-390) (-390) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)))) (-15 -1372 ((-1294) (-1289 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)))) (-15 -3877 ((-1294) (-1289 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4283 (-390))) (-390) (-1289 (-390)) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)))) (-15 -3877 ((-1294) (-1289 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4283 (-390))) (-390) (-1289 (-390)) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)) (-1289 (-390)))) (-15 -3473 ((-1294) (-1289 (-390)) (-576) (-390) (-390) (-576) (-1 (-1294) (-1289 (-390)) (-1289 (-390)) (-390))))) -((-1963 (((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 64)) (-2539 (((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 40)) (-1975 (((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 63)) (-2777 (((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 38)) (-4344 (((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 62)) (-1538 (((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 24)) (-1648 (((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 41)) (-1549 (((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 39)) (-2269 (((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 37))) -(((-802) (-10 -7 (-15 -2269 ((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1549 ((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1648 ((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1538 ((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2777 ((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2539 ((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -4344 ((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1975 ((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1963 ((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))))) (T -802)) -((-1963 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3071 *4) (|:| -3265 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-802)) (-5 *5 (-576)))) (-1975 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3071 *4) (|:| -3265 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-802)) (-5 *5 (-576)))) (-4344 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3071 *4) (|:| -3265 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-802)) (-5 *5 (-576)))) (-2539 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3071 *4) (|:| -3265 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-802)) (-5 *5 (-576)))) (-2777 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3071 *4) (|:| -3265 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-802)) (-5 *5 (-576)))) (-1538 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3071 *4) (|:| -3265 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-802)) (-5 *5 (-576)))) (-1648 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3071 *4) (|:| -3265 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-802)) (-5 *5 (-576)))) (-1549 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3071 *4) (|:| -3265 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-802)) (-5 *5 (-576)))) (-2269 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3071 *4) (|:| -3265 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-802)) (-5 *5 (-576))))) -(-10 -7 (-15 -2269 ((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1549 ((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1648 ((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1538 ((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2777 ((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2539 ((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -4344 ((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1975 ((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1963 ((-2 (|:| -3071 (-390)) (|:| -3265 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)))) -((-2132 (((-1234 |#1|) |#1| (-227) (-576)) 69))) -(((-803 |#1|) (-10 -7 (-15 -2132 ((-1234 |#1|) |#1| (-227) (-576)))) (-996)) (T -803)) -((-2132 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1234 *3)) (-5 *1 (-803 *3)) (-4 *3 (-996))))) -(-10 -7 (-15 -2132 ((-1234 |#1|) |#1| (-227) (-576)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 26)) (-2721 (((-3 $ "failed") $ $) 28)) (-4359 (($) 25 T CONST)) (-3707 (($ $ $) 20)) (-1611 (($ $ $) 19)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 24 T CONST)) (-2985 (((-112) $ $) 18)) (-2963 (((-112) $ $) 16)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 17)) (-2954 (((-112) $ $) 15)) (-3022 (($ $ $) 32) (($ $) 31)) (-3012 (($ $ $) 22)) (* (($ (-941) $) 23) (($ (-784) $) 27) (($ (-576) $) 30))) -(((-804) (-141)) (T -804)) -NIL -(-13 (-808) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-805) . T) ((-807) . T) ((-808) . T) ((-862) . T) ((-865) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 26)) (-4359 (($) 25 T CONST)) (-3707 (($ $ $) 20)) (-1611 (($ $ $) 19)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 24 T CONST)) (-2985 (((-112) $ $) 18)) (-2963 (((-112) $ $) 16)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 17)) (-2954 (((-112) $ $) 15)) (-3012 (($ $ $) 22)) (* (($ (-941) $) 23) (($ (-784) $) 27))) -(((-805) (-141)) (T -805)) -NIL -(-13 (-807) (-23)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-877)) . T) ((-807) . T) ((-862) . T) ((-865) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 26)) (-3733 (($ $ $) 29)) (-2721 (((-3 $ "failed") $ $) 28)) (-4359 (($) 25 T CONST)) (-3707 (($ $ $) 20)) (-1611 (($ $ $) 19)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 24 T CONST)) (-2985 (((-112) $ $) 18)) (-2963 (((-112) $ $) 16)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 17)) (-2954 (((-112) $ $) 15)) (-3012 (($ $ $) 22)) (* (($ (-941) $) 23) (($ (-784) $) 27))) -(((-806) (-141)) (T -806)) -((-3733 (*1 *1 *1 *1) (-4 *1 (-806)))) -(-13 (-808) (-10 -8 (-15 -3733 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-805) . T) ((-807) . T) ((-808) . T) ((-862) . T) ((-865) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) 7)) (-3707 (($ $ $) 20)) (-1611 (($ $ $) 19)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2985 (((-112) $ $) 18)) (-2963 (((-112) $ $) 16)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 17)) (-2954 (((-112) $ $) 15)) (-3012 (($ $ $) 22)) (* (($ (-941) $) 23))) +((-2546 (((-3 |#2| "failed") |#2| |#2| (-115) (-1201)) 37))) +(((-788 |#1| |#2|) (-10 -7 (-15 -2546 ((-3 |#2| "failed") |#2| |#2| (-115) (-1201)))) (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148)) (-13 (-29 |#1|) (-1227) (-982))) (T -788)) +((-2546 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *1 (-788 *5 *2)) (-4 *2 (-13 (-29 *5) (-1227) (-982)))))) +(-10 -7 (-15 -2546 ((-3 |#2| "failed") |#2| |#2| (-115) (-1201)))) +((-3544 (((-790) |#1|) 8))) +(((-789 |#1|) (-10 -7 (-15 -3544 ((-790) |#1|))) (-1242)) (T -789)) +((-3544 (*1 *2 *3) (-12 (-5 *2 (-790)) (-5 *1 (-789 *3)) (-4 *3 (-1242))))) +(-10 -7 (-15 -3544 ((-790) |#1|))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 7)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 9))) +(((-790) (-1125)) (T -790)) +NIL +(-1125) +((-4145 ((|#2| |#4|) 35))) +(((-791 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4145 (|#2| |#4|))) (-465) (-1268 |#1|) (-740 |#1| |#2|) (-1268 |#3|)) (T -791)) +((-4145 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-740 *4 *2)) (-4 *2 (-1268 *4)) (-5 *1 (-791 *4 *2 *5 *3)) (-4 *3 (-1268 *5))))) +(-10 -7 (-15 -4145 (|#2| |#4|))) +((-4187 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-3914 (((-1297) (-1183) (-1183) |#4| |#5|) 33)) (-3890 ((|#4| |#4| |#5|) 74)) (-3902 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#5|) 79)) (-3925 (((-660 (-2 (|:| |val| (-112)) (|:| -3952 |#5|))) |#4| |#5|) 16))) +(((-792 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4187 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3890 (|#4| |#4| |#5|)) (-15 -3902 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#5|)) (-15 -3914 ((-1297) (-1183) (-1183) |#4| |#5|)) (-15 -3925 ((-660 (-2 (|:| |val| (-112)) (|:| -3952 |#5|))) |#4| |#5|))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3| |#4|)) (T -792)) +((-3925 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -3952 *4)))) (-5 *1 (-792 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-3914 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1183)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *4 (-1090 *6 *7 *8)) (-5 *2 (-1297)) (-5 *1 (-792 *6 *7 *8 *4 *5)) (-4 *5 (-1096 *6 *7 *8 *4)))) (-3902 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) (-5 *1 (-792 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-3890 (*1 *2 *2 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *2 (-1090 *4 *5 *6)) (-5 *1 (-792 *4 *5 *6 *2 *3)) (-4 *3 (-1096 *4 *5 *6 *2)))) (-4187 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-792 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) +(-10 -7 (-15 -4187 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3890 (|#4| |#4| |#5|)) (-15 -3902 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#5|)) (-15 -3914 ((-1297) (-1183) (-1183) |#4| |#5|)) (-15 -3925 ((-660 (-2 (|:| |val| (-112)) (|:| -3952 |#5|))) |#4| |#5|))) +((-1628 (((-3 (-1197 (-1197 |#1|)) "failed") |#4|) 51)) (-3937 (((-660 |#4|) |#4|) 22)) (-2721 ((|#4| |#4|) 17))) +(((-793 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3937 ((-660 |#4|) |#4|)) (-15 -1628 ((-3 (-1197 (-1197 |#1|)) "failed") |#4|)) (-15 -2721 (|#4| |#4|))) (-361) (-340 |#1|) (-1268 |#2|) (-1268 |#3|) (-944)) (T -793)) +((-2721 (*1 *2 *2) (-12 (-4 *3 (-361)) (-4 *4 (-340 *3)) (-4 *5 (-1268 *4)) (-5 *1 (-793 *3 *4 *5 *2 *6)) (-4 *2 (-1268 *5)) (-14 *6 (-944)))) (-1628 (*1 *2 *3) (|partial| -12 (-4 *4 (-361)) (-4 *5 (-340 *4)) (-4 *6 (-1268 *5)) (-5 *2 (-1197 (-1197 *4))) (-5 *1 (-793 *4 *5 *6 *3 *7)) (-4 *3 (-1268 *6)) (-14 *7 (-944)))) (-3937 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *5 (-340 *4)) (-4 *6 (-1268 *5)) (-5 *2 (-660 *3)) (-5 *1 (-793 *4 *5 *6 *3 *7)) (-4 *3 (-1268 *6)) (-14 *7 (-944))))) +(-10 -7 (-15 -3937 ((-660 |#4|) |#4|)) (-15 -1628 ((-3 (-1197 (-1197 |#1|)) "failed") |#4|)) (-15 -2721 (|#4| |#4|))) +((-3950 (((-2 (|:| |deter| (-660 (-1197 |#5|))) (|:| |dterm| (-660 (-660 (-2 (|:| -3646 (-787)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-660 |#1|)) (|:| |nlead| (-660 |#5|))) (-1197 |#5|) (-660 |#1|) (-660 |#5|)) 72)) (-3962 (((-660 (-787)) |#1|) 20))) +(((-794 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3950 ((-2 (|:| |deter| (-660 (-1197 |#5|))) (|:| |dterm| (-660 (-660 (-2 (|:| -3646 (-787)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-660 |#1|)) (|:| |nlead| (-660 |#5|))) (-1197 |#5|) (-660 |#1|) (-660 |#5|))) (-15 -3962 ((-660 (-787)) |#1|))) (-1268 |#4|) (-809) (-865) (-318) (-972 |#4| |#2| |#3|)) (T -794)) +((-3962 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)) (-5 *2 (-660 (-787))) (-5 *1 (-794 *3 *4 *5 *6 *7)) (-4 *3 (-1268 *6)) (-4 *7 (-972 *6 *4 *5)))) (-3950 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1268 *9)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *9 (-318)) (-4 *10 (-972 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-660 (-1197 *10))) (|:| |dterm| (-660 (-660 (-2 (|:| -3646 (-787)) (|:| |pcoef| *10))))) (|:| |nfacts| (-660 *6)) (|:| |nlead| (-660 *10)))) (-5 *1 (-794 *6 *7 *8 *9 *10)) (-5 *3 (-1197 *10)) (-5 *4 (-660 *6)) (-5 *5 (-660 *10))))) +(-10 -7 (-15 -3950 ((-2 (|:| |deter| (-660 (-1197 |#5|))) (|:| |dterm| (-660 (-660 (-2 (|:| -3646 (-787)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-660 |#1|)) (|:| |nlead| (-660 |#5|))) (-1197 |#5|) (-660 |#1|) (-660 |#5|))) (-15 -3962 ((-660 (-787)) |#1|))) +((-3997 (((-660 (-2 (|:| |outval| |#1|) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 |#1|))))) (-705 (-420 (-577))) |#1|) 31)) (-3985 (((-660 |#1|) (-705 (-420 (-577))) |#1|) 21)) (-3974 (((-975 (-420 (-577))) (-705 (-420 (-577))) (-1201)) 18) (((-975 (-420 (-577))) (-705 (-420 (-577)))) 17))) +(((-795 |#1|) (-10 -7 (-15 -3974 ((-975 (-420 (-577))) (-705 (-420 (-577))))) (-15 -3974 ((-975 (-420 (-577))) (-705 (-420 (-577))) (-1201))) (-15 -3985 ((-660 |#1|) (-705 (-420 (-577))) |#1|)) (-15 -3997 ((-660 (-2 (|:| |outval| |#1|) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 |#1|))))) (-705 (-420 (-577))) |#1|))) (-13 (-375) (-864))) (T -795)) +((-3997 (*1 *2 *3 *4) (-12 (-5 *3 (-705 (-420 (-577)))) (-5 *2 (-660 (-2 (|:| |outval| *4) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 *4)))))) (-5 *1 (-795 *4)) (-4 *4 (-13 (-375) (-864))))) (-3985 (*1 *2 *3 *4) (-12 (-5 *3 (-705 (-420 (-577)))) (-5 *2 (-660 *4)) (-5 *1 (-795 *4)) (-4 *4 (-13 (-375) (-864))))) (-3974 (*1 *2 *3 *4) (-12 (-5 *3 (-705 (-420 (-577)))) (-5 *4 (-1201)) (-5 *2 (-975 (-420 (-577)))) (-5 *1 (-795 *5)) (-4 *5 (-13 (-375) (-864))))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-705 (-420 (-577)))) (-5 *2 (-975 (-420 (-577)))) (-5 *1 (-795 *4)) (-4 *4 (-13 (-375) (-864)))))) +(-10 -7 (-15 -3974 ((-975 (-420 (-577))) (-705 (-420 (-577))))) (-15 -3974 ((-975 (-420 (-577))) (-705 (-420 (-577))) (-1201))) (-15 -3985 ((-660 |#1|) (-705 (-420 (-577))) |#1|)) (-15 -3997 ((-660 (-2 (|:| |outval| |#1|) (|:| |outmult| (-577)) (|:| |outvect| (-660 (-705 |#1|))))) (-705 (-420 (-577))) |#1|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 36)) (-2058 (((-660 |#2|) $) NIL)) (-1867 (((-1197 $) $ |#2|) NIL) (((-1197 |#1|) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-4050 (((-787) $) NIL) (((-787) $ (-660 |#2|)) NIL)) (-4428 (($ $) 30)) (-3375 (((-112) $ $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1807 (($ $ $) 110 (|has| |#1| (-569)))) (-3216 (((-660 $) $ $) 123 (|has| |#1| (-569)))) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-3841 (($ $) NIL (|has| |#1| (-465)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-465)))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-975 (-420 (-577)))) NIL (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-627 (-1201))))) (((-3 $ "failed") (-975 (-577))) NIL (-2839 (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-627 (-1201))) (-2749 (|has| |#1| (-38 (-420 (-577)))))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-627 (-1201)))))) (((-3 $ "failed") (-975 |#1|)) NIL (-2839 (-12 (|has| |#2| (-627 (-1201))) (-2749 (|has| |#1| (-38 (-420 (-577))))) (-2749 (|has| |#1| (-38 (-577))))) (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-627 (-1201))) (-2749 (|has| |#1| (-38 (-420 (-577))))) (-2749 (|has| |#1| (-558)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-627 (-1201))) (-2749 (|has| |#1| (-1017 (-577))))))) (((-3 (-1150 |#1| |#2|) "failed") $) 21)) (-2921 ((|#1| $) NIL) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-577) $) NIL (|has| |#1| (-1063 (-577)))) ((|#2| $) NIL) (($ (-975 (-420 (-577)))) NIL (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-627 (-1201))))) (($ (-975 (-577))) NIL (-2839 (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-627 (-1201))) (-2749 (|has| |#1| (-38 (-420 (-577)))))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-627 (-1201)))))) (($ (-975 |#1|)) NIL (-2839 (-12 (|has| |#2| (-627 (-1201))) (-2749 (|has| |#1| (-38 (-420 (-577))))) (-2749 (|has| |#1| (-38 (-577))))) (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-627 (-1201))) (-2749 (|has| |#1| (-38 (-420 (-577))))) (-2749 (|has| |#1| (-558)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-627 (-1201))) (-2749 (|has| |#1| (-1017 (-577))))))) (((-1150 |#1| |#2|) $) NIL)) (-1816 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-569)))) (-2248 (($ $) NIL) (($ $ |#2|) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL) (((-705 |#1|) (-705 $)) NIL)) (-2484 (((-112) $ $) NIL) (((-112) $ (-660 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3439 (((-112) $) NIL)) (-1776 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 81)) (-3179 (($ $) 136 (|has| |#1| (-465)))) (-3143 (($ $) NIL (|has| |#1| (-465))) (($ $ |#2|) NIL (|has| |#1| (-465)))) (-2234 (((-660 $) $) NIL)) (-1522 (((-112) $) NIL (|has| |#1| (-932)))) (-3277 (($ $) NIL (|has| |#1| (-569)))) (-3287 (($ $) NIL (|has| |#1| (-569)))) (-3366 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-3356 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-2137 (($ $ |#1| (-544 |#2|) $) NIL)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| |#1| (-905 (-391))) (|has| |#2| (-905 (-391))))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| |#1| (-905 (-577))) (|has| |#2| (-905 (-577)))))) (-2487 (((-112) $) 57)) (-2548 (((-787) $) NIL)) (-4354 (((-112) $ $) NIL) (((-112) $ (-660 $)) NIL)) (-3188 (($ $ $ $ $) 107 (|has| |#1| (-569)))) (-3514 ((|#2| $) 22)) (-2043 (($ (-1197 |#1|) |#2|) NIL) (($ (-1197 $) |#2|) NIL)) (-4074 (((-660 $) $) NIL)) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-544 |#2|)) NIL) (($ $ |#2| (-787)) 38) (($ $ (-660 |#2|) (-660 (-787))) NIL)) (-3306 (($ $ $) 63)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ |#2|) NIL)) (-3449 (((-112) $) NIL)) (-4061 (((-544 |#2|) $) NIL) (((-787) $ |#2|) NIL) (((-660 (-787)) $ (-660 |#2|)) NIL)) (-3505 (((-787) $) 23)) (-2151 (($ (-1 (-544 |#2|) (-544 |#2|)) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3691 (((-3 |#2| "failed") $) NIL)) (-3148 (($ $) NIL (|has| |#1| (-465)))) (-3159 (($ $) NIL (|has| |#1| (-465)))) (-3393 (((-660 $) $) NIL)) (-3427 (($ $) 39)) (-3169 (($ $) NIL (|has| |#1| (-465)))) (-3404 (((-660 $) $) 43)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL) (((-705 |#1|) (-1292 $)) NIL)) (-3415 (($ $) 41)) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL) (($ $ |#2|) 48)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) NIL (|has| |#1| (-465)))) (-3297 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3101 (-787))) $ $) 96)) (-3317 (((-2 (|:| -1777 $) (|:| |gap| (-787)) (|:| -3637 $) (|:| -2457 $)) $ $) 78) (((-2 (|:| -1777 $) (|:| |gap| (-787)) (|:| -3637 $) (|:| -2457 $)) $ $ |#2|) NIL)) (-3326 (((-2 (|:| -1777 $) (|:| |gap| (-787)) (|:| -2457 $)) $ $) NIL) (((-2 (|:| -1777 $) (|:| |gap| (-787)) (|:| -2457 $)) $ $ |#2|) NIL)) (-3346 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-3337 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-2810 (((-1183) $) NIL)) (-3605 (($ $ $) 125 (|has| |#1| (-569)))) (-3471 (((-660 $) $) 32)) (-4098 (((-3 (-660 $) "failed") $) NIL)) (-4086 (((-3 (-660 $) "failed") $) NIL)) (-4111 (((-3 (-2 (|:| |var| |#2|) (|:| -3556 (-787))) "failed") $) NIL)) (-2458 (((-112) $ $) NIL) (((-112) $ (-660 $)) NIL)) (-2408 (($ $ $) NIL)) (-1709 (($ $) 24)) (-4396 (((-112) $ $) NIL)) (-2467 (((-112) $ $) NIL) (((-112) $ (-660 $)) NIL)) (-2418 (($ $ $) NIL)) (-3494 (($ $) 26)) (-1474 (((-1145) $) NIL)) (-3226 (((-2 (|:| -3480 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-569)))) (-3236 (((-2 (|:| -3480 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-569)))) (-2180 (((-112) $) 56)) (-2193 ((|#1| $) 58)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-465)))) (-3480 ((|#1| |#1| $) 133 (|has| |#1| (-465))) (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) NIL (|has| |#1| (-465)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-1902 (((-431 $) $) NIL (|has| |#1| (-932)))) (-3246 (((-2 (|:| -3480 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-569)))) (-3462 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-569)))) (-3258 (($ $ |#1|) 129 (|has| |#1| (-569))) (($ $ $) NIL (|has| |#1| (-569)))) (-3268 (($ $ |#1|) 128 (|has| |#1| (-569))) (($ $ $) NIL (|has| |#1| (-569)))) (-3280 (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-660 |#2|) (-660 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-660 |#2|) (-660 $)) NIL)) (-1827 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2852 (($ $ (-660 |#2|) (-660 (-787))) NIL) (($ $ |#2| (-787)) NIL) (($ $ (-660 |#2|)) NIL) (($ $ |#2|) NIL)) (-2887 (((-544 |#2|) $) NIL) (((-787) $ |#2|) 45) (((-660 (-787)) $ (-660 |#2|)) NIL)) (-3482 (($ $) NIL)) (-3460 (($ $) 35)) (-4152 (((-911 (-391)) $) NIL (-12 (|has| |#1| (-627 (-911 (-391)))) (|has| |#2| (-627 (-911 (-391)))))) (((-911 (-577)) $) NIL (-12 (|has| |#1| (-627 (-911 (-577)))) (|has| |#2| (-627 (-911 (-577)))))) (((-549) $) NIL (-12 (|has| |#1| (-627 (-549))) (|has| |#2| (-627 (-549))))) (($ (-975 (-420 (-577)))) NIL (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-627 (-1201))))) (($ (-975 (-577))) NIL (-2839 (-12 (|has| |#1| (-38 (-577))) (|has| |#2| (-627 (-1201))) (-2749 (|has| |#1| (-38 (-420 (-577)))))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#2| (-627 (-1201)))))) (($ (-975 |#1|)) NIL (|has| |#2| (-627 (-1201)))) (((-1183) $) NIL (-12 (|has| |#1| (-1063 (-577))) (|has| |#2| (-627 (-1201))))) (((-975 |#1|) $) NIL (|has| |#2| (-627 (-1201))))) (-4039 ((|#1| $) 132 (|has| |#1| (-465))) (($ $ |#2|) NIL (|has| |#1| (-465)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-932))))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-975 |#1|) $) NIL (|has| |#2| (-627 (-1201)))) (((-1150 |#1| |#2|) $) 18) (($ (-1150 |#1| |#2|)) 19) (($ (-420 (-577))) NIL (-2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577)))))) (($ $) NIL (|has| |#1| (-569)))) (-4182 (((-660 |#1|) $) NIL)) (-2322 ((|#1| $ (-544 |#2|)) NIL) (($ $ |#2| (-787)) 47) (($ $ (-660 |#2|) (-660 (-787))) NIL)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))))) (-4068 (((-787)) NIL T CONST)) (-2122 (($ $ $ (-787)) NIL (|has| |#1| (-174)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2806 (($) 13 T CONST)) (-3384 (((-3 (-112) "failed") $ $) NIL)) (-2816 (($) 37 T CONST)) (-3197 (($ $ $ $ (-787)) 105 (|has| |#1| (-569)))) (-3207 (($ $ $ (-787)) 104 (|has| |#1| (-569)))) (-2132 (($ $ (-660 |#2|) (-660 (-787))) NIL) (($ $ |#2| (-787)) NIL) (($ $ (-660 |#2|)) NIL) (($ $ |#2|) NIL)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) 75)) (-3055 (($ $ $) 85)) (** (($ $ (-944)) NIL) (($ $ (-787)) 70)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 62) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) +(((-796 |#1| |#2|) (-13 (-1090 |#1| (-544 |#2|) |#2|) (-626 (-1150 |#1| |#2|)) (-1063 (-1150 |#1| |#2|))) (-1074) (-865)) (T -796)) +NIL +(-13 (-1090 |#1| (-544 |#2|) |#2|) (-626 (-1150 |#1| |#2|)) (-1063 (-1150 |#1| |#2|))) +((-4087 (((-798 |#2|) (-1 |#2| |#1|) (-798 |#1|)) 13))) +(((-797 |#1| |#2|) (-10 -7 (-15 -4087 ((-798 |#2|) (-1 |#2| |#1|) (-798 |#1|)))) (-1074) (-1074)) (T -797)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-798 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-798 *6)) (-5 *1 (-797 *5 *6))))) +(-10 -7 (-15 -4087 ((-798 |#2|) (-1 |#2| |#1|) (-798 |#1|)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 12)) (-3779 (((-1292 |#1|) $ (-787)) NIL)) (-2058 (((-660 (-1107)) $) NIL)) (-3756 (($ (-1197 |#1|)) NIL)) (-1867 (((-1197 $) $ (-1107)) NIL) (((-1197 |#1|) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-4050 (((-787) $) NIL) (((-787) $ (-660 (-1107))) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-4040 (((-660 $) $ $) 54 (|has| |#1| (-569)))) (-1807 (($ $ $) 50 (|has| |#1| (-569)))) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-3841 (($ $) NIL (|has| |#1| (-465)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-465)))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-1939 (((-112) $ $) NIL (|has| |#1| (-375)))) (-3714 (($ $ (-787)) NIL)) (-3703 (($ $ (-787)) NIL)) (-1767 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-465)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-1107) "failed") $) NIL) (((-3 (-1197 |#1|) "failed") $) 10)) (-2921 ((|#1| $) NIL) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-1107) $) NIL) (((-1197 |#1|) $) NIL)) (-1816 (($ $ $ (-1107)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-3418 (($ $ $) NIL (|has| |#1| (-375)))) (-2248 (($ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL) (((-705 |#1|) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL (|has| |#1| (-375)))) (-1838 (($ $ $) NIL)) (-1787 (($ $ $) 87 (|has| |#1| (-569)))) (-1776 (((-2 (|:| -1777 |#1|) (|:| -3637 $) (|:| -2457 $)) $ $) 86 (|has| |#1| (-569)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| |#1| (-375)))) (-3143 (($ $) NIL (|has| |#1| (-465))) (($ $ (-1107)) NIL (|has| |#1| (-465)))) (-2234 (((-660 $) $) NIL)) (-1522 (((-112) $) NIL (|has| |#1| (-932)))) (-2137 (($ $ |#1| (-787) $) NIL)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-1107) (-905 (-391))) (|has| |#1| (-905 (-391))))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-1107) (-905 (-577))) (|has| |#1| (-905 (-577)))))) (-3817 (((-787) $ $) NIL (|has| |#1| (-569)))) (-2487 (((-112) $) NIL)) (-2548 (((-787) $) NIL)) (-4021 (((-3 $ "failed") $) NIL (|has| |#1| (-1177)))) (-2043 (($ (-1197 |#1|) (-1107)) NIL) (($ (-1197 $) (-1107)) NIL)) (-3864 (($ $ (-787)) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-4074 (((-660 $) $) NIL)) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-787)) NIL) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107)) (-660 (-787))) NIL)) (-3306 (($ $ $) 27)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ (-1107)) NIL) (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-4061 (((-787) $) NIL) (((-787) $ (-1107)) NIL) (((-660 (-787)) $ (-660 (-1107))) NIL)) (-2151 (($ (-1 (-787) (-787)) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3767 (((-1197 |#1|) $) NIL)) (-3691 (((-3 (-1107) "failed") $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL) (((-705 |#1|) (-1292 $)) NIL)) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) NIL (|has| |#1| (-465)))) (-3297 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3101 (-787))) $ $) 37)) (-4062 (($ $ $) 41)) (-4051 (($ $ $) 47)) (-3317 (((-2 (|:| -1777 |#1|) (|:| |gap| (-787)) (|:| -3637 $) (|:| -2457 $)) $ $) 46)) (-2810 (((-1183) $) NIL)) (-3605 (($ $ $) 56 (|has| |#1| (-569)))) (-3724 (((-2 (|:| -3637 $) (|:| -2457 $)) $ (-787)) NIL)) (-4098 (((-3 (-660 $) "failed") $) NIL)) (-4086 (((-3 (-660 $) "failed") $) NIL)) (-4111 (((-3 (-2 (|:| |var| (-1107)) (|:| -3556 (-787))) "failed") $) NIL)) (-4147 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1709 (($) NIL (|has| |#1| (-1177)) CONST)) (-1474 (((-1145) $) NIL)) (-3226 (((-2 (|:| -3480 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-569)))) (-3236 (((-2 (|:| -3480 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-569)))) (-4009 (((-2 (|:| -1816 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-569)))) (-4020 (((-2 (|:| -1816 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-569)))) (-2180 (((-112) $) 13)) (-2193 ((|#1| $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-465)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) NIL (|has| |#1| (-465)))) (-1624 (($ $ (-787) |#1| $) 26)) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-1902 (((-431 $) $) NIL (|has| |#1| (-932)))) (-3246 (((-2 (|:| -3480 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-569)))) (-4030 (((-2 (|:| -1816 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-569)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3462 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-3280 (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ (-1107) |#1|) NIL) (($ $ (-660 (-1107)) (-660 |#1|)) NIL) (($ $ (-1107) $) NIL) (($ $ (-660 (-1107)) (-660 $)) NIL)) (-1927 (((-787) $) NIL (|has| |#1| (-375)))) (-2872 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-420 $) (-420 $) (-420 $)) NIL (|has| |#1| (-569))) ((|#1| (-420 $) |#1|) NIL (|has| |#1| (-375))) (((-420 $) $ (-420 $)) NIL (|has| |#1| (-569)))) (-3745 (((-3 $ "failed") $ (-787)) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-375)))) (-1827 (($ $ (-1107)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2852 (($ $ (-660 (-1107)) (-660 (-787))) NIL) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107))) NIL) (($ $ (-1107)) NIL) (($ $) NIL) (($ $ (-787)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))))) (-2887 (((-787) $) NIL) (((-787) $ (-1107)) NIL) (((-660 (-787)) $ (-660 (-1107))) NIL)) (-4152 (((-911 (-391)) $) NIL (-12 (|has| (-1107) (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391)))))) (((-911 (-577)) $) NIL (-12 (|has| (-1107) (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577)))))) (((-549) $) NIL (-12 (|has| (-1107) (-627 (-549))) (|has| |#1| (-627 (-549)))))) (-4039 ((|#1| $) NIL (|has| |#1| (-465))) (($ $ (-1107)) NIL (|has| |#1| (-465)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-932))))) (-1797 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569))) (((-3 (-420 $) "failed") (-420 $) $) NIL (|has| |#1| (-569)))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#1|) NIL) (($ (-1107)) NIL) (((-1197 |#1|) $) 7) (($ (-1197 |#1|)) 8) (($ (-420 (-577))) NIL (-2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577)))))) (($ $) NIL (|has| |#1| (-569)))) (-4182 (((-660 |#1|) $) NIL)) (-2322 ((|#1| $ (-787)) NIL) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107)) (-660 (-787))) NIL)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))))) (-4068 (((-787)) NIL T CONST)) (-2122 (($ $ $ (-787)) NIL (|has| |#1| (-174)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2806 (($) 28 T CONST)) (-2816 (($) 32 T CONST)) (-2132 (($ $ (-660 (-1107)) (-660 (-787))) NIL) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107))) NIL) (($ $ (-1107)) NIL) (($ $) NIL) (($ $ (-787)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))))) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375)))) (-3066 (($ $) 40) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) +(((-798 |#1|) (-13 (-1268 |#1|) (-626 (-1197 |#1|)) (-1063 (-1197 |#1|)) (-10 -8 (-15 -1624 ($ $ (-787) |#1| $)) (-15 -3306 ($ $ $)) (-15 -3297 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3101 (-787))) $ $)) (-15 -4062 ($ $ $)) (-15 -3317 ((-2 (|:| -1777 |#1|) (|:| |gap| (-787)) (|:| -3637 $) (|:| -2457 $)) $ $)) (-15 -4051 ($ $ $)) (IF (|has| |#1| (-569)) (PROGN (-15 -4040 ((-660 $) $ $)) (-15 -3605 ($ $ $)) (-15 -3246 ((-2 (|:| -3480 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3236 ((-2 (|:| -3480 $) (|:| |coef1| $)) $ $)) (-15 -3226 ((-2 (|:| -3480 $) (|:| |coef2| $)) $ $)) (-15 -4030 ((-2 (|:| -1816 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4020 ((-2 (|:| -1816 |#1|) (|:| |coef1| $)) $ $)) (-15 -4009 ((-2 (|:| -1816 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1074)) (T -798)) +((-1624 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-787)) (-5 *1 (-798 *3)) (-4 *3 (-1074)))) (-3306 (*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-1074)))) (-3297 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-798 *3)) (|:| |polden| *3) (|:| -3101 (-787)))) (-5 *1 (-798 *3)) (-4 *3 (-1074)))) (-4062 (*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-1074)))) (-3317 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1777 *3) (|:| |gap| (-787)) (|:| -3637 (-798 *3)) (|:| -2457 (-798 *3)))) (-5 *1 (-798 *3)) (-4 *3 (-1074)))) (-4051 (*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-1074)))) (-4040 (*1 *2 *1 *1) (-12 (-5 *2 (-660 (-798 *3))) (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074)))) (-3605 (*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-569)) (-4 *2 (-1074)))) (-3246 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3480 (-798 *3)) (|:| |coef1| (-798 *3)) (|:| |coef2| (-798 *3)))) (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074)))) (-3236 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3480 (-798 *3)) (|:| |coef1| (-798 *3)))) (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074)))) (-3226 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3480 (-798 *3)) (|:| |coef2| (-798 *3)))) (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074)))) (-4030 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1816 *3) (|:| |coef1| (-798 *3)) (|:| |coef2| (-798 *3)))) (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074)))) (-4020 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1816 *3) (|:| |coef1| (-798 *3)))) (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074)))) (-4009 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1816 *3) (|:| |coef2| (-798 *3)))) (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074))))) +(-13 (-1268 |#1|) (-626 (-1197 |#1|)) (-1063 (-1197 |#1|)) (-10 -8 (-15 -1624 ($ $ (-787) |#1| $)) (-15 -3306 ($ $ $)) (-15 -3297 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3101 (-787))) $ $)) (-15 -4062 ($ $ $)) (-15 -3317 ((-2 (|:| -1777 |#1|) (|:| |gap| (-787)) (|:| -3637 $) (|:| -2457 $)) $ $)) (-15 -4051 ($ $ $)) (IF (|has| |#1| (-569)) (PROGN (-15 -4040 ((-660 $) $ $)) (-15 -3605 ($ $ $)) (-15 -3246 ((-2 (|:| -3480 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3236 ((-2 (|:| -3480 $) (|:| |coef1| $)) $ $)) (-15 -3226 ((-2 (|:| -3480 $) (|:| |coef2| $)) $ $)) (-15 -4030 ((-2 (|:| -1816 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4020 ((-2 (|:| -1816 |#1|) (|:| |coef1| $)) $ $)) (-15 -4009 ((-2 (|:| -1816 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-4085 ((|#1| (-787) |#1|) 33 (|has| |#1| (-38 (-420 (-577)))))) (-3855 ((|#1| (-787) |#1|) 23)) (-4075 ((|#1| (-787) |#1|) 35 (|has| |#1| (-38 (-420 (-577))))))) +(((-799 |#1|) (-10 -7 (-15 -3855 (|#1| (-787) |#1|)) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4075 (|#1| (-787) |#1|)) (-15 -4085 (|#1| (-787) |#1|))) |%noBranch|)) (-174)) (T -799)) +((-4085 (*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-799 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-174)))) (-4075 (*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-799 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-174)))) (-3855 (*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-799 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -3855 (|#1| (-787) |#1|)) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4075 (|#1| (-787) |#1|)) (-15 -4085 (|#1| (-787) |#1|))) |%noBranch|)) +((-3473 (((-112) $ $) 7)) (-2361 (((-660 (-2 (|:| -2045 $) (|:| -3253 (-660 |#4|)))) (-660 |#4|)) 86)) (-2371 (((-660 $) (-660 |#4|)) 87) (((-660 $) (-660 |#4|) (-112)) 112)) (-2058 (((-660 |#3|) $) 34)) (-2508 (((-112) $) 27)) (-3572 (((-112) $) 18 (|has| |#1| (-569)))) (-2475 (((-112) |#4| $) 102) (((-112) $) 98)) (-2426 ((|#4| |#4| $) 93)) (-3841 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 $))) |#4| $) 127)) (-1864 (((-2 (|:| |under| $) (|:| -4119 $) (|:| |upper| $)) $ |#3|) 28)) (-3828 (((-112) $ (-787)) 45)) (-2067 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4470))) (((-3 |#4| "failed") $ |#3|) 80)) (-1534 (($) 46 T CONST)) (-2474 (((-112) $) 23 (|has| |#1| (-569)))) (-2492 (((-112) $ $) 25 (|has| |#1| (-569)))) (-2483 (((-112) $ $) 24 (|has| |#1| (-569)))) (-2500 (((-112) $) 26 (|has| |#1| (-569)))) (-2435 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2434 (((-660 |#4|) (-660 |#4|) $) 19 (|has| |#1| (-569)))) (-2446 (((-660 |#4|) (-660 |#4|) $) 20 (|has| |#1| (-569)))) (-1628 (((-3 $ "failed") (-660 |#4|)) 37)) (-2921 (($ (-660 |#4|)) 36)) (-3563 (((-3 $ "failed") $) 83)) (-2399 ((|#4| |#4| $) 90)) (-1817 (($ $) 69 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))))) (-3904 (($ |#4| $) 68 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4470)))) (-2457 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)))) (-2484 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2382 ((|#4| |#4| $) 88)) (-3654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4470))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4470))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4364 (((-2 (|:| -2045 (-660 |#4|)) (|:| -3253 (-660 |#4|))) $) 106)) (-2524 (((-112) |#4| $) 137)) (-2505 (((-112) |#4| $) 134)) (-2532 (((-112) |#4| $) 138) (((-112) $) 135)) (-1461 (((-660 |#4|) $) 53 (|has| $ (-6 -4470)))) (-4354 (((-112) |#4| $) 105) (((-112) $) 104)) (-3514 ((|#3| $) 35)) (-1479 (((-112) $ (-787)) 44)) (-2530 (((-660 |#4|) $) 54 (|has| $ (-6 -4470)))) (-2820 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#4| |#4|) $) 48)) (-2555 (((-660 |#3|) $) 33)) (-2545 (((-112) |#3| $) 32)) (-1443 (((-112) $ (-787)) 43)) (-2810 (((-1183) $) 10)) (-2471 (((-3 |#4| (-660 $)) |#4| |#4| $) 129)) (-3605 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 $))) |#4| |#4| $) 128)) (-3927 (((-3 |#4| "failed") $) 84)) (-2479 (((-660 $) |#4| $) 130)) (-2496 (((-3 (-112) (-660 $)) |#4| $) 133)) (-2488 (((-660 (-2 (|:| |val| (-112)) (|:| -3952 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2785 (((-660 $) |#4| $) 126) (((-660 $) (-660 |#4|) $) 125) (((-660 $) (-660 |#4|) (-660 $)) 124) (((-660 $) |#4| (-660 $)) 123)) (-3986 (($ |#4| $) 118) (($ (-660 |#4|) $) 117)) (-4375 (((-660 |#4|) $) 108)) (-2458 (((-112) |#4| $) 100) (((-112) $) 96)) (-2408 ((|#4| |#4| $) 91)) (-4396 (((-112) $ $) 111)) (-2466 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)))) (-2467 (((-112) |#4| $) 101) (((-112) $) 97)) (-2418 ((|#4| |#4| $) 92)) (-1474 (((-1145) $) 11)) (-3552 (((-3 |#4| "failed") $) 85)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2343 (((-3 $ "failed") $ |#4|) 79)) (-3792 (($ $ |#4|) 78) (((-660 $) |#4| $) 116) (((-660 $) |#4| (-660 $)) 115) (((-660 $) (-660 |#4|) $) 114) (((-660 $) (-660 |#4|) (-660 $)) 113)) (-1514 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 |#4|) (-660 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-660 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))))) (-3840 (((-112) $ $) 39)) (-3697 (((-112) $) 42)) (-3639 (($) 41)) (-2887 (((-787) $) 107)) (-1485 (((-787) |#4| $) 55 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470)))) (((-787) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4470)))) (-1944 (($ $) 40)) (-4152 (((-549) $) 70 (|has| |#4| (-627 (-549))))) (-3553 (($ (-660 |#4|)) 61)) (-2518 (($ $ |#3|) 29)) (-2536 (($ $ |#3|) 31)) (-2391 (($ $) 89)) (-2527 (($ $ |#3|) 30)) (-3544 (((-880) $) 12) (((-660 |#4|) $) 38)) (-2332 (((-787) $) 77 (|has| |#3| (-380)))) (-4448 (((-112) $ $) 6)) (-4385 (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2447 (((-112) $ (-1 (-112) |#4| (-660 |#4|))) 99)) (-3594 (((-660 $) |#4| $) 122) (((-660 $) |#4| (-660 $)) 121) (((-660 $) (-660 |#4|) $) 120) (((-660 $) (-660 |#4|) (-660 $)) 119)) (-1524 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4470)))) (-2352 (((-660 |#3|) $) 82)) (-2515 (((-112) |#4| $) 136)) (-2776 (((-112) |#3| $) 81)) (-2970 (((-112) $ $) 8)) (-3484 (((-787) $) 47 (|has| $ (-6 -4470))))) +(((-800 |#1| |#2| |#3| |#4|) (-141) (-465) (-809) (-865) (-1090 |t#1| |t#2| |t#3|)) (T -800)) +NIL +(-13 (-1096 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-626 (-660 |#4|)) . T) ((-626 (-880)) . T) ((-152 |#4|) . T) ((-627 (-549)) |has| |#4| (-627 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-1001 |#1| |#2| |#3| |#4|) . T) ((-1096 |#1| |#2| |#3| |#4|) . T) ((-1125) . T) ((-1235 |#1| |#2| |#3| |#4|) . T) ((-1242) . T)) +((-4097 (((-3 (-391) "failed") (-327 |#1|) (-944)) 62 (-12 (|has| |#1| (-569)) (|has| |#1| (-865)))) (((-3 (-391) "failed") (-327 |#1|)) 54 (-12 (|has| |#1| (-569)) (|has| |#1| (-865)))) (((-3 (-391) "failed") (-420 (-975 |#1|)) (-944)) 41 (|has| |#1| (-569))) (((-3 (-391) "failed") (-420 (-975 |#1|))) 40 (|has| |#1| (-569))) (((-3 (-391) "failed") (-975 |#1|) (-944)) 31 (|has| |#1| (-1074))) (((-3 (-391) "failed") (-975 |#1|)) 30 (|has| |#1| (-1074)))) (-3231 (((-391) (-327 |#1|) (-944)) 99 (-12 (|has| |#1| (-569)) (|has| |#1| (-865)))) (((-391) (-327 |#1|)) 94 (-12 (|has| |#1| (-569)) (|has| |#1| (-865)))) (((-391) (-420 (-975 |#1|)) (-944)) 91 (|has| |#1| (-569))) (((-391) (-420 (-975 |#1|))) 90 (|has| |#1| (-569))) (((-391) (-975 |#1|) (-944)) 86 (|has| |#1| (-1074))) (((-391) (-975 |#1|)) 85 (|has| |#1| (-1074))) (((-391) |#1| (-944)) 76) (((-391) |#1|) 22)) (-4110 (((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)) (-944)) 71 (-12 (|has| |#1| (-569)) (|has| |#1| (-865)))) (((-3 (-171 (-391)) "failed") (-327 (-171 |#1|))) 70 (-12 (|has| |#1| (-569)) (|has| |#1| (-865)))) (((-3 (-171 (-391)) "failed") (-327 |#1|) (-944)) 63 (-12 (|has| |#1| (-569)) (|has| |#1| (-865)))) (((-3 (-171 (-391)) "failed") (-327 |#1|)) 61 (-12 (|has| |#1| (-569)) (|has| |#1| (-865)))) (((-3 (-171 (-391)) "failed") (-420 (-975 (-171 |#1|))) (-944)) 46 (|has| |#1| (-569))) (((-3 (-171 (-391)) "failed") (-420 (-975 (-171 |#1|)))) 45 (|has| |#1| (-569))) (((-3 (-171 (-391)) "failed") (-420 (-975 |#1|)) (-944)) 39 (|has| |#1| (-569))) (((-3 (-171 (-391)) "failed") (-420 (-975 |#1|))) 38 (|has| |#1| (-569))) (((-3 (-171 (-391)) "failed") (-975 |#1|) (-944)) 28 (|has| |#1| (-1074))) (((-3 (-171 (-391)) "failed") (-975 |#1|)) 26 (|has| |#1| (-1074))) (((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)) (-944)) 18 (|has| |#1| (-174))) (((-3 (-171 (-391)) "failed") (-975 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-4011 (((-171 (-391)) (-327 (-171 |#1|)) (-944)) 102 (-12 (|has| |#1| (-569)) (|has| |#1| (-865)))) (((-171 (-391)) (-327 (-171 |#1|))) 101 (-12 (|has| |#1| (-569)) (|has| |#1| (-865)))) (((-171 (-391)) (-327 |#1|) (-944)) 100 (-12 (|has| |#1| (-569)) (|has| |#1| (-865)))) (((-171 (-391)) (-327 |#1|)) 98 (-12 (|has| |#1| (-569)) (|has| |#1| (-865)))) (((-171 (-391)) (-420 (-975 (-171 |#1|))) (-944)) 93 (|has| |#1| (-569))) (((-171 (-391)) (-420 (-975 (-171 |#1|)))) 92 (|has| |#1| (-569))) (((-171 (-391)) (-420 (-975 |#1|)) (-944)) 89 (|has| |#1| (-569))) (((-171 (-391)) (-420 (-975 |#1|))) 88 (|has| |#1| (-569))) (((-171 (-391)) (-975 |#1|) (-944)) 84 (|has| |#1| (-1074))) (((-171 (-391)) (-975 |#1|)) 83 (|has| |#1| (-1074))) (((-171 (-391)) (-975 (-171 |#1|)) (-944)) 78 (|has| |#1| (-174))) (((-171 (-391)) (-975 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-391)) (-171 |#1|) (-944)) 80 (|has| |#1| (-174))) (((-171 (-391)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-391)) |#1| (-944)) 27) (((-171 (-391)) |#1|) 25))) +(((-801 |#1|) (-10 -7 (-15 -3231 ((-391) |#1|)) (-15 -3231 ((-391) |#1| (-944))) (-15 -4011 ((-171 (-391)) |#1|)) (-15 -4011 ((-171 (-391)) |#1| (-944))) (IF (|has| |#1| (-174)) (PROGN (-15 -4011 ((-171 (-391)) (-171 |#1|))) (-15 -4011 ((-171 (-391)) (-171 |#1|) (-944))) (-15 -4011 ((-171 (-391)) (-975 (-171 |#1|)))) (-15 -4011 ((-171 (-391)) (-975 (-171 |#1|)) (-944)))) |%noBranch|) (IF (|has| |#1| (-1074)) (PROGN (-15 -3231 ((-391) (-975 |#1|))) (-15 -3231 ((-391) (-975 |#1|) (-944))) (-15 -4011 ((-171 (-391)) (-975 |#1|))) (-15 -4011 ((-171 (-391)) (-975 |#1|) (-944)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -3231 ((-391) (-420 (-975 |#1|)))) (-15 -3231 ((-391) (-420 (-975 |#1|)) (-944))) (-15 -4011 ((-171 (-391)) (-420 (-975 |#1|)))) (-15 -4011 ((-171 (-391)) (-420 (-975 |#1|)) (-944))) (-15 -4011 ((-171 (-391)) (-420 (-975 (-171 |#1|))))) (-15 -4011 ((-171 (-391)) (-420 (-975 (-171 |#1|))) (-944))) (IF (|has| |#1| (-865)) (PROGN (-15 -3231 ((-391) (-327 |#1|))) (-15 -3231 ((-391) (-327 |#1|) (-944))) (-15 -4011 ((-171 (-391)) (-327 |#1|))) (-15 -4011 ((-171 (-391)) (-327 |#1|) (-944))) (-15 -4011 ((-171 (-391)) (-327 (-171 |#1|)))) (-15 -4011 ((-171 (-391)) (-327 (-171 |#1|)) (-944)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -4110 ((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)) (-944)))) |%noBranch|) (IF (|has| |#1| (-1074)) (PROGN (-15 -4097 ((-3 (-391) "failed") (-975 |#1|))) (-15 -4097 ((-3 (-391) "failed") (-975 |#1|) (-944))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-975 |#1|))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-975 |#1|) (-944)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -4097 ((-3 (-391) "failed") (-420 (-975 |#1|)))) (-15 -4097 ((-3 (-391) "failed") (-420 (-975 |#1|)) (-944))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-420 (-975 |#1|)))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-420 (-975 |#1|)) (-944))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-420 (-975 (-171 |#1|))))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-420 (-975 (-171 |#1|))) (-944))) (IF (|has| |#1| (-865)) (PROGN (-15 -4097 ((-3 (-391) "failed") (-327 |#1|))) (-15 -4097 ((-3 (-391) "failed") (-327 |#1|) (-944))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-327 |#1|))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-327 |#1|) (-944))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)) (-944)))) |%noBranch|)) |%noBranch|)) (-627 (-391))) (T -801)) +((-4110 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-327 (-171 *5))) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-865)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-4110 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-865)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-4110 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-327 *5)) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-865)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-4110 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-865)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-4097 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-327 *5)) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-865)) (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) (-4097 (*1 *2 *3) (|partial| -12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-865)) (-4 *4 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *4)))) (-4110 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-420 (-975 (-171 *5)))) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-4110 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-975 (-171 *4)))) (-4 *4 (-569)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-4110 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-4110 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-4097 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) (-4097 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) (-4 *4 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *4)))) (-4110 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-975 *5)) (-5 *4 (-944)) (-4 *5 (-1074)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-4110 (*1 *2 *3) (|partial| -12 (-5 *3 (-975 *4)) (-4 *4 (-1074)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-4097 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-975 *5)) (-5 *4 (-944)) (-4 *5 (-1074)) (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) (-4097 (*1 *2 *3) (|partial| -12 (-5 *3 (-975 *4)) (-4 *4 (-1074)) (-4 *4 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *4)))) (-4110 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-975 (-171 *5))) (-5 *4 (-944)) (-4 *5 (-174)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-4110 (*1 *2 *3) (|partial| -12 (-5 *3 (-975 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-4011 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-171 *5))) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-865)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-327 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-865)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-4011 (*1 *2 *3 *4) (-12 (-5 *3 (-327 *5)) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-865)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-865)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-3231 (*1 *2 *3 *4) (-12 (-5 *3 (-327 *5)) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-865)) (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) (-3231 (*1 *2 *3) (-12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-865)) (-4 *4 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *4)))) (-4011 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 (-171 *5)))) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-420 (-975 (-171 *4)))) (-4 *4 (-569)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-4011 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-3231 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) (-3231 (*1 *2 *3) (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) (-4 *4 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *4)))) (-4011 (*1 *2 *3 *4) (-12 (-5 *3 (-975 *5)) (-5 *4 (-944)) (-4 *5 (-1074)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-975 *4)) (-4 *4 (-1074)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-3231 (*1 *2 *3 *4) (-12 (-5 *3 (-975 *5)) (-5 *4 (-944)) (-4 *5 (-1074)) (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) (-3231 (*1 *2 *3) (-12 (-5 *3 (-975 *4)) (-4 *4 (-1074)) (-4 *4 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *4)))) (-4011 (*1 *2 *3 *4) (-12 (-5 *3 (-975 (-171 *5))) (-5 *4 (-944)) (-4 *5 (-174)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-975 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-4011 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-944)) (-4 *5 (-174)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) (-4011 (*1 *2 *3 *4) (-12 (-5 *4 (-944)) (-5 *2 (-171 (-391))) (-5 *1 (-801 *3)) (-4 *3 (-627 (-391))))) (-4011 (*1 *2 *3) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-801 *3)) (-4 *3 (-627 (-391))))) (-3231 (*1 *2 *3 *4) (-12 (-5 *4 (-944)) (-5 *2 (-391)) (-5 *1 (-801 *3)) (-4 *3 (-627 *2)))) (-3231 (*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-801 *3)) (-4 *3 (-627 *2))))) +(-10 -7 (-15 -3231 ((-391) |#1|)) (-15 -3231 ((-391) |#1| (-944))) (-15 -4011 ((-171 (-391)) |#1|)) (-15 -4011 ((-171 (-391)) |#1| (-944))) (IF (|has| |#1| (-174)) (PROGN (-15 -4011 ((-171 (-391)) (-171 |#1|))) (-15 -4011 ((-171 (-391)) (-171 |#1|) (-944))) (-15 -4011 ((-171 (-391)) (-975 (-171 |#1|)))) (-15 -4011 ((-171 (-391)) (-975 (-171 |#1|)) (-944)))) |%noBranch|) (IF (|has| |#1| (-1074)) (PROGN (-15 -3231 ((-391) (-975 |#1|))) (-15 -3231 ((-391) (-975 |#1|) (-944))) (-15 -4011 ((-171 (-391)) (-975 |#1|))) (-15 -4011 ((-171 (-391)) (-975 |#1|) (-944)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -3231 ((-391) (-420 (-975 |#1|)))) (-15 -3231 ((-391) (-420 (-975 |#1|)) (-944))) (-15 -4011 ((-171 (-391)) (-420 (-975 |#1|)))) (-15 -4011 ((-171 (-391)) (-420 (-975 |#1|)) (-944))) (-15 -4011 ((-171 (-391)) (-420 (-975 (-171 |#1|))))) (-15 -4011 ((-171 (-391)) (-420 (-975 (-171 |#1|))) (-944))) (IF (|has| |#1| (-865)) (PROGN (-15 -3231 ((-391) (-327 |#1|))) (-15 -3231 ((-391) (-327 |#1|) (-944))) (-15 -4011 ((-171 (-391)) (-327 |#1|))) (-15 -4011 ((-171 (-391)) (-327 |#1|) (-944))) (-15 -4011 ((-171 (-391)) (-327 (-171 |#1|)))) (-15 -4011 ((-171 (-391)) (-327 (-171 |#1|)) (-944)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -4110 ((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)) (-944)))) |%noBranch|) (IF (|has| |#1| (-1074)) (PROGN (-15 -4097 ((-3 (-391) "failed") (-975 |#1|))) (-15 -4097 ((-3 (-391) "failed") (-975 |#1|) (-944))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-975 |#1|))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-975 |#1|) (-944)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -4097 ((-3 (-391) "failed") (-420 (-975 |#1|)))) (-15 -4097 ((-3 (-391) "failed") (-420 (-975 |#1|)) (-944))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-420 (-975 |#1|)))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-420 (-975 |#1|)) (-944))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-420 (-975 (-171 |#1|))))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-420 (-975 (-171 |#1|))) (-944))) (IF (|has| |#1| (-865)) (PROGN (-15 -4097 ((-3 (-391) "failed") (-327 |#1|))) (-15 -4097 ((-3 (-391) "failed") (-327 |#1|) (-944))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-327 |#1|))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-327 |#1|) (-944))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)))) (-15 -4110 ((-3 (-171 (-391)) "failed") (-327 (-171 |#1|)) (-944)))) |%noBranch|)) |%noBranch|)) +((-4163 (((-944) (-1183)) 89)) (-4186 (((-3 (-391) "failed") (-1183)) 36)) (-4174 (((-391) (-1183)) 34)) (-4139 (((-944) (-1183)) 63)) (-4150 (((-1183) (-944)) 73)) (-4126 (((-1183) (-944)) 62))) +(((-802) (-10 -7 (-15 -4126 ((-1183) (-944))) (-15 -4139 ((-944) (-1183))) (-15 -4150 ((-1183) (-944))) (-15 -4163 ((-944) (-1183))) (-15 -4174 ((-391) (-1183))) (-15 -4186 ((-3 (-391) "failed") (-1183))))) (T -802)) +((-4186 (*1 *2 *3) (|partial| -12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-802)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-802)))) (-4163 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-944)) (-5 *1 (-802)))) (-4150 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1183)) (-5 *1 (-802)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-944)) (-5 *1 (-802)))) (-4126 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1183)) (-5 *1 (-802))))) +(-10 -7 (-15 -4126 ((-1183) (-944))) (-15 -4139 ((-944) (-1183))) (-15 -4150 ((-1183) (-944))) (-15 -4163 ((-944) (-1183))) (-15 -4174 ((-391) (-1183))) (-15 -4186 ((-3 (-391) "failed") (-1183)))) +((-3473 (((-112) $ $) 7)) (-4195 (((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 16) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060)) 14)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 17) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 15)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8))) +(((-803) (-141)) (T -803)) +((-1878 (*1 *2 *3 *4) (-12 (-4 *1 (-803)) (-5 *3 (-1088)) (-5 *4 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060)))))) (-4195 (*1 *2 *3 *2) (-12 (-4 *1 (-803)) (-5 *2 (-1060)) (-5 *3 (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) (-1878 (*1 *2 *3 *4) (-12 (-4 *1 (-803)) (-5 *3 (-1088)) (-5 *4 (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060)))))) (-4195 (*1 *2 *3 *2) (-12 (-4 *1 (-803)) (-5 *2 (-1060)) (-5 *3 (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) +(-13 (-1125) (-10 -7 (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -4195 ((-1060) (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060))) (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) (|:| |extra| (-1060))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -4195 ((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) (-1060))))) +(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-4227 (((-1297) (-1292 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4289 (-391))) (-391) (-1292 (-391)) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391))) 55) (((-1297) (-1292 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4289 (-391))) (-391) (-1292 (-391)) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391))) 52)) (-4238 (((-1297) (-1292 (-391)) (-577) (-391) (-391) (-577) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391))) 61)) (-4218 (((-1297) (-1292 (-391)) (-577) (-391) (-391) (-391) (-391) (-577) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391))) 50)) (-4206 (((-1297) (-1292 (-391)) (-577) (-391) (-391) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391))) 63) (((-1297) (-1292 (-391)) (-577) (-391) (-391) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391))) 62))) +(((-804) (-10 -7 (-15 -4206 ((-1297) (-1292 (-391)) (-577) (-391) (-391) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)))) (-15 -4206 ((-1297) (-1292 (-391)) (-577) (-391) (-391) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)))) (-15 -4218 ((-1297) (-1292 (-391)) (-577) (-391) (-391) (-391) (-391) (-577) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)))) (-15 -4227 ((-1297) (-1292 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4289 (-391))) (-391) (-1292 (-391)) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)))) (-15 -4227 ((-1297) (-1292 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4289 (-391))) (-391) (-1292 (-391)) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)))) (-15 -4238 ((-1297) (-1292 (-391)) (-577) (-391) (-391) (-577) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)))))) (T -804)) +((-4238 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) (-5 *1 (-804)))) (-4227 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-577)) (-5 *6 (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4289 (-391)))) (-5 *7 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) (-5 *1 (-804)))) (-4227 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-577)) (-5 *6 (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4289 (-391)))) (-5 *7 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) (-5 *1 (-804)))) (-4218 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) (-5 *1 (-804)))) (-4206 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) (-5 *1 (-804)))) (-4206 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) (-5 *1 (-804))))) +(-10 -7 (-15 -4206 ((-1297) (-1292 (-391)) (-577) (-391) (-391) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)))) (-15 -4206 ((-1297) (-1292 (-391)) (-577) (-391) (-391) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)))) (-15 -4218 ((-1297) (-1292 (-391)) (-577) (-391) (-391) (-391) (-391) (-577) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)))) (-15 -4227 ((-1297) (-1292 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4289 (-391))) (-391) (-1292 (-391)) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)))) (-15 -4227 ((-1297) (-1292 (-391)) (-577) (-391) (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4289 (-391))) (-391) (-1292 (-391)) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)) (-1292 (-391)))) (-15 -4238 ((-1297) (-1292 (-391)) (-577) (-391) (-391) (-577) (-1 (-1297) (-1292 (-391)) (-1292 (-391)) (-391))))) +((-4231 (((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 64)) (-4198 (((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 40)) (-4222 (((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 63)) (-4293 (((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 38)) (-4211 (((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 62)) (-4281 (((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)) 24)) (-4270 (((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577)) 41)) (-4260 (((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577)) 39)) (-4250 (((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577)) 37))) +(((-805) (-10 -7 (-15 -4250 ((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -4260 ((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -4270 ((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -4281 ((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -4293 ((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -4198 ((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -4211 ((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -4222 ((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -4231 ((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))))) (T -805)) +((-4231 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3115 *4) (|:| -3310 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-805)) (-5 *5 (-577)))) (-4222 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3115 *4) (|:| -3310 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-805)) (-5 *5 (-577)))) (-4211 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3115 *4) (|:| -3310 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-805)) (-5 *5 (-577)))) (-4198 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3115 *4) (|:| -3310 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-805)) (-5 *5 (-577)))) (-4293 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3115 *4) (|:| -3310 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-805)) (-5 *5 (-577)))) (-4281 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3115 *4) (|:| -3310 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-805)) (-5 *5 (-577)))) (-4270 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3115 *4) (|:| -3310 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-805)) (-5 *5 (-577)))) (-4260 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3115 *4) (|:| -3310 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-805)) (-5 *5 (-577)))) (-4250 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3115 *4) (|:| -3310 *4) (|:| |totalpts| (-577)) (|:| |success| (-112)))) (-5 *1 (-805)) (-5 *5 (-577))))) +(-10 -7 (-15 -4250 ((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -4260 ((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -4270 ((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577) (-577))) (-15 -4281 ((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -4293 ((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -4198 ((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -4211 ((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -4222 ((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577))) (-15 -4231 ((-2 (|:| -3115 (-391)) (|:| -3310 (-391)) (|:| |totalpts| (-577)) (|:| |success| (-112))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-577) (-577)))) +((-1341 (((-1237 |#1|) |#1| (-228) (-577)) 69))) +(((-806 |#1|) (-10 -7 (-15 -1341 ((-1237 |#1|) |#1| (-228) (-577)))) (-999)) (T -806)) +((-1341 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-228)) (-5 *5 (-577)) (-5 *2 (-1237 *3)) (-5 *1 (-806 *3)) (-4 *3 (-999))))) +(-10 -7 (-15 -1341 ((-1237 |#1|) |#1| (-228) (-577)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 26)) (-1956 (((-3 $ "failed") $ $) 28)) (-1534 (($) 25 T CONST)) (-3732 (($ $ $) 20)) (-3201 (($ $ $) 19)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 24 T CONST)) (-3025 (((-112) $ $) 18)) (-3000 (((-112) $ $) 16)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 17)) (-2990 (((-112) $ $) 15)) (-3066 (($ $ $) 32) (($ $) 31)) (-3055 (($ $ $) 22)) (* (($ (-944) $) 23) (($ (-787) $) 27) (($ (-577) $) 30))) (((-807) (-141)) (T -807)) NIL -(-13 (-862) (-25)) -(((-25) . T) ((-102) . T) ((-625 (-877)) . T) ((-862) . T) ((-865) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 26)) (-2721 (((-3 $ "failed") $ $) 28)) (-4359 (($) 25 T CONST)) (-3707 (($ $ $) 20)) (-1611 (($ $ $) 19)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 24 T CONST)) (-2985 (((-112) $ $) 18)) (-2963 (((-112) $ $) 16)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 17)) (-2954 (((-112) $ $) 15)) (-3012 (($ $ $) 22)) (* (($ (-941) $) 23) (($ (-784) $) 27))) +(-13 (-811) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-808) . T) ((-810) . T) ((-811) . T) ((-865) . T) ((-868) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 26)) (-1534 (($) 25 T CONST)) (-3732 (($ $ $) 20)) (-3201 (($ $ $) 19)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 24 T CONST)) (-3025 (((-112) $ $) 18)) (-3000 (((-112) $ $) 16)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 17)) (-2990 (((-112) $ $) 15)) (-3055 (($ $ $) 22)) (* (($ (-944) $) 23) (($ (-787) $) 27))) (((-808) (-141)) (T -808)) NIL -(-13 (-805) (-132)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-805) . T) ((-807) . T) ((-862) . T) ((-865) . T) ((-1122) . T) ((-1239) . T)) -((-2364 (((-112) $) 42)) (-1624 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2884 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 43)) (-2775 (((-3 (-419 (-576)) "failed") $) 78)) (-3112 (((-112) $) 72)) (-4239 (((-419 (-576)) $) 76)) (-2234 ((|#2| $) 26)) (-4083 (($ (-1 |#2| |#2|) $) 23)) (-2134 (($ $) 58)) (-4148 (((-548) $) 67)) (-3549 (($ $) 21)) (-3501 (((-877) $) 53) (($ (-576)) 40) (($ |#2|) 38) (($ (-419 (-576))) NIL)) (-1960 (((-784)) 10)) (-1792 ((|#2| $) 71)) (-2933 (((-112) $ $) 30)) (-2954 (((-112) $ $) 69)) (-3022 (($ $) 32) (($ $ $) NIL)) (-3012 (($ $ $) 31)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) -(((-809 |#1| |#2|) (-10 -8 (-15 -2954 ((-112) |#1| |#1|)) (-15 -4148 ((-548) |#1|)) (-15 -2134 (|#1| |#1|)) (-15 -2775 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4239 ((-419 (-576)) |#1|)) (-15 -3112 ((-112) |#1|)) (-15 -1792 (|#2| |#1|)) (-15 -2234 (|#2| |#1|)) (-15 -3549 (|#1| |#1|)) (-15 -4083 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -3501 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1960 ((-784))) (-15 -3501 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 -2364 ((-112) |#1|)) (-15 * (|#1| (-941) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -2933 ((-112) |#1| |#1|))) (-810 |#2|) (-174)) (T -809)) -((-1960 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-784)) (-5 *1 (-809 *3 *4)) (-4 *3 (-810 *4))))) -(-10 -8 (-15 -2954 ((-112) |#1| |#1|)) (-15 -4148 ((-548) |#1|)) (-15 -2134 (|#1| |#1|)) (-15 -2775 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4239 ((-419 (-576)) |#1|)) (-15 -3112 ((-112) |#1|)) (-15 -1792 (|#2| |#1|)) (-15 -2234 (|#2| |#1|)) (-15 -3549 (|#1| |#1|)) (-15 -4083 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -3501 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1960 ((-784))) (-15 -3501 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 -2364 ((-112) |#1|)) (-15 * (|#1| (-941) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -2933 ((-112) |#1| |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-2193 (((-784)) 59 (|has| |#1| (-379)))) (-4359 (($) 18 T CONST)) (-1624 (((-3 (-576) "failed") $) 101 (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-2884 (((-576) $) 100 (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 96)) (-3843 (((-3 $ "failed") $) 37)) (-1907 ((|#1| $) 85)) (-2775 (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-557)))) (-3112 (((-112) $) 74 (|has| |#1| (-557)))) (-4239 (((-419 (-576)) $) 73 (|has| |#1| (-557)))) (-1892 (($) 62 (|has| |#1| (-379)))) (-4094 (((-112) $) 35)) (-4406 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 76)) (-2234 ((|#1| $) 77)) (-3707 (($ $ $) 63 (|has| |#1| (-862)))) (-1611 (($ $ $) 64 (|has| |#1| (-862)))) (-4083 (($ (-1 |#1| |#1|) $) 87)) (-3007 (((-941) $) 61 (|has| |#1| (-379)))) (-2342 (((-1180) $) 10)) (-2134 (($ $) 71 (|has| |#1| (-374)))) (-3178 (($ (-941)) 60 (|has| |#1| (-379)))) (-2279 ((|#1| $) 82)) (-3435 ((|#1| $) 83)) (-3795 ((|#1| $) 84)) (-3269 ((|#1| $) 78)) (-2986 ((|#1| $) 79)) (-2665 ((|#1| $) 80)) (-1348 ((|#1| $) 81)) (-1471 (((-1142) $) 11)) (-3236 (($ $ (-657 |#1|) (-657 |#1|)) 93 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 92 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 91 (|has| |#1| (-319 |#1|))) (($ $ (-657 (-304 |#1|))) 90 (|has| |#1| (-319 |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) 89 (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) |#1|) 88 (|has| |#1| (-526 (-1198) |#1|)))) (-2835 (($ $ |#1|) 94 (|has| |#1| (-296 |#1| |#1|)))) (-4148 (((-548) $) 69 (|has| |#1| (-626 (-548))))) (-3549 (($ $) 86)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 99 (|has| |#1| (-1060 (-419 (-576)))))) (-3096 (((-3 $ "failed") $) 70 (|has| |#1| (-146)))) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-1792 ((|#1| $) 75 (|has| |#1| (-1082)))) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2985 (((-112) $ $) 65 (|has| |#1| (-862)))) (-2963 (((-112) $ $) 67 (|has| |#1| (-862)))) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 66 (|has| |#1| (-862)))) (-2954 (((-112) $ $) 68 (|has| |#1| (-862)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-810 |#1|) (-141) (-174)) (T -810)) -((-3549 (*1 *1 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-1907 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-2279 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-2986 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-3269 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-4406 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) (-1792 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)) (-4 *2 (-1082)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-4239 (*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-2775 (*1 *2 *1) (|partial| -12 (-4 *1 (-810 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-2134 (*1 *1 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) -(-13 (-38 |t#1|) (-423 |t#1|) (-349 |t#1|) (-10 -8 (-15 -3549 ($ $)) (-15 -1907 (|t#1| $)) (-15 -3795 (|t#1| $)) (-15 -3435 (|t#1| $)) (-15 -2279 (|t#1| $)) (-15 -1348 (|t#1| $)) (-15 -2665 (|t#1| $)) (-15 -2986 (|t#1| $)) (-15 -3269 (|t#1| $)) (-15 -2234 (|t#1| $)) (-15 -4406 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1082)) (-15 -1792 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3112 ((-112) $)) (-15 -4239 ((-419 (-576)) $)) (-15 -2775 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -2134 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0=(-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-379) |has| |#1| (-379)) ((-349 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 |#1|) . T) ((-730 |#1|) . T) ((-739) . T) ((-862) |has| |#1| (-862)) ((-865) |has| |#1| (-862)) ((-1060 #0#) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-4083 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-811 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4083 (|#3| (-1 |#4| |#2|) |#1|))) (-810 |#2|) (-174) (-810 |#4|) (-174)) (T -811)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-810 *6)) (-5 *1 (-811 *4 *5 *2 *6)) (-4 *4 (-810 *5))))) -(-10 -7 (-15 -4083 (|#3| (-1 |#4| |#2|) |#1|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2193 (((-784)) NIL (|has| |#1| (-379)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) NIL) (((-3 (-1021 |#1|) "failed") $) 35) (((-3 (-576) "failed") $) NIL (-2802 (|has| (-1021 |#1|) (-1060 (-576))) (|has| |#1| (-1060 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL (-2802 (|has| (-1021 |#1|) (-1060 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))))) (-2884 ((|#1| $) NIL) (((-1021 |#1|) $) 33) (((-576) $) NIL (-2802 (|has| (-1021 |#1|) (-1060 (-576))) (|has| |#1| (-1060 (-576))))) (((-419 (-576)) $) NIL (-2802 (|has| (-1021 |#1|) (-1060 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))))) (-3843 (((-3 $ "failed") $) NIL)) (-1907 ((|#1| $) 16)) (-2775 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3112 (((-112) $) NIL (|has| |#1| (-557)))) (-4239 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-1892 (($) NIL (|has| |#1| (-379)))) (-4094 (((-112) $) NIL)) (-4406 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1021 |#1|) (-1021 |#1|)) 29)) (-2234 ((|#1| $) NIL)) (-3707 (($ $ $) NIL (|has| |#1| (-862)))) (-1611 (($ $ $) NIL (|has| |#1| (-862)))) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-3007 (((-941) $) NIL (|has| |#1| (-379)))) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-374)))) (-3178 (($ (-941)) NIL (|has| |#1| (-379)))) (-2279 ((|#1| $) 22)) (-3435 ((|#1| $) 20)) (-3795 ((|#1| $) 18)) (-3269 ((|#1| $) 26)) (-2986 ((|#1| $) 25)) (-2665 ((|#1| $) 24)) (-1348 ((|#1| $) 23)) (-1471 (((-1142) $) NIL)) (-3236 (($ $ (-657 |#1|) (-657 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-657 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) NIL (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) |#1|) NIL (|has| |#1| (-526 (-1198) |#1|)))) (-2835 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-4148 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3549 (($ $) NIL)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1021 |#1|)) 30) (($ (-419 (-576))) NIL (-2802 (|has| (-1021 |#1|) (-1060 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))))) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-1792 ((|#1| $) NIL (|has| |#1| (-1082)))) (-2769 (($) 8 T CONST)) (-2779 (($) 12 T CONST)) (-2985 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-812 |#1|) (-13 (-810 |#1|) (-423 (-1021 |#1|)) (-10 -8 (-15 -4406 ($ (-1021 |#1|) (-1021 |#1|))))) (-174)) (T -812)) -((-4406 (*1 *1 *2 *2) (-12 (-5 *2 (-1021 *3)) (-4 *3 (-174)) (-5 *1 (-812 *3))))) -(-13 (-810 |#1|) (-423 (-1021 |#1|)) (-10 -8 (-15 -4406 ($ (-1021 |#1|) (-1021 |#1|))))) -((-3429 (((-112) $ $) 7)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2722 (((-1057) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-2933 (((-112) $ $) 8))) -(((-813) (-141)) (T -813)) -((-4209 (*1 *2 *3 *4) (-12 (-4 *1 (-813)) (-5 *3 (-1085)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)))))) (-2722 (*1 *2 *3) (-12 (-4 *1 (-813)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1057))))) -(-13 (-1122) (-10 -7 (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2722 ((-1057) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) -(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-2243 (((-2 (|:| |particular| |#2|) (|:| -1985 (-657 |#2|))) |#3| |#2| (-1198)) 19))) -(((-814 |#1| |#2| |#3|) (-10 -7 (-15 -2243 ((-2 (|:| |particular| |#2|) (|:| -1985 (-657 |#2|))) |#3| |#2| (-1198)))) (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148)) (-13 (-29 |#1|) (-1224) (-979)) (-669 |#2|)) (T -814)) -((-2243 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1198)) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1224) (-979))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1985 (-657 *4)))) (-5 *1 (-814 *6 *4 *3)) (-4 *3 (-669 *4))))) -(-10 -7 (-15 -2243 ((-2 (|:| |particular| |#2|) (|:| -1985 (-657 |#2|))) |#3| |#2| (-1198)))) -((-3036 (((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-657 |#2|)) 28) (((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-657 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -1985 (-657 |#2|))) |#2| "failed") |#2| (-115) (-1198)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -1985 (-657 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1198)) 18) (((-3 (-2 (|:| |particular| (-1289 |#2|)) (|:| -1985 (-657 (-1289 |#2|)))) "failed") (-657 |#2|) (-657 (-115)) (-1198)) 24) (((-3 (-2 (|:| |particular| (-1289 |#2|)) (|:| -1985 (-657 (-1289 |#2|)))) "failed") (-657 (-304 |#2|)) (-657 (-115)) (-1198)) 26) (((-3 (-657 (-1289 |#2|)) "failed") (-702 |#2|) (-1198)) 37) (((-3 (-2 (|:| |particular| (-1289 |#2|)) (|:| -1985 (-657 (-1289 |#2|)))) "failed") (-702 |#2|) (-1289 |#2|) (-1198)) 35))) -(((-815 |#1| |#2|) (-10 -7 (-15 -3036 ((-3 (-2 (|:| |particular| (-1289 |#2|)) (|:| -1985 (-657 (-1289 |#2|)))) "failed") (-702 |#2|) (-1289 |#2|) (-1198))) (-15 -3036 ((-3 (-657 (-1289 |#2|)) "failed") (-702 |#2|) (-1198))) (-15 -3036 ((-3 (-2 (|:| |particular| (-1289 |#2|)) (|:| -1985 (-657 (-1289 |#2|)))) "failed") (-657 (-304 |#2|)) (-657 (-115)) (-1198))) (-15 -3036 ((-3 (-2 (|:| |particular| (-1289 |#2|)) (|:| -1985 (-657 (-1289 |#2|)))) "failed") (-657 |#2|) (-657 (-115)) (-1198))) (-15 -3036 ((-3 (-2 (|:| |particular| |#2|) (|:| -1985 (-657 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1198))) (-15 -3036 ((-3 (-2 (|:| |particular| |#2|) (|:| -1985 (-657 |#2|))) |#2| "failed") |#2| (-115) (-1198))) (-15 -3036 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-657 |#2|))) (-15 -3036 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-657 |#2|)))) (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148)) (-13 (-29 |#1|) (-1224) (-979))) (T -815)) -((-3036 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-657 *2)) (-4 *2 (-13 (-29 *6) (-1224) (-979))) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *1 (-815 *6 *2)))) (-3036 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-657 *2)) (-4 *2 (-13 (-29 *6) (-1224) (-979))) (-5 *1 (-815 *6 *2)) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))))) (-3036 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1198)) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1985 (-657 *3))) *3 "failed")) (-5 *1 (-815 *6 *3)) (-4 *3 (-13 (-29 *6) (-1224) (-979))))) (-3036 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1198)) (-4 *7 (-13 (-29 *6) (-1224) (-979))) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1985 (-657 *7))) *7 "failed")) (-5 *1 (-815 *6 *7)))) (-3036 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-657 *7)) (-5 *4 (-657 (-115))) (-5 *5 (-1198)) (-4 *7 (-13 (-29 *6) (-1224) (-979))) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1289 *7)) (|:| -1985 (-657 (-1289 *7))))) (-5 *1 (-815 *6 *7)))) (-3036 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-657 (-304 *7))) (-5 *4 (-657 (-115))) (-5 *5 (-1198)) (-4 *7 (-13 (-29 *6) (-1224) (-979))) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1289 *7)) (|:| -1985 (-657 (-1289 *7))))) (-5 *1 (-815 *6 *7)))) (-3036 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-702 *6)) (-5 *4 (-1198)) (-4 *6 (-13 (-29 *5) (-1224) (-979))) (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-657 (-1289 *6))) (-5 *1 (-815 *5 *6)))) (-3036 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-702 *7)) (-5 *5 (-1198)) (-4 *7 (-13 (-29 *6) (-1224) (-979))) (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1289 *7)) (|:| -1985 (-657 (-1289 *7))))) (-5 *1 (-815 *6 *7)) (-5 *4 (-1289 *7))))) -(-10 -7 (-15 -3036 ((-3 (-2 (|:| |particular| (-1289 |#2|)) (|:| -1985 (-657 (-1289 |#2|)))) "failed") (-702 |#2|) (-1289 |#2|) (-1198))) (-15 -3036 ((-3 (-657 (-1289 |#2|)) "failed") (-702 |#2|) (-1198))) (-15 -3036 ((-3 (-2 (|:| |particular| (-1289 |#2|)) (|:| -1985 (-657 (-1289 |#2|)))) "failed") (-657 (-304 |#2|)) (-657 (-115)) (-1198))) (-15 -3036 ((-3 (-2 (|:| |particular| (-1289 |#2|)) (|:| -1985 (-657 (-1289 |#2|)))) "failed") (-657 |#2|) (-657 (-115)) (-1198))) (-15 -3036 ((-3 (-2 (|:| |particular| |#2|) (|:| -1985 (-657 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1198))) (-15 -3036 ((-3 (-2 (|:| |particular| |#2|) (|:| -1985 (-657 |#2|))) |#2| "failed") |#2| (-115) (-1198))) (-15 -3036 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-657 |#2|))) (-15 -3036 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-657 |#2|)))) -((-4443 (($) 9)) (-1888 (((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-3159 (((-657 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-2468 (($ (-2 (|:| -4291 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) 24)) (-2845 (($ (-657 (-2 (|:| -4291 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) 22)) (-3929 (((-1294)) 11))) -(((-816) (-10 -8 (-15 -4443 ($)) (-15 -3929 ((-1294))) (-15 -3159 ((-657 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2845 ($ (-657 (-2 (|:| -4291 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -2468 ($ (-2 (|:| -4291 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -1888 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -816)) -((-1888 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *1 (-816)))) (-2468 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4291 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) (-5 *1 (-816)))) (-2845 (*1 *1 *2) (-12 (-5 *2 (-657 (-2 (|:| -4291 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-5 *1 (-816)))) (-3159 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-816)))) (-3929 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-816)))) (-4443 (*1 *1) (-5 *1 (-816)))) -(-10 -8 (-15 -4443 ($)) (-15 -3929 ((-1294))) (-15 -3159 ((-657 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2845 ($ (-657 (-2 (|:| -4291 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -2468 ($ (-2 (|:| -4291 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4440 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -1888 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-3845 ((|#2| |#2| (-1198)) 17)) (-2593 ((|#2| |#2| (-1198)) 56)) (-1411 (((-1 |#2| |#2|) (-1198)) 11))) -(((-817 |#1| |#2|) (-10 -7 (-15 -3845 (|#2| |#2| (-1198))) (-15 -2593 (|#2| |#2| (-1198))) (-15 -1411 ((-1 |#2| |#2|) (-1198)))) (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148)) (-13 (-29 |#1|) (-1224) (-979))) (T -817)) -((-1411 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-817 *4 *5)) (-4 *5 (-13 (-29 *4) (-1224) (-979))))) (-2593 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *1 (-817 *4 *2)) (-4 *2 (-13 (-29 *4) (-1224) (-979))))) (-3845 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *1 (-817 *4 *2)) (-4 *2 (-13 (-29 *4) (-1224) (-979)))))) -(-10 -7 (-15 -3845 (|#2| |#2| (-1198))) (-15 -2593 (|#2| |#2| (-1198))) (-15 -1411 ((-1 |#2| |#2|) (-1198)))) -((-3036 (((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-326 (-390)) (-657 (-390)) (-390) (-390)) 128) (((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-326 (-390)) (-657 (-390)) (-390)) 129) (((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-657 (-390)) (-390)) 131) (((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-326 (-390)) (-390)) 133) (((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-390)) 134) (((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390))) 136) (((-1057) (-821) (-1085)) 120) (((-1057) (-821)) 121)) (-4209 (((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))) (-821) (-1085)) 80) (((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))) (-821)) 82))) -(((-818) (-10 -7 (-15 -3036 ((-1057) (-821))) (-15 -3036 ((-1057) (-821) (-1085))) (-15 -3036 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)))) (-15 -3036 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-390))) (-15 -3036 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-326 (-390)) (-390))) (-15 -3036 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-657 (-390)) (-390))) (-15 -3036 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-326 (-390)) (-657 (-390)) (-390))) (-15 -3036 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-326 (-390)) (-657 (-390)) (-390) (-390))) (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))) (-821))) (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))) (-821) (-1085))))) (T -818)) -((-4209 (*1 *2 *3 *4) (-12 (-5 *3 (-821)) (-5 *4 (-1085)) (-5 *2 (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))))) (-5 *1 (-818)))) (-4209 (*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))))) (-5 *1 (-818)))) (-3036 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1289 (-326 *4))) (-5 *5 (-657 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1057)) (-5 *1 (-818)))) (-3036 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1289 (-326 *4))) (-5 *5 (-657 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1057)) (-5 *1 (-818)))) (-3036 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1289 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-657 *4)) (-5 *2 (-1057)) (-5 *1 (-818)))) (-3036 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1289 (-326 *4))) (-5 *5 (-657 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1057)) (-5 *1 (-818)))) (-3036 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1289 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-657 *4)) (-5 *2 (-1057)) (-5 *1 (-818)))) (-3036 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1289 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-657 *4)) (-5 *2 (-1057)) (-5 *1 (-818)))) (-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-821)) (-5 *4 (-1085)) (-5 *2 (-1057)) (-5 *1 (-818)))) (-3036 (*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-1057)) (-5 *1 (-818))))) -(-10 -7 (-15 -3036 ((-1057) (-821))) (-15 -3036 ((-1057) (-821) (-1085))) (-15 -3036 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)))) (-15 -3036 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-390))) (-15 -3036 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-326 (-390)) (-390))) (-15 -3036 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-657 (-390)) (-390))) (-15 -3036 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-326 (-390)) (-657 (-390)) (-390))) (-15 -3036 ((-1057) (-1289 (-326 (-390))) (-390) (-390) (-657 (-390)) (-326 (-390)) (-657 (-390)) (-390) (-390))) (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))) (-821))) (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))) (-821) (-1085)))) -((-3233 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1985 (-657 |#4|))) (-666 |#4|) |#4|) 33))) -(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3233 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1985 (-657 |#4|))) (-666 |#4|) |#4|))) (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576)))) (-1265 |#1|) (-1265 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -819)) -((-3233 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *4)) (-4 *4 (-353 *5 *6 *7)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1985 (-657 *4)))) (-5 *1 (-819 *5 *6 *7 *4))))) -(-10 -7 (-15 -3233 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1985 (-657 |#4|))) (-666 |#4|) |#4|))) -((-1460 (((-2 (|:| -3989 |#3|) (|:| |rh| (-657 (-419 |#2|)))) |#4| (-657 (-419 |#2|))) 53)) (-2690 (((-657 (-2 (|:| -3665 |#2|) (|:| -2411 |#2|))) |#4| |#2|) 62) (((-657 (-2 (|:| -3665 |#2|) (|:| -2411 |#2|))) |#4|) 61) (((-657 (-2 (|:| -3665 |#2|) (|:| -2411 |#2|))) |#3| |#2|) 20) (((-657 (-2 (|:| -3665 |#2|) (|:| -2411 |#2|))) |#3|) 21)) (-4342 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-3092 ((|#2| |#3| (-657 (-419 |#2|))) 109) (((-3 |#2| "failed") |#3| (-419 |#2|)) 105))) -(((-820 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3092 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -3092 (|#2| |#3| (-657 (-419 |#2|)))) (-15 -2690 ((-657 (-2 (|:| -3665 |#2|) (|:| -2411 |#2|))) |#3|)) (-15 -2690 ((-657 (-2 (|:| -3665 |#2|) (|:| -2411 |#2|))) |#3| |#2|)) (-15 -4342 (|#2| |#3| |#1|)) (-15 -2690 ((-657 (-2 (|:| -3665 |#2|) (|:| -2411 |#2|))) |#4|)) (-15 -2690 ((-657 (-2 (|:| -3665 |#2|) (|:| -2411 |#2|))) |#4| |#2|)) (-15 -4342 (|#2| |#4| |#1|)) (-15 -1460 ((-2 (|:| -3989 |#3|) (|:| |rh| (-657 (-419 |#2|)))) |#4| (-657 (-419 |#2|))))) (-13 (-374) (-148) (-1060 (-419 (-576)))) (-1265 |#1|) (-669 |#2|) (-669 (-419 |#2|))) (T -820)) -((-1460 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) (-5 *2 (-2 (|:| -3989 *7) (|:| |rh| (-657 (-419 *6))))) (-5 *1 (-820 *5 *6 *7 *3)) (-5 *4 (-657 (-419 *6))) (-4 *7 (-669 *6)) (-4 *3 (-669 (-419 *6))))) (-4342 (*1 *2 *3 *4) (-12 (-4 *2 (-1265 *4)) (-5 *1 (-820 *4 *2 *5 *3)) (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *5 (-669 *2)) (-4 *3 (-669 (-419 *2))))) (-2690 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *4 (-1265 *5)) (-5 *2 (-657 (-2 (|:| -3665 *4) (|:| -2411 *4)))) (-5 *1 (-820 *5 *4 *6 *3)) (-4 *6 (-669 *4)) (-4 *3 (-669 (-419 *4))))) (-2690 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *5 (-1265 *4)) (-5 *2 (-657 (-2 (|:| -3665 *5) (|:| -2411 *5)))) (-5 *1 (-820 *4 *5 *6 *3)) (-4 *6 (-669 *5)) (-4 *3 (-669 (-419 *5))))) (-4342 (*1 *2 *3 *4) (-12 (-4 *2 (-1265 *4)) (-5 *1 (-820 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *3 (-669 *2)) (-4 *5 (-669 (-419 *2))))) (-2690 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *4 (-1265 *5)) (-5 *2 (-657 (-2 (|:| -3665 *4) (|:| -2411 *4)))) (-5 *1 (-820 *5 *4 *3 *6)) (-4 *3 (-669 *4)) (-4 *6 (-669 (-419 *4))))) (-2690 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *5 (-1265 *4)) (-5 *2 (-657 (-2 (|:| -3665 *5) (|:| -2411 *5)))) (-5 *1 (-820 *4 *5 *3 *6)) (-4 *3 (-669 *5)) (-4 *6 (-669 (-419 *5))))) (-3092 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-419 *2))) (-4 *2 (-1265 *5)) (-5 *1 (-820 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *3 (-669 *2)) (-4 *6 (-669 (-419 *2))))) (-3092 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1265 *5)) (-5 *1 (-820 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *3 (-669 *2)) (-4 *6 (-669 *4))))) -(-10 -7 (-15 -3092 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -3092 (|#2| |#3| (-657 (-419 |#2|)))) (-15 -2690 ((-657 (-2 (|:| -3665 |#2|) (|:| -2411 |#2|))) |#3|)) (-15 -2690 ((-657 (-2 (|:| -3665 |#2|) (|:| -2411 |#2|))) |#3| |#2|)) (-15 -4342 (|#2| |#3| |#1|)) (-15 -2690 ((-657 (-2 (|:| -3665 |#2|) (|:| -2411 |#2|))) |#4|)) (-15 -2690 ((-657 (-2 (|:| -3665 |#2|) (|:| -2411 |#2|))) |#4| |#2|)) (-15 -4342 (|#2| |#4| |#1|)) (-15 -1460 ((-2 (|:| -3989 |#3|) (|:| |rh| (-657 (-419 |#2|)))) |#4| (-657 (-419 |#2|))))) -((-3429 (((-112) $ $) NIL)) (-2884 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-821) (-13 (-1122) (-10 -8 (-15 -3501 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2884 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -821)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-821)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-821))))) -(-13 (-1122) (-10 -8 (-15 -3501 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2884 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $)))) -((-3172 (((-657 (-2 (|:| |frac| (-419 |#2|)) (|:| -3989 |#3|))) |#3| (-1 (-657 |#2|) |#2| (-1194 |#2|)) (-1 (-430 |#2|) |#2|)) 154)) (-3981 (((-657 (-2 (|:| |poly| |#2|) (|:| -3989 |#3|))) |#3| (-1 (-657 |#1|) |#2|)) 52)) (-3714 (((-657 (-2 (|:| |deg| (-784)) (|:| -3989 |#2|))) |#3|) 122)) (-1698 ((|#2| |#3|) 42)) (-3495 (((-657 (-2 (|:| -1509 |#1|) (|:| -3989 |#3|))) |#3| (-1 (-657 |#1|) |#2|)) 99)) (-3001 ((|#3| |#3| (-419 |#2|)) 72) ((|#3| |#3| |#2|) 96))) -(((-822 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1698 (|#2| |#3|)) (-15 -3714 ((-657 (-2 (|:| |deg| (-784)) (|:| -3989 |#2|))) |#3|)) (-15 -3495 ((-657 (-2 (|:| -1509 |#1|) (|:| -3989 |#3|))) |#3| (-1 (-657 |#1|) |#2|))) (-15 -3981 ((-657 (-2 (|:| |poly| |#2|) (|:| -3989 |#3|))) |#3| (-1 (-657 |#1|) |#2|))) (-15 -3172 ((-657 (-2 (|:| |frac| (-419 |#2|)) (|:| -3989 |#3|))) |#3| (-1 (-657 |#2|) |#2| (-1194 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3001 (|#3| |#3| |#2|)) (-15 -3001 (|#3| |#3| (-419 |#2|)))) (-13 (-374) (-148) (-1060 (-419 (-576)))) (-1265 |#1|) (-669 |#2|) (-669 (-419 |#2|))) (T -822)) -((-3001 (*1 *2 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *5 (-1265 *4)) (-5 *1 (-822 *4 *5 *2 *6)) (-4 *2 (-669 *5)) (-4 *6 (-669 *3)))) (-3001 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *3 (-1265 *4)) (-5 *1 (-822 *4 *3 *2 *5)) (-4 *2 (-669 *3)) (-4 *5 (-669 (-419 *3))))) (-3172 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-657 *7) *7 (-1194 *7))) (-5 *5 (-1 (-430 *7) *7)) (-4 *7 (-1265 *6)) (-4 *6 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-5 *2 (-657 (-2 (|:| |frac| (-419 *7)) (|:| -3989 *3)))) (-5 *1 (-822 *6 *7 *3 *8)) (-4 *3 (-669 *7)) (-4 *8 (-669 (-419 *7))))) (-3981 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-657 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) (-5 *2 (-657 (-2 (|:| |poly| *6) (|:| -3989 *3)))) (-5 *1 (-822 *5 *6 *3 *7)) (-4 *3 (-669 *6)) (-4 *7 (-669 (-419 *6))))) (-3495 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-657 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) (-5 *2 (-657 (-2 (|:| -1509 *5) (|:| -3989 *3)))) (-5 *1 (-822 *5 *6 *3 *7)) (-4 *3 (-669 *6)) (-4 *7 (-669 (-419 *6))))) (-3714 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *5 (-1265 *4)) (-5 *2 (-657 (-2 (|:| |deg| (-784)) (|:| -3989 *5)))) (-5 *1 (-822 *4 *5 *3 *6)) (-4 *3 (-669 *5)) (-4 *6 (-669 (-419 *5))))) (-1698 (*1 *2 *3) (-12 (-4 *2 (-1265 *4)) (-5 *1 (-822 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *3 (-669 *2)) (-4 *5 (-669 (-419 *2)))))) -(-10 -7 (-15 -1698 (|#2| |#3|)) (-15 -3714 ((-657 (-2 (|:| |deg| (-784)) (|:| -3989 |#2|))) |#3|)) (-15 -3495 ((-657 (-2 (|:| -1509 |#1|) (|:| -3989 |#3|))) |#3| (-1 (-657 |#1|) |#2|))) (-15 -3981 ((-657 (-2 (|:| |poly| |#2|) (|:| -3989 |#3|))) |#3| (-1 (-657 |#1|) |#2|))) (-15 -3172 ((-657 (-2 (|:| |frac| (-419 |#2|)) (|:| -3989 |#3|))) |#3| (-1 (-657 |#2|) |#2| (-1194 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3001 (|#3| |#3| |#2|)) (-15 -3001 (|#3| |#3| (-419 |#2|)))) -((-1745 (((-2 (|:| -1985 (-657 (-419 |#2|))) (|:| -3750 (-702 |#1|))) (-667 |#2| (-419 |#2|)) (-657 (-419 |#2|))) 146) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1985 (-657 (-419 |#2|)))) (-667 |#2| (-419 |#2|)) (-419 |#2|)) 145) (((-2 (|:| -1985 (-657 (-419 |#2|))) (|:| -3750 (-702 |#1|))) (-666 (-419 |#2|)) (-657 (-419 |#2|))) 140) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1985 (-657 (-419 |#2|)))) (-666 (-419 |#2|)) (-419 |#2|)) 138)) (-3244 ((|#2| (-667 |#2| (-419 |#2|))) 87) ((|#2| (-666 (-419 |#2|))) 90))) -(((-823 |#1| |#2|) (-10 -7 (-15 -1745 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1985 (-657 (-419 |#2|)))) (-666 (-419 |#2|)) (-419 |#2|))) (-15 -1745 ((-2 (|:| -1985 (-657 (-419 |#2|))) (|:| -3750 (-702 |#1|))) (-666 (-419 |#2|)) (-657 (-419 |#2|)))) (-15 -1745 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1985 (-657 (-419 |#2|)))) (-667 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -1745 ((-2 (|:| -1985 (-657 (-419 |#2|))) (|:| -3750 (-702 |#1|))) (-667 |#2| (-419 |#2|)) (-657 (-419 |#2|)))) (-15 -3244 (|#2| (-666 (-419 |#2|)))) (-15 -3244 (|#2| (-667 |#2| (-419 |#2|))))) (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576)))) (-1265 |#1|)) (T -823)) -((-3244 (*1 *2 *3) (-12 (-5 *3 (-667 *2 (-419 *2))) (-4 *2 (-1265 *4)) (-5 *1 (-823 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))))) (-3244 (*1 *2 *3) (-12 (-5 *3 (-666 (-419 *2))) (-4 *2 (-1265 *4)) (-5 *1 (-823 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))))) (-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *6 (-419 *6))) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-2 (|:| -1985 (-657 (-419 *6))) (|:| -3750 (-702 *5)))) (-5 *1 (-823 *5 *6)) (-5 *4 (-657 (-419 *6))))) (-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1985 (-657 *4)))) (-5 *1 (-823 *5 *6)))) (-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-419 *6))) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-2 (|:| -1985 (-657 (-419 *6))) (|:| -3750 (-702 *5)))) (-5 *1 (-823 *5 *6)) (-5 *4 (-657 (-419 *6))))) (-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1985 (-657 *4)))) (-5 *1 (-823 *5 *6))))) -(-10 -7 (-15 -1745 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1985 (-657 (-419 |#2|)))) (-666 (-419 |#2|)) (-419 |#2|))) (-15 -1745 ((-2 (|:| -1985 (-657 (-419 |#2|))) (|:| -3750 (-702 |#1|))) (-666 (-419 |#2|)) (-657 (-419 |#2|)))) (-15 -1745 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1985 (-657 (-419 |#2|)))) (-667 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -1745 ((-2 (|:| -1985 (-657 (-419 |#2|))) (|:| -3750 (-702 |#1|))) (-667 |#2| (-419 |#2|)) (-657 (-419 |#2|)))) (-15 -3244 (|#2| (-666 (-419 |#2|)))) (-15 -3244 (|#2| (-667 |#2| (-419 |#2|))))) -((-2834 (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#1|))) |#5| |#4|) 49))) -(((-824 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2834 ((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#1|))) |#5| |#4|))) (-374) (-669 |#1|) (-1265 |#1|) (-737 |#1| |#3|) (-669 |#4|)) (T -824)) -((-2834 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *7 (-1265 *5)) (-4 *4 (-737 *5 *7)) (-5 *2 (-2 (|:| -3750 (-702 *6)) (|:| |vec| (-1289 *5)))) (-5 *1 (-824 *5 *6 *7 *4 *3)) (-4 *6 (-669 *5)) (-4 *3 (-669 *4))))) -(-10 -7 (-15 -2834 ((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#1|))) |#5| |#4|))) -((-3172 (((-657 (-2 (|:| |frac| (-419 |#2|)) (|:| -3989 (-667 |#2| (-419 |#2|))))) (-667 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 47)) (-4066 (((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|))) 164 (|has| |#1| (-27))) (((-657 (-419 |#2|)) (-666 (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-657 (-419 |#2|)) (-666 (-419 |#2|))) 166 (|has| |#1| (-27))) (((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)) (-1 (-657 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 38) (((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)) (-1 (-657 |#1|) |#2|)) 39) (((-657 (-419 |#2|)) (-666 (-419 |#2|)) (-1 (-657 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 36) (((-657 (-419 |#2|)) (-666 (-419 |#2|)) (-1 (-657 |#1|) |#2|)) 37)) (-3981 (((-657 (-2 (|:| |poly| |#2|) (|:| -3989 (-667 |#2| (-419 |#2|))))) (-667 |#2| (-419 |#2|)) (-1 (-657 |#1|) |#2|)) 96))) -(((-825 |#1| |#2|) (-10 -7 (-15 -4066 ((-657 (-419 |#2|)) (-666 (-419 |#2|)) (-1 (-657 |#1|) |#2|))) (-15 -4066 ((-657 (-419 |#2|)) (-666 (-419 |#2|)) (-1 (-657 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -4066 ((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)) (-1 (-657 |#1|) |#2|))) (-15 -4066 ((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)) (-1 (-657 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3172 ((-657 (-2 (|:| |frac| (-419 |#2|)) (|:| -3989 (-667 |#2| (-419 |#2|))))) (-667 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3981 ((-657 (-2 (|:| |poly| |#2|) (|:| -3989 (-667 |#2| (-419 |#2|))))) (-667 |#2| (-419 |#2|)) (-1 (-657 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4066 ((-657 (-419 |#2|)) (-666 (-419 |#2|)))) (-15 -4066 ((-657 (-419 |#2|)) (-666 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -4066 ((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)))) (-15 -4066 ((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576)))) (-1265 |#1|)) (T -825)) -((-4066 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1265 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-657 (-419 *6))) (-5 *1 (-825 *5 *6)))) (-4066 (*1 *2 *3) (-12 (-5 *3 (-667 *5 (-419 *5))) (-4 *5 (-1265 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-657 (-419 *5))) (-5 *1 (-825 *4 *5)))) (-4066 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1265 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-657 (-419 *6))) (-5 *1 (-825 *5 *6)))) (-4066 (*1 *2 *3) (-12 (-5 *3 (-666 (-419 *5))) (-4 *5 (-1265 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-657 (-419 *5))) (-5 *1 (-825 *4 *5)))) (-3981 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-657 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) (-5 *2 (-657 (-2 (|:| |poly| *6) (|:| -3989 (-667 *6 (-419 *6)))))) (-5 *1 (-825 *5 *6)) (-5 *3 (-667 *6 (-419 *6))))) (-3172 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-5 *2 (-657 (-2 (|:| |frac| (-419 *6)) (|:| -3989 (-667 *6 (-419 *6)))))) (-5 *1 (-825 *5 *6)) (-5 *3 (-667 *6 (-419 *6))))) (-4066 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *7 (-419 *7))) (-5 *4 (-1 (-657 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *7 (-1265 *6)) (-5 *2 (-657 (-419 *7))) (-5 *1 (-825 *6 *7)))) (-4066 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *6 (-419 *6))) (-5 *4 (-1 (-657 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) (-5 *2 (-657 (-419 *6))) (-5 *1 (-825 *5 *6)))) (-4066 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 (-419 *7))) (-5 *4 (-1 (-657 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *7 (-1265 *6)) (-5 *2 (-657 (-419 *7))) (-5 *1 (-825 *6 *7)))) (-4066 (*1 *2 *3 *4) (-12 (-5 *3 (-666 (-419 *6))) (-5 *4 (-1 (-657 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) (-5 *2 (-657 (-419 *6))) (-5 *1 (-825 *5 *6))))) -(-10 -7 (-15 -4066 ((-657 (-419 |#2|)) (-666 (-419 |#2|)) (-1 (-657 |#1|) |#2|))) (-15 -4066 ((-657 (-419 |#2|)) (-666 (-419 |#2|)) (-1 (-657 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -4066 ((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)) (-1 (-657 |#1|) |#2|))) (-15 -4066 ((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)) (-1 (-657 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3172 ((-657 (-2 (|:| |frac| (-419 |#2|)) (|:| -3989 (-667 |#2| (-419 |#2|))))) (-667 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3981 ((-657 (-2 (|:| |poly| |#2|) (|:| -3989 (-667 |#2| (-419 |#2|))))) (-667 |#2| (-419 |#2|)) (-1 (-657 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4066 ((-657 (-419 |#2|)) (-666 (-419 |#2|)))) (-15 -4066 ((-657 (-419 |#2|)) (-666 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -4066 ((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)))) (-15 -4066 ((-657 (-419 |#2|)) (-667 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) -((-4428 (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#1|))) (-702 |#2|) (-1289 |#1|)) 110) (((-2 (|:| A (-702 |#1|)) (|:| |eqs| (-657 (-2 (|:| C (-702 |#1|)) (|:| |g| (-1289 |#1|)) (|:| -3989 |#2|) (|:| |rh| |#1|))))) (-702 |#1|) (-1289 |#1|)) 15)) (-4017 (((-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -1985 (-657 (-1289 |#1|)))) (-702 |#2|) (-1289 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1985 (-657 |#1|))) |#2| |#1|)) 116)) (-3036 (((-3 (-2 (|:| |particular| (-1289 |#1|)) (|:| -1985 (-702 |#1|))) "failed") (-702 |#1|) (-1289 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1985 (-657 |#1|))) "failed") |#2| |#1|)) 54))) -(((-826 |#1| |#2|) (-10 -7 (-15 -4428 ((-2 (|:| A (-702 |#1|)) (|:| |eqs| (-657 (-2 (|:| C (-702 |#1|)) (|:| |g| (-1289 |#1|)) (|:| -3989 |#2|) (|:| |rh| |#1|))))) (-702 |#1|) (-1289 |#1|))) (-15 -4428 ((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#1|))) (-702 |#2|) (-1289 |#1|))) (-15 -3036 ((-3 (-2 (|:| |particular| (-1289 |#1|)) (|:| -1985 (-702 |#1|))) "failed") (-702 |#1|) (-1289 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1985 (-657 |#1|))) "failed") |#2| |#1|))) (-15 -4017 ((-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -1985 (-657 (-1289 |#1|)))) (-702 |#2|) (-1289 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1985 (-657 |#1|))) |#2| |#1|)))) (-374) (-669 |#1|)) (T -826)) -((-4017 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-702 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1985 (-657 *6))) *7 *6)) (-4 *6 (-374)) (-4 *7 (-669 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1289 *6) "failed")) (|:| -1985 (-657 (-1289 *6))))) (-5 *1 (-826 *6 *7)) (-5 *4 (-1289 *6)))) (-3036 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1985 (-657 *6))) "failed") *7 *6)) (-4 *6 (-374)) (-4 *7 (-669 *6)) (-5 *2 (-2 (|:| |particular| (-1289 *6)) (|:| -1985 (-702 *6)))) (-5 *1 (-826 *6 *7)) (-5 *3 (-702 *6)) (-5 *4 (-1289 *6)))) (-4428 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-669 *5)) (-5 *2 (-2 (|:| -3750 (-702 *6)) (|:| |vec| (-1289 *5)))) (-5 *1 (-826 *5 *6)) (-5 *3 (-702 *6)) (-5 *4 (-1289 *5)))) (-4428 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| A (-702 *5)) (|:| |eqs| (-657 (-2 (|:| C (-702 *5)) (|:| |g| (-1289 *5)) (|:| -3989 *6) (|:| |rh| *5)))))) (-5 *1 (-826 *5 *6)) (-5 *3 (-702 *5)) (-5 *4 (-1289 *5)) (-4 *6 (-669 *5))))) -(-10 -7 (-15 -4428 ((-2 (|:| A (-702 |#1|)) (|:| |eqs| (-657 (-2 (|:| C (-702 |#1|)) (|:| |g| (-1289 |#1|)) (|:| -3989 |#2|) (|:| |rh| |#1|))))) (-702 |#1|) (-1289 |#1|))) (-15 -4428 ((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#1|))) (-702 |#2|) (-1289 |#1|))) (-15 -3036 ((-3 (-2 (|:| |particular| (-1289 |#1|)) (|:| -1985 (-702 |#1|))) "failed") (-702 |#1|) (-1289 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1985 (-657 |#1|))) "failed") |#2| |#1|))) (-15 -4017 ((-2 (|:| |particular| (-3 (-1289 |#1|) "failed")) (|:| -1985 (-657 (-1289 |#1|)))) (-702 |#2|) (-1289 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1985 (-657 |#1|))) |#2| |#1|)))) -((-1944 (((-702 |#1|) (-657 |#1|) (-784)) 14) (((-702 |#1|) (-657 |#1|)) 15)) (-3119 (((-3 (-1289 |#1|) "failed") |#2| |#1| (-657 |#1|)) 39)) (-4178 (((-3 |#1| "failed") |#2| |#1| (-657 |#1|) (-1 |#1| |#1|)) 46))) -(((-827 |#1| |#2|) (-10 -7 (-15 -1944 ((-702 |#1|) (-657 |#1|))) (-15 -1944 ((-702 |#1|) (-657 |#1|) (-784))) (-15 -3119 ((-3 (-1289 |#1|) "failed") |#2| |#1| (-657 |#1|))) (-15 -4178 ((-3 |#1| "failed") |#2| |#1| (-657 |#1|) (-1 |#1| |#1|)))) (-374) (-669 |#1|)) (T -827)) -((-4178 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-657 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) (-5 *1 (-827 *2 *3)) (-4 *3 (-669 *2)))) (-3119 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-657 *4)) (-4 *4 (-374)) (-5 *2 (-1289 *4)) (-5 *1 (-827 *4 *3)) (-4 *3 (-669 *4)))) (-1944 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *5)) (-5 *4 (-784)) (-4 *5 (-374)) (-5 *2 (-702 *5)) (-5 *1 (-827 *5 *6)) (-4 *6 (-669 *5)))) (-1944 (*1 *2 *3) (-12 (-5 *3 (-657 *4)) (-4 *4 (-374)) (-5 *2 (-702 *4)) (-5 *1 (-827 *4 *5)) (-4 *5 (-669 *4))))) -(-10 -7 (-15 -1944 ((-702 |#1|) (-657 |#1|))) (-15 -1944 ((-702 |#1|) (-657 |#1|) (-784))) (-15 -3119 ((-3 (-1289 |#1|) "failed") |#2| |#1| (-657 |#1|))) (-15 -4178 ((-3 |#1| "failed") |#2| |#1| (-657 |#1|) (-1 |#1| |#1|)))) -((-3429 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2364 (((-112) $) NIL (|has| |#2| (-23)))) (-3110 (($ (-941)) NIL (|has| |#2| (-1071)))) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3733 (($ $ $) NIL (|has| |#2| (-806)))) (-2721 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3793 (((-112) $ (-784)) NIL)) (-2193 (((-784)) NIL (|has| |#2| (-379)))) (-3682 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4467)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1122)))) (-2884 (((-576) $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) ((|#2| $) NIL (|has| |#2| (-1122)))) (-3306 (((-702 (-576)) (-702 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL (|has| |#2| (-1071))) (((-702 |#2|) (-702 $)) NIL (|has| |#2| (-1071)))) (-3843 (((-3 $ "failed") $) NIL (|has| |#2| (-1071)))) (-1892 (($) NIL (|has| |#2| (-379)))) (-2158 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#2| $ (-576)) NIL)) (-1458 (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-4094 (((-112) $) NIL (|has| |#2| (-1071)))) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) NIL (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| |#2| (-862)))) (-2070 (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2272 (((-576) $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| |#2| (-862)))) (-2148 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#2| |#2|) $) NIL)) (-3007 (((-941) $) NIL (|has| |#2| (-379)))) (-4261 (((-112) $ (-784)) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#2| (-1071)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL (|has| |#2| (-1071))) (((-702 |#2|) (-1289 $)) NIL (|has| |#2| (-1071)))) (-2342 (((-1180) $) NIL (|has| |#2| (-1122)))) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-3178 (($ (-941)) NIL (|has| |#2| (-379)))) (-1471 (((-1142) $) NIL (|has| |#2| (-1122)))) (-3510 ((|#2| $) NIL (|has| (-576) (-862)))) (-1987 (($ $ |#2|) NIL (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2380 (((-657 |#2|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-1374 ((|#2| $ $) NIL (|has| |#2| (-1071)))) (-1924 (($ (-1289 |#2|)) NIL)) (-3863 (((-135)) NIL (|has| |#2| (-374)))) (-2815 (($ $ (-784)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1071))) (($ $ (-1 |#2| |#2|) (-784)) NIL (|has| |#2| (-1071)))) (-1482 (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1923 (($ $) NIL)) (-3501 (((-1289 |#2|) $) NIL) (($ (-576)) NIL (-2802 (-12 (|has| |#2| (-1060 (-576))) (|has| |#2| (-1122))) (|has| |#2| (-1071)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1060 (-419 (-576)))) (|has| |#2| (-1122)))) (($ |#2|) NIL (|has| |#2| (-1122))) (((-877) $) NIL (|has| |#2| (-625 (-877))))) (-1960 (((-784)) NIL (|has| |#2| (-1071)) CONST)) (-2046 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2147 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2769 (($) NIL (|has| |#2| (-23)) CONST)) (-2779 (($) NIL (|has| |#2| (-1071)) CONST)) (-2097 (($ $ (-784)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1198)) NIL (-12 (|has| |#2| (-920 (-1198))) (|has| |#2| (-1071)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1071))) (($ $ (-1 |#2| |#2|) (-784)) NIL (|has| |#2| (-1071)))) (-2985 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2933 (((-112) $ $) NIL (|has| |#2| (-102)))) (-2973 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2954 (((-112) $ $) 11 (|has| |#2| (-862)))) (-3034 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3022 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3012 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-784)) NIL (|has| |#2| (-1071))) (($ $ (-941)) NIL (|has| |#2| (-1071)))) (* (($ $ $) NIL (|has| |#2| (-1071))) (($ $ |#2|) NIL (|has| |#2| (-739))) (($ |#2| $) NIL (|has| |#2| (-739))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-784) $) NIL (|has| |#2| (-23))) (($ (-941) $) NIL (|has| |#2| (-25)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-828 |#1| |#2| |#3|) (-243 |#1| |#2|) (-784) (-806) (-1 (-112) (-1289 |#2|) (-1289 |#2|))) (T -828)) -NIL -(-243 |#1| |#2|) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2728 (((-657 (-784)) $) NIL) (((-657 (-784)) $ (-1198)) NIL)) (-3983 (((-784) $) NIL) (((-784) $ (-1198)) NIL)) (-2029 (((-657 (-831 (-1198))) $) NIL)) (-1849 (((-1194 $) $ (-831 (-1198))) NIL) (((-1194 |#1|) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-1775 (((-784) $) NIL) (((-784) $ (-657 (-831 (-1198)))) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2638 (($ $) NIL (|has| |#1| (-464)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1594 (($ $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-831 (-1198)) "failed") $) NIL) (((-3 (-1198) "failed") $) NIL) (((-3 (-1147 |#1| (-1198)) "failed") $) NIL)) (-2884 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-831 (-1198)) $) NIL) (((-1198) $) NIL) (((-1147 |#1| (-1198)) $) NIL)) (-3203 (($ $ $ (-831 (-1198))) NIL (|has| |#1| (-174)))) (-2212 (($ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3813 (($ $) NIL (|has| |#1| (-464))) (($ $ (-831 (-1198))) NIL (|has| |#1| (-464)))) (-2199 (((-657 $) $) NIL)) (-4257 (((-112) $) NIL (|has| |#1| (-929)))) (-3124 (($ $ |#1| (-543 (-831 (-1198))) $) NIL)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-831 (-1198)) (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-831 (-1198)) (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-3182 (((-784) $ (-1198)) NIL) (((-784) $) NIL)) (-4094 (((-112) $) NIL)) (-4334 (((-784) $) NIL)) (-2014 (($ (-1194 |#1|) (-831 (-1198))) NIL) (($ (-1194 $) (-831 (-1198))) NIL)) (-3724 (((-657 $) $) NIL)) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-543 (-831 (-1198)))) NIL) (($ $ (-831 (-1198)) (-784)) NIL) (($ $ (-657 (-831 (-1198))) (-657 (-784))) NIL)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ (-831 (-1198))) NIL)) (-4436 (((-543 (-831 (-1198))) $) NIL) (((-784) $ (-831 (-1198))) NIL) (((-657 (-784)) $ (-657 (-831 (-1198)))) NIL)) (-4056 (($ (-1 (-543 (-831 (-1198))) (-543 (-831 (-1198)))) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-3801 (((-1 $ (-784)) (-1198)) NIL) (((-1 $ (-784)) $) NIL (|has| |#1| (-238)))) (-2353 (((-3 (-831 (-1198)) "failed") $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-1597 (((-831 (-1198)) $) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2342 (((-1180) $) NIL)) (-3948 (((-112) $) NIL)) (-1392 (((-3 (-657 $) "failed") $) NIL)) (-2974 (((-3 (-657 $) "failed") $) NIL)) (-2999 (((-3 (-2 (|:| |var| (-831 (-1198))) (|:| -1801 (-784))) "failed") $) NIL)) (-4276 (($ $) NIL)) (-1471 (((-1142) $) NIL)) (-2146 (((-112) $) NIL)) (-2160 ((|#1| $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-464)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1885 (((-430 $) $) NIL (|has| |#1| (-929)))) (-3418 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3236 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-831 (-1198)) |#1|) NIL) (($ $ (-657 (-831 (-1198))) (-657 |#1|)) NIL) (($ $ (-831 (-1198)) $) NIL) (($ $ (-657 (-831 (-1198))) (-657 $)) NIL) (($ $ (-1198) $) NIL (|has| |#1| (-238))) (($ $ (-657 (-1198)) (-657 $)) NIL (|has| |#1| (-238))) (($ $ (-1198) |#1|) NIL (|has| |#1| (-238))) (($ $ (-657 (-1198)) (-657 |#1|)) NIL (|has| |#1| (-238)))) (-1701 (($ $ (-831 (-1198))) NIL (|has| |#1| (-174)))) (-2815 (($ $ (-657 (-831 (-1198))) (-657 (-784))) NIL) (($ $ (-831 (-1198)) (-784)) NIL) (($ $ (-657 (-831 (-1198)))) NIL) (($ $ (-831 (-1198))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237)))) (-3928 (((-657 (-1198)) $) NIL)) (-1770 (((-543 (-831 (-1198))) $) NIL) (((-784) $ (-831 (-1198))) NIL) (((-657 (-784)) $ (-657 (-831 (-1198)))) NIL) (((-784) $ (-1198)) NIL)) (-4148 (((-908 (-390)) $) NIL (-12 (|has| (-831 (-1198)) (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-831 (-1198)) (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-831 (-1198)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1450 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-831 (-1198))) NIL (|has| |#1| (-464)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-831 (-1198))) NIL) (($ (-1198)) NIL) (($ (-1147 |#1| (-1198))) NIL) (($ (-419 (-576))) NIL (-2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-4037 (((-657 |#1|) $) NIL)) (-2313 ((|#1| $ (-543 (-831 (-1198)))) NIL) (($ $ (-831 (-1198)) (-784)) NIL) (($ $ (-657 (-831 (-1198))) (-657 (-784))) NIL)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-1960 (((-784)) NIL T CONST)) (-2702 (($ $ $ (-784)) NIL (|has| |#1| (-174)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-657 (-831 (-1198))) (-657 (-784))) NIL) (($ $ (-831 (-1198)) (-784)) NIL) (($ $ (-657 (-831 (-1198)))) NIL) (($ $ (-831 (-1198))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237)))) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-829 |#1|) (-13 (-260 |#1| (-1198) (-831 (-1198)) (-543 (-831 (-1198)))) (-1060 (-1147 |#1| (-1198)))) (-1071)) (T -829)) -NIL -(-13 (-260 |#1| (-1198) (-831 (-1198)) (-543 (-831 (-1198)))) (-1060 (-1147 |#1| (-1198)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#2| (-374)))) (-3325 (($ $) NIL (|has| |#2| (-374)))) (-4306 (((-112) $) NIL (|has| |#2| (-374)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL (|has| |#2| (-374)))) (-4402 (((-430 $) $) NIL (|has| |#2| (-374)))) (-2864 (((-112) $ $) NIL (|has| |#2| (-374)))) (-4359 (($) NIL T CONST)) (-3373 (($ $ $) NIL (|has| |#2| (-374)))) (-3843 (((-3 $ "failed") $) NIL)) (-3385 (($ $ $) NIL (|has| |#2| (-374)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| |#2| (-374)))) (-4257 (((-112) $) NIL (|has| |#2| (-374)))) (-4094 (((-112) $) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#2| (-374)))) (-3402 (($ (-657 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-2342 (((-1180) $) NIL)) (-2134 (($ $) 20 (|has| |#2| (-374)))) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#2| (-374)))) (-3436 (($ (-657 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-1885 (((-430 $) $) NIL (|has| |#2| (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#2| (-374)))) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#2| (-374)))) (-2034 (((-784) $) NIL (|has| |#2| (-374)))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#2| (-374)))) (-2815 (($ $) 13) (($ $ (-784)) NIL)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-419 (-576))) NIL (|has| |#2| (-374))) (($ $) NIL (|has| |#2| (-374)))) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL (|has| |#2| (-374)))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $) NIL) (($ $ (-784)) NIL)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ $) 15 (|has| |#2| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-784)) NIL) (($ $ (-941)) NIL) (($ $ (-576)) 18 (|has| |#2| (-374)))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) NIL (|has| |#2| (-374))) (($ $ (-419 (-576))) NIL (|has| |#2| (-374))))) -(((-830 |#1| |#2| |#3|) (-13 (-111 $ $) (-238) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-374)) (-6 (-374)) |%noBranch|))) (-1122) (-918 |#1|) |#1|) (T -830)) -NIL -(-13 (-111 $ $) (-238) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-374)) (-6 (-374)) |%noBranch|))) -((-3429 (((-112) $ $) NIL)) (-3983 (((-784) $) NIL)) (-3032 ((|#1| $) 10)) (-1624 (((-3 |#1| "failed") $) NIL)) (-2884 ((|#1| $) NIL)) (-3182 (((-784) $) 11)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-3801 (($ |#1| (-784)) 9)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2815 (($ $ (-784)) NIL) (($ $) NIL)) (-3501 (((-877) $) NIL) (($ |#1|) NIL)) (-2046 (((-112) $ $) NIL)) (-2097 (($ $ (-784)) NIL) (($ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL))) -(((-831 |#1|) (-275 |#1|) (-862)) (T -831)) -NIL -(-275 |#1|) -((-3429 (((-112) $ $) NIL)) (-3391 (((-657 |#1|) $) 38)) (-2193 (((-784) $) NIL)) (-4359 (($) NIL T CONST)) (-2299 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-1624 (((-3 |#1| "failed") $) NIL)) (-2884 ((|#1| $) NIL)) (-3522 (($ $) 42)) (-3843 (((-3 $ "failed") $) NIL)) (-4180 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-4094 (((-112) $) NIL)) (-3027 ((|#1| $ (-576)) NIL)) (-1732 (((-784) $ (-576)) NIL)) (-1874 (($ $) 54)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-2183 (($ (-1 |#1| |#1|) $) NIL)) (-1409 (($ (-1 (-784) (-784)) $) NIL)) (-1825 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-1619 (((-112) $ $) 51)) (-3358 (((-784) $) 34)) (-2342 (((-1180) $) NIL)) (-1783 (($ $ $) NIL)) (-4317 (($ $ $) NIL)) (-1471 (((-1142) $) NIL)) (-3510 ((|#1| $) 41)) (-2067 (((-657 (-2 (|:| |gen| |#1|) (|:| -4067 (-784)))) $) NIL)) (-3944 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3407 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3501 (((-877) $) NIL) (($ |#1|) NIL)) (-2046 (((-112) $ $) NIL)) (-2779 (($) 20 T CONST)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 53)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ |#1| (-784)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-832 |#1|) (-13 (-397 |#1|) (-859) (-10 -8 (-15 -3510 (|#1| $)) (-15 -3522 ($ $)) (-15 -1874 ($ $)) (-15 -1619 ((-112) $ $)) (-15 -1825 ((-3 $ "failed") $ |#1|)) (-15 -2299 ((-3 $ "failed") $ |#1|)) (-15 -3407 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3358 ((-784) $)) (-15 -3391 ((-657 |#1|) $)))) (-862)) (T -832)) -((-3510 (*1 *2 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) (-3522 (*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) (-1874 (*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) (-1619 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832 *3)) (-4 *3 (-862)))) (-1825 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) (-2299 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) (-3407 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-832 *3)) (|:| |rm| (-832 *3)))) (-5 *1 (-832 *3)) (-4 *3 (-862)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-832 *3)) (-4 *3 (-862)))) (-3391 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-832 *3)) (-4 *3 (-862))))) -(-13 (-397 |#1|) (-859) (-10 -8 (-15 -3510 (|#1| $)) (-15 -3522 ($ $)) (-15 -1874 ($ $)) (-15 -1619 ((-112) $ $)) (-15 -1825 ((-3 $ "failed") $ |#1|)) (-15 -2299 ((-3 $ "failed") $ |#1|)) (-15 -3407 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3358 ((-784) $)) (-15 -3391 ((-657 |#1|) $)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-2721 (((-3 $ "failed") $ $) 20)) (-1536 (((-576) $) 60)) (-4359 (($) 18 T CONST)) (-3843 (((-3 $ "failed") $) 37)) (-2828 (((-112) $) 58)) (-4094 (((-112) $) 35)) (-2881 (((-112) $) 59)) (-3707 (($ $ $) 52)) (-1611 (($ $ $) 53)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3418 (((-3 $ "failed") $ $) 48)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 45)) (-1792 (($ $) 61)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2985 (((-112) $ $) 54)) (-2963 (((-112) $ $) 56)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 55)) (-2954 (((-112) $ $) 57)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-833) (-141)) (T -833)) -NIL -(-13 (-568) (-861)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-804) . T) ((-805) . T) ((-807) . T) ((-808) . T) ((-861) . T) ((-862) . T) ((-865) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3293 (($ (-1142)) 7)) (-3341 (((-112) $ (-1180) (-1142)) 15)) (-1915 (((-835) $) 12)) (-4123 (((-835) $) 11)) (-2262 (((-1294) $) 9)) (-3155 (((-112) $ (-1142)) 16))) -(((-834) (-10 -8 (-15 -3293 ($ (-1142))) (-15 -2262 ((-1294) $)) (-15 -4123 ((-835) $)) (-15 -1915 ((-835) $)) (-15 -3341 ((-112) $ (-1180) (-1142))) (-15 -3155 ((-112) $ (-1142))))) (T -834)) -((-3155 (*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-112)) (-5 *1 (-834)))) (-3341 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-1142)) (-5 *2 (-112)) (-5 *1 (-834)))) (-1915 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-834)))) (-4123 (*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-834)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-834)))) (-3293 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-834))))) -(-10 -8 (-15 -3293 ($ (-1142))) (-15 -2262 ((-1294) $)) (-15 -4123 ((-835) $)) (-15 -1915 ((-835) $)) (-15 -3341 ((-112) $ (-1180) (-1142))) (-15 -3155 ((-112) $ (-1142)))) -((-4373 (((-1294) $ (-836)) 12)) (-2385 (((-1294) $ (-1198)) 32)) (-2632 (((-1294) $ (-1180) (-1180)) 34)) (-3856 (((-1294) $ (-1180)) 33)) (-3760 (((-1294) $) 19)) (-4048 (((-1294) $ (-576)) 28)) (-1851 (((-1294) $ (-227)) 30)) (-3786 (((-1294) $) 18)) (-3689 (((-1294) $) 26)) (-3648 (((-1294) $) 25)) (-3058 (((-1294) $) 23)) (-1567 (((-1294) $) 24)) (-2185 (((-1294) $) 22)) (-3081 (((-1294) $) 21)) (-3445 (((-1294) $) 20)) (-3199 (((-1294) $) 16)) (-1501 (((-1294) $) 17)) (-3679 (((-1294) $) 15)) (-4386 (((-1294) $) 14)) (-2331 (((-1294) $) 13)) (-1365 (($ (-1180) (-836)) 9)) (-3789 (($ (-1180) (-1180) (-836)) 8)) (-3176 (((-1198) $) 51)) (-4116 (((-1198) $) 55)) (-2822 (((-2 (|:| |cd| (-1180)) (|:| -2676 (-1180))) $) 54)) (-2151 (((-1180) $) 52)) (-1649 (((-1294) $) 41)) (-2675 (((-576) $) 49)) (-1871 (((-227) $) 50)) (-2695 (((-1294) $) 40)) (-4255 (((-1294) $) 48)) (-1898 (((-1294) $) 47)) (-2066 (((-1294) $) 45)) (-1934 (((-1294) $) 46)) (-4213 (((-1294) $) 44)) (-2758 (((-1294) $) 43)) (-2617 (((-1294) $) 42)) (-4100 (((-1294) $) 38)) (-1926 (((-1294) $) 39)) (-2268 (((-1294) $) 37)) (-3921 (((-1294) $) 36)) (-3170 (((-1294) $) 35)) (-3508 (((-1294) $) 11))) -(((-835) (-10 -8 (-15 -3789 ($ (-1180) (-1180) (-836))) (-15 -1365 ($ (-1180) (-836))) (-15 -3508 ((-1294) $)) (-15 -4373 ((-1294) $ (-836))) (-15 -2331 ((-1294) $)) (-15 -4386 ((-1294) $)) (-15 -3679 ((-1294) $)) (-15 -3199 ((-1294) $)) (-15 -1501 ((-1294) $)) (-15 -3786 ((-1294) $)) (-15 -3760 ((-1294) $)) (-15 -3445 ((-1294) $)) (-15 -3081 ((-1294) $)) (-15 -2185 ((-1294) $)) (-15 -3058 ((-1294) $)) (-15 -1567 ((-1294) $)) (-15 -3648 ((-1294) $)) (-15 -3689 ((-1294) $)) (-15 -4048 ((-1294) $ (-576))) (-15 -1851 ((-1294) $ (-227))) (-15 -2385 ((-1294) $ (-1198))) (-15 -3856 ((-1294) $ (-1180))) (-15 -2632 ((-1294) $ (-1180) (-1180))) (-15 -3170 ((-1294) $)) (-15 -3921 ((-1294) $)) (-15 -2268 ((-1294) $)) (-15 -4100 ((-1294) $)) (-15 -1926 ((-1294) $)) (-15 -2695 ((-1294) $)) (-15 -1649 ((-1294) $)) (-15 -2617 ((-1294) $)) (-15 -2758 ((-1294) $)) (-15 -4213 ((-1294) $)) (-15 -2066 ((-1294) $)) (-15 -1934 ((-1294) $)) (-15 -1898 ((-1294) $)) (-15 -4255 ((-1294) $)) (-15 -2675 ((-576) $)) (-15 -1871 ((-227) $)) (-15 -3176 ((-1198) $)) (-15 -2151 ((-1180) $)) (-15 -2822 ((-2 (|:| |cd| (-1180)) (|:| -2676 (-1180))) $)) (-15 -4116 ((-1198) $)))) (T -835)) -((-4116 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-835)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1180)) (|:| -2676 (-1180)))) (-5 *1 (-835)))) (-2151 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-835)))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-835)))) (-1871 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-835)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-835)))) (-4255 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-1898 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2066 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-4213 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2617 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2268 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2632 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-835)))) (-3856 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-835)))) (-2385 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-835)))) (-1851 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1294)) (-5 *1 (-835)))) (-4048 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-835)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3648 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3760 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3786 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-1501 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-4386 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-2331 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-4373 (*1 *2 *1 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1294)) (-5 *1 (-835)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835)))) (-1365 (*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-836)) (-5 *1 (-835)))) (-3789 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-836)) (-5 *1 (-835))))) -(-10 -8 (-15 -3789 ($ (-1180) (-1180) (-836))) (-15 -1365 ($ (-1180) (-836))) (-15 -3508 ((-1294) $)) (-15 -4373 ((-1294) $ (-836))) (-15 -2331 ((-1294) $)) (-15 -4386 ((-1294) $)) (-15 -3679 ((-1294) $)) (-15 -3199 ((-1294) $)) (-15 -1501 ((-1294) $)) (-15 -3786 ((-1294) $)) (-15 -3760 ((-1294) $)) (-15 -3445 ((-1294) $)) (-15 -3081 ((-1294) $)) (-15 -2185 ((-1294) $)) (-15 -3058 ((-1294) $)) (-15 -1567 ((-1294) $)) (-15 -3648 ((-1294) $)) (-15 -3689 ((-1294) $)) (-15 -4048 ((-1294) $ (-576))) (-15 -1851 ((-1294) $ (-227))) (-15 -2385 ((-1294) $ (-1198))) (-15 -3856 ((-1294) $ (-1180))) (-15 -2632 ((-1294) $ (-1180) (-1180))) (-15 -3170 ((-1294) $)) (-15 -3921 ((-1294) $)) (-15 -2268 ((-1294) $)) (-15 -4100 ((-1294) $)) (-15 -1926 ((-1294) $)) (-15 -2695 ((-1294) $)) (-15 -1649 ((-1294) $)) (-15 -2617 ((-1294) $)) (-15 -2758 ((-1294) $)) (-15 -4213 ((-1294) $)) (-15 -2066 ((-1294) $)) (-15 -1934 ((-1294) $)) (-15 -1898 ((-1294) $)) (-15 -4255 ((-1294) $)) (-15 -2675 ((-576) $)) (-15 -1871 ((-227) $)) (-15 -3176 ((-1198) $)) (-15 -2151 ((-1180) $)) (-15 -2822 ((-2 (|:| |cd| (-1180)) (|:| -2676 (-1180))) $)) (-15 -4116 ((-1198) $))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 13)) (-2046 (((-112) $ $) NIL)) (-2115 (($) 16)) (-2979 (($) 14)) (-3184 (($) 17)) (-2317 (($) 15)) (-2933 (((-112) $ $) 9))) -(((-836) (-13 (-1122) (-10 -8 (-15 -2979 ($)) (-15 -2115 ($)) (-15 -3184 ($)) (-15 -2317 ($))))) (T -836)) -((-2979 (*1 *1) (-5 *1 (-836))) (-2115 (*1 *1) (-5 *1 (-836))) (-3184 (*1 *1) (-5 *1 (-836))) (-2317 (*1 *1) (-5 *1 (-836)))) -(-13 (-1122) (-10 -8 (-15 -2979 ($)) (-15 -2115 ($)) (-15 -3184 ($)) (-15 -2317 ($)))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 23) (($ (-1198)) 19)) (-2046 (((-112) $ $) NIL)) (-1823 (((-112) $) 10)) (-2378 (((-112) $) 9)) (-2232 (((-112) $) 11)) (-3875 (((-112) $) 8)) (-2933 (((-112) $ $) 21))) -(((-837) (-13 (-1122) (-10 -8 (-15 -3501 ($ (-1198))) (-15 -3875 ((-112) $)) (-15 -2378 ((-112) $)) (-15 -1823 ((-112) $)) (-15 -2232 ((-112) $))))) (T -837)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-837)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837)))) (-2378 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837)))) (-1823 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837)))) (-2232 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837))))) -(-13 (-1122) (-10 -8 (-15 -3501 ($ (-1198))) (-15 -3875 ((-112) $)) (-15 -2378 ((-112) $)) (-15 -1823 ((-112) $)) (-15 -2232 ((-112) $)))) -((-3429 (((-112) $ $) NIL)) (-3756 (($ (-837) (-657 (-1198))) 32)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3935 (((-837) $) 33)) (-3762 (((-657 (-1198)) $) 34)) (-3501 (((-877) $) 31)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-838) (-13 (-1122) (-10 -8 (-15 -3935 ((-837) $)) (-15 -3762 ((-657 (-1198)) $)) (-15 -3756 ($ (-837) (-657 (-1198))))))) (T -838)) -((-3935 (*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-838)))) (-3762 (*1 *2 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-838)))) (-3756 (*1 *1 *2 *3) (-12 (-5 *2 (-837)) (-5 *3 (-657 (-1198))) (-5 *1 (-838))))) -(-13 (-1122) (-10 -8 (-15 -3935 ((-837) $)) (-15 -3762 ((-657 (-1198)) $)) (-15 -3756 ($ (-837) (-657 (-1198)))))) -((-3095 (((-1294) (-835) (-326 |#1|) (-112)) 23) (((-1294) (-835) (-326 |#1|)) 89) (((-1180) (-326 |#1|) (-112)) 88) (((-1180) (-326 |#1|)) 87))) -(((-839 |#1|) (-10 -7 (-15 -3095 ((-1180) (-326 |#1|))) (-15 -3095 ((-1180) (-326 |#1|) (-112))) (-15 -3095 ((-1294) (-835) (-326 |#1|))) (-15 -3095 ((-1294) (-835) (-326 |#1|) (-112)))) (-13 (-841) (-1071))) (T -839)) -((-3095 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-835)) (-5 *4 (-326 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-841) (-1071))) (-5 *2 (-1294)) (-5 *1 (-839 *6)))) (-3095 (*1 *2 *3 *4) (-12 (-5 *3 (-835)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-841) (-1071))) (-5 *2 (-1294)) (-5 *1 (-839 *5)))) (-3095 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-841) (-1071))) (-5 *2 (-1180)) (-5 *1 (-839 *5)))) (-3095 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-841) (-1071))) (-5 *2 (-1180)) (-5 *1 (-839 *4))))) -(-10 -7 (-15 -3095 ((-1180) (-326 |#1|))) (-15 -3095 ((-1180) (-326 |#1|) (-112))) (-15 -3095 ((-1294) (-835) (-326 |#1|))) (-15 -3095 ((-1294) (-835) (-326 |#1|) (-112)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-2212 (($ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-2762 ((|#1| $) 10)) (-1812 (($ |#1|) 9)) (-4094 (((-112) $) NIL)) (-2003 (($ |#2| (-784)) NIL)) (-4436 (((-784) $) NIL)) (-2186 ((|#2| $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2815 (($ $) NIL (|has| |#1| (-238))) (($ $ (-784)) NIL (|has| |#1| (-238)))) (-1770 (((-784) $) NIL)) (-3501 (((-877) $) 17) (($ (-576)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-2313 ((|#2| $ (-784)) NIL)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $) NIL (|has| |#1| (-238))) (($ $ (-784)) NIL (|has| |#1| (-238)))) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-840 |#1| |#2|) (-13 (-721 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -1812 ($ |#1|)) (-15 -2762 (|#1| $)))) (-721 |#2|) (-1071)) (T -840)) -((-1812 (*1 *1 *2) (-12 (-4 *3 (-1071)) (-5 *1 (-840 *2 *3)) (-4 *2 (-721 *3)))) (-2762 (*1 *2 *1) (-12 (-4 *2 (-721 *3)) (-5 *1 (-840 *2 *3)) (-4 *3 (-1071))))) -(-13 (-721 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -1812 ($ |#1|)) (-15 -2762 (|#1| $)))) -((-3095 (((-1294) (-835) $ (-112)) 9) (((-1294) (-835) $) 8) (((-1180) $ (-112)) 7) (((-1180) $) 6))) -(((-841) (-141)) (T -841)) -((-3095 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-841)) (-5 *3 (-835)) (-5 *4 (-112)) (-5 *2 (-1294)))) (-3095 (*1 *2 *3 *1) (-12 (-4 *1 (-841)) (-5 *3 (-835)) (-5 *2 (-1294)))) (-3095 (*1 *2 *1 *3) (-12 (-4 *1 (-841)) (-5 *3 (-112)) (-5 *2 (-1180)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-841)) (-5 *2 (-1180))))) -(-13 (-10 -8 (-15 -3095 ((-1180) $)) (-15 -3095 ((-1180) $ (-112))) (-15 -3095 ((-1294) (-835) $)) (-15 -3095 ((-1294) (-835) $ (-112))))) -((-3598 (((-322) (-1180) (-1180)) 12)) (-4360 (((-112) (-1180) (-1180)) 34)) (-4113 (((-112) (-1180)) 33)) (-1523 (((-52) (-1180)) 25)) (-3262 (((-52) (-1180)) 23)) (-3880 (((-52) (-835)) 17)) (-1970 (((-657 (-1180)) (-1180)) 28)) (-3437 (((-657 (-1180))) 27))) -(((-842) (-10 -7 (-15 -3880 ((-52) (-835))) (-15 -3262 ((-52) (-1180))) (-15 -1523 ((-52) (-1180))) (-15 -3437 ((-657 (-1180)))) (-15 -1970 ((-657 (-1180)) (-1180))) (-15 -4113 ((-112) (-1180))) (-15 -4360 ((-112) (-1180) (-1180))) (-15 -3598 ((-322) (-1180) (-1180))))) (T -842)) -((-3598 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-322)) (-5 *1 (-842)))) (-4360 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-112)) (-5 *1 (-842)))) (-4113 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-112)) (-5 *1 (-842)))) (-1970 (*1 *2 *3) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-842)) (-5 *3 (-1180)))) (-3437 (*1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-842)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-52)) (-5 *1 (-842)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-52)) (-5 *1 (-842)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-52)) (-5 *1 (-842))))) -(-10 -7 (-15 -3880 ((-52) (-835))) (-15 -3262 ((-52) (-1180))) (-15 -1523 ((-52) (-1180))) (-15 -3437 ((-657 (-1180)))) (-15 -1970 ((-657 (-1180)) (-1180))) (-15 -4113 ((-112) (-1180))) (-15 -4360 ((-112) (-1180) (-1180))) (-15 -3598 ((-322) (-1180) (-1180)))) -((-3429 (((-112) $ $) 20)) (-1876 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-4356 (($ $ $) 73)) (-2197 (((-112) $ $) 74)) (-3793 (((-112) $ (-784)) 8)) (-2162 (($ (-657 |#1|)) 69) (($) 68)) (-3162 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4466)))) (-4359 (($) 7 T CONST)) (-4295 (($ $) 63)) (-3914 (($ $) 59 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3647 (($ |#1| $) 48 (|has| $ (-6 -4466))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4466)))) (-3895 (($ |#1| $) 58 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4466)))) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-3635 (((-112) $ $) 65)) (-1833 (((-112) $ (-784)) 9)) (-3707 ((|#1| $) 79)) (-4033 (($ $ $) 82)) (-3073 (($ $ $) 81)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1611 ((|#1| $) 80)) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23)) (-3107 (($ $ $) 70)) (-3050 ((|#1| $) 40)) (-2468 (($ |#1| $) 41) (($ |#1| $ (-784)) 64)) (-1471 (((-1142) $) 22)) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2277 ((|#1| $) 42)) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2691 (((-657 (-2 (|:| -4440 |#1|) (|:| -1482 (-784)))) $) 62)) (-3788 (($ $ |#1|) 72) (($ $ $) 71)) (-1504 (($) 50) (($ (-657 |#1|)) 49)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-4148 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 51)) (-3501 (((-877) $) 18)) (-1951 (($ (-657 |#1|)) 67) (($) 66)) (-2046 (((-112) $ $) 21)) (-4079 (($ (-657 |#1|)) 43)) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19)) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-843 |#1|) (-141) (-862)) (T -843)) -((-3707 (*1 *2 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-862))))) -(-13 (-749 |t#1|) (-990 |t#1|) (-10 -8 (-15 -3707 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-877)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-708 |#1|) . T) ((-749 |#1|) . T) ((-990 |#1|) . T) ((-1120 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-2422 (((-1294) (-1142) (-1142)) 48)) (-1559 (((-1294) (-834) (-52)) 45)) (-2149 (((-52) (-834)) 16))) -(((-844) (-10 -7 (-15 -2149 ((-52) (-834))) (-15 -1559 ((-1294) (-834) (-52))) (-15 -2422 ((-1294) (-1142) (-1142))))) (T -844)) -((-2422 (*1 *2 *3 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1294)) (-5 *1 (-844)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-52)) (-5 *2 (-1294)) (-5 *1 (-844)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-844))))) -(-10 -7 (-15 -2149 ((-52) (-834))) (-15 -1559 ((-1294) (-834) (-52))) (-15 -2422 ((-1294) (-1142) (-1142)))) -((-4083 (((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|) (-846 |#2|)) 12) (((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|)) 13))) -(((-845 |#1| |#2|) (-10 -7 (-15 -4083 ((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|))) (-15 -4083 ((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|) (-846 |#2|)))) (-1122) (-1122)) (T -845)) -((-4083 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-846 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-846 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *1 (-845 *5 *6)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-846 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-846 *6)) (-5 *1 (-845 *5 *6))))) -(-10 -7 (-15 -4083 ((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|))) (-15 -4083 ((-846 |#2|) (-1 |#2| |#1|) (-846 |#1|) (-846 |#2|)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL (|has| |#1| (-21)))) (-2721 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1536 (((-576) $) NIL (|has| |#1| (-861)))) (-4359 (($) NIL (|has| |#1| (-21)) CONST)) (-1624 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 15)) (-2884 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 9)) (-3843 (((-3 $ "failed") $) 42 (|has| |#1| (-861)))) (-2775 (((-3 (-419 (-576)) "failed") $) 52 (|has| |#1| (-557)))) (-3112 (((-112) $) 46 (|has| |#1| (-557)))) (-4239 (((-419 (-576)) $) 49 (|has| |#1| (-557)))) (-2828 (((-112) $) NIL (|has| |#1| (-861)))) (-4094 (((-112) $) NIL (|has| |#1| (-861)))) (-2881 (((-112) $) NIL (|has| |#1| (-861)))) (-3707 (($ $ $) NIL (|has| |#1| (-861)))) (-1611 (($ $ $) NIL (|has| |#1| (-861)))) (-2342 (((-1180) $) NIL)) (-1666 (($) 13)) (-2270 (((-112) $) 12)) (-1471 (((-1142) $) NIL)) (-3825 (((-112) $) 11)) (-3501 (((-877) $) 18) (($ (-419 (-576))) NIL (|has| |#1| (-1060 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-2802 (|has| |#1| (-861)) (|has| |#1| (-1060 (-576)))))) (-1960 (((-784)) 36 (|has| |#1| (-861)) CONST)) (-2046 (((-112) $ $) 54)) (-1792 (($ $) NIL (|has| |#1| (-861)))) (-2769 (($) 23 (|has| |#1| (-21)) CONST)) (-2779 (($) 33 (|has| |#1| (-861)) CONST)) (-2985 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2933 (((-112) $ $) 21)) (-2973 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2954 (((-112) $ $) 45 (|has| |#1| (-861)))) (-3022 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3012 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-941)) NIL (|has| |#1| (-861))) (($ $ (-784)) NIL (|has| |#1| (-861)))) (* (($ $ $) 39 (|has| |#1| (-861))) (($ (-576) $) 27 (|has| |#1| (-21))) (($ (-784) $) NIL (|has| |#1| (-21))) (($ (-941) $) NIL (|has| |#1| (-21))))) -(((-846 |#1|) (-13 (-1122) (-423 |#1|) (-10 -8 (-15 -1666 ($)) (-15 -3825 ((-112) $)) (-15 -2270 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3112 ((-112) $)) (-15 -4239 ((-419 (-576)) $)) (-15 -2775 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1122)) (T -846)) -((-1666 (*1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-1122)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-846 *3)) (-4 *3 (-1122)))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-846 *3)) (-4 *3 (-1122)))) (-3112 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-846 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) (-4239 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-846 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) (-2775 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-846 *3)) (-4 *3 (-557)) (-4 *3 (-1122))))) -(-13 (-1122) (-423 |#1|) (-10 -8 (-15 -1666 ($)) (-15 -3825 ((-112) $)) (-15 -2270 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3112 ((-112) $)) (-15 -4239 ((-419 (-576)) $)) (-15 -2775 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) -((-4412 (((-112) $ |#2|) 14)) (-3501 (((-877) $) 11))) -(((-847 |#1| |#2|) (-10 -8 (-15 -4412 ((-112) |#1| |#2|)) (-15 -3501 ((-877) |#1|))) (-848 |#2|) (-1122)) (T -847)) -NIL -(-10 -8 (-15 -4412 ((-112) |#1| |#2|)) (-15 -3501 ((-877) |#1|))) -((-3429 (((-112) $ $) 7)) (-2676 ((|#1| $) 16)) (-2342 (((-1180) $) 10)) (-4412 (((-112) $ |#1|) 14)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-4335 (((-55) $) 15)) (-2933 (((-112) $ $) 8))) -(((-848 |#1|) (-141) (-1122)) (T -848)) -((-2676 (*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1122)))) (-4335 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1122)) (-5 *2 (-55)))) (-4412 (*1 *2 *1 *3) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1122)) (-5 *2 (-112))))) -(-13 (-1122) (-10 -8 (-15 -2676 (|t#1| $)) (-15 -4335 ((-55) $)) (-15 -4412 ((-112) $ |t#1|)))) -(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2884 ((|#1| $) NIL) (((-115) $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-2743 ((|#1| (-115) |#1|) NIL)) (-4094 (((-112) $) NIL)) (-2939 (($ |#1| (-372 (-115))) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2216 (($ $ (-1 |#1| |#1|)) NIL)) (-1803 (($ $ (-1 |#1| |#1|)) NIL)) (-2835 ((|#1| $ |#1|) NIL)) (-3999 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-3247 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-849 |#1|) (-13 (-1071) (-1060 |#1|) (-1060 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3247 ($ $)) (-15 -3247 ($ $ $)) (-15 -3999 (|#1| |#1|))) |%noBranch|) (-15 -1803 ($ $ (-1 |#1| |#1|))) (-15 -2216 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -2743 (|#1| (-115) |#1|)) (-15 -2939 ($ |#1| (-372 (-115)))))) (-1071)) (T -849)) -((-3247 (*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-174)) (-4 *2 (-1071)))) (-3247 (*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-174)) (-4 *2 (-1071)))) (-3999 (*1 *2 *2) (-12 (-5 *1 (-849 *2)) (-4 *2 (-174)) (-4 *2 (-1071)))) (-1803 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-849 *3)))) (-2216 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-849 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-849 *4)) (-4 *4 (-1071)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-849 *3)) (-4 *3 (-1071)))) (-2743 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-849 *2)) (-4 *2 (-1071)))) (-2939 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-5 *1 (-849 *2)) (-4 *2 (-1071))))) -(-13 (-1071) (-1060 |#1|) (-1060 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3247 ($ $)) (-15 -3247 ($ $ $)) (-15 -3999 (|#1| |#1|))) |%noBranch|) (-15 -1803 ($ $ (-1 |#1| |#1|))) (-15 -2216 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -2743 (|#1| (-115) |#1|)) (-15 -2939 ($ |#1| (-372 (-115)))))) -((-1503 (((-216 (-514)) (-1180)) 9))) -(((-850) (-10 -7 (-15 -1503 ((-216 (-514)) (-1180))))) (T -850)) -((-1503 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-216 (-514))) (-5 *1 (-850))))) -(-10 -7 (-15 -1503 ((-216 (-514)) (-1180)))) -((-3429 (((-112) $ $) NIL)) (-2753 (((-1140) $) 10)) (-2676 (((-518) $) 9)) (-2342 (((-1180) $) NIL)) (-4412 (((-112) $ (-518)) NIL)) (-1471 (((-1142) $) NIL)) (-3511 (($ (-518) (-1140)) 8)) (-3501 (((-877) $) 25)) (-2046 (((-112) $ $) NIL)) (-4335 (((-55) $) 20)) (-2933 (((-112) $ $) 12))) -(((-851) (-13 (-848 (-518)) (-10 -8 (-15 -2753 ((-1140) $)) (-15 -3511 ($ (-518) (-1140)))))) (T -851)) -((-2753 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-851)))) (-3511 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1140)) (-5 *1 (-851))))) -(-13 (-848 (-518)) (-10 -8 (-15 -2753 ((-1140) $)) (-15 -3511 ($ (-518) (-1140))))) -((-3429 (((-112) $ $) 7)) (-2860 (((-1057) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) 15) (((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 14)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 17) (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) 16)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8))) -(((-852) (-141)) (T -852)) -((-4209 (*1 *2 *3 *4) (-12 (-4 *1 (-852)) (-5 *3 (-1085)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (-5 *2 (-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)))))) (-4209 (*1 *2 *3 *4) (-12 (-4 *1 (-852)) (-5 *3 (-1085)) (-5 *4 (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) (-5 *2 (-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)))))) (-2860 (*1 *2 *3) (-12 (-4 *1 (-852)) (-5 *3 (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) (-5 *2 (-1057)))) (-2860 (*1 *2 *3) (-12 (-4 *1 (-852)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (-5 *2 (-1057))))) -(-13 (-1122) (-10 -7 (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227))))))) (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227)))))) (-15 -2860 ((-1057) (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227)))))) (-15 -2860 ((-1057) (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227))))))))) -(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-3283 (((-1057) (-657 (-326 (-390))) (-657 (-390))) 166) (((-1057) (-326 (-390)) (-657 (-390))) 164) (((-1057) (-326 (-390)) (-657 (-390)) (-657 (-856 (-390))) (-657 (-856 (-390)))) 162) (((-1057) (-326 (-390)) (-657 (-390)) (-657 (-856 (-390))) (-657 (-326 (-390))) (-657 (-856 (-390)))) 160) (((-1057) (-854)) 125) (((-1057) (-854) (-1085)) 124)) (-4209 (((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))) (-854) (-1085)) 85) (((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))) (-854)) 87)) (-2000 (((-1057) (-657 (-326 (-390))) (-657 (-390))) 167) (((-1057) (-854)) 150))) -(((-853) (-10 -7 (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))) (-854))) (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))) (-854) (-1085))) (-15 -3283 ((-1057) (-854) (-1085))) (-15 -3283 ((-1057) (-854))) (-15 -2000 ((-1057) (-854))) (-15 -3283 ((-1057) (-326 (-390)) (-657 (-390)) (-657 (-856 (-390))) (-657 (-326 (-390))) (-657 (-856 (-390))))) (-15 -3283 ((-1057) (-326 (-390)) (-657 (-390)) (-657 (-856 (-390))) (-657 (-856 (-390))))) (-15 -3283 ((-1057) (-326 (-390)) (-657 (-390)))) (-15 -3283 ((-1057) (-657 (-326 (-390))) (-657 (-390)))) (-15 -2000 ((-1057) (-657 (-326 (-390))) (-657 (-390)))))) (T -853)) -((-2000 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-326 (-390)))) (-5 *4 (-657 (-390))) (-5 *2 (-1057)) (-5 *1 (-853)))) (-3283 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-326 (-390)))) (-5 *4 (-657 (-390))) (-5 *2 (-1057)) (-5 *1 (-853)))) (-3283 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-390))) (-5 *2 (-1057)) (-5 *1 (-853)))) (-3283 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-390))) (-5 *5 (-657 (-856 (-390)))) (-5 *2 (-1057)) (-5 *1 (-853)))) (-3283 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-657 (-390))) (-5 *5 (-657 (-856 (-390)))) (-5 *6 (-657 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1057)) (-5 *1 (-853)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1057)) (-5 *1 (-853)))) (-3283 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1057)) (-5 *1 (-853)))) (-3283 (*1 *2 *3 *4) (-12 (-5 *3 (-854)) (-5 *4 (-1085)) (-5 *2 (-1057)) (-5 *1 (-853)))) (-4209 (*1 *2 *3 *4) (-12 (-5 *3 (-854)) (-5 *4 (-1085)) (-5 *2 (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))))) (-5 *1 (-853)))) (-4209 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))))) (-5 *1 (-853))))) -(-10 -7 (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))) (-854))) (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))) (-854) (-1085))) (-15 -3283 ((-1057) (-854) (-1085))) (-15 -3283 ((-1057) (-854))) (-15 -2000 ((-1057) (-854))) (-15 -3283 ((-1057) (-326 (-390)) (-657 (-390)) (-657 (-856 (-390))) (-657 (-326 (-390))) (-657 (-856 (-390))))) (-15 -3283 ((-1057) (-326 (-390)) (-657 (-390)) (-657 (-856 (-390))) (-657 (-856 (-390))))) (-15 -3283 ((-1057) (-326 (-390)) (-657 (-390)))) (-15 -3283 ((-1057) (-657 (-326 (-390))) (-657 (-390)))) (-15 -2000 ((-1057) (-657 (-326 (-390))) (-657 (-390))))) -((-3429 (((-112) $ $) NIL)) (-2884 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227)))))) $) 21)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 20) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) 14) (($ (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))))) 18)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-854) (-13 (-1122) (-10 -8 (-15 -3501 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227))))))) (-15 -3501 ($ (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227)))))) (-15 -3501 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227)))))))) (-15 -2884 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227)))))) $))))) (T -854)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (-5 *1 (-854)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) (-5 *1 (-854)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))))) (-5 *1 (-854)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))))) (-5 *1 (-854))))) -(-13 (-1122) (-10 -8 (-15 -3501 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227))))))) (-15 -3501 ($ (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227)))))) (-15 -3501 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227)))))))) (-15 -2884 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) (|:| |ub| (-657 (-856 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227)))))) $)))) -((-4083 (((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|) (-856 |#2|) (-856 |#2|)) 13) (((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)) 14))) -(((-855 |#1| |#2|) (-10 -7 (-15 -4083 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|))) (-15 -4083 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|) (-856 |#2|) (-856 |#2|)))) (-1122) (-1122)) (T -855)) -((-4083 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-856 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *1 (-855 *5 *6)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-856 *6)) (-5 *1 (-855 *5 *6))))) -(-10 -7 (-15 -4083 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|))) (-15 -4083 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|) (-856 |#2|) (-856 |#2|)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL (|has| |#1| (-21)))) (-2975 (((-1142) $) 31)) (-2721 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1536 (((-576) $) NIL (|has| |#1| (-861)))) (-4359 (($) NIL (|has| |#1| (-21)) CONST)) (-1624 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 18)) (-2884 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 9)) (-3843 (((-3 $ "failed") $) 58 (|has| |#1| (-861)))) (-2775 (((-3 (-419 (-576)) "failed") $) 65 (|has| |#1| (-557)))) (-3112 (((-112) $) 60 (|has| |#1| (-557)))) (-4239 (((-419 (-576)) $) 63 (|has| |#1| (-557)))) (-2828 (((-112) $) NIL (|has| |#1| (-861)))) (-2958 (($) 14)) (-4094 (((-112) $) NIL (|has| |#1| (-861)))) (-2881 (((-112) $) NIL (|has| |#1| (-861)))) (-2966 (($) 16)) (-3707 (($ $ $) NIL (|has| |#1| (-861)))) (-1611 (($ $ $) NIL (|has| |#1| (-861)))) (-2342 (((-1180) $) NIL)) (-2270 (((-112) $) 12)) (-1471 (((-1142) $) NIL)) (-3825 (((-112) $) 11)) (-3501 (((-877) $) 24) (($ (-419 (-576))) NIL (|has| |#1| (-1060 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-2802 (|has| |#1| (-861)) (|has| |#1| (-1060 (-576)))))) (-1960 (((-784)) 51 (|has| |#1| (-861)) CONST)) (-2046 (((-112) $ $) NIL)) (-1792 (($ $) NIL (|has| |#1| (-861)))) (-2769 (($) 37 (|has| |#1| (-21)) CONST)) (-2779 (($) 48 (|has| |#1| (-861)) CONST)) (-2985 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2933 (((-112) $ $) 35)) (-2973 (((-112) $ $) NIL (|has| |#1| (-861)))) (-2954 (((-112) $ $) 59 (|has| |#1| (-861)))) (-3022 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3012 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-941)) NIL (|has| |#1| (-861))) (($ $ (-784)) NIL (|has| |#1| (-861)))) (* (($ $ $) 55 (|has| |#1| (-861))) (($ (-576) $) 42 (|has| |#1| (-21))) (($ (-784) $) NIL (|has| |#1| (-21))) (($ (-941) $) NIL (|has| |#1| (-21))))) -(((-856 |#1|) (-13 (-1122) (-423 |#1|) (-10 -8 (-15 -2958 ($)) (-15 -2966 ($)) (-15 -3825 ((-112) $)) (-15 -2270 ((-112) $)) (-15 -2975 ((-1142) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3112 ((-112) $)) (-15 -4239 ((-419 (-576)) $)) (-15 -2775 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1122)) (T -856)) -((-2958 (*1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1122)))) (-2966 (*1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1122)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856 *3)) (-4 *3 (-1122)))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856 *3)) (-4 *3 (-1122)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-856 *3)) (-4 *3 (-1122)))) (-3112 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) (-4239 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-856 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) (-2775 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-856 *3)) (-4 *3 (-557)) (-4 *3 (-1122))))) -(-13 (-1122) (-423 |#1|) (-10 -8 (-15 -2958 ($)) (-15 -2966 ($)) (-15 -3825 ((-112) $)) (-15 -2270 ((-112) $)) (-15 -2975 ((-1142) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3112 ((-112) $)) (-15 -4239 ((-419 (-576)) $)) (-15 -2775 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) -((-3429 (((-112) $ $) 7)) (-2193 (((-784)) 24)) (-1892 (($) 27)) (-3707 (($ $ $) 20) (($) 23 T CONST)) (-1611 (($ $ $) 19) (($) 22 T CONST)) (-3007 (((-941) $) 26)) (-2342 (((-1180) $) 10)) (-3178 (($ (-941)) 25)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2985 (((-112) $ $) 18)) (-2963 (((-112) $ $) 16)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 17)) (-2954 (((-112) $ $) 15))) -(((-857) (-141)) (T -857)) -((-3707 (*1 *1) (-4 *1 (-857))) (-1611 (*1 *1) (-4 *1 (-857)))) -(-13 (-862) (-379) (-10 -8 (-15 -3707 ($) -1509) (-15 -1611 ($) -1509))) -(((-102) . T) ((-625 (-877)) . T) ((-379) . T) ((-862) . T) ((-865) . T) ((-1122) . T) ((-1239) . T)) -((-2621 (((-112) (-1289 |#2|) (-1289 |#2|)) 19)) (-3132 (((-112) (-1289 |#2|) (-1289 |#2|)) 20)) (-1467 (((-112) (-1289 |#2|) (-1289 |#2|)) 16))) -(((-858 |#1| |#2|) (-10 -7 (-15 -1467 ((-112) (-1289 |#2|) (-1289 |#2|))) (-15 -2621 ((-112) (-1289 |#2|) (-1289 |#2|))) (-15 -3132 ((-112) (-1289 |#2|) (-1289 |#2|)))) (-784) (-805)) (T -858)) -((-3132 (*1 *2 *3 *3) (-12 (-5 *3 (-1289 *5)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-858 *4 *5)) (-14 *4 (-784)))) (-2621 (*1 *2 *3 *3) (-12 (-5 *3 (-1289 *5)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-858 *4 *5)) (-14 *4 (-784)))) (-1467 (*1 *2 *3 *3) (-12 (-5 *3 (-1289 *5)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-858 *4 *5)) (-14 *4 (-784))))) -(-10 -7 (-15 -1467 ((-112) (-1289 |#2|) (-1289 |#2|))) (-15 -2621 ((-112) (-1289 |#2|) (-1289 |#2|))) (-15 -3132 ((-112) (-1289 |#2|) (-1289 |#2|)))) -((-3429 (((-112) $ $) 7)) (-4359 (($) 25 T CONST)) (-3843 (((-3 $ "failed") $) 28)) (-4094 (((-112) $) 26)) (-3707 (($ $ $) 20)) (-1611 (($ $ $) 19)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2779 (($) 24 T CONST)) (-2985 (((-112) $ $) 18)) (-2963 (((-112) $ $) 16)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 17)) (-2954 (((-112) $ $) 15)) (** (($ $ (-941)) 23) (($ $ (-784)) 27)) (* (($ $ $) 22))) -(((-859) (-141)) (T -859)) -NIL -(-13 (-872) (-739)) -(((-102) . T) ((-625 (-877)) . T) ((-739) . T) ((-872) . T) ((-862) . T) ((-865) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-1536 (((-576) $) 21)) (-2828 (((-112) $) 10)) (-2881 (((-112) $) 12)) (-1792 (($ $) 23))) -(((-860 |#1|) (-10 -8 (-15 -1792 (|#1| |#1|)) (-15 -1536 ((-576) |#1|)) (-15 -2881 ((-112) |#1|)) (-15 -2828 ((-112) |#1|))) (-861)) (T -860)) -NIL -(-10 -8 (-15 -1792 (|#1| |#1|)) (-15 -1536 ((-576) |#1|)) (-15 -2881 ((-112) |#1|)) (-15 -2828 ((-112) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 26)) (-2721 (((-3 $ "failed") $ $) 28)) (-1536 (((-576) $) 38)) (-4359 (($) 25 T CONST)) (-3843 (((-3 $ "failed") $) 43)) (-2828 (((-112) $) 40)) (-4094 (((-112) $) 45)) (-2881 (((-112) $) 39)) (-3707 (($ $ $) 20)) (-1611 (($ $ $) 19)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12) (($ (-576)) 47)) (-1960 (((-784)) 48 T CONST)) (-2046 (((-112) $ $) 6)) (-1792 (($ $) 37)) (-2769 (($) 24 T CONST)) (-2779 (($) 46 T CONST)) (-2985 (((-112) $ $) 18)) (-2963 (((-112) $ $) 16)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 17)) (-2954 (((-112) $ $) 15)) (-3022 (($ $ $) 32) (($ $) 31)) (-3012 (($ $ $) 22)) (** (($ $ (-784)) 44) (($ $ (-941)) 41)) (* (($ (-941) $) 23) (($ (-784) $) 27) (($ (-576) $) 30) (($ $ $) 42))) -(((-861) (-141)) (T -861)) -((-2828 (*1 *2 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) (-2881 (*1 *2 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-861)) (-5 *2 (-576)))) (-1792 (*1 *1 *1) (-4 *1 (-861)))) -(-13 (-804) (-1071) (-739) (-10 -8 (-15 -2828 ((-112) $)) (-15 -2881 ((-112) $)) (-15 -1536 ((-576) $)) (-15 -1792 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-739) . T) ((-804) . T) ((-805) . T) ((-807) . T) ((-808) . T) ((-862) . T) ((-865) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) 7)) (-3707 (($ $ $) 20)) (-1611 (($ $ $) 19)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2985 (((-112) $ $) 18)) (-2963 (((-112) $ $) 16)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 17)) (-2954 (((-112) $ $) 15))) +(-13 (-810) (-23)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-626 (-880)) . T) ((-810) . T) ((-865) . T) ((-868) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 26)) (-4243 (($ $ $) 29)) (-1956 (((-3 $ "failed") $ $) 28)) (-1534 (($) 25 T CONST)) (-3732 (($ $ $) 20)) (-3201 (($ $ $) 19)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 24 T CONST)) (-3025 (((-112) $ $) 18)) (-3000 (((-112) $ $) 16)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 17)) (-2990 (((-112) $ $) 15)) (-3055 (($ $ $) 22)) (* (($ (-944) $) 23) (($ (-787) $) 27))) +(((-809) (-141)) (T -809)) +((-4243 (*1 *1 *1 *1) (-4 *1 (-809)))) +(-13 (-811) (-10 -8 (-15 -4243 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-808) . T) ((-810) . T) ((-811) . T) ((-865) . T) ((-868) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) 7)) (-3732 (($ $ $) 20)) (-3201 (($ $ $) 19)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-3025 (((-112) $ $) 18)) (-3000 (((-112) $ $) 16)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 17)) (-2990 (((-112) $ $) 15)) (-3055 (($ $ $) 22)) (* (($ (-944) $) 23))) +(((-810) (-141)) (T -810)) +NIL +(-13 (-865) (-25)) +(((-25) . T) ((-102) . T) ((-626 (-880)) . T) ((-865) . T) ((-868) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 26)) (-1956 (((-3 $ "failed") $ $) 28)) (-1534 (($) 25 T CONST)) (-3732 (($ $ $) 20)) (-3201 (($ $ $) 19)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 24 T CONST)) (-3025 (((-112) $ $) 18)) (-3000 (((-112) $ $) 16)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 17)) (-2990 (((-112) $ $) 15)) (-3055 (($ $ $) 22)) (* (($ (-944) $) 23) (($ (-787) $) 27))) +(((-811) (-141)) (T -811)) +NIL +(-13 (-808) (-132)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-808) . T) ((-810) . T) ((-865) . T) ((-868) . T) ((-1125) . T) ((-1242) . T)) +((-3585 (((-112) $) 42)) (-1628 (((-3 (-577) "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2921 (((-577) $) NIL) (((-420 (-577)) $) NIL) ((|#2| $) 43)) (-4363 (((-3 (-420 (-577)) "failed") $) 78)) (-4353 (((-112) $) 72)) (-4341 (((-420 (-577)) $) 76)) (-4145 ((|#2| $) 26)) (-4087 (($ (-1 |#2| |#2|) $) 23)) (-2171 (($ $) 58)) (-4152 (((-549) $) 67)) (-2360 (($ $) 21)) (-3544 (((-880) $) 53) (($ (-577)) 40) (($ |#2|) 38) (($ (-420 (-577))) NIL)) (-4068 (((-787)) 10)) (-1654 ((|#2| $) 71)) (-2970 (((-112) $ $) 30)) (-2990 (((-112) $ $) 69)) (-3066 (($ $) 32) (($ $ $) NIL)) (-3055 (($ $ $) 31)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) +(((-812 |#1| |#2|) (-10 -8 (-15 -2990 ((-112) |#1| |#1|)) (-15 -4152 ((-549) |#1|)) (-15 -2171 (|#1| |#1|)) (-15 -4363 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -4341 ((-420 (-577)) |#1|)) (-15 -4353 ((-112) |#1|)) (-15 -1654 (|#2| |#1|)) (-15 -4145 (|#2| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -4087 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -3544 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4068 ((-787))) (-15 -3544 (|#1| (-577))) (-15 * (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 -3585 ((-112) |#1|)) (-15 * (|#1| (-944) |#1|)) (-15 -3055 (|#1| |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -2970 ((-112) |#1| |#1|))) (-813 |#2|) (-174)) (T -812)) +((-4068 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-787)) (-5 *1 (-812 *3 *4)) (-4 *3 (-813 *4))))) +(-10 -8 (-15 -2990 ((-112) |#1| |#1|)) (-15 -4152 ((-549) |#1|)) (-15 -2171 (|#1| |#1|)) (-15 -4363 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -4341 ((-420 (-577)) |#1|)) (-15 -4353 ((-112) |#1|)) (-15 -1654 (|#2| |#1|)) (-15 -4145 (|#2| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -4087 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -3544 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4068 ((-787))) (-15 -3544 (|#1| (-577))) (-15 * (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 -3585 ((-112) |#1|)) (-15 * (|#1| (-944) |#1|)) (-15 -3055 (|#1| |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -2970 ((-112) |#1| |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-2229 (((-787)) 59 (|has| |#1| (-380)))) (-1534 (($) 18 T CONST)) (-1628 (((-3 (-577) "failed") $) 101 (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) 98 (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) 95)) (-2921 (((-577) $) 100 (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) 97 (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) 96)) (-4187 (((-3 $ "failed") $) 37)) (-1926 ((|#1| $) 85)) (-4363 (((-3 (-420 (-577)) "failed") $) 72 (|has| |#1| (-558)))) (-4353 (((-112) $) 74 (|has| |#1| (-558)))) (-4341 (((-420 (-577)) $) 73 (|has| |#1| (-558)))) (-1910 (($) 62 (|has| |#1| (-380)))) (-2487 (((-112) $) 35)) (-4297 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 76)) (-4145 ((|#1| $) 77)) (-3732 (($ $ $) 63 (|has| |#1| (-865)))) (-3201 (($ $ $) 64 (|has| |#1| (-865)))) (-4087 (($ (-1 |#1| |#1|) $) 87)) (-4038 (((-944) $) 61 (|has| |#1| (-380)))) (-2810 (((-1183) $) 10)) (-2171 (($ $) 71 (|has| |#1| (-375)))) (-3222 (($ (-944)) 60 (|has| |#1| (-380)))) (-4263 ((|#1| $) 82)) (-4273 ((|#1| $) 83)) (-4284 ((|#1| $) 84)) (-2331 ((|#1| $) 78)) (-2342 ((|#1| $) 79)) (-2351 ((|#1| $) 80)) (-4253 ((|#1| $) 81)) (-1474 (((-1145) $) 11)) (-3280 (($ $ (-660 |#1|) (-660 |#1|)) 93 (|has| |#1| (-320 |#1|))) (($ $ |#1| |#1|) 92 (|has| |#1| (-320 |#1|))) (($ $ (-305 |#1|)) 91 (|has| |#1| (-320 |#1|))) (($ $ (-660 (-305 |#1|))) 90 (|has| |#1| (-320 |#1|))) (($ $ (-660 (-1201)) (-660 |#1|)) 89 (|has| |#1| (-527 (-1201) |#1|))) (($ $ (-1201) |#1|) 88 (|has| |#1| (-527 (-1201) |#1|)))) (-2872 (($ $ |#1|) 94 (|has| |#1| (-297 |#1| |#1|)))) (-4152 (((-549) $) 69 (|has| |#1| (-627 (-549))))) (-2360 (($ $) 86)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 44) (($ (-420 (-577))) 99 (|has| |#1| (-1063 (-420 (-577)))))) (-2233 (((-3 $ "failed") $) 70 (|has| |#1| (-146)))) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-1654 ((|#1| $) 75 (|has| |#1| (-1085)))) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-3025 (((-112) $ $) 65 (|has| |#1| (-865)))) (-3000 (((-112) $ $) 67 (|has| |#1| (-865)))) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 66 (|has| |#1| (-865)))) (-2990 (((-112) $ $) 68 (|has| |#1| (-865)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-813 |#1|) (-141) (-174)) (T -813)) +((-2360 (*1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-1926 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-4284 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-4273 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-4253 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-2351 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-4145 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-4297 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)) (-4 *2 (-1085)))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-813 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) (-4341 (*1 *2 *1) (-12 (-4 *1 (-813 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577))))) (-4363 (*1 *2 *1) (|partial| -12 (-4 *1 (-813 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577))))) (-2171 (*1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)) (-4 *2 (-375))))) +(-13 (-38 |t#1|) (-424 |t#1|) (-350 |t#1|) (-10 -8 (-15 -2360 ($ $)) (-15 -1926 (|t#1| $)) (-15 -4284 (|t#1| $)) (-15 -4273 (|t#1| $)) (-15 -4263 (|t#1| $)) (-15 -4253 (|t#1| $)) (-15 -2351 (|t#1| $)) (-15 -2342 (|t#1| $)) (-15 -2331 (|t#1| $)) (-15 -4145 (|t#1| $)) (-15 -4297 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-380)) (-6 (-380)) |%noBranch|) (IF (|has| |t#1| (-865)) (-6 (-865)) |%noBranch|) (IF (|has| |t#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1085)) (-15 -1654 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -4353 ((-112) $)) (-15 -4341 ((-420 (-577)) $)) (-15 -4363 ((-3 (-420 (-577)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-375)) (-15 -2171 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0=(-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-380) |has| |#1| (-380)) ((-350 |#1|) . T) ((-424 |#1|) . T) ((-527 (-1201) |#1|) |has| |#1| (-527 (-1201) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 |#1|) . T) ((-733 |#1|) . T) ((-742) . T) ((-865) |has| |#1| (-865)) ((-868) |has| |#1| (-865)) ((-1063 #0#) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-4087 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-814 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 (|#3| (-1 |#4| |#2|) |#1|))) (-813 |#2|) (-174) (-813 |#4|) (-174)) (T -814)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-813 *6)) (-5 *1 (-814 *4 *5 *2 *6)) (-4 *4 (-813 *5))))) +(-10 -7 (-15 -4087 (|#3| (-1 |#4| |#2|) |#1|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2229 (((-787)) NIL (|has| |#1| (-380)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) NIL) (((-3 (-1024 |#1|) "failed") $) 35) (((-3 (-577) "failed") $) NIL (-2839 (|has| (-1024 |#1|) (-1063 (-577))) (|has| |#1| (-1063 (-577))))) (((-3 (-420 (-577)) "failed") $) NIL (-2839 (|has| (-1024 |#1|) (-1063 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))))) (-2921 ((|#1| $) NIL) (((-1024 |#1|) $) 33) (((-577) $) NIL (-2839 (|has| (-1024 |#1|) (-1063 (-577))) (|has| |#1| (-1063 (-577))))) (((-420 (-577)) $) NIL (-2839 (|has| (-1024 |#1|) (-1063 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))))) (-4187 (((-3 $ "failed") $) NIL)) (-1926 ((|#1| $) 16)) (-4363 (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-558)))) (-4353 (((-112) $) NIL (|has| |#1| (-558)))) (-4341 (((-420 (-577)) $) NIL (|has| |#1| (-558)))) (-1910 (($) NIL (|has| |#1| (-380)))) (-2487 (((-112) $) NIL)) (-4297 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1024 |#1|) (-1024 |#1|)) 29)) (-4145 ((|#1| $) NIL)) (-3732 (($ $ $) NIL (|has| |#1| (-865)))) (-3201 (($ $ $) NIL (|has| |#1| (-865)))) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-4038 (((-944) $) NIL (|has| |#1| (-380)))) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL (|has| |#1| (-375)))) (-3222 (($ (-944)) NIL (|has| |#1| (-380)))) (-4263 ((|#1| $) 22)) (-4273 ((|#1| $) 20)) (-4284 ((|#1| $) 18)) (-2331 ((|#1| $) 26)) (-2342 ((|#1| $) 25)) (-2351 ((|#1| $) 24)) (-4253 ((|#1| $) 23)) (-1474 (((-1145) $) NIL)) (-3280 (($ $ (-660 |#1|) (-660 |#1|)) NIL (|has| |#1| (-320 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|))) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|))) (($ $ (-660 (-305 |#1|))) NIL (|has| |#1| (-320 |#1|))) (($ $ (-660 (-1201)) (-660 |#1|)) NIL (|has| |#1| (-527 (-1201) |#1|))) (($ $ (-1201) |#1|) NIL (|has| |#1| (-527 (-1201) |#1|)))) (-2872 (($ $ |#1|) NIL (|has| |#1| (-297 |#1| |#1|)))) (-4152 (((-549) $) NIL (|has| |#1| (-627 (-549))))) (-2360 (($ $) NIL)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#1|) NIL) (($ (-1024 |#1|)) 30) (($ (-420 (-577))) NIL (-2839 (|has| (-1024 |#1|) (-1063 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))))) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-1654 ((|#1| $) NIL (|has| |#1| (-1085)))) (-2806 (($) 8 T CONST)) (-2816 (($) 12 T CONST)) (-3025 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-815 |#1|) (-13 (-813 |#1|) (-424 (-1024 |#1|)) (-10 -8 (-15 -4297 ($ (-1024 |#1|) (-1024 |#1|))))) (-174)) (T -815)) +((-4297 (*1 *1 *2 *2) (-12 (-5 *2 (-1024 *3)) (-4 *3 (-174)) (-5 *1 (-815 *3))))) +(-13 (-813 |#1|) (-424 (-1024 |#1|)) (-10 -8 (-15 -4297 ($ (-1024 |#1|) (-1024 |#1|))))) +((-3473 (((-112) $ $) 7)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 15)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-4305 (((-1060) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 14)) (-2970 (((-112) $ $) 8))) +(((-816) (-141)) (T -816)) +((-1878 (*1 *2 *3 *4) (-12 (-4 *1 (-816)) (-5 *3 (-1088)) (-5 *4 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)))))) (-4305 (*1 *2 *3) (-12 (-4 *1 (-816)) (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-1060))))) +(-13 (-1125) (-10 -7 (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -4305 ((-1060) (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) +(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-4316 (((-2 (|:| |particular| |#2|) (|:| -4060 (-660 |#2|))) |#3| |#2| (-1201)) 19))) +(((-817 |#1| |#2| |#3|) (-10 -7 (-15 -4316 ((-2 (|:| |particular| |#2|) (|:| -4060 (-660 |#2|))) |#3| |#2| (-1201)))) (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148)) (-13 (-29 |#1|) (-1227) (-982)) (-672 |#2|)) (T -817)) +((-4316 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1201)) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-4 *4 (-13 (-29 *6) (-1227) (-982))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4060 (-660 *4)))) (-5 *1 (-817 *6 *4 *3)) (-4 *3 (-672 *4))))) +(-10 -7 (-15 -4316 ((-2 (|:| |particular| |#2|) (|:| -4060 (-660 |#2|))) |#3| |#2| (-1201)))) +((-2546 (((-3 |#2| "failed") |#2| (-115) (-305 |#2|) (-660 |#2|)) 28) (((-3 |#2| "failed") (-305 |#2|) (-115) (-305 |#2|) (-660 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -4060 (-660 |#2|))) |#2| "failed") |#2| (-115) (-1201)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -4060 (-660 |#2|))) |#2| "failed") (-305 |#2|) (-115) (-1201)) 18) (((-3 (-2 (|:| |particular| (-1292 |#2|)) (|:| -4060 (-660 (-1292 |#2|)))) "failed") (-660 |#2|) (-660 (-115)) (-1201)) 24) (((-3 (-2 (|:| |particular| (-1292 |#2|)) (|:| -4060 (-660 (-1292 |#2|)))) "failed") (-660 (-305 |#2|)) (-660 (-115)) (-1201)) 26) (((-3 (-660 (-1292 |#2|)) "failed") (-705 |#2|) (-1201)) 37) (((-3 (-2 (|:| |particular| (-1292 |#2|)) (|:| -4060 (-660 (-1292 |#2|)))) "failed") (-705 |#2|) (-1292 |#2|) (-1201)) 35))) +(((-818 |#1| |#2|) (-10 -7 (-15 -2546 ((-3 (-2 (|:| |particular| (-1292 |#2|)) (|:| -4060 (-660 (-1292 |#2|)))) "failed") (-705 |#2|) (-1292 |#2|) (-1201))) (-15 -2546 ((-3 (-660 (-1292 |#2|)) "failed") (-705 |#2|) (-1201))) (-15 -2546 ((-3 (-2 (|:| |particular| (-1292 |#2|)) (|:| -4060 (-660 (-1292 |#2|)))) "failed") (-660 (-305 |#2|)) (-660 (-115)) (-1201))) (-15 -2546 ((-3 (-2 (|:| |particular| (-1292 |#2|)) (|:| -4060 (-660 (-1292 |#2|)))) "failed") (-660 |#2|) (-660 (-115)) (-1201))) (-15 -2546 ((-3 (-2 (|:| |particular| |#2|) (|:| -4060 (-660 |#2|))) |#2| "failed") (-305 |#2|) (-115) (-1201))) (-15 -2546 ((-3 (-2 (|:| |particular| |#2|) (|:| -4060 (-660 |#2|))) |#2| "failed") |#2| (-115) (-1201))) (-15 -2546 ((-3 |#2| "failed") (-305 |#2|) (-115) (-305 |#2|) (-660 |#2|))) (-15 -2546 ((-3 |#2| "failed") |#2| (-115) (-305 |#2|) (-660 |#2|)))) (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148)) (-13 (-29 |#1|) (-1227) (-982))) (T -818)) +((-2546 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-660 *2)) (-4 *2 (-13 (-29 *6) (-1227) (-982))) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *1 (-818 *6 *2)))) (-2546 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-660 *2)) (-4 *2 (-13 (-29 *6) (-1227) (-982))) (-5 *1 (-818 *6 *2)) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))))) (-2546 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1201)) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4060 (-660 *3))) *3 "failed")) (-5 *1 (-818 *6 *3)) (-4 *3 (-13 (-29 *6) (-1227) (-982))))) (-2546 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1201)) (-4 *7 (-13 (-29 *6) (-1227) (-982))) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4060 (-660 *7))) *7 "failed")) (-5 *1 (-818 *6 *7)))) (-2546 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-660 *7)) (-5 *4 (-660 (-115))) (-5 *5 (-1201)) (-4 *7 (-13 (-29 *6) (-1227) (-982))) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-2 (|:| |particular| (-1292 *7)) (|:| -4060 (-660 (-1292 *7))))) (-5 *1 (-818 *6 *7)))) (-2546 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-660 (-305 *7))) (-5 *4 (-660 (-115))) (-5 *5 (-1201)) (-4 *7 (-13 (-29 *6) (-1227) (-982))) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-2 (|:| |particular| (-1292 *7)) (|:| -4060 (-660 (-1292 *7))))) (-5 *1 (-818 *6 *7)))) (-2546 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-705 *6)) (-5 *4 (-1201)) (-4 *6 (-13 (-29 *5) (-1227) (-982))) (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-660 (-1292 *6))) (-5 *1 (-818 *5 *6)))) (-2546 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-705 *7)) (-5 *5 (-1201)) (-4 *7 (-13 (-29 *6) (-1227) (-982))) (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-2 (|:| |particular| (-1292 *7)) (|:| -4060 (-660 (-1292 *7))))) (-5 *1 (-818 *6 *7)) (-5 *4 (-1292 *7))))) +(-10 -7 (-15 -2546 ((-3 (-2 (|:| |particular| (-1292 |#2|)) (|:| -4060 (-660 (-1292 |#2|)))) "failed") (-705 |#2|) (-1292 |#2|) (-1201))) (-15 -2546 ((-3 (-660 (-1292 |#2|)) "failed") (-705 |#2|) (-1201))) (-15 -2546 ((-3 (-2 (|:| |particular| (-1292 |#2|)) (|:| -4060 (-660 (-1292 |#2|)))) "failed") (-660 (-305 |#2|)) (-660 (-115)) (-1201))) (-15 -2546 ((-3 (-2 (|:| |particular| (-1292 |#2|)) (|:| -4060 (-660 (-1292 |#2|)))) "failed") (-660 |#2|) (-660 (-115)) (-1201))) (-15 -2546 ((-3 (-2 (|:| |particular| |#2|) (|:| -4060 (-660 |#2|))) |#2| "failed") (-305 |#2|) (-115) (-1201))) (-15 -2546 ((-3 (-2 (|:| |particular| |#2|) (|:| -4060 (-660 |#2|))) |#2| "failed") |#2| (-115) (-1201))) (-15 -2546 ((-3 |#2| "failed") (-305 |#2|) (-115) (-305 |#2|) (-660 |#2|))) (-15 -2546 ((-3 |#2| "failed") |#2| (-115) (-305 |#2|) (-660 |#2|)))) +((-4327 (($) 9)) (-4361 (((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 30)) (-3203 (((-660 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $) 27)) (-2881 (($ (-2 (|:| -4295 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) 24)) (-4351 (($ (-660 (-2 (|:| -4295 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) 22)) (-4339 (((-1297)) 11))) +(((-819) (-10 -8 (-15 -4327 ($)) (-15 -4339 ((-1297))) (-15 -3203 ((-660 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $)) (-15 -4351 ($ (-660 (-2 (|:| -4295 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -2881 ($ (-2 (|:| -4295 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -4361 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))))) (T -819)) +((-4361 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *1 (-819)))) (-2881 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4295 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) (-5 *1 (-819)))) (-4351 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -4295 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-5 *1 (-819)))) (-3203 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-5 *1 (-819)))) (-4339 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-819)))) (-4327 (*1 *1) (-5 *1 (-819)))) +(-10 -8 (-15 -4327 ($)) (-15 -4339 ((-1297))) (-15 -3203 ((-660 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) $)) (-15 -4351 ($ (-660 (-2 (|:| -4295 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -2881 ($ (-2 (|:| -4295 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (|:| -4444 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -4361 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) +((-3858 ((|#2| |#2| (-1201)) 17)) (-4372 ((|#2| |#2| (-1201)) 56)) (-4382 (((-1 |#2| |#2|) (-1201)) 11))) +(((-820 |#1| |#2|) (-10 -7 (-15 -3858 (|#2| |#2| (-1201))) (-15 -4372 (|#2| |#2| (-1201))) (-15 -4382 ((-1 |#2| |#2|) (-1201)))) (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148)) (-13 (-29 |#1|) (-1227) (-982))) (T -820)) +((-4382 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-820 *4 *5)) (-4 *5 (-13 (-29 *4) (-1227) (-982))))) (-4372 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *1 (-820 *4 *2)) (-4 *2 (-13 (-29 *4) (-1227) (-982))))) (-3858 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *1 (-820 *4 *2)) (-4 *2 (-13 (-29 *4) (-1227) (-982)))))) +(-10 -7 (-15 -3858 (|#2| |#2| (-1201))) (-15 -4372 (|#2| |#2| (-1201))) (-15 -4382 ((-1 |#2| |#2|) (-1201)))) +((-2546 (((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-327 (-391)) (-660 (-391)) (-391) (-391)) 128) (((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-327 (-391)) (-660 (-391)) (-391)) 129) (((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-660 (-391)) (-391)) 131) (((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-327 (-391)) (-391)) 133) (((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-391)) 134) (((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391))) 136) (((-1060) (-824) (-1088)) 120) (((-1060) (-824)) 121)) (-1878 (((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))) (-824) (-1088)) 80) (((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))) (-824)) 82))) +(((-821) (-10 -7 (-15 -2546 ((-1060) (-824))) (-15 -2546 ((-1060) (-824) (-1088))) (-15 -2546 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)))) (-15 -2546 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-391))) (-15 -2546 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-327 (-391)) (-391))) (-15 -2546 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-660 (-391)) (-391))) (-15 -2546 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-327 (-391)) (-660 (-391)) (-391))) (-15 -2546 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-327 (-391)) (-660 (-391)) (-391) (-391))) (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))) (-824))) (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))) (-824) (-1088))))) (T -821)) +((-1878 (*1 *2 *3 *4) (-12 (-5 *3 (-824)) (-5 *4 (-1088)) (-5 *2 (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))))) (-5 *1 (-821)))) (-1878 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))))) (-5 *1 (-821)))) (-2546 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1292 (-327 *4))) (-5 *5 (-660 (-391))) (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1060)) (-5 *1 (-821)))) (-2546 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1292 (-327 *4))) (-5 *5 (-660 (-391))) (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1060)) (-5 *1 (-821)))) (-2546 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1292 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-660 *4)) (-5 *2 (-1060)) (-5 *1 (-821)))) (-2546 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1292 (-327 *4))) (-5 *5 (-660 (-391))) (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1060)) (-5 *1 (-821)))) (-2546 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1292 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-660 *4)) (-5 *2 (-1060)) (-5 *1 (-821)))) (-2546 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1292 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-660 *4)) (-5 *2 (-1060)) (-5 *1 (-821)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-824)) (-5 *4 (-1088)) (-5 *2 (-1060)) (-5 *1 (-821)))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1060)) (-5 *1 (-821))))) +(-10 -7 (-15 -2546 ((-1060) (-824))) (-15 -2546 ((-1060) (-824) (-1088))) (-15 -2546 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)))) (-15 -2546 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-391))) (-15 -2546 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-327 (-391)) (-391))) (-15 -2546 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-660 (-391)) (-391))) (-15 -2546 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-327 (-391)) (-660 (-391)) (-391))) (-15 -2546 ((-1060) (-1292 (-327 (-391))) (-391) (-391) (-660 (-391)) (-327 (-391)) (-660 (-391)) (-391) (-391))) (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))) (-824))) (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))) (-824) (-1088)))) +((-4393 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4060 (-660 |#4|))) (-669 |#4|) |#4|) 33))) +(((-822 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4393 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4060 (-660 |#4|))) (-669 |#4|) |#4|))) (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577)))) (-1268 |#1|) (-1268 (-420 |#2|)) (-354 |#1| |#2| |#3|)) (T -822)) +((-4393 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *4)) (-4 *4 (-354 *5 *6 *7)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4060 (-660 *4)))) (-5 *1 (-822 *5 *6 *7 *4))))) +(-10 -7 (-15 -4393 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4060 (-660 |#4|))) (-669 |#4|) |#4|))) +((-1660 (((-2 (|:| -3994 |#3|) (|:| |rh| (-660 (-420 |#2|)))) |#4| (-660 (-420 |#2|))) 53)) (-4413 (((-660 (-2 (|:| -3693 |#2|) (|:| -2448 |#2|))) |#4| |#2|) 62) (((-660 (-2 (|:| -3693 |#2|) (|:| -2448 |#2|))) |#4|) 61) (((-660 (-2 (|:| -3693 |#2|) (|:| -2448 |#2|))) |#3| |#2|) 20) (((-660 (-2 (|:| -3693 |#2|) (|:| -2448 |#2|))) |#3|) 21)) (-4424 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-4403 ((|#2| |#3| (-660 (-420 |#2|))) 109) (((-3 |#2| "failed") |#3| (-420 |#2|)) 105))) +(((-823 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4403 ((-3 |#2| "failed") |#3| (-420 |#2|))) (-15 -4403 (|#2| |#3| (-660 (-420 |#2|)))) (-15 -4413 ((-660 (-2 (|:| -3693 |#2|) (|:| -2448 |#2|))) |#3|)) (-15 -4413 ((-660 (-2 (|:| -3693 |#2|) (|:| -2448 |#2|))) |#3| |#2|)) (-15 -4424 (|#2| |#3| |#1|)) (-15 -4413 ((-660 (-2 (|:| -3693 |#2|) (|:| -2448 |#2|))) |#4|)) (-15 -4413 ((-660 (-2 (|:| -3693 |#2|) (|:| -2448 |#2|))) |#4| |#2|)) (-15 -4424 (|#2| |#4| |#1|)) (-15 -1660 ((-2 (|:| -3994 |#3|) (|:| |rh| (-660 (-420 |#2|)))) |#4| (-660 (-420 |#2|))))) (-13 (-375) (-148) (-1063 (-420 (-577)))) (-1268 |#1|) (-672 |#2|) (-672 (-420 |#2|))) (T -823)) +((-1660 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) (-5 *2 (-2 (|:| -3994 *7) (|:| |rh| (-660 (-420 *6))))) (-5 *1 (-823 *5 *6 *7 *3)) (-5 *4 (-660 (-420 *6))) (-4 *7 (-672 *6)) (-4 *3 (-672 (-420 *6))))) (-4424 (*1 *2 *3 *4) (-12 (-4 *2 (-1268 *4)) (-5 *1 (-823 *4 *2 *5 *3)) (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *5 (-672 *2)) (-4 *3 (-672 (-420 *2))))) (-4413 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *4 (-1268 *5)) (-5 *2 (-660 (-2 (|:| -3693 *4) (|:| -2448 *4)))) (-5 *1 (-823 *5 *4 *6 *3)) (-4 *6 (-672 *4)) (-4 *3 (-672 (-420 *4))))) (-4413 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *5 (-1268 *4)) (-5 *2 (-660 (-2 (|:| -3693 *5) (|:| -2448 *5)))) (-5 *1 (-823 *4 *5 *6 *3)) (-4 *6 (-672 *5)) (-4 *3 (-672 (-420 *5))))) (-4424 (*1 *2 *3 *4) (-12 (-4 *2 (-1268 *4)) (-5 *1 (-823 *4 *2 *3 *5)) (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *3 (-672 *2)) (-4 *5 (-672 (-420 *2))))) (-4413 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *4 (-1268 *5)) (-5 *2 (-660 (-2 (|:| -3693 *4) (|:| -2448 *4)))) (-5 *1 (-823 *5 *4 *3 *6)) (-4 *3 (-672 *4)) (-4 *6 (-672 (-420 *4))))) (-4413 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *5 (-1268 *4)) (-5 *2 (-660 (-2 (|:| -3693 *5) (|:| -2448 *5)))) (-5 *1 (-823 *4 *5 *3 *6)) (-4 *3 (-672 *5)) (-4 *6 (-672 (-420 *5))))) (-4403 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-420 *2))) (-4 *2 (-1268 *5)) (-5 *1 (-823 *5 *2 *3 *6)) (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *3 (-672 *2)) (-4 *6 (-672 (-420 *2))))) (-4403 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-420 *2)) (-4 *2 (-1268 *5)) (-5 *1 (-823 *5 *2 *3 *6)) (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *3 (-672 *2)) (-4 *6 (-672 *4))))) +(-10 -7 (-15 -4403 ((-3 |#2| "failed") |#3| (-420 |#2|))) (-15 -4403 (|#2| |#3| (-660 (-420 |#2|)))) (-15 -4413 ((-660 (-2 (|:| -3693 |#2|) (|:| -2448 |#2|))) |#3|)) (-15 -4413 ((-660 (-2 (|:| -3693 |#2|) (|:| -2448 |#2|))) |#3| |#2|)) (-15 -4424 (|#2| |#3| |#1|)) (-15 -4413 ((-660 (-2 (|:| -3693 |#2|) (|:| -2448 |#2|))) |#4|)) (-15 -4413 ((-660 (-2 (|:| -3693 |#2|) (|:| -2448 |#2|))) |#4| |#2|)) (-15 -4424 (|#2| |#4| |#1|)) (-15 -1660 ((-2 (|:| -3994 |#3|) (|:| |rh| (-660 (-420 |#2|)))) |#4| (-660 (-420 |#2|))))) +((-3473 (((-112) $ $) NIL)) (-2921 (((-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) $) 13)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 15) (($ (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) 12)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-824) (-13 (-1125) (-10 -8 (-15 -3544 ($ (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2921 ((-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) $))))) (T -824)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *1 (-824)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228)))) (-5 *1 (-824))))) +(-13 (-1125) (-10 -8 (-15 -3544 ($ (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))))) (-15 -2921 ((-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) (|:| |relerr| (-228))) $)))) +((-1396 (((-660 (-2 (|:| |frac| (-420 |#2|)) (|:| -3994 |#3|))) |#3| (-1 (-660 |#2|) |#2| (-1197 |#2|)) (-1 (-431 |#2|) |#2|)) 154)) (-1408 (((-660 (-2 (|:| |poly| |#2|) (|:| -3994 |#3|))) |#3| (-1 (-660 |#1|) |#2|)) 52)) (-4450 (((-660 (-2 (|:| |deg| (-787)) (|:| -3994 |#2|))) |#3|) 122)) (-4437 ((|#2| |#3|) 42)) (-1338 (((-660 (-2 (|:| -1512 |#1|) (|:| -3994 |#3|))) |#3| (-1 (-660 |#1|) |#2|)) 99)) (-1349 ((|#3| |#3| (-420 |#2|)) 72) ((|#3| |#3| |#2|) 96))) +(((-825 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4437 (|#2| |#3|)) (-15 -4450 ((-660 (-2 (|:| |deg| (-787)) (|:| -3994 |#2|))) |#3|)) (-15 -1338 ((-660 (-2 (|:| -1512 |#1|) (|:| -3994 |#3|))) |#3| (-1 (-660 |#1|) |#2|))) (-15 -1408 ((-660 (-2 (|:| |poly| |#2|) (|:| -3994 |#3|))) |#3| (-1 (-660 |#1|) |#2|))) (-15 -1396 ((-660 (-2 (|:| |frac| (-420 |#2|)) (|:| -3994 |#3|))) |#3| (-1 (-660 |#2|) |#2| (-1197 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -1349 (|#3| |#3| |#2|)) (-15 -1349 (|#3| |#3| (-420 |#2|)))) (-13 (-375) (-148) (-1063 (-420 (-577)))) (-1268 |#1|) (-672 |#2|) (-672 (-420 |#2|))) (T -825)) +((-1349 (*1 *2 *2 *3) (-12 (-5 *3 (-420 *5)) (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *5 (-1268 *4)) (-5 *1 (-825 *4 *5 *2 *6)) (-4 *2 (-672 *5)) (-4 *6 (-672 *3)))) (-1349 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *3 (-1268 *4)) (-5 *1 (-825 *4 *3 *2 *5)) (-4 *2 (-672 *3)) (-4 *5 (-672 (-420 *3))))) (-1396 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-660 *7) *7 (-1197 *7))) (-5 *5 (-1 (-431 *7) *7)) (-4 *7 (-1268 *6)) (-4 *6 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-5 *2 (-660 (-2 (|:| |frac| (-420 *7)) (|:| -3994 *3)))) (-5 *1 (-825 *6 *7 *3 *8)) (-4 *3 (-672 *7)) (-4 *8 (-672 (-420 *7))))) (-1408 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-660 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) (-5 *2 (-660 (-2 (|:| |poly| *6) (|:| -3994 *3)))) (-5 *1 (-825 *5 *6 *3 *7)) (-4 *3 (-672 *6)) (-4 *7 (-672 (-420 *6))))) (-1338 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-660 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) (-5 *2 (-660 (-2 (|:| -1512 *5) (|:| -3994 *3)))) (-5 *1 (-825 *5 *6 *3 *7)) (-4 *3 (-672 *6)) (-4 *7 (-672 (-420 *6))))) (-4450 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *5 (-1268 *4)) (-5 *2 (-660 (-2 (|:| |deg| (-787)) (|:| -3994 *5)))) (-5 *1 (-825 *4 *5 *3 *6)) (-4 *3 (-672 *5)) (-4 *6 (-672 (-420 *5))))) (-4437 (*1 *2 *3) (-12 (-4 *2 (-1268 *4)) (-5 *1 (-825 *4 *2 *3 *5)) (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *3 (-672 *2)) (-4 *5 (-672 (-420 *2)))))) +(-10 -7 (-15 -4437 (|#2| |#3|)) (-15 -4450 ((-660 (-2 (|:| |deg| (-787)) (|:| -3994 |#2|))) |#3|)) (-15 -1338 ((-660 (-2 (|:| -1512 |#1|) (|:| -3994 |#3|))) |#3| (-1 (-660 |#1|) |#2|))) (-15 -1408 ((-660 (-2 (|:| |poly| |#2|) (|:| -3994 |#3|))) |#3| (-1 (-660 |#1|) |#2|))) (-15 -1396 ((-660 (-2 (|:| |frac| (-420 |#2|)) (|:| -3994 |#3|))) |#3| (-1 (-660 |#2|) |#2| (-1197 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -1349 (|#3| |#3| |#2|)) (-15 -1349 (|#3| |#3| (-420 |#2|)))) +((-1360 (((-2 (|:| -4060 (-660 (-420 |#2|))) (|:| -1881 (-705 |#1|))) (-670 |#2| (-420 |#2|)) (-660 (-420 |#2|))) 146) (((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -4060 (-660 (-420 |#2|)))) (-670 |#2| (-420 |#2|)) (-420 |#2|)) 145) (((-2 (|:| -4060 (-660 (-420 |#2|))) (|:| -1881 (-705 |#1|))) (-669 (-420 |#2|)) (-660 (-420 |#2|))) 140) (((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -4060 (-660 (-420 |#2|)))) (-669 (-420 |#2|)) (-420 |#2|)) 138)) (-1373 ((|#2| (-670 |#2| (-420 |#2|))) 87) ((|#2| (-669 (-420 |#2|))) 90))) +(((-826 |#1| |#2|) (-10 -7 (-15 -1360 ((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -4060 (-660 (-420 |#2|)))) (-669 (-420 |#2|)) (-420 |#2|))) (-15 -1360 ((-2 (|:| -4060 (-660 (-420 |#2|))) (|:| -1881 (-705 |#1|))) (-669 (-420 |#2|)) (-660 (-420 |#2|)))) (-15 -1360 ((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -4060 (-660 (-420 |#2|)))) (-670 |#2| (-420 |#2|)) (-420 |#2|))) (-15 -1360 ((-2 (|:| -4060 (-660 (-420 |#2|))) (|:| -1881 (-705 |#1|))) (-670 |#2| (-420 |#2|)) (-660 (-420 |#2|)))) (-15 -1373 (|#2| (-669 (-420 |#2|)))) (-15 -1373 (|#2| (-670 |#2| (-420 |#2|))))) (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577)))) (-1268 |#1|)) (T -826)) +((-1373 (*1 *2 *3) (-12 (-5 *3 (-670 *2 (-420 *2))) (-4 *2 (-1268 *4)) (-5 *1 (-826 *4 *2)) (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-669 (-420 *2))) (-4 *2 (-1268 *4)) (-5 *1 (-826 *4 *2)) (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))))) (-1360 (*1 *2 *3 *4) (-12 (-5 *3 (-670 *6 (-420 *6))) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-2 (|:| -4060 (-660 (-420 *6))) (|:| -1881 (-705 *5)))) (-5 *1 (-826 *5 *6)) (-5 *4 (-660 (-420 *6))))) (-1360 (*1 *2 *3 *4) (-12 (-5 *3 (-670 *6 (-420 *6))) (-5 *4 (-420 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4060 (-660 *4)))) (-5 *1 (-826 *5 *6)))) (-1360 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-420 *6))) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-2 (|:| -4060 (-660 (-420 *6))) (|:| -1881 (-705 *5)))) (-5 *1 (-826 *5 *6)) (-5 *4 (-660 (-420 *6))))) (-1360 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-420 *6))) (-5 *4 (-420 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4060 (-660 *4)))) (-5 *1 (-826 *5 *6))))) +(-10 -7 (-15 -1360 ((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -4060 (-660 (-420 |#2|)))) (-669 (-420 |#2|)) (-420 |#2|))) (-15 -1360 ((-2 (|:| -4060 (-660 (-420 |#2|))) (|:| -1881 (-705 |#1|))) (-669 (-420 |#2|)) (-660 (-420 |#2|)))) (-15 -1360 ((-2 (|:| |particular| (-3 (-420 |#2|) "failed")) (|:| -4060 (-660 (-420 |#2|)))) (-670 |#2| (-420 |#2|)) (-420 |#2|))) (-15 -1360 ((-2 (|:| -4060 (-660 (-420 |#2|))) (|:| -1881 (-705 |#1|))) (-670 |#2| (-420 |#2|)) (-660 (-420 |#2|)))) (-15 -1373 (|#2| (-669 (-420 |#2|)))) (-15 -1373 (|#2| (-670 |#2| (-420 |#2|))))) +((-1385 (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#1|))) |#5| |#4|) 49))) +(((-827 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1385 ((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#1|))) |#5| |#4|))) (-375) (-672 |#1|) (-1268 |#1|) (-740 |#1| |#3|) (-672 |#4|)) (T -827)) +((-1385 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *7 (-1268 *5)) (-4 *4 (-740 *5 *7)) (-5 *2 (-2 (|:| -1881 (-705 *6)) (|:| |vec| (-1292 *5)))) (-5 *1 (-827 *5 *6 *7 *4 *3)) (-4 *6 (-672 *5)) (-4 *3 (-672 *4))))) +(-10 -7 (-15 -1385 ((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#1|))) |#5| |#4|))) +((-1396 (((-660 (-2 (|:| |frac| (-420 |#2|)) (|:| -3994 (-670 |#2| (-420 |#2|))))) (-670 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|)) 47)) (-1419 (((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|))) 164 (|has| |#1| (-27))) (((-660 (-420 |#2|)) (-669 (-420 |#2|)) (-1 (-431 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-660 (-420 |#2|)) (-669 (-420 |#2|))) 166 (|has| |#1| (-27))) (((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)) (-1 (-660 |#1|) |#2|) (-1 (-431 |#2|) |#2|)) 38) (((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)) (-1 (-660 |#1|) |#2|)) 39) (((-660 (-420 |#2|)) (-669 (-420 |#2|)) (-1 (-660 |#1|) |#2|) (-1 (-431 |#2|) |#2|)) 36) (((-660 (-420 |#2|)) (-669 (-420 |#2|)) (-1 (-660 |#1|) |#2|)) 37)) (-1408 (((-660 (-2 (|:| |poly| |#2|) (|:| -3994 (-670 |#2| (-420 |#2|))))) (-670 |#2| (-420 |#2|)) (-1 (-660 |#1|) |#2|)) 96))) +(((-828 |#1| |#2|) (-10 -7 (-15 -1419 ((-660 (-420 |#2|)) (-669 (-420 |#2|)) (-1 (-660 |#1|) |#2|))) (-15 -1419 ((-660 (-420 |#2|)) (-669 (-420 |#2|)) (-1 (-660 |#1|) |#2|) (-1 (-431 |#2|) |#2|))) (-15 -1419 ((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)) (-1 (-660 |#1|) |#2|))) (-15 -1419 ((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)) (-1 (-660 |#1|) |#2|) (-1 (-431 |#2|) |#2|))) (-15 -1396 ((-660 (-2 (|:| |frac| (-420 |#2|)) (|:| -3994 (-670 |#2| (-420 |#2|))))) (-670 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -1408 ((-660 (-2 (|:| |poly| |#2|) (|:| -3994 (-670 |#2| (-420 |#2|))))) (-670 |#2| (-420 |#2|)) (-1 (-660 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1419 ((-660 (-420 |#2|)) (-669 (-420 |#2|)))) (-15 -1419 ((-660 (-420 |#2|)) (-669 (-420 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -1419 ((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)))) (-15 -1419 ((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|)))) |%noBranch|)) (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577)))) (-1268 |#1|)) (T -828)) +((-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-670 *6 (-420 *6))) (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1268 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-660 (-420 *6))) (-5 *1 (-828 *5 *6)))) (-1419 (*1 *2 *3) (-12 (-5 *3 (-670 *5 (-420 *5))) (-4 *5 (-1268 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-660 (-420 *5))) (-5 *1 (-828 *4 *5)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-420 *6))) (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1268 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-660 (-420 *6))) (-5 *1 (-828 *5 *6)))) (-1419 (*1 *2 *3) (-12 (-5 *3 (-669 (-420 *5))) (-4 *5 (-1268 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-660 (-420 *5))) (-5 *1 (-828 *4 *5)))) (-1408 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-660 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) (-5 *2 (-660 (-2 (|:| |poly| *6) (|:| -3994 (-670 *6 (-420 *6)))))) (-5 *1 (-828 *5 *6)) (-5 *3 (-670 *6 (-420 *6))))) (-1396 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-5 *2 (-660 (-2 (|:| |frac| (-420 *6)) (|:| -3994 (-670 *6 (-420 *6)))))) (-5 *1 (-828 *5 *6)) (-5 *3 (-670 *6 (-420 *6))))) (-1419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-670 *7 (-420 *7))) (-5 *4 (-1 (-660 *6) *7)) (-5 *5 (-1 (-431 *7) *7)) (-4 *6 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *7 (-1268 *6)) (-5 *2 (-660 (-420 *7))) (-5 *1 (-828 *6 *7)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-670 *6 (-420 *6))) (-5 *4 (-1 (-660 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) (-5 *2 (-660 (-420 *6))) (-5 *1 (-828 *5 *6)))) (-1419 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 (-420 *7))) (-5 *4 (-1 (-660 *6) *7)) (-5 *5 (-1 (-431 *7) *7)) (-4 *6 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *7 (-1268 *6)) (-5 *2 (-660 (-420 *7))) (-5 *1 (-828 *6 *7)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-420 *6))) (-5 *4 (-1 (-660 *5) *6)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) (-5 *2 (-660 (-420 *6))) (-5 *1 (-828 *5 *6))))) +(-10 -7 (-15 -1419 ((-660 (-420 |#2|)) (-669 (-420 |#2|)) (-1 (-660 |#1|) |#2|))) (-15 -1419 ((-660 (-420 |#2|)) (-669 (-420 |#2|)) (-1 (-660 |#1|) |#2|) (-1 (-431 |#2|) |#2|))) (-15 -1419 ((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)) (-1 (-660 |#1|) |#2|))) (-15 -1419 ((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)) (-1 (-660 |#1|) |#2|) (-1 (-431 |#2|) |#2|))) (-15 -1396 ((-660 (-2 (|:| |frac| (-420 |#2|)) (|:| -3994 (-670 |#2| (-420 |#2|))))) (-670 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -1408 ((-660 (-2 (|:| |poly| |#2|) (|:| -3994 (-670 |#2| (-420 |#2|))))) (-670 |#2| (-420 |#2|)) (-1 (-660 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1419 ((-660 (-420 |#2|)) (-669 (-420 |#2|)))) (-15 -1419 ((-660 (-420 |#2|)) (-669 (-420 |#2|)) (-1 (-431 |#2|) |#2|))) (-15 -1419 ((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)))) (-15 -1419 ((-660 (-420 |#2|)) (-670 |#2| (-420 |#2|)) (-1 (-431 |#2|) |#2|)))) |%noBranch|)) +((-1429 (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#1|))) (-705 |#2|) (-1292 |#1|)) 110) (((-2 (|:| A (-705 |#1|)) (|:| |eqs| (-660 (-2 (|:| C (-705 |#1|)) (|:| |g| (-1292 |#1|)) (|:| -3994 |#2|) (|:| |rh| |#1|))))) (-705 |#1|) (-1292 |#1|)) 15)) (-1440 (((-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -4060 (-660 (-1292 |#1|)))) (-705 |#2|) (-1292 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4060 (-660 |#1|))) |#2| |#1|)) 116)) (-2546 (((-3 (-2 (|:| |particular| (-1292 |#1|)) (|:| -4060 (-705 |#1|))) "failed") (-705 |#1|) (-1292 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4060 (-660 |#1|))) "failed") |#2| |#1|)) 54))) +(((-829 |#1| |#2|) (-10 -7 (-15 -1429 ((-2 (|:| A (-705 |#1|)) (|:| |eqs| (-660 (-2 (|:| C (-705 |#1|)) (|:| |g| (-1292 |#1|)) (|:| -3994 |#2|) (|:| |rh| |#1|))))) (-705 |#1|) (-1292 |#1|))) (-15 -1429 ((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#1|))) (-705 |#2|) (-1292 |#1|))) (-15 -2546 ((-3 (-2 (|:| |particular| (-1292 |#1|)) (|:| -4060 (-705 |#1|))) "failed") (-705 |#1|) (-1292 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4060 (-660 |#1|))) "failed") |#2| |#1|))) (-15 -1440 ((-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -4060 (-660 (-1292 |#1|)))) (-705 |#2|) (-1292 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4060 (-660 |#1|))) |#2| |#1|)))) (-375) (-672 |#1|)) (T -829)) +((-1440 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-705 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4060 (-660 *6))) *7 *6)) (-4 *6 (-375)) (-4 *7 (-672 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1292 *6) "failed")) (|:| -4060 (-660 (-1292 *6))))) (-5 *1 (-829 *6 *7)) (-5 *4 (-1292 *6)))) (-2546 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4060 (-660 *6))) "failed") *7 *6)) (-4 *6 (-375)) (-4 *7 (-672 *6)) (-5 *2 (-2 (|:| |particular| (-1292 *6)) (|:| -4060 (-705 *6)))) (-5 *1 (-829 *6 *7)) (-5 *3 (-705 *6)) (-5 *4 (-1292 *6)))) (-1429 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-4 *6 (-672 *5)) (-5 *2 (-2 (|:| -1881 (-705 *6)) (|:| |vec| (-1292 *5)))) (-5 *1 (-829 *5 *6)) (-5 *3 (-705 *6)) (-5 *4 (-1292 *5)))) (-1429 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-5 *2 (-2 (|:| A (-705 *5)) (|:| |eqs| (-660 (-2 (|:| C (-705 *5)) (|:| |g| (-1292 *5)) (|:| -3994 *6) (|:| |rh| *5)))))) (-5 *1 (-829 *5 *6)) (-5 *3 (-705 *5)) (-5 *4 (-1292 *5)) (-4 *6 (-672 *5))))) +(-10 -7 (-15 -1429 ((-2 (|:| A (-705 |#1|)) (|:| |eqs| (-660 (-2 (|:| C (-705 |#1|)) (|:| |g| (-1292 |#1|)) (|:| -3994 |#2|) (|:| |rh| |#1|))))) (-705 |#1|) (-1292 |#1|))) (-15 -1429 ((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#1|))) (-705 |#2|) (-1292 |#1|))) (-15 -2546 ((-3 (-2 (|:| |particular| (-1292 |#1|)) (|:| -4060 (-705 |#1|))) "failed") (-705 |#1|) (-1292 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4060 (-660 |#1|))) "failed") |#2| |#1|))) (-15 -1440 ((-2 (|:| |particular| (-3 (-1292 |#1|) "failed")) (|:| -4060 (-660 (-1292 |#1|)))) (-705 |#2|) (-1292 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4060 (-660 |#1|))) |#2| |#1|)))) +((-1451 (((-705 |#1|) (-660 |#1|) (-787)) 14) (((-705 |#1|) (-660 |#1|)) 15)) (-1463 (((-3 (-1292 |#1|) "failed") |#2| |#1| (-660 |#1|)) 39)) (-4348 (((-3 |#1| "failed") |#2| |#1| (-660 |#1|) (-1 |#1| |#1|)) 46))) +(((-830 |#1| |#2|) (-10 -7 (-15 -1451 ((-705 |#1|) (-660 |#1|))) (-15 -1451 ((-705 |#1|) (-660 |#1|) (-787))) (-15 -1463 ((-3 (-1292 |#1|) "failed") |#2| |#1| (-660 |#1|))) (-15 -4348 ((-3 |#1| "failed") |#2| |#1| (-660 |#1|) (-1 |#1| |#1|)))) (-375) (-672 |#1|)) (T -830)) +((-4348 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-660 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-375)) (-5 *1 (-830 *2 *3)) (-4 *3 (-672 *2)))) (-1463 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-660 *4)) (-4 *4 (-375)) (-5 *2 (-1292 *4)) (-5 *1 (-830 *4 *3)) (-4 *3 (-672 *4)))) (-1451 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *5)) (-5 *4 (-787)) (-4 *5 (-375)) (-5 *2 (-705 *5)) (-5 *1 (-830 *5 *6)) (-4 *6 (-672 *5)))) (-1451 (*1 *2 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-375)) (-5 *2 (-705 *4)) (-5 *1 (-830 *4 *5)) (-4 *5 (-672 *4))))) +(-10 -7 (-15 -1451 ((-705 |#1|) (-660 |#1|))) (-15 -1451 ((-705 |#1|) (-660 |#1|) (-787))) (-15 -1463 ((-3 (-1292 |#1|) "failed") |#2| |#1| (-660 |#1|))) (-15 -4348 ((-3 |#1| "failed") |#2| |#1| (-660 |#1|) (-1 |#1| |#1|)))) +((-3473 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3585 (((-112) $) NIL (|has| |#2| (-23)))) (-1352 (($ (-944)) NIL (|has| |#2| (-1074)))) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4243 (($ $ $) NIL (|has| |#2| (-809)))) (-1956 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3828 (((-112) $ (-787)) NIL)) (-2229 (((-787)) NIL (|has| |#2| (-380)))) (-3709 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4471)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125)))) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1125)))) (-2921 (((-577) $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125)))) (((-420 (-577)) $) NIL (-12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) ((|#2| $) NIL (|has| |#2| (-1125)))) (-1647 (((-705 (-577)) (-705 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL (|has| |#2| (-1074))) (((-705 |#2|) (-705 $)) NIL (|has| |#2| (-1074)))) (-4187 (((-3 $ "failed") $) NIL (|has| |#2| (-1074)))) (-1910 (($) NIL (|has| |#2| (-380)))) (-2192 ((|#2| $ (-577) |#2|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#2| $ (-577)) NIL)) (-1461 (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-2487 (((-112) $) NIL (|has| |#2| (-1074)))) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) NIL (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| |#2| (-865)))) (-2530 (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-2416 (((-577) $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| |#2| (-865)))) (-2182 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#2| |#2|) $) NIL)) (-4038 (((-944) $) NIL (|has| |#2| (-380)))) (-1443 (((-112) $ (-787)) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#2| (-1074)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL (|has| |#2| (-1074))) (((-705 |#2|) (-1292 $)) NIL (|has| |#2| (-1074)))) (-2810 (((-1183) $) NIL (|has| |#2| (-1125)))) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-3222 (($ (-944)) NIL (|has| |#2| (-380)))) (-1474 (((-1145) $) NIL (|has| |#2| (-1125)))) (-3552 ((|#2| $) NIL (|has| (-577) (-865)))) (-2397 (($ $ |#2|) NIL (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-4306 (((-660 |#2|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#2| $ (-577) |#2|) NIL) ((|#2| $ (-577)) NIL)) (-3116 ((|#2| $ $) NIL (|has| |#2| (-1074)))) (-1946 (($ (-1292 |#2|)) NIL)) (-2561 (((-135)) NIL (|has| |#2| (-375)))) (-2852 (($ $ (-787)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074)))) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1201)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1074))) (($ $ (-1 |#2| |#2|) (-787)) NIL (|has| |#2| (-1074)))) (-1485 (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470))) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-1944 (($ $) NIL)) (-3544 (((-1292 |#2|) $) NIL) (($ (-577)) NIL (-2839 (-12 (|has| |#2| (-1063 (-577))) (|has| |#2| (-1125))) (|has| |#2| (-1074)))) (($ (-420 (-577))) NIL (-12 (|has| |#2| (-1063 (-420 (-577)))) (|has| |#2| (-1125)))) (($ |#2|) NIL (|has| |#2| (-1125))) (((-880) $) NIL (|has| |#2| (-626 (-880))))) (-4068 (((-787)) NIL (|has| |#2| (-1074)) CONST)) (-4448 (((-112) $ $) NIL (|has| |#2| (-102)))) (-1524 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-2806 (($) NIL (|has| |#2| (-23)) CONST)) (-2816 (($) NIL (|has| |#2| (-1074)) CONST)) (-2132 (($ $ (-787)) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074)))) (($ $) NIL (-12 (|has| |#2| (-238)) (|has| |#2| (-1074)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1201)) NIL (-12 (|has| |#2| (-923 (-1201))) (|has| |#2| (-1074)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1074))) (($ $ (-1 |#2| |#2|) (-787)) NIL (|has| |#2| (-1074)))) (-3025 (((-112) $ $) NIL (|has| |#2| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#2| (-865)))) (-2970 (((-112) $ $) NIL (|has| |#2| (-102)))) (-3012 (((-112) $ $) NIL (|has| |#2| (-865)))) (-2990 (((-112) $ $) 11 (|has| |#2| (-865)))) (-3077 (($ $ |#2|) NIL (|has| |#2| (-375)))) (-3066 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3055 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-787)) NIL (|has| |#2| (-1074))) (($ $ (-944)) NIL (|has| |#2| (-1074)))) (* (($ $ $) NIL (|has| |#2| (-1074))) (($ $ |#2|) NIL (|has| |#2| (-742))) (($ |#2| $) NIL (|has| |#2| (-742))) (($ (-577) $) NIL (|has| |#2| (-21))) (($ (-787) $) NIL (|has| |#2| (-23))) (($ (-944) $) NIL (|has| |#2| (-25)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-831 |#1| |#2| |#3|) (-244 |#1| |#2|) (-787) (-809) (-1 (-112) (-1292 |#2|) (-1292 |#2|))) (T -831)) +NIL +(-244 |#1| |#2|) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3887 (((-660 (-787)) $) NIL) (((-660 (-787)) $ (-1201)) NIL)) (-3030 (((-787) $) NIL) (((-787) $ (-1201)) NIL)) (-2058 (((-660 (-834 (-1201))) $) NIL)) (-1867 (((-1197 $) $ (-834 (-1201))) NIL) (((-1197 |#1|) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-4050 (((-787) $) NIL) (((-787) $ (-660 (-834 (-1201)))) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-3841 (($ $) NIL (|has| |#1| (-465)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-465)))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-3865 (($ $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-834 (-1201)) "failed") $) NIL) (((-3 (-1201) "failed") $) NIL) (((-3 (-1150 |#1| (-1201)) "failed") $) NIL)) (-2921 ((|#1| $) NIL) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-834 (-1201)) $) NIL) (((-1201) $) NIL) (((-1150 |#1| (-1201)) $) NIL)) (-1816 (($ $ $ (-834 (-1201))) NIL (|has| |#1| (-174)))) (-2248 (($ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL) (((-705 |#1|) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3143 (($ $) NIL (|has| |#1| (-465))) (($ $ (-834 (-1201))) NIL (|has| |#1| (-465)))) (-2234 (((-660 $) $) NIL)) (-1522 (((-112) $) NIL (|has| |#1| (-932)))) (-2137 (($ $ |#1| (-544 (-834 (-1201))) $) NIL)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-834 (-1201)) (-905 (-391))) (|has| |#1| (-905 (-391))))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-834 (-1201)) (-905 (-577))) (|has| |#1| (-905 (-577)))))) (-3817 (((-787) $ (-1201)) NIL) (((-787) $) NIL)) (-2487 (((-112) $) NIL)) (-2548 (((-787) $) NIL)) (-2043 (($ (-1197 |#1|) (-834 (-1201))) NIL) (($ (-1197 $) (-834 (-1201))) NIL)) (-4074 (((-660 $) $) NIL)) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-544 (-834 (-1201)))) NIL) (($ $ (-834 (-1201)) (-787)) NIL) (($ $ (-660 (-834 (-1201))) (-660 (-787))) NIL)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ (-834 (-1201))) NIL)) (-4061 (((-544 (-834 (-1201))) $) NIL) (((-787) $ (-834 (-1201))) NIL) (((-660 (-787)) $ (-660 (-834 (-1201)))) NIL)) (-2151 (($ (-1 (-544 (-834 (-1201))) (-544 (-834 (-1201)))) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3039 (((-1 $ (-787)) (-1201)) NIL) (((-1 $ (-787)) $) NIL (|has| |#1| (-239)))) (-3691 (((-3 (-834 (-1201)) "failed") $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL) (((-705 |#1|) (-1292 $)) NIL)) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-1601 (((-834 (-1201)) $) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) NIL (|has| |#1| (-465)))) (-2810 (((-1183) $) NIL)) (-3876 (((-112) $) NIL)) (-4098 (((-3 (-660 $) "failed") $) NIL)) (-4086 (((-3 (-660 $) "failed") $) NIL)) (-4111 (((-3 (-2 (|:| |var| (-834 (-1201))) (|:| -3556 (-787))) "failed") $) NIL)) (-4280 (($ $) NIL)) (-1474 (((-1145) $) NIL)) (-2180 (((-112) $) NIL)) (-2193 ((|#1| $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-465)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) NIL (|has| |#1| (-465)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-1902 (((-431 $) $) NIL (|has| |#1| (-932)))) (-3462 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)))) (-3280 (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ (-834 (-1201)) |#1|) NIL) (($ $ (-660 (-834 (-1201))) (-660 |#1|)) NIL) (($ $ (-834 (-1201)) $) NIL) (($ $ (-660 (-834 (-1201))) (-660 $)) NIL) (($ $ (-1201) $) NIL (|has| |#1| (-239))) (($ $ (-660 (-1201)) (-660 $)) NIL (|has| |#1| (-239))) (($ $ (-1201) |#1|) NIL (|has| |#1| (-239))) (($ $ (-660 (-1201)) (-660 |#1|)) NIL (|has| |#1| (-239)))) (-1827 (($ $ (-834 (-1201))) NIL (|has| |#1| (-174)))) (-2852 (($ $ (-660 (-834 (-1201))) (-660 (-787))) NIL) (($ $ (-834 (-1201)) (-787)) NIL) (($ $ (-660 (-834 (-1201)))) NIL) (($ $ (-834 (-1201))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201)))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-787)) NIL (|has| |#1| (-238)))) (-3899 (((-660 (-1201)) $) NIL)) (-2887 (((-544 (-834 (-1201))) $) NIL) (((-787) $ (-834 (-1201))) NIL) (((-660 (-787)) $ (-660 (-834 (-1201)))) NIL) (((-787) $ (-1201)) NIL)) (-4152 (((-911 (-391)) $) NIL (-12 (|has| (-834 (-1201)) (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391)))))) (((-911 (-577)) $) NIL (-12 (|has| (-834 (-1201)) (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577)))))) (((-549) $) NIL (-12 (|has| (-834 (-1201)) (-627 (-549))) (|has| |#1| (-627 (-549)))))) (-4039 ((|#1| $) NIL (|has| |#1| (-465))) (($ $ (-834 (-1201))) NIL (|has| |#1| (-465)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-932))))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#1|) NIL) (($ (-834 (-1201))) NIL) (($ (-1201)) NIL) (($ (-1150 |#1| (-1201))) NIL) (($ (-420 (-577))) NIL (-2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577)))))) (($ $) NIL (|has| |#1| (-569)))) (-4182 (((-660 |#1|) $) NIL)) (-2322 ((|#1| $ (-544 (-834 (-1201)))) NIL) (($ $ (-834 (-1201)) (-787)) NIL) (($ $ (-660 (-834 (-1201))) (-660 (-787))) NIL)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))))) (-4068 (((-787)) NIL T CONST)) (-2122 (($ $ $ (-787)) NIL (|has| |#1| (-174)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-660 (-834 (-1201))) (-660 (-787))) NIL) (($ $ (-834 (-1201)) (-787)) NIL) (($ $ (-660 (-834 (-1201)))) NIL) (($ $ (-834 (-1201))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201)))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-787)) NIL (|has| |#1| (-238)))) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-832 |#1|) (-13 (-261 |#1| (-1201) (-834 (-1201)) (-544 (-834 (-1201)))) (-1063 (-1150 |#1| (-1201)))) (-1074)) (T -832)) +NIL +(-13 (-261 |#1| (-1201) (-834 (-1201)) (-544 (-834 (-1201)))) (-1063 (-1150 |#1| (-1201)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#2| (-375)))) (-3290 (($ $) NIL (|has| |#2| (-375)))) (-3271 (((-112) $) NIL (|has| |#2| (-375)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL (|has| |#2| (-375)))) (-3029 (((-431 $) $) NIL (|has| |#2| (-375)))) (-1939 (((-112) $ $) NIL (|has| |#2| (-375)))) (-1534 (($) NIL T CONST)) (-3418 (($ $ $) NIL (|has| |#2| (-375)))) (-4187 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL (|has| |#2| (-375)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| |#2| (-375)))) (-1522 (((-112) $) NIL (|has| |#2| (-375)))) (-2487 (((-112) $) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#2| (-375)))) (-3446 (($ (-660 $)) NIL (|has| |#2| (-375))) (($ $ $) NIL (|has| |#2| (-375)))) (-2810 (((-1183) $) NIL)) (-2171 (($ $) 20 (|has| |#2| (-375)))) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#2| (-375)))) (-3480 (($ (-660 $)) NIL (|has| |#2| (-375))) (($ $ $) NIL (|has| |#2| (-375)))) (-1902 (((-431 $) $) NIL (|has| |#2| (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#2| (-375)))) (-3462 (((-3 $ "failed") $ $) NIL (|has| |#2| (-375)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#2| (-375)))) (-1927 (((-787) $) NIL (|has| |#2| (-375)))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#2| (-375)))) (-2852 (($ $) 13) (($ $ (-787)) NIL)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-420 (-577))) NIL (|has| |#2| (-375))) (($ $) NIL (|has| |#2| (-375)))) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL (|has| |#2| (-375)))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $) NIL) (($ $ (-787)) NIL)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ $) 15 (|has| |#2| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-787)) NIL) (($ $ (-944)) NIL) (($ $ (-577)) 18 (|has| |#2| (-375)))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-420 (-577)) $) NIL (|has| |#2| (-375))) (($ $ (-420 (-577))) NIL (|has| |#2| (-375))))) +(((-833 |#1| |#2| |#3|) (-13 (-111 $ $) (-239) (-503 |#2|) (-10 -7 (IF (|has| |#2| (-375)) (-6 (-375)) |%noBranch|))) (-1125) (-921 |#1|) |#1|) (T -833)) +NIL +(-13 (-111 $ $) (-239) (-503 |#2|) (-10 -7 (IF (|has| |#2| (-375)) (-6 (-375)) |%noBranch|))) +((-3473 (((-112) $ $) NIL)) (-3030 (((-787) $) NIL)) (-3076 ((|#1| $) 10)) (-1628 (((-3 |#1| "failed") $) NIL)) (-2921 ((|#1| $) NIL)) (-3817 (((-787) $) 11)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-3039 (($ |#1| (-787)) 9)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2852 (($ $ (-787)) NIL) (($ $) NIL)) (-3544 (((-880) $) NIL) (($ |#1|) NIL)) (-4448 (((-112) $ $) NIL)) (-2132 (($ $ (-787)) NIL) (($ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL))) +(((-834 |#1|) (-276 |#1|) (-865)) (T -834)) +NIL +(-276 |#1|) +((-3473 (((-112) $ $) NIL)) (-3435 (((-660 |#1|) $) 38)) (-2229 (((-787) $) NIL)) (-1534 (($) NIL T CONST)) (-2821 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-1628 (((-3 |#1| "failed") $) NIL)) (-2921 ((|#1| $) NIL)) (-3563 (($ $) 42)) (-4187 (((-3 $ "failed") $) NIL)) (-3054 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2487 (((-112) $) NIL)) (-3657 ((|#1| $ (-577)) NIL)) (-3668 (((-787) $ (-577)) NIL)) (-2799 (($ $) 54)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-1735 (($ (-1 |#1| |#1|) $) NIL)) (-1742 (($ (-1 (-787) (-787)) $) NIL)) (-2834 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-1476 (((-112) $ $) 51)) (-3402 (((-787) $) 34)) (-2810 (((-1183) $) NIL)) (-3065 (($ $ $) NIL)) (-3075 (($ $ $) NIL)) (-1474 (((-1145) $) NIL)) (-3552 ((|#1| $) 41)) (-3363 (((-660 (-2 (|:| |gen| |#1|) (|:| -4072 (-787)))) $) NIL)) (-3422 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3451 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3544 (((-880) $) NIL) (($ |#1|) NIL)) (-4448 (((-112) $ $) NIL)) (-2816 (($) 20 T CONST)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 53)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ |#1| (-787)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-835 |#1|) (-13 (-398 |#1|) (-862) (-10 -8 (-15 -3552 (|#1| $)) (-15 -3563 ($ $)) (-15 -2799 ($ $)) (-15 -1476 ((-112) $ $)) (-15 -2834 ((-3 $ "failed") $ |#1|)) (-15 -2821 ((-3 $ "failed") $ |#1|)) (-15 -3451 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3402 ((-787) $)) (-15 -3435 ((-660 |#1|) $)))) (-865)) (T -835)) +((-3552 (*1 *2 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) (-3563 (*1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) (-2799 (*1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) (-1476 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835 *3)) (-4 *3 (-865)))) (-2834 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) (-2821 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) (-3451 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-835 *3)) (|:| |rm| (-835 *3)))) (-5 *1 (-835 *3)) (-4 *3 (-865)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-835 *3)) (-4 *3 (-865)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-835 *3)) (-4 *3 (-865))))) +(-13 (-398 |#1|) (-862) (-10 -8 (-15 -3552 (|#1| $)) (-15 -3563 ($ $)) (-15 -2799 ($ $)) (-15 -1476 ((-112) $ $)) (-15 -2834 ((-3 $ "failed") $ |#1|)) (-15 -2821 ((-3 $ "failed") $ |#1|)) (-15 -3451 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3402 ((-787) $)) (-15 -3435 ((-660 |#1|) $)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-1956 (((-3 $ "failed") $ $) 20)) (-3010 (((-577) $) 60)) (-1534 (($) 18 T CONST)) (-4187 (((-3 $ "failed") $) 37)) (-3567 (((-112) $) 58)) (-2487 (((-112) $) 35)) (-3578 (((-112) $) 59)) (-3732 (($ $ $) 52)) (-3201 (($ $ $) 53)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3462 (((-3 $ "failed") $ $) 48)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 45)) (-1654 (($ $) 61)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-3025 (((-112) $ $) 54)) (-3000 (((-112) $ $) 56)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 55)) (-2990 (((-112) $ $) 57)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) +(((-836) (-141)) (T -836)) +NIL +(-13 (-569) (-864)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-301) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-807) . T) ((-808) . T) ((-810) . T) ((-811) . T) ((-864) . T) ((-865) . T) ((-868) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-1487 (($ (-1145)) 7)) (-1531 (((-112) $ (-1183) (-1145)) 15)) (-1519 (((-838) $) 12)) (-1508 (((-838) $) 11)) (-1498 (((-1297) $) 9)) (-1541 (((-112) $ (-1145)) 16))) +(((-837) (-10 -8 (-15 -1487 ($ (-1145))) (-15 -1498 ((-1297) $)) (-15 -1508 ((-838) $)) (-15 -1519 ((-838) $)) (-15 -1531 ((-112) $ (-1183) (-1145))) (-15 -1541 ((-112) $ (-1145))))) (T -837)) +((-1541 (*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-837)))) (-1531 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-1145)) (-5 *2 (-112)) (-5 *1 (-837)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-837)))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-837)))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-837)))) (-1487 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-837))))) +(-10 -8 (-15 -1487 ($ (-1145))) (-15 -1498 ((-1297) $)) (-15 -1508 ((-838) $)) (-15 -1519 ((-838) $)) (-15 -1531 ((-112) $ (-1183) (-1145))) (-15 -1541 ((-112) $ (-1145)))) +((-1586 (((-1297) $ (-839)) 12)) (-3621 (((-1297) $ (-1201)) 32)) (-3644 (((-1297) $ (-1183) (-1183)) 34)) (-3632 (((-1297) $ (-1183)) 33)) (-1666 (((-1297) $) 19)) (-3602 (((-1297) $ (-577)) 28)) (-3612 (((-1297) $ (-228)) 30)) (-1656 (((-1297) $) 18)) (-3592 (((-1297) $) 26)) (-3583 (((-1297) $) 25)) (-3565 (((-1297) $) 23)) (-3576 (((-1297) $) 24)) (-3555 (((-1297) $) 22)) (-1691 (((-1297) $) 21)) (-1680 (((-1297) $) 20)) (-1634 (((-1297) $) 16)) (-1646 (((-1297) $) 17)) (-1620 (((-1297) $) 15)) (-1607 (((-1297) $) 14)) (-1596 (((-1297) $) 13)) (-1563 (($ (-1183) (-839)) 9)) (-1553 (($ (-1183) (-1183) (-839)) 8)) (-3837 (((-1201) $) 51)) (-3871 (((-1201) $) 55)) (-3860 (((-2 (|:| |cd| (-1183)) (|:| -2713 (-1183))) $) 54)) (-3848 (((-1183) $) 52)) (-3721 (((-1297) $) 41)) (-3813 (((-577) $) 49)) (-3825 (((-228) $) 50)) (-3711 (((-1297) $) 40)) (-3800 (((-1297) $) 48)) (-3788 (((-1297) $) 47)) (-3763 (((-1297) $) 45)) (-3775 (((-1297) $) 46)) (-3752 (((-1297) $) 44)) (-3742 (((-1297) $) 43)) (-3731 (((-1297) $) 42)) (-3688 (((-1297) $) 38)) (-3700 (((-1297) $) 39)) (-3677 (((-1297) $) 37)) (-3667 (((-1297) $) 36)) (-3655 (((-1297) $) 35)) (-1574 (((-1297) $) 11))) +(((-838) (-10 -8 (-15 -1553 ($ (-1183) (-1183) (-839))) (-15 -1563 ($ (-1183) (-839))) (-15 -1574 ((-1297) $)) (-15 -1586 ((-1297) $ (-839))) (-15 -1596 ((-1297) $)) (-15 -1607 ((-1297) $)) (-15 -1620 ((-1297) $)) (-15 -1634 ((-1297) $)) (-15 -1646 ((-1297) $)) (-15 -1656 ((-1297) $)) (-15 -1666 ((-1297) $)) (-15 -1680 ((-1297) $)) (-15 -1691 ((-1297) $)) (-15 -3555 ((-1297) $)) (-15 -3565 ((-1297) $)) (-15 -3576 ((-1297) $)) (-15 -3583 ((-1297) $)) (-15 -3592 ((-1297) $)) (-15 -3602 ((-1297) $ (-577))) (-15 -3612 ((-1297) $ (-228))) (-15 -3621 ((-1297) $ (-1201))) (-15 -3632 ((-1297) $ (-1183))) (-15 -3644 ((-1297) $ (-1183) (-1183))) (-15 -3655 ((-1297) $)) (-15 -3667 ((-1297) $)) (-15 -3677 ((-1297) $)) (-15 -3688 ((-1297) $)) (-15 -3700 ((-1297) $)) (-15 -3711 ((-1297) $)) (-15 -3721 ((-1297) $)) (-15 -3731 ((-1297) $)) (-15 -3742 ((-1297) $)) (-15 -3752 ((-1297) $)) (-15 -3763 ((-1297) $)) (-15 -3775 ((-1297) $)) (-15 -3788 ((-1297) $)) (-15 -3800 ((-1297) $)) (-15 -3813 ((-577) $)) (-15 -3825 ((-228) $)) (-15 -3837 ((-1201) $)) (-15 -3848 ((-1183) $)) (-15 -3860 ((-2 (|:| |cd| (-1183)) (|:| -2713 (-1183))) $)) (-15 -3871 ((-1201) $)))) (T -838)) +((-3871 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-838)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1183)) (|:| -2713 (-1183)))) (-5 *1 (-838)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-838)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-838)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-838)))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-838)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3788 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3763 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3711 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3700 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3667 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3644 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-838)))) (-3632 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-838)))) (-3621 (*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-838)))) (-3612 (*1 *2 *1 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1297)) (-5 *1 (-838)))) (-3602 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-838)))) (-3592 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3583 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1680 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1666 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1656 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1646 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1620 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1607 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1596 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1586 (*1 *2 *1 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1297)) (-5 *1 (-838)))) (-1574 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838)))) (-1563 (*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-839)) (-5 *1 (-838)))) (-1553 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-839)) (-5 *1 (-838))))) +(-10 -8 (-15 -1553 ($ (-1183) (-1183) (-839))) (-15 -1563 ($ (-1183) (-839))) (-15 -1574 ((-1297) $)) (-15 -1586 ((-1297) $ (-839))) (-15 -1596 ((-1297) $)) (-15 -1607 ((-1297) $)) (-15 -1620 ((-1297) $)) (-15 -1634 ((-1297) $)) (-15 -1646 ((-1297) $)) (-15 -1656 ((-1297) $)) (-15 -1666 ((-1297) $)) (-15 -1680 ((-1297) $)) (-15 -1691 ((-1297) $)) (-15 -3555 ((-1297) $)) (-15 -3565 ((-1297) $)) (-15 -3576 ((-1297) $)) (-15 -3583 ((-1297) $)) (-15 -3592 ((-1297) $)) (-15 -3602 ((-1297) $ (-577))) (-15 -3612 ((-1297) $ (-228))) (-15 -3621 ((-1297) $ (-1201))) (-15 -3632 ((-1297) $ (-1183))) (-15 -3644 ((-1297) $ (-1183) (-1183))) (-15 -3655 ((-1297) $)) (-15 -3667 ((-1297) $)) (-15 -3677 ((-1297) $)) (-15 -3688 ((-1297) $)) (-15 -3700 ((-1297) $)) (-15 -3711 ((-1297) $)) (-15 -3721 ((-1297) $)) (-15 -3731 ((-1297) $)) (-15 -3742 ((-1297) $)) (-15 -3752 ((-1297) $)) (-15 -3763 ((-1297) $)) (-15 -3775 ((-1297) $)) (-15 -3788 ((-1297) $)) (-15 -3800 ((-1297) $)) (-15 -3813 ((-577) $)) (-15 -3825 ((-228) $)) (-15 -3837 ((-1201) $)) (-15 -3848 ((-1183) $)) (-15 -3860 ((-2 (|:| |cd| (-1183)) (|:| -2713 (-1183))) $)) (-15 -3871 ((-1201) $))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 13)) (-4448 (((-112) $ $) NIL)) (-3906 (($) 16)) (-3917 (($) 14)) (-3893 (($) 17)) (-3882 (($) 15)) (-2970 (((-112) $ $) 9))) +(((-839) (-13 (-1125) (-10 -8 (-15 -3917 ($)) (-15 -3906 ($)) (-15 -3893 ($)) (-15 -3882 ($))))) (T -839)) +((-3917 (*1 *1) (-5 *1 (-839))) (-3906 (*1 *1) (-5 *1 (-839))) (-3893 (*1 *1) (-5 *1 (-839))) (-3882 (*1 *1) (-5 *1 (-839)))) +(-13 (-1125) (-10 -8 (-15 -3917 ($)) (-15 -3906 ($)) (-15 -3893 ($)) (-15 -3882 ($)))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 23) (($ (-1201)) 19)) (-4448 (((-112) $ $) NIL)) (-3977 (((-112) $) 10)) (-3988 (((-112) $) 9)) (-3966 (((-112) $) 11)) (-4000 (((-112) $) 8)) (-2970 (((-112) $ $) 21))) +(((-840) (-13 (-1125) (-10 -8 (-15 -3544 ($ (-1201))) (-15 -4000 ((-112) $)) (-15 -3988 ((-112) $)) (-15 -3977 ((-112) $)) (-15 -3966 ((-112) $))))) (T -840)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-840)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840)))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840)))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840))))) +(-13 (-1125) (-10 -8 (-15 -3544 ($ (-1201))) (-15 -4000 ((-112) $)) (-15 -3988 ((-112) $)) (-15 -3977 ((-112) $)) (-15 -3966 ((-112) $)))) +((-3473 (((-112) $ $) NIL)) (-3929 (($ (-840) (-660 (-1201))) 32)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3954 (((-840) $) 33)) (-3941 (((-660 (-1201)) $) 34)) (-3544 (((-880) $) 31)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-841) (-13 (-1125) (-10 -8 (-15 -3954 ((-840) $)) (-15 -3941 ((-660 (-1201)) $)) (-15 -3929 ($ (-840) (-660 (-1201))))))) (T -841)) +((-3954 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-841)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-841)))) (-3929 (*1 *1 *2 *3) (-12 (-5 *2 (-840)) (-5 *3 (-660 (-1201))) (-5 *1 (-841))))) +(-13 (-1125) (-10 -8 (-15 -3954 ((-840) $)) (-15 -3941 ((-660 (-1201)) $)) (-15 -3929 ($ (-840) (-660 (-1201)))))) +((-4013 (((-1297) (-838) (-327 |#1|) (-112)) 23) (((-1297) (-838) (-327 |#1|)) 89) (((-1183) (-327 |#1|) (-112)) 88) (((-1183) (-327 |#1|)) 87))) +(((-842 |#1|) (-10 -7 (-15 -4013 ((-1183) (-327 |#1|))) (-15 -4013 ((-1183) (-327 |#1|) (-112))) (-15 -4013 ((-1297) (-838) (-327 |#1|))) (-15 -4013 ((-1297) (-838) (-327 |#1|) (-112)))) (-13 (-844) (-1074))) (T -842)) +((-4013 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-838)) (-5 *4 (-327 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-844) (-1074))) (-5 *2 (-1297)) (-5 *1 (-842 *6)))) (-4013 (*1 *2 *3 *4) (-12 (-5 *3 (-838)) (-5 *4 (-327 *5)) (-4 *5 (-13 (-844) (-1074))) (-5 *2 (-1297)) (-5 *1 (-842 *5)))) (-4013 (*1 *2 *3 *4) (-12 (-5 *3 (-327 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-1074))) (-5 *2 (-1183)) (-5 *1 (-842 *5)))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-327 *4)) (-4 *4 (-13 (-844) (-1074))) (-5 *2 (-1183)) (-5 *1 (-842 *4))))) +(-10 -7 (-15 -4013 ((-1183) (-327 |#1|))) (-15 -4013 ((-1183) (-327 |#1|) (-112))) (-15 -4013 ((-1297) (-838) (-327 |#1|))) (-15 -4013 ((-1297) (-838) (-327 |#1|) (-112)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-2248 (($ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-4023 ((|#1| $) 10)) (-1823 (($ |#1|) 9)) (-2487 (((-112) $) NIL)) (-2030 (($ |#2| (-787)) NIL)) (-4061 (((-787) $) NIL)) (-2221 ((|#2| $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2852 (($ $) NIL (|has| |#1| (-239))) (($ $ (-787)) NIL (|has| |#1| (-239)))) (-2887 (((-787) $) NIL)) (-3544 (((-880) $) 17) (($ (-577)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-2322 ((|#2| $ (-787)) NIL)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $) NIL (|has| |#1| (-239))) (($ $ (-787)) NIL (|has| |#1| (-239)))) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-843 |#1| |#2|) (-13 (-724 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -1823 ($ |#1|)) (-15 -4023 (|#1| $)))) (-724 |#2|) (-1074)) (T -843)) +((-1823 (*1 *1 *2) (-12 (-4 *3 (-1074)) (-5 *1 (-843 *2 *3)) (-4 *2 (-724 *3)))) (-4023 (*1 *2 *1) (-12 (-4 *2 (-724 *3)) (-5 *1 (-843 *2 *3)) (-4 *3 (-1074))))) +(-13 (-724 |#2|) (-10 -8 (IF (|has| |#1| (-239)) (-6 (-239)) |%noBranch|) (-15 -1823 ($ |#1|)) (-15 -4023 (|#1| $)))) +((-4013 (((-1297) (-838) $ (-112)) 9) (((-1297) (-838) $) 8) (((-1183) $ (-112)) 7) (((-1183) $) 6))) +(((-844) (-141)) (T -844)) +((-4013 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-844)) (-5 *3 (-838)) (-5 *4 (-112)) (-5 *2 (-1297)))) (-4013 (*1 *2 *3 *1) (-12 (-4 *1 (-844)) (-5 *3 (-838)) (-5 *2 (-1297)))) (-4013 (*1 *2 *1 *3) (-12 (-4 *1 (-844)) (-5 *3 (-112)) (-5 *2 (-1183)))) (-4013 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-1183))))) +(-13 (-10 -8 (-15 -4013 ((-1183) $)) (-15 -4013 ((-1183) $ (-112))) (-15 -4013 ((-1297) (-838) $)) (-15 -4013 ((-1297) (-838) $ (-112))))) +((-4117 (((-323) (-1183) (-1183)) 12)) (-4103 (((-112) (-1183) (-1183)) 34)) (-4091 (((-112) (-1183)) 33)) (-4054 (((-52) (-1183)) 25)) (-4044 (((-52) (-1183)) 23)) (-4033 (((-52) (-838)) 17)) (-4078 (((-660 (-1183)) (-1183)) 28)) (-4066 (((-660 (-1183))) 27))) +(((-845) (-10 -7 (-15 -4033 ((-52) (-838))) (-15 -4044 ((-52) (-1183))) (-15 -4054 ((-52) (-1183))) (-15 -4066 ((-660 (-1183)))) (-15 -4078 ((-660 (-1183)) (-1183))) (-15 -4091 ((-112) (-1183))) (-15 -4103 ((-112) (-1183) (-1183))) (-15 -4117 ((-323) (-1183) (-1183))))) (T -845)) +((-4117 (*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-323)) (-5 *1 (-845)))) (-4103 (*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-112)) (-5 *1 (-845)))) (-4091 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-112)) (-5 *1 (-845)))) (-4078 (*1 *2 *3) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-845)) (-5 *3 (-1183)))) (-4066 (*1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-845)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-52)) (-5 *1 (-845)))) (-4044 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-52)) (-5 *1 (-845)))) (-4033 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-52)) (-5 *1 (-845))))) +(-10 -7 (-15 -4033 ((-52) (-838))) (-15 -4044 ((-52) (-1183))) (-15 -4054 ((-52) (-1183))) (-15 -4066 ((-660 (-1183)))) (-15 -4078 ((-660 (-1183)) (-1183))) (-15 -4091 ((-112) (-1183))) (-15 -4103 ((-112) (-1183) (-1183))) (-15 -4117 ((-323) (-1183) (-1183)))) +((-3473 (((-112) $ $) 20)) (-1892 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2765 (($ $ $) 73)) (-2753 (((-112) $ $) 74)) (-3828 (((-112) $ (-787)) 8)) (-2198 (($ (-660 |#1|)) 69) (($) 68)) (-2463 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4470)))) (-1534 (($) 7 T CONST)) (-3215 (($ $) 63)) (-1817 (($ $) 59 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3719 (($ |#1| $) 48 (|has| $ (-6 -4470))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4470)))) (-3904 (($ |#1| $) 58 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4470)))) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-2798 (((-112) $ $) 65)) (-1479 (((-112) $ (-787)) 9)) (-3732 ((|#1| $) 79)) (-3192 (($ $ $) 82)) (-3283 (($ $ $) 81)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3201 ((|#1| $) 80)) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23)) (-2785 (($ $ $) 70)) (-4330 ((|#1| $) 40)) (-2881 (($ |#1| $) 41) (($ |#1| $ (-787)) 64)) (-1474 (((-1145) $) 22)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3530 ((|#1| $) 42)) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-3206 (((-660 (-2 (|:| -4444 |#1|) (|:| -1485 (-787)))) $) 62)) (-2775 (($ $ |#1|) 72) (($ $ $) 71)) (-3736 (($) 50) (($ (-660 |#1|)) 49)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-4152 (((-549) $) 60 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 51)) (-3544 (((-880) $) 18)) (-1973 (($ (-660 |#1|)) 67) (($) 66)) (-4448 (((-112) $ $) 21)) (-3541 (($ (-660 |#1|)) 43)) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19)) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-846 |#1|) (-141) (-865)) (T -846)) +((-3732 (*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-865))))) +(-13 (-752 |t#1|) (-993 |t#1|) (-10 -8 (-15 -3732 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-626 (-880)) . T) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-241 |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-711 |#1|) . T) ((-752 |#1|) . T) ((-993 |#1|) . T) ((-1123 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-4155 (((-1297) (-1145) (-1145)) 48)) (-4143 (((-1297) (-837) (-52)) 45)) (-4130 (((-52) (-837)) 16))) +(((-847) (-10 -7 (-15 -4130 ((-52) (-837))) (-15 -4143 ((-1297) (-837) (-52))) (-15 -4155 ((-1297) (-1145) (-1145))))) (T -847)) +((-4155 (*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1297)) (-5 *1 (-847)))) (-4143 (*1 *2 *3 *4) (-12 (-5 *3 (-837)) (-5 *4 (-52)) (-5 *2 (-1297)) (-5 *1 (-847)))) (-4130 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-52)) (-5 *1 (-847))))) +(-10 -7 (-15 -4130 ((-52) (-837))) (-15 -4143 ((-1297) (-837) (-52))) (-15 -4155 ((-1297) (-1145) (-1145)))) +((-4087 (((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|) (-849 |#2|)) 12) (((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|)) 13))) +(((-848 |#1| |#2|) (-10 -7 (-15 -4087 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|))) (-15 -4087 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|) (-849 |#2|)))) (-1125) (-1125)) (T -848)) +((-4087 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-849 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *1 (-848 *5 *6)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-849 *6)) (-5 *1 (-848 *5 *6))))) +(-10 -7 (-15 -4087 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|))) (-15 -4087 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|) (-849 |#2|)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL (|has| |#1| (-21)))) (-1956 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3010 (((-577) $) NIL (|has| |#1| (-864)))) (-1534 (($) NIL (|has| |#1| (-21)) CONST)) (-1628 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) 15)) (-2921 (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) 9)) (-4187 (((-3 $ "failed") $) 42 (|has| |#1| (-864)))) (-4363 (((-3 (-420 (-577)) "failed") $) 52 (|has| |#1| (-558)))) (-4353 (((-112) $) 46 (|has| |#1| (-558)))) (-4341 (((-420 (-577)) $) 49 (|has| |#1| (-558)))) (-3567 (((-112) $) NIL (|has| |#1| (-864)))) (-2487 (((-112) $) NIL (|has| |#1| (-864)))) (-3578 (((-112) $) NIL (|has| |#1| (-864)))) (-3732 (($ $ $) NIL (|has| |#1| (-864)))) (-3201 (($ $ $) NIL (|has| |#1| (-864)))) (-2810 (((-1183) $) NIL)) (-1669 (($) 13)) (-3067 (((-112) $) 12)) (-1474 (((-1145) $) NIL)) (-3078 (((-112) $) 11)) (-3544 (((-880) $) 18) (($ (-420 (-577))) NIL (|has| |#1| (-1063 (-420 (-577))))) (($ |#1|) 8) (($ (-577)) NIL (-2839 (|has| |#1| (-864)) (|has| |#1| (-1063 (-577)))))) (-4068 (((-787)) 36 (|has| |#1| (-864)) CONST)) (-4448 (((-112) $ $) 54)) (-1654 (($ $) NIL (|has| |#1| (-864)))) (-2806 (($) 23 (|has| |#1| (-21)) CONST)) (-2816 (($) 33 (|has| |#1| (-864)) CONST)) (-3025 (((-112) $ $) NIL (|has| |#1| (-864)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-864)))) (-2970 (((-112) $ $) 21)) (-3012 (((-112) $ $) NIL (|has| |#1| (-864)))) (-2990 (((-112) $ $) 45 (|has| |#1| (-864)))) (-3066 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3055 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-944)) NIL (|has| |#1| (-864))) (($ $ (-787)) NIL (|has| |#1| (-864)))) (* (($ $ $) 39 (|has| |#1| (-864))) (($ (-577) $) 27 (|has| |#1| (-21))) (($ (-787) $) NIL (|has| |#1| (-21))) (($ (-944) $) NIL (|has| |#1| (-21))))) +(((-849 |#1|) (-13 (-1125) (-424 |#1|) (-10 -8 (-15 -1669 ($)) (-15 -3078 ((-112) $)) (-15 -3067 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-864)) (-6 (-864)) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -4353 ((-112) $)) (-15 -4341 ((-420 (-577)) $)) (-15 -4363 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) (-1125)) (T -849)) +((-1669 (*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1125)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-1125)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-1125)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-558)) (-4 *3 (-1125)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-849 *3)) (-4 *3 (-558)) (-4 *3 (-1125)))) (-4363 (*1 *2 *1) (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-849 *3)) (-4 *3 (-558)) (-4 *3 (-1125))))) +(-13 (-1125) (-424 |#1|) (-10 -8 (-15 -1669 ($)) (-15 -3078 ((-112) $)) (-15 -3067 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-864)) (-6 (-864)) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -4353 ((-112) $)) (-15 -4341 ((-420 (-577)) $)) (-15 -4363 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) +((-2740 (((-112) $ |#2|) 14)) (-3544 (((-880) $) 11))) +(((-850 |#1| |#2|) (-10 -8 (-15 -2740 ((-112) |#1| |#2|)) (-15 -3544 ((-880) |#1|))) (-851 |#2|) (-1125)) (T -850)) +NIL +(-10 -8 (-15 -2740 ((-112) |#1| |#2|)) (-15 -3544 ((-880) |#1|))) +((-3473 (((-112) $ $) 7)) (-2713 ((|#1| $) 16)) (-2810 (((-1183) $) 10)) (-2740 (((-112) $ |#1|) 14)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-3013 (((-55) $) 15)) (-2970 (((-112) $ $) 8))) +(((-851 |#1|) (-141) (-1125)) (T -851)) +((-2713 (*1 *2 *1) (-12 (-4 *1 (-851 *2)) (-4 *2 (-1125)))) (-3013 (*1 *2 *1) (-12 (-4 *1 (-851 *3)) (-4 *3 (-1125)) (-5 *2 (-55)))) (-2740 (*1 *2 *1 *3) (-12 (-4 *1 (-851 *3)) (-4 *3 (-1125)) (-5 *2 (-112))))) +(-13 (-1125) (-10 -8 (-15 -2713 (|t#1| $)) (-15 -3013 ((-55) $)) (-15 -2740 ((-112) $ |t#1|)))) +(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2921 ((|#1| $) NIL) (((-115) $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-4178 ((|#1| (-115) |#1|) NIL)) (-2487 (((-112) $) NIL)) (-4167 (($ |#1| (-373 (-115))) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2971 (($ $ (-1 |#1| |#1|)) NIL)) (-2980 (($ $ (-1 |#1| |#1|)) NIL)) (-2872 ((|#1| $ |#1|) NIL)) (-2991 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-3001 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ (-115) (-577)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-852 |#1|) (-13 (-1074) (-1063 |#1|) (-1063 (-115)) (-297 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3001 ($ $)) (-15 -3001 ($ $ $)) (-15 -2991 (|#1| |#1|))) |%noBranch|) (-15 -2980 ($ $ (-1 |#1| |#1|))) (-15 -2971 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-577))) (-15 ** ($ $ (-577))) (-15 -4178 (|#1| (-115) |#1|)) (-15 -4167 ($ |#1| (-373 (-115)))))) (-1074)) (T -852)) +((-3001 (*1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-174)) (-4 *2 (-1074)))) (-3001 (*1 *1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-174)) (-4 *2 (-1074)))) (-2991 (*1 *2 *2) (-12 (-5 *1 (-852 *2)) (-4 *2 (-174)) (-4 *2 (-1074)))) (-2980 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-852 *3)))) (-2971 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-852 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-577)) (-5 *1 (-852 *4)) (-4 *4 (-1074)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-852 *3)) (-4 *3 (-1074)))) (-4178 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-852 *2)) (-4 *2 (-1074)))) (-4167 (*1 *1 *2 *3) (-12 (-5 *3 (-373 (-115))) (-5 *1 (-852 *2)) (-4 *2 (-1074))))) +(-13 (-1074) (-1063 |#1|) (-1063 (-115)) (-297 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3001 ($ $)) (-15 -3001 ($ $ $)) (-15 -2991 (|#1| |#1|))) |%noBranch|) (-15 -2980 ($ $ (-1 |#1| |#1|))) (-15 -2971 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-577))) (-15 ** ($ $ (-577))) (-15 -4178 (|#1| (-115) |#1|)) (-15 -4167 ($ |#1| (-373 (-115)))))) +((-3026 (((-216 (-515)) (-1183)) 9))) +(((-853) (-10 -7 (-15 -3026 ((-216 (-515)) (-1183))))) (T -853)) +((-3026 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-216 (-515))) (-5 *1 (-853))))) +(-10 -7 (-15 -3026 ((-216 (-515)) (-1183)))) +((-3473 (((-112) $ $) NIL)) (-2790 (((-1143) $) 10)) (-2713 (((-519) $) 9)) (-2810 (((-1183) $) NIL)) (-2740 (((-112) $ (-519)) NIL)) (-1474 (((-1145) $) NIL)) (-3553 (($ (-519) (-1143)) 8)) (-3544 (((-880) $) 25)) (-4448 (((-112) $ $) NIL)) (-3013 (((-55) $) 20)) (-2970 (((-112) $ $) 12))) +(((-854) (-13 (-851 (-519)) (-10 -8 (-15 -2790 ((-1143) $)) (-15 -3553 ($ (-519) (-1143)))))) (T -854)) +((-2790 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-854)))) (-3553 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1143)) (-5 *1 (-854))))) +(-13 (-851 (-519)) (-10 -8 (-15 -2790 ((-1143) $)) (-15 -3553 ($ (-519) (-1143))))) +((-3473 (((-112) $ $) 7)) (-3037 (((-1060) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) 15) (((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 14)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 17) (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) 16)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8))) +(((-855) (-141)) (T -855)) +((-1878 (*1 *2 *3 *4) (-12 (-4 *1 (-855)) (-5 *3 (-1088)) (-5 *4 (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (-5 *2 (-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)))))) (-1878 (*1 *2 *3 *4) (-12 (-4 *1 (-855)) (-5 *3 (-1088)) (-5 *4 (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) (-5 *2 (-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)))))) (-3037 (*1 *2 *3) (-12 (-4 *1 (-855)) (-5 *3 (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) (-5 *2 (-1060)))) (-3037 (*1 *2 *3) (-12 (-4 *1 (-855)) (-5 *3 (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (-5 *2 (-1060))))) +(-13 (-1125) (-10 -7 (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228))))))) (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228)))))) (-15 -3037 ((-1060) (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228)))))) (-15 -3037 ((-1060) (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228))))))))) +(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-3327 (((-1060) (-660 (-327 (-391))) (-660 (-391))) 166) (((-1060) (-327 (-391)) (-660 (-391))) 164) (((-1060) (-327 (-391)) (-660 (-391)) (-660 (-859 (-391))) (-660 (-859 (-391)))) 162) (((-1060) (-327 (-391)) (-660 (-391)) (-660 (-859 (-391))) (-660 (-327 (-391))) (-660 (-859 (-391)))) 160) (((-1060) (-857)) 125) (((-1060) (-857) (-1088)) 124)) (-1878 (((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))) (-857) (-1088)) 85) (((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))) (-857)) 87)) (-3045 (((-1060) (-660 (-327 (-391))) (-660 (-391))) 167) (((-1060) (-857)) 150))) +(((-856) (-10 -7 (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))) (-857))) (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))) (-857) (-1088))) (-15 -3327 ((-1060) (-857) (-1088))) (-15 -3327 ((-1060) (-857))) (-15 -3045 ((-1060) (-857))) (-15 -3327 ((-1060) (-327 (-391)) (-660 (-391)) (-660 (-859 (-391))) (-660 (-327 (-391))) (-660 (-859 (-391))))) (-15 -3327 ((-1060) (-327 (-391)) (-660 (-391)) (-660 (-859 (-391))) (-660 (-859 (-391))))) (-15 -3327 ((-1060) (-327 (-391)) (-660 (-391)))) (-15 -3327 ((-1060) (-660 (-327 (-391))) (-660 (-391)))) (-15 -3045 ((-1060) (-660 (-327 (-391))) (-660 (-391)))))) (T -856)) +((-3045 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-327 (-391)))) (-5 *4 (-660 (-391))) (-5 *2 (-1060)) (-5 *1 (-856)))) (-3327 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-327 (-391)))) (-5 *4 (-660 (-391))) (-5 *2 (-1060)) (-5 *1 (-856)))) (-3327 (*1 *2 *3 *4) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-391))) (-5 *2 (-1060)) (-5 *1 (-856)))) (-3327 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-391))) (-5 *5 (-660 (-859 (-391)))) (-5 *2 (-1060)) (-5 *1 (-856)))) (-3327 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-660 (-391))) (-5 *5 (-660 (-859 (-391)))) (-5 *6 (-660 (-327 (-391)))) (-5 *3 (-327 (-391))) (-5 *2 (-1060)) (-5 *1 (-856)))) (-3045 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1060)) (-5 *1 (-856)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1060)) (-5 *1 (-856)))) (-3327 (*1 *2 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1088)) (-5 *2 (-1060)) (-5 *1 (-856)))) (-1878 (*1 *2 *3 *4) (-12 (-5 *3 (-857)) (-5 *4 (-1088)) (-5 *2 (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))))) (-5 *1 (-856)))) (-1878 (*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))))) (-5 *1 (-856))))) +(-10 -7 (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))) (-857))) (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))) (-857) (-1088))) (-15 -3327 ((-1060) (-857) (-1088))) (-15 -3327 ((-1060) (-857))) (-15 -3045 ((-1060) (-857))) (-15 -3327 ((-1060) (-327 (-391)) (-660 (-391)) (-660 (-859 (-391))) (-660 (-327 (-391))) (-660 (-859 (-391))))) (-15 -3327 ((-1060) (-327 (-391)) (-660 (-391)) (-660 (-859 (-391))) (-660 (-859 (-391))))) (-15 -3327 ((-1060) (-327 (-391)) (-660 (-391)))) (-15 -3327 ((-1060) (-660 (-327 (-391))) (-660 (-391)))) (-15 -3045 ((-1060) (-660 (-327 (-391))) (-660 (-391))))) +((-3473 (((-112) $ $) NIL)) (-2921 (((-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228)))))) $) 21)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 20) (($ (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) 14) (($ (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))))) 18)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-857) (-13 (-1125) (-10 -8 (-15 -3544 ($ (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228))))))) (-15 -3544 ($ (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228)))))) (-15 -3544 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228)))))))) (-15 -2921 ((-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228)))))) $))))) (T -857)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (-5 *1 (-857)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) (-5 *1 (-857)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))))) (-5 *1 (-857)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))))) (-5 *1 (-857))))) +(-13 (-1125) (-10 -8 (-15 -3544 ($ (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228))))))) (-15 -3544 ($ (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228)))))) (-15 -3544 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228)))))))) (-15 -2921 ((-3 (|:| |noa| (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228)))))) $)))) +((-4087 (((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|) (-859 |#2|) (-859 |#2|)) 13) (((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|)) 14))) +(((-858 |#1| |#2|) (-10 -7 (-15 -4087 ((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|))) (-15 -4087 ((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|) (-859 |#2|) (-859 |#2|)))) (-1125) (-1125)) (T -858)) +((-4087 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-859 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-859 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *1 (-858 *5 *6)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-859 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-859 *6)) (-5 *1 (-858 *5 *6))))) +(-10 -7 (-15 -4087 ((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|))) (-15 -4087 ((-859 |#2|) (-1 |#2| |#1|) (-859 |#1|) (-859 |#2|) (-859 |#2|)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL (|has| |#1| (-21)))) (-3056 (((-1145) $) 31)) (-1956 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3010 (((-577) $) NIL (|has| |#1| (-864)))) (-1534 (($) NIL (|has| |#1| (-21)) CONST)) (-1628 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) 18)) (-2921 (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) 9)) (-4187 (((-3 $ "failed") $) 58 (|has| |#1| (-864)))) (-4363 (((-3 (-420 (-577)) "failed") $) 65 (|has| |#1| (-558)))) (-4353 (((-112) $) 60 (|has| |#1| (-558)))) (-4341 (((-420 (-577)) $) 63 (|has| |#1| (-558)))) (-3567 (((-112) $) NIL (|has| |#1| (-864)))) (-2996 (($) 14)) (-2487 (((-112) $) NIL (|has| |#1| (-864)))) (-3578 (((-112) $) NIL (|has| |#1| (-864)))) (-3006 (($) 16)) (-3732 (($ $ $) NIL (|has| |#1| (-864)))) (-3201 (($ $ $) NIL (|has| |#1| (-864)))) (-2810 (((-1183) $) NIL)) (-3067 (((-112) $) 12)) (-1474 (((-1145) $) NIL)) (-3078 (((-112) $) 11)) (-3544 (((-880) $) 24) (($ (-420 (-577))) NIL (|has| |#1| (-1063 (-420 (-577))))) (($ |#1|) 8) (($ (-577)) NIL (-2839 (|has| |#1| (-864)) (|has| |#1| (-1063 (-577)))))) (-4068 (((-787)) 51 (|has| |#1| (-864)) CONST)) (-4448 (((-112) $ $) NIL)) (-1654 (($ $) NIL (|has| |#1| (-864)))) (-2806 (($) 37 (|has| |#1| (-21)) CONST)) (-2816 (($) 48 (|has| |#1| (-864)) CONST)) (-3025 (((-112) $ $) NIL (|has| |#1| (-864)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-864)))) (-2970 (((-112) $ $) 35)) (-3012 (((-112) $ $) NIL (|has| |#1| (-864)))) (-2990 (((-112) $ $) 59 (|has| |#1| (-864)))) (-3066 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3055 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-944)) NIL (|has| |#1| (-864))) (($ $ (-787)) NIL (|has| |#1| (-864)))) (* (($ $ $) 55 (|has| |#1| (-864))) (($ (-577) $) 42 (|has| |#1| (-21))) (($ (-787) $) NIL (|has| |#1| (-21))) (($ (-944) $) NIL (|has| |#1| (-21))))) +(((-859 |#1|) (-13 (-1125) (-424 |#1|) (-10 -8 (-15 -2996 ($)) (-15 -3006 ($)) (-15 -3078 ((-112) $)) (-15 -3067 ((-112) $)) (-15 -3056 ((-1145) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-864)) (-6 (-864)) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -4353 ((-112) $)) (-15 -4341 ((-420 (-577)) $)) (-15 -4363 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) (-1125)) (T -859)) +((-2996 (*1 *1) (-12 (-5 *1 (-859 *2)) (-4 *2 (-1125)))) (-3006 (*1 *1) (-12 (-5 *1 (-859 *2)) (-4 *2 (-1125)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859 *3)) (-4 *3 (-1125)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859 *3)) (-4 *3 (-1125)))) (-3056 (*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-859 *3)) (-4 *3 (-1125)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859 *3)) (-4 *3 (-558)) (-4 *3 (-1125)))) (-4341 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-859 *3)) (-4 *3 (-558)) (-4 *3 (-1125)))) (-4363 (*1 *2 *1) (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-859 *3)) (-4 *3 (-558)) (-4 *3 (-1125))))) +(-13 (-1125) (-424 |#1|) (-10 -8 (-15 -2996 ($)) (-15 -3006 ($)) (-15 -3078 ((-112) $)) (-15 -3067 ((-112) $)) (-15 -3056 ((-1145) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-864)) (-6 (-864)) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -4353 ((-112) $)) (-15 -4341 ((-420 (-577)) $)) (-15 -4363 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) +((-3473 (((-112) $ $) 7)) (-2229 (((-787)) 24)) (-1910 (($) 27)) (-3732 (($ $ $) 20) (($) 23 T CONST)) (-3201 (($ $ $) 19) (($) 22 T CONST)) (-4038 (((-944) $) 26)) (-2810 (((-1183) $) 10)) (-3222 (($ (-944)) 25)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-3025 (((-112) $ $) 18)) (-3000 (((-112) $ $) 16)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 17)) (-2990 (((-112) $ $) 15))) +(((-860) (-141)) (T -860)) +((-3732 (*1 *1) (-4 *1 (-860))) (-3201 (*1 *1) (-4 *1 (-860)))) +(-13 (-865) (-380) (-10 -8 (-15 -3732 ($) -1512) (-15 -3201 ($) -1512))) +(((-102) . T) ((-626 (-880)) . T) ((-380) . T) ((-865) . T) ((-868) . T) ((-1125) . T) ((-1242) . T)) +((-3095 (((-112) (-1292 |#2|) (-1292 |#2|)) 19)) (-3103 (((-112) (-1292 |#2|) (-1292 |#2|)) 20)) (-3087 (((-112) (-1292 |#2|) (-1292 |#2|)) 16))) +(((-861 |#1| |#2|) (-10 -7 (-15 -3087 ((-112) (-1292 |#2|) (-1292 |#2|))) (-15 -3095 ((-112) (-1292 |#2|) (-1292 |#2|))) (-15 -3103 ((-112) (-1292 |#2|) (-1292 |#2|)))) (-787) (-808)) (T -861)) +((-3103 (*1 *2 *3 *3) (-12 (-5 *3 (-1292 *5)) (-4 *5 (-808)) (-5 *2 (-112)) (-5 *1 (-861 *4 *5)) (-14 *4 (-787)))) (-3095 (*1 *2 *3 *3) (-12 (-5 *3 (-1292 *5)) (-4 *5 (-808)) (-5 *2 (-112)) (-5 *1 (-861 *4 *5)) (-14 *4 (-787)))) (-3087 (*1 *2 *3 *3) (-12 (-5 *3 (-1292 *5)) (-4 *5 (-808)) (-5 *2 (-112)) (-5 *1 (-861 *4 *5)) (-14 *4 (-787))))) +(-10 -7 (-15 -3087 ((-112) (-1292 |#2|) (-1292 |#2|))) (-15 -3095 ((-112) (-1292 |#2|) (-1292 |#2|))) (-15 -3103 ((-112) (-1292 |#2|) (-1292 |#2|)))) +((-3473 (((-112) $ $) 7)) (-1534 (($) 25 T CONST)) (-4187 (((-3 $ "failed") $) 28)) (-2487 (((-112) $) 26)) (-3732 (($ $ $) 20)) (-3201 (($ $ $) 19)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2816 (($) 24 T CONST)) (-3025 (((-112) $ $) 18)) (-3000 (((-112) $ $) 16)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 17)) (-2990 (((-112) $ $) 15)) (** (($ $ (-944)) 23) (($ $ (-787)) 27)) (* (($ $ $) 22))) (((-862) (-141)) (T -862)) NIL -(-13 (-1122) (-865)) -(((-102) . T) ((-625 (-877)) . T) ((-865) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-3501 (($ |#1|) 10) ((|#1| $) 9) (((-877) $) 15 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 12))) -(((-863 |#1| |#2|) (-13 (-865) (-502 |#1|) (-10 -7 (IF (|has| |#1| (-625 (-877))) (-6 (-625 (-877))) |%noBranch|))) (-1239) (-1 (-112) |#1| |#1|)) (T -863)) -NIL -(-13 (-865) (-502 |#1|) (-10 -7 (IF (|has| |#1| (-625 (-877))) (-6 (-625 (-877))) |%noBranch|))) -((-3707 (($ $ $) 16)) (-1611 (($ $ $) 15)) (-2046 (((-112) $ $) 17)) (-2985 (((-112) $ $) 12)) (-2963 (((-112) $ $) 9)) (-2933 (((-112) $ $) 14)) (-2973 (((-112) $ $) 11))) -(((-864 |#1|) (-10 -8 (-15 -3707 (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1| |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2973 ((-112) |#1| |#1|)) (-15 -2963 ((-112) |#1| |#1|)) (-15 -2046 ((-112) |#1| |#1|)) (-15 -2933 ((-112) |#1| |#1|))) (-865)) (T -864)) -NIL -(-10 -8 (-15 -3707 (|#1| |#1| |#1|)) (-15 -1611 (|#1| |#1| |#1|)) (-15 -2985 ((-112) |#1| |#1|)) (-15 -2973 ((-112) |#1| |#1|)) (-15 -2963 ((-112) |#1| |#1|)) (-15 -2046 ((-112) |#1| |#1|)) (-15 -2933 ((-112) |#1| |#1|))) -((-3429 (((-112) $ $) 7)) (-3707 (($ $ $) 9)) (-1611 (($ $ $) 10)) (-2046 (((-112) $ $) 6)) (-2985 (((-112) $ $) 11)) (-2963 (((-112) $ $) 13)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 12)) (-2954 (((-112) $ $) 14))) +(-13 (-875) (-742)) +(((-102) . T) ((-626 (-880)) . T) ((-742) . T) ((-875) . T) ((-865) . T) ((-868) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3010 (((-577) $) 21)) (-3567 (((-112) $) 10)) (-3578 (((-112) $) 12)) (-1654 (($ $) 23))) +(((-863 |#1|) (-10 -8 (-15 -1654 (|#1| |#1|)) (-15 -3010 ((-577) |#1|)) (-15 -3578 ((-112) |#1|)) (-15 -3567 ((-112) |#1|))) (-864)) (T -863)) +NIL +(-10 -8 (-15 -1654 (|#1| |#1|)) (-15 -3010 ((-577) |#1|)) (-15 -3578 ((-112) |#1|)) (-15 -3567 ((-112) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 26)) (-1956 (((-3 $ "failed") $ $) 28)) (-3010 (((-577) $) 38)) (-1534 (($) 25 T CONST)) (-4187 (((-3 $ "failed") $) 43)) (-3567 (((-112) $) 40)) (-2487 (((-112) $) 45)) (-3578 (((-112) $) 39)) (-3732 (($ $ $) 20)) (-3201 (($ $ $) 19)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12) (($ (-577)) 47)) (-4068 (((-787)) 48 T CONST)) (-4448 (((-112) $ $) 6)) (-1654 (($ $) 37)) (-2806 (($) 24 T CONST)) (-2816 (($) 46 T CONST)) (-3025 (((-112) $ $) 18)) (-3000 (((-112) $ $) 16)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 17)) (-2990 (((-112) $ $) 15)) (-3066 (($ $ $) 32) (($ $) 31)) (-3055 (($ $ $) 22)) (** (($ $ (-787)) 44) (($ $ (-944)) 41)) (* (($ (-944) $) 23) (($ (-787) $) 27) (($ (-577) $) 30) (($ $ $) 42))) +(((-864) (-141)) (T -864)) +((-3567 (*1 *2 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-864)) (-5 *2 (-577)))) (-1654 (*1 *1 *1) (-4 *1 (-864)))) +(-13 (-807) (-1074) (-742) (-10 -8 (-15 -3567 ((-112) $)) (-15 -3578 ((-112) $)) (-15 -3010 ((-577) $)) (-15 -1654 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-742) . T) ((-807) . T) ((-808) . T) ((-810) . T) ((-811) . T) ((-865) . T) ((-868) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) 7)) (-3732 (($ $ $) 20)) (-3201 (($ $ $) 19)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-3025 (((-112) $ $) 18)) (-3000 (((-112) $ $) 16)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 17)) (-2990 (((-112) $ $) 15))) (((-865) (-141)) (T -865)) -((-2954 (*1 *2 *1 *1) (-12 (-4 *1 (-865)) (-5 *2 (-112)))) (-2963 (*1 *2 *1 *1) (-12 (-4 *1 (-865)) (-5 *2 (-112)))) (-2973 (*1 *2 *1 *1) (-12 (-4 *1 (-865)) (-5 *2 (-112)))) (-2985 (*1 *2 *1 *1) (-12 (-4 *1 (-865)) (-5 *2 (-112)))) (-1611 (*1 *1 *1 *1) (-4 *1 (-865))) (-3707 (*1 *1 *1 *1) (-4 *1 (-865)))) -(-13 (-102) (-10 -8 (-15 -2954 ((-112) $ $)) (-15 -2963 ((-112) $ $)) (-15 -2973 ((-112) $ $)) (-15 -2985 ((-112) $ $)) (-15 -1611 ($ $ $)) (-15 -3707 ($ $ $)))) -(((-102) . T) ((-1239) . T)) -((-3328 (($ $ $) 49)) (-3207 (($ $ $) 48)) (-4057 (($ $ $) 46)) (-3046 (($ $ $) 55)) (-2170 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 50)) (-2590 (((-3 $ "failed") $ $) 53)) (-1624 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-3813 (($ $) 39)) (-3826 (($ $ $) 43)) (-4269 (($ $ $) 42)) (-3938 (($ $ $) 51)) (-3359 (($ $ $) 57)) (-3978 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 45)) (-2129 (((-3 $ "failed") $ $) 52)) (-3418 (((-3 $ "failed") $ |#2|) 32)) (-1450 ((|#2| $) 36)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#2|) 13)) (-4037 (((-657 |#2|) $) 21)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) -(((-866 |#1| |#2|) (-10 -8 (-15 -3938 (|#1| |#1| |#1|)) (-15 -2170 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4097 |#1|)) |#1| |#1|)) (-15 -3046 (|#1| |#1| |#1|)) (-15 -2590 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3328 (|#1| |#1| |#1|)) (-15 -3207 (|#1| |#1| |#1|)) (-15 -4057 (|#1| |#1| |#1|)) (-15 -3978 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4097 |#1|)) |#1| |#1|)) (-15 -3359 (|#1| |#1| |#1|)) (-15 -2129 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3826 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -1450 (|#2| |#1|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4037 ((-657 |#2|) |#1|)) (-15 -3501 (|#1| |#2|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3501 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|)) (-15 -3501 ((-877) |#1|))) (-867 |#2|) (-1071)) (T -866)) -NIL -(-10 -8 (-15 -3938 (|#1| |#1| |#1|)) (-15 -2170 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4097 |#1|)) |#1| |#1|)) (-15 -3046 (|#1| |#1| |#1|)) (-15 -2590 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3328 (|#1| |#1| |#1|)) (-15 -3207 (|#1| |#1| |#1|)) (-15 -4057 (|#1| |#1| |#1|)) (-15 -3978 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4097 |#1|)) |#1| |#1|)) (-15 -3359 (|#1| |#1| |#1|)) (-15 -2129 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3826 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -1450 (|#2| |#1|)) (-15 -3418 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4037 ((-657 |#2|) |#1|)) (-15 -3501 (|#1| |#2|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3501 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|)) (-15 -3501 ((-877) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3328 (($ $ $) 50 (|has| |#1| (-374)))) (-3207 (($ $ $) 51 (|has| |#1| (-374)))) (-4057 (($ $ $) 53 (|has| |#1| (-374)))) (-3046 (($ $ $) 48 (|has| |#1| (-374)))) (-2170 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 47 (|has| |#1| (-374)))) (-2590 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-2455 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 52 (|has| |#1| (-374)))) (-1624 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-2884 (((-576) $) 79 (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 75)) (-2212 (($ $) 69)) (-3843 (((-3 $ "failed") $) 37)) (-3813 (($ $) 60 (|has| |#1| (-464)))) (-4094 (((-112) $) 35)) (-2003 (($ |#1| (-784)) 67)) (-3430 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 62 (|has| |#1| (-568)))) (-2733 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 63 (|has| |#1| (-568)))) (-4436 (((-784) $) 71)) (-3826 (($ $ $) 57 (|has| |#1| (-374)))) (-4269 (($ $ $) 58 (|has| |#1| (-374)))) (-3938 (($ $ $) 46 (|has| |#1| (-374)))) (-3359 (($ $ $) 55 (|has| |#1| (-374)))) (-3978 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 54 (|has| |#1| (-374)))) (-2129 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-2026 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 59 (|has| |#1| (-374)))) (-2186 ((|#1| $) 70)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3418 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-1770 (((-784) $) 72)) (-1450 ((|#1| $) 61 (|has| |#1| (-464)))) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1060 (-419 (-576))))) (($ |#1|) 73)) (-4037 (((-657 |#1|) $) 66)) (-2313 ((|#1| $ (-784)) 68)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-3500 ((|#1| $ |#1| |#1|) 65)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-867 |#1|) (-141) (-1071)) (T -867)) -((-1770 (*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) (-4436 (*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) (-2186 (*1 *2 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)))) (-2212 (*1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)))) (-2313 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *1 (-867 *2)) (-4 *2 (-1071)))) (-2003 (*1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-867 *2)) (-4 *2 (-1071)))) (-4037 (*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-4 *3 (-1071)) (-5 *2 (-657 *3)))) (-3500 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)))) (-3418 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-568)))) (-2733 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-5 *2 (-2 (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-867 *3)))) (-3430 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-5 *2 (-2 (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-867 *3)))) (-1450 (*1 *2 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-464)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-464)))) (-2026 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1071)) (-5 *2 (-2 (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-867 *3)))) (-4269 (*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-3826 (*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-2129 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-3359 (*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-3978 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1071)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4097 *1))) (-4 *1 (-867 *3)))) (-4057 (*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-2455 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1071)) (-5 *2 (-2 (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-867 *3)))) (-3207 (*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-3328 (*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-2590 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-3046 (*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-2170 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1071)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4097 *1))) (-4 *1 (-867 *3)))) (-3938 (*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) -(-13 (-1071) (-111 |t#1| |t#1|) (-423 |t#1|) (-10 -8 (-15 -1770 ((-784) $)) (-15 -4436 ((-784) $)) (-15 -2186 (|t#1| $)) (-15 -2212 ($ $)) (-15 -2313 (|t#1| $ (-784))) (-15 -2003 ($ |t#1| (-784))) (-15 -4037 ((-657 |t#1|) $)) (-15 -3500 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3418 ((-3 $ "failed") $ |t#1|)) (-15 -2733 ((-2 (|:| -2335 $) (|:| -3644 $)) $ $)) (-15 -3430 ((-2 (|:| -2335 $) (|:| -3644 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -1450 (|t#1| $)) (-15 -3813 ($ $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -2026 ((-2 (|:| -2335 $) (|:| -3644 $)) $ $)) (-15 -4269 ($ $ $)) (-15 -3826 ($ $ $)) (-15 -2129 ((-3 $ "failed") $ $)) (-15 -3359 ($ $ $)) (-15 -3978 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $)) (-15 -4057 ($ $ $)) (-15 -2455 ((-2 (|:| -2335 $) (|:| -3644 $)) $ $)) (-15 -3207 ($ $ $)) (-15 -3328 ($ $ $)) (-15 -2590 ((-3 $ "failed") $ $)) (-15 -3046 ($ $ $)) (-15 -2170 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $)) (-15 -3938 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-423 |#1|) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 |#1|) |has| |#1| (-174)) ((-730 |#1|) |has| |#1| (-174)) ((-739) . T) ((-1060 #0#) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3562 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2455 (((-2 (|:| -2335 |#2|) (|:| -3644 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-374)))) (-3430 (((-2 (|:| -2335 |#2|) (|:| -3644 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-568)))) (-2733 (((-2 (|:| -2335 |#2|) (|:| -3644 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-568)))) (-2026 (((-2 (|:| -2335 |#2|) (|:| -3644 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-374)))) (-3500 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33))) -(((-868 |#1| |#2|) (-10 -7 (-15 -3562 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3500 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -2733 ((-2 (|:| -2335 |#2|) (|:| -3644 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3430 ((-2 (|:| -2335 |#2|) (|:| -3644 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2026 ((-2 (|:| -2335 |#2|) (|:| -3644 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2455 ((-2 (|:| -2335 |#2|) (|:| -3644 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1071) (-867 |#1|)) (T -868)) -((-2455 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1071)) (-5 *2 (-2 (|:| -2335 *3) (|:| -3644 *3))) (-5 *1 (-868 *5 *3)) (-4 *3 (-867 *5)))) (-2026 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1071)) (-5 *2 (-2 (|:| -2335 *3) (|:| -3644 *3))) (-5 *1 (-868 *5 *3)) (-4 *3 (-867 *5)))) (-3430 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1071)) (-5 *2 (-2 (|:| -2335 *3) (|:| -3644 *3))) (-5 *1 (-868 *5 *3)) (-4 *3 (-867 *5)))) (-2733 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1071)) (-5 *2 (-2 (|:| -2335 *3) (|:| -3644 *3))) (-5 *1 (-868 *5 *3)) (-4 *3 (-867 *5)))) (-3500 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1071)) (-5 *1 (-868 *2 *3)) (-4 *3 (-867 *2)))) (-3562 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1071)) (-5 *1 (-868 *5 *2)) (-4 *2 (-867 *5))))) -(-10 -7 (-15 -3562 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3500 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -2733 ((-2 (|:| -2335 |#2|) (|:| -3644 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3430 ((-2 (|:| -2335 |#2|) (|:| -3644 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2026 ((-2 (|:| -2335 |#2|) (|:| -3644 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2455 ((-2 (|:| -2335 |#2|) (|:| -3644 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-3328 (($ $ $) NIL (|has| |#1| (-374)))) (-3207 (($ $ $) NIL (|has| |#1| (-374)))) (-4057 (($ $ $) NIL (|has| |#1| (-374)))) (-3046 (($ $ $) NIL (|has| |#1| (-374)))) (-2170 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-2590 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2455 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 34 (|has| |#1| (-374)))) (-1624 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2884 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL)) (-2212 (($ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3813 (($ $) NIL (|has| |#1| (-464)))) (-3716 (((-877) $ (-877)) NIL)) (-4094 (((-112) $) NIL)) (-2003 (($ |#1| (-784)) NIL)) (-3430 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 30 (|has| |#1| (-568)))) (-2733 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 28 (|has| |#1| (-568)))) (-4436 (((-784) $) NIL)) (-3826 (($ $ $) NIL (|has| |#1| (-374)))) (-4269 (($ $ $) NIL (|has| |#1| (-374)))) (-3938 (($ $ $) NIL (|has| |#1| (-374)))) (-3359 (($ $ $) NIL (|has| |#1| (-374)))) (-3978 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-2129 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2026 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 32 (|has| |#1| (-374)))) (-2186 ((|#1| $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3418 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-1770 (((-784) $) NIL)) (-1450 ((|#1| $) NIL (|has| |#1| (-464)))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1060 (-419 (-576))))) (($ |#1|) NIL)) (-4037 (((-657 |#1|) $) NIL)) (-2313 ((|#1| $ (-784)) NIL)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-3500 ((|#1| $ |#1| |#1|) 15)) (-2769 (($) NIL T CONST)) (-2779 (($) 23 T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) 19) (($ $ (-784)) 24)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-869 |#1| |#2| |#3|) (-13 (-867 |#1|) (-10 -8 (-15 -3716 ((-877) $ (-877))))) (-1071) (-99 |#1|) (-1 |#1| |#1|)) (T -869)) -((-3716 (*1 *2 *1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-869 *3 *4 *5)) (-4 *3 (-1071)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-867 |#1|) (-10 -8 (-15 -3716 ((-877) $ (-877))))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-3328 (($ $ $) NIL (|has| |#2| (-374)))) (-3207 (($ $ $) NIL (|has| |#2| (-374)))) (-4057 (($ $ $) NIL (|has| |#2| (-374)))) (-3046 (($ $ $) NIL (|has| |#2| (-374)))) (-2170 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#2| (-374)))) (-2590 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-2455 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#2| (-374)))) (-1624 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2884 (((-576) $) NIL (|has| |#2| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1060 (-419 (-576))))) ((|#2| $) NIL)) (-2212 (($ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3813 (($ $) NIL (|has| |#2| (-464)))) (-4094 (((-112) $) NIL)) (-2003 (($ |#2| (-784)) 17)) (-3430 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#2| (-568)))) (-2733 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#2| (-568)))) (-4436 (((-784) $) NIL)) (-3826 (($ $ $) NIL (|has| |#2| (-374)))) (-4269 (($ $ $) NIL (|has| |#2| (-374)))) (-3938 (($ $ $) NIL (|has| |#2| (-374)))) (-3359 (($ $ $) NIL (|has| |#2| (-374)))) (-3978 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#2| (-374)))) (-2129 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-2026 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#2| (-374)))) (-2186 ((|#2| $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3418 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-1770 (((-784) $) NIL)) (-1450 ((|#2| $) NIL (|has| |#2| (-464)))) (-3501 (((-877) $) 24) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1060 (-419 (-576))))) (($ |#2|) NIL) (($ (-1285 |#1|)) 19)) (-4037 (((-657 |#2|) $) NIL)) (-2313 ((|#2| $ (-784)) NIL)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-3500 ((|#2| $ |#2| |#2|) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) 13 T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-870 |#1| |#2| |#3| |#4|) (-13 (-867 |#2|) (-628 (-1285 |#1|))) (-1198) (-1071) (-99 |#2|) (-1 |#2| |#2|)) (T -870)) -NIL -(-13 (-867 |#2|) (-628 (-1285 |#1|))) -((-1645 ((|#1| (-784) |#1|) 45 (|has| |#1| (-38 (-419 (-576)))))) (-3484 ((|#1| (-784) (-784) |#1|) 36) ((|#1| (-784) |#1|) 24)) (-4407 ((|#1| (-784) |#1|) 40)) (-1576 ((|#1| (-784) |#1|) 38)) (-1519 ((|#1| (-784) |#1|) 37))) -(((-871 |#1|) (-10 -7 (-15 -1519 (|#1| (-784) |#1|)) (-15 -1576 (|#1| (-784) |#1|)) (-15 -4407 (|#1| (-784) |#1|)) (-15 -3484 (|#1| (-784) |#1|)) (-15 -3484 (|#1| (-784) (-784) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1645 (|#1| (-784) |#1|)) |%noBranch|)) (-174)) (T -871)) -((-1645 (*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-3484 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174)))) (-3484 (*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174)))) (-4407 (*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174)))) (-1576 (*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174)))) (-1519 (*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -1519 (|#1| (-784) |#1|)) (-15 -1576 (|#1| (-784) |#1|)) (-15 -4407 (|#1| (-784) |#1|)) (-15 -3484 (|#1| (-784) |#1|)) (-15 -3484 (|#1| (-784) (-784) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -1645 (|#1| (-784) |#1|)) |%noBranch|)) -((-3429 (((-112) $ $) 7)) (-3707 (($ $ $) 20)) (-1611 (($ $ $) 19)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2985 (((-112) $ $) 18)) (-2963 (((-112) $ $) 16)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 17)) (-2954 (((-112) $ $) 15)) (** (($ $ (-941)) 23)) (* (($ $ $) 22))) -(((-872) (-141)) (T -872)) -NIL -(-13 (-862) (-1134)) -(((-102) . T) ((-625 (-877)) . T) ((-862) . T) ((-865) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-3071 (((-576) $) 14)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 20) (($ (-576)) 13)) (-2046 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 9)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 11))) -(((-873) (-13 (-862) (-10 -8 (-15 -3501 ($ (-576))) (-15 -3071 ((-576) $))))) (T -873)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-873)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-873))))) -(-13 (-862) (-10 -8 (-15 -3501 ($ (-576))) (-15 -3071 ((-576) $)))) -((-3950 (((-704 (-1247)) $ (-1247)) 15)) (-2359 (((-704 (-561)) $ (-561)) 12)) (-1979 (((-784) $ (-129)) 30))) -(((-874 |#1|) (-10 -8 (-15 -1979 ((-784) |#1| (-129))) (-15 -3950 ((-704 (-1247)) |#1| (-1247))) (-15 -2359 ((-704 (-561)) |#1| (-561)))) (-875)) (T -874)) -NIL -(-10 -8 (-15 -1979 ((-784) |#1| (-129))) (-15 -3950 ((-704 (-1247)) |#1| (-1247))) (-15 -2359 ((-704 (-561)) |#1| (-561)))) -((-3950 (((-704 (-1247)) $ (-1247)) 8)) (-2359 (((-704 (-561)) $ (-561)) 9)) (-1979 (((-784) $ (-129)) 7)) (-3245 (((-704 (-130)) $ (-130)) 10)) (-3632 (($ $) 6))) +NIL +(-13 (-1125) (-868)) +(((-102) . T) ((-626 (-880)) . T) ((-868) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-3544 (($ |#1|) 10) ((|#1| $) 9) (((-880) $) 15 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 12))) +(((-866 |#1| |#2|) (-13 (-868) (-503 |#1|) (-10 -7 (IF (|has| |#1| (-626 (-880))) (-6 (-626 (-880))) |%noBranch|))) (-1242) (-1 (-112) |#1| |#1|)) (T -866)) +NIL +(-13 (-868) (-503 |#1|) (-10 -7 (IF (|has| |#1| (-626 (-880))) (-6 (-626 (-880))) |%noBranch|))) +((-3732 (($ $ $) 16)) (-3201 (($ $ $) 15)) (-4448 (((-112) $ $) 17)) (-3025 (((-112) $ $) 12)) (-3000 (((-112) $ $) 9)) (-2970 (((-112) $ $) 14)) (-3012 (((-112) $ $) 11))) +(((-867 |#1|) (-10 -8 (-15 -3732 (|#1| |#1| |#1|)) (-15 -3201 (|#1| |#1| |#1|)) (-15 -3025 ((-112) |#1| |#1|)) (-15 -3012 ((-112) |#1| |#1|)) (-15 -3000 ((-112) |#1| |#1|)) (-15 -4448 ((-112) |#1| |#1|)) (-15 -2970 ((-112) |#1| |#1|))) (-868)) (T -867)) +NIL +(-10 -8 (-15 -3732 (|#1| |#1| |#1|)) (-15 -3201 (|#1| |#1| |#1|)) (-15 -3025 ((-112) |#1| |#1|)) (-15 -3012 ((-112) |#1| |#1|)) (-15 -3000 ((-112) |#1| |#1|)) (-15 -4448 ((-112) |#1| |#1|)) (-15 -2970 ((-112) |#1| |#1|))) +((-3473 (((-112) $ $) 7)) (-3732 (($ $ $) 9)) (-3201 (($ $ $) 10)) (-4448 (((-112) $ $) 6)) (-3025 (((-112) $ $) 11)) (-3000 (((-112) $ $) 13)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 12)) (-2990 (((-112) $ $) 14))) +(((-868) (-141)) (T -868)) +((-2990 (*1 *2 *1 *1) (-12 (-4 *1 (-868)) (-5 *2 (-112)))) (-3000 (*1 *2 *1 *1) (-12 (-4 *1 (-868)) (-5 *2 (-112)))) (-3012 (*1 *2 *1 *1) (-12 (-4 *1 (-868)) (-5 *2 (-112)))) (-3025 (*1 *2 *1 *1) (-12 (-4 *1 (-868)) (-5 *2 (-112)))) (-3201 (*1 *1 *1 *1) (-4 *1 (-868))) (-3732 (*1 *1 *1 *1) (-4 *1 (-868)))) +(-13 (-102) (-10 -8 (-15 -2990 ((-112) $ $)) (-15 -3000 ((-112) $ $)) (-15 -3012 ((-112) $ $)) (-15 -3025 ((-112) $ $)) (-15 -3201 ($ $ $)) (-15 -3732 ($ $ $)))) +(((-102) . T) ((-1242) . T)) +((-3156 (($ $ $) 49)) (-3166 (($ $ $) 48)) (-3176 (($ $ $) 46)) (-3134 (($ $ $) 55)) (-3124 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 50)) (-3145 (((-3 $ "failed") $ $) 53)) (-1628 (((-3 (-577) "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-3143 (($ $) 39)) (-3214 (($ $ $) 43)) (-3224 (($ $ $) 42)) (-3112 (($ $ $) 51)) (-3195 (($ $ $) 57)) (-3186 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 45)) (-3205 (((-3 $ "failed") $ $) 52)) (-3462 (((-3 $ "failed") $ |#2|) 32)) (-4039 ((|#2| $) 36)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ (-420 (-577))) NIL) (($ |#2|) 13)) (-4182 (((-660 |#2|) $) 21)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) +(((-869 |#1| |#2|) (-10 -8 (-15 -3112 (|#1| |#1| |#1|)) (-15 -3124 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4101 |#1|)) |#1| |#1|)) (-15 -3134 (|#1| |#1| |#1|)) (-15 -3145 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3166 (|#1| |#1| |#1|)) (-15 -3176 (|#1| |#1| |#1|)) (-15 -3186 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4101 |#1|)) |#1| |#1|)) (-15 -3195 (|#1| |#1| |#1|)) (-15 -3205 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3214 (|#1| |#1| |#1|)) (-15 -3224 (|#1| |#1| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -4039 (|#2| |#1|)) (-15 -3462 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4182 ((-660 |#2|) |#1|)) (-15 -3544 (|#1| |#2|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3544 (|#1| (-577))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|)) (-15 -3544 ((-880) |#1|))) (-870 |#2|) (-1074)) (T -869)) +NIL +(-10 -8 (-15 -3112 (|#1| |#1| |#1|)) (-15 -3124 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4101 |#1|)) |#1| |#1|)) (-15 -3134 (|#1| |#1| |#1|)) (-15 -3145 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3166 (|#1| |#1| |#1|)) (-15 -3176 (|#1| |#1| |#1|)) (-15 -3186 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4101 |#1|)) |#1| |#1|)) (-15 -3195 (|#1| |#1| |#1|)) (-15 -3205 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3214 (|#1| |#1| |#1|)) (-15 -3224 (|#1| |#1| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -4039 (|#2| |#1|)) (-15 -3462 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4182 ((-660 |#2|) |#1|)) (-15 -3544 (|#1| |#2|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3544 (|#1| (-577))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|)) (-15 -3544 ((-880) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-3156 (($ $ $) 50 (|has| |#1| (-375)))) (-3166 (($ $ $) 51 (|has| |#1| (-375)))) (-3176 (($ $ $) 53 (|has| |#1| (-375)))) (-3134 (($ $ $) 48 (|has| |#1| (-375)))) (-3124 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 47 (|has| |#1| (-375)))) (-3145 (((-3 $ "failed") $ $) 49 (|has| |#1| (-375)))) (-3266 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 52 (|has| |#1| (-375)))) (-1628 (((-3 (-577) "failed") $) 80 (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) 77 (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) 74)) (-2921 (((-577) $) 79 (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) 76 (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) 75)) (-2248 (($ $) 69)) (-4187 (((-3 $ "failed") $) 37)) (-3143 (($ $) 60 (|has| |#1| (-465)))) (-2487 (((-112) $) 35)) (-2030 (($ |#1| (-787)) 67)) (-3244 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 62 (|has| |#1| (-569)))) (-3234 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 63 (|has| |#1| (-569)))) (-4061 (((-787) $) 71)) (-3214 (($ $ $) 57 (|has| |#1| (-375)))) (-3224 (($ $ $) 58 (|has| |#1| (-375)))) (-3112 (($ $ $) 46 (|has| |#1| (-375)))) (-3195 (($ $ $) 55 (|has| |#1| (-375)))) (-3186 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 54 (|has| |#1| (-375)))) (-3205 (((-3 $ "failed") $ $) 56 (|has| |#1| (-375)))) (-3256 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 59 (|has| |#1| (-375)))) (-2221 ((|#1| $) 70)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3462 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-569)))) (-2887 (((-787) $) 72)) (-4039 ((|#1| $) 61 (|has| |#1| (-465)))) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ (-420 (-577))) 78 (|has| |#1| (-1063 (-420 (-577))))) (($ |#1|) 73)) (-4182 (((-660 |#1|) $) 66)) (-2322 ((|#1| $ (-787)) 68)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3543 ((|#1| $ |#1| |#1|) 65)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-870 |#1|) (-141) (-1074)) (T -870)) +((-2887 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) (-2221 (*1 *2 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)))) (-2248 (*1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)))) (-2322 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *1 (-870 *2)) (-4 *2 (-1074)))) (-2030 (*1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-870 *2)) (-4 *2 (-1074)))) (-4182 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-4 *3 (-1074)) (-5 *2 (-660 *3)))) (-3543 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)))) (-3462 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-569)))) (-3234 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-5 *2 (-2 (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-870 *3)))) (-3244 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-5 *2 (-2 (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-870 *3)))) (-4039 (*1 *2 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-465)))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-465)))) (-3256 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *3 (-1074)) (-5 *2 (-2 (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-870 *3)))) (-3224 (*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-3214 (*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-3205 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-3195 (*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-3186 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *3 (-1074)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4101 *1))) (-4 *1 (-870 *3)))) (-3176 (*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-3266 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *3 (-1074)) (-5 *2 (-2 (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-870 *3)))) (-3166 (*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-3156 (*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-3145 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-3134 (*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-3124 (*1 *2 *1 *1) (-12 (-4 *3 (-375)) (-4 *3 (-1074)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4101 *1))) (-4 *1 (-870 *3)))) (-3112 (*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) +(-13 (-1074) (-111 |t#1| |t#1|) (-424 |t#1|) (-10 -8 (-15 -2887 ((-787) $)) (-15 -4061 ((-787) $)) (-15 -2221 (|t#1| $)) (-15 -2248 ($ $)) (-15 -2322 (|t#1| $ (-787))) (-15 -2030 ($ |t#1| (-787))) (-15 -4182 ((-660 |t#1|) $)) (-15 -3543 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -3462 ((-3 $ "failed") $ |t#1|)) (-15 -3234 ((-2 (|:| -3637 $) (|:| -2457 $)) $ $)) (-15 -3244 ((-2 (|:| -3637 $) (|:| -2457 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-465)) (PROGN (-15 -4039 (|t#1| $)) (-15 -3143 ($ $))) |%noBranch|) (IF (|has| |t#1| (-375)) (PROGN (-15 -3256 ((-2 (|:| -3637 $) (|:| -2457 $)) $ $)) (-15 -3224 ($ $ $)) (-15 -3214 ($ $ $)) (-15 -3205 ((-3 $ "failed") $ $)) (-15 -3195 ($ $ $)) (-15 -3186 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $)) (-15 -3176 ($ $ $)) (-15 -3266 ((-2 (|:| -3637 $) (|:| -2457 $)) $ $)) (-15 -3166 ($ $ $)) (-15 -3156 ($ $ $)) (-15 -3145 ((-3 $ "failed") $ $)) (-15 -3134 ($ $ $)) (-15 -3124 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $)) (-15 -3112 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-629 #0=(-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-424 |#1|) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 |#1|) |has| |#1| (-174)) ((-733 |#1|) |has| |#1| (-174)) ((-742) . T) ((-1063 #0#) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3599 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3266 (((-2 (|:| -3637 |#2|) (|:| -2457 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-375)))) (-3244 (((-2 (|:| -3637 |#2|) (|:| -2457 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-569)))) (-3234 (((-2 (|:| -3637 |#2|) (|:| -2457 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-569)))) (-3256 (((-2 (|:| -3637 |#2|) (|:| -2457 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-375)))) (-3543 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33))) +(((-871 |#1| |#2|) (-10 -7 (-15 -3599 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3543 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-569)) (PROGN (-15 -3234 ((-2 (|:| -3637 |#2|) (|:| -2457 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3244 ((-2 (|:| -3637 |#2|) (|:| -2457 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -3256 ((-2 (|:| -3637 |#2|) (|:| -2457 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3266 ((-2 (|:| -3637 |#2|) (|:| -2457 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1074) (-870 |#1|)) (T -871)) +((-3266 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-375)) (-4 *5 (-1074)) (-5 *2 (-2 (|:| -3637 *3) (|:| -2457 *3))) (-5 *1 (-871 *5 *3)) (-4 *3 (-870 *5)))) (-3256 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-375)) (-4 *5 (-1074)) (-5 *2 (-2 (|:| -3637 *3) (|:| -2457 *3))) (-5 *1 (-871 *5 *3)) (-4 *3 (-870 *5)))) (-3244 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1074)) (-5 *2 (-2 (|:| -3637 *3) (|:| -2457 *3))) (-5 *1 (-871 *5 *3)) (-4 *3 (-870 *5)))) (-3234 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1074)) (-5 *2 (-2 (|:| -3637 *3) (|:| -2457 *3))) (-5 *1 (-871 *5 *3)) (-4 *3 (-870 *5)))) (-3543 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1074)) (-5 *1 (-871 *2 *3)) (-4 *3 (-870 *2)))) (-3599 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1074)) (-5 *1 (-871 *5 *2)) (-4 *2 (-870 *5))))) +(-10 -7 (-15 -3599 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3543 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-569)) (PROGN (-15 -3234 ((-2 (|:| -3637 |#2|) (|:| -2457 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3244 ((-2 (|:| -3637 |#2|) (|:| -2457 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -3256 ((-2 (|:| -3637 |#2|) (|:| -2457 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3266 ((-2 (|:| -3637 |#2|) (|:| -2457 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-3156 (($ $ $) NIL (|has| |#1| (-375)))) (-3166 (($ $ $) NIL (|has| |#1| (-375)))) (-3176 (($ $ $) NIL (|has| |#1| (-375)))) (-3134 (($ $ $) NIL (|has| |#1| (-375)))) (-3124 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3145 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)))) (-3266 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 34 (|has| |#1| (-375)))) (-1628 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) NIL)) (-2921 (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) NIL)) (-2248 (($ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3143 (($ $) NIL (|has| |#1| (-465)))) (-3380 (((-880) $ (-880)) NIL)) (-2487 (((-112) $) NIL)) (-2030 (($ |#1| (-787)) NIL)) (-3244 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 30 (|has| |#1| (-569)))) (-3234 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 28 (|has| |#1| (-569)))) (-4061 (((-787) $) NIL)) (-3214 (($ $ $) NIL (|has| |#1| (-375)))) (-3224 (($ $ $) NIL (|has| |#1| (-375)))) (-3112 (($ $ $) NIL (|has| |#1| (-375)))) (-3195 (($ $ $) NIL (|has| |#1| (-375)))) (-3186 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3205 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)))) (-3256 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 32 (|has| |#1| (-375)))) (-2221 ((|#1| $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3462 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)))) (-2887 (((-787) $) NIL)) (-4039 ((|#1| $) NIL (|has| |#1| (-465)))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ (-420 (-577))) NIL (|has| |#1| (-1063 (-420 (-577))))) (($ |#1|) NIL)) (-4182 (((-660 |#1|) $) NIL)) (-2322 ((|#1| $ (-787)) NIL)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-3543 ((|#1| $ |#1| |#1|) 15)) (-2806 (($) NIL T CONST)) (-2816 (($) 23 T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) 19) (($ $ (-787)) 24)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-872 |#1| |#2| |#3|) (-13 (-870 |#1|) (-10 -8 (-15 -3380 ((-880) $ (-880))))) (-1074) (-99 |#1|) (-1 |#1| |#1|)) (T -872)) +((-3380 (*1 *2 *1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-872 *3 *4 *5)) (-4 *3 (-1074)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-870 |#1|) (-10 -8 (-15 -3380 ((-880) $ (-880))))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-3156 (($ $ $) NIL (|has| |#2| (-375)))) (-3166 (($ $ $) NIL (|has| |#2| (-375)))) (-3176 (($ $ $) NIL (|has| |#2| (-375)))) (-3134 (($ $ $) NIL (|has| |#2| (-375)))) (-3124 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#2| (-375)))) (-3145 (((-3 $ "failed") $ $) NIL (|has| |#2| (-375)))) (-3266 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#2| (-375)))) (-1628 (((-3 (-577) "failed") $) NIL (|has| |#2| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1063 (-420 (-577))))) (((-3 |#2| "failed") $) NIL)) (-2921 (((-577) $) NIL (|has| |#2| (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| |#2| (-1063 (-420 (-577))))) ((|#2| $) NIL)) (-2248 (($ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3143 (($ $) NIL (|has| |#2| (-465)))) (-2487 (((-112) $) NIL)) (-2030 (($ |#2| (-787)) 17)) (-3244 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#2| (-569)))) (-3234 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#2| (-569)))) (-4061 (((-787) $) NIL)) (-3214 (($ $ $) NIL (|has| |#2| (-375)))) (-3224 (($ $ $) NIL (|has| |#2| (-375)))) (-3112 (($ $ $) NIL (|has| |#2| (-375)))) (-3195 (($ $ $) NIL (|has| |#2| (-375)))) (-3186 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#2| (-375)))) (-3205 (((-3 $ "failed") $ $) NIL (|has| |#2| (-375)))) (-3256 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#2| (-375)))) (-2221 ((|#2| $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3462 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)))) (-2887 (((-787) $) NIL)) (-4039 ((|#2| $) NIL (|has| |#2| (-465)))) (-3544 (((-880) $) 24) (($ (-577)) NIL) (($ (-420 (-577))) NIL (|has| |#2| (-1063 (-420 (-577))))) (($ |#2|) NIL) (($ (-1288 |#1|)) 19)) (-4182 (((-660 |#2|) $) NIL)) (-2322 ((|#2| $ (-787)) NIL)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-3543 ((|#2| $ |#2| |#2|) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) 13 T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-873 |#1| |#2| |#3| |#4|) (-13 (-870 |#2|) (-629 (-1288 |#1|))) (-1201) (-1074) (-99 |#2|) (-1 |#2| |#2|)) (T -873)) +NIL +(-13 (-870 |#2|) (-629 (-1288 |#1|))) +((-3295 ((|#1| (-787) |#1|) 45 (|has| |#1| (-38 (-420 (-577)))))) (-3285 ((|#1| (-787) (-787) |#1|) 36) ((|#1| (-787) |#1|) 24)) (-3275 ((|#1| (-787) |#1|) 40)) (-3844 ((|#1| (-787) |#1|) 38)) (-3833 ((|#1| (-787) |#1|) 37))) +(((-874 |#1|) (-10 -7 (-15 -3833 (|#1| (-787) |#1|)) (-15 -3844 (|#1| (-787) |#1|)) (-15 -3275 (|#1| (-787) |#1|)) (-15 -3285 (|#1| (-787) |#1|)) (-15 -3285 (|#1| (-787) (-787) |#1|)) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3295 (|#1| (-787) |#1|)) |%noBranch|)) (-174)) (T -874)) +((-3295 (*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-174)))) (-3285 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174)))) (-3285 (*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174)))) (-3275 (*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174)))) (-3844 (*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174)))) (-3833 (*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -3833 (|#1| (-787) |#1|)) (-15 -3844 (|#1| (-787) |#1|)) (-15 -3275 (|#1| (-787) |#1|)) (-15 -3285 (|#1| (-787) |#1|)) (-15 -3285 (|#1| (-787) (-787) |#1|)) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -3295 (|#1| (-787) |#1|)) |%noBranch|)) +((-3473 (((-112) $ $) 7)) (-3732 (($ $ $) 20)) (-3201 (($ $ $) 19)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-3025 (((-112) $ $) 18)) (-3000 (((-112) $ $) 16)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 17)) (-2990 (((-112) $ $) 15)) (** (($ $ (-944)) 23)) (* (($ $ $) 22))) (((-875) (-141)) (T -875)) -((-3245 (*1 *2 *1 *3) (-12 (-4 *1 (-875)) (-5 *2 (-704 (-130))) (-5 *3 (-130)))) (-2359 (*1 *2 *1 *3) (-12 (-4 *1 (-875)) (-5 *2 (-704 (-561))) (-5 *3 (-561)))) (-3950 (*1 *2 *1 *3) (-12 (-4 *1 (-875)) (-5 *2 (-704 (-1247))) (-5 *3 (-1247)))) (-1979 (*1 *2 *1 *3) (-12 (-4 *1 (-875)) (-5 *3 (-129)) (-5 *2 (-784))))) -(-13 (-175) (-10 -8 (-15 -3245 ((-704 (-130)) $ (-130))) (-15 -2359 ((-704 (-561)) $ (-561))) (-15 -3950 ((-704 (-1247)) $ (-1247))) (-15 -1979 ((-784) $ (-129))))) +NIL +(-13 (-865) (-1137)) +(((-102) . T) ((-626 (-880)) . T) ((-865) . T) ((-868) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3115 (((-577) $) 14)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 20) (($ (-577)) 13)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 9)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 11))) +(((-876) (-13 (-865) (-10 -8 (-15 -3544 ($ (-577))) (-15 -3115 ((-577) $))))) (T -876)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-876)))) (-3115 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-876))))) +(-13 (-865) (-10 -8 (-15 -3544 ($ (-577))) (-15 -3115 ((-577) $)))) +((-3315 (((-707 (-1250)) $ (-1250)) 15)) (-3324 (((-707 (-562)) $ (-562)) 12)) (-3304 (((-787) $ (-129)) 30))) +(((-877 |#1|) (-10 -8 (-15 -3304 ((-787) |#1| (-129))) (-15 -3315 ((-707 (-1250)) |#1| (-1250))) (-15 -3324 ((-707 (-562)) |#1| (-562)))) (-878)) (T -877)) +NIL +(-10 -8 (-15 -3304 ((-787) |#1| (-129))) (-15 -3315 ((-707 (-1250)) |#1| (-1250))) (-15 -3324 ((-707 (-562)) |#1| (-562)))) +((-3315 (((-707 (-1250)) $ (-1250)) 8)) (-3324 (((-707 (-562)) $ (-562)) 9)) (-3304 (((-787) $ (-129)) 7)) (-3335 (((-707 (-130)) $ (-130)) 10)) (-3720 (($ $) 6))) +(((-878) (-141)) (T -878)) +((-3335 (*1 *2 *1 *3) (-12 (-4 *1 (-878)) (-5 *2 (-707 (-130))) (-5 *3 (-130)))) (-3324 (*1 *2 *1 *3) (-12 (-4 *1 (-878)) (-5 *2 (-707 (-562))) (-5 *3 (-562)))) (-3315 (*1 *2 *1 *3) (-12 (-4 *1 (-878)) (-5 *2 (-707 (-1250))) (-5 *3 (-1250)))) (-3304 (*1 *2 *1 *3) (-12 (-4 *1 (-878)) (-5 *3 (-129)) (-5 *2 (-787))))) +(-13 (-175) (-10 -8 (-15 -3335 ((-707 (-130)) $ (-130))) (-15 -3324 ((-707 (-562)) $ (-562))) (-15 -3315 ((-707 (-1250)) $ (-1250))) (-15 -3304 ((-787) $ (-129))))) (((-175) . T)) -((-3950 (((-704 (-1247)) $ (-1247)) NIL)) (-2359 (((-704 (-561)) $ (-561)) NIL)) (-1979 (((-784) $ (-129)) NIL)) (-3245 (((-704 (-130)) $ (-130)) 22)) (-2855 (($ (-400)) 12) (($ (-1180)) 14)) (-2529 (((-112) $) 19)) (-3501 (((-877) $) 26)) (-3632 (($ $) 23))) -(((-876) (-13 (-875) (-625 (-877)) (-10 -8 (-15 -2855 ($ (-400))) (-15 -2855 ($ (-1180))) (-15 -2529 ((-112) $))))) (T -876)) -((-2855 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-876)))) (-2855 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-876)))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876))))) -(-13 (-875) (-625 (-877)) (-10 -8 (-15 -2855 ($ (-400))) (-15 -2855 ($ (-1180))) (-15 -2529 ((-112) $)))) -((-3429 (((-112) $ $) NIL) (($ $ $) 85)) (-3909 (($ $ $) 125)) (-3308 (((-576) $) 31) (((-576)) 36)) (-3242 (($ (-576)) 53)) (-3411 (($ $ $) 54) (($ (-657 $)) 84)) (-4140 (($ $ (-657 $)) 82)) (-3851 (((-576) $) 34)) (-1930 (($ $ $) 73)) (-2619 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-3301 (((-576) $) 33)) (-4240 (($ $ $) 72)) (-1331 (($ $) 114)) (-4301 (($ $ $) 129)) (-4105 (($ (-657 $)) 61)) (-3369 (($ $ (-657 $)) 79)) (-3569 (($ (-576) (-576)) 55)) (-2012 (($ $) 126) (($ $ $) 127)) (-4236 (($ $ (-576)) 43) (($ $) 46)) (-3373 (($ $ $) 97)) (-4398 (($ $ $) 132)) (-3560 (($ $) 115)) (-3385 (($ $ $) 98)) (-2863 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2210 (((-1294) $) 10)) (-2899 (($ $) 118) (($ $ (-784)) 122)) (-1822 (($ $ $) 75)) (-2773 (($ $ $) 74)) (-3966 (($ $ (-657 $)) 110)) (-3038 (($ $ $) 113)) (-3153 (($ (-657 $)) 59)) (-2887 (($ $) 70) (($ (-657 $)) 71)) (-2836 (($ $ $) 123)) (-4368 (($ $) 116)) (-2250 (($ $ $) 128)) (-3716 (($ (-576)) 21) (($ (-1198)) 23) (($ (-1180)) 30) (($ (-227)) 25)) (-2734 (($ $ $) 101)) (-2712 (($ $) 102)) (-2805 (((-1294) (-1180)) 15)) (-2813 (($ (-1180)) 14)) (-2514 (($ (-657 (-657 $))) 58)) (-4224 (($ $ (-576)) 42) (($ $) 45)) (-2342 (((-1180) $) NIL)) (-2548 (($ $ $) 131)) (-3845 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-4184 (((-112) $) 108)) (-2739 (($ $ (-657 $)) 111) (($ $ $ $) 112)) (-3463 (($ (-576)) 39)) (-2404 (((-576) $) 32) (((-576)) 35)) (-3068 (($ $ $) 40) (($ (-657 $)) 83)) (-1471 (((-1142) $) NIL)) (-3418 (($ $ $) 99)) (-3581 (($) 13)) (-2835 (($ $ (-657 $)) 109)) (-4246 (((-1180) (-1180)) 8)) (-1374 (($ $) 117) (($ $ (-784)) 121)) (-3407 (($ $ $) 96)) (-2815 (($ $ (-784)) 139)) (-4102 (($ (-657 $)) 60)) (-3501 (((-877) $) 19)) (-3665 (($ $ (-576)) 41) (($ $) 44)) (-2807 (($ $) 68) (($ (-657 $)) 69)) (-1951 (($ $) 66) (($ (-657 $)) 67)) (-2139 (($ $) 124)) (-3652 (($ (-657 $)) 65)) (-3871 (($ $ $) 105)) (-2046 (((-112) $ $) NIL)) (-3939 (($ $ $) 130)) (-2724 (($ $ $) 100)) (-1838 (($ $ $) 103) (($ $) 104)) (-2985 (($ $ $) 89)) (-2963 (($ $ $) 87)) (-2933 (((-112) $ $) 16) (($ $ $) 17)) (-2973 (($ $ $) 88)) (-2954 (($ $ $) 86)) (-3034 (($ $ $) 94)) (-3022 (($ $ $) 91) (($ $) 92)) (-3012 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) -(((-877) (-13 (-1122) (-10 -8 (-15 -2210 ((-1294) $)) (-15 -2813 ($ (-1180))) (-15 -2805 ((-1294) (-1180))) (-15 -3716 ($ (-576))) (-15 -3716 ($ (-1198))) (-15 -3716 ($ (-1180))) (-15 -3716 ($ (-227))) (-15 -3581 ($)) (-15 -4246 ((-1180) (-1180))) (-15 -3308 ((-576) $)) (-15 -2404 ((-576) $)) (-15 -3308 ((-576))) (-15 -2404 ((-576))) (-15 -3301 ((-576) $)) (-15 -3851 ((-576) $)) (-15 -3463 ($ (-576))) (-15 -3242 ($ (-576))) (-15 -3569 ($ (-576) (-576))) (-15 -4224 ($ $ (-576))) (-15 -4236 ($ $ (-576))) (-15 -3665 ($ $ (-576))) (-15 -4224 ($ $)) (-15 -4236 ($ $)) (-15 -3665 ($ $)) (-15 -3068 ($ $ $)) (-15 -3411 ($ $ $)) (-15 -3068 ($ (-657 $))) (-15 -3411 ($ (-657 $))) (-15 -3966 ($ $ (-657 $))) (-15 -2739 ($ $ (-657 $))) (-15 -2739 ($ $ $ $)) (-15 -3038 ($ $ $)) (-15 -4184 ((-112) $)) (-15 -2835 ($ $ (-657 $))) (-15 -1331 ($ $)) (-15 -2548 ($ $ $)) (-15 -2139 ($ $)) (-15 -2514 ($ (-657 (-657 $)))) (-15 -3909 ($ $ $)) (-15 -2012 ($ $)) (-15 -2012 ($ $ $)) (-15 -2250 ($ $ $)) (-15 -4301 ($ $ $)) (-15 -3939 ($ $ $)) (-15 -4398 ($ $ $)) (-15 -2815 ($ $ (-784))) (-15 -3871 ($ $ $)) (-15 -4240 ($ $ $)) (-15 -1930 ($ $ $)) (-15 -2773 ($ $ $)) (-15 -1822 ($ $ $)) (-15 -3369 ($ $ (-657 $))) (-15 -4140 ($ $ (-657 $))) (-15 -3560 ($ $)) (-15 -1374 ($ $)) (-15 -1374 ($ $ (-784))) (-15 -2899 ($ $)) (-15 -2899 ($ $ (-784))) (-15 -4368 ($ $)) (-15 -2836 ($ $ $)) (-15 -2619 ($ $)) (-15 -2619 ($ $ $)) (-15 -2619 ($ $ $ $)) (-15 -2863 ($ $)) (-15 -2863 ($ $ $)) (-15 -2863 ($ $ $ $)) (-15 -3845 ($ $)) (-15 -3845 ($ $ $)) (-15 -3845 ($ $ $ $)) (-15 -1951 ($ $)) (-15 -1951 ($ (-657 $))) (-15 -2807 ($ $)) (-15 -2807 ($ (-657 $))) (-15 -2887 ($ $)) (-15 -2887 ($ (-657 $))) (-15 -3153 ($ (-657 $))) (-15 -4102 ($ (-657 $))) (-15 -4105 ($ (-657 $))) (-15 -3652 ($ (-657 $))) (-15 -2933 ($ $ $)) (-15 -3429 ($ $ $)) (-15 -2954 ($ $ $)) (-15 -2963 ($ $ $)) (-15 -2973 ($ $ $)) (-15 -2985 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -3022 ($ $ $)) (-15 -3022 ($ $)) (-15 * ($ $ $)) (-15 -3034 ($ $ $)) (-15 ** ($ $ $)) (-15 -3407 ($ $ $)) (-15 -3373 ($ $ $)) (-15 -3385 ($ $ $)) (-15 -3418 ($ $ $)) (-15 -2724 ($ $ $)) (-15 -2734 ($ $ $)) (-15 -2712 ($ $)) (-15 -1838 ($ $ $)) (-15 -1838 ($ $))))) (T -877)) -((-2210 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-877)))) (-2813 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-877)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-877)))) (-3716 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-3716 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-877)))) (-3716 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-877)))) (-3716 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-877)))) (-3581 (*1 *1) (-5 *1 (-877))) (-4246 (*1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-877)))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-2404 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-3308 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-2404 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-3851 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-3463 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-3242 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-3569 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-4224 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-4236 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-3665 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) (-4224 (*1 *1 *1) (-5 *1 (-877))) (-4236 (*1 *1 *1) (-5 *1 (-877))) (-3665 (*1 *1 *1) (-5 *1 (-877))) (-3068 (*1 *1 *1 *1) (-5 *1 (-877))) (-3411 (*1 *1 *1 *1) (-5 *1 (-877))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-3411 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-3966 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-2739 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-2739 (*1 *1 *1 *1 *1) (-5 *1 (-877))) (-3038 (*1 *1 *1 *1) (-5 *1 (-877))) (-4184 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877)))) (-2835 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-1331 (*1 *1 *1) (-5 *1 (-877))) (-2548 (*1 *1 *1 *1) (-5 *1 (-877))) (-2139 (*1 *1 *1) (-5 *1 (-877))) (-2514 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 (-877)))) (-5 *1 (-877)))) (-3909 (*1 *1 *1 *1) (-5 *1 (-877))) (-2012 (*1 *1 *1) (-5 *1 (-877))) (-2012 (*1 *1 *1 *1) (-5 *1 (-877))) (-2250 (*1 *1 *1 *1) (-5 *1 (-877))) (-4301 (*1 *1 *1 *1) (-5 *1 (-877))) (-3939 (*1 *1 *1 *1) (-5 *1 (-877))) (-4398 (*1 *1 *1 *1) (-5 *1 (-877))) (-2815 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-877)))) (-3871 (*1 *1 *1 *1) (-5 *1 (-877))) (-4240 (*1 *1 *1 *1) (-5 *1 (-877))) (-1930 (*1 *1 *1 *1) (-5 *1 (-877))) (-2773 (*1 *1 *1 *1) (-5 *1 (-877))) (-1822 (*1 *1 *1 *1) (-5 *1 (-877))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-4140 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-3560 (*1 *1 *1) (-5 *1 (-877))) (-1374 (*1 *1 *1) (-5 *1 (-877))) (-1374 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-877)))) (-2899 (*1 *1 *1) (-5 *1 (-877))) (-2899 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-877)))) (-4368 (*1 *1 *1) (-5 *1 (-877))) (-2836 (*1 *1 *1 *1) (-5 *1 (-877))) (-2619 (*1 *1 *1) (-5 *1 (-877))) (-2619 (*1 *1 *1 *1) (-5 *1 (-877))) (-2619 (*1 *1 *1 *1 *1) (-5 *1 (-877))) (-2863 (*1 *1 *1) (-5 *1 (-877))) (-2863 (*1 *1 *1 *1) (-5 *1 (-877))) (-2863 (*1 *1 *1 *1 *1) (-5 *1 (-877))) (-3845 (*1 *1 *1) (-5 *1 (-877))) (-3845 (*1 *1 *1 *1) (-5 *1 (-877))) (-3845 (*1 *1 *1 *1 *1) (-5 *1 (-877))) (-1951 (*1 *1 *1) (-5 *1 (-877))) (-1951 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-2807 (*1 *1 *1) (-5 *1 (-877))) (-2807 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-2887 (*1 *1 *1) (-5 *1 (-877))) (-2887 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-3153 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-4102 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-3652 (*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) (-2933 (*1 *1 *1 *1) (-5 *1 (-877))) (-3429 (*1 *1 *1 *1) (-5 *1 (-877))) (-2954 (*1 *1 *1 *1) (-5 *1 (-877))) (-2963 (*1 *1 *1 *1) (-5 *1 (-877))) (-2973 (*1 *1 *1 *1) (-5 *1 (-877))) (-2985 (*1 *1 *1 *1) (-5 *1 (-877))) (-3012 (*1 *1 *1 *1) (-5 *1 (-877))) (-3022 (*1 *1 *1 *1) (-5 *1 (-877))) (-3022 (*1 *1 *1) (-5 *1 (-877))) (* (*1 *1 *1 *1) (-5 *1 (-877))) (-3034 (*1 *1 *1 *1) (-5 *1 (-877))) (** (*1 *1 *1 *1) (-5 *1 (-877))) (-3407 (*1 *1 *1 *1) (-5 *1 (-877))) (-3373 (*1 *1 *1 *1) (-5 *1 (-877))) (-3385 (*1 *1 *1 *1) (-5 *1 (-877))) (-3418 (*1 *1 *1 *1) (-5 *1 (-877))) (-2724 (*1 *1 *1 *1) (-5 *1 (-877))) (-2734 (*1 *1 *1 *1) (-5 *1 (-877))) (-2712 (*1 *1 *1) (-5 *1 (-877))) (-1838 (*1 *1 *1 *1) (-5 *1 (-877))) (-1838 (*1 *1 *1) (-5 *1 (-877)))) -(-13 (-1122) (-10 -8 (-15 -2210 ((-1294) $)) (-15 -2813 ($ (-1180))) (-15 -2805 ((-1294) (-1180))) (-15 -3716 ($ (-576))) (-15 -3716 ($ (-1198))) (-15 -3716 ($ (-1180))) (-15 -3716 ($ (-227))) (-15 -3581 ($)) (-15 -4246 ((-1180) (-1180))) (-15 -3308 ((-576) $)) (-15 -2404 ((-576) $)) (-15 -3308 ((-576))) (-15 -2404 ((-576))) (-15 -3301 ((-576) $)) (-15 -3851 ((-576) $)) (-15 -3463 ($ (-576))) (-15 -3242 ($ (-576))) (-15 -3569 ($ (-576) (-576))) (-15 -4224 ($ $ (-576))) (-15 -4236 ($ $ (-576))) (-15 -3665 ($ $ (-576))) (-15 -4224 ($ $)) (-15 -4236 ($ $)) (-15 -3665 ($ $)) (-15 -3068 ($ $ $)) (-15 -3411 ($ $ $)) (-15 -3068 ($ (-657 $))) (-15 -3411 ($ (-657 $))) (-15 -3966 ($ $ (-657 $))) (-15 -2739 ($ $ (-657 $))) (-15 -2739 ($ $ $ $)) (-15 -3038 ($ $ $)) (-15 -4184 ((-112) $)) (-15 -2835 ($ $ (-657 $))) (-15 -1331 ($ $)) (-15 -2548 ($ $ $)) (-15 -2139 ($ $)) (-15 -2514 ($ (-657 (-657 $)))) (-15 -3909 ($ $ $)) (-15 -2012 ($ $)) (-15 -2012 ($ $ $)) (-15 -2250 ($ $ $)) (-15 -4301 ($ $ $)) (-15 -3939 ($ $ $)) (-15 -4398 ($ $ $)) (-15 -2815 ($ $ (-784))) (-15 -3871 ($ $ $)) (-15 -4240 ($ $ $)) (-15 -1930 ($ $ $)) (-15 -2773 ($ $ $)) (-15 -1822 ($ $ $)) (-15 -3369 ($ $ (-657 $))) (-15 -4140 ($ $ (-657 $))) (-15 -3560 ($ $)) (-15 -1374 ($ $)) (-15 -1374 ($ $ (-784))) (-15 -2899 ($ $)) (-15 -2899 ($ $ (-784))) (-15 -4368 ($ $)) (-15 -2836 ($ $ $)) (-15 -2619 ($ $)) (-15 -2619 ($ $ $)) (-15 -2619 ($ $ $ $)) (-15 -2863 ($ $)) (-15 -2863 ($ $ $)) (-15 -2863 ($ $ $ $)) (-15 -3845 ($ $)) (-15 -3845 ($ $ $)) (-15 -3845 ($ $ $ $)) (-15 -1951 ($ $)) (-15 -1951 ($ (-657 $))) (-15 -2807 ($ $)) (-15 -2807 ($ (-657 $))) (-15 -2887 ($ $)) (-15 -2887 ($ (-657 $))) (-15 -3153 ($ (-657 $))) (-15 -4102 ($ (-657 $))) (-15 -4105 ($ (-657 $))) (-15 -3652 ($ (-657 $))) (-15 -2933 ($ $ $)) (-15 -3429 ($ $ $)) (-15 -2954 ($ $ $)) (-15 -2963 ($ $ $)) (-15 -2973 ($ $ $)) (-15 -2985 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -3022 ($ $ $)) (-15 -3022 ($ $)) (-15 * ($ $ $)) (-15 -3034 ($ $ $)) (-15 ** ($ $ $)) (-15 -3407 ($ $ $)) (-15 -3373 ($ $ $)) (-15 -3385 ($ $ $)) (-15 -3418 ($ $ $)) (-15 -2724 ($ $ $)) (-15 -2734 ($ $ $)) (-15 -2712 ($ $)) (-15 -1838 ($ $ $)) (-15 -1838 ($ $)))) -((-1526 (((-1294) (-657 (-52))) 23)) (-2796 (((-1294) (-1180) (-877)) 13) (((-1294) (-877)) 8) (((-1294) (-1180)) 10))) -(((-878) (-10 -7 (-15 -2796 ((-1294) (-1180))) (-15 -2796 ((-1294) (-877))) (-15 -2796 ((-1294) (-1180) (-877))) (-15 -1526 ((-1294) (-657 (-52)))))) (T -878)) -((-1526 (*1 *2 *3) (-12 (-5 *3 (-657 (-52))) (-5 *2 (-1294)) (-5 *1 (-878)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-877)) (-5 *2 (-1294)) (-5 *1 (-878)))) (-2796 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-878)))) (-2796 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-878))))) -(-10 -7 (-15 -2796 ((-1294) (-1180))) (-15 -2796 ((-1294) (-877))) (-15 -2796 ((-1294) (-1180) (-877))) (-15 -1526 ((-1294) (-657 (-52))))) -((-3429 (((-112) $ $) NIL)) (-3032 (((-3 $ "failed") (-1198)) 36)) (-2193 (((-784)) 32)) (-1892 (($) NIL)) (-3707 (($ $ $) NIL) (($) NIL T CONST)) (-1611 (($ $ $) NIL) (($) NIL T CONST)) (-3007 (((-941) $) 29)) (-2342 (((-1180) $) 43)) (-3178 (($ (-941)) 28)) (-1471 (((-1142) $) NIL)) (-4148 (((-1198) $) 13) (((-548) $) 19) (((-908 (-390)) $) 26) (((-908 (-576)) $) 22)) (-3501 (((-877) $) 16)) (-2046 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 40)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 38))) -(((-879 |#1|) (-13 (-857) (-626 (-1198)) (-626 (-548)) (-626 (-908 (-390))) (-626 (-908 (-576))) (-10 -8 (-15 -3032 ((-3 $ "failed") (-1198))))) (-657 (-1198))) (T -879)) -((-3032 (*1 *1 *2) (|partial| -12 (-5 *2 (-1198)) (-5 *1 (-879 *3)) (-14 *3 (-657 *2))))) -(-13 (-857) (-626 (-1198)) (-626 (-548)) (-626 (-908 (-390))) (-626 (-908 (-576))) (-10 -8 (-15 -3032 ((-3 $ "failed") (-1198))))) -((-3429 (((-112) $ $) NIL)) (-2676 (((-518) $) 9)) (-2070 (((-657 (-451)) $) 13)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 21)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 16))) -(((-880) (-13 (-1122) (-10 -8 (-15 -2676 ((-518) $)) (-15 -2070 ((-657 (-451)) $))))) (T -880)) -((-2676 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-880)))) (-2070 (*1 *2 *1) (-12 (-5 *2 (-657 (-451))) (-5 *1 (-880))))) -(-13 (-1122) (-10 -8 (-15 -2676 ((-518) $)) (-15 -2070 ((-657 (-451)) $)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-3843 (((-3 $ "failed") $) NIL)) (-4094 (((-112) $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ (-972 |#1|)) NIL) (((-972 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-1960 (((-784)) NIL T CONST)) (-3366 (((-1294) (-784)) NIL)) (-2046 (((-112) $ $) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2933 (((-112) $ $) NIL)) (-3034 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-881 |#1| |#2| |#3| |#4|) (-13 (-1071) (-502 (-972 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3034 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3366 ((-1294) (-784))))) (-1071) (-657 (-1198)) (-657 (-784)) (-784)) (T -881)) -((-3034 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-881 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *2 (-1071)) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-784))) (-14 *5 (-784)))) (-3366 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-881 *4 *5 *6 *7)) (-4 *4 (-1071)) (-14 *5 (-657 (-1198))) (-14 *6 (-657 *3)) (-14 *7 *3)))) -(-13 (-1071) (-502 (-972 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3034 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3366 ((-1294) (-784))))) -((-3659 (((-3 (-176 |#3|) "failed") (-784) (-784) |#2| |#2|) 38)) (-3998 (((-3 (-419 |#3|) "failed") (-784) (-784) |#2| |#2|) 29))) -(((-882 |#1| |#2| |#3|) (-10 -7 (-15 -3998 ((-3 (-419 |#3|) "failed") (-784) (-784) |#2| |#2|)) (-15 -3659 ((-3 (-176 |#3|) "failed") (-784) (-784) |#2| |#2|))) (-374) (-1280 |#1|) (-1265 |#1|)) (T -882)) -((-3659 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-784)) (-4 *5 (-374)) (-5 *2 (-176 *6)) (-5 *1 (-882 *5 *4 *6)) (-4 *4 (-1280 *5)) (-4 *6 (-1265 *5)))) (-3998 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-784)) (-4 *5 (-374)) (-5 *2 (-419 *6)) (-5 *1 (-882 *5 *4 *6)) (-4 *4 (-1280 *5)) (-4 *6 (-1265 *5))))) -(-10 -7 (-15 -3998 ((-3 (-419 |#3|) "failed") (-784) (-784) |#2| |#2|)) (-15 -3659 ((-3 (-176 |#3|) "failed") (-784) (-784) |#2| |#2|))) -((-3998 (((-3 (-419 (-1262 |#2| |#1|)) "failed") (-784) (-784) (-1281 |#1| |#2| |#3|)) 30) (((-3 (-419 (-1262 |#2| |#1|)) "failed") (-784) (-784) (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|)) 28))) -(((-883 |#1| |#2| |#3|) (-10 -7 (-15 -3998 ((-3 (-419 (-1262 |#2| |#1|)) "failed") (-784) (-784) (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|))) (-15 -3998 ((-3 (-419 (-1262 |#2| |#1|)) "failed") (-784) (-784) (-1281 |#1| |#2| |#3|)))) (-374) (-1198) |#1|) (T -883)) -((-3998 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-784)) (-5 *4 (-1281 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1198)) (-14 *7 *5) (-5 *2 (-419 (-1262 *6 *5))) (-5 *1 (-883 *5 *6 *7)))) (-3998 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-784)) (-5 *4 (-1281 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1198)) (-14 *7 *5) (-5 *2 (-419 (-1262 *6 *5))) (-5 *1 (-883 *5 *6 *7))))) -(-10 -7 (-15 -3998 ((-3 (-419 (-1262 |#2| |#1|)) "failed") (-784) (-784) (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|))) (-15 -3998 ((-3 (-419 (-1262 |#2| |#1|)) "failed") (-784) (-784) (-1281 |#1| |#2| |#3|)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-2721 (((-3 $ "failed") $ $) 20)) (-1896 (($ $ (-576)) 68)) (-2864 (((-112) $ $) 65)) (-4359 (($) 18 T CONST)) (-2012 (($ (-1194 (-576)) (-576)) 67)) (-3373 (($ $ $) 61)) (-3843 (((-3 $ "failed") $) 37)) (-2530 (($ $) 70)) (-3385 (($ $ $) 62)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 57)) (-3182 (((-784) $) 75)) (-4094 (((-112) $) 35)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-2948 (((-576)) 72)) (-3731 (((-576) $) 71)) (-3402 (($ $ $) 52) (($ (-657 $)) 51)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3436 (($ $ $) 54) (($ (-657 $)) 53)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3926 (($ $ (-576)) 74)) (-3418 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-2034 (((-784) $) 64)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 63)) (-4039 (((-1179 (-576)) $) 76)) (-1431 (($ $) 73)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 45)) (-4144 (((-576) $ (-576)) 69)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-884 |#1|) (-141) (-576)) (T -884)) -((-4039 (*1 *2 *1) (-12 (-4 *1 (-884 *3)) (-5 *2 (-1179 (-576))))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-884 *3)) (-5 *2 (-784)))) (-3926 (*1 *1 *1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576)))) (-1431 (*1 *1 *1) (-4 *1 (-884 *2))) (-2948 (*1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576)))) (-2530 (*1 *1 *1) (-4 *1 (-884 *2))) (-4144 (*1 *2 *1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576)))) (-1896 (*1 *1 *1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576)))) (-2012 (*1 *1 *2 *3) (-12 (-5 *2 (-1194 (-576))) (-5 *3 (-576)) (-4 *1 (-884 *4))))) -(-13 (-317) (-148) (-10 -8 (-15 -4039 ((-1179 (-576)) $)) (-15 -3182 ((-784) $)) (-15 -3926 ($ $ (-576))) (-15 -1431 ($ $)) (-15 -2948 ((-576))) (-15 -3731 ((-576) $)) (-15 -2530 ($ $)) (-15 -4144 ((-576) $ (-576))) (-15 -1896 ($ $ (-576))) (-15 -2012 ($ (-1194 (-576)) (-576))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-940) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-1896 (($ $ (-576)) NIL)) (-2864 (((-112) $ $) NIL)) (-4359 (($) NIL T CONST)) (-2012 (($ (-1194 (-576)) (-576)) NIL)) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-2530 (($ $) NIL)) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-3182 (((-784) $) NIL)) (-4094 (((-112) $) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2948 (((-576)) NIL)) (-3731 (((-576) $) NIL)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3926 (($ $ (-576)) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-4039 (((-1179 (-576)) $) NIL)) (-1431 (($ $) NIL)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-4144 (((-576) $ (-576)) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) -(((-885 |#1|) (-884 |#1|) (-576)) (T -885)) -NIL -(-884 |#1|) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3931 (((-885 |#1|) $) NIL (|has| (-885 |#1|) (-317)))) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-885 |#1|) (-929)))) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| (-885 |#1|) (-929)))) (-2864 (((-112) $ $) NIL)) (-1536 (((-576) $) NIL (|has| (-885 |#1|) (-833)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-885 |#1|) "failed") $) NIL) (((-3 (-1198) "failed") $) NIL (|has| (-885 |#1|) (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-885 |#1|) (-1060 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-885 |#1|) (-1060 (-576))))) (-2884 (((-885 |#1|) $) NIL) (((-1198) $) NIL (|has| (-885 |#1|) (-1060 (-1198)))) (((-419 (-576)) $) NIL (|has| (-885 |#1|) (-1060 (-576)))) (((-576) $) NIL (|has| (-885 |#1|) (-1060 (-576))))) (-3106 (($ $) NIL) (($ (-576) $) NIL)) (-3373 (($ $ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| (-885 |#1|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-885 |#1|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-885 |#1|))) (|:| |vec| (-1289 (-885 |#1|)))) (-702 $) (-1289 $)) NIL) (((-702 (-885 |#1|)) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($) NIL (|has| (-885 |#1|) (-557)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-2828 (((-112) $) NIL (|has| (-885 |#1|) (-833)))) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| (-885 |#1|) (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| (-885 |#1|) (-902 (-390))))) (-4094 (((-112) $) NIL)) (-2752 (($ $) NIL)) (-1621 (((-885 |#1|) $) NIL)) (-4019 (((-3 $ "failed") $) NIL (|has| (-885 |#1|) (-1174)))) (-2881 (((-112) $) NIL (|has| (-885 |#1|) (-833)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3707 (($ $ $) NIL (|has| (-885 |#1|) (-862)))) (-1611 (($ $ $) NIL (|has| (-885 |#1|) (-862)))) (-4083 (($ (-1 (-885 |#1|) (-885 |#1|)) $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| (-885 |#1|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-885 |#1|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-885 |#1|))) (|:| |vec| (-1289 (-885 |#1|)))) (-1289 $) $) NIL) (((-702 (-885 |#1|)) (-1289 $)) NIL)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1706 (($) NIL (|has| (-885 |#1|) (-1174)) CONST)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2900 (($ $) NIL (|has| (-885 |#1|) (-317)))) (-3427 (((-885 |#1|) $) NIL (|has| (-885 |#1|) (-557)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-885 |#1|) (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-885 |#1|) (-929)))) (-1885 (((-430 $) $) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3236 (($ $ (-657 (-885 |#1|)) (-657 (-885 |#1|))) NIL (|has| (-885 |#1|) (-319 (-885 |#1|)))) (($ $ (-885 |#1|) (-885 |#1|)) NIL (|has| (-885 |#1|) (-319 (-885 |#1|)))) (($ $ (-304 (-885 |#1|))) NIL (|has| (-885 |#1|) (-319 (-885 |#1|)))) (($ $ (-657 (-304 (-885 |#1|)))) NIL (|has| (-885 |#1|) (-319 (-885 |#1|)))) (($ $ (-657 (-1198)) (-657 (-885 |#1|))) NIL (|has| (-885 |#1|) (-526 (-1198) (-885 |#1|)))) (($ $ (-1198) (-885 |#1|)) NIL (|has| (-885 |#1|) (-526 (-1198) (-885 |#1|))))) (-2034 (((-784) $) NIL)) (-2835 (($ $ (-885 |#1|)) NIL (|has| (-885 |#1|) (-296 (-885 |#1|) (-885 |#1|))))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2815 (($ $ (-1 (-885 |#1|) (-885 |#1|))) NIL) (($ $ (-1 (-885 |#1|) (-885 |#1|)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-885 |#1|) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-885 |#1|) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-885 |#1|) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-885 |#1|) (-920 (-1198)))) (($ $) NIL (|has| (-885 |#1|) (-237))) (($ $ (-784)) NIL (|has| (-885 |#1|) (-237)))) (-1396 (($ $) NIL)) (-1635 (((-885 |#1|) $) NIL)) (-4148 (((-908 (-576)) $) NIL (|has| (-885 |#1|) (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| (-885 |#1|) (-626 (-908 (-390))))) (((-548) $) NIL (|has| (-885 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-885 |#1|) (-1044))) (((-227) $) NIL (|has| (-885 |#1|) (-1044)))) (-1690 (((-176 (-419 (-576))) $) NIL)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| (-885 |#1|) (-929))))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-885 |#1|)) NIL) (($ (-1198)) NIL (|has| (-885 |#1|) (-1060 (-1198))))) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| (-885 |#1|) (-929))) (|has| (-885 |#1|) (-146))))) (-1960 (((-784)) NIL T CONST)) (-1893 (((-885 |#1|) $) NIL (|has| (-885 |#1|) (-557)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-4144 (((-419 (-576)) $ (-576)) NIL)) (-1792 (($ $) NIL (|has| (-885 |#1|) (-833)))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-1 (-885 |#1|) (-885 |#1|))) NIL) (($ $ (-1 (-885 |#1|) (-885 |#1|)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-885 |#1|) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-885 |#1|) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-885 |#1|) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-885 |#1|) (-920 (-1198)))) (($ $) NIL (|has| (-885 |#1|) (-237))) (($ $ (-784)) NIL (|has| (-885 |#1|) (-237)))) (-2985 (((-112) $ $) NIL (|has| (-885 |#1|) (-862)))) (-2963 (((-112) $ $) NIL (|has| (-885 |#1|) (-862)))) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL (|has| (-885 |#1|) (-862)))) (-2954 (((-112) $ $) NIL (|has| (-885 |#1|) (-862)))) (-3034 (($ $ $) NIL) (($ (-885 |#1|) (-885 |#1|)) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-885 |#1|) $) NIL) (($ $ (-885 |#1|)) NIL))) -(((-886 |#1|) (-13 (-1014 (-885 |#1|)) (-10 -8 (-15 -4144 ((-419 (-576)) $ (-576))) (-15 -1690 ((-176 (-419 (-576))) $)) (-15 -3106 ($ $)) (-15 -3106 ($ (-576) $)))) (-576)) (T -886)) -((-4144 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-886 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-886 *3)) (-14 *3 (-576)))) (-3106 (*1 *1 *1) (-12 (-5 *1 (-886 *2)) (-14 *2 (-576)))) (-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-886 *3)) (-14 *3 *2)))) -(-13 (-1014 (-885 |#1|)) (-10 -8 (-15 -4144 ((-419 (-576)) $ (-576))) (-15 -1690 ((-176 (-419 (-576))) $)) (-15 -3106 ($ $)) (-15 -3106 ($ (-576) $)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3931 ((|#2| $) NIL (|has| |#2| (-317)))) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-2864 (((-112) $ $) NIL)) (-1536 (((-576) $) NIL (|has| |#2| (-833)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#2| "failed") $) NIL) (((-3 (-1198) "failed") $) NIL (|has| |#2| (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1060 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1060 (-576))))) (-2884 ((|#2| $) NIL) (((-1198) $) NIL (|has| |#2| (-1060 (-1198)))) (((-419 (-576)) $) NIL (|has| |#2| (-1060 (-576)))) (((-576) $) NIL (|has| |#2| (-1060 (-576))))) (-3106 (($ $) 35) (($ (-576) $) 38)) (-3373 (($ $ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL) (((-702 |#2|) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) 64)) (-1892 (($) NIL (|has| |#2| (-557)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-2828 (((-112) $) NIL (|has| |#2| (-833)))) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| |#2| (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| |#2| (-902 (-390))))) (-4094 (((-112) $) NIL)) (-2752 (($ $) NIL)) (-1621 ((|#2| $) NIL)) (-4019 (((-3 $ "failed") $) NIL (|has| |#2| (-1174)))) (-2881 (((-112) $) NIL (|has| |#2| (-833)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3707 (($ $ $) NIL (|has| |#2| (-862)))) (-1611 (($ $ $) NIL (|has| |#2| (-862)))) (-4083 (($ (-1 |#2| |#2|) $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) 60)) (-1706 (($) NIL (|has| |#2| (-1174)) CONST)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2900 (($ $) NIL (|has| |#2| (-317)))) (-3427 ((|#2| $) NIL (|has| |#2| (-557)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-1885 (((-430 $) $) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3236 (($ $ (-657 |#2|) (-657 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-319 |#2|))) (($ $ (-304 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ (-657 (-304 |#2|))) NIL (|has| |#2| (-319 |#2|))) (($ $ (-657 (-1198)) (-657 |#2|)) NIL (|has| |#2| (-526 (-1198) |#2|))) (($ $ (-1198) |#2|) NIL (|has| |#2| (-526 (-1198) |#2|)))) (-2034 (((-784) $) NIL)) (-2835 (($ $ |#2|) NIL (|has| |#2| (-296 |#2| |#2|)))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2815 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-784)) NIL (|has| |#2| (-237)))) (-1396 (($ $) NIL)) (-1635 ((|#2| $) NIL)) (-4148 (((-908 (-576)) $) NIL (|has| |#2| (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| |#2| (-626 (-908 (-390))))) (((-548) $) NIL (|has| |#2| (-626 (-548)))) (((-390) $) NIL (|has| |#2| (-1044))) (((-227) $) NIL (|has| |#2| (-1044)))) (-1690 (((-176 (-419 (-576))) $) 78)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-929))))) (-3501 (((-877) $) 106) (($ (-576)) 20) (($ $) NIL) (($ (-419 (-576))) 25) (($ |#2|) 19) (($ (-1198)) NIL (|has| |#2| (-1060 (-1198))))) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| |#2| (-929))) (|has| |#2| (-146))))) (-1960 (((-784)) NIL T CONST)) (-1893 ((|#2| $) NIL (|has| |#2| (-557)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-4144 (((-419 (-576)) $ (-576)) 71)) (-1792 (($ $) NIL (|has| |#2| (-833)))) (-2769 (($) 15 T CONST)) (-2779 (($) 17 T CONST)) (-2097 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-784)) NIL (|has| |#2| (-237)))) (-2985 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2933 (((-112) $ $) 46)) (-2973 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2954 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3034 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3022 (($ $) 50) (($ $ $) 52)) (-3012 (($ $ $) 48)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) 61)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 53) (($ $ $) 55) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) -(((-887 |#1| |#2|) (-13 (-1014 |#2|) (-10 -8 (-15 -4144 ((-419 (-576)) $ (-576))) (-15 -1690 ((-176 (-419 (-576))) $)) (-15 -3106 ($ $)) (-15 -3106 ($ (-576) $)))) (-576) (-884 |#1|)) (T -887)) -((-4144 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-887 *4 *5)) (-5 *3 (-576)) (-4 *5 (-884 *4)))) (-1690 (*1 *2 *1) (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-887 *3 *4)) (-4 *4 (-884 *3)))) (-3106 (*1 *1 *1) (-12 (-14 *2 (-576)) (-5 *1 (-887 *2 *3)) (-4 *3 (-884 *2)))) (-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-887 *3 *4)) (-4 *4 (-884 *3))))) -(-13 (-1014 |#2|) (-10 -8 (-15 -4144 ((-419 (-576)) $ (-576))) (-15 -1690 ((-176 (-419 (-576))) $)) (-15 -3106 ($ $)) (-15 -3106 ($ (-576) $)))) -((-3429 (((-112) $ $) NIL (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))))) (-2902 ((|#2| $) 12)) (-3208 (($ |#1| |#2|) 9)) (-2342 (((-1180) $) NIL (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))))) (-1471 (((-1142) $) NIL (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))))) (-3510 ((|#1| $) 11)) (-3511 (($ |#1| |#2|) 10)) (-3501 (((-877) $) 18 (-2802 (-12 (|has| |#1| (-625 (-877))) (|has| |#2| (-625 (-877)))) (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122)))))) (-2046 (((-112) $ $) NIL (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))))) (-2933 (((-112) $ $) 23 (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122)))))) -(((-888 |#1| |#2|) (-13 (-1239) (-10 -8 (IF (|has| |#1| (-625 (-877))) (IF (|has| |#2| (-625 (-877))) (-6 (-625 (-877))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1122)) (IF (|has| |#2| (-1122)) (-6 (-1122)) |%noBranch|) |%noBranch|) (-15 -3208 ($ |#1| |#2|)) (-15 -3511 ($ |#1| |#2|)) (-15 -3510 (|#1| $)) (-15 -2902 (|#2| $)))) (-1239) (-1239)) (T -888)) -((-3208 (*1 *1 *2 *3) (-12 (-5 *1 (-888 *2 *3)) (-4 *2 (-1239)) (-4 *3 (-1239)))) (-3511 (*1 *1 *2 *3) (-12 (-5 *1 (-888 *2 *3)) (-4 *2 (-1239)) (-4 *3 (-1239)))) (-3510 (*1 *2 *1) (-12 (-4 *2 (-1239)) (-5 *1 (-888 *2 *3)) (-4 *3 (-1239)))) (-2902 (*1 *2 *1) (-12 (-4 *2 (-1239)) (-5 *1 (-888 *3 *2)) (-4 *3 (-1239))))) -(-13 (-1239) (-10 -8 (IF (|has| |#1| (-625 (-877))) (IF (|has| |#2| (-625 (-877))) (-6 (-625 (-877))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1122)) (IF (|has| |#2| (-1122)) (-6 (-1122)) |%noBranch|) |%noBranch|) (-15 -3208 ($ |#1| |#2|)) (-15 -3511 ($ |#1| |#2|)) (-15 -3510 (|#1| $)) (-15 -2902 (|#2| $)))) -((-3429 (((-112) $ $) NIL)) (-4251 (((-576) $) 16)) (-1895 (($ (-158)) 13)) (-3962 (($ (-158)) 14)) (-2342 (((-1180) $) NIL)) (-4082 (((-158) $) 15)) (-1471 (((-1142) $) NIL)) (-2755 (($ (-158)) 11)) (-1816 (($ (-158)) 10)) (-3501 (((-877) $) 24) (($ (-158)) 17)) (-3217 (($ (-158)) 12)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-889) (-13 (-1122) (-10 -8 (-15 -1816 ($ (-158))) (-15 -2755 ($ (-158))) (-15 -3217 ($ (-158))) (-15 -1895 ($ (-158))) (-15 -3962 ($ (-158))) (-15 -4082 ((-158) $)) (-15 -4251 ((-576) $)) (-15 -3501 ($ (-158)))))) (T -889)) -((-1816 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889)))) (-2755 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889)))) (-3217 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889)))) (-3962 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889)))) (-4082 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-889)))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-889)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889))))) -(-13 (-1122) (-10 -8 (-15 -1816 ($ (-158))) (-15 -2755 ($ (-158))) (-15 -3217 ($ (-158))) (-15 -1895 ($ (-158))) (-15 -3962 ($ (-158))) (-15 -4082 ((-158) $)) (-15 -4251 ((-576) $)) (-15 -3501 ($ (-158))))) -((-3501 (((-326 (-576)) (-419 (-972 (-48)))) 23) (((-326 (-576)) (-972 (-48))) 18))) -(((-890) (-10 -7 (-15 -3501 ((-326 (-576)) (-972 (-48)))) (-15 -3501 ((-326 (-576)) (-419 (-972 (-48))))))) (T -890)) -((-3501 (*1 *2 *3) (-12 (-5 *3 (-419 (-972 (-48)))) (-5 *2 (-326 (-576))) (-5 *1 (-890)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-972 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-890))))) -(-10 -7 (-15 -3501 ((-326 (-576)) (-972 (-48)))) (-15 -3501 ((-326 (-576)) (-419 (-972 (-48)))))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 18) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2756 (((-112) $ (|[\|\|]| (-518))) 9) (((-112) $ (|[\|\|]| (-1180))) 13)) (-2046 (((-112) $ $) NIL)) (-1977 (((-518) $) 10) (((-1180) $) 14)) (-2933 (((-112) $ $) 15))) -(((-891) (-13 (-1105) (-1284) (-10 -8 (-15 -2756 ((-112) $ (|[\|\|]| (-518)))) (-15 -1977 ((-518) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-1180)))) (-15 -1977 ((-1180) $))))) (T -891)) -((-2756 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-891)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-891)))) (-2756 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-112)) (-5 *1 (-891)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-891))))) -(-13 (-1105) (-1284) (-10 -8 (-15 -2756 ((-112) $ (|[\|\|]| (-518)))) (-15 -1977 ((-518) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-1180)))) (-15 -1977 ((-1180) $)))) -((-4083 (((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)) 15))) -(((-892 |#1| |#2|) (-10 -7 (-15 -4083 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) (-1239) (-1239)) (T -892)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6))))) -(-10 -7 (-15 -4083 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) -((-3215 (($ |#1| |#1|) 8)) (-1692 ((|#1| $ (-784)) 15))) -(((-893 |#1|) (-10 -8 (-15 -3215 ($ |#1| |#1|)) (-15 -1692 (|#1| $ (-784)))) (-1239)) (T -893)) -((-1692 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *1 (-893 *2)) (-4 *2 (-1239)))) (-3215 (*1 *1 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1239))))) -(-10 -8 (-15 -3215 ($ |#1| |#1|)) (-15 -1692 (|#1| $ (-784)))) -((-4083 (((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)) 15))) -(((-894 |#1| |#2|) (-10 -7 (-15 -4083 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)))) (-1239) (-1239)) (T -894)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-895 *6)) (-5 *1 (-894 *5 *6))))) -(-10 -7 (-15 -4083 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)))) -((-3215 (($ |#1| |#1| |#1|) 8)) (-1692 ((|#1| $ (-784)) 15))) -(((-895 |#1|) (-10 -8 (-15 -3215 ($ |#1| |#1| |#1|)) (-15 -1692 (|#1| $ (-784)))) (-1239)) (T -895)) -((-1692 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *1 (-895 *2)) (-4 *2 (-1239)))) (-3215 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-1239))))) -(-10 -8 (-15 -3215 ($ |#1| |#1| |#1|)) (-15 -1692 (|#1| $ (-784)))) -((-2735 (((-657 (-1203)) (-1180)) 9))) -(((-896) (-10 -7 (-15 -2735 ((-657 (-1203)) (-1180))))) (T -896)) -((-2735 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-657 (-1203))) (-5 *1 (-896))))) -(-10 -7 (-15 -2735 ((-657 (-1203)) (-1180)))) -((-4083 (((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)) 15))) -(((-897 |#1| |#2|) (-10 -7 (-15 -4083 ((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)))) (-1239) (-1239)) (T -897)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-898 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-898 *6)) (-5 *1 (-897 *5 *6))))) -(-10 -7 (-15 -4083 ((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)))) -((-4051 (($ |#1| |#1| |#1|) 8)) (-1692 ((|#1| $ (-784)) 15))) -(((-898 |#1|) (-10 -8 (-15 -4051 ($ |#1| |#1| |#1|)) (-15 -1692 (|#1| $ (-784)))) (-1239)) (T -898)) -((-1692 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *1 (-898 *2)) (-4 *2 (-1239)))) (-4051 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1239))))) -(-10 -8 (-15 -4051 ($ |#1| |#1| |#1|)) (-15 -1692 (|#1| $ (-784)))) -((-2705 (((-1179 (-657 (-576))) (-657 (-576)) (-1179 (-657 (-576)))) 41)) (-3190 (((-1179 (-657 (-576))) (-657 (-576)) (-657 (-576))) 31)) (-3611 (((-1179 (-657 (-576))) (-657 (-576))) 53) (((-1179 (-657 (-576))) (-657 (-576)) (-657 (-576))) 50)) (-4029 (((-1179 (-657 (-576))) (-576)) 55)) (-2395 (((-1179 (-657 (-941))) (-1179 (-657 (-941)))) 22)) (-3549 (((-657 (-941)) (-657 (-941))) 18))) -(((-899) (-10 -7 (-15 -3549 ((-657 (-941)) (-657 (-941)))) (-15 -2395 ((-1179 (-657 (-941))) (-1179 (-657 (-941))))) (-15 -3190 ((-1179 (-657 (-576))) (-657 (-576)) (-657 (-576)))) (-15 -2705 ((-1179 (-657 (-576))) (-657 (-576)) (-1179 (-657 (-576))))) (-15 -3611 ((-1179 (-657 (-576))) (-657 (-576)) (-657 (-576)))) (-15 -3611 ((-1179 (-657 (-576))) (-657 (-576)))) (-15 -4029 ((-1179 (-657 (-576))) (-576))))) (T -899)) -((-4029 (*1 *2 *3) (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *1 (-899)) (-5 *3 (-576)))) (-3611 (*1 *2 *3) (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *1 (-899)) (-5 *3 (-657 (-576))))) (-3611 (*1 *2 *3 *3) (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *1 (-899)) (-5 *3 (-657 (-576))))) (-2705 (*1 *2 *3 *2) (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *3 (-657 (-576))) (-5 *1 (-899)))) (-3190 (*1 *2 *3 *3) (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *1 (-899)) (-5 *3 (-657 (-576))))) (-2395 (*1 *2 *2) (-12 (-5 *2 (-1179 (-657 (-941)))) (-5 *1 (-899)))) (-3549 (*1 *2 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-899))))) -(-10 -7 (-15 -3549 ((-657 (-941)) (-657 (-941)))) (-15 -2395 ((-1179 (-657 (-941))) (-1179 (-657 (-941))))) (-15 -3190 ((-1179 (-657 (-576))) (-657 (-576)) (-657 (-576)))) (-15 -2705 ((-1179 (-657 (-576))) (-657 (-576)) (-1179 (-657 (-576))))) (-15 -3611 ((-1179 (-657 (-576))) (-657 (-576)) (-657 (-576)))) (-15 -3611 ((-1179 (-657 (-576))) (-657 (-576)))) (-15 -4029 ((-1179 (-657 (-576))) (-576)))) -((-4148 (((-908 (-390)) $) 9 (|has| |#1| (-626 (-908 (-390))))) (((-908 (-576)) $) 8 (|has| |#1| (-626 (-908 (-576))))))) -(((-900 |#1|) (-141) (-1239)) (T -900)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-626 (-908 (-576)))) (-6 (-626 (-908 (-576)))) |%noBranch|) (IF (|has| |t#1| (-626 (-908 (-390)))) (-6 (-626 (-908 (-390)))) |%noBranch|))) -(((-626 (-908 (-390))) |has| |#1| (-626 (-908 (-390)))) ((-626 (-908 (-576))) |has| |#1| (-626 (-908 (-576))))) -((-3429 (((-112) $ $) NIL)) (-4109 (($) 14)) (-1334 (($ (-905 |#1| |#2|) (-905 |#1| |#3|)) 28)) (-1623 (((-905 |#1| |#3|) $) 16)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3614 (((-112) $) 22)) (-4177 (($) 19)) (-3501 (((-877) $) 31)) (-2046 (((-112) $ $) NIL)) (-3536 (((-905 |#1| |#2|) $) 15)) (-2933 (((-112) $ $) 26))) -(((-901 |#1| |#2| |#3|) (-13 (-1122) (-10 -8 (-15 -3614 ((-112) $)) (-15 -4177 ($)) (-15 -4109 ($)) (-15 -1334 ($ (-905 |#1| |#2|) (-905 |#1| |#3|))) (-15 -3536 ((-905 |#1| |#2|) $)) (-15 -1623 ((-905 |#1| |#3|) $)))) (-1122) (-1122) (-679 |#2|)) (T -901)) -((-3614 (*1 *2 *1) (-12 (-4 *4 (-1122)) (-5 *2 (-112)) (-5 *1 (-901 *3 *4 *5)) (-4 *3 (-1122)) (-4 *5 (-679 *4)))) (-4177 (*1 *1) (-12 (-4 *3 (-1122)) (-5 *1 (-901 *2 *3 *4)) (-4 *2 (-1122)) (-4 *4 (-679 *3)))) (-4109 (*1 *1) (-12 (-4 *3 (-1122)) (-5 *1 (-901 *2 *3 *4)) (-4 *2 (-1122)) (-4 *4 (-679 *3)))) (-1334 (*1 *1 *2 *3) (-12 (-5 *2 (-905 *4 *5)) (-5 *3 (-905 *4 *6)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-679 *5)) (-5 *1 (-901 *4 *5 *6)))) (-3536 (*1 *2 *1) (-12 (-4 *4 (-1122)) (-5 *2 (-905 *3 *4)) (-5 *1 (-901 *3 *4 *5)) (-4 *3 (-1122)) (-4 *5 (-679 *4)))) (-1623 (*1 *2 *1) (-12 (-4 *4 (-1122)) (-5 *2 (-905 *3 *5)) (-5 *1 (-901 *3 *4 *5)) (-4 *3 (-1122)) (-4 *5 (-679 *4))))) -(-13 (-1122) (-10 -8 (-15 -3614 ((-112) $)) (-15 -4177 ($)) (-15 -4109 ($)) (-15 -1334 ($ (-905 |#1| |#2|) (-905 |#1| |#3|))) (-15 -3536 ((-905 |#1| |#2|) $)) (-15 -1623 ((-905 |#1| |#3|) $)))) -((-3429 (((-112) $ $) 7)) (-3200 (((-905 |#1| $) $ (-908 |#1|) (-905 |#1| $)) 14)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8))) -(((-902 |#1|) (-141) (-1122)) (T -902)) -((-3200 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-905 *4 *1)) (-5 *3 (-908 *4)) (-4 *1 (-902 *4)) (-4 *4 (-1122))))) -(-13 (-1122) (-10 -8 (-15 -3200 ((-905 |t#1| $) $ (-908 |t#1|) (-905 |t#1| $))))) -(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-4412 (((-112) (-657 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2446 (((-905 |#1| |#2|) |#2| |#3|) 45 (-12 (-2712 (|has| |#2| (-1060 (-1198)))) (-2712 (|has| |#2| (-1071))))) (((-657 (-304 (-972 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1071)) (-2712 (|has| |#2| (-1060 (-1198)))))) (((-657 (-304 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1060 (-1198)))) (((-901 |#1| |#2| (-657 |#2|)) (-657 |#2|) |#3|) 21))) -(((-903 |#1| |#2| |#3|) (-10 -7 (-15 -4412 ((-112) |#2| |#3|)) (-15 -4412 ((-112) (-657 |#2|) |#3|)) (-15 -2446 ((-901 |#1| |#2| (-657 |#2|)) (-657 |#2|) |#3|)) (IF (|has| |#2| (-1060 (-1198))) (-15 -2446 ((-657 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1071)) (-15 -2446 ((-657 (-304 (-972 |#2|))) |#2| |#3|)) (-15 -2446 ((-905 |#1| |#2|) |#2| |#3|))))) (-1122) (-902 |#1|) (-626 (-908 |#1|))) (T -903)) -((-2446 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-5 *2 (-905 *5 *3)) (-5 *1 (-903 *5 *3 *4)) (-2712 (-4 *3 (-1060 (-1198)))) (-2712 (-4 *3 (-1071))) (-4 *3 (-902 *5)) (-4 *4 (-626 (-908 *5))))) (-2446 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-5 *2 (-657 (-304 (-972 *3)))) (-5 *1 (-903 *5 *3 *4)) (-4 *3 (-1071)) (-2712 (-4 *3 (-1060 (-1198)))) (-4 *3 (-902 *5)) (-4 *4 (-626 (-908 *5))))) (-2446 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-5 *2 (-657 (-304 *3))) (-5 *1 (-903 *5 *3 *4)) (-4 *3 (-1060 (-1198))) (-4 *3 (-902 *5)) (-4 *4 (-626 (-908 *5))))) (-2446 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-4 *6 (-902 *5)) (-5 *2 (-901 *5 *6 (-657 *6))) (-5 *1 (-903 *5 *6 *4)) (-5 *3 (-657 *6)) (-4 *4 (-626 (-908 *5))))) (-4412 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *6)) (-4 *6 (-902 *5)) (-4 *5 (-1122)) (-5 *2 (-112)) (-5 *1 (-903 *5 *6 *4)) (-4 *4 (-626 (-908 *5))))) (-4412 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-5 *2 (-112)) (-5 *1 (-903 *5 *3 *4)) (-4 *3 (-902 *5)) (-4 *4 (-626 (-908 *5)))))) -(-10 -7 (-15 -4412 ((-112) |#2| |#3|)) (-15 -4412 ((-112) (-657 |#2|) |#3|)) (-15 -2446 ((-901 |#1| |#2| (-657 |#2|)) (-657 |#2|) |#3|)) (IF (|has| |#2| (-1060 (-1198))) (-15 -2446 ((-657 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1071)) (-15 -2446 ((-657 (-304 (-972 |#2|))) |#2| |#3|)) (-15 -2446 ((-905 |#1| |#2|) |#2| |#3|))))) -((-4083 (((-905 |#1| |#3|) (-1 |#3| |#2|) (-905 |#1| |#2|)) 22))) -(((-904 |#1| |#2| |#3|) (-10 -7 (-15 -4083 ((-905 |#1| |#3|) (-1 |#3| |#2|) (-905 |#1| |#2|)))) (-1122) (-1122) (-1122)) (T -904)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-905 *5 *6)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-905 *5 *7)) (-5 *1 (-904 *5 *6 *7))))) -(-10 -7 (-15 -4083 ((-905 |#1| |#3|) (-1 |#3| |#2|) (-905 |#1| |#2|)))) -((-3429 (((-112) $ $) NIL)) (-1876 (($ $ $) 40)) (-4196 (((-3 (-112) "failed") $ (-908 |#1|)) 37)) (-4109 (($) 12)) (-2342 (((-1180) $) NIL)) (-1366 (($ (-908 |#1|) |#2| $) 20)) (-1471 (((-1142) $) NIL)) (-2639 (((-3 |#2| "failed") (-908 |#1|) $) 51)) (-3614 (((-112) $) 15)) (-4177 (($) 13)) (-1961 (((-657 (-2 (|:| -4291 (-1198)) (|:| -4440 |#2|))) $) 25)) (-3511 (($ (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 |#2|)))) 23)) (-3501 (((-877) $) 45)) (-2046 (((-112) $ $) NIL)) (-2848 (($ (-908 |#1|) |#2| $ |#2|) 49)) (-3918 (($ (-908 |#1|) |#2| $) 48)) (-2933 (((-112) $ $) 42))) -(((-905 |#1| |#2|) (-13 (-1122) (-10 -8 (-15 -3614 ((-112) $)) (-15 -4177 ($)) (-15 -4109 ($)) (-15 -1876 ($ $ $)) (-15 -2639 ((-3 |#2| "failed") (-908 |#1|) $)) (-15 -3918 ($ (-908 |#1|) |#2| $)) (-15 -1366 ($ (-908 |#1|) |#2| $)) (-15 -2848 ($ (-908 |#1|) |#2| $ |#2|)) (-15 -1961 ((-657 (-2 (|:| -4291 (-1198)) (|:| -4440 |#2|))) $)) (-15 -3511 ($ (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 |#2|))))) (-15 -4196 ((-3 (-112) "failed") $ (-908 |#1|))))) (-1122) (-1122)) (T -905)) -((-3614 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-4177 (*1 *1) (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-4109 (*1 *1) (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-1876 (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-2639 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-908 *4)) (-4 *4 (-1122)) (-4 *2 (-1122)) (-5 *1 (-905 *4 *2)))) (-3918 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-908 *4)) (-4 *4 (-1122)) (-5 *1 (-905 *4 *3)) (-4 *3 (-1122)))) (-1366 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-908 *4)) (-4 *4 (-1122)) (-5 *1 (-905 *4 *3)) (-4 *3 (-1122)))) (-2848 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-908 *4)) (-4 *4 (-1122)) (-5 *1 (-905 *4 *3)) (-4 *3 (-1122)))) (-1961 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 *4)))) (-5 *1 (-905 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-3511 (*1 *1 *2) (-12 (-5 *2 (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 *4)))) (-4 *4 (-1122)) (-5 *1 (-905 *3 *4)) (-4 *3 (-1122)))) (-4196 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-908 *4)) (-4 *4 (-1122)) (-5 *2 (-112)) (-5 *1 (-905 *4 *5)) (-4 *5 (-1122))))) -(-13 (-1122) (-10 -8 (-15 -3614 ((-112) $)) (-15 -4177 ($)) (-15 -4109 ($)) (-15 -1876 ($ $ $)) (-15 -2639 ((-3 |#2| "failed") (-908 |#1|) $)) (-15 -3918 ($ (-908 |#1|) |#2| $)) (-15 -1366 ($ (-908 |#1|) |#2| $)) (-15 -2848 ($ (-908 |#1|) |#2| $ |#2|)) (-15 -1961 ((-657 (-2 (|:| -4291 (-1198)) (|:| -4440 |#2|))) $)) (-15 -3511 ($ (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 |#2|))))) (-15 -4196 ((-3 (-112) "failed") $ (-908 |#1|))))) -((-4237 (((-908 |#1|) (-908 |#1|) (-657 (-1198)) (-1 (-112) (-657 |#2|))) 32) (((-908 |#1|) (-908 |#1|) (-657 (-1 (-112) |#2|))) 46) (((-908 |#1|) (-908 |#1|) (-1 (-112) |#2|)) 35)) (-4196 (((-112) (-657 |#2|) (-908 |#1|)) 42) (((-112) |#2| (-908 |#1|)) 36)) (-2086 (((-1 (-112) |#2|) (-908 |#1|)) 16)) (-2651 (((-657 |#2|) (-908 |#1|)) 24)) (-1530 (((-908 |#1|) (-908 |#1|) |#2|) 20))) -(((-906 |#1| |#2|) (-10 -7 (-15 -4237 ((-908 |#1|) (-908 |#1|) (-1 (-112) |#2|))) (-15 -4237 ((-908 |#1|) (-908 |#1|) (-657 (-1 (-112) |#2|)))) (-15 -4237 ((-908 |#1|) (-908 |#1|) (-657 (-1198)) (-1 (-112) (-657 |#2|)))) (-15 -2086 ((-1 (-112) |#2|) (-908 |#1|))) (-15 -4196 ((-112) |#2| (-908 |#1|))) (-15 -4196 ((-112) (-657 |#2|) (-908 |#1|))) (-15 -1530 ((-908 |#1|) (-908 |#1|) |#2|)) (-15 -2651 ((-657 |#2|) (-908 |#1|)))) (-1122) (-1239)) (T -906)) -((-2651 (*1 *2 *3) (-12 (-5 *3 (-908 *4)) (-4 *4 (-1122)) (-5 *2 (-657 *5)) (-5 *1 (-906 *4 *5)) (-4 *5 (-1239)))) (-1530 (*1 *2 *2 *3) (-12 (-5 *2 (-908 *4)) (-4 *4 (-1122)) (-5 *1 (-906 *4 *3)) (-4 *3 (-1239)))) (-4196 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *6)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) (-4 *6 (-1239)) (-5 *2 (-112)) (-5 *1 (-906 *5 *6)))) (-4196 (*1 *2 *3 *4) (-12 (-5 *4 (-908 *5)) (-4 *5 (-1122)) (-5 *2 (-112)) (-5 *1 (-906 *5 *3)) (-4 *3 (-1239)))) (-2086 (*1 *2 *3) (-12 (-5 *3 (-908 *4)) (-4 *4 (-1122)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-906 *4 *5)) (-4 *5 (-1239)))) (-4237 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-908 *5)) (-5 *3 (-657 (-1198))) (-5 *4 (-1 (-112) (-657 *6))) (-4 *5 (-1122)) (-4 *6 (-1239)) (-5 *1 (-906 *5 *6)))) (-4237 (*1 *2 *2 *3) (-12 (-5 *2 (-908 *4)) (-5 *3 (-657 (-1 (-112) *5))) (-4 *4 (-1122)) (-4 *5 (-1239)) (-5 *1 (-906 *4 *5)))) (-4237 (*1 *2 *2 *3) (-12 (-5 *2 (-908 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1122)) (-4 *5 (-1239)) (-5 *1 (-906 *4 *5))))) -(-10 -7 (-15 -4237 ((-908 |#1|) (-908 |#1|) (-1 (-112) |#2|))) (-15 -4237 ((-908 |#1|) (-908 |#1|) (-657 (-1 (-112) |#2|)))) (-15 -4237 ((-908 |#1|) (-908 |#1|) (-657 (-1198)) (-1 (-112) (-657 |#2|)))) (-15 -2086 ((-1 (-112) |#2|) (-908 |#1|))) (-15 -4196 ((-112) |#2| (-908 |#1|))) (-15 -4196 ((-112) (-657 |#2|) (-908 |#1|))) (-15 -1530 ((-908 |#1|) (-908 |#1|) |#2|)) (-15 -2651 ((-657 |#2|) (-908 |#1|)))) -((-4083 (((-908 |#2|) (-1 |#2| |#1|) (-908 |#1|)) 19))) -(((-907 |#1| |#2|) (-10 -7 (-15 -4083 ((-908 |#2|) (-1 |#2| |#1|) (-908 |#1|)))) (-1122) (-1122)) (T -907)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-908 *6)) (-5 *1 (-907 *5 *6))))) -(-10 -7 (-15 -4083 ((-908 |#2|) (-1 |#2| |#1|) (-908 |#1|)))) -((-3429 (((-112) $ $) NIL)) (-4032 (($ $ (-657 (-52))) 74)) (-2029 (((-657 $) $) 139)) (-3316 (((-2 (|:| |var| (-657 (-1198))) (|:| |pred| (-52))) $) 30)) (-2515 (((-112) $) 35)) (-2408 (($ $ (-657 (-1198)) (-52)) 31)) (-3830 (($ $ (-657 (-52))) 73)) (-1624 (((-3 |#1| "failed") $) 71) (((-3 (-1198) "failed") $) 164)) (-2884 ((|#1| $) 68) (((-1198) $) NIL)) (-2161 (($ $) 126)) (-1843 (((-112) $) 55)) (-4135 (((-657 (-52)) $) 50)) (-3922 (($ (-1198) (-112) (-112) (-112)) 75)) (-2423 (((-3 (-657 $) "failed") (-657 $)) 82)) (-2043 (((-112) $) 58)) (-3790 (((-112) $) 57)) (-2342 (((-1180) $) NIL)) (-1392 (((-3 (-657 $) "failed") $) 41)) (-2357 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-3559 (((-3 (-2 (|:| |val| $) (|:| -1801 $)) "failed") $) 97)) (-2974 (((-3 (-657 $) "failed") $) 40)) (-1593 (((-3 (-657 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -1812 (-115)) (|:| |arg| (-657 $))) "failed") $) 107)) (-3412 (((-3 (-657 $) "failed") $) 42)) (-2999 (((-3 (-2 (|:| |val| $) (|:| -1801 (-784))) "failed") $) 45)) (-2552 (((-112) $) 34)) (-1471 (((-1142) $) NIL)) (-1869 (((-112) $) 28)) (-1582 (((-112) $) 52)) (-1600 (((-657 (-52)) $) 130)) (-4049 (((-112) $) 56)) (-2835 (($ (-115) (-657 $)) 104)) (-1943 (((-784) $) 33)) (-1923 (($ $) 72)) (-4148 (($ (-657 $)) 69)) (-2005 (((-112) $) 32)) (-3501 (((-877) $) 63) (($ |#1|) 23) (($ (-1198)) 76)) (-2046 (((-112) $ $) NIL)) (-1530 (($ $ (-52)) 129)) (-2769 (($) 103 T CONST)) (-2779 (($) 83 T CONST)) (-2933 (((-112) $ $) 93)) (-3034 (($ $ $) 117)) (-3012 (($ $ $) 121)) (** (($ $ (-784)) 115) (($ $ $) 64)) (* (($ $ $) 122))) -(((-908 |#1|) (-13 (-1122) (-1060 |#1|) (-1060 (-1198)) (-10 -8 (-15 0 ($) -1509) (-15 1 ($) -1509) (-15 -2974 ((-3 (-657 $) "failed") $)) (-15 -1392 ((-3 (-657 $) "failed") $)) (-15 -1593 ((-3 (-657 $) "failed") $ (-115))) (-15 -1593 ((-3 (-2 (|:| -1812 (-115)) (|:| |arg| (-657 $))) "failed") $)) (-15 -2999 ((-3 (-2 (|:| |val| $) (|:| -1801 (-784))) "failed") $)) (-15 -2357 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3412 ((-3 (-657 $) "failed") $)) (-15 -3559 ((-3 (-2 (|:| |val| $) (|:| -1801 $)) "failed") $)) (-15 -2835 ($ (-115) (-657 $))) (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-784))) (-15 ** ($ $ $)) (-15 -3034 ($ $ $)) (-15 -1943 ((-784) $)) (-15 -4148 ($ (-657 $))) (-15 -1923 ($ $)) (-15 -2552 ((-112) $)) (-15 -1843 ((-112) $)) (-15 -2515 ((-112) $)) (-15 -2005 ((-112) $)) (-15 -4049 ((-112) $)) (-15 -3790 ((-112) $)) (-15 -2043 ((-112) $)) (-15 -1582 ((-112) $)) (-15 -4135 ((-657 (-52)) $)) (-15 -3830 ($ $ (-657 (-52)))) (-15 -4032 ($ $ (-657 (-52)))) (-15 -3922 ($ (-1198) (-112) (-112) (-112))) (-15 -2408 ($ $ (-657 (-1198)) (-52))) (-15 -3316 ((-2 (|:| |var| (-657 (-1198))) (|:| |pred| (-52))) $)) (-15 -1869 ((-112) $)) (-15 -2161 ($ $)) (-15 -1530 ($ $ (-52))) (-15 -1600 ((-657 (-52)) $)) (-15 -2029 ((-657 $) $)) (-15 -2423 ((-3 (-657 $) "failed") (-657 $))))) (-1122)) (T -908)) -((-2769 (*1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) (-2779 (*1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) (-2974 (*1 *2 *1) (|partial| -12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-1392 (*1 *2 *1) (|partial| -12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-1593 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-657 (-908 *4))) (-5 *1 (-908 *4)) (-4 *4 (-1122)))) (-1593 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1812 (-115)) (|:| |arg| (-657 (-908 *3))))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-2999 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-908 *3)) (|:| -1801 (-784)))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-2357 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-908 *3)) (|:| |den| (-908 *3)))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-3412 (*1 *2 *1) (|partial| -12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-3559 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-908 *3)) (|:| -1801 (-908 *3)))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-2835 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-657 (-908 *4))) (-5 *1 (-908 *4)) (-4 *4 (-1122)))) (-3012 (*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) (-3034 (*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) (-1943 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-1923 (*1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) (-2552 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-2515 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-3790 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-1582 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-657 (-52))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-3830 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-52))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-4032 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-52))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-3922 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-112)) (-5 *1 (-908 *4)) (-4 *4 (-1122)))) (-2408 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-52)) (-5 *1 (-908 *4)) (-4 *4 (-1122)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-657 (-1198))) (|:| |pred| (-52)))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) (-1530 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-657 (-52))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-2029 (*1 *2 *1) (-12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) (-2423 (*1 *2 *2) (|partial| -12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) -(-13 (-1122) (-1060 |#1|) (-1060 (-1198)) (-10 -8 (-15 (-2769) ($) -1509) (-15 (-2779) ($) -1509) (-15 -2974 ((-3 (-657 $) "failed") $)) (-15 -1392 ((-3 (-657 $) "failed") $)) (-15 -1593 ((-3 (-657 $) "failed") $ (-115))) (-15 -1593 ((-3 (-2 (|:| -1812 (-115)) (|:| |arg| (-657 $))) "failed") $)) (-15 -2999 ((-3 (-2 (|:| |val| $) (|:| -1801 (-784))) "failed") $)) (-15 -2357 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3412 ((-3 (-657 $) "failed") $)) (-15 -3559 ((-3 (-2 (|:| |val| $) (|:| -1801 $)) "failed") $)) (-15 -2835 ($ (-115) (-657 $))) (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-784))) (-15 ** ($ $ $)) (-15 -3034 ($ $ $)) (-15 -1943 ((-784) $)) (-15 -4148 ($ (-657 $))) (-15 -1923 ($ $)) (-15 -2552 ((-112) $)) (-15 -1843 ((-112) $)) (-15 -2515 ((-112) $)) (-15 -2005 ((-112) $)) (-15 -4049 ((-112) $)) (-15 -3790 ((-112) $)) (-15 -2043 ((-112) $)) (-15 -1582 ((-112) $)) (-15 -4135 ((-657 (-52)) $)) (-15 -3830 ($ $ (-657 (-52)))) (-15 -4032 ($ $ (-657 (-52)))) (-15 -3922 ($ (-1198) (-112) (-112) (-112))) (-15 -2408 ($ $ (-657 (-1198)) (-52))) (-15 -3316 ((-2 (|:| |var| (-657 (-1198))) (|:| |pred| (-52))) $)) (-15 -1869 ((-112) $)) (-15 -2161 ($ $)) (-15 -1530 ($ $ (-52))) (-15 -1600 ((-657 (-52)) $)) (-15 -2029 ((-657 $) $)) (-15 -2423 ((-3 (-657 $) "failed") (-657 $))))) -((-3429 (((-112) $ $) NIL)) (-3391 (((-657 |#1|) $) 19)) (-2991 (((-112) $) 49)) (-1624 (((-3 (-685 |#1|) "failed") $) 56)) (-2884 (((-685 |#1|) $) 54)) (-3522 (($ $) 23)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-3358 (((-784) $) 61)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3510 (((-685 |#1|) $) 21)) (-3501 (((-877) $) 47) (($ (-685 |#1|)) 26) (((-832 |#1|) $) 36) (($ |#1|) 25)) (-2046 (((-112) $ $) NIL)) (-2779 (($) 9 T CONST)) (-2329 (((-657 (-685 |#1|)) $) 28)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 12)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 67))) -(((-909 |#1|) (-13 (-862) (-1060 (-685 |#1|)) (-10 -8 (-15 1 ($) -1509) (-15 -3501 ((-832 |#1|) $)) (-15 -3501 ($ |#1|)) (-15 -3510 ((-685 |#1|) $)) (-15 -3358 ((-784) $)) (-15 -2329 ((-657 (-685 |#1|)) $)) (-15 -3522 ($ $)) (-15 -2991 ((-112) $)) (-15 -3391 ((-657 |#1|) $)))) (-862)) (T -909)) -((-2779 (*1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-862)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-832 *3)) (-5 *1 (-909 *3)) (-4 *3 (-862)))) (-3501 (*1 *1 *2) (-12 (-5 *1 (-909 *2)) (-4 *2 (-862)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-685 *3)) (-5 *1 (-909 *3)) (-4 *3 (-862)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-909 *3)) (-4 *3 (-862)))) (-2329 (*1 *2 *1) (-12 (-5 *2 (-657 (-685 *3))) (-5 *1 (-909 *3)) (-4 *3 (-862)))) (-3522 (*1 *1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-862)))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-909 *3)) (-4 *3 (-862)))) (-3391 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-909 *3)) (-4 *3 (-862))))) -(-13 (-862) (-1060 (-685 |#1|)) (-10 -8 (-15 (-2779) ($) -1509) (-15 -3501 ((-832 |#1|) $)) (-15 -3501 ($ |#1|)) (-15 -3510 ((-685 |#1|) $)) (-15 -3358 ((-784) $)) (-15 -2329 ((-657 (-685 |#1|)) $)) (-15 -3522 ($ $)) (-15 -2991 ((-112) $)) (-15 -3391 ((-657 |#1|) $)))) -((-4035 ((|#1| |#1| |#1|) 19))) -(((-910 |#1| |#2|) (-10 -7 (-15 -4035 (|#1| |#1| |#1|))) (-1265 |#2|) (-1071)) (T -910)) -((-4035 (*1 *2 *2 *2) (-12 (-4 *3 (-1071)) (-5 *1 (-910 *2 *3)) (-4 *2 (-1265 *3))))) -(-10 -7 (-15 -4035 (|#1| |#1| |#1|))) -((-2097 ((|#2| $ |#3|) 10))) -(((-911 |#1| |#2| |#3|) (-10 -8 (-15 -2097 (|#2| |#1| |#3|))) (-912 |#2| |#3|) (-1239) (-1239)) (T -911)) -NIL -(-10 -8 (-15 -2097 (|#2| |#1| |#3|))) -((-2815 ((|#1| $ |#2|) 7)) (-2097 ((|#1| $ |#2|) 6))) -(((-912 |#1| |#2|) (-141) (-1239) (-1239)) (T -912)) -((-2815 (*1 *2 *1 *3) (-12 (-4 *1 (-912 *2 *3)) (-4 *3 (-1239)) (-4 *2 (-1239)))) (-2097 (*1 *2 *1 *3) (-12 (-4 *1 (-912 *2 *3)) (-4 *3 (-1239)) (-4 *2 (-1239))))) -(-13 (-1239) (-10 -8 (-15 -2815 (|t#1| $ |t#2|)) (-15 -2097 (|t#1| $ |t#2|)))) -(((-1239) . T)) -((-3429 (((-112) $ $) 7)) (-4209 (((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) 15)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2036 (((-1057) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) 14)) (-2933 (((-112) $ $) 8))) -(((-913) (-141)) (T -913)) -((-4209 (*1 *2 *3 *4) (-12 (-4 *1 (-913)) (-5 *3 (-1085)) (-5 *4 (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)))))) (-2036 (*1 *2 *3) (-12 (-4 *1 (-913)) (-5 *3 (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) (-5 *2 (-1057))))) -(-13 (-1122) (-10 -7 (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| |explanations| (-1180))) (-1085) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227))))) (-15 -2036 ((-1057) (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227))))))) -(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-3953 ((|#1| |#1| (-784)) 27)) (-2202 (((-3 |#1| "failed") |#1| |#1|) 24)) (-1954 (((-3 (-2 (|:| -4224 |#1|) (|:| -4236 |#1|)) "failed") |#1| (-784) (-784)) 30) (((-657 |#1|) |#1|) 38))) -(((-914 |#1| |#2|) (-10 -7 (-15 -1954 ((-657 |#1|) |#1|)) (-15 -1954 ((-3 (-2 (|:| -4224 |#1|) (|:| -4236 |#1|)) "failed") |#1| (-784) (-784))) (-15 -2202 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3953 (|#1| |#1| (-784)))) (-1265 |#2|) (-374)) (T -914)) -((-3953 (*1 *2 *2 *3) (-12 (-5 *3 (-784)) (-4 *4 (-374)) (-5 *1 (-914 *2 *4)) (-4 *2 (-1265 *4)))) (-2202 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-914 *2 *3)) (-4 *2 (-1265 *3)))) (-1954 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-784)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -4224 *3) (|:| -4236 *3))) (-5 *1 (-914 *3 *5)) (-4 *3 (-1265 *5)))) (-1954 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-657 *3)) (-5 *1 (-914 *3 *4)) (-4 *3 (-1265 *4))))) -(-10 -7 (-15 -1954 ((-657 |#1|) |#1|)) (-15 -1954 ((-3 (-2 (|:| -4224 |#1|) (|:| -4236 |#1|)) "failed") |#1| (-784) (-784))) (-15 -2202 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3953 (|#1| |#1| (-784)))) -((-3036 (((-1057) (-390) (-390) (-390) (-390) (-784) (-784) (-657 (-326 (-390))) (-657 (-657 (-326 (-390)))) (-1180)) 104) (((-1057) (-390) (-390) (-390) (-390) (-784) (-784) (-657 (-326 (-390))) (-657 (-657 (-326 (-390)))) (-1180) (-227)) 100) (((-1057) (-916) (-1085)) 92) (((-1057) (-916)) 93)) (-4209 (((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))) (-916) (-1085)) 62) (((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))) (-916)) 64))) -(((-915) (-10 -7 (-15 -3036 ((-1057) (-916))) (-15 -3036 ((-1057) (-916) (-1085))) (-15 -3036 ((-1057) (-390) (-390) (-390) (-390) (-784) (-784) (-657 (-326 (-390))) (-657 (-657 (-326 (-390)))) (-1180) (-227))) (-15 -3036 ((-1057) (-390) (-390) (-390) (-390) (-784) (-784) (-657 (-326 (-390))) (-657 (-657 (-326 (-390)))) (-1180))) (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))) (-916))) (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))) (-916) (-1085))))) (T -915)) -((-4209 (*1 *2 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-1085)) (-5 *2 (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))))) (-5 *1 (-915)))) (-4209 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180))))) (-5 *1 (-915)))) (-3036 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-784)) (-5 *6 (-657 (-657 (-326 *3)))) (-5 *7 (-1180)) (-5 *5 (-657 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1057)) (-5 *1 (-915)))) (-3036 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-784)) (-5 *6 (-657 (-657 (-326 *3)))) (-5 *7 (-1180)) (-5 *8 (-227)) (-5 *5 (-657 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1057)) (-5 *1 (-915)))) (-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-916)) (-5 *4 (-1085)) (-5 *2 (-1057)) (-5 *1 (-915)))) (-3036 (*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1057)) (-5 *1 (-915))))) -(-10 -7 (-15 -3036 ((-1057) (-916))) (-15 -3036 ((-1057) (-916) (-1085))) (-15 -3036 ((-1057) (-390) (-390) (-390) (-390) (-784) (-784) (-657 (-326 (-390))) (-657 (-657 (-326 (-390)))) (-1180) (-227))) (-15 -3036 ((-1057) (-390) (-390) (-390) (-390) (-784) (-784) (-657 (-326 (-390))) (-657 (-657 (-326 (-390)))) (-1180))) (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))) (-916))) (-15 -4209 ((-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) (|:| |explanations| (-657 (-1180)))) (-916) (-1085)))) -((-3429 (((-112) $ $) NIL)) (-2884 (((-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227))) $) 19)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 21) (($ (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) 18)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-916) (-13 (-1122) (-10 -8 (-15 -3501 ($ (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227))))) (-15 -2884 ((-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227))) $))))) (T -916)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) (-5 *1 (-916)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227)))) (-5 *1 (-916))))) -(-13 (-1122) (-10 -8 (-15 -3501 ($ (-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227))))) (-15 -2884 ((-2 (|:| |pde| (-657 (-326 (-227)))) (|:| |constraints| (-657 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-784)) (|:| |boundaryType| (-576)) (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) (|:| |tol| (-227))) $)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-2815 (($ $ (-657 |#2|) (-657 (-784))) 39) (($ $ |#2| (-784)) 38) (($ $ (-657 |#2|)) 37) (($ $ |#2|) 35)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2097 (($ $ (-657 |#2|) (-657 (-784))) 42) (($ $ |#2| (-784)) 41) (($ $ (-657 |#2|)) 40) (($ $ |#2|) 36)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-917 |#1| |#2|) (-141) (-1071) (-1122)) (T -917)) -NIL -(-13 (-111 |t#1| |t#1|) (-920 |t#2|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-730 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) |has| |#1| (-174)) ((-730 |#1|) |has| |#1| (-174)) ((-912 $ |#2|) . T) ((-920 |#2|) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3843 (((-3 $ "failed") $) 37)) (-4094 (((-112) $) 35)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-2815 (($ $ (-657 |#1|) (-657 (-784))) 44) (($ $ |#1| (-784)) 43) (($ $ (-657 |#1|)) 42) (($ $ |#1|) 40)) (-3501 (((-877) $) 12) (($ (-576)) 33)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-657 |#1|) (-657 (-784))) 47) (($ $ |#1| (-784)) 46) (($ $ (-657 |#1|)) 45) (($ $ |#1|) 41)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-918 |#1|) (-141) (-1122)) (T -918)) -NIL -(-13 (-1071) (-920 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-739) . T) ((-912 $ |#1|) . T) ((-920 |#1|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-2815 (($ $ |#2|) NIL) (($ $ (-657 |#2|)) 10) (($ $ |#2| (-784)) 12) (($ $ (-657 |#2|) (-657 (-784))) 15)) (-2097 (($ $ |#2|) 16) (($ $ (-657 |#2|)) 18) (($ $ |#2| (-784)) 19) (($ $ (-657 |#2|) (-657 (-784))) 21))) -(((-919 |#1| |#2|) (-10 -8 (-15 -2097 (|#1| |#1| (-657 |#2|) (-657 (-784)))) (-15 -2097 (|#1| |#1| |#2| (-784))) (-15 -2097 (|#1| |#1| (-657 |#2|))) (-15 -2815 (|#1| |#1| (-657 |#2|) (-657 (-784)))) (-15 -2815 (|#1| |#1| |#2| (-784))) (-15 -2815 (|#1| |#1| (-657 |#2|))) (-15 -2097 (|#1| |#1| |#2|)) (-15 -2815 (|#1| |#1| |#2|))) (-920 |#2|) (-1122)) (T -919)) -NIL -(-10 -8 (-15 -2097 (|#1| |#1| (-657 |#2|) (-657 (-784)))) (-15 -2097 (|#1| |#1| |#2| (-784))) (-15 -2097 (|#1| |#1| (-657 |#2|))) (-15 -2815 (|#1| |#1| (-657 |#2|) (-657 (-784)))) (-15 -2815 (|#1| |#1| |#2| (-784))) (-15 -2815 (|#1| |#1| (-657 |#2|))) (-15 -2097 (|#1| |#1| |#2|)) (-15 -2815 (|#1| |#1| |#2|))) -((-2815 (($ $ |#1|) 7) (($ $ (-657 |#1|)) 15) (($ $ |#1| (-784)) 14) (($ $ (-657 |#1|) (-657 (-784))) 13)) (-2097 (($ $ |#1|) 6) (($ $ (-657 |#1|)) 12) (($ $ |#1| (-784)) 11) (($ $ (-657 |#1|) (-657 (-784))) 10))) -(((-920 |#1|) (-141) (-1122)) (T -920)) -((-2815 (*1 *1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *1 (-920 *3)) (-4 *3 (-1122)))) (-2815 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-920 *2)) (-4 *2 (-1122)))) (-2815 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 (-784))) (-4 *1 (-920 *4)) (-4 *4 (-1122)))) (-2097 (*1 *1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *1 (-920 *3)) (-4 *3 (-1122)))) (-2097 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-920 *2)) (-4 *2 (-1122)))) (-2097 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 (-784))) (-4 *1 (-920 *4)) (-4 *4 (-1122))))) -(-13 (-912 $ |t#1|) (-10 -8 (-15 -2815 ($ $ (-657 |t#1|))) (-15 -2815 ($ $ |t#1| (-784))) (-15 -2815 ($ $ (-657 |t#1|) (-657 (-784)))) (-15 -2097 ($ $ (-657 |t#1|))) (-15 -2097 ($ $ |t#1| (-784))) (-15 -2097 ($ $ (-657 |t#1|) (-657 (-784)))))) -(((-912 $ |#1|) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3071 ((|#1| $) 26)) (-3793 (((-112) $ (-784)) NIL)) (-3734 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-2203 (($ $ $) NIL (|has| $ (-6 -4467)))) (-2920 (($ $ $) NIL (|has| $ (-6 -4467)))) (-3682 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467))) (($ $ "left" $) NIL (|has| $ (-6 -4467))) (($ $ "right" $) NIL (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-4359 (($) NIL T CONST)) (-4236 (($ $) 25)) (-1712 (($ |#1|) 12) (($ $ $) 17)) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2877 (((-657 $) $) NIL)) (-1700 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-4224 (($ $) 23)) (-2424 (((-657 |#1|) $) NIL)) (-2633 (((-112) $) 20)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3883 (((-576) $ $) NIL)) (-3628 (((-112) $) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) NIL)) (-3501 (((-1225 |#1|) $) 9) (((-877) $) 29 (|has| |#1| (-625 (-877))))) (-1986 (((-657 $) $) NIL)) (-1633 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-921 |#1|) (-13 (-120 |#1|) (-625 (-1225 |#1|)) (-10 -8 (-15 -1712 ($ |#1|)) (-15 -1712 ($ $ $)))) (-1122)) (T -921)) -((-1712 (*1 *1 *2) (-12 (-5 *1 (-921 *2)) (-4 *2 (-1122)))) (-1712 (*1 *1 *1 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-1122))))) -(-13 (-120 |#1|) (-625 (-1225 |#1|)) (-10 -8 (-15 -1712 ($ |#1|)) (-15 -1712 ($ $ $)))) -((-4382 ((|#2| (-1164 |#1| |#2|)) 48))) -(((-922 |#1| |#2|) (-10 -7 (-15 -4382 (|#2| (-1164 |#1| |#2|)))) (-941) (-13 (-1071) (-10 -7 (-6 (-4468 "*"))))) (T -922)) -((-4382 (*1 *2 *3) (-12 (-5 *3 (-1164 *4 *2)) (-14 *4 (-941)) (-4 *2 (-13 (-1071) (-10 -7 (-6 (-4468 "*"))))) (-5 *1 (-922 *4 *2))))) -(-10 -7 (-15 -4382 (|#2| (-1164 |#1| |#2|)))) -((-3429 (((-112) $ $) 7)) (-2897 (((-1124 |#1|) $) 36)) (-4359 (($) 19 T CONST)) (-3843 (((-3 $ "failed") $) 16)) (-2229 (((-1124 |#1|) $ |#1|) 35)) (-4094 (((-112) $) 18)) (-3707 (($ $ $) 29 (-2802 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-1611 (($ $ $) 30 (-2802 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-2342 (((-1180) $) 10)) (-2134 (($ $) 25)) (-1471 (((-1142) $) 11)) (-2835 ((|#1| $ |#1|) 39)) (-1413 (($ (-657 (-657 |#1|))) 37)) (-3382 (($ (-657 |#1|)) 38)) (-3549 (($ $ $) 22)) (-3544 (($ $ $) 21)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2779 (($) 20 T CONST)) (-2985 (((-112) $ $) 31 (-2802 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-2963 (((-112) $ $) 33 (-2802 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 32 (-2802 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-2954 (((-112) $ $) 34)) (-3034 (($ $ $) 24)) (** (($ $ (-941)) 14) (($ $ (-784)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) -(((-923 |#1|) (-141) (-1122)) (T -923)) -((-3382 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-4 *1 (-923 *3)))) (-1413 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-4 *1 (-923 *3)))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-1124 *3)))) (-2229 (*1 *2 *1 *3) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-1124 *3)))) (-2954 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-112))))) -(-13 (-485) (-296 |t#1| |t#1|) (-10 -8 (-15 -3382 ($ (-657 |t#1|))) (-15 -1413 ($ (-657 (-657 |t#1|)))) (-15 -2897 ((-1124 |t#1|) $)) (-15 -2229 ((-1124 |t#1|) $ |t#1|)) (-15 -2954 ((-112) $ $)) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-379)) (-6 (-862)) |%noBranch|))) -(((-102) . T) ((-625 (-877)) . T) ((-296 |#1| |#1|) . T) ((-485) . T) ((-739) . T) ((-862) -2802 (|has| |#1| (-862)) (|has| |#1| (-379))) ((-865) -2802 (|has| |#1| (-862)) (|has| |#1| (-379))) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-1616 (((-657 (-657 (-784))) $) 160)) (-1868 (((-657 (-784)) (-925 |#1|) $) 188)) (-4106 (((-657 (-784)) (-925 |#1|) $) 189)) (-2897 (((-1124 |#1|) $) 152)) (-3633 (((-657 (-925 |#1|)) $) 149)) (-1892 (((-925 |#1|) $ (-576)) 154) (((-925 |#1|) $) 155)) (-1381 (($ (-657 (-925 |#1|))) 162)) (-3182 (((-784) $) 156)) (-3990 (((-1124 (-1124 |#1|)) $) 186)) (-2229 (((-1124 |#1|) $ |#1|) 177) (((-1124 (-1124 |#1|)) $ (-1124 |#1|)) 197) (((-1124 (-657 |#1|)) $ (-657 |#1|)) 200)) (-1627 (((-112) (-925 |#1|) $) 137)) (-2342 (((-1180) $) NIL)) (-2959 (((-1294) $) 142) (((-1294) $ (-576) (-576)) 201)) (-1471 (((-1142) $) NIL)) (-2536 (((-657 (-925 |#1|)) $) 143)) (-2835 (((-925 |#1|) $ (-784)) 150)) (-1770 (((-784) $) 157)) (-3501 (((-877) $) 174) (((-657 (-925 |#1|)) $) 28) (($ (-657 (-925 |#1|))) 161)) (-2046 (((-112) $ $) NIL)) (-4143 (((-657 |#1|) $) 159)) (-2933 (((-112) $ $) 194)) (-2973 (((-112) $ $) 192)) (-2954 (((-112) $ $) 191))) -(((-924 |#1|) (-13 (-1122) (-10 -8 (-15 -3501 ((-657 (-925 |#1|)) $)) (-15 -2536 ((-657 (-925 |#1|)) $)) (-15 -2835 ((-925 |#1|) $ (-784))) (-15 -1892 ((-925 |#1|) $ (-576))) (-15 -1892 ((-925 |#1|) $)) (-15 -3182 ((-784) $)) (-15 -1770 ((-784) $)) (-15 -4143 ((-657 |#1|) $)) (-15 -3633 ((-657 (-925 |#1|)) $)) (-15 -1616 ((-657 (-657 (-784))) $)) (-15 -3501 ($ (-657 (-925 |#1|)))) (-15 -1381 ($ (-657 (-925 |#1|)))) (-15 -2229 ((-1124 |#1|) $ |#1|)) (-15 -3990 ((-1124 (-1124 |#1|)) $)) (-15 -2229 ((-1124 (-1124 |#1|)) $ (-1124 |#1|))) (-15 -2229 ((-1124 (-657 |#1|)) $ (-657 |#1|))) (-15 -1627 ((-112) (-925 |#1|) $)) (-15 -1868 ((-657 (-784)) (-925 |#1|) $)) (-15 -4106 ((-657 (-784)) (-925 |#1|) $)) (-15 -2897 ((-1124 |#1|) $)) (-15 -2954 ((-112) $ $)) (-15 -2973 ((-112) $ $)) (-15 -2959 ((-1294) $)) (-15 -2959 ((-1294) $ (-576) (-576))))) (-1122)) (T -924)) -((-3501 (*1 *2 *1) (-12 (-5 *2 (-657 (-925 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-657 (-925 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-2835 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *2 (-925 *4)) (-5 *1 (-924 *4)) (-4 *4 (-1122)))) (-1892 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-925 *4)) (-5 *1 (-924 *4)) (-4 *4 (-1122)))) (-1892 (*1 *2 *1) (-12 (-5 *2 (-925 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-3182 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-1770 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-3633 (*1 *2 *1) (-12 (-5 *2 (-657 (-925 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-1616 (*1 *2 *1) (-12 (-5 *2 (-657 (-657 (-784)))) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-657 (-925 *3))) (-4 *3 (-1122)) (-5 *1 (-924 *3)))) (-1381 (*1 *1 *2) (-12 (-5 *2 (-657 (-925 *3))) (-4 *3 (-1122)) (-5 *1 (-924 *3)))) (-2229 (*1 *2 *1 *3) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-3990 (*1 *2 *1) (-12 (-5 *2 (-1124 (-1124 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-2229 (*1 *2 *1 *3) (-12 (-4 *4 (-1122)) (-5 *2 (-1124 (-1124 *4))) (-5 *1 (-924 *4)) (-5 *3 (-1124 *4)))) (-2229 (*1 *2 *1 *3) (-12 (-4 *4 (-1122)) (-5 *2 (-1124 (-657 *4))) (-5 *1 (-924 *4)) (-5 *3 (-657 *4)))) (-1627 (*1 *2 *3 *1) (-12 (-5 *3 (-925 *4)) (-4 *4 (-1122)) (-5 *2 (-112)) (-5 *1 (-924 *4)))) (-1868 (*1 *2 *3 *1) (-12 (-5 *3 (-925 *4)) (-4 *4 (-1122)) (-5 *2 (-657 (-784))) (-5 *1 (-924 *4)))) (-4106 (*1 *2 *3 *1) (-12 (-5 *3 (-925 *4)) (-4 *4 (-1122)) (-5 *2 (-657 (-784))) (-5 *1 (-924 *4)))) (-2897 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-2954 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-2973 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-2959 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-924 *4)) (-4 *4 (-1122))))) -(-13 (-1122) (-10 -8 (-15 -3501 ((-657 (-925 |#1|)) $)) (-15 -2536 ((-657 (-925 |#1|)) $)) (-15 -2835 ((-925 |#1|) $ (-784))) (-15 -1892 ((-925 |#1|) $ (-576))) (-15 -1892 ((-925 |#1|) $)) (-15 -3182 ((-784) $)) (-15 -1770 ((-784) $)) (-15 -4143 ((-657 |#1|) $)) (-15 -3633 ((-657 (-925 |#1|)) $)) (-15 -1616 ((-657 (-657 (-784))) $)) (-15 -3501 ($ (-657 (-925 |#1|)))) (-15 -1381 ($ (-657 (-925 |#1|)))) (-15 -2229 ((-1124 |#1|) $ |#1|)) (-15 -3990 ((-1124 (-1124 |#1|)) $)) (-15 -2229 ((-1124 (-1124 |#1|)) $ (-1124 |#1|))) (-15 -2229 ((-1124 (-657 |#1|)) $ (-657 |#1|))) (-15 -1627 ((-112) (-925 |#1|) $)) (-15 -1868 ((-657 (-784)) (-925 |#1|) $)) (-15 -4106 ((-657 (-784)) (-925 |#1|) $)) (-15 -2897 ((-1124 |#1|) $)) (-15 -2954 ((-112) $ $)) (-15 -2973 ((-112) $ $)) (-15 -2959 ((-1294) $)) (-15 -2959 ((-1294) $ (-576) (-576))))) -((-3429 (((-112) $ $) NIL)) (-2897 (((-1124 |#1|) $) 60)) (-1850 (((-657 $) (-657 $)) 103)) (-1536 (((-576) $) 83)) (-4359 (($) NIL T CONST)) (-3843 (((-3 $ "failed") $) NIL)) (-3182 (((-784) $) 80)) (-2229 (((-1124 |#1|) $ |#1|) 70)) (-4094 (((-112) $) NIL)) (-2320 (((-112) $) 88)) (-3749 (((-784) $) 84)) (-3707 (($ $ $) NIL (-2802 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-1611 (($ $ $) NIL (-2802 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-3732 (((-2 (|:| |preimage| (-657 |#1|)) (|:| |image| (-657 |#1|))) $) 55)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) 130)) (-1471 (((-1142) $) NIL)) (-3720 (((-1124 |#1|) $) 136 (|has| |#1| (-379)))) (-3593 (((-112) $) 81)) (-2835 ((|#1| $ |#1|) 68)) (-1770 (((-784) $) 62)) (-1413 (($ (-657 (-657 |#1|))) 118)) (-4192 (((-993) $) 74)) (-3382 (($ (-657 |#1|)) 32)) (-3549 (($ $ $) NIL)) (-3544 (($ $ $) NIL)) (-4156 (($ (-657 (-657 |#1|))) 57)) (-2852 (($ (-657 (-657 |#1|))) 123)) (-3672 (($ (-657 |#1|)) 132)) (-3501 (((-877) $) 117) (($ (-657 (-657 |#1|))) 91) (($ (-657 |#1|)) 92)) (-2046 (((-112) $ $) NIL)) (-2779 (($) 24 T CONST)) (-2985 (((-112) $ $) NIL (-2802 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-2963 (((-112) $ $) NIL (-2802 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-2933 (((-112) $ $) 66)) (-2973 (((-112) $ $) NIL (-2802 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-2954 (((-112) $ $) 90)) (-3034 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 33))) -(((-925 |#1|) (-13 (-923 |#1|) (-10 -8 (-15 -3732 ((-2 (|:| |preimage| (-657 |#1|)) (|:| |image| (-657 |#1|))) $)) (-15 -4156 ($ (-657 (-657 |#1|)))) (-15 -3501 ($ (-657 (-657 |#1|)))) (-15 -3501 ($ (-657 |#1|))) (-15 -2852 ($ (-657 (-657 |#1|)))) (-15 -1770 ((-784) $)) (-15 -4192 ((-993) $)) (-15 -3182 ((-784) $)) (-15 -3749 ((-784) $)) (-15 -1536 ((-576) $)) (-15 -3593 ((-112) $)) (-15 -2320 ((-112) $)) (-15 -1850 ((-657 $) (-657 $))) (IF (|has| |#1| (-379)) (-15 -3720 ((-1124 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -3672 ($ (-657 |#1|))) (IF (|has| |#1| (-379)) (-15 -3672 ($ (-657 |#1|))) |%noBranch|)))) (-1122)) (T -925)) -((-3732 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-657 *3)) (|:| |image| (-657 *3)))) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) (-4156 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-5 *1 (-925 *3)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-5 *1 (-925 *3)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-925 *3)))) (-2852 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-5 *1 (-925 *3)))) (-1770 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) (-4192 (*1 *2 *1) (-12 (-5 *2 (-993)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) (-3182 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) (-3749 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) (-1536 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) (-1850 (*1 *2 *2) (-12 (-5 *2 (-657 (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-925 *3)) (-4 *3 (-379)) (-4 *3 (-1122)))) (-3672 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-925 *3))))) -(-13 (-923 |#1|) (-10 -8 (-15 -3732 ((-2 (|:| |preimage| (-657 |#1|)) (|:| |image| (-657 |#1|))) $)) (-15 -4156 ($ (-657 (-657 |#1|)))) (-15 -3501 ($ (-657 (-657 |#1|)))) (-15 -3501 ($ (-657 |#1|))) (-15 -2852 ($ (-657 (-657 |#1|)))) (-15 -1770 ((-784) $)) (-15 -4192 ((-993) $)) (-15 -3182 ((-784) $)) (-15 -3749 ((-784) $)) (-15 -1536 ((-576) $)) (-15 -3593 ((-112) $)) (-15 -2320 ((-112) $)) (-15 -1850 ((-657 $) (-657 $))) (IF (|has| |#1| (-379)) (-15 -3720 ((-1124 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -3672 ($ (-657 |#1|))) (IF (|has| |#1| (-379)) (-15 -3672 ($ (-657 |#1|))) |%noBranch|)))) -((-2706 (((-3 (-657 (-1194 |#4|)) "failed") (-657 (-1194 |#4|)) (-1194 |#4|)) 160)) (-1883 ((|#1|) 97)) (-3742 (((-430 (-1194 |#4|)) (-1194 |#4|)) 169)) (-2409 (((-430 (-1194 |#4|)) (-657 |#3|) (-1194 |#4|)) 84)) (-2760 (((-430 (-1194 |#4|)) (-1194 |#4|)) 179)) (-3205 (((-3 (-657 (-1194 |#4|)) "failed") (-657 (-1194 |#4|)) (-1194 |#4|) |#3|) 113))) -(((-926 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2706 ((-3 (-657 (-1194 |#4|)) "failed") (-657 (-1194 |#4|)) (-1194 |#4|))) (-15 -2760 ((-430 (-1194 |#4|)) (-1194 |#4|))) (-15 -3742 ((-430 (-1194 |#4|)) (-1194 |#4|))) (-15 -1883 (|#1|)) (-15 -3205 ((-3 (-657 (-1194 |#4|)) "failed") (-657 (-1194 |#4|)) (-1194 |#4|) |#3|)) (-15 -2409 ((-430 (-1194 |#4|)) (-657 |#3|) (-1194 |#4|)))) (-929) (-806) (-862) (-969 |#1| |#2| |#3|)) (T -926)) -((-2409 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *7)) (-4 *7 (-862)) (-4 *5 (-929)) (-4 *6 (-806)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-430 (-1194 *8))) (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-1194 *8)))) (-3205 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-657 (-1194 *7))) (-5 *3 (-1194 *7)) (-4 *7 (-969 *5 *6 *4)) (-4 *5 (-929)) (-4 *6 (-806)) (-4 *4 (-862)) (-5 *1 (-926 *5 *6 *4 *7)))) (-1883 (*1 *2) (-12 (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-929)) (-5 *1 (-926 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (-3742 (*1 *2 *3) (-12 (-4 *4 (-929)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-430 (-1194 *7))) (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) (-2760 (*1 *2 *3) (-12 (-4 *4 (-929)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-430 (-1194 *7))) (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) (-2706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-657 (-1194 *7))) (-5 *3 (-1194 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-929)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-926 *4 *5 *6 *7))))) -(-10 -7 (-15 -2706 ((-3 (-657 (-1194 |#4|)) "failed") (-657 (-1194 |#4|)) (-1194 |#4|))) (-15 -2760 ((-430 (-1194 |#4|)) (-1194 |#4|))) (-15 -3742 ((-430 (-1194 |#4|)) (-1194 |#4|))) (-15 -1883 (|#1|)) (-15 -3205 ((-3 (-657 (-1194 |#4|)) "failed") (-657 (-1194 |#4|)) (-1194 |#4|) |#3|)) (-15 -2409 ((-430 (-1194 |#4|)) (-657 |#3|) (-1194 |#4|)))) -((-2706 (((-3 (-657 (-1194 |#2|)) "failed") (-657 (-1194 |#2|)) (-1194 |#2|)) 39)) (-1883 ((|#1|) 72)) (-3742 (((-430 (-1194 |#2|)) (-1194 |#2|)) 121)) (-2409 (((-430 (-1194 |#2|)) (-1194 |#2|)) 105)) (-2760 (((-430 (-1194 |#2|)) (-1194 |#2|)) 132))) -(((-927 |#1| |#2|) (-10 -7 (-15 -2706 ((-3 (-657 (-1194 |#2|)) "failed") (-657 (-1194 |#2|)) (-1194 |#2|))) (-15 -2760 ((-430 (-1194 |#2|)) (-1194 |#2|))) (-15 -3742 ((-430 (-1194 |#2|)) (-1194 |#2|))) (-15 -1883 (|#1|)) (-15 -2409 ((-430 (-1194 |#2|)) (-1194 |#2|)))) (-929) (-1265 |#1|)) (T -927)) -((-2409 (*1 *2 *3) (-12 (-4 *4 (-929)) (-4 *5 (-1265 *4)) (-5 *2 (-430 (-1194 *5))) (-5 *1 (-927 *4 *5)) (-5 *3 (-1194 *5)))) (-1883 (*1 *2) (-12 (-4 *2 (-929)) (-5 *1 (-927 *2 *3)) (-4 *3 (-1265 *2)))) (-3742 (*1 *2 *3) (-12 (-4 *4 (-929)) (-4 *5 (-1265 *4)) (-5 *2 (-430 (-1194 *5))) (-5 *1 (-927 *4 *5)) (-5 *3 (-1194 *5)))) (-2760 (*1 *2 *3) (-12 (-4 *4 (-929)) (-4 *5 (-1265 *4)) (-5 *2 (-430 (-1194 *5))) (-5 *1 (-927 *4 *5)) (-5 *3 (-1194 *5)))) (-2706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-657 (-1194 *5))) (-5 *3 (-1194 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-929)) (-5 *1 (-927 *4 *5))))) -(-10 -7 (-15 -2706 ((-3 (-657 (-1194 |#2|)) "failed") (-657 (-1194 |#2|)) (-1194 |#2|))) (-15 -2760 ((-430 (-1194 |#2|)) (-1194 |#2|))) (-15 -3742 ((-430 (-1194 |#2|)) (-1194 |#2|))) (-15 -1883 (|#1|)) (-15 -2409 ((-430 (-1194 |#2|)) (-1194 |#2|)))) -((-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 42)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 18)) (-3096 (((-3 $ "failed") $) 36))) -(((-928 |#1|) (-10 -8 (-15 -3096 ((-3 |#1| "failed") |#1|)) (-15 -1359 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|))) (-15 -2226 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|)))) (-929)) (T -928)) -NIL -(-10 -8 (-15 -3096 ((-3 |#1| "failed") |#1|)) (-15 -1359 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|))) (-15 -2226 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-2721 (((-3 $ "failed") $ $) 20)) (-4250 (((-430 (-1194 $)) (-1194 $)) 66)) (-2638 (($ $) 57)) (-4402 (((-430 $) $) 58)) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 63)) (-4359 (($) 18 T CONST)) (-3843 (((-3 $ "failed") $) 37)) (-4257 (((-112) $) 59)) (-4094 (((-112) $) 35)) (-3402 (($ $ $) 52) (($ (-657 $)) 51)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3436 (($ $ $) 54) (($ (-657 $)) 53)) (-2861 (((-430 (-1194 $)) (-1194 $)) 64)) (-2988 (((-430 (-1194 $)) (-1194 $)) 65)) (-1885 (((-430 $) $) 56)) (-3418 (((-3 $ "failed") $ $) 48)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) 62 (|has| $ (-146)))) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49)) (-3096 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 45)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-929) (-141)) (T -929)) -((-2226 (*1 *2 *2 *2) (-12 (-5 *2 (-1194 *1)) (-4 *1 (-929)))) (-4250 (*1 *2 *3) (-12 (-4 *1 (-929)) (-5 *2 (-430 (-1194 *1))) (-5 *3 (-1194 *1)))) (-2988 (*1 *2 *3) (-12 (-4 *1 (-929)) (-5 *2 (-430 (-1194 *1))) (-5 *3 (-1194 *1)))) (-2861 (*1 *2 *3) (-12 (-4 *1 (-929)) (-5 *2 (-430 (-1194 *1))) (-5 *3 (-1194 *1)))) (-1359 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-657 (-1194 *1))) (-5 *3 (-1194 *1)) (-4 *1 (-929)))) (-3610 (*1 *2 *3) (|partial| -12 (-5 *3 (-702 *1)) (-4 *1 (-146)) (-4 *1 (-929)) (-5 *2 (-1289 *1)))) (-3096 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-929))))) -(-13 (-1243) (-10 -8 (-15 -4250 ((-430 (-1194 $)) (-1194 $))) (-15 -2988 ((-430 (-1194 $)) (-1194 $))) (-15 -2861 ((-430 (-1194 $)) (-1194 $))) (-15 -2226 ((-1194 $) (-1194 $) (-1194 $))) (-15 -1359 ((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $))) (IF (|has| $ (-146)) (PROGN (-15 -3610 ((-3 (-1289 $) "failed") (-702 $))) (-15 -3096 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2175 (((-112) $) NIL)) (-3158 (((-784)) NIL)) (-2302 (($ $ (-941)) NIL (|has| $ (-379))) (($ $) NIL)) (-3592 (((-1211 (-941) (-784)) (-576)) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-2864 (((-112) $ $) NIL)) (-2193 (((-784)) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 $ "failed") $) NIL)) (-2884 (($ $) NIL)) (-2613 (($ (-1289 $)) NIL)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($) NIL)) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-1367 (($) NIL)) (-2105 (((-112) $) NIL)) (-1780 (($ $) NIL) (($ $ (-784)) NIL)) (-4257 (((-112) $) NIL)) (-3182 (((-846 (-941)) $) NIL) (((-941) $) NIL)) (-4094 (((-112) $) NIL)) (-2615 (($) NIL (|has| $ (-379)))) (-1974 (((-112) $) NIL (|has| $ (-379)))) (-2234 (($ $ (-941)) NIL (|has| $ (-379))) (($ $) NIL)) (-4019 (((-3 $ "failed") $) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-1336 (((-1194 $) $ (-941)) NIL (|has| $ (-379))) (((-1194 $) $) NIL)) (-3007 (((-941) $) NIL)) (-4349 (((-1194 $) $) NIL (|has| $ (-379)))) (-3173 (((-3 (-1194 $) "failed") $ $) NIL (|has| $ (-379))) (((-1194 $) $) NIL (|has| $ (-379)))) (-1354 (($ $ (-1194 $)) NIL (|has| $ (-379)))) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1706 (($) NIL T CONST)) (-3178 (($ (-941)) NIL)) (-2463 (((-112) $) NIL)) (-1471 (((-1142) $) NIL)) (-4097 (($) NIL (|has| $ (-379)))) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) NIL)) (-1885 (((-430 $) $) NIL)) (-1453 (((-941)) NIL) (((-846 (-941))) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2284 (((-3 (-784) "failed") $ $) NIL) (((-784) $) NIL)) (-3863 (((-135)) NIL)) (-2815 (($ $) NIL) (($ $ (-784)) NIL)) (-1770 (((-941) $) NIL) (((-846 (-941)) $) NIL)) (-3180 (((-1194 $)) NIL)) (-2090 (($) NIL)) (-3298 (($) NIL (|has| $ (-379)))) (-2795 (((-702 $) (-1289 $)) NIL) (((-1289 $) $) NIL)) (-4148 (((-576) $) NIL)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL)) (-3096 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $) (-941)) NIL) (((-1289 $)) NIL)) (-4041 (((-112) $ $) NIL)) (-1863 (((-112) $) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-1508 (($ $ (-784)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-2097 (($ $) NIL) (($ $ (-784)) NIL)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-930 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-941)) (T -930)) -NIL -(-13 (-360) (-339 $) (-626 (-576))) -((-1799 (((-3 (-2 (|:| -3182 (-784)) (|:| -3290 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)) 77)) (-3254 (((-112) (-347 |#2| |#3| |#4| |#5|)) 17)) (-3182 (((-3 (-784) "failed") (-347 |#2| |#3| |#4| |#5|)) 15))) -(((-931 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3182 ((-3 (-784) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -3254 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -1799 ((-3 (-2 (|:| -3182 (-784)) (|:| -3290 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) (-13 (-568) (-1060 (-576))) (-442 |#1|) (-1265 |#2|) (-1265 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -931)) -((-1799 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-2 (|:| -3182 (-784)) (|:| -3290 *8))) (-5 *1 (-931 *4 *5 *6 *7 *8)))) (-3254 (*1 *2 *3) (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-112)) (-5 *1 (-931 *4 *5 *6 *7 *8)))) (-3182 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-784)) (-5 *1 (-931 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -3182 ((-3 (-784) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -3254 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -1799 ((-3 (-2 (|:| -3182 (-784)) (|:| -3290 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) -((-1799 (((-3 (-2 (|:| -3182 (-784)) (|:| -3290 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 64)) (-3254 (((-112) (-347 (-419 (-576)) |#1| |#2| |#3|)) 16)) (-3182 (((-3 (-784) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 14))) -(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -3182 ((-3 (-784) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -3254 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -1799 ((-3 (-2 (|:| -3182 (-784)) (|:| -3290 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) (-1265 (-419 (-576))) (-1265 (-419 |#1|)) (-353 (-419 (-576)) |#1| |#2|)) (T -932)) -((-1799 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1265 (-419 (-576)))) (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-2 (|:| -3182 (-784)) (|:| -3290 *6))) (-5 *1 (-932 *4 *5 *6)))) (-3254 (*1 *2 *3) (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1265 (-419 (-576)))) (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-932 *4 *5 *6)))) (-3182 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1265 (-419 (-576)))) (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-784)) (-5 *1 (-932 *4 *5 *6))))) -(-10 -7 (-15 -3182 ((-3 (-784) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -3254 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -1799 ((-3 (-2 (|:| -3182 (-784)) (|:| -3290 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) -((-2810 ((|#2| |#2|) 26)) (-2940 (((-576) (-657 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) 15)) (-1510 (((-941) (-576)) 38)) (-1922 (((-576) |#2|) 45)) (-3758 (((-576) |#2|) 21) (((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|) 20))) -(((-933 |#1| |#2|) (-10 -7 (-15 -1510 ((-941) (-576))) (-15 -3758 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -3758 ((-576) |#2|)) (-15 -2940 ((-576) (-657 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -1922 ((-576) |#2|)) (-15 -2810 (|#2| |#2|))) (-1265 (-419 (-576))) (-1265 (-419 |#1|))) (T -933)) -((-2810 (*1 *2 *2) (-12 (-4 *3 (-1265 (-419 (-576)))) (-5 *1 (-933 *3 *2)) (-4 *2 (-1265 (-419 *3))))) (-1922 (*1 *2 *3) (-12 (-4 *4 (-1265 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-933 *4 *3)) (-4 *3 (-1265 (-419 *4))))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) (-4 *4 (-1265 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-933 *4 *5)) (-4 *5 (-1265 (-419 *4))))) (-3758 (*1 *2 *3) (-12 (-4 *4 (-1265 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-933 *4 *3)) (-4 *3 (-1265 (-419 *4))))) (-3758 (*1 *2 *3) (-12 (-4 *3 (-1265 (-419 (-576)))) (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) (-5 *1 (-933 *3 *4)) (-4 *4 (-1265 (-419 *3))))) (-1510 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1265 (-419 *3))) (-5 *2 (-941)) (-5 *1 (-933 *4 *5)) (-4 *5 (-1265 (-419 *4)))))) -(-10 -7 (-15 -1510 ((-941) (-576))) (-15 -3758 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -3758 ((-576) |#2|)) (-15 -2940 ((-576) (-657 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -1922 ((-576) |#2|)) (-15 -2810 (|#2| |#2|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3931 ((|#1| $) 100)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-2864 (((-112) $ $) NIL)) (-4359 (($) NIL T CONST)) (-3373 (($ $ $) NIL)) (-3843 (((-3 $ "failed") $) 94)) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-3664 (($ |#1| (-430 |#1|)) 92)) (-1935 (((-1194 |#1|) |#1| |#1|) 53)) (-1620 (($ $) 61)) (-4094 (((-112) $) NIL)) (-3150 (((-576) $) 97)) (-1914 (($ $ (-576)) 99)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-3018 ((|#1| $) 96)) (-1585 (((-430 |#1|) $) 95)) (-1885 (((-430 $) $) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) 93)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-4194 (($ $) 50)) (-3501 (((-877) $) 124) (($ (-576)) 73) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 41) (((-419 |#1|) $) 78) (($ (-419 (-430 |#1|))) 86)) (-1960 (((-784)) 71 T CONST)) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-2769 (($) 26 T CONST)) (-2779 (($) 15 T CONST)) (-2933 (((-112) $ $) 87)) (-3034 (($ $ $) NIL)) (-3022 (($ $) 108) (($ $ $) NIL)) (-3012 (($ $ $) 49)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 110) (($ $ $) 48) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) -(((-934 |#1|) (-13 (-374) (-38 |#1|) (-10 -8 (-15 -3501 ((-419 |#1|) $)) (-15 -3501 ($ (-419 (-430 |#1|)))) (-15 -4194 ($ $)) (-15 -1585 ((-430 |#1|) $)) (-15 -3018 (|#1| $)) (-15 -1914 ($ $ (-576))) (-15 -3150 ((-576) $)) (-15 -1935 ((-1194 |#1|) |#1| |#1|)) (-15 -1620 ($ $)) (-15 -3664 ($ |#1| (-430 |#1|))) (-15 -3931 (|#1| $)))) (-317)) (T -934)) -((-3501 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-934 *3)) (-4 *3 (-317)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-934 *3)))) (-4194 (*1 *1 *1) (-12 (-5 *1 (-934 *2)) (-4 *2 (-317)))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-934 *3)) (-4 *3 (-317)))) (-3018 (*1 *2 *1) (-12 (-5 *1 (-934 *2)) (-4 *2 (-317)))) (-1914 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-934 *3)) (-4 *3 (-317)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-934 *3)) (-4 *3 (-317)))) (-1935 (*1 *2 *3 *3) (-12 (-5 *2 (-1194 *3)) (-5 *1 (-934 *3)) (-4 *3 (-317)))) (-1620 (*1 *1 *1) (-12 (-5 *1 (-934 *2)) (-4 *2 (-317)))) (-3664 (*1 *1 *2 *3) (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-934 *2)))) (-3931 (*1 *2 *1) (-12 (-5 *1 (-934 *2)) (-4 *2 (-317))))) -(-13 (-374) (-38 |#1|) (-10 -8 (-15 -3501 ((-419 |#1|) $)) (-15 -3501 ($ (-419 (-430 |#1|)))) (-15 -4194 ($ $)) (-15 -1585 ((-430 |#1|) $)) (-15 -3018 (|#1| $)) (-15 -1914 ($ $ (-576))) (-15 -3150 ((-576) $)) (-15 -1935 ((-1194 |#1|) |#1| |#1|)) (-15 -1620 ($ $)) (-15 -3664 ($ |#1| (-430 |#1|))) (-15 -3931 (|#1| $)))) -((-3664 (((-52) (-972 |#1|) (-430 (-972 |#1|)) (-1198)) 17) (((-52) (-419 (-972 |#1|)) (-1198)) 18))) -(((-935 |#1|) (-10 -7 (-15 -3664 ((-52) (-419 (-972 |#1|)) (-1198))) (-15 -3664 ((-52) (-972 |#1|) (-430 (-972 |#1|)) (-1198)))) (-13 (-317) (-148))) (T -935)) -((-3664 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-430 (-972 *6))) (-5 *5 (-1198)) (-5 *3 (-972 *6)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-935 *6)))) (-3664 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-935 *5))))) -(-10 -7 (-15 -3664 ((-52) (-419 (-972 |#1|)) (-1198))) (-15 -3664 ((-52) (-972 |#1|) (-430 (-972 |#1|)) (-1198)))) -((-4188 ((|#4| (-657 |#4|)) 147) (((-1194 |#4|) (-1194 |#4|) (-1194 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-3436 (((-1194 |#4|) (-657 (-1194 |#4|))) 140) (((-1194 |#4|) (-1194 |#4|) (-1194 |#4|)) 61) ((|#4| (-657 |#4|)) 69) ((|#4| |#4| |#4|) 107))) -(((-936 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3436 (|#4| |#4| |#4|)) (-15 -3436 (|#4| (-657 |#4|))) (-15 -3436 ((-1194 |#4|) (-1194 |#4|) (-1194 |#4|))) (-15 -3436 ((-1194 |#4|) (-657 (-1194 |#4|)))) (-15 -4188 (|#4| |#4| |#4|)) (-15 -4188 ((-1194 |#4|) (-1194 |#4|) (-1194 |#4|))) (-15 -4188 (|#4| (-657 |#4|)))) (-806) (-862) (-317) (-969 |#3| |#1| |#2|)) (T -936)) -((-4188 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *6 *4 *5)) (-5 *1 (-936 *4 *5 *6 *2)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)))) (-4188 (*1 *2 *2 *2) (-12 (-5 *2 (-1194 *6)) (-4 *6 (-969 *5 *3 *4)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-936 *3 *4 *5 *6)))) (-4188 (*1 *2 *2 *2) (-12 (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-936 *3 *4 *5 *2)) (-4 *2 (-969 *5 *3 *4)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-657 (-1194 *7))) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-1194 *7)) (-5 *1 (-936 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) (-3436 (*1 *2 *2 *2) (-12 (-5 *2 (-1194 *6)) (-4 *6 (-969 *5 *3 *4)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-936 *3 *4 *5 *6)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *6 *4 *5)) (-5 *1 (-936 *4 *5 *6 *2)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)))) (-3436 (*1 *2 *2 *2) (-12 (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-936 *3 *4 *5 *2)) (-4 *2 (-969 *5 *3 *4))))) -(-10 -7 (-15 -3436 (|#4| |#4| |#4|)) (-15 -3436 (|#4| (-657 |#4|))) (-15 -3436 ((-1194 |#4|) (-1194 |#4|) (-1194 |#4|))) (-15 -3436 ((-1194 |#4|) (-657 (-1194 |#4|)))) (-15 -4188 (|#4| |#4| |#4|)) (-15 -4188 ((-1194 |#4|) (-1194 |#4|) (-1194 |#4|))) (-15 -4188 (|#4| (-657 |#4|)))) -((-2123 (((-924 (-576)) (-993)) 38) (((-924 (-576)) (-657 (-576))) 34)) (-2502 (((-924 (-576)) (-657 (-576))) 67) (((-924 (-576)) (-941)) 68)) (-2198 (((-924 (-576))) 39)) (-4174 (((-924 (-576))) 53) (((-924 (-576)) (-657 (-576))) 52)) (-1996 (((-924 (-576))) 51) (((-924 (-576)) (-657 (-576))) 50)) (-3025 (((-924 (-576))) 49) (((-924 (-576)) (-657 (-576))) 48)) (-1872 (((-924 (-576))) 47) (((-924 (-576)) (-657 (-576))) 46)) (-1647 (((-924 (-576))) 45) (((-924 (-576)) (-657 (-576))) 44)) (-2713 (((-924 (-576))) 55) (((-924 (-576)) (-657 (-576))) 54)) (-3321 (((-924 (-576)) (-657 (-576))) 72) (((-924 (-576)) (-941)) 74)) (-3312 (((-924 (-576)) (-657 (-576))) 69) (((-924 (-576)) (-941)) 70)) (-2971 (((-924 (-576)) (-657 (-576))) 65) (((-924 (-576)) (-941)) 66)) (-1948 (((-924 (-576)) (-657 (-941))) 57))) -(((-937) (-10 -7 (-15 -2502 ((-924 (-576)) (-941))) (-15 -2502 ((-924 (-576)) (-657 (-576)))) (-15 -2971 ((-924 (-576)) (-941))) (-15 -2971 ((-924 (-576)) (-657 (-576)))) (-15 -1948 ((-924 (-576)) (-657 (-941)))) (-15 -3312 ((-924 (-576)) (-941))) (-15 -3312 ((-924 (-576)) (-657 (-576)))) (-15 -3321 ((-924 (-576)) (-941))) (-15 -3321 ((-924 (-576)) (-657 (-576)))) (-15 -1647 ((-924 (-576)) (-657 (-576)))) (-15 -1647 ((-924 (-576)))) (-15 -1872 ((-924 (-576)) (-657 (-576)))) (-15 -1872 ((-924 (-576)))) (-15 -3025 ((-924 (-576)) (-657 (-576)))) (-15 -3025 ((-924 (-576)))) (-15 -1996 ((-924 (-576)) (-657 (-576)))) (-15 -1996 ((-924 (-576)))) (-15 -4174 ((-924 (-576)) (-657 (-576)))) (-15 -4174 ((-924 (-576)))) (-15 -2713 ((-924 (-576)) (-657 (-576)))) (-15 -2713 ((-924 (-576)))) (-15 -2198 ((-924 (-576)))) (-15 -2123 ((-924 (-576)) (-657 (-576)))) (-15 -2123 ((-924 (-576)) (-993))))) (T -937)) -((-2123 (*1 *2 *3) (-12 (-5 *3 (-993)) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-2198 (*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-2713 (*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-4174 (*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-1996 (*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-1996 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-3025 (*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-3025 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-1872 (*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-1872 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-1647 (*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-3312 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-3312 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-1948 (*1 *2 *3) (-12 (-5 *3 (-657 (-941))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-2971 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-2971 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-924 (-576))) (-5 *1 (-937))))) -(-10 -7 (-15 -2502 ((-924 (-576)) (-941))) (-15 -2502 ((-924 (-576)) (-657 (-576)))) (-15 -2971 ((-924 (-576)) (-941))) (-15 -2971 ((-924 (-576)) (-657 (-576)))) (-15 -1948 ((-924 (-576)) (-657 (-941)))) (-15 -3312 ((-924 (-576)) (-941))) (-15 -3312 ((-924 (-576)) (-657 (-576)))) (-15 -3321 ((-924 (-576)) (-941))) (-15 -3321 ((-924 (-576)) (-657 (-576)))) (-15 -1647 ((-924 (-576)) (-657 (-576)))) (-15 -1647 ((-924 (-576)))) (-15 -1872 ((-924 (-576)) (-657 (-576)))) (-15 -1872 ((-924 (-576)))) (-15 -3025 ((-924 (-576)) (-657 (-576)))) (-15 -3025 ((-924 (-576)))) (-15 -1996 ((-924 (-576)) (-657 (-576)))) (-15 -1996 ((-924 (-576)))) (-15 -4174 ((-924 (-576)) (-657 (-576)))) (-15 -4174 ((-924 (-576)))) (-15 -2713 ((-924 (-576)) (-657 (-576)))) (-15 -2713 ((-924 (-576)))) (-15 -2198 ((-924 (-576)))) (-15 -2123 ((-924 (-576)) (-657 (-576)))) (-15 -2123 ((-924 (-576)) (-993)))) -((-2141 (((-657 (-972 |#1|)) (-657 (-972 |#1|)) (-657 (-1198))) 14)) (-1547 (((-657 (-972 |#1|)) (-657 (-972 |#1|)) (-657 (-1198))) 13))) -(((-938 |#1|) (-10 -7 (-15 -1547 ((-657 (-972 |#1|)) (-657 (-972 |#1|)) (-657 (-1198)))) (-15 -2141 ((-657 (-972 |#1|)) (-657 (-972 |#1|)) (-657 (-1198))))) (-464)) (T -938)) -((-2141 (*1 *2 *2 *3) (-12 (-5 *2 (-657 (-972 *4))) (-5 *3 (-657 (-1198))) (-4 *4 (-464)) (-5 *1 (-938 *4)))) (-1547 (*1 *2 *2 *3) (-12 (-5 *2 (-657 (-972 *4))) (-5 *3 (-657 (-1198))) (-4 *4 (-464)) (-5 *1 (-938 *4))))) -(-10 -7 (-15 -1547 ((-657 (-972 |#1|)) (-657 (-972 |#1|)) (-657 (-1198)))) (-15 -2141 ((-657 (-972 |#1|)) (-657 (-972 |#1|)) (-657 (-1198))))) -((-3501 (((-326 |#1|) (-489)) 16))) -(((-939 |#1|) (-10 -7 (-15 -3501 ((-326 |#1|) (-489)))) (-568)) (T -939)) -((-3501 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-939 *4)) (-4 *4 (-568))))) -(-10 -7 (-15 -3501 ((-326 |#1|) (-489)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3843 (((-3 $ "failed") $) 37)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 57)) (-4094 (((-112) $) 35)) (-3402 (($ $ $) 52) (($ (-657 $)) 51)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3436 (($ $ $) 54) (($ (-657 $)) 53)) (-3418 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 45)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-940) (-141)) (T -940)) -((-4120 (*1 *2 *3) (-12 (-4 *1 (-940)) (-5 *2 (-2 (|:| -1771 (-657 *1)) (|:| -4097 *1))) (-5 *3 (-657 *1)))) (-3161 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-657 *1)) (-4 *1 (-940))))) -(-13 (-464) (-10 -8 (-15 -4120 ((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $))) (-15 -3161 ((-3 (-657 $) "failed") (-657 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-4359 (($) NIL T CONST)) (-3843 (((-3 $ "failed") $) NIL)) (-4094 (((-112) $) NIL)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3436 (($ $ $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2779 (($) NIL T CONST)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-784)) NIL) (($ $ (-941)) NIL)) (* (($ (-941) $) NIL) (($ $ $) NIL))) -(((-941) (-13 (-807) (-739) (-10 -8 (-15 -3436 ($ $ $)) (-6 (-4468 "*"))))) (T -941)) -((-3436 (*1 *1 *1 *1) (-5 *1 (-941)))) -(-13 (-807) (-739) (-10 -8 (-15 -3436 ($ $ $)) (-6 (-4468 "*")))) +((-3315 (((-707 (-1250)) $ (-1250)) NIL)) (-3324 (((-707 (-562)) $ (-562)) NIL)) (-3304 (((-787) $ (-129)) NIL)) (-3335 (((-707 (-130)) $ (-130)) 22)) (-3354 (($ (-401)) 12) (($ (-1183)) 14)) (-3344 (((-112) $) 19)) (-3544 (((-880) $) 26)) (-3720 (($ $) 23))) +(((-879) (-13 (-878) (-626 (-880)) (-10 -8 (-15 -3354 ($ (-401))) (-15 -3354 ($ (-1183))) (-15 -3344 ((-112) $))))) (T -879)) +((-3354 (*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-879)))) (-3354 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-879)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-879))))) +(-13 (-878) (-626 (-880)) (-10 -8 (-15 -3354 ($ (-401))) (-15 -3354 ($ (-1183))) (-15 -3344 ((-112) $)))) +((-3473 (((-112) $ $) NIL) (($ $ $) 85)) (-2420 (($ $ $) 125)) (-3352 (((-577) $) 31) (((-577)) 36)) (-2477 (($ (-577)) 53)) (-2450 (($ $ $) 54) (($ (-660 $)) 84)) (-3479 (($ $ (-660 $)) 82)) (-2494 (((-577) $) 34)) (-1951 (($ $ $) 73)) (-2656 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-2503 (((-577) $) 33)) (-3512 (($ $ $) 72)) (-1335 (($ $) 114)) (-2401 (($ $ $) 129)) (-3373 (($ (-660 $)) 61)) (-3413 (($ $ (-660 $)) 79)) (-2469 (($ (-577) (-577)) 55)) (-2558 (($ $) 126) (($ $ $) 127)) (-4239 (($ $ (-577)) 43) (($ $) 46)) (-3418 (($ $ $) 97)) (-3522 (($ $ $) 132)) (-3469 (($ $) 115)) (-3429 (($ $ $) 98)) (-3425 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2246 (((-1297) $) 10)) (-3458 (($ $) 118) (($ $ (-787)) 122)) (-3491 (($ $ $) 75)) (-3503 (($ $ $) 74)) (-3970 (($ $ (-660 $)) 110)) (-2428 (($ $ $) 113)) (-3391 (($ (-660 $)) 59)) (-3401 (($ $) 70) (($ (-660 $)) 71)) (-3437 (($ $ $) 123)) (-3447 (($ $) 116)) (-2410 (($ $ $) 128)) (-3380 (($ (-577)) 21) (($ (-1201)) 23) (($ (-1183)) 30) (($ (-228)) 25)) (-2771 (($ $ $) 101)) (-2749 (($ $) 102)) (-2522 (((-1297) (-1183)) 15)) (-2849 (($ (-1183)) 14)) (-2550 (($ (-660 (-660 $))) 58)) (-4228 (($ $ (-577)) 42) (($ $) 45)) (-2810 (((-1183) $) NIL)) (-2584 (($ $ $) 131)) (-3858 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-4188 (((-112) $) 108)) (-2438 (($ $ (-660 $)) 111) (($ $ $ $) 112)) (-2486 (($ (-577)) 39)) (-2440 (((-577) $) 32) (((-577)) 35)) (-2460 (($ $ $) 40) (($ (-660 $)) 83)) (-1474 (((-1145) $) NIL)) (-3462 (($ $ $) 99)) (-3639 (($) 13)) (-2872 (($ $ (-660 $)) 109)) (-2513 (((-1183) (-1183)) 8)) (-3116 (($ $) 117) (($ $ (-787)) 121)) (-3451 (($ $ $) 96)) (-2852 (($ $ (-787)) 139)) (-3382 (($ (-660 $)) 60)) (-3544 (((-880) $) 19)) (-3693 (($ $ (-577)) 41) (($ $) 44)) (-3412 (($ $) 68) (($ (-660 $)) 69)) (-1973 (($ $) 66) (($ (-660 $)) 67)) (-2251 (($ $) 124)) (-3364 (($ (-660 $)) 65)) (-3850 (($ $ $) 105)) (-4448 (((-112) $ $) NIL)) (-3533 (($ $ $) 130)) (-2761 (($ $ $) 100)) (-1851 (($ $ $) 103) (($ $) 104)) (-3025 (($ $ $) 89)) (-3000 (($ $ $) 87)) (-2970 (((-112) $ $) 16) (($ $ $) 17)) (-3012 (($ $ $) 88)) (-2990 (($ $ $) 86)) (-3077 (($ $ $) 94)) (-3066 (($ $ $) 91) (($ $) 92)) (-3055 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) +(((-880) (-13 (-1125) (-10 -8 (-15 -2246 ((-1297) $)) (-15 -2849 ($ (-1183))) (-15 -2522 ((-1297) (-1183))) (-15 -3380 ($ (-577))) (-15 -3380 ($ (-1201))) (-15 -3380 ($ (-1183))) (-15 -3380 ($ (-228))) (-15 -3639 ($)) (-15 -2513 ((-1183) (-1183))) (-15 -3352 ((-577) $)) (-15 -2440 ((-577) $)) (-15 -3352 ((-577))) (-15 -2440 ((-577))) (-15 -2503 ((-577) $)) (-15 -2494 ((-577) $)) (-15 -2486 ($ (-577))) (-15 -2477 ($ (-577))) (-15 -2469 ($ (-577) (-577))) (-15 -4228 ($ $ (-577))) (-15 -4239 ($ $ (-577))) (-15 -3693 ($ $ (-577))) (-15 -4228 ($ $)) (-15 -4239 ($ $)) (-15 -3693 ($ $)) (-15 -2460 ($ $ $)) (-15 -2450 ($ $ $)) (-15 -2460 ($ (-660 $))) (-15 -2450 ($ (-660 $))) (-15 -3970 ($ $ (-660 $))) (-15 -2438 ($ $ (-660 $))) (-15 -2438 ($ $ $ $)) (-15 -2428 ($ $ $)) (-15 -4188 ((-112) $)) (-15 -2872 ($ $ (-660 $))) (-15 -1335 ($ $)) (-15 -2584 ($ $ $)) (-15 -2251 ($ $)) (-15 -2550 ($ (-660 (-660 $)))) (-15 -2420 ($ $ $)) (-15 -2558 ($ $)) (-15 -2558 ($ $ $)) (-15 -2410 ($ $ $)) (-15 -2401 ($ $ $)) (-15 -3533 ($ $ $)) (-15 -3522 ($ $ $)) (-15 -2852 ($ $ (-787))) (-15 -3850 ($ $ $)) (-15 -3512 ($ $ $)) (-15 -1951 ($ $ $)) (-15 -3503 ($ $ $)) (-15 -3491 ($ $ $)) (-15 -3413 ($ $ (-660 $))) (-15 -3479 ($ $ (-660 $))) (-15 -3469 ($ $)) (-15 -3116 ($ $)) (-15 -3116 ($ $ (-787))) (-15 -3458 ($ $)) (-15 -3458 ($ $ (-787))) (-15 -3447 ($ $)) (-15 -3437 ($ $ $)) (-15 -2656 ($ $)) (-15 -2656 ($ $ $)) (-15 -2656 ($ $ $ $)) (-15 -3425 ($ $)) (-15 -3425 ($ $ $)) (-15 -3425 ($ $ $ $)) (-15 -3858 ($ $)) (-15 -3858 ($ $ $)) (-15 -3858 ($ $ $ $)) (-15 -1973 ($ $)) (-15 -1973 ($ (-660 $))) (-15 -3412 ($ $)) (-15 -3412 ($ (-660 $))) (-15 -3401 ($ $)) (-15 -3401 ($ (-660 $))) (-15 -3391 ($ (-660 $))) (-15 -3382 ($ (-660 $))) (-15 -3373 ($ (-660 $))) (-15 -3364 ($ (-660 $))) (-15 -2970 ($ $ $)) (-15 -3473 ($ $ $)) (-15 -2990 ($ $ $)) (-15 -3000 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -3025 ($ $ $)) (-15 -3055 ($ $ $)) (-15 -3066 ($ $ $)) (-15 -3066 ($ $)) (-15 * ($ $ $)) (-15 -3077 ($ $ $)) (-15 ** ($ $ $)) (-15 -3451 ($ $ $)) (-15 -3418 ($ $ $)) (-15 -3429 ($ $ $)) (-15 -3462 ($ $ $)) (-15 -2761 ($ $ $)) (-15 -2771 ($ $ $)) (-15 -2749 ($ $)) (-15 -1851 ($ $ $)) (-15 -1851 ($ $))))) (T -880)) +((-2246 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-880)))) (-2849 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-880)))) (-2522 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-880)))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-880)))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-880)))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-880)))) (-3639 (*1 *1) (-5 *1 (-880))) (-2513 (*1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-880)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-3352 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-2440 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-2503 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-2494 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-2486 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-2477 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-2469 (*1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-4239 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-3693 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) (-4228 (*1 *1 *1) (-5 *1 (-880))) (-4239 (*1 *1 *1) (-5 *1 (-880))) (-3693 (*1 *1 *1) (-5 *1 (-880))) (-2460 (*1 *1 *1 *1) (-5 *1 (-880))) (-2450 (*1 *1 *1 *1) (-5 *1 (-880))) (-2460 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-2450 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-3970 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-2438 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-2438 (*1 *1 *1 *1 *1) (-5 *1 (-880))) (-2428 (*1 *1 *1 *1) (-5 *1 (-880))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-880)))) (-2872 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-1335 (*1 *1 *1) (-5 *1 (-880))) (-2584 (*1 *1 *1 *1) (-5 *1 (-880))) (-2251 (*1 *1 *1) (-5 *1 (-880))) (-2550 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-880)))) (-5 *1 (-880)))) (-2420 (*1 *1 *1 *1) (-5 *1 (-880))) (-2558 (*1 *1 *1) (-5 *1 (-880))) (-2558 (*1 *1 *1 *1) (-5 *1 (-880))) (-2410 (*1 *1 *1 *1) (-5 *1 (-880))) (-2401 (*1 *1 *1 *1) (-5 *1 (-880))) (-3533 (*1 *1 *1 *1) (-5 *1 (-880))) (-3522 (*1 *1 *1 *1) (-5 *1 (-880))) (-2852 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-880)))) (-3850 (*1 *1 *1 *1) (-5 *1 (-880))) (-3512 (*1 *1 *1 *1) (-5 *1 (-880))) (-1951 (*1 *1 *1 *1) (-5 *1 (-880))) (-3503 (*1 *1 *1 *1) (-5 *1 (-880))) (-3491 (*1 *1 *1 *1) (-5 *1 (-880))) (-3413 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-3479 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-3469 (*1 *1 *1) (-5 *1 (-880))) (-3116 (*1 *1 *1) (-5 *1 (-880))) (-3116 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-880)))) (-3458 (*1 *1 *1) (-5 *1 (-880))) (-3458 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-880)))) (-3447 (*1 *1 *1) (-5 *1 (-880))) (-3437 (*1 *1 *1 *1) (-5 *1 (-880))) (-2656 (*1 *1 *1) (-5 *1 (-880))) (-2656 (*1 *1 *1 *1) (-5 *1 (-880))) (-2656 (*1 *1 *1 *1 *1) (-5 *1 (-880))) (-3425 (*1 *1 *1) (-5 *1 (-880))) (-3425 (*1 *1 *1 *1) (-5 *1 (-880))) (-3425 (*1 *1 *1 *1 *1) (-5 *1 (-880))) (-3858 (*1 *1 *1) (-5 *1 (-880))) (-3858 (*1 *1 *1 *1) (-5 *1 (-880))) (-3858 (*1 *1 *1 *1 *1) (-5 *1 (-880))) (-1973 (*1 *1 *1) (-5 *1 (-880))) (-1973 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-3412 (*1 *1 *1) (-5 *1 (-880))) (-3412 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-3401 (*1 *1 *1) (-5 *1 (-880))) (-3401 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-3391 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-3382 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-3373 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-3364 (*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) (-2970 (*1 *1 *1 *1) (-5 *1 (-880))) (-3473 (*1 *1 *1 *1) (-5 *1 (-880))) (-2990 (*1 *1 *1 *1) (-5 *1 (-880))) (-3000 (*1 *1 *1 *1) (-5 *1 (-880))) (-3012 (*1 *1 *1 *1) (-5 *1 (-880))) (-3025 (*1 *1 *1 *1) (-5 *1 (-880))) (-3055 (*1 *1 *1 *1) (-5 *1 (-880))) (-3066 (*1 *1 *1 *1) (-5 *1 (-880))) (-3066 (*1 *1 *1) (-5 *1 (-880))) (* (*1 *1 *1 *1) (-5 *1 (-880))) (-3077 (*1 *1 *1 *1) (-5 *1 (-880))) (** (*1 *1 *1 *1) (-5 *1 (-880))) (-3451 (*1 *1 *1 *1) (-5 *1 (-880))) (-3418 (*1 *1 *1 *1) (-5 *1 (-880))) (-3429 (*1 *1 *1 *1) (-5 *1 (-880))) (-3462 (*1 *1 *1 *1) (-5 *1 (-880))) (-2761 (*1 *1 *1 *1) (-5 *1 (-880))) (-2771 (*1 *1 *1 *1) (-5 *1 (-880))) (-2749 (*1 *1 *1) (-5 *1 (-880))) (-1851 (*1 *1 *1 *1) (-5 *1 (-880))) (-1851 (*1 *1 *1) (-5 *1 (-880)))) +(-13 (-1125) (-10 -8 (-15 -2246 ((-1297) $)) (-15 -2849 ($ (-1183))) (-15 -2522 ((-1297) (-1183))) (-15 -3380 ($ (-577))) (-15 -3380 ($ (-1201))) (-15 -3380 ($ (-1183))) (-15 -3380 ($ (-228))) (-15 -3639 ($)) (-15 -2513 ((-1183) (-1183))) (-15 -3352 ((-577) $)) (-15 -2440 ((-577) $)) (-15 -3352 ((-577))) (-15 -2440 ((-577))) (-15 -2503 ((-577) $)) (-15 -2494 ((-577) $)) (-15 -2486 ($ (-577))) (-15 -2477 ($ (-577))) (-15 -2469 ($ (-577) (-577))) (-15 -4228 ($ $ (-577))) (-15 -4239 ($ $ (-577))) (-15 -3693 ($ $ (-577))) (-15 -4228 ($ $)) (-15 -4239 ($ $)) (-15 -3693 ($ $)) (-15 -2460 ($ $ $)) (-15 -2450 ($ $ $)) (-15 -2460 ($ (-660 $))) (-15 -2450 ($ (-660 $))) (-15 -3970 ($ $ (-660 $))) (-15 -2438 ($ $ (-660 $))) (-15 -2438 ($ $ $ $)) (-15 -2428 ($ $ $)) (-15 -4188 ((-112) $)) (-15 -2872 ($ $ (-660 $))) (-15 -1335 ($ $)) (-15 -2584 ($ $ $)) (-15 -2251 ($ $)) (-15 -2550 ($ (-660 (-660 $)))) (-15 -2420 ($ $ $)) (-15 -2558 ($ $)) (-15 -2558 ($ $ $)) (-15 -2410 ($ $ $)) (-15 -2401 ($ $ $)) (-15 -3533 ($ $ $)) (-15 -3522 ($ $ $)) (-15 -2852 ($ $ (-787))) (-15 -3850 ($ $ $)) (-15 -3512 ($ $ $)) (-15 -1951 ($ $ $)) (-15 -3503 ($ $ $)) (-15 -3491 ($ $ $)) (-15 -3413 ($ $ (-660 $))) (-15 -3479 ($ $ (-660 $))) (-15 -3469 ($ $)) (-15 -3116 ($ $)) (-15 -3116 ($ $ (-787))) (-15 -3458 ($ $)) (-15 -3458 ($ $ (-787))) (-15 -3447 ($ $)) (-15 -3437 ($ $ $)) (-15 -2656 ($ $)) (-15 -2656 ($ $ $)) (-15 -2656 ($ $ $ $)) (-15 -3425 ($ $)) (-15 -3425 ($ $ $)) (-15 -3425 ($ $ $ $)) (-15 -3858 ($ $)) (-15 -3858 ($ $ $)) (-15 -3858 ($ $ $ $)) (-15 -1973 ($ $)) (-15 -1973 ($ (-660 $))) (-15 -3412 ($ $)) (-15 -3412 ($ (-660 $))) (-15 -3401 ($ $)) (-15 -3401 ($ (-660 $))) (-15 -3391 ($ (-660 $))) (-15 -3382 ($ (-660 $))) (-15 -3373 ($ (-660 $))) (-15 -3364 ($ (-660 $))) (-15 -2970 ($ $ $)) (-15 -3473 ($ $ $)) (-15 -2990 ($ $ $)) (-15 -3000 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -3025 ($ $ $)) (-15 -3055 ($ $ $)) (-15 -3066 ($ $ $)) (-15 -3066 ($ $)) (-15 * ($ $ $)) (-15 -3077 ($ $ $)) (-15 ** ($ $ $)) (-15 -3451 ($ $ $)) (-15 -3418 ($ $ $)) (-15 -3429 ($ $ $)) (-15 -3462 ($ $ $)) (-15 -2761 ($ $ $)) (-15 -2771 ($ $ $)) (-15 -2749 ($ $)) (-15 -1851 ($ $ $)) (-15 -1851 ($ $)))) +((-1529 (((-1297) (-660 (-52))) 23)) (-2833 (((-1297) (-1183) (-880)) 13) (((-1297) (-880)) 8) (((-1297) (-1183)) 10))) +(((-881) (-10 -7 (-15 -2833 ((-1297) (-1183))) (-15 -2833 ((-1297) (-880))) (-15 -2833 ((-1297) (-1183) (-880))) (-15 -1529 ((-1297) (-660 (-52)))))) (T -881)) +((-1529 (*1 *2 *3) (-12 (-5 *3 (-660 (-52))) (-5 *2 (-1297)) (-5 *1 (-881)))) (-2833 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-880)) (-5 *2 (-1297)) (-5 *1 (-881)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-881)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-881))))) +(-10 -7 (-15 -2833 ((-1297) (-1183))) (-15 -2833 ((-1297) (-880))) (-15 -2833 ((-1297) (-1183) (-880))) (-15 -1529 ((-1297) (-660 (-52))))) +((-3473 (((-112) $ $) NIL)) (-3076 (((-3 $ "failed") (-1201)) 36)) (-2229 (((-787)) 32)) (-1910 (($) NIL)) (-3732 (($ $ $) NIL) (($) NIL T CONST)) (-3201 (($ $ $) NIL) (($) NIL T CONST)) (-4038 (((-944) $) 29)) (-2810 (((-1183) $) 43)) (-3222 (($ (-944)) 28)) (-1474 (((-1145) $) NIL)) (-4152 (((-1201) $) 13) (((-549) $) 19) (((-911 (-391)) $) 26) (((-911 (-577)) $) 22)) (-3544 (((-880) $) 16)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 40)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 38))) +(((-882 |#1|) (-13 (-860) (-627 (-1201)) (-627 (-549)) (-627 (-911 (-391))) (-627 (-911 (-577))) (-10 -8 (-15 -3076 ((-3 $ "failed") (-1201))))) (-660 (-1201))) (T -882)) +((-3076 (*1 *1 *2) (|partial| -12 (-5 *2 (-1201)) (-5 *1 (-882 *3)) (-14 *3 (-660 *2))))) +(-13 (-860) (-627 (-1201)) (-627 (-549)) (-627 (-911 (-391))) (-627 (-911 (-577))) (-10 -8 (-15 -3076 ((-3 $ "failed") (-1201))))) +((-3473 (((-112) $ $) NIL)) (-2713 (((-519) $) 9)) (-2530 (((-660 (-452)) $) 13)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 21)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 16))) +(((-883) (-13 (-1125) (-10 -8 (-15 -2713 ((-519) $)) (-15 -2530 ((-660 (-452)) $))))) (T -883)) +((-2713 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-883)))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-660 (-452))) (-5 *1 (-883))))) +(-13 (-1125) (-10 -8 (-15 -2713 ((-519) $)) (-15 -2530 ((-660 (-452)) $)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-4187 (((-3 $ "failed") $) NIL)) (-2487 (((-112) $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ (-975 |#1|)) NIL) (((-975 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-4068 (((-787)) NIL T CONST)) (-2669 (((-1297) (-787)) NIL)) (-4448 (((-112) $ $) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2970 (((-112) $ $) NIL)) (-3077 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-884 |#1| |#2| |#3| |#4|) (-13 (-1074) (-503 (-975 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -3077 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2669 ((-1297) (-787))))) (-1074) (-660 (-1201)) (-660 (-787)) (-787)) (T -884)) +((-3077 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-884 *2 *3 *4 *5)) (-4 *2 (-375)) (-4 *2 (-1074)) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-787))) (-14 *5 (-787)))) (-2669 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-884 *4 *5 *6 *7)) (-4 *4 (-1074)) (-14 *5 (-660 (-1201))) (-14 *6 (-660 *3)) (-14 *7 *3)))) +(-13 (-1074) (-503 (-975 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -3077 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2669 ((-1297) (-787))))) +((-2539 (((-3 (-176 |#3|) "failed") (-787) (-787) |#2| |#2|) 38)) (-2549 (((-3 (-420 |#3|) "failed") (-787) (-787) |#2| |#2|) 29))) +(((-885 |#1| |#2| |#3|) (-10 -7 (-15 -2549 ((-3 (-420 |#3|) "failed") (-787) (-787) |#2| |#2|)) (-15 -2539 ((-3 (-176 |#3|) "failed") (-787) (-787) |#2| |#2|))) (-375) (-1283 |#1|) (-1268 |#1|)) (T -885)) +((-2539 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-787)) (-4 *5 (-375)) (-5 *2 (-176 *6)) (-5 *1 (-885 *5 *4 *6)) (-4 *4 (-1283 *5)) (-4 *6 (-1268 *5)))) (-2549 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-787)) (-4 *5 (-375)) (-5 *2 (-420 *6)) (-5 *1 (-885 *5 *4 *6)) (-4 *4 (-1283 *5)) (-4 *6 (-1268 *5))))) +(-10 -7 (-15 -2549 ((-3 (-420 |#3|) "failed") (-787) (-787) |#2| |#2|)) (-15 -2539 ((-3 (-176 |#3|) "failed") (-787) (-787) |#2| |#2|))) +((-2549 (((-3 (-420 (-1265 |#2| |#1|)) "failed") (-787) (-787) (-1284 |#1| |#2| |#3|)) 30) (((-3 (-420 (-1265 |#2| |#1|)) "failed") (-787) (-787) (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|)) 28))) +(((-886 |#1| |#2| |#3|) (-10 -7 (-15 -2549 ((-3 (-420 (-1265 |#2| |#1|)) "failed") (-787) (-787) (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|))) (-15 -2549 ((-3 (-420 (-1265 |#2| |#1|)) "failed") (-787) (-787) (-1284 |#1| |#2| |#3|)))) (-375) (-1201) |#1|) (T -886)) +((-2549 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-787)) (-5 *4 (-1284 *5 *6 *7)) (-4 *5 (-375)) (-14 *6 (-1201)) (-14 *7 *5) (-5 *2 (-420 (-1265 *6 *5))) (-5 *1 (-886 *5 *6 *7)))) (-2549 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-787)) (-5 *4 (-1284 *5 *6 *7)) (-4 *5 (-375)) (-14 *6 (-1201)) (-14 *7 *5) (-5 *2 (-420 (-1265 *6 *5))) (-5 *1 (-886 *5 *6 *7))))) +(-10 -7 (-15 -2549 ((-3 (-420 (-1265 |#2| |#1|)) "failed") (-787) (-787) (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|))) (-15 -2549 ((-3 (-420 (-1265 |#2| |#1|)) "failed") (-787) (-787) (-1284 |#1| |#2| |#3|)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-1956 (((-3 $ "failed") $ $) 20)) (-1913 (($ $ (-577)) 68)) (-1939 (((-112) $ $) 65)) (-1534 (($) 18 T CONST)) (-2558 (($ (-1197 (-577)) (-577)) 67)) (-3418 (($ $ $) 61)) (-4187 (((-3 $ "failed") $) 37)) (-2567 (($ $) 70)) (-3429 (($ $ $) 62)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 57)) (-3817 (((-787) $) 75)) (-2487 (((-112) $) 35)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 58)) (-2587 (((-577)) 72)) (-2577 (((-577) $) 71)) (-3446 (($ $ $) 52) (($ (-660 $)) 51)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 50)) (-3480 (($ $ $) 54) (($ (-660 $)) 53)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3792 (($ $ (-577)) 74)) (-3462 (((-3 $ "failed") $ $) 48)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 56)) (-1927 (((-787) $) 64)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 63)) (-2596 (((-1182 (-577)) $) 76)) (-3540 (($ $) 73)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 45)) (-4148 (((-577) $ (-577)) 69)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) +(((-887 |#1|) (-141) (-577)) (T -887)) +((-2596 (*1 *2 *1) (-12 (-4 *1 (-887 *3)) (-5 *2 (-1182 (-577))))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-887 *3)) (-5 *2 (-787)))) (-3792 (*1 *1 *1 *2) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577)))) (-3540 (*1 *1 *1) (-4 *1 (-887 *2))) (-2587 (*1 *2) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577)))) (-2567 (*1 *1 *1) (-4 *1 (-887 *2))) (-4148 (*1 *2 *1 *2) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577)))) (-1913 (*1 *1 *1 *2) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577)))) (-2558 (*1 *1 *2 *3) (-12 (-5 *2 (-1197 (-577))) (-5 *3 (-577)) (-4 *1 (-887 *4))))) +(-13 (-318) (-148) (-10 -8 (-15 -2596 ((-1182 (-577)) $)) (-15 -3817 ((-787) $)) (-15 -3792 ($ $ (-577))) (-15 -3540 ($ $)) (-15 -2587 ((-577))) (-15 -2577 ((-577) $)) (-15 -2567 ($ $)) (-15 -4148 ((-577) $ (-577))) (-15 -1913 ($ $ (-577))) (-15 -2558 ($ (-1197 (-577)) (-577))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-301) . T) ((-318) . T) ((-465) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-943) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1913 (($ $ (-577)) NIL)) (-1939 (((-112) $ $) NIL)) (-1534 (($) NIL T CONST)) (-2558 (($ (-1197 (-577)) (-577)) NIL)) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-2567 (($ $) NIL)) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-3817 (((-787) $) NIL)) (-2487 (((-112) $) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-2587 (((-577)) NIL)) (-2577 (((-577) $) NIL)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3792 (($ $ (-577)) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2596 (((-1182 (-577)) $) NIL)) (-3540 (($ $) NIL)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-4148 (((-577) $ (-577)) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL))) +(((-888 |#1|) (-887 |#1|) (-577)) (T -888)) +NIL +(-887 |#1|) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-4105 (((-888 |#1|) $) NIL (|has| (-888 |#1|) (-318)))) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-888 |#1|) (-932)))) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| (-888 |#1|) (-932)))) (-1939 (((-112) $ $) NIL)) (-3010 (((-577) $) NIL (|has| (-888 |#1|) (-836)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-888 |#1|) "failed") $) NIL) (((-3 (-1201) "failed") $) NIL (|has| (-888 |#1|) (-1063 (-1201)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-888 |#1|) (-1063 (-577)))) (((-3 (-577) "failed") $) NIL (|has| (-888 |#1|) (-1063 (-577))))) (-2921 (((-888 |#1|) $) NIL) (((-1201) $) NIL (|has| (-888 |#1|) (-1063 (-1201)))) (((-420 (-577)) $) NIL (|has| (-888 |#1|) (-1063 (-577)))) (((-577) $) NIL (|has| (-888 |#1|) (-1063 (-577))))) (-1566 (($ $) NIL) (($ (-577) $) NIL)) (-3418 (($ $ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| (-888 |#1|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-888 |#1|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-888 |#1|))) (|:| |vec| (-1292 (-888 |#1|)))) (-705 $) (-1292 $)) NIL) (((-705 (-888 |#1|)) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($) NIL (|has| (-888 |#1|) (-558)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-3567 (((-112) $) NIL (|has| (-888 |#1|) (-836)))) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| (-888 |#1|) (-905 (-577)))) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| (-888 |#1|) (-905 (-391))))) (-2487 (((-112) $) NIL)) (-2240 (($ $) NIL)) (-1623 (((-888 |#1|) $) NIL)) (-4021 (((-3 $ "failed") $) NIL (|has| (-888 |#1|) (-1177)))) (-3578 (((-112) $) NIL (|has| (-888 |#1|) (-836)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3732 (($ $ $) NIL (|has| (-888 |#1|) (-865)))) (-3201 (($ $ $) NIL (|has| (-888 |#1|) (-865)))) (-4087 (($ (-1 (-888 |#1|) (-888 |#1|)) $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| (-888 |#1|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-888 |#1|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-888 |#1|))) (|:| |vec| (-1292 (-888 |#1|)))) (-1292 $) $) NIL) (((-705 (-888 |#1|)) (-1292 $)) NIL)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1709 (($) NIL (|has| (-888 |#1|) (-1177)) CONST)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-4093 (($ $) NIL (|has| (-888 |#1|) (-318)))) (-4119 (((-888 |#1|) $) NIL (|has| (-888 |#1|) (-558)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-888 |#1|) (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-888 |#1|) (-932)))) (-1902 (((-431 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3280 (($ $ (-660 (-888 |#1|)) (-660 (-888 |#1|))) NIL (|has| (-888 |#1|) (-320 (-888 |#1|)))) (($ $ (-888 |#1|) (-888 |#1|)) NIL (|has| (-888 |#1|) (-320 (-888 |#1|)))) (($ $ (-305 (-888 |#1|))) NIL (|has| (-888 |#1|) (-320 (-888 |#1|)))) (($ $ (-660 (-305 (-888 |#1|)))) NIL (|has| (-888 |#1|) (-320 (-888 |#1|)))) (($ $ (-660 (-1201)) (-660 (-888 |#1|))) NIL (|has| (-888 |#1|) (-527 (-1201) (-888 |#1|)))) (($ $ (-1201) (-888 |#1|)) NIL (|has| (-888 |#1|) (-527 (-1201) (-888 |#1|))))) (-1927 (((-787) $) NIL)) (-2872 (($ $ (-888 |#1|)) NIL (|has| (-888 |#1|) (-297 (-888 |#1|) (-888 |#1|))))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2852 (($ $ (-1 (-888 |#1|) (-888 |#1|))) NIL) (($ $ (-1 (-888 |#1|) (-888 |#1|)) (-787)) NIL) (($ $ (-1201)) NIL (|has| (-888 |#1|) (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| (-888 |#1|) (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| (-888 |#1|) (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-888 |#1|) (-923 (-1201)))) (($ $) NIL (|has| (-888 |#1|) (-238))) (($ $ (-787)) NIL (|has| (-888 |#1|) (-238)))) (-2227 (($ $) NIL)) (-1637 (((-888 |#1|) $) NIL)) (-4152 (((-911 (-577)) $) NIL (|has| (-888 |#1|) (-627 (-911 (-577))))) (((-911 (-391)) $) NIL (|has| (-888 |#1|) (-627 (-911 (-391))))) (((-549) $) NIL (|has| (-888 |#1|) (-627 (-549)))) (((-391) $) NIL (|has| (-888 |#1|) (-1047))) (((-228) $) NIL (|has| (-888 |#1|) (-1047)))) (-2605 (((-176 (-420 (-577))) $) NIL)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| (-888 |#1|) (-932))))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) NIL) (($ (-888 |#1|)) NIL) (($ (-1201)) NIL (|has| (-888 |#1|) (-1063 (-1201))))) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| (-888 |#1|) (-932))) (|has| (-888 |#1|) (-146))))) (-4068 (((-787)) NIL T CONST)) (-4132 (((-888 |#1|) $) NIL (|has| (-888 |#1|) (-558)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-4148 (((-420 (-577)) $ (-577)) NIL)) (-1654 (($ $) NIL (|has| (-888 |#1|) (-836)))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-1 (-888 |#1|) (-888 |#1|))) NIL) (($ $ (-1 (-888 |#1|) (-888 |#1|)) (-787)) NIL) (($ $ (-1201)) NIL (|has| (-888 |#1|) (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| (-888 |#1|) (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| (-888 |#1|) (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-888 |#1|) (-923 (-1201)))) (($ $) NIL (|has| (-888 |#1|) (-238))) (($ $ (-787)) NIL (|has| (-888 |#1|) (-238)))) (-3025 (((-112) $ $) NIL (|has| (-888 |#1|) (-865)))) (-3000 (((-112) $ $) NIL (|has| (-888 |#1|) (-865)))) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-888 |#1|) (-865)))) (-2990 (((-112) $ $) NIL (|has| (-888 |#1|) (-865)))) (-3077 (($ $ $) NIL) (($ (-888 |#1|) (-888 |#1|)) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ (-888 |#1|) $) NIL) (($ $ (-888 |#1|)) NIL))) +(((-889 |#1|) (-13 (-1017 (-888 |#1|)) (-10 -8 (-15 -4148 ((-420 (-577)) $ (-577))) (-15 -2605 ((-176 (-420 (-577))) $)) (-15 -1566 ($ $)) (-15 -1566 ($ (-577) $)))) (-577)) (T -889)) +((-4148 (*1 *2 *1 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-889 *4)) (-14 *4 *3) (-5 *3 (-577)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-889 *3)) (-14 *3 (-577)))) (-1566 (*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-14 *2 (-577)))) (-1566 (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-889 *3)) (-14 *3 *2)))) +(-13 (-1017 (-888 |#1|)) (-10 -8 (-15 -4148 ((-420 (-577)) $ (-577))) (-15 -2605 ((-176 (-420 (-577))) $)) (-15 -1566 ($ $)) (-15 -1566 ($ (-577) $)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-4105 ((|#2| $) NIL (|has| |#2| (-318)))) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-1939 (((-112) $ $) NIL)) (-3010 (((-577) $) NIL (|has| |#2| (-836)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#2| "failed") $) NIL) (((-3 (-1201) "failed") $) NIL (|has| |#2| (-1063 (-1201)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1063 (-577)))) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1063 (-577))))) (-2921 ((|#2| $) NIL) (((-1201) $) NIL (|has| |#2| (-1063 (-1201)))) (((-420 (-577)) $) NIL (|has| |#2| (-1063 (-577)))) (((-577) $) NIL (|has| |#2| (-1063 (-577))))) (-1566 (($ $) 35) (($ (-577) $) 38)) (-3418 (($ $ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL) (((-705 |#2|) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) 64)) (-1910 (($) NIL (|has| |#2| (-558)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-3567 (((-112) $) NIL (|has| |#2| (-836)))) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| |#2| (-905 (-577)))) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| |#2| (-905 (-391))))) (-2487 (((-112) $) NIL)) (-2240 (($ $) NIL)) (-1623 ((|#2| $) NIL)) (-4021 (((-3 $ "failed") $) NIL (|has| |#2| (-1177)))) (-3578 (((-112) $) NIL (|has| |#2| (-836)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3732 (($ $ $) NIL (|has| |#2| (-865)))) (-3201 (($ $ $) NIL (|has| |#2| (-865)))) (-4087 (($ (-1 |#2| |#2|) $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL) (((-705 |#2|) (-1292 $)) NIL)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) 60)) (-1709 (($) NIL (|has| |#2| (-1177)) CONST)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-4093 (($ $) NIL (|has| |#2| (-318)))) (-4119 ((|#2| $) NIL (|has| |#2| (-558)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-1902 (((-431 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3280 (($ $ (-660 |#2|) (-660 |#2|)) NIL (|has| |#2| (-320 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-320 |#2|))) (($ $ (-305 |#2|)) NIL (|has| |#2| (-320 |#2|))) (($ $ (-660 (-305 |#2|))) NIL (|has| |#2| (-320 |#2|))) (($ $ (-660 (-1201)) (-660 |#2|)) NIL (|has| |#2| (-527 (-1201) |#2|))) (($ $ (-1201) |#2|) NIL (|has| |#2| (-527 (-1201) |#2|)))) (-1927 (((-787) $) NIL)) (-2872 (($ $ |#2|) NIL (|has| |#2| (-297 |#2| |#2|)))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2852 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-787)) NIL) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201)))) (($ $) NIL (|has| |#2| (-238))) (($ $ (-787)) NIL (|has| |#2| (-238)))) (-2227 (($ $) NIL)) (-1637 ((|#2| $) NIL)) (-4152 (((-911 (-577)) $) NIL (|has| |#2| (-627 (-911 (-577))))) (((-911 (-391)) $) NIL (|has| |#2| (-627 (-911 (-391))))) (((-549) $) NIL (|has| |#2| (-627 (-549)))) (((-391) $) NIL (|has| |#2| (-1047))) (((-228) $) NIL (|has| |#2| (-1047)))) (-2605 (((-176 (-420 (-577))) $) 78)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-932))))) (-3544 (((-880) $) 106) (($ (-577)) 20) (($ $) NIL) (($ (-420 (-577))) 25) (($ |#2|) 19) (($ (-1201)) NIL (|has| |#2| (-1063 (-1201))))) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| |#2| (-932))) (|has| |#2| (-146))))) (-4068 (((-787)) NIL T CONST)) (-4132 ((|#2| $) NIL (|has| |#2| (-558)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-4148 (((-420 (-577)) $ (-577)) 71)) (-1654 (($ $) NIL (|has| |#2| (-836)))) (-2806 (($) 15 T CONST)) (-2816 (($) 17 T CONST)) (-2132 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-787)) NIL) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201)))) (($ $) NIL (|has| |#2| (-238))) (($ $ (-787)) NIL (|has| |#2| (-238)))) (-3025 (((-112) $ $) NIL (|has| |#2| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#2| (-865)))) (-2970 (((-112) $ $) 46)) (-3012 (((-112) $ $) NIL (|has| |#2| (-865)))) (-2990 (((-112) $ $) NIL (|has| |#2| (-865)))) (-3077 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3066 (($ $) 50) (($ $ $) 52)) (-3055 (($ $ $) 48)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) 61)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 53) (($ $ $) 55) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) +(((-890 |#1| |#2|) (-13 (-1017 |#2|) (-10 -8 (-15 -4148 ((-420 (-577)) $ (-577))) (-15 -2605 ((-176 (-420 (-577))) $)) (-15 -1566 ($ $)) (-15 -1566 ($ (-577) $)))) (-577) (-887 |#1|)) (T -890)) +((-4148 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-420 (-577))) (-5 *1 (-890 *4 *5)) (-5 *3 (-577)) (-4 *5 (-887 *4)))) (-2605 (*1 *2 *1) (-12 (-14 *3 (-577)) (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-890 *3 *4)) (-4 *4 (-887 *3)))) (-1566 (*1 *1 *1) (-12 (-14 *2 (-577)) (-5 *1 (-890 *2 *3)) (-4 *3 (-887 *2)))) (-1566 (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-14 *3 *2) (-5 *1 (-890 *3 *4)) (-4 *4 (-887 *3))))) +(-13 (-1017 |#2|) (-10 -8 (-15 -4148 ((-420 (-577)) $ (-577))) (-15 -2605 ((-176 (-420 (-577))) $)) (-15 -1566 ($ $)) (-15 -1566 ($ (-577) $)))) +((-3473 (((-112) $ $) NIL (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))))) (-2939 ((|#2| $) 12)) (-3252 (($ |#1| |#2|) 9)) (-2810 (((-1183) $) NIL (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))))) (-1474 (((-1145) $) NIL (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))))) (-3552 ((|#1| $) 11)) (-3553 (($ |#1| |#2|) 10)) (-3544 (((-880) $) 18 (-2839 (-12 (|has| |#1| (-626 (-880))) (|has| |#2| (-626 (-880)))) (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125)))))) (-4448 (((-112) $ $) NIL (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125))))) (-2970 (((-112) $ $) 23 (-12 (|has| |#1| (-1125)) (|has| |#2| (-1125)))))) +(((-891 |#1| |#2|) (-13 (-1242) (-10 -8 (IF (|has| |#1| (-626 (-880))) (IF (|has| |#2| (-626 (-880))) (-6 (-626 (-880))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1125)) (IF (|has| |#2| (-1125)) (-6 (-1125)) |%noBranch|) |%noBranch|) (-15 -3252 ($ |#1| |#2|)) (-15 -3553 ($ |#1| |#2|)) (-15 -3552 (|#1| $)) (-15 -2939 (|#2| $)))) (-1242) (-1242)) (T -891)) +((-3252 (*1 *1 *2 *3) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1242)) (-4 *3 (-1242)))) (-3553 (*1 *1 *2 *3) (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1242)) (-4 *3 (-1242)))) (-3552 (*1 *2 *1) (-12 (-4 *2 (-1242)) (-5 *1 (-891 *2 *3)) (-4 *3 (-1242)))) (-2939 (*1 *2 *1) (-12 (-4 *2 (-1242)) (-5 *1 (-891 *3 *2)) (-4 *3 (-1242))))) +(-13 (-1242) (-10 -8 (IF (|has| |#1| (-626 (-880))) (IF (|has| |#2| (-626 (-880))) (-6 (-626 (-880))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1125)) (IF (|has| |#2| (-1125)) (-6 (-1125)) |%noBranch|) |%noBranch|) (-15 -3252 ($ |#1| |#2|)) (-15 -3553 ($ |#1| |#2|)) (-15 -3552 (|#1| $)) (-15 -2939 (|#2| $)))) +((-3473 (((-112) $ $) NIL)) (-1785 (((-577) $) 16)) (-2624 (($ (-158)) 13)) (-2615 (($ (-158)) 14)) (-2810 (((-1183) $) NIL)) (-2987 (((-158) $) 15)) (-1474 (((-1145) $) NIL)) (-2791 (($ (-158)) 11)) (-2633 (($ (-158)) 10)) (-3544 (((-880) $) 24) (($ (-158)) 17)) (-3261 (($ (-158)) 12)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-892) (-13 (-1125) (-10 -8 (-15 -2633 ($ (-158))) (-15 -2791 ($ (-158))) (-15 -3261 ($ (-158))) (-15 -2624 ($ (-158))) (-15 -2615 ($ (-158))) (-15 -2987 ((-158) $)) (-15 -1785 ((-577) $)) (-15 -3544 ($ (-158)))))) (T -892)) +((-2633 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892)))) (-2791 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892)))) (-3261 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892)))) (-2624 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892)))) (-2615 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-892)))) (-1785 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-892)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892))))) +(-13 (-1125) (-10 -8 (-15 -2633 ($ (-158))) (-15 -2791 ($ (-158))) (-15 -3261 ($ (-158))) (-15 -2624 ($ (-158))) (-15 -2615 ($ (-158))) (-15 -2987 ((-158) $)) (-15 -1785 ((-577) $)) (-15 -3544 ($ (-158))))) +((-3544 (((-327 (-577)) (-420 (-975 (-48)))) 23) (((-327 (-577)) (-975 (-48))) 18))) +(((-893) (-10 -7 (-15 -3544 ((-327 (-577)) (-975 (-48)))) (-15 -3544 ((-327 (-577)) (-420 (-975 (-48))))))) (T -893)) +((-3544 (*1 *2 *3) (-12 (-5 *3 (-420 (-975 (-48)))) (-5 *2 (-327 (-577))) (-5 *1 (-893)))) (-3544 (*1 *2 *3) (-12 (-5 *3 (-975 (-48))) (-5 *2 (-327 (-577))) (-5 *1 (-893))))) +(-10 -7 (-15 -3544 ((-327 (-577)) (-975 (-48)))) (-15 -3544 ((-327 (-577)) (-420 (-975 (-48)))))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 18) (($ (-1206)) NIL) (((-1206) $) NIL)) (-2793 (((-112) $ (|[\|\|]| (-519))) 9) (((-112) $ (|[\|\|]| (-1183))) 13)) (-4448 (((-112) $ $) NIL)) (-2003 (((-519) $) 10) (((-1183) $) 14)) (-2970 (((-112) $ $) 15))) +(((-894) (-13 (-1108) (-1287) (-10 -8 (-15 -2793 ((-112) $ (|[\|\|]| (-519)))) (-15 -2003 ((-519) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-1183)))) (-15 -2003 ((-1183) $))))) (T -894)) +((-2793 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)) (-5 *1 (-894)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-894)))) (-2793 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-112)) (-5 *1 (-894)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-894))))) +(-13 (-1108) (-1287) (-10 -8 (-15 -2793 ((-112) $ (|[\|\|]| (-519)))) (-15 -2003 ((-519) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-1183)))) (-15 -2003 ((-1183) $)))) +((-4087 (((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)) 15))) +(((-895 |#1| |#2|) (-10 -7 (-15 -4087 ((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)))) (-1242) (-1242)) (T -895)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-896 *6)) (-5 *1 (-895 *5 *6))))) +(-10 -7 (-15 -4087 ((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)))) +((-1539 (($ |#1| |#1|) 8)) (-2666 ((|#1| $ (-787)) 15))) +(((-896 |#1|) (-10 -8 (-15 -1539 ($ |#1| |#1|)) (-15 -2666 (|#1| $ (-787)))) (-1242)) (T -896)) +((-2666 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *1 (-896 *2)) (-4 *2 (-1242)))) (-1539 (*1 *1 *2 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1242))))) +(-10 -8 (-15 -1539 ($ |#1| |#1|)) (-15 -2666 (|#1| $ (-787)))) +((-4087 (((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)) 15))) +(((-897 |#1| |#2|) (-10 -7 (-15 -4087 ((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)))) (-1242) (-1242)) (T -897)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-898 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-898 *6)) (-5 *1 (-897 *5 *6))))) +(-10 -7 (-15 -4087 ((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)))) +((-1539 (($ |#1| |#1| |#1|) 8)) (-2666 ((|#1| $ (-787)) 15))) +(((-898 |#1|) (-10 -8 (-15 -1539 ($ |#1| |#1| |#1|)) (-15 -2666 (|#1| $ (-787)))) (-1242)) (T -898)) +((-2666 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *1 (-898 *2)) (-4 *2 (-1242)))) (-1539 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1242))))) +(-10 -8 (-15 -1539 ($ |#1| |#1| |#1|)) (-15 -2666 (|#1| $ (-787)))) +((-2642 (((-660 (-1206)) (-1183)) 9))) +(((-899) (-10 -7 (-15 -2642 ((-660 (-1206)) (-1183))))) (T -899)) +((-2642 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-660 (-1206))) (-5 *1 (-899))))) +(-10 -7 (-15 -2642 ((-660 (-1206)) (-1183)))) +((-4087 (((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)) 15))) +(((-900 |#1| |#2|) (-10 -7 (-15 -4087 ((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)))) (-1242) (-1242)) (T -900)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-901 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-901 *6)) (-5 *1 (-900 *5 *6))))) +(-10 -7 (-15 -4087 ((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)))) +((-2652 (($ |#1| |#1| |#1|) 8)) (-2666 ((|#1| $ (-787)) 15))) +(((-901 |#1|) (-10 -8 (-15 -2652 ($ |#1| |#1| |#1|)) (-15 -2666 (|#1| $ (-787)))) (-1242)) (T -901)) +((-2666 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *1 (-901 *2)) (-4 *2 (-1242)))) (-2652 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1242))))) +(-10 -8 (-15 -2652 ($ |#1| |#1| |#1|)) (-15 -2666 (|#1| $ (-787)))) +((-2698 (((-1182 (-660 (-577))) (-660 (-577)) (-1182 (-660 (-577)))) 41)) (-2687 (((-1182 (-660 (-577))) (-660 (-577)) (-660 (-577))) 31)) (-2708 (((-1182 (-660 (-577))) (-660 (-577))) 53) (((-1182 (-660 (-577))) (-660 (-577)) (-660 (-577))) 50)) (-2718 (((-1182 (-660 (-577))) (-577)) 55)) (-2675 (((-1182 (-660 (-944))) (-1182 (-660 (-944)))) 22)) (-2360 (((-660 (-944)) (-660 (-944))) 18))) +(((-902) (-10 -7 (-15 -2360 ((-660 (-944)) (-660 (-944)))) (-15 -2675 ((-1182 (-660 (-944))) (-1182 (-660 (-944))))) (-15 -2687 ((-1182 (-660 (-577))) (-660 (-577)) (-660 (-577)))) (-15 -2698 ((-1182 (-660 (-577))) (-660 (-577)) (-1182 (-660 (-577))))) (-15 -2708 ((-1182 (-660 (-577))) (-660 (-577)) (-660 (-577)))) (-15 -2708 ((-1182 (-660 (-577))) (-660 (-577)))) (-15 -2718 ((-1182 (-660 (-577))) (-577))))) (T -902)) +((-2718 (*1 *2 *3) (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *1 (-902)) (-5 *3 (-577)))) (-2708 (*1 *2 *3) (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *1 (-902)) (-5 *3 (-660 (-577))))) (-2708 (*1 *2 *3 *3) (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *1 (-902)) (-5 *3 (-660 (-577))))) (-2698 (*1 *2 *3 *2) (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *3 (-660 (-577))) (-5 *1 (-902)))) (-2687 (*1 *2 *3 *3) (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *1 (-902)) (-5 *3 (-660 (-577))))) (-2675 (*1 *2 *2) (-12 (-5 *2 (-1182 (-660 (-944)))) (-5 *1 (-902)))) (-2360 (*1 *2 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-902))))) +(-10 -7 (-15 -2360 ((-660 (-944)) (-660 (-944)))) (-15 -2675 ((-1182 (-660 (-944))) (-1182 (-660 (-944))))) (-15 -2687 ((-1182 (-660 (-577))) (-660 (-577)) (-660 (-577)))) (-15 -2698 ((-1182 (-660 (-577))) (-660 (-577)) (-1182 (-660 (-577))))) (-15 -2708 ((-1182 (-660 (-577))) (-660 (-577)) (-660 (-577)))) (-15 -2708 ((-1182 (-660 (-577))) (-660 (-577)))) (-15 -2718 ((-1182 (-660 (-577))) (-577)))) +((-4152 (((-911 (-391)) $) 9 (|has| |#1| (-627 (-911 (-391))))) (((-911 (-577)) $) 8 (|has| |#1| (-627 (-911 (-577))))))) +(((-903 |#1|) (-141) (-1242)) (T -903)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-627 (-911 (-577)))) (-6 (-627 (-911 (-577)))) |%noBranch|) (IF (|has| |t#1| (-627 (-911 (-391)))) (-6 (-627 (-911 (-391)))) |%noBranch|))) +(((-627 (-911 (-391))) |has| |#1| (-627 (-911 (-391)))) ((-627 (-911 (-577))) |has| |#1| (-627 (-911 (-577))))) +((-3473 (((-112) $ $) NIL)) (-4113 (($) 14)) (-2729 (($ (-908 |#1| |#2|) (-908 |#1| |#3|)) 28)) (-1626 (((-908 |#1| |#3|) $) 16)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2808 (((-112) $) 22)) (-4181 (($) 19)) (-3544 (((-880) $) 31)) (-4448 (((-112) $ $) NIL)) (-3152 (((-908 |#1| |#2|) $) 15)) (-2970 (((-112) $ $) 26))) +(((-904 |#1| |#2| |#3|) (-13 (-1125) (-10 -8 (-15 -2808 ((-112) $)) (-15 -4181 ($)) (-15 -4113 ($)) (-15 -2729 ($ (-908 |#1| |#2|) (-908 |#1| |#3|))) (-15 -3152 ((-908 |#1| |#2|) $)) (-15 -1626 ((-908 |#1| |#3|) $)))) (-1125) (-1125) (-682 |#2|)) (T -904)) +((-2808 (*1 *2 *1) (-12 (-4 *4 (-1125)) (-5 *2 (-112)) (-5 *1 (-904 *3 *4 *5)) (-4 *3 (-1125)) (-4 *5 (-682 *4)))) (-4181 (*1 *1) (-12 (-4 *3 (-1125)) (-5 *1 (-904 *2 *3 *4)) (-4 *2 (-1125)) (-4 *4 (-682 *3)))) (-4113 (*1 *1) (-12 (-4 *3 (-1125)) (-5 *1 (-904 *2 *3 *4)) (-4 *2 (-1125)) (-4 *4 (-682 *3)))) (-2729 (*1 *1 *2 *3) (-12 (-5 *2 (-908 *4 *5)) (-5 *3 (-908 *4 *6)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-682 *5)) (-5 *1 (-904 *4 *5 *6)))) (-3152 (*1 *2 *1) (-12 (-4 *4 (-1125)) (-5 *2 (-908 *3 *4)) (-5 *1 (-904 *3 *4 *5)) (-4 *3 (-1125)) (-4 *5 (-682 *4)))) (-1626 (*1 *2 *1) (-12 (-4 *4 (-1125)) (-5 *2 (-908 *3 *5)) (-5 *1 (-904 *3 *4 *5)) (-4 *3 (-1125)) (-4 *5 (-682 *4))))) +(-13 (-1125) (-10 -8 (-15 -2808 ((-112) $)) (-15 -4181 ($)) (-15 -4113 ($)) (-15 -2729 ($ (-908 |#1| |#2|) (-908 |#1| |#3|))) (-15 -3152 ((-908 |#1| |#2|) $)) (-15 -1626 ((-908 |#1| |#3|) $)))) +((-3473 (((-112) $ $) 7)) (-3795 (((-908 |#1| $) $ (-911 |#1|) (-908 |#1| $)) 14)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8))) +(((-905 |#1|) (-141) (-1125)) (T -905)) +((-3795 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-908 *4 *1)) (-5 *3 (-911 *4)) (-4 *1 (-905 *4)) (-4 *4 (-1125))))) +(-13 (-1125) (-10 -8 (-15 -3795 ((-908 |t#1| $) $ (-911 |t#1|) (-908 |t#1| $))))) +(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-2740 (((-112) (-660 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2751 (((-908 |#1| |#2|) |#2| |#3|) 45 (-12 (-2749 (|has| |#2| (-1063 (-1201)))) (-2749 (|has| |#2| (-1074))))) (((-660 (-305 (-975 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1074)) (-2749 (|has| |#2| (-1063 (-1201)))))) (((-660 (-305 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1063 (-1201)))) (((-904 |#1| |#2| (-660 |#2|)) (-660 |#2|) |#3|) 21))) +(((-906 |#1| |#2| |#3|) (-10 -7 (-15 -2740 ((-112) |#2| |#3|)) (-15 -2740 ((-112) (-660 |#2|) |#3|)) (-15 -2751 ((-904 |#1| |#2| (-660 |#2|)) (-660 |#2|) |#3|)) (IF (|has| |#2| (-1063 (-1201))) (-15 -2751 ((-660 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1074)) (-15 -2751 ((-660 (-305 (-975 |#2|))) |#2| |#3|)) (-15 -2751 ((-908 |#1| |#2|) |#2| |#3|))))) (-1125) (-905 |#1|) (-627 (-911 |#1|))) (T -906)) +((-2751 (*1 *2 *3 *4) (-12 (-4 *5 (-1125)) (-5 *2 (-908 *5 *3)) (-5 *1 (-906 *5 *3 *4)) (-2749 (-4 *3 (-1063 (-1201)))) (-2749 (-4 *3 (-1074))) (-4 *3 (-905 *5)) (-4 *4 (-627 (-911 *5))))) (-2751 (*1 *2 *3 *4) (-12 (-4 *5 (-1125)) (-5 *2 (-660 (-305 (-975 *3)))) (-5 *1 (-906 *5 *3 *4)) (-4 *3 (-1074)) (-2749 (-4 *3 (-1063 (-1201)))) (-4 *3 (-905 *5)) (-4 *4 (-627 (-911 *5))))) (-2751 (*1 *2 *3 *4) (-12 (-4 *5 (-1125)) (-5 *2 (-660 (-305 *3))) (-5 *1 (-906 *5 *3 *4)) (-4 *3 (-1063 (-1201))) (-4 *3 (-905 *5)) (-4 *4 (-627 (-911 *5))))) (-2751 (*1 *2 *3 *4) (-12 (-4 *5 (-1125)) (-4 *6 (-905 *5)) (-5 *2 (-904 *5 *6 (-660 *6))) (-5 *1 (-906 *5 *6 *4)) (-5 *3 (-660 *6)) (-4 *4 (-627 (-911 *5))))) (-2740 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6)) (-4 *6 (-905 *5)) (-4 *5 (-1125)) (-5 *2 (-112)) (-5 *1 (-906 *5 *6 *4)) (-4 *4 (-627 (-911 *5))))) (-2740 (*1 *2 *3 *4) (-12 (-4 *5 (-1125)) (-5 *2 (-112)) (-5 *1 (-906 *5 *3 *4)) (-4 *3 (-905 *5)) (-4 *4 (-627 (-911 *5)))))) +(-10 -7 (-15 -2740 ((-112) |#2| |#3|)) (-15 -2740 ((-112) (-660 |#2|) |#3|)) (-15 -2751 ((-904 |#1| |#2| (-660 |#2|)) (-660 |#2|) |#3|)) (IF (|has| |#2| (-1063 (-1201))) (-15 -2751 ((-660 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1074)) (-15 -2751 ((-660 (-305 (-975 |#2|))) |#2| |#3|)) (-15 -2751 ((-908 |#1| |#2|) |#2| |#3|))))) +((-4087 (((-908 |#1| |#3|) (-1 |#3| |#2|) (-908 |#1| |#2|)) 22))) +(((-907 |#1| |#2| |#3|) (-10 -7 (-15 -4087 ((-908 |#1| |#3|) (-1 |#3| |#2|) (-908 |#1| |#2|)))) (-1125) (-1125) (-1125)) (T -907)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-908 *5 *6)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-908 *5 *7)) (-5 *1 (-907 *5 *6 *7))))) +(-10 -7 (-15 -4087 ((-908 |#1| |#3|) (-1 |#3| |#2|) (-908 |#1| |#2|)))) +((-3473 (((-112) $ $) NIL)) (-1892 (($ $ $) 40)) (-1790 (((-3 (-112) "failed") $ (-911 |#1|)) 37)) (-4113 (($) 12)) (-2810 (((-1183) $) NIL)) (-2773 (($ (-911 |#1|) |#2| $) 20)) (-1474 (((-1145) $) NIL)) (-2795 (((-3 |#2| "failed") (-911 |#1|) $) 51)) (-2808 (((-112) $) 15)) (-4181 (($) 13)) (-1984 (((-660 (-2 (|:| -4295 (-1201)) (|:| -4444 |#2|))) $) 25)) (-3553 (($ (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 |#2|)))) 23)) (-3544 (((-880) $) 45)) (-4448 (((-112) $ $) NIL)) (-2763 (($ (-911 |#1|) |#2| $ |#2|) 49)) (-2783 (($ (-911 |#1|) |#2| $) 48)) (-2970 (((-112) $ $) 42))) +(((-908 |#1| |#2|) (-13 (-1125) (-10 -8 (-15 -2808 ((-112) $)) (-15 -4181 ($)) (-15 -4113 ($)) (-15 -1892 ($ $ $)) (-15 -2795 ((-3 |#2| "failed") (-911 |#1|) $)) (-15 -2783 ($ (-911 |#1|) |#2| $)) (-15 -2773 ($ (-911 |#1|) |#2| $)) (-15 -2763 ($ (-911 |#1|) |#2| $ |#2|)) (-15 -1984 ((-660 (-2 (|:| -4295 (-1201)) (|:| -4444 |#2|))) $)) (-15 -3553 ($ (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 |#2|))))) (-15 -1790 ((-3 (-112) "failed") $ (-911 |#1|))))) (-1125) (-1125)) (T -908)) +((-2808 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) (-4181 (*1 *1) (-12 (-5 *1 (-908 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) (-4113 (*1 *1) (-12 (-5 *1 (-908 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) (-1892 (*1 *1 *1 *1) (-12 (-5 *1 (-908 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) (-2795 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-911 *4)) (-4 *4 (-1125)) (-4 *2 (-1125)) (-5 *1 (-908 *4 *2)))) (-2783 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-911 *4)) (-4 *4 (-1125)) (-5 *1 (-908 *4 *3)) (-4 *3 (-1125)))) (-2773 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-911 *4)) (-4 *4 (-1125)) (-5 *1 (-908 *4 *3)) (-4 *3 (-1125)))) (-2763 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-911 *4)) (-4 *4 (-1125)) (-5 *1 (-908 *4 *3)) (-4 *3 (-1125)))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 *4)))) (-5 *1 (-908 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 *4)))) (-4 *4 (-1125)) (-5 *1 (-908 *3 *4)) (-4 *3 (-1125)))) (-1790 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-911 *4)) (-4 *4 (-1125)) (-5 *2 (-112)) (-5 *1 (-908 *4 *5)) (-4 *5 (-1125))))) +(-13 (-1125) (-10 -8 (-15 -2808 ((-112) $)) (-15 -4181 ($)) (-15 -4113 ($)) (-15 -1892 ($ $ $)) (-15 -2795 ((-3 |#2| "failed") (-911 |#1|) $)) (-15 -2783 ($ (-911 |#1|) |#2| $)) (-15 -2773 ($ (-911 |#1|) |#2| $)) (-15 -2763 ($ (-911 |#1|) |#2| $ |#2|)) (-15 -1984 ((-660 (-2 (|:| -4295 (-1201)) (|:| -4444 |#2|))) $)) (-15 -3553 ($ (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 |#2|))))) (-15 -1790 ((-3 (-112) "failed") $ (-911 |#1|))))) +((-4241 (((-911 |#1|) (-911 |#1|) (-660 (-1201)) (-1 (-112) (-660 |#2|))) 32) (((-911 |#1|) (-911 |#1|) (-660 (-1 (-112) |#2|))) 46) (((-911 |#1|) (-911 |#1|) (-1 (-112) |#2|)) 35)) (-1790 (((-112) (-660 |#2|) (-911 |#1|)) 42) (((-112) |#2| (-911 |#1|)) 36)) (-2121 (((-1 (-112) |#2|) (-911 |#1|)) 16)) (-1810 (((-660 |#2|) (-911 |#1|)) 24)) (-1800 (((-911 |#1|) (-911 |#1|) |#2|) 20))) +(((-909 |#1| |#2|) (-10 -7 (-15 -4241 ((-911 |#1|) (-911 |#1|) (-1 (-112) |#2|))) (-15 -4241 ((-911 |#1|) (-911 |#1|) (-660 (-1 (-112) |#2|)))) (-15 -4241 ((-911 |#1|) (-911 |#1|) (-660 (-1201)) (-1 (-112) (-660 |#2|)))) (-15 -2121 ((-1 (-112) |#2|) (-911 |#1|))) (-15 -1790 ((-112) |#2| (-911 |#1|))) (-15 -1790 ((-112) (-660 |#2|) (-911 |#1|))) (-15 -1800 ((-911 |#1|) (-911 |#1|) |#2|)) (-15 -1810 ((-660 |#2|) (-911 |#1|)))) (-1125) (-1242)) (T -909)) +((-1810 (*1 *2 *3) (-12 (-5 *3 (-911 *4)) (-4 *4 (-1125)) (-5 *2 (-660 *5)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1242)))) (-1800 (*1 *2 *2 *3) (-12 (-5 *2 (-911 *4)) (-4 *4 (-1125)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1242)))) (-1790 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) (-4 *6 (-1242)) (-5 *2 (-112)) (-5 *1 (-909 *5 *6)))) (-1790 (*1 *2 *3 *4) (-12 (-5 *4 (-911 *5)) (-4 *5 (-1125)) (-5 *2 (-112)) (-5 *1 (-909 *5 *3)) (-4 *3 (-1242)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-911 *4)) (-4 *4 (-1125)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1242)))) (-4241 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-911 *5)) (-5 *3 (-660 (-1201))) (-5 *4 (-1 (-112) (-660 *6))) (-4 *5 (-1125)) (-4 *6 (-1242)) (-5 *1 (-909 *5 *6)))) (-4241 (*1 *2 *2 *3) (-12 (-5 *2 (-911 *4)) (-5 *3 (-660 (-1 (-112) *5))) (-4 *4 (-1125)) (-4 *5 (-1242)) (-5 *1 (-909 *4 *5)))) (-4241 (*1 *2 *2 *3) (-12 (-5 *2 (-911 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1125)) (-4 *5 (-1242)) (-5 *1 (-909 *4 *5))))) +(-10 -7 (-15 -4241 ((-911 |#1|) (-911 |#1|) (-1 (-112) |#2|))) (-15 -4241 ((-911 |#1|) (-911 |#1|) (-660 (-1 (-112) |#2|)))) (-15 -4241 ((-911 |#1|) (-911 |#1|) (-660 (-1201)) (-1 (-112) (-660 |#2|)))) (-15 -2121 ((-1 (-112) |#2|) (-911 |#1|))) (-15 -1790 ((-112) |#2| (-911 |#1|))) (-15 -1790 ((-112) (-660 |#2|) (-911 |#1|))) (-15 -1800 ((-911 |#1|) (-911 |#1|) |#2|)) (-15 -1810 ((-660 |#2|) (-911 |#1|)))) +((-4087 (((-911 |#2|) (-1 |#2| |#1|) (-911 |#1|)) 19))) +(((-910 |#1| |#2|) (-10 -7 (-15 -4087 ((-911 |#2|) (-1 |#2| |#1|) (-911 |#1|)))) (-1125) (-1125)) (T -910)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-911 *6)) (-5 *1 (-910 *5 *6))))) +(-10 -7 (-15 -4087 ((-911 |#2|) (-1 |#2| |#1|) (-911 |#1|)))) +((-3473 (((-112) $ $) NIL)) (-2893 (($ $ (-660 (-52))) 74)) (-2058 (((-660 $) $) 139)) (-2864 (((-2 (|:| |var| (-660 (-1201))) (|:| |pred| (-52))) $) 30)) (-2925 (((-112) $) 35)) (-2874 (($ $ (-660 (-1201)) (-52)) 31)) (-2902 (($ $ (-660 (-52))) 73)) (-1628 (((-3 |#1| "failed") $) 71) (((-3 (-1201) "failed") $) 164)) (-2921 ((|#1| $) 68) (((-1201) $) NIL)) (-2842 (($ $) 126)) (-1747 (((-112) $) 55)) (-2912 (((-660 (-52)) $) 50)) (-2883 (($ (-1201) (-112) (-112) (-112)) 75)) (-2818 (((-3 (-660 $) "failed") (-660 $)) 82)) (-2931 (((-112) $) 58)) (-2942 (((-112) $) 57)) (-2810 (((-1183) $) NIL)) (-4098 (((-3 (-660 $) "failed") $) 41)) (-2394 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-4125 (((-3 (-2 (|:| |val| $) (|:| -3556 $)) "failed") $) 97)) (-4086 (((-3 (-660 $) "failed") $) 40)) (-1780 (((-3 (-660 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -1823 (-115)) (|:| |arg| (-660 $))) "failed") $) 107)) (-1770 (((-3 (-660 $) "failed") $) 42)) (-4111 (((-3 (-2 (|:| |val| $) (|:| -3556 (-787))) "failed") $) 45)) (-1759 (((-112) $) 34)) (-1474 (((-1145) $) NIL)) (-2854 (((-112) $) 28)) (-2923 (((-112) $) 52)) (-2831 (((-660 (-52)) $) 130)) (-2952 (((-112) $) 56)) (-2872 (($ (-115) (-660 $)) 104)) (-1965 (((-787) $) 33)) (-1944 (($ $) 72)) (-4152 (($ (-660 $)) 69)) (-2915 (((-112) $) 32)) (-3544 (((-880) $) 63) (($ |#1|) 23) (($ (-1201)) 76)) (-4448 (((-112) $ $) NIL)) (-1800 (($ $ (-52)) 129)) (-2806 (($) 103 T CONST)) (-2816 (($) 83 T CONST)) (-2970 (((-112) $ $) 93)) (-3077 (($ $ $) 117)) (-3055 (($ $ $) 121)) (** (($ $ (-787)) 115) (($ $ $) 64)) (* (($ $ $) 122))) +(((-911 |#1|) (-13 (-1125) (-1063 |#1|) (-1063 (-1201)) (-10 -8 (-15 0 ($) -1512) (-15 1 ($) -1512) (-15 -4086 ((-3 (-660 $) "failed") $)) (-15 -4098 ((-3 (-660 $) "failed") $)) (-15 -1780 ((-3 (-660 $) "failed") $ (-115))) (-15 -1780 ((-3 (-2 (|:| -1823 (-115)) (|:| |arg| (-660 $))) "failed") $)) (-15 -4111 ((-3 (-2 (|:| |val| $) (|:| -3556 (-787))) "failed") $)) (-15 -2394 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1770 ((-3 (-660 $) "failed") $)) (-15 -4125 ((-3 (-2 (|:| |val| $) (|:| -3556 $)) "failed") $)) (-15 -2872 ($ (-115) (-660 $))) (-15 -3055 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-787))) (-15 ** ($ $ $)) (-15 -3077 ($ $ $)) (-15 -1965 ((-787) $)) (-15 -4152 ($ (-660 $))) (-15 -1944 ($ $)) (-15 -1759 ((-112) $)) (-15 -1747 ((-112) $)) (-15 -2925 ((-112) $)) (-15 -2915 ((-112) $)) (-15 -2952 ((-112) $)) (-15 -2942 ((-112) $)) (-15 -2931 ((-112) $)) (-15 -2923 ((-112) $)) (-15 -2912 ((-660 (-52)) $)) (-15 -2902 ($ $ (-660 (-52)))) (-15 -2893 ($ $ (-660 (-52)))) (-15 -2883 ($ (-1201) (-112) (-112) (-112))) (-15 -2874 ($ $ (-660 (-1201)) (-52))) (-15 -2864 ((-2 (|:| |var| (-660 (-1201))) (|:| |pred| (-52))) $)) (-15 -2854 ((-112) $)) (-15 -2842 ($ $)) (-15 -1800 ($ $ (-52))) (-15 -2831 ((-660 (-52)) $)) (-15 -2058 ((-660 $) $)) (-15 -2818 ((-3 (-660 $) "failed") (-660 $))))) (-1125)) (T -911)) +((-2806 (*1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) (-2816 (*1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) (-4086 (*1 *2 *1) (|partial| -12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-4098 (*1 *2 *1) (|partial| -12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-1780 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-660 (-911 *4))) (-5 *1 (-911 *4)) (-4 *4 (-1125)))) (-1780 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1823 (-115)) (|:| |arg| (-660 (-911 *3))))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-4111 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-911 *3)) (|:| -3556 (-787)))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2394 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-911 *3)) (|:| |den| (-911 *3)))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-1770 (*1 *2 *1) (|partial| -12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-4125 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-911 *3)) (|:| -3556 (-911 *3)))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2872 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-660 (-911 *4))) (-5 *1 (-911 *4)) (-4 *4 (-1125)))) (-3055 (*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) (-3077 (*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-1944 (*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-1747 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2915 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2952 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2931 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-660 (-52))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2902 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-52))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2893 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-52))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2883 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-112)) (-5 *1 (-911 *4)) (-4 *4 (-1125)))) (-2874 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-52)) (-5 *1 (-911 *4)) (-4 *4 (-1125)))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-660 (-1201))) (|:| |pred| (-52)))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2842 (*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) (-1800 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-660 (-52))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2058 (*1 *2 *1) (-12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) (-2818 (*1 *2 *2) (|partial| -12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) +(-13 (-1125) (-1063 |#1|) (-1063 (-1201)) (-10 -8 (-15 (-2806) ($) -1512) (-15 (-2816) ($) -1512) (-15 -4086 ((-3 (-660 $) "failed") $)) (-15 -4098 ((-3 (-660 $) "failed") $)) (-15 -1780 ((-3 (-660 $) "failed") $ (-115))) (-15 -1780 ((-3 (-2 (|:| -1823 (-115)) (|:| |arg| (-660 $))) "failed") $)) (-15 -4111 ((-3 (-2 (|:| |val| $) (|:| -3556 (-787))) "failed") $)) (-15 -2394 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1770 ((-3 (-660 $) "failed") $)) (-15 -4125 ((-3 (-2 (|:| |val| $) (|:| -3556 $)) "failed") $)) (-15 -2872 ($ (-115) (-660 $))) (-15 -3055 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-787))) (-15 ** ($ $ $)) (-15 -3077 ($ $ $)) (-15 -1965 ((-787) $)) (-15 -4152 ($ (-660 $))) (-15 -1944 ($ $)) (-15 -1759 ((-112) $)) (-15 -1747 ((-112) $)) (-15 -2925 ((-112) $)) (-15 -2915 ((-112) $)) (-15 -2952 ((-112) $)) (-15 -2942 ((-112) $)) (-15 -2931 ((-112) $)) (-15 -2923 ((-112) $)) (-15 -2912 ((-660 (-52)) $)) (-15 -2902 ($ $ (-660 (-52)))) (-15 -2893 ($ $ (-660 (-52)))) (-15 -2883 ($ (-1201) (-112) (-112) (-112))) (-15 -2874 ($ $ (-660 (-1201)) (-52))) (-15 -2864 ((-2 (|:| |var| (-660 (-1201))) (|:| |pred| (-52))) $)) (-15 -2854 ((-112) $)) (-15 -2842 ($ $)) (-15 -1800 ($ $ (-52))) (-15 -2831 ((-660 (-52)) $)) (-15 -2058 ((-660 $) $)) (-15 -2818 ((-3 (-660 $) "failed") (-660 $))))) +((-3473 (((-112) $ $) NIL)) (-3435 (((-660 |#1|) $) 19)) (-1819 (((-112) $) 49)) (-1628 (((-3 (-688 |#1|) "failed") $) 56)) (-2921 (((-688 |#1|) $) 54)) (-3563 (($ $) 23)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-3402 (((-787) $) 61)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3552 (((-688 |#1|) $) 21)) (-3544 (((-880) $) 47) (($ (-688 |#1|)) 26) (((-835 |#1|) $) 36) (($ |#1|) 25)) (-4448 (((-112) $ $) NIL)) (-2816 (($) 9 T CONST)) (-1831 (((-660 (-688 |#1|)) $) 28)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 12)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 67))) +(((-912 |#1|) (-13 (-865) (-1063 (-688 |#1|)) (-10 -8 (-15 1 ($) -1512) (-15 -3544 ((-835 |#1|) $)) (-15 -3544 ($ |#1|)) (-15 -3552 ((-688 |#1|) $)) (-15 -3402 ((-787) $)) (-15 -1831 ((-660 (-688 |#1|)) $)) (-15 -3563 ($ $)) (-15 -1819 ((-112) $)) (-15 -3435 ((-660 |#1|) $)))) (-865)) (T -912)) +((-2816 (*1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-865)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-835 *3)) (-5 *1 (-912 *3)) (-4 *3 (-865)))) (-3544 (*1 *1 *2) (-12 (-5 *1 (-912 *2)) (-4 *2 (-865)))) (-3552 (*1 *2 *1) (-12 (-5 *2 (-688 *3)) (-5 *1 (-912 *3)) (-4 *3 (-865)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-912 *3)) (-4 *3 (-865)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-660 (-688 *3))) (-5 *1 (-912 *3)) (-4 *3 (-865)))) (-3563 (*1 *1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-865)))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-912 *3)) (-4 *3 (-865)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-912 *3)) (-4 *3 (-865))))) +(-13 (-865) (-1063 (-688 |#1|)) (-10 -8 (-15 (-2816) ($) -1512) (-15 -3544 ((-835 |#1|) $)) (-15 -3544 ($ |#1|)) (-15 -3552 ((-688 |#1|) $)) (-15 -3402 ((-787) $)) (-15 -1831 ((-660 (-688 |#1|)) $)) (-15 -3563 ($ $)) (-15 -1819 ((-112) $)) (-15 -3435 ((-660 |#1|) $)))) +((-4251 ((|#1| |#1| |#1|) 19))) +(((-913 |#1| |#2|) (-10 -7 (-15 -4251 (|#1| |#1| |#1|))) (-1268 |#2|) (-1074)) (T -913)) +((-4251 (*1 *2 *2 *2) (-12 (-4 *3 (-1074)) (-5 *1 (-913 *2 *3)) (-4 *2 (-1268 *3))))) +(-10 -7 (-15 -4251 (|#1| |#1| |#1|))) +((-2132 ((|#2| $ |#3|) 10))) +(((-914 |#1| |#2| |#3|) (-10 -8 (-15 -2132 (|#2| |#1| |#3|))) (-915 |#2| |#3|) (-1242) (-1242)) (T -914)) +NIL +(-10 -8 (-15 -2132 (|#2| |#1| |#3|))) +((-2852 ((|#1| $ |#2|) 7)) (-2132 ((|#1| $ |#2|) 6))) +(((-915 |#1| |#2|) (-141) (-1242) (-1242)) (T -915)) +((-2852 (*1 *2 *1 *3) (-12 (-4 *1 (-915 *2 *3)) (-4 *3 (-1242)) (-4 *2 (-1242)))) (-2132 (*1 *2 *1 *3) (-12 (-4 *1 (-915 *2 *3)) (-4 *3 (-1242)) (-4 *2 (-1242))))) +(-13 (-1242) (-10 -8 (-15 -2852 (|t#1| $ |t#2|)) (-15 -2132 (|t#1| $ |t#2|)))) +(((-1242) . T)) +((-3473 (((-112) $ $) 7)) (-1878 (((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) 15)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-1842 (((-1060) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) 14)) (-2970 (((-112) $ $) 8))) +(((-916) (-141)) (T -916)) +((-1878 (*1 *2 *3 *4) (-12 (-4 *1 (-916)) (-5 *3 (-1088)) (-5 *4 (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) (-5 *2 (-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)))))) (-1842 (*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *3 (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) (-5 *2 (-1060))))) +(-13 (-1125) (-10 -7 (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| |explanations| (-1183))) (-1088) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228))))) (-15 -1842 ((-1060) (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228))))))) +(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-1866 ((|#1| |#1| (-787)) 27)) (-1853 (((-3 |#1| "failed") |#1| |#1|) 24)) (-3938 (((-3 (-2 (|:| -4228 |#1|) (|:| -4239 |#1|)) "failed") |#1| (-787) (-787)) 30) (((-660 |#1|) |#1|) 38))) +(((-917 |#1| |#2|) (-10 -7 (-15 -3938 ((-660 |#1|) |#1|)) (-15 -3938 ((-3 (-2 (|:| -4228 |#1|) (|:| -4239 |#1|)) "failed") |#1| (-787) (-787))) (-15 -1853 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1866 (|#1| |#1| (-787)))) (-1268 |#2|) (-375)) (T -917)) +((-1866 (*1 *2 *2 *3) (-12 (-5 *3 (-787)) (-4 *4 (-375)) (-5 *1 (-917 *2 *4)) (-4 *2 (-1268 *4)))) (-1853 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-375)) (-5 *1 (-917 *2 *3)) (-4 *2 (-1268 *3)))) (-3938 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-787)) (-4 *5 (-375)) (-5 *2 (-2 (|:| -4228 *3) (|:| -4239 *3))) (-5 *1 (-917 *3 *5)) (-4 *3 (-1268 *5)))) (-3938 (*1 *2 *3) (-12 (-4 *4 (-375)) (-5 *2 (-660 *3)) (-5 *1 (-917 *3 *4)) (-4 *3 (-1268 *4))))) +(-10 -7 (-15 -3938 ((-660 |#1|) |#1|)) (-15 -3938 ((-3 (-2 (|:| -4228 |#1|) (|:| -4239 |#1|)) "failed") |#1| (-787) (-787))) (-15 -1853 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1866 (|#1| |#1| (-787)))) +((-2546 (((-1060) (-391) (-391) (-391) (-391) (-787) (-787) (-660 (-327 (-391))) (-660 (-660 (-327 (-391)))) (-1183)) 104) (((-1060) (-391) (-391) (-391) (-391) (-787) (-787) (-660 (-327 (-391))) (-660 (-660 (-327 (-391)))) (-1183) (-228)) 100) (((-1060) (-919) (-1088)) 92) (((-1060) (-919)) 93)) (-1878 (((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))) (-919) (-1088)) 62) (((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))) (-919)) 64))) +(((-918) (-10 -7 (-15 -2546 ((-1060) (-919))) (-15 -2546 ((-1060) (-919) (-1088))) (-15 -2546 ((-1060) (-391) (-391) (-391) (-391) (-787) (-787) (-660 (-327 (-391))) (-660 (-660 (-327 (-391)))) (-1183) (-228))) (-15 -2546 ((-1060) (-391) (-391) (-391) (-391) (-787) (-787) (-660 (-327 (-391))) (-660 (-660 (-327 (-391)))) (-1183))) (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))) (-919))) (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))) (-919) (-1088))))) (T -918)) +((-1878 (*1 *2 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-1088)) (-5 *2 (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))))) (-5 *1 (-918)))) (-1878 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183))))) (-5 *1 (-918)))) (-2546 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-787)) (-5 *6 (-660 (-660 (-327 *3)))) (-5 *7 (-1183)) (-5 *5 (-660 (-327 (-391)))) (-5 *3 (-391)) (-5 *2 (-1060)) (-5 *1 (-918)))) (-2546 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-787)) (-5 *6 (-660 (-660 (-327 *3)))) (-5 *7 (-1183)) (-5 *8 (-228)) (-5 *5 (-660 (-327 (-391)))) (-5 *3 (-391)) (-5 *2 (-1060)) (-5 *1 (-918)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-919)) (-5 *4 (-1088)) (-5 *2 (-1060)) (-5 *1 (-918)))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1060)) (-5 *1 (-918))))) +(-10 -7 (-15 -2546 ((-1060) (-919))) (-15 -2546 ((-1060) (-919) (-1088))) (-15 -2546 ((-1060) (-391) (-391) (-391) (-391) (-787) (-787) (-660 (-327 (-391))) (-660 (-660 (-327 (-391)))) (-1183) (-228))) (-15 -2546 ((-1060) (-391) (-391) (-391) (-391) (-787) (-787) (-660 (-327 (-391))) (-660 (-660 (-327 (-391)))) (-1183))) (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))) (-919))) (-15 -1878 ((-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) (|:| |explanations| (-660 (-1183)))) (-919) (-1088)))) +((-3473 (((-112) $ $) NIL)) (-2921 (((-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228))) $) 19)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 21) (($ (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) 18)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-919) (-13 (-1125) (-10 -8 (-15 -3544 ($ (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228))))) (-15 -2921 ((-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228))) $))))) (T -919)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) (-5 *1 (-919)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228)))) (-5 *1 (-919))))) +(-13 (-1125) (-10 -8 (-15 -3544 ($ (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228))))) (-15 -2921 ((-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| (-660 (-2 (|:| |start| (-228)) (|:| |finish| (-228)) (|:| |grid| (-787)) (|:| |boundaryType| (-577)) (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) (|:| |tol| (-228))) $)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2852 (($ $ (-660 |#2|) (-660 (-787))) 39) (($ $ |#2| (-787)) 38) (($ $ (-660 |#2|)) 37) (($ $ |#2|) 35)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2132 (($ $ (-660 |#2|) (-660 (-787))) 42) (($ $ |#2| (-787)) 41) (($ $ (-660 |#2|)) 40) (($ $ |#2|) 36)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-920 |#1| |#2|) (-141) (-1074) (-1125)) (T -920)) +NIL +(-13 (-111 |t#1| |t#1|) (-923 |t#2|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-733 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) |has| |#1| (-174)) ((-733 |#1|) |has| |#1| (-174)) ((-915 $ |#2|) . T) ((-923 |#2|) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-4187 (((-3 $ "failed") $) 37)) (-2487 (((-112) $) 35)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2852 (($ $ (-660 |#1|) (-660 (-787))) 44) (($ $ |#1| (-787)) 43) (($ $ (-660 |#1|)) 42) (($ $ |#1|) 40)) (-3544 (((-880) $) 12) (($ (-577)) 33)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-660 |#1|) (-660 (-787))) 47) (($ $ |#1| (-787)) 46) (($ $ (-660 |#1|)) 45) (($ $ |#1|) 41)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) +(((-921 |#1|) (-141) (-1125)) (T -921)) +NIL +(-13 (-1074) (-923 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-742) . T) ((-915 $ |#1|) . T) ((-923 |#1|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-2852 (($ $ |#2|) NIL) (($ $ (-660 |#2|)) 10) (($ $ |#2| (-787)) 12) (($ $ (-660 |#2|) (-660 (-787))) 15)) (-2132 (($ $ |#2|) 16) (($ $ (-660 |#2|)) 18) (($ $ |#2| (-787)) 19) (($ $ (-660 |#2|) (-660 (-787))) 21))) +(((-922 |#1| |#2|) (-10 -8 (-15 -2132 (|#1| |#1| (-660 |#2|) (-660 (-787)))) (-15 -2132 (|#1| |#1| |#2| (-787))) (-15 -2132 (|#1| |#1| (-660 |#2|))) (-15 -2852 (|#1| |#1| (-660 |#2|) (-660 (-787)))) (-15 -2852 (|#1| |#1| |#2| (-787))) (-15 -2852 (|#1| |#1| (-660 |#2|))) (-15 -2132 (|#1| |#1| |#2|)) (-15 -2852 (|#1| |#1| |#2|))) (-923 |#2|) (-1125)) (T -922)) +NIL +(-10 -8 (-15 -2132 (|#1| |#1| (-660 |#2|) (-660 (-787)))) (-15 -2132 (|#1| |#1| |#2| (-787))) (-15 -2132 (|#1| |#1| (-660 |#2|))) (-15 -2852 (|#1| |#1| (-660 |#2|) (-660 (-787)))) (-15 -2852 (|#1| |#1| |#2| (-787))) (-15 -2852 (|#1| |#1| (-660 |#2|))) (-15 -2132 (|#1| |#1| |#2|)) (-15 -2852 (|#1| |#1| |#2|))) +((-2852 (($ $ |#1|) 7) (($ $ (-660 |#1|)) 15) (($ $ |#1| (-787)) 14) (($ $ (-660 |#1|) (-660 (-787))) 13)) (-2132 (($ $ |#1|) 6) (($ $ (-660 |#1|)) 12) (($ $ |#1| (-787)) 11) (($ $ (-660 |#1|) (-660 (-787))) 10))) +(((-923 |#1|) (-141) (-1125)) (T -923)) +((-2852 (*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *1 (-923 *3)) (-4 *3 (-1125)))) (-2852 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-923 *2)) (-4 *2 (-1125)))) (-2852 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 (-787))) (-4 *1 (-923 *4)) (-4 *4 (-1125)))) (-2132 (*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *1 (-923 *3)) (-4 *3 (-1125)))) (-2132 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-923 *2)) (-4 *2 (-1125)))) (-2132 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 (-787))) (-4 *1 (-923 *4)) (-4 *4 (-1125))))) +(-13 (-915 $ |t#1|) (-10 -8 (-15 -2852 ($ $ (-660 |t#1|))) (-15 -2852 ($ $ |t#1| (-787))) (-15 -2852 ($ $ (-660 |t#1|) (-660 (-787)))) (-15 -2132 ($ $ (-660 |t#1|))) (-15 -2132 ($ $ |t#1| (-787))) (-15 -2132 ($ $ (-660 |t#1|) (-660 (-787)))))) +(((-915 $ |#1|) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3115 ((|#1| $) 26)) (-3828 (((-112) $ (-787)) NIL)) (-4374 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)))) (-1763 (($ $ $) NIL (|has| $ (-6 -4471)))) (-1774 (($ $ $) NIL (|has| $ (-6 -4471)))) (-3709 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471))) (($ $ "left" $) NIL (|has| $ (-6 -4471))) (($ $ "right" $) NIL (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)))) (-1534 (($) NIL T CONST)) (-4239 (($ $) 25)) (-1715 (($ |#1|) 12) (($ $ $) 17)) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-4426 (((-660 $) $) NIL)) (-4394 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-4228 (($ $) 23)) (-2461 (((-660 |#1|) $) NIL)) (-3371 (((-112) $) 20)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4415 (((-577) $ $) NIL)) (-1885 (((-112) $) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) NIL)) (-3544 (((-1228 |#1|) $) 9) (((-880) $) 29 (|has| |#1| (-626 (-880))))) (-3322 (((-660 $) $) NIL)) (-4405 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-924 |#1|) (-13 (-120 |#1|) (-626 (-1228 |#1|)) (-10 -8 (-15 -1715 ($ |#1|)) (-15 -1715 ($ $ $)))) (-1125)) (T -924)) +((-1715 (*1 *1 *2) (-12 (-5 *1 (-924 *2)) (-4 *2 (-1125)))) (-1715 (*1 *1 *1 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-1125))))) +(-13 (-120 |#1|) (-626 (-1228 |#1|)) (-10 -8 (-15 -1715 ($ |#1|)) (-15 -1715 ($ $ $)))) +((-1994 ((|#2| (-1167 |#1| |#2|)) 48))) +(((-925 |#1| |#2|) (-10 -7 (-15 -1994 (|#2| (-1167 |#1| |#2|)))) (-944) (-13 (-1074) (-10 -7 (-6 (-4472 "*"))))) (T -925)) +((-1994 (*1 *2 *3) (-12 (-5 *3 (-1167 *4 *2)) (-14 *4 (-944)) (-4 *2 (-13 (-1074) (-10 -7 (-6 (-4472 "*"))))) (-5 *1 (-925 *4 *2))))) +(-10 -7 (-15 -1994 (|#2| (-1167 |#1| |#2|)))) +((-3473 (((-112) $ $) 7)) (-2042 (((-1127 |#1|) $) 36)) (-1534 (($) 19 T CONST)) (-4187 (((-3 $ "failed") $) 16)) (-2092 (((-1127 |#1|) $ |#1|) 35)) (-2487 (((-112) $) 18)) (-3732 (($ $ $) 29 (-2839 (|has| |#1| (-865)) (|has| |#1| (-380))))) (-3201 (($ $ $) 30 (-2839 (|has| |#1| (-865)) (|has| |#1| (-380))))) (-2810 (((-1183) $) 10)) (-2171 (($ $) 25)) (-1474 (((-1145) $) 11)) (-2872 ((|#1| $ |#1|) 39)) (-2006 (($ (-660 (-660 |#1|))) 37)) (-2016 (($ (-660 |#1|)) 38)) (-2360 (($ $ $) 22)) (-3820 (($ $ $) 21)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2816 (($) 20 T CONST)) (-3025 (((-112) $ $) 31 (-2839 (|has| |#1| (-865)) (|has| |#1| (-380))))) (-3000 (((-112) $ $) 33 (-2839 (|has| |#1| (-865)) (|has| |#1| (-380))))) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 32 (-2839 (|has| |#1| (-865)) (|has| |#1| (-380))))) (-2990 (((-112) $ $) 34)) (-3077 (($ $ $) 24)) (** (($ $ (-944)) 14) (($ $ (-787)) 17) (($ $ (-577)) 23)) (* (($ $ $) 15))) +(((-926 |#1|) (-141) (-1125)) (T -926)) +((-2016 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-4 *1 (-926 *3)))) (-2006 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-4 *1 (-926 *3)))) (-2042 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1125)) (-5 *2 (-1127 *3)))) (-2092 (*1 *2 *1 *3) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1125)) (-5 *2 (-1127 *3)))) (-2990 (*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1125)) (-5 *2 (-112))))) +(-13 (-486) (-297 |t#1| |t#1|) (-10 -8 (-15 -2016 ($ (-660 |t#1|))) (-15 -2006 ($ (-660 (-660 |t#1|)))) (-15 -2042 ((-1127 |t#1|) $)) (-15 -2092 ((-1127 |t#1|) $ |t#1|)) (-15 -2990 ((-112) $ $)) (IF (|has| |t#1| (-865)) (-6 (-865)) |%noBranch|) (IF (|has| |t#1| (-380)) (-6 (-865)) |%noBranch|))) +(((-102) . T) ((-626 (-880)) . T) ((-297 |#1| |#1|) . T) ((-486) . T) ((-742) . T) ((-865) -2839 (|has| |#1| (-865)) (|has| |#1| (-380))) ((-868) -2839 (|has| |#1| (-865)) (|has| |#1| (-380))) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-2115 (((-660 (-660 (-787))) $) 160)) (-2069 (((-660 (-787)) (-928 |#1|) $) 188)) (-2057 (((-660 (-787)) (-928 |#1|) $) 189)) (-2042 (((-1127 |#1|) $) 152)) (-2131 (((-660 (-928 |#1|)) $) 149)) (-1910 (((-928 |#1|) $ (-577)) 154) (((-928 |#1|) $) 155)) (-2103 (($ (-660 (-928 |#1|))) 162)) (-3817 (((-787) $) 156)) (-2081 (((-1127 (-1127 |#1|)) $) 186)) (-2092 (((-1127 |#1|) $ |#1|) 177) (((-1127 (-1127 |#1|)) $ (-1127 |#1|)) 197) (((-1127 (-660 |#1|)) $ (-660 |#1|)) 200)) (-2820 (((-112) (-928 |#1|) $) 137)) (-2810 (((-1183) $) NIL)) (-2029 (((-1297) $) 142) (((-1297) $ (-577) (-577)) 201)) (-1474 (((-1145) $) NIL)) (-2145 (((-660 (-928 |#1|)) $) 143)) (-2872 (((-928 |#1|) $ (-787)) 150)) (-2887 (((-787) $) 157)) (-3544 (((-880) $) 174) (((-660 (-928 |#1|)) $) 28) (($ (-660 (-928 |#1|))) 161)) (-4448 (((-112) $ $) NIL)) (-4146 (((-660 |#1|) $) 159)) (-2970 (((-112) $ $) 194)) (-3012 (((-112) $ $) 192)) (-2990 (((-112) $ $) 191))) +(((-927 |#1|) (-13 (-1125) (-10 -8 (-15 -3544 ((-660 (-928 |#1|)) $)) (-15 -2145 ((-660 (-928 |#1|)) $)) (-15 -2872 ((-928 |#1|) $ (-787))) (-15 -1910 ((-928 |#1|) $ (-577))) (-15 -1910 ((-928 |#1|) $)) (-15 -3817 ((-787) $)) (-15 -2887 ((-787) $)) (-15 -4146 ((-660 |#1|) $)) (-15 -2131 ((-660 (-928 |#1|)) $)) (-15 -2115 ((-660 (-660 (-787))) $)) (-15 -3544 ($ (-660 (-928 |#1|)))) (-15 -2103 ($ (-660 (-928 |#1|)))) (-15 -2092 ((-1127 |#1|) $ |#1|)) (-15 -2081 ((-1127 (-1127 |#1|)) $)) (-15 -2092 ((-1127 (-1127 |#1|)) $ (-1127 |#1|))) (-15 -2092 ((-1127 (-660 |#1|)) $ (-660 |#1|))) (-15 -2820 ((-112) (-928 |#1|) $)) (-15 -2069 ((-660 (-787)) (-928 |#1|) $)) (-15 -2057 ((-660 (-787)) (-928 |#1|) $)) (-15 -2042 ((-1127 |#1|) $)) (-15 -2990 ((-112) $ $)) (-15 -3012 ((-112) $ $)) (-15 -2029 ((-1297) $)) (-15 -2029 ((-1297) $ (-577) (-577))))) (-1125)) (T -927)) +((-3544 (*1 *2 *1) (-12 (-5 *2 (-660 (-928 *3))) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-660 (-928 *3))) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-2872 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *2 (-928 *4)) (-5 *1 (-927 *4)) (-4 *4 (-1125)))) (-1910 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-928 *4)) (-5 *1 (-927 *4)) (-4 *4 (-1125)))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-928 *3)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-4146 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-660 (-928 *3))) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-787)))) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-660 (-928 *3))) (-4 *3 (-1125)) (-5 *1 (-927 *3)))) (-2103 (*1 *1 *2) (-12 (-5 *2 (-660 (-928 *3))) (-4 *3 (-1125)) (-5 *1 (-927 *3)))) (-2092 (*1 *2 *1 *3) (-12 (-5 *2 (-1127 *3)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-2081 (*1 *2 *1) (-12 (-5 *2 (-1127 (-1127 *3))) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-2092 (*1 *2 *1 *3) (-12 (-4 *4 (-1125)) (-5 *2 (-1127 (-1127 *4))) (-5 *1 (-927 *4)) (-5 *3 (-1127 *4)))) (-2092 (*1 *2 *1 *3) (-12 (-4 *4 (-1125)) (-5 *2 (-1127 (-660 *4))) (-5 *1 (-927 *4)) (-5 *3 (-660 *4)))) (-2820 (*1 *2 *3 *1) (-12 (-5 *3 (-928 *4)) (-4 *4 (-1125)) (-5 *2 (-112)) (-5 *1 (-927 *4)))) (-2069 (*1 *2 *3 *1) (-12 (-5 *3 (-928 *4)) (-4 *4 (-1125)) (-5 *2 (-660 (-787))) (-5 *1 (-927 *4)))) (-2057 (*1 *2 *3 *1) (-12 (-5 *3 (-928 *4)) (-4 *4 (-1125)) (-5 *2 (-660 (-787))) (-5 *1 (-927 *4)))) (-2042 (*1 *2 *1) (-12 (-5 *2 (-1127 *3)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-2990 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-3012 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-2029 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) (-2029 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-927 *4)) (-4 *4 (-1125))))) +(-13 (-1125) (-10 -8 (-15 -3544 ((-660 (-928 |#1|)) $)) (-15 -2145 ((-660 (-928 |#1|)) $)) (-15 -2872 ((-928 |#1|) $ (-787))) (-15 -1910 ((-928 |#1|) $ (-577))) (-15 -1910 ((-928 |#1|) $)) (-15 -3817 ((-787) $)) (-15 -2887 ((-787) $)) (-15 -4146 ((-660 |#1|) $)) (-15 -2131 ((-660 (-928 |#1|)) $)) (-15 -2115 ((-660 (-660 (-787))) $)) (-15 -3544 ($ (-660 (-928 |#1|)))) (-15 -2103 ($ (-660 (-928 |#1|)))) (-15 -2092 ((-1127 |#1|) $ |#1|)) (-15 -2081 ((-1127 (-1127 |#1|)) $)) (-15 -2092 ((-1127 (-1127 |#1|)) $ (-1127 |#1|))) (-15 -2092 ((-1127 (-660 |#1|)) $ (-660 |#1|))) (-15 -2820 ((-112) (-928 |#1|) $)) (-15 -2069 ((-660 (-787)) (-928 |#1|) $)) (-15 -2057 ((-660 (-787)) (-928 |#1|) $)) (-15 -2042 ((-1127 |#1|) $)) (-15 -2990 ((-112) $ $)) (-15 -3012 ((-112) $ $)) (-15 -2029 ((-1297) $)) (-15 -2029 ((-1297) $ (-577) (-577))))) +((-3473 (((-112) $ $) NIL)) (-2042 (((-1127 |#1|) $) 60)) (-1864 (((-660 $) (-660 $)) 103)) (-3010 (((-577) $) 83)) (-1534 (($) NIL T CONST)) (-4187 (((-3 $ "failed") $) NIL)) (-3817 (((-787) $) 80)) (-2092 (((-1127 |#1|) $ |#1|) 70)) (-2487 (((-112) $) NIL)) (-1912 (((-112) $) 88)) (-1935 (((-787) $) 84)) (-3732 (($ $ $) NIL (-2839 (|has| |#1| (-380)) (|has| |#1| (-865))))) (-3201 (($ $ $) NIL (-2839 (|has| |#1| (-380)) (|has| |#1| (-865))))) (-1983 (((-2 (|:| |preimage| (-660 |#1|)) (|:| |image| (-660 |#1|))) $) 55)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) 130)) (-1474 (((-1145) $) NIL)) (-1900 (((-1127 |#1|) $) 136 (|has| |#1| (-380)))) (-1924 (((-112) $) 81)) (-2872 ((|#1| $ |#1|) 68)) (-2887 (((-787) $) 62)) (-2006 (($ (-660 (-660 |#1|))) 118)) (-1948 (((-996) $) 74)) (-2016 (($ (-660 |#1|)) 32)) (-2360 (($ $ $) NIL)) (-3820 (($ $ $) NIL)) (-1972 (($ (-660 (-660 |#1|))) 57)) (-1960 (($ (-660 (-660 |#1|))) 123)) (-1888 (($ (-660 |#1|)) 132)) (-3544 (((-880) $) 117) (($ (-660 (-660 |#1|))) 91) (($ (-660 |#1|)) 92)) (-4448 (((-112) $ $) NIL)) (-2816 (($) 24 T CONST)) (-3025 (((-112) $ $) NIL (-2839 (|has| |#1| (-380)) (|has| |#1| (-865))))) (-3000 (((-112) $ $) NIL (-2839 (|has| |#1| (-380)) (|has| |#1| (-865))))) (-2970 (((-112) $ $) 66)) (-3012 (((-112) $ $) NIL (-2839 (|has| |#1| (-380)) (|has| |#1| (-865))))) (-2990 (((-112) $ $) 90)) (-3077 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ $ $) 33))) +(((-928 |#1|) (-13 (-926 |#1|) (-10 -8 (-15 -1983 ((-2 (|:| |preimage| (-660 |#1|)) (|:| |image| (-660 |#1|))) $)) (-15 -1972 ($ (-660 (-660 |#1|)))) (-15 -3544 ($ (-660 (-660 |#1|)))) (-15 -3544 ($ (-660 |#1|))) (-15 -1960 ($ (-660 (-660 |#1|)))) (-15 -2887 ((-787) $)) (-15 -1948 ((-996) $)) (-15 -3817 ((-787) $)) (-15 -1935 ((-787) $)) (-15 -3010 ((-577) $)) (-15 -1924 ((-112) $)) (-15 -1912 ((-112) $)) (-15 -1864 ((-660 $) (-660 $))) (IF (|has| |#1| (-380)) (-15 -1900 ((-1127 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-558)) (-15 -1888 ($ (-660 |#1|))) (IF (|has| |#1| (-380)) (-15 -1888 ($ (-660 |#1|))) |%noBranch|)))) (-1125)) (T -928)) +((-1983 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-660 *3)) (|:| |image| (-660 *3)))) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) (-1972 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-5 *1 (-928 *3)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-5 *1 (-928 *3)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-928 *3)))) (-1960 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-5 *1 (-928 *3)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) (-1948 (*1 *2 *1) (-12 (-5 *2 (-996)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) (-3817 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) (-1912 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) (-1864 (*1 *2 *2) (-12 (-5 *2 (-660 (-928 *3))) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-1127 *3)) (-5 *1 (-928 *3)) (-4 *3 (-380)) (-4 *3 (-1125)))) (-1888 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-928 *3))))) +(-13 (-926 |#1|) (-10 -8 (-15 -1983 ((-2 (|:| |preimage| (-660 |#1|)) (|:| |image| (-660 |#1|))) $)) (-15 -1972 ($ (-660 (-660 |#1|)))) (-15 -3544 ($ (-660 (-660 |#1|)))) (-15 -3544 ($ (-660 |#1|))) (-15 -1960 ($ (-660 (-660 |#1|)))) (-15 -2887 ((-787) $)) (-15 -1948 ((-996) $)) (-15 -3817 ((-787) $)) (-15 -1935 ((-787) $)) (-15 -3010 ((-577) $)) (-15 -1924 ((-112) $)) (-15 -1912 ((-112) $)) (-15 -1864 ((-660 $) (-660 $))) (IF (|has| |#1| (-380)) (-15 -1900 ((-1127 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-558)) (-15 -1888 ($ (-660 |#1|))) (IF (|has| |#1| (-380)) (-15 -1888 ($ (-660 |#1|))) |%noBranch|)))) +((-2170 (((-3 (-660 (-1197 |#4|)) "failed") (-660 (-1197 |#4|)) (-1197 |#4|)) 160)) (-2208 ((|#1|) 97)) (-2195 (((-431 (-1197 |#4|)) (-1197 |#4|)) 169)) (-2220 (((-431 (-1197 |#4|)) (-660 |#3|) (-1197 |#4|)) 84)) (-2183 (((-431 (-1197 |#4|)) (-1197 |#4|)) 179)) (-2159 (((-3 (-660 (-1197 |#4|)) "failed") (-660 (-1197 |#4|)) (-1197 |#4|) |#3|) 113))) +(((-929 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2170 ((-3 (-660 (-1197 |#4|)) "failed") (-660 (-1197 |#4|)) (-1197 |#4|))) (-15 -2183 ((-431 (-1197 |#4|)) (-1197 |#4|))) (-15 -2195 ((-431 (-1197 |#4|)) (-1197 |#4|))) (-15 -2208 (|#1|)) (-15 -2159 ((-3 (-660 (-1197 |#4|)) "failed") (-660 (-1197 |#4|)) (-1197 |#4|) |#3|)) (-15 -2220 ((-431 (-1197 |#4|)) (-660 |#3|) (-1197 |#4|)))) (-932) (-809) (-865) (-972 |#1| |#2| |#3|)) (T -929)) +((-2220 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *7)) (-4 *7 (-865)) (-4 *5 (-932)) (-4 *6 (-809)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-431 (-1197 *8))) (-5 *1 (-929 *5 *6 *7 *8)) (-5 *4 (-1197 *8)))) (-2159 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-660 (-1197 *7))) (-5 *3 (-1197 *7)) (-4 *7 (-972 *5 *6 *4)) (-4 *5 (-932)) (-4 *6 (-809)) (-4 *4 (-865)) (-5 *1 (-929 *5 *6 *4 *7)))) (-2208 (*1 *2) (-12 (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-932)) (-5 *1 (-929 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-932)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-431 (-1197 *7))) (-5 *1 (-929 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) (-2183 (*1 *2 *3) (-12 (-4 *4 (-932)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-431 (-1197 *7))) (-5 *1 (-929 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) (-2170 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-1197 *7))) (-5 *3 (-1197 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-932)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-929 *4 *5 *6 *7))))) +(-10 -7 (-15 -2170 ((-3 (-660 (-1197 |#4|)) "failed") (-660 (-1197 |#4|)) (-1197 |#4|))) (-15 -2183 ((-431 (-1197 |#4|)) (-1197 |#4|))) (-15 -2195 ((-431 (-1197 |#4|)) (-1197 |#4|))) (-15 -2208 (|#1|)) (-15 -2159 ((-3 (-660 (-1197 |#4|)) "failed") (-660 (-1197 |#4|)) (-1197 |#4|) |#3|)) (-15 -2220 ((-431 (-1197 |#4|)) (-660 |#3|) (-1197 |#4|)))) +((-2170 (((-3 (-660 (-1197 |#2|)) "failed") (-660 (-1197 |#2|)) (-1197 |#2|)) 39)) (-2208 ((|#1|) 72)) (-2195 (((-431 (-1197 |#2|)) (-1197 |#2|)) 121)) (-2220 (((-431 (-1197 |#2|)) (-1197 |#2|)) 105)) (-2183 (((-431 (-1197 |#2|)) (-1197 |#2|)) 132))) +(((-930 |#1| |#2|) (-10 -7 (-15 -2170 ((-3 (-660 (-1197 |#2|)) "failed") (-660 (-1197 |#2|)) (-1197 |#2|))) (-15 -2183 ((-431 (-1197 |#2|)) (-1197 |#2|))) (-15 -2195 ((-431 (-1197 |#2|)) (-1197 |#2|))) (-15 -2208 (|#1|)) (-15 -2220 ((-431 (-1197 |#2|)) (-1197 |#2|)))) (-932) (-1268 |#1|)) (T -930)) +((-2220 (*1 *2 *3) (-12 (-4 *4 (-932)) (-4 *5 (-1268 *4)) (-5 *2 (-431 (-1197 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-1197 *5)))) (-2208 (*1 *2) (-12 (-4 *2 (-932)) (-5 *1 (-930 *2 *3)) (-4 *3 (-1268 *2)))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-932)) (-4 *5 (-1268 *4)) (-5 *2 (-431 (-1197 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-1197 *5)))) (-2183 (*1 *2 *3) (-12 (-4 *4 (-932)) (-4 *5 (-1268 *4)) (-5 *2 (-431 (-1197 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-1197 *5)))) (-2170 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-1197 *5))) (-5 *3 (-1197 *5)) (-4 *5 (-1268 *4)) (-4 *4 (-932)) (-5 *1 (-930 *4 *5))))) +(-10 -7 (-15 -2170 ((-3 (-660 (-1197 |#2|)) "failed") (-660 (-1197 |#2|)) (-1197 |#2|))) (-15 -2183 ((-431 (-1197 |#2|)) (-1197 |#2|))) (-15 -2195 ((-431 (-1197 |#2|)) (-1197 |#2|))) (-15 -2208 (|#1|)) (-15 -2220 ((-431 (-1197 |#2|)) (-1197 |#2|)))) +((-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 42)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 18)) (-2233 (((-3 $ "failed") $) 36))) +(((-931 |#1|) (-10 -8 (-15 -2233 ((-3 |#1| "failed") |#1|)) (-15 -2259 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|))) (-15 -2305 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|)))) (-932)) (T -931)) +NIL +(-10 -8 (-15 -2233 ((-3 |#1| "failed") |#1|)) (-15 -2259 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|))) (-15 -2305 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-1956 (((-3 $ "failed") $ $) 20)) (-2294 (((-431 (-1197 $)) (-1197 $)) 66)) (-3841 (($ $) 57)) (-3029 (((-431 $) $) 58)) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 63)) (-1534 (($) 18 T CONST)) (-4187 (((-3 $ "failed") $) 37)) (-1522 (((-112) $) 59)) (-2487 (((-112) $) 35)) (-3446 (($ $ $) 52) (($ (-660 $)) 51)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 50)) (-3480 (($ $ $) 54) (($ (-660 $)) 53)) (-2269 (((-431 (-1197 $)) (-1197 $)) 64)) (-2281 (((-431 (-1197 $)) (-1197 $)) 65)) (-1902 (((-431 $) $) 56)) (-3462 (((-3 $ "failed") $ $) 48)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) 62 (|has| $ (-146)))) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49)) (-2233 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 45)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) +(((-932) (-141)) (T -932)) +((-2305 (*1 *2 *2 *2) (-12 (-5 *2 (-1197 *1)) (-4 *1 (-932)))) (-2294 (*1 *2 *3) (-12 (-4 *1 (-932)) (-5 *2 (-431 (-1197 *1))) (-5 *3 (-1197 *1)))) (-2281 (*1 *2 *3) (-12 (-4 *1 (-932)) (-5 *2 (-431 (-1197 *1))) (-5 *3 (-1197 *1)))) (-2269 (*1 *2 *3) (-12 (-4 *1 (-932)) (-5 *2 (-431 (-1197 *1))) (-5 *3 (-1197 *1)))) (-2259 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-1197 *1))) (-5 *3 (-1197 *1)) (-4 *1 (-932)))) (-2245 (*1 *2 *3) (|partial| -12 (-5 *3 (-705 *1)) (-4 *1 (-146)) (-4 *1 (-932)) (-5 *2 (-1292 *1)))) (-2233 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-932))))) +(-13 (-1246) (-10 -8 (-15 -2294 ((-431 (-1197 $)) (-1197 $))) (-15 -2281 ((-431 (-1197 $)) (-1197 $))) (-15 -2269 ((-431 (-1197 $)) (-1197 $))) (-15 -2305 ((-1197 $) (-1197 $) (-1197 $))) (-15 -2259 ((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $))) (IF (|has| $ (-146)) (PROGN (-15 -2245 ((-3 (-1292 $) "failed") (-705 $))) (-15 -2233 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-301) . T) ((-465) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-2766 (((-112) $) NIL)) (-2732 (((-787)) NIL)) (-2339 (($ $ (-944)) NIL (|has| $ (-380))) (($ $) NIL)) (-1595 (((-1214 (-944) (-787)) (-577)) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1939 (((-112) $ $) NIL)) (-2229 (((-787)) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 $ "failed") $) NIL)) (-2921 (($ $) NIL)) (-3502 (($ (-1292 $)) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($) NIL)) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-4205 (($) NIL)) (-1655 (((-112) $) NIL)) (-3233 (($ $) NIL) (($ $ (-787)) NIL)) (-1522 (((-112) $) NIL)) (-3817 (((-849 (-944)) $) NIL) (((-944) $) NIL)) (-2487 (((-112) $) NIL)) (-4073 (($) NIL (|has| $ (-380)))) (-4049 (((-112) $) NIL (|has| $ (-380)))) (-4145 (($ $ (-944)) NIL (|has| $ (-380))) (($ $) NIL)) (-4021 (((-3 $ "failed") $) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-4084 (((-1197 $) $ (-944)) NIL (|has| $ (-380))) (((-1197 $) $) NIL)) (-4038 (((-944) $) NIL)) (-2175 (((-1197 $) $) NIL (|has| $ (-380)))) (-2163 (((-3 (-1197 $) "failed") $ $) NIL (|has| $ (-380))) (((-1197 $) $) NIL (|has| $ (-380)))) (-2187 (($ $ (-1197 $)) NIL (|has| $ (-380)))) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1709 (($) NIL T CONST)) (-3222 (($ (-944)) NIL)) (-2754 (((-112) $) NIL)) (-1474 (((-1145) $) NIL)) (-4101 (($) NIL (|has| $ (-380)))) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) NIL)) (-1902 (((-431 $) $) NIL)) (-2744 (((-944)) NIL) (((-849 (-944))) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-3243 (((-3 (-787) "failed") $ $) NIL) (((-787) $) NIL)) (-2561 (((-135)) NIL)) (-2852 (($ $) NIL) (($ $ (-787)) NIL)) (-2887 (((-944) $) NIL) (((-849 (-944)) $) NIL)) (-3557 (((-1197 $)) NIL)) (-1585 (($) NIL)) (-2200 (($) NIL (|has| $ (-380)))) (-2710 (((-705 $) (-1292 $)) NIL) (((-1292 $) $) NIL)) (-4152 (((-577) $) NIL)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) NIL)) (-2233 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $) (-944)) NIL) (((-1292 $)) NIL)) (-3281 (((-112) $ $) NIL)) (-2776 (((-112) $) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2721 (($ $ (-787)) NIL (|has| $ (-380))) (($ $) NIL (|has| $ (-380)))) (-2132 (($ $) NIL) (($ $ (-787)) NIL)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL))) +(((-933 |#1|) (-13 (-361) (-340 $) (-627 (-577))) (-944)) (T -933)) +NIL +(-13 (-361) (-340 $) (-627 (-577))) +((-2326 (((-3 (-2 (|:| -3817 (-787)) (|:| -3334 |#5|)) "failed") (-348 |#2| |#3| |#4| |#5|)) 77)) (-2315 (((-112) (-348 |#2| |#3| |#4| |#5|)) 17)) (-3817 (((-3 (-787) "failed") (-348 |#2| |#3| |#4| |#5|)) 15))) +(((-934 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3817 ((-3 (-787) "failed") (-348 |#2| |#3| |#4| |#5|))) (-15 -2315 ((-112) (-348 |#2| |#3| |#4| |#5|))) (-15 -2326 ((-3 (-2 (|:| -3817 (-787)) (|:| -3334 |#5|)) "failed") (-348 |#2| |#3| |#4| |#5|)))) (-13 (-569) (-1063 (-577))) (-443 |#1|) (-1268 |#2|) (-1268 (-420 |#3|)) (-354 |#2| |#3| |#4|)) (T -934)) +((-2326 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-2 (|:| -3817 (-787)) (|:| -3334 *8))) (-5 *1 (-934 *4 *5 *6 *7 *8)))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-112)) (-5 *1 (-934 *4 *5 *6 *7 *8)))) (-3817 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-787)) (-5 *1 (-934 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -3817 ((-3 (-787) "failed") (-348 |#2| |#3| |#4| |#5|))) (-15 -2315 ((-112) (-348 |#2| |#3| |#4| |#5|))) (-15 -2326 ((-3 (-2 (|:| -3817 (-787)) (|:| -3334 |#5|)) "failed") (-348 |#2| |#3| |#4| |#5|)))) +((-2326 (((-3 (-2 (|:| -3817 (-787)) (|:| -3334 |#3|)) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|)) 64)) (-2315 (((-112) (-348 (-420 (-577)) |#1| |#2| |#3|)) 16)) (-3817 (((-3 (-787) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|)) 14))) +(((-935 |#1| |#2| |#3|) (-10 -7 (-15 -3817 ((-3 (-787) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|))) (-15 -2315 ((-112) (-348 (-420 (-577)) |#1| |#2| |#3|))) (-15 -2326 ((-3 (-2 (|:| -3817 (-787)) (|:| -3334 |#3|)) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|)))) (-1268 (-420 (-577))) (-1268 (-420 |#1|)) (-354 (-420 (-577)) |#1| |#2|)) (T -935)) +((-2326 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) (-4 *4 (-1268 (-420 (-577)))) (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-2 (|:| -3817 (-787)) (|:| -3334 *6))) (-5 *1 (-935 *4 *5 *6)))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) (-4 *4 (-1268 (-420 (-577)))) (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-935 *4 *5 *6)))) (-3817 (*1 *2 *3) (|partial| -12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) (-4 *4 (-1268 (-420 (-577)))) (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-787)) (-5 *1 (-935 *4 *5 *6))))) +(-10 -7 (-15 -3817 ((-3 (-787) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|))) (-15 -2315 ((-112) (-348 (-420 (-577)) |#1| |#2| |#3|))) (-15 -2326 ((-3 (-2 (|:| -3817 (-787)) (|:| -3334 |#3|)) "failed") (-348 (-420 (-577)) |#1| |#2| |#3|)))) +((-2374 ((|#2| |#2|) 26)) (-2355 (((-577) (-660 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))))) 15)) (-2336 (((-944) (-577)) 38)) (-2365 (((-577) |#2|) 45)) (-2346 (((-577) |#2|) 21) (((-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))) |#1|) 20))) +(((-936 |#1| |#2|) (-10 -7 (-15 -2336 ((-944) (-577))) (-15 -2346 ((-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))) |#1|)) (-15 -2346 ((-577) |#2|)) (-15 -2355 ((-577) (-660 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577)))))) (-15 -2365 ((-577) |#2|)) (-15 -2374 (|#2| |#2|))) (-1268 (-420 (-577))) (-1268 (-420 |#1|))) (T -936)) +((-2374 (*1 *2 *2) (-12 (-4 *3 (-1268 (-420 (-577)))) (-5 *1 (-936 *3 *2)) (-4 *2 (-1268 (-420 *3))))) (-2365 (*1 *2 *3) (-12 (-4 *4 (-1268 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-936 *4 *3)) (-4 *3 (-1268 (-420 *4))))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))))) (-4 *4 (-1268 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-936 *4 *5)) (-4 *5 (-1268 (-420 *4))))) (-2346 (*1 *2 *3) (-12 (-4 *4 (-1268 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-936 *4 *3)) (-4 *3 (-1268 (-420 *4))))) (-2346 (*1 *2 *3) (-12 (-4 *3 (-1268 (-420 (-577)))) (-5 *2 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577)))) (-5 *1 (-936 *3 *4)) (-4 *4 (-1268 (-420 *3))))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-577)) (-4 *4 (-1268 (-420 *3))) (-5 *2 (-944)) (-5 *1 (-936 *4 *5)) (-4 *5 (-1268 (-420 *4)))))) +(-10 -7 (-15 -2336 ((-944) (-577))) (-15 -2346 ((-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))) |#1|)) (-15 -2346 ((-577) |#2|)) (-15 -2355 ((-577) (-660 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577)))))) (-15 -2365 ((-577) |#2|)) (-15 -2374 (|#2| |#2|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-4105 ((|#1| $) 100)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1939 (((-112) $ $) NIL)) (-1534 (($) NIL T CONST)) (-3418 (($ $ $) NIL)) (-4187 (((-3 $ "failed") $) 94)) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-4303 (($ |#1| (-431 |#1|)) 92)) (-4237 (((-1197 |#1|) |#1| |#1|) 53)) (-2385 (($ $) 61)) (-2487 (((-112) $) NIL)) (-4249 (((-577) $) 97)) (-4259 (($ $ (-577)) 99)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-4269 ((|#1| $) 96)) (-4279 (((-431 |#1|) $) 95)) (-1902 (((-431 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) 93)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-4292 (($ $) 50)) (-3544 (((-880) $) 124) (($ (-577)) 73) (($ $) NIL) (($ (-420 (-577))) NIL) (($ |#1|) 41) (((-420 |#1|) $) 78) (($ (-420 (-431 |#1|))) 86)) (-4068 (((-787)) 71 T CONST)) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-2806 (($) 26 T CONST)) (-2816 (($) 15 T CONST)) (-2970 (((-112) $ $) 87)) (-3077 (($ $ $) NIL)) (-3066 (($ $) 108) (($ $ $) NIL)) (-3055 (($ $ $) 49)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 110) (($ $ $) 48) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) +(((-937 |#1|) (-13 (-375) (-38 |#1|) (-10 -8 (-15 -3544 ((-420 |#1|) $)) (-15 -3544 ($ (-420 (-431 |#1|)))) (-15 -4292 ($ $)) (-15 -4279 ((-431 |#1|) $)) (-15 -4269 (|#1| $)) (-15 -4259 ($ $ (-577))) (-15 -4249 ((-577) $)) (-15 -4237 ((-1197 |#1|) |#1| |#1|)) (-15 -2385 ($ $)) (-15 -4303 ($ |#1| (-431 |#1|))) (-15 -4105 (|#1| $)))) (-318)) (T -937)) +((-3544 (*1 *2 *1) (-12 (-5 *2 (-420 *3)) (-5 *1 (-937 *3)) (-4 *3 (-318)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-420 (-431 *3))) (-4 *3 (-318)) (-5 *1 (-937 *3)))) (-4292 (*1 *1 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-318)))) (-4279 (*1 *2 *1) (-12 (-5 *2 (-431 *3)) (-5 *1 (-937 *3)) (-4 *3 (-318)))) (-4269 (*1 *2 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-318)))) (-4259 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-937 *3)) (-4 *3 (-318)))) (-4249 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-937 *3)) (-4 *3 (-318)))) (-4237 (*1 *2 *3 *3) (-12 (-5 *2 (-1197 *3)) (-5 *1 (-937 *3)) (-4 *3 (-318)))) (-2385 (*1 *1 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-318)))) (-4303 (*1 *1 *2 *3) (-12 (-5 *3 (-431 *2)) (-4 *2 (-318)) (-5 *1 (-937 *2)))) (-4105 (*1 *2 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-318))))) +(-13 (-375) (-38 |#1|) (-10 -8 (-15 -3544 ((-420 |#1|) $)) (-15 -3544 ($ (-420 (-431 |#1|)))) (-15 -4292 ($ $)) (-15 -4279 ((-431 |#1|) $)) (-15 -4269 (|#1| $)) (-15 -4259 ($ $ (-577))) (-15 -4249 ((-577) $)) (-15 -4237 ((-1197 |#1|) |#1| |#1|)) (-15 -2385 ($ $)) (-15 -4303 ($ |#1| (-431 |#1|))) (-15 -4105 (|#1| $)))) +((-4303 (((-52) (-975 |#1|) (-431 (-975 |#1|)) (-1201)) 17) (((-52) (-420 (-975 |#1|)) (-1201)) 18))) +(((-938 |#1|) (-10 -7 (-15 -4303 ((-52) (-420 (-975 |#1|)) (-1201))) (-15 -4303 ((-52) (-975 |#1|) (-431 (-975 |#1|)) (-1201)))) (-13 (-318) (-148))) (T -938)) +((-4303 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-431 (-975 *6))) (-5 *5 (-1201)) (-5 *3 (-975 *6)) (-4 *6 (-13 (-318) (-148))) (-5 *2 (-52)) (-5 *1 (-938 *6)))) (-4303 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-52)) (-5 *1 (-938 *5))))) +(-10 -7 (-15 -4303 ((-52) (-420 (-975 |#1|)) (-1201))) (-15 -4303 ((-52) (-975 |#1|) (-431 (-975 |#1|)) (-1201)))) +((-4311 ((|#4| (-660 |#4|)) 147) (((-1197 |#4|) (-1197 |#4|) (-1197 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-3480 (((-1197 |#4|) (-660 (-1197 |#4|))) 140) (((-1197 |#4|) (-1197 |#4|) (-1197 |#4|)) 61) ((|#4| (-660 |#4|)) 69) ((|#4| |#4| |#4|) 107))) +(((-939 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3480 (|#4| |#4| |#4|)) (-15 -3480 (|#4| (-660 |#4|))) (-15 -3480 ((-1197 |#4|) (-1197 |#4|) (-1197 |#4|))) (-15 -3480 ((-1197 |#4|) (-660 (-1197 |#4|)))) (-15 -4311 (|#4| |#4| |#4|)) (-15 -4311 ((-1197 |#4|) (-1197 |#4|) (-1197 |#4|))) (-15 -4311 (|#4| (-660 |#4|)))) (-809) (-865) (-318) (-972 |#3| |#1| |#2|)) (T -939)) +((-4311 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *6 *4 *5)) (-5 *1 (-939 *4 *5 *6 *2)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)))) (-4311 (*1 *2 *2 *2) (-12 (-5 *2 (-1197 *6)) (-4 *6 (-972 *5 *3 *4)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-318)) (-5 *1 (-939 *3 *4 *5 *6)))) (-4311 (*1 *2 *2 *2) (-12 (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-318)) (-5 *1 (-939 *3 *4 *5 *2)) (-4 *2 (-972 *5 *3 *4)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-660 (-1197 *7))) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)) (-5 *2 (-1197 *7)) (-5 *1 (-939 *4 *5 *6 *7)) (-4 *7 (-972 *6 *4 *5)))) (-3480 (*1 *2 *2 *2) (-12 (-5 *2 (-1197 *6)) (-4 *6 (-972 *5 *3 *4)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-318)) (-5 *1 (-939 *3 *4 *5 *6)))) (-3480 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *6 *4 *5)) (-5 *1 (-939 *4 *5 *6 *2)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)))) (-3480 (*1 *2 *2 *2) (-12 (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-318)) (-5 *1 (-939 *3 *4 *5 *2)) (-4 *2 (-972 *5 *3 *4))))) +(-10 -7 (-15 -3480 (|#4| |#4| |#4|)) (-15 -3480 (|#4| (-660 |#4|))) (-15 -3480 ((-1197 |#4|) (-1197 |#4|) (-1197 |#4|))) (-15 -3480 ((-1197 |#4|) (-660 (-1197 |#4|)))) (-15 -4311 (|#4| |#4| |#4|)) (-15 -4311 ((-1197 |#4|) (-1197 |#4|) (-1197 |#4|))) (-15 -4311 (|#4| (-660 |#4|)))) +((-1333 (((-927 (-577)) (-996)) 38) (((-927 (-577)) (-660 (-577))) 34)) (-4323 (((-927 (-577)) (-660 (-577))) 67) (((-927 (-577)) (-944)) 68)) (-4445 (((-927 (-577))) 39)) (-4420 (((-927 (-577))) 53) (((-927 (-577)) (-660 (-577))) 52)) (-4409 (((-927 (-577))) 51) (((-927 (-577)) (-660 (-577))) 50)) (-4399 (((-927 (-577))) 49) (((-927 (-577)) (-660 (-577))) 48)) (-4388 (((-927 (-577))) 47) (((-927 (-577)) (-660 (-577))) 46)) (-4378 (((-927 (-577))) 45) (((-927 (-577)) (-660 (-577))) 44)) (-4433 (((-927 (-577))) 55) (((-927 (-577)) (-660 (-577))) 54)) (-4367 (((-927 (-577)) (-660 (-577))) 72) (((-927 (-577)) (-944)) 74)) (-4357 (((-927 (-577)) (-660 (-577))) 69) (((-927 (-577)) (-944)) 70)) (-4334 (((-927 (-577)) (-660 (-577))) 65) (((-927 (-577)) (-944)) 66)) (-4346 (((-927 (-577)) (-660 (-944))) 57))) +(((-940) (-10 -7 (-15 -4323 ((-927 (-577)) (-944))) (-15 -4323 ((-927 (-577)) (-660 (-577)))) (-15 -4334 ((-927 (-577)) (-944))) (-15 -4334 ((-927 (-577)) (-660 (-577)))) (-15 -4346 ((-927 (-577)) (-660 (-944)))) (-15 -4357 ((-927 (-577)) (-944))) (-15 -4357 ((-927 (-577)) (-660 (-577)))) (-15 -4367 ((-927 (-577)) (-944))) (-15 -4367 ((-927 (-577)) (-660 (-577)))) (-15 -4378 ((-927 (-577)) (-660 (-577)))) (-15 -4378 ((-927 (-577)))) (-15 -4388 ((-927 (-577)) (-660 (-577)))) (-15 -4388 ((-927 (-577)))) (-15 -4399 ((-927 (-577)) (-660 (-577)))) (-15 -4399 ((-927 (-577)))) (-15 -4409 ((-927 (-577)) (-660 (-577)))) (-15 -4409 ((-927 (-577)))) (-15 -4420 ((-927 (-577)) (-660 (-577)))) (-15 -4420 ((-927 (-577)))) (-15 -4433 ((-927 (-577)) (-660 (-577)))) (-15 -4433 ((-927 (-577)))) (-15 -4445 ((-927 (-577)))) (-15 -1333 ((-927 (-577)) (-660 (-577)))) (-15 -1333 ((-927 (-577)) (-996))))) (T -940)) +((-1333 (*1 *2 *3) (-12 (-5 *3 (-996)) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4445 (*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4433 (*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4433 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4420 (*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4420 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4409 (*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4409 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4399 (*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4399 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4388 (*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4388 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4378 (*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4378 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4367 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4367 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4357 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4357 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4346 (*1 *2 *3) (-12 (-5 *3 (-660 (-944))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4334 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4334 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-927 (-577))) (-5 *1 (-940))))) +(-10 -7 (-15 -4323 ((-927 (-577)) (-944))) (-15 -4323 ((-927 (-577)) (-660 (-577)))) (-15 -4334 ((-927 (-577)) (-944))) (-15 -4334 ((-927 (-577)) (-660 (-577)))) (-15 -4346 ((-927 (-577)) (-660 (-944)))) (-15 -4357 ((-927 (-577)) (-944))) (-15 -4357 ((-927 (-577)) (-660 (-577)))) (-15 -4367 ((-927 (-577)) (-944))) (-15 -4367 ((-927 (-577)) (-660 (-577)))) (-15 -4378 ((-927 (-577)) (-660 (-577)))) (-15 -4378 ((-927 (-577)))) (-15 -4388 ((-927 (-577)) (-660 (-577)))) (-15 -4388 ((-927 (-577)))) (-15 -4399 ((-927 (-577)) (-660 (-577)))) (-15 -4399 ((-927 (-577)))) (-15 -4409 ((-927 (-577)) (-660 (-577)))) (-15 -4409 ((-927 (-577)))) (-15 -4420 ((-927 (-577)) (-660 (-577)))) (-15 -4420 ((-927 (-577)))) (-15 -4433 ((-927 (-577)) (-660 (-577)))) (-15 -4433 ((-927 (-577)))) (-15 -4445 ((-927 (-577)))) (-15 -1333 ((-927 (-577)) (-660 (-577)))) (-15 -1333 ((-927 (-577)) (-996)))) +((-1356 (((-660 (-975 |#1|)) (-660 (-975 |#1|)) (-660 (-1201))) 14)) (-1344 (((-660 (-975 |#1|)) (-660 (-975 |#1|)) (-660 (-1201))) 13))) +(((-941 |#1|) (-10 -7 (-15 -1344 ((-660 (-975 |#1|)) (-660 (-975 |#1|)) (-660 (-1201)))) (-15 -1356 ((-660 (-975 |#1|)) (-660 (-975 |#1|)) (-660 (-1201))))) (-465)) (T -941)) +((-1356 (*1 *2 *2 *3) (-12 (-5 *2 (-660 (-975 *4))) (-5 *3 (-660 (-1201))) (-4 *4 (-465)) (-5 *1 (-941 *4)))) (-1344 (*1 *2 *2 *3) (-12 (-5 *2 (-660 (-975 *4))) (-5 *3 (-660 (-1201))) (-4 *4 (-465)) (-5 *1 (-941 *4))))) +(-10 -7 (-15 -1344 ((-660 (-975 |#1|)) (-660 (-975 |#1|)) (-660 (-1201)))) (-15 -1356 ((-660 (-975 |#1|)) (-660 (-975 |#1|)) (-660 (-1201))))) +((-3544 (((-327 |#1|) (-490)) 16))) +(((-942 |#1|) (-10 -7 (-15 -3544 ((-327 |#1|) (-490)))) (-569)) (T -942)) +((-3544 (*1 *2 *3) (-12 (-5 *3 (-490)) (-5 *2 (-327 *4)) (-5 *1 (-942 *4)) (-4 *4 (-569))))) +(-10 -7 (-15 -3544 ((-327 |#1|) (-490)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-4187 (((-3 $ "failed") $) 37)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 57)) (-2487 (((-112) $) 35)) (-3446 (($ $ $) 52) (($ (-660 $)) 51)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 50)) (-3480 (($ $ $) 54) (($ (-660 $)) 53)) (-3462 (((-3 $ "failed") $ $) 48)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 56)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 45)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) +(((-943) (-141)) (T -943)) +((-1380 (*1 *2 *3) (-12 (-4 *1 (-943)) (-5 *2 (-2 (|:| -1777 (-660 *1)) (|:| -4101 *1))) (-5 *3 (-660 *1)))) (-1369 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-660 *1)) (-4 *1 (-943))))) +(-13 (-465) (-10 -8 (-15 -1380 ((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $))) (-15 -1369 ((-3 (-660 $) "failed") (-660 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-301) . T) ((-465) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-1534 (($) NIL T CONST)) (-4187 (((-3 $ "failed") $) NIL)) (-2487 (((-112) $) NIL)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3480 (($ $ $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2816 (($) NIL T CONST)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-787)) NIL) (($ $ (-944)) NIL)) (* (($ (-944) $) NIL) (($ $ $) NIL))) +(((-944) (-13 (-810) (-742) (-10 -8 (-15 -3480 ($ $ $)) (-6 (-4472 "*"))))) (T -944)) +((-3480 (*1 *1 *1 *1) (-5 *1 (-944)))) +(-13 (-810) (-742) (-10 -8 (-15 -3480 ($ $ $)) (-6 (-4472 "*")))) ((|NonNegativeInteger|) (|%igt| |#1| 0)) -((-4445 ((|#2| (-657 |#1|) (-657 |#1|)) 28))) -(((-942 |#1| |#2|) (-10 -7 (-15 -4445 (|#2| (-657 |#1|) (-657 |#1|)))) (-374) (-1265 |#1|)) (T -942)) -((-4445 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *4)) (-4 *4 (-374)) (-4 *2 (-1265 *4)) (-5 *1 (-942 *4 *2))))) -(-10 -7 (-15 -4445 (|#2| (-657 |#1|) (-657 |#1|)))) -((-2898 (((-1194 |#2|) (-657 |#2|) (-657 |#2|)) 17) (((-1262 |#1| |#2|) (-1262 |#1| |#2|) (-657 |#2|) (-657 |#2|)) 13))) -(((-943 |#1| |#2|) (-10 -7 (-15 -2898 ((-1262 |#1| |#2|) (-1262 |#1| |#2|) (-657 |#2|) (-657 |#2|))) (-15 -2898 ((-1194 |#2|) (-657 |#2|) (-657 |#2|)))) (-1198) (-374)) (T -943)) -((-2898 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *5)) (-4 *5 (-374)) (-5 *2 (-1194 *5)) (-5 *1 (-943 *4 *5)) (-14 *4 (-1198)))) (-2898 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1262 *4 *5)) (-5 *3 (-657 *5)) (-14 *4 (-1198)) (-4 *5 (-374)) (-5 *1 (-943 *4 *5))))) -(-10 -7 (-15 -2898 ((-1262 |#1| |#2|) (-1262 |#1| |#2|) (-657 |#2|) (-657 |#2|))) (-15 -2898 ((-1194 |#2|) (-657 |#2|) (-657 |#2|)))) -((-3975 (((-576) (-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-1180)) 174)) (-4235 ((|#4| |#4|) 193)) (-1454 (((-657 (-419 (-972 |#1|))) (-657 (-1198))) 146)) (-2658 (((-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))) (-702 |#4|) (-657 (-419 (-972 |#1|))) (-657 (-657 |#4|)) (-784) (-784) (-576)) 88)) (-2686 (((-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|)))))) (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|)))))) (-657 |#4|)) 69)) (-3360 (((-702 |#4|) (-702 |#4|) (-657 |#4|)) 65)) (-3527 (((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-1180)) 186)) (-4314 (((-576) (-702 |#4|) (-941) (-1180)) 166) (((-576) (-702 |#4|) (-657 (-1198)) (-941) (-1180)) 165) (((-576) (-702 |#4|) (-657 |#4|) (-941) (-1180)) 164) (((-576) (-702 |#4|) (-1180)) 154) (((-576) (-702 |#4|) (-657 (-1198)) (-1180)) 153) (((-576) (-702 |#4|) (-657 |#4|) (-1180)) 152) (((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-941)) 151) (((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 (-1198)) (-941)) 150) (((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 |#4|) (-941)) 149) (((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|)) 148) (((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 (-1198))) 147) (((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 |#4|)) 143)) (-2989 ((|#4| (-972 |#1|)) 80)) (-2740 (((-112) (-657 |#4|) (-657 (-657 |#4|))) 190)) (-1707 (((-657 (-657 (-576))) (-576) (-576)) 159)) (-1824 (((-657 (-657 |#4|)) (-657 (-657 |#4|))) 106)) (-3104 (((-784) (-657 (-2 (|:| -1542 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 |#4|))))) 100)) (-2950 (((-784) (-657 (-2 (|:| -1542 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 |#4|))))) 99)) (-1796 (((-112) (-657 (-972 |#1|))) 19) (((-112) (-657 |#4|)) 15)) (-2761 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-657 |#4|)) (|:| |n0| (-657 |#4|))) (-657 |#4|) (-657 |#4|)) 84)) (-2258 (((-657 |#4|) |#4|) 57)) (-2252 (((-657 (-419 (-972 |#1|))) (-657 |#4|)) 142) (((-702 (-419 (-972 |#1|))) (-702 |#4|)) 66) (((-419 (-972 |#1|)) |#4|) 139)) (-3842 (((-2 (|:| |rgl| (-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|)))))))))) (|:| |rgsz| (-576))) (-702 |#4|) (-657 (-419 (-972 |#1|))) (-784) (-1180) (-576)) 112)) (-1514 (((-657 (-2 (|:| -1542 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 |#4|)))) (-702 |#4|) (-784)) 98)) (-3531 (((-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576))))) (-702 |#4|) (-784)) 121)) (-2556 (((-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|)))))) (-2 (|:| -3750 (-702 (-419 (-972 |#1|)))) (|:| |vec| (-657 (-419 (-972 |#1|)))) (|:| -1542 (-784)) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576))))) 56))) -(((-944 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4314 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 |#4|))) (-15 -4314 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 (-1198)))) (-15 -4314 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|))) (-15 -4314 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 |#4|) (-941))) (-15 -4314 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 (-1198)) (-941))) (-15 -4314 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-941))) (-15 -4314 ((-576) (-702 |#4|) (-657 |#4|) (-1180))) (-15 -4314 ((-576) (-702 |#4|) (-657 (-1198)) (-1180))) (-15 -4314 ((-576) (-702 |#4|) (-1180))) (-15 -4314 ((-576) (-702 |#4|) (-657 |#4|) (-941) (-1180))) (-15 -4314 ((-576) (-702 |#4|) (-657 (-1198)) (-941) (-1180))) (-15 -4314 ((-576) (-702 |#4|) (-941) (-1180))) (-15 -3975 ((-576) (-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-1180))) (-15 -3527 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-1180))) (-15 -3842 ((-2 (|:| |rgl| (-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|)))))))))) (|:| |rgsz| (-576))) (-702 |#4|) (-657 (-419 (-972 |#1|))) (-784) (-1180) (-576))) (-15 -2252 ((-419 (-972 |#1|)) |#4|)) (-15 -2252 ((-702 (-419 (-972 |#1|))) (-702 |#4|))) (-15 -2252 ((-657 (-419 (-972 |#1|))) (-657 |#4|))) (-15 -1454 ((-657 (-419 (-972 |#1|))) (-657 (-1198)))) (-15 -2989 (|#4| (-972 |#1|))) (-15 -2761 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-657 |#4|)) (|:| |n0| (-657 |#4|))) (-657 |#4|) (-657 |#4|))) (-15 -1514 ((-657 (-2 (|:| -1542 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 |#4|)))) (-702 |#4|) (-784))) (-15 -2686 ((-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|)))))) (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|)))))) (-657 |#4|))) (-15 -2556 ((-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|)))))) (-2 (|:| -3750 (-702 (-419 (-972 |#1|)))) (|:| |vec| (-657 (-419 (-972 |#1|)))) (|:| -1542 (-784)) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (-15 -2258 ((-657 |#4|) |#4|)) (-15 -2950 ((-784) (-657 (-2 (|:| -1542 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 |#4|)))))) (-15 -3104 ((-784) (-657 (-2 (|:| -1542 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 |#4|)))))) (-15 -1824 ((-657 (-657 |#4|)) (-657 (-657 |#4|)))) (-15 -1707 ((-657 (-657 (-576))) (-576) (-576))) (-15 -2740 ((-112) (-657 |#4|) (-657 (-657 |#4|)))) (-15 -3531 ((-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576))))) (-702 |#4|) (-784))) (-15 -3360 ((-702 |#4|) (-702 |#4|) (-657 |#4|))) (-15 -2658 ((-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))) (-702 |#4|) (-657 (-419 (-972 |#1|))) (-657 (-657 |#4|)) (-784) (-784) (-576))) (-15 -4235 (|#4| |#4|)) (-15 -1796 ((-112) (-657 |#4|))) (-15 -1796 ((-112) (-657 (-972 |#1|))))) (-13 (-317) (-148)) (-13 (-862) (-626 (-1198))) (-806) (-969 |#1| |#3| |#2|)) (T -944)) -((-1796 (*1 *2 *3) (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-112)) (-5 *1 (-944 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-112)) (-5 *1 (-944 *4 *5 *6 *7)))) (-4235 (*1 *2 *2) (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1198)))) (-4 *5 (-806)) (-5 *1 (-944 *3 *4 *5 *2)) (-4 *2 (-969 *3 *5 *4)))) (-2658 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576))))) (-5 *4 (-702 *12)) (-5 *5 (-657 (-419 (-972 *9)))) (-5 *6 (-657 (-657 *12))) (-5 *7 (-784)) (-5 *8 (-576)) (-4 *9 (-13 (-317) (-148))) (-4 *12 (-969 *9 *11 *10)) (-4 *10 (-13 (-862) (-626 (-1198)))) (-4 *11 (-806)) (-5 *2 (-2 (|:| |eqzro| (-657 *12)) (|:| |neqzro| (-657 *12)) (|:| |wcond| (-657 (-972 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *9)))) (|:| -1985 (-657 (-1289 (-419 (-972 *9))))))))) (-5 *1 (-944 *9 *10 *11 *12)))) (-3360 (*1 *2 *2 *3) (-12 (-5 *2 (-702 *7)) (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *1 (-944 *4 *5 *6 *7)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *8)) (-5 *4 (-784)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-657 (-2 (|:| |det| *8) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (-5 *1 (-944 *5 *6 *7 *8)))) (-2740 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-657 *8))) (-5 *3 (-657 *8)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-112)) (-5 *1 (-944 *5 *6 *7 *8)))) (-1707 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-657 (-657 (-576)))) (-5 *1 (-944 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-969 *4 *6 *5)))) (-1824 (*1 *2 *2) (-12 (-5 *2 (-657 (-657 *6))) (-4 *6 (-969 *3 *5 *4)) (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1198)))) (-4 *5 (-806)) (-5 *1 (-944 *3 *4 *5 *6)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| -1542 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| *7) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 *7))))) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-784)) (-5 *1 (-944 *4 *5 *6 *7)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| -1542 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| *7) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 *7))))) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-784)) (-5 *1 (-944 *4 *5 *6 *7)))) (-2258 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-657 *3)) (-5 *1 (-944 *4 *5 *6 *3)) (-4 *3 (-969 *4 *6 *5)))) (-2556 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3750 (-702 (-419 (-972 *4)))) (|:| |vec| (-657 (-419 (-972 *4)))) (|:| -1542 (-784)) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576))))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-2 (|:| |partsol| (-1289 (-419 (-972 *4)))) (|:| -1985 (-657 (-1289 (-419 (-972 *4))))))) (-5 *1 (-944 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5)))) (-2686 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1289 (-419 (-972 *4)))) (|:| -1985 (-657 (-1289 (-419 (-972 *4))))))) (-5 *3 (-657 *7)) (-4 *4 (-13 (-317) (-148))) (-4 *7 (-969 *4 *6 *5)) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *1 (-944 *4 *5 *6 *7)))) (-1514 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *8)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-657 (-2 (|:| -1542 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| *8) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 *8))))) (-5 *1 (-944 *5 *6 *7 *8)) (-5 *4 (-784)))) (-2761 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-4 *7 (-969 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-657 *7)) (|:| |n0| (-657 *7)))) (-5 *1 (-944 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-972 *4)) (-4 *4 (-13 (-317) (-148))) (-4 *2 (-969 *4 *6 *5)) (-5 *1 (-944 *4 *5 *6 *2)) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-657 (-1198))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-657 (-419 (-972 *4)))) (-5 *1 (-944 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-657 (-419 (-972 *4)))) (-5 *1 (-944 *4 *5 *6 *7)))) (-2252 (*1 *2 *3) (-12 (-5 *3 (-702 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-702 (-419 (-972 *4)))) (-5 *1 (-944 *4 *5 *6 *7)))) (-2252 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-419 (-972 *4))) (-5 *1 (-944 *4 *5 *6 *3)) (-4 *3 (-969 *4 *6 *5)))) (-3842 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-702 *11)) (-5 *4 (-657 (-419 (-972 *8)))) (-5 *5 (-784)) (-5 *6 (-1180)) (-4 *8 (-13 (-317) (-148))) (-4 *11 (-969 *8 *10 *9)) (-4 *9 (-13 (-862) (-626 (-1198)))) (-4 *10 (-806)) (-5 *2 (-2 (|:| |rgl| (-657 (-2 (|:| |eqzro| (-657 *11)) (|:| |neqzro| (-657 *11)) (|:| |wcond| (-657 (-972 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *8)))) (|:| -1985 (-657 (-1289 (-419 (-972 *8)))))))))) (|:| |rgsz| (-576)))) (-5 *1 (-944 *8 *9 *10 *11)) (-5 *7 (-576)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-657 (-2 (|:| |eqzro| (-657 *7)) (|:| |neqzro| (-657 *7)) (|:| |wcond| (-657 (-972 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *4)))) (|:| -1985 (-657 (-1289 (-419 (-972 *4)))))))))) (-5 *1 (-944 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5)))) (-3975 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-2 (|:| |eqzro| (-657 *8)) (|:| |neqzro| (-657 *8)) (|:| |wcond| (-657 (-972 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *5)))) (|:| -1985 (-657 (-1289 (-419 (-972 *5)))))))))) (-5 *4 (-1180)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-969 *5 *7 *6)) (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-576)) (-5 *1 (-944 *5 *6 *7 *8)))) (-4314 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-702 *9)) (-5 *4 (-941)) (-5 *5 (-1180)) (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1198)))) (-4 *8 (-806)) (-5 *2 (-576)) (-5 *1 (-944 *6 *7 *8 *9)))) (-4314 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-702 *10)) (-5 *4 (-657 (-1198))) (-5 *5 (-941)) (-5 *6 (-1180)) (-4 *10 (-969 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-862) (-626 (-1198)))) (-4 *9 (-806)) (-5 *2 (-576)) (-5 *1 (-944 *7 *8 *9 *10)))) (-4314 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-702 *10)) (-5 *4 (-657 *10)) (-5 *5 (-941)) (-5 *6 (-1180)) (-4 *10 (-969 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-862) (-626 (-1198)))) (-4 *9 (-806)) (-5 *2 (-576)) (-5 *1 (-944 *7 *8 *9 *10)))) (-4314 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *8)) (-5 *4 (-1180)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-576)) (-5 *1 (-944 *5 *6 *7 *8)))) (-4314 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-702 *9)) (-5 *4 (-657 (-1198))) (-5 *5 (-1180)) (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1198)))) (-4 *8 (-806)) (-5 *2 (-576)) (-5 *1 (-944 *6 *7 *8 *9)))) (-4314 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-702 *9)) (-5 *4 (-657 *9)) (-5 *5 (-1180)) (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1198)))) (-4 *8 (-806)) (-5 *2 (-576)) (-5 *1 (-944 *6 *7 *8 *9)))) (-4314 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *8)) (-5 *4 (-941)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-657 (-2 (|:| |eqzro| (-657 *8)) (|:| |neqzro| (-657 *8)) (|:| |wcond| (-657 (-972 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *5)))) (|:| -1985 (-657 (-1289 (-419 (-972 *5)))))))))) (-5 *1 (-944 *5 *6 *7 *8)))) (-4314 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-702 *9)) (-5 *4 (-657 (-1198))) (-5 *5 (-941)) (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1198)))) (-4 *8 (-806)) (-5 *2 (-657 (-2 (|:| |eqzro| (-657 *9)) (|:| |neqzro| (-657 *9)) (|:| |wcond| (-657 (-972 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *6)))) (|:| -1985 (-657 (-1289 (-419 (-972 *6)))))))))) (-5 *1 (-944 *6 *7 *8 *9)))) (-4314 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-702 *9)) (-5 *5 (-941)) (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1198)))) (-4 *8 (-806)) (-5 *2 (-657 (-2 (|:| |eqzro| (-657 *9)) (|:| |neqzro| (-657 *9)) (|:| |wcond| (-657 (-972 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *6)))) (|:| -1985 (-657 (-1289 (-419 (-972 *6)))))))))) (-5 *1 (-944 *6 *7 *8 *9)) (-5 *4 (-657 *9)))) (-4314 (*1 *2 *3) (-12 (-5 *3 (-702 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-657 (-2 (|:| |eqzro| (-657 *7)) (|:| |neqzro| (-657 *7)) (|:| |wcond| (-657 (-972 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *4)))) (|:| -1985 (-657 (-1289 (-419 (-972 *4)))))))))) (-5 *1 (-944 *4 *5 *6 *7)))) (-4314 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *8)) (-5 *4 (-657 (-1198))) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-657 (-2 (|:| |eqzro| (-657 *8)) (|:| |neqzro| (-657 *8)) (|:| |wcond| (-657 (-972 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *5)))) (|:| -1985 (-657 (-1289 (-419 (-972 *5)))))))))) (-5 *1 (-944 *5 *6 *7 *8)))) (-4314 (*1 *2 *3 *4) (-12 (-5 *3 (-702 *8)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-657 (-2 (|:| |eqzro| (-657 *8)) (|:| |neqzro| (-657 *8)) (|:| |wcond| (-657 (-972 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 *5)))) (|:| -1985 (-657 (-1289 (-419 (-972 *5)))))))))) (-5 *1 (-944 *5 *6 *7 *8)) (-5 *4 (-657 *8))))) -(-10 -7 (-15 -4314 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 |#4|))) (-15 -4314 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 (-1198)))) (-15 -4314 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|))) (-15 -4314 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 |#4|) (-941))) (-15 -4314 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-657 (-1198)) (-941))) (-15 -4314 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-702 |#4|) (-941))) (-15 -4314 ((-576) (-702 |#4|) (-657 |#4|) (-1180))) (-15 -4314 ((-576) (-702 |#4|) (-657 (-1198)) (-1180))) (-15 -4314 ((-576) (-702 |#4|) (-1180))) (-15 -4314 ((-576) (-702 |#4|) (-657 |#4|) (-941) (-1180))) (-15 -4314 ((-576) (-702 |#4|) (-657 (-1198)) (-941) (-1180))) (-15 -4314 ((-576) (-702 |#4|) (-941) (-1180))) (-15 -3975 ((-576) (-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-1180))) (-15 -3527 ((-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|))))))))) (-1180))) (-15 -3842 ((-2 (|:| |rgl| (-657 (-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|)))))))))) (|:| |rgsz| (-576))) (-702 |#4|) (-657 (-419 (-972 |#1|))) (-784) (-1180) (-576))) (-15 -2252 ((-419 (-972 |#1|)) |#4|)) (-15 -2252 ((-702 (-419 (-972 |#1|))) (-702 |#4|))) (-15 -2252 ((-657 (-419 (-972 |#1|))) (-657 |#4|))) (-15 -1454 ((-657 (-419 (-972 |#1|))) (-657 (-1198)))) (-15 -2989 (|#4| (-972 |#1|))) (-15 -2761 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-657 |#4|)) (|:| |n0| (-657 |#4|))) (-657 |#4|) (-657 |#4|))) (-15 -1514 ((-657 (-2 (|:| -1542 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 |#4|)))) (-702 |#4|) (-784))) (-15 -2686 ((-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|)))))) (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|)))))) (-657 |#4|))) (-15 -2556 ((-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|)))))) (-2 (|:| -3750 (-702 (-419 (-972 |#1|)))) (|:| |vec| (-657 (-419 (-972 |#1|)))) (|:| -1542 (-784)) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (-15 -2258 ((-657 |#4|) |#4|)) (-15 -2950 ((-784) (-657 (-2 (|:| -1542 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 |#4|)))))) (-15 -3104 ((-784) (-657 (-2 (|:| -1542 (-784)) (|:| |eqns| (-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))))) (|:| |fgb| (-657 |#4|)))))) (-15 -1824 ((-657 (-657 |#4|)) (-657 (-657 |#4|)))) (-15 -1707 ((-657 (-657 (-576))) (-576) (-576))) (-15 -2740 ((-112) (-657 |#4|) (-657 (-657 |#4|)))) (-15 -3531 ((-657 (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576))))) (-702 |#4|) (-784))) (-15 -3360 ((-702 |#4|) (-702 |#4|) (-657 |#4|))) (-15 -2658 ((-2 (|:| |eqzro| (-657 |#4|)) (|:| |neqzro| (-657 |#4|)) (|:| |wcond| (-657 (-972 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1289 (-419 (-972 |#1|)))) (|:| -1985 (-657 (-1289 (-419 (-972 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576)))) (-702 |#4|) (-657 (-419 (-972 |#1|))) (-657 (-657 |#4|)) (-784) (-784) (-576))) (-15 -4235 (|#4| |#4|)) (-15 -1796 ((-112) (-657 |#4|))) (-15 -1796 ((-112) (-657 (-972 |#1|))))) -((-1845 (((-947) |#1| (-1198)) 17) (((-947) |#1| (-1198) (-1116 (-227))) 21)) (-3561 (((-947) |#1| |#1| (-1198) (-1116 (-227))) 19) (((-947) |#1| (-1198) (-1116 (-227))) 15))) -(((-945 |#1|) (-10 -7 (-15 -3561 ((-947) |#1| (-1198) (-1116 (-227)))) (-15 -3561 ((-947) |#1| |#1| (-1198) (-1116 (-227)))) (-15 -1845 ((-947) |#1| (-1198) (-1116 (-227)))) (-15 -1845 ((-947) |#1| (-1198)))) (-626 (-548))) (T -945)) -((-1845 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-5 *2 (-947)) (-5 *1 (-945 *3)) (-4 *3 (-626 (-548))))) (-1845 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1198)) (-5 *5 (-1116 (-227))) (-5 *2 (-947)) (-5 *1 (-945 *3)) (-4 *3 (-626 (-548))))) (-3561 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1198)) (-5 *5 (-1116 (-227))) (-5 *2 (-947)) (-5 *1 (-945 *3)) (-4 *3 (-626 (-548))))) (-3561 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1198)) (-5 *5 (-1116 (-227))) (-5 *2 (-947)) (-5 *1 (-945 *3)) (-4 *3 (-626 (-548)))))) -(-10 -7 (-15 -3561 ((-947) |#1| (-1198) (-1116 (-227)))) (-15 -3561 ((-947) |#1| |#1| (-1198) (-1116 (-227)))) (-15 -1845 ((-947) |#1| (-1198) (-1116 (-227)))) (-15 -1845 ((-947) |#1| (-1198)))) -((-2495 (($ $ (-1116 (-227)) (-1116 (-227)) (-1116 (-227))) 121)) (-2136 (((-1116 (-227)) $) 64)) (-2124 (((-1116 (-227)) $) 63)) (-2109 (((-1116 (-227)) $) 62)) (-3985 (((-657 (-657 (-227))) $) 69)) (-3506 (((-1116 (-227)) $) 65)) (-2344 (((-576) (-576)) 57)) (-2681 (((-576) (-576)) 52)) (-3340 (((-576) (-576)) 55)) (-2305 (((-112) (-112)) 59)) (-3811 (((-576)) 56)) (-4189 (($ $ (-1116 (-227))) 124) (($ $) 125)) (-1781 (($ (-1 (-963 (-227)) (-227)) (-1116 (-227))) 131) (($ (-1 (-963 (-227)) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227))) 132)) (-3561 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227))) 135) (($ $ (-1116 (-227))) 127)) (-4389 (((-576)) 60)) (-1813 (((-576)) 50)) (-4014 (((-576)) 53)) (-3591 (((-657 (-657 (-963 (-227)))) $) 151)) (-4068 (((-112) (-112)) 61)) (-3501 (((-877) $) 149)) (-1739 (((-112)) 58))) -(((-946) (-13 (-996) (-10 -8 (-15 -1781 ($ (-1 (-963 (-227)) (-227)) (-1116 (-227)))) (-15 -1781 ($ (-1 (-963 (-227)) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -3561 ($ $ (-1116 (-227)))) (-15 -2495 ($ $ (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -4189 ($ $ (-1116 (-227)))) (-15 -4189 ($ $)) (-15 -3506 ((-1116 (-227)) $)) (-15 -3985 ((-657 (-657 (-227))) $)) (-15 -1813 ((-576))) (-15 -2681 ((-576) (-576))) (-15 -4014 ((-576))) (-15 -3340 ((-576) (-576))) (-15 -3811 ((-576))) (-15 -2344 ((-576) (-576))) (-15 -1739 ((-112))) (-15 -2305 ((-112) (-112))) (-15 -4389 ((-576))) (-15 -4068 ((-112) (-112)))))) (T -946)) -((-1781 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-963 (-227)) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-946)))) (-1781 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-963 (-227)) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-946)))) (-3561 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-946)))) (-3561 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-946)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-946)))) (-2495 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-946)))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-946)))) (-4189 (*1 *1 *1) (-5 *1 (-946))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-946)))) (-3985 (*1 *2 *1) (-12 (-5 *2 (-657 (-657 (-227)))) (-5 *1 (-946)))) (-1813 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-2681 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-4014 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-3340 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-3811 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-2344 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-1739 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946)))) (-4389 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946)))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) -(-13 (-996) (-10 -8 (-15 -1781 ($ (-1 (-963 (-227)) (-227)) (-1116 (-227)))) (-15 -1781 ($ (-1 (-963 (-227)) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -3561 ($ $ (-1116 (-227)))) (-15 -2495 ($ $ (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -4189 ($ $ (-1116 (-227)))) (-15 -4189 ($ $)) (-15 -3506 ((-1116 (-227)) $)) (-15 -3985 ((-657 (-657 (-227))) $)) (-15 -1813 ((-576))) (-15 -2681 ((-576) (-576))) (-15 -4014 ((-576))) (-15 -3340 ((-576) (-576))) (-15 -3811 ((-576))) (-15 -2344 ((-576) (-576))) (-15 -1739 ((-112))) (-15 -2305 ((-112) (-112))) (-15 -4389 ((-576))) (-15 -4068 ((-112) (-112))))) -((-2495 (($ $ (-1116 (-227))) 122) (($ $ (-1116 (-227)) (-1116 (-227))) 123)) (-2124 (((-1116 (-227)) $) 73)) (-2109 (((-1116 (-227)) $) 72)) (-3506 (((-1116 (-227)) $) 74)) (-3802 (((-576) (-576)) 66)) (-4352 (((-576) (-576)) 61)) (-1655 (((-576) (-576)) 64)) (-4061 (((-112) (-112)) 68)) (-4043 (((-576)) 65)) (-4189 (($ $ (-1116 (-227))) 126) (($ $) 127)) (-1781 (($ (-1 (-963 (-227)) (-227)) (-1116 (-227))) 141) (($ (-1 (-963 (-227)) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227))) 142)) (-1845 (($ (-1 (-227) (-227)) (-1116 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-3561 (($ (-1 (-227) (-227)) (-1116 (-227))) 137) (($ (-1 (-227) (-227)) (-1116 (-227)) (-1116 (-227))) 138) (($ (-657 (-1 (-227) (-227))) (-1116 (-227))) 146) (($ (-657 (-1 (-227) (-227))) (-1116 (-227)) (-1116 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227))) 140) (($ $ (-1116 (-227))) 128)) (-3951 (((-112) $) 69)) (-3676 (((-576)) 70)) (-3425 (((-576)) 59)) (-2723 (((-576)) 62)) (-3591 (((-657 (-657 (-963 (-227)))) $) 35)) (-2081 (((-112) (-112)) 71)) (-3501 (((-877) $) 167)) (-2323 (((-112)) 67))) -(((-947) (-13 (-975) (-10 -8 (-15 -3561 ($ (-1 (-227) (-227)) (-1116 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -3561 ($ (-657 (-1 (-227) (-227))) (-1116 (-227)))) (-15 -3561 ($ (-657 (-1 (-227) (-227))) (-1116 (-227)) (-1116 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -1781 ($ (-1 (-963 (-227)) (-227)) (-1116 (-227)))) (-15 -1781 ($ (-1 (-963 (-227)) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -1845 ($ (-1 (-227) (-227)) (-1116 (-227)))) (-15 -1845 ($ (-1 (-227) (-227)))) (-15 -3561 ($ $ (-1116 (-227)))) (-15 -3951 ((-112) $)) (-15 -2495 ($ $ (-1116 (-227)))) (-15 -2495 ($ $ (-1116 (-227)) (-1116 (-227)))) (-15 -4189 ($ $ (-1116 (-227)))) (-15 -4189 ($ $)) (-15 -3506 ((-1116 (-227)) $)) (-15 -3425 ((-576))) (-15 -4352 ((-576) (-576))) (-15 -2723 ((-576))) (-15 -1655 ((-576) (-576))) (-15 -4043 ((-576))) (-15 -3802 ((-576) (-576))) (-15 -2323 ((-112))) (-15 -4061 ((-112) (-112))) (-15 -3676 ((-576))) (-15 -2081 ((-112) (-112)))))) (T -947)) -((-3561 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-947)))) (-3561 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-947)))) (-3561 (*1 *1 *2 *3) (-12 (-5 *2 (-657 (-1 (-227) (-227)))) (-5 *3 (-1116 (-227))) (-5 *1 (-947)))) (-3561 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-657 (-1 (-227) (-227)))) (-5 *3 (-1116 (-227))) (-5 *1 (-947)))) (-3561 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-947)))) (-3561 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-947)))) (-1781 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-963 (-227)) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-947)))) (-1781 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-963 (-227)) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-947)))) (-1845 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) (-5 *1 (-947)))) (-1845 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-947)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-947)))) (-2495 (*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947)))) (-2495 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947)))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947)))) (-4189 (*1 *1 *1) (-5 *1 (-947))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947)))) (-3425 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947)))) (-4352 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947)))) (-2723 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947)))) (-1655 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947)))) (-4043 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947)))) (-2323 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-947)))) (-4061 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-947)))) (-3676 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947)))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-947))))) -(-13 (-975) (-10 -8 (-15 -3561 ($ (-1 (-227) (-227)) (-1116 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -3561 ($ (-657 (-1 (-227) (-227))) (-1116 (-227)))) (-15 -3561 ($ (-657 (-1 (-227) (-227))) (-1116 (-227)) (-1116 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)))) (-15 -3561 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -1781 ($ (-1 (-963 (-227)) (-227)) (-1116 (-227)))) (-15 -1781 ($ (-1 (-963 (-227)) (-227)) (-1116 (-227)) (-1116 (-227)) (-1116 (-227)))) (-15 -1845 ($ (-1 (-227) (-227)) (-1116 (-227)))) (-15 -1845 ($ (-1 (-227) (-227)))) (-15 -3561 ($ $ (-1116 (-227)))) (-15 -3951 ((-112) $)) (-15 -2495 ($ $ (-1116 (-227)))) (-15 -2495 ($ $ (-1116 (-227)) (-1116 (-227)))) (-15 -4189 ($ $ (-1116 (-227)))) (-15 -4189 ($ $)) (-15 -3506 ((-1116 (-227)) $)) (-15 -3425 ((-576))) (-15 -4352 ((-576) (-576))) (-15 -2723 ((-576))) (-15 -1655 ((-576) (-576))) (-15 -4043 ((-576))) (-15 -3802 ((-576) (-576))) (-15 -2323 ((-112))) (-15 -4061 ((-112) (-112))) (-15 -3676 ((-576))) (-15 -2081 ((-112) (-112))))) -((-3097 (((-657 (-1116 (-227))) (-657 (-657 (-963 (-227))))) 34))) -(((-948) (-10 -7 (-15 -3097 ((-657 (-1116 (-227))) (-657 (-657 (-963 (-227)))))))) (T -948)) -((-3097 (*1 *2 *3) (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *2 (-657 (-1116 (-227)))) (-5 *1 (-948))))) -(-10 -7 (-15 -3097 ((-657 (-1116 (-227))) (-657 (-657 (-963 (-227))))))) -((-2251 ((|#2| |#2|) 28)) (-4161 ((|#2| |#2|) 29)) (-1509 ((|#2| |#2|) 27)) (-2759 ((|#2| |#2| (-518)) 26))) -(((-949 |#1| |#2|) (-10 -7 (-15 -2759 (|#2| |#2| (-518))) (-15 -1509 (|#2| |#2|)) (-15 -2251 (|#2| |#2|)) (-15 -4161 (|#2| |#2|))) (-1122) (-442 |#1|)) (T -949)) -((-4161 (*1 *2 *2) (-12 (-4 *3 (-1122)) (-5 *1 (-949 *3 *2)) (-4 *2 (-442 *3)))) (-2251 (*1 *2 *2) (-12 (-4 *3 (-1122)) (-5 *1 (-949 *3 *2)) (-4 *2 (-442 *3)))) (-1509 (*1 *2 *2) (-12 (-4 *3 (-1122)) (-5 *1 (-949 *3 *2)) (-4 *2 (-442 *3)))) (-2759 (*1 *2 *2 *3) (-12 (-5 *3 (-518)) (-4 *4 (-1122)) (-5 *1 (-949 *4 *2)) (-4 *2 (-442 *4))))) -(-10 -7 (-15 -2759 (|#2| |#2| (-518))) (-15 -1509 (|#2| |#2|)) (-15 -2251 (|#2| |#2|)) (-15 -4161 (|#2| |#2|))) -((-2251 (((-326 (-576)) (-1198)) 16)) (-4161 (((-326 (-576)) (-1198)) 14)) (-1509 (((-326 (-576)) (-1198)) 12)) (-2759 (((-326 (-576)) (-1198) (-518)) 19))) -(((-950) (-10 -7 (-15 -2759 ((-326 (-576)) (-1198) (-518))) (-15 -1509 ((-326 (-576)) (-1198))) (-15 -2251 ((-326 (-576)) (-1198))) (-15 -4161 ((-326 (-576)) (-1198))))) (T -950)) -((-4161 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-326 (-576))) (-5 *1 (-950)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-326 (-576))) (-5 *1 (-950)))) (-1509 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-326 (-576))) (-5 *1 (-950)))) (-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) (-5 *1 (-950))))) -(-10 -7 (-15 -2759 ((-326 (-576)) (-1198) (-518))) (-15 -1509 ((-326 (-576)) (-1198))) (-15 -2251 ((-326 (-576)) (-1198))) (-15 -4161 ((-326 (-576)) (-1198)))) -((-3200 (((-905 |#1| |#3|) |#2| (-908 |#1|) (-905 |#1| |#3|)) 25)) (-2844 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-951 |#1| |#2| |#3|) (-10 -7 (-15 -2844 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3200 ((-905 |#1| |#3|) |#2| (-908 |#1|) (-905 |#1| |#3|)))) (-1122) (-902 |#1|) (-13 (-1122) (-1060 |#2|))) (T -951)) -((-3200 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-905 *5 *6)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) (-4 *6 (-13 (-1122) (-1060 *3))) (-4 *3 (-902 *5)) (-5 *1 (-951 *5 *3 *6)))) (-2844 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1122) (-1060 *5))) (-4 *5 (-902 *4)) (-4 *4 (-1122)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-951 *4 *5 *6))))) -(-10 -7 (-15 -2844 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3200 ((-905 |#1| |#3|) |#2| (-908 |#1|) (-905 |#1| |#3|)))) -((-3200 (((-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|)) 30))) -(((-952 |#1| |#2| |#3|) (-10 -7 (-15 -3200 ((-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|)))) (-1122) (-13 (-568) (-902 |#1|)) (-13 (-442 |#2|) (-626 (-908 |#1|)) (-902 |#1|) (-1060 (-624 $)))) (T -952)) -((-3200 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-905 *5 *3)) (-4 *5 (-1122)) (-4 *3 (-13 (-442 *6) (-626 *4) (-902 *5) (-1060 (-624 $)))) (-5 *4 (-908 *5)) (-4 *6 (-13 (-568) (-902 *5))) (-5 *1 (-952 *5 *6 *3))))) -(-10 -7 (-15 -3200 ((-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|)))) -((-3200 (((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|)) 13))) -(((-953 |#1|) (-10 -7 (-15 -3200 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|)))) (-557)) (T -953)) -((-3200 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-905 (-576) *3)) (-5 *4 (-908 (-576))) (-4 *3 (-557)) (-5 *1 (-953 *3))))) -(-10 -7 (-15 -3200 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|)))) -((-3200 (((-905 |#1| |#2|) (-624 |#2|) (-908 |#1|) (-905 |#1| |#2|)) 57))) -(((-954 |#1| |#2|) (-10 -7 (-15 -3200 ((-905 |#1| |#2|) (-624 |#2|) (-908 |#1|) (-905 |#1| |#2|)))) (-1122) (-13 (-1122) (-1060 (-624 $)) (-626 (-908 |#1|)) (-902 |#1|))) (T -954)) -((-3200 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-905 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1122)) (-4 *6 (-13 (-1122) (-1060 (-624 $)) (-626 *4) (-902 *5))) (-5 *4 (-908 *5)) (-5 *1 (-954 *5 *6))))) -(-10 -7 (-15 -3200 ((-905 |#1| |#2|) (-624 |#2|) (-908 |#1|) (-905 |#1| |#2|)))) -((-3200 (((-901 |#1| |#2| |#3|) |#3| (-908 |#1|) (-901 |#1| |#2| |#3|)) 17))) -(((-955 |#1| |#2| |#3|) (-10 -7 (-15 -3200 ((-901 |#1| |#2| |#3|) |#3| (-908 |#1|) (-901 |#1| |#2| |#3|)))) (-1122) (-902 |#1|) (-679 |#2|)) (T -955)) -((-3200 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-901 *5 *6 *3)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) (-4 *6 (-902 *5)) (-4 *3 (-679 *6)) (-5 *1 (-955 *5 *6 *3))))) -(-10 -7 (-15 -3200 ((-901 |#1| |#2| |#3|) |#3| (-908 |#1|) (-901 |#1| |#2| |#3|)))) -((-3200 (((-905 |#1| |#5|) |#5| (-908 |#1|) (-905 |#1| |#5|)) 17 (|has| |#3| (-902 |#1|))) (((-905 |#1| |#5|) |#5| (-908 |#1|) (-905 |#1| |#5|) (-1 (-905 |#1| |#5|) |#3| (-908 |#1|) (-905 |#1| |#5|))) 16))) -(((-956 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3200 ((-905 |#1| |#5|) |#5| (-908 |#1|) (-905 |#1| |#5|) (-1 (-905 |#1| |#5|) |#3| (-908 |#1|) (-905 |#1| |#5|)))) (IF (|has| |#3| (-902 |#1|)) (-15 -3200 ((-905 |#1| |#5|) |#5| (-908 |#1|) (-905 |#1| |#5|))) |%noBranch|)) (-1122) (-806) (-862) (-13 (-1071) (-902 |#1|)) (-13 (-969 |#4| |#2| |#3|) (-626 (-908 |#1|)))) (T -956)) -((-3200 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-905 *5 *3)) (-4 *5 (-1122)) (-4 *3 (-13 (-969 *8 *6 *7) (-626 *4))) (-5 *4 (-908 *5)) (-4 *7 (-902 *5)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-13 (-1071) (-902 *5))) (-5 *1 (-956 *5 *6 *7 *8 *3)))) (-3200 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-905 *6 *3) *8 (-908 *6) (-905 *6 *3))) (-4 *8 (-862)) (-5 *2 (-905 *6 *3)) (-5 *4 (-908 *6)) (-4 *6 (-1122)) (-4 *3 (-13 (-969 *9 *7 *8) (-626 *4))) (-4 *7 (-806)) (-4 *9 (-13 (-1071) (-902 *6))) (-5 *1 (-956 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -3200 ((-905 |#1| |#5|) |#5| (-908 |#1|) (-905 |#1| |#5|) (-1 (-905 |#1| |#5|) |#3| (-908 |#1|) (-905 |#1| |#5|)))) (IF (|has| |#3| (-902 |#1|)) (-15 -3200 ((-905 |#1| |#5|) |#5| (-908 |#1|) (-905 |#1| |#5|))) |%noBranch|)) -((-4237 ((|#2| |#2| (-657 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-957 |#1| |#2| |#3|) (-10 -7 (-15 -4237 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4237 (|#2| |#2| (-657 (-1 (-112) |#3|))))) (-1122) (-442 |#1|) (-1239)) (T -957)) -((-4237 (*1 *2 *2 *3) (-12 (-5 *3 (-657 (-1 (-112) *5))) (-4 *5 (-1239)) (-4 *4 (-1122)) (-5 *1 (-957 *4 *2 *5)) (-4 *2 (-442 *4)))) (-4237 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1239)) (-4 *4 (-1122)) (-5 *1 (-957 *4 *2 *5)) (-4 *2 (-442 *4))))) -(-10 -7 (-15 -4237 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4237 (|#2| |#2| (-657 (-1 (-112) |#3|))))) -((-4237 (((-326 (-576)) (-1198) (-657 (-1 (-112) |#1|))) 18) (((-326 (-576)) (-1198) (-1 (-112) |#1|)) 15))) -(((-958 |#1|) (-10 -7 (-15 -4237 ((-326 (-576)) (-1198) (-1 (-112) |#1|))) (-15 -4237 ((-326 (-576)) (-1198) (-657 (-1 (-112) |#1|))))) (-1239)) (T -958)) -((-4237 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-657 (-1 (-112) *5))) (-4 *5 (-1239)) (-5 *2 (-326 (-576))) (-5 *1 (-958 *5)))) (-4237 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1239)) (-5 *2 (-326 (-576))) (-5 *1 (-958 *5))))) -(-10 -7 (-15 -4237 ((-326 (-576)) (-1198) (-1 (-112) |#1|))) (-15 -4237 ((-326 (-576)) (-1198) (-657 (-1 (-112) |#1|))))) -((-3200 (((-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|)) 25))) -(((-959 |#1| |#2| |#3|) (-10 -7 (-15 -3200 ((-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|)))) (-1122) (-13 (-568) (-902 |#1|) (-626 (-908 |#1|))) (-1014 |#2|)) (T -959)) -((-3200 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-905 *5 *3)) (-4 *5 (-1122)) (-4 *3 (-1014 *6)) (-4 *6 (-13 (-568) (-902 *5) (-626 *4))) (-5 *4 (-908 *5)) (-5 *1 (-959 *5 *6 *3))))) -(-10 -7 (-15 -3200 ((-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|)))) -((-3200 (((-905 |#1| (-1198)) (-1198) (-908 |#1|) (-905 |#1| (-1198))) 18))) -(((-960 |#1|) (-10 -7 (-15 -3200 ((-905 |#1| (-1198)) (-1198) (-908 |#1|) (-905 |#1| (-1198))))) (-1122)) (T -960)) -((-3200 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-905 *5 (-1198))) (-5 *3 (-1198)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) (-5 *1 (-960 *5))))) -(-10 -7 (-15 -3200 ((-905 |#1| (-1198)) (-1198) (-908 |#1|) (-905 |#1| (-1198))))) -((-2782 (((-905 |#1| |#3|) (-657 |#3|) (-657 (-908 |#1|)) (-905 |#1| |#3|) (-1 (-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|))) 34)) (-3200 (((-905 |#1| |#3|) (-657 |#3|) (-657 (-908 |#1|)) (-1 |#3| (-657 |#3|)) (-905 |#1| |#3|) (-1 (-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|))) 33))) -(((-961 |#1| |#2| |#3|) (-10 -7 (-15 -3200 ((-905 |#1| |#3|) (-657 |#3|) (-657 (-908 |#1|)) (-1 |#3| (-657 |#3|)) (-905 |#1| |#3|) (-1 (-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|)))) (-15 -2782 ((-905 |#1| |#3|) (-657 |#3|) (-657 (-908 |#1|)) (-905 |#1| |#3|) (-1 (-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|))))) (-1122) (-1071) (-13 (-1071) (-626 (-908 |#1|)) (-1060 |#2|))) (T -961)) -((-2782 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 (-908 *6))) (-5 *5 (-1 (-905 *6 *8) *8 (-908 *6) (-905 *6 *8))) (-4 *6 (-1122)) (-4 *8 (-13 (-1071) (-626 (-908 *6)) (-1060 *7))) (-5 *2 (-905 *6 *8)) (-4 *7 (-1071)) (-5 *1 (-961 *6 *7 *8)))) (-3200 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-657 (-908 *7))) (-5 *5 (-1 *9 (-657 *9))) (-5 *6 (-1 (-905 *7 *9) *9 (-908 *7) (-905 *7 *9))) (-4 *7 (-1122)) (-4 *9 (-13 (-1071) (-626 (-908 *7)) (-1060 *8))) (-5 *2 (-905 *7 *9)) (-5 *3 (-657 *9)) (-4 *8 (-1071)) (-5 *1 (-961 *7 *8 *9))))) -(-10 -7 (-15 -3200 ((-905 |#1| |#3|) (-657 |#3|) (-657 (-908 |#1|)) (-1 |#3| (-657 |#3|)) (-905 |#1| |#3|) (-1 (-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|)))) (-15 -2782 ((-905 |#1| |#3|) (-657 |#3|) (-657 (-908 |#1|)) (-905 |#1| |#3|) (-1 (-905 |#1| |#3|) |#3| (-908 |#1|) (-905 |#1| |#3|))))) -((-1565 (((-1194 (-419 (-576))) (-576)) 79)) (-1507 (((-1194 (-576)) (-576)) 82)) (-3120 (((-1194 (-576)) (-576)) 76)) (-2596 (((-576) (-1194 (-576))) 72)) (-2497 (((-1194 (-419 (-576))) (-576)) 65)) (-4207 (((-1194 (-576)) (-576)) 49)) (-1576 (((-1194 (-576)) (-576)) 84)) (-1519 (((-1194 (-576)) (-576)) 83)) (-2598 (((-1194 (-419 (-576))) (-576)) 67))) -(((-962) (-10 -7 (-15 -2598 ((-1194 (-419 (-576))) (-576))) (-15 -1519 ((-1194 (-576)) (-576))) (-15 -1576 ((-1194 (-576)) (-576))) (-15 -4207 ((-1194 (-576)) (-576))) (-15 -2497 ((-1194 (-419 (-576))) (-576))) (-15 -2596 ((-576) (-1194 (-576)))) (-15 -3120 ((-1194 (-576)) (-576))) (-15 -1507 ((-1194 (-576)) (-576))) (-15 -1565 ((-1194 (-419 (-576))) (-576))))) (T -962)) -((-1565 (*1 *2 *3) (-12 (-5 *2 (-1194 (-419 (-576)))) (-5 *1 (-962)) (-5 *3 (-576)))) (-1507 (*1 *2 *3) (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576)))) (-3120 (*1 *2 *3) (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576)))) (-2596 (*1 *2 *3) (-12 (-5 *3 (-1194 (-576))) (-5 *2 (-576)) (-5 *1 (-962)))) (-2497 (*1 *2 *3) (-12 (-5 *2 (-1194 (-419 (-576)))) (-5 *1 (-962)) (-5 *3 (-576)))) (-4207 (*1 *2 *3) (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576)))) (-1576 (*1 *2 *3) (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576)))) (-1519 (*1 *2 *3) (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576)))) (-2598 (*1 *2 *3) (-12 (-5 *2 (-1194 (-419 (-576)))) (-5 *1 (-962)) (-5 *3 (-576))))) -(-10 -7 (-15 -2598 ((-1194 (-419 (-576))) (-576))) (-15 -1519 ((-1194 (-576)) (-576))) (-15 -1576 ((-1194 (-576)) (-576))) (-15 -4207 ((-1194 (-576)) (-576))) (-15 -2497 ((-1194 (-419 (-576))) (-576))) (-15 -2596 ((-576) (-1194 (-576)))) (-15 -3120 ((-1194 (-576)) (-576))) (-15 -1507 ((-1194 (-576)) (-576))) (-15 -1565 ((-1194 (-419 (-576))) (-576)))) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3765 (($ (-784)) NIL (|has| |#1| (-23)))) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-1568 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3363 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862))))) (-1850 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-4359 (($) NIL T CONST)) (-3606 (($ $) NIL (|has| $ (-6 -4467)))) (-3768 (($ $) NIL)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3895 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-2158 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) NIL)) (-3582 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122)))) (-3624 (($ (-657 |#1|)) 9)) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2425 (((-702 |#1|) $ $) NIL (|has| |#1| (-1071)))) (-4109 (($ (-784) |#1|) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) NIL (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| |#1| (-862)))) (-3073 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2272 (((-576) $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| |#1| (-862)))) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2742 ((|#1| $) NIL (-12 (|has| |#1| (-1024)) (|has| |#1| (-1071))))) (-4261 (((-112) $ (-784)) NIL)) (-3358 ((|#1| $) NIL (-12 (|has| |#1| (-1024)) (|has| |#1| (-1071))))) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2271 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3510 ((|#1| $) NIL (|has| (-576) (-862)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1987 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-3926 (($ $ (-657 |#1|)) 25)) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 18) (($ $ (-1256 (-576))) NIL)) (-1374 ((|#1| $ $) NIL (|has| |#1| (-1071)))) (-3863 (((-941) $) 13)) (-3409 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-3461 (($ $ $) 23)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2114 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| |#1| (-626 (-548)))) (($ (-657 |#1|)) 14)) (-3511 (($ (-657 |#1|)) NIL)) (-1674 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-657 $)) NIL)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2973 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3022 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3012 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-739))) (($ $ |#1|) NIL (|has| |#1| (-739)))) (-3440 (((-784) $) 11 (|has| $ (-6 -4466))))) -(((-963 |#1|) (-1002 |#1|) (-1071)) (T -963)) -NIL -(-1002 |#1|) -((-2135 (((-493 |#1| |#2|) (-972 |#2|)) 22)) (-3777 (((-253 |#1| |#2|) (-972 |#2|)) 35)) (-1695 (((-972 |#2|) (-493 |#1| |#2|)) 27)) (-3194 (((-253 |#1| |#2|) (-493 |#1| |#2|)) 57)) (-2289 (((-972 |#2|) (-253 |#1| |#2|)) 32)) (-3542 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 48))) -(((-964 |#1| |#2|) (-10 -7 (-15 -3542 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -3194 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -2135 ((-493 |#1| |#2|) (-972 |#2|))) (-15 -1695 ((-972 |#2|) (-493 |#1| |#2|))) (-15 -2289 ((-972 |#2|) (-253 |#1| |#2|))) (-15 -3777 ((-253 |#1| |#2|) (-972 |#2|)))) (-657 (-1198)) (-1071)) (T -964)) -((-3777 (*1 *2 *3) (-12 (-5 *3 (-972 *5)) (-4 *5 (-1071)) (-5 *2 (-253 *4 *5)) (-5 *1 (-964 *4 *5)) (-14 *4 (-657 (-1198))))) (-2289 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-1071)) (-5 *2 (-972 *5)) (-5 *1 (-964 *4 *5)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-1071)) (-5 *2 (-972 *5)) (-5 *1 (-964 *4 *5)))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-972 *5)) (-4 *5 (-1071)) (-5 *2 (-493 *4 *5)) (-5 *1 (-964 *4 *5)) (-14 *4 (-657 (-1198))))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-1071)) (-5 *2 (-253 *4 *5)) (-5 *1 (-964 *4 *5)))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-1071)) (-5 *2 (-493 *4 *5)) (-5 *1 (-964 *4 *5))))) -(-10 -7 (-15 -3542 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -3194 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -2135 ((-493 |#1| |#2|) (-972 |#2|))) (-15 -1695 ((-972 |#2|) (-493 |#1| |#2|))) (-15 -2289 ((-972 |#2|) (-253 |#1| |#2|))) (-15 -3777 ((-253 |#1| |#2|) (-972 |#2|)))) -((-1809 (((-657 |#2|) |#2| |#2|) 10)) (-3808 (((-784) (-657 |#1|)) 48 (|has| |#1| (-861)))) (-2660 (((-657 |#2|) |#2|) 11)) (-2290 (((-784) (-657 |#1|) (-576) (-576)) 52 (|has| |#1| (-861)))) (-2001 ((|#1| |#2|) 38 (|has| |#1| (-861))))) -(((-965 |#1| |#2|) (-10 -7 (-15 -1809 ((-657 |#2|) |#2| |#2|)) (-15 -2660 ((-657 |#2|) |#2|)) (IF (|has| |#1| (-861)) (PROGN (-15 -2001 (|#1| |#2|)) (-15 -3808 ((-784) (-657 |#1|))) (-15 -2290 ((-784) (-657 |#1|) (-576) (-576)))) |%noBranch|)) (-374) (-1265 |#1|)) (T -965)) -((-2290 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-657 *5)) (-5 *4 (-576)) (-4 *5 (-861)) (-4 *5 (-374)) (-5 *2 (-784)) (-5 *1 (-965 *5 *6)) (-4 *6 (-1265 *5)))) (-3808 (*1 *2 *3) (-12 (-5 *3 (-657 *4)) (-4 *4 (-861)) (-4 *4 (-374)) (-5 *2 (-784)) (-5 *1 (-965 *4 *5)) (-4 *5 (-1265 *4)))) (-2001 (*1 *2 *3) (-12 (-4 *2 (-374)) (-4 *2 (-861)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1265 *2)))) (-2660 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-657 *3)) (-5 *1 (-965 *4 *3)) (-4 *3 (-1265 *4)))) (-1809 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-657 *3)) (-5 *1 (-965 *4 *3)) (-4 *3 (-1265 *4))))) -(-10 -7 (-15 -1809 ((-657 |#2|) |#2| |#2|)) (-15 -2660 ((-657 |#2|) |#2|)) (IF (|has| |#1| (-861)) (PROGN (-15 -2001 (|#1| |#2|)) (-15 -3808 ((-784) (-657 |#1|))) (-15 -2290 ((-784) (-657 |#1|) (-576) (-576)))) |%noBranch|)) -((-4083 (((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)) 19))) -(((-966 |#1| |#2|) (-10 -7 (-15 -4083 ((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)))) (-1071) (-1071)) (T -966)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-972 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-5 *2 (-972 *6)) (-5 *1 (-966 *5 *6))))) -(-10 -7 (-15 -4083 ((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)))) -((-1849 (((-1262 |#1| (-972 |#2|)) (-972 |#2|) (-1285 |#1|)) 18))) -(((-967 |#1| |#2|) (-10 -7 (-15 -1849 ((-1262 |#1| (-972 |#2|)) (-972 |#2|) (-1285 |#1|)))) (-1198) (-1071)) (T -967)) -((-1849 (*1 *2 *3 *4) (-12 (-5 *4 (-1285 *5)) (-14 *5 (-1198)) (-4 *6 (-1071)) (-5 *2 (-1262 *5 (-972 *6))) (-5 *1 (-967 *5 *6)) (-5 *3 (-972 *6))))) -(-10 -7 (-15 -1849 ((-1262 |#1| (-972 |#2|)) (-972 |#2|) (-1285 |#1|)))) -((-1775 (((-784) $) 88) (((-784) $ (-657 |#4|)) 93)) (-2638 (($ $) 203)) (-4402 (((-430 $) $) 195)) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 141)) (-1624 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2884 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) 73)) (-3203 (($ $ $ |#4|) 95)) (-3306 (((-702 (-576)) (-702 $)) NIL) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) 131) (((-702 |#2|) (-702 $)) 121)) (-3813 (($ $) 210) (($ $ |#4|) 213)) (-2199 (((-657 $) $) 77)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 229) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 222)) (-3724 (((-657 $) $) 34)) (-2003 (($ |#2| |#3|) NIL) (($ $ |#4| (-784)) NIL) (($ $ (-657 |#4|) (-657 (-784))) 71)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ |#4|) 192)) (-1392 (((-3 (-657 $) "failed") $) 52)) (-2974 (((-3 (-657 $) "failed") $) 39)) (-2999 (((-3 (-2 (|:| |var| |#4|) (|:| -1801 (-784))) "failed") $) 57)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 134)) (-2861 (((-430 (-1194 $)) (-1194 $)) 147)) (-2988 (((-430 (-1194 $)) (-1194 $)) 145)) (-1885 (((-430 $) $) 165)) (-3236 (($ $ (-657 (-304 $))) 24) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-657 |#4|) (-657 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-657 |#4|) (-657 $)) NIL)) (-1701 (($ $ |#4|) 97)) (-4148 (((-908 (-390)) $) 243) (((-908 (-576)) $) 236) (((-548) $) 251)) (-1450 ((|#2| $) NIL) (($ $ |#4|) 205)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) 184)) (-2313 ((|#2| $ |#3|) NIL) (($ $ |#4| (-784)) 62) (($ $ (-657 |#4|) (-657 (-784))) 69)) (-3096 (((-3 $ "failed") $) 186)) (-2046 (((-112) $ $) 216))) -(((-968 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2226 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|))) (-15 -4402 ((-430 |#1|) |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -3096 ((-3 |#1| "failed") |#1|)) (-15 -4148 ((-548) |#1|)) (-15 -4148 ((-908 (-576)) |#1|)) (-15 -4148 ((-908 (-390)) |#1|)) (-15 -3200 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|))) (-15 -3200 ((-905 (-390) |#1|) |#1| (-908 (-390)) (-905 (-390) |#1|))) (-15 -1885 ((-430 |#1|) |#1|)) (-15 -2988 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -2861 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -1359 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|))) (-15 -3610 ((-3 (-1289 |#1|) "failed") (-702 |#1|))) (-15 -3813 (|#1| |#1| |#4|)) (-15 -1450 (|#1| |#1| |#4|)) (-15 -1701 (|#1| |#1| |#4|)) (-15 -3203 (|#1| |#1| |#1| |#4|)) (-15 -2199 ((-657 |#1|) |#1|)) (-15 -1775 ((-784) |#1| (-657 |#4|))) (-15 -1775 ((-784) |#1|)) (-15 -2999 ((-3 (-2 (|:| |var| |#4|) (|:| -1801 (-784))) "failed") |#1|)) (-15 -1392 ((-3 (-657 |#1|) "failed") |#1|)) (-15 -2974 ((-3 (-657 |#1|) "failed") |#1|)) (-15 -2003 (|#1| |#1| (-657 |#4|) (-657 (-784)))) (-15 -2003 (|#1| |#1| |#4| (-784))) (-15 -3317 ((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1| |#4|)) (-15 -3724 ((-657 |#1|) |#1|)) (-15 -2313 (|#1| |#1| (-657 |#4|) (-657 (-784)))) (-15 -2313 (|#1| |#1| |#4| (-784))) (-15 -3306 ((-702 |#2|) (-702 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-702 (-576)) (-702 |#1|))) (-15 -1624 ((-3 |#4| "failed") |#1|)) (-15 -2884 (|#4| |#1|)) (-15 -3236 (|#1| |#1| (-657 |#4|) (-657 |#1|))) (-15 -3236 (|#1| |#1| |#4| |#1|)) (-15 -3236 (|#1| |#1| (-657 |#4|) (-657 |#2|))) (-15 -3236 (|#1| |#1| |#4| |#2|)) (-15 -3236 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3236 (|#1| |#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| (-304 |#1|))) (-15 -3236 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -2003 (|#1| |#2| |#3|)) (-15 -2313 (|#2| |#1| |#3|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -1450 (|#2| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -2046 ((-112) |#1| |#1|))) (-969 |#2| |#3| |#4|) (-1071) (-806) (-862)) (T -968)) -NIL -(-10 -8 (-15 -2226 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|))) (-15 -4402 ((-430 |#1|) |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -3096 ((-3 |#1| "failed") |#1|)) (-15 -4148 ((-548) |#1|)) (-15 -4148 ((-908 (-576)) |#1|)) (-15 -4148 ((-908 (-390)) |#1|)) (-15 -3200 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|))) (-15 -3200 ((-905 (-390) |#1|) |#1| (-908 (-390)) (-905 (-390) |#1|))) (-15 -1885 ((-430 |#1|) |#1|)) (-15 -2988 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -2861 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -1359 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|))) (-15 -3610 ((-3 (-1289 |#1|) "failed") (-702 |#1|))) (-15 -3813 (|#1| |#1| |#4|)) (-15 -1450 (|#1| |#1| |#4|)) (-15 -1701 (|#1| |#1| |#4|)) (-15 -3203 (|#1| |#1| |#1| |#4|)) (-15 -2199 ((-657 |#1|) |#1|)) (-15 -1775 ((-784) |#1| (-657 |#4|))) (-15 -1775 ((-784) |#1|)) (-15 -2999 ((-3 (-2 (|:| |var| |#4|) (|:| -1801 (-784))) "failed") |#1|)) (-15 -1392 ((-3 (-657 |#1|) "failed") |#1|)) (-15 -2974 ((-3 (-657 |#1|) "failed") |#1|)) (-15 -2003 (|#1| |#1| (-657 |#4|) (-657 (-784)))) (-15 -2003 (|#1| |#1| |#4| (-784))) (-15 -3317 ((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1| |#4|)) (-15 -3724 ((-657 |#1|) |#1|)) (-15 -2313 (|#1| |#1| (-657 |#4|) (-657 (-784)))) (-15 -2313 (|#1| |#1| |#4| (-784))) (-15 -3306 ((-702 |#2|) (-702 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-702 (-576)) (-702 |#1|))) (-15 -1624 ((-3 |#4| "failed") |#1|)) (-15 -2884 (|#4| |#1|)) (-15 -3236 (|#1| |#1| (-657 |#4|) (-657 |#1|))) (-15 -3236 (|#1| |#1| |#4| |#1|)) (-15 -3236 (|#1| |#1| (-657 |#4|) (-657 |#2|))) (-15 -3236 (|#1| |#1| |#4| |#2|)) (-15 -3236 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3236 (|#1| |#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| (-304 |#1|))) (-15 -3236 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -2003 (|#1| |#2| |#3|)) (-15 -2313 (|#2| |#1| |#3|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -1450 (|#2| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -2046 ((-112) |#1| |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2029 (((-657 |#3|) $) 113)) (-1849 (((-1194 $) $ |#3|) 128) (((-1194 |#1|) $) 127)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-3325 (($ $) 91 (|has| |#1| (-568)))) (-4306 (((-112) $) 93 (|has| |#1| (-568)))) (-1775 (((-784) $) 115) (((-784) $ (-657 |#3|)) 114)) (-2721 (((-3 $ "failed") $ $) 20)) (-4250 (((-430 (-1194 $)) (-1194 $)) 103 (|has| |#1| (-929)))) (-2638 (($ $) 101 (|has| |#1| (-464)))) (-4402 (((-430 $) $) 100 (|has| |#1| (-464)))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 106 (|has| |#1| (-929)))) (-4359 (($) 18 T CONST)) (-1624 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1060 (-576)))) (((-3 |#3| "failed") $) 143)) (-2884 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1060 (-576)))) ((|#3| $) 144)) (-3203 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-2212 (($ $) 161)) (-3306 (((-702 (-576)) (-702 $)) 139 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 138 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 137) (((-702 |#1|) (-702 $)) 136)) (-3843 (((-3 $ "failed") $) 37)) (-3813 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-2199 (((-657 $) $) 112)) (-4257 (((-112) $) 99 (|has| |#1| (-929)))) (-3124 (($ $ |#1| |#2| $) 179)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 87 (-12 (|has| |#3| (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 86 (-12 (|has| |#3| (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-4094 (((-112) $) 35)) (-4334 (((-784) $) 176)) (-2014 (($ (-1194 |#1|) |#3|) 120) (($ (-1194 $) |#3|) 119)) (-3724 (((-657 $) $) 129)) (-3157 (((-112) $) 159)) (-2003 (($ |#1| |#2|) 160) (($ $ |#3| (-784)) 122) (($ $ (-657 |#3|) (-657 (-784))) 121)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ |#3|) 123)) (-4436 ((|#2| $) 177) (((-784) $ |#3|) 125) (((-657 (-784)) $ (-657 |#3|)) 124)) (-4056 (($ (-1 |#2| |#2|) $) 178)) (-4083 (($ (-1 |#1| |#1|) $) 158)) (-2353 (((-3 |#3| "failed") $) 126)) (-3101 (((-702 (-576)) (-1289 $)) 141 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 140 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 135) (((-702 |#1|) (-1289 $)) 134)) (-2174 (($ $) 156)) (-2186 ((|#1| $) 155)) (-3402 (($ (-657 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2342 (((-1180) $) 10)) (-1392 (((-3 (-657 $) "failed") $) 117)) (-2974 (((-3 (-657 $) "failed") $) 118)) (-2999 (((-3 (-2 (|:| |var| |#3|) (|:| -1801 (-784))) "failed") $) 116)) (-1471 (((-1142) $) 11)) (-2146 (((-112) $) 173)) (-2160 ((|#1| $) 174)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 98 (|has| |#1| (-464)))) (-3436 (($ (-657 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-2861 (((-430 (-1194 $)) (-1194 $)) 105 (|has| |#1| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) 104 (|has| |#1| (-929)))) (-1885 (((-430 $) $) 102 (|has| |#1| (-929)))) (-3418 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3236 (($ $ (-657 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-657 $) (-657 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-657 |#3|) (-657 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-657 |#3|) (-657 $)) 145)) (-1701 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2815 (($ $ (-657 |#3|) (-657 (-784))) 44) (($ $ |#3| (-784)) 43) (($ $ (-657 |#3|)) 42) (($ $ |#3|) 40)) (-1770 ((|#2| $) 157) (((-784) $ |#3|) 133) (((-657 (-784)) $ (-657 |#3|)) 132)) (-4148 (((-908 (-390)) $) 85 (-12 (|has| |#3| (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) 84 (-12 (|has| |#3| (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1450 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) 107 (-2724 (|has| $ (-146)) (|has| |#1| (-929))))) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ $) 88 (|has| |#1| (-568))) (($ (-419 (-576))) 81 (-2802 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-4037 (((-657 |#1|) $) 175)) (-2313 ((|#1| $ |#2|) 162) (($ $ |#3| (-784)) 131) (($ $ (-657 |#3|) (-657 (-784))) 130)) (-3096 (((-3 $ "failed") $) 82 (-2802 (-2724 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-1960 (((-784)) 32 T CONST)) (-2702 (($ $ $ (-784)) 180 (|has| |#1| (-174)))) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-657 |#3|) (-657 (-784))) 47) (($ $ |#3| (-784)) 46) (($ $ (-657 |#3|)) 45) (($ $ |#3|) 41)) (-2933 (((-112) $ $) 8)) (-3034 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) -(((-969 |#1| |#2| |#3|) (-141) (-1071) (-806) (-862)) (T -969)) -((-3813 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-464)))) (-1770 (*1 *2 *1 *3) (-12 (-4 *1 (-969 *4 *5 *3)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) (-5 *2 (-784)))) (-1770 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *6)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 (-784))))) (-2313 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-969 *4 *5 *2)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *2 (-862)))) (-2313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 *6)) (-5 *3 (-657 (-784))) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)))) (-3724 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-969 *3 *4 *5)))) (-1849 (*1 *2 *1 *3) (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) (-5 *2 (-1194 *1)) (-4 *1 (-969 *4 *5 *3)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-1194 *3)))) (-2353 (*1 *2 *1) (|partial| -12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)))) (-4436 (*1 *2 *1 *3) (-12 (-4 *1 (-969 *4 *5 *3)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) (-5 *2 (-784)))) (-4436 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *6)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 (-784))))) (-3317 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-969 *4 *5 *3)))) (-2003 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-969 *4 *5 *2)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *2 (-862)))) (-2003 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 *6)) (-5 *3 (-657 (-784))) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)))) (-2014 (*1 *1 *2 *3) (-12 (-5 *2 (-1194 *4)) (-4 *4 (-1071)) (-4 *1 (-969 *4 *5 *3)) (-4 *5 (-806)) (-4 *3 (-862)))) (-2014 (*1 *1 *2 *3) (-12 (-5 *2 (-1194 *1)) (-4 *1 (-969 *4 *5 *3)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)))) (-2974 (*1 *2 *1) (|partial| -12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-969 *3 *4 *5)))) (-1392 (*1 *2 *1) (|partial| -12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-969 *3 *4 *5)))) (-2999 (*1 *2 *1) (|partial| -12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-2 (|:| |var| *5) (|:| -1801 (-784)))))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-784)))) (-1775 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *6)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-784)))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *5)))) (-2199 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-969 *3 *4 *5)))) (-3203 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)) (-4 *3 (-174)))) (-1701 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)) (-4 *3 (-174)))) (-1450 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)) (-4 *3 (-464)))) (-3813 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)) (-4 *3 (-464)))) (-2638 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-464)))) (-4402 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-430 *1)) (-4 *1 (-969 *3 *4 *5))))) -(-13 (-918 |t#3|) (-336 |t#1| |t#2|) (-319 $) (-526 |t#3| |t#1|) (-526 |t#3| $) (-1060 |t#3|) (-388 |t#1|) (-10 -8 (-15 -1770 ((-784) $ |t#3|)) (-15 -1770 ((-657 (-784)) $ (-657 |t#3|))) (-15 -2313 ($ $ |t#3| (-784))) (-15 -2313 ($ $ (-657 |t#3|) (-657 (-784)))) (-15 -3724 ((-657 $) $)) (-15 -1849 ((-1194 $) $ |t#3|)) (-15 -1849 ((-1194 |t#1|) $)) (-15 -2353 ((-3 |t#3| "failed") $)) (-15 -4436 ((-784) $ |t#3|)) (-15 -4436 ((-657 (-784)) $ (-657 |t#3|))) (-15 -3317 ((-2 (|:| -2335 $) (|:| -3644 $)) $ $ |t#3|)) (-15 -2003 ($ $ |t#3| (-784))) (-15 -2003 ($ $ (-657 |t#3|) (-657 (-784)))) (-15 -2014 ($ (-1194 |t#1|) |t#3|)) (-15 -2014 ($ (-1194 $) |t#3|)) (-15 -2974 ((-3 (-657 $) "failed") $)) (-15 -1392 ((-3 (-657 $) "failed") $)) (-15 -2999 ((-3 (-2 (|:| |var| |t#3|) (|:| -1801 (-784))) "failed") $)) (-15 -1775 ((-784) $)) (-15 -1775 ((-784) $ (-657 |t#3|))) (-15 -2029 ((-657 |t#3|) $)) (-15 -2199 ((-657 $) $)) (IF (|has| |t#1| (-626 (-548))) (IF (|has| |t#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-908 (-576)))) (IF (|has| |t#3| (-626 (-908 (-576)))) (-6 (-626 (-908 (-576)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-908 (-390)))) (IF (|has| |t#3| (-626 (-908 (-390)))) (-6 (-626 (-908 (-390)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-902 (-576))) (IF (|has| |t#3| (-902 (-576))) (-6 (-902 (-576))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-902 (-390))) (IF (|has| |t#3| (-902 (-390))) (-6 (-902 (-390))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -3203 ($ $ $ |t#3|)) (-15 -1701 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-6 (-464)) (-15 -1450 ($ $ |t#3|)) (-15 -3813 ($ $)) (-15 -3813 ($ $ |t#3|)) (-15 -4402 ((-430 $) $)) (-15 -2638 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4464)) (-6 -4464) |%noBranch|) (IF (|has| |t#1| (-929)) (-6 (-929)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2802 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-877)) . T) ((-174) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-908 (-390))) -12 (|has| |#1| (-626 (-908 (-390)))) (|has| |#3| (-626 (-908 (-390))))) ((-626 (-908 (-576))) -12 (|has| |#1| (-626 (-908 (-576)))) (|has| |#3| (-626 (-908 (-576))))) ((-300) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2802 (|has| |#1| (-929)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-659 #0#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) |has| |#1| (-38 (-419 (-576)))) ((-661 #1=(-576)) |has| |#1| (-652 (-576))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-652 #1#) |has| |#1| (-652 (-576))) ((-652 |#1|) . T) ((-730 #0#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-739) . T) ((-912 $ |#3|) . T) ((-918 |#3|) . T) ((-920 |#3|) . T) ((-902 (-390)) -12 (|has| |#1| (-902 (-390))) (|has| |#3| (-902 (-390)))) ((-902 (-576)) -12 (|has| |#1| (-902 (-576))) (|has| |#3| (-902 (-576)))) ((-929) |has| |#1| (-929)) ((-1060 (-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1060 |#3|) . T) ((-1073 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1078 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) |has| |#1| (-929))) -((-2029 (((-657 |#2|) |#5|) 40)) (-1849 (((-1194 |#5|) |#5| |#2| (-1194 |#5|)) 23) (((-419 (-1194 |#5|)) |#5| |#2|) 16)) (-2014 ((|#5| (-419 (-1194 |#5|)) |#2|) 30)) (-2353 (((-3 |#2| "failed") |#5|) 71)) (-1392 (((-3 (-657 |#5|) "failed") |#5|) 65)) (-3559 (((-3 (-2 (|:| |val| |#5|) (|:| -1801 (-576))) "failed") |#5|) 53)) (-2974 (((-3 (-657 |#5|) "failed") |#5|) 67)) (-2999 (((-3 (-2 (|:| |var| |#2|) (|:| -1801 (-576))) "failed") |#5|) 57))) -(((-970 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2029 ((-657 |#2|) |#5|)) (-15 -2353 ((-3 |#2| "failed") |#5|)) (-15 -1849 ((-419 (-1194 |#5|)) |#5| |#2|)) (-15 -2014 (|#5| (-419 (-1194 |#5|)) |#2|)) (-15 -1849 ((-1194 |#5|) |#5| |#2| (-1194 |#5|))) (-15 -2974 ((-3 (-657 |#5|) "failed") |#5|)) (-15 -1392 ((-3 (-657 |#5|) "failed") |#5|)) (-15 -2999 ((-3 (-2 (|:| |var| |#2|) (|:| -1801 (-576))) "failed") |#5|)) (-15 -3559 ((-3 (-2 (|:| |val| |#5|) (|:| -1801 (-576))) "failed") |#5|))) (-806) (-862) (-1071) (-969 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -3501 ($ |#4|)) (-15 -1621 (|#4| $)) (-15 -1635 (|#4| $))))) (T -970)) -((-3559 (*1 *2 *3) (|partial| -12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1801 (-576)))) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))))) (-2999 (*1 *2 *3) (|partial| -12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1801 (-576)))) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))))) (-1392 (*1 *2 *3) (|partial| -12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-657 *3)) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))))) (-2974 (*1 *2 *3) (|partial| -12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-657 *3)) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))))) (-1849 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1194 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))) (-4 *7 (-969 *6 *5 *4)) (-4 *5 (-806)) (-4 *4 (-862)) (-4 *6 (-1071)) (-5 *1 (-970 *5 *4 *6 *7 *3)))) (-2014 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1194 *2))) (-4 *5 (-806)) (-4 *4 (-862)) (-4 *6 (-1071)) (-4 *2 (-13 (-374) (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))) (-5 *1 (-970 *5 *4 *6 *7 *2)) (-4 *7 (-969 *6 *5 *4)))) (-1849 (*1 *2 *3 *4) (-12 (-4 *5 (-806)) (-4 *4 (-862)) (-4 *6 (-1071)) (-4 *7 (-969 *6 *5 *4)) (-5 *2 (-419 (-1194 *3))) (-5 *1 (-970 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))))) (-2353 (*1 *2 *3) (|partial| -12 (-4 *4 (-806)) (-4 *5 (-1071)) (-4 *6 (-969 *5 *4 *2)) (-4 *2 (-862)) (-5 *1 (-970 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3501 ($ *6)) (-15 -1621 (*6 $)) (-15 -1635 (*6 $))))))) (-2029 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-657 *5)) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $)))))))) -(-10 -7 (-15 -2029 ((-657 |#2|) |#5|)) (-15 -2353 ((-3 |#2| "failed") |#5|)) (-15 -1849 ((-419 (-1194 |#5|)) |#5| |#2|)) (-15 -2014 (|#5| (-419 (-1194 |#5|)) |#2|)) (-15 -1849 ((-1194 |#5|) |#5| |#2| (-1194 |#5|))) (-15 -2974 ((-3 (-657 |#5|) "failed") |#5|)) (-15 -1392 ((-3 (-657 |#5|) "failed") |#5|)) (-15 -2999 ((-3 (-2 (|:| |var| |#2|) (|:| -1801 (-576))) "failed") |#5|)) (-15 -3559 ((-3 (-2 (|:| |val| |#5|) (|:| -1801 (-576))) "failed") |#5|))) -((-4083 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-971 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4083 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-806) (-862) (-1071) (-969 |#3| |#1| |#2|) (-13 (-1122) (-10 -8 (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-784)))))) (T -971)) -((-4083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-862)) (-4 *8 (-1071)) (-4 *6 (-806)) (-4 *2 (-13 (-1122) (-10 -8 (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-784)))))) (-5 *1 (-971 *6 *7 *8 *5 *2)) (-4 *5 (-969 *8 *6 *7))))) -(-10 -7 (-15 -4083 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2029 (((-657 (-1198)) $) 16)) (-1849 (((-1194 $) $ (-1198)) 21) (((-1194 |#1|) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-1775 (((-784) $) NIL) (((-784) $ (-657 (-1198))) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2638 (($ $) NIL (|has| |#1| (-464)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) 8) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-1198) "failed") $) NIL)) (-2884 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-1198) $) NIL)) (-3203 (($ $ $ (-1198)) NIL (|has| |#1| (-174)))) (-2212 (($ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3813 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1198)) NIL (|has| |#1| (-464)))) (-2199 (((-657 $) $) NIL)) (-4257 (((-112) $) NIL (|has| |#1| (-929)))) (-3124 (($ $ |#1| (-543 (-1198)) $) NIL)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-1198) (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-1198) (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-4094 (((-112) $) NIL)) (-4334 (((-784) $) NIL)) (-2014 (($ (-1194 |#1|) (-1198)) NIL) (($ (-1194 $) (-1198)) NIL)) (-3724 (((-657 $) $) NIL)) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-543 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ (-1198)) NIL)) (-4436 (((-543 (-1198)) $) NIL) (((-784) $ (-1198)) NIL) (((-657 (-784)) $ (-657 (-1198))) NIL)) (-4056 (($ (-1 (-543 (-1198)) (-543 (-1198))) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-2353 (((-3 (-1198) "failed") $) 19)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2342 (((-1180) $) NIL)) (-1392 (((-3 (-657 $) "failed") $) NIL)) (-2974 (((-3 (-657 $) "failed") $) NIL)) (-2999 (((-3 (-2 (|:| |var| (-1198)) (|:| -1801 (-784))) "failed") $) NIL)) (-4190 (($ $ (-1198)) 29 (|has| |#1| (-38 (-419 (-576)))))) (-1471 (((-1142) $) NIL)) (-2146 (((-112) $) NIL)) (-2160 ((|#1| $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-464)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1885 (((-430 $) $) NIL (|has| |#1| (-929)))) (-3418 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3236 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-1198) |#1|) NIL) (($ $ (-657 (-1198)) (-657 |#1|)) NIL) (($ $ (-1198) $) NIL) (($ $ (-657 (-1198)) (-657 $)) NIL)) (-1701 (($ $ (-1198)) NIL (|has| |#1| (-174)))) (-2815 (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) NIL)) (-1770 (((-543 (-1198)) $) NIL) (((-784) $ (-1198)) NIL) (((-657 (-784)) $ (-657 (-1198))) NIL)) (-4148 (((-908 (-390)) $) NIL (-12 (|has| (-1198) (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-1198) (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-1198) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1450 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1198)) NIL (|has| |#1| (-464)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-3501 (((-877) $) 25) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1198)) 27) (($ (-419 (-576))) NIL (-2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-4037 (((-657 |#1|) $) NIL)) (-2313 ((|#1| $ (-543 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-1960 (((-784)) NIL T CONST)) (-2702 (($ $ $ (-784)) NIL (|has| |#1| (-174)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) NIL)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-972 |#1|) (-13 (-969 |#1| (-543 (-1198)) (-1198)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4190 ($ $ (-1198))) |%noBranch|))) (-1071)) (T -972)) -((-4190 (*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-972 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071))))) -(-13 (-969 |#1| (-543 (-1198)) (-1198)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4190 ($ $ (-1198))) |%noBranch|))) -((-4175 (((-2 (|:| -1801 (-784)) (|:| -1771 |#5|) (|:| |radicand| |#5|)) |#3| (-784)) 49)) (-1742 (((-2 (|:| -1801 (-784)) (|:| -1771 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-784)) 44)) (-1595 (((-2 (|:| -1801 (-784)) (|:| -1771 |#4|) (|:| |radicand| (-657 |#4|))) |#4| (-784)) 65)) (-4075 (((-2 (|:| -1801 (-784)) (|:| -1771 |#5|) (|:| |radicand| |#5|)) |#5| (-784)) 74 (|has| |#3| (-464))))) -(((-973 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4175 ((-2 (|:| -1801 (-784)) (|:| -1771 |#5|) (|:| |radicand| |#5|)) |#3| (-784))) (-15 -1742 ((-2 (|:| -1801 (-784)) (|:| -1771 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-784))) (IF (|has| |#3| (-464)) (-15 -4075 ((-2 (|:| -1801 (-784)) (|:| -1771 |#5|) (|:| |radicand| |#5|)) |#5| (-784))) |%noBranch|) (-15 -1595 ((-2 (|:| -1801 (-784)) (|:| -1771 |#4|) (|:| |radicand| (-657 |#4|))) |#4| (-784)))) (-806) (-862) (-568) (-969 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -3501 ($ |#4|)) (-15 -1621 (|#4| $)) (-15 -1635 (|#4| $))))) (T -973)) -((-1595 (*1 *2 *3 *4) (-12 (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *3 (-969 *7 *5 *6)) (-5 *2 (-2 (|:| -1801 (-784)) (|:| -1771 *3) (|:| |radicand| (-657 *3)))) (-5 *1 (-973 *5 *6 *7 *3 *8)) (-5 *4 (-784)) (-4 *8 (-13 (-374) (-10 -8 (-15 -3501 ($ *3)) (-15 -1621 (*3 $)) (-15 -1635 (*3 $))))))) (-4075 (*1 *2 *3 *4) (-12 (-4 *7 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *8 (-969 *7 *5 *6)) (-5 *2 (-2 (|:| -1801 (-784)) (|:| -1771 *3) (|:| |radicand| *3))) (-5 *1 (-973 *5 *6 *7 *8 *3)) (-5 *4 (-784)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3501 ($ *8)) (-15 -1621 (*8 $)) (-15 -1635 (*8 $))))))) (-1742 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *8 (-969 *7 *5 *6)) (-5 *2 (-2 (|:| -1801 (-784)) (|:| -1771 *9) (|:| |radicand| *9))) (-5 *1 (-973 *5 *6 *7 *8 *9)) (-5 *4 (-784)) (-4 *9 (-13 (-374) (-10 -8 (-15 -3501 ($ *8)) (-15 -1621 (*8 $)) (-15 -1635 (*8 $))))))) (-4175 (*1 *2 *3 *4) (-12 (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-568)) (-4 *7 (-969 *3 *5 *6)) (-5 *2 (-2 (|:| -1801 (-784)) (|:| -1771 *8) (|:| |radicand| *8))) (-5 *1 (-973 *5 *6 *3 *7 *8)) (-5 *4 (-784)) (-4 *8 (-13 (-374) (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $)))))))) -(-10 -7 (-15 -4175 ((-2 (|:| -1801 (-784)) (|:| -1771 |#5|) (|:| |radicand| |#5|)) |#3| (-784))) (-15 -1742 ((-2 (|:| -1801 (-784)) (|:| -1771 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-784))) (IF (|has| |#3| (-464)) (-15 -4075 ((-2 (|:| -1801 (-784)) (|:| -1771 |#5|) (|:| |radicand| |#5|)) |#5| (-784))) |%noBranch|) (-15 -1595 ((-2 (|:| -1801 (-784)) (|:| -1771 |#4|) (|:| |radicand| (-657 |#4|))) |#4| (-784)))) -((-3429 (((-112) $ $) NIL)) (-2763 (($ (-1142)) 8)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 15) (((-1142) $) 12)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 11))) -(((-974) (-13 (-1122) (-625 (-1142)) (-10 -8 (-15 -2763 ($ (-1142)))))) (T -974)) -((-2763 (*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-974))))) -(-13 (-1122) (-625 (-1142)) (-10 -8 (-15 -2763 ($ (-1142))))) -((-2124 (((-1116 (-227)) $) 8)) (-2109 (((-1116 (-227)) $) 9)) (-3591 (((-657 (-657 (-963 (-227)))) $) 10)) (-3501 (((-877) $) 6))) -(((-975) (-141)) (T -975)) -((-3591 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-657 (-657 (-963 (-227))))))) (-2109 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1116 (-227))))) (-2124 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1116 (-227)))))) -(-13 (-625 (-877)) (-10 -8 (-15 -3591 ((-657 (-657 (-963 (-227)))) $)) (-15 -2109 ((-1116 (-227)) $)) (-15 -2124 ((-1116 (-227)) $)))) -(((-625 (-877)) . T)) -((-3831 (((-3 (-702 |#1|) "failed") |#2| (-941)) 18))) -(((-976 |#1| |#2|) (-10 -7 (-15 -3831 ((-3 (-702 |#1|) "failed") |#2| (-941)))) (-568) (-669 |#1|)) (T -976)) -((-3831 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-941)) (-4 *5 (-568)) (-5 *2 (-702 *5)) (-5 *1 (-976 *5 *3)) (-4 *3 (-669 *5))))) -(-10 -7 (-15 -3831 ((-3 (-702 |#1|) "failed") |#2| (-941)))) -((-4417 (((-978 |#2|) (-1 |#2| |#1| |#2|) (-978 |#1|) |#2|) 16)) (-3622 ((|#2| (-1 |#2| |#1| |#2|) (-978 |#1|) |#2|) 18)) (-4083 (((-978 |#2|) (-1 |#2| |#1|) (-978 |#1|)) 13))) -(((-977 |#1| |#2|) (-10 -7 (-15 -4417 ((-978 |#2|) (-1 |#2| |#1| |#2|) (-978 |#1|) |#2|)) (-15 -3622 (|#2| (-1 |#2| |#1| |#2|) (-978 |#1|) |#2|)) (-15 -4083 ((-978 |#2|) (-1 |#2| |#1|) (-978 |#1|)))) (-1239) (-1239)) (T -977)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-978 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-978 *6)) (-5 *1 (-977 *5 *6)))) (-3622 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-978 *5)) (-4 *5 (-1239)) (-4 *2 (-1239)) (-5 *1 (-977 *5 *2)))) (-4417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-978 *6)) (-4 *6 (-1239)) (-4 *5 (-1239)) (-5 *2 (-978 *5)) (-5 *1 (-977 *6 *5))))) -(-10 -7 (-15 -4417 ((-978 |#2|) (-1 |#2| |#1| |#2|) (-978 |#1|) |#2|)) (-15 -3622 (|#2| (-1 |#2| |#1| |#2|) (-978 |#1|) |#2|)) (-15 -4083 ((-978 |#2|) (-1 |#2| |#1|) (-978 |#1|)))) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-1568 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3363 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862))))) (-1850 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 ((|#1| $ (-576) |#1|) 19 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-4359 (($) NIL T CONST)) (-3606 (($ $) NIL (|has| $ (-6 -4467)))) (-3768 (($ $) NIL)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3895 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-2158 ((|#1| $ (-576) |#1|) 18 (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) 16)) (-3582 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122)))) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-4109 (($ (-784) |#1|) 15)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) 11 (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| |#1| (-862)))) (-3073 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2272 (((-576) $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| |#1| (-862)))) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2271 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3510 ((|#1| $) NIL (|has| (-576) (-862)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1987 (($ $ |#1|) 20 (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) 12)) (-2835 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 17) (($ $ (-1256 (-576))) NIL)) (-3409 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2114 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1923 (($ $) 21)) (-4148 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 14)) (-1674 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-657 $)) NIL)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2973 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3440 (((-784) $) 8 (|has| $ (-6 -4466))))) -(((-978 |#1|) (-19 |#1|) (-1239)) (T -978)) +((-1392 ((|#2| (-660 |#1|) (-660 |#1|)) 28))) +(((-945 |#1| |#2|) (-10 -7 (-15 -1392 (|#2| (-660 |#1|) (-660 |#1|)))) (-375) (-1268 |#1|)) (T -945)) +((-1392 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-375)) (-4 *2 (-1268 *4)) (-5 *1 (-945 *4 *2))))) +(-10 -7 (-15 -1392 (|#2| (-660 |#1|) (-660 |#1|)))) +((-3895 (((-1197 |#2|) (-660 |#2|) (-660 |#2|)) 17) (((-1265 |#1| |#2|) (-1265 |#1| |#2|) (-660 |#2|) (-660 |#2|)) 13))) +(((-946 |#1| |#2|) (-10 -7 (-15 -3895 ((-1265 |#1| |#2|) (-1265 |#1| |#2|) (-660 |#2|) (-660 |#2|))) (-15 -3895 ((-1197 |#2|) (-660 |#2|) (-660 |#2|)))) (-1201) (-375)) (T -946)) +((-3895 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *5)) (-4 *5 (-375)) (-5 *2 (-1197 *5)) (-5 *1 (-946 *4 *5)) (-14 *4 (-1201)))) (-3895 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1265 *4 *5)) (-5 *3 (-660 *5)) (-14 *4 (-1201)) (-4 *5 (-375)) (-5 *1 (-946 *4 *5))))) +(-10 -7 (-15 -3895 ((-1265 |#1| |#2|) (-1265 |#1| |#2|) (-660 |#2|) (-660 |#2|))) (-15 -3895 ((-1197 |#2|) (-660 |#2|) (-660 |#2|)))) +((-1415 (((-577) (-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-1183)) 174)) (-1630 ((|#4| |#4|) 193)) (-1458 (((-660 (-420 (-975 |#1|))) (-660 (-1201))) 146)) (-1614 (((-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))) (-705 |#4|) (-660 (-420 (-975 |#1|))) (-660 (-660 |#4|)) (-787) (-787) (-577)) 88)) (-1504 (((-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|)))))) (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|)))))) (-660 |#4|)) 69)) (-1603 (((-705 |#4|) (-705 |#4|) (-660 |#4|)) 65)) (-1425 (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-1183)) 186)) (-1404 (((-577) (-705 |#4|) (-944) (-1183)) 166) (((-577) (-705 |#4|) (-660 (-1201)) (-944) (-1183)) 165) (((-577) (-705 |#4|) (-660 |#4|) (-944) (-1183)) 164) (((-577) (-705 |#4|) (-1183)) 154) (((-577) (-705 |#4|) (-660 (-1201)) (-1183)) 153) (((-577) (-705 |#4|) (-660 |#4|) (-1183)) 152) (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-944)) 151) (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 (-1201)) (-944)) 150) (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 |#4|) (-944)) 149) (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|)) 148) (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 (-1201))) 147) (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 |#4|)) 143)) (-1470 ((|#4| (-975 |#1|)) 80)) (-1581 (((-112) (-660 |#4|) (-660 (-660 |#4|))) 190)) (-1570 (((-660 (-660 (-577))) (-577) (-577)) 159)) (-1559 (((-660 (-660 |#4|)) (-660 (-660 |#4|))) 106)) (-1549 (((-787) (-660 (-2 (|:| -1545 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 |#4|))))) 100)) (-1537 (((-787) (-660 (-2 (|:| -1545 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 |#4|))))) 99)) (-1642 (((-112) (-660 (-975 |#1|))) 19) (((-112) (-660 |#4|)) 15)) (-1482 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-660 |#4|)) (|:| |n0| (-660 |#4|))) (-660 |#4|) (-660 |#4|)) 84)) (-1526 (((-660 |#4|) |#4|) 57)) (-1447 (((-660 (-420 (-975 |#1|))) (-660 |#4|)) 142) (((-705 (-420 (-975 |#1|))) (-705 |#4|)) 66) (((-420 (-975 |#1|)) |#4|) 139)) (-1435 (((-2 (|:| |rgl| (-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|)))))))))) (|:| |rgsz| (-577))) (-705 |#4|) (-660 (-420 (-975 |#1|))) (-787) (-1183) (-577)) 112)) (-1494 (((-660 (-2 (|:| -1545 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 |#4|)))) (-705 |#4|) (-787)) 98)) (-1592 (((-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577))))) (-705 |#4|) (-787)) 121)) (-1515 (((-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|)))))) (-2 (|:| -1881 (-705 (-420 (-975 |#1|)))) (|:| |vec| (-660 (-420 (-975 |#1|)))) (|:| -1545 (-787)) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577))))) 56))) +(((-947 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1404 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 |#4|))) (-15 -1404 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 (-1201)))) (-15 -1404 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|))) (-15 -1404 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 |#4|) (-944))) (-15 -1404 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 (-1201)) (-944))) (-15 -1404 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-944))) (-15 -1404 ((-577) (-705 |#4|) (-660 |#4|) (-1183))) (-15 -1404 ((-577) (-705 |#4|) (-660 (-1201)) (-1183))) (-15 -1404 ((-577) (-705 |#4|) (-1183))) (-15 -1404 ((-577) (-705 |#4|) (-660 |#4|) (-944) (-1183))) (-15 -1404 ((-577) (-705 |#4|) (-660 (-1201)) (-944) (-1183))) (-15 -1404 ((-577) (-705 |#4|) (-944) (-1183))) (-15 -1415 ((-577) (-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-1183))) (-15 -1425 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-1183))) (-15 -1435 ((-2 (|:| |rgl| (-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|)))))))))) (|:| |rgsz| (-577))) (-705 |#4|) (-660 (-420 (-975 |#1|))) (-787) (-1183) (-577))) (-15 -1447 ((-420 (-975 |#1|)) |#4|)) (-15 -1447 ((-705 (-420 (-975 |#1|))) (-705 |#4|))) (-15 -1447 ((-660 (-420 (-975 |#1|))) (-660 |#4|))) (-15 -1458 ((-660 (-420 (-975 |#1|))) (-660 (-1201)))) (-15 -1470 (|#4| (-975 |#1|))) (-15 -1482 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-660 |#4|)) (|:| |n0| (-660 |#4|))) (-660 |#4|) (-660 |#4|))) (-15 -1494 ((-660 (-2 (|:| -1545 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 |#4|)))) (-705 |#4|) (-787))) (-15 -1504 ((-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|)))))) (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|)))))) (-660 |#4|))) (-15 -1515 ((-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|)))))) (-2 (|:| -1881 (-705 (-420 (-975 |#1|)))) (|:| |vec| (-660 (-420 (-975 |#1|)))) (|:| -1545 (-787)) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (-15 -1526 ((-660 |#4|) |#4|)) (-15 -1537 ((-787) (-660 (-2 (|:| -1545 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 |#4|)))))) (-15 -1549 ((-787) (-660 (-2 (|:| -1545 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 |#4|)))))) (-15 -1559 ((-660 (-660 |#4|)) (-660 (-660 |#4|)))) (-15 -1570 ((-660 (-660 (-577))) (-577) (-577))) (-15 -1581 ((-112) (-660 |#4|) (-660 (-660 |#4|)))) (-15 -1592 ((-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577))))) (-705 |#4|) (-787))) (-15 -1603 ((-705 |#4|) (-705 |#4|) (-660 |#4|))) (-15 -1614 ((-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))) (-705 |#4|) (-660 (-420 (-975 |#1|))) (-660 (-660 |#4|)) (-787) (-787) (-577))) (-15 -1630 (|#4| |#4|)) (-15 -1642 ((-112) (-660 |#4|))) (-15 -1642 ((-112) (-660 (-975 |#1|))))) (-13 (-318) (-148)) (-13 (-865) (-627 (-1201))) (-809) (-972 |#1| |#3| |#2|)) (T -947)) +((-1642 (*1 *2 *3) (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-112)) (-5 *1 (-947 *4 *5 *6 *7)) (-4 *7 (-972 *4 *6 *5)))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-112)) (-5 *1 (-947 *4 *5 *6 *7)))) (-1630 (*1 *2 *2) (-12 (-4 *3 (-13 (-318) (-148))) (-4 *4 (-13 (-865) (-627 (-1201)))) (-4 *5 (-809)) (-5 *1 (-947 *3 *4 *5 *2)) (-4 *2 (-972 *3 *5 *4)))) (-1614 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577))))) (-5 *4 (-705 *12)) (-5 *5 (-660 (-420 (-975 *9)))) (-5 *6 (-660 (-660 *12))) (-5 *7 (-787)) (-5 *8 (-577)) (-4 *9 (-13 (-318) (-148))) (-4 *12 (-972 *9 *11 *10)) (-4 *10 (-13 (-865) (-627 (-1201)))) (-4 *11 (-809)) (-5 *2 (-2 (|:| |eqzro| (-660 *12)) (|:| |neqzro| (-660 *12)) (|:| |wcond| (-660 (-975 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *9)))) (|:| -4060 (-660 (-1292 (-420 (-975 *9))))))))) (-5 *1 (-947 *9 *10 *11 *12)))) (-1603 (*1 *2 *2 *3) (-12 (-5 *2 (-705 *7)) (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *1 (-947 *4 *5 *6 *7)))) (-1592 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *8)) (-5 *4 (-787)) (-4 *8 (-972 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-660 (-2 (|:| |det| *8) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (-5 *1 (-947 *5 *6 *7 *8)))) (-1581 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-660 *8))) (-5 *3 (-660 *8)) (-4 *8 (-972 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-112)) (-5 *1 (-947 *5 *6 *7 *8)))) (-1570 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-660 (-660 (-577)))) (-5 *1 (-947 *4 *5 *6 *7)) (-5 *3 (-577)) (-4 *7 (-972 *4 *6 *5)))) (-1559 (*1 *2 *2) (-12 (-5 *2 (-660 (-660 *6))) (-4 *6 (-972 *3 *5 *4)) (-4 *3 (-13 (-318) (-148))) (-4 *4 (-13 (-865) (-627 (-1201)))) (-4 *5 (-809)) (-5 *1 (-947 *3 *4 *5 *6)))) (-1549 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -1545 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| *7) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 *7))))) (-4 *7 (-972 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-787)) (-5 *1 (-947 *4 *5 *6 *7)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -1545 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| *7) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 *7))))) (-4 *7 (-972 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-787)) (-5 *1 (-947 *4 *5 *6 *7)))) (-1526 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-660 *3)) (-5 *1 (-947 *4 *5 *6 *3)) (-4 *3 (-972 *4 *6 *5)))) (-1515 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1881 (-705 (-420 (-975 *4)))) (|:| |vec| (-660 (-420 (-975 *4)))) (|:| -1545 (-787)) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577))))) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-2 (|:| |partsol| (-1292 (-420 (-975 *4)))) (|:| -4060 (-660 (-1292 (-420 (-975 *4))))))) (-5 *1 (-947 *4 *5 *6 *7)) (-4 *7 (-972 *4 *6 *5)))) (-1504 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1292 (-420 (-975 *4)))) (|:| -4060 (-660 (-1292 (-420 (-975 *4))))))) (-5 *3 (-660 *7)) (-4 *4 (-13 (-318) (-148))) (-4 *7 (-972 *4 *6 *5)) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *1 (-947 *4 *5 *6 *7)))) (-1494 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *8)) (-4 *8 (-972 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-660 (-2 (|:| -1545 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| *8) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 *8))))) (-5 *1 (-947 *5 *6 *7 *8)) (-5 *4 (-787)))) (-1482 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-4 *7 (-972 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-660 *7)) (|:| |n0| (-660 *7)))) (-5 *1 (-947 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-1470 (*1 *2 *3) (-12 (-5 *3 (-975 *4)) (-4 *4 (-13 (-318) (-148))) (-4 *2 (-972 *4 *6 *5)) (-5 *1 (-947 *4 *5 *6 *2)) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-660 (-1201))) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-660 (-420 (-975 *4)))) (-5 *1 (-947 *4 *5 *6 *7)) (-4 *7 (-972 *4 *6 *5)))) (-1447 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-660 (-420 (-975 *4)))) (-5 *1 (-947 *4 *5 *6 *7)))) (-1447 (*1 *2 *3) (-12 (-5 *3 (-705 *7)) (-4 *7 (-972 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-705 (-420 (-975 *4)))) (-5 *1 (-947 *4 *5 *6 *7)))) (-1447 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-420 (-975 *4))) (-5 *1 (-947 *4 *5 *6 *3)) (-4 *3 (-972 *4 *6 *5)))) (-1435 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-705 *11)) (-5 *4 (-660 (-420 (-975 *8)))) (-5 *5 (-787)) (-5 *6 (-1183)) (-4 *8 (-13 (-318) (-148))) (-4 *11 (-972 *8 *10 *9)) (-4 *9 (-13 (-865) (-627 (-1201)))) (-4 *10 (-809)) (-5 *2 (-2 (|:| |rgl| (-660 (-2 (|:| |eqzro| (-660 *11)) (|:| |neqzro| (-660 *11)) (|:| |wcond| (-660 (-975 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *8)))) (|:| -4060 (-660 (-1292 (-420 (-975 *8)))))))))) (|:| |rgsz| (-577)))) (-5 *1 (-947 *8 *9 *10 *11)) (-5 *7 (-577)))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *7)) (|:| |neqzro| (-660 *7)) (|:| |wcond| (-660 (-975 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *4)))) (|:| -4060 (-660 (-1292 (-420 (-975 *4)))))))))) (-5 *1 (-947 *4 *5 *6 *7)) (-4 *7 (-972 *4 *6 *5)))) (-1415 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) (|:| |wcond| (-660 (-975 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *5)))) (|:| -4060 (-660 (-1292 (-420 (-975 *5)))))))))) (-5 *4 (-1183)) (-4 *5 (-13 (-318) (-148))) (-4 *8 (-972 *5 *7 *6)) (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-577)) (-5 *1 (-947 *5 *6 *7 *8)))) (-1404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-705 *9)) (-5 *4 (-944)) (-5 *5 (-1183)) (-4 *9 (-972 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-865) (-627 (-1201)))) (-4 *8 (-809)) (-5 *2 (-577)) (-5 *1 (-947 *6 *7 *8 *9)))) (-1404 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-705 *10)) (-5 *4 (-660 (-1201))) (-5 *5 (-944)) (-5 *6 (-1183)) (-4 *10 (-972 *7 *9 *8)) (-4 *7 (-13 (-318) (-148))) (-4 *8 (-13 (-865) (-627 (-1201)))) (-4 *9 (-809)) (-5 *2 (-577)) (-5 *1 (-947 *7 *8 *9 *10)))) (-1404 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-705 *10)) (-5 *4 (-660 *10)) (-5 *5 (-944)) (-5 *6 (-1183)) (-4 *10 (-972 *7 *9 *8)) (-4 *7 (-13 (-318) (-148))) (-4 *8 (-13 (-865) (-627 (-1201)))) (-4 *9 (-809)) (-5 *2 (-577)) (-5 *1 (-947 *7 *8 *9 *10)))) (-1404 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *8)) (-5 *4 (-1183)) (-4 *8 (-972 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-577)) (-5 *1 (-947 *5 *6 *7 *8)))) (-1404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-705 *9)) (-5 *4 (-660 (-1201))) (-5 *5 (-1183)) (-4 *9 (-972 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-865) (-627 (-1201)))) (-4 *8 (-809)) (-5 *2 (-577)) (-5 *1 (-947 *6 *7 *8 *9)))) (-1404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-705 *9)) (-5 *4 (-660 *9)) (-5 *5 (-1183)) (-4 *9 (-972 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-865) (-627 (-1201)))) (-4 *8 (-809)) (-5 *2 (-577)) (-5 *1 (-947 *6 *7 *8 *9)))) (-1404 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *8)) (-5 *4 (-944)) (-4 *8 (-972 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) (|:| |wcond| (-660 (-975 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *5)))) (|:| -4060 (-660 (-1292 (-420 (-975 *5)))))))))) (-5 *1 (-947 *5 *6 *7 *8)))) (-1404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-705 *9)) (-5 *4 (-660 (-1201))) (-5 *5 (-944)) (-4 *9 (-972 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-865) (-627 (-1201)))) (-4 *8 (-809)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *9)) (|:| |neqzro| (-660 *9)) (|:| |wcond| (-660 (-975 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *6)))) (|:| -4060 (-660 (-1292 (-420 (-975 *6)))))))))) (-5 *1 (-947 *6 *7 *8 *9)))) (-1404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-705 *9)) (-5 *5 (-944)) (-4 *9 (-972 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-865) (-627 (-1201)))) (-4 *8 (-809)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *9)) (|:| |neqzro| (-660 *9)) (|:| |wcond| (-660 (-975 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *6)))) (|:| -4060 (-660 (-1292 (-420 (-975 *6)))))))))) (-5 *1 (-947 *6 *7 *8 *9)) (-5 *4 (-660 *9)))) (-1404 (*1 *2 *3) (-12 (-5 *3 (-705 *7)) (-4 *7 (-972 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *7)) (|:| |neqzro| (-660 *7)) (|:| |wcond| (-660 (-975 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *4)))) (|:| -4060 (-660 (-1292 (-420 (-975 *4)))))))))) (-5 *1 (-947 *4 *5 *6 *7)))) (-1404 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *8)) (-5 *4 (-660 (-1201))) (-4 *8 (-972 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) (|:| |wcond| (-660 (-975 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *5)))) (|:| -4060 (-660 (-1292 (-420 (-975 *5)))))))))) (-5 *1 (-947 *5 *6 *7 *8)))) (-1404 (*1 *2 *3 *4) (-12 (-5 *3 (-705 *8)) (-4 *8 (-972 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) (|:| |wcond| (-660 (-975 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 *5)))) (|:| -4060 (-660 (-1292 (-420 (-975 *5)))))))))) (-5 *1 (-947 *5 *6 *7 *8)) (-5 *4 (-660 *8))))) +(-10 -7 (-15 -1404 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 |#4|))) (-15 -1404 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 (-1201)))) (-15 -1404 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|))) (-15 -1404 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 |#4|) (-944))) (-15 -1404 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-660 (-1201)) (-944))) (-15 -1404 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-705 |#4|) (-944))) (-15 -1404 ((-577) (-705 |#4|) (-660 |#4|) (-1183))) (-15 -1404 ((-577) (-705 |#4|) (-660 (-1201)) (-1183))) (-15 -1404 ((-577) (-705 |#4|) (-1183))) (-15 -1404 ((-577) (-705 |#4|) (-660 |#4|) (-944) (-1183))) (-15 -1404 ((-577) (-705 |#4|) (-660 (-1201)) (-944) (-1183))) (-15 -1404 ((-577) (-705 |#4|) (-944) (-1183))) (-15 -1415 ((-577) (-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-1183))) (-15 -1425 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|))))))))) (-1183))) (-15 -1435 ((-2 (|:| |rgl| (-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|)))))))))) (|:| |rgsz| (-577))) (-705 |#4|) (-660 (-420 (-975 |#1|))) (-787) (-1183) (-577))) (-15 -1447 ((-420 (-975 |#1|)) |#4|)) (-15 -1447 ((-705 (-420 (-975 |#1|))) (-705 |#4|))) (-15 -1447 ((-660 (-420 (-975 |#1|))) (-660 |#4|))) (-15 -1458 ((-660 (-420 (-975 |#1|))) (-660 (-1201)))) (-15 -1470 (|#4| (-975 |#1|))) (-15 -1482 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-660 |#4|)) (|:| |n0| (-660 |#4|))) (-660 |#4|) (-660 |#4|))) (-15 -1494 ((-660 (-2 (|:| -1545 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 |#4|)))) (-705 |#4|) (-787))) (-15 -1504 ((-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|)))))) (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|)))))) (-660 |#4|))) (-15 -1515 ((-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|)))))) (-2 (|:| -1881 (-705 (-420 (-975 |#1|)))) (|:| |vec| (-660 (-420 (-975 |#1|)))) (|:| -1545 (-787)) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (-15 -1526 ((-660 |#4|) |#4|)) (-15 -1537 ((-787) (-660 (-2 (|:| -1545 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 |#4|)))))) (-15 -1549 ((-787) (-660 (-2 (|:| -1545 (-787)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))))) (|:| |fgb| (-660 |#4|)))))) (-15 -1559 ((-660 (-660 |#4|)) (-660 (-660 |#4|)))) (-15 -1570 ((-660 (-660 (-577))) (-577) (-577))) (-15 -1581 ((-112) (-660 |#4|) (-660 (-660 |#4|)))) (-15 -1592 ((-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577))))) (-705 |#4|) (-787))) (-15 -1603 ((-705 |#4|) (-705 |#4|) (-660 |#4|))) (-15 -1614 ((-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1292 (-420 (-975 |#1|)))) (|:| -4060 (-660 (-1292 (-420 (-975 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577)))) (-705 |#4|) (-660 (-420 (-975 |#1|))) (-660 (-660 |#4|)) (-787) (-787) (-577))) (-15 -1630 (|#4| |#4|)) (-15 -1642 ((-112) (-660 |#4|))) (-15 -1642 ((-112) (-660 (-975 |#1|))))) +((-3609 (((-950) |#1| (-1201)) 17) (((-950) |#1| (-1201) (-1119 (-228))) 21)) (-3748 (((-950) |#1| |#1| (-1201) (-1119 (-228))) 19) (((-950) |#1| (-1201) (-1119 (-228))) 15))) +(((-948 |#1|) (-10 -7 (-15 -3748 ((-950) |#1| (-1201) (-1119 (-228)))) (-15 -3748 ((-950) |#1| |#1| (-1201) (-1119 (-228)))) (-15 -3609 ((-950) |#1| (-1201) (-1119 (-228)))) (-15 -3609 ((-950) |#1| (-1201)))) (-627 (-549))) (T -948)) +((-3609 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-5 *2 (-950)) (-5 *1 (-948 *3)) (-4 *3 (-627 (-549))))) (-3609 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1201)) (-5 *5 (-1119 (-228))) (-5 *2 (-950)) (-5 *1 (-948 *3)) (-4 *3 (-627 (-549))))) (-3748 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1201)) (-5 *5 (-1119 (-228))) (-5 *2 (-950)) (-5 *1 (-948 *3)) (-4 *3 (-627 (-549))))) (-3748 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1201)) (-5 *5 (-1119 (-228))) (-5 *2 (-950)) (-5 *1 (-948 *3)) (-4 *3 (-627 (-549)))))) +(-10 -7 (-15 -3748 ((-950) |#1| (-1201) (-1119 (-228)))) (-15 -3748 ((-950) |#1| |#1| (-1201) (-1119 (-228)))) (-15 -3609 ((-950) |#1| (-1201) (-1119 (-228)))) (-15 -3609 ((-950) |#1| (-1201)))) +((-3367 (($ $ (-1119 (-228)) (-1119 (-228)) (-1119 (-228))) 121)) (-2172 (((-1119 (-228)) $) 64)) (-2160 (((-1119 (-228)) $) 63)) (-2146 (((-1119 (-228)) $) 62)) (-3727 (((-660 (-660 (-228))) $) 69)) (-3738 (((-1119 (-228)) $) 65)) (-3662 (((-577) (-577)) 57)) (-3706 (((-577) (-577)) 52)) (-3683 (((-577) (-577)) 55)) (-3638 (((-112) (-112)) 59)) (-3673 (((-577)) 56)) (-4169 (($ $ (-1119 (-228))) 124) (($ $) 125)) (-3759 (($ (-1 (-966 (-228)) (-228)) (-1119 (-228))) 131) (($ (-1 (-966 (-228)) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228))) 132)) (-3748 (($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228))) 134) (($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228))) 135) (($ $ (-1119 (-228))) 127)) (-3627 (((-577)) 60)) (-3717 (((-577)) 50)) (-3695 (((-577)) 53)) (-3561 (((-660 (-660 (-966 (-228)))) $) 151)) (-3616 (((-112) (-112)) 61)) (-3544 (((-880) $) 149)) (-3650 (((-112)) 58))) +(((-949) (-13 (-999) (-10 -8 (-15 -3759 ($ (-1 (-966 (-228)) (-228)) (-1119 (-228)))) (-15 -3759 ($ (-1 (-966 (-228)) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -3748 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)))) (-15 -3748 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -3748 ($ $ (-1119 (-228)))) (-15 -3367 ($ $ (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -4169 ($ $ (-1119 (-228)))) (-15 -4169 ($ $)) (-15 -3738 ((-1119 (-228)) $)) (-15 -3727 ((-660 (-660 (-228))) $)) (-15 -3717 ((-577))) (-15 -3706 ((-577) (-577))) (-15 -3695 ((-577))) (-15 -3683 ((-577) (-577))) (-15 -3673 ((-577))) (-15 -3662 ((-577) (-577))) (-15 -3650 ((-112))) (-15 -3638 ((-112) (-112))) (-15 -3627 ((-577))) (-15 -3616 ((-112) (-112)))))) (T -949)) +((-3759 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-966 (-228)) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-949)))) (-3759 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-966 (-228)) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-949)))) (-3748 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-949)))) (-3748 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-949)))) (-3748 (*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-949)))) (-3367 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-949)))) (-4169 (*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-949)))) (-4169 (*1 *1 *1) (-5 *1 (-949))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-949)))) (-3727 (*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-228)))) (-5 *1 (-949)))) (-3717 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949)))) (-3706 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949)))) (-3695 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949)))) (-3683 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949)))) (-3673 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949)))) (-3662 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949)))) (-3650 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-949)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-949)))) (-3627 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949)))) (-3616 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-949))))) +(-13 (-999) (-10 -8 (-15 -3759 ($ (-1 (-966 (-228)) (-228)) (-1119 (-228)))) (-15 -3759 ($ (-1 (-966 (-228)) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -3748 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)))) (-15 -3748 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -3748 ($ $ (-1119 (-228)))) (-15 -3367 ($ $ (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -4169 ($ $ (-1119 (-228)))) (-15 -4169 ($ $)) (-15 -3738 ((-1119 (-228)) $)) (-15 -3727 ((-660 (-660 (-228))) $)) (-15 -3717 ((-577))) (-15 -3706 ((-577) (-577))) (-15 -3695 ((-577))) (-15 -3683 ((-577) (-577))) (-15 -3673 ((-577))) (-15 -3662 ((-577) (-577))) (-15 -3650 ((-112))) (-15 -3638 ((-112) (-112))) (-15 -3627 ((-577))) (-15 -3616 ((-112) (-112))))) +((-3367 (($ $ (-1119 (-228))) 122) (($ $ (-1119 (-228)) (-1119 (-228))) 123)) (-2160 (((-1119 (-228)) $) 73)) (-2146 (((-1119 (-228)) $) 72)) (-3738 (((-1119 (-228)) $) 74)) (-1687 (((-577) (-577)) 66)) (-1729 (((-577) (-577)) 61)) (-1706 (((-577) (-577)) 64)) (-1662 (((-112) (-112)) 68)) (-1697 (((-577)) 65)) (-4169 (($ $ (-1119 (-228))) 126) (($ $) 127)) (-3759 (($ (-1 (-966 (-228)) (-228)) (-1119 (-228))) 141) (($ (-1 (-966 (-228)) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228))) 142)) (-3609 (($ (-1 (-228) (-228)) (-1119 (-228))) 149) (($ (-1 (-228) (-228))) 153)) (-3748 (($ (-1 (-228) (-228)) (-1119 (-228))) 137) (($ (-1 (-228) (-228)) (-1119 (-228)) (-1119 (-228))) 138) (($ (-660 (-1 (-228) (-228))) (-1119 (-228))) 146) (($ (-660 (-1 (-228) (-228))) (-1119 (-228)) (-1119 (-228))) 147) (($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228))) 139) (($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228))) 140) (($ $ (-1119 (-228))) 128)) (-3598 (((-112) $) 69)) (-1652 (((-577)) 70)) (-3589 (((-577)) 59)) (-1718 (((-577)) 62)) (-3561 (((-660 (-660 (-966 (-228)))) $) 35)) (-2116 (((-112) (-112)) 71)) (-3544 (((-880) $) 167)) (-1674 (((-112)) 67))) +(((-950) (-13 (-978) (-10 -8 (-15 -3748 ($ (-1 (-228) (-228)) (-1119 (-228)))) (-15 -3748 ($ (-1 (-228) (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -3748 ($ (-660 (-1 (-228) (-228))) (-1119 (-228)))) (-15 -3748 ($ (-660 (-1 (-228) (-228))) (-1119 (-228)) (-1119 (-228)))) (-15 -3748 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)))) (-15 -3748 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -3759 ($ (-1 (-966 (-228)) (-228)) (-1119 (-228)))) (-15 -3759 ($ (-1 (-966 (-228)) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -3609 ($ (-1 (-228) (-228)) (-1119 (-228)))) (-15 -3609 ($ (-1 (-228) (-228)))) (-15 -3748 ($ $ (-1119 (-228)))) (-15 -3598 ((-112) $)) (-15 -3367 ($ $ (-1119 (-228)))) (-15 -3367 ($ $ (-1119 (-228)) (-1119 (-228)))) (-15 -4169 ($ $ (-1119 (-228)))) (-15 -4169 ($ $)) (-15 -3738 ((-1119 (-228)) $)) (-15 -3589 ((-577))) (-15 -1729 ((-577) (-577))) (-15 -1718 ((-577))) (-15 -1706 ((-577) (-577))) (-15 -1697 ((-577))) (-15 -1687 ((-577) (-577))) (-15 -1674 ((-112))) (-15 -1662 ((-112) (-112))) (-15 -1652 ((-577))) (-15 -2116 ((-112) (-112)))))) (T -950)) +((-3748 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-950)))) (-3748 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-950)))) (-3748 (*1 *1 *2 *3) (-12 (-5 *2 (-660 (-1 (-228) (-228)))) (-5 *3 (-1119 (-228))) (-5 *1 (-950)))) (-3748 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-660 (-1 (-228) (-228)))) (-5 *3 (-1119 (-228))) (-5 *1 (-950)))) (-3748 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-950)))) (-3748 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-950)))) (-3759 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-966 (-228)) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-950)))) (-3759 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-966 (-228)) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-950)))) (-3609 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) (-5 *1 (-950)))) (-3609 (*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-950)))) (-3748 (*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-950)))) (-3367 (*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950)))) (-3367 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950)))) (-4169 (*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950)))) (-4169 (*1 *1 *1) (-5 *1 (-950))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950)))) (-3589 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950)))) (-1729 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950)))) (-1718 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950)))) (-1706 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950)))) (-1697 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950)))) (-1687 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950)))) (-1674 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-950)))) (-1662 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-950)))) (-1652 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950)))) (-2116 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-950))))) +(-13 (-978) (-10 -8 (-15 -3748 ($ (-1 (-228) (-228)) (-1119 (-228)))) (-15 -3748 ($ (-1 (-228) (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -3748 ($ (-660 (-1 (-228) (-228))) (-1119 (-228)))) (-15 -3748 ($ (-660 (-1 (-228) (-228))) (-1119 (-228)) (-1119 (-228)))) (-15 -3748 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)))) (-15 -3748 ($ (-1 (-228) (-228)) (-1 (-228) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -3759 ($ (-1 (-966 (-228)) (-228)) (-1119 (-228)))) (-15 -3759 ($ (-1 (-966 (-228)) (-228)) (-1119 (-228)) (-1119 (-228)) (-1119 (-228)))) (-15 -3609 ($ (-1 (-228) (-228)) (-1119 (-228)))) (-15 -3609 ($ (-1 (-228) (-228)))) (-15 -3748 ($ $ (-1119 (-228)))) (-15 -3598 ((-112) $)) (-15 -3367 ($ $ (-1119 (-228)))) (-15 -3367 ($ $ (-1119 (-228)) (-1119 (-228)))) (-15 -4169 ($ $ (-1119 (-228)))) (-15 -4169 ($ $)) (-15 -3738 ((-1119 (-228)) $)) (-15 -3589 ((-577))) (-15 -1729 ((-577) (-577))) (-15 -1718 ((-577))) (-15 -1706 ((-577) (-577))) (-15 -1697 ((-577))) (-15 -1687 ((-577) (-577))) (-15 -1674 ((-112))) (-15 -1662 ((-112) (-112))) (-15 -1652 ((-577))) (-15 -2116 ((-112) (-112))))) +((-3770 (((-660 (-1119 (-228))) (-660 (-660 (-966 (-228))))) 34))) +(((-951) (-10 -7 (-15 -3770 ((-660 (-1119 (-228))) (-660 (-660 (-966 (-228)))))))) (T -951)) +((-3770 (*1 *2 *3) (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *2 (-660 (-1119 (-228)))) (-5 *1 (-951))))) +(-10 -7 (-15 -3770 ((-660 (-1119 (-228))) (-660 (-660 (-966 (-228))))))) +((-2288 ((|#2| |#2|) 28)) (-4165 ((|#2| |#2|) 29)) (-1512 ((|#2| |#2|) 27)) (-2796 ((|#2| |#2| (-519)) 26))) +(((-952 |#1| |#2|) (-10 -7 (-15 -2796 (|#2| |#2| (-519))) (-15 -1512 (|#2| |#2|)) (-15 -2288 (|#2| |#2|)) (-15 -4165 (|#2| |#2|))) (-1125) (-443 |#1|)) (T -952)) +((-4165 (*1 *2 *2) (-12 (-4 *3 (-1125)) (-5 *1 (-952 *3 *2)) (-4 *2 (-443 *3)))) (-2288 (*1 *2 *2) (-12 (-4 *3 (-1125)) (-5 *1 (-952 *3 *2)) (-4 *2 (-443 *3)))) (-1512 (*1 *2 *2) (-12 (-4 *3 (-1125)) (-5 *1 (-952 *3 *2)) (-4 *2 (-443 *3)))) (-2796 (*1 *2 *2 *3) (-12 (-5 *3 (-519)) (-4 *4 (-1125)) (-5 *1 (-952 *4 *2)) (-4 *2 (-443 *4))))) +(-10 -7 (-15 -2796 (|#2| |#2| (-519))) (-15 -1512 (|#2| |#2|)) (-15 -2288 (|#2| |#2|)) (-15 -4165 (|#2| |#2|))) +((-2288 (((-327 (-577)) (-1201)) 16)) (-4165 (((-327 (-577)) (-1201)) 14)) (-1512 (((-327 (-577)) (-1201)) 12)) (-2796 (((-327 (-577)) (-1201) (-519)) 19))) +(((-953) (-10 -7 (-15 -2796 ((-327 (-577)) (-1201) (-519))) (-15 -1512 ((-327 (-577)) (-1201))) (-15 -2288 ((-327 (-577)) (-1201))) (-15 -4165 ((-327 (-577)) (-1201))))) (T -953)) +((-4165 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-327 (-577))) (-5 *1 (-953)))) (-2288 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-327 (-577))) (-5 *1 (-953)))) (-1512 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-327 (-577))) (-5 *1 (-953)))) (-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-519)) (-5 *2 (-327 (-577))) (-5 *1 (-953))))) +(-10 -7 (-15 -2796 ((-327 (-577)) (-1201) (-519))) (-15 -1512 ((-327 (-577)) (-1201))) (-15 -2288 ((-327 (-577)) (-1201))) (-15 -4165 ((-327 (-577)) (-1201)))) +((-3795 (((-908 |#1| |#3|) |#2| (-911 |#1|) (-908 |#1| |#3|)) 25)) (-3783 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-954 |#1| |#2| |#3|) (-10 -7 (-15 -3783 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3795 ((-908 |#1| |#3|) |#2| (-911 |#1|) (-908 |#1| |#3|)))) (-1125) (-905 |#1|) (-13 (-1125) (-1063 |#2|))) (T -954)) +((-3795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-908 *5 *6)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) (-4 *6 (-13 (-1125) (-1063 *3))) (-4 *3 (-905 *5)) (-5 *1 (-954 *5 *3 *6)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1125) (-1063 *5))) (-4 *5 (-905 *4)) (-4 *4 (-1125)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-954 *4 *5 *6))))) +(-10 -7 (-15 -3783 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3795 ((-908 |#1| |#3|) |#2| (-911 |#1|) (-908 |#1| |#3|)))) +((-3795 (((-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|)) 30))) +(((-955 |#1| |#2| |#3|) (-10 -7 (-15 -3795 ((-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|)))) (-1125) (-13 (-569) (-905 |#1|)) (-13 (-443 |#2|) (-627 (-911 |#1|)) (-905 |#1|) (-1063 (-625 $)))) (T -955)) +((-3795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-908 *5 *3)) (-4 *5 (-1125)) (-4 *3 (-13 (-443 *6) (-627 *4) (-905 *5) (-1063 (-625 $)))) (-5 *4 (-911 *5)) (-4 *6 (-13 (-569) (-905 *5))) (-5 *1 (-955 *5 *6 *3))))) +(-10 -7 (-15 -3795 ((-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|)))) +((-3795 (((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|)) 13))) +(((-956 |#1|) (-10 -7 (-15 -3795 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|)))) (-558)) (T -956)) +((-3795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-908 (-577) *3)) (-5 *4 (-911 (-577))) (-4 *3 (-558)) (-5 *1 (-956 *3))))) +(-10 -7 (-15 -3795 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|)))) +((-3795 (((-908 |#1| |#2|) (-625 |#2|) (-911 |#1|) (-908 |#1| |#2|)) 57))) +(((-957 |#1| |#2|) (-10 -7 (-15 -3795 ((-908 |#1| |#2|) (-625 |#2|) (-911 |#1|) (-908 |#1| |#2|)))) (-1125) (-13 (-1125) (-1063 (-625 $)) (-627 (-911 |#1|)) (-905 |#1|))) (T -957)) +((-3795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-908 *5 *6)) (-5 *3 (-625 *6)) (-4 *5 (-1125)) (-4 *6 (-13 (-1125) (-1063 (-625 $)) (-627 *4) (-905 *5))) (-5 *4 (-911 *5)) (-5 *1 (-957 *5 *6))))) +(-10 -7 (-15 -3795 ((-908 |#1| |#2|) (-625 |#2|) (-911 |#1|) (-908 |#1| |#2|)))) +((-3795 (((-904 |#1| |#2| |#3|) |#3| (-911 |#1|) (-904 |#1| |#2| |#3|)) 17))) +(((-958 |#1| |#2| |#3|) (-10 -7 (-15 -3795 ((-904 |#1| |#2| |#3|) |#3| (-911 |#1|) (-904 |#1| |#2| |#3|)))) (-1125) (-905 |#1|) (-682 |#2|)) (T -958)) +((-3795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-904 *5 *6 *3)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) (-4 *6 (-905 *5)) (-4 *3 (-682 *6)) (-5 *1 (-958 *5 *6 *3))))) +(-10 -7 (-15 -3795 ((-904 |#1| |#2| |#3|) |#3| (-911 |#1|) (-904 |#1| |#2| |#3|)))) +((-3795 (((-908 |#1| |#5|) |#5| (-911 |#1|) (-908 |#1| |#5|)) 17 (|has| |#3| (-905 |#1|))) (((-908 |#1| |#5|) |#5| (-911 |#1|) (-908 |#1| |#5|) (-1 (-908 |#1| |#5|) |#3| (-911 |#1|) (-908 |#1| |#5|))) 16))) +(((-959 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3795 ((-908 |#1| |#5|) |#5| (-911 |#1|) (-908 |#1| |#5|) (-1 (-908 |#1| |#5|) |#3| (-911 |#1|) (-908 |#1| |#5|)))) (IF (|has| |#3| (-905 |#1|)) (-15 -3795 ((-908 |#1| |#5|) |#5| (-911 |#1|) (-908 |#1| |#5|))) |%noBranch|)) (-1125) (-809) (-865) (-13 (-1074) (-905 |#1|)) (-13 (-972 |#4| |#2| |#3|) (-627 (-911 |#1|)))) (T -959)) +((-3795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-908 *5 *3)) (-4 *5 (-1125)) (-4 *3 (-13 (-972 *8 *6 *7) (-627 *4))) (-5 *4 (-911 *5)) (-4 *7 (-905 *5)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-13 (-1074) (-905 *5))) (-5 *1 (-959 *5 *6 *7 *8 *3)))) (-3795 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-908 *6 *3) *8 (-911 *6) (-908 *6 *3))) (-4 *8 (-865)) (-5 *2 (-908 *6 *3)) (-5 *4 (-911 *6)) (-4 *6 (-1125)) (-4 *3 (-13 (-972 *9 *7 *8) (-627 *4))) (-4 *7 (-809)) (-4 *9 (-13 (-1074) (-905 *6))) (-5 *1 (-959 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -3795 ((-908 |#1| |#5|) |#5| (-911 |#1|) (-908 |#1| |#5|) (-1 (-908 |#1| |#5|) |#3| (-911 |#1|) (-908 |#1| |#5|)))) (IF (|has| |#3| (-905 |#1|)) (-15 -3795 ((-908 |#1| |#5|) |#5| (-911 |#1|) (-908 |#1| |#5|))) |%noBranch|)) +((-4241 ((|#2| |#2| (-660 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-960 |#1| |#2| |#3|) (-10 -7 (-15 -4241 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4241 (|#2| |#2| (-660 (-1 (-112) |#3|))))) (-1125) (-443 |#1|) (-1242)) (T -960)) +((-4241 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-1 (-112) *5))) (-4 *5 (-1242)) (-4 *4 (-1125)) (-5 *1 (-960 *4 *2 *5)) (-4 *2 (-443 *4)))) (-4241 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1242)) (-4 *4 (-1125)) (-5 *1 (-960 *4 *2 *5)) (-4 *2 (-443 *4))))) +(-10 -7 (-15 -4241 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4241 (|#2| |#2| (-660 (-1 (-112) |#3|))))) +((-4241 (((-327 (-577)) (-1201) (-660 (-1 (-112) |#1|))) 18) (((-327 (-577)) (-1201) (-1 (-112) |#1|)) 15))) +(((-961 |#1|) (-10 -7 (-15 -4241 ((-327 (-577)) (-1201) (-1 (-112) |#1|))) (-15 -4241 ((-327 (-577)) (-1201) (-660 (-1 (-112) |#1|))))) (-1242)) (T -961)) +((-4241 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-660 (-1 (-112) *5))) (-4 *5 (-1242)) (-5 *2 (-327 (-577))) (-5 *1 (-961 *5)))) (-4241 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1242)) (-5 *2 (-327 (-577))) (-5 *1 (-961 *5))))) +(-10 -7 (-15 -4241 ((-327 (-577)) (-1201) (-1 (-112) |#1|))) (-15 -4241 ((-327 (-577)) (-1201) (-660 (-1 (-112) |#1|))))) +((-3795 (((-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|)) 25))) +(((-962 |#1| |#2| |#3|) (-10 -7 (-15 -3795 ((-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|)))) (-1125) (-13 (-569) (-905 |#1|) (-627 (-911 |#1|))) (-1017 |#2|)) (T -962)) +((-3795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-908 *5 *3)) (-4 *5 (-1125)) (-4 *3 (-1017 *6)) (-4 *6 (-13 (-569) (-905 *5) (-627 *4))) (-5 *4 (-911 *5)) (-5 *1 (-962 *5 *6 *3))))) +(-10 -7 (-15 -3795 ((-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|)))) +((-3795 (((-908 |#1| (-1201)) (-1201) (-911 |#1|) (-908 |#1| (-1201))) 18))) +(((-963 |#1|) (-10 -7 (-15 -3795 ((-908 |#1| (-1201)) (-1201) (-911 |#1|) (-908 |#1| (-1201))))) (-1125)) (T -963)) +((-3795 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-908 *5 (-1201))) (-5 *3 (-1201)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) (-5 *1 (-963 *5))))) +(-10 -7 (-15 -3795 ((-908 |#1| (-1201)) (-1201) (-911 |#1|) (-908 |#1| (-1201))))) +((-3808 (((-908 |#1| |#3|) (-660 |#3|) (-660 (-911 |#1|)) (-908 |#1| |#3|) (-1 (-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|))) 34)) (-3795 (((-908 |#1| |#3|) (-660 |#3|) (-660 (-911 |#1|)) (-1 |#3| (-660 |#3|)) (-908 |#1| |#3|) (-1 (-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|))) 33))) +(((-964 |#1| |#2| |#3|) (-10 -7 (-15 -3795 ((-908 |#1| |#3|) (-660 |#3|) (-660 (-911 |#1|)) (-1 |#3| (-660 |#3|)) (-908 |#1| |#3|) (-1 (-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|)))) (-15 -3808 ((-908 |#1| |#3|) (-660 |#3|) (-660 (-911 |#1|)) (-908 |#1| |#3|) (-1 (-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|))))) (-1125) (-1074) (-13 (-1074) (-627 (-911 |#1|)) (-1063 |#2|))) (T -964)) +((-3808 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 (-911 *6))) (-5 *5 (-1 (-908 *6 *8) *8 (-911 *6) (-908 *6 *8))) (-4 *6 (-1125)) (-4 *8 (-13 (-1074) (-627 (-911 *6)) (-1063 *7))) (-5 *2 (-908 *6 *8)) (-4 *7 (-1074)) (-5 *1 (-964 *6 *7 *8)))) (-3795 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-660 (-911 *7))) (-5 *5 (-1 *9 (-660 *9))) (-5 *6 (-1 (-908 *7 *9) *9 (-911 *7) (-908 *7 *9))) (-4 *7 (-1125)) (-4 *9 (-13 (-1074) (-627 (-911 *7)) (-1063 *8))) (-5 *2 (-908 *7 *9)) (-5 *3 (-660 *9)) (-4 *8 (-1074)) (-5 *1 (-964 *7 *8 *9))))) +(-10 -7 (-15 -3795 ((-908 |#1| |#3|) (-660 |#3|) (-660 (-911 |#1|)) (-1 |#3| (-660 |#3|)) (-908 |#1| |#3|) (-1 (-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|)))) (-15 -3808 ((-908 |#1| |#3|) (-660 |#3|) (-660 (-911 |#1|)) (-908 |#1| |#3|) (-1 (-908 |#1| |#3|) |#3| (-911 |#1|) (-908 |#1| |#3|))))) +((-3901 (((-1197 (-420 (-577))) (-577)) 79)) (-3889 (((-1197 (-577)) (-577)) 82)) (-2431 (((-1197 (-577)) (-577)) 76)) (-3878 (((-577) (-1197 (-577))) 72)) (-3867 (((-1197 (-420 (-577))) (-577)) 65)) (-3855 (((-1197 (-577)) (-577)) 49)) (-3844 (((-1197 (-577)) (-577)) 84)) (-3833 (((-1197 (-577)) (-577)) 83)) (-3821 (((-1197 (-420 (-577))) (-577)) 67))) +(((-965) (-10 -7 (-15 -3821 ((-1197 (-420 (-577))) (-577))) (-15 -3833 ((-1197 (-577)) (-577))) (-15 -3844 ((-1197 (-577)) (-577))) (-15 -3855 ((-1197 (-577)) (-577))) (-15 -3867 ((-1197 (-420 (-577))) (-577))) (-15 -3878 ((-577) (-1197 (-577)))) (-15 -2431 ((-1197 (-577)) (-577))) (-15 -3889 ((-1197 (-577)) (-577))) (-15 -3901 ((-1197 (-420 (-577))) (-577))))) (T -965)) +((-3901 (*1 *2 *3) (-12 (-5 *2 (-1197 (-420 (-577)))) (-5 *1 (-965)) (-5 *3 (-577)))) (-3889 (*1 *2 *3) (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577)))) (-2431 (*1 *2 *3) (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577)))) (-3878 (*1 *2 *3) (-12 (-5 *3 (-1197 (-577))) (-5 *2 (-577)) (-5 *1 (-965)))) (-3867 (*1 *2 *3) (-12 (-5 *2 (-1197 (-420 (-577)))) (-5 *1 (-965)) (-5 *3 (-577)))) (-3855 (*1 *2 *3) (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577)))) (-3844 (*1 *2 *3) (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577)))) (-3833 (*1 *2 *3) (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577)))) (-3821 (*1 *2 *3) (-12 (-5 *2 (-1197 (-420 (-577)))) (-5 *1 (-965)) (-5 *3 (-577))))) +(-10 -7 (-15 -3821 ((-1197 (-420 (-577))) (-577))) (-15 -3833 ((-1197 (-577)) (-577))) (-15 -3844 ((-1197 (-577)) (-577))) (-15 -3855 ((-1197 (-577)) (-577))) (-15 -3867 ((-1197 (-420 (-577))) (-577))) (-15 -3878 ((-577) (-1197 (-577)))) (-15 -2431 ((-1197 (-577)) (-577))) (-15 -3889 ((-1197 (-577)) (-577))) (-15 -3901 ((-1197 (-420 (-577))) (-577)))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3785 (($ (-787)) NIL (|has| |#1| (-23)))) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4077 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-865)))) (-4053 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471))) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))))) (-1864 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-865)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-1534 (($) NIL T CONST)) (-3645 (($ $) NIL (|has| $ (-6 -4471)))) (-3787 (($ $) NIL)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3904 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)))) (-2192 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) NIL)) (-3618 (((-577) (-1 (-112) |#1|) $) NIL) (((-577) |#1| $) NIL (|has| |#1| (-1125))) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)))) (-3656 (($ (-660 |#1|)) 9)) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2462 (((-705 |#1|) $ $) NIL (|has| |#1| (-1074)))) (-4113 (($ (-787) |#1|) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) NIL (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| |#1| (-865)))) (-3283 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-865)))) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2416 (((-577) $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| |#1| (-865)))) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4320 ((|#1| $) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1074))))) (-1443 (((-112) $ (-787)) NIL)) (-3402 ((|#1| $) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1074))))) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-2308 (($ |#1| $ (-577)) NIL) (($ $ $ (-577)) NIL)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-3552 ((|#1| $) NIL (|has| (-577) (-865)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2397 (($ $ |#1|) NIL (|has| $ (-6 -4471)))) (-3792 (($ $ (-660 |#1|)) 25)) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#1| $ (-577) |#1|) NIL) ((|#1| $ (-577)) 18) (($ $ (-1259 (-577))) NIL)) (-3116 ((|#1| $ $) NIL (|has| |#1| (-1074)))) (-2561 (((-944) $) 13)) (-3453 (($ $ (-577)) NIL) (($ $ (-1259 (-577))) NIL)) (-4331 (($ $ $) 23)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4064 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| |#1| (-627 (-549)))) (($ (-660 |#1|)) 14)) (-3553 (($ (-660 |#1|)) NIL)) (-1677 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-660 $)) NIL)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3066 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3055 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-577) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-742))) (($ $ |#1|) NIL (|has| |#1| (-742)))) (-3484 (((-787) $) 11 (|has| $ (-6 -4470))))) +(((-966 |#1|) (-1005 |#1|) (-1074)) (T -966)) +NIL +(-1005 |#1|) +((-3936 (((-494 |#1| |#2|) (-975 |#2|)) 22)) (-3973 (((-254 |#1| |#2|) (-975 |#2|)) 35)) (-3948 (((-975 |#2|) (-494 |#1| |#2|)) 27)) (-3924 (((-254 |#1| |#2|) (-494 |#1| |#2|)) 57)) (-3961 (((-975 |#2|) (-254 |#1| |#2|)) 32)) (-3913 (((-494 |#1| |#2|) (-254 |#1| |#2|)) 48))) +(((-967 |#1| |#2|) (-10 -7 (-15 -3913 ((-494 |#1| |#2|) (-254 |#1| |#2|))) (-15 -3924 ((-254 |#1| |#2|) (-494 |#1| |#2|))) (-15 -3936 ((-494 |#1| |#2|) (-975 |#2|))) (-15 -3948 ((-975 |#2|) (-494 |#1| |#2|))) (-15 -3961 ((-975 |#2|) (-254 |#1| |#2|))) (-15 -3973 ((-254 |#1| |#2|) (-975 |#2|)))) (-660 (-1201)) (-1074)) (T -967)) +((-3973 (*1 *2 *3) (-12 (-5 *3 (-975 *5)) (-4 *5 (-1074)) (-5 *2 (-254 *4 *5)) (-5 *1 (-967 *4 *5)) (-14 *4 (-660 (-1201))))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-1074)) (-5 *2 (-975 *5)) (-5 *1 (-967 *4 *5)))) (-3948 (*1 *2 *3) (-12 (-5 *3 (-494 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-1074)) (-5 *2 (-975 *5)) (-5 *1 (-967 *4 *5)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-975 *5)) (-4 *5 (-1074)) (-5 *2 (-494 *4 *5)) (-5 *1 (-967 *4 *5)) (-14 *4 (-660 (-1201))))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-494 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-1074)) (-5 *2 (-254 *4 *5)) (-5 *1 (-967 *4 *5)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-1074)) (-5 *2 (-494 *4 *5)) (-5 *1 (-967 *4 *5))))) +(-10 -7 (-15 -3913 ((-494 |#1| |#2|) (-254 |#1| |#2|))) (-15 -3924 ((-254 |#1| |#2|) (-494 |#1| |#2|))) (-15 -3936 ((-494 |#1| |#2|) (-975 |#2|))) (-15 -3948 ((-975 |#2|) (-494 |#1| |#2|))) (-15 -3961 ((-975 |#2|) (-254 |#1| |#2|))) (-15 -3973 ((-254 |#1| |#2|) (-975 |#2|)))) +((-3984 (((-660 |#2|) |#2| |#2|) 10)) (-4019 (((-787) (-660 |#1|)) 48 (|has| |#1| (-864)))) (-3996 (((-660 |#2|) |#2|) 11)) (-4029 (((-787) (-660 |#1|) (-577) (-577)) 52 (|has| |#1| (-864)))) (-4008 ((|#1| |#2|) 38 (|has| |#1| (-864))))) +(((-968 |#1| |#2|) (-10 -7 (-15 -3984 ((-660 |#2|) |#2| |#2|)) (-15 -3996 ((-660 |#2|) |#2|)) (IF (|has| |#1| (-864)) (PROGN (-15 -4008 (|#1| |#2|)) (-15 -4019 ((-787) (-660 |#1|))) (-15 -4029 ((-787) (-660 |#1|) (-577) (-577)))) |%noBranch|)) (-375) (-1268 |#1|)) (T -968)) +((-4029 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 *5)) (-5 *4 (-577)) (-4 *5 (-864)) (-4 *5 (-375)) (-5 *2 (-787)) (-5 *1 (-968 *5 *6)) (-4 *6 (-1268 *5)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-864)) (-4 *4 (-375)) (-5 *2 (-787)) (-5 *1 (-968 *4 *5)) (-4 *5 (-1268 *4)))) (-4008 (*1 *2 *3) (-12 (-4 *2 (-375)) (-4 *2 (-864)) (-5 *1 (-968 *2 *3)) (-4 *3 (-1268 *2)))) (-3996 (*1 *2 *3) (-12 (-4 *4 (-375)) (-5 *2 (-660 *3)) (-5 *1 (-968 *4 *3)) (-4 *3 (-1268 *4)))) (-3984 (*1 *2 *3 *3) (-12 (-4 *4 (-375)) (-5 *2 (-660 *3)) (-5 *1 (-968 *4 *3)) (-4 *3 (-1268 *4))))) +(-10 -7 (-15 -3984 ((-660 |#2|) |#2| |#2|)) (-15 -3996 ((-660 |#2|) |#2|)) (IF (|has| |#1| (-864)) (PROGN (-15 -4008 (|#1| |#2|)) (-15 -4019 ((-787) (-660 |#1|))) (-15 -4029 ((-787) (-660 |#1|) (-577) (-577)))) |%noBranch|)) +((-4087 (((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)) 19))) +(((-969 |#1| |#2|) (-10 -7 (-15 -4087 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)))) (-1074) (-1074)) (T -969)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-975 *6)) (-5 *1 (-969 *5 *6))))) +(-10 -7 (-15 -4087 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)))) +((-1867 (((-1265 |#1| (-975 |#2|)) (-975 |#2|) (-1288 |#1|)) 18))) +(((-970 |#1| |#2|) (-10 -7 (-15 -1867 ((-1265 |#1| (-975 |#2|)) (-975 |#2|) (-1288 |#1|)))) (-1201) (-1074)) (T -970)) +((-1867 (*1 *2 *3 *4) (-12 (-5 *4 (-1288 *5)) (-14 *5 (-1201)) (-4 *6 (-1074)) (-5 *2 (-1265 *5 (-975 *6))) (-5 *1 (-970 *5 *6)) (-5 *3 (-975 *6))))) +(-10 -7 (-15 -1867 ((-1265 |#1| (-975 |#2|)) (-975 |#2|) (-1288 |#1|)))) +((-4050 (((-787) $) 88) (((-787) $ (-660 |#4|)) 93)) (-3841 (($ $) 203)) (-3029 (((-431 $) $) 195)) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 141)) (-1628 (((-3 |#2| "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL) (((-3 (-577) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2921 ((|#2| $) NIL) (((-420 (-577)) $) NIL) (((-577) $) NIL) ((|#4| $) 73)) (-1816 (($ $ $ |#4|) 95)) (-1647 (((-705 (-577)) (-705 $)) NIL) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) 131) (((-705 |#2|) (-705 $)) 121)) (-3143 (($ $) 210) (($ $ |#4|) 213)) (-2234 (((-660 $) $) 77)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 229) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 222)) (-4074 (((-660 $) $) 34)) (-2030 (($ |#2| |#3|) NIL) (($ $ |#4| (-787)) NIL) (($ $ (-660 |#4|) (-660 (-787))) 71)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ |#4|) 192)) (-4098 (((-3 (-660 $) "failed") $) 52)) (-4086 (((-3 (-660 $) "failed") $) 39)) (-4111 (((-3 (-2 (|:| |var| |#4|) (|:| -3556 (-787))) "failed") $) 57)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 134)) (-2269 (((-431 (-1197 $)) (-1197 $)) 147)) (-2281 (((-431 (-1197 $)) (-1197 $)) 145)) (-1902 (((-431 $) $) 165)) (-3280 (($ $ (-660 (-305 $))) 24) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-660 |#4|) (-660 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-660 |#4|) (-660 $)) NIL)) (-1827 (($ $ |#4|) 97)) (-4152 (((-911 (-391)) $) 243) (((-911 (-577)) $) 236) (((-549) $) 251)) (-4039 ((|#2| $) NIL) (($ $ |#4|) 205)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) 184)) (-2322 ((|#2| $ |#3|) NIL) (($ $ |#4| (-787)) 62) (($ $ (-660 |#4|) (-660 (-787))) 69)) (-2233 (((-3 $ "failed") $) 186)) (-4448 (((-112) $ $) 216))) +(((-971 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2305 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|))) (-15 -3029 ((-431 |#1|) |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -2233 ((-3 |#1| "failed") |#1|)) (-15 -4152 ((-549) |#1|)) (-15 -4152 ((-911 (-577)) |#1|)) (-15 -4152 ((-911 (-391)) |#1|)) (-15 -3795 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|))) (-15 -3795 ((-908 (-391) |#1|) |#1| (-911 (-391)) (-908 (-391) |#1|))) (-15 -1902 ((-431 |#1|) |#1|)) (-15 -2281 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2269 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2259 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|))) (-15 -2245 ((-3 (-1292 |#1|) "failed") (-705 |#1|))) (-15 -3143 (|#1| |#1| |#4|)) (-15 -4039 (|#1| |#1| |#4|)) (-15 -1827 (|#1| |#1| |#4|)) (-15 -1816 (|#1| |#1| |#1| |#4|)) (-15 -2234 ((-660 |#1|) |#1|)) (-15 -4050 ((-787) |#1| (-660 |#4|))) (-15 -4050 ((-787) |#1|)) (-15 -4111 ((-3 (-2 (|:| |var| |#4|) (|:| -3556 (-787))) "failed") |#1|)) (-15 -4098 ((-3 (-660 |#1|) "failed") |#1|)) (-15 -4086 ((-3 (-660 |#1|) "failed") |#1|)) (-15 -2030 (|#1| |#1| (-660 |#4|) (-660 (-787)))) (-15 -2030 (|#1| |#1| |#4| (-787))) (-15 -3735 ((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1| |#4|)) (-15 -4074 ((-660 |#1|) |#1|)) (-15 -2322 (|#1| |#1| (-660 |#4|) (-660 (-787)))) (-15 -2322 (|#1| |#1| |#4| (-787))) (-15 -1647 ((-705 |#2|) (-705 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-705 (-577)) (-705 |#1|))) (-15 -1628 ((-3 |#4| "failed") |#1|)) (-15 -2921 (|#4| |#1|)) (-15 -3280 (|#1| |#1| (-660 |#4|) (-660 |#1|))) (-15 -3280 (|#1| |#1| |#4| |#1|)) (-15 -3280 (|#1| |#1| (-660 |#4|) (-660 |#2|))) (-15 -3280 (|#1| |#1| |#4| |#2|)) (-15 -3280 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3280 (|#1| |#1| |#1| |#1|)) (-15 -3280 (|#1| |#1| (-305 |#1|))) (-15 -3280 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -2030 (|#1| |#2| |#3|)) (-15 -2322 (|#2| |#1| |#3|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -4039 (|#2| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -4448 ((-112) |#1| |#1|))) (-972 |#2| |#3| |#4|) (-1074) (-809) (-865)) (T -971)) +NIL +(-10 -8 (-15 -2305 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|))) (-15 -3029 ((-431 |#1|) |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -2233 ((-3 |#1| "failed") |#1|)) (-15 -4152 ((-549) |#1|)) (-15 -4152 ((-911 (-577)) |#1|)) (-15 -4152 ((-911 (-391)) |#1|)) (-15 -3795 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|))) (-15 -3795 ((-908 (-391) |#1|) |#1| (-911 (-391)) (-908 (-391) |#1|))) (-15 -1902 ((-431 |#1|) |#1|)) (-15 -2281 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2269 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2259 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|))) (-15 -2245 ((-3 (-1292 |#1|) "failed") (-705 |#1|))) (-15 -3143 (|#1| |#1| |#4|)) (-15 -4039 (|#1| |#1| |#4|)) (-15 -1827 (|#1| |#1| |#4|)) (-15 -1816 (|#1| |#1| |#1| |#4|)) (-15 -2234 ((-660 |#1|) |#1|)) (-15 -4050 ((-787) |#1| (-660 |#4|))) (-15 -4050 ((-787) |#1|)) (-15 -4111 ((-3 (-2 (|:| |var| |#4|) (|:| -3556 (-787))) "failed") |#1|)) (-15 -4098 ((-3 (-660 |#1|) "failed") |#1|)) (-15 -4086 ((-3 (-660 |#1|) "failed") |#1|)) (-15 -2030 (|#1| |#1| (-660 |#4|) (-660 (-787)))) (-15 -2030 (|#1| |#1| |#4| (-787))) (-15 -3735 ((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1| |#4|)) (-15 -4074 ((-660 |#1|) |#1|)) (-15 -2322 (|#1| |#1| (-660 |#4|) (-660 (-787)))) (-15 -2322 (|#1| |#1| |#4| (-787))) (-15 -1647 ((-705 |#2|) (-705 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-705 (-577)) (-705 |#1|))) (-15 -1628 ((-3 |#4| "failed") |#1|)) (-15 -2921 (|#4| |#1|)) (-15 -3280 (|#1| |#1| (-660 |#4|) (-660 |#1|))) (-15 -3280 (|#1| |#1| |#4| |#1|)) (-15 -3280 (|#1| |#1| (-660 |#4|) (-660 |#2|))) (-15 -3280 (|#1| |#1| |#4| |#2|)) (-15 -3280 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3280 (|#1| |#1| |#1| |#1|)) (-15 -3280 (|#1| |#1| (-305 |#1|))) (-15 -3280 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -2030 (|#1| |#2| |#3|)) (-15 -2322 (|#2| |#1| |#3|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -4039 (|#2| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -4448 ((-112) |#1| |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-2058 (((-660 |#3|) $) 113)) (-1867 (((-1197 $) $ |#3|) 128) (((-1197 |#1|) $) 127)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 90 (|has| |#1| (-569)))) (-3290 (($ $) 91 (|has| |#1| (-569)))) (-3271 (((-112) $) 93 (|has| |#1| (-569)))) (-4050 (((-787) $) 115) (((-787) $ (-660 |#3|)) 114)) (-1956 (((-3 $ "failed") $ $) 20)) (-2294 (((-431 (-1197 $)) (-1197 $)) 103 (|has| |#1| (-932)))) (-3841 (($ $) 101 (|has| |#1| (-465)))) (-3029 (((-431 $) $) 100 (|has| |#1| (-465)))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 106 (|has| |#1| (-932)))) (-1534 (($) 18 T CONST)) (-1628 (((-3 |#1| "failed") $) 171) (((-3 (-420 (-577)) "failed") $) 168 (|has| |#1| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) 166 (|has| |#1| (-1063 (-577)))) (((-3 |#3| "failed") $) 143)) (-2921 ((|#1| $) 170) (((-420 (-577)) $) 169 (|has| |#1| (-1063 (-420 (-577))))) (((-577) $) 167 (|has| |#1| (-1063 (-577)))) ((|#3| $) 144)) (-1816 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-2248 (($ $) 161)) (-1647 (((-705 (-577)) (-705 $)) 139 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 138 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 137) (((-705 |#1|) (-705 $)) 136)) (-4187 (((-3 $ "failed") $) 37)) (-3143 (($ $) 183 (|has| |#1| (-465))) (($ $ |#3|) 108 (|has| |#1| (-465)))) (-2234 (((-660 $) $) 112)) (-1522 (((-112) $) 99 (|has| |#1| (-932)))) (-2137 (($ $ |#1| |#2| $) 179)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 87 (-12 (|has| |#3| (-905 (-391))) (|has| |#1| (-905 (-391))))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 86 (-12 (|has| |#3| (-905 (-577))) (|has| |#1| (-905 (-577)))))) (-2487 (((-112) $) 35)) (-2548 (((-787) $) 176)) (-2043 (($ (-1197 |#1|) |#3|) 120) (($ (-1197 $) |#3|) 119)) (-4074 (((-660 $) $) 129)) (-2811 (((-112) $) 159)) (-2030 (($ |#1| |#2|) 160) (($ $ |#3| (-787)) 122) (($ $ (-660 |#3|) (-660 (-787))) 121)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ |#3|) 123)) (-4061 ((|#2| $) 177) (((-787) $ |#3|) 125) (((-660 (-787)) $ (-660 |#3|)) 124)) (-2151 (($ (-1 |#2| |#2|) $) 178)) (-4087 (($ (-1 |#1| |#1|) $) 158)) (-3691 (((-3 |#3| "failed") $) 126)) (-1657 (((-705 (-577)) (-1292 $)) 141 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 140 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 135) (((-705 |#1|) (-1292 $)) 134)) (-2209 (($ $) 156)) (-2221 ((|#1| $) 155)) (-3446 (($ (-660 $)) 97 (|has| |#1| (-465))) (($ $ $) 96 (|has| |#1| (-465)))) (-2810 (((-1183) $) 10)) (-4098 (((-3 (-660 $) "failed") $) 117)) (-4086 (((-3 (-660 $) "failed") $) 118)) (-4111 (((-3 (-2 (|:| |var| |#3|) (|:| -3556 (-787))) "failed") $) 116)) (-1474 (((-1145) $) 11)) (-2180 (((-112) $) 173)) (-2193 ((|#1| $) 174)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 98 (|has| |#1| (-465)))) (-3480 (($ (-660 $)) 95 (|has| |#1| (-465))) (($ $ $) 94 (|has| |#1| (-465)))) (-2269 (((-431 (-1197 $)) (-1197 $)) 105 (|has| |#1| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) 104 (|has| |#1| (-932)))) (-1902 (((-431 $) $) 102 (|has| |#1| (-932)))) (-3462 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-569))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-569)))) (-3280 (($ $ (-660 (-305 $))) 152) (($ $ (-305 $)) 151) (($ $ $ $) 150) (($ $ (-660 $) (-660 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-660 |#3|) (-660 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-660 |#3|) (-660 $)) 145)) (-1827 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2852 (($ $ (-660 |#3|) (-660 (-787))) 44) (($ $ |#3| (-787)) 43) (($ $ (-660 |#3|)) 42) (($ $ |#3|) 40)) (-2887 ((|#2| $) 157) (((-787) $ |#3|) 133) (((-660 (-787)) $ (-660 |#3|)) 132)) (-4152 (((-911 (-391)) $) 85 (-12 (|has| |#3| (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391)))))) (((-911 (-577)) $) 84 (-12 (|has| |#3| (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577)))))) (((-549) $) 83 (-12 (|has| |#3| (-627 (-549))) (|has| |#1| (-627 (-549)))))) (-4039 ((|#1| $) 182 (|has| |#1| (-465))) (($ $ |#3|) 109 (|has| |#1| (-465)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) 107 (-2761 (|has| $ (-146)) (|has| |#1| (-932))))) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ $) 88 (|has| |#1| (-569))) (($ (-420 (-577))) 81 (-2839 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))))) (-4182 (((-660 |#1|) $) 175)) (-2322 ((|#1| $ |#2|) 162) (($ $ |#3| (-787)) 131) (($ $ (-660 |#3|) (-660 (-787))) 130)) (-2233 (((-3 $ "failed") $) 82 (-2839 (-2761 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))))) (-4068 (((-787)) 32 T CONST)) (-2122 (($ $ $ (-787)) 180 (|has| |#1| (-174)))) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 92 (|has| |#1| (-569)))) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-660 |#3|) (-660 (-787))) 47) (($ $ |#3| (-787)) 46) (($ $ (-660 |#3|)) 45) (($ $ |#3|) 41)) (-2970 (((-112) $ $) 8)) (-3077 (($ $ |#1|) 163 (|has| |#1| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ (-420 (-577))) 165 (|has| |#1| (-38 (-420 (-577))))) (($ (-420 (-577)) $) 164 (|has| |#1| (-38 (-420 (-577))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +(((-972 |#1| |#2| |#3|) (-141) (-1074) (-809) (-865)) (T -972)) +((-3143 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-465)))) (-2887 (*1 *2 *1 *3) (-12 (-4 *1 (-972 *4 *5 *3)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-5 *2 (-787)))) (-2887 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *6)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 (-787))))) (-2322 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-972 *4 *5 *2)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *2 (-865)))) (-2322 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *6)) (-5 *3 (-660 (-787))) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)))) (-4074 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-972 *3 *4 *5)))) (-1867 (*1 *2 *1 *3) (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-5 *2 (-1197 *1)) (-4 *1 (-972 *4 *5 *3)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-1197 *3)))) (-3691 (*1 *2 *1) (|partial| -12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)))) (-4061 (*1 *2 *1 *3) (-12 (-4 *1 (-972 *4 *5 *3)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-5 *2 (-787)))) (-4061 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *6)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 (-787))))) (-3735 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-5 *2 (-2 (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-972 *4 *5 *3)))) (-2030 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-972 *4 *5 *2)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *2 (-865)))) (-2030 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *6)) (-5 *3 (-660 (-787))) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)))) (-2043 (*1 *1 *2 *3) (-12 (-5 *2 (-1197 *4)) (-4 *4 (-1074)) (-4 *1 (-972 *4 *5 *3)) (-4 *5 (-809)) (-4 *3 (-865)))) (-2043 (*1 *1 *2 *3) (-12 (-5 *2 (-1197 *1)) (-4 *1 (-972 *4 *5 *3)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)))) (-4086 (*1 *2 *1) (|partial| -12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-972 *3 *4 *5)))) (-4098 (*1 *2 *1) (|partial| -12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-972 *3 *4 *5)))) (-4111 (*1 *2 *1) (|partial| -12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-2 (|:| |var| *5) (|:| -3556 (-787)))))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-787)))) (-4050 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *6)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-787)))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *5)))) (-2234 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-972 *3 *4 *5)))) (-1816 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)) (-4 *3 (-174)))) (-1827 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)) (-4 *3 (-174)))) (-4039 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)) (-4 *3 (-465)))) (-3143 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)) (-4 *3 (-465)))) (-3841 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-465)))) (-3029 (*1 *2 *1) (-12 (-4 *3 (-465)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-431 *1)) (-4 *1 (-972 *3 *4 *5))))) +(-13 (-921 |t#3|) (-337 |t#1| |t#2|) (-320 $) (-527 |t#3| |t#1|) (-527 |t#3| $) (-1063 |t#3|) (-389 |t#1|) (-10 -8 (-15 -2887 ((-787) $ |t#3|)) (-15 -2887 ((-660 (-787)) $ (-660 |t#3|))) (-15 -2322 ($ $ |t#3| (-787))) (-15 -2322 ($ $ (-660 |t#3|) (-660 (-787)))) (-15 -4074 ((-660 $) $)) (-15 -1867 ((-1197 $) $ |t#3|)) (-15 -1867 ((-1197 |t#1|) $)) (-15 -3691 ((-3 |t#3| "failed") $)) (-15 -4061 ((-787) $ |t#3|)) (-15 -4061 ((-660 (-787)) $ (-660 |t#3|))) (-15 -3735 ((-2 (|:| -3637 $) (|:| -2457 $)) $ $ |t#3|)) (-15 -2030 ($ $ |t#3| (-787))) (-15 -2030 ($ $ (-660 |t#3|) (-660 (-787)))) (-15 -2043 ($ (-1197 |t#1|) |t#3|)) (-15 -2043 ($ (-1197 $) |t#3|)) (-15 -4086 ((-3 (-660 $) "failed") $)) (-15 -4098 ((-3 (-660 $) "failed") $)) (-15 -4111 ((-3 (-2 (|:| |var| |t#3|) (|:| -3556 (-787))) "failed") $)) (-15 -4050 ((-787) $)) (-15 -4050 ((-787) $ (-660 |t#3|))) (-15 -2058 ((-660 |t#3|) $)) (-15 -2234 ((-660 $) $)) (IF (|has| |t#1| (-627 (-549))) (IF (|has| |t#3| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-627 (-911 (-577)))) (IF (|has| |t#3| (-627 (-911 (-577)))) (-6 (-627 (-911 (-577)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-627 (-911 (-391)))) (IF (|has| |t#3| (-627 (-911 (-391)))) (-6 (-627 (-911 (-391)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-905 (-577))) (IF (|has| |t#3| (-905 (-577))) (-6 (-905 (-577))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-905 (-391))) (IF (|has| |t#3| (-905 (-391))) (-6 (-905 (-391))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -1816 ($ $ $ |t#3|)) (-15 -1827 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-465)) (PROGN (-6 (-465)) (-15 -4039 ($ $ |t#3|)) (-15 -3143 ($ $)) (-15 -3143 ($ $ |t#3|)) (-15 -3029 ((-431 $) $)) (-15 -3841 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4468)) (-6 -4468) |%noBranch|) (IF (|has| |t#1| (-932)) (-6 (-932)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) -2839 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-629 |#3|) . T) ((-629 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-626 (-880)) . T) ((-174) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-627 (-549)) -12 (|has| |#1| (-627 (-549))) (|has| |#3| (-627 (-549)))) ((-627 (-911 (-391))) -12 (|has| |#1| (-627 (-911 (-391)))) (|has| |#3| (-627 (-911 (-391))))) ((-627 (-911 (-577))) -12 (|has| |#1| (-627 (-911 (-577)))) (|has| |#3| (-627 (-911 (-577))))) ((-301) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-320 $) . T) ((-337 |#1| |#2|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2839 (|has| |#1| (-932)) (|has| |#1| (-465))) ((-527 |#3| |#1|) . T) ((-527 |#3| $) . T) ((-527 $ $) . T) ((-569) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-662 #0#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) |has| |#1| (-38 (-420 (-577)))) ((-664 #1=(-577)) |has| |#1| (-654 (-577))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-654 #1#) |has| |#1| (-654 (-577))) ((-654 |#1|) . T) ((-733 #0#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-742) . T) ((-915 $ |#3|) . T) ((-921 |#3|) . T) ((-923 |#3|) . T) ((-905 (-391)) -12 (|has| |#1| (-905 (-391))) (|has| |#3| (-905 (-391)))) ((-905 (-577)) -12 (|has| |#1| (-905 (-577))) (|has| |#3| (-905 (-577)))) ((-932) |has| |#1| (-932)) ((-1063 (-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1063 |#3|) . T) ((-1076 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) |has| |#1| (-932))) +((-2058 (((-660 |#2|) |#5|) 40)) (-1867 (((-1197 |#5|) |#5| |#2| (-1197 |#5|)) 23) (((-420 (-1197 |#5|)) |#5| |#2|) 16)) (-2043 ((|#5| (-420 (-1197 |#5|)) |#2|) 30)) (-3691 (((-3 |#2| "failed") |#5|) 71)) (-4098 (((-3 (-660 |#5|) "failed") |#5|) 65)) (-4125 (((-3 (-2 (|:| |val| |#5|) (|:| -3556 (-577))) "failed") |#5|) 53)) (-4086 (((-3 (-660 |#5|) "failed") |#5|) 67)) (-4111 (((-3 (-2 (|:| |var| |#2|) (|:| -3556 (-577))) "failed") |#5|) 57))) +(((-973 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2058 ((-660 |#2|) |#5|)) (-15 -3691 ((-3 |#2| "failed") |#5|)) (-15 -1867 ((-420 (-1197 |#5|)) |#5| |#2|)) (-15 -2043 (|#5| (-420 (-1197 |#5|)) |#2|)) (-15 -1867 ((-1197 |#5|) |#5| |#2| (-1197 |#5|))) (-15 -4086 ((-3 (-660 |#5|) "failed") |#5|)) (-15 -4098 ((-3 (-660 |#5|) "failed") |#5|)) (-15 -4111 ((-3 (-2 (|:| |var| |#2|) (|:| -3556 (-577))) "failed") |#5|)) (-15 -4125 ((-3 (-2 (|:| |val| |#5|) (|:| -3556 (-577))) "failed") |#5|))) (-809) (-865) (-1074) (-972 |#3| |#1| |#2|) (-13 (-375) (-10 -8 (-15 -3544 ($ |#4|)) (-15 -1623 (|#4| $)) (-15 -1637 (|#4| $))))) (T -973)) +((-4125 (*1 *2 *3) (|partial| -12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3556 (-577)))) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) (-15 -1637 (*7 $))))))) (-4111 (*1 *2 *3) (|partial| -12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3556 (-577)))) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) (-15 -1637 (*7 $))))))) (-4098 (*1 *2 *3) (|partial| -12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-660 *3)) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) (-15 -1637 (*7 $))))))) (-4086 (*1 *2 *3) (|partial| -12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-660 *3)) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) (-15 -1637 (*7 $))))))) (-1867 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1197 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) (-15 -1637 (*7 $))))) (-4 *7 (-972 *6 *5 *4)) (-4 *5 (-809)) (-4 *4 (-865)) (-4 *6 (-1074)) (-5 *1 (-973 *5 *4 *6 *7 *3)))) (-2043 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-1197 *2))) (-4 *5 (-809)) (-4 *4 (-865)) (-4 *6 (-1074)) (-4 *2 (-13 (-375) (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) (-15 -1637 (*7 $))))) (-5 *1 (-973 *5 *4 *6 *7 *2)) (-4 *7 (-972 *6 *5 *4)))) (-1867 (*1 *2 *3 *4) (-12 (-4 *5 (-809)) (-4 *4 (-865)) (-4 *6 (-1074)) (-4 *7 (-972 *6 *5 *4)) (-5 *2 (-420 (-1197 *3))) (-5 *1 (-973 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) (-15 -1637 (*7 $))))))) (-3691 (*1 *2 *3) (|partial| -12 (-4 *4 (-809)) (-4 *5 (-1074)) (-4 *6 (-972 *5 *4 *2)) (-4 *2 (-865)) (-5 *1 (-973 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3544 ($ *6)) (-15 -1623 (*6 $)) (-15 -1637 (*6 $))))))) (-2058 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-660 *5)) (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) (-15 -1637 (*7 $)))))))) +(-10 -7 (-15 -2058 ((-660 |#2|) |#5|)) (-15 -3691 ((-3 |#2| "failed") |#5|)) (-15 -1867 ((-420 (-1197 |#5|)) |#5| |#2|)) (-15 -2043 (|#5| (-420 (-1197 |#5|)) |#2|)) (-15 -1867 ((-1197 |#5|) |#5| |#2| (-1197 |#5|))) (-15 -4086 ((-3 (-660 |#5|) "failed") |#5|)) (-15 -4098 ((-3 (-660 |#5|) "failed") |#5|)) (-15 -4111 ((-3 (-2 (|:| |var| |#2|) (|:| -3556 (-577))) "failed") |#5|)) (-15 -4125 ((-3 (-2 (|:| |val| |#5|) (|:| -3556 (-577))) "failed") |#5|))) +((-4087 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-974 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4087 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-809) (-865) (-1074) (-972 |#3| |#1| |#2|) (-13 (-1125) (-10 -8 (-15 -3055 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-787)))))) (T -974)) +((-4087 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-865)) (-4 *8 (-1074)) (-4 *6 (-809)) (-4 *2 (-13 (-1125) (-10 -8 (-15 -3055 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-787)))))) (-5 *1 (-974 *6 *7 *8 *5 *2)) (-4 *5 (-972 *8 *6 *7))))) +(-10 -7 (-15 -4087 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-2058 (((-660 (-1201)) $) 16)) (-1867 (((-1197 $) $ (-1201)) 21) (((-1197 |#1|) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-4050 (((-787) $) NIL) (((-787) $ (-660 (-1201))) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-3841 (($ $) NIL (|has| |#1| (-465)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-465)))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) 8) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-1201) "failed") $) NIL)) (-2921 ((|#1| $) NIL) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-1201) $) NIL)) (-1816 (($ $ $ (-1201)) NIL (|has| |#1| (-174)))) (-2248 (($ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL) (((-705 |#1|) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3143 (($ $) NIL (|has| |#1| (-465))) (($ $ (-1201)) NIL (|has| |#1| (-465)))) (-2234 (((-660 $) $) NIL)) (-1522 (((-112) $) NIL (|has| |#1| (-932)))) (-2137 (($ $ |#1| (-544 (-1201)) $) NIL)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-1201) (-905 (-391))) (|has| |#1| (-905 (-391))))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-1201) (-905 (-577))) (|has| |#1| (-905 (-577)))))) (-2487 (((-112) $) NIL)) (-2548 (((-787) $) NIL)) (-2043 (($ (-1197 |#1|) (-1201)) NIL) (($ (-1197 $) (-1201)) NIL)) (-4074 (((-660 $) $) NIL)) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-544 (-1201))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ (-1201)) NIL)) (-4061 (((-544 (-1201)) $) NIL) (((-787) $ (-1201)) NIL) (((-660 (-787)) $ (-660 (-1201))) NIL)) (-2151 (($ (-1 (-544 (-1201)) (-544 (-1201))) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3691 (((-3 (-1201) "failed") $) 19)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL) (((-705 |#1|) (-1292 $)) NIL)) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) NIL (|has| |#1| (-465)))) (-2810 (((-1183) $) NIL)) (-4098 (((-3 (-660 $) "failed") $) NIL)) (-4086 (((-3 (-660 $) "failed") $) NIL)) (-4111 (((-3 (-2 (|:| |var| (-1201)) (|:| -3556 (-787))) "failed") $) NIL)) (-4147 (($ $ (-1201)) 29 (|has| |#1| (-38 (-420 (-577)))))) (-1474 (((-1145) $) NIL)) (-2180 (((-112) $) NIL)) (-2193 ((|#1| $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-465)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) NIL (|has| |#1| (-465)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-1902 (((-431 $) $) NIL (|has| |#1| (-932)))) (-3462 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)))) (-3280 (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ (-1201) |#1|) NIL) (($ $ (-660 (-1201)) (-660 |#1|)) NIL) (($ $ (-1201) $) NIL) (($ $ (-660 (-1201)) (-660 $)) NIL)) (-1827 (($ $ (-1201)) NIL (|has| |#1| (-174)))) (-2852 (($ $ (-660 (-1201)) (-660 (-787))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201))) NIL) (($ $ (-1201)) NIL)) (-2887 (((-544 (-1201)) $) NIL) (((-787) $ (-1201)) NIL) (((-660 (-787)) $ (-660 (-1201))) NIL)) (-4152 (((-911 (-391)) $) NIL (-12 (|has| (-1201) (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391)))))) (((-911 (-577)) $) NIL (-12 (|has| (-1201) (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577)))))) (((-549) $) NIL (-12 (|has| (-1201) (-627 (-549))) (|has| |#1| (-627 (-549)))))) (-4039 ((|#1| $) NIL (|has| |#1| (-465))) (($ $ (-1201)) NIL (|has| |#1| (-465)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-932))))) (-3544 (((-880) $) 25) (($ (-577)) NIL) (($ |#1|) NIL) (($ (-1201)) 27) (($ (-420 (-577))) NIL (-2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577)))))) (($ $) NIL (|has| |#1| (-569)))) (-4182 (((-660 |#1|) $) NIL)) (-2322 ((|#1| $ (-544 (-1201))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))))) (-4068 (((-787)) NIL T CONST)) (-2122 (($ $ $ (-787)) NIL (|has| |#1| (-174)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-660 (-1201)) (-660 (-787))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201))) NIL) (($ $ (-1201)) NIL)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-975 |#1|) (-13 (-972 |#1| (-544 (-1201)) (-1201)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4147 ($ $ (-1201))) |%noBranch|))) (-1074)) (T -975)) +((-4147 (*1 *1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-975 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074))))) +(-13 (-972 |#1| (-544 (-1201)) (-1201)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4147 ($ $ (-1201))) |%noBranch|))) +((-4138 (((-2 (|:| -3556 (-787)) (|:| -1777 |#5|) (|:| |radicand| |#5|)) |#3| (-787)) 49)) (-4151 (((-2 (|:| -3556 (-787)) (|:| -1777 |#5|) (|:| |radicand| |#5|)) (-420 (-577)) (-787)) 44)) (-4173 (((-2 (|:| -3556 (-787)) (|:| -1777 |#4|) (|:| |radicand| (-660 |#4|))) |#4| (-787)) 65)) (-4162 (((-2 (|:| -3556 (-787)) (|:| -1777 |#5|) (|:| |radicand| |#5|)) |#5| (-787)) 74 (|has| |#3| (-465))))) +(((-976 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4138 ((-2 (|:| -3556 (-787)) (|:| -1777 |#5|) (|:| |radicand| |#5|)) |#3| (-787))) (-15 -4151 ((-2 (|:| -3556 (-787)) (|:| -1777 |#5|) (|:| |radicand| |#5|)) (-420 (-577)) (-787))) (IF (|has| |#3| (-465)) (-15 -4162 ((-2 (|:| -3556 (-787)) (|:| -1777 |#5|) (|:| |radicand| |#5|)) |#5| (-787))) |%noBranch|) (-15 -4173 ((-2 (|:| -3556 (-787)) (|:| -1777 |#4|) (|:| |radicand| (-660 |#4|))) |#4| (-787)))) (-809) (-865) (-569) (-972 |#3| |#1| |#2|) (-13 (-375) (-10 -8 (-15 -3544 ($ |#4|)) (-15 -1623 (|#4| $)) (-15 -1637 (|#4| $))))) (T -976)) +((-4173 (*1 *2 *3 *4) (-12 (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-569)) (-4 *3 (-972 *7 *5 *6)) (-5 *2 (-2 (|:| -3556 (-787)) (|:| -1777 *3) (|:| |radicand| (-660 *3)))) (-5 *1 (-976 *5 *6 *7 *3 *8)) (-5 *4 (-787)) (-4 *8 (-13 (-375) (-10 -8 (-15 -3544 ($ *3)) (-15 -1623 (*3 $)) (-15 -1637 (*3 $))))))) (-4162 (*1 *2 *3 *4) (-12 (-4 *7 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-569)) (-4 *8 (-972 *7 *5 *6)) (-5 *2 (-2 (|:| -3556 (-787)) (|:| -1777 *3) (|:| |radicand| *3))) (-5 *1 (-976 *5 *6 *7 *8 *3)) (-5 *4 (-787)) (-4 *3 (-13 (-375) (-10 -8 (-15 -3544 ($ *8)) (-15 -1623 (*8 $)) (-15 -1637 (*8 $))))))) (-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-577))) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-569)) (-4 *8 (-972 *7 *5 *6)) (-5 *2 (-2 (|:| -3556 (-787)) (|:| -1777 *9) (|:| |radicand| *9))) (-5 *1 (-976 *5 *6 *7 *8 *9)) (-5 *4 (-787)) (-4 *9 (-13 (-375) (-10 -8 (-15 -3544 ($ *8)) (-15 -1623 (*8 $)) (-15 -1637 (*8 $))))))) (-4138 (*1 *2 *3 *4) (-12 (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-569)) (-4 *7 (-972 *3 *5 *6)) (-5 *2 (-2 (|:| -3556 (-787)) (|:| -1777 *8) (|:| |radicand| *8))) (-5 *1 (-976 *5 *6 *3 *7 *8)) (-5 *4 (-787)) (-4 *8 (-13 (-375) (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) (-15 -1637 (*7 $)))))))) +(-10 -7 (-15 -4138 ((-2 (|:| -3556 (-787)) (|:| -1777 |#5|) (|:| |radicand| |#5|)) |#3| (-787))) (-15 -4151 ((-2 (|:| -3556 (-787)) (|:| -1777 |#5|) (|:| |radicand| |#5|)) (-420 (-577)) (-787))) (IF (|has| |#3| (-465)) (-15 -4162 ((-2 (|:| -3556 (-787)) (|:| -1777 |#5|) (|:| |radicand| |#5|)) |#5| (-787))) |%noBranch|) (-15 -4173 ((-2 (|:| -3556 (-787)) (|:| -1777 |#4|) (|:| |radicand| (-660 |#4|))) |#4| (-787)))) +((-3473 (((-112) $ $) NIL)) (-2801 (($ (-1145)) 8)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 15) (((-1145) $) 12)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 11))) +(((-977) (-13 (-1125) (-626 (-1145)) (-10 -8 (-15 -2801 ($ (-1145)))))) (T -977)) +((-2801 (*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-977))))) +(-13 (-1125) (-626 (-1145)) (-10 -8 (-15 -2801 ($ (-1145))))) +((-2160 (((-1119 (-228)) $) 8)) (-2146 (((-1119 (-228)) $) 9)) (-3561 (((-660 (-660 (-966 (-228)))) $) 10)) (-3544 (((-880) $) 6))) +(((-978) (-141)) (T -978)) +((-3561 (*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-660 (-660 (-966 (-228))))))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-1119 (-228))))) (-2160 (*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-1119 (-228)))))) +(-13 (-626 (-880)) (-10 -8 (-15 -3561 ((-660 (-660 (-966 (-228)))) $)) (-15 -2146 ((-1119 (-228)) $)) (-15 -2160 ((-1119 (-228)) $)))) +(((-626 (-880)) . T)) +((-4185 (((-3 (-705 |#1|) "failed") |#2| (-944)) 18))) +(((-979 |#1| |#2|) (-10 -7 (-15 -4185 ((-3 (-705 |#1|) "failed") |#2| (-944)))) (-569) (-672 |#1|)) (T -979)) +((-4185 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-944)) (-4 *5 (-569)) (-5 *2 (-705 *5)) (-5 *1 (-979 *5 *3)) (-4 *3 (-672 *5))))) +(-10 -7 (-15 -4185 ((-3 (-705 |#1|) "failed") |#2| (-944)))) +((-3127 (((-981 |#2|) (-1 |#2| |#1| |#2|) (-981 |#1|) |#2|) 16)) (-3654 ((|#2| (-1 |#2| |#1| |#2|) (-981 |#1|) |#2|) 18)) (-4087 (((-981 |#2|) (-1 |#2| |#1|) (-981 |#1|)) 13))) +(((-980 |#1| |#2|) (-10 -7 (-15 -3127 ((-981 |#2|) (-1 |#2| |#1| |#2|) (-981 |#1|) |#2|)) (-15 -3654 (|#2| (-1 |#2| |#1| |#2|) (-981 |#1|) |#2|)) (-15 -4087 ((-981 |#2|) (-1 |#2| |#1|) (-981 |#1|)))) (-1242) (-1242)) (T -980)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-981 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-981 *6)) (-5 *1 (-980 *5 *6)))) (-3654 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-981 *5)) (-4 *5 (-1242)) (-4 *2 (-1242)) (-5 *1 (-980 *5 *2)))) (-3127 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-981 *6)) (-4 *6 (-1242)) (-4 *5 (-1242)) (-5 *2 (-981 *5)) (-5 *1 (-980 *6 *5))))) +(-10 -7 (-15 -3127 ((-981 |#2|) (-1 |#2| |#1| |#2|) (-981 |#1|) |#2|)) (-15 -3654 (|#2| (-1 |#2| |#1| |#2|) (-981 |#1|) |#2|)) (-15 -4087 ((-981 |#2|) (-1 |#2| |#1|) (-981 |#1|)))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4077 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-865)))) (-4053 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471))) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))))) (-1864 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-865)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 ((|#1| $ (-577) |#1|) 19 (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-1534 (($) NIL T CONST)) (-3645 (($ $) NIL (|has| $ (-6 -4471)))) (-3787 (($ $) NIL)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3904 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)))) (-2192 ((|#1| $ (-577) |#1|) 18 (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) 16)) (-3618 (((-577) (-1 (-112) |#1|) $) NIL) (((-577) |#1| $) NIL (|has| |#1| (-1125))) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)))) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-4113 (($ (-787) |#1|) 15)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) 11 (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| |#1| (-865)))) (-3283 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-865)))) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2416 (((-577) $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| |#1| (-865)))) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-2308 (($ |#1| $ (-577)) NIL) (($ $ $ (-577)) NIL)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-3552 ((|#1| $) NIL (|has| (-577) (-865)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2397 (($ $ |#1|) 20 (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) 12)) (-2872 ((|#1| $ (-577) |#1|) NIL) ((|#1| $ (-577)) 17) (($ $ (-1259 (-577))) NIL)) (-3453 (($ $ (-577)) NIL) (($ $ (-1259 (-577))) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4064 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)))) (-1944 (($ $) 21)) (-4152 (((-549) $) NIL (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 14)) (-1677 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-660 $)) NIL)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3484 (((-787) $) 8 (|has| $ (-6 -4470))))) +(((-981 |#1|) (-19 |#1|) (-1242)) (T -981)) NIL (-19 |#1|) -((-2774 (($ $ (-1114 $)) 7) (($ $ (-1198)) 6))) -(((-979) (-141)) (T -979)) -((-2774 (*1 *1 *1 *2) (-12 (-5 *2 (-1114 *1)) (-4 *1 (-979)))) (-2774 (*1 *1 *1 *2) (-12 (-4 *1 (-979)) (-5 *2 (-1198))))) -(-13 (-10 -8 (-15 -2774 ($ $ (-1198))) (-15 -2774 ($ $ (-1114 $))))) -((-1367 (((-2 (|:| -1771 (-657 (-576))) (|:| |poly| (-657 (-1194 |#1|))) (|:| |prim| (-1194 |#1|))) (-657 (-972 |#1|)) (-657 (-1198)) (-1198)) 26) (((-2 (|:| -1771 (-657 (-576))) (|:| |poly| (-657 (-1194 |#1|))) (|:| |prim| (-1194 |#1|))) (-657 (-972 |#1|)) (-657 (-1198))) 27) (((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1194 |#1|))) (-972 |#1|) (-1198) (-972 |#1|) (-1198)) 49))) -(((-980 |#1|) (-10 -7 (-15 -1367 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1194 |#1|))) (-972 |#1|) (-1198) (-972 |#1|) (-1198))) (-15 -1367 ((-2 (|:| -1771 (-657 (-576))) (|:| |poly| (-657 (-1194 |#1|))) (|:| |prim| (-1194 |#1|))) (-657 (-972 |#1|)) (-657 (-1198)))) (-15 -1367 ((-2 (|:| -1771 (-657 (-576))) (|:| |poly| (-657 (-1194 |#1|))) (|:| |prim| (-1194 |#1|))) (-657 (-972 |#1|)) (-657 (-1198)) (-1198)))) (-13 (-374) (-148))) (T -980)) -((-1367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 (-972 *6))) (-5 *4 (-657 (-1198))) (-5 *5 (-1198)) (-4 *6 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1771 (-657 (-576))) (|:| |poly| (-657 (-1194 *6))) (|:| |prim| (-1194 *6)))) (-5 *1 (-980 *6)))) (-1367 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-657 (-1198))) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1771 (-657 (-576))) (|:| |poly| (-657 (-1194 *5))) (|:| |prim| (-1194 *5)))) (-5 *1 (-980 *5)))) (-1367 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-972 *5)) (-5 *4 (-1198)) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1194 *5)))) (-5 *1 (-980 *5))))) -(-10 -7 (-15 -1367 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1194 |#1|))) (-972 |#1|) (-1198) (-972 |#1|) (-1198))) (-15 -1367 ((-2 (|:| -1771 (-657 (-576))) (|:| |poly| (-657 (-1194 |#1|))) (|:| |prim| (-1194 |#1|))) (-657 (-972 |#1|)) (-657 (-1198)))) (-15 -1367 ((-2 (|:| -1771 (-657 (-576))) (|:| |poly| (-657 (-1194 |#1|))) (|:| |prim| (-1194 |#1|))) (-657 (-972 |#1|)) (-657 (-1198)) (-1198)))) -((-3901 (((-657 |#1|) |#1| |#1|) 47)) (-4257 (((-112) |#1|) 44)) (-2532 ((|#1| |#1|) 79)) (-3711 ((|#1| |#1|) 78))) -(((-981 |#1|) (-10 -7 (-15 -4257 ((-112) |#1|)) (-15 -3711 (|#1| |#1|)) (-15 -2532 (|#1| |#1|)) (-15 -3901 ((-657 |#1|) |#1| |#1|))) (-557)) (T -981)) -((-3901 (*1 *2 *3 *3) (-12 (-5 *2 (-657 *3)) (-5 *1 (-981 *3)) (-4 *3 (-557)))) (-2532 (*1 *2 *2) (-12 (-5 *1 (-981 *2)) (-4 *2 (-557)))) (-3711 (*1 *2 *2) (-12 (-5 *1 (-981 *2)) (-4 *2 (-557)))) (-4257 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-981 *3)) (-4 *3 (-557))))) -(-10 -7 (-15 -4257 ((-112) |#1|)) (-15 -3711 (|#1| |#1|)) (-15 -2532 (|#1| |#1|)) (-15 -3901 ((-657 |#1|) |#1| |#1|))) -((-2210 (((-1294) (-877)) 9))) -(((-982) (-10 -7 (-15 -2210 ((-1294) (-877))))) (T -982)) -((-2210 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-982))))) -(-10 -7 (-15 -2210 ((-1294) (-877)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 78 (|has| |#1| (-568)))) (-3325 (($ $) 79 (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 34)) (-2884 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL)) (-2212 (($ $) 31)) (-3843 (((-3 $ "failed") $) 42)) (-3813 (($ $) NIL (|has| |#1| (-464)))) (-3124 (($ $ |#1| |#2| $) 62)) (-4094 (((-112) $) NIL)) (-4334 (((-784) $) 17)) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| |#2|) NIL)) (-4436 ((|#2| $) 24)) (-4056 (($ (-1 |#2| |#2|) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-2174 (($ $) 28)) (-2186 ((|#1| $) 26)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2146 (((-112) $) 51)) (-2160 ((|#1| $) NIL)) (-2303 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-568))))) (-3418 (((-3 $ "failed") $ $) 91 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-568)))) (-1770 ((|#2| $) 22)) (-1450 ((|#1| $) NIL (|has| |#1| (-464)))) (-3501 (((-877) $) NIL) (($ (-576)) 46) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 41) (($ (-419 (-576))) NIL (-2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))))) (-4037 (((-657 |#1|) $) NIL)) (-2313 ((|#1| $ |#2|) 37)) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) 15 T CONST)) (-2702 (($ $ $ (-784)) 74 (|has| |#1| (-174)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) 84 (|has| |#1| (-568)))) (-2769 (($) 27 T CONST)) (-2779 (($) 12 T CONST)) (-2933 (((-112) $ $) 83)) (-3034 (($ $ |#1|) 92 (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) 69) (($ $ (-784)) 67)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-983 |#1| |#2|) (-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -2303 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4464)) (-6 -4464) |%noBranch|))) (-1071) (-805)) (T -983)) -((-2303 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-983 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) (-4 *3 (-1071)) (-4 *2 (-805))))) -(-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -2303 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4464)) (-6 -4464) |%noBranch|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL (-2802 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806)))))) (-3733 (($ $ $) 65 (-12 (|has| |#1| (-806)) (|has| |#2| (-806))))) (-2721 (((-3 $ "failed") $ $) 52 (-2802 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806)))))) (-2193 (((-784)) 36 (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-3353 ((|#2| $) 22)) (-4220 ((|#1| $) 21)) (-4359 (($) NIL (-2802 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806)))) CONST)) (-3843 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739)))))) (-1892 (($) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-4094 (((-112) $) NIL (-2802 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739)))))) (-3707 (($ $ $) NIL (-2802 (-12 (|has| |#1| (-806)) (|has| |#2| (-806))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-1611 (($ $ $) NIL (-2802 (-12 (|has| |#1| (-806)) (|has| |#2| (-806))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3823 (($ |#1| |#2|) 20)) (-3007 (((-941) $) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-2342 (((-1180) $) NIL)) (-2134 (($ $) 39 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3178 (($ (-941)) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-1471 (((-1142) $) NIL)) (-3549 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3544 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3501 (((-877) $) 14)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 42 (-2802 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806)))) CONST)) (-2779 (($) 25 (-2802 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739)))) CONST)) (-2985 (((-112) $ $) NIL (-2802 (-12 (|has| |#1| (-806)) (|has| |#2| (-806))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-2963 (((-112) $ $) NIL (-2802 (-12 (|has| |#1| (-806)) (|has| |#2| (-806))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-2933 (((-112) $ $) 19)) (-2973 (((-112) $ $) NIL (-2802 (-12 (|has| |#1| (-806)) (|has| |#2| (-806))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-2954 (((-112) $ $) 69 (-2802 (-12 (|has| |#1| (-806)) (|has| |#2| (-806))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3034 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3022 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3012 (($ $ $) 45 (-2802 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806)))))) (** (($ $ (-576)) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485)))) (($ $ (-784)) 32 (-2802 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739))))) (($ $ (-941)) NIL (-2802 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739)))))) (* (($ (-576) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-784) $) 48 (-2802 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806))))) (($ (-941) $) NIL (-2802 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-806)) (|has| |#2| (-806))))) (($ $ $) 28 (-2802 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-739)) (|has| |#2| (-739))))))) -(((-984 |#1| |#2|) (-13 (-1122) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-739)) (IF (|has| |#2| (-739)) (-6 (-739)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-806)) (IF (|has| |#2| (-806)) (-6 (-806)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-862)) (IF (|has| |#2| (-862)) (-6 (-862)) |%noBranch|) |%noBranch|) (-15 -3823 ($ |#1| |#2|)) (-15 -4220 (|#1| $)) (-15 -3353 (|#2| $)))) (-1122) (-1122)) (T -984)) -((-3823 (*1 *1 *2 *3) (-12 (-5 *1 (-984 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-4220 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-984 *2 *3)) (-4 *3 (-1122)))) (-3353 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-984 *3 *2)) (-4 *3 (-1122))))) -(-13 (-1122) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-739)) (IF (|has| |#2| (-739)) (-6 (-739)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-806)) (IF (|has| |#2| (-806)) (-6 (-806)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-862)) (IF (|has| |#2| (-862)) (-6 (-862)) |%noBranch|) |%noBranch|) (-15 -3823 ($ |#1| |#2|)) (-15 -4220 (|#1| $)) (-15 -3353 (|#2| $)))) -((-3071 (((-1126) $) 12)) (-3743 (($ (-518) (-1126)) 14)) (-2676 (((-518) $) 9)) (-3501 (((-877) $) 24))) -(((-985) (-13 (-625 (-877)) (-10 -8 (-15 -2676 ((-518) $)) (-15 -3071 ((-1126) $)) (-15 -3743 ($ (-518) (-1126)))))) (T -985)) -((-2676 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-985)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-985)))) (-3743 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1126)) (-5 *1 (-985))))) -(-13 (-625 (-877)) (-10 -8 (-15 -2676 ((-518) $)) (-15 -3071 ((-1126) $)) (-15 -3743 ($ (-518) (-1126))))) -((-3429 (((-112) $ $) NIL)) (-2236 (($) NIL T CONST)) (-2734 (($ $ $) 30)) (-2712 (($ $) 24)) (-2342 (((-1180) $) NIL)) (-2967 (((-704 (-888 $ $)) $) 55)) (-1399 (((-704 $) $) 45)) (-4379 (((-704 (-888 $ $)) $) 56)) (-2545 (((-704 (-888 $ $)) $) 57)) (-3008 (((-704 |#1|) $) 36)) (-1740 (((-704 (-888 $ $)) $) 54)) (-1552 (($ $ $) 31)) (-1471 (((-1142) $) NIL)) (-3447 (($) NIL T CONST)) (-4420 (($ $ $) 32)) (-4370 (($ $ $) 29)) (-3264 (($ $ $) 27)) (-3501 (((-877) $) 59) (($ |#1|) 12)) (-2046 (((-112) $ $) NIL)) (-2724 (($ $ $) 28)) (-2933 (((-112) $ $) NIL))) -(((-986 |#1|) (-13 (-989) (-628 |#1|) (-10 -8 (-15 -3008 ((-704 |#1|) $)) (-15 -1399 ((-704 $) $)) (-15 -1740 ((-704 (-888 $ $)) $)) (-15 -2967 ((-704 (-888 $ $)) $)) (-15 -4379 ((-704 (-888 $ $)) $)) (-15 -2545 ((-704 (-888 $ $)) $)) (-15 -3264 ($ $ $)) (-15 -4370 ($ $ $)))) (-1122)) (T -986)) -((-3008 (*1 *2 *1) (-12 (-5 *2 (-704 *3)) (-5 *1 (-986 *3)) (-4 *3 (-1122)))) (-1399 (*1 *2 *1) (-12 (-5 *2 (-704 (-986 *3))) (-5 *1 (-986 *3)) (-4 *3 (-1122)))) (-1740 (*1 *2 *1) (-12 (-5 *2 (-704 (-888 (-986 *3) (-986 *3)))) (-5 *1 (-986 *3)) (-4 *3 (-1122)))) (-2967 (*1 *2 *1) (-12 (-5 *2 (-704 (-888 (-986 *3) (-986 *3)))) (-5 *1 (-986 *3)) (-4 *3 (-1122)))) (-4379 (*1 *2 *1) (-12 (-5 *2 (-704 (-888 (-986 *3) (-986 *3)))) (-5 *1 (-986 *3)) (-4 *3 (-1122)))) (-2545 (*1 *2 *1) (-12 (-5 *2 (-704 (-888 (-986 *3) (-986 *3)))) (-5 *1 (-986 *3)) (-4 *3 (-1122)))) (-3264 (*1 *1 *1 *1) (-12 (-5 *1 (-986 *2)) (-4 *2 (-1122)))) (-4370 (*1 *1 *1 *1) (-12 (-5 *1 (-986 *2)) (-4 *2 (-1122))))) -(-13 (-989) (-628 |#1|) (-10 -8 (-15 -3008 ((-704 |#1|) $)) (-15 -1399 ((-704 $) $)) (-15 -1740 ((-704 (-888 $ $)) $)) (-15 -2967 ((-704 (-888 $ $)) $)) (-15 -4379 ((-704 (-888 $ $)) $)) (-15 -2545 ((-704 (-888 $ $)) $)) (-15 -3264 ($ $ $)) (-15 -4370 ($ $ $)))) -((-2394 (((-986 |#1|) (-986 |#1|)) 46)) (-1601 (((-986 |#1|) (-986 |#1|)) 22)) (-3536 (((-1124 |#1|) (-986 |#1|)) 41))) -(((-987 |#1|) (-13 (-1239) (-10 -7 (-15 -1601 ((-986 |#1|) (-986 |#1|))) (-15 -3536 ((-1124 |#1|) (-986 |#1|))) (-15 -2394 ((-986 |#1|) (-986 |#1|))))) (-1122)) (T -987)) -((-1601 (*1 *2 *2) (-12 (-5 *2 (-986 *3)) (-4 *3 (-1122)) (-5 *1 (-987 *3)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-986 *4)) (-4 *4 (-1122)) (-5 *2 (-1124 *4)) (-5 *1 (-987 *4)))) (-2394 (*1 *2 *2) (-12 (-5 *2 (-986 *3)) (-4 *3 (-1122)) (-5 *1 (-987 *3))))) -(-13 (-1239) (-10 -7 (-15 -1601 ((-986 |#1|) (-986 |#1|))) (-15 -3536 ((-1124 |#1|) (-986 |#1|))) (-15 -2394 ((-986 |#1|) (-986 |#1|))))) -((-4083 (((-986 |#2|) (-1 |#2| |#1|) (-986 |#1|)) 29))) -(((-988 |#1| |#2|) (-13 (-1239) (-10 -7 (-15 -4083 ((-986 |#2|) (-1 |#2| |#1|) (-986 |#1|))))) (-1122) (-1122)) (T -988)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-986 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-986 *6)) (-5 *1 (-988 *5 *6))))) -(-13 (-1239) (-10 -7 (-15 -4083 ((-986 |#2|) (-1 |#2| |#1|) (-986 |#1|))))) -((-3429 (((-112) $ $) 16)) (-2236 (($) 14 T CONST)) (-2734 (($ $ $) 6)) (-2712 (($ $) 8)) (-2342 (((-1180) $) 20)) (-1552 (($ $ $) 12)) (-1471 (((-1142) $) 19)) (-3447 (($) 13 T CONST)) (-4420 (($ $ $) 11)) (-3501 (((-877) $) 18)) (-2046 (((-112) $ $) 17)) (-2724 (($ $ $) 7)) (-2933 (((-112) $ $) 15))) -(((-989) (-141)) (T -989)) -((-2236 (*1 *1) (-4 *1 (-989))) (-3447 (*1 *1) (-4 *1 (-989))) (-1552 (*1 *1 *1 *1) (-4 *1 (-989))) (-4420 (*1 *1 *1 *1) (-4 *1 (-989)))) -(-13 (-113) (-1122) (-10 -8 (-15 -2236 ($) -1509) (-15 -3447 ($) -1509) (-15 -1552 ($ $ $)) (-15 -4420 ($ $ $)))) -(((-102) . T) ((-113) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3793 (((-112) $ (-784)) 8)) (-4359 (($) 7 T CONST)) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) 9)) (-4033 (($ $ $) 44)) (-3073 (($ $ $) 45)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1611 ((|#1| $) 46)) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3050 ((|#1| $) 40)) (-2468 (($ |#1| $) 41)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2277 ((|#1| $) 42)) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-4079 (($ (-657 |#1|)) 43)) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-990 |#1|) (-141) (-862)) (T -990)) -((-1611 (*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-862)))) (-3073 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-862)))) (-4033 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-862))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4466) (-15 -1611 (|t#1| $)) (-15 -3073 ($ $ $)) (-15 -4033 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) -((-1338 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3436 |#2|)) |#2| |#2|) 105)) (-1558 ((|#2| |#2| |#2|) 103)) (-3443 (((-2 (|:| |coef2| |#2|) (|:| -3436 |#2|)) |#2| |#2|) 107)) (-2925 (((-2 (|:| |coef1| |#2|) (|:| -3436 |#2|)) |#2| |#2|) 109)) (-1639 (((-2 (|:| |coef2| |#2|) (|:| -3868 |#1|)) |#2| |#2|) 131 (|has| |#1| (-464)))) (-1684 (((-2 (|:| |coef2| |#2|) (|:| -3203 |#1|)) |#2| |#2|) 56)) (-1337 (((-2 (|:| |coef2| |#2|) (|:| -3203 |#1|)) |#2| |#2|) 80)) (-1744 (((-2 (|:| |coef1| |#2|) (|:| -3203 |#1|)) |#2| |#2|) 82)) (-4340 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-3650 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784)) 89)) (-4446 (((-2 (|:| |coef2| |#2|) (|:| -1701 |#1|)) |#2|) 121)) (-2166 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784)) 92)) (-2107 (((-657 (-784)) |#2| |#2|) 102)) (-1758 ((|#1| |#2| |#2|) 50)) (-3706 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3868 |#1|)) |#2| |#2|) 129 (|has| |#1| (-464)))) (-3868 ((|#1| |#2| |#2|) 127 (|has| |#1| (-464)))) (-1820 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3203 |#1|)) |#2| |#2|) 54)) (-4272 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3203 |#1|)) |#2| |#2|) 79)) (-3203 ((|#1| |#2| |#2|) 76)) (-4267 (((-2 (|:| -1771 |#1|) (|:| -2335 |#2|) (|:| -3644 |#2|)) |#2| |#2|) 41)) (-4084 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-1819 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-2382 ((|#2| |#2| |#2|) 93)) (-2850 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784)) 87)) (-3963 ((|#2| |#2| |#2| (-784)) 85)) (-3436 ((|#2| |#2| |#2|) 135 (|has| |#1| (-464)))) (-3418 (((-1289 |#2|) (-1289 |#2|) |#1|) 22)) (-3944 (((-2 (|:| -2335 |#2|) (|:| -3644 |#2|)) |#2| |#2|) 46)) (-2027 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1701 |#1|)) |#2|) 119)) (-1701 ((|#1| |#2|) 116)) (-1531 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784)) 91)) (-3334 ((|#2| |#2| |#2| (-784)) 90)) (-2800 (((-657 |#2|) |#2| |#2|) 99)) (-3798 ((|#2| |#2| |#1| |#1| (-784)) 62)) (-3878 ((|#1| |#1| |#1| (-784)) 61)) (* (((-1289 |#2|) |#1| (-1289 |#2|)) 17))) -(((-991 |#1| |#2|) (-10 -7 (-15 -3203 (|#1| |#2| |#2|)) (-15 -4272 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3203 |#1|)) |#2| |#2|)) (-15 -1337 ((-2 (|:| |coef2| |#2|) (|:| -3203 |#1|)) |#2| |#2|)) (-15 -1744 ((-2 (|:| |coef1| |#2|) (|:| -3203 |#1|)) |#2| |#2|)) (-15 -3963 (|#2| |#2| |#2| (-784))) (-15 -2850 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784))) (-15 -3650 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784))) (-15 -3334 (|#2| |#2| |#2| (-784))) (-15 -1531 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784))) (-15 -2166 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784))) (-15 -2382 (|#2| |#2| |#2|)) (-15 -1819 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4340 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1558 (|#2| |#2| |#2|)) (-15 -1338 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3436 |#2|)) |#2| |#2|)) (-15 -3443 ((-2 (|:| |coef2| |#2|) (|:| -3436 |#2|)) |#2| |#2|)) (-15 -2925 ((-2 (|:| |coef1| |#2|) (|:| -3436 |#2|)) |#2| |#2|)) (-15 -1701 (|#1| |#2|)) (-15 -2027 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1701 |#1|)) |#2|)) (-15 -4446 ((-2 (|:| |coef2| |#2|) (|:| -1701 |#1|)) |#2|)) (-15 -2800 ((-657 |#2|) |#2| |#2|)) (-15 -2107 ((-657 (-784)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -3868 (|#1| |#2| |#2|)) (-15 -3706 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3868 |#1|)) |#2| |#2|)) (-15 -1639 ((-2 (|:| |coef2| |#2|) (|:| -3868 |#1|)) |#2| |#2|)) (-15 -3436 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1289 |#2|) |#1| (-1289 |#2|))) (-15 -3418 ((-1289 |#2|) (-1289 |#2|) |#1|)) (-15 -4267 ((-2 (|:| -1771 |#1|) (|:| -2335 |#2|) (|:| -3644 |#2|)) |#2| |#2|)) (-15 -3944 ((-2 (|:| -2335 |#2|) (|:| -3644 |#2|)) |#2| |#2|)) (-15 -3878 (|#1| |#1| |#1| (-784))) (-15 -3798 (|#2| |#2| |#1| |#1| (-784))) (-15 -4084 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1758 (|#1| |#2| |#2|)) (-15 -1820 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3203 |#1|)) |#2| |#2|)) (-15 -1684 ((-2 (|:| |coef2| |#2|) (|:| -3203 |#1|)) |#2| |#2|))) (-568) (-1265 |#1|)) (T -991)) -((-1684 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3203 *4))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-1820 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3203 *4))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-1758 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-991 *2 *3)) (-4 *3 (-1265 *2)))) (-4084 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) (-4 *2 (-1265 *3)))) (-3798 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-784)) (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) (-4 *2 (-1265 *3)))) (-3878 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-784)) (-4 *2 (-568)) (-5 *1 (-991 *2 *4)) (-4 *4 (-1265 *2)))) (-3944 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2335 *3) (|:| -3644 *3))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-4267 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1771 *4) (|:| -2335 *3) (|:| -3644 *3))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-3418 (*1 *2 *2 *3) (-12 (-5 *2 (-1289 *4)) (-4 *4 (-1265 *3)) (-4 *3 (-568)) (-5 *1 (-991 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1289 *4)) (-4 *4 (-1265 *3)) (-4 *3 (-568)) (-5 *1 (-991 *3 *4)))) (-3436 (*1 *2 *2 *2) (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) (-4 *2 (-1265 *3)))) (-1639 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3868 *4))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-3706 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3868 *4))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-3868 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-991 *2 *3)) (-4 *3 (-1265 *2)))) (-2107 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-657 (-784))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-2800 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-657 *3)) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-4446 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1701 *4))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-2027 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1701 *4))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-1701 (*1 *2 *3) (-12 (-4 *2 (-568)) (-5 *1 (-991 *2 *3)) (-4 *3 (-1265 *2)))) (-2925 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3436 *3))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-3443 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3436 *3))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-1338 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3436 *3))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-1558 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) (-4 *2 (-1265 *3)))) (-4340 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-1819 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-2382 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) (-4 *2 (-1265 *3)))) (-2166 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-784)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-991 *5 *3)) (-4 *3 (-1265 *5)))) (-1531 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-784)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-991 *5 *3)) (-4 *3 (-1265 *5)))) (-3334 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-784)) (-4 *4 (-568)) (-5 *1 (-991 *4 *2)) (-4 *2 (-1265 *4)))) (-3650 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-784)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-991 *5 *3)) (-4 *3 (-1265 *5)))) (-2850 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-784)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-991 *5 *3)) (-4 *3 (-1265 *5)))) (-3963 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-784)) (-4 *4 (-568)) (-5 *1 (-991 *4 *2)) (-4 *2 (-1265 *4)))) (-1744 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3203 *4))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-1337 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3203 *4))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-4272 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3203 *4))) (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) (-3203 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-991 *2 *3)) (-4 *3 (-1265 *2))))) -(-10 -7 (-15 -3203 (|#1| |#2| |#2|)) (-15 -4272 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3203 |#1|)) |#2| |#2|)) (-15 -1337 ((-2 (|:| |coef2| |#2|) (|:| -3203 |#1|)) |#2| |#2|)) (-15 -1744 ((-2 (|:| |coef1| |#2|) (|:| -3203 |#1|)) |#2| |#2|)) (-15 -3963 (|#2| |#2| |#2| (-784))) (-15 -2850 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784))) (-15 -3650 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784))) (-15 -3334 (|#2| |#2| |#2| (-784))) (-15 -1531 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784))) (-15 -2166 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-784))) (-15 -2382 (|#2| |#2| |#2|)) (-15 -1819 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4340 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1558 (|#2| |#2| |#2|)) (-15 -1338 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3436 |#2|)) |#2| |#2|)) (-15 -3443 ((-2 (|:| |coef2| |#2|) (|:| -3436 |#2|)) |#2| |#2|)) (-15 -2925 ((-2 (|:| |coef1| |#2|) (|:| -3436 |#2|)) |#2| |#2|)) (-15 -1701 (|#1| |#2|)) (-15 -2027 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1701 |#1|)) |#2|)) (-15 -4446 ((-2 (|:| |coef2| |#2|) (|:| -1701 |#1|)) |#2|)) (-15 -2800 ((-657 |#2|) |#2| |#2|)) (-15 -2107 ((-657 (-784)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -3868 (|#1| |#2| |#2|)) (-15 -3706 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3868 |#1|)) |#2| |#2|)) (-15 -1639 ((-2 (|:| |coef2| |#2|) (|:| -3868 |#1|)) |#2| |#2|)) (-15 -3436 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1289 |#2|) |#1| (-1289 |#2|))) (-15 -3418 ((-1289 |#2|) (-1289 |#2|) |#1|)) (-15 -4267 ((-2 (|:| -1771 |#1|) (|:| -2335 |#2|) (|:| -3644 |#2|)) |#2| |#2|)) (-15 -3944 ((-2 (|:| -2335 |#2|) (|:| -3644 |#2|)) |#2| |#2|)) (-15 -3878 (|#1| |#1| |#1| (-784))) (-15 -3798 (|#2| |#2| |#1| |#1| (-784))) (-15 -4084 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1758 (|#1| |#2| |#2|)) (-15 -1820 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3203 |#1|)) |#2| |#2|)) (-15 -1684 ((-2 (|:| |coef2| |#2|) (|:| -3203 |#1|)) |#2| |#2|))) -((-3429 (((-112) $ $) NIL)) (-2978 (((-1238) $) 13)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3088 (((-1157) $) 10)) (-3501 (((-877) $) 20) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-992) (-13 (-1105) (-10 -8 (-15 -3088 ((-1157) $)) (-15 -2978 ((-1238) $))))) (T -992)) -((-3088 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-992)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-992))))) -(-13 (-1105) (-10 -8 (-15 -3088 ((-1157) $)) (-15 -2978 ((-1238) $)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 40)) (-2721 (((-3 $ "failed") $ $) 54)) (-4359 (($) NIL T CONST)) (-4320 (((-657 (-888 (-941) (-941))) $) 67)) (-3043 (((-941) $) 94)) (-1458 (((-657 (-941)) $) 17)) (-2523 (((-1179 $) (-784)) 39)) (-2179 (($ (-657 (-941))) 16)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3549 (($ $) 70)) (-3501 (((-877) $) 90) (((-657 (-941)) $) 11)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 8 T CONST)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 44)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 42)) (-3012 (($ $ $) 46)) (* (($ (-941) $) NIL) (($ (-784) $) 49)) (-3440 (((-784) $) 22))) -(((-993) (-13 (-808) (-625 (-657 (-941))) (-10 -8 (-15 -2179 ($ (-657 (-941)))) (-15 -1458 ((-657 (-941)) $)) (-15 -3440 ((-784) $)) (-15 -2523 ((-1179 $) (-784))) (-15 -4320 ((-657 (-888 (-941) (-941))) $)) (-15 -3043 ((-941) $)) (-15 -3549 ($ $))))) (T -993)) -((-2179 (*1 *1 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-993)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-993)))) (-3440 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-993)))) (-2523 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1179 (-993))) (-5 *1 (-993)))) (-4320 (*1 *2 *1) (-12 (-5 *2 (-657 (-888 (-941) (-941)))) (-5 *1 (-993)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-941)) (-5 *1 (-993)))) (-3549 (*1 *1 *1) (-5 *1 (-993)))) -(-13 (-808) (-625 (-657 (-941))) (-10 -8 (-15 -2179 ($ (-657 (-941)))) (-15 -1458 ((-657 (-941)) $)) (-15 -3440 ((-784) $)) (-15 -2523 ((-1179 $) (-784))) (-15 -4320 ((-657 (-888 (-941) (-941))) $)) (-15 -3043 ((-941) $)) (-15 -3549 ($ $)))) -((-3034 (($ $ |#2|) 31)) (-3022 (($ $) 23) (($ $ $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) 29))) -(((-994 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3034 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) (-995 |#2| |#3| |#4|) (-1071) (-805) (-862)) (T -994)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3034 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 * (|#1| (-941) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2029 (((-657 |#3|) $) 86)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-3325 (($ $) 64 (|has| |#1| (-568)))) (-4306 (((-112) $) 66 (|has| |#1| (-568)))) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2212 (($ $) 72)) (-3843 (((-3 $ "failed") $) 37)) (-2373 (((-112) $) 85)) (-4094 (((-112) $) 35)) (-3157 (((-112) $) 74)) (-2003 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-657 |#3|) (-657 |#2|)) 87)) (-4083 (($ (-1 |#1| |#1|) $) 75)) (-2174 (($ $) 77)) (-2186 ((|#1| $) 78)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3418 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1770 ((|#2| $) 76)) (-1431 (($ $) 84)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2313 ((|#1| $ |#2|) 71)) (-3096 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3034 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-995 |#1| |#2| |#3|) (-141) (-1071) (-805) (-862)) (T -995)) -((-2186 (*1 *2 *1) (-12 (-4 *1 (-995 *2 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-1071)))) (-2174 (*1 *1 *1) (-12 (-4 *1 (-995 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-805)) (-4 *4 (-862)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *2 *4)) (-4 *3 (-1071)) (-4 *4 (-862)) (-4 *2 (-805)))) (-2003 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-995 *4 *3 *2)) (-4 *4 (-1071)) (-4 *3 (-805)) (-4 *2 (-862)))) (-2003 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 *6)) (-5 *3 (-657 *5)) (-4 *1 (-995 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-805)) (-4 *6 (-862)))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-657 *5)))) (-2373 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-1431 (*1 *1 *1) (-12 (-4 *1 (-995 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-805)) (-4 *4 (-862))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2003 ($ $ |t#3| |t#2|)) (-15 -2003 ($ $ (-657 |t#3|) (-657 |t#2|))) (-15 -2174 ($ $)) (-15 -2186 (|t#1| $)) (-15 -1770 (|t#2| $)) (-15 -2029 ((-657 |t#3|) $)) (-15 -2373 ((-112) $)) (-15 -1431 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-877)) . T) ((-174) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-659 #0#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) |has| |#1| (-38 (-419 (-576)))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) |has| |#1| (-568)) ((-730 #0#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) |has| |#1| (-568)) ((-739) . T) ((-1073 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1078 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-2136 (((-1116 (-227)) $) 8)) (-2124 (((-1116 (-227)) $) 9)) (-2109 (((-1116 (-227)) $) 10)) (-3591 (((-657 (-657 (-963 (-227)))) $) 11)) (-3501 (((-877) $) 6))) -(((-996) (-141)) (T -996)) -((-3591 (*1 *2 *1) (-12 (-4 *1 (-996)) (-5 *2 (-657 (-657 (-963 (-227))))))) (-2109 (*1 *2 *1) (-12 (-4 *1 (-996)) (-5 *2 (-1116 (-227))))) (-2124 (*1 *2 *1) (-12 (-4 *1 (-996)) (-5 *2 (-1116 (-227))))) (-2136 (*1 *2 *1) (-12 (-4 *1 (-996)) (-5 *2 (-1116 (-227)))))) -(-13 (-625 (-877)) (-10 -8 (-15 -3591 ((-657 (-657 (-963 (-227)))) $)) (-15 -2109 ((-1116 (-227)) $)) (-15 -2124 ((-1116 (-227)) $)) (-15 -2136 ((-1116 (-227)) $)))) -(((-625 (-877)) . T)) -((-2029 (((-657 |#4|) $) 23)) (-1626 (((-112) $) 55)) (-3072 (((-112) $) 54)) (-1850 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#4|) 42)) (-2433 (((-112) $) 56)) (-1688 (((-112) $ $) 62)) (-4058 (((-112) $ $) 65)) (-2995 (((-112) $) 60)) (-1978 (((-657 |#5|) (-657 |#5|) $) 98)) (-2410 (((-657 |#5|) (-657 |#5|) $) 95)) (-3644 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-1746 (((-657 |#4|) $) 27)) (-4089 (((-112) |#4| $) 34)) (-3404 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2956 (($ $ |#4|) 39)) (-1664 (($ $ |#4|) 38)) (-3604 (($ $ |#4|) 40)) (-2933 (((-112) $ $) 46))) -(((-997 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3072 ((-112) |#1|)) (-15 -1978 ((-657 |#5|) (-657 |#5|) |#1|)) (-15 -2410 ((-657 |#5|) (-657 |#5|) |#1|)) (-15 -3644 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3404 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2433 ((-112) |#1|)) (-15 -4058 ((-112) |#1| |#1|)) (-15 -1688 ((-112) |#1| |#1|)) (-15 -2995 ((-112) |#1|)) (-15 -1626 ((-112) |#1|)) (-15 -1850 ((-2 (|:| |under| |#1|) (|:| -3427 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2956 (|#1| |#1| |#4|)) (-15 -3604 (|#1| |#1| |#4|)) (-15 -1664 (|#1| |#1| |#4|)) (-15 -4089 ((-112) |#4| |#1|)) (-15 -1746 ((-657 |#4|) |#1|)) (-15 -2029 ((-657 |#4|) |#1|)) (-15 -2933 ((-112) |#1| |#1|))) (-998 |#2| |#3| |#4| |#5|) (-1071) (-806) (-862) (-1087 |#2| |#3| |#4|)) (T -997)) -NIL -(-10 -8 (-15 -3072 ((-112) |#1|)) (-15 -1978 ((-657 |#5|) (-657 |#5|) |#1|)) (-15 -2410 ((-657 |#5|) (-657 |#5|) |#1|)) (-15 -3644 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3404 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2433 ((-112) |#1|)) (-15 -4058 ((-112) |#1| |#1|)) (-15 -1688 ((-112) |#1| |#1|)) (-15 -2995 ((-112) |#1|)) (-15 -1626 ((-112) |#1|)) (-15 -1850 ((-2 (|:| |under| |#1|) (|:| -3427 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2956 (|#1| |#1| |#4|)) (-15 -3604 (|#1| |#1| |#4|)) (-15 -1664 (|#1| |#1| |#4|)) (-15 -4089 ((-112) |#4| |#1|)) (-15 -1746 ((-657 |#4|) |#1|)) (-15 -2029 ((-657 |#4|) |#1|)) (-15 -2933 ((-112) |#1| |#1|))) -((-3429 (((-112) $ $) 7)) (-2029 (((-657 |#3|) $) 34)) (-1626 (((-112) $) 27)) (-3072 (((-112) $) 18 (|has| |#1| (-568)))) (-1850 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) 28)) (-3793 (((-112) $ (-784)) 45)) (-2035 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4466)))) (-4359 (($) 46 T CONST)) (-2433 (((-112) $) 23 (|has| |#1| (-568)))) (-1688 (((-112) $ $) 25 (|has| |#1| (-568)))) (-4058 (((-112) $ $) 24 (|has| |#1| (-568)))) (-2995 (((-112) $) 26 (|has| |#1| (-568)))) (-1978 (((-657 |#4|) (-657 |#4|) $) 19 (|has| |#1| (-568)))) (-2410 (((-657 |#4|) (-657 |#4|) $) 20 (|has| |#1| (-568)))) (-1624 (((-3 $ "failed") (-657 |#4|)) 37)) (-2884 (($ (-657 |#4|)) 36)) (-3914 (($ $) 69 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-3895 (($ |#4| $) 68 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4466)))) (-3644 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3622 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4466)))) (-1458 (((-657 |#4|) $) 53 (|has| $ (-6 -4466)))) (-3627 ((|#3| $) 35)) (-1833 (((-112) $ (-784)) 44)) (-2070 (((-657 |#4|) $) 54 (|has| $ (-6 -4466)))) (-1627 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#4| |#4|) $) 48)) (-1746 (((-657 |#3|) $) 33)) (-4089 (((-112) |#3| $) 32)) (-4261 (((-112) $ (-784)) 43)) (-2342 (((-1180) $) 10)) (-3404 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1471 (((-1142) $) 11)) (-2951 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3399 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 |#4|) (-657 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-2806 (((-112) $ $) 39)) (-3387 (((-112) $) 42)) (-3581 (($) 41)) (-1482 (((-784) |#4| $) 55 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4466)))) (-1923 (($ $) 40)) (-4148 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3511 (($ (-657 |#4|)) 61)) (-2956 (($ $ |#3|) 29)) (-1664 (($ $ |#3|) 31)) (-3604 (($ $ |#3|) 30)) (-3501 (((-877) $) 12) (((-657 |#4|) $) 38)) (-2046 (((-112) $ $) 6)) (-2147 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 8)) (-3440 (((-784) $) 47 (|has| $ (-6 -4466))))) -(((-998 |#1| |#2| |#3| |#4|) (-141) (-1071) (-806) (-862) (-1087 |t#1| |t#2| |t#3|)) (T -998)) -((-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *1 (-998 *3 *4 *5 *6)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *1 (-998 *3 *4 *5 *6)))) (-3627 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-1087 *3 *4 *2)) (-4 *2 (-862)))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-657 *5)))) (-1746 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-657 *5)))) (-4089 (*1 *2 *3 *1) (-12 (-4 *1 (-998 *4 *5 *3 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) (-4 *6 (-1087 *4 *5 *3)) (-5 *2 (-112)))) (-1664 (*1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)) (-4 *5 (-1087 *3 *4 *2)))) (-3604 (*1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)) (-4 *5 (-1087 *3 *4 *2)))) (-2956 (*1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)) (-4 *5 (-1087 *3 *4 *2)))) (-1850 (*1 *2 *1 *3) (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) (-4 *6 (-1087 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3427 *1) (|:| |upper| *1))) (-4 *1 (-998 *4 *5 *3 *6)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) (-2995 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-1688 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-4058 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-2433 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-3404 (*1 *2 *3 *1) (-12 (-4 *1 (-998 *4 *5 *6 *3)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3644 (*1 *2 *3 *1) (-12 (-4 *1 (-998 *4 *5 *6 *3)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2410 (*1 *2 *2 *1) (-12 (-5 *2 (-657 *6)) (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)))) (-1978 (*1 *2 *2 *1) (-12 (-5 *2 (-657 *6)) (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)))) (-3072 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112))))) -(-13 (-1122) (-152 |t#4|) (-625 (-657 |t#4|)) (-10 -8 (-6 -4466) (-15 -1624 ((-3 $ "failed") (-657 |t#4|))) (-15 -2884 ($ (-657 |t#4|))) (-15 -3627 (|t#3| $)) (-15 -2029 ((-657 |t#3|) $)) (-15 -1746 ((-657 |t#3|) $)) (-15 -4089 ((-112) |t#3| $)) (-15 -1664 ($ $ |t#3|)) (-15 -3604 ($ $ |t#3|)) (-15 -2956 ($ $ |t#3|)) (-15 -1850 ((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |t#3|)) (-15 -1626 ((-112) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -2995 ((-112) $)) (-15 -1688 ((-112) $ $)) (-15 -4058 ((-112) $ $)) (-15 -2433 ((-112) $)) (-15 -3404 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3644 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2410 ((-657 |t#4|) (-657 |t#4|) $)) (-15 -1978 ((-657 |t#4|) (-657 |t#4|) $)) (-15 -3072 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-625 (-657 |#4|)) . T) ((-625 (-877)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-1122) . T) ((-1239) . T)) -((-3344 (((-657 |#4|) |#4| |#4|) 136)) (-1378 (((-657 |#4|) (-657 |#4|) (-112)) 125 (|has| |#1| (-464))) (((-657 |#4|) (-657 |#4|)) 126 (|has| |#1| (-464)))) (-1920 (((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|)) 44)) (-2580 (((-112) |#4|) 43)) (-2537 (((-657 |#4|) |#4|) 121 (|has| |#1| (-464)))) (-3697 (((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-1 (-112) |#4|) (-657 |#4|)) 24)) (-3251 (((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 (-1 (-112) |#4|)) (-657 |#4|)) 30)) (-2689 (((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 (-1 (-112) |#4|)) (-657 |#4|)) 31)) (-3037 (((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|)) 90)) (-3942 (((-657 |#4|) (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-3686 (((-657 |#4|) (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3085 (((-657 |#4|) (-657 |#4|)) 128)) (-3949 (((-657 |#4|) (-657 |#4|) (-657 |#4|) (-112)) 59) (((-657 |#4|) (-657 |#4|) (-657 |#4|)) 61)) (-2120 ((|#4| |#4| (-657 |#4|)) 60)) (-3239 (((-657 |#4|) (-657 |#4|) (-657 |#4|)) 132 (|has| |#1| (-464)))) (-3667 (((-657 |#4|) (-657 |#4|) (-657 |#4|)) 135 (|has| |#1| (-464)))) (-3663 (((-657 |#4|) (-657 |#4|) (-657 |#4|)) 134 (|has| |#1| (-464)))) (-3375 (((-657 |#4|) (-657 |#4|) (-657 |#4|) (-1 (-657 |#4|) (-657 |#4|))) 105) (((-657 |#4|) (-657 |#4|) (-657 |#4|)) 107) (((-657 |#4|) (-657 |#4|) |#4|) 140) (((-657 |#4|) |#4| |#4|) 137) (((-657 |#4|) (-657 |#4|)) 106)) (-1696 (((-657 |#4|) (-657 |#4|) (-657 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-3916 (((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|)) 52)) (-3903 (((-112) (-657 |#4|)) 79)) (-4086 (((-112) (-657 |#4|) (-657 (-657 |#4|))) 67)) (-2260 (((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|)) 37)) (-4125 (((-112) |#4|) 36)) (-2714 (((-657 |#4|) (-657 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-1760 (((-657 |#4|) (-657 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-2500 (((-657 |#4|) (-657 |#4|)) 83)) (-3603 (((-657 |#4|) (-657 |#4|)) 97)) (-3026 (((-112) (-657 |#4|) (-657 |#4|)) 65)) (-3737 (((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|)) 50)) (-3126 (((-112) |#4|) 45))) -(((-999 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3375 ((-657 |#4|) (-657 |#4|))) (-15 -3375 ((-657 |#4|) |#4| |#4|)) (-15 -3085 ((-657 |#4|) (-657 |#4|))) (-15 -3344 ((-657 |#4|) |#4| |#4|)) (-15 -3375 ((-657 |#4|) (-657 |#4|) |#4|)) (-15 -3375 ((-657 |#4|) (-657 |#4|) (-657 |#4|))) (-15 -3375 ((-657 |#4|) (-657 |#4|) (-657 |#4|) (-1 (-657 |#4|) (-657 |#4|)))) (-15 -3026 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -4086 ((-112) (-657 |#4|) (-657 (-657 |#4|)))) (-15 -3903 ((-112) (-657 |#4|))) (-15 -3697 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-1 (-112) |#4|) (-657 |#4|))) (-15 -3251 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 (-1 (-112) |#4|)) (-657 |#4|))) (-15 -2689 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 (-1 (-112) |#4|)) (-657 |#4|))) (-15 -3916 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|))) (-15 -2580 ((-112) |#4|)) (-15 -1920 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|))) (-15 -4125 ((-112) |#4|)) (-15 -2260 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|))) (-15 -3126 ((-112) |#4|)) (-15 -3737 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|))) (-15 -3949 ((-657 |#4|) (-657 |#4|) (-657 |#4|))) (-15 -3949 ((-657 |#4|) (-657 |#4|) (-657 |#4|) (-112))) (-15 -2120 (|#4| |#4| (-657 |#4|))) (-15 -2500 ((-657 |#4|) (-657 |#4|))) (-15 -3037 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|))) (-15 -3603 ((-657 |#4|) (-657 |#4|))) (-15 -3942 ((-657 |#4|) (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3686 ((-657 |#4|) (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2537 ((-657 |#4|) |#4|)) (-15 -1378 ((-657 |#4|) (-657 |#4|))) (-15 -1378 ((-657 |#4|) (-657 |#4|) (-112))) (-15 -3239 ((-657 |#4|) (-657 |#4|) (-657 |#4|))) (-15 -3663 ((-657 |#4|) (-657 |#4|) (-657 |#4|))) (-15 -3667 ((-657 |#4|) (-657 |#4|) (-657 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -1760 ((-657 |#4|) (-657 |#4|))) (-15 -2714 ((-657 |#4|) (-657 |#4|))) (-15 -1696 ((-657 |#4|) (-657 |#4|) (-657 |#4|)))) |%noBranch|) |%noBranch|)) (-568) (-806) (-862) (-1087 |#1| |#2| |#3|)) (T -999)) -((-1696 (*1 *2 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-2714 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-1760 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-3667 (*1 *2 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-3663 (*1 *2 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-3239 (*1 *2 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-1378 (*1 *2 *2 *3) (-12 (-5 *2 (-657 *7)) (-5 *3 (-112)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-999 *4 *5 *6 *7)))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-2537 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *3)) (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6)))) (-3686 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-657 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-999 *5 *6 *7 *8)))) (-3942 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-657 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1087 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-806)) (-4 *8 (-862)) (-5 *1 (-999 *6 *7 *8 *9)))) (-3603 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-3037 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -1433 (-657 *7)))) (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) (-2500 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-2120 (*1 *2 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-999 *4 *5 *6 *2)))) (-3949 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-657 *7)) (-5 *3 (-112)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-999 *4 *5 *6 *7)))) (-3949 (*1 *2 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-3737 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-657 *7)) (|:| |badPols| (-657 *7)))) (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) (-3126 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6)))) (-2260 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-657 *7)) (|:| |badPols| (-657 *7)))) (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) (-4125 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6)))) (-1920 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-657 *7)) (|:| |badPols| (-657 *7)))) (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) (-2580 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6)))) (-3916 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-657 *7)) (|:| |badPols| (-657 *7)))) (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) (-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-1 (-112) *8))) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-657 *8)) (|:| |badPols| (-657 *8)))) (-5 *1 (-999 *5 *6 *7 *8)) (-5 *4 (-657 *8)))) (-3251 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-1 (-112) *8))) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-657 *8)) (|:| |badPols| (-657 *8)))) (-5 *1 (-999 *5 *6 *7 *8)) (-5 *4 (-657 *8)))) (-3697 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-657 *8)) (|:| |badPols| (-657 *8)))) (-5 *1 (-999 *5 *6 *7 *8)) (-5 *4 (-657 *8)))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7)))) (-4086 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-657 *8))) (-5 *3 (-657 *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-112)) (-5 *1 (-999 *5 *6 *7 *8)))) (-3026 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-999 *4 *5 *6 *7)))) (-3375 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-657 *7) (-657 *7))) (-5 *2 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-999 *4 *5 *6 *7)))) (-3375 (*1 *2 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-3375 (*1 *2 *2 *3) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-999 *4 *5 *6 *3)))) (-3344 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *3)) (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6)))) (-3085 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) (-3375 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *3)) (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6)))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6))))) -(-10 -7 (-15 -3375 ((-657 |#4|) (-657 |#4|))) (-15 -3375 ((-657 |#4|) |#4| |#4|)) (-15 -3085 ((-657 |#4|) (-657 |#4|))) (-15 -3344 ((-657 |#4|) |#4| |#4|)) (-15 -3375 ((-657 |#4|) (-657 |#4|) |#4|)) (-15 -3375 ((-657 |#4|) (-657 |#4|) (-657 |#4|))) (-15 -3375 ((-657 |#4|) (-657 |#4|) (-657 |#4|) (-1 (-657 |#4|) (-657 |#4|)))) (-15 -3026 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -4086 ((-112) (-657 |#4|) (-657 (-657 |#4|)))) (-15 -3903 ((-112) (-657 |#4|))) (-15 -3697 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-1 (-112) |#4|) (-657 |#4|))) (-15 -3251 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 (-1 (-112) |#4|)) (-657 |#4|))) (-15 -2689 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 (-1 (-112) |#4|)) (-657 |#4|))) (-15 -3916 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|))) (-15 -2580 ((-112) |#4|)) (-15 -1920 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|))) (-15 -4125 ((-112) |#4|)) (-15 -2260 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|))) (-15 -3126 ((-112) |#4|)) (-15 -3737 ((-2 (|:| |goodPols| (-657 |#4|)) (|:| |badPols| (-657 |#4|))) (-657 |#4|))) (-15 -3949 ((-657 |#4|) (-657 |#4|) (-657 |#4|))) (-15 -3949 ((-657 |#4|) (-657 |#4|) (-657 |#4|) (-112))) (-15 -2120 (|#4| |#4| (-657 |#4|))) (-15 -2500 ((-657 |#4|) (-657 |#4|))) (-15 -3037 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|))) (-15 -3603 ((-657 |#4|) (-657 |#4|))) (-15 -3942 ((-657 |#4|) (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3686 ((-657 |#4|) (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2537 ((-657 |#4|) |#4|)) (-15 -1378 ((-657 |#4|) (-657 |#4|))) (-15 -1378 ((-657 |#4|) (-657 |#4|) (-112))) (-15 -3239 ((-657 |#4|) (-657 |#4|) (-657 |#4|))) (-15 -3663 ((-657 |#4|) (-657 |#4|) (-657 |#4|))) (-15 -3667 ((-657 |#4|) (-657 |#4|) (-657 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -1760 ((-657 |#4|) (-657 |#4|))) (-15 -2714 ((-657 |#4|) (-657 |#4|))) (-15 -1696 ((-657 |#4|) (-657 |#4|) (-657 |#4|)))) |%noBranch|) |%noBranch|)) -((-2031 (((-2 (|:| R (-702 |#1|)) (|:| A (-702 |#1|)) (|:| |Ainv| (-702 |#1|))) (-702 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-4319 (((-657 (-2 (|:| C (-702 |#1|)) (|:| |g| (-1289 |#1|)))) (-702 |#1|) (-1289 |#1|)) 46)) (-2392 (((-702 |#1|) (-702 |#1|) (-702 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-1000 |#1|) (-10 -7 (-15 -2031 ((-2 (|:| R (-702 |#1|)) (|:| A (-702 |#1|)) (|:| |Ainv| (-702 |#1|))) (-702 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2392 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4319 ((-657 (-2 (|:| C (-702 |#1|)) (|:| |g| (-1289 |#1|)))) (-702 |#1|) (-1289 |#1|)))) (-374)) (T -1000)) -((-4319 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-657 (-2 (|:| C (-702 *5)) (|:| |g| (-1289 *5))))) (-5 *1 (-1000 *5)) (-5 *3 (-702 *5)) (-5 *4 (-1289 *5)))) (-2392 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-702 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-1000 *5)))) (-2031 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) (-5 *2 (-2 (|:| R (-702 *6)) (|:| A (-702 *6)) (|:| |Ainv| (-702 *6)))) (-5 *1 (-1000 *6)) (-5 *3 (-702 *6))))) -(-10 -7 (-15 -2031 ((-2 (|:| R (-702 |#1|)) (|:| A (-702 |#1|)) (|:| |Ainv| (-702 |#1|))) (-702 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2392 ((-702 |#1|) (-702 |#1|) (-702 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4319 ((-657 (-2 (|:| C (-702 |#1|)) (|:| |g| (-1289 |#1|)))) (-702 |#1|) (-1289 |#1|)))) -((-4402 (((-430 |#4|) |#4|) 56))) -(((-1001 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4402 ((-430 |#4|) |#4|))) (-862) (-806) (-464) (-969 |#3| |#2| |#1|)) (T -1001)) -((-4402 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-464)) (-5 *2 (-430 *3)) (-5 *1 (-1001 *4 *5 *6 *3)) (-4 *3 (-969 *6 *5 *4))))) -(-10 -7 (-15 -4402 ((-430 |#4|) |#4|))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3765 (($ (-784)) 115 (|has| |#1| (-23)))) (-4313 (((-1294) $ (-576) (-576)) 41 (|has| $ (-6 -4467)))) (-1568 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-3363 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4467))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4467))))) (-1850 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-3793 (((-112) $ (-784)) 8)) (-3682 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 60 (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4466)))) (-4359 (($) 7 T CONST)) (-3606 (($ $) 93 (|has| $ (-6 -4467)))) (-3768 (($ $) 103)) (-3914 (($ $) 80 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3895 (($ |#1| $) 79 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4466)))) (-2158 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) 52)) (-3582 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1122)))) (-3624 (($ (-657 |#1|)) 121)) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-2425 (((-702 |#1|) $ $) 108 (|has| |#1| (-1071)))) (-4109 (($ (-784) |#1|) 70)) (-1833 (((-112) $ (-784)) 9)) (-3853 (((-576) $) 44 (|has| (-576) (-862)))) (-3707 (($ $ $) 85 (|has| |#1| (-862)))) (-3073 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2272 (((-576) $) 45 (|has| (-576) (-862)))) (-1611 (($ $ $) 86 (|has| |#1| (-862)))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2742 ((|#1| $) 105 (-12 (|has| |#1| (-1071)) (|has| |#1| (-1024))))) (-4261 (((-112) $ (-784)) 10)) (-3358 ((|#1| $) 106 (-12 (|has| |#1| (-1071)) (|has| |#1| (-1024))))) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-2271 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-1430 (((-657 (-576)) $) 47)) (-4242 (((-112) (-576) $) 48)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3510 ((|#1| $) 43 (|has| (-576) (-862)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1987 (($ $ |#1|) 42 (|has| $ (-6 -4467)))) (-3926 (($ $ (-657 |#1|)) 119)) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-1515 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) 49)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1256 (-576))) 71)) (-1374 ((|#1| $ $) 109 (|has| |#1| (-1071)))) (-3863 (((-941) $) 120)) (-3409 (($ $ (-576)) 64) (($ $ (-1256 (-576))) 63)) (-3461 (($ $ $) 107)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2114 (($ $ $ (-576)) 94 (|has| $ (-6 -4467)))) (-1923 (($ $) 13)) (-4148 (((-548) $) 81 (|has| |#1| (-626 (-548)))) (($ (-657 |#1|)) 122)) (-3511 (($ (-657 |#1|)) 72)) (-1674 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-657 $)) 66)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) 87 (|has| |#1| (-862)))) (-2963 (((-112) $ $) 89 (|has| |#1| (-862)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2973 (((-112) $ $) 88 (|has| |#1| (-862)))) (-2954 (((-112) $ $) 90 (|has| |#1| (-862)))) (-3022 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3012 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-739))) (($ $ |#1|) 110 (|has| |#1| (-739)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-1002 |#1|) (-141) (-1071)) (T -1002)) -((-3624 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1071)) (-4 *1 (-1002 *3)))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1071)) (-5 *2 (-941)))) (-3461 (*1 *1 *1 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1071)))) (-3926 (*1 *1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *1 (-1002 *3)) (-4 *3 (-1071))))) -(-13 (-1287 |t#1|) (-630 (-657 |t#1|)) (-10 -8 (-15 -3624 ($ (-657 |t#1|))) (-15 -3863 ((-941) $)) (-15 -3461 ($ $ $)) (-15 -3926 ($ $ (-657 |t#1|))))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-630 (-657 |#1|)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-664 |#1|) . T) ((-19 |#1|) . T) ((-862) |has| |#1| (-862)) ((-865) |has| |#1| (-862)) ((-1122) -2802 (|has| |#1| (-1122)) (|has| |#1| (-862))) ((-1239) . T) ((-1287 |#1|) . T)) -((-4083 (((-963 |#2|) (-1 |#2| |#1|) (-963 |#1|)) 17))) -(((-1003 |#1| |#2|) (-10 -7 (-15 -4083 ((-963 |#2|) (-1 |#2| |#1|) (-963 |#1|)))) (-1071) (-1071)) (T -1003)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-963 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-5 *2 (-963 *6)) (-5 *1 (-1003 *5 *6))))) -(-10 -7 (-15 -4083 ((-963 |#2|) (-1 |#2| |#1|) (-963 |#1|)))) -((-2506 ((|#1| (-963 |#1|)) 14)) (-3718 ((|#1| (-963 |#1|)) 13)) (-3006 ((|#1| (-963 |#1|)) 12)) (-1473 ((|#1| (-963 |#1|)) 16)) (-4251 ((|#1| (-963 |#1|)) 24)) (-3804 ((|#1| (-963 |#1|)) 15)) (-3035 ((|#1| (-963 |#1|)) 17)) (-4082 ((|#1| (-963 |#1|)) 23)) (-3848 ((|#1| (-963 |#1|)) 22))) -(((-1004 |#1|) (-10 -7 (-15 -3006 (|#1| (-963 |#1|))) (-15 -3718 (|#1| (-963 |#1|))) (-15 -2506 (|#1| (-963 |#1|))) (-15 -3804 (|#1| (-963 |#1|))) (-15 -1473 (|#1| (-963 |#1|))) (-15 -3035 (|#1| (-963 |#1|))) (-15 -3848 (|#1| (-963 |#1|))) (-15 -4082 (|#1| (-963 |#1|))) (-15 -4251 (|#1| (-963 |#1|)))) (-1071)) (T -1004)) -((-4251 (*1 *2 *3) (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071)))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071)))) (-1473 (*1 *2 *3) (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071)))) (-2506 (*1 *2 *3) (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071)))) (-3718 (*1 *2 *3) (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) -(-10 -7 (-15 -3006 (|#1| (-963 |#1|))) (-15 -3718 (|#1| (-963 |#1|))) (-15 -2506 (|#1| (-963 |#1|))) (-15 -3804 (|#1| (-963 |#1|))) (-15 -1473 (|#1| (-963 |#1|))) (-15 -3035 (|#1| (-963 |#1|))) (-15 -3848 (|#1| (-963 |#1|))) (-15 -4082 (|#1| (-963 |#1|))) (-15 -4251 (|#1| (-963 |#1|)))) -((-3403 (((-3 |#1| "failed") |#1|) 18)) (-3054 (((-3 |#1| "failed") |#1|) 6)) (-2363 (((-3 |#1| "failed") |#1|) 16)) (-2295 (((-3 |#1| "failed") |#1|) 4)) (-2634 (((-3 |#1| "failed") |#1|) 20)) (-1661 (((-3 |#1| "failed") |#1|) 8)) (-1603 (((-3 |#1| "failed") |#1| (-784)) 1)) (-3493 (((-3 |#1| "failed") |#1|) 3)) (-2414 (((-3 |#1| "failed") |#1|) 2)) (-3846 (((-3 |#1| "failed") |#1|) 21)) (-4282 (((-3 |#1| "failed") |#1|) 9)) (-2309 (((-3 |#1| "failed") |#1|) 19)) (-2969 (((-3 |#1| "failed") |#1|) 7)) (-3059 (((-3 |#1| "failed") |#1|) 17)) (-3470 (((-3 |#1| "failed") |#1|) 5)) (-3086 (((-3 |#1| "failed") |#1|) 24)) (-2486 (((-3 |#1| "failed") |#1|) 12)) (-2487 (((-3 |#1| "failed") |#1|) 22)) (-2888 (((-3 |#1| "failed") |#1|) 10)) (-2783 (((-3 |#1| "failed") |#1|) 26)) (-4107 (((-3 |#1| "failed") |#1|) 14)) (-3773 (((-3 |#1| "failed") |#1|) 27)) (-3964 (((-3 |#1| "failed") |#1|) 15)) (-3761 (((-3 |#1| "failed") |#1|) 25)) (-4052 (((-3 |#1| "failed") |#1|) 13)) (-4076 (((-3 |#1| "failed") |#1|) 23)) (-2540 (((-3 |#1| "failed") |#1|) 11))) -(((-1005 |#1|) (-141) (-1224)) (T -1005)) -((-3773 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2783 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-3761 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-3086 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-4076 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2487 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-3846 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2634 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2309 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-3403 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-3059 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2363 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-3964 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-4107 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-4052 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2486 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2540 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2888 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-4282 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-1661 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-3054 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-3470 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2295 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-3493 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-2414 (*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224)))) (-1603 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-784)) (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(-13 (-10 -7 (-15 -1603 ((-3 |t#1| "failed") |t#1| (-784))) (-15 -2414 ((-3 |t#1| "failed") |t#1|)) (-15 -3493 ((-3 |t#1| "failed") |t#1|)) (-15 -2295 ((-3 |t#1| "failed") |t#1|)) (-15 -3470 ((-3 |t#1| "failed") |t#1|)) (-15 -3054 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -1661 ((-3 |t#1| "failed") |t#1|)) (-15 -4282 ((-3 |t#1| "failed") |t#1|)) (-15 -2888 ((-3 |t#1| "failed") |t#1|)) (-15 -2540 ((-3 |t#1| "failed") |t#1|)) (-15 -2486 ((-3 |t#1| "failed") |t#1|)) (-15 -4052 ((-3 |t#1| "failed") |t#1|)) (-15 -4107 ((-3 |t#1| "failed") |t#1|)) (-15 -3964 ((-3 |t#1| "failed") |t#1|)) (-15 -2363 ((-3 |t#1| "failed") |t#1|)) (-15 -3059 ((-3 |t#1| "failed") |t#1|)) (-15 -3403 ((-3 |t#1| "failed") |t#1|)) (-15 -2309 ((-3 |t#1| "failed") |t#1|)) (-15 -2634 ((-3 |t#1| "failed") |t#1|)) (-15 -3846 ((-3 |t#1| "failed") |t#1|)) (-15 -2487 ((-3 |t#1| "failed") |t#1|)) (-15 -4076 ((-3 |t#1| "failed") |t#1|)) (-15 -3086 ((-3 |t#1| "failed") |t#1|)) (-15 -3761 ((-3 |t#1| "failed") |t#1|)) (-15 -2783 ((-3 |t#1| "failed") |t#1|)) (-15 -3773 ((-3 |t#1| "failed") |t#1|)))) -((-2055 ((|#4| |#4| (-657 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-2928 ((|#4| |#4| (-657 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-4083 ((|#4| (-1 |#4| (-972 |#1|)) |#4|) 31))) -(((-1006 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2928 (|#4| |#4| |#3|)) (-15 -2928 (|#4| |#4| (-657 |#3|))) (-15 -2055 (|#4| |#4| |#3|)) (-15 -2055 (|#4| |#4| (-657 |#3|))) (-15 -4083 (|#4| (-1 |#4| (-972 |#1|)) |#4|))) (-1071) (-806) (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $)) (-15 -3032 ((-3 $ "failed") (-1198))))) (-969 (-972 |#1|) |#2| |#3|)) (T -1006)) -((-4083 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-972 *4))) (-4 *4 (-1071)) (-4 *2 (-969 (-972 *4) *5 *6)) (-4 *5 (-806)) (-4 *6 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $)) (-15 -3032 ((-3 $ "failed") (-1198)))))) (-5 *1 (-1006 *4 *5 *6 *2)))) (-2055 (*1 *2 *2 *3) (-12 (-5 *3 (-657 *6)) (-4 *6 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $)) (-15 -3032 ((-3 $ "failed") (-1198)))))) (-4 *4 (-1071)) (-4 *5 (-806)) (-5 *1 (-1006 *4 *5 *6 *2)) (-4 *2 (-969 (-972 *4) *5 *6)))) (-2055 (*1 *2 *2 *3) (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $)) (-15 -3032 ((-3 $ "failed") (-1198)))))) (-5 *1 (-1006 *4 *5 *3 *2)) (-4 *2 (-969 (-972 *4) *5 *3)))) (-2928 (*1 *2 *2 *3) (-12 (-5 *3 (-657 *6)) (-4 *6 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $)) (-15 -3032 ((-3 $ "failed") (-1198)))))) (-4 *4 (-1071)) (-4 *5 (-806)) (-5 *1 (-1006 *4 *5 *6 *2)) (-4 *2 (-969 (-972 *4) *5 *6)))) (-2928 (*1 *2 *2 *3) (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $)) (-15 -3032 ((-3 $ "failed") (-1198)))))) (-5 *1 (-1006 *4 *5 *3 *2)) (-4 *2 (-969 (-972 *4) *5 *3))))) -(-10 -7 (-15 -2928 (|#4| |#4| |#3|)) (-15 -2928 (|#4| |#4| (-657 |#3|))) (-15 -2055 (|#4| |#4| |#3|)) (-15 -2055 (|#4| |#4| (-657 |#3|))) (-15 -4083 (|#4| (-1 |#4| (-972 |#1|)) |#4|))) -((-3924 ((|#2| |#3|) 35)) (-3984 (((-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) |#2|) 79)) (-1613 (((-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|)))) 100))) -(((-1007 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1613 ((-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))))) (-15 -3984 ((-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) |#2|)) (-15 -3924 (|#2| |#3|))) (-360) (-1265 |#1|) (-1265 |#2|) (-737 |#2| |#3|)) (T -1007)) -((-3924 (*1 *2 *3) (-12 (-4 *3 (-1265 *2)) (-4 *2 (-1265 *4)) (-5 *1 (-1007 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-737 *2 *3)))) (-3984 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 *3)) (-5 *2 (-2 (|:| -1985 (-702 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-702 *3)))) (-5 *1 (-1007 *4 *3 *5 *6)) (-4 *6 (-737 *3 *5)))) (-1613 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 *4)) (-5 *2 (-2 (|:| -1985 (-702 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-702 *4)))) (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-737 *4 *5))))) -(-10 -7 (-15 -1613 ((-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))))) (-15 -3984 ((-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) |#2|)) (-15 -3924 (|#2| |#3|))) -((-2007 (((-1009 (-419 (-576)) (-879 |#1|) (-245 |#2| (-784)) (-253 |#1| (-419 (-576)))) (-1009 (-419 (-576)) (-879 |#1|) (-245 |#2| (-784)) (-253 |#1| (-419 (-576))))) 82))) -(((-1008 |#1| |#2|) (-10 -7 (-15 -2007 ((-1009 (-419 (-576)) (-879 |#1|) (-245 |#2| (-784)) (-253 |#1| (-419 (-576)))) (-1009 (-419 (-576)) (-879 |#1|) (-245 |#2| (-784)) (-253 |#1| (-419 (-576))))))) (-657 (-1198)) (-784)) (T -1008)) -((-2007 (*1 *2 *2) (-12 (-5 *2 (-1009 (-419 (-576)) (-879 *3) (-245 *4 (-784)) (-253 *3 (-419 (-576))))) (-14 *3 (-657 (-1198))) (-14 *4 (-784)) (-5 *1 (-1008 *3 *4))))) -(-10 -7 (-15 -2007 ((-1009 (-419 (-576)) (-879 |#1|) (-245 |#2| (-784)) (-253 |#1| (-419 (-576)))) (-1009 (-419 (-576)) (-879 |#1|) (-245 |#2| (-784)) (-253 |#1| (-419 (-576))))))) -((-3429 (((-112) $ $) NIL)) (-3448 (((-3 (-112) "failed") $) 71)) (-2394 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-3275 (($ $ (-3 (-112) "failed")) 72)) (-2710 (($ (-657 |#4|) |#4|) 25)) (-2342 (((-1180) $) NIL)) (-2328 (($ $) 69)) (-1471 (((-1142) $) NIL)) (-3387 (((-112) $) 70)) (-3581 (($) 30)) (-4433 ((|#4| $) 74)) (-3380 (((-657 |#4|) $) 73)) (-3501 (((-877) $) 68)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-1009 |#1| |#2| |#3| |#4|) (-13 (-1122) (-625 (-877)) (-10 -8 (-15 -3581 ($)) (-15 -2710 ($ (-657 |#4|) |#4|)) (-15 -3448 ((-3 (-112) "failed") $)) (-15 -3275 ($ $ (-3 (-112) "failed"))) (-15 -3387 ((-112) $)) (-15 -3380 ((-657 |#4|) $)) (-15 -4433 (|#4| $)) (-15 -2328 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -2394 ($ $)) |%noBranch|) |%noBranch|))) (-464) (-862) (-806) (-969 |#1| |#3| |#2|)) (T -1009)) -((-3581 (*1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-806)) (-5 *1 (-1009 *2 *3 *4 *5)) (-4 *5 (-969 *2 *4 *3)))) (-2710 (*1 *1 *2 *3) (-12 (-5 *2 (-657 *3)) (-4 *3 (-969 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-862)) (-4 *6 (-806)) (-5 *1 (-1009 *4 *5 *6 *3)))) (-3448 (*1 *2 *1) (|partial| -12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-806)) (-5 *2 (-112)) (-5 *1 (-1009 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4)))) (-3275 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-806)) (-5 *1 (-1009 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4)))) (-3387 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-806)) (-5 *2 (-112)) (-5 *1 (-1009 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4)))) (-3380 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-806)) (-5 *2 (-657 *6)) (-5 *1 (-1009 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4)))) (-4433 (*1 *2 *1) (-12 (-4 *2 (-969 *3 *5 *4)) (-5 *1 (-1009 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-806)))) (-2328 (*1 *1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-806)) (-5 *1 (-1009 *2 *3 *4 *5)) (-4 *5 (-969 *2 *4 *3)))) (-2394 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-806)) (-5 *1 (-1009 *2 *3 *4 *5)) (-4 *5 (-969 *2 *4 *3))))) -(-13 (-1122) (-625 (-877)) (-10 -8 (-15 -3581 ($)) (-15 -2710 ($ (-657 |#4|) |#4|)) (-15 -3448 ((-3 (-112) "failed") $)) (-15 -3275 ($ $ (-3 (-112) "failed"))) (-15 -3387 ((-112) $)) (-15 -3380 ((-657 |#4|) $)) (-15 -4433 (|#4| $)) (-15 -2328 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -2394 ($ $)) |%noBranch|) |%noBranch|))) -((-3105 (((-112) |#5| |#5|) 44)) (-3681 (((-112) |#5| |#5|) 59)) (-3583 (((-112) |#5| (-657 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-3024 (((-112) (-657 |#4|) (-657 |#4|)) 65)) (-2222 (((-112) (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|)) (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) 70)) (-3884 (((-1294)) 32)) (-3082 (((-1294) (-1180) (-1180) (-1180)) 28)) (-2726 (((-657 |#5|) (-657 |#5|)) 100)) (-2865 (((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|)))) 92)) (-3517 (((-657 (-2 (|:| -3989 (-657 |#4|)) (|:| -3946 |#5|) (|:| |ineq| (-657 |#4|)))) (-657 |#4|) (-657 |#5|) (-112) (-112)) 122)) (-3643 (((-112) |#5| |#5|) 53)) (-4444 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3515 (((-112) (-657 |#4|) (-657 |#4|)) 64)) (-1705 (((-112) (-657 |#4|) (-657 |#4|)) 66)) (-4015 (((-112) (-657 |#4|) (-657 |#4|)) 67)) (-2509 (((-3 (-2 (|:| -3989 (-657 |#4|)) (|:| -3946 |#5|) (|:| |ineq| (-657 |#4|))) "failed") (-657 |#4|) |#5| (-657 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3551 (((-657 |#5|) (-657 |#5|)) 49))) -(((-1010 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3082 ((-1294) (-1180) (-1180) (-1180))) (-15 -3884 ((-1294))) (-15 -3105 ((-112) |#5| |#5|)) (-15 -3551 ((-657 |#5|) (-657 |#5|))) (-15 -3643 ((-112) |#5| |#5|)) (-15 -3681 ((-112) |#5| |#5|)) (-15 -3024 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -3515 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -1705 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -4015 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -4444 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3583 ((-112) |#5| |#5|)) (-15 -3583 ((-112) |#5| (-657 |#5|))) (-15 -2726 ((-657 |#5|) (-657 |#5|))) (-15 -2222 ((-112) (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|)) (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|)))) (-15 -2865 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) (-15 -3517 ((-657 (-2 (|:| -3989 (-657 |#4|)) (|:| -3946 |#5|) (|:| |ineq| (-657 |#4|)))) (-657 |#4|) (-657 |#5|) (-112) (-112))) (-15 -2509 ((-3 (-2 (|:| -3989 (-657 |#4|)) (|:| -3946 |#5|) (|:| |ineq| (-657 |#4|))) "failed") (-657 |#4|) |#5| (-657 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3| |#4|)) (T -1010)) -((-2509 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *9 (-1087 *6 *7 *8)) (-5 *2 (-2 (|:| -3989 (-657 *9)) (|:| -3946 *4) (|:| |ineq| (-657 *9)))) (-5 *1 (-1010 *6 *7 *8 *9 *4)) (-5 *3 (-657 *9)) (-4 *4 (-1093 *6 *7 *8 *9)))) (-3517 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-657 *10)) (-5 *5 (-112)) (-4 *10 (-1093 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *9 (-1087 *6 *7 *8)) (-5 *2 (-657 (-2 (|:| -3989 (-657 *9)) (|:| -3946 *10) (|:| |ineq| (-657 *9))))) (-5 *1 (-1010 *6 *7 *8 *9 *10)) (-5 *3 (-657 *9)))) (-2865 (*1 *2 *2) (-12 (-5 *2 (-657 (-2 (|:| |val| (-657 *6)) (|:| -3946 *7)))) (-4 *6 (-1087 *3 *4 *5)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-2222 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-657 *7)) (|:| -3946 *8))) (-4 *7 (-1087 *4 *5 *6)) (-4 *8 (-1093 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *8)))) (-2726 (*1 *2 *2) (-12 (-5 *2 (-657 *7)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-3583 (*1 *2 *3 *4) (-12 (-5 *4 (-657 *3)) (-4 *3 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1010 *5 *6 *7 *8 *3)))) (-3583 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-4444 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-4015 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-1705 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-3515 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-3024 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-3681 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-3643 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-3551 (*1 *2 *2) (-12 (-5 *2 (-657 *7)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-3105 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-3884 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) (-5 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6)))) (-3082 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) -(-10 -7 (-15 -3082 ((-1294) (-1180) (-1180) (-1180))) (-15 -3884 ((-1294))) (-15 -3105 ((-112) |#5| |#5|)) (-15 -3551 ((-657 |#5|) (-657 |#5|))) (-15 -3643 ((-112) |#5| |#5|)) (-15 -3681 ((-112) |#5| |#5|)) (-15 -3024 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -3515 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -1705 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -4015 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -4444 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3583 ((-112) |#5| |#5|)) (-15 -3583 ((-112) |#5| (-657 |#5|))) (-15 -2726 ((-657 |#5|) (-657 |#5|))) (-15 -2222 ((-112) (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|)) (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|)))) (-15 -2865 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) (-15 -3517 ((-657 (-2 (|:| -3989 (-657 |#4|)) (|:| -3946 |#5|) (|:| |ineq| (-657 |#4|)))) (-657 |#4|) (-657 |#5|) (-112) (-112))) (-15 -2509 ((-3 (-2 (|:| -3989 (-657 |#4|)) (|:| -3946 |#5|) (|:| |ineq| (-657 |#4|))) "failed") (-657 |#4|) |#5| (-657 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3032 (((-1198) $) 15)) (-3071 (((-1180) $) 16)) (-2411 (($ (-1198) (-1180)) 14)) (-3501 (((-877) $) 13))) -(((-1011) (-13 (-625 (-877)) (-10 -8 (-15 -2411 ($ (-1198) (-1180))) (-15 -3032 ((-1198) $)) (-15 -3071 ((-1180) $))))) (T -1011)) -((-2411 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1180)) (-5 *1 (-1011)))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1011)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1011))))) -(-13 (-625 (-877)) (-10 -8 (-15 -2411 ($ (-1198) (-1180))) (-15 -3032 ((-1198) $)) (-15 -3071 ((-1180) $)))) -((-4083 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-1012 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4083 (|#4| (-1 |#2| |#1|) |#3|))) (-568) (-568) (-1014 |#1|) (-1014 |#2|)) (T -1012)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-4 *2 (-1014 *6)) (-5 *1 (-1012 *5 *6 *4 *2)) (-4 *4 (-1014 *5))))) -(-10 -7 (-15 -4083 (|#4| (-1 |#2| |#1|) |#3|))) -((-1624 (((-3 |#2| "failed") $) NIL) (((-3 (-1198) "failed") $) 66) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) 96)) (-2884 ((|#2| $) NIL) (((-1198) $) 61) (((-419 (-576)) $) NIL) (((-576) $) 93)) (-3306 (((-702 (-576)) (-702 $)) NIL) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) 115) (((-702 |#2|) (-702 $)) 28)) (-1892 (($) 99)) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 76) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 85)) (-2752 (($ $) 10)) (-4019 (((-3 $ "failed") $) 20)) (-4083 (($ (-1 |#2| |#2|) $) 22)) (-1706 (($) 16)) (-2900 (($ $) 55)) (-2815 (($ $ (-1 |#2| |#2|)) 36) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1198)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $) NIL) (($ $ (-784)) NIL)) (-1396 (($ $) 12)) (-4148 (((-908 (-576)) $) 71) (((-908 (-390)) $) 80) (((-548) $) 40) (((-390) $) 44) (((-227) $) 48)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 91) (($ |#2|) NIL) (($ (-1198)) 58)) (-1960 (((-784)) 31)) (-2954 (((-112) $ $) 51))) -(((-1013 |#1| |#2|) (-10 -8 (-15 -2954 ((-112) |#1| |#1|)) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -1706 (|#1|)) (-15 -4019 ((-3 |#1| "failed") |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -4148 ((-227) |#1|)) (-15 -4148 ((-390) |#1|)) (-15 -4148 ((-548) |#1|)) (-15 -3501 (|#1| (-1198))) (-15 -1624 ((-3 (-1198) "failed") |#1|)) (-15 -2884 ((-1198) |#1|)) (-15 -1892 (|#1|)) (-15 -2900 (|#1| |#1|)) (-15 -1396 (|#1| |#1|)) (-15 -2752 (|#1| |#1|)) (-15 -3200 ((-905 (-390) |#1|) |#1| (-908 (-390)) (-905 (-390) |#1|))) (-15 -3200 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|))) (-15 -4148 ((-908 (-390)) |#1|)) (-15 -4148 ((-908 (-576)) |#1|)) (-15 -3306 ((-702 |#2|) (-702 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-702 (-576)) (-702 |#1|))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4083 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -3501 (|#1| |#2|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -3501 (|#1| |#1|)) (-15 -1960 ((-784))) (-15 -3501 (|#1| (-576))) (-15 -3501 ((-877) |#1|))) (-1014 |#2|) (-568)) (T -1013)) -((-1960 (*1 *2) (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-1013 *3 *4)) (-4 *3 (-1014 *4))))) -(-10 -8 (-15 -2954 ((-112) |#1| |#1|)) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -1706 (|#1|)) (-15 -4019 ((-3 |#1| "failed") |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -4148 ((-227) |#1|)) (-15 -4148 ((-390) |#1|)) (-15 -4148 ((-548) |#1|)) (-15 -3501 (|#1| (-1198))) (-15 -1624 ((-3 (-1198) "failed") |#1|)) (-15 -2884 ((-1198) |#1|)) (-15 -1892 (|#1|)) (-15 -2900 (|#1| |#1|)) (-15 -1396 (|#1| |#1|)) (-15 -2752 (|#1| |#1|)) (-15 -3200 ((-905 (-390) |#1|) |#1| (-908 (-390)) (-905 (-390) |#1|))) (-15 -3200 ((-905 (-576) |#1|) |#1| (-908 (-576)) (-905 (-576) |#1|))) (-15 -4148 ((-908 (-390)) |#1|)) (-15 -4148 ((-908 (-576)) |#1|)) (-15 -3306 ((-702 |#2|) (-702 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-702 (-576)) (-702 |#1|))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4083 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -3501 (|#1| |#2|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -3501 (|#1| |#1|)) (-15 -1960 ((-784))) (-15 -3501 (|#1| (-576))) (-15 -3501 ((-877) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3931 ((|#1| $) 163 (|has| |#1| (-317)))) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-2721 (((-3 $ "failed") $ $) 20)) (-4250 (((-430 (-1194 $)) (-1194 $)) 154 (|has| |#1| (-929)))) (-2638 (($ $) 81)) (-4402 (((-430 $) $) 80)) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 157 (|has| |#1| (-929)))) (-2864 (((-112) $ $) 65)) (-1536 (((-576) $) 144 (|has| |#1| (-833)))) (-4359 (($) 18 T CONST)) (-1624 (((-3 |#1| "failed") $) 193) (((-3 (-1198) "failed") $) 152 (|has| |#1| (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) 135 (|has| |#1| (-1060 (-576)))) (((-3 (-576) "failed") $) 133 (|has| |#1| (-1060 (-576))))) (-2884 ((|#1| $) 194) (((-1198) $) 153 (|has| |#1| (-1060 (-1198)))) (((-419 (-576)) $) 136 (|has| |#1| (-1060 (-576)))) (((-576) $) 134 (|has| |#1| (-1060 (-576))))) (-3373 (($ $ $) 61)) (-3306 (((-702 (-576)) (-702 $)) 178 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 177 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 176) (((-702 |#1|) (-702 $)) 175)) (-3843 (((-3 $ "failed") $) 37)) (-1892 (($) 161 (|has| |#1| (-557)))) (-3385 (($ $ $) 62)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 57)) (-4257 (((-112) $) 79)) (-2828 (((-112) $) 146 (|has| |#1| (-833)))) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 170 (|has| |#1| (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 169 (|has| |#1| (-902 (-390))))) (-4094 (((-112) $) 35)) (-2752 (($ $) 165)) (-1621 ((|#1| $) 167)) (-4019 (((-3 $ "failed") $) 132 (|has| |#1| (-1174)))) (-2881 (((-112) $) 145 (|has| |#1| (-833)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3707 (($ $ $) 137 (|has| |#1| (-862)))) (-1611 (($ $ $) 138 (|has| |#1| (-862)))) (-4083 (($ (-1 |#1| |#1|) $) 185)) (-3101 (((-702 (-576)) (-1289 $)) 180 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 179 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 174) (((-702 |#1|) (-1289 $)) 173)) (-3402 (($ $ $) 52) (($ (-657 $)) 51)) (-2342 (((-1180) $) 10)) (-2134 (($ $) 78)) (-1706 (($) 131 (|has| |#1| (-1174)) CONST)) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3436 (($ $ $) 54) (($ (-657 $)) 53)) (-2900 (($ $) 162 (|has| |#1| (-317)))) (-3427 ((|#1| $) 159 (|has| |#1| (-557)))) (-2861 (((-430 (-1194 $)) (-1194 $)) 156 (|has| |#1| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) 155 (|has| |#1| (-929)))) (-1885 (((-430 $) $) 82)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3418 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-3236 (($ $ (-657 |#1|) (-657 |#1|)) 191 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 190 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 189 (|has| |#1| (-319 |#1|))) (($ $ (-657 (-304 |#1|))) 188 (|has| |#1| (-319 |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) 187 (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) |#1|) 186 (|has| |#1| (-526 (-1198) |#1|)))) (-2034 (((-784) $) 64)) (-2835 (($ $ |#1|) 192 (|has| |#1| (-296 |#1| |#1|)))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 63)) (-2815 (($ $ (-1 |#1| |#1|)) 184) (($ $ (-1 |#1| |#1|) (-784)) 183) (($ $) 130 (|has| |#1| (-237))) (($ $ (-784)) 128 (|has| |#1| (-237))) (($ $ (-1198)) 126 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 124 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 123 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 122 (|has| |#1| (-920 (-1198))))) (-1396 (($ $) 164)) (-1635 ((|#1| $) 166)) (-4148 (((-908 (-576)) $) 172 (|has| |#1| (-626 (-908 (-576))))) (((-908 (-390)) $) 171 (|has| |#1| (-626 (-908 (-390))))) (((-548) $) 149 (|has| |#1| (-626 (-548)))) (((-390) $) 148 (|has| |#1| (-1044))) (((-227) $) 147 (|has| |#1| (-1044)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) 158 (-2724 (|has| $ (-146)) (|has| |#1| (-929))))) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 197) (($ (-1198)) 151 (|has| |#1| (-1060 (-1198))))) (-3096 (((-3 $ "failed") $) 150 (-2802 (|has| |#1| (-146)) (-2724 (|has| $ (-146)) (|has| |#1| (-929)))))) (-1960 (((-784)) 32 T CONST)) (-1893 ((|#1| $) 160 (|has| |#1| (-557)))) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 45)) (-1792 (($ $) 143 (|has| |#1| (-833)))) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-1 |#1| |#1|)) 182) (($ $ (-1 |#1| |#1|) (-784)) 181) (($ $) 129 (|has| |#1| (-237))) (($ $ (-784)) 127 (|has| |#1| (-237))) (($ $ (-1198)) 125 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 121 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 120 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 119 (|has| |#1| (-920 (-1198))))) (-2985 (((-112) $ $) 139 (|has| |#1| (-862)))) (-2963 (((-112) $ $) 141 (|has| |#1| (-862)))) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 140 (|has| |#1| (-862)))) (-2954 (((-112) $ $) 142 (|has| |#1| (-862)))) (-3034 (($ $ $) 73) (($ |#1| |#1|) 168)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ |#1| $) 196) (($ $ |#1|) 195))) -(((-1014 |#1|) (-141) (-568)) (T -1014)) -((-3034 (*1 *1 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)))) (-1621 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)))) (-2752 (*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)))) (-1396 (*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-2900 (*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-1892 (*1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-557)) (-4 *2 (-568)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) (-3427 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)) (-4 *2 (-557))))) -(-13 (-374) (-38 |t#1|) (-1060 |t#1|) (-349 |t#1|) (-232 |t#1|) (-388 |t#1|) (-900 |t#1|) (-412 |t#1|) (-10 -8 (-15 -3034 ($ |t#1| |t#1|)) (-15 -1621 (|t#1| $)) (-15 -1635 (|t#1| $)) (-15 -2752 ($ $)) (-15 -1396 ($ $)) (IF (|has| |t#1| (-1174)) (-6 (-1174)) |%noBranch|) (IF (|has| |t#1| (-1060 (-576))) (PROGN (-6 (-1060 (-576))) (-6 (-1060 (-419 (-576))))) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-833)) (-6 (-833)) |%noBranch|) (IF (|has| |t#1| (-1044)) (-6 (-1044)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1060 (-1198))) (-6 (-1060 (-1198))) |%noBranch|) (IF (|has| |t#1| (-317)) (PROGN (-15 -3931 (|t#1| $)) (-15 -2900 ($ $))) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -1892 ($)) (-15 -1893 (|t#1| $)) (-15 -3427 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-929)) (-6 (-929)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 #1=(-1198)) |has| |#1| (-1060 (-1198))) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-626 (-227)) |has| |#1| (-1044)) ((-626 (-390)) |has| |#1| (-1044)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-908 (-390))) |has| |#1| (-626 (-908 (-390)))) ((-626 (-908 (-576))) |has| |#1| (-626 (-908 (-576)))) ((-234 $) -2802 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -2802 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) . T) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) . T) ((-317) . T) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-464) . T) ((-526 (-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 #2=(-576)) |has| |#1| (-652 (-576))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-652 #2#) |has| |#1| (-652 (-576))) ((-652 |#1|) . T) ((-730 #0#) . T) ((-730 |#1|) . T) ((-730 $) . T) ((-739) . T) ((-804) |has| |#1| (-833)) ((-805) |has| |#1| (-833)) ((-807) |has| |#1| (-833)) ((-808) |has| |#1| (-833)) ((-833) |has| |#1| (-833)) ((-861) |has| |#1| (-833)) ((-862) -2802 (|has| |#1| (-862)) (|has| |#1| (-833))) ((-865) -2802 (|has| |#1| (-862)) (|has| |#1| (-833))) ((-912 $ #3=(-1198)) -2802 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-918 (-1198)) |has| |#1| (-918 (-1198))) ((-920 #3#) -2802 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-902 (-390)) |has| |#1| (-902 (-390))) ((-902 (-576)) |has| |#1| (-902 (-576))) ((-900 |#1|) . T) ((-929) |has| |#1| (-929)) ((-940) . T) ((-1044) |has| |#1| (-1044)) ((-1060 (-419 (-576))) |has| |#1| (-1060 (-576))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 #1#) |has| |#1| (-1060 (-1198))) ((-1060 |#1|) . T) ((-1073 #0#) . T) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 |#1|) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1174) |has| |#1| (-1174)) ((-1239) . T) ((-1243) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-4074 (($ (-1164 |#1| |#2|)) 11)) (-2514 (((-1164 |#1| |#2|) $) 12)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2835 ((|#2| $ (-245 |#1| |#2|)) 16)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2769 (($) NIL T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL))) -(((-1015 |#1| |#2|) (-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -4074 ($ (-1164 |#1| |#2|))) (-15 -2514 ((-1164 |#1| |#2|) $)))) (-941) (-374)) (T -1015)) -((-4074 (*1 *1 *2) (-12 (-5 *2 (-1164 *3 *4)) (-14 *3 (-941)) (-4 *4 (-374)) (-5 *1 (-1015 *3 *4)))) (-2514 (*1 *2 *1) (-12 (-5 *2 (-1164 *3 *4)) (-5 *1 (-1015 *3 *4)) (-14 *3 (-941)) (-4 *4 (-374))))) -(-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -4074 ($ (-1164 |#1| |#2|))) (-15 -2514 ((-1164 |#1| |#2|) $)))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3088 (((-1157) $) 9)) (-3501 (((-877) $) 15) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-1016) (-13 (-1105) (-10 -8 (-15 -3088 ((-1157) $))))) (T -1016)) -((-3088 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1016))))) -(-13 (-1105) (-10 -8 (-15 -3088 ((-1157) $)))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3793 (((-112) $ (-784)) 8)) (-4359 (($) 7 T CONST)) (-4231 (($ $) 47)) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) 9)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-3358 (((-784) $) 46)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3050 ((|#1| $) 40)) (-2468 (($ |#1| $) 41)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2640 ((|#1| $) 45)) (-2277 ((|#1| $) 42)) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-2862 ((|#1| |#1| $) 49)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-1384 ((|#1| $) 48)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-4079 (($ (-657 |#1|)) 43)) (-4362 ((|#1| $) 44)) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-1017 |#1|) (-141) (-1239)) (T -1017)) -((-2862 (*1 *2 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239)))) (-1384 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239)))) (-4231 (*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239)))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-1017 *3)) (-4 *3 (-1239)) (-5 *2 (-784)))) (-2640 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239)))) (-4362 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4466) (-15 -2862 (|t#1| |t#1| $)) (-15 -1384 (|t#1| $)) (-15 -4231 ($ $)) (-15 -3358 ((-784) $)) (-15 -2640 (|t#1| $)) (-15 -4362 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) -((-2364 (((-112) $) 43)) (-1624 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2884 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 44)) (-2775 (((-3 (-419 (-576)) "failed") $) 78)) (-3112 (((-112) $) 72)) (-4239 (((-419 (-576)) $) 76)) (-4094 (((-112) $) 42)) (-2234 ((|#2| $) 22)) (-4083 (($ (-1 |#2| |#2|) $) 19)) (-2134 (($ $) 58)) (-2815 (($ $ (-1 |#2| |#2|)) 35) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1198)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $) NIL) (($ $ (-784)) NIL)) (-4148 (((-548) $) 67)) (-3549 (($ $) 17)) (-3501 (((-877) $) 53) (($ (-576)) 39) (($ |#2|) 37) (($ (-419 (-576))) NIL)) (-1960 (((-784)) 10)) (-1792 ((|#2| $) 71)) (-2933 (((-112) $ $) 26)) (-2954 (((-112) $ $) 69)) (-3022 (($ $) 30) (($ $ $) 29)) (-3012 (($ $ $) 27)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-1018 |#1| |#2|) (-10 -8 (-15 -3501 (|#1| (-419 (-576)))) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -2954 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -2134 (|#1| |#1|)) (-15 -4148 ((-548) |#1|)) (-15 -2775 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4239 ((-419 (-576)) |#1|)) (-15 -3112 ((-112) |#1|)) (-15 -1792 (|#2| |#1|)) (-15 -2234 (|#2| |#1|)) (-15 -3549 (|#1| |#1|)) (-15 -4083 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -3501 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1960 ((-784))) (-15 -3501 (|#1| (-576))) (-15 -4094 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 -2364 ((-112) |#1|)) (-15 * (|#1| (-941) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -2933 ((-112) |#1| |#1|))) (-1019 |#2|) (-174)) (T -1018)) -((-1960 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-784)) (-5 *1 (-1018 *3 *4)) (-4 *3 (-1019 *4))))) -(-10 -8 (-15 -3501 (|#1| (-419 (-576)))) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1|)) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -2954 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -2134 (|#1| |#1|)) (-15 -4148 ((-548) |#1|)) (-15 -2775 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4239 ((-419 (-576)) |#1|)) (-15 -3112 ((-112) |#1|)) (-15 -1792 (|#2| |#1|)) (-15 -2234 (|#2| |#1|)) (-15 -3549 (|#1| |#1|)) (-15 -4083 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -3501 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1960 ((-784))) (-15 -3501 (|#1| (-576))) (-15 -4094 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-784) |#1|)) (-15 -2364 ((-112) |#1|)) (-15 * (|#1| (-941) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -2933 ((-112) |#1| |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-1624 (((-3 (-576) "failed") $) 135 (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 133 (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) 130)) (-2884 (((-576) $) 134 (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) 132 (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) 131)) (-3306 (((-702 (-576)) (-702 $)) 115 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 114 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 113) (((-702 |#1|) (-702 $)) 112)) (-3843 (((-3 $ "failed") $) 37)) (-1907 ((|#1| $) 103)) (-2775 (((-3 (-419 (-576)) "failed") $) 99 (|has| |#1| (-557)))) (-3112 (((-112) $) 101 (|has| |#1| (-557)))) (-4239 (((-419 (-576)) $) 100 (|has| |#1| (-557)))) (-3693 (($ |#1| |#1| |#1| |#1|) 104)) (-4094 (((-112) $) 35)) (-2234 ((|#1| $) 105)) (-3707 (($ $ $) 87 (|has| |#1| (-862)))) (-1611 (($ $ $) 88 (|has| |#1| (-862)))) (-4083 (($ (-1 |#1| |#1|) $) 118)) (-3101 (((-702 (-576)) (-1289 $)) 117 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 116 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 111) (((-702 |#1|) (-1289 $)) 110)) (-2342 (((-1180) $) 10)) (-2134 (($ $) 96 (|has| |#1| (-374)))) (-3269 ((|#1| $) 106)) (-2986 ((|#1| $) 107)) (-2665 ((|#1| $) 108)) (-1471 (((-1142) $) 11)) (-3236 (($ $ (-657 |#1|) (-657 |#1|)) 124 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 123 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 122 (|has| |#1| (-319 |#1|))) (($ $ (-657 (-304 |#1|))) 121 (|has| |#1| (-319 |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) 120 (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) |#1|) 119 (|has| |#1| (-526 (-1198) |#1|)))) (-2835 (($ $ |#1|) 125 (|has| |#1| (-296 |#1| |#1|)))) (-2815 (($ $ (-1 |#1| |#1|)) 129) (($ $ (-1 |#1| |#1|) (-784)) 128) (($ $) 86 (|has| |#1| (-237))) (($ $ (-784)) 84 (|has| |#1| (-237))) (($ $ (-1198)) 82 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 80 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 79 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 78 (|has| |#1| (-920 (-1198))))) (-4148 (((-548) $) 97 (|has| |#1| (-626 (-548))))) (-3549 (($ $) 109)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 74 (-2802 (|has| |#1| (-374)) (|has| |#1| (-1060 (-419 (-576))))))) (-3096 (((-3 $ "failed") $) 98 (|has| |#1| (-146)))) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-1792 ((|#1| $) 102 (|has| |#1| (-1082)))) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-1 |#1| |#1|)) 127) (($ $ (-1 |#1| |#1|) (-784)) 126) (($ $) 85 (|has| |#1| (-237))) (($ $ (-784)) 83 (|has| |#1| (-237))) (($ $ (-1198)) 81 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 77 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 76 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 75 (|has| |#1| (-920 (-1198))))) (-2985 (((-112) $ $) 89 (|has| |#1| (-862)))) (-2963 (((-112) $ $) 91 (|has| |#1| (-862)))) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 90 (|has| |#1| (-862)))) (-2954 (((-112) $ $) 92 (|has| |#1| (-862)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 95 (|has| |#1| (-374)))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-419 (-576))) 94 (|has| |#1| (-374))) (($ (-419 (-576)) $) 93 (|has| |#1| (-374))))) -(((-1019 |#1|) (-141) (-174)) (T -1019)) -((-3549 (*1 *1 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)))) (-2665 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)))) (-2986 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)))) (-3269 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)))) (-3693 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)))) (-1907 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)))) (-1792 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)) (-4 *2 (-1082)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-4239 (*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-2775 (*1 *2 *1) (|partial| -12 (-4 *1 (-1019 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) -(-13 (-38 |t#1|) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-388 |t#1|) (-10 -8 (-15 -3549 ($ $)) (-15 -2665 (|t#1| $)) (-15 -2986 (|t#1| $)) (-15 -3269 (|t#1| $)) (-15 -2234 (|t#1| $)) (-15 -3693 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1907 (|t#1| $)) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-248)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1082)) (-15 -1792 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3112 ((-112) $)) (-15 -4239 ((-419 (-576)) $)) (-15 -2775 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-374)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-374)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2802 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2802 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-234 $) -2802 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -2802 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) |has| |#1| (-374)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -2802 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-659 #0#) |has| |#1| (-374)) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) |has| |#1| (-374)) ((-661 #1=(-576)) |has| |#1| (-652 (-576))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) |has| |#1| (-374)) ((-653 |#1|) . T) ((-652 #1#) |has| |#1| (-652 (-576))) ((-652 |#1|) . T) ((-730 #0#) |has| |#1| (-374)) ((-730 |#1|) . T) ((-739) . T) ((-862) |has| |#1| (-862)) ((-865) |has| |#1| (-862)) ((-912 $ #2=(-1198)) -2802 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-918 (-1198)) |has| |#1| (-918 (-1198))) ((-920 #2#) -2802 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-1060 (-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1073 #0#) |has| |#1| (-374)) ((-1073 |#1|) . T) ((-1073 $) -2802 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1078 #0#) |has| |#1| (-374)) ((-1078 |#1|) . T) ((-1078 $) -2802 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-4083 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-1020 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4083 (|#3| (-1 |#4| |#2|) |#1|))) (-1019 |#2|) (-174) (-1019 |#4|) (-174)) (T -1020)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1019 *6)) (-5 *1 (-1020 *4 *5 *2 *6)) (-4 *4 (-1019 *5))))) -(-10 -7 (-15 -4083 (|#3| (-1 |#4| |#2|) |#1|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2884 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1907 ((|#1| $) 12)) (-2775 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3112 (((-112) $) NIL (|has| |#1| (-557)))) (-4239 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-3693 (($ |#1| |#1| |#1| |#1|) 16)) (-4094 (((-112) $) NIL)) (-2234 ((|#1| $) NIL)) (-3707 (($ $ $) NIL (|has| |#1| (-862)))) (-1611 (($ $ $) NIL (|has| |#1| (-862)))) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-374)))) (-3269 ((|#1| $) 15)) (-2986 ((|#1| $) 14)) (-2665 ((|#1| $) 13)) (-1471 (((-1142) $) NIL)) (-3236 (($ $ (-657 |#1|) (-657 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-657 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-657 (-1198)) (-657 |#1|)) NIL (|has| |#1| (-526 (-1198) |#1|))) (($ $ (-1198) |#1|) NIL (|has| |#1| (-526 (-1198) |#1|)))) (-2835 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-2815 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237))) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-4148 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3549 (($ $) NIL)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-2802 (|has| |#1| (-374)) (|has| |#1| (-1060 (-419 (-576))))))) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-1792 ((|#1| $) NIL (|has| |#1| (-1082)))) (-2769 (($) 8 T CONST)) (-2779 (($) 10 T CONST)) (-2097 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237))) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-2985 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))))) -(((-1021 |#1|) (-1019 |#1|) (-174)) (T -1021)) -NIL -(-1019 |#1|) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3793 (((-112) $ (-784)) NIL)) (-4359 (($) NIL T CONST)) (-4231 (($ $) 23)) (-3347 (($ (-657 |#1|)) 33)) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-3358 (((-784) $) 26)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3050 ((|#1| $) 28)) (-2468 (($ |#1| $) 17)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2640 ((|#1| $) 27)) (-2277 ((|#1| $) 22)) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-2862 ((|#1| |#1| $) 16)) (-3387 (((-112) $) 18)) (-3581 (($) NIL)) (-1384 ((|#1| $) 21)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) NIL)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4079 (($ (-657 |#1|)) NIL)) (-4362 ((|#1| $) 30)) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-1022 |#1|) (-13 (-1017 |#1|) (-10 -8 (-15 -3347 ($ (-657 |#1|))))) (-1122)) (T -1022)) -((-3347 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-1022 *3))))) -(-13 (-1017 |#1|) (-10 -8 (-15 -3347 ($ (-657 |#1|))))) -((-1896 (($ $) 12)) (-2082 (($ $ (-576)) 13))) -(((-1023 |#1|) (-10 -8 (-15 -1896 (|#1| |#1|)) (-15 -2082 (|#1| |#1| (-576)))) (-1024)) (T -1023)) -NIL -(-10 -8 (-15 -1896 (|#1| |#1|)) (-15 -2082 (|#1| |#1| (-576)))) -((-1896 (($ $) 6)) (-2082 (($ $ (-576)) 7)) (** (($ $ (-419 (-576))) 8))) -(((-1024) (-141)) (T -1024)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-419 (-576))))) (-2082 (*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-576)))) (-1896 (*1 *1 *1) (-4 *1 (-1024)))) -(-13 (-10 -8 (-15 -1896 ($ $)) (-15 -2082 ($ $ (-576))) (-15 ** ($ $ (-419 (-576)))))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3642 (((-2 (|:| |num| (-1289 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-3325 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-4306 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-1527 (((-702 (-419 |#2|)) (-1289 $)) NIL) (((-702 (-419 |#2|))) NIL)) (-2302 (((-419 |#2|) $) NIL)) (-3592 (((-1211 (-941) (-784)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-4402 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2864 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2193 (((-784)) NIL (|has| (-419 |#2|) (-379)))) (-1844 (((-112)) NIL)) (-3700 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1060 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-2884 (((-576) $) NIL (|has| (-419 |#2|) (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1060 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-2613 (($ (-1289 (-419 |#2|)) (-1289 $)) NIL) (($ (-1289 (-419 |#2|))) 79) (($ (-1289 |#2|) |#2|) NIL)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-3373 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3529 (((-702 (-419 |#2|)) $ (-1289 $)) NIL) (((-702 (-419 |#2|)) $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-419 |#2|))) (|:| |vec| (-1289 (-419 |#2|)))) (-702 $) (-1289 $)) NIL) (((-702 (-419 |#2|)) (-702 $)) NIL)) (-3130 (((-1289 $) (-1289 $)) NIL)) (-3622 (($ |#3|) 73) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-3843 (((-3 $ "failed") $) NIL)) (-2420 (((-657 (-657 |#1|))) NIL (|has| |#1| (-379)))) (-2952 (((-112) |#1| |#1|) NIL)) (-1542 (((-941)) NIL)) (-1892 (($) NIL (|has| (-419 |#2|) (-379)))) (-3309 (((-112)) NIL)) (-3004 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-3385 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| (-419 |#2|) (-374)))) (-3813 (($ $) NIL)) (-1367 (($) NIL (|has| (-419 |#2|) (-360)))) (-2105 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-1780 (($ $ (-784)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-4257 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3182 (((-941) $) NIL (|has| (-419 |#2|) (-360))) (((-846 (-941)) $) NIL (|has| (-419 |#2|) (-360)))) (-4094 (((-112) $) NIL)) (-3181 (((-784)) NIL)) (-3253 (((-1289 $) (-1289 $)) NIL)) (-2234 (((-419 |#2|) $) NIL)) (-2327 (((-657 (-972 |#1|)) (-1198)) NIL (|has| |#1| (-374)))) (-4019 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1336 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-3007 (((-941) $) NIL (|has| (-419 |#2|) (-379)))) (-3609 ((|#3| $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-419 |#2|) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-419 |#2|))) (|:| |vec| (-1289 (-419 |#2|)))) (-1289 $) $) NIL) (((-702 (-419 |#2|)) (-1289 $)) NIL)) (-3402 (($ (-657 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-2342 (((-1180) $) NIL)) (-4315 (((-702 (-419 |#2|))) 57)) (-2610 (((-702 (-419 |#2|))) 56)) (-2134 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-1599 (($ (-1289 |#2|) |#2|) 80)) (-1457 (((-702 (-419 |#2|))) 55)) (-3154 (((-702 (-419 |#2|))) 54)) (-4265 (((-2 (|:| |num| (-702 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-3640 (((-2 (|:| |num| (-1289 |#2|)) (|:| |den| |#2|)) $) 86)) (-1520 (((-1289 $)) 51)) (-1613 (((-1289 $)) 50)) (-1333 (((-112) $) NIL)) (-1743 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-1706 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-3178 (($ (-941)) NIL (|has| (-419 |#2|) (-379)))) (-4292 (((-3 |#2| "failed")) 70)) (-1471 (((-1142) $) NIL)) (-2821 (((-784)) NIL)) (-4097 (($) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| (-419 |#2|) (-374)))) (-3436 (($ (-657 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-1885 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3418 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2034 (((-784) $) NIL (|has| (-419 |#2|) (-374)))) (-2835 ((|#1| $ |#1| |#1|) NIL)) (-2645 (((-3 |#2| "failed")) 68)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1701 (((-419 |#2|) (-1289 $)) NIL) (((-419 |#2|)) 47)) (-2284 (((-784) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-784) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-2815 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-784)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2802 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2802 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2802 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-784)) NIL (-2802 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2802 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3988 (((-702 (-419 |#2|)) (-1289 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-3180 ((|#3|) 58)) (-2090 (($) NIL (|has| (-419 |#2|) (-360)))) (-2795 (((-1289 (-419 |#2|)) $ (-1289 $)) NIL) (((-702 (-419 |#2|)) (-1289 $) (-1289 $)) NIL) (((-1289 (-419 |#2|)) $) 81) (((-702 (-419 |#2|)) (-1289 $)) NIL)) (-4148 (((-1289 (-419 |#2|)) $) NIL) (($ (-1289 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| (-419 |#2|) (-360)))) (-1361 (((-1289 $) (-1289 $)) NIL)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-2802 (|has| (-419 |#2|) (-1060 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3096 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-4182 ((|#3| $) NIL)) (-1960 (((-784)) NIL T CONST)) (-1818 (((-112)) 65)) (-2866 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) NIL)) (-4041 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2519 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1660 (((-112)) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-784)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2802 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2802 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2802 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-918 (-1198)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-920 (-1198)))))) (($ $ (-784)) NIL (-2802 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2802 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) -(((-1025 |#1| |#2| |#3| |#4| |#5|) (-353 |#1| |#2| |#3|) (-1243) (-1265 |#1|) (-1265 (-419 |#2|)) (-419 |#2|) (-784)) (T -1025)) -NIL -(-353 |#1| |#2| |#3|) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3433 (((-657 (-576)) $) 73)) (-1789 (($ (-657 (-576))) 81)) (-3931 (((-576) $) 48 (|has| (-576) (-317)))) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-2864 (((-112) $ $) NIL)) (-1536 (((-576) $) NIL (|has| (-576) (-833)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) 60) (((-3 (-1198) "failed") $) NIL (|has| (-576) (-1060 (-1198)))) (((-3 (-419 (-576)) "failed") $) 57 (|has| (-576) (-1060 (-576)))) (((-3 (-576) "failed") $) 60 (|has| (-576) (-1060 (-576))))) (-2884 (((-576) $) NIL) (((-1198) $) NIL (|has| (-576) (-1060 (-1198)))) (((-419 (-576)) $) NIL (|has| (-576) (-1060 (-576)))) (((-576) $) NIL (|has| (-576) (-1060 (-576))))) (-3373 (($ $ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-702 (-576)) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-1892 (($) NIL (|has| (-576) (-557)))) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-2338 (((-657 (-576)) $) 79)) (-2828 (((-112) $) NIL (|has| (-576) (-833)))) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (|has| (-576) (-902 (-576)))) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (|has| (-576) (-902 (-390))))) (-4094 (((-112) $) NIL)) (-2752 (($ $) NIL)) (-1621 (((-576) $) 45)) (-4019 (((-3 $ "failed") $) NIL (|has| (-576) (-1174)))) (-2881 (((-112) $) NIL (|has| (-576) (-833)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3707 (($ $ $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| (-576) (-862)))) (-4083 (($ (-1 (-576) (-576)) $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| (-576) (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL) (((-702 (-576)) (-1289 $)) NIL)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL)) (-1706 (($) NIL (|has| (-576) (-1174)) CONST)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2900 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) 50)) (-2028 (((-1179 (-576)) $) 78)) (-4136 (($ (-657 (-576)) (-657 (-576))) 82)) (-3427 (((-576) $) 64 (|has| (-576) (-557)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| (-576) (-929)))) (-1885 (((-430 $) $) NIL)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3236 (($ $ (-657 (-576)) (-657 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-657 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-657 (-1198)) (-657 (-576))) NIL (|has| (-576) (-526 (-1198) (-576)))) (($ $ (-1198) (-576)) NIL (|has| (-576) (-526 (-1198) (-576))))) (-2034 (((-784) $) NIL)) (-2835 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2815 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-576) (-920 (-1198)))) (($ $) 15 (|has| (-576) (-237))) (($ $ (-784)) NIL (|has| (-576) (-237)))) (-1396 (($ $) NIL)) (-1635 (((-576) $) 47)) (-3174 (((-657 (-576)) $) 80)) (-4148 (((-908 (-576)) $) NIL (|has| (-576) (-626 (-908 (-576))))) (((-908 (-390)) $) NIL (|has| (-576) (-626 (-908 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1044))) (((-227) $) NIL (|has| (-576) (-1044)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-929))))) (-3501 (((-877) $) 107) (($ (-576)) 51) (($ $) NIL) (($ (-419 (-576))) 27) (($ (-576)) 51) (($ (-1198)) NIL (|has| (-576) (-1060 (-1198)))) (((-419 (-576)) $) 25)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| (-576) (-929))) (|has| (-576) (-146))))) (-1960 (((-784)) 13 T CONST)) (-1893 (((-576) $) 62 (|has| (-576) (-557)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-1792 (($ $) NIL (|has| (-576) (-833)))) (-2769 (($) 14 T CONST)) (-2779 (($) 17 T CONST)) (-2097 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-784)) NIL) (($ $ (-1198)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| (-576) (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| (-576) (-920 (-1198)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-784)) NIL (|has| (-576) (-237)))) (-2985 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2963 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2933 (((-112) $ $) 21)) (-2973 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2954 (((-112) $ $) 40 (|has| (-576) (-862)))) (-3034 (($ $ $) 36) (($ (-576) (-576)) 38)) (-3022 (($ $) 23) (($ $ $) 30)) (-3012 (($ $ $) 28)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 32) (($ $ $) 34) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) 32) (($ $ (-576)) NIL))) -(((-1026 |#1|) (-13 (-1014 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -2900 ((-419 (-576)) $)) (-15 -3433 ((-657 (-576)) $)) (-15 -2028 ((-1179 (-576)) $)) (-15 -2338 ((-657 (-576)) $)) (-15 -3174 ((-657 (-576)) $)) (-15 -1789 ($ (-657 (-576)))) (-15 -4136 ($ (-657 (-576)) (-657 (-576)))))) (-576)) (T -1026)) -((-2900 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576)))) (-2028 (*1 *2 *1) (-12 (-5 *2 (-1179 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576)))) (-2338 (*1 *2 *1) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576)))) (-3174 (*1 *2 *1) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576)))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576)))) (-4136 (*1 *1 *2 *2) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576))))) -(-13 (-1014 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -2900 ((-419 (-576)) $)) (-15 -3433 ((-657 (-576)) $)) (-15 -2028 ((-1179 (-576)) $)) (-15 -2338 ((-657 (-576)) $)) (-15 -3174 ((-657 (-576)) $)) (-15 -1789 ($ (-657 (-576)))) (-15 -4136 ($ (-657 (-576)) (-657 (-576)))))) -((-1929 (((-52) (-419 (-576)) (-576)) 9))) -(((-1027) (-10 -7 (-15 -1929 ((-52) (-419 (-576)) (-576))))) (T -1027)) -((-1929 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) (-5 *1 (-1027))))) -(-10 -7 (-15 -1929 ((-52) (-419 (-576)) (-576)))) -((-2193 (((-576)) 23)) (-2241 (((-576)) 28)) (-1424 (((-1294) (-576)) 26)) (-3458 (((-576) (-576)) 29) (((-576)) 22))) -(((-1028) (-10 -7 (-15 -3458 ((-576))) (-15 -2193 ((-576))) (-15 -3458 ((-576) (-576))) (-15 -1424 ((-1294) (-576))) (-15 -2241 ((-576))))) (T -1028)) -((-2241 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1028)))) (-1424 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-1028)))) (-3458 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1028)))) (-2193 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1028)))) (-3458 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1028))))) -(-10 -7 (-15 -3458 ((-576))) (-15 -2193 ((-576))) (-15 -3458 ((-576) (-576))) (-15 -1424 ((-1294) (-576))) (-15 -2241 ((-576)))) -((-1679 (((-430 |#1|) |#1|) 43)) (-1885 (((-430 |#1|) |#1|) 41))) -(((-1029 |#1|) (-10 -7 (-15 -1885 ((-430 |#1|) |#1|)) (-15 -1679 ((-430 |#1|) |#1|))) (-1265 (-419 (-576)))) (T -1029)) -((-1679 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1029 *3)) (-4 *3 (-1265 (-419 (-576)))))) (-1885 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1029 *3)) (-4 *3 (-1265 (-419 (-576))))))) -(-10 -7 (-15 -1885 ((-430 |#1|) |#1|)) (-15 -1679 ((-430 |#1|) |#1|))) -((-2775 (((-3 (-419 (-576)) "failed") |#1|) 15)) (-3112 (((-112) |#1|) 14)) (-4239 (((-419 (-576)) |#1|) 10))) -(((-1030 |#1|) (-10 -7 (-15 -4239 ((-419 (-576)) |#1|)) (-15 -3112 ((-112) |#1|)) (-15 -2775 ((-3 (-419 (-576)) "failed") |#1|))) (-1060 (-419 (-576)))) (T -1030)) -((-2775 (*1 *2 *3) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1030 *3)) (-4 *3 (-1060 *2)))) (-3112 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1030 *3)) (-4 *3 (-1060 (-419 (-576)))))) (-4239 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1030 *3)) (-4 *3 (-1060 *2))))) -(-10 -7 (-15 -4239 ((-419 (-576)) |#1|)) (-15 -3112 ((-112) |#1|)) (-15 -2775 ((-3 (-419 (-576)) "failed") |#1|))) -((-3682 ((|#2| $ "value" |#2|) 12)) (-2835 ((|#2| $ "value") 10)) (-1633 (((-112) $ $) 18))) -(((-1031 |#1| |#2|) (-10 -8 (-15 -3682 (|#2| |#1| "value" |#2|)) (-15 -1633 ((-112) |#1| |#1|)) (-15 -2835 (|#2| |#1| "value"))) (-1032 |#2|) (-1239)) (T -1031)) -NIL -(-10 -8 (-15 -3682 (|#2| |#1| "value" |#2|)) (-15 -1633 ((-112) |#1| |#1|)) (-15 -2835 (|#2| |#1| "value"))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3071 ((|#1| $) 49)) (-3793 (((-112) $ (-784)) 8)) (-3734 ((|#1| $ |#1|) 40 (|has| $ (-6 -4467)))) (-3682 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) 42 (|has| $ (-6 -4467)))) (-4359 (($) 7 T CONST)) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-2877 (((-657 $) $) 51)) (-1700 (((-112) $ $) 43 (|has| |#1| (-1122)))) (-1833 (((-112) $ (-784)) 9)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-2424 (((-657 |#1|) $) 46)) (-2633 (((-112) $) 50)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#1| $ "value") 48)) (-3883 (((-576) $ $) 45)) (-3628 (((-112) $) 47)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-1986 (((-657 $) $) 52)) (-1633 (((-112) $ $) 44 (|has| |#1| (-1122)))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-1032 |#1|) (-141) (-1239)) (T -1032)) -((-1986 (*1 *2 *1) (-12 (-4 *3 (-1239)) (-5 *2 (-657 *1)) (-4 *1 (-1032 *3)))) (-2877 (*1 *2 *1) (-12 (-4 *3 (-1239)) (-5 *2 (-657 *1)) (-4 *1 (-1032 *3)))) (-2633 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-5 *2 (-112)))) (-3071 (*1 *2 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-1239)))) (-2835 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1032 *2)) (-4 *2 (-1239)))) (-3628 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-5 *2 (-112)))) (-2424 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-5 *2 (-657 *3)))) (-3883 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-5 *2 (-576)))) (-1633 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-4 *3 (-1122)) (-5 *2 (-112)))) (-1700 (*1 *2 *1 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-4 *3 (-1122)) (-5 *2 (-112)))) (-2983 (*1 *1 *1 *2) (-12 (-5 *2 (-657 *1)) (|has| *1 (-6 -4467)) (-4 *1 (-1032 *3)) (-4 *3 (-1239)))) (-3682 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4467)) (-4 *1 (-1032 *2)) (-4 *2 (-1239)))) (-3734 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1032 *2)) (-4 *2 (-1239))))) -(-13 (-501 |t#1|) (-10 -8 (-15 -1986 ((-657 $) $)) (-15 -2877 ((-657 $) $)) (-15 -2633 ((-112) $)) (-15 -3071 (|t#1| $)) (-15 -2835 (|t#1| $ "value")) (-15 -3628 ((-112) $)) (-15 -2424 ((-657 |t#1|) $)) (-15 -3883 ((-576) $ $)) (IF (|has| |t#1| (-1122)) (PROGN (-15 -1633 ((-112) $ $)) (-15 -1700 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4467)) (PROGN (-15 -2983 ($ $ (-657 $))) (-15 -3682 (|t#1| $ "value" |t#1|)) (-15 -3734 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) -((-1896 (($ $) 9) (($ $ (-941)) 49) (($ (-419 (-576))) 13) (($ (-576)) 15)) (-3564 (((-3 $ "failed") (-1194 $) (-941) (-877)) 24) (((-3 $ "failed") (-1194 $) (-941)) 32)) (-2082 (($ $ (-576)) 58)) (-1960 (((-784)) 18)) (-1349 (((-657 $) (-1194 $)) NIL) (((-657 $) (-1194 (-419 (-576)))) 63) (((-657 $) (-1194 (-576))) 68) (((-657 $) (-972 $)) 72) (((-657 $) (-972 (-419 (-576)))) 76) (((-657 $) (-972 (-576))) 80)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 53))) -(((-1033 |#1|) (-10 -8 (-15 -1896 (|#1| (-576))) (-15 -1896 (|#1| (-419 (-576)))) (-15 -1896 (|#1| |#1| (-941))) (-15 -1349 ((-657 |#1|) (-972 (-576)))) (-15 -1349 ((-657 |#1|) (-972 (-419 (-576))))) (-15 -1349 ((-657 |#1|) (-972 |#1|))) (-15 -1349 ((-657 |#1|) (-1194 (-576)))) (-15 -1349 ((-657 |#1|) (-1194 (-419 (-576))))) (-15 -1349 ((-657 |#1|) (-1194 |#1|))) (-15 -3564 ((-3 |#1| "failed") (-1194 |#1|) (-941))) (-15 -3564 ((-3 |#1| "failed") (-1194 |#1|) (-941) (-877))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2082 (|#1| |#1| (-576))) (-15 -1896 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -1960 ((-784))) (-15 ** (|#1| |#1| (-784))) (-15 ** (|#1| |#1| (-941)))) (-1034)) (T -1033)) -((-1960 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1033 *3)) (-4 *3 (-1034))))) -(-10 -8 (-15 -1896 (|#1| (-576))) (-15 -1896 (|#1| (-419 (-576)))) (-15 -1896 (|#1| |#1| (-941))) (-15 -1349 ((-657 |#1|) (-972 (-576)))) (-15 -1349 ((-657 |#1|) (-972 (-419 (-576))))) (-15 -1349 ((-657 |#1|) (-972 |#1|))) (-15 -1349 ((-657 |#1|) (-1194 (-576)))) (-15 -1349 ((-657 |#1|) (-1194 (-419 (-576))))) (-15 -1349 ((-657 |#1|) (-1194 |#1|))) (-15 -3564 ((-3 |#1| "failed") (-1194 |#1|) (-941))) (-15 -3564 ((-3 |#1| "failed") (-1194 |#1|) (-941) (-877))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2082 (|#1| |#1| (-576))) (-15 -1896 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -1960 ((-784))) (-15 ** (|#1| |#1| (-784))) (-15 ** (|#1| |#1| (-941)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 103)) (-3325 (($ $) 104)) (-4306 (((-112) $) 106)) (-2721 (((-3 $ "failed") $ $) 20)) (-2638 (($ $) 123)) (-4402 (((-430 $) $) 124)) (-1896 (($ $) 87) (($ $ (-941)) 73) (($ (-419 (-576))) 72) (($ (-576)) 71)) (-2864 (((-112) $ $) 114)) (-1536 (((-576) $) 140)) (-4359 (($) 18 T CONST)) (-3564 (((-3 $ "failed") (-1194 $) (-941) (-877)) 81) (((-3 $ "failed") (-1194 $) (-941)) 80)) (-1624 (((-3 (-576) "failed") $) 100 (|has| (-419 (-576)) (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| (-419 (-576)) (-1060 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) 95)) (-2884 (((-576) $) 99 (|has| (-419 (-576)) (-1060 (-576)))) (((-419 (-576)) $) 97 (|has| (-419 (-576)) (-1060 (-419 (-576))))) (((-419 (-576)) $) 96)) (-1612 (($ $ (-877)) 70)) (-1667 (($ $ (-877)) 69)) (-3373 (($ $ $) 118)) (-3843 (((-3 $ "failed") $) 37)) (-3385 (($ $ $) 117)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 112)) (-4257 (((-112) $) 125)) (-2828 (((-112) $) 138)) (-4094 (((-112) $) 35)) (-2082 (($ $ (-576)) 86)) (-2881 (((-112) $) 139)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 121)) (-3707 (($ $ $) 132)) (-1611 (($ $ $) 133)) (-3772 (((-3 (-1194 $) "failed") $) 82)) (-3516 (((-3 (-877) "failed") $) 84)) (-2566 (((-3 (-1194 $) "failed") $) 83)) (-3402 (($ (-657 $)) 110) (($ $ $) 109)) (-2342 (((-1180) $) 10)) (-2134 (($ $) 126)) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 111)) (-3436 (($ (-657 $)) 108) (($ $ $) 107)) (-1885 (((-430 $) $) 122)) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 119)) (-3418 (((-3 $ "failed") $ $) 102)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 113)) (-2034 (((-784) $) 115)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 116)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 130) (($ $) 101) (($ (-419 (-576))) 94) (($ (-576)) 93) (($ (-419 (-576))) 90)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 105)) (-4144 (((-419 (-576)) $ $) 68)) (-1349 (((-657 $) (-1194 $)) 79) (((-657 $) (-1194 (-419 (-576)))) 78) (((-657 $) (-1194 (-576))) 77) (((-657 $) (-972 $)) 76) (((-657 $) (-972 (-419 (-576)))) 75) (((-657 $) (-972 (-576))) 74)) (-1792 (($ $) 141)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2985 (((-112) $ $) 134)) (-2963 (((-112) $ $) 136)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 135)) (-2954 (((-112) $ $) 137)) (-3034 (($ $ $) 131)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 127) (($ $ (-419 (-576))) 85)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 129) (($ $ (-419 (-576))) 128) (($ (-576) $) 92) (($ $ (-576)) 91) (($ (-419 (-576)) $) 89) (($ $ (-419 (-576))) 88))) -(((-1034) (-141)) (T -1034)) -((-1896 (*1 *1 *1) (-4 *1 (-1034))) (-3516 (*1 *2 *1) (|partial| -12 (-4 *1 (-1034)) (-5 *2 (-877)))) (-2566 (*1 *2 *1) (|partial| -12 (-5 *2 (-1194 *1)) (-4 *1 (-1034)))) (-3772 (*1 *2 *1) (|partial| -12 (-5 *2 (-1194 *1)) (-4 *1 (-1034)))) (-3564 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1194 *1)) (-5 *3 (-941)) (-5 *4 (-877)) (-4 *1 (-1034)))) (-3564 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1194 *1)) (-5 *3 (-941)) (-4 *1 (-1034)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-1194 *1)) (-4 *1 (-1034)) (-5 *2 (-657 *1)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-1194 (-419 (-576)))) (-5 *2 (-657 *1)) (-4 *1 (-1034)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-1194 (-576))) (-5 *2 (-657 *1)) (-4 *1 (-1034)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-972 *1)) (-4 *1 (-1034)) (-5 *2 (-657 *1)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-972 (-419 (-576)))) (-5 *2 (-657 *1)) (-4 *1 (-1034)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-972 (-576))) (-5 *2 (-657 *1)) (-4 *1 (-1034)))) (-1896 (*1 *1 *1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-941)))) (-1896 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1034)))) (-1896 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1034)))) (-1612 (*1 *1 *1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-877)))) (-1667 (*1 *1 *1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-877)))) (-4144 (*1 *2 *1 *1) (-12 (-4 *1 (-1034)) (-5 *2 (-419 (-576)))))) -(-13 (-148) (-861) (-174) (-374) (-423 (-419 (-576))) (-38 (-576)) (-38 (-419 (-576))) (-1024) (-10 -8 (-15 -3516 ((-3 (-877) "failed") $)) (-15 -2566 ((-3 (-1194 $) "failed") $)) (-15 -3772 ((-3 (-1194 $) "failed") $)) (-15 -3564 ((-3 $ "failed") (-1194 $) (-941) (-877))) (-15 -3564 ((-3 $ "failed") (-1194 $) (-941))) (-15 -1349 ((-657 $) (-1194 $))) (-15 -1349 ((-657 $) (-1194 (-419 (-576))))) (-15 -1349 ((-657 $) (-1194 (-576)))) (-15 -1349 ((-657 $) (-972 $))) (-15 -1349 ((-657 $) (-972 (-419 (-576))))) (-15 -1349 ((-657 $) (-972 (-576)))) (-15 -1896 ($ $ (-941))) (-15 -1896 ($ $)) (-15 -1896 ($ (-419 (-576)))) (-15 -1896 ($ (-576))) (-15 -1612 ($ $ (-877))) (-15 -1667 ($ $ (-877))) (-15 -4144 ((-419 (-576)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 #1=(-576)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-423 (-419 (-576))) . T) ((-464) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 #1#) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 #1#) . T) ((-653 $) . T) ((-730 #0#) . T) ((-730 #1#) . T) ((-730 $) . T) ((-739) . T) ((-804) . T) ((-805) . T) ((-807) . T) ((-808) . T) ((-861) . T) ((-862) . T) ((-865) . T) ((-940) . T) ((-1024) . T) ((-1060 (-419 (-576))) . T) ((-1060 (-576)) |has| (-419 (-576)) (-1060 (-576))) ((-1073 #0#) . T) ((-1073 #1#) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 #1#) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) . T)) -((-4119 (((-2 (|:| |ans| |#2|) (|:| -4236 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1198) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-657 |#2|)) (-1 (-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) -(((-1035 |#1| |#2|) (-10 -7 (-15 -4119 ((-2 (|:| |ans| |#2|) (|:| -4236 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1198) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-657 |#2|)) (-1 (-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1060 (-576)) (-652 (-576))) (-13 (-1224) (-27) (-442 |#1|))) (T -1035)) -((-4119 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1198)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-657 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2322 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1224) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1060 *3) (-652 *3))) (-5 *3 (-576)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4236 *4) (|:| |sol?| (-112)))) (-5 *1 (-1035 *8 *4))))) -(-10 -7 (-15 -4119 ((-2 (|:| |ans| |#2|) (|:| -4236 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1198) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-657 |#2|)) (-1 (-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-4243 (((-3 (-657 |#2|) "failed") (-576) |#2| |#2| |#2| (-1198) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-657 |#2|)) (-1 (-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) -(((-1036 |#1| |#2|) (-10 -7 (-15 -4243 ((-3 (-657 |#2|) "failed") (-576) |#2| |#2| |#2| (-1198) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-657 |#2|)) (-1 (-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1060 (-576)) (-652 (-576))) (-13 (-1224) (-27) (-442 |#1|))) (T -1036)) -((-4243 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1198)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-657 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2322 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1224) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1060 *3) (-652 *3))) (-5 *3 (-576)) (-5 *2 (-657 *4)) (-5 *1 (-1036 *8 *4))))) -(-10 -7 (-15 -4243 ((-3 (-657 |#2|) "failed") (-576) |#2| |#2| |#2| (-1198) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-657 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-657 |#2|)) (-1 (-3 (-2 (|:| -2322 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-1724 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3989 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)) 38)) (-4247 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2785 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 69)) (-4181 (((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|)) 74))) -(((-1037 |#1| |#2|) (-10 -7 (-15 -4247 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2785 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -4181 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -1724 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3989 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) (-13 (-374) (-148) (-1060 (-576))) (-1265 |#1|)) (T -1037)) -((-1724 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1265 *6)) (-4 *6 (-13 (-374) (-148) (-1060 *4))) (-5 *4 (-576)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3989 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1037 *6 *3)))) (-4181 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-576)))) (-4 *5 (-1265 *4)) (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1037 *4 *5)) (-5 *3 (-419 *5)))) (-4247 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -2785 *6))) (-5 *1 (-1037 *5 *6)) (-5 *3 (-419 *6))))) -(-10 -7 (-15 -4247 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2785 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -4181 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -1724 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3989 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) -((-4158 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2785 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 22)) (-3338 (((-3 (-657 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 34))) -(((-1038 |#1| |#2|) (-10 -7 (-15 -4158 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2785 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3338 ((-3 (-657 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) (-13 (-374) (-148) (-1060 (-576))) (-1265 |#1|)) (T -1038)) -((-3338 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1060 (-576)))) (-4 *5 (-1265 *4)) (-5 *2 (-657 (-419 *5))) (-5 *1 (-1038 *4 *5)) (-5 *3 (-419 *5)))) (-4158 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -2785 *6))) (-5 *1 (-1038 *5 *6)) (-5 *3 (-419 *6))))) -(-10 -7 (-15 -4158 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2785 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3338 ((-3 (-657 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) -((-3840 (((-1 |#1|) (-657 (-2 (|:| -3071 |#1|) (|:| -3983 (-576))))) 34)) (-3972 (((-1 |#1|) (-1124 |#1|)) 42)) (-2635 (((-1 |#1|) (-1289 |#1|) (-1289 (-576)) (-576)) 31))) -(((-1039 |#1|) (-10 -7 (-15 -3972 ((-1 |#1|) (-1124 |#1|))) (-15 -3840 ((-1 |#1|) (-657 (-2 (|:| -3071 |#1|) (|:| -3983 (-576)))))) (-15 -2635 ((-1 |#1|) (-1289 |#1|) (-1289 (-576)) (-576)))) (-1122)) (T -1039)) -((-2635 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1289 *6)) (-5 *4 (-1289 (-576))) (-5 *5 (-576)) (-4 *6 (-1122)) (-5 *2 (-1 *6)) (-5 *1 (-1039 *6)))) (-3840 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| -3071 *4) (|:| -3983 (-576))))) (-4 *4 (-1122)) (-5 *2 (-1 *4)) (-5 *1 (-1039 *4)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-1124 *4)) (-4 *4 (-1122)) (-5 *2 (-1 *4)) (-5 *1 (-1039 *4))))) -(-10 -7 (-15 -3972 ((-1 |#1|) (-1124 |#1|))) (-15 -3840 ((-1 |#1|) (-657 (-2 (|:| -3071 |#1|) (|:| -3983 (-576)))))) (-15 -2635 ((-1 |#1|) (-1289 |#1|) (-1289 (-576)) (-576)))) -((-3182 (((-784) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1040 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3182 ((-784) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-374) (-1265 |#1|) (-1265 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-13 (-379) (-374))) (T -1040)) -((-3182 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) (-4 *7 (-1265 *6)) (-4 *4 (-1265 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) (-4 *9 (-13 (-379) (-374))) (-5 *2 (-784)) (-5 *1 (-1040 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -3182 ((-784) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-3429 (((-112) $ $) NIL)) (-1832 (((-1157) $) 9)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2687 (((-1157) $) 11)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-1041) (-13 (-1105) (-10 -8 (-15 -1832 ((-1157) $)) (-15 -2687 ((-1157) $))))) (T -1041)) -((-1832 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1041)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1041))))) -(-13 (-1105) (-10 -8 (-15 -1832 ((-1157) $)) (-15 -2687 ((-1157) $)))) -((-4189 (((-3 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) "failed") |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) 32) (((-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) (-419 (-576))) 29)) (-3859 (((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) (-419 (-576))) 34) (((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1| (-419 (-576))) 30) (((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) 33) (((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1|) 28)) (-3266 (((-657 (-419 (-576))) (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) 20)) (-3838 (((-419 (-576)) (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) 17))) -(((-1042 |#1|) (-10 -7 (-15 -3859 ((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1|)) (-15 -3859 ((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) (-15 -3859 ((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3859 ((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) (-419 (-576)))) (-15 -4189 ((-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) (-419 (-576)))) (-15 -4189 ((-3 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) "failed") |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) (-15 -3838 ((-419 (-576)) (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) (-15 -3266 ((-657 (-419 (-576))) (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))))) (-1265 (-576))) (T -1042)) -((-3266 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) (-5 *2 (-657 (-419 (-576)))) (-5 *1 (-1042 *4)) (-4 *4 (-1265 (-576))))) (-3838 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) (-5 *2 (-419 (-576))) (-5 *1 (-1042 *4)) (-4 *4 (-1265 (-576))))) (-4189 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))))) (-4189 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))))) (-3859 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-657 (-2 (|:| -4224 *5) (|:| -4236 *5)))) (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))) (-5 *4 (-2 (|:| -4224 *5) (|:| -4236 *5))))) (-3859 (*1 *2 *3 *4) (-12 (-5 *2 (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))) (-5 *4 (-419 (-576))))) (-3859 (*1 *2 *3 *4) (-12 (-5 *2 (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))) (-5 *4 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))))) (-3859 (*1 *2 *3) (-12 (-5 *2 (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576)))))) -(-10 -7 (-15 -3859 ((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1|)) (-15 -3859 ((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) (-15 -3859 ((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3859 ((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) (-419 (-576)))) (-15 -4189 ((-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) (-419 (-576)))) (-15 -4189 ((-3 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) "failed") |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) (-15 -3838 ((-419 (-576)) (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) (-15 -3266 ((-657 (-419 (-576))) (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))))) -((-4189 (((-3 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) "failed") |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) 35) (((-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) (-419 (-576))) 32)) (-3859 (((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) (-419 (-576))) 30) (((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1| (-419 (-576))) 26) (((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) 28) (((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1|) 24))) -(((-1043 |#1|) (-10 -7 (-15 -3859 ((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1|)) (-15 -3859 ((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) (-15 -3859 ((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3859 ((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) (-419 (-576)))) (-15 -4189 ((-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) (-419 (-576)))) (-15 -4189 ((-3 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) "failed") |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))))) (-1265 (-419 (-576)))) (T -1043)) -((-4189 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) (-5 *1 (-1043 *3)) (-4 *3 (-1265 (-419 (-576)))))) (-4189 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1043 *3)) (-4 *3 (-1265 *4)))) (-3859 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-657 (-2 (|:| -4224 *5) (|:| -4236 *5)))) (-5 *1 (-1043 *3)) (-4 *3 (-1265 *5)) (-5 *4 (-2 (|:| -4224 *5) (|:| -4236 *5))))) (-3859 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-5 *2 (-657 (-2 (|:| -4224 *4) (|:| -4236 *4)))) (-5 *1 (-1043 *3)) (-4 *3 (-1265 *4)))) (-3859 (*1 *2 *3 *4) (-12 (-5 *2 (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) (-5 *1 (-1043 *3)) (-4 *3 (-1265 (-419 (-576)))) (-5 *4 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))))) (-3859 (*1 *2 *3) (-12 (-5 *2 (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) (-5 *1 (-1043 *3)) (-4 *3 (-1265 (-419 (-576))))))) -(-10 -7 (-15 -3859 ((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1|)) (-15 -3859 ((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) (-15 -3859 ((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3859 ((-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) (-419 (-576)))) (-15 -4189 ((-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) (-419 (-576)))) (-15 -4189 ((-3 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) "failed") |#1| (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))) (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))))) -((-4148 (((-227) $) 6) (((-390) $) 9))) -(((-1044) (-141)) (T -1044)) -NIL -(-13 (-626 (-227)) (-626 (-390))) -(((-626 (-227)) . T) ((-626 (-390)) . T)) -((-3036 (((-657 (-390)) (-972 (-576)) (-390)) 28) (((-657 (-390)) (-972 (-419 (-576))) (-390)) 27)) (-2663 (((-657 (-657 (-390))) (-657 (-972 (-576))) (-657 (-1198)) (-390)) 37))) -(((-1045) (-10 -7 (-15 -3036 ((-657 (-390)) (-972 (-419 (-576))) (-390))) (-15 -3036 ((-657 (-390)) (-972 (-576)) (-390))) (-15 -2663 ((-657 (-657 (-390))) (-657 (-972 (-576))) (-657 (-1198)) (-390))))) (T -1045)) -((-2663 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-657 (-1198))) (-5 *2 (-657 (-657 (-390)))) (-5 *1 (-1045)) (-5 *5 (-390)))) (-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-972 (-576))) (-5 *2 (-657 (-390))) (-5 *1 (-1045)) (-5 *4 (-390)))) (-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-972 (-419 (-576)))) (-5 *2 (-657 (-390))) (-5 *1 (-1045)) (-5 *4 (-390))))) -(-10 -7 (-15 -3036 ((-657 (-390)) (-972 (-419 (-576))) (-390))) (-15 -3036 ((-657 (-390)) (-972 (-576)) (-390))) (-15 -2663 ((-657 (-657 (-390))) (-657 (-972 (-576))) (-657 (-1198)) (-390)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 75)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-1896 (($ $) NIL) (($ $ (-941)) NIL) (($ (-419 (-576))) NIL) (($ (-576)) NIL)) (-2864 (((-112) $ $) NIL)) (-1536 (((-576) $) 70)) (-4359 (($) NIL T CONST)) (-3564 (((-3 $ "failed") (-1194 $) (-941) (-877)) NIL) (((-3 $ "failed") (-1194 $) (-941)) 55)) (-1624 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 (-576)) (-1060 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-576) "failed") $) NIL (-2802 (|has| (-419 (-576)) (-1060 (-576))) (|has| |#1| (-1060 (-576)))))) (-2884 (((-419 (-576)) $) 17 (|has| (-419 (-576)) (-1060 (-419 (-576))))) (((-419 (-576)) $) 17) ((|#1| $) 117) (((-576) $) NIL (-2802 (|has| (-419 (-576)) (-1060 (-576))) (|has| |#1| (-1060 (-576)))))) (-1612 (($ $ (-877)) 47)) (-1667 (($ $ (-877)) 48)) (-3373 (($ $ $) NIL)) (-3419 (((-419 (-576)) $ $) 21)) (-3843 (((-3 $ "failed") $) 88)) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-2828 (((-112) $) 66)) (-4094 (((-112) $) NIL)) (-2082 (($ $ (-576)) NIL)) (-2881 (((-112) $) 69)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-3772 (((-3 (-1194 $) "failed") $) 83)) (-3516 (((-3 (-877) "failed") $) 82)) (-2566 (((-3 (-1194 $) "failed") $) 80)) (-4321 (((-3 (-1083 $ (-1194 $)) "failed") $) 78)) (-3402 (($ (-657 $)) NIL) (($ $ $) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) 89)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ (-657 $)) NIL) (($ $ $) NIL)) (-1885 (((-430 $) $) NIL)) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-3501 (((-877) $) 87) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) 63) (($ (-419 (-576))) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 119)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-4144 (((-419 (-576)) $ $) 27)) (-1349 (((-657 $) (-1194 $)) 61) (((-657 $) (-1194 (-419 (-576)))) NIL) (((-657 $) (-1194 (-576))) NIL) (((-657 $) (-972 $)) NIL) (((-657 $) (-972 (-419 (-576)))) NIL) (((-657 $) (-972 (-576))) NIL)) (-3285 (($ (-1083 $ (-1194 $)) (-877)) 46)) (-1792 (($ $) 22)) (-2769 (($) 32 T CONST)) (-2779 (($) 39 T CONST)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 76)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 24)) (-3034 (($ $ $) 37)) (-3022 (($ $) 38) (($ $ $) 74)) (-3012 (($ $ $) 112)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 98) (($ $ $) 104) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ (-576) $) 98) (($ $ (-576)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1046 |#1|) (-13 (-1034) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -3285 ($ (-1083 $ (-1194 $)) (-877))) (-15 -4321 ((-3 (-1083 $ (-1194 $)) "failed") $)) (-15 -3419 ((-419 (-576)) $ $)))) (-13 (-861) (-374) (-1044))) (T -1046)) -((-3285 (*1 *1 *2 *3) (-12 (-5 *2 (-1083 (-1046 *4) (-1194 (-1046 *4)))) (-5 *3 (-877)) (-5 *1 (-1046 *4)) (-4 *4 (-13 (-861) (-374) (-1044))))) (-4321 (*1 *2 *1) (|partial| -12 (-5 *2 (-1083 (-1046 *3) (-1194 (-1046 *3)))) (-5 *1 (-1046 *3)) (-4 *3 (-13 (-861) (-374) (-1044))))) (-3419 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1046 *3)) (-4 *3 (-13 (-861) (-374) (-1044)))))) -(-13 (-1034) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -3285 ($ (-1083 $ (-1194 $)) (-877))) (-15 -4321 ((-3 (-1083 $ (-1194 $)) "failed") $)) (-15 -3419 ((-419 (-576)) $ $)))) -((-3941 (((-2 (|:| -3989 |#2|) (|:| -1812 (-657 |#1|))) |#2| (-657 |#1|)) 32) ((|#2| |#2| |#1|) 27))) -(((-1047 |#1| |#2|) (-10 -7 (-15 -3941 (|#2| |#2| |#1|)) (-15 -3941 ((-2 (|:| -3989 |#2|) (|:| -1812 (-657 |#1|))) |#2| (-657 |#1|)))) (-374) (-669 |#1|)) (T -1047)) -((-3941 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -3989 *3) (|:| -1812 (-657 *5)))) (-5 *1 (-1047 *5 *3)) (-5 *4 (-657 *5)) (-4 *3 (-669 *5)))) (-3941 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-1047 *3 *2)) (-4 *2 (-669 *3))))) -(-10 -7 (-15 -3941 (|#2| |#2| |#1|)) (-15 -3941 ((-2 (|:| -3989 |#2|) (|:| -1812 (-657 |#1|))) |#2| (-657 |#1|)))) -((-3429 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-3763 ((|#1| $ |#1|) 14)) (-3682 ((|#1| $ |#1|) 12)) (-3274 (($ |#1|) 10)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2835 ((|#1| $) 11)) (-2652 ((|#1| $) 13)) (-3501 (((-877) $) 21 (|has| |#1| (-1122)))) (-2046 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2933 (((-112) $ $) 9))) -(((-1048 |#1|) (-13 (-1239) (-10 -8 (-15 -3274 ($ |#1|)) (-15 -2835 (|#1| $)) (-15 -3682 (|#1| $ |#1|)) (-15 -2652 (|#1| $)) (-15 -3763 (|#1| $ |#1|)) (-15 -2933 ((-112) $ $)) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|))) (-1239)) (T -1048)) -((-3274 (*1 *1 *2) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239)))) (-2835 (*1 *2 *1) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239)))) (-3682 (*1 *2 *1 *2) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239)))) (-2652 (*1 *2 *1) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239)))) (-3763 (*1 *2 *1 *2) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239)))) (-2933 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1048 *3)) (-4 *3 (-1239))))) -(-13 (-1239) (-10 -8 (-15 -3274 ($ |#1|)) (-15 -2835 (|#1| $)) (-15 -3682 (|#1| $ |#1|)) (-15 -2652 (|#1| $)) (-15 -3763 (|#1| $ |#1|)) (-15 -2933 ((-112) $ $)) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|))) -((-3429 (((-112) $ $) NIL)) (-2856 (((-657 (-2 (|:| -2016 $) (|:| -3209 (-657 |#4|)))) (-657 |#4|)) NIL)) (-3472 (((-657 $) (-657 |#4|)) 118) (((-657 $) (-657 |#4|) (-112)) 119) (((-657 $) (-657 |#4|) (-112) (-112)) 117) (((-657 $) (-657 |#4|) (-112) (-112) (-112) (-112)) 120)) (-2029 (((-657 |#3|) $) NIL)) (-1626 (((-112) $) NIL)) (-3072 (((-112) $) NIL (|has| |#1| (-568)))) (-4021 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1329 ((|#4| |#4| $) NIL)) (-2638 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 $))) |#4| $) 112)) (-1850 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-2035 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466))) (((-3 |#4| "failed") $ |#3|) 66)) (-4359 (($) NIL T CONST)) (-2433 (((-112) $) 29 (|has| |#1| (-568)))) (-1688 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4058 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2995 (((-112) $) NIL (|has| |#1| (-568)))) (-2292 (((-657 |#4|) (-657 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1978 (((-657 |#4|) (-657 |#4|) $) NIL (|has| |#1| (-568)))) (-2410 (((-657 |#4|) (-657 |#4|) $) NIL (|has| |#1| (-568)))) (-1624 (((-3 $ "failed") (-657 |#4|)) NIL)) (-2884 (($ (-657 |#4|)) NIL)) (-3522 (((-3 $ "failed") $) 45)) (-2073 ((|#4| |#4| $) 69)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-3895 (($ |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3644 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-568)))) (-3206 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3003 ((|#4| |#4| $) NIL)) (-3622 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4466))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1957 (((-2 (|:| -2016 (-657 |#4|)) (|:| -3209 (-657 |#4|))) $) NIL)) (-3374 (((-112) |#4| $) NIL)) (-4211 (((-112) |#4| $) NIL)) (-2376 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3371 (((-2 (|:| |val| (-657 |#4|)) (|:| |towers| (-657 $))) (-657 |#4|) (-112) (-112)) 133)) (-1458 (((-657 |#4|) $) 18 (|has| $ (-6 -4466)))) (-1878 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3627 ((|#3| $) 38)) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 |#4|) $) 19 (|has| $ (-6 -4466)))) (-1627 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-2148 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#4| |#4|) $) 23)) (-1746 (((-657 |#3|) $) NIL)) (-4089 (((-112) |#3| $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL)) (-3674 (((-3 |#4| (-657 $)) |#4| |#4| $) NIL)) (-2382 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 $))) |#4| |#4| $) 110)) (-3920 (((-3 |#4| "failed") $) 42)) (-3149 (((-657 $) |#4| $) 93)) (-1971 (((-3 (-112) (-657 $)) |#4| $) NIL)) (-4183 (((-657 (-2 (|:| |val| (-112)) (|:| -3946 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3107 (((-657 $) |#4| $) 115) (((-657 $) (-657 |#4|) $) NIL) (((-657 $) (-657 |#4|) (-657 $)) 116) (((-657 $) |#4| (-657 $)) NIL)) (-3602 (((-657 $) (-657 |#4|) (-112) (-112) (-112)) 128)) (-4062 (($ |#4| $) 82) (($ (-657 |#4|) $) 83) (((-657 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-1765 (((-657 |#4|) $) NIL)) (-4365 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2833 ((|#4| |#4| $) NIL)) (-4015 (((-112) $ $) NIL)) (-3404 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3965 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2843 ((|#4| |#4| $) NIL)) (-1471 (((-1142) $) NIL)) (-3510 (((-3 |#4| "failed") $) 40)) (-2951 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1548 (((-3 $ "failed") $ |#4|) 59)) (-3926 (($ $ |#4|) NIL) (((-657 $) |#4| $) 95) (((-657 $) |#4| (-657 $)) NIL) (((-657 $) (-657 |#4|) $) NIL) (((-657 $) (-657 |#4|) (-657 $)) 89)) (-3399 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 |#4|) (-657 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) 17)) (-3581 (($) 14)) (-1770 (((-784) $) NIL)) (-1482 (((-784) |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (((-784) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) 13)) (-4148 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3511 (($ (-657 |#4|)) 22)) (-2956 (($ $ |#3|) 52)) (-1664 (($ $ |#3|) 54)) (-3459 (($ $) NIL)) (-3604 (($ $ |#3|) NIL)) (-3501 (((-877) $) 35) (((-657 |#4|) $) 46)) (-3540 (((-784) $) NIL (|has| |#3| (-379)))) (-2046 (((-112) $ $) NIL)) (-2631 (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3302 (((-112) $ (-1 (-112) |#4| (-657 |#4|))) NIL)) (-2375 (((-657 $) |#4| $) 92) (((-657 $) |#4| (-657 $)) NIL) (((-657 $) (-657 |#4|) $) NIL) (((-657 $) (-657 |#4|) (-657 $)) NIL)) (-2147 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3039 (((-657 |#3|) $) NIL)) (-3421 (((-112) |#4| $) NIL)) (-1863 (((-112) |#3| $) 65)) (-2933 (((-112) $ $) NIL)) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-1049 |#1| |#2| |#3| |#4|) (-13 (-1093 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4062 ((-657 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3472 ((-657 $) (-657 |#4|) (-112) (-112))) (-15 -3472 ((-657 $) (-657 |#4|) (-112) (-112) (-112) (-112))) (-15 -3602 ((-657 $) (-657 |#4|) (-112) (-112) (-112))) (-15 -3371 ((-2 (|:| |val| (-657 |#4|)) (|:| |towers| (-657 $))) (-657 |#4|) (-112) (-112))))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|)) (T -1049)) -((-4062 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 (-1049 *5 *6 *7 *3))) (-5 *1 (-1049 *5 *6 *7 *3)) (-4 *3 (-1087 *5 *6 *7)))) (-3472 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 (-1049 *5 *6 *7 *8))) (-5 *1 (-1049 *5 *6 *7 *8)))) (-3472 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 (-1049 *5 *6 *7 *8))) (-5 *1 (-1049 *5 *6 *7 *8)))) (-3602 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 (-1049 *5 *6 *7 *8))) (-5 *1 (-1049 *5 *6 *7 *8)))) (-3371 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-657 *8)) (|:| |towers| (-657 (-1049 *5 *6 *7 *8))))) (-5 *1 (-1049 *5 *6 *7 *8)) (-5 *3 (-657 *8))))) -(-13 (-1093 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4062 ((-657 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3472 ((-657 $) (-657 |#4|) (-112) (-112))) (-15 -3472 ((-657 $) (-657 |#4|) (-112) (-112) (-112) (-112))) (-15 -3602 ((-657 $) (-657 |#4|) (-112) (-112) (-112))) (-15 -3371 ((-2 (|:| |val| (-657 |#4|)) (|:| |towers| (-657 $))) (-657 |#4|) (-112) (-112))))) -((-2071 (((-657 (-702 |#1|)) (-657 (-702 |#1|))) 70) (((-702 |#1|) (-702 |#1|)) 69) (((-657 (-702 |#1|)) (-657 (-702 |#1|)) (-657 (-702 |#1|))) 68) (((-702 |#1|) (-702 |#1|) (-702 |#1|)) 65)) (-2298 (((-657 (-702 |#1|)) (-657 (-702 |#1|)) (-941)) 63) (((-702 |#1|) (-702 |#1|) (-941)) 62)) (-3005 (((-657 (-702 (-576))) (-657 (-657 (-576)))) 81) (((-657 (-702 (-576))) (-657 (-925 (-576))) (-576)) 80) (((-702 (-576)) (-657 (-576))) 77) (((-702 (-576)) (-925 (-576)) (-576)) 75)) (-2089 (((-702 (-972 |#1|)) (-784)) 95)) (-1852 (((-657 (-702 |#1|)) (-657 (-702 |#1|)) (-941)) 49 (|has| |#1| (-6 (-4468 "*")))) (((-702 |#1|) (-702 |#1|) (-941)) 47 (|has| |#1| (-6 (-4468 "*")))))) -(((-1050 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4468 "*"))) (-15 -1852 ((-702 |#1|) (-702 |#1|) (-941))) |%noBranch|) (IF (|has| |#1| (-6 (-4468 "*"))) (-15 -1852 ((-657 (-702 |#1|)) (-657 (-702 |#1|)) (-941))) |%noBranch|) (-15 -2089 ((-702 (-972 |#1|)) (-784))) (-15 -2298 ((-702 |#1|) (-702 |#1|) (-941))) (-15 -2298 ((-657 (-702 |#1|)) (-657 (-702 |#1|)) (-941))) (-15 -2071 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -2071 ((-657 (-702 |#1|)) (-657 (-702 |#1|)) (-657 (-702 |#1|)))) (-15 -2071 ((-702 |#1|) (-702 |#1|))) (-15 -2071 ((-657 (-702 |#1|)) (-657 (-702 |#1|)))) (-15 -3005 ((-702 (-576)) (-925 (-576)) (-576))) (-15 -3005 ((-702 (-576)) (-657 (-576)))) (-15 -3005 ((-657 (-702 (-576))) (-657 (-925 (-576))) (-576))) (-15 -3005 ((-657 (-702 (-576))) (-657 (-657 (-576)))))) (-1071)) (T -1050)) -((-3005 (*1 *2 *3) (-12 (-5 *3 (-657 (-657 (-576)))) (-5 *2 (-657 (-702 (-576)))) (-5 *1 (-1050 *4)) (-4 *4 (-1071)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-925 (-576)))) (-5 *4 (-576)) (-5 *2 (-657 (-702 *4))) (-5 *1 (-1050 *5)) (-4 *5 (-1071)))) (-3005 (*1 *2 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-702 (-576))) (-5 *1 (-1050 *4)) (-4 *4 (-1071)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-925 (-576))) (-5 *4 (-576)) (-5 *2 (-702 *4)) (-5 *1 (-1050 *5)) (-4 *5 (-1071)))) (-2071 (*1 *2 *2) (-12 (-5 *2 (-657 (-702 *3))) (-4 *3 (-1071)) (-5 *1 (-1050 *3)))) (-2071 (*1 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-1050 *3)))) (-2071 (*1 *2 *2 *2) (-12 (-5 *2 (-657 (-702 *3))) (-4 *3 (-1071)) (-5 *1 (-1050 *3)))) (-2071 (*1 *2 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-1050 *3)))) (-2298 (*1 *2 *2 *3) (-12 (-5 *2 (-657 (-702 *4))) (-5 *3 (-941)) (-4 *4 (-1071)) (-5 *1 (-1050 *4)))) (-2298 (*1 *2 *2 *3) (-12 (-5 *2 (-702 *4)) (-5 *3 (-941)) (-4 *4 (-1071)) (-5 *1 (-1050 *4)))) (-2089 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-702 (-972 *4))) (-5 *1 (-1050 *4)) (-4 *4 (-1071)))) (-1852 (*1 *2 *2 *3) (-12 (-5 *2 (-657 (-702 *4))) (-5 *3 (-941)) (|has| *4 (-6 (-4468 "*"))) (-4 *4 (-1071)) (-5 *1 (-1050 *4)))) (-1852 (*1 *2 *2 *3) (-12 (-5 *2 (-702 *4)) (-5 *3 (-941)) (|has| *4 (-6 (-4468 "*"))) (-4 *4 (-1071)) (-5 *1 (-1050 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4468 "*"))) (-15 -1852 ((-702 |#1|) (-702 |#1|) (-941))) |%noBranch|) (IF (|has| |#1| (-6 (-4468 "*"))) (-15 -1852 ((-657 (-702 |#1|)) (-657 (-702 |#1|)) (-941))) |%noBranch|) (-15 -2089 ((-702 (-972 |#1|)) (-784))) (-15 -2298 ((-702 |#1|) (-702 |#1|) (-941))) (-15 -2298 ((-657 (-702 |#1|)) (-657 (-702 |#1|)) (-941))) (-15 -2071 ((-702 |#1|) (-702 |#1|) (-702 |#1|))) (-15 -2071 ((-657 (-702 |#1|)) (-657 (-702 |#1|)) (-657 (-702 |#1|)))) (-15 -2071 ((-702 |#1|) (-702 |#1|))) (-15 -2071 ((-657 (-702 |#1|)) (-657 (-702 |#1|)))) (-15 -3005 ((-702 (-576)) (-925 (-576)) (-576))) (-15 -3005 ((-702 (-576)) (-657 (-576)))) (-15 -3005 ((-657 (-702 (-576))) (-657 (-925 (-576))) (-576))) (-15 -3005 ((-657 (-702 (-576))) (-657 (-657 (-576)))))) -((-3284 (((-702 |#1|) (-657 (-702 |#1|)) (-1289 |#1|)) 70 (|has| |#1| (-317)))) (-1407 (((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-1289 (-1289 |#1|))) 110 (|has| |#1| (-374))) (((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-1289 |#1|)) 117 (|has| |#1| (-374)))) (-3381 (((-1289 |#1|) (-657 (-1289 |#1|)) (-576)) 135 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-3759 (((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-941)) 123 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-112)) 122 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|))) 121 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-112) (-576) (-576)) 120 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-4040 (((-112) (-657 (-702 |#1|))) 103 (|has| |#1| (-374))) (((-112) (-657 (-702 |#1|)) (-576)) 106 (|has| |#1| (-374)))) (-3927 (((-1289 (-1289 |#1|)) (-657 (-702 |#1|)) (-1289 |#1|)) 67 (|has| |#1| (-317)))) (-3127 (((-702 |#1|) (-657 (-702 |#1|)) (-702 |#1|)) 47)) (-1557 (((-702 |#1|) (-1289 (-1289 |#1|))) 40)) (-3629 (((-702 |#1|) (-657 (-702 |#1|)) (-657 (-702 |#1|)) (-576)) 94 (|has| |#1| (-374))) (((-702 |#1|) (-657 (-702 |#1|)) (-657 (-702 |#1|))) 93 (|has| |#1| (-374))) (((-702 |#1|) (-657 (-702 |#1|)) (-657 (-702 |#1|)) (-112) (-576)) 101 (|has| |#1| (-374))))) -(((-1051 |#1|) (-10 -7 (-15 -1557 ((-702 |#1|) (-1289 (-1289 |#1|)))) (-15 -3127 ((-702 |#1|) (-657 (-702 |#1|)) (-702 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -3927 ((-1289 (-1289 |#1|)) (-657 (-702 |#1|)) (-1289 |#1|))) (-15 -3284 ((-702 |#1|) (-657 (-702 |#1|)) (-1289 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -3629 ((-702 |#1|) (-657 (-702 |#1|)) (-657 (-702 |#1|)) (-112) (-576))) (-15 -3629 ((-702 |#1|) (-657 (-702 |#1|)) (-657 (-702 |#1|)))) (-15 -3629 ((-702 |#1|) (-657 (-702 |#1|)) (-657 (-702 |#1|)) (-576))) (-15 -4040 ((-112) (-657 (-702 |#1|)) (-576))) (-15 -4040 ((-112) (-657 (-702 |#1|)))) (-15 -1407 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-1289 |#1|))) (-15 -1407 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-1289 (-1289 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -3759 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-112) (-576) (-576))) (-15 -3759 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)))) (-15 -3759 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-112))) (-15 -3759 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-941))) (-15 -3381 ((-1289 |#1|) (-657 (-1289 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) (-1071)) (T -1051)) -((-3381 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-1289 *5))) (-5 *4 (-576)) (-5 *2 (-1289 *5)) (-5 *1 (-1051 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1071)))) (-3759 (*1 *2 *3 *4) (-12 (-5 *4 (-941)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1071)) (-5 *2 (-657 (-657 (-702 *5)))) (-5 *1 (-1051 *5)) (-5 *3 (-657 (-702 *5))))) (-3759 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1071)) (-5 *2 (-657 (-657 (-702 *5)))) (-5 *1 (-1051 *5)) (-5 *3 (-657 (-702 *5))))) (-3759 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1071)) (-5 *2 (-657 (-657 (-702 *4)))) (-5 *1 (-1051 *4)) (-5 *3 (-657 (-702 *4))))) (-3759 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) (-4 *6 (-1071)) (-5 *2 (-657 (-657 (-702 *6)))) (-5 *1 (-1051 *6)) (-5 *3 (-657 (-702 *6))))) (-1407 (*1 *2 *3 *4) (-12 (-5 *4 (-1289 (-1289 *5))) (-4 *5 (-374)) (-4 *5 (-1071)) (-5 *2 (-657 (-657 (-702 *5)))) (-5 *1 (-1051 *5)) (-5 *3 (-657 (-702 *5))))) (-1407 (*1 *2 *3 *4) (-12 (-5 *4 (-1289 *5)) (-4 *5 (-374)) (-4 *5 (-1071)) (-5 *2 (-657 (-657 (-702 *5)))) (-5 *1 (-1051 *5)) (-5 *3 (-657 (-702 *5))))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-657 (-702 *4))) (-4 *4 (-374)) (-4 *4 (-1071)) (-5 *2 (-112)) (-5 *1 (-1051 *4)))) (-4040 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-702 *5))) (-5 *4 (-576)) (-4 *5 (-374)) (-4 *5 (-1071)) (-5 *2 (-112)) (-5 *1 (-1051 *5)))) (-3629 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-657 (-702 *5))) (-5 *4 (-576)) (-5 *2 (-702 *5)) (-5 *1 (-1051 *5)) (-4 *5 (-374)) (-4 *5 (-1071)))) (-3629 (*1 *2 *3 *3) (-12 (-5 *3 (-657 (-702 *4))) (-5 *2 (-702 *4)) (-5 *1 (-1051 *4)) (-4 *4 (-374)) (-4 *4 (-1071)))) (-3629 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-657 (-702 *6))) (-5 *4 (-112)) (-5 *5 (-576)) (-5 *2 (-702 *6)) (-5 *1 (-1051 *6)) (-4 *6 (-374)) (-4 *6 (-1071)))) (-3284 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-702 *5))) (-5 *4 (-1289 *5)) (-4 *5 (-317)) (-4 *5 (-1071)) (-5 *2 (-702 *5)) (-5 *1 (-1051 *5)))) (-3927 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-702 *5))) (-4 *5 (-317)) (-4 *5 (-1071)) (-5 *2 (-1289 (-1289 *5))) (-5 *1 (-1051 *5)) (-5 *4 (-1289 *5)))) (-3127 (*1 *2 *3 *2) (-12 (-5 *3 (-657 (-702 *4))) (-5 *2 (-702 *4)) (-4 *4 (-1071)) (-5 *1 (-1051 *4)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-1289 (-1289 *4))) (-4 *4 (-1071)) (-5 *2 (-702 *4)) (-5 *1 (-1051 *4))))) -(-10 -7 (-15 -1557 ((-702 |#1|) (-1289 (-1289 |#1|)))) (-15 -3127 ((-702 |#1|) (-657 (-702 |#1|)) (-702 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -3927 ((-1289 (-1289 |#1|)) (-657 (-702 |#1|)) (-1289 |#1|))) (-15 -3284 ((-702 |#1|) (-657 (-702 |#1|)) (-1289 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -3629 ((-702 |#1|) (-657 (-702 |#1|)) (-657 (-702 |#1|)) (-112) (-576))) (-15 -3629 ((-702 |#1|) (-657 (-702 |#1|)) (-657 (-702 |#1|)))) (-15 -3629 ((-702 |#1|) (-657 (-702 |#1|)) (-657 (-702 |#1|)) (-576))) (-15 -4040 ((-112) (-657 (-702 |#1|)) (-576))) (-15 -4040 ((-112) (-657 (-702 |#1|)))) (-15 -1407 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-1289 |#1|))) (-15 -1407 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-1289 (-1289 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -3759 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-112) (-576) (-576))) (-15 -3759 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)))) (-15 -3759 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-112))) (-15 -3759 ((-657 (-657 (-702 |#1|))) (-657 (-702 |#1|)) (-941))) (-15 -3381 ((-1289 |#1|) (-657 (-1289 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) -((-2168 ((|#1| (-941) |#1|) 18))) -(((-1052 |#1|) (-10 -7 (-15 -2168 (|#1| (-941) |#1|))) (-13 (-1122) (-10 -8 (-15 -3012 ($ $ $))))) (T -1052)) -((-2168 (*1 *2 *3 *2) (-12 (-5 *3 (-941)) (-5 *1 (-1052 *2)) (-4 *2 (-13 (-1122) (-10 -8 (-15 -3012 ($ $ $)))))))) -(-10 -7 (-15 -2168 (|#1| (-941) |#1|))) -((-1861 (((-657 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-657 (-702 (-326 (-576))))))) (-702 (-419 (-972 (-576))))) 67)) (-4050 (((-657 (-702 (-326 (-576)))) (-326 (-576)) (-702 (-419 (-972 (-576))))) 52)) (-1412 (((-657 (-326 (-576))) (-702 (-419 (-972 (-576))))) 45)) (-2771 (((-657 (-702 (-326 (-576)))) (-702 (-419 (-972 (-576))))) 85)) (-3405 (((-702 (-326 (-576))) (-702 (-326 (-576)))) 38)) (-1767 (((-657 (-702 (-326 (-576)))) (-657 (-702 (-326 (-576))))) 74)) (-3597 (((-3 (-702 (-326 (-576))) "failed") (-702 (-419 (-972 (-576))))) 82))) -(((-1053) (-10 -7 (-15 -1861 ((-657 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-657 (-702 (-326 (-576))))))) (-702 (-419 (-972 (-576)))))) (-15 -4050 ((-657 (-702 (-326 (-576)))) (-326 (-576)) (-702 (-419 (-972 (-576)))))) (-15 -1412 ((-657 (-326 (-576))) (-702 (-419 (-972 (-576)))))) (-15 -3597 ((-3 (-702 (-326 (-576))) "failed") (-702 (-419 (-972 (-576)))))) (-15 -3405 ((-702 (-326 (-576))) (-702 (-326 (-576))))) (-15 -1767 ((-657 (-702 (-326 (-576)))) (-657 (-702 (-326 (-576)))))) (-15 -2771 ((-657 (-702 (-326 (-576)))) (-702 (-419 (-972 (-576)))))))) (T -1053)) -((-2771 (*1 *2 *3) (-12 (-5 *3 (-702 (-419 (-972 (-576))))) (-5 *2 (-657 (-702 (-326 (-576))))) (-5 *1 (-1053)))) (-1767 (*1 *2 *2) (-12 (-5 *2 (-657 (-702 (-326 (-576))))) (-5 *1 (-1053)))) (-3405 (*1 *2 *2) (-12 (-5 *2 (-702 (-326 (-576)))) (-5 *1 (-1053)))) (-3597 (*1 *2 *3) (|partial| -12 (-5 *3 (-702 (-419 (-972 (-576))))) (-5 *2 (-702 (-326 (-576)))) (-5 *1 (-1053)))) (-1412 (*1 *2 *3) (-12 (-5 *3 (-702 (-419 (-972 (-576))))) (-5 *2 (-657 (-326 (-576)))) (-5 *1 (-1053)))) (-4050 (*1 *2 *3 *4) (-12 (-5 *4 (-702 (-419 (-972 (-576))))) (-5 *2 (-657 (-702 (-326 (-576))))) (-5 *1 (-1053)) (-5 *3 (-326 (-576))))) (-1861 (*1 *2 *3) (-12 (-5 *3 (-702 (-419 (-972 (-576))))) (-5 *2 (-657 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-657 (-702 (-326 (-576)))))))) (-5 *1 (-1053))))) -(-10 -7 (-15 -1861 ((-657 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-657 (-702 (-326 (-576))))))) (-702 (-419 (-972 (-576)))))) (-15 -4050 ((-657 (-702 (-326 (-576)))) (-326 (-576)) (-702 (-419 (-972 (-576)))))) (-15 -1412 ((-657 (-326 (-576))) (-702 (-419 (-972 (-576)))))) (-15 -3597 ((-3 (-702 (-326 (-576))) "failed") (-702 (-419 (-972 (-576)))))) (-15 -3405 ((-702 (-326 (-576))) (-702 (-326 (-576))))) (-15 -1767 ((-657 (-702 (-326 (-576)))) (-657 (-702 (-326 (-576)))))) (-15 -2771 ((-657 (-702 (-326 (-576)))) (-702 (-419 (-972 (-576))))))) -((-2096 ((|#1| |#1| (-941)) 18))) -(((-1054 |#1|) (-10 -7 (-15 -2096 (|#1| |#1| (-941)))) (-13 (-1122) (-10 -8 (-15 * ($ $ $))))) (T -1054)) -((-2096 (*1 *2 *2 *3) (-12 (-5 *3 (-941)) (-5 *1 (-1054 *2)) (-4 *2 (-13 (-1122) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -2096 (|#1| |#1| (-941)))) -((-3501 ((|#1| (-322)) 11) (((-1294) |#1|) 9))) -(((-1055 |#1|) (-10 -7 (-15 -3501 ((-1294) |#1|)) (-15 -3501 (|#1| (-322)))) (-1239)) (T -1055)) -((-3501 (*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1055 *2)) (-4 *2 (-1239)))) (-3501 (*1 *2 *3) (-12 (-5 *2 (-1294)) (-5 *1 (-1055 *3)) (-4 *3 (-1239))))) -(-10 -7 (-15 -3501 ((-1294) |#1|)) (-15 -3501 (|#1| (-322)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-3622 (($ |#4|) 25)) (-3843 (((-3 $ "failed") $) NIL)) (-4094 (((-112) $) NIL)) (-3609 ((|#4| $) 27)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 46) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1960 (((-784)) 43 T CONST)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 21 T CONST)) (-2779 (($) 23 T CONST)) (-2933 (((-112) $ $) 40)) (-3022 (($ $) 31) (($ $ $) NIL)) (-3012 (($ $ $) 29)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1056 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -3622 ($ |#4|)) (-15 -3501 ($ |#4|)) (-15 -3609 (|#4| $)))) (-374) (-806) (-862) (-969 |#1| |#2| |#3|) (-657 |#4|)) (T -1056)) -((-3622 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-1056 *3 *4 *5 *2 *6)) (-4 *2 (-969 *3 *4 *5)) (-14 *6 (-657 *2)))) (-3501 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-1056 *3 *4 *5 *2 *6)) (-4 *2 (-969 *3 *4 *5)) (-14 *6 (-657 *2)))) (-3609 (*1 *2 *1) (-12 (-4 *2 (-969 *3 *4 *5)) (-5 *1 (-1056 *3 *4 *5 *2 *6)) (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-14 *6 (-657 *2))))) -(-13 (-174) (-38 |#1|) (-10 -8 (-15 -3622 ($ |#4|)) (-15 -3501 ($ |#4|)) (-15 -3609 (|#4| $)))) -((-3429 (((-112) $ $) NIL (-2802 (|has| (-52) (-102)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-102))))) (-4095 (($) NIL) (($ (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) NIL)) (-4313 (((-1294) $ (-1198) (-1198)) NIL (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) NIL)) (-3755 (((-112) (-112)) 43)) (-3528 (((-112) (-112)) 42)) (-3682 (((-52) $ (-1198) (-52)) NIL)) (-3162 (($ (-1 (-112) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-2287 (((-3 (-52) "failed") (-1198) $) NIL)) (-4359 (($) NIL T CONST)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122))))) (-3647 (($ (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-3 (-52) "failed") (-1198) $) NIL)) (-3895 (($ (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ (-1 (-112) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-3622 (((-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $ (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122)))) (((-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $ (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-2158 (((-52) $ (-1198) (-52)) NIL (|has| $ (-6 -4467)))) (-2083 (((-52) $ (-1198)) NIL)) (-1458 (((-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-657 (-52)) $) NIL (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-1198) $) NIL (|has| (-1198) (-862)))) (-2070 (((-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-657 (-52)) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-52) (-1122))))) (-2272 (((-1198) $) NIL (|has| (-1198) (-862)))) (-2148 (($ (-1 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4467))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (-2802 (|has| (-52) (-1122)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122))))) (-3159 (((-657 (-1198)) $) 37)) (-1708 (((-112) (-1198) $) NIL)) (-3050 (((-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) $) NIL)) (-2468 (($ (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) $) NIL)) (-1430 (((-657 (-1198)) $) NIL)) (-4242 (((-112) (-1198) $) NIL)) (-1471 (((-1142) $) NIL (-2802 (|has| (-52) (-1122)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122))))) (-3510 (((-52) $) NIL (|has| (-1198) (-862)))) (-2951 (((-3 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) "failed") (-1 (-112) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL)) (-1987 (($ $ (-52)) NIL (|has| $ (-6 -4467)))) (-2277 (((-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) $) NIL)) (-3399 (((-112) (-1 (-112) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))))) NIL (-12 (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ $ (-304 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) NIL (-12 (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ $ (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) NIL (-12 (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ $ (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) NIL (-12 (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ $ (-657 (-52)) (-657 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122)))) (($ $ (-657 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-52) (-1122))))) (-2380 (((-657 (-52)) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 (((-52) $ (-1198)) 39) (((-52) $ (-1198) (-52)) NIL)) (-1504 (($) NIL) (($ (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) NIL)) (-1482 (((-784) (-1 (-112) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122)))) (((-784) (-52) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-52) (-1122)))) (((-784) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-626 (-548))))) (-3511 (($ (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) NIL)) (-3501 (((-877) $) 41 (-2802 (|has| (-52) (-625 (-877))) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-625 (-877)))))) (-2046 (((-112) $ $) NIL (-2802 (|has| (-52) (-102)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-102))))) (-4079 (($ (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) NIL)) (-2147 (((-112) (-1 (-112) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (-2802 (|has| (-52) (-102)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-102))))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-1057) (-13 (-1215 (-1198) (-52)) (-10 -7 (-15 -3755 ((-112) (-112))) (-15 -3528 ((-112) (-112))) (-6 -4466)))) (T -1057)) -((-3755 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1057)))) (-3528 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1057))))) -(-13 (-1215 (-1198) (-52)) (-10 -7 (-15 -3755 ((-112) (-112))) (-15 -3528 ((-112) (-112))) (-6 -4466))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3088 (((-1157) $) 9)) (-3501 (((-877) $) 15) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-1058) (-13 (-1105) (-10 -8 (-15 -3088 ((-1157) $))))) (T -1058)) -((-3088 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1058))))) -(-13 (-1105) (-10 -8 (-15 -3088 ((-1157) $)))) -((-2884 ((|#2| $) 10))) -(((-1059 |#1| |#2|) (-10 -8 (-15 -2884 (|#2| |#1|))) (-1060 |#2|) (-1239)) (T -1059)) -NIL -(-10 -8 (-15 -2884 (|#2| |#1|))) -((-1624 (((-3 |#1| "failed") $) 9)) (-2884 ((|#1| $) 8)) (-3501 (($ |#1|) 6))) -(((-1060 |#1|) (-141) (-1239)) (T -1060)) -((-1624 (*1 *2 *1) (|partial| -12 (-4 *1 (-1060 *2)) (-4 *2 (-1239)))) (-2884 (*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1239))))) -(-13 (-628 |t#1|) (-10 -8 (-15 -1624 ((-3 |t#1| "failed") $)) (-15 -2884 (|t#1| $)))) -(((-628 |#1|) . T)) -((-1764 (((-657 (-657 (-304 (-419 (-972 |#2|))))) (-657 (-972 |#2|)) (-657 (-1198))) 38))) -(((-1061 |#1| |#2|) (-10 -7 (-15 -1764 ((-657 (-657 (-304 (-419 (-972 |#2|))))) (-657 (-972 |#2|)) (-657 (-1198))))) (-568) (-13 (-568) (-1060 |#1|))) (T -1061)) -((-1764 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-972 *6))) (-5 *4 (-657 (-1198))) (-4 *6 (-13 (-568) (-1060 *5))) (-4 *5 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *6)))))) (-5 *1 (-1061 *5 *6))))) -(-10 -7 (-15 -1764 ((-657 (-657 (-304 (-419 (-972 |#2|))))) (-657 (-972 |#2|)) (-657 (-1198))))) -((-3392 (((-390)) 17)) (-3972 (((-1 (-390)) (-390) (-390)) 22)) (-2785 (((-1 (-390)) (-784)) 48)) (-2191 (((-390)) 37)) (-3000 (((-1 (-390)) (-390) (-390)) 38)) (-1355 (((-390)) 29)) (-3554 (((-1 (-390)) (-390)) 30)) (-1528 (((-390) (-784)) 43)) (-2211 (((-1 (-390)) (-784)) 44)) (-2022 (((-1 (-390)) (-784) (-784)) 47)) (-1717 (((-1 (-390)) (-784) (-784)) 45))) -(((-1062) (-10 -7 (-15 -3392 ((-390))) (-15 -2191 ((-390))) (-15 -1355 ((-390))) (-15 -1528 ((-390) (-784))) (-15 -3972 ((-1 (-390)) (-390) (-390))) (-15 -3000 ((-1 (-390)) (-390) (-390))) (-15 -3554 ((-1 (-390)) (-390))) (-15 -2211 ((-1 (-390)) (-784))) (-15 -1717 ((-1 (-390)) (-784) (-784))) (-15 -2022 ((-1 (-390)) (-784) (-784))) (-15 -2785 ((-1 (-390)) (-784))))) (T -1062)) -((-2785 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1 (-390))) (-5 *1 (-1062)))) (-2022 (*1 *2 *3 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1 (-390))) (-5 *1 (-1062)))) (-1717 (*1 *2 *3 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1 (-390))) (-5 *1 (-1062)))) (-2211 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1 (-390))) (-5 *1 (-1062)))) (-3554 (*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1062)) (-5 *3 (-390)))) (-3000 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1062)) (-5 *3 (-390)))) (-3972 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1062)) (-5 *3 (-390)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-390)) (-5 *1 (-1062)))) (-1355 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1062)))) (-2191 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1062)))) (-3392 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1062))))) -(-10 -7 (-15 -3392 ((-390))) (-15 -2191 ((-390))) (-15 -1355 ((-390))) (-15 -1528 ((-390) (-784))) (-15 -3972 ((-1 (-390)) (-390) (-390))) (-15 -3000 ((-1 (-390)) (-390) (-390))) (-15 -3554 ((-1 (-390)) (-390))) (-15 -2211 ((-1 (-390)) (-784))) (-15 -1717 ((-1 (-390)) (-784) (-784))) (-15 -2022 ((-1 (-390)) (-784) (-784))) (-15 -2785 ((-1 (-390)) (-784)))) -((-1885 (((-430 |#1|) |#1|) 33))) -(((-1063 |#1|) (-10 -7 (-15 -1885 ((-430 |#1|) |#1|))) (-1265 (-419 (-972 (-576))))) (T -1063)) -((-1885 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1063 *3)) (-4 *3 (-1265 (-419 (-972 (-576)))))))) -(-10 -7 (-15 -1885 ((-430 |#1|) |#1|))) -((-3852 (((-419 (-430 (-972 |#1|))) (-419 (-972 |#1|))) 14))) -(((-1064 |#1|) (-10 -7 (-15 -3852 ((-419 (-430 (-972 |#1|))) (-419 (-972 |#1|))))) (-317)) (T -1064)) -((-3852 (*1 *2 *3) (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-317)) (-5 *2 (-419 (-430 (-972 *4)))) (-5 *1 (-1064 *4))))) -(-10 -7 (-15 -3852 ((-419 (-430 (-972 |#1|))) (-419 (-972 |#1|))))) -((-2029 (((-657 (-1198)) (-419 (-972 |#1|))) 17)) (-1849 (((-419 (-1194 (-419 (-972 |#1|)))) (-419 (-972 |#1|)) (-1198)) 24)) (-2014 (((-419 (-972 |#1|)) (-419 (-1194 (-419 (-972 |#1|)))) (-1198)) 26)) (-2353 (((-3 (-1198) "failed") (-419 (-972 |#1|))) 20)) (-3236 (((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-657 (-304 (-419 (-972 |#1|))))) 32) (((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|)))) 33) (((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-657 (-1198)) (-657 (-419 (-972 |#1|)))) 28) (((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-1198) (-419 (-972 |#1|))) 29)) (-3501 (((-419 (-972 |#1|)) |#1|) 11))) -(((-1065 |#1|) (-10 -7 (-15 -2029 ((-657 (-1198)) (-419 (-972 |#1|)))) (-15 -2353 ((-3 (-1198) "failed") (-419 (-972 |#1|)))) (-15 -1849 ((-419 (-1194 (-419 (-972 |#1|)))) (-419 (-972 |#1|)) (-1198))) (-15 -2014 ((-419 (-972 |#1|)) (-419 (-1194 (-419 (-972 |#1|)))) (-1198))) (-15 -3236 ((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-1198) (-419 (-972 |#1|)))) (-15 -3236 ((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-657 (-1198)) (-657 (-419 (-972 |#1|))))) (-15 -3236 ((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|))))) (-15 -3236 ((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-657 (-304 (-419 (-972 |#1|)))))) (-15 -3501 ((-419 (-972 |#1|)) |#1|))) (-568)) (T -1065)) -((-3501 (*1 *2 *3) (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-1065 *3)) (-4 *3 (-568)))) (-3236 (*1 *2 *2 *3) (-12 (-5 *3 (-657 (-304 (-419 (-972 *4))))) (-5 *2 (-419 (-972 *4))) (-4 *4 (-568)) (-5 *1 (-1065 *4)))) (-3236 (*1 *2 *2 *3) (-12 (-5 *3 (-304 (-419 (-972 *4)))) (-5 *2 (-419 (-972 *4))) (-4 *4 (-568)) (-5 *1 (-1065 *4)))) (-3236 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-657 (-1198))) (-5 *4 (-657 (-419 (-972 *5)))) (-5 *2 (-419 (-972 *5))) (-4 *5 (-568)) (-5 *1 (-1065 *5)))) (-3236 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-419 (-972 *4))) (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *1 (-1065 *4)))) (-2014 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1194 (-419 (-972 *5))))) (-5 *4 (-1198)) (-5 *2 (-419 (-972 *5))) (-5 *1 (-1065 *5)) (-4 *5 (-568)))) (-1849 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-568)) (-5 *2 (-419 (-1194 (-419 (-972 *5))))) (-5 *1 (-1065 *5)) (-5 *3 (-419 (-972 *5))))) (-2353 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) (-5 *2 (-1198)) (-5 *1 (-1065 *4)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) (-5 *2 (-657 (-1198))) (-5 *1 (-1065 *4))))) -(-10 -7 (-15 -2029 ((-657 (-1198)) (-419 (-972 |#1|)))) (-15 -2353 ((-3 (-1198) "failed") (-419 (-972 |#1|)))) (-15 -1849 ((-419 (-1194 (-419 (-972 |#1|)))) (-419 (-972 |#1|)) (-1198))) (-15 -2014 ((-419 (-972 |#1|)) (-419 (-1194 (-419 (-972 |#1|)))) (-1198))) (-15 -3236 ((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-1198) (-419 (-972 |#1|)))) (-15 -3236 ((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-657 (-1198)) (-657 (-419 (-972 |#1|))))) (-15 -3236 ((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-304 (-419 (-972 |#1|))))) (-15 -3236 ((-419 (-972 |#1|)) (-419 (-972 |#1|)) (-657 (-304 (-419 (-972 |#1|)))))) (-15 -3501 ((-419 (-972 |#1|)) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-4359 (($) 18 T CONST)) (-1578 ((|#1| $) 23)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-1511 ((|#1| $) 22)) (-3550 ((|#1|) 20 T CONST)) (-3501 (((-877) $) 12)) (-1646 ((|#1| $) 21)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16))) -(((-1066 |#1|) (-141) (-23)) (T -1066)) -((-1578 (*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23)))) (-1511 (*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23)))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23)))) (-3550 (*1 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -1578 (|t#1| $)) (-15 -1511 (|t#1| $)) (-15 -1646 (|t#1| $)) (-15 -3550 (|t#1|) -1509))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3956 (($) 25 T CONST)) (-4359 (($) 18 T CONST)) (-1578 ((|#1| $) 23)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-1511 ((|#1| $) 22)) (-3550 ((|#1|) 20 T CONST)) (-3501 (((-877) $) 12)) (-1646 ((|#1| $) 21)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16))) -(((-1067 |#1|) (-141) (-23)) (T -1067)) -((-3956 (*1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-23))))) -(-13 (-1066 |t#1|) (-10 -8 (-15 -3956 ($) -1509))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-877)) . T) ((-1066 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2856 (((-657 (-2 (|:| -2016 $) (|:| -3209 (-657 (-793 |#1| (-879 |#2|)))))) (-657 (-793 |#1| (-879 |#2|)))) NIL)) (-3472 (((-657 $) (-657 (-793 |#1| (-879 |#2|)))) NIL) (((-657 $) (-657 (-793 |#1| (-879 |#2|))) (-112)) NIL) (((-657 $) (-657 (-793 |#1| (-879 |#2|))) (-112) (-112)) NIL)) (-2029 (((-657 (-879 |#2|)) $) NIL)) (-1626 (((-112) $) NIL)) (-3072 (((-112) $) NIL (|has| |#1| (-568)))) (-4021 (((-112) (-793 |#1| (-879 |#2|)) $) NIL) (((-112) $) NIL)) (-1329 (((-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) $) NIL)) (-2638 (((-657 (-2 (|:| |val| (-793 |#1| (-879 |#2|))) (|:| -3946 $))) (-793 |#1| (-879 |#2|)) $) NIL)) (-1850 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ (-879 |#2|)) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-2035 (($ (-1 (-112) (-793 |#1| (-879 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-3 (-793 |#1| (-879 |#2|)) "failed") $ (-879 |#2|)) NIL)) (-4359 (($) NIL T CONST)) (-2433 (((-112) $) NIL (|has| |#1| (-568)))) (-1688 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4058 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2995 (((-112) $) NIL (|has| |#1| (-568)))) (-2292 (((-657 (-793 |#1| (-879 |#2|))) (-657 (-793 |#1| (-879 |#2|))) $ (-1 (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|))) (-1 (-112) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)))) NIL)) (-1978 (((-657 (-793 |#1| (-879 |#2|))) (-657 (-793 |#1| (-879 |#2|))) $) NIL (|has| |#1| (-568)))) (-2410 (((-657 (-793 |#1| (-879 |#2|))) (-657 (-793 |#1| (-879 |#2|))) $) NIL (|has| |#1| (-568)))) (-1624 (((-3 $ "failed") (-657 (-793 |#1| (-879 |#2|)))) NIL)) (-2884 (($ (-657 (-793 |#1| (-879 |#2|)))) NIL)) (-3522 (((-3 $ "failed") $) NIL)) (-2073 (((-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) $) NIL)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-793 |#1| (-879 |#2|)) (-1122))))) (-3895 (($ (-793 |#1| (-879 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-793 |#1| (-879 |#2|)) (-1122)))) (($ (-1 (-112) (-793 |#1| (-879 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3644 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-793 |#1| (-879 |#2|))) (|:| |den| |#1|)) (-793 |#1| (-879 |#2|)) $) NIL (|has| |#1| (-568)))) (-3206 (((-112) (-793 |#1| (-879 |#2|)) $ (-1 (-112) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)))) NIL)) (-3003 (((-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) $) NIL)) (-3622 (((-793 |#1| (-879 |#2|)) (-1 (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|))) $ (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-793 |#1| (-879 |#2|)) (-1122)))) (((-793 |#1| (-879 |#2|)) (-1 (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|))) $ (-793 |#1| (-879 |#2|))) NIL (|has| $ (-6 -4466))) (((-793 |#1| (-879 |#2|)) (-1 (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) $ (-1 (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|))) (-1 (-112) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)))) NIL)) (-1957 (((-2 (|:| -2016 (-657 (-793 |#1| (-879 |#2|)))) (|:| -3209 (-657 (-793 |#1| (-879 |#2|))))) $) NIL)) (-3374 (((-112) (-793 |#1| (-879 |#2|)) $) NIL)) (-4211 (((-112) (-793 |#1| (-879 |#2|)) $) NIL)) (-2376 (((-112) (-793 |#1| (-879 |#2|)) $) NIL) (((-112) $) NIL)) (-1458 (((-657 (-793 |#1| (-879 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-1878 (((-112) (-793 |#1| (-879 |#2|)) $) NIL) (((-112) $) NIL)) (-3627 (((-879 |#2|) $) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 (-793 |#1| (-879 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) (-793 |#1| (-879 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-793 |#1| (-879 |#2|)) (-1122))))) (-2148 (($ (-1 (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|))) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|))) $) NIL)) (-1746 (((-657 (-879 |#2|)) $) NIL)) (-4089 (((-112) (-879 |#2|) $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL)) (-3674 (((-3 (-793 |#1| (-879 |#2|)) (-657 $)) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) $) NIL)) (-2382 (((-657 (-2 (|:| |val| (-793 |#1| (-879 |#2|))) (|:| -3946 $))) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) $) NIL)) (-3920 (((-3 (-793 |#1| (-879 |#2|)) "failed") $) NIL)) (-3149 (((-657 $) (-793 |#1| (-879 |#2|)) $) NIL)) (-1971 (((-3 (-112) (-657 $)) (-793 |#1| (-879 |#2|)) $) NIL)) (-4183 (((-657 (-2 (|:| |val| (-112)) (|:| -3946 $))) (-793 |#1| (-879 |#2|)) $) NIL) (((-112) (-793 |#1| (-879 |#2|)) $) NIL)) (-3107 (((-657 $) (-793 |#1| (-879 |#2|)) $) NIL) (((-657 $) (-657 (-793 |#1| (-879 |#2|))) $) NIL) (((-657 $) (-657 (-793 |#1| (-879 |#2|))) (-657 $)) NIL) (((-657 $) (-793 |#1| (-879 |#2|)) (-657 $)) NIL)) (-4062 (($ (-793 |#1| (-879 |#2|)) $) NIL) (($ (-657 (-793 |#1| (-879 |#2|))) $) NIL)) (-1765 (((-657 (-793 |#1| (-879 |#2|))) $) NIL)) (-4365 (((-112) (-793 |#1| (-879 |#2|)) $) NIL) (((-112) $) NIL)) (-2833 (((-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) $) NIL)) (-4015 (((-112) $ $) NIL)) (-3404 (((-2 (|:| |num| (-793 |#1| (-879 |#2|))) (|:| |den| |#1|)) (-793 |#1| (-879 |#2|)) $) NIL (|has| |#1| (-568)))) (-3965 (((-112) (-793 |#1| (-879 |#2|)) $) NIL) (((-112) $) NIL)) (-2843 (((-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)) $) NIL)) (-1471 (((-1142) $) NIL)) (-3510 (((-3 (-793 |#1| (-879 |#2|)) "failed") $) NIL)) (-2951 (((-3 (-793 |#1| (-879 |#2|)) "failed") (-1 (-112) (-793 |#1| (-879 |#2|))) $) NIL)) (-1548 (((-3 $ "failed") $ (-793 |#1| (-879 |#2|))) NIL)) (-3926 (($ $ (-793 |#1| (-879 |#2|))) NIL) (((-657 $) (-793 |#1| (-879 |#2|)) $) NIL) (((-657 $) (-793 |#1| (-879 |#2|)) (-657 $)) NIL) (((-657 $) (-657 (-793 |#1| (-879 |#2|))) $) NIL) (((-657 $) (-657 (-793 |#1| (-879 |#2|))) (-657 $)) NIL)) (-3399 (((-112) (-1 (-112) (-793 |#1| (-879 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-793 |#1| (-879 |#2|))) (-657 (-793 |#1| (-879 |#2|)))) NIL (-12 (|has| (-793 |#1| (-879 |#2|)) (-319 (-793 |#1| (-879 |#2|)))) (|has| (-793 |#1| (-879 |#2|)) (-1122)))) (($ $ (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|))) NIL (-12 (|has| (-793 |#1| (-879 |#2|)) (-319 (-793 |#1| (-879 |#2|)))) (|has| (-793 |#1| (-879 |#2|)) (-1122)))) (($ $ (-304 (-793 |#1| (-879 |#2|)))) NIL (-12 (|has| (-793 |#1| (-879 |#2|)) (-319 (-793 |#1| (-879 |#2|)))) (|has| (-793 |#1| (-879 |#2|)) (-1122)))) (($ $ (-657 (-304 (-793 |#1| (-879 |#2|))))) NIL (-12 (|has| (-793 |#1| (-879 |#2|)) (-319 (-793 |#1| (-879 |#2|)))) (|has| (-793 |#1| (-879 |#2|)) (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-1770 (((-784) $) NIL)) (-1482 (((-784) (-793 |#1| (-879 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-793 |#1| (-879 |#2|)) (-1122)))) (((-784) (-1 (-112) (-793 |#1| (-879 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| (-793 |#1| (-879 |#2|)) (-626 (-548))))) (-3511 (($ (-657 (-793 |#1| (-879 |#2|)))) NIL)) (-2956 (($ $ (-879 |#2|)) NIL)) (-1664 (($ $ (-879 |#2|)) NIL)) (-3459 (($ $) NIL)) (-3604 (($ $ (-879 |#2|)) NIL)) (-3501 (((-877) $) NIL) (((-657 (-793 |#1| (-879 |#2|))) $) NIL)) (-3540 (((-784) $) NIL (|has| (-879 |#2|) (-379)))) (-2046 (((-112) $ $) NIL)) (-2631 (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 (-793 |#1| (-879 |#2|))))) "failed") (-657 (-793 |#1| (-879 |#2|))) (-1 (-112) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 (-793 |#1| (-879 |#2|))))) "failed") (-657 (-793 |#1| (-879 |#2|))) (-1 (-112) (-793 |#1| (-879 |#2|))) (-1 (-112) (-793 |#1| (-879 |#2|)) (-793 |#1| (-879 |#2|)))) NIL)) (-3302 (((-112) $ (-1 (-112) (-793 |#1| (-879 |#2|)) (-657 (-793 |#1| (-879 |#2|))))) NIL)) (-2375 (((-657 $) (-793 |#1| (-879 |#2|)) $) NIL) (((-657 $) (-793 |#1| (-879 |#2|)) (-657 $)) NIL) (((-657 $) (-657 (-793 |#1| (-879 |#2|))) $) NIL) (((-657 $) (-657 (-793 |#1| (-879 |#2|))) (-657 $)) NIL)) (-2147 (((-112) (-1 (-112) (-793 |#1| (-879 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3039 (((-657 (-879 |#2|)) $) NIL)) (-3421 (((-112) (-793 |#1| (-879 |#2|)) $) NIL)) (-1863 (((-112) (-879 |#2|) $) NIL)) (-2933 (((-112) $ $) NIL)) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-1068 |#1| |#2|) (-13 (-1093 |#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|))) (-10 -8 (-15 -3472 ((-657 $) (-657 (-793 |#1| (-879 |#2|))) (-112) (-112))))) (-464) (-657 (-1198))) (T -1068)) -((-3472 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-657 (-1198))) (-5 *2 (-657 (-1068 *5 *6))) (-5 *1 (-1068 *5 *6))))) -(-13 (-1093 |#1| (-543 (-879 |#2|)) (-879 |#2|) (-793 |#1| (-879 |#2|))) (-10 -8 (-15 -3472 ((-657 $) (-657 (-793 |#1| (-879 |#2|))) (-112) (-112))))) -((-3972 (((-1 (-576)) (-1116 (-576))) 32)) (-2909 (((-576) (-576) (-576) (-576) (-576)) 29)) (-2650 (((-1 (-576)) |RationalNumber|) NIL)) (-3800 (((-1 (-576)) |RationalNumber|) NIL)) (-3871 (((-1 (-576)) (-576) |RationalNumber|) NIL))) -(((-1069) (-10 -7 (-15 -3972 ((-1 (-576)) (-1116 (-576)))) (-15 -3871 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -2650 ((-1 (-576)) |RationalNumber|)) (-15 -3800 ((-1 (-576)) |RationalNumber|)) (-15 -2909 ((-576) (-576) (-576) (-576) (-576))))) (T -1069)) -((-2909 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1069)))) (-3800 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1069)))) (-2650 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1069)))) (-3871 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1069)) (-5 *3 (-576)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-1116 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1069))))) -(-10 -7 (-15 -3972 ((-1 (-576)) (-1116 (-576)))) (-15 -3871 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -2650 ((-1 (-576)) |RationalNumber|)) (-15 -3800 ((-1 (-576)) |RationalNumber|)) (-15 -2909 ((-576) (-576) (-576) (-576) (-576)))) -((-3501 (((-877) $) NIL) (($ (-576)) 10))) -(((-1070 |#1|) (-10 -8 (-15 -3501 (|#1| (-576))) (-15 -3501 ((-877) |#1|))) (-1071)) (T -1070)) -NIL -(-10 -8 (-15 -3501 (|#1| (-576))) (-15 -3501 ((-877) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3843 (((-3 $ "failed") $) 37)) (-4094 (((-112) $) 35)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12) (($ (-576)) 33)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-1071) (-141)) (T -1071)) -((-1960 (*1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-784))))) -(-13 (-1080) (-739) (-661 $) (-628 (-576)) (-10 -7 (-15 -1960 ((-784)) -1509) (-6 -4463))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-739) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-2898 (((-419 (-972 |#2|)) (-657 |#2|) (-657 |#2|) (-784) (-784)) 54))) -(((-1072 |#1| |#2|) (-10 -7 (-15 -2898 ((-419 (-972 |#2|)) (-657 |#2|) (-657 |#2|) (-784) (-784)))) (-1198) (-374)) (T -1072)) -((-2898 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-657 *6)) (-5 *4 (-784)) (-4 *6 (-374)) (-5 *2 (-419 (-972 *6))) (-5 *1 (-1072 *5 *6)) (-14 *5 (-1198))))) -(-10 -7 (-15 -2898 ((-419 (-972 |#2|)) (-657 |#2|) (-657 |#2|) (-784) (-784)))) -((-3429 (((-112) $ $) 7)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8)) (* (($ $ |#1|) 14))) -(((-1073 |#1|) (-141) (-1134)) (T -1073)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1073 *2)) (-4 *2 (-1134))))) -(-13 (-1122) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-3864 (((-112) $) 38)) (-3186 (((-112) $) 17)) (-2377 (((-784) $) 13)) (-2387 (((-784) $) 14)) (-2049 (((-112) $) 30)) (-4299 (((-112) $) 40))) -(((-1074 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2387 ((-784) |#1|)) (-15 -2377 ((-784) |#1|)) (-15 -4299 ((-112) |#1|)) (-15 -3864 ((-112) |#1|)) (-15 -2049 ((-112) |#1|)) (-15 -3186 ((-112) |#1|))) (-1075 |#2| |#3| |#4| |#5| |#6|) (-784) (-784) (-1071) (-243 |#3| |#4|) (-243 |#2| |#4|)) (T -1074)) -NIL -(-10 -8 (-15 -2387 ((-784) |#1|)) (-15 -2377 ((-784) |#1|)) (-15 -4299 ((-112) |#1|)) (-15 -3864 ((-112) |#1|)) (-15 -2049 ((-112) |#1|)) (-15 -3186 ((-112) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3864 (((-112) $) 56)) (-2721 (((-3 $ "failed") $ $) 20)) (-3186 (((-112) $) 58)) (-3793 (((-112) $ (-784)) 66)) (-4359 (($) 18 T CONST)) (-3590 (($ $) 39 (|has| |#3| (-317)))) (-2911 ((|#4| $ (-576)) 44)) (-1542 (((-784) $) 38 (|has| |#3| (-568)))) (-2083 ((|#3| $ (-576) (-576)) 46)) (-1458 (((-657 |#3|) $) 73 (|has| $ (-6 -4466)))) (-3662 (((-784) $) 37 (|has| |#3| (-568)))) (-1345 (((-657 |#5|) $) 36 (|has| |#3| (-568)))) (-2377 (((-784) $) 50)) (-2387 (((-784) $) 49)) (-1833 (((-112) $ (-784)) 65)) (-2491 (((-576) $) 54)) (-3770 (((-576) $) 52)) (-2070 (((-657 |#3|) $) 74 (|has| $ (-6 -4466)))) (-1627 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1122)) (|has| $ (-6 -4466))))) (-3704 (((-576) $) 53)) (-1429 (((-576) $) 51)) (-2514 (($ (-657 (-657 |#3|))) 59)) (-2148 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-2339 (((-657 (-657 |#3|)) $) 48)) (-4261 (((-112) $ (-784)) 64)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3418 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-568)))) (-3399 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 |#3|) (-657 |#3|)) 80 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ (-304 |#3|)) 78 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ (-657 (-304 |#3|))) 77 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122))))) (-2806 (((-112) $ $) 60)) (-3387 (((-112) $) 63)) (-3581 (($) 62)) (-2835 ((|#3| $ (-576) (-576)) 47) ((|#3| $ (-576) (-576) |#3|) 45)) (-2049 (((-112) $) 57)) (-1482 (((-784) |#3| $) 75 (-12 (|has| |#3| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4466)))) (-1923 (($ $) 61)) (-3815 ((|#5| $ (-576)) 43)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2147 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4466)))) (-4299 (((-112) $) 55)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3034 (($ $ |#3|) 40 (|has| |#3| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-3440 (((-784) $) 67 (|has| $ (-6 -4466))))) -(((-1075 |#1| |#2| |#3| |#4| |#5|) (-141) (-784) (-784) (-1071) (-243 |t#2| |t#3|) (-243 |t#1| |t#3|)) (T -1075)) -((-4083 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-2514 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 *5))) (-4 *5 (-1071)) (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-2049 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-4299 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-2491 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-2377 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-784)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-784)))) (-2339 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-657 (-657 *5))))) (-2835 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1071)))) (-2083 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1071)))) (-2835 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *2 *6 *7)) (-4 *2 (-1071)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) (-2911 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *6 *2 *7)) (-4 *6 (-1071)) (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6)))) (-3815 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *6 *7 *2)) (-4 *6 (-1071)) (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6)))) (-4083 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-3418 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1075 *3 *4 *2 *5 *6)) (-4 *2 (-1071)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568)))) (-3034 (*1 *1 *1 *2) (-12 (-4 *1 (-1075 *3 *4 *2 *5 *6)) (-4 *2 (-1071)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-374)))) (-3590 (*1 *1 *1) (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317)))) (-1542 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-784)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-784)))) (-1345 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-657 *7))))) -(-13 (-111 |t#3| |t#3|) (-501 |t#3|) (-10 -8 (-6 -4466) (IF (|has| |t#3| (-174)) (-6 (-730 |t#3|)) |%noBranch|) (-15 -2514 ($ (-657 (-657 |t#3|)))) (-15 -3186 ((-112) $)) (-15 -2049 ((-112) $)) (-15 -3864 ((-112) $)) (-15 -4299 ((-112) $)) (-15 -2491 ((-576) $)) (-15 -3704 ((-576) $)) (-15 -3770 ((-576) $)) (-15 -1429 ((-576) $)) (-15 -2377 ((-784) $)) (-15 -2387 ((-784) $)) (-15 -2339 ((-657 (-657 |t#3|)) $)) (-15 -2835 (|t#3| $ (-576) (-576))) (-15 -2083 (|t#3| $ (-576) (-576))) (-15 -2835 (|t#3| $ (-576) (-576) |t#3|)) (-15 -2911 (|t#4| $ (-576))) (-15 -3815 (|t#5| $ (-576))) (-15 -4083 ($ (-1 |t#3| |t#3|) $)) (-15 -4083 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-568)) (-15 -3418 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-374)) (-15 -3034 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-317)) (-15 -3590 ($ $)) |%noBranch|) (IF (|has| |t#3| (-568)) (PROGN (-15 -1542 ((-784) $)) (-15 -3662 ((-784) $)) (-15 -1345 ((-657 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-625 (-877)) . T) ((-319 |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122))) ((-501 |#3|) . T) ((-526 |#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122))) ((-659 (-576)) . T) ((-659 |#3|) . T) ((-661 |#3|) . T) ((-653 |#3|) |has| |#3| (-174)) ((-730 |#3|) |has| |#3| (-174)) ((-1073 |#3|) . T) ((-1078 |#3|) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3864 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-3186 (((-112) $) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-4359 (($) NIL T CONST)) (-3590 (($ $) 47 (|has| |#3| (-317)))) (-2911 (((-245 |#2| |#3|) $ (-576)) 36)) (-3322 (($ (-702 |#3|)) 45)) (-1542 (((-784) $) 49 (|has| |#3| (-568)))) (-2083 ((|#3| $ (-576) (-576)) NIL)) (-1458 (((-657 |#3|) $) NIL (|has| $ (-6 -4466)))) (-3662 (((-784) $) 51 (|has| |#3| (-568)))) (-1345 (((-657 (-245 |#1| |#3|)) $) 55 (|has| |#3| (-568)))) (-2377 (((-784) $) NIL)) (-2387 (((-784) $) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-2491 (((-576) $) NIL)) (-3770 (((-576) $) NIL)) (-2070 (((-657 |#3|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#3| (-1122))))) (-3704 (((-576) $) NIL)) (-1429 (((-576) $) NIL)) (-2514 (($ (-657 (-657 |#3|))) 31)) (-2148 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2339 (((-657 (-657 |#3|)) $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3418 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-568)))) (-3399 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 |#3|) (-657 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ (-657 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#3| $ (-576) (-576)) NIL) ((|#3| $ (-576) (-576) |#3|) NIL)) (-3863 (((-135)) 59 (|has| |#3| (-374)))) (-2049 (((-112) $) NIL)) (-1482 (((-784) |#3| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#3| (-1122)))) (((-784) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) 65 (|has| |#3| (-626 (-548))))) (-3815 (((-245 |#1| |#3|) $ (-576)) 40)) (-3501 (((-877) $) 19) (((-702 |#3|) $) 42)) (-2046 (((-112) $ $) NIL)) (-2147 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4466)))) (-4299 (((-112) $) NIL)) (-2769 (($) 16 T CONST)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-1076 |#1| |#2| |#3|) (-13 (-1075 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-702 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1296 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -3322 ($ (-702 |#3|))))) (-784) (-784) (-1071)) (T -1076)) -((-3322 (*1 *1 *2) (-12 (-5 *2 (-702 *5)) (-4 *5 (-1071)) (-5 *1 (-1076 *3 *4 *5)) (-14 *3 (-784)) (-14 *4 (-784))))) -(-13 (-1075 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-702 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1296 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -3322 ($ (-702 |#3|))))) -((-3622 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-4083 ((|#10| (-1 |#7| |#3|) |#6|) 34))) -(((-1077 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4083 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3622 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-784) (-784) (-1071) (-243 |#2| |#3|) (-243 |#1| |#3|) (-1075 |#1| |#2| |#3| |#4| |#5|) (-1071) (-243 |#2| |#7|) (-243 |#1| |#7|) (-1075 |#1| |#2| |#7| |#8| |#9|)) (T -1077)) -((-3622 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1071)) (-4 *2 (-1071)) (-14 *5 (-784)) (-14 *6 (-784)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) (-5 *1 (-1077 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1075 *5 *6 *7 *8 *9)) (-4 *12 (-1075 *5 *6 *2 *10 *11)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1071)) (-4 *10 (-1071)) (-14 *5 (-784)) (-14 *6 (-784)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *2 (-1075 *5 *6 *10 *11 *12)) (-5 *1 (-1077 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1075 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) (-4 *12 (-243 *5 *10))))) -(-10 -7 (-15 -4083 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3622 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ |#1|) 27))) -(((-1078 |#1|) (-141) (-1080)) (T -1078)) -NIL -(-13 (-21) (-1073 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-1073 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-3032 (((-1198) $) 11)) (-2324 ((|#1| $) 12)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2411 (($ (-1198) |#1|) 10)) (-3501 (((-877) $) 22 (|has| |#1| (-1122)))) (-2046 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2933 (((-112) $ $) 17 (|has| |#1| (-1122))))) -(((-1079 |#1| |#2|) (-13 (-1239) (-10 -8 (-15 -2411 ($ (-1198) |#1|)) (-15 -3032 ((-1198) $)) (-15 -2324 (|#1| $)) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|))) (-1115 |#2|) (-1239)) (T -1079)) -((-2411 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-4 *4 (-1239)) (-5 *1 (-1079 *3 *4)) (-4 *3 (-1115 *4)))) (-3032 (*1 *2 *1) (-12 (-4 *4 (-1239)) (-5 *2 (-1198)) (-5 *1 (-1079 *3 *4)) (-4 *3 (-1115 *4)))) (-2324 (*1 *2 *1) (-12 (-4 *2 (-1115 *3)) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1239))))) -(-13 (-1239) (-10 -8 (-15 -2411 ($ (-1198) |#1|)) (-15 -3032 ((-1198) $)) (-15 -2324 (|#1| $)) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-1080) (-141)) (T -1080)) -NIL -(-13 (-21) (-1134)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-4374 (($ $) 17)) (-1886 (($ $) 25)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 55)) (-2234 (($ $) 27)) (-2900 (($ $) 12)) (-3427 (($ $) 43)) (-4148 (((-390) $) NIL) (((-227) $) NIL) (((-908 (-390)) $) 36)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 31) (($ (-576)) NIL) (($ (-419 (-576))) 31)) (-1960 (((-784)) 9)) (-1893 (($ $) 45))) -(((-1081 |#1|) (-10 -8 (-15 -1886 (|#1| |#1|)) (-15 -4374 (|#1| |#1|)) (-15 -2900 (|#1| |#1|)) (-15 -3427 (|#1| |#1|)) (-15 -1893 (|#1| |#1|)) (-15 -2234 (|#1| |#1|)) (-15 -3200 ((-905 (-390) |#1|) |#1| (-908 (-390)) (-905 (-390) |#1|))) (-15 -4148 ((-908 (-390)) |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -3501 (|#1| (-576))) (-15 -4148 ((-227) |#1|)) (-15 -4148 ((-390) |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -3501 (|#1| |#1|)) (-15 -1960 ((-784))) (-15 -3501 (|#1| (-576))) (-15 -3501 ((-877) |#1|))) (-1082)) (T -1081)) -((-1960 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1081 *3)) (-4 *3 (-1082))))) -(-10 -8 (-15 -1886 (|#1| |#1|)) (-15 -4374 (|#1| |#1|)) (-15 -2900 (|#1| |#1|)) (-15 -3427 (|#1| |#1|)) (-15 -1893 (|#1| |#1|)) (-15 -2234 (|#1| |#1|)) (-15 -3200 ((-905 (-390) |#1|) |#1| (-908 (-390)) (-905 (-390) |#1|))) (-15 -4148 ((-908 (-390)) |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -3501 (|#1| (-576))) (-15 -4148 ((-227) |#1|)) (-15 -4148 ((-390) |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -3501 (|#1| |#1|)) (-15 -1960 ((-784))) (-15 -3501 (|#1| (-576))) (-15 -3501 ((-877) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3931 (((-576) $) 98)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-4374 (($ $) 96)) (-2721 (((-3 $ "failed") $ $) 20)) (-2638 (($ $) 81)) (-4402 (((-430 $) $) 80)) (-1896 (($ $) 106)) (-2864 (((-112) $ $) 65)) (-1536 (((-576) $) 123)) (-4359 (($) 18 T CONST)) (-1886 (($ $) 95)) (-1624 (((-3 (-576) "failed") $) 111) (((-3 (-419 (-576)) "failed") $) 108)) (-2884 (((-576) $) 112) (((-419 (-576)) $) 109)) (-3373 (($ $ $) 61)) (-3843 (((-3 $ "failed") $) 37)) (-3385 (($ $ $) 62)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 57)) (-4257 (((-112) $) 79)) (-2828 (((-112) $) 121)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 102)) (-4094 (((-112) $) 35)) (-2082 (($ $ (-576)) 105)) (-2234 (($ $) 101)) (-2881 (((-112) $) 122)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3707 (($ $ $) 115)) (-1611 (($ $ $) 116)) (-3402 (($ $ $) 52) (($ (-657 $)) 51)) (-2342 (((-1180) $) 10)) (-2134 (($ $) 78)) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3436 (($ $ $) 54) (($ (-657 $)) 53)) (-2900 (($ $) 97)) (-3427 (($ $) 99)) (-1885 (((-430 $) $) 82)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3418 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-2034 (((-784) $) 64)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 63)) (-4148 (((-390) $) 114) (((-227) $) 113) (((-908 (-390)) $) 103)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 110) (($ (-419 (-576))) 107)) (-1960 (((-784)) 32 T CONST)) (-1893 (($ $) 100)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 45)) (-1792 (($ $) 124)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2985 (((-112) $ $) 117)) (-2963 (((-112) $ $) 119)) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 118)) (-2954 (((-112) $ $) 120)) (-3034 (($ $ $) 73)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 104)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) -(((-1082) (-141)) (T -1082)) -((-1792 (*1 *1 *1) (-4 *1 (-1082))) (-2234 (*1 *1 *1) (-4 *1 (-1082))) (-1893 (*1 *1 *1) (-4 *1 (-1082))) (-3427 (*1 *1 *1) (-4 *1 (-1082))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-1082)) (-5 *2 (-576)))) (-2900 (*1 *1 *1) (-4 *1 (-1082))) (-4374 (*1 *1 *1) (-4 *1 (-1082))) (-1886 (*1 *1 *1) (-4 *1 (-1082)))) -(-13 (-374) (-861) (-1044) (-1060 (-576)) (-1060 (-419 (-576))) (-1024) (-626 (-908 (-390))) (-902 (-390)) (-148) (-10 -8 (-15 -2234 ($ $)) (-15 -1893 ($ $)) (-15 -3427 ($ $)) (-15 -3931 ((-576) $)) (-15 -2900 ($ $)) (-15 -4374 ($ $)) (-15 -1886 ($ $)) (-15 -1792 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-908 (-390))) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-730 #0#) . T) ((-730 $) . T) ((-739) . T) ((-804) . T) ((-805) . T) ((-807) . T) ((-808) . T) ((-861) . T) ((-862) . T) ((-865) . T) ((-902 (-390)) . T) ((-940) . T) ((-1024) . T) ((-1044) . T) ((-1060 (-419 (-576))) . T) ((-1060 (-576)) . T) ((-1073 #0#) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) |#2| $) 26)) (-2193 ((|#1| $) 10)) (-1536 (((-576) |#2| $) 116)) (-3564 (((-3 $ "failed") |#2| (-941)) 75)) (-4236 ((|#1| $) 31)) (-3419 ((|#1| |#2| $ |#1|) 40)) (-4189 (($ $) 28)) (-3843 (((-3 |#2| "failed") |#2| $) 111)) (-2828 (((-112) |#2| $) NIL)) (-2881 (((-112) |#2| $) NIL)) (-3062 (((-112) |#2| $) 27)) (-1768 ((|#1| $) 117)) (-4224 ((|#1| $) 30)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3180 ((|#2| $) 102)) (-3501 (((-877) $) 92)) (-2046 (((-112) $ $) NIL)) (-4144 ((|#1| |#2| $ |#1|) 41)) (-1349 (((-657 $) |#2|) 77)) (-2933 (((-112) $ $) 97))) -(((-1083 |#1| |#2|) (-13 (-1090 |#1| |#2|) (-10 -8 (-15 -4224 (|#1| $)) (-15 -4236 (|#1| $)) (-15 -2193 (|#1| $)) (-15 -1768 (|#1| $)) (-15 -4189 ($ $)) (-15 -3062 ((-112) |#2| $)) (-15 -3419 (|#1| |#2| $ |#1|)))) (-13 (-861) (-374)) (-1265 |#1|)) (T -1083)) -((-3419 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) (-4 *3 (-1265 *2)))) (-4224 (*1 *2 *1) (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) (-4 *3 (-1265 *2)))) (-4236 (*1 *2 *1) (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) (-4 *3 (-1265 *2)))) (-2193 (*1 *2 *1) (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) (-4 *3 (-1265 *2)))) (-1768 (*1 *2 *1) (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) (-4 *3 (-1265 *2)))) (-4189 (*1 *1 *1) (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) (-4 *3 (-1265 *2)))) (-3062 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-861) (-374))) (-5 *2 (-112)) (-5 *1 (-1083 *4 *3)) (-4 *3 (-1265 *4))))) -(-13 (-1090 |#1| |#2|) (-10 -8 (-15 -4224 (|#1| $)) (-15 -4236 (|#1| $)) (-15 -2193 (|#1| $)) (-15 -1768 (|#1| $)) (-15 -4189 ($ $)) (-15 -3062 ((-112) |#2| $)) (-15 -3419 (|#1| |#2| $ |#1|)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2061 (($ $ $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-3578 (($ $ $ $) NIL)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-2864 (((-112) $ $) NIL)) (-1536 (((-576) $) NIL)) (-2790 (($ $ $) NIL)) (-4359 (($) NIL T CONST)) (-3474 (($ (-1198)) 10) (($ (-576)) 7)) (-1624 (((-3 (-576) "failed") $) NIL)) (-2884 (((-576) $) NIL)) (-3373 (($ $ $) NIL)) (-3306 (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-702 (-576)) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-2775 (((-3 (-419 (-576)) "failed") $) NIL)) (-3112 (((-112) $) NIL)) (-4239 (((-419 (-576)) $) NIL)) (-1892 (($) NIL) (($ $) NIL)) (-3385 (($ $ $) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-2798 (($ $ $ $) NIL)) (-3211 (($ $ $) NIL)) (-2828 (((-112) $) NIL)) (-2194 (($ $ $) NIL)) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL)) (-4094 (((-112) $) NIL)) (-2320 (((-112) $) NIL)) (-4019 (((-3 $ "failed") $) NIL)) (-2881 (((-112) $) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3767 (($ $ $ $) NIL)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-4195 (($ $) NIL)) (-3358 (($ $) NIL)) (-3101 (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL) (((-702 (-576)) (-1289 $)) NIL)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2233 (($ $ $) NIL)) (-1706 (($) NIL T CONST)) (-1380 (($ $) NIL)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) NIL) (($ (-657 $)) NIL)) (-3907 (($ $) NIL)) (-1885 (((-430 $) $) NIL)) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3593 (((-112) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-2815 (($ $) NIL) (($ $ (-784)) NIL)) (-1862 (($ $) NIL)) (-1923 (($ $) NIL)) (-4148 (((-576) $) 16) (((-548) $) NIL) (((-908 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL) (($ (-1198)) 9)) (-3501 (((-877) $) 23) (($ (-576)) 6) (($ $) NIL) (($ (-576)) 6)) (-1960 (((-784)) NIL T CONST)) (-3091 (((-112) $ $) NIL)) (-3871 (($ $ $) NIL)) (-2046 (((-112) $ $) NIL)) (-4143 (($) NIL)) (-4041 (((-112) $ $) NIL)) (-2430 (($ $ $ $) NIL)) (-1792 (($ $) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $) NIL) (($ $ (-784)) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL)) (-3022 (($ $) 22) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-576) $) NIL))) -(((-1084) (-13 (-557) (-630 (-1198)) (-10 -8 (-6 -4453) (-6 -4458) (-6 -4454) (-15 -3474 ($ (-1198))) (-15 -3474 ($ (-576)))))) (T -1084)) -((-3474 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1084)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1084))))) -(-13 (-557) (-630 (-1198)) (-10 -8 (-6 -4453) (-6 -4458) (-6 -4454) (-15 -3474 ($ (-1198))) (-15 -3474 ($ (-576))))) -((-3429 (((-112) $ $) NIL (-2802 (|has| (-52) (-102)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-102))))) (-4095 (($) NIL) (($ (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) NIL)) (-4313 (((-1294) $ (-1198) (-1198)) NIL (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) NIL)) (-1553 (($) 9)) (-3682 (((-52) $ (-1198) (-52)) NIL)) (-3571 (($ $) 32)) (-3383 (($ $) 30)) (-2870 (($ $) 29)) (-3485 (($ $) 31)) (-2786 (($ $) 35)) (-3563 (($ $) 36)) (-3268 (($ $) 28)) (-1604 (($ $) 33)) (-3162 (($ (-1 (-112) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) 27 (|has| $ (-6 -4466)))) (-2287 (((-3 (-52) "failed") (-1198) $) 43)) (-4359 (($) NIL T CONST)) (-1881 (($) 7)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122))))) (-3647 (($ (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) $) 53 (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-3 (-52) "failed") (-1198) $) NIL)) (-3895 (($ (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ (-1 (-112) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-3622 (((-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $ (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122)))) (((-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $ (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466)))) (-2280 (((-3 (-1180) "failed") $ (-1180) (-576)) 72)) (-2158 (((-52) $ (-1198) (-52)) NIL (|has| $ (-6 -4467)))) (-2083 (((-52) $ (-1198)) NIL)) (-1458 (((-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-657 (-52)) $) NIL (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-1198) $) NIL (|has| (-1198) (-862)))) (-2070 (((-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) 38 (|has| $ (-6 -4466))) (((-657 (-52)) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-52) (-1122))))) (-2272 (((-1198) $) NIL (|has| (-1198) (-862)))) (-2148 (($ (-1 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4467))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (-2802 (|has| (-52) (-1122)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122))))) (-3159 (((-657 (-1198)) $) NIL)) (-1708 (((-112) (-1198) $) NIL)) (-3050 (((-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) $) NIL)) (-2468 (($ (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) $) 46)) (-1430 (((-657 (-1198)) $) NIL)) (-4242 (((-112) (-1198) $) NIL)) (-1471 (((-1142) $) NIL (-2802 (|has| (-52) (-1122)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122))))) (-3616 (((-390) $ (-1198)) 52)) (-4099 (((-657 (-1180)) $ (-1180)) 74)) (-3510 (((-52) $) NIL (|has| (-1198) (-862)))) (-2951 (((-3 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) "failed") (-1 (-112) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL)) (-1987 (($ $ (-52)) NIL (|has| $ (-6 -4467)))) (-2277 (((-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) $) NIL)) (-3399 (((-112) (-1 (-112) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))))) NIL (-12 (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ $ (-304 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) NIL (-12 (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ $ (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) NIL (-12 (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ $ (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) NIL (-12 (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-319 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122)))) (($ $ (-657 (-52)) (-657 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122)))) (($ $ (-657 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-52) (-1122))))) (-2380 (((-657 (-52)) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 (((-52) $ (-1198)) NIL) (((-52) $ (-1198) (-52)) NIL)) (-1504 (($) NIL) (($ (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) NIL)) (-1736 (($ $ (-1198)) 54)) (-1482 (((-784) (-1 (-112) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-1122)))) (((-784) (-52) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-52) (-1122)))) (((-784) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-626 (-548))))) (-3511 (($ (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) 40)) (-1674 (($ $ $) 41)) (-3501 (((-877) $) NIL (-2802 (|has| (-52) (-625 (-877))) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-625 (-877)))))) (-3368 (($ $ (-1198) (-390)) 50)) (-1631 (($ $ (-1198) (-390)) 51)) (-2046 (((-112) $ $) NIL (-2802 (|has| (-52) (-102)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-102))))) (-4079 (($ (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))))) NIL)) (-2147 (((-112) (-1 (-112) (-2 (|:| -4291 (-1198)) (|:| -4440 (-52)))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (-2802 (|has| (-52) (-102)) (|has| (-2 (|:| -4291 (-1198)) (|:| -4440 (-52))) (-102))))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-1085) (-13 (-1215 (-1198) (-52)) (-10 -8 (-15 -1674 ($ $ $)) (-15 -1881 ($)) (-15 -3268 ($ $)) (-15 -2870 ($ $)) (-15 -3383 ($ $)) (-15 -3485 ($ $)) (-15 -1604 ($ $)) (-15 -3571 ($ $)) (-15 -2786 ($ $)) (-15 -3563 ($ $)) (-15 -3368 ($ $ (-1198) (-390))) (-15 -1631 ($ $ (-1198) (-390))) (-15 -3616 ((-390) $ (-1198))) (-15 -4099 ((-657 (-1180)) $ (-1180))) (-15 -1736 ($ $ (-1198))) (-15 -1553 ($)) (-15 -2280 ((-3 (-1180) "failed") $ (-1180) (-576))) (-6 -4466)))) (T -1085)) -((-1674 (*1 *1 *1 *1) (-5 *1 (-1085))) (-1881 (*1 *1) (-5 *1 (-1085))) (-3268 (*1 *1 *1) (-5 *1 (-1085))) (-2870 (*1 *1 *1) (-5 *1 (-1085))) (-3383 (*1 *1 *1) (-5 *1 (-1085))) (-3485 (*1 *1 *1) (-5 *1 (-1085))) (-1604 (*1 *1 *1) (-5 *1 (-1085))) (-3571 (*1 *1 *1) (-5 *1 (-1085))) (-2786 (*1 *1 *1) (-5 *1 (-1085))) (-3563 (*1 *1 *1) (-5 *1 (-1085))) (-3368 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-390)) (-5 *1 (-1085)))) (-1631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-390)) (-5 *1 (-1085)))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-390)) (-5 *1 (-1085)))) (-4099 (*1 *2 *1 *3) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1085)) (-5 *3 (-1180)))) (-1736 (*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1085)))) (-1553 (*1 *1) (-5 *1 (-1085))) (-2280 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1180)) (-5 *3 (-576)) (-5 *1 (-1085))))) -(-13 (-1215 (-1198) (-52)) (-10 -8 (-15 -1674 ($ $ $)) (-15 -1881 ($)) (-15 -3268 ($ $)) (-15 -2870 ($ $)) (-15 -3383 ($ $)) (-15 -3485 ($ $)) (-15 -1604 ($ $)) (-15 -3571 ($ $)) (-15 -2786 ($ $)) (-15 -3563 ($ $)) (-15 -3368 ($ $ (-1198) (-390))) (-15 -1631 ($ $ (-1198) (-390))) (-15 -3616 ((-390) $ (-1198))) (-15 -4099 ((-657 (-1180)) $ (-1180))) (-15 -1736 ($ $ (-1198))) (-15 -1553 ($)) (-15 -2280 ((-3 (-1180) "failed") $ (-1180) (-576))) (-6 -4466))) -((-4424 (($ $) 46)) (-3873 (((-112) $ $) 82)) (-1624 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-972 (-419 (-576)))) 247) (((-3 $ "failed") (-972 (-576))) 246) (((-3 $ "failed") (-972 |#2|)) 249)) (-2884 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) NIL) (($ (-972 (-419 (-576)))) 235) (($ (-972 (-576))) 231) (($ (-972 |#2|)) 255)) (-2212 (($ $) NIL) (($ $ |#4|) 44)) (-3206 (((-112) $ $) 131) (((-112) $ (-657 $)) 135)) (-4121 (((-112) $) 60)) (-4267 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 125)) (-2133 (($ $) 160)) (-1807 (($ $) 156)) (-3212 (($ $) 155)) (-3372 (($ $ $) 87) (($ $ $ |#4|) 92)) (-1704 (($ $ $) 90) (($ $ $ |#4|) 94)) (-1878 (((-112) $ $) 143) (((-112) $ (-657 $)) 144)) (-3627 ((|#4| $) 32)) (-4176 (($ $ $) 128)) (-4064 (((-112) $) 59)) (-1465 (((-784) $) 35)) (-2841 (($ $) 174)) (-1691 (($ $) 171)) (-3829 (((-657 $) $) 72)) (-2485 (($ $) 62)) (-1377 (($ $) 167)) (-3699 (((-657 $) $) 69)) (-4149 (($ $) 64)) (-2186 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3641 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3897 (-784))) $ $) 130)) (-2781 (((-2 (|:| -1771 $) (|:| |gap| (-784)) (|:| -2335 $) (|:| -3644 $)) $ $) 126) (((-2 (|:| -1771 $) (|:| |gap| (-784)) (|:| -2335 $) (|:| -3644 $)) $ $ |#4|) 127)) (-2291 (((-2 (|:| -1771 $) (|:| |gap| (-784)) (|:| -3644 $)) $ $) 121) (((-2 (|:| -1771 $) (|:| |gap| (-784)) (|:| -3644 $)) $ $ |#4|) 123)) (-2386 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2826 (($ $ $) 98) (($ $ $ |#4|) 107)) (-1733 (((-657 $) $) 54)) (-4365 (((-112) $ $) 140) (((-112) $ (-657 $)) 141)) (-2833 (($ $ $) 116)) (-1706 (($ $) 37)) (-4015 (((-112) $ $) 80)) (-3965 (((-112) $ $) 136) (((-112) $ (-657 $)) 138)) (-2843 (($ $ $) 112)) (-4229 (($ $) 41)) (-3436 ((|#2| |#2| $) 164) (($ (-657 $)) NIL) (($ $ $) NIL)) (-3019 (($ $ |#2|) NIL) (($ $ $) 153)) (-1773 (($ $ |#2|) 148) (($ $ $) 151)) (-2038 (($ $) 49)) (-2255 (($ $) 55)) (-4148 (((-908 (-390)) $) NIL) (((-908 (-576)) $) NIL) (((-548) $) NIL) (($ (-972 (-419 (-576)))) 237) (($ (-972 (-576))) 233) (($ (-972 |#2|)) 248) (((-1180) $) 279) (((-972 |#2|) $) 184)) (-3501 (((-877) $) 29) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-972 |#2|) $) 185) (($ (-419 (-576))) NIL) (($ $) NIL)) (-1544 (((-3 (-112) "failed") $ $) 79))) -(((-1086 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3501 (|#1| |#1|)) (-15 -3436 (|#1| |#1| |#1|)) (-15 -3436 (|#1| (-657 |#1|))) (-15 -3501 (|#1| (-419 (-576)))) (-15 -3501 ((-972 |#2|) |#1|)) (-15 -4148 ((-972 |#2|) |#1|)) (-15 -4148 ((-1180) |#1|)) (-15 -2841 (|#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 -1377 (|#1| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -3436 (|#2| |#2| |#1|)) (-15 -3019 (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1| |#1|)) (-15 -3019 (|#1| |#1| |#2|)) (-15 -1773 (|#1| |#1| |#2|)) (-15 -1807 (|#1| |#1|)) (-15 -3212 (|#1| |#1|)) (-15 -4148 (|#1| (-972 |#2|))) (-15 -2884 (|#1| (-972 |#2|))) (-15 -1624 ((-3 |#1| "failed") (-972 |#2|))) (-15 -4148 (|#1| (-972 (-576)))) (-15 -2884 (|#1| (-972 (-576)))) (-15 -1624 ((-3 |#1| "failed") (-972 (-576)))) (-15 -4148 (|#1| (-972 (-419 (-576))))) (-15 -2884 (|#1| (-972 (-419 (-576))))) (-15 -1624 ((-3 |#1| "failed") (-972 (-419 (-576))))) (-15 -2833 (|#1| |#1| |#1|)) (-15 -2843 (|#1| |#1| |#1|)) (-15 -3641 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3897 (-784))) |#1| |#1|)) (-15 -4176 (|#1| |#1| |#1|)) (-15 -4267 ((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|)) (-15 -2781 ((-2 (|:| -1771 |#1|) (|:| |gap| (-784)) (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1| |#4|)) (-15 -2781 ((-2 (|:| -1771 |#1|) (|:| |gap| (-784)) (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|)) (-15 -2291 ((-2 (|:| -1771 |#1|) (|:| |gap| (-784)) (|:| -3644 |#1|)) |#1| |#1| |#4|)) (-15 -2291 ((-2 (|:| -1771 |#1|) (|:| |gap| (-784)) (|:| -3644 |#1|)) |#1| |#1|)) (-15 -2826 (|#1| |#1| |#1| |#4|)) (-15 -2386 (|#1| |#1| |#1| |#4|)) (-15 -2826 (|#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| |#1|)) (-15 -1704 (|#1| |#1| |#1| |#4|)) (-15 -3372 (|#1| |#1| |#1| |#4|)) (-15 -1704 (|#1| |#1| |#1|)) (-15 -3372 (|#1| |#1| |#1|)) (-15 -1878 ((-112) |#1| (-657 |#1|))) (-15 -1878 ((-112) |#1| |#1|)) (-15 -4365 ((-112) |#1| (-657 |#1|))) (-15 -4365 ((-112) |#1| |#1|)) (-15 -3965 ((-112) |#1| (-657 |#1|))) (-15 -3965 ((-112) |#1| |#1|)) (-15 -3206 ((-112) |#1| (-657 |#1|))) (-15 -3206 ((-112) |#1| |#1|)) (-15 -3873 ((-112) |#1| |#1|)) (-15 -4015 ((-112) |#1| |#1|)) (-15 -1544 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3829 ((-657 |#1|) |#1|)) (-15 -3699 ((-657 |#1|) |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -4121 ((-112) |#1|)) (-15 -4064 ((-112) |#1|)) (-15 -2212 (|#1| |#1| |#4|)) (-15 -2186 (|#1| |#1| |#4|)) (-15 -2255 (|#1| |#1|)) (-15 -1733 ((-657 |#1|) |#1|)) (-15 -2038 (|#1| |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -4229 (|#1| |#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1465 ((-784) |#1|)) (-15 -3627 (|#4| |#1|)) (-15 -4148 ((-548) |#1|)) (-15 -4148 ((-908 (-576)) |#1|)) (-15 -4148 ((-908 (-390)) |#1|)) (-15 -3501 (|#1| |#4|)) (-15 -1624 ((-3 |#4| "failed") |#1|)) (-15 -2884 (|#4| |#1|)) (-15 -2186 (|#2| |#1|)) (-15 -2212 (|#1| |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -3501 (|#1| |#2|)) (-15 -3501 (|#1| (-576))) (-15 -3501 ((-877) |#1|))) (-1087 |#2| |#3| |#4|) (-1071) (-806) (-862)) (T -1086)) -NIL -(-10 -8 (-15 -3501 (|#1| |#1|)) (-15 -3436 (|#1| |#1| |#1|)) (-15 -3436 (|#1| (-657 |#1|))) (-15 -3501 (|#1| (-419 (-576)))) (-15 -3501 ((-972 |#2|) |#1|)) (-15 -4148 ((-972 |#2|) |#1|)) (-15 -4148 ((-1180) |#1|)) (-15 -2841 (|#1| |#1|)) (-15 -1691 (|#1| |#1|)) (-15 -1377 (|#1| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -3436 (|#2| |#2| |#1|)) (-15 -3019 (|#1| |#1| |#1|)) (-15 -1773 (|#1| |#1| |#1|)) (-15 -3019 (|#1| |#1| |#2|)) (-15 -1773 (|#1| |#1| |#2|)) (-15 -1807 (|#1| |#1|)) (-15 -3212 (|#1| |#1|)) (-15 -4148 (|#1| (-972 |#2|))) (-15 -2884 (|#1| (-972 |#2|))) (-15 -1624 ((-3 |#1| "failed") (-972 |#2|))) (-15 -4148 (|#1| (-972 (-576)))) (-15 -2884 (|#1| (-972 (-576)))) (-15 -1624 ((-3 |#1| "failed") (-972 (-576)))) (-15 -4148 (|#1| (-972 (-419 (-576))))) (-15 -2884 (|#1| (-972 (-419 (-576))))) (-15 -1624 ((-3 |#1| "failed") (-972 (-419 (-576))))) (-15 -2833 (|#1| |#1| |#1|)) (-15 -2843 (|#1| |#1| |#1|)) (-15 -3641 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3897 (-784))) |#1| |#1|)) (-15 -4176 (|#1| |#1| |#1|)) (-15 -4267 ((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|)) (-15 -2781 ((-2 (|:| -1771 |#1|) (|:| |gap| (-784)) (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1| |#4|)) (-15 -2781 ((-2 (|:| -1771 |#1|) (|:| |gap| (-784)) (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|)) (-15 -2291 ((-2 (|:| -1771 |#1|) (|:| |gap| (-784)) (|:| -3644 |#1|)) |#1| |#1| |#4|)) (-15 -2291 ((-2 (|:| -1771 |#1|) (|:| |gap| (-784)) (|:| -3644 |#1|)) |#1| |#1|)) (-15 -2826 (|#1| |#1| |#1| |#4|)) (-15 -2386 (|#1| |#1| |#1| |#4|)) (-15 -2826 (|#1| |#1| |#1|)) (-15 -2386 (|#1| |#1| |#1|)) (-15 -1704 (|#1| |#1| |#1| |#4|)) (-15 -3372 (|#1| |#1| |#1| |#4|)) (-15 -1704 (|#1| |#1| |#1|)) (-15 -3372 (|#1| |#1| |#1|)) (-15 -1878 ((-112) |#1| (-657 |#1|))) (-15 -1878 ((-112) |#1| |#1|)) (-15 -4365 ((-112) |#1| (-657 |#1|))) (-15 -4365 ((-112) |#1| |#1|)) (-15 -3965 ((-112) |#1| (-657 |#1|))) (-15 -3965 ((-112) |#1| |#1|)) (-15 -3206 ((-112) |#1| (-657 |#1|))) (-15 -3206 ((-112) |#1| |#1|)) (-15 -3873 ((-112) |#1| |#1|)) (-15 -4015 ((-112) |#1| |#1|)) (-15 -1544 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3829 ((-657 |#1|) |#1|)) (-15 -3699 ((-657 |#1|) |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -4121 ((-112) |#1|)) (-15 -4064 ((-112) |#1|)) (-15 -2212 (|#1| |#1| |#4|)) (-15 -2186 (|#1| |#1| |#4|)) (-15 -2255 (|#1| |#1|)) (-15 -1733 ((-657 |#1|) |#1|)) (-15 -2038 (|#1| |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -4229 (|#1| |#1|)) (-15 -1706 (|#1| |#1|)) (-15 -1465 ((-784) |#1|)) (-15 -3627 (|#4| |#1|)) (-15 -4148 ((-548) |#1|)) (-15 -4148 ((-908 (-576)) |#1|)) (-15 -4148 ((-908 (-390)) |#1|)) (-15 -3501 (|#1| |#4|)) (-15 -1624 ((-3 |#4| "failed") |#1|)) (-15 -2884 (|#4| |#1|)) (-15 -2186 (|#2| |#1|)) (-15 -2212 (|#1| |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -3501 (|#1| |#2|)) (-15 -3501 (|#1| (-576))) (-15 -3501 ((-877) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2029 (((-657 |#3|) $) 113)) (-1849 (((-1194 $) $ |#3|) 128) (((-1194 |#1|) $) 127)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-3325 (($ $) 91 (|has| |#1| (-568)))) (-4306 (((-112) $) 93 (|has| |#1| (-568)))) (-1775 (((-784) $) 115) (((-784) $ (-657 |#3|)) 114)) (-4424 (($ $) 278)) (-3873 (((-112) $ $) 264)) (-2721 (((-3 $ "failed") $ $) 20)) (-1558 (($ $ $) 223 (|has| |#1| (-568)))) (-1574 (((-657 $) $ $) 218 (|has| |#1| (-568)))) (-4250 (((-430 (-1194 $)) (-1194 $)) 103 (|has| |#1| (-929)))) (-2638 (($ $) 101 (|has| |#1| (-464)))) (-4402 (((-430 $) $) 100 (|has| |#1| (-464)))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 106 (|has| |#1| (-929)))) (-4359 (($) 18 T CONST)) (-1624 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1060 (-576)))) (((-3 |#3| "failed") $) 143) (((-3 $ "failed") (-972 (-419 (-576)))) 238 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1198))))) (((-3 $ "failed") (-972 (-576))) 235 (-2802 (-12 (-2712 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1198)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1198)))))) (((-3 $ "failed") (-972 |#1|)) 232 (-2802 (-12 (-2712 (|has| |#1| (-38 (-419 (-576))))) (-2712 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1198)))) (-12 (-2712 (|has| |#1| (-557))) (-2712 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1198)))) (-12 (-2712 (|has| |#1| (-1014 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1198))))))) (-2884 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1060 (-576)))) ((|#3| $) 144) (($ (-972 (-419 (-576)))) 237 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1198))))) (($ (-972 (-576))) 234 (-2802 (-12 (-2712 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1198)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1198)))))) (($ (-972 |#1|)) 231 (-2802 (-12 (-2712 (|has| |#1| (-38 (-419 (-576))))) (-2712 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1198)))) (-12 (-2712 (|has| |#1| (-557))) (-2712 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1198)))) (-12 (-2712 (|has| |#1| (-1014 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1198))))))) (-3203 (($ $ $ |#3|) 111 (|has| |#1| (-174))) (($ $ $) 219 (|has| |#1| (-568)))) (-2212 (($ $) 161) (($ $ |#3|) 273)) (-3306 (((-702 (-576)) (-702 $)) 139 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 138 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 137) (((-702 |#1|) (-702 $)) 136)) (-3206 (((-112) $ $) 263) (((-112) $ (-657 $)) 262)) (-3843 (((-3 $ "failed") $) 37)) (-4121 (((-112) $) 271)) (-4267 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 243)) (-2133 (($ $) 212 (|has| |#1| (-464)))) (-3813 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-2199 (((-657 $) $) 112)) (-4257 (((-112) $) 99 (|has| |#1| (-929)))) (-1807 (($ $) 228 (|has| |#1| (-568)))) (-3212 (($ $) 229 (|has| |#1| (-568)))) (-3372 (($ $ $) 255) (($ $ $ |#3|) 253)) (-1704 (($ $ $) 254) (($ $ $ |#3|) 252)) (-3124 (($ $ |#1| |#2| $) 179)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 87 (-12 (|has| |#3| (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 86 (-12 (|has| |#3| (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-4094 (((-112) $) 35)) (-4334 (((-784) $) 176)) (-1878 (((-112) $ $) 257) (((-112) $ (-657 $)) 256)) (-4249 (($ $ $ $ $) 214 (|has| |#1| (-568)))) (-3627 ((|#3| $) 282)) (-2014 (($ (-1194 |#1|) |#3|) 120) (($ (-1194 $) |#3|) 119)) (-3724 (((-657 $) $) 129)) (-3157 (((-112) $) 159)) (-2003 (($ |#1| |#2|) 160) (($ $ |#3| (-784)) 122) (($ $ (-657 |#3|) (-657 (-784))) 121)) (-4176 (($ $ $) 242)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ |#3|) 123)) (-4064 (((-112) $) 272)) (-4436 ((|#2| $) 177) (((-784) $ |#3|) 125) (((-657 (-784)) $ (-657 |#3|)) 124)) (-1465 (((-784) $) 281)) (-4056 (($ (-1 |#2| |#2|) $) 178)) (-4083 (($ (-1 |#1| |#1|) $) 158)) (-2353 (((-3 |#3| "failed") $) 126)) (-2841 (($ $) 209 (|has| |#1| (-464)))) (-1691 (($ $) 210 (|has| |#1| (-464)))) (-3829 (((-657 $) $) 267)) (-2485 (($ $) 270)) (-1377 (($ $) 211 (|has| |#1| (-464)))) (-3699 (((-657 $) $) 268)) (-3101 (((-702 (-576)) (-1289 $)) 141 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 140 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 135) (((-702 |#1|) (-1289 $)) 134)) (-4149 (($ $) 269)) (-2174 (($ $) 156)) (-2186 ((|#1| $) 155) (($ $ |#3|) 274)) (-3402 (($ (-657 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-3641 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3897 (-784))) $ $) 241)) (-2781 (((-2 (|:| -1771 $) (|:| |gap| (-784)) (|:| -2335 $) (|:| -3644 $)) $ $) 245) (((-2 (|:| -1771 $) (|:| |gap| (-784)) (|:| -2335 $) (|:| -3644 $)) $ $ |#3|) 244)) (-2291 (((-2 (|:| -1771 $) (|:| |gap| (-784)) (|:| -3644 $)) $ $) 247) (((-2 (|:| -1771 $) (|:| |gap| (-784)) (|:| -3644 $)) $ $ |#3|) 246)) (-2386 (($ $ $) 251) (($ $ $ |#3|) 249)) (-2826 (($ $ $) 250) (($ $ $ |#3|) 248)) (-2342 (((-1180) $) 10)) (-2382 (($ $ $) 217 (|has| |#1| (-568)))) (-1733 (((-657 $) $) 276)) (-1392 (((-3 (-657 $) "failed") $) 117)) (-2974 (((-3 (-657 $) "failed") $) 118)) (-2999 (((-3 (-2 (|:| |var| |#3|) (|:| -1801 (-784))) "failed") $) 116)) (-4365 (((-112) $ $) 259) (((-112) $ (-657 $)) 258)) (-2833 (($ $ $) 239)) (-1706 (($ $) 280)) (-4015 (((-112) $ $) 265)) (-3965 (((-112) $ $) 261) (((-112) $ (-657 $)) 260)) (-2843 (($ $ $) 240)) (-4229 (($ $) 279)) (-1471 (((-1142) $) 11)) (-2244 (((-2 (|:| -3436 $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-568)))) (-4141 (((-2 (|:| -3436 $) (|:| |coef1| $)) $ $) 221 (|has| |#1| (-568)))) (-2146 (((-112) $) 173)) (-2160 ((|#1| $) 174)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 98 (|has| |#1| (-464)))) (-3436 ((|#1| |#1| $) 213 (|has| |#1| (-464))) (($ (-657 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-2861 (((-430 (-1194 $)) (-1194 $)) 105 (|has| |#1| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) 104 (|has| |#1| (-929)))) (-1885 (((-430 $) $) 102 (|has| |#1| (-929)))) (-3335 (((-2 (|:| -3436 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 222 (|has| |#1| (-568)))) (-3418 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3019 (($ $ |#1|) 226 (|has| |#1| (-568))) (($ $ $) 224 (|has| |#1| (-568)))) (-1773 (($ $ |#1|) 227 (|has| |#1| (-568))) (($ $ $) 225 (|has| |#1| (-568)))) (-3236 (($ $ (-657 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-657 $) (-657 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-657 |#3|) (-657 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-657 |#3|) (-657 $)) 145)) (-1701 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2815 (($ $ (-657 |#3|) (-657 (-784))) 44) (($ $ |#3| (-784)) 43) (($ $ (-657 |#3|)) 42) (($ $ |#3|) 40)) (-1770 ((|#2| $) 157) (((-784) $ |#3|) 133) (((-657 (-784)) $ (-657 |#3|)) 132)) (-2038 (($ $) 277)) (-2255 (($ $) 275)) (-4148 (((-908 (-390)) $) 85 (-12 (|has| |#3| (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) 84 (-12 (|has| |#3| (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548))))) (($ (-972 (-419 (-576)))) 236 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1198))))) (($ (-972 (-576))) 233 (-2802 (-12 (-2712 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1198)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1198)))))) (($ (-972 |#1|)) 230 (|has| |#3| (-626 (-1198)))) (((-1180) $) 208 (-12 (|has| |#1| (-1060 (-576))) (|has| |#3| (-626 (-1198))))) (((-972 |#1|) $) 207 (|has| |#3| (-626 (-1198))))) (-1450 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) 107 (-2724 (|has| $ (-146)) (|has| |#1| (-929))))) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (((-972 |#1|) $) 206 (|has| |#3| (-626 (-1198)))) (($ (-419 (-576))) 81 (-2802 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-4037 (((-657 |#1|) $) 175)) (-2313 ((|#1| $ |#2|) 162) (($ $ |#3| (-784)) 131) (($ $ (-657 |#3|) (-657 (-784))) 130)) (-3096 (((-3 $ "failed") $) 82 (-2802 (-2724 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-1960 (((-784)) 32 T CONST)) (-2702 (($ $ $ (-784)) 180 (|has| |#1| (-174)))) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2769 (($) 19 T CONST)) (-1544 (((-3 (-112) "failed") $ $) 266)) (-2779 (($) 34 T CONST)) (-1831 (($ $ $ $ (-784)) 215 (|has| |#1| (-568)))) (-4228 (($ $ $ (-784)) 216 (|has| |#1| (-568)))) (-2097 (($ $ (-657 |#3|) (-657 (-784))) 47) (($ $ |#3| (-784)) 46) (($ $ (-657 |#3|)) 45) (($ $ |#3|) 41)) (-2933 (((-112) $ $) 8)) (-3034 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) -(((-1087 |#1| |#2| |#3|) (-141) (-1071) (-806) (-862)) (T -1087)) -((-3627 (*1 *2 *1) (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)))) (-1465 (*1 *2 *1) (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-784)))) (-1706 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-4229 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-4424 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-2038 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-1733 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-1087 *3 *4 *5)))) (-2255 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-2186 (*1 *1 *1 *2) (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)))) (-2212 (*1 *1 *1 *2) (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)))) (-4064 (*1 *2 *1) (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)))) (-2485 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-4149 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-3699 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-1087 *3 *4 *5)))) (-3829 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-1087 *3 *4 *5)))) (-1544 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)))) (-4015 (*1 *2 *1 *1) (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3873 (*1 *2 *1 *1) (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3206 (*1 *2 *1 *1) (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3206 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *1)) (-4 *1 (-1087 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)))) (-3965 (*1 *2 *1 *1) (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3965 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *1)) (-4 *1 (-1087 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)))) (-4365 (*1 *2 *1 *1) (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)))) (-4365 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *1)) (-4 *1 (-1087 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)))) (-1878 (*1 *2 *1 *1) (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)))) (-1878 (*1 *2 *1 *3) (-12 (-5 *3 (-657 *1)) (-4 *1 (-1087 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)))) (-3372 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-1704 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-3372 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)))) (-1704 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)))) (-2386 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-2826 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-2386 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)))) (-2826 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *2 (-862)))) (-2291 (*1 *2 *1 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -1771 *1) (|:| |gap| (-784)) (|:| -3644 *1))) (-4 *1 (-1087 *3 *4 *5)))) (-2291 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -1771 *1) (|:| |gap| (-784)) (|:| -3644 *1))) (-4 *1 (-1087 *4 *5 *3)))) (-2781 (*1 *2 *1 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -1771 *1) (|:| |gap| (-784)) (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-1087 *3 *4 *5)))) (-2781 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -1771 *1) (|:| |gap| (-784)) (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-1087 *4 *5 *3)))) (-4267 (*1 *2 *1 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-1087 *3 *4 *5)))) (-4176 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-3641 (*1 *2 *1 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3897 (-784)))) (-4 *1 (-1087 *3 *4 *5)))) (-2843 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-2833 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)))) (-1624 (*1 *1 *2) (|partial| -12 (-5 *2 (-972 (-419 (-576)))) (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198))) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-972 (-419 (-576)))) (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198))) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-972 (-419 (-576)))) (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198))) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)))) (-1624 (*1 *1 *2) (|partial| -2802 (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) (-12 (-2712 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))) (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))))) (-2884 (*1 *1 *2) (-2802 (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) (-12 (-2712 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))) (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))))) (-4148 (*1 *1 *2) (-2802 (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) (-12 (-2712 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))) (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))))) (-1624 (*1 *1 *2) (|partial| -2802 (-12 (-5 *2 (-972 *3)) (-12 (-2712 (-4 *3 (-38 (-419 (-576))))) (-2712 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) (-4 *5 (-862))) (-12 (-5 *2 (-972 *3)) (-12 (-2712 (-4 *3 (-557))) (-2712 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) (-4 *5 (-862))) (-12 (-5 *2 (-972 *3)) (-12 (-2712 (-4 *3 (-1014 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) (-4 *5 (-862))))) (-2884 (*1 *1 *2) (-2802 (-12 (-5 *2 (-972 *3)) (-12 (-2712 (-4 *3 (-38 (-419 (-576))))) (-2712 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) (-4 *5 (-862))) (-12 (-5 *2 (-972 *3)) (-12 (-2712 (-4 *3 (-557))) (-2712 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) (-4 *5 (-862))) (-12 (-5 *2 (-972 *3)) (-12 (-2712 (-4 *3 (-1014 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198)))) (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) (-4 *5 (-862))))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *5 (-626 (-1198))) (-4 *4 (-806)) (-4 *5 (-862)))) (-3212 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-1807 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-1773 (*1 *1 *1 *2) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3019 (*1 *1 *1 *2) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-1773 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3019 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-1558 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3335 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3436 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1087 *3 *4 *5)))) (-4141 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3436 *1) (|:| |coef1| *1))) (-4 *1 (-1087 *3 *4 *5)))) (-2244 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3436 *1) (|:| |coef2| *1))) (-4 *1 (-1087 *3 *4 *5)))) (-3203 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-1574 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-1087 *3 *4 *5)))) (-2382 (*1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-4228 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *3 (-568)))) (-1831 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *3 (-568)))) (-4249 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3436 (*1 *2 *2 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-464)))) (-2133 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-464)))) (-1377 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-464)))) (-1691 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-464)))) (-2841 (*1 *1 *1) (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-464))))) -(-13 (-969 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3627 (|t#3| $)) (-15 -1465 ((-784) $)) (-15 -1706 ($ $)) (-15 -4229 ($ $)) (-15 -4424 ($ $)) (-15 -2038 ($ $)) (-15 -1733 ((-657 $) $)) (-15 -2255 ($ $)) (-15 -2186 ($ $ |t#3|)) (-15 -2212 ($ $ |t#3|)) (-15 -4064 ((-112) $)) (-15 -4121 ((-112) $)) (-15 -2485 ($ $)) (-15 -4149 ($ $)) (-15 -3699 ((-657 $) $)) (-15 -3829 ((-657 $) $)) (-15 -1544 ((-3 (-112) "failed") $ $)) (-15 -4015 ((-112) $ $)) (-15 -3873 ((-112) $ $)) (-15 -3206 ((-112) $ $)) (-15 -3206 ((-112) $ (-657 $))) (-15 -3965 ((-112) $ $)) (-15 -3965 ((-112) $ (-657 $))) (-15 -4365 ((-112) $ $)) (-15 -4365 ((-112) $ (-657 $))) (-15 -1878 ((-112) $ $)) (-15 -1878 ((-112) $ (-657 $))) (-15 -3372 ($ $ $)) (-15 -1704 ($ $ $)) (-15 -3372 ($ $ $ |t#3|)) (-15 -1704 ($ $ $ |t#3|)) (-15 -2386 ($ $ $)) (-15 -2826 ($ $ $)) (-15 -2386 ($ $ $ |t#3|)) (-15 -2826 ($ $ $ |t#3|)) (-15 -2291 ((-2 (|:| -1771 $) (|:| |gap| (-784)) (|:| -3644 $)) $ $)) (-15 -2291 ((-2 (|:| -1771 $) (|:| |gap| (-784)) (|:| -3644 $)) $ $ |t#3|)) (-15 -2781 ((-2 (|:| -1771 $) (|:| |gap| (-784)) (|:| -2335 $) (|:| -3644 $)) $ $)) (-15 -2781 ((-2 (|:| -1771 $) (|:| |gap| (-784)) (|:| -2335 $) (|:| -3644 $)) $ $ |t#3|)) (-15 -4267 ((-2 (|:| -2335 $) (|:| -3644 $)) $ $)) (-15 -4176 ($ $ $)) (-15 -3641 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3897 (-784))) $ $)) (-15 -2843 ($ $ $)) (-15 -2833 ($ $ $)) (IF (|has| |t#3| (-626 (-1198))) (PROGN (-6 (-625 (-972 |t#1|))) (-6 (-626 (-972 |t#1|))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1624 ((-3 $ "failed") (-972 (-419 (-576))))) (-15 -2884 ($ (-972 (-419 (-576))))) (-15 -4148 ($ (-972 (-419 (-576))))) (-15 -1624 ((-3 $ "failed") (-972 (-576)))) (-15 -2884 ($ (-972 (-576)))) (-15 -4148 ($ (-972 (-576)))) (IF (|has| |t#1| (-1014 (-576))) |%noBranch| (PROGN (-15 -1624 ((-3 $ "failed") (-972 |t#1|))) (-15 -2884 ($ (-972 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -1624 ((-3 $ "failed") (-972 (-576)))) (-15 -2884 ($ (-972 (-576)))) (-15 -4148 ($ (-972 (-576)))) (IF (|has| |t#1| (-557)) |%noBranch| (PROGN (-15 -1624 ((-3 $ "failed") (-972 |t#1|))) (-15 -2884 ($ (-972 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) |%noBranch| (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -1624 ((-3 $ "failed") (-972 |t#1|))) (-15 -2884 ($ (-972 |t#1|)))))) (-15 -4148 ($ (-972 |t#1|))) (IF (|has| |t#1| (-1060 (-576))) (-6 (-626 (-1180))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3212 ($ $)) (-15 -1807 ($ $)) (-15 -1773 ($ $ |t#1|)) (-15 -3019 ($ $ |t#1|)) (-15 -1773 ($ $ $)) (-15 -3019 ($ $ $)) (-15 -1558 ($ $ $)) (-15 -3335 ((-2 (|:| -3436 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4141 ((-2 (|:| -3436 $) (|:| |coef1| $)) $ $)) (-15 -2244 ((-2 (|:| -3436 $) (|:| |coef2| $)) $ $)) (-15 -3203 ($ $ $)) (-15 -1574 ((-657 $) $ $)) (-15 -2382 ($ $ $)) (-15 -4228 ($ $ $ (-784))) (-15 -1831 ($ $ $ $ (-784))) (-15 -4249 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3436 (|t#1| |t#1| $)) (-15 -2133 ($ $)) (-15 -1377 ($ $)) (-15 -1691 ($ $)) (-15 -2841 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2802 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-877)) . T) ((-625 (-972 |#1|)) |has| |#3| (-626 (-1198))) ((-174) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-908 (-390))) -12 (|has| |#1| (-626 (-908 (-390)))) (|has| |#3| (-626 (-908 (-390))))) ((-626 (-908 (-576))) -12 (|has| |#1| (-626 (-908 (-576)))) (|has| |#3| (-626 (-908 (-576))))) ((-626 (-972 |#1|)) |has| |#3| (-626 (-1198))) ((-626 (-1180)) -12 (|has| |#1| (-1060 (-576))) (|has| |#3| (-626 (-1198)))) ((-300) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2802 (|has| |#1| (-929)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-659 #0#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) |has| |#1| (-38 (-419 (-576)))) ((-661 #1=(-576)) |has| |#1| (-652 (-576))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-652 #1#) |has| |#1| (-652 (-576))) ((-652 |#1|) . T) ((-730 #0#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-739) . T) ((-912 $ |#3|) . T) ((-918 |#3|) . T) ((-920 |#3|) . T) ((-902 (-390)) -12 (|has| |#1| (-902 (-390))) (|has| |#3| (-902 (-390)))) ((-902 (-576)) -12 (|has| |#1| (-902 (-576))) (|has| |#3| (-902 (-576)))) ((-969 |#1| |#2| |#3|) . T) ((-929) |has| |#1| (-929)) ((-1060 (-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 |#1|) . T) ((-1060 |#3|) . T) ((-1073 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1078 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) |has| |#1| (-929))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-3041 (((-657 (-1157)) $) 18)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 27) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2687 (((-1157) $) 20)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-1088) (-13 (-1105) (-10 -8 (-15 -3041 ((-657 (-1157)) $)) (-15 -2687 ((-1157) $))))) (T -1088)) -((-3041 (*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-1088)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1088))))) -(-13 (-1105) (-10 -8 (-15 -3041 ((-657 (-1157)) $)) (-15 -2687 ((-1157) $)))) -((-2364 (((-112) |#3| $) 15)) (-3564 (((-3 $ "failed") |#3| (-941)) 29)) (-3843 (((-3 |#3| "failed") |#3| $) 45)) (-2828 (((-112) |#3| $) 19)) (-2881 (((-112) |#3| $) 17))) -(((-1089 |#1| |#2| |#3|) (-10 -8 (-15 -3564 ((-3 |#1| "failed") |#3| (-941))) (-15 -3843 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2828 ((-112) |#3| |#1|)) (-15 -2881 ((-112) |#3| |#1|)) (-15 -2364 ((-112) |#3| |#1|))) (-1090 |#2| |#3|) (-13 (-861) (-374)) (-1265 |#2|)) (T -1089)) -NIL -(-10 -8 (-15 -3564 ((-3 |#1| "failed") |#3| (-941))) (-15 -3843 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2828 ((-112) |#3| |#1|)) (-15 -2881 ((-112) |#3| |#1|)) (-15 -2364 ((-112) |#3| |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) |#2| $) 22)) (-1536 (((-576) |#2| $) 23)) (-3564 (((-3 $ "failed") |#2| (-941)) 16)) (-3419 ((|#1| |#2| $ |#1|) 14)) (-3843 (((-3 |#2| "failed") |#2| $) 19)) (-2828 (((-112) |#2| $) 20)) (-2881 (((-112) |#2| $) 21)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3180 ((|#2| $) 18)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-4144 ((|#1| |#2| $ |#1|) 15)) (-1349 (((-657 $) |#2|) 17)) (-2933 (((-112) $ $) 8))) -(((-1090 |#1| |#2|) (-141) (-13 (-861) (-374)) (-1265 |t#1|)) (T -1090)) -((-1536 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *3)) (-4 *4 (-13 (-861) (-374))) (-4 *3 (-1265 *4)) (-5 *2 (-576)))) (-2364 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *3)) (-4 *4 (-13 (-861) (-374))) (-4 *3 (-1265 *4)) (-5 *2 (-112)))) (-2881 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *3)) (-4 *4 (-13 (-861) (-374))) (-4 *3 (-1265 *4)) (-5 *2 (-112)))) (-2828 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *3)) (-4 *4 (-13 (-861) (-374))) (-4 *3 (-1265 *4)) (-5 *2 (-112)))) (-3843 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1090 *3 *2)) (-4 *3 (-13 (-861) (-374))) (-4 *2 (-1265 *3)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *2)) (-4 *3 (-13 (-861) (-374))) (-4 *2 (-1265 *3)))) (-1349 (*1 *2 *3) (-12 (-4 *4 (-13 (-861) (-374))) (-4 *3 (-1265 *4)) (-5 *2 (-657 *1)) (-4 *1 (-1090 *4 *3)))) (-3564 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-941)) (-4 *4 (-13 (-861) (-374))) (-4 *1 (-1090 *4 *2)) (-4 *2 (-1265 *4)))) (-4144 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1090 *2 *3)) (-4 *2 (-13 (-861) (-374))) (-4 *3 (-1265 *2)))) (-3419 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1090 *2 *3)) (-4 *2 (-13 (-861) (-374))) (-4 *3 (-1265 *2))))) -(-13 (-1122) (-10 -8 (-15 -1536 ((-576) |t#2| $)) (-15 -2364 ((-112) |t#2| $)) (-15 -2881 ((-112) |t#2| $)) (-15 -2828 ((-112) |t#2| $)) (-15 -3843 ((-3 |t#2| "failed") |t#2| $)) (-15 -3180 (|t#2| $)) (-15 -1349 ((-657 $) |t#2|)) (-15 -3564 ((-3 $ "failed") |t#2| (-941))) (-15 -4144 (|t#1| |t#2| $ |t#1|)) (-15 -3419 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-3384 (((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-657 |#4|) (-657 |#5|) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) (-784)) 114)) (-3744 (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-784)) 63)) (-4391 (((-1294) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-784)) 99)) (-2459 (((-784) (-657 |#4|) (-657 |#5|)) 30)) (-3257 (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-784)) 65) (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-784) (-112)) 67)) (-1954 (((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112)) 87)) (-4148 (((-1180) (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) 92)) (-3771 (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-112)) 62)) (-3781 (((-784) (-657 |#4|) (-657 |#5|)) 21))) -(((-1091 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3781 ((-784) (-657 |#4|) (-657 |#5|))) (-15 -2459 ((-784) (-657 |#4|) (-657 |#5|))) (-15 -3771 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-112))) (-15 -3744 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-784))) (-15 -3744 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5|)) (-15 -3257 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-784) (-112))) (-15 -3257 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-784))) (-15 -3257 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5|)) (-15 -1954 ((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112))) (-15 -1954 ((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3384 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-657 |#4|) (-657 |#5|) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) (-784))) (-15 -4148 ((-1180) (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|)))) (-15 -4391 ((-1294) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-784)))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3| |#4|)) (T -1091)) -((-4391 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-2 (|:| |val| (-657 *8)) (|:| -3946 *9)))) (-5 *4 (-784)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-1294)) (-5 *1 (-1091 *5 *6 *7 *8 *9)))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-657 *7)) (|:| -3946 *8))) (-4 *7 (-1087 *4 *5 *6)) (-4 *8 (-1093 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1180)) (-5 *1 (-1091 *4 *5 *6 *7 *8)))) (-3384 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-657 *11)) (|:| |todo| (-657 (-2 (|:| |val| *3) (|:| -3946 *11)))))) (-5 *6 (-784)) (-5 *2 (-657 (-2 (|:| |val| (-657 *10)) (|:| -3946 *11)))) (-5 *3 (-657 *10)) (-5 *4 (-657 *11)) (-4 *10 (-1087 *7 *8 *9)) (-4 *11 (-1093 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-806)) (-4 *9 (-862)) (-5 *1 (-1091 *7 *8 *9 *10 *11)))) (-1954 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-657 *9)) (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1091 *5 *6 *7 *8 *9)))) (-1954 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-657 *9)) (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1091 *5 *6 *7 *8 *9)))) (-3257 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-3257 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-784)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *3 (-1087 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) (-3257 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-784)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-806)) (-4 *9 (-862)) (-4 *3 (-1087 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) (-5 *1 (-1091 *7 *8 *9 *3 *4)) (-4 *4 (-1093 *7 *8 *9 *3)))) (-3744 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-3744 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-784)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *3 (-1087 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) (-3771 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *3 (-1087 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *9)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-784)) (-5 *1 (-1091 *5 *6 *7 *8 *9)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *9)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-784)) (-5 *1 (-1091 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3781 ((-784) (-657 |#4|) (-657 |#5|))) (-15 -2459 ((-784) (-657 |#4|) (-657 |#5|))) (-15 -3771 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-112))) (-15 -3744 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-784))) (-15 -3744 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5|)) (-15 -3257 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-784) (-112))) (-15 -3257 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-784))) (-15 -3257 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5|)) (-15 -1954 ((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112))) (-15 -1954 ((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3384 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-657 |#4|) (-657 |#5|) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) (-784))) (-15 -4148 ((-1180) (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|)))) (-15 -4391 ((-1294) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-784)))) -((-3374 (((-112) |#5| $) 26)) (-4211 (((-112) |#5| $) 29)) (-2376 (((-112) |#5| $) 18) (((-112) $) 52)) (-3107 (((-657 $) |#5| $) NIL) (((-657 $) (-657 |#5|) $) 94) (((-657 $) (-657 |#5|) (-657 $)) 92) (((-657 $) |#5| (-657 $)) 95)) (-3926 (($ $ |#5|) NIL) (((-657 $) |#5| $) NIL) (((-657 $) |#5| (-657 $)) 73) (((-657 $) (-657 |#5|) $) 75) (((-657 $) (-657 |#5|) (-657 $)) 77)) (-2375 (((-657 $) |#5| $) NIL) (((-657 $) |#5| (-657 $)) 64) (((-657 $) (-657 |#5|) $) 69) (((-657 $) (-657 |#5|) (-657 $)) 71)) (-3421 (((-112) |#5| $) 32))) -(((-1092 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3926 ((-657 |#1|) (-657 |#5|) (-657 |#1|))) (-15 -3926 ((-657 |#1|) (-657 |#5|) |#1|)) (-15 -3926 ((-657 |#1|) |#5| (-657 |#1|))) (-15 -3926 ((-657 |#1|) |#5| |#1|)) (-15 -2375 ((-657 |#1|) (-657 |#5|) (-657 |#1|))) (-15 -2375 ((-657 |#1|) (-657 |#5|) |#1|)) (-15 -2375 ((-657 |#1|) |#5| (-657 |#1|))) (-15 -2375 ((-657 |#1|) |#5| |#1|)) (-15 -3107 ((-657 |#1|) |#5| (-657 |#1|))) (-15 -3107 ((-657 |#1|) (-657 |#5|) (-657 |#1|))) (-15 -3107 ((-657 |#1|) (-657 |#5|) |#1|)) (-15 -3107 ((-657 |#1|) |#5| |#1|)) (-15 -4211 ((-112) |#5| |#1|)) (-15 -2376 ((-112) |#1|)) (-15 -3421 ((-112) |#5| |#1|)) (-15 -3374 ((-112) |#5| |#1|)) (-15 -2376 ((-112) |#5| |#1|)) (-15 -3926 (|#1| |#1| |#5|))) (-1093 |#2| |#3| |#4| |#5|) (-464) (-806) (-862) (-1087 |#2| |#3| |#4|)) (T -1092)) -NIL -(-10 -8 (-15 -3926 ((-657 |#1|) (-657 |#5|) (-657 |#1|))) (-15 -3926 ((-657 |#1|) (-657 |#5|) |#1|)) (-15 -3926 ((-657 |#1|) |#5| (-657 |#1|))) (-15 -3926 ((-657 |#1|) |#5| |#1|)) (-15 -2375 ((-657 |#1|) (-657 |#5|) (-657 |#1|))) (-15 -2375 ((-657 |#1|) (-657 |#5|) |#1|)) (-15 -2375 ((-657 |#1|) |#5| (-657 |#1|))) (-15 -2375 ((-657 |#1|) |#5| |#1|)) (-15 -3107 ((-657 |#1|) |#5| (-657 |#1|))) (-15 -3107 ((-657 |#1|) (-657 |#5|) (-657 |#1|))) (-15 -3107 ((-657 |#1|) (-657 |#5|) |#1|)) (-15 -3107 ((-657 |#1|) |#5| |#1|)) (-15 -4211 ((-112) |#5| |#1|)) (-15 -2376 ((-112) |#1|)) (-15 -3421 ((-112) |#5| |#1|)) (-15 -3374 ((-112) |#5| |#1|)) (-15 -2376 ((-112) |#5| |#1|)) (-15 -3926 (|#1| |#1| |#5|))) -((-3429 (((-112) $ $) 7)) (-2856 (((-657 (-2 (|:| -2016 $) (|:| -3209 (-657 |#4|)))) (-657 |#4|)) 86)) (-3472 (((-657 $) (-657 |#4|)) 87) (((-657 $) (-657 |#4|) (-112)) 112)) (-2029 (((-657 |#3|) $) 34)) (-1626 (((-112) $) 27)) (-3072 (((-112) $) 18 (|has| |#1| (-568)))) (-4021 (((-112) |#4| $) 102) (((-112) $) 98)) (-1329 ((|#4| |#4| $) 93)) (-2638 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 $))) |#4| $) 127)) (-1850 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) 28)) (-3793 (((-112) $ (-784)) 45)) (-2035 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4466))) (((-3 |#4| "failed") $ |#3|) 80)) (-4359 (($) 46 T CONST)) (-2433 (((-112) $) 23 (|has| |#1| (-568)))) (-1688 (((-112) $ $) 25 (|has| |#1| (-568)))) (-4058 (((-112) $ $) 24 (|has| |#1| (-568)))) (-2995 (((-112) $) 26 (|has| |#1| (-568)))) (-2292 (((-657 |#4|) (-657 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1978 (((-657 |#4|) (-657 |#4|) $) 19 (|has| |#1| (-568)))) (-2410 (((-657 |#4|) (-657 |#4|) $) 20 (|has| |#1| (-568)))) (-1624 (((-3 $ "failed") (-657 |#4|)) 37)) (-2884 (($ (-657 |#4|)) 36)) (-3522 (((-3 $ "failed") $) 83)) (-2073 ((|#4| |#4| $) 90)) (-3914 (($ $) 69 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-3895 (($ |#4| $) 68 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4466)))) (-3644 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3206 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3003 ((|#4| |#4| $) 88)) (-3622 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4466))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1957 (((-2 (|:| -2016 (-657 |#4|)) (|:| -3209 (-657 |#4|))) $) 106)) (-3374 (((-112) |#4| $) 137)) (-4211 (((-112) |#4| $) 134)) (-2376 (((-112) |#4| $) 138) (((-112) $) 135)) (-1458 (((-657 |#4|) $) 53 (|has| $ (-6 -4466)))) (-1878 (((-112) |#4| $) 105) (((-112) $) 104)) (-3627 ((|#3| $) 35)) (-1833 (((-112) $ (-784)) 44)) (-2070 (((-657 |#4|) $) 54 (|has| $ (-6 -4466)))) (-1627 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#4| |#4|) $) 48)) (-1746 (((-657 |#3|) $) 33)) (-4089 (((-112) |#3| $) 32)) (-4261 (((-112) $ (-784)) 43)) (-2342 (((-1180) $) 10)) (-3674 (((-3 |#4| (-657 $)) |#4| |#4| $) 129)) (-2382 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 $))) |#4| |#4| $) 128)) (-3920 (((-3 |#4| "failed") $) 84)) (-3149 (((-657 $) |#4| $) 130)) (-1971 (((-3 (-112) (-657 $)) |#4| $) 133)) (-4183 (((-657 (-2 (|:| |val| (-112)) (|:| -3946 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3107 (((-657 $) |#4| $) 126) (((-657 $) (-657 |#4|) $) 125) (((-657 $) (-657 |#4|) (-657 $)) 124) (((-657 $) |#4| (-657 $)) 123)) (-4062 (($ |#4| $) 118) (($ (-657 |#4|) $) 117)) (-1765 (((-657 |#4|) $) 108)) (-4365 (((-112) |#4| $) 100) (((-112) $) 96)) (-2833 ((|#4| |#4| $) 91)) (-4015 (((-112) $ $) 111)) (-3404 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3965 (((-112) |#4| $) 101) (((-112) $) 97)) (-2843 ((|#4| |#4| $) 92)) (-1471 (((-1142) $) 11)) (-3510 (((-3 |#4| "failed") $) 85)) (-2951 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1548 (((-3 $ "failed") $ |#4|) 79)) (-3926 (($ $ |#4|) 78) (((-657 $) |#4| $) 116) (((-657 $) |#4| (-657 $)) 115) (((-657 $) (-657 |#4|) $) 114) (((-657 $) (-657 |#4|) (-657 $)) 113)) (-3399 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 |#4|) (-657 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-2806 (((-112) $ $) 39)) (-3387 (((-112) $) 42)) (-3581 (($) 41)) (-1770 (((-784) $) 107)) (-1482 (((-784) |#4| $) 55 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4466)))) (-1923 (($ $) 40)) (-4148 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3511 (($ (-657 |#4|)) 61)) (-2956 (($ $ |#3|) 29)) (-1664 (($ $ |#3|) 31)) (-3459 (($ $) 89)) (-3604 (($ $ |#3|) 30)) (-3501 (((-877) $) 12) (((-657 |#4|) $) 38)) (-3540 (((-784) $) 77 (|has| |#3| (-379)))) (-2046 (((-112) $ $) 6)) (-2631 (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3302 (((-112) $ (-1 (-112) |#4| (-657 |#4|))) 99)) (-2375 (((-657 $) |#4| $) 122) (((-657 $) |#4| (-657 $)) 121) (((-657 $) (-657 |#4|) $) 120) (((-657 $) (-657 |#4|) (-657 $)) 119)) (-2147 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4466)))) (-3039 (((-657 |#3|) $) 82)) (-3421 (((-112) |#4| $) 136)) (-1863 (((-112) |#3| $) 81)) (-2933 (((-112) $ $) 8)) (-3440 (((-784) $) 47 (|has| $ (-6 -4466))))) -(((-1093 |#1| |#2| |#3| |#4|) (-141) (-464) (-806) (-862) (-1087 |t#1| |t#2| |t#3|)) (T -1093)) -((-2376 (*1 *2 *3 *1) (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-3374 (*1 *2 *3 *1) (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-3421 (*1 *2 *3 *1) (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) (-4211 (*1 *2 *3 *1) (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-1971 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-3 (-112) (-657 *1))) (-4 *1 (-1093 *4 *5 *6 *3)))) (-4183 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3946 *1)))) (-4 *1 (-1093 *4 *5 *6 *3)))) (-4183 (*1 *2 *3 *1) (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-3149 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)))) (-3674 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-3 *3 (-657 *1))) (-4 *1 (-1093 *4 *5 *6 *3)))) (-2382 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *1)))) (-4 *1 (-1093 *4 *5 *6 *3)))) (-2638 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *1)))) (-4 *1 (-1093 *4 *5 *6 *3)))) (-3107 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)))) (-3107 (*1 *2 *3 *1) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *7)))) (-3107 (*1 *2 *3 *2) (-12 (-5 *2 (-657 *1)) (-5 *3 (-657 *7)) (-4 *1 (-1093 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)))) (-3107 (*1 *2 *3 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)))) (-2375 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)))) (-2375 (*1 *2 *3 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)))) (-2375 (*1 *2 *3 *1) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *7)))) (-2375 (*1 *2 *3 *2) (-12 (-5 *2 (-657 *1)) (-5 *3 (-657 *7)) (-4 *1 (-1093 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)))) (-4062 (*1 *1 *2 *1) (-12 (-4 *1 (-1093 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-4062 (*1 *1 *2 *1) (-12 (-5 *2 (-657 *6)) (-4 *1 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)))) (-3926 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)))) (-3926 (*1 *2 *3 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)))) (-3926 (*1 *2 *3 *1) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *7)))) (-3926 (*1 *2 *3 *2) (-12 (-5 *2 (-657 *1)) (-5 *3 (-657 *7)) (-4 *1 (-1093 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-1093 *5 *6 *7 *8))))) -(-13 (-1232 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2376 ((-112) |t#4| $)) (-15 -3374 ((-112) |t#4| $)) (-15 -3421 ((-112) |t#4| $)) (-15 -2376 ((-112) $)) (-15 -4211 ((-112) |t#4| $)) (-15 -1971 ((-3 (-112) (-657 $)) |t#4| $)) (-15 -4183 ((-657 (-2 (|:| |val| (-112)) (|:| -3946 $))) |t#4| $)) (-15 -4183 ((-112) |t#4| $)) (-15 -3149 ((-657 $) |t#4| $)) (-15 -3674 ((-3 |t#4| (-657 $)) |t#4| |t#4| $)) (-15 -2382 ((-657 (-2 (|:| |val| |t#4|) (|:| -3946 $))) |t#4| |t#4| $)) (-15 -2638 ((-657 (-2 (|:| |val| |t#4|) (|:| -3946 $))) |t#4| $)) (-15 -3107 ((-657 $) |t#4| $)) (-15 -3107 ((-657 $) (-657 |t#4|) $)) (-15 -3107 ((-657 $) (-657 |t#4|) (-657 $))) (-15 -3107 ((-657 $) |t#4| (-657 $))) (-15 -2375 ((-657 $) |t#4| $)) (-15 -2375 ((-657 $) |t#4| (-657 $))) (-15 -2375 ((-657 $) (-657 |t#4|) $)) (-15 -2375 ((-657 $) (-657 |t#4|) (-657 $))) (-15 -4062 ($ |t#4| $)) (-15 -4062 ($ (-657 |t#4|) $)) (-15 -3926 ((-657 $) |t#4| $)) (-15 -3926 ((-657 $) |t#4| (-657 $))) (-15 -3926 ((-657 $) (-657 |t#4|) $)) (-15 -3926 ((-657 $) (-657 |t#4|) (-657 $))) (-15 -3472 ((-657 $) (-657 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-625 (-657 |#4|)) . T) ((-625 (-877)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-998 |#1| |#2| |#3| |#4|) . T) ((-1122) . T) ((-1232 |#1| |#2| |#3| |#4|) . T) ((-1239) . T)) -((-2033 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#5|) 86)) (-1665 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#4| |#5|) 127)) (-3618 (((-657 |#5|) |#4| |#5|) 74)) (-2435 (((-657 (-2 (|:| |val| (-112)) (|:| -3946 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2293 (((-1294)) 36)) (-3492 (((-1294)) 25)) (-1643 (((-1294) (-1180) (-1180) (-1180)) 32)) (-2458 (((-1294) (-1180) (-1180) (-1180)) 21)) (-4305 (((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) |#4| |#4| |#5|) 107)) (-2549 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) |#3| (-112)) 118) (((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-4108 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#4| |#5|) 113))) -(((-1094 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2458 ((-1294) (-1180) (-1180) (-1180))) (-15 -3492 ((-1294))) (-15 -1643 ((-1294) (-1180) (-1180) (-1180))) (-15 -2293 ((-1294))) (-15 -4305 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) |#4| |#4| |#5|)) (-15 -2549 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2549 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) |#3| (-112))) (-15 -4108 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#4| |#5|)) (-15 -1665 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#4| |#5|)) (-15 -2435 ((-112) |#4| |#5|)) (-15 -2435 ((-657 (-2 (|:| |val| (-112)) (|:| -3946 |#5|))) |#4| |#5|)) (-15 -3618 ((-657 |#5|) |#4| |#5|)) (-15 -2033 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#5|))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3| |#4|)) (T -1094)) -((-2033 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-3618 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 *4)) (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-2435 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3946 *4)))) (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-2435 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-1665 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-4108 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-2549 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 (-2 (|:| |val| (-657 *8)) (|:| -3946 *9)))) (-5 *5 (-112)) (-4 *8 (-1087 *6 *7 *4)) (-4 *9 (-1093 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *4 (-862)) (-5 *2 (-657 (-2 (|:| |val| *8) (|:| -3946 *9)))) (-5 *1 (-1094 *6 *7 *4 *8 *9)))) (-2549 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *3 (-1087 *6 *7 *8)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) (-5 *1 (-1094 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) (-4305 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))) (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-2293 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) (-5 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6)))) (-1643 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-3492 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) (-5 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6)))) (-2458 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) -(-10 -7 (-15 -2458 ((-1294) (-1180) (-1180) (-1180))) (-15 -3492 ((-1294))) (-15 -1643 ((-1294) (-1180) (-1180) (-1180))) (-15 -2293 ((-1294))) (-15 -4305 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) |#4| |#4| |#5|)) (-15 -2549 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2549 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) |#3| (-112))) (-15 -4108 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#4| |#5|)) (-15 -1665 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#4| |#5|)) (-15 -2435 ((-112) |#4| |#5|)) (-15 -2435 ((-657 (-2 (|:| |val| (-112)) (|:| -3946 |#5|))) |#4| |#5|)) (-15 -3618 ((-657 |#5|) |#4| |#5|)) (-15 -2033 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#5|))) -((-3429 (((-112) $ $) NIL)) (-2978 (((-1238) $) 13)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3088 (((-1157) $) 10)) (-3501 (((-877) $) 20) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-1095) (-13 (-1105) (-10 -8 (-15 -3088 ((-1157) $)) (-15 -2978 ((-1238) $))))) (T -1095)) -((-3088 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1095)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-1095))))) -(-13 (-1105) (-10 -8 (-15 -3088 ((-1157) $)) (-15 -2978 ((-1238) $)))) -((-3989 (((-112) $ $) 7))) -(((-1096) (-13 (-1239) (-10 -8 (-15 -3989 ((-112) $ $))))) (T -1096)) -((-3989 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1096))))) -(-13 (-1239) (-10 -8 (-15 -3989 ((-112) $ $)))) -((-3429 (((-112) $ $) NIL)) (-2676 (((-1198) $) 8)) (-2342 (((-1180) $) 17)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 11)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 14))) -(((-1097 |#1|) (-13 (-1122) (-10 -8 (-15 -2676 ((-1198) $)))) (-1198)) (T -1097)) -((-2676 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1097 *3)) (-14 *3 *2)))) -(-13 (-1122) (-10 -8 (-15 -2676 ((-1198) $)))) -((-3429 (((-112) $ $) NIL)) (-4237 (($ $ (-657 (-1198)) (-1 (-112) (-657 |#3|))) 34)) (-2473 (($ |#3| |#3|) 23) (($ |#3| |#3| (-657 (-1198))) 21)) (-1730 ((|#3| $) 13)) (-1624 (((-3 (-304 |#3|) "failed") $) 60)) (-2884 (((-304 |#3|) $) NIL)) (-1555 (((-657 (-1198)) $) 16)) (-2768 (((-908 |#1|) $) 11)) (-1718 ((|#3| $) 12)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2835 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-941)) 41)) (-3501 (((-877) $) 89) (($ (-304 |#3|)) 22)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 38))) -(((-1098 |#1| |#2| |#3|) (-13 (-1122) (-296 |#3| |#3|) (-1060 (-304 |#3|)) (-10 -8 (-15 -2473 ($ |#3| |#3|)) (-15 -2473 ($ |#3| |#3| (-657 (-1198)))) (-15 -4237 ($ $ (-657 (-1198)) (-1 (-112) (-657 |#3|)))) (-15 -2768 ((-908 |#1|) $)) (-15 -1718 (|#3| $)) (-15 -1730 (|#3| $)) (-15 -2835 (|#3| $ |#3| (-941))) (-15 -1555 ((-657 (-1198)) $)))) (-1122) (-13 (-1071) (-902 |#1|) (-626 (-908 |#1|))) (-13 (-442 |#2|) (-902 |#1|) (-626 (-908 |#1|)))) (T -1098)) -((-2473 (*1 *1 *2 *2) (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))) (-5 *1 (-1098 *3 *4 *2)) (-4 *2 (-13 (-442 *4) (-902 *3) (-626 (-908 *3)))))) (-2473 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-657 (-1198))) (-4 *4 (-1122)) (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) (-5 *1 (-1098 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))))) (-4237 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-1 (-112) (-657 *6))) (-4 *6 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))) (-4 *4 (-1122)) (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) (-5 *1 (-1098 *4 *5 *6)))) (-2768 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1071) (-902 *3) (-626 *2))) (-5 *2 (-908 *3)) (-5 *1 (-1098 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-902 *3) (-626 *2))))) (-1718 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-4 *2 (-13 (-442 *4) (-902 *3) (-626 (-908 *3)))) (-5 *1 (-1098 *3 *4 *2)) (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))))) (-1730 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-4 *2 (-13 (-442 *4) (-902 *3) (-626 (-908 *3)))) (-5 *1 (-1098 *3 *4 *2)) (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))))) (-2835 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-941)) (-4 *4 (-1122)) (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) (-5 *1 (-1098 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))))) (-1555 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))) (-5 *2 (-657 (-1198))) (-5 *1 (-1098 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-902 *3) (-626 (-908 *3))))))) -(-13 (-1122) (-296 |#3| |#3|) (-1060 (-304 |#3|)) (-10 -8 (-15 -2473 ($ |#3| |#3|)) (-15 -2473 ($ |#3| |#3| (-657 (-1198)))) (-15 -4237 ($ $ (-657 (-1198)) (-1 (-112) (-657 |#3|)))) (-15 -2768 ((-908 |#1|) $)) (-15 -1718 (|#3| $)) (-15 -1730 (|#3| $)) (-15 -2835 (|#3| $ |#3| (-941))) (-15 -1555 ((-657 (-1198)) $)))) -((-3429 (((-112) $ $) NIL)) (-4204 (($ (-657 (-1098 |#1| |#2| |#3|))) 14)) (-3315 (((-657 (-1098 |#1| |#2| |#3|)) $) 21)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2835 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-941)) 27)) (-3501 (((-877) $) 17)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 20))) -(((-1099 |#1| |#2| |#3|) (-13 (-1122) (-296 |#3| |#3|) (-10 -8 (-15 -4204 ($ (-657 (-1098 |#1| |#2| |#3|)))) (-15 -3315 ((-657 (-1098 |#1| |#2| |#3|)) $)) (-15 -2835 (|#3| $ |#3| (-941))))) (-1122) (-13 (-1071) (-902 |#1|) (-626 (-908 |#1|))) (-13 (-442 |#2|) (-902 |#1|) (-626 (-908 |#1|)))) (T -1099)) -((-4204 (*1 *1 *2) (-12 (-5 *2 (-657 (-1098 *3 *4 *5))) (-4 *3 (-1122)) (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))) (-4 *5 (-13 (-442 *4) (-902 *3) (-626 (-908 *3)))) (-5 *1 (-1099 *3 *4 *5)))) (-3315 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))) (-5 *2 (-657 (-1098 *3 *4 *5))) (-5 *1 (-1099 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-902 *3) (-626 (-908 *3)))))) (-2835 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-941)) (-4 *4 (-1122)) (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) (-5 *1 (-1099 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4))))))) -(-13 (-1122) (-296 |#3| |#3|) (-10 -8 (-15 -4204 ($ (-657 (-1098 |#1| |#2| |#3|)))) (-15 -3315 ((-657 (-1098 |#1| |#2| |#3|)) $)) (-15 -2835 (|#3| $ |#3| (-941))))) -((-1925 (((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112) (-112)) 88) (((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|))) 92) (((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112)) 90))) -(((-1100 |#1| |#2|) (-10 -7 (-15 -1925 ((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112))) (-15 -1925 ((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)))) (-15 -1925 ((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112) (-112)))) (-13 (-317) (-148)) (-657 (-1198))) (T -1100)) -((-1925 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-2 (|:| -3011 (-1194 *5)) (|:| -2795 (-657 (-972 *5)))))) (-5 *1 (-1100 *5 *6)) (-5 *3 (-657 (-972 *5))) (-14 *6 (-657 (-1198))))) (-1925 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-5 *2 (-657 (-2 (|:| -3011 (-1194 *4)) (|:| -2795 (-657 (-972 *4)))))) (-5 *1 (-1100 *4 *5)) (-5 *3 (-657 (-972 *4))) (-14 *5 (-657 (-1198))))) (-1925 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-2 (|:| -3011 (-1194 *5)) (|:| -2795 (-657 (-972 *5)))))) (-5 *1 (-1100 *5 *6)) (-5 *3 (-657 (-972 *5))) (-14 *6 (-657 (-1198)))))) -(-10 -7 (-15 -1925 ((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112))) (-15 -1925 ((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)))) (-15 -1925 ((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112) (-112)))) -((-1885 (((-430 |#3|) |#3|) 18))) -(((-1101 |#1| |#2| |#3|) (-10 -7 (-15 -1885 ((-430 |#3|) |#3|))) (-1265 (-419 (-576))) (-13 (-374) (-148) (-737 (-419 (-576)) |#1|)) (-1265 |#2|)) (T -1101)) -((-1885 (*1 *2 *3) (-12 (-4 *4 (-1265 (-419 (-576)))) (-4 *5 (-13 (-374) (-148) (-737 (-419 (-576)) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1101 *4 *5 *3)) (-4 *3 (-1265 *5))))) -(-10 -7 (-15 -1885 ((-430 |#3|) |#3|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 136)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-374)))) (-3325 (($ $) NIL (|has| |#1| (-374)))) (-4306 (((-112) $) NIL (|has| |#1| (-374)))) (-1527 (((-702 |#1|) (-1289 $)) NIL) (((-702 |#1|)) 121)) (-2302 ((|#1| $) 125)) (-3592 (((-1211 (-941) (-784)) (-576)) NIL (|has| |#1| (-360)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL (|has| |#1| (-374)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2864 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2193 (((-784)) 43 (|has| |#1| (-379)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2884 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL)) (-2613 (($ (-1289 |#1|) (-1289 $)) NIL) (($ (-1289 |#1|)) 46)) (-3439 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-3373 (($ $ $) NIL (|has| |#1| (-374)))) (-3529 (((-702 |#1|) $ (-1289 $)) NIL) (((-702 |#1|) $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 113) (((-702 |#1|) (-702 $)) 108)) (-3622 (($ |#2|) 65) (((-3 $ "failed") (-419 |#2|)) NIL (|has| |#1| (-374)))) (-3843 (((-3 $ "failed") $) NIL)) (-1542 (((-941)) 84)) (-1892 (($) 47 (|has| |#1| (-379)))) (-3385 (($ $ $) NIL (|has| |#1| (-374)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-1367 (($) NIL (|has| |#1| (-360)))) (-2105 (((-112) $) NIL (|has| |#1| (-360)))) (-1780 (($ $ (-784)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-4257 (((-112) $) NIL (|has| |#1| (-374)))) (-3182 (((-941) $) NIL (|has| |#1| (-360))) (((-846 (-941)) $) NIL (|has| |#1| (-360)))) (-4094 (((-112) $) NIL)) (-2234 ((|#1| $) NIL)) (-4019 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-1336 ((|#2| $) 91 (|has| |#1| (-374)))) (-3007 (((-941) $) 145 (|has| |#1| (-379)))) (-3609 ((|#2| $) 62)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-374)))) (-1706 (($) NIL (|has| |#1| (-360)) CONST)) (-3178 (($ (-941)) 135 (|has| |#1| (-379)))) (-1471 (((-1142) $) NIL)) (-4097 (($) 127)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4173 (((-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576))))) NIL (|has| |#1| (-360)))) (-1885 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-2034 (((-784) $) NIL (|has| |#1| (-374)))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-374)))) (-1701 ((|#1| (-1289 $)) NIL) ((|#1|) 117)) (-2284 (((-784) $) NIL (|has| |#1| (-360))) (((-3 (-784) "failed") $ $) NIL (|has| |#1| (-360)))) (-2815 (($ $ (-784)) NIL (-2802 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-2802 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198))))) (($ $ (-1198)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-784)) NIL (|has| |#1| (-374)))) (-3988 (((-702 |#1|) (-1289 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-3180 ((|#2|) 81)) (-2090 (($) NIL (|has| |#1| (-360)))) (-2795 (((-1289 |#1|) $ (-1289 $)) 96) (((-702 |#1|) (-1289 $) (-1289 $)) NIL) (((-1289 |#1|) $) 75) (((-702 |#1|) (-1289 $)) 92)) (-4148 (((-1289 |#1|) $) NIL) (($ (-1289 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (|has| |#1| (-360)))) (-3501 (((-877) $) 61) (($ (-576)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-374))) (($ (-419 (-576))) NIL (-2802 (|has| |#1| (-374)) (|has| |#1| (-1060 (-419 (-576))))))) (-3096 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4182 ((|#2| $) 89)) (-1960 (((-784)) 83 T CONST)) (-2046 (((-112) $ $) NIL)) (-1985 (((-1289 $)) 88)) (-4041 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2769 (($) 32 T CONST)) (-2779 (($) 19 T CONST)) (-2097 (($ $ (-784)) NIL (-2802 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-2802 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198))))) (($ $ (-1198)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-920 (-1198))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-784)) NIL (|has| |#1| (-374)))) (-2933 (((-112) $ $) 67)) (-3034 (($ $ $) NIL (|has| |#1| (-374)))) (-3022 (($ $) 71) (($ $ $) NIL)) (-3012 (($ $ $) 69)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) -(((-1102 |#1| |#2| |#3|) (-737 |#1| |#2|) (-174) (-1265 |#1|) |#2|) (T -1102)) -NIL -(-737 |#1| |#2|) -((-1885 (((-430 |#3|) |#3|) 19))) -(((-1103 |#1| |#2| |#3|) (-10 -7 (-15 -1885 ((-430 |#3|) |#3|))) (-1265 (-419 (-972 (-576)))) (-13 (-374) (-148) (-737 (-419 (-972 (-576))) |#1|)) (-1265 |#2|)) (T -1103)) -((-1885 (*1 *2 *3) (-12 (-4 *4 (-1265 (-419 (-972 (-576))))) (-4 *5 (-13 (-374) (-148) (-737 (-419 (-972 (-576))) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1103 *4 *5 *3)) (-4 *3 (-1265 *5))))) -(-10 -7 (-15 -1885 ((-430 |#3|) |#3|))) -((-3429 (((-112) $ $) NIL)) (-3707 (($ $ $) 16)) (-1611 (($ $ $) 17)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-1879 (($) 6)) (-4148 (((-1198) $) 20)) (-3501 (((-877) $) 13)) (-2046 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 15)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 9))) -(((-1104) (-13 (-862) (-626 (-1198)) (-10 -8 (-15 -1879 ($))))) (T -1104)) -((-1879 (*1 *1) (-5 *1 (-1104)))) -(-13 (-862) (-626 (-1198)) (-10 -8 (-15 -1879 ($)))) -((-3429 (((-112) $ $) 7)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12) (($ (-1203)) 17) (((-1203) $) 16)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8))) -(((-1105) (-141)) (T -1105)) +((-4194 (($ $ (-1117 $)) 7) (($ $ (-1201)) 6))) +(((-982) (-141)) (T -982)) +((-4194 (*1 *1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-982)))) (-4194 (*1 *1 *1 *2) (-12 (-4 *1 (-982)) (-5 *2 (-1201))))) +(-13 (-10 -8 (-15 -4194 ($ $ (-1201))) (-15 -4194 ($ $ (-1117 $))))) +((-4205 (((-2 (|:| -1777 (-660 (-577))) (|:| |poly| (-660 (-1197 |#1|))) (|:| |prim| (-1197 |#1|))) (-660 (-975 |#1|)) (-660 (-1201)) (-1201)) 26) (((-2 (|:| -1777 (-660 (-577))) (|:| |poly| (-660 (-1197 |#1|))) (|:| |prim| (-1197 |#1|))) (-660 (-975 |#1|)) (-660 (-1201))) 27) (((-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) (|:| |prim| (-1197 |#1|))) (-975 |#1|) (-1201) (-975 |#1|) (-1201)) 49))) +(((-983 |#1|) (-10 -7 (-15 -4205 ((-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) (|:| |prim| (-1197 |#1|))) (-975 |#1|) (-1201) (-975 |#1|) (-1201))) (-15 -4205 ((-2 (|:| -1777 (-660 (-577))) (|:| |poly| (-660 (-1197 |#1|))) (|:| |prim| (-1197 |#1|))) (-660 (-975 |#1|)) (-660 (-1201)))) (-15 -4205 ((-2 (|:| -1777 (-660 (-577))) (|:| |poly| (-660 (-1197 |#1|))) (|:| |prim| (-1197 |#1|))) (-660 (-975 |#1|)) (-660 (-1201)) (-1201)))) (-13 (-375) (-148))) (T -983)) +((-4205 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-975 *6))) (-5 *4 (-660 (-1201))) (-5 *5 (-1201)) (-4 *6 (-13 (-375) (-148))) (-5 *2 (-2 (|:| -1777 (-660 (-577))) (|:| |poly| (-660 (-1197 *6))) (|:| |prim| (-1197 *6)))) (-5 *1 (-983 *6)))) (-4205 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-660 (-1201))) (-4 *5 (-13 (-375) (-148))) (-5 *2 (-2 (|:| -1777 (-660 (-577))) (|:| |poly| (-660 (-1197 *5))) (|:| |prim| (-1197 *5)))) (-5 *1 (-983 *5)))) (-4205 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-975 *5)) (-5 *4 (-1201)) (-4 *5 (-13 (-375) (-148))) (-5 *2 (-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) (|:| |prim| (-1197 *5)))) (-5 *1 (-983 *5))))) +(-10 -7 (-15 -4205 ((-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) (|:| |prim| (-1197 |#1|))) (-975 |#1|) (-1201) (-975 |#1|) (-1201))) (-15 -4205 ((-2 (|:| -1777 (-660 (-577))) (|:| |poly| (-660 (-1197 |#1|))) (|:| |prim| (-1197 |#1|))) (-660 (-975 |#1|)) (-660 (-1201)))) (-15 -4205 ((-2 (|:| -1777 (-660 (-577))) (|:| |poly| (-660 (-1197 |#1|))) (|:| |prim| (-1197 |#1|))) (-660 (-975 |#1|)) (-660 (-1201)) (-1201)))) +((-3021 (((-660 |#1|) |#1| |#1|) 47)) (-1522 (((-112) |#1|) 44)) (-3008 ((|#1| |#1|) 79)) (-4217 ((|#1| |#1|) 78))) +(((-984 |#1|) (-10 -7 (-15 -1522 ((-112) |#1|)) (-15 -4217 (|#1| |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -3021 ((-660 |#1|) |#1| |#1|))) (-558)) (T -984)) +((-3021 (*1 *2 *3 *3) (-12 (-5 *2 (-660 *3)) (-5 *1 (-984 *3)) (-4 *3 (-558)))) (-3008 (*1 *2 *2) (-12 (-5 *1 (-984 *2)) (-4 *2 (-558)))) (-4217 (*1 *2 *2) (-12 (-5 *1 (-984 *2)) (-4 *2 (-558)))) (-1522 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-984 *3)) (-4 *3 (-558))))) +(-10 -7 (-15 -1522 ((-112) |#1|)) (-15 -4217 (|#1| |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -3021 ((-660 |#1|) |#1| |#1|))) +((-2246 (((-1297) (-880)) 9))) +(((-985) (-10 -7 (-15 -2246 ((-1297) (-880))))) (T -985)) +((-2246 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-985))))) +(-10 -7 (-15 -2246 ((-1297) (-880)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 78 (|has| |#1| (-569)))) (-3290 (($ $) 79 (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) 34)) (-2921 (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) NIL)) (-2248 (($ $) 31)) (-4187 (((-3 $ "failed") $) 42)) (-3143 (($ $) NIL (|has| |#1| (-465)))) (-2137 (($ $ |#1| |#2| $) 62)) (-2487 (((-112) $) NIL)) (-2548 (((-787) $) 17)) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| |#2|) NIL)) (-4061 ((|#2| $) 24)) (-2151 (($ (-1 |#2| |#2|) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-2209 (($ $) 28)) (-2221 ((|#1| $) 26)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2180 (((-112) $) 51)) (-2193 ((|#1| $) NIL)) (-1624 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-569))))) (-3462 (((-3 $ "failed") $ $) 91 (|has| |#1| (-569))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-569)))) (-2887 ((|#2| $) 22)) (-4039 ((|#1| $) NIL (|has| |#1| (-465)))) (-3544 (((-880) $) NIL) (($ (-577)) 46) (($ $) NIL (|has| |#1| (-569))) (($ |#1|) 41) (($ (-420 (-577))) NIL (-2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))))) (-4182 (((-660 |#1|) $) NIL)) (-2322 ((|#1| $ |#2|) 37)) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) 15 T CONST)) (-2122 (($ $ $ (-787)) 74 (|has| |#1| (-174)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) 84 (|has| |#1| (-569)))) (-2806 (($) 27 T CONST)) (-2816 (($) 12 T CONST)) (-2970 (((-112) $ $) 83)) (-3077 (($ $ |#1|) 92 (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) 69) (($ $ (-787)) 67)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))))) +(((-986 |#1| |#2|) (-13 (-337 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| |#2| (-132)) (-15 -1624 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4468)) (-6 -4468) |%noBranch|))) (-1074) (-808)) (T -986)) +((-1624 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-986 *3 *2)) (-4 *2 (-132)) (-4 *3 (-569)) (-4 *3 (-1074)) (-4 *2 (-808))))) +(-13 (-337 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| |#2| (-132)) (-15 -1624 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4468)) (-6 -4468) |%noBranch|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL (-2839 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809)))))) (-4243 (($ $ $) 65 (-12 (|has| |#1| (-809)) (|has| |#2| (-809))))) (-1956 (((-3 $ "failed") $ $) 52 (-2839 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809)))))) (-2229 (((-787)) 36 (-12 (|has| |#1| (-380)) (|has| |#2| (-380))))) (-3032 ((|#2| $) 22)) (-3041 ((|#1| $) 21)) (-1534 (($) NIL (-2839 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-742)) (|has| |#2| (-742))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809)))) CONST)) (-4187 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-742)) (|has| |#2| (-742)))))) (-1910 (($) NIL (-12 (|has| |#1| (-380)) (|has| |#2| (-380))))) (-2487 (((-112) $) NIL (-2839 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-742)) (|has| |#2| (-742)))))) (-3732 (($ $ $) NIL (-2839 (-12 (|has| |#1| (-809)) (|has| |#2| (-809))) (-12 (|has| |#1| (-865)) (|has| |#2| (-865)))))) (-3201 (($ $ $) NIL (-2839 (-12 (|has| |#1| (-809)) (|has| |#2| (-809))) (-12 (|has| |#1| (-865)) (|has| |#2| (-865)))))) (-3051 (($ |#1| |#2|) 20)) (-4038 (((-944) $) NIL (-12 (|has| |#1| (-380)) (|has| |#2| (-380))))) (-2810 (((-1183) $) NIL)) (-2171 (($ $) 39 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))))) (-3222 (($ (-944)) NIL (-12 (|has| |#1| (-380)) (|has| |#2| (-380))))) (-1474 (((-1145) $) NIL)) (-2360 (($ $ $) NIL (-12 (|has| |#1| (-486)) (|has| |#2| (-486))))) (-3820 (($ $ $) NIL (-12 (|has| |#1| (-486)) (|has| |#2| (-486))))) (-3544 (((-880) $) 14)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 42 (-2839 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809)))) CONST)) (-2816 (($) 25 (-2839 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-742)) (|has| |#2| (-742)))) CONST)) (-3025 (((-112) $ $) NIL (-2839 (-12 (|has| |#1| (-809)) (|has| |#2| (-809))) (-12 (|has| |#1| (-865)) (|has| |#2| (-865)))))) (-3000 (((-112) $ $) NIL (-2839 (-12 (|has| |#1| (-809)) (|has| |#2| (-809))) (-12 (|has| |#1| (-865)) (|has| |#2| (-865)))))) (-2970 (((-112) $ $) 19)) (-3012 (((-112) $ $) NIL (-2839 (-12 (|has| |#1| (-809)) (|has| |#2| (-809))) (-12 (|has| |#1| (-865)) (|has| |#2| (-865)))))) (-2990 (((-112) $ $) 69 (-2839 (-12 (|has| |#1| (-809)) (|has| |#2| (-809))) (-12 (|has| |#1| (-865)) (|has| |#2| (-865)))))) (-3077 (($ $ $) NIL (-12 (|has| |#1| (-486)) (|has| |#2| (-486))))) (-3066 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3055 (($ $ $) 45 (-2839 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809)))))) (** (($ $ (-577)) NIL (-12 (|has| |#1| (-486)) (|has| |#2| (-486)))) (($ $ (-787)) 32 (-2839 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-742)) (|has| |#2| (-742))))) (($ $ (-944)) NIL (-2839 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-742)) (|has| |#2| (-742)))))) (* (($ (-577) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-787) $) 48 (-2839 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809))))) (($ (-944) $) NIL (-2839 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-809)) (|has| |#2| (-809))))) (($ $ $) 28 (-2839 (-12 (|has| |#1| (-486)) (|has| |#2| (-486))) (-12 (|has| |#1| (-742)) (|has| |#2| (-742))))))) +(((-987 |#1| |#2|) (-13 (-1125) (-10 -8 (IF (|has| |#1| (-380)) (IF (|has| |#2| (-380)) (-6 (-380)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-742)) (IF (|has| |#2| (-742)) (-6 (-742)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-486)) (IF (|has| |#2| (-486)) (-6 (-486)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-809)) (IF (|has| |#2| (-809)) (-6 (-809)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-865)) (IF (|has| |#2| (-865)) (-6 (-865)) |%noBranch|) |%noBranch|) (-15 -3051 ($ |#1| |#2|)) (-15 -3041 (|#1| $)) (-15 -3032 (|#2| $)))) (-1125) (-1125)) (T -987)) +((-3051 (*1 *1 *2 *3) (-12 (-5 *1 (-987 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) (-3041 (*1 *2 *1) (-12 (-4 *2 (-1125)) (-5 *1 (-987 *2 *3)) (-4 *3 (-1125)))) (-3032 (*1 *2 *1) (-12 (-4 *2 (-1125)) (-5 *1 (-987 *3 *2)) (-4 *3 (-1125))))) +(-13 (-1125) (-10 -8 (IF (|has| |#1| (-380)) (IF (|has| |#2| (-380)) (-6 (-380)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-742)) (IF (|has| |#2| (-742)) (-6 (-742)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-486)) (IF (|has| |#2| (-486)) (-6 (-486)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-809)) (IF (|has| |#2| (-809)) (-6 (-809)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-865)) (IF (|has| |#2| (-865)) (-6 (-865)) |%noBranch|) |%noBranch|) (-15 -3051 ($ |#1| |#2|)) (-15 -3041 (|#1| $)) (-15 -3032 (|#2| $)))) +((-3115 (((-1129) $) 12)) (-3063 (($ (-519) (-1129)) 14)) (-2713 (((-519) $) 9)) (-3544 (((-880) $) 24))) +(((-988) (-13 (-626 (-880)) (-10 -8 (-15 -2713 ((-519) $)) (-15 -3115 ((-1129) $)) (-15 -3063 ($ (-519) (-1129)))))) (T -988)) +((-2713 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-988)))) (-3115 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-988)))) (-3063 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1129)) (-5 *1 (-988))))) +(-13 (-626 (-880)) (-10 -8 (-15 -2713 ((-519) $)) (-15 -3115 ((-1129) $)) (-15 -3063 ($ (-519) (-1129))))) +((-3473 (((-112) $ $) NIL)) (-2274 (($) NIL T CONST)) (-2771 (($ $ $) 30)) (-2749 (($ $) 24)) (-2810 (((-1183) $) NIL)) (-3108 (((-707 (-891 $ $)) $) 55)) (-3130 (((-707 $) $) 45)) (-3100 (((-707 (-891 $ $)) $) 56)) (-3092 (((-707 (-891 $ $)) $) 57)) (-3141 (((-707 |#1|) $) 36)) (-3119 (((-707 (-891 $ $)) $) 54)) (-3183 (($ $ $) 31)) (-1474 (((-1145) $) NIL)) (-3492 (($) NIL T CONST)) (-3173 (($ $ $) 32)) (-3073 (($ $ $) 29)) (-3083 (($ $ $) 27)) (-3544 (((-880) $) 59) (($ |#1|) 12)) (-4448 (((-112) $ $) NIL)) (-2761 (($ $ $) 28)) (-2970 (((-112) $ $) NIL))) +(((-989 |#1|) (-13 (-992) (-629 |#1|) (-10 -8 (-15 -3141 ((-707 |#1|) $)) (-15 -3130 ((-707 $) $)) (-15 -3119 ((-707 (-891 $ $)) $)) (-15 -3108 ((-707 (-891 $ $)) $)) (-15 -3100 ((-707 (-891 $ $)) $)) (-15 -3092 ((-707 (-891 $ $)) $)) (-15 -3083 ($ $ $)) (-15 -3073 ($ $ $)))) (-1125)) (T -989)) +((-3141 (*1 *2 *1) (-12 (-5 *2 (-707 *3)) (-5 *1 (-989 *3)) (-4 *3 (-1125)))) (-3130 (*1 *2 *1) (-12 (-5 *2 (-707 (-989 *3))) (-5 *1 (-989 *3)) (-4 *3 (-1125)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-707 (-891 (-989 *3) (-989 *3)))) (-5 *1 (-989 *3)) (-4 *3 (-1125)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-707 (-891 (-989 *3) (-989 *3)))) (-5 *1 (-989 *3)) (-4 *3 (-1125)))) (-3100 (*1 *2 *1) (-12 (-5 *2 (-707 (-891 (-989 *3) (-989 *3)))) (-5 *1 (-989 *3)) (-4 *3 (-1125)))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-707 (-891 (-989 *3) (-989 *3)))) (-5 *1 (-989 *3)) (-4 *3 (-1125)))) (-3083 (*1 *1 *1 *1) (-12 (-5 *1 (-989 *2)) (-4 *2 (-1125)))) (-3073 (*1 *1 *1 *1) (-12 (-5 *1 (-989 *2)) (-4 *2 (-1125))))) +(-13 (-992) (-629 |#1|) (-10 -8 (-15 -3141 ((-707 |#1|) $)) (-15 -3130 ((-707 $) $)) (-15 -3119 ((-707 (-891 $ $)) $)) (-15 -3108 ((-707 (-891 $ $)) $)) (-15 -3100 ((-707 (-891 $ $)) $)) (-15 -3092 ((-707 (-891 $ $)) $)) (-15 -3083 ($ $ $)) (-15 -3073 ($ $ $)))) +((-1979 (((-989 |#1|) (-989 |#1|)) 46)) (-3163 (((-989 |#1|) (-989 |#1|)) 22)) (-3152 (((-1127 |#1|) (-989 |#1|)) 41))) +(((-990 |#1|) (-13 (-1242) (-10 -7 (-15 -3163 ((-989 |#1|) (-989 |#1|))) (-15 -3152 ((-1127 |#1|) (-989 |#1|))) (-15 -1979 ((-989 |#1|) (-989 |#1|))))) (-1125)) (T -990)) +((-3163 (*1 *2 *2) (-12 (-5 *2 (-989 *3)) (-4 *3 (-1125)) (-5 *1 (-990 *3)))) (-3152 (*1 *2 *3) (-12 (-5 *3 (-989 *4)) (-4 *4 (-1125)) (-5 *2 (-1127 *4)) (-5 *1 (-990 *4)))) (-1979 (*1 *2 *2) (-12 (-5 *2 (-989 *3)) (-4 *3 (-1125)) (-5 *1 (-990 *3))))) +(-13 (-1242) (-10 -7 (-15 -3163 ((-989 |#1|) (-989 |#1|))) (-15 -3152 ((-1127 |#1|) (-989 |#1|))) (-15 -1979 ((-989 |#1|) (-989 |#1|))))) +((-4087 (((-989 |#2|) (-1 |#2| |#1|) (-989 |#1|)) 29))) +(((-991 |#1| |#2|) (-13 (-1242) (-10 -7 (-15 -4087 ((-989 |#2|) (-1 |#2| |#1|) (-989 |#1|))))) (-1125) (-1125)) (T -991)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-989 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *2 (-989 *6)) (-5 *1 (-991 *5 *6))))) +(-13 (-1242) (-10 -7 (-15 -4087 ((-989 |#2|) (-1 |#2| |#1|) (-989 |#1|))))) +((-3473 (((-112) $ $) 16)) (-2274 (($) 14 T CONST)) (-2771 (($ $ $) 6)) (-2749 (($ $) 8)) (-2810 (((-1183) $) 20)) (-3183 (($ $ $) 12)) (-1474 (((-1145) $) 19)) (-3492 (($) 13 T CONST)) (-3173 (($ $ $) 11)) (-3544 (((-880) $) 18)) (-4448 (((-112) $ $) 17)) (-2761 (($ $ $) 7)) (-2970 (((-112) $ $) 15))) +(((-992) (-141)) (T -992)) +((-2274 (*1 *1) (-4 *1 (-992))) (-3492 (*1 *1) (-4 *1 (-992))) (-3183 (*1 *1 *1 *1) (-4 *1 (-992))) (-3173 (*1 *1 *1 *1) (-4 *1 (-992)))) +(-13 (-113) (-1125) (-10 -8 (-15 -2274 ($) -1512) (-15 -3492 ($) -1512) (-15 -3183 ($ $ $)) (-15 -3173 ($ $ $)))) +(((-102) . T) ((-113) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3828 (((-112) $ (-787)) 8)) (-1534 (($) 7 T CONST)) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) 9)) (-3192 (($ $ $) 44)) (-3283 (($ $ $) 45)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3201 ((|#1| $) 46)) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-4330 ((|#1| $) 40)) (-2881 (($ |#1| $) 41)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-3530 ((|#1| $) 42)) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3541 (($ (-660 |#1|)) 43)) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-993 |#1|) (-141) (-865)) (T -993)) +((-3201 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-865)))) (-3283 (*1 *1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-865)))) (-3192 (*1 *1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-865))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4470) (-15 -3201 (|t#1| $)) (-15 -3283 ($ $ $)) (-15 -3192 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) +((-3321 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3480 |#2|)) |#2| |#2|) 105)) (-1807 ((|#2| |#2| |#2|) 103)) (-3331 (((-2 (|:| |coef2| |#2|) (|:| -3480 |#2|)) |#2| |#2|) 107)) (-3341 (((-2 (|:| |coef1| |#2|) (|:| -3480 |#2|)) |#2| |#2|) 109)) (-3409 (((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 131 (|has| |#1| (-465)))) (-3487 (((-2 (|:| |coef2| |#2|) (|:| -1816 |#1|)) |#2| |#2|) 56)) (-3220 (((-2 (|:| |coef2| |#2|) (|:| -1816 |#1|)) |#2| |#2|) 80)) (-3230 (((-2 (|:| |coef1| |#2|) (|:| -1816 |#1|)) |#2| |#2|) 82)) (-3312 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-3263 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787)) 89)) (-3361 (((-2 (|:| |coef2| |#2|) (|:| -1827 |#1|)) |#2|) 121)) (-3291 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787)) 92)) (-3379 (((-660 (-787)) |#2| |#2|) 102)) (-3465 ((|#1| |#2| |#2|) 50)) (-3398 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 129 (|has| |#1| (-465)))) (-3388 ((|#1| |#2| |#2|) 127 (|has| |#1| (-465)))) (-3476 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1816 |#1|)) |#2| |#2|) 54)) (-3211 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1816 |#1|)) |#2| |#2|) 79)) (-1816 ((|#1| |#2| |#2|) 76)) (-1776 (((-2 (|:| -1777 |#1|) (|:| -3637 |#2|) (|:| -2457 |#2|)) |#2| |#2|) 41)) (-3455 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3301 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-3605 ((|#2| |#2| |#2|) 93)) (-3250 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787)) 87)) (-3240 ((|#2| |#2| |#2| (-787)) 85)) (-3480 ((|#2| |#2| |#2|) 135 (|has| |#1| (-465)))) (-3462 (((-1292 |#2|) (-1292 |#2|) |#1|) 22)) (-3422 (((-2 (|:| -3637 |#2|) (|:| -2457 |#2|)) |#2| |#2|) 46)) (-3350 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1827 |#1|)) |#2|) 119)) (-1827 ((|#1| |#2|) 116)) (-3282 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787)) 91)) (-3272 ((|#2| |#2| |#2| (-787)) 90)) (-3370 (((-660 |#2|) |#2| |#2|) 99)) (-3443 ((|#2| |#2| |#1| |#1| (-787)) 62)) (-3433 ((|#1| |#1| |#1| (-787)) 61)) (* (((-1292 |#2|) |#1| (-1292 |#2|)) 17))) +(((-994 |#1| |#2|) (-10 -7 (-15 -1816 (|#1| |#2| |#2|)) (-15 -3211 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1816 |#1|)) |#2| |#2|)) (-15 -3220 ((-2 (|:| |coef2| |#2|) (|:| -1816 |#1|)) |#2| |#2|)) (-15 -3230 ((-2 (|:| |coef1| |#2|) (|:| -1816 |#1|)) |#2| |#2|)) (-15 -3240 (|#2| |#2| |#2| (-787))) (-15 -3250 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787))) (-15 -3263 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787))) (-15 -3272 (|#2| |#2| |#2| (-787))) (-15 -3282 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787))) (-15 -3291 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787))) (-15 -3605 (|#2| |#2| |#2|)) (-15 -3301 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3312 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1807 (|#2| |#2| |#2|)) (-15 -3321 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3480 |#2|)) |#2| |#2|)) (-15 -3331 ((-2 (|:| |coef2| |#2|) (|:| -3480 |#2|)) |#2| |#2|)) (-15 -3341 ((-2 (|:| |coef1| |#2|) (|:| -3480 |#2|)) |#2| |#2|)) (-15 -1827 (|#1| |#2|)) (-15 -3350 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1827 |#1|)) |#2|)) (-15 -3361 ((-2 (|:| |coef2| |#2|) (|:| -1827 |#1|)) |#2|)) (-15 -3370 ((-660 |#2|) |#2| |#2|)) (-15 -3379 ((-660 (-787)) |#2| |#2|)) (IF (|has| |#1| (-465)) (PROGN (-15 -3388 (|#1| |#2| |#2|)) (-15 -3398 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3409 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3480 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1292 |#2|) |#1| (-1292 |#2|))) (-15 -3462 ((-1292 |#2|) (-1292 |#2|) |#1|)) (-15 -1776 ((-2 (|:| -1777 |#1|) (|:| -3637 |#2|) (|:| -2457 |#2|)) |#2| |#2|)) (-15 -3422 ((-2 (|:| -3637 |#2|) (|:| -2457 |#2|)) |#2| |#2|)) (-15 -3433 (|#1| |#1| |#1| (-787))) (-15 -3443 (|#2| |#2| |#1| |#1| (-787))) (-15 -3455 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3465 (|#1| |#2| |#2|)) (-15 -3476 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1816 |#1|)) |#2| |#2|)) (-15 -3487 ((-2 (|:| |coef2| |#2|) (|:| -1816 |#1|)) |#2| |#2|))) (-569) (-1268 |#1|)) (T -994)) +((-3487 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1816 *4))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3476 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1816 *4))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3465 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-994 *2 *3)) (-4 *3 (-1268 *2)))) (-3455 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) (-4 *2 (-1268 *3)))) (-3443 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-787)) (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) (-4 *2 (-1268 *3)))) (-3433 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-787)) (-4 *2 (-569)) (-5 *1 (-994 *2 *4)) (-4 *4 (-1268 *2)))) (-3422 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -3637 *3) (|:| -2457 *3))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-1776 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -1777 *4) (|:| -3637 *3) (|:| -2457 *3))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3462 (*1 *2 *2 *3) (-12 (-5 *2 (-1292 *4)) (-4 *4 (-1268 *3)) (-4 *3 (-569)) (-5 *1 (-994 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1292 *4)) (-4 *4 (-1268 *3)) (-4 *3 (-569)) (-5 *1 (-994 *3 *4)))) (-3480 (*1 *2 *2 *2) (-12 (-4 *3 (-465)) (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) (-4 *2 (-1268 *3)))) (-3409 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3398 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3388 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-4 *2 (-465)) (-5 *1 (-994 *2 *3)) (-4 *3 (-1268 *2)))) (-3379 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 (-787))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3370 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 *3)) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3361 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1827 *4))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3350 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1827 *4))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-1827 (*1 *2 *3) (-12 (-4 *2 (-569)) (-5 *1 (-994 *2 *3)) (-4 *3 (-1268 *2)))) (-3341 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3480 *3))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3331 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3480 *3))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3321 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3480 *3))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-1807 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) (-4 *2 (-1268 *3)))) (-3312 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3301 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3605 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) (-4 *2 (-1268 *3)))) (-3291 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-787)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-994 *5 *3)) (-4 *3 (-1268 *5)))) (-3282 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-787)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-994 *5 *3)) (-4 *3 (-1268 *5)))) (-3272 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-787)) (-4 *4 (-569)) (-5 *1 (-994 *4 *2)) (-4 *2 (-1268 *4)))) (-3263 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-787)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-994 *5 *3)) (-4 *3 (-1268 *5)))) (-3250 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-787)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-994 *5 *3)) (-4 *3 (-1268 *5)))) (-3240 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-787)) (-4 *4 (-569)) (-5 *1 (-994 *4 *2)) (-4 *2 (-1268 *4)))) (-3230 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1816 *4))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3220 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1816 *4))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-3211 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1816 *4))) (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) (-1816 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-994 *2 *3)) (-4 *3 (-1268 *2))))) +(-10 -7 (-15 -1816 (|#1| |#2| |#2|)) (-15 -3211 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1816 |#1|)) |#2| |#2|)) (-15 -3220 ((-2 (|:| |coef2| |#2|) (|:| -1816 |#1|)) |#2| |#2|)) (-15 -3230 ((-2 (|:| |coef1| |#2|) (|:| -1816 |#1|)) |#2| |#2|)) (-15 -3240 (|#2| |#2| |#2| (-787))) (-15 -3250 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787))) (-15 -3263 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787))) (-15 -3272 (|#2| |#2| |#2| (-787))) (-15 -3282 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787))) (-15 -3291 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-787))) (-15 -3605 (|#2| |#2| |#2|)) (-15 -3301 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3312 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1807 (|#2| |#2| |#2|)) (-15 -3321 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3480 |#2|)) |#2| |#2|)) (-15 -3331 ((-2 (|:| |coef2| |#2|) (|:| -3480 |#2|)) |#2| |#2|)) (-15 -3341 ((-2 (|:| |coef1| |#2|) (|:| -3480 |#2|)) |#2| |#2|)) (-15 -1827 (|#1| |#2|)) (-15 -3350 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1827 |#1|)) |#2|)) (-15 -3361 ((-2 (|:| |coef2| |#2|) (|:| -1827 |#1|)) |#2|)) (-15 -3370 ((-660 |#2|) |#2| |#2|)) (-15 -3379 ((-660 (-787)) |#2| |#2|)) (IF (|has| |#1| (-465)) (PROGN (-15 -3388 (|#1| |#2| |#2|)) (-15 -3398 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3409 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3480 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1292 |#2|) |#1| (-1292 |#2|))) (-15 -3462 ((-1292 |#2|) (-1292 |#2|) |#1|)) (-15 -1776 ((-2 (|:| -1777 |#1|) (|:| -3637 |#2|) (|:| -2457 |#2|)) |#2| |#2|)) (-15 -3422 ((-2 (|:| -3637 |#2|) (|:| -2457 |#2|)) |#2| |#2|)) (-15 -3433 (|#1| |#1| |#1| (-787))) (-15 -3443 (|#2| |#2| |#1| |#1| (-787))) (-15 -3455 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3465 (|#1| |#2| |#2|)) (-15 -3476 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1816 |#1|)) |#2| |#2|)) (-15 -3487 ((-2 (|:| |coef2| |#2|) (|:| -1816 |#1|)) |#2| |#2|))) +((-3473 (((-112) $ $) NIL)) (-3017 (((-1241) $) 13)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3131 (((-1160) $) 10)) (-3544 (((-880) $) 20) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-995) (-13 (-1108) (-10 -8 (-15 -3131 ((-1160) $)) (-15 -3017 ((-1241) $))))) (T -995)) +((-3131 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-995)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-995))))) +(-13 (-1108) (-10 -8 (-15 -3131 ((-1160) $)) (-15 -3017 ((-1241) $)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 40)) (-1956 (((-3 $ "failed") $ $) 54)) (-1534 (($) NIL T CONST)) (-3508 (((-660 (-891 (-944) (-944))) $) 67)) (-3499 (((-944) $) 94)) (-1461 (((-660 (-944)) $) 17)) (-3518 (((-1182 $) (-787)) 39)) (-3529 (($ (-660 (-944))) 16)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2360 (($ $) 70)) (-3544 (((-880) $) 90) (((-660 (-944)) $) 11)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 8 T CONST)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 44)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 42)) (-3055 (($ $ $) 46)) (* (($ (-944) $) NIL) (($ (-787) $) 49)) (-3484 (((-787) $) 22))) +(((-996) (-13 (-811) (-626 (-660 (-944))) (-10 -8 (-15 -3529 ($ (-660 (-944)))) (-15 -1461 ((-660 (-944)) $)) (-15 -3484 ((-787) $)) (-15 -3518 ((-1182 $) (-787))) (-15 -3508 ((-660 (-891 (-944) (-944))) $)) (-15 -3499 ((-944) $)) (-15 -2360 ($ $))))) (T -996)) +((-3529 (*1 *1 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-996)))) (-1461 (*1 *2 *1) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-996)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-996)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1182 (-996))) (-5 *1 (-996)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-660 (-891 (-944) (-944)))) (-5 *1 (-996)))) (-3499 (*1 *2 *1) (-12 (-5 *2 (-944)) (-5 *1 (-996)))) (-2360 (*1 *1 *1) (-5 *1 (-996)))) +(-13 (-811) (-626 (-660 (-944))) (-10 -8 (-15 -3529 ($ (-660 (-944)))) (-15 -1461 ((-660 (-944)) $)) (-15 -3484 ((-787) $)) (-15 -3518 ((-1182 $) (-787))) (-15 -3508 ((-660 (-891 (-944) (-944))) $)) (-15 -3499 ((-944) $)) (-15 -2360 ($ $)))) +((-3077 (($ $ |#2|) 31)) (-3066 (($ $) 23) (($ $ $) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-420 (-577)) $) 27) (($ $ (-420 (-577))) 29))) +(((-997 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -3077 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) (-998 |#2| |#3| |#4|) (-1074) (-808) (-865)) (T -997)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-420 (-577)))) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 -3077 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 * (|#1| (-944) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-2058 (((-660 |#3|) $) 86)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)))) (-3290 (($ $) 64 (|has| |#1| (-569)))) (-3271 (((-112) $) 66 (|has| |#1| (-569)))) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2248 (($ $) 72)) (-4187 (((-3 $ "failed") $) 37)) (-3550 (((-112) $) 85)) (-2487 (((-112) $) 35)) (-2811 (((-112) $) 74)) (-2030 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-660 |#3|) (-660 |#2|)) 87)) (-4087 (($ (-1 |#1| |#1|) $) 75)) (-2209 (($ $) 77)) (-2221 ((|#1| $) 78)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3462 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)))) (-2887 ((|#2| $) 76)) (-3540 (($ $) 84)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577))))) (($ $) 61 (|has| |#1| (-569))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2322 ((|#1| $ |#2|) 71)) (-2233 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 65 (|has| |#1| (-569)))) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3077 (($ $ |#1|) 70 (|has| |#1| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577))))))) +(((-998 |#1| |#2| |#3|) (-141) (-1074) (-808) (-865)) (T -998)) +((-2221 (*1 *2 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *3 (-808)) (-4 *4 (-865)) (-4 *2 (-1074)))) (-2209 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-808)) (-4 *4 (-865)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *2 *4)) (-4 *3 (-1074)) (-4 *4 (-865)) (-4 *2 (-808)))) (-2030 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-998 *4 *3 *2)) (-4 *4 (-1074)) (-4 *3 (-808)) (-4 *2 (-865)))) (-2030 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *6)) (-5 *3 (-660 *5)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-808)) (-4 *6 (-865)))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-808)) (-4 *5 (-865)) (-5 *2 (-660 *5)))) (-3550 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-808)) (-4 *5 (-865)) (-5 *2 (-112)))) (-3540 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-808)) (-4 *4 (-865))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2030 ($ $ |t#3| |t#2|)) (-15 -2030 ($ $ (-660 |t#3|) (-660 |t#2|))) (-15 -2209 ($ $)) (-15 -2221 (|t#1| $)) (-15 -2887 (|t#2| $)) (-15 -2058 ((-660 |t#3|) $)) (-15 -3550 ((-112) $)) (-15 -3540 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) |has| |#1| (-38 (-420 (-577)))) ((-629 (-577)) . T) ((-629 |#1|) |has| |#1| (-174)) ((-629 $) |has| |#1| (-569)) ((-626 (-880)) . T) ((-174) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-301) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-662 #0#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) |has| |#1| (-38 (-420 (-577)))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) |has| |#1| (-569)) ((-733 #0#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) |has| |#1| (-569)) ((-742) . T) ((-1076 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-2172 (((-1119 (-228)) $) 8)) (-2160 (((-1119 (-228)) $) 9)) (-2146 (((-1119 (-228)) $) 10)) (-3561 (((-660 (-660 (-966 (-228)))) $) 11)) (-3544 (((-880) $) 6))) +(((-999) (-141)) (T -999)) +((-3561 (*1 *2 *1) (-12 (-4 *1 (-999)) (-5 *2 (-660 (-660 (-966 (-228))))))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-999)) (-5 *2 (-1119 (-228))))) (-2160 (*1 *2 *1) (-12 (-4 *1 (-999)) (-5 *2 (-1119 (-228))))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-999)) (-5 *2 (-1119 (-228)))))) +(-13 (-626 (-880)) (-10 -8 (-15 -3561 ((-660 (-660 (-966 (-228)))) $)) (-15 -2146 ((-1119 (-228)) $)) (-15 -2160 ((-1119 (-228)) $)) (-15 -2172 ((-1119 (-228)) $)))) +(((-626 (-880)) . T)) +((-2058 (((-660 |#4|) $) 23)) (-2508 (((-112) $) 55)) (-3572 (((-112) $) 54)) (-1864 (((-2 (|:| |under| $) (|:| -4119 $) (|:| |upper| $)) $ |#4|) 42)) (-2474 (((-112) $) 56)) (-2492 (((-112) $ $) 62)) (-2483 (((-112) $ $) 65)) (-2500 (((-112) $) 60)) (-2434 (((-660 |#5|) (-660 |#5|) $) 98)) (-2446 (((-660 |#5|) (-660 |#5|) $) 95)) (-2457 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-2555 (((-660 |#4|) $) 27)) (-2545 (((-112) |#4| $) 34)) (-2466 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2518 (($ $ |#4|) 39)) (-2536 (($ $ |#4|) 38)) (-2527 (($ $ |#4|) 40)) (-2970 (((-112) $ $) 46))) +(((-1000 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3572 ((-112) |#1|)) (-15 -2434 ((-660 |#5|) (-660 |#5|) |#1|)) (-15 -2446 ((-660 |#5|) (-660 |#5|) |#1|)) (-15 -2457 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2466 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2474 ((-112) |#1|)) (-15 -2483 ((-112) |#1| |#1|)) (-15 -2492 ((-112) |#1| |#1|)) (-15 -2500 ((-112) |#1|)) (-15 -2508 ((-112) |#1|)) (-15 -1864 ((-2 (|:| |under| |#1|) (|:| -4119 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2518 (|#1| |#1| |#4|)) (-15 -2527 (|#1| |#1| |#4|)) (-15 -2536 (|#1| |#1| |#4|)) (-15 -2545 ((-112) |#4| |#1|)) (-15 -2555 ((-660 |#4|) |#1|)) (-15 -2058 ((-660 |#4|) |#1|)) (-15 -2970 ((-112) |#1| |#1|))) (-1001 |#2| |#3| |#4| |#5|) (-1074) (-809) (-865) (-1090 |#2| |#3| |#4|)) (T -1000)) +NIL +(-10 -8 (-15 -3572 ((-112) |#1|)) (-15 -2434 ((-660 |#5|) (-660 |#5|) |#1|)) (-15 -2446 ((-660 |#5|) (-660 |#5|) |#1|)) (-15 -2457 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2466 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2474 ((-112) |#1|)) (-15 -2483 ((-112) |#1| |#1|)) (-15 -2492 ((-112) |#1| |#1|)) (-15 -2500 ((-112) |#1|)) (-15 -2508 ((-112) |#1|)) (-15 -1864 ((-2 (|:| |under| |#1|) (|:| -4119 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2518 (|#1| |#1| |#4|)) (-15 -2527 (|#1| |#1| |#4|)) (-15 -2536 (|#1| |#1| |#4|)) (-15 -2545 ((-112) |#4| |#1|)) (-15 -2555 ((-660 |#4|) |#1|)) (-15 -2058 ((-660 |#4|) |#1|)) (-15 -2970 ((-112) |#1| |#1|))) +((-3473 (((-112) $ $) 7)) (-2058 (((-660 |#3|) $) 34)) (-2508 (((-112) $) 27)) (-3572 (((-112) $) 18 (|has| |#1| (-569)))) (-1864 (((-2 (|:| |under| $) (|:| -4119 $) (|:| |upper| $)) $ |#3|) 28)) (-3828 (((-112) $ (-787)) 45)) (-2067 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4470)))) (-1534 (($) 46 T CONST)) (-2474 (((-112) $) 23 (|has| |#1| (-569)))) (-2492 (((-112) $ $) 25 (|has| |#1| (-569)))) (-2483 (((-112) $ $) 24 (|has| |#1| (-569)))) (-2500 (((-112) $) 26 (|has| |#1| (-569)))) (-2434 (((-660 |#4|) (-660 |#4|) $) 19 (|has| |#1| (-569)))) (-2446 (((-660 |#4|) (-660 |#4|) $) 20 (|has| |#1| (-569)))) (-1628 (((-3 $ "failed") (-660 |#4|)) 37)) (-2921 (($ (-660 |#4|)) 36)) (-1817 (($ $) 69 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))))) (-3904 (($ |#4| $) 68 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4470)))) (-2457 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)))) (-3654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4470))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4470)))) (-1461 (((-660 |#4|) $) 53 (|has| $ (-6 -4470)))) (-3514 ((|#3| $) 35)) (-1479 (((-112) $ (-787)) 44)) (-2530 (((-660 |#4|) $) 54 (|has| $ (-6 -4470)))) (-2820 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#4| |#4|) $) 48)) (-2555 (((-660 |#3|) $) 33)) (-2545 (((-112) |#3| $) 32)) (-1443 (((-112) $ (-787)) 43)) (-2810 (((-1183) $) 10)) (-2466 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)))) (-1474 (((-1145) $) 11)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1514 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 |#4|) (-660 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-660 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))))) (-3840 (((-112) $ $) 39)) (-3697 (((-112) $) 42)) (-3639 (($) 41)) (-1485 (((-787) |#4| $) 55 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470)))) (((-787) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4470)))) (-1944 (($ $) 40)) (-4152 (((-549) $) 70 (|has| |#4| (-627 (-549))))) (-3553 (($ (-660 |#4|)) 61)) (-2518 (($ $ |#3|) 29)) (-2536 (($ $ |#3|) 31)) (-2527 (($ $ |#3|) 30)) (-3544 (((-880) $) 12) (((-660 |#4|) $) 38)) (-4448 (((-112) $ $) 6)) (-1524 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 8)) (-3484 (((-787) $) 47 (|has| $ (-6 -4470))))) +(((-1001 |#1| |#2| |#3| |#4|) (-141) (-1074) (-809) (-865) (-1090 |t#1| |t#2| |t#3|)) (T -1001)) +((-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *1 (-1001 *3 *4 *5 *6)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *1 (-1001 *3 *4 *5 *6)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-1090 *3 *4 *2)) (-4 *2 (-865)))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-660 *5)))) (-2555 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-660 *5)))) (-2545 (*1 *2 *3 *1) (-12 (-4 *1 (-1001 *4 *5 *3 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-4 *6 (-1090 *4 *5 *3)) (-5 *2 (-112)))) (-2536 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)) (-4 *5 (-1090 *3 *4 *2)))) (-2527 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)) (-4 *5 (-1090 *3 *4 *2)))) (-2518 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)) (-4 *5 (-1090 *3 *4 *2)))) (-1864 (*1 *2 *1 *3) (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-4 *6 (-1090 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -4119 *1) (|:| |upper| *1))) (-4 *1 (-1001 *4 *5 *3 *6)))) (-2508 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) (-2500 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112)))) (-2492 (*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112)))) (-2483 (*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112)))) (-2474 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112)))) (-2466 (*1 *2 *3 *1) (-12 (-4 *1 (-1001 *4 *5 *6 *3)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2457 (*1 *2 *3 *1) (-12 (-4 *1 (-1001 *4 *5 *6 *3)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2446 (*1 *2 *2 *1) (-12 (-5 *2 (-660 *6)) (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)))) (-2434 (*1 *2 *2 *1) (-12 (-5 *2 (-660 *6)) (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-112))))) +(-13 (-1125) (-152 |t#4|) (-626 (-660 |t#4|)) (-10 -8 (-6 -4470) (-15 -1628 ((-3 $ "failed") (-660 |t#4|))) (-15 -2921 ($ (-660 |t#4|))) (-15 -3514 (|t#3| $)) (-15 -2058 ((-660 |t#3|) $)) (-15 -2555 ((-660 |t#3|) $)) (-15 -2545 ((-112) |t#3| $)) (-15 -2536 ($ $ |t#3|)) (-15 -2527 ($ $ |t#3|)) (-15 -2518 ($ $ |t#3|)) (-15 -1864 ((-2 (|:| |under| $) (|:| -4119 $) (|:| |upper| $)) $ |t#3|)) (-15 -2508 ((-112) $)) (IF (|has| |t#1| (-569)) (PROGN (-15 -2500 ((-112) $)) (-15 -2492 ((-112) $ $)) (-15 -2483 ((-112) $ $)) (-15 -2474 ((-112) $)) (-15 -2466 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2457 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2446 ((-660 |t#4|) (-660 |t#4|) $)) (-15 -2434 ((-660 |t#4|) (-660 |t#4|) $)) (-15 -3572 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-626 (-660 |#4|)) . T) ((-626 (-880)) . T) ((-152 |#4|) . T) ((-627 (-549)) |has| |#4| (-627 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-1125) . T) ((-1242) . T)) +((-2573 (((-660 |#4|) |#4| |#4|) 136)) (-2814 (((-660 |#4|) (-660 |#4|) (-112)) 125 (|has| |#1| (-465))) (((-660 |#4|) (-660 |#4|)) 126 (|has| |#1| (-465)))) (-2672 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|)) 44)) (-2660 (((-112) |#4|) 43)) (-2803 (((-660 |#4|) |#4|) 121 (|has| |#1| (-465)))) (-2621 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-1 (-112) |#4|) (-660 |#4|)) 24)) (-2630 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 (-1 (-112) |#4|)) (-660 |#4|)) 30)) (-2639 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 (-1 (-112) |#4|)) (-660 |#4|)) 31)) (-2759 (((-3 (-2 (|:| |bas| (-489 |#1| |#2| |#3| |#4|)) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|)) 90)) (-2779 (((-660 |#4|) (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2789 (((-660 |#4|) (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-2564 (((-660 |#4|) (-660 |#4|)) 128)) (-2726 (((-660 |#4|) (-660 |#4|) (-660 |#4|) (-112)) 59) (((-660 |#4|) (-660 |#4|) (-660 |#4|)) 61)) (-2736 ((|#4| |#4| (-660 |#4|)) 60)) (-2825 (((-660 |#4|) (-660 |#4|) (-660 |#4|)) 132 (|has| |#1| (-465)))) (-2848 (((-660 |#4|) (-660 |#4|) (-660 |#4|)) 135 (|has| |#1| (-465)))) (-2837 (((-660 |#4|) (-660 |#4|) (-660 |#4|)) 134 (|has| |#1| (-465)))) (-2583 (((-660 |#4|) (-660 |#4|) (-660 |#4|) (-1 (-660 |#4|) (-660 |#4|))) 105) (((-660 |#4|) (-660 |#4|) (-660 |#4|)) 107) (((-660 |#4|) (-660 |#4|) |#4|) 140) (((-660 |#4|) |#4| |#4|) 137) (((-660 |#4|) (-660 |#4|)) 106)) (-2880 (((-660 |#4|) (-660 |#4|) (-660 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-318))))) (-2649 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|)) 52)) (-2611 (((-112) (-660 |#4|)) 79)) (-2602 (((-112) (-660 |#4|) (-660 (-660 |#4|))) 67)) (-2693 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|)) 37)) (-2681 (((-112) |#4|) 36)) (-2870 (((-660 |#4|) (-660 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-318))))) (-2860 (((-660 |#4|) (-660 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-318))))) (-2747 (((-660 |#4|) (-660 |#4|)) 83)) (-2769 (((-660 |#4|) (-660 |#4|)) 97)) (-2593 (((-112) (-660 |#4|) (-660 |#4|)) 65)) (-2715 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|)) 50)) (-2704 (((-112) |#4|) 45))) +(((-1002 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2583 ((-660 |#4|) (-660 |#4|))) (-15 -2583 ((-660 |#4|) |#4| |#4|)) (-15 -2564 ((-660 |#4|) (-660 |#4|))) (-15 -2573 ((-660 |#4|) |#4| |#4|)) (-15 -2583 ((-660 |#4|) (-660 |#4|) |#4|)) (-15 -2583 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -2583 ((-660 |#4|) (-660 |#4|) (-660 |#4|) (-1 (-660 |#4|) (-660 |#4|)))) (-15 -2593 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -2602 ((-112) (-660 |#4|) (-660 (-660 |#4|)))) (-15 -2611 ((-112) (-660 |#4|))) (-15 -2621 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-1 (-112) |#4|) (-660 |#4|))) (-15 -2630 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 (-1 (-112) |#4|)) (-660 |#4|))) (-15 -2639 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 (-1 (-112) |#4|)) (-660 |#4|))) (-15 -2649 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -2660 ((-112) |#4|)) (-15 -2672 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -2681 ((-112) |#4|)) (-15 -2693 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -2704 ((-112) |#4|)) (-15 -2715 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -2726 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -2726 ((-660 |#4|) (-660 |#4|) (-660 |#4|) (-112))) (-15 -2736 (|#4| |#4| (-660 |#4|))) (-15 -2747 ((-660 |#4|) (-660 |#4|))) (-15 -2759 ((-3 (-2 (|:| |bas| (-489 |#1| |#2| |#3| |#4|)) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|))) (-15 -2769 ((-660 |#4|) (-660 |#4|))) (-15 -2779 ((-660 |#4|) (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2789 ((-660 |#4|) (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-465)) (PROGN (-15 -2803 ((-660 |#4|) |#4|)) (-15 -2814 ((-660 |#4|) (-660 |#4|))) (-15 -2814 ((-660 |#4|) (-660 |#4|) (-112))) (-15 -2825 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -2837 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -2848 ((-660 |#4|) (-660 |#4|) (-660 |#4|)))) |%noBranch|) (IF (|has| |#1| (-318)) (IF (|has| |#1| (-148)) (PROGN (-15 -2860 ((-660 |#4|) (-660 |#4|))) (-15 -2870 ((-660 |#4|) (-660 |#4|))) (-15 -2880 ((-660 |#4|) (-660 |#4|) (-660 |#4|)))) |%noBranch|) |%noBranch|)) (-569) (-809) (-865) (-1090 |#1| |#2| |#3|)) (T -1002)) +((-2880 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2870 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2860 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2848 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-465)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2837 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-465)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2825 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-465)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2814 (*1 *2 *2 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-112)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-1002 *4 *5 *6 *7)))) (-2814 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-465)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2803 (*1 *2 *3) (-12 (-4 *4 (-465)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *3)) (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6)))) (-2789 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-660 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1002 *5 *6 *7 *8)))) (-2779 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-660 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1090 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-809)) (-4 *8 (-865)) (-5 *1 (-1002 *6 *7 *8 *9)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2759 (*1 *2 *3) (|partial| -12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-489 *4 *5 *6 *7)) (|:| -1436 (-660 *7)))) (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-2747 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2736 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-1002 *4 *5 *6 *2)))) (-2726 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-112)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-1002 *4 *5 *6 *7)))) (-2726 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2715 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-2704 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6)))) (-2693 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-2681 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6)))) (-2672 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-2660 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6)))) (-2649 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-2639 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-1 (-112) *8))) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-2 (|:| |goodPols| (-660 *8)) (|:| |badPols| (-660 *8)))) (-5 *1 (-1002 *5 *6 *7 *8)) (-5 *4 (-660 *8)))) (-2630 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-1 (-112) *8))) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-2 (|:| |goodPols| (-660 *8)) (|:| |badPols| (-660 *8)))) (-5 *1 (-1002 *5 *6 *7 *8)) (-5 *4 (-660 *8)))) (-2621 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-2 (|:| |goodPols| (-660 *8)) (|:| |badPols| (-660 *8)))) (-5 *1 (-1002 *5 *6 *7 *8)) (-5 *4 (-660 *8)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1002 *4 *5 *6 *7)))) (-2602 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-660 *8))) (-5 *3 (-660 *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-112)) (-5 *1 (-1002 *5 *6 *7 *8)))) (-2593 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1002 *4 *5 *6 *7)))) (-2583 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-660 *7) (-660 *7))) (-5 *2 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-1002 *4 *5 *6 *7)))) (-2583 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2583 (*1 *2 *2 *3) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-1002 *4 *5 *6 *3)))) (-2573 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *3)) (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6)))) (-2564 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) (-2583 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *3)) (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6)))) (-2583 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6))))) +(-10 -7 (-15 -2583 ((-660 |#4|) (-660 |#4|))) (-15 -2583 ((-660 |#4|) |#4| |#4|)) (-15 -2564 ((-660 |#4|) (-660 |#4|))) (-15 -2573 ((-660 |#4|) |#4| |#4|)) (-15 -2583 ((-660 |#4|) (-660 |#4|) |#4|)) (-15 -2583 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -2583 ((-660 |#4|) (-660 |#4|) (-660 |#4|) (-1 (-660 |#4|) (-660 |#4|)))) (-15 -2593 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -2602 ((-112) (-660 |#4|) (-660 (-660 |#4|)))) (-15 -2611 ((-112) (-660 |#4|))) (-15 -2621 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-1 (-112) |#4|) (-660 |#4|))) (-15 -2630 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 (-1 (-112) |#4|)) (-660 |#4|))) (-15 -2639 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 (-1 (-112) |#4|)) (-660 |#4|))) (-15 -2649 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -2660 ((-112) |#4|)) (-15 -2672 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -2681 ((-112) |#4|)) (-15 -2693 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -2704 ((-112) |#4|)) (-15 -2715 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -2726 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -2726 ((-660 |#4|) (-660 |#4|) (-660 |#4|) (-112))) (-15 -2736 (|#4| |#4| (-660 |#4|))) (-15 -2747 ((-660 |#4|) (-660 |#4|))) (-15 -2759 ((-3 (-2 (|:| |bas| (-489 |#1| |#2| |#3| |#4|)) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|))) (-15 -2769 ((-660 |#4|) (-660 |#4|))) (-15 -2779 ((-660 |#4|) (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2789 ((-660 |#4|) (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-465)) (PROGN (-15 -2803 ((-660 |#4|) |#4|)) (-15 -2814 ((-660 |#4|) (-660 |#4|))) (-15 -2814 ((-660 |#4|) (-660 |#4|) (-112))) (-15 -2825 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -2837 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -2848 ((-660 |#4|) (-660 |#4|) (-660 |#4|)))) |%noBranch|) (IF (|has| |#1| (-318)) (IF (|has| |#1| (-148)) (PROGN (-15 -2860 ((-660 |#4|) (-660 |#4|))) (-15 -2870 ((-660 |#4|) (-660 |#4|))) (-15 -2880 ((-660 |#4|) (-660 |#4|) (-660 |#4|)))) |%noBranch|) |%noBranch|)) +((-2890 (((-2 (|:| R (-705 |#1|)) (|:| A (-705 |#1|)) (|:| |Ainv| (-705 |#1|))) (-705 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2909 (((-660 (-2 (|:| C (-705 |#1|)) (|:| |g| (-1292 |#1|)))) (-705 |#1|) (-1292 |#1|)) 46)) (-2899 (((-705 |#1|) (-705 |#1|) (-705 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-1003 |#1|) (-10 -7 (-15 -2890 ((-2 (|:| R (-705 |#1|)) (|:| A (-705 |#1|)) (|:| |Ainv| (-705 |#1|))) (-705 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2899 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2909 ((-660 (-2 (|:| C (-705 |#1|)) (|:| |g| (-1292 |#1|)))) (-705 |#1|) (-1292 |#1|)))) (-375)) (T -1003)) +((-2909 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-5 *2 (-660 (-2 (|:| C (-705 *5)) (|:| |g| (-1292 *5))))) (-5 *1 (-1003 *5)) (-5 *3 (-705 *5)) (-5 *4 (-1292 *5)))) (-2899 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-705 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) (-5 *1 (-1003 *5)))) (-2890 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-375)) (-5 *2 (-2 (|:| R (-705 *6)) (|:| A (-705 *6)) (|:| |Ainv| (-705 *6)))) (-5 *1 (-1003 *6)) (-5 *3 (-705 *6))))) +(-10 -7 (-15 -2890 ((-2 (|:| R (-705 |#1|)) (|:| A (-705 |#1|)) (|:| |Ainv| (-705 |#1|))) (-705 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2899 ((-705 |#1|) (-705 |#1|) (-705 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2909 ((-660 (-2 (|:| C (-705 |#1|)) (|:| |g| (-1292 |#1|)))) (-705 |#1|) (-1292 |#1|)))) +((-3029 (((-431 |#4|) |#4|) 56))) +(((-1004 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3029 ((-431 |#4|) |#4|))) (-865) (-809) (-465) (-972 |#3| |#2| |#1|)) (T -1004)) +((-3029 (*1 *2 *3) (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-465)) (-5 *2 (-431 *3)) (-5 *1 (-1004 *4 *5 *6 *3)) (-4 *3 (-972 *6 *5 *4))))) +(-10 -7 (-15 -3029 ((-431 |#4|) |#4|))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3785 (($ (-787)) 115 (|has| |#1| (-23)))) (-2389 (((-1297) $ (-577) (-577)) 41 (|has| $ (-6 -4471)))) (-4077 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-865)))) (-4053 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4471))) (($ $) 91 (-12 (|has| |#1| (-865)) (|has| $ (-6 -4471))))) (-1864 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-865)))) (-3828 (((-112) $ (-787)) 8)) (-3709 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) 60 (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4470)))) (-1534 (($) 7 T CONST)) (-3645 (($ $) 93 (|has| $ (-6 -4471)))) (-3787 (($ $) 103)) (-1817 (($ $) 80 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3904 (($ |#1| $) 79 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4470)))) (-2192 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) 52)) (-3618 (((-577) (-1 (-112) |#1|) $) 100) (((-577) |#1| $) 99 (|has| |#1| (-1125))) (((-577) |#1| $ (-577)) 98 (|has| |#1| (-1125)))) (-3656 (($ (-660 |#1|)) 121)) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-2462 (((-705 |#1|) $ $) 108 (|has| |#1| (-1074)))) (-4113 (($ (-787) |#1|) 70)) (-1479 (((-112) $ (-787)) 9)) (-2406 (((-577) $) 44 (|has| (-577) (-865)))) (-3732 (($ $ $) 85 (|has| |#1| (-865)))) (-3283 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-865)))) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2416 (((-577) $) 45 (|has| (-577) (-865)))) (-3201 (($ $ $) 86 (|has| |#1| (-865)))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4320 ((|#1| $) 105 (-12 (|has| |#1| (-1074)) (|has| |#1| (-1027))))) (-1443 (((-112) $ (-787)) 10)) (-3402 ((|#1| $) 106 (-12 (|has| |#1| (-1074)) (|has| |#1| (-1027))))) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-2308 (($ |#1| $ (-577)) 62) (($ $ $ (-577)) 61)) (-4285 (((-660 (-577)) $) 47)) (-4298 (((-112) (-577) $) 48)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-3552 ((|#1| $) 43 (|has| (-577) (-865)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2397 (($ $ |#1|) 42 (|has| $ (-6 -4471)))) (-3792 (($ $ (-660 |#1|)) 119)) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-4274 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) 49)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#1| $ (-577) |#1|) 51) ((|#1| $ (-577)) 50) (($ $ (-1259 (-577))) 71)) (-3116 ((|#1| $ $) 109 (|has| |#1| (-1074)))) (-2561 (((-944) $) 120)) (-3453 (($ $ (-577)) 64) (($ $ (-1259 (-577))) 63)) (-4331 (($ $ $) 107)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-4064 (($ $ $ (-577)) 94 (|has| $ (-6 -4471)))) (-1944 (($ $) 13)) (-4152 (((-549) $) 81 (|has| |#1| (-627 (-549)))) (($ (-660 |#1|)) 122)) (-3553 (($ (-660 |#1|)) 72)) (-1677 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-660 $)) 66)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) 87 (|has| |#1| (-865)))) (-3000 (((-112) $ $) 89 (|has| |#1| (-865)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3012 (((-112) $ $) 88 (|has| |#1| (-865)))) (-2990 (((-112) $ $) 90 (|has| |#1| (-865)))) (-3066 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3055 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-577) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-742))) (($ $ |#1|) 110 (|has| |#1| (-742)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-1005 |#1|) (-141) (-1074)) (T -1005)) +((-3656 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1074)) (-4 *1 (-1005 *3)))) (-2561 (*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1074)) (-5 *2 (-944)))) (-4331 (*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1074)))) (-3792 (*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *1 (-1005 *3)) (-4 *3 (-1074))))) +(-13 (-1290 |t#1|) (-631 (-660 |t#1|)) (-10 -8 (-15 -3656 ($ (-660 |t#1|))) (-15 -2561 ((-944) $)) (-15 -4331 ($ $ $)) (-15 -3792 ($ $ (-660 |t#1|))))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-631 (-660 |#1|)) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-385 |#1|) . T) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-667 |#1|) . T) ((-19 |#1|) . T) ((-865) |has| |#1| (-865)) ((-868) |has| |#1| (-865)) ((-1125) -2839 (|has| |#1| (-1125)) (|has| |#1| (-865))) ((-1242) . T) ((-1290 |#1|) . T)) +((-4087 (((-966 |#2|) (-1 |#2| |#1|) (-966 |#1|)) 17))) +(((-1006 |#1| |#2|) (-10 -7 (-15 -4087 ((-966 |#2|) (-1 |#2| |#1|) (-966 |#1|)))) (-1074) (-1074)) (T -1006)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-966 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-966 *6)) (-5 *1 (-1006 *5 *6))))) +(-10 -7 (-15 -4087 ((-966 |#2|) (-1 |#2| |#1|) (-966 |#1|)))) +((-2937 ((|#1| (-966 |#1|)) 14)) (-2928 ((|#1| (-966 |#1|)) 13)) (-2919 ((|#1| (-966 |#1|)) 12)) (-2958 ((|#1| (-966 |#1|)) 16)) (-1785 ((|#1| (-966 |#1|)) 24)) (-2948 ((|#1| (-966 |#1|)) 15)) (-2967 ((|#1| (-966 |#1|)) 17)) (-2987 ((|#1| (-966 |#1|)) 23)) (-2977 ((|#1| (-966 |#1|)) 22))) +(((-1007 |#1|) (-10 -7 (-15 -2919 (|#1| (-966 |#1|))) (-15 -2928 (|#1| (-966 |#1|))) (-15 -2937 (|#1| (-966 |#1|))) (-15 -2948 (|#1| (-966 |#1|))) (-15 -2958 (|#1| (-966 |#1|))) (-15 -2967 (|#1| (-966 |#1|))) (-15 -2977 (|#1| (-966 |#1|))) (-15 -2987 (|#1| (-966 |#1|))) (-15 -1785 (|#1| (-966 |#1|)))) (-1074)) (T -1007)) +((-1785 (*1 *2 *3) (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074)))) (-2987 (*1 *2 *3) (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074)))) (-2977 (*1 *2 *3) (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074)))) (-2967 (*1 *2 *3) (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074)))) (-2958 (*1 *2 *3) (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074)))) (-2948 (*1 *2 *3) (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074)))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074)))) (-2928 (*1 *2 *3) (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074)))) (-2919 (*1 *2 *3) (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) +(-10 -7 (-15 -2919 (|#1| (-966 |#1|))) (-15 -2928 (|#1| (-966 |#1|))) (-15 -2937 (|#1| (-966 |#1|))) (-15 -2948 (|#1| (-966 |#1|))) (-15 -2958 (|#1| (-966 |#1|))) (-15 -2967 (|#1| (-966 |#1|))) (-15 -2977 (|#1| (-966 |#1|))) (-15 -2987 (|#1| (-966 |#1|))) (-15 -1785 (|#1| (-966 |#1|)))) +((-1989 (((-3 |#1| "failed") |#1|) 18)) (-1847 (((-3 |#1| "failed") |#1|) 6)) (-1966 (((-3 |#1| "failed") |#1|) 16)) (-1825 (((-3 |#1| "failed") |#1|) 4)) (-2011 (((-3 |#1| "failed") |#1|) 20)) (-1872 (((-3 |#1| "failed") |#1|) 8)) (-1795 (((-3 |#1| "failed") |#1| (-787)) 1)) (-1814 (((-3 |#1| "failed") |#1|) 3)) (-1805 (((-3 |#1| "failed") |#1|) 2)) (-2022 (((-3 |#1| "failed") |#1|) 21)) (-1883 (((-3 |#1| "failed") |#1|) 9)) (-2000 (((-3 |#1| "failed") |#1|) 19)) (-1858 (((-3 |#1| "failed") |#1|) 7)) (-1977 (((-3 |#1| "failed") |#1|) 17)) (-1836 (((-3 |#1| "failed") |#1|) 5)) (-2063 (((-3 |#1| "failed") |#1|) 24)) (-1917 (((-3 |#1| "failed") |#1|) 12)) (-2035 (((-3 |#1| "failed") |#1|) 22)) (-1894 (((-3 |#1| "failed") |#1|) 10)) (-2087 (((-3 |#1| "failed") |#1|) 26)) (-1941 (((-3 |#1| "failed") |#1|) 14)) (-2098 (((-3 |#1| "failed") |#1|) 27)) (-1955 (((-3 |#1| "failed") |#1|) 15)) (-2076 (((-3 |#1| "failed") |#1|) 25)) (-1929 (((-3 |#1| "failed") |#1|) 13)) (-2050 (((-3 |#1| "failed") |#1|) 23)) (-1905 (((-3 |#1| "failed") |#1|) 11))) +(((-1008 |#1|) (-141) (-1227)) (T -1008)) +((-2098 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-2087 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-2076 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-2063 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-2050 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-2035 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-2022 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-2011 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-2000 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1989 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1977 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1966 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1955 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1941 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1929 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1917 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1905 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1894 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1883 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1872 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1858 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1847 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1836 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1825 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1814 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1805 (*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227)))) (-1795 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-787)) (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(-13 (-10 -7 (-15 -1795 ((-3 |t#1| "failed") |t#1| (-787))) (-15 -1805 ((-3 |t#1| "failed") |t#1|)) (-15 -1814 ((-3 |t#1| "failed") |t#1|)) (-15 -1825 ((-3 |t#1| "failed") |t#1|)) (-15 -1836 ((-3 |t#1| "failed") |t#1|)) (-15 -1847 ((-3 |t#1| "failed") |t#1|)) (-15 -1858 ((-3 |t#1| "failed") |t#1|)) (-15 -1872 ((-3 |t#1| "failed") |t#1|)) (-15 -1883 ((-3 |t#1| "failed") |t#1|)) (-15 -1894 ((-3 |t#1| "failed") |t#1|)) (-15 -1905 ((-3 |t#1| "failed") |t#1|)) (-15 -1917 ((-3 |t#1| "failed") |t#1|)) (-15 -1929 ((-3 |t#1| "failed") |t#1|)) (-15 -1941 ((-3 |t#1| "failed") |t#1|)) (-15 -1955 ((-3 |t#1| "failed") |t#1|)) (-15 -1966 ((-3 |t#1| "failed") |t#1|)) (-15 -1977 ((-3 |t#1| "failed") |t#1|)) (-15 -1989 ((-3 |t#1| "failed") |t#1|)) (-15 -2000 ((-3 |t#1| "failed") |t#1|)) (-15 -2011 ((-3 |t#1| "failed") |t#1|)) (-15 -2022 ((-3 |t#1| "failed") |t#1|)) (-15 -2035 ((-3 |t#1| "failed") |t#1|)) (-15 -2050 ((-3 |t#1| "failed") |t#1|)) (-15 -2063 ((-3 |t#1| "failed") |t#1|)) (-15 -2076 ((-3 |t#1| "failed") |t#1|)) (-15 -2087 ((-3 |t#1| "failed") |t#1|)) (-15 -2098 ((-3 |t#1| "failed") |t#1|)))) +((-2124 ((|#4| |#4| (-660 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-2109 ((|#4| |#4| (-660 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-4087 ((|#4| (-1 |#4| (-975 |#1|)) |#4|) 31))) +(((-1009 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2109 (|#4| |#4| |#3|)) (-15 -2109 (|#4| |#4| (-660 |#3|))) (-15 -2124 (|#4| |#4| |#3|)) (-15 -2124 (|#4| |#4| (-660 |#3|))) (-15 -4087 (|#4| (-1 |#4| (-975 |#1|)) |#4|))) (-1074) (-809) (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $)) (-15 -3076 ((-3 $ "failed") (-1201))))) (-972 (-975 |#1|) |#2| |#3|)) (T -1009)) +((-4087 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-975 *4))) (-4 *4 (-1074)) (-4 *2 (-972 (-975 *4) *5 *6)) (-4 *5 (-809)) (-4 *6 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $)) (-15 -3076 ((-3 $ "failed") (-1201)))))) (-5 *1 (-1009 *4 *5 *6 *2)))) (-2124 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *6)) (-4 *6 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $)) (-15 -3076 ((-3 $ "failed") (-1201)))))) (-4 *4 (-1074)) (-4 *5 (-809)) (-5 *1 (-1009 *4 *5 *6 *2)) (-4 *2 (-972 (-975 *4) *5 *6)))) (-2124 (*1 *2 *2 *3) (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $)) (-15 -3076 ((-3 $ "failed") (-1201)))))) (-5 *1 (-1009 *4 *5 *3 *2)) (-4 *2 (-972 (-975 *4) *5 *3)))) (-2109 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *6)) (-4 *6 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $)) (-15 -3076 ((-3 $ "failed") (-1201)))))) (-4 *4 (-1074)) (-4 *5 (-809)) (-5 *1 (-1009 *4 *5 *6 *2)) (-4 *2 (-972 (-975 *4) *5 *6)))) (-2109 (*1 *2 *2 *3) (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $)) (-15 -3076 ((-3 $ "failed") (-1201)))))) (-5 *1 (-1009 *4 *5 *3 *2)) (-4 *2 (-972 (-975 *4) *5 *3))))) +(-10 -7 (-15 -2109 (|#4| |#4| |#3|)) (-15 -2109 (|#4| |#4| (-660 |#3|))) (-15 -2124 (|#4| |#4| |#3|)) (-15 -2124 (|#4| |#4| (-660 |#3|))) (-15 -4087 (|#4| (-1 |#4| (-975 |#1|)) |#4|))) +((-2139 ((|#2| |#3|) 35)) (-2636 (((-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) |#2|) 79)) (-2627 (((-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|)))) 100))) +(((-1010 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2627 ((-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))))) (-15 -2636 ((-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) |#2|)) (-15 -2139 (|#2| |#3|))) (-361) (-1268 |#1|) (-1268 |#2|) (-740 |#2| |#3|)) (T -1010)) +((-2139 (*1 *2 *3) (-12 (-4 *3 (-1268 *2)) (-4 *2 (-1268 *4)) (-5 *1 (-1010 *4 *2 *3 *5)) (-4 *4 (-361)) (-4 *5 (-740 *2 *3)))) (-2636 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 *3)) (-5 *2 (-2 (|:| -4060 (-705 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-705 *3)))) (-5 *1 (-1010 *4 *3 *5 *6)) (-4 *6 (-740 *3 *5)))) (-2627 (*1 *2) (-12 (-4 *3 (-361)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 *4)) (-5 *2 (-2 (|:| -4060 (-705 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-705 *4)))) (-5 *1 (-1010 *3 *4 *5 *6)) (-4 *6 (-740 *4 *5))))) +(-10 -7 (-15 -2627 ((-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))))) (-15 -2636 ((-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) |#2|)) (-15 -2139 (|#2| |#3|))) +((-2215 (((-1012 (-420 (-577)) (-882 |#1|) (-246 |#2| (-787)) (-254 |#1| (-420 (-577)))) (-1012 (-420 (-577)) (-882 |#1|) (-246 |#2| (-787)) (-254 |#1| (-420 (-577))))) 82))) +(((-1011 |#1| |#2|) (-10 -7 (-15 -2215 ((-1012 (-420 (-577)) (-882 |#1|) (-246 |#2| (-787)) (-254 |#1| (-420 (-577)))) (-1012 (-420 (-577)) (-882 |#1|) (-246 |#2| (-787)) (-254 |#1| (-420 (-577))))))) (-660 (-1201)) (-787)) (T -1011)) +((-2215 (*1 *2 *2) (-12 (-5 *2 (-1012 (-420 (-577)) (-882 *3) (-246 *4 (-787)) (-254 *3 (-420 (-577))))) (-14 *3 (-660 (-1201))) (-14 *4 (-787)) (-5 *1 (-1011 *3 *4))))) +(-10 -7 (-15 -2215 ((-1012 (-420 (-577)) (-882 |#1|) (-246 |#2| (-787)) (-254 |#1| (-420 (-577)))) (-1012 (-420 (-577)) (-882 |#1|) (-246 |#2| (-787)) (-254 |#1| (-420 (-577))))))) +((-3473 (((-112) $ $) NIL)) (-3685 (((-3 (-112) "failed") $) 71)) (-1979 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-318))))) (-2189 (($ $ (-3 (-112) "failed")) 72)) (-2202 (($ (-660 |#4|) |#4|) 25)) (-2810 (((-1183) $) NIL)) (-2153 (($ $) 69)) (-1474 (((-1145) $) NIL)) (-3697 (((-112) $) 70)) (-3639 (($) 30)) (-2165 ((|#4| $) 74)) (-2177 (((-660 |#4|) $) 73)) (-3544 (((-880) $) 68)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-1012 |#1| |#2| |#3| |#4|) (-13 (-1125) (-626 (-880)) (-10 -8 (-15 -3639 ($)) (-15 -2202 ($ (-660 |#4|) |#4|)) (-15 -3685 ((-3 (-112) "failed") $)) (-15 -2189 ($ $ (-3 (-112) "failed"))) (-15 -3697 ((-112) $)) (-15 -2177 ((-660 |#4|) $)) (-15 -2165 (|#4| $)) (-15 -2153 ($ $)) (IF (|has| |#1| (-318)) (IF (|has| |#1| (-148)) (-15 -1979 ($ $)) |%noBranch|) |%noBranch|))) (-465) (-865) (-809) (-972 |#1| |#3| |#2|)) (T -1012)) +((-3639 (*1 *1) (-12 (-4 *2 (-465)) (-4 *3 (-865)) (-4 *4 (-809)) (-5 *1 (-1012 *2 *3 *4 *5)) (-4 *5 (-972 *2 *4 *3)))) (-2202 (*1 *1 *2 *3) (-12 (-5 *2 (-660 *3)) (-4 *3 (-972 *4 *6 *5)) (-4 *4 (-465)) (-4 *5 (-865)) (-4 *6 (-809)) (-5 *1 (-1012 *4 *5 *6 *3)))) (-3685 (*1 *2 *1) (|partial| -12 (-4 *3 (-465)) (-4 *4 (-865)) (-4 *5 (-809)) (-5 *2 (-112)) (-5 *1 (-1012 *3 *4 *5 *6)) (-4 *6 (-972 *3 *5 *4)))) (-2189 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-465)) (-4 *4 (-865)) (-4 *5 (-809)) (-5 *1 (-1012 *3 *4 *5 *6)) (-4 *6 (-972 *3 *5 *4)))) (-3697 (*1 *2 *1) (-12 (-4 *3 (-465)) (-4 *4 (-865)) (-4 *5 (-809)) (-5 *2 (-112)) (-5 *1 (-1012 *3 *4 *5 *6)) (-4 *6 (-972 *3 *5 *4)))) (-2177 (*1 *2 *1) (-12 (-4 *3 (-465)) (-4 *4 (-865)) (-4 *5 (-809)) (-5 *2 (-660 *6)) (-5 *1 (-1012 *3 *4 *5 *6)) (-4 *6 (-972 *3 *5 *4)))) (-2165 (*1 *2 *1) (-12 (-4 *2 (-972 *3 *5 *4)) (-5 *1 (-1012 *3 *4 *5 *2)) (-4 *3 (-465)) (-4 *4 (-865)) (-4 *5 (-809)))) (-2153 (*1 *1 *1) (-12 (-4 *2 (-465)) (-4 *3 (-865)) (-4 *4 (-809)) (-5 *1 (-1012 *2 *3 *4 *5)) (-4 *5 (-972 *2 *4 *3)))) (-1979 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-318)) (-4 *2 (-465)) (-4 *3 (-865)) (-4 *4 (-809)) (-5 *1 (-1012 *2 *3 *4 *5)) (-4 *5 (-972 *2 *4 *3))))) +(-13 (-1125) (-626 (-880)) (-10 -8 (-15 -3639 ($)) (-15 -2202 ($ (-660 |#4|) |#4|)) (-15 -3685 ((-3 (-112) "failed") $)) (-15 -2189 ($ $ (-3 (-112) "failed"))) (-15 -3697 ((-112) $)) (-15 -2177 ((-660 |#4|) $)) (-15 -2165 (|#4| $)) (-15 -2153 ($ $)) (IF (|has| |#1| (-318)) (IF (|has| |#1| (-148)) (-15 -1979 ($ $)) |%noBranch|) |%noBranch|))) +((-3003 (((-112) |#5| |#5|) 44)) (-1821 (((-112) |#5| |#5|) 59)) (-1880 (((-112) |#5| (-660 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-1833 (((-112) (-660 |#4|) (-660 |#4|)) 65)) (-1901 (((-112) (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|)) (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) 70)) (-2993 (((-1297)) 32)) (-2982 (((-1297) (-1183) (-1183) (-1183)) 28)) (-1890 (((-660 |#5|) (-660 |#5|)) 100)) (-1914 (((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|)))) 92)) (-1925 (((-660 (-2 (|:| -3994 (-660 |#4|)) (|:| -3952 |#5|) (|:| |ineq| (-660 |#4|)))) (-660 |#4|) (-660 |#5|) (-112) (-112)) 122)) (-3028 (((-112) |#5| |#5|) 53)) (-1868 (((-3 (-112) "failed") |#5| |#5|) 78)) (-1843 (((-112) (-660 |#4|) (-660 |#4|)) 64)) (-1855 (((-112) (-660 |#4|) (-660 |#4|)) 66)) (-4396 (((-112) (-660 |#4|) (-660 |#4|)) 67)) (-1936 (((-3 (-2 (|:| -3994 (-660 |#4|)) (|:| -3952 |#5|) (|:| |ineq| (-660 |#4|))) "failed") (-660 |#4|) |#5| (-660 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3015 (((-660 |#5|) (-660 |#5|)) 49))) +(((-1013 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2982 ((-1297) (-1183) (-1183) (-1183))) (-15 -2993 ((-1297))) (-15 -3003 ((-112) |#5| |#5|)) (-15 -3015 ((-660 |#5|) (-660 |#5|))) (-15 -3028 ((-112) |#5| |#5|)) (-15 -1821 ((-112) |#5| |#5|)) (-15 -1833 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -1843 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -1855 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -4396 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -1868 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1880 ((-112) |#5| |#5|)) (-15 -1880 ((-112) |#5| (-660 |#5|))) (-15 -1890 ((-660 |#5|) (-660 |#5|))) (-15 -1901 ((-112) (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|)) (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|)))) (-15 -1914 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) (-15 -1925 ((-660 (-2 (|:| -3994 (-660 |#4|)) (|:| -3952 |#5|) (|:| |ineq| (-660 |#4|)))) (-660 |#4|) (-660 |#5|) (-112) (-112))) (-15 -1936 ((-3 (-2 (|:| -3994 (-660 |#4|)) (|:| -3952 |#5|) (|:| |ineq| (-660 |#4|))) "failed") (-660 |#4|) |#5| (-660 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3| |#4|)) (T -1013)) +((-1936 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *9 (-1090 *6 *7 *8)) (-5 *2 (-2 (|:| -3994 (-660 *9)) (|:| -3952 *4) (|:| |ineq| (-660 *9)))) (-5 *1 (-1013 *6 *7 *8 *9 *4)) (-5 *3 (-660 *9)) (-4 *4 (-1096 *6 *7 *8 *9)))) (-1925 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-660 *10)) (-5 *5 (-112)) (-4 *10 (-1096 *6 *7 *8 *9)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *9 (-1090 *6 *7 *8)) (-5 *2 (-660 (-2 (|:| -3994 (-660 *9)) (|:| -3952 *10) (|:| |ineq| (-660 *9))))) (-5 *1 (-1013 *6 *7 *8 *9 *10)) (-5 *3 (-660 *9)))) (-1914 (*1 *2 *2) (-12 (-5 *2 (-660 (-2 (|:| |val| (-660 *6)) (|:| -3952 *7)))) (-4 *6 (-1090 *3 *4 *5)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1013 *3 *4 *5 *6 *7)))) (-1901 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -3952 *8))) (-4 *7 (-1090 *4 *5 *6)) (-4 *8 (-1096 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *8)))) (-1890 (*1 *2 *2) (-12 (-5 *2 (-660 *7)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *1 (-1013 *3 *4 *5 *6 *7)))) (-1880 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1013 *5 *6 *7 *8 *3)))) (-1880 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-1868 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-4396 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-1855 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-1843 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-1833 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-1821 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-3028 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-660 *7)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *1 (-1013 *3 *4 *5 *6 *7)))) (-3003 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-2993 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) (-5 *1 (-1013 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6)))) (-2982 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) +(-10 -7 (-15 -2982 ((-1297) (-1183) (-1183) (-1183))) (-15 -2993 ((-1297))) (-15 -3003 ((-112) |#5| |#5|)) (-15 -3015 ((-660 |#5|) (-660 |#5|))) (-15 -3028 ((-112) |#5| |#5|)) (-15 -1821 ((-112) |#5| |#5|)) (-15 -1833 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -1843 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -1855 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -4396 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -1868 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1880 ((-112) |#5| |#5|)) (-15 -1880 ((-112) |#5| (-660 |#5|))) (-15 -1890 ((-660 |#5|) (-660 |#5|))) (-15 -1901 ((-112) (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|)) (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|)))) (-15 -1914 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) (-15 -1925 ((-660 (-2 (|:| -3994 (-660 |#4|)) (|:| -3952 |#5|) (|:| |ineq| (-660 |#4|)))) (-660 |#4|) (-660 |#5|) (-112) (-112))) (-15 -1936 ((-3 (-2 (|:| -3994 (-660 |#4|)) (|:| -3952 |#5|) (|:| |ineq| (-660 |#4|))) "failed") (-660 |#4|) |#5| (-660 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3076 (((-1201) $) 15)) (-3115 (((-1183) $) 16)) (-2448 (($ (-1201) (-1183)) 14)) (-3544 (((-880) $) 13))) +(((-1014) (-13 (-626 (-880)) (-10 -8 (-15 -2448 ($ (-1201) (-1183))) (-15 -3076 ((-1201) $)) (-15 -3115 ((-1183) $))))) (T -1014)) +((-2448 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1183)) (-5 *1 (-1014)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1014)))) (-3115 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1014))))) +(-13 (-626 (-880)) (-10 -8 (-15 -2448 ($ (-1201) (-1183))) (-15 -3076 ((-1201) $)) (-15 -3115 ((-1183) $)))) +((-4087 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-1015 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 (|#4| (-1 |#2| |#1|) |#3|))) (-569) (-569) (-1017 |#1|) (-1017 |#2|)) (T -1015)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-4 *2 (-1017 *6)) (-5 *1 (-1015 *5 *6 *4 *2)) (-4 *4 (-1017 *5))))) +(-10 -7 (-15 -4087 (|#4| (-1 |#2| |#1|) |#3|))) +((-1628 (((-3 |#2| "failed") $) NIL) (((-3 (-1201) "failed") $) 66) (((-3 (-420 (-577)) "failed") $) NIL) (((-3 (-577) "failed") $) 96)) (-2921 ((|#2| $) NIL) (((-1201) $) 61) (((-420 (-577)) $) NIL) (((-577) $) 93)) (-1647 (((-705 (-577)) (-705 $)) NIL) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) 115) (((-705 |#2|) (-705 $)) 28)) (-1910 (($) 99)) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 76) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 85)) (-2240 (($ $) 10)) (-4021 (((-3 $ "failed") $) 20)) (-4087 (($ (-1 |#2| |#2|) $) 22)) (-1709 (($) 16)) (-4093 (($ $) 55)) (-2852 (($ $ (-1 |#2| |#2|)) 36) (($ $ (-1 |#2| |#2|) (-787)) NIL) (($ $ (-1201)) NIL) (($ $ (-660 (-1201))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL) (($ $) NIL) (($ $ (-787)) NIL)) (-2227 (($ $) 12)) (-4152 (((-911 (-577)) $) 71) (((-911 (-391)) $) 80) (((-549) $) 40) (((-391) $) 44) (((-228) $) 48)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) 91) (($ |#2|) NIL) (($ (-1201)) 58)) (-4068 (((-787)) 31)) (-2990 (((-112) $ $) 51))) +(((-1016 |#1| |#2|) (-10 -8 (-15 -2990 ((-112) |#1| |#1|)) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -1709 (|#1|)) (-15 -4021 ((-3 |#1| "failed") |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -4152 ((-228) |#1|)) (-15 -4152 ((-391) |#1|)) (-15 -4152 ((-549) |#1|)) (-15 -3544 (|#1| (-1201))) (-15 -1628 ((-3 (-1201) "failed") |#1|)) (-15 -2921 ((-1201) |#1|)) (-15 -1910 (|#1|)) (-15 -4093 (|#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -2240 (|#1| |#1|)) (-15 -3795 ((-908 (-391) |#1|) |#1| (-911 (-391)) (-908 (-391) |#1|))) (-15 -3795 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|))) (-15 -4152 ((-911 (-391)) |#1|)) (-15 -4152 ((-911 (-577)) |#1|)) (-15 -1647 ((-705 |#2|) (-705 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-705 (-577)) (-705 |#1|))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4087 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -3544 (|#1| |#2|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -3544 (|#1| |#1|)) (-15 -4068 ((-787))) (-15 -3544 (|#1| (-577))) (-15 -3544 ((-880) |#1|))) (-1017 |#2|) (-569)) (T -1016)) +((-4068 (*1 *2) (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-1016 *3 *4)) (-4 *3 (-1017 *4))))) +(-10 -8 (-15 -2990 ((-112) |#1| |#1|)) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -1709 (|#1|)) (-15 -4021 ((-3 |#1| "failed") |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -4152 ((-228) |#1|)) (-15 -4152 ((-391) |#1|)) (-15 -4152 ((-549) |#1|)) (-15 -3544 (|#1| (-1201))) (-15 -1628 ((-3 (-1201) "failed") |#1|)) (-15 -2921 ((-1201) |#1|)) (-15 -1910 (|#1|)) (-15 -4093 (|#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -2240 (|#1| |#1|)) (-15 -3795 ((-908 (-391) |#1|) |#1| (-911 (-391)) (-908 (-391) |#1|))) (-15 -3795 ((-908 (-577) |#1|) |#1| (-911 (-577)) (-908 (-577) |#1|))) (-15 -4152 ((-911 (-391)) |#1|)) (-15 -4152 ((-911 (-577)) |#1|)) (-15 -1647 ((-705 |#2|) (-705 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-705 (-577)) (-705 |#1|))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4087 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -3544 (|#1| |#2|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -3544 (|#1| |#1|)) (-15 -4068 ((-787))) (-15 -3544 (|#1| (-577))) (-15 -3544 ((-880) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-4105 ((|#1| $) 163 (|has| |#1| (-318)))) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-1956 (((-3 $ "failed") $ $) 20)) (-2294 (((-431 (-1197 $)) (-1197 $)) 154 (|has| |#1| (-932)))) (-3841 (($ $) 81)) (-3029 (((-431 $) $) 80)) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 157 (|has| |#1| (-932)))) (-1939 (((-112) $ $) 65)) (-3010 (((-577) $) 144 (|has| |#1| (-836)))) (-1534 (($) 18 T CONST)) (-1628 (((-3 |#1| "failed") $) 193) (((-3 (-1201) "failed") $) 152 (|has| |#1| (-1063 (-1201)))) (((-3 (-420 (-577)) "failed") $) 135 (|has| |#1| (-1063 (-577)))) (((-3 (-577) "failed") $) 133 (|has| |#1| (-1063 (-577))))) (-2921 ((|#1| $) 194) (((-1201) $) 153 (|has| |#1| (-1063 (-1201)))) (((-420 (-577)) $) 136 (|has| |#1| (-1063 (-577)))) (((-577) $) 134 (|has| |#1| (-1063 (-577))))) (-3418 (($ $ $) 61)) (-1647 (((-705 (-577)) (-705 $)) 178 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 177 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 176) (((-705 |#1|) (-705 $)) 175)) (-4187 (((-3 $ "failed") $) 37)) (-1910 (($) 161 (|has| |#1| (-558)))) (-3429 (($ $ $) 62)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 57)) (-1522 (((-112) $) 79)) (-3567 (((-112) $) 146 (|has| |#1| (-836)))) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 170 (|has| |#1| (-905 (-577)))) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 169 (|has| |#1| (-905 (-391))))) (-2487 (((-112) $) 35)) (-2240 (($ $) 165)) (-1623 ((|#1| $) 167)) (-4021 (((-3 $ "failed") $) 132 (|has| |#1| (-1177)))) (-3578 (((-112) $) 145 (|has| |#1| (-836)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 58)) (-3732 (($ $ $) 137 (|has| |#1| (-865)))) (-3201 (($ $ $) 138 (|has| |#1| (-865)))) (-4087 (($ (-1 |#1| |#1|) $) 185)) (-1657 (((-705 (-577)) (-1292 $)) 180 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 179 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 174) (((-705 |#1|) (-1292 $)) 173)) (-3446 (($ $ $) 52) (($ (-660 $)) 51)) (-2810 (((-1183) $) 10)) (-2171 (($ $) 78)) (-1709 (($) 131 (|has| |#1| (-1177)) CONST)) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 50)) (-3480 (($ $ $) 54) (($ (-660 $)) 53)) (-4093 (($ $) 162 (|has| |#1| (-318)))) (-4119 ((|#1| $) 159 (|has| |#1| (-558)))) (-2269 (((-431 (-1197 $)) (-1197 $)) 156 (|has| |#1| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) 155 (|has| |#1| (-932)))) (-1902 (((-431 $) $) 82)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3462 (((-3 $ "failed") $ $) 48)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 56)) (-3280 (($ $ (-660 |#1|) (-660 |#1|)) 191 (|has| |#1| (-320 |#1|))) (($ $ |#1| |#1|) 190 (|has| |#1| (-320 |#1|))) (($ $ (-305 |#1|)) 189 (|has| |#1| (-320 |#1|))) (($ $ (-660 (-305 |#1|))) 188 (|has| |#1| (-320 |#1|))) (($ $ (-660 (-1201)) (-660 |#1|)) 187 (|has| |#1| (-527 (-1201) |#1|))) (($ $ (-1201) |#1|) 186 (|has| |#1| (-527 (-1201) |#1|)))) (-1927 (((-787) $) 64)) (-2872 (($ $ |#1|) 192 (|has| |#1| (-297 |#1| |#1|)))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 63)) (-2852 (($ $ (-1 |#1| |#1|)) 184) (($ $ (-1 |#1| |#1|) (-787)) 183) (($ $) 130 (|has| |#1| (-238))) (($ $ (-787)) 128 (|has| |#1| (-238))) (($ $ (-1201)) 126 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) 124 (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) 123 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) 122 (|has| |#1| (-923 (-1201))))) (-2227 (($ $) 164)) (-1637 ((|#1| $) 166)) (-4152 (((-911 (-577)) $) 172 (|has| |#1| (-627 (-911 (-577))))) (((-911 (-391)) $) 171 (|has| |#1| (-627 (-911 (-391))))) (((-549) $) 149 (|has| |#1| (-627 (-549)))) (((-391) $) 148 (|has| |#1| (-1047))) (((-228) $) 147 (|has| |#1| (-1047)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) 158 (-2761 (|has| $ (-146)) (|has| |#1| (-932))))) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49) (($ (-420 (-577))) 74) (($ |#1|) 197) (($ (-1201)) 151 (|has| |#1| (-1063 (-1201))))) (-2233 (((-3 $ "failed") $) 150 (-2839 (|has| |#1| (-146)) (-2761 (|has| $ (-146)) (|has| |#1| (-932)))))) (-4068 (((-787)) 32 T CONST)) (-4132 ((|#1| $) 160 (|has| |#1| (-558)))) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 45)) (-1654 (($ $) 143 (|has| |#1| (-836)))) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-1 |#1| |#1|)) 182) (($ $ (-1 |#1| |#1|) (-787)) 181) (($ $) 129 (|has| |#1| (-238))) (($ $ (-787)) 127 (|has| |#1| (-238))) (($ $ (-1201)) 125 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) 121 (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) 120 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) 119 (|has| |#1| (-923 (-1201))))) (-3025 (((-112) $ $) 139 (|has| |#1| (-865)))) (-3000 (((-112) $ $) 141 (|has| |#1| (-865)))) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 140 (|has| |#1| (-865)))) (-2990 (((-112) $ $) 142 (|has| |#1| (-865)))) (-3077 (($ $ $) 73) (($ |#1| |#1|) 168)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 77)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ (-420 (-577))) 76) (($ (-420 (-577)) $) 75) (($ |#1| $) 196) (($ $ |#1|) 195))) +(((-1017 |#1|) (-141) (-569)) (T -1017)) +((-3077 (*1 *1 *2 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)))) (-2240 (*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)))) (-2227 (*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)))) (-4105 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)) (-4 *2 (-318)))) (-4093 (*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)) (-4 *2 (-318)))) (-1910 (*1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-558)) (-4 *2 (-569)))) (-4132 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)) (-4 *2 (-558)))) (-4119 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)) (-4 *2 (-558))))) +(-13 (-375) (-38 |t#1|) (-1063 |t#1|) (-350 |t#1|) (-233 |t#1|) (-389 |t#1|) (-903 |t#1|) (-413 |t#1|) (-10 -8 (-15 -3077 ($ |t#1| |t#1|)) (-15 -1623 (|t#1| $)) (-15 -1637 (|t#1| $)) (-15 -2240 ($ $)) (-15 -2227 ($ $)) (IF (|has| |t#1| (-1177)) (-6 (-1177)) |%noBranch|) (IF (|has| |t#1| (-1063 (-577))) (PROGN (-6 (-1063 (-577))) (-6 (-1063 (-420 (-577))))) |%noBranch|) (IF (|has| |t#1| (-865)) (-6 (-865)) |%noBranch|) (IF (|has| |t#1| (-836)) (-6 (-836)) |%noBranch|) (IF (|has| |t#1| (-1047)) (-6 (-1047)) |%noBranch|) (IF (|has| |t#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1063 (-1201))) (-6 (-1063 (-1201))) |%noBranch|) (IF (|has| |t#1| (-318)) (PROGN (-15 -4105 (|t#1| $)) (-15 -4093 ($ $))) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -1910 ($)) (-15 -4132 (|t#1| $)) (-15 -4119 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-932)) (-6 (-932)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 #1=(-1201)) |has| |#1| (-1063 (-1201))) ((-629 |#1|) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-627 (-228)) |has| |#1| (-1047)) ((-627 (-391)) |has| |#1| (-1047)) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-627 (-911 (-391))) |has| |#1| (-627 (-911 (-391)))) ((-627 (-911 (-577))) |has| |#1| (-627 (-911 (-577)))) ((-235 $) -2839 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) -2839 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-249) . T) ((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-301) . T) ((-318) . T) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-375) . T) ((-350 |#1|) . T) ((-389 |#1|) . T) ((-413 |#1|) . T) ((-465) . T) ((-527 (-1201) |#1|) |has| |#1| (-527 (-1201) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 #2=(-577)) |has| |#1| (-654 (-577))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-654 #2#) |has| |#1| (-654 (-577))) ((-654 |#1|) . T) ((-733 #0#) . T) ((-733 |#1|) . T) ((-733 $) . T) ((-742) . T) ((-807) |has| |#1| (-836)) ((-808) |has| |#1| (-836)) ((-810) |has| |#1| (-836)) ((-811) |has| |#1| (-836)) ((-836) |has| |#1| (-836)) ((-864) |has| |#1| (-836)) ((-865) -2839 (|has| |#1| (-865)) (|has| |#1| (-836))) ((-868) -2839 (|has| |#1| (-865)) (|has| |#1| (-836))) ((-915 $ #3=(-1201)) -2839 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-921 (-1201)) |has| |#1| (-921 (-1201))) ((-923 #3#) -2839 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-905 (-391)) |has| |#1| (-905 (-391))) ((-905 (-577)) |has| |#1| (-905 (-577))) ((-903 |#1|) . T) ((-932) |has| |#1| (-932)) ((-943) . T) ((-1047) |has| |#1| (-1047)) ((-1063 (-420 (-577))) |has| |#1| (-1063 (-577))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 #1#) |has| |#1| (-1063 (-1201))) ((-1063 |#1|) . T) ((-1076 #0#) . T) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1177) |has| |#1| (-1177)) ((-1242) . T) ((-1246) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-2253 (($ (-1167 |#1| |#2|)) 11)) (-2550 (((-1167 |#1| |#2|) $) 12)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2872 ((|#2| $ (-246 |#1| |#2|)) 16)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2806 (($) NIL T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL))) +(((-1018 |#1| |#2|) (-13 (-21) (-297 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -2253 ($ (-1167 |#1| |#2|))) (-15 -2550 ((-1167 |#1| |#2|) $)))) (-944) (-375)) (T -1018)) +((-2253 (*1 *1 *2) (-12 (-5 *2 (-1167 *3 *4)) (-14 *3 (-944)) (-4 *4 (-375)) (-5 *1 (-1018 *3 *4)))) (-2550 (*1 *2 *1) (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-1018 *3 *4)) (-14 *3 (-944)) (-4 *4 (-375))))) +(-13 (-21) (-297 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -2253 ($ (-1167 |#1| |#2|))) (-15 -2550 ((-1167 |#1| |#2|) $)))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3131 (((-1160) $) 9)) (-3544 (((-880) $) 15) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-1019) (-13 (-1108) (-10 -8 (-15 -3131 ((-1160) $))))) (T -1019)) +((-3131 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1019))))) +(-13 (-1108) (-10 -8 (-15 -3131 ((-1160) $)))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3828 (((-112) $ (-787)) 8)) (-1534 (($) 7 T CONST)) (-2289 (($ $) 47)) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) 9)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-3402 (((-787) $) 46)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-4330 ((|#1| $) 40)) (-2881 (($ |#1| $) 41)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-2276 ((|#1| $) 45)) (-3530 ((|#1| $) 42)) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-2311 ((|#1| |#1| $) 49)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2300 ((|#1| $) 48)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3541 (($ (-660 |#1|)) 43)) (-2265 ((|#1| $) 44)) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-1020 |#1|) (-141) (-1242)) (T -1020)) +((-2311 (*1 *2 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242)))) (-2300 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242)))) (-2289 (*1 *1 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242)))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-1020 *3)) (-4 *3 (-1242)) (-5 *2 (-787)))) (-2276 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242)))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4470) (-15 -2311 (|t#1| |t#1| $)) (-15 -2300 (|t#1| $)) (-15 -2289 ($ $)) (-15 -3402 ((-787) $)) (-15 -2276 (|t#1| $)) (-15 -2265 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) +((-3585 (((-112) $) 43)) (-1628 (((-3 (-577) "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2921 (((-577) $) NIL) (((-420 (-577)) $) NIL) ((|#2| $) 44)) (-4363 (((-3 (-420 (-577)) "failed") $) 78)) (-4353 (((-112) $) 72)) (-4341 (((-420 (-577)) $) 76)) (-2487 (((-112) $) 42)) (-4145 ((|#2| $) 22)) (-4087 (($ (-1 |#2| |#2|) $) 19)) (-2171 (($ $) 58)) (-2852 (($ $ (-1 |#2| |#2|)) 35) (($ $ (-1 |#2| |#2|) (-787)) NIL) (($ $ (-1201)) NIL) (($ $ (-660 (-1201))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL) (($ $) NIL) (($ $ (-787)) NIL)) (-4152 (((-549) $) 67)) (-2360 (($ $) 17)) (-3544 (((-880) $) 53) (($ (-577)) 39) (($ |#2|) 37) (($ (-420 (-577))) NIL)) (-4068 (((-787)) 10)) (-1654 ((|#2| $) 71)) (-2970 (((-112) $ $) 26)) (-2990 (((-112) $ $) 69)) (-3066 (($ $) 30) (($ $ $) 29)) (-3055 (($ $ $) 27)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL))) +(((-1021 |#1| |#2|) (-10 -8 (-15 -3544 (|#1| (-420 (-577)))) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -2990 ((-112) |#1| |#1|)) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 * (|#1| |#1| (-420 (-577)))) (-15 -2171 (|#1| |#1|)) (-15 -4152 ((-549) |#1|)) (-15 -4363 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -4341 ((-420 (-577)) |#1|)) (-15 -4353 ((-112) |#1|)) (-15 -1654 (|#2| |#1|)) (-15 -4145 (|#2| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -4087 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -3544 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4068 ((-787))) (-15 -3544 (|#1| (-577))) (-15 -2487 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 -3585 ((-112) |#1|)) (-15 * (|#1| (-944) |#1|)) (-15 -3055 (|#1| |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -2970 ((-112) |#1| |#1|))) (-1022 |#2|) (-174)) (T -1021)) +((-4068 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-787)) (-5 *1 (-1021 *3 *4)) (-4 *3 (-1022 *4))))) +(-10 -8 (-15 -3544 (|#1| (-420 (-577)))) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1|)) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -2990 ((-112) |#1| |#1|)) (-15 * (|#1| (-420 (-577)) |#1|)) (-15 * (|#1| |#1| (-420 (-577)))) (-15 -2171 (|#1| |#1|)) (-15 -4152 ((-549) |#1|)) (-15 -4363 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -4341 ((-420 (-577)) |#1|)) (-15 -4353 ((-112) |#1|)) (-15 -1654 (|#2| |#1|)) (-15 -4145 (|#2| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -4087 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -3544 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4068 ((-787))) (-15 -3544 (|#1| (-577))) (-15 -2487 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 * (|#1| (-787) |#1|)) (-15 -3585 ((-112) |#1|)) (-15 * (|#1| (-944) |#1|)) (-15 -3055 (|#1| |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -2970 ((-112) |#1| |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-1628 (((-3 (-577) "failed") $) 135 (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) 133 (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) 130)) (-2921 (((-577) $) 134 (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) 132 (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) 131)) (-1647 (((-705 (-577)) (-705 $)) 115 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 114 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 113) (((-705 |#1|) (-705 $)) 112)) (-4187 (((-3 $ "failed") $) 37)) (-1926 ((|#1| $) 103)) (-4363 (((-3 (-420 (-577)) "failed") $) 99 (|has| |#1| (-558)))) (-4353 (((-112) $) 101 (|has| |#1| (-558)))) (-4341 (((-420 (-577)) $) 100 (|has| |#1| (-558)))) (-2321 (($ |#1| |#1| |#1| |#1|) 104)) (-2487 (((-112) $) 35)) (-4145 ((|#1| $) 105)) (-3732 (($ $ $) 87 (|has| |#1| (-865)))) (-3201 (($ $ $) 88 (|has| |#1| (-865)))) (-4087 (($ (-1 |#1| |#1|) $) 118)) (-1657 (((-705 (-577)) (-1292 $)) 117 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 116 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 111) (((-705 |#1|) (-1292 $)) 110)) (-2810 (((-1183) $) 10)) (-2171 (($ $) 96 (|has| |#1| (-375)))) (-2331 ((|#1| $) 106)) (-2342 ((|#1| $) 107)) (-2351 ((|#1| $) 108)) (-1474 (((-1145) $) 11)) (-3280 (($ $ (-660 |#1|) (-660 |#1|)) 124 (|has| |#1| (-320 |#1|))) (($ $ |#1| |#1|) 123 (|has| |#1| (-320 |#1|))) (($ $ (-305 |#1|)) 122 (|has| |#1| (-320 |#1|))) (($ $ (-660 (-305 |#1|))) 121 (|has| |#1| (-320 |#1|))) (($ $ (-660 (-1201)) (-660 |#1|)) 120 (|has| |#1| (-527 (-1201) |#1|))) (($ $ (-1201) |#1|) 119 (|has| |#1| (-527 (-1201) |#1|)))) (-2872 (($ $ |#1|) 125 (|has| |#1| (-297 |#1| |#1|)))) (-2852 (($ $ (-1 |#1| |#1|)) 129) (($ $ (-1 |#1| |#1|) (-787)) 128) (($ $) 86 (|has| |#1| (-238))) (($ $ (-787)) 84 (|has| |#1| (-238))) (($ $ (-1201)) 82 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) 80 (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) 79 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) 78 (|has| |#1| (-923 (-1201))))) (-4152 (((-549) $) 97 (|has| |#1| (-627 (-549))))) (-2360 (($ $) 109)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 44) (($ (-420 (-577))) 74 (-2839 (|has| |#1| (-375)) (|has| |#1| (-1063 (-420 (-577))))))) (-2233 (((-3 $ "failed") $) 98 (|has| |#1| (-146)))) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-1654 ((|#1| $) 102 (|has| |#1| (-1085)))) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-1 |#1| |#1|)) 127) (($ $ (-1 |#1| |#1|) (-787)) 126) (($ $) 85 (|has| |#1| (-238))) (($ $ (-787)) 83 (|has| |#1| (-238))) (($ $ (-1201)) 81 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) 77 (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) 76 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) 75 (|has| |#1| (-923 (-1201))))) (-3025 (((-112) $ $) 89 (|has| |#1| (-865)))) (-3000 (((-112) $ $) 91 (|has| |#1| (-865)))) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 90 (|has| |#1| (-865)))) (-2990 (((-112) $ $) 92 (|has| |#1| (-865)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 95 (|has| |#1| (-375)))) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-420 (-577))) 94 (|has| |#1| (-375))) (($ (-420 (-577)) $) 93 (|has| |#1| (-375))))) +(((-1022 |#1|) (-141) (-174)) (T -1022)) +((-2360 (*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)))) (-2351 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)))) (-4145 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)))) (-2321 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)))) (-1926 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)) (-4 *2 (-1085)))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) (-4341 (*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577))))) (-4363 (*1 *2 *1) (|partial| -12 (-4 *1 (-1022 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-420 (-577)))))) +(-13 (-38 |t#1|) (-424 |t#1|) (-233 |t#1|) (-350 |t#1|) (-389 |t#1|) (-10 -8 (-15 -2360 ($ $)) (-15 -2351 (|t#1| $)) (-15 -2342 (|t#1| $)) (-15 -2331 (|t#1| $)) (-15 -4145 (|t#1| $)) (-15 -2321 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1926 (|t#1| $)) (IF (|has| |t#1| (-301)) (-6 (-301)) |%noBranch|) (IF (|has| |t#1| (-865)) (-6 (-865)) |%noBranch|) (IF (|has| |t#1| (-375)) (-6 (-249)) |%noBranch|) (IF (|has| |t#1| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1085)) (-15 -1654 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -4353 ((-112) $)) (-15 -4341 ((-420 (-577)) $)) (-15 -4363 ((-3 (-420 (-577)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-375)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-375)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2839 (|has| |#1| (-375)) (|has| |#1| (-301))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) -2839 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-375))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-235 $) -2839 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-233 |#1|) . T) ((-239) |has| |#1| (-239)) ((-238) -2839 (|has| |#1| (-238)) (|has| |#1| (-239))) ((-273 |#1|) . T) ((-249) |has| |#1| (-375)) ((-297 |#1| $) |has| |#1| (-297 |#1| |#1|)) ((-301) -2839 (|has| |#1| (-375)) (|has| |#1| (-301))) ((-320 |#1|) |has| |#1| (-320 |#1|)) ((-350 |#1|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-527 (-1201) |#1|) |has| |#1| (-527 (-1201) |#1|)) ((-527 |#1| |#1|) |has| |#1| (-320 |#1|)) ((-662 #0#) |has| |#1| (-375)) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) |has| |#1| (-375)) ((-664 #1=(-577)) |has| |#1| (-654 (-577))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) |has| |#1| (-375)) ((-656 |#1|) . T) ((-654 #1#) |has| |#1| (-654 (-577))) ((-654 |#1|) . T) ((-733 #0#) |has| |#1| (-375)) ((-733 |#1|) . T) ((-742) . T) ((-865) |has| |#1| (-865)) ((-868) |has| |#1| (-865)) ((-915 $ #2=(-1201)) -2839 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-921 (-1201)) |has| |#1| (-921 (-1201))) ((-923 #2#) -2839 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-1063 (-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1076 #0#) |has| |#1| (-375)) ((-1076 |#1|) . T) ((-1076 $) -2839 (|has| |#1| (-375)) (|has| |#1| (-301))) ((-1081 #0#) |has| |#1| (-375)) ((-1081 |#1|) . T) ((-1081 $) -2839 (|has| |#1| (-375)) (|has| |#1| (-301))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-4087 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-1023 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 (|#3| (-1 |#4| |#2|) |#1|))) (-1022 |#2|) (-174) (-1022 |#4|) (-174)) (T -1023)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1022 *6)) (-5 *1 (-1023 *4 *5 *2 *6)) (-4 *4 (-1022 *5))))) +(-10 -7 (-15 -4087 (|#3| (-1 |#4| |#2|) |#1|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) NIL)) (-2921 (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL) (((-705 |#1|) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1926 ((|#1| $) 12)) (-4363 (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-558)))) (-4353 (((-112) $) NIL (|has| |#1| (-558)))) (-4341 (((-420 (-577)) $) NIL (|has| |#1| (-558)))) (-2321 (($ |#1| |#1| |#1| |#1|) 16)) (-2487 (((-112) $) NIL)) (-4145 ((|#1| $) NIL)) (-3732 (($ $ $) NIL (|has| |#1| (-865)))) (-3201 (($ $ $) NIL (|has| |#1| (-865)))) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL) (((-705 |#1|) (-1292 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL (|has| |#1| (-375)))) (-2331 ((|#1| $) 15)) (-2342 ((|#1| $) 14)) (-2351 ((|#1| $) 13)) (-1474 (((-1145) $) NIL)) (-3280 (($ $ (-660 |#1|) (-660 |#1|)) NIL (|has| |#1| (-320 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-320 |#1|))) (($ $ (-305 |#1|)) NIL (|has| |#1| (-320 |#1|))) (($ $ (-660 (-305 |#1|))) NIL (|has| |#1| (-320 |#1|))) (($ $ (-660 (-1201)) (-660 |#1|)) NIL (|has| |#1| (-527 (-1201) |#1|))) (($ $ (-1201) |#1|) NIL (|has| |#1| (-527 (-1201) |#1|)))) (-2872 (($ $ |#1|) NIL (|has| |#1| (-297 |#1| |#1|)))) (-2852 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $) NIL (|has| |#1| (-238))) (($ $ (-787)) NIL (|has| |#1| (-238))) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))))) (-4152 (((-549) $) NIL (|has| |#1| (-627 (-549))))) (-2360 (($ $) NIL)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#1|) NIL) (($ (-420 (-577))) NIL (-2839 (|has| |#1| (-375)) (|has| |#1| (-1063 (-420 (-577))))))) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-1654 ((|#1| $) NIL (|has| |#1| (-1085)))) (-2806 (($) 8 T CONST)) (-2816 (($) 10 T CONST)) (-2132 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $) NIL (|has| |#1| (-238))) (($ $ (-787)) NIL (|has| |#1| (-238))) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))))) (-3025 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL (|has| |#1| (-375)))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-420 (-577))) NIL (|has| |#1| (-375))) (($ (-420 (-577)) $) NIL (|has| |#1| (-375))))) +(((-1024 |#1|) (-1022 |#1|) (-174)) (T -1024)) +NIL +(-1022 |#1|) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3828 (((-112) $ (-787)) NIL)) (-1534 (($) NIL T CONST)) (-2289 (($ $) 23)) (-2370 (($ (-660 |#1|)) 33)) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-3402 (((-787) $) 26)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-4330 ((|#1| $) 28)) (-2881 (($ |#1| $) 17)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-2276 ((|#1| $) 27)) (-3530 ((|#1| $) 22)) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-2311 ((|#1| |#1| $) 16)) (-3697 (((-112) $) 18)) (-3639 (($) NIL)) (-2300 ((|#1| $) 21)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) NIL)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3541 (($ (-660 |#1|)) NIL)) (-2265 ((|#1| $) 30)) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-1025 |#1|) (-13 (-1020 |#1|) (-10 -8 (-15 -2370 ($ (-660 |#1|))))) (-1125)) (T -1025)) +((-2370 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-1025 *3))))) +(-13 (-1020 |#1|) (-10 -8 (-15 -2370 ($ (-660 |#1|))))) +((-1913 (($ $) 12)) (-2381 (($ $ (-577)) 13))) +(((-1026 |#1|) (-10 -8 (-15 -1913 (|#1| |#1|)) (-15 -2381 (|#1| |#1| (-577)))) (-1027)) (T -1026)) +NIL +(-10 -8 (-15 -1913 (|#1| |#1|)) (-15 -2381 (|#1| |#1| (-577)))) +((-1913 (($ $) 6)) (-2381 (($ $ (-577)) 7)) (** (($ $ (-420 (-577))) 8))) +(((-1027) (-141)) (T -1027)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-420 (-577))))) (-2381 (*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-577)))) (-1913 (*1 *1 *1) (-4 *1 (-1027)))) +(-13 (-10 -8 (-15 -1913 ($ $)) (-15 -2381 ($ $ (-577))) (-15 ** ($ $ (-420 (-577)))))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-4402 (((-2 (|:| |num| (-1292 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| (-420 |#2|) (-375)))) (-3290 (($ $) NIL (|has| (-420 |#2|) (-375)))) (-3271 (((-112) $) NIL (|has| (-420 |#2|) (-375)))) (-3390 (((-705 (-420 |#2|)) (-1292 $)) NIL) (((-705 (-420 |#2|))) NIL)) (-2339 (((-420 |#2|) $) NIL)) (-1595 (((-1214 (-944) (-787)) (-577)) NIL (|has| (-420 |#2|) (-361)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL (|has| (-420 |#2|) (-375)))) (-3029 (((-431 $) $) NIL (|has| (-420 |#2|) (-375)))) (-1939 (((-112) $ $) NIL (|has| (-420 |#2|) (-375)))) (-2229 (((-787)) NIL (|has| (-420 |#2|) (-380)))) (-1439 (((-112)) NIL)) (-1428 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL (|has| (-420 |#2|) (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-420 |#2|) (-1063 (-420 (-577))))) (((-3 (-420 |#2|) "failed") $) NIL)) (-2921 (((-577) $) NIL (|has| (-420 |#2|) (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| (-420 |#2|) (-1063 (-420 (-577))))) (((-420 |#2|) $) NIL)) (-3502 (($ (-1292 (-420 |#2|)) (-1292 $)) NIL) (($ (-1292 (-420 |#2|))) 79) (($ (-1292 |#2|) |#2|) NIL)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-420 |#2|) (-361)))) (-3418 (($ $ $) NIL (|has| (-420 |#2|) (-375)))) (-3381 (((-705 (-420 |#2|)) $ (-1292 $)) NIL) (((-705 (-420 |#2|)) $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| (-420 |#2|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-420 |#2|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-420 |#2|))) (|:| |vec| (-1292 (-420 |#2|)))) (-705 $) (-1292 $)) NIL) (((-705 (-420 |#2|)) (-705 $)) NIL)) (-1337 (((-1292 $) (-1292 $)) NIL)) (-3654 (($ |#3|) 73) (((-3 $ "failed") (-420 |#3|)) NIL (|has| (-420 |#2|) (-375)))) (-4187 (((-3 $ "failed") $) NIL)) (-4315 (((-660 (-660 |#1|))) NIL (|has| |#1| (-380)))) (-1475 (((-112) |#1| |#1|) NIL)) (-1545 (((-944)) NIL)) (-1910 (($) NIL (|has| (-420 |#2|) (-380)))) (-1418 (((-112)) NIL)) (-1407 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-3429 (($ $ $) NIL (|has| (-420 |#2|) (-375)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| (-420 |#2|) (-375)))) (-3143 (($ $) NIL)) (-4205 (($) NIL (|has| (-420 |#2|) (-361)))) (-1655 (((-112) $) NIL (|has| (-420 |#2|) (-361)))) (-3233 (($ $ (-787)) NIL (|has| (-420 |#2|) (-361))) (($ $) NIL (|has| (-420 |#2|) (-361)))) (-1522 (((-112) $) NIL (|has| (-420 |#2|) (-375)))) (-3817 (((-944) $) NIL (|has| (-420 |#2|) (-361))) (((-849 (-944)) $) NIL (|has| (-420 |#2|) (-361)))) (-2487 (((-112) $) NIL)) (-1605 (((-787)) NIL)) (-1348 (((-1292 $) (-1292 $)) NIL)) (-4145 (((-420 |#2|) $) NIL)) (-4326 (((-660 (-975 |#1|)) (-1201)) NIL (|has| |#1| (-375)))) (-4021 (((-3 $ "failed") $) NIL (|has| (-420 |#2|) (-361)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| (-420 |#2|) (-375)))) (-4084 ((|#3| $) NIL (|has| (-420 |#2|) (-375)))) (-4038 (((-944) $) NIL (|has| (-420 |#2|) (-380)))) (-3642 ((|#3| $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| (-420 |#2|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-420 |#2|) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-420 |#2|))) (|:| |vec| (-1292 (-420 |#2|)))) (-1292 $) $) NIL) (((-705 (-420 |#2|)) (-1292 $)) NIL)) (-3446 (($ (-660 $)) NIL (|has| (-420 |#2|) (-375))) (($ $ $) NIL (|has| (-420 |#2|) (-375)))) (-2810 (((-1183) $) NIL)) (-4412 (((-705 (-420 |#2|))) 57)) (-4436 (((-705 (-420 |#2|))) 56)) (-2171 (($ $) NIL (|has| (-420 |#2|) (-375)))) (-4381 (($ (-1292 |#2|) |#2|) 80)) (-4423 (((-705 (-420 |#2|))) 55)) (-4449 (((-705 (-420 |#2|))) 54)) (-4371 (((-2 (|:| |num| (-705 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-4391 (((-2 (|:| |num| (-1292 |#2|)) (|:| |den| |#2|)) $) 86)) (-1395 (((-1292 $)) 51)) (-2627 (((-1292 $)) 50)) (-1384 (((-112) $) NIL)) (-1372 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-1709 (($) NIL (|has| (-420 |#2|) (-361)) CONST)) (-3222 (($ (-944)) NIL (|has| (-420 |#2|) (-380)))) (-4350 (((-3 |#2| "failed")) 70)) (-1474 (((-1145) $) NIL)) (-1497 (((-787)) NIL)) (-4101 (($) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| (-420 |#2|) (-375)))) (-3480 (($ (-660 $)) NIL (|has| (-420 |#2|) (-375))) (($ $ $) NIL (|has| (-420 |#2|) (-375)))) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) NIL (|has| (-420 |#2|) (-361)))) (-1902 (((-431 $) $) NIL (|has| (-420 |#2|) (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-420 |#2|) (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| (-420 |#2|) (-375)))) (-3462 (((-3 $ "failed") $ $) NIL (|has| (-420 |#2|) (-375)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| (-420 |#2|) (-375)))) (-1927 (((-787) $) NIL (|has| (-420 |#2|) (-375)))) (-2872 ((|#1| $ |#1| |#1|) NIL)) (-4360 (((-3 |#2| "failed")) 68)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| (-420 |#2|) (-375)))) (-1827 (((-420 |#2|) (-1292 $)) NIL) (((-420 |#2|)) 47)) (-3243 (((-787) $) NIL (|has| (-420 |#2|) (-361))) (((-3 (-787) "failed") $ $) NIL (|has| (-420 |#2|) (-361)))) (-2852 (($ $ (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375))) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-787)) NIL (|has| (-420 |#2|) (-375))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2839 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))))) (($ $ (-1201) (-787)) NIL (-2839 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))))) (($ $ (-660 (-1201))) NIL (-2839 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))))) (($ $ (-787)) NIL (-2839 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361)))) (($ $) NIL (-2839 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))))) (-2478 (((-705 (-420 |#2|)) (-1292 $) (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375)))) (-3557 ((|#3|) 58)) (-1585 (($) NIL (|has| (-420 |#2|) (-361)))) (-2710 (((-1292 (-420 |#2|)) $ (-1292 $)) NIL) (((-705 (-420 |#2|)) (-1292 $) (-1292 $)) NIL) (((-1292 (-420 |#2|)) $) 81) (((-705 (-420 |#2|)) (-1292 $)) NIL)) (-4152 (((-1292 (-420 |#2|)) $) NIL) (($ (-1292 (-420 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| (-420 |#2|) (-361)))) (-1359 (((-1292 $) (-1292 $)) NIL)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ (-420 |#2|)) NIL) (($ (-420 (-577))) NIL (-2839 (|has| (-420 |#2|) (-1063 (-420 (-577)))) (|has| (-420 |#2|) (-375)))) (($ $) NIL (|has| (-420 |#2|) (-375)))) (-2233 (($ $) NIL (|has| (-420 |#2|) (-361))) (((-3 $ "failed") $) NIL (|has| (-420 |#2|) (-146)))) (-3974 ((|#3| $) NIL)) (-4068 (((-787)) NIL T CONST)) (-1462 (((-112)) 65)) (-1450 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) NIL)) (-3281 (((-112) $ $) NIL (|has| (-420 |#2|) (-375)))) (-4338 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1486 (((-112)) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-1 (-420 |#2|) (-420 |#2|))) NIL (|has| (-420 |#2|) (-375))) (($ $ (-1 (-420 |#2|) (-420 |#2|)) (-787)) NIL (|has| (-420 |#2|) (-375))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2839 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))))) (($ $ (-1201) (-787)) NIL (-2839 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))))) (($ $ (-660 (-1201))) NIL (-2839 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-921 (-1201)))) (-12 (|has| (-420 |#2|) (-375)) (|has| (-420 |#2|) (-923 (-1201)))))) (($ $ (-787)) NIL (-2839 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361)))) (($ $) NIL (-2839 (-12 (|has| (-420 |#2|) (-239)) (|has| (-420 |#2|) (-375))) (-12 (|has| (-420 |#2|) (-238)) (|has| (-420 |#2|) (-375))) (|has| (-420 |#2|) (-361))))) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ $) NIL (|has| (-420 |#2|) (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL (|has| (-420 |#2|) (-375)))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 |#2|)) NIL) (($ (-420 |#2|) $) NIL) (($ (-420 (-577)) $) NIL (|has| (-420 |#2|) (-375))) (($ $ (-420 (-577))) NIL (|has| (-420 |#2|) (-375))))) +(((-1028 |#1| |#2| |#3| |#4| |#5|) (-354 |#1| |#2| |#3|) (-1246) (-1268 |#1|) (-1268 (-420 |#2|)) (-420 |#2|) (-787)) (T -1028)) +NIL +(-354 |#1| |#2| |#3|) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-4286 (((-660 (-577)) $) 73)) (-2398 (($ (-660 (-577))) 81)) (-4105 (((-577) $) 48 (|has| (-577) (-318)))) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)))) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)))) (-1939 (((-112) $ $) NIL)) (-3010 (((-577) $) NIL (|has| (-577) (-836)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) 60) (((-3 (-1201) "failed") $) NIL (|has| (-577) (-1063 (-1201)))) (((-3 (-420 (-577)) "failed") $) 57 (|has| (-577) (-1063 (-577)))) (((-3 (-577) "failed") $) 60 (|has| (-577) (-1063 (-577))))) (-2921 (((-577) $) NIL) (((-1201) $) NIL (|has| (-577) (-1063 (-1201)))) (((-420 (-577)) $) NIL (|has| (-577) (-1063 (-577)))) (((-577) $) NIL (|has| (-577) (-1063 (-577))))) (-3418 (($ $ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| (-577) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| (-577) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL) (((-705 (-577)) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-1910 (($) NIL (|has| (-577) (-558)))) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-2417 (((-660 (-577)) $) 79)) (-3567 (((-112) $) NIL (|has| (-577) (-836)))) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (|has| (-577) (-905 (-577)))) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (|has| (-577) (-905 (-391))))) (-2487 (((-112) $) NIL)) (-2240 (($ $) NIL)) (-1623 (((-577) $) 45)) (-4021 (((-3 $ "failed") $) NIL (|has| (-577) (-1177)))) (-3578 (((-112) $) NIL (|has| (-577) (-836)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3732 (($ $ $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| (-577) (-865)))) (-4087 (($ (-1 (-577) (-577)) $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| (-577) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| (-577) (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL) (((-705 (-577)) (-1292 $)) NIL)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL)) (-1709 (($) NIL (|has| (-577) (-1177)) CONST)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-4093 (($ $) NIL (|has| (-577) (-318))) (((-420 (-577)) $) 50)) (-4275 (((-1182 (-577)) $) 78)) (-2390 (($ (-660 (-577)) (-660 (-577))) 82)) (-4119 (((-577) $) 64 (|has| (-577) (-558)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| (-577) (-932)))) (-1902 (((-431 $) $) NIL)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3280 (($ $ (-660 (-577)) (-660 (-577))) NIL (|has| (-577) (-320 (-577)))) (($ $ (-577) (-577)) NIL (|has| (-577) (-320 (-577)))) (($ $ (-305 (-577))) NIL (|has| (-577) (-320 (-577)))) (($ $ (-660 (-305 (-577)))) NIL (|has| (-577) (-320 (-577)))) (($ $ (-660 (-1201)) (-660 (-577))) NIL (|has| (-577) (-527 (-1201) (-577)))) (($ $ (-1201) (-577)) NIL (|has| (-577) (-527 (-1201) (-577))))) (-1927 (((-787) $) NIL)) (-2872 (($ $ (-577)) NIL (|has| (-577) (-297 (-577) (-577))))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2852 (($ $ (-1 (-577) (-577))) NIL) (($ $ (-1 (-577) (-577)) (-787)) NIL) (($ $ (-1201)) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-577) (-923 (-1201)))) (($ $) 15 (|has| (-577) (-238))) (($ $ (-787)) NIL (|has| (-577) (-238)))) (-2227 (($ $) NIL)) (-1637 (((-577) $) 47)) (-2407 (((-660 (-577)) $) 80)) (-4152 (((-911 (-577)) $) NIL (|has| (-577) (-627 (-911 (-577))))) (((-911 (-391)) $) NIL (|has| (-577) (-627 (-911 (-391))))) (((-549) $) NIL (|has| (-577) (-627 (-549)))) (((-391) $) NIL (|has| (-577) (-1047))) (((-228) $) NIL (|has| (-577) (-1047)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| (-577) (-932))))) (-3544 (((-880) $) 107) (($ (-577)) 51) (($ $) NIL) (($ (-420 (-577))) 27) (($ (-577)) 51) (($ (-1201)) NIL (|has| (-577) (-1063 (-1201)))) (((-420 (-577)) $) 25)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| (-577) (-932))) (|has| (-577) (-146))))) (-4068 (((-787)) 13 T CONST)) (-4132 (((-577) $) 62 (|has| (-577) (-558)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-1654 (($ $) NIL (|has| (-577) (-836)))) (-2806 (($) 14 T CONST)) (-2816 (($) 17 T CONST)) (-2132 (($ $ (-1 (-577) (-577))) NIL) (($ $ (-1 (-577) (-577)) (-787)) NIL) (($ $ (-1201)) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| (-577) (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| (-577) (-923 (-1201)))) (($ $) NIL (|has| (-577) (-238))) (($ $ (-787)) NIL (|has| (-577) (-238)))) (-3025 (((-112) $ $) NIL (|has| (-577) (-865)))) (-3000 (((-112) $ $) NIL (|has| (-577) (-865)))) (-2970 (((-112) $ $) 21)) (-3012 (((-112) $ $) NIL (|has| (-577) (-865)))) (-2990 (((-112) $ $) 40 (|has| (-577) (-865)))) (-3077 (($ $ $) 36) (($ (-577) (-577)) 38)) (-3066 (($ $) 23) (($ $ $) 30)) (-3055 (($ $ $) 28)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 32) (($ $ $) 34) (($ $ (-420 (-577))) NIL) (($ (-420 (-577)) $) NIL) (($ (-577) $) 32) (($ $ (-577)) NIL))) +(((-1029 |#1|) (-13 (-1017 (-577)) (-626 (-420 (-577))) (-10 -8 (-15 -4093 ((-420 (-577)) $)) (-15 -4286 ((-660 (-577)) $)) (-15 -4275 ((-1182 (-577)) $)) (-15 -2417 ((-660 (-577)) $)) (-15 -2407 ((-660 (-577)) $)) (-15 -2398 ($ (-660 (-577)))) (-15 -2390 ($ (-660 (-577)) (-660 (-577)))))) (-577)) (T -1029)) +((-4093 (*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577)))) (-4286 (*1 *2 *1) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577)))) (-4275 (*1 *2 *1) (-12 (-5 *2 (-1182 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577)))) (-2417 (*1 *2 *1) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577)))) (-2407 (*1 *2 *1) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577)))) (-2390 (*1 *1 *2 *2) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577))))) +(-13 (-1017 (-577)) (-626 (-420 (-577))) (-10 -8 (-15 -4093 ((-420 (-577)) $)) (-15 -4286 ((-660 (-577)) $)) (-15 -4275 ((-1182 (-577)) $)) (-15 -2417 ((-660 (-577)) $)) (-15 -2407 ((-660 (-577)) $)) (-15 -2398 ($ (-660 (-577)))) (-15 -2390 ($ (-660 (-577)) (-660 (-577)))))) +((-4299 (((-52) (-420 (-577)) (-577)) 9))) +(((-1030) (-10 -7 (-15 -4299 ((-52) (-420 (-577)) (-577))))) (T -1030)) +((-4299 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-577))) (-5 *4 (-577)) (-5 *2 (-52)) (-5 *1 (-1030))))) +(-10 -7 (-15 -4299 ((-52) (-420 (-577)) (-577)))) +((-2229 (((-577)) 23)) (-4329 (((-577)) 28)) (-4318 (((-1297) (-577)) 26)) (-4307 (((-577) (-577)) 29) (((-577)) 22))) +(((-1031) (-10 -7 (-15 -4307 ((-577))) (-15 -2229 ((-577))) (-15 -4307 ((-577) (-577))) (-15 -4318 ((-1297) (-577))) (-15 -4329 ((-577))))) (T -1031)) +((-4329 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1031)))) (-4318 (*1 *2 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-1031)))) (-4307 (*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1031)))) (-2229 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1031)))) (-4307 (*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1031))))) +(-10 -7 (-15 -4307 ((-577))) (-15 -2229 ((-577))) (-15 -4307 ((-577) (-577))) (-15 -4318 ((-1297) (-577))) (-15 -4329 ((-577)))) +((-1589 (((-431 |#1|) |#1|) 43)) (-1902 (((-431 |#1|) |#1|) 41))) +(((-1032 |#1|) (-10 -7 (-15 -1902 ((-431 |#1|) |#1|)) (-15 -1589 ((-431 |#1|) |#1|))) (-1268 (-420 (-577)))) (T -1032)) +((-1589 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1032 *3)) (-4 *3 (-1268 (-420 (-577)))))) (-1902 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1032 *3)) (-4 *3 (-1268 (-420 (-577))))))) +(-10 -7 (-15 -1902 ((-431 |#1|) |#1|)) (-15 -1589 ((-431 |#1|) |#1|))) +((-4363 (((-3 (-420 (-577)) "failed") |#1|) 15)) (-4353 (((-112) |#1|) 14)) (-4341 (((-420 (-577)) |#1|) 10))) +(((-1033 |#1|) (-10 -7 (-15 -4341 ((-420 (-577)) |#1|)) (-15 -4353 ((-112) |#1|)) (-15 -4363 ((-3 (-420 (-577)) "failed") |#1|))) (-1063 (-420 (-577)))) (T -1033)) +((-4363 (*1 *2 *3) (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-1033 *3)) (-4 *3 (-1063 *2)))) (-4353 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1033 *3)) (-4 *3 (-1063 (-420 (-577)))))) (-4341 (*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1033 *3)) (-4 *3 (-1063 *2))))) +(-10 -7 (-15 -4341 ((-420 (-577)) |#1|)) (-15 -4353 ((-112) |#1|)) (-15 -4363 ((-3 (-420 (-577)) "failed") |#1|))) +((-3709 ((|#2| $ "value" |#2|) 12)) (-2872 ((|#2| $ "value") 10)) (-4405 (((-112) $ $) 18))) +(((-1034 |#1| |#2|) (-10 -8 (-15 -3709 (|#2| |#1| "value" |#2|)) (-15 -4405 ((-112) |#1| |#1|)) (-15 -2872 (|#2| |#1| "value"))) (-1035 |#2|) (-1242)) (T -1034)) +NIL +(-10 -8 (-15 -3709 (|#2| |#1| "value" |#2|)) (-15 -4405 ((-112) |#1| |#1|)) (-15 -2872 (|#2| |#1| "value"))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3115 ((|#1| $) 49)) (-3828 (((-112) $ (-787)) 8)) (-4374 ((|#1| $ |#1|) 40 (|has| $ (-6 -4471)))) (-3709 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) 42 (|has| $ (-6 -4471)))) (-1534 (($) 7 T CONST)) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-4426 (((-660 $) $) 51)) (-4394 (((-112) $ $) 43 (|has| |#1| (-1125)))) (-1479 (((-112) $ (-787)) 9)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-2461 (((-660 |#1|) $) 46)) (-3371 (((-112) $) 50)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#1| $ "value") 48)) (-4415 (((-577) $ $) 45)) (-1885 (((-112) $) 47)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-3322 (((-660 $) $) 52)) (-4405 (((-112) $ $) 44 (|has| |#1| (-1125)))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-1035 |#1|) (-141) (-1242)) (T -1035)) +((-3322 (*1 *2 *1) (-12 (-4 *3 (-1242)) (-5 *2 (-660 *1)) (-4 *1 (-1035 *3)))) (-4426 (*1 *2 *1) (-12 (-4 *3 (-1242)) (-5 *2 (-660 *1)) (-4 *1 (-1035 *3)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-5 *2 (-112)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1242)))) (-2872 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1035 *2)) (-4 *2 (-1242)))) (-1885 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-5 *2 (-112)))) (-2461 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-5 *2 (-660 *3)))) (-4415 (*1 *2 *1 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-5 *2 (-577)))) (-4405 (*1 *2 *1 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-4 *3 (-1125)) (-5 *2 (-112)))) (-4394 (*1 *2 *1 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-4 *3 (-1125)) (-5 *2 (-112)))) (-4384 (*1 *1 *1 *2) (-12 (-5 *2 (-660 *1)) (|has| *1 (-6 -4471)) (-4 *1 (-1035 *3)) (-4 *3 (-1242)))) (-3709 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4471)) (-4 *1 (-1035 *2)) (-4 *2 (-1242)))) (-4374 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1035 *2)) (-4 *2 (-1242))))) +(-13 (-502 |t#1|) (-10 -8 (-15 -3322 ((-660 $) $)) (-15 -4426 ((-660 $) $)) (-15 -3371 ((-112) $)) (-15 -3115 (|t#1| $)) (-15 -2872 (|t#1| $ "value")) (-15 -1885 ((-112) $)) (-15 -2461 ((-660 |t#1|) $)) (-15 -4415 ((-577) $ $)) (IF (|has| |t#1| (-1125)) (PROGN (-15 -4405 ((-112) $ $)) (-15 -4394 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4471)) (PROGN (-15 -4384 ($ $ (-660 $))) (-15 -3709 (|t#1| $ "value" |t#1|)) (-15 -4374 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) +((-1913 (($ $) 9) (($ $ (-944)) 49) (($ (-420 (-577))) 13) (($ (-577)) 15)) (-3535 (((-3 $ "failed") (-1197 $) (-944) (-880)) 24) (((-3 $ "failed") (-1197 $) (-944)) 32)) (-2381 (($ $ (-577)) 58)) (-4068 (((-787)) 18)) (-3546 (((-660 $) (-1197 $)) NIL) (((-660 $) (-1197 (-420 (-577)))) 63) (((-660 $) (-1197 (-577))) 68) (((-660 $) (-975 $)) 72) (((-660 $) (-975 (-420 (-577)))) 76) (((-660 $) (-975 (-577))) 80)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL) (($ $ (-420 (-577))) 53))) +(((-1036 |#1|) (-10 -8 (-15 -1913 (|#1| (-577))) (-15 -1913 (|#1| (-420 (-577)))) (-15 -1913 (|#1| |#1| (-944))) (-15 -3546 ((-660 |#1|) (-975 (-577)))) (-15 -3546 ((-660 |#1|) (-975 (-420 (-577))))) (-15 -3546 ((-660 |#1|) (-975 |#1|))) (-15 -3546 ((-660 |#1|) (-1197 (-577)))) (-15 -3546 ((-660 |#1|) (-1197 (-420 (-577))))) (-15 -3546 ((-660 |#1|) (-1197 |#1|))) (-15 -3535 ((-3 |#1| "failed") (-1197 |#1|) (-944))) (-15 -3535 ((-3 |#1| "failed") (-1197 |#1|) (-944) (-880))) (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -2381 (|#1| |#1| (-577))) (-15 -1913 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -4068 ((-787))) (-15 ** (|#1| |#1| (-787))) (-15 ** (|#1| |#1| (-944)))) (-1037)) (T -1036)) +((-4068 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1036 *3)) (-4 *3 (-1037))))) +(-10 -8 (-15 -1913 (|#1| (-577))) (-15 -1913 (|#1| (-420 (-577)))) (-15 -1913 (|#1| |#1| (-944))) (-15 -3546 ((-660 |#1|) (-975 (-577)))) (-15 -3546 ((-660 |#1|) (-975 (-420 (-577))))) (-15 -3546 ((-660 |#1|) (-975 |#1|))) (-15 -3546 ((-660 |#1|) (-1197 (-577)))) (-15 -3546 ((-660 |#1|) (-1197 (-420 (-577))))) (-15 -3546 ((-660 |#1|) (-1197 |#1|))) (-15 -3535 ((-3 |#1| "failed") (-1197 |#1|) (-944))) (-15 -3535 ((-3 |#1| "failed") (-1197 |#1|) (-944) (-880))) (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -2381 (|#1| |#1| (-577))) (-15 -1913 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -4068 ((-787))) (-15 ** (|#1| |#1| (-787))) (-15 ** (|#1| |#1| (-944)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 103)) (-3290 (($ $) 104)) (-3271 (((-112) $) 106)) (-1956 (((-3 $ "failed") $ $) 20)) (-3841 (($ $) 123)) (-3029 (((-431 $) $) 124)) (-1913 (($ $) 87) (($ $ (-944)) 73) (($ (-420 (-577))) 72) (($ (-577)) 71)) (-1939 (((-112) $ $) 114)) (-3010 (((-577) $) 140)) (-1534 (($) 18 T CONST)) (-3535 (((-3 $ "failed") (-1197 $) (-944) (-880)) 81) (((-3 $ "failed") (-1197 $) (-944)) 80)) (-1628 (((-3 (-577) "failed") $) 100 (|has| (-420 (-577)) (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) 98 (|has| (-420 (-577)) (-1063 (-420 (-577))))) (((-3 (-420 (-577)) "failed") $) 95)) (-2921 (((-577) $) 99 (|has| (-420 (-577)) (-1063 (-577)))) (((-420 (-577)) $) 97 (|has| (-420 (-577)) (-1063 (-420 (-577))))) (((-420 (-577)) $) 96)) (-1327 (($ $ (-880)) 70)) (-4439 (($ $ (-880)) 69)) (-3418 (($ $ $) 118)) (-4187 (((-3 $ "failed") $) 37)) (-3429 (($ $ $) 117)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 112)) (-1522 (((-112) $) 125)) (-3567 (((-112) $) 138)) (-2487 (((-112) $) 35)) (-2381 (($ $ (-577)) 86)) (-3578 (((-112) $) 139)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 121)) (-3732 (($ $ $) 132)) (-3201 (($ $ $) 133)) (-1340 (((-3 (-1197 $) "failed") $) 82)) (-1362 (((-3 (-880) "failed") $) 84)) (-1351 (((-3 (-1197 $) "failed") $) 83)) (-3446 (($ (-660 $)) 110) (($ $ $) 109)) (-2810 (((-1183) $) 10)) (-2171 (($ $) 126)) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 111)) (-3480 (($ (-660 $)) 108) (($ $ $) 107)) (-1902 (((-431 $) $) 122)) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 119)) (-3462 (((-3 $ "failed") $ $) 102)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 113)) (-1927 (((-787) $) 115)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 116)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ (-420 (-577))) 130) (($ $) 101) (($ (-420 (-577))) 94) (($ (-577)) 93) (($ (-420 (-577))) 90)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 105)) (-4148 (((-420 (-577)) $ $) 68)) (-3546 (((-660 $) (-1197 $)) 79) (((-660 $) (-1197 (-420 (-577)))) 78) (((-660 $) (-1197 (-577))) 77) (((-660 $) (-975 $)) 76) (((-660 $) (-975 (-420 (-577)))) 75) (((-660 $) (-975 (-577))) 74)) (-1654 (($ $) 141)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-3025 (((-112) $ $) 134)) (-3000 (((-112) $ $) 136)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 135)) (-2990 (((-112) $ $) 137)) (-3077 (($ $ $) 131)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 127) (($ $ (-420 (-577))) 85)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ (-420 (-577)) $) 129) (($ $ (-420 (-577))) 128) (($ (-577) $) 92) (($ $ (-577)) 91) (($ (-420 (-577)) $) 89) (($ $ (-420 (-577))) 88))) +(((-1037) (-141)) (T -1037)) +((-1913 (*1 *1 *1) (-4 *1 (-1037))) (-1362 (*1 *2 *1) (|partial| -12 (-4 *1 (-1037)) (-5 *2 (-880)))) (-1351 (*1 *2 *1) (|partial| -12 (-5 *2 (-1197 *1)) (-4 *1 (-1037)))) (-1340 (*1 *2 *1) (|partial| -12 (-5 *2 (-1197 *1)) (-4 *1 (-1037)))) (-3535 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1197 *1)) (-5 *3 (-944)) (-5 *4 (-880)) (-4 *1 (-1037)))) (-3535 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1197 *1)) (-5 *3 (-944)) (-4 *1 (-1037)))) (-3546 (*1 *2 *3) (-12 (-5 *3 (-1197 *1)) (-4 *1 (-1037)) (-5 *2 (-660 *1)))) (-3546 (*1 *2 *3) (-12 (-5 *3 (-1197 (-420 (-577)))) (-5 *2 (-660 *1)) (-4 *1 (-1037)))) (-3546 (*1 *2 *3) (-12 (-5 *3 (-1197 (-577))) (-5 *2 (-660 *1)) (-4 *1 (-1037)))) (-3546 (*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-1037)) (-5 *2 (-660 *1)))) (-3546 (*1 *2 *3) (-12 (-5 *3 (-975 (-420 (-577)))) (-5 *2 (-660 *1)) (-4 *1 (-1037)))) (-3546 (*1 *2 *3) (-12 (-5 *3 (-975 (-577))) (-5 *2 (-660 *1)) (-4 *1 (-1037)))) (-1913 (*1 *1 *1 *2) (-12 (-4 *1 (-1037)) (-5 *2 (-944)))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-4 *1 (-1037)))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-1037)))) (-1327 (*1 *1 *1 *2) (-12 (-4 *1 (-1037)) (-5 *2 (-880)))) (-4439 (*1 *1 *1 *2) (-12 (-4 *1 (-1037)) (-5 *2 (-880)))) (-4148 (*1 *2 *1 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-420 (-577)))))) +(-13 (-148) (-864) (-174) (-375) (-424 (-420 (-577))) (-38 (-577)) (-38 (-420 (-577))) (-1027) (-10 -8 (-15 -1362 ((-3 (-880) "failed") $)) (-15 -1351 ((-3 (-1197 $) "failed") $)) (-15 -1340 ((-3 (-1197 $) "failed") $)) (-15 -3535 ((-3 $ "failed") (-1197 $) (-944) (-880))) (-15 -3535 ((-3 $ "failed") (-1197 $) (-944))) (-15 -3546 ((-660 $) (-1197 $))) (-15 -3546 ((-660 $) (-1197 (-420 (-577))))) (-15 -3546 ((-660 $) (-1197 (-577)))) (-15 -3546 ((-660 $) (-975 $))) (-15 -3546 ((-660 $) (-975 (-420 (-577))))) (-15 -3546 ((-660 $) (-975 (-577)))) (-15 -1913 ($ $ (-944))) (-15 -1913 ($ $)) (-15 -1913 ($ (-420 (-577)))) (-15 -1913 ($ (-577))) (-15 -1327 ($ $ (-880))) (-15 -4439 ($ $ (-880))) (-15 -4148 ((-420 (-577)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 #1=(-577)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-424 (-420 (-577))) . T) ((-465) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 #1#) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 #1#) . T) ((-656 $) . T) ((-733 #0#) . T) ((-733 #1#) . T) ((-733 $) . T) ((-742) . T) ((-807) . T) ((-808) . T) ((-810) . T) ((-811) . T) ((-864) . T) ((-865) . T) ((-868) . T) ((-943) . T) ((-1027) . T) ((-1063 (-420 (-577))) . T) ((-1063 (-577)) |has| (-420 (-577)) (-1063 (-577))) ((-1076 #0#) . T) ((-1076 #1#) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 #1#) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) . T)) +((-1375 (((-2 (|:| |ans| |#2|) (|:| -4239 |#2|) (|:| |sol?| (-112))) (-577) |#2| |#2| (-1201) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-660 |#2|)) (-1 (-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) +(((-1038 |#1| |#2|) (-10 -7 (-15 -1375 ((-2 (|:| |ans| |#2|) (|:| -4239 |#2|) (|:| |sol?| (-112))) (-577) |#2| |#2| (-1201) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-660 |#2|)) (-1 (-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-465) (-148) (-1063 (-577)) (-654 (-577))) (-13 (-1227) (-27) (-443 |#1|))) (T -1038)) +((-1375 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1201)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-660 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2898 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1227) (-27) (-443 *8))) (-4 *8 (-13 (-465) (-148) (-1063 *3) (-654 *3))) (-5 *3 (-577)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4239 *4) (|:| |sol?| (-112)))) (-5 *1 (-1038 *8 *4))))) +(-10 -7 (-15 -1375 ((-2 (|:| |ans| |#2|) (|:| -4239 |#2|) (|:| |sol?| (-112))) (-577) |#2| |#2| (-1201) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-660 |#2|)) (-1 (-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-1387 (((-3 (-660 |#2|) "failed") (-577) |#2| |#2| |#2| (-1201) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-660 |#2|)) (-1 (-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) +(((-1039 |#1| |#2|) (-10 -7 (-15 -1387 ((-3 (-660 |#2|) "failed") (-577) |#2| |#2| |#2| (-1201) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-660 |#2|)) (-1 (-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-465) (-148) (-1063 (-577)) (-654 (-577))) (-13 (-1227) (-27) (-443 |#1|))) (T -1039)) +((-1387 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1201)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-660 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2898 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1227) (-27) (-443 *8))) (-4 *8 (-13 (-465) (-148) (-1063 *3) (-654 *3))) (-5 *3 (-577)) (-5 *2 (-660 *4)) (-5 *1 (-1039 *8 *4))))) +(-10 -7 (-15 -1387 ((-3 (-660 |#2|) "failed") (-577) |#2| |#2| |#2| (-1201) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-660 |#2|)) (-1 (-3 (-2 (|:| -2898 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-1421 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3994 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-577)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-577) (-1 |#2| |#2|)) 38)) (-1398 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |c| (-420 |#2|)) (|:| -2823 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|)) 69)) (-1410 (((-2 (|:| |ans| (-420 |#2|)) (|:| |nosol| (-112))) (-420 |#2|) (-420 |#2|)) 74))) +(((-1040 |#1| |#2|) (-10 -7 (-15 -1398 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |c| (-420 |#2|)) (|:| -2823 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|))) (-15 -1410 ((-2 (|:| |ans| (-420 |#2|)) (|:| |nosol| (-112))) (-420 |#2|) (-420 |#2|))) (-15 -1421 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3994 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-577)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-577) (-1 |#2| |#2|)))) (-13 (-375) (-148) (-1063 (-577))) (-1268 |#1|)) (T -1040)) +((-1421 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1268 *6)) (-4 *6 (-13 (-375) (-148) (-1063 *4))) (-5 *4 (-577)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3994 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1040 *6 *3)))) (-1410 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-577)))) (-4 *5 (-1268 *4)) (-5 *2 (-2 (|:| |ans| (-420 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1040 *4 *5)) (-5 *3 (-420 *5)))) (-1398 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-420 *6)) (|:| |c| (-420 *6)) (|:| -2823 *6))) (-5 *1 (-1040 *5 *6)) (-5 *3 (-420 *6))))) +(-10 -7 (-15 -1398 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |c| (-420 |#2|)) (|:| -2823 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|))) (-15 -1410 ((-2 (|:| |ans| (-420 |#2|)) (|:| |nosol| (-112))) (-420 |#2|) (-420 |#2|))) (-15 -1421 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3994 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-577)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-577) (-1 |#2| |#2|)))) +((-1431 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |h| |#2|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| -2823 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|)) 22)) (-1442 (((-3 (-660 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|)) 34))) +(((-1041 |#1| |#2|) (-10 -7 (-15 -1431 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |h| |#2|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| -2823 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|))) (-15 -1442 ((-3 (-660 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|)))) (-13 (-375) (-148) (-1063 (-577))) (-1268 |#1|)) (T -1041)) +((-1442 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-375) (-148) (-1063 (-577)))) (-4 *5 (-1268 *4)) (-5 *2 (-660 (-420 *5))) (-5 *1 (-1041 *4 *5)) (-5 *3 (-420 *5)))) (-1431 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-420 *6)) (|:| |h| *6) (|:| |c1| (-420 *6)) (|:| |c2| (-420 *6)) (|:| -2823 *6))) (-5 *1 (-1041 *5 *6)) (-5 *3 (-420 *6))))) +(-10 -7 (-15 -1431 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-420 |#2|)) (|:| |h| |#2|) (|:| |c1| (-420 |#2|)) (|:| |c2| (-420 |#2|)) (|:| -2823 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|) (-1 |#2| |#2|))) (-15 -1442 ((-3 (-660 (-420 |#2|)) "failed") (-420 |#2|) (-420 |#2|) (-420 |#2|)))) +((-1453 (((-1 |#1|) (-660 (-2 (|:| -3115 |#1|) (|:| -3030 (-577))))) 34)) (-3839 (((-1 |#1|) (-1127 |#1|)) 42)) (-1465 (((-1 |#1|) (-1292 |#1|) (-1292 (-577)) (-577)) 31))) +(((-1042 |#1|) (-10 -7 (-15 -3839 ((-1 |#1|) (-1127 |#1|))) (-15 -1453 ((-1 |#1|) (-660 (-2 (|:| -3115 |#1|) (|:| -3030 (-577)))))) (-15 -1465 ((-1 |#1|) (-1292 |#1|) (-1292 (-577)) (-577)))) (-1125)) (T -1042)) +((-1465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1292 *6)) (-5 *4 (-1292 (-577))) (-5 *5 (-577)) (-4 *6 (-1125)) (-5 *2 (-1 *6)) (-5 *1 (-1042 *6)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -3115 *4) (|:| -3030 (-577))))) (-4 *4 (-1125)) (-5 *2 (-1 *4)) (-5 *1 (-1042 *4)))) (-3839 (*1 *2 *3) (-12 (-5 *3 (-1127 *4)) (-4 *4 (-1125)) (-5 *2 (-1 *4)) (-5 *1 (-1042 *4))))) +(-10 -7 (-15 -3839 ((-1 |#1|) (-1127 |#1|))) (-15 -1453 ((-1 |#1|) (-660 (-2 (|:| -3115 |#1|) (|:| -3030 (-577)))))) (-15 -1465 ((-1 |#1|) (-1292 |#1|) (-1292 (-577)) (-577)))) +((-3817 (((-787) (-348 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1043 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3817 ((-787) (-348 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-375) (-1268 |#1|) (-1268 (-420 |#2|)) (-354 |#1| |#2| |#3|) (-13 (-380) (-375))) (T -1043)) +((-3817 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-348 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-375)) (-4 *7 (-1268 *6)) (-4 *4 (-1268 (-420 *7))) (-4 *8 (-354 *6 *7 *4)) (-4 *9 (-13 (-380) (-375))) (-5 *2 (-787)) (-5 *1 (-1043 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -3817 ((-787) (-348 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-3473 (((-112) $ $) NIL)) (-1844 (((-1160) $) 9)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL) (($ (-1206)) NIL) (((-1206) $) NIL)) (-2724 (((-1160) $) 11)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-1044) (-13 (-1108) (-10 -8 (-15 -1844 ((-1160) $)) (-15 -2724 ((-1160) $))))) (T -1044)) +((-1844 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1044)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1044))))) +(-13 (-1108) (-10 -8 (-15 -1844 ((-1160) $)) (-15 -2724 ((-1160) $)))) +((-4169 (((-3 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) "failed") |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) 32) (((-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) (-420 (-577))) 29)) (-1500 (((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) (-420 (-577))) 34) (((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1| (-420 (-577))) 30) (((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) 33) (((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1|) 28)) (-1489 (((-660 (-420 (-577))) (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) 20)) (-1478 (((-420 (-577)) (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) 17))) +(((-1045 |#1|) (-10 -7 (-15 -1500 ((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1|)) (-15 -1500 ((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) (-15 -1500 ((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1| (-420 (-577)))) (-15 -1500 ((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) (-420 (-577)))) (-15 -4169 ((-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) (-420 (-577)))) (-15 -4169 ((-3 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) "failed") |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) (-15 -1478 ((-420 (-577)) (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) (-15 -1489 ((-660 (-420 (-577))) (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))))) (-1268 (-577))) (T -1045)) +((-1489 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) (-5 *2 (-660 (-420 (-577)))) (-5 *1 (-1045 *4)) (-4 *4 (-1268 (-577))))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) (-5 *2 (-420 (-577))) (-5 *1 (-1045 *4)) (-4 *4 (-1268 (-577))))) (-4169 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))))) (-4169 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) (-5 *4 (-420 (-577))) (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))))) (-1500 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-420 (-577))) (-5 *2 (-660 (-2 (|:| -4228 *5) (|:| -4239 *5)))) (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))) (-5 *4 (-2 (|:| -4228 *5) (|:| -4239 *5))))) (-1500 (*1 *2 *3 *4) (-12 (-5 *2 (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))) (-5 *4 (-420 (-577))))) (-1500 (*1 *2 *3 *4) (-12 (-5 *2 (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))) (-5 *4 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))))) (-1500 (*1 *2 *3) (-12 (-5 *2 (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577)))))) +(-10 -7 (-15 -1500 ((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1|)) (-15 -1500 ((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) (-15 -1500 ((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1| (-420 (-577)))) (-15 -1500 ((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) (-420 (-577)))) (-15 -4169 ((-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) (-420 (-577)))) (-15 -4169 ((-3 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) "failed") |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) (-15 -1478 ((-420 (-577)) (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) (-15 -1489 ((-660 (-420 (-577))) (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))))) +((-4169 (((-3 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) "failed") |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) 35) (((-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) (-420 (-577))) 32)) (-1500 (((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) (-420 (-577))) 30) (((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1| (-420 (-577))) 26) (((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) 28) (((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1|) 24))) +(((-1046 |#1|) (-10 -7 (-15 -1500 ((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1|)) (-15 -1500 ((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) (-15 -1500 ((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1| (-420 (-577)))) (-15 -1500 ((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) (-420 (-577)))) (-15 -4169 ((-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) (-420 (-577)))) (-15 -4169 ((-3 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) "failed") |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))))) (-1268 (-420 (-577)))) (T -1046)) +((-4169 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) (-5 *1 (-1046 *3)) (-4 *3 (-1268 (-420 (-577)))))) (-4169 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) (-5 *4 (-420 (-577))) (-5 *1 (-1046 *3)) (-4 *3 (-1268 *4)))) (-1500 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-420 (-577))) (-5 *2 (-660 (-2 (|:| -4228 *5) (|:| -4239 *5)))) (-5 *1 (-1046 *3)) (-4 *3 (-1268 *5)) (-5 *4 (-2 (|:| -4228 *5) (|:| -4239 *5))))) (-1500 (*1 *2 *3 *4) (-12 (-5 *4 (-420 (-577))) (-5 *2 (-660 (-2 (|:| -4228 *4) (|:| -4239 *4)))) (-5 *1 (-1046 *3)) (-4 *3 (-1268 *4)))) (-1500 (*1 *2 *3 *4) (-12 (-5 *2 (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) (-5 *1 (-1046 *3)) (-4 *3 (-1268 (-420 (-577)))) (-5 *4 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))))) (-1500 (*1 *2 *3) (-12 (-5 *2 (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) (-5 *1 (-1046 *3)) (-4 *3 (-1268 (-420 (-577))))))) +(-10 -7 (-15 -1500 ((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1|)) (-15 -1500 ((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) (-15 -1500 ((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1| (-420 (-577)))) (-15 -1500 ((-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) (-420 (-577)))) (-15 -4169 ((-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) (-420 (-577)))) (-15 -4169 ((-3 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) "failed") |#1| (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))) (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))))) +((-4152 (((-228) $) 6) (((-391) $) 9))) +(((-1047) (-141)) (T -1047)) +NIL +(-13 (-627 (-228)) (-627 (-391))) +(((-627 (-228)) . T) ((-627 (-391)) . T)) +((-2546 (((-660 (-391)) (-975 (-577)) (-391)) 28) (((-660 (-391)) (-975 (-420 (-577))) (-391)) 27)) (-3004 (((-660 (-660 (-391))) (-660 (-975 (-577))) (-660 (-1201)) (-391)) 37))) +(((-1048) (-10 -7 (-15 -2546 ((-660 (-391)) (-975 (-420 (-577))) (-391))) (-15 -2546 ((-660 (-391)) (-975 (-577)) (-391))) (-15 -3004 ((-660 (-660 (-391))) (-660 (-975 (-577))) (-660 (-1201)) (-391))))) (T -1048)) +((-3004 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-660 (-1201))) (-5 *2 (-660 (-660 (-391)))) (-5 *1 (-1048)) (-5 *5 (-391)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-975 (-577))) (-5 *2 (-660 (-391))) (-5 *1 (-1048)) (-5 *4 (-391)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-975 (-420 (-577)))) (-5 *2 (-660 (-391))) (-5 *1 (-1048)) (-5 *4 (-391))))) +(-10 -7 (-15 -2546 ((-660 (-391)) (-975 (-420 (-577))) (-391))) (-15 -2546 ((-660 (-391)) (-975 (-577)) (-391))) (-15 -3004 ((-660 (-660 (-391))) (-660 (-975 (-577))) (-660 (-1201)) (-391)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 75)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1913 (($ $) NIL) (($ $ (-944)) NIL) (($ (-420 (-577))) NIL) (($ (-577)) NIL)) (-1939 (((-112) $ $) NIL)) (-3010 (((-577) $) 70)) (-1534 (($) NIL T CONST)) (-3535 (((-3 $ "failed") (-1197 $) (-944) (-880)) NIL) (((-3 $ "failed") (-1197 $) (-944)) 55)) (-1628 (((-3 (-420 (-577)) "failed") $) NIL (|has| (-420 (-577)) (-1063 (-420 (-577))))) (((-3 (-420 (-577)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-577) "failed") $) NIL (-2839 (|has| (-420 (-577)) (-1063 (-577))) (|has| |#1| (-1063 (-577)))))) (-2921 (((-420 (-577)) $) 17 (|has| (-420 (-577)) (-1063 (-420 (-577))))) (((-420 (-577)) $) 17) ((|#1| $) 117) (((-577) $) NIL (-2839 (|has| (-420 (-577)) (-1063 (-577))) (|has| |#1| (-1063 (-577)))))) (-1327 (($ $ (-880)) 47)) (-4439 (($ $ (-880)) 48)) (-3418 (($ $ $) NIL)) (-3524 (((-420 (-577)) $ $) 21)) (-4187 (((-3 $ "failed") $) 88)) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-3567 (((-112) $) 66)) (-2487 (((-112) $) NIL)) (-2381 (($ $ (-577)) NIL)) (-3578 (((-112) $) 69)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-1340 (((-3 (-1197 $) "failed") $) 83)) (-1362 (((-3 (-880) "failed") $) 82)) (-1351 (((-3 (-1197 $) "failed") $) 80)) (-1510 (((-3 (-1086 $ (-1197 $)) "failed") $) 78)) (-3446 (($ (-660 $)) NIL) (($ $ $) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) 89)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ (-660 $)) NIL) (($ $ $) NIL)) (-1902 (((-431 $) $) NIL)) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-3544 (((-880) $) 87) (($ (-577)) NIL) (($ (-420 (-577))) NIL) (($ $) 63) (($ (-420 (-577))) NIL) (($ (-577)) NIL) (($ (-420 (-577))) NIL) (($ |#1|) 119)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-4148 (((-420 (-577)) $ $) 27)) (-3546 (((-660 $) (-1197 $)) 61) (((-660 $) (-1197 (-420 (-577)))) NIL) (((-660 $) (-1197 (-577))) NIL) (((-660 $) (-975 $)) NIL) (((-660 $) (-975 (-420 (-577)))) NIL) (((-660 $) (-975 (-577))) NIL)) (-1521 (($ (-1086 $ (-1197 $)) (-880)) 46)) (-1654 (($ $) 22)) (-2806 (($) 32 T CONST)) (-2816 (($) 39 T CONST)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 76)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 24)) (-3077 (($ $ $) 37)) (-3066 (($ $) 38) (($ $ $) 74)) (-3055 (($ $ $) 112)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL) (($ $ (-420 (-577))) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 98) (($ $ $) 104) (($ (-420 (-577)) $) NIL) (($ $ (-420 (-577))) NIL) (($ (-577) $) 98) (($ $ (-577)) NIL) (($ (-420 (-577)) $) NIL) (($ $ (-420 (-577))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1049 |#1|) (-13 (-1037) (-424 |#1|) (-38 |#1|) (-10 -8 (-15 -1521 ($ (-1086 $ (-1197 $)) (-880))) (-15 -1510 ((-3 (-1086 $ (-1197 $)) "failed") $)) (-15 -3524 ((-420 (-577)) $ $)))) (-13 (-864) (-375) (-1047))) (T -1049)) +((-1521 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 (-1049 *4) (-1197 (-1049 *4)))) (-5 *3 (-880)) (-5 *1 (-1049 *4)) (-4 *4 (-13 (-864) (-375) (-1047))))) (-1510 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086 (-1049 *3) (-1197 (-1049 *3)))) (-5 *1 (-1049 *3)) (-4 *3 (-13 (-864) (-375) (-1047))))) (-3524 (*1 *2 *1 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1049 *3)) (-4 *3 (-13 (-864) (-375) (-1047)))))) +(-13 (-1037) (-424 |#1|) (-38 |#1|) (-10 -8 (-15 -1521 ($ (-1086 $ (-1197 $)) (-880))) (-15 -1510 ((-3 (-1086 $ (-1197 $)) "failed") $)) (-15 -3524 ((-420 (-577)) $ $)))) +((-1533 (((-2 (|:| -3994 |#2|) (|:| -1823 (-660 |#1|))) |#2| (-660 |#1|)) 32) ((|#2| |#2| |#1|) 27))) +(((-1050 |#1| |#2|) (-10 -7 (-15 -1533 (|#2| |#2| |#1|)) (-15 -1533 ((-2 (|:| -3994 |#2|) (|:| -1823 (-660 |#1|))) |#2| (-660 |#1|)))) (-375) (-672 |#1|)) (T -1050)) +((-1533 (*1 *2 *3 *4) (-12 (-4 *5 (-375)) (-5 *2 (-2 (|:| -3994 *3) (|:| -1823 (-660 *5)))) (-5 *1 (-1050 *5 *3)) (-5 *4 (-660 *5)) (-4 *3 (-672 *5)))) (-1533 (*1 *2 *2 *3) (-12 (-4 *3 (-375)) (-5 *1 (-1050 *3 *2)) (-4 *2 (-672 *3))))) +(-10 -7 (-15 -1533 (|#2| |#2| |#1|)) (-15 -1533 ((-2 (|:| -3994 |#2|) (|:| -1823 (-660 |#1|))) |#2| (-660 |#1|)))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-1543 ((|#1| $ |#1|) 14)) (-3709 ((|#1| $ |#1|) 12)) (-1565 (($ |#1|) 10)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-2872 ((|#1| $) 11)) (-1555 ((|#1| $) 13)) (-3544 (((-880) $) 21 (|has| |#1| (-1125)))) (-4448 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-2970 (((-112) $ $) 9))) +(((-1051 |#1|) (-13 (-1242) (-10 -8 (-15 -1565 ($ |#1|)) (-15 -2872 (|#1| $)) (-15 -3709 (|#1| $ |#1|)) (-15 -1555 (|#1| $)) (-15 -1543 (|#1| $ |#1|)) (-15 -2970 ((-112) $ $)) (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|))) (-1242)) (T -1051)) +((-1565 (*1 *1 *2) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242)))) (-2872 (*1 *2 *1) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242)))) (-3709 (*1 *2 *1 *2) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242)))) (-1555 (*1 *2 *1) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242)))) (-1543 (*1 *2 *1 *2) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242)))) (-2970 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1051 *3)) (-4 *3 (-1242))))) +(-13 (-1242) (-10 -8 (-15 -1565 ($ |#1|)) (-15 -2872 (|#1| $)) (-15 -3709 (|#1| $ |#1|)) (-15 -1555 (|#1| $)) (-15 -1543 (|#1| $ |#1|)) (-15 -2970 ((-112) $ $)) (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|))) +((-3473 (((-112) $ $) NIL)) (-2361 (((-660 (-2 (|:| -2045 $) (|:| -3253 (-660 |#4|)))) (-660 |#4|)) NIL)) (-2371 (((-660 $) (-660 |#4|)) 118) (((-660 $) (-660 |#4|) (-112)) 119) (((-660 $) (-660 |#4|) (-112) (-112)) 117) (((-660 $) (-660 |#4|) (-112) (-112) (-112) (-112)) 120)) (-2058 (((-660 |#3|) $) NIL)) (-2508 (((-112) $) NIL)) (-3572 (((-112) $) NIL (|has| |#1| (-569)))) (-2475 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2426 ((|#4| |#4| $) NIL)) (-3841 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 $))) |#4| $) 112)) (-1864 (((-2 (|:| |under| $) (|:| -4119 $) (|:| |upper| $)) $ |#3|) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-2067 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470))) (((-3 |#4| "failed") $ |#3|) 66)) (-1534 (($) NIL T CONST)) (-2474 (((-112) $) 29 (|has| |#1| (-569)))) (-2492 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2483 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2500 (((-112) $) NIL (|has| |#1| (-569)))) (-2435 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2434 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)))) (-2446 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)))) (-1628 (((-3 $ "failed") (-660 |#4|)) NIL)) (-2921 (($ (-660 |#4|)) NIL)) (-3563 (((-3 $ "failed") $) 45)) (-2399 ((|#4| |#4| $) 69)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))))) (-3904 (($ |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-2457 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-569)))) (-2484 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2382 ((|#4| |#4| $) NIL)) (-3654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4470))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4470))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4364 (((-2 (|:| -2045 (-660 |#4|)) (|:| -3253 (-660 |#4|))) $) NIL)) (-2524 (((-112) |#4| $) NIL)) (-2505 (((-112) |#4| $) NIL)) (-2532 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3963 (((-2 (|:| |val| (-660 |#4|)) (|:| |towers| (-660 $))) (-660 |#4|) (-112) (-112)) 133)) (-1461 (((-660 |#4|) $) 18 (|has| $ (-6 -4470)))) (-4354 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3514 ((|#3| $) 38)) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 |#4|) $) 19 (|has| $ (-6 -4470)))) (-2820 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))))) (-2182 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#4| |#4|) $) 23)) (-2555 (((-660 |#3|) $) NIL)) (-2545 (((-112) |#3| $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL)) (-2471 (((-3 |#4| (-660 $)) |#4| |#4| $) NIL)) (-3605 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 $))) |#4| |#4| $) 110)) (-3927 (((-3 |#4| "failed") $) 42)) (-2479 (((-660 $) |#4| $) 93)) (-2496 (((-3 (-112) (-660 $)) |#4| $) NIL)) (-2488 (((-660 (-2 (|:| |val| (-112)) (|:| -3952 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-2785 (((-660 $) |#4| $) 115) (((-660 $) (-660 |#4|) $) NIL) (((-660 $) (-660 |#4|) (-660 $)) 116) (((-660 $) |#4| (-660 $)) NIL)) (-3975 (((-660 $) (-660 |#4|) (-112) (-112) (-112)) 128)) (-3986 (($ |#4| $) 82) (($ (-660 |#4|) $) 83) (((-660 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-4375 (((-660 |#4|) $) NIL)) (-2458 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2408 ((|#4| |#4| $) NIL)) (-4396 (((-112) $ $) NIL)) (-2466 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)))) (-2467 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2418 ((|#4| |#4| $) NIL)) (-1474 (((-1145) $) NIL)) (-3552 (((-3 |#4| "failed") $) 40)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2343 (((-3 $ "failed") $ |#4|) 59)) (-3792 (($ $ |#4|) NIL) (((-660 $) |#4| $) 95) (((-660 $) |#4| (-660 $)) NIL) (((-660 $) (-660 |#4|) $) NIL) (((-660 $) (-660 |#4|) (-660 $)) 89)) (-1514 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 |#4|) (-660 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-660 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) 17)) (-3639 (($) 14)) (-2887 (((-787) $) NIL)) (-1485 (((-787) |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125)))) (((-787) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) 13)) (-4152 (((-549) $) NIL (|has| |#4| (-627 (-549))))) (-3553 (($ (-660 |#4|)) 22)) (-2518 (($ $ |#3|) 52)) (-2536 (($ $ |#3|) 54)) (-2391 (($ $) NIL)) (-2527 (($ $ |#3|) NIL)) (-3544 (((-880) $) 35) (((-660 |#4|) $) 46)) (-2332 (((-787) $) NIL (|has| |#3| (-380)))) (-4448 (((-112) $ $) NIL)) (-4385 (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2447 (((-112) $ (-1 (-112) |#4| (-660 |#4|))) NIL)) (-3594 (((-660 $) |#4| $) 92) (((-660 $) |#4| (-660 $)) NIL) (((-660 $) (-660 |#4|) $) NIL) (((-660 $) (-660 |#4|) (-660 $)) NIL)) (-1524 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-2352 (((-660 |#3|) $) NIL)) (-2515 (((-112) |#4| $) NIL)) (-2776 (((-112) |#3| $) 65)) (-2970 (((-112) $ $) NIL)) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-1052 |#1| |#2| |#3| |#4|) (-13 (-1096 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3986 ((-660 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2371 ((-660 $) (-660 |#4|) (-112) (-112))) (-15 -2371 ((-660 $) (-660 |#4|) (-112) (-112) (-112) (-112))) (-15 -3975 ((-660 $) (-660 |#4|) (-112) (-112) (-112))) (-15 -3963 ((-2 (|:| |val| (-660 |#4|)) (|:| |towers| (-660 $))) (-660 |#4|) (-112) (-112))))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|)) (T -1052)) +((-3986 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 (-1052 *5 *6 *7 *3))) (-5 *1 (-1052 *5 *6 *7 *3)) (-4 *3 (-1090 *5 *6 *7)))) (-2371 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 (-1052 *5 *6 *7 *8))) (-5 *1 (-1052 *5 *6 *7 *8)))) (-2371 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 (-1052 *5 *6 *7 *8))) (-5 *1 (-1052 *5 *6 *7 *8)))) (-3975 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 (-1052 *5 *6 *7 *8))) (-5 *1 (-1052 *5 *6 *7 *8)))) (-3963 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-660 *8)) (|:| |towers| (-660 (-1052 *5 *6 *7 *8))))) (-5 *1 (-1052 *5 *6 *7 *8)) (-5 *3 (-660 *8))))) +(-13 (-1096 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3986 ((-660 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2371 ((-660 $) (-660 |#4|) (-112) (-112))) (-15 -2371 ((-660 $) (-660 |#4|) (-112) (-112) (-112) (-112))) (-15 -3975 ((-660 $) (-660 |#4|) (-112) (-112) (-112))) (-15 -3963 ((-2 (|:| |val| (-660 |#4|)) (|:| |towers| (-660 $))) (-660 |#4|) (-112) (-112))))) +((-1693 (((-660 (-705 |#1|)) (-660 (-705 |#1|))) 70) (((-705 |#1|) (-705 |#1|)) 69) (((-660 (-705 |#1|)) (-660 (-705 |#1|)) (-660 (-705 |#1|))) 68) (((-705 |#1|) (-705 |#1|) (-705 |#1|)) 65)) (-1682 (((-660 (-705 |#1|)) (-660 (-705 |#1|)) (-944)) 63) (((-705 |#1|) (-705 |#1|) (-944)) 62)) (-1701 (((-660 (-705 (-577))) (-660 (-660 (-577)))) 81) (((-660 (-705 (-577))) (-660 (-928 (-577))) (-577)) 80) (((-705 (-577)) (-660 (-577))) 77) (((-705 (-577)) (-928 (-577)) (-577)) 75)) (-1668 (((-705 (-975 |#1|)) (-787)) 95)) (-1658 (((-660 (-705 |#1|)) (-660 (-705 |#1|)) (-944)) 49 (|has| |#1| (-6 (-4472 "*")))) (((-705 |#1|) (-705 |#1|) (-944)) 47 (|has| |#1| (-6 (-4472 "*")))))) +(((-1053 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4472 "*"))) (-15 -1658 ((-705 |#1|) (-705 |#1|) (-944))) |%noBranch|) (IF (|has| |#1| (-6 (-4472 "*"))) (-15 -1658 ((-660 (-705 |#1|)) (-660 (-705 |#1|)) (-944))) |%noBranch|) (-15 -1668 ((-705 (-975 |#1|)) (-787))) (-15 -1682 ((-705 |#1|) (-705 |#1|) (-944))) (-15 -1682 ((-660 (-705 |#1|)) (-660 (-705 |#1|)) (-944))) (-15 -1693 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -1693 ((-660 (-705 |#1|)) (-660 (-705 |#1|)) (-660 (-705 |#1|)))) (-15 -1693 ((-705 |#1|) (-705 |#1|))) (-15 -1693 ((-660 (-705 |#1|)) (-660 (-705 |#1|)))) (-15 -1701 ((-705 (-577)) (-928 (-577)) (-577))) (-15 -1701 ((-705 (-577)) (-660 (-577)))) (-15 -1701 ((-660 (-705 (-577))) (-660 (-928 (-577))) (-577))) (-15 -1701 ((-660 (-705 (-577))) (-660 (-660 (-577)))))) (-1074)) (T -1053)) +((-1701 (*1 *2 *3) (-12 (-5 *3 (-660 (-660 (-577)))) (-5 *2 (-660 (-705 (-577)))) (-5 *1 (-1053 *4)) (-4 *4 (-1074)))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-928 (-577)))) (-5 *4 (-577)) (-5 *2 (-660 (-705 *4))) (-5 *1 (-1053 *5)) (-4 *5 (-1074)))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-705 (-577))) (-5 *1 (-1053 *4)) (-4 *4 (-1074)))) (-1701 (*1 *2 *3 *4) (-12 (-5 *3 (-928 (-577))) (-5 *4 (-577)) (-5 *2 (-705 *4)) (-5 *1 (-1053 *5)) (-4 *5 (-1074)))) (-1693 (*1 *2 *2) (-12 (-5 *2 (-660 (-705 *3))) (-4 *3 (-1074)) (-5 *1 (-1053 *3)))) (-1693 (*1 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-1053 *3)))) (-1693 (*1 *2 *2 *2) (-12 (-5 *2 (-660 (-705 *3))) (-4 *3 (-1074)) (-5 *1 (-1053 *3)))) (-1693 (*1 *2 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-1053 *3)))) (-1682 (*1 *2 *2 *3) (-12 (-5 *2 (-660 (-705 *4))) (-5 *3 (-944)) (-4 *4 (-1074)) (-5 *1 (-1053 *4)))) (-1682 (*1 *2 *2 *3) (-12 (-5 *2 (-705 *4)) (-5 *3 (-944)) (-4 *4 (-1074)) (-5 *1 (-1053 *4)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-705 (-975 *4))) (-5 *1 (-1053 *4)) (-4 *4 (-1074)))) (-1658 (*1 *2 *2 *3) (-12 (-5 *2 (-660 (-705 *4))) (-5 *3 (-944)) (|has| *4 (-6 (-4472 "*"))) (-4 *4 (-1074)) (-5 *1 (-1053 *4)))) (-1658 (*1 *2 *2 *3) (-12 (-5 *2 (-705 *4)) (-5 *3 (-944)) (|has| *4 (-6 (-4472 "*"))) (-4 *4 (-1074)) (-5 *1 (-1053 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4472 "*"))) (-15 -1658 ((-705 |#1|) (-705 |#1|) (-944))) |%noBranch|) (IF (|has| |#1| (-6 (-4472 "*"))) (-15 -1658 ((-660 (-705 |#1|)) (-660 (-705 |#1|)) (-944))) |%noBranch|) (-15 -1668 ((-705 (-975 |#1|)) (-787))) (-15 -1682 ((-705 |#1|) (-705 |#1|) (-944))) (-15 -1682 ((-660 (-705 |#1|)) (-660 (-705 |#1|)) (-944))) (-15 -1693 ((-705 |#1|) (-705 |#1|) (-705 |#1|))) (-15 -1693 ((-660 (-705 |#1|)) (-660 (-705 |#1|)) (-660 (-705 |#1|)))) (-15 -1693 ((-705 |#1|) (-705 |#1|))) (-15 -1693 ((-660 (-705 |#1|)) (-660 (-705 |#1|)))) (-15 -1701 ((-705 (-577)) (-928 (-577)) (-577))) (-15 -1701 ((-705 (-577)) (-660 (-577)))) (-15 -1701 ((-660 (-705 (-577))) (-660 (-928 (-577))) (-577))) (-15 -1701 ((-660 (-705 (-577))) (-660 (-660 (-577)))))) +((-1743 (((-705 |#1|) (-660 (-705 |#1|)) (-1292 |#1|)) 70 (|has| |#1| (-318)))) (-3810 (((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-1292 (-1292 |#1|))) 110 (|has| |#1| (-375))) (((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-1292 |#1|)) 117 (|has| |#1| (-375)))) (-3634 (((-1292 |#1|) (-660 (-1292 |#1|)) (-577)) 135 (-12 (|has| |#1| (-375)) (|has| |#1| (-380))))) (-3623 (((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-944)) 123 (-12 (|has| |#1| (-375)) (|has| |#1| (-380)))) (((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-112)) 122 (-12 (|has| |#1| (-375)) (|has| |#1| (-380)))) (((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|))) 121 (-12 (|has| |#1| (-375)) (|has| |#1| (-380)))) (((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-112) (-577) (-577)) 120 (-12 (|has| |#1| (-375)) (|has| |#1| (-380))))) (-1765 (((-112) (-660 (-705 |#1|))) 103 (|has| |#1| (-375))) (((-112) (-660 (-705 |#1|)) (-577)) 106 (|has| |#1| (-375)))) (-1736 (((-1292 (-1292 |#1|)) (-660 (-705 |#1|)) (-1292 |#1|)) 67 (|has| |#1| (-318)))) (-1724 (((-705 |#1|) (-660 (-705 |#1|)) (-705 |#1|)) 47)) (-1713 (((-705 |#1|) (-1292 (-1292 |#1|))) 40)) (-1754 (((-705 |#1|) (-660 (-705 |#1|)) (-660 (-705 |#1|)) (-577)) 94 (|has| |#1| (-375))) (((-705 |#1|) (-660 (-705 |#1|)) (-660 (-705 |#1|))) 93 (|has| |#1| (-375))) (((-705 |#1|) (-660 (-705 |#1|)) (-660 (-705 |#1|)) (-112) (-577)) 101 (|has| |#1| (-375))))) +(((-1054 |#1|) (-10 -7 (-15 -1713 ((-705 |#1|) (-1292 (-1292 |#1|)))) (-15 -1724 ((-705 |#1|) (-660 (-705 |#1|)) (-705 |#1|))) (IF (|has| |#1| (-318)) (PROGN (-15 -1736 ((-1292 (-1292 |#1|)) (-660 (-705 |#1|)) (-1292 |#1|))) (-15 -1743 ((-705 |#1|) (-660 (-705 |#1|)) (-1292 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -1754 ((-705 |#1|) (-660 (-705 |#1|)) (-660 (-705 |#1|)) (-112) (-577))) (-15 -1754 ((-705 |#1|) (-660 (-705 |#1|)) (-660 (-705 |#1|)))) (-15 -1754 ((-705 |#1|) (-660 (-705 |#1|)) (-660 (-705 |#1|)) (-577))) (-15 -1765 ((-112) (-660 (-705 |#1|)) (-577))) (-15 -1765 ((-112) (-660 (-705 |#1|)))) (-15 -3810 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-1292 |#1|))) (-15 -3810 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-1292 (-1292 |#1|))))) |%noBranch|) (IF (|has| |#1| (-380)) (IF (|has| |#1| (-375)) (PROGN (-15 -3623 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-112) (-577) (-577))) (-15 -3623 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)))) (-15 -3623 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-112))) (-15 -3623 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-944))) (-15 -3634 ((-1292 |#1|) (-660 (-1292 |#1|)) (-577)))) |%noBranch|) |%noBranch|)) (-1074)) (T -1054)) +((-3634 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-1292 *5))) (-5 *4 (-577)) (-5 *2 (-1292 *5)) (-5 *1 (-1054 *5)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1074)))) (-3623 (*1 *2 *3 *4) (-12 (-5 *4 (-944)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1074)) (-5 *2 (-660 (-660 (-705 *5)))) (-5 *1 (-1054 *5)) (-5 *3 (-660 (-705 *5))))) (-3623 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1074)) (-5 *2 (-660 (-660 (-705 *5)))) (-5 *1 (-1054 *5)) (-5 *3 (-660 (-705 *5))))) (-3623 (*1 *2 *3) (-12 (-4 *4 (-375)) (-4 *4 (-380)) (-4 *4 (-1074)) (-5 *2 (-660 (-660 (-705 *4)))) (-5 *1 (-1054 *4)) (-5 *3 (-660 (-705 *4))))) (-3623 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-577)) (-4 *6 (-375)) (-4 *6 (-380)) (-4 *6 (-1074)) (-5 *2 (-660 (-660 (-705 *6)))) (-5 *1 (-1054 *6)) (-5 *3 (-660 (-705 *6))))) (-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-1292 (-1292 *5))) (-4 *5 (-375)) (-4 *5 (-1074)) (-5 *2 (-660 (-660 (-705 *5)))) (-5 *1 (-1054 *5)) (-5 *3 (-660 (-705 *5))))) (-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-1292 *5)) (-4 *5 (-375)) (-4 *5 (-1074)) (-5 *2 (-660 (-660 (-705 *5)))) (-5 *1 (-1054 *5)) (-5 *3 (-660 (-705 *5))))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-660 (-705 *4))) (-4 *4 (-375)) (-4 *4 (-1074)) (-5 *2 (-112)) (-5 *1 (-1054 *4)))) (-1765 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-705 *5))) (-5 *4 (-577)) (-4 *5 (-375)) (-4 *5 (-1074)) (-5 *2 (-112)) (-5 *1 (-1054 *5)))) (-1754 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-660 (-705 *5))) (-5 *4 (-577)) (-5 *2 (-705 *5)) (-5 *1 (-1054 *5)) (-4 *5 (-375)) (-4 *5 (-1074)))) (-1754 (*1 *2 *3 *3) (-12 (-5 *3 (-660 (-705 *4))) (-5 *2 (-705 *4)) (-5 *1 (-1054 *4)) (-4 *4 (-375)) (-4 *4 (-1074)))) (-1754 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-660 (-705 *6))) (-5 *4 (-112)) (-5 *5 (-577)) (-5 *2 (-705 *6)) (-5 *1 (-1054 *6)) (-4 *6 (-375)) (-4 *6 (-1074)))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-705 *5))) (-5 *4 (-1292 *5)) (-4 *5 (-318)) (-4 *5 (-1074)) (-5 *2 (-705 *5)) (-5 *1 (-1054 *5)))) (-1736 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-705 *5))) (-4 *5 (-318)) (-4 *5 (-1074)) (-5 *2 (-1292 (-1292 *5))) (-5 *1 (-1054 *5)) (-5 *4 (-1292 *5)))) (-1724 (*1 *2 *3 *2) (-12 (-5 *3 (-660 (-705 *4))) (-5 *2 (-705 *4)) (-4 *4 (-1074)) (-5 *1 (-1054 *4)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-1292 (-1292 *4))) (-4 *4 (-1074)) (-5 *2 (-705 *4)) (-5 *1 (-1054 *4))))) +(-10 -7 (-15 -1713 ((-705 |#1|) (-1292 (-1292 |#1|)))) (-15 -1724 ((-705 |#1|) (-660 (-705 |#1|)) (-705 |#1|))) (IF (|has| |#1| (-318)) (PROGN (-15 -1736 ((-1292 (-1292 |#1|)) (-660 (-705 |#1|)) (-1292 |#1|))) (-15 -1743 ((-705 |#1|) (-660 (-705 |#1|)) (-1292 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -1754 ((-705 |#1|) (-660 (-705 |#1|)) (-660 (-705 |#1|)) (-112) (-577))) (-15 -1754 ((-705 |#1|) (-660 (-705 |#1|)) (-660 (-705 |#1|)))) (-15 -1754 ((-705 |#1|) (-660 (-705 |#1|)) (-660 (-705 |#1|)) (-577))) (-15 -1765 ((-112) (-660 (-705 |#1|)) (-577))) (-15 -1765 ((-112) (-660 (-705 |#1|)))) (-15 -3810 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-1292 |#1|))) (-15 -3810 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-1292 (-1292 |#1|))))) |%noBranch|) (IF (|has| |#1| (-380)) (IF (|has| |#1| (-375)) (PROGN (-15 -3623 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-112) (-577) (-577))) (-15 -3623 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)))) (-15 -3623 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-112))) (-15 -3623 ((-660 (-660 (-705 |#1|))) (-660 (-705 |#1|)) (-944))) (-15 -3634 ((-1292 |#1|) (-660 (-1292 |#1|)) (-577)))) |%noBranch|) |%noBranch|)) +((-2203 ((|#1| (-944) |#1|) 18))) +(((-1055 |#1|) (-10 -7 (-15 -2203 (|#1| (-944) |#1|))) (-13 (-1125) (-10 -8 (-15 -3055 ($ $ $))))) (T -1055)) +((-2203 (*1 *2 *3 *2) (-12 (-5 *3 (-944)) (-5 *1 (-1055 *2)) (-4 *2 (-13 (-1125) (-10 -8 (-15 -3055 ($ $ $)))))))) +(-10 -7 (-15 -2203 (|#1| (-944) |#1|))) +((-1576 (((-660 (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) (|:| |radvect| (-660 (-705 (-327 (-577))))))) (-705 (-420 (-975 (-577))))) 67)) (-1588 (((-660 (-705 (-327 (-577)))) (-327 (-577)) (-705 (-420 (-975 (-577))))) 52)) (-1598 (((-660 (-327 (-577))) (-705 (-420 (-975 (-577))))) 45)) (-1648 (((-660 (-705 (-327 (-577)))) (-705 (-420 (-975 (-577))))) 85)) (-1622 (((-705 (-327 (-577))) (-705 (-327 (-577)))) 38)) (-1636 (((-660 (-705 (-327 (-577)))) (-660 (-705 (-327 (-577))))) 74)) (-1609 (((-3 (-705 (-327 (-577))) "failed") (-705 (-420 (-975 (-577))))) 82))) +(((-1056) (-10 -7 (-15 -1576 ((-660 (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) (|:| |radvect| (-660 (-705 (-327 (-577))))))) (-705 (-420 (-975 (-577)))))) (-15 -1588 ((-660 (-705 (-327 (-577)))) (-327 (-577)) (-705 (-420 (-975 (-577)))))) (-15 -1598 ((-660 (-327 (-577))) (-705 (-420 (-975 (-577)))))) (-15 -1609 ((-3 (-705 (-327 (-577))) "failed") (-705 (-420 (-975 (-577)))))) (-15 -1622 ((-705 (-327 (-577))) (-705 (-327 (-577))))) (-15 -1636 ((-660 (-705 (-327 (-577)))) (-660 (-705 (-327 (-577)))))) (-15 -1648 ((-660 (-705 (-327 (-577)))) (-705 (-420 (-975 (-577)))))))) (T -1056)) +((-1648 (*1 *2 *3) (-12 (-5 *3 (-705 (-420 (-975 (-577))))) (-5 *2 (-660 (-705 (-327 (-577))))) (-5 *1 (-1056)))) (-1636 (*1 *2 *2) (-12 (-5 *2 (-660 (-705 (-327 (-577))))) (-5 *1 (-1056)))) (-1622 (*1 *2 *2) (-12 (-5 *2 (-705 (-327 (-577)))) (-5 *1 (-1056)))) (-1609 (*1 *2 *3) (|partial| -12 (-5 *3 (-705 (-420 (-975 (-577))))) (-5 *2 (-705 (-327 (-577)))) (-5 *1 (-1056)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-705 (-420 (-975 (-577))))) (-5 *2 (-660 (-327 (-577)))) (-5 *1 (-1056)))) (-1588 (*1 *2 *3 *4) (-12 (-5 *4 (-705 (-420 (-975 (-577))))) (-5 *2 (-660 (-705 (-327 (-577))))) (-5 *1 (-1056)) (-5 *3 (-327 (-577))))) (-1576 (*1 *2 *3) (-12 (-5 *3 (-705 (-420 (-975 (-577))))) (-5 *2 (-660 (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) (|:| |radvect| (-660 (-705 (-327 (-577)))))))) (-5 *1 (-1056))))) +(-10 -7 (-15 -1576 ((-660 (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) (|:| |radvect| (-660 (-705 (-327 (-577))))))) (-705 (-420 (-975 (-577)))))) (-15 -1588 ((-660 (-705 (-327 (-577)))) (-327 (-577)) (-705 (-420 (-975 (-577)))))) (-15 -1598 ((-660 (-327 (-577))) (-705 (-420 (-975 (-577)))))) (-15 -1609 ((-3 (-705 (-327 (-577))) "failed") (-705 (-420 (-975 (-577)))))) (-15 -1622 ((-705 (-327 (-577))) (-705 (-327 (-577))))) (-15 -1636 ((-660 (-705 (-327 (-577)))) (-660 (-705 (-327 (-577)))))) (-15 -1648 ((-660 (-705 (-327 (-577)))) (-705 (-420 (-975 (-577))))))) +((-3646 ((|#1| |#1| (-944)) 18))) +(((-1057 |#1|) (-10 -7 (-15 -3646 (|#1| |#1| (-944)))) (-13 (-1125) (-10 -8 (-15 * ($ $ $))))) (T -1057)) +((-3646 (*1 *2 *2 *3) (-12 (-5 *3 (-944)) (-5 *1 (-1057 *2)) (-4 *2 (-13 (-1125) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -3646 (|#1| |#1| (-944)))) +((-3544 ((|#1| (-323)) 11) (((-1297) |#1|) 9))) +(((-1058 |#1|) (-10 -7 (-15 -3544 ((-1297) |#1|)) (-15 -3544 (|#1| (-323)))) (-1242)) (T -1058)) +((-3544 (*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1058 *2)) (-4 *2 (-1242)))) (-3544 (*1 *2 *3) (-12 (-5 *2 (-1297)) (-5 *1 (-1058 *3)) (-4 *3 (-1242))))) +(-10 -7 (-15 -3544 ((-1297) |#1|)) (-15 -3544 (|#1| (-323)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-3654 (($ |#4|) 25)) (-4187 (((-3 $ "failed") $) NIL)) (-2487 (((-112) $) NIL)) (-3642 ((|#4| $) 27)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 46) (($ (-577)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-4068 (((-787)) 43 T CONST)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 21 T CONST)) (-2816 (($) 23 T CONST)) (-2970 (((-112) $ $) 40)) (-3066 (($ $) 31) (($ $ $) NIL)) (-3055 (($ $ $) 29)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1059 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -3654 ($ |#4|)) (-15 -3544 ($ |#4|)) (-15 -3642 (|#4| $)))) (-375) (-809) (-865) (-972 |#1| |#2| |#3|) (-660 |#4|)) (T -1059)) +((-3654 (*1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1059 *3 *4 *5 *2 *6)) (-4 *2 (-972 *3 *4 *5)) (-14 *6 (-660 *2)))) (-3544 (*1 *1 *2) (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1059 *3 *4 *5 *2 *6)) (-4 *2 (-972 *3 *4 *5)) (-14 *6 (-660 *2)))) (-3642 (*1 *2 *1) (-12 (-4 *2 (-972 *3 *4 *5)) (-5 *1 (-1059 *3 *4 *5 *2 *6)) (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-14 *6 (-660 *2))))) +(-13 (-174) (-38 |#1|) (-10 -8 (-15 -3654 ($ |#4|)) (-15 -3544 ($ |#4|)) (-15 -3642 (|#4| $)))) +((-3473 (((-112) $ $) NIL (-2839 (|has| (-52) (-102)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-102))))) (-4100 (($) NIL) (($ (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) NIL)) (-2389 (((-1297) $ (-1201) (-1201)) NIL (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) NIL)) (-3669 (((-112) (-112)) 43)) (-3658 (((-112) (-112)) 42)) (-3709 (((-52) $ (-1201) (-52)) NIL)) (-2463 (($ (-1 (-112) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470)))) (-2325 (((-3 (-52) "failed") (-1201) $) NIL)) (-1534 (($) NIL T CONST)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125))))) (-3719 (($ (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) $) NIL (|has| $ (-6 -4470))) (($ (-1 (-112) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470))) (((-3 (-52) "failed") (-1201) $) NIL)) (-3904 (($ (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125)))) (($ (-1 (-112) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470)))) (-3654 (((-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $ (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125)))) (((-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $ (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) NIL (|has| $ (-6 -4470))) (((-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470)))) (-2192 (((-52) $ (-1201) (-52)) NIL (|has| $ (-6 -4471)))) (-2117 (((-52) $ (-1201)) NIL)) (-1461 (((-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470))) (((-660 (-52)) $) NIL (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-1201) $) NIL (|has| (-1201) (-865)))) (-2530 (((-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470))) (((-660 (-52)) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-52) (-1125))))) (-2416 (((-1201) $) NIL (|has| (-1201) (-865)))) (-2182 (($ (-1 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4471))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (-2839 (|has| (-52) (-1125)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125))))) (-3203 (((-660 (-1201)) $) 37)) (-4317 (((-112) (-1201) $) NIL)) (-4330 (((-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) $) NIL)) (-2881 (($ (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) $) NIL)) (-4285 (((-660 (-1201)) $) NIL)) (-4298 (((-112) (-1201) $) NIL)) (-1474 (((-1145) $) NIL (-2839 (|has| (-52) (-1125)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125))))) (-3552 (((-52) $) NIL (|has| (-1201) (-865)))) (-1828 (((-3 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) "failed") (-1 (-112) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL)) (-2397 (($ $ (-52)) NIL (|has| $ (-6 -4471)))) (-3530 (((-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) $) NIL)) (-1514 (((-112) (-1 (-112) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))))) NIL (-12 (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-320 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125)))) (($ $ (-305 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) NIL (-12 (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-320 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125)))) (($ $ (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) NIL (-12 (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-320 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125)))) (($ $ (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) NIL (-12 (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-320 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125)))) (($ $ (-660 (-52)) (-660 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125)))) (($ $ (-305 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125)))) (($ $ (-660 (-305 (-52)))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-52) (-1125))))) (-4306 (((-660 (-52)) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 (((-52) $ (-1201)) 39) (((-52) $ (-1201) (-52)) NIL)) (-3736 (($) NIL) (($ (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) NIL)) (-1485 (((-787) (-1 (-112) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470))) (((-787) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125)))) (((-787) (-52) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-52) (-1125)))) (((-787) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-627 (-549))))) (-3553 (($ (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) NIL)) (-3544 (((-880) $) 41 (-2839 (|has| (-52) (-626 (-880))) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-626 (-880)))))) (-4448 (((-112) $ $) NIL (-2839 (|has| (-52) (-102)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-102))))) (-3541 (($ (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) NIL)) (-1524 (((-112) (-1 (-112) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (-2839 (|has| (-52) (-102)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-102))))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-1060) (-13 (-1218 (-1201) (-52)) (-10 -7 (-15 -3669 ((-112) (-112))) (-15 -3658 ((-112) (-112))) (-6 -4470)))) (T -1060)) +((-3669 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1060)))) (-3658 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1060))))) +(-13 (-1218 (-1201) (-52)) (-10 -7 (-15 -3669 ((-112) (-112))) (-15 -3658 ((-112) (-112))) (-6 -4470))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3131 (((-1160) $) 9)) (-3544 (((-880) $) 15) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-1061) (-13 (-1108) (-10 -8 (-15 -3131 ((-1160) $))))) (T -1061)) +((-3131 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1061))))) +(-13 (-1108) (-10 -8 (-15 -3131 ((-1160) $)))) +((-2921 ((|#2| $) 10))) +(((-1062 |#1| |#2|) (-10 -8 (-15 -2921 (|#2| |#1|))) (-1063 |#2|) (-1242)) (T -1062)) +NIL +(-10 -8 (-15 -2921 (|#2| |#1|))) +((-1628 (((-3 |#1| "failed") $) 9)) (-2921 ((|#1| $) 8)) (-3544 (($ |#1|) 6))) +(((-1063 |#1|) (-141) (-1242)) (T -1063)) +((-1628 (*1 *2 *1) (|partial| -12 (-4 *1 (-1063 *2)) (-4 *2 (-1242)))) (-2921 (*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-1242))))) +(-13 (-629 |t#1|) (-10 -8 (-15 -1628 ((-3 |t#1| "failed") $)) (-15 -2921 (|t#1| $)))) +(((-629 |#1|) . T)) +((-3679 (((-660 (-660 (-305 (-420 (-975 |#2|))))) (-660 (-975 |#2|)) (-660 (-1201))) 38))) +(((-1064 |#1| |#2|) (-10 -7 (-15 -3679 ((-660 (-660 (-305 (-420 (-975 |#2|))))) (-660 (-975 |#2|)) (-660 (-1201))))) (-569) (-13 (-569) (-1063 |#1|))) (T -1064)) +((-3679 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-975 *6))) (-5 *4 (-660 (-1201))) (-4 *6 (-13 (-569) (-1063 *5))) (-4 *5 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *6)))))) (-5 *1 (-1064 *5 *6))))) +(-10 -7 (-15 -3679 ((-660 (-660 (-305 (-420 (-975 |#2|))))) (-660 (-975 |#2|)) (-660 (-1201))))) +((-3702 (((-391)) 17)) (-3839 (((-1 (-391)) (-391) (-391)) 22)) (-2823 (((-1 (-391)) (-787)) 48)) (-3713 (((-391)) 37)) (-3042 (((-1 (-391)) (-391) (-391)) 38)) (-3723 (((-391)) 29)) (-3744 (((-1 (-391)) (-391)) 30)) (-3734 (((-391) (-787)) 43)) (-3754 (((-1 (-391)) (-787)) 44)) (-2051 (((-1 (-391)) (-787) (-787)) 47)) (-1664 (((-1 (-391)) (-787) (-787)) 45))) +(((-1065) (-10 -7 (-15 -3702 ((-391))) (-15 -3713 ((-391))) (-15 -3723 ((-391))) (-15 -3734 ((-391) (-787))) (-15 -3839 ((-1 (-391)) (-391) (-391))) (-15 -3042 ((-1 (-391)) (-391) (-391))) (-15 -3744 ((-1 (-391)) (-391))) (-15 -3754 ((-1 (-391)) (-787))) (-15 -1664 ((-1 (-391)) (-787) (-787))) (-15 -2051 ((-1 (-391)) (-787) (-787))) (-15 -2823 ((-1 (-391)) (-787))))) (T -1065)) +((-2823 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1 (-391))) (-5 *1 (-1065)))) (-2051 (*1 *2 *3 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1 (-391))) (-5 *1 (-1065)))) (-1664 (*1 *2 *3 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1 (-391))) (-5 *1 (-1065)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1 (-391))) (-5 *1 (-1065)))) (-3744 (*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1065)) (-5 *3 (-391)))) (-3042 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1065)) (-5 *3 (-391)))) (-3839 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1065)) (-5 *3 (-391)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-391)) (-5 *1 (-1065)))) (-3723 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1065)))) (-3713 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1065)))) (-3702 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1065))))) +(-10 -7 (-15 -3702 ((-391))) (-15 -3713 ((-391))) (-15 -3723 ((-391))) (-15 -3734 ((-391) (-787))) (-15 -3839 ((-1 (-391)) (-391) (-391))) (-15 -3042 ((-1 (-391)) (-391) (-391))) (-15 -3744 ((-1 (-391)) (-391))) (-15 -3754 ((-1 (-391)) (-787))) (-15 -1664 ((-1 (-391)) (-787) (-787))) (-15 -2051 ((-1 (-391)) (-787) (-787))) (-15 -2823 ((-1 (-391)) (-787)))) +((-1902 (((-431 |#1|) |#1|) 33))) +(((-1066 |#1|) (-10 -7 (-15 -1902 ((-431 |#1|) |#1|))) (-1268 (-420 (-975 (-577))))) (T -1066)) +((-1902 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1066 *3)) (-4 *3 (-1268 (-420 (-975 (-577)))))))) +(-10 -7 (-15 -1902 ((-431 |#1|) |#1|))) +((-3765 (((-420 (-431 (-975 |#1|))) (-420 (-975 |#1|))) 14))) +(((-1067 |#1|) (-10 -7 (-15 -3765 ((-420 (-431 (-975 |#1|))) (-420 (-975 |#1|))))) (-318)) (T -1067)) +((-3765 (*1 *2 *3) (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-318)) (-5 *2 (-420 (-431 (-975 *4)))) (-5 *1 (-1067 *4))))) +(-10 -7 (-15 -3765 ((-420 (-431 (-975 |#1|))) (-420 (-975 |#1|))))) +((-2058 (((-660 (-1201)) (-420 (-975 |#1|))) 17)) (-1867 (((-420 (-1197 (-420 (-975 |#1|)))) (-420 (-975 |#1|)) (-1201)) 24)) (-2043 (((-420 (-975 |#1|)) (-420 (-1197 (-420 (-975 |#1|)))) (-1201)) 26)) (-3691 (((-3 (-1201) "failed") (-420 (-975 |#1|))) 20)) (-3280 (((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-660 (-305 (-420 (-975 |#1|))))) 32) (((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|)))) 33) (((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-660 (-1201)) (-660 (-420 (-975 |#1|)))) 28) (((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-1201) (-420 (-975 |#1|))) 29)) (-3544 (((-420 (-975 |#1|)) |#1|) 11))) +(((-1068 |#1|) (-10 -7 (-15 -2058 ((-660 (-1201)) (-420 (-975 |#1|)))) (-15 -3691 ((-3 (-1201) "failed") (-420 (-975 |#1|)))) (-15 -1867 ((-420 (-1197 (-420 (-975 |#1|)))) (-420 (-975 |#1|)) (-1201))) (-15 -2043 ((-420 (-975 |#1|)) (-420 (-1197 (-420 (-975 |#1|)))) (-1201))) (-15 -3280 ((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-1201) (-420 (-975 |#1|)))) (-15 -3280 ((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-660 (-1201)) (-660 (-420 (-975 |#1|))))) (-15 -3280 ((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|))))) (-15 -3280 ((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-660 (-305 (-420 (-975 |#1|)))))) (-15 -3544 ((-420 (-975 |#1|)) |#1|))) (-569)) (T -1068)) +((-3544 (*1 *2 *3) (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-1068 *3)) (-4 *3 (-569)))) (-3280 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-305 (-420 (-975 *4))))) (-5 *2 (-420 (-975 *4))) (-4 *4 (-569)) (-5 *1 (-1068 *4)))) (-3280 (*1 *2 *2 *3) (-12 (-5 *3 (-305 (-420 (-975 *4)))) (-5 *2 (-420 (-975 *4))) (-4 *4 (-569)) (-5 *1 (-1068 *4)))) (-3280 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-660 (-1201))) (-5 *4 (-660 (-420 (-975 *5)))) (-5 *2 (-420 (-975 *5))) (-4 *5 (-569)) (-5 *1 (-1068 *5)))) (-3280 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-420 (-975 *4))) (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *1 (-1068 *4)))) (-2043 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-1197 (-420 (-975 *5))))) (-5 *4 (-1201)) (-5 *2 (-420 (-975 *5))) (-5 *1 (-1068 *5)) (-4 *5 (-569)))) (-1867 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-569)) (-5 *2 (-420 (-1197 (-420 (-975 *5))))) (-5 *1 (-1068 *5)) (-5 *3 (-420 (-975 *5))))) (-3691 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) (-5 *2 (-1201)) (-5 *1 (-1068 *4)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) (-5 *2 (-660 (-1201))) (-5 *1 (-1068 *4))))) +(-10 -7 (-15 -2058 ((-660 (-1201)) (-420 (-975 |#1|)))) (-15 -3691 ((-3 (-1201) "failed") (-420 (-975 |#1|)))) (-15 -1867 ((-420 (-1197 (-420 (-975 |#1|)))) (-420 (-975 |#1|)) (-1201))) (-15 -2043 ((-420 (-975 |#1|)) (-420 (-1197 (-420 (-975 |#1|)))) (-1201))) (-15 -3280 ((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-1201) (-420 (-975 |#1|)))) (-15 -3280 ((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-660 (-1201)) (-660 (-420 (-975 |#1|))))) (-15 -3280 ((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-305 (-420 (-975 |#1|))))) (-15 -3280 ((-420 (-975 |#1|)) (-420 (-975 |#1|)) (-660 (-305 (-420 (-975 |#1|)))))) (-15 -3544 ((-420 (-975 |#1|)) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1534 (($) 18 T CONST)) (-3815 ((|#1| $) 23)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3802 ((|#1| $) 22)) (-3777 ((|#1|) 20 T CONST)) (-3544 (((-880) $) 12)) (-3790 ((|#1| $) 21)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16))) +(((-1069 |#1|) (-141) (-23)) (T -1069)) +((-3815 (*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-23)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-23)))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-23)))) (-3777 (*1 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3815 (|t#1| $)) (-15 -3802 (|t#1| $)) (-15 -3790 (|t#1| $)) (-15 -3777 (|t#1|) -1512))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3827 (($) 25 T CONST)) (-1534 (($) 18 T CONST)) (-3815 ((|#1| $) 23)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3802 ((|#1| $) 22)) (-3777 ((|#1|) 20 T CONST)) (-3544 (((-880) $) 12)) (-3790 ((|#1| $) 21)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16))) +(((-1070 |#1|) (-141) (-23)) (T -1070)) +((-3827 (*1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-23))))) +(-13 (-1069 |t#1|) (-10 -8 (-15 -3827 ($) -1512))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-626 (-880)) . T) ((-1069 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-2361 (((-660 (-2 (|:| -2045 $) (|:| -3253 (-660 (-796 |#1| (-882 |#2|)))))) (-660 (-796 |#1| (-882 |#2|)))) NIL)) (-2371 (((-660 $) (-660 (-796 |#1| (-882 |#2|)))) NIL) (((-660 $) (-660 (-796 |#1| (-882 |#2|))) (-112)) NIL) (((-660 $) (-660 (-796 |#1| (-882 |#2|))) (-112) (-112)) NIL)) (-2058 (((-660 (-882 |#2|)) $) NIL)) (-2508 (((-112) $) NIL)) (-3572 (((-112) $) NIL (|has| |#1| (-569)))) (-2475 (((-112) (-796 |#1| (-882 |#2|)) $) NIL) (((-112) $) NIL)) (-2426 (((-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) $) NIL)) (-3841 (((-660 (-2 (|:| |val| (-796 |#1| (-882 |#2|))) (|:| -3952 $))) (-796 |#1| (-882 |#2|)) $) NIL)) (-1864 (((-2 (|:| |under| $) (|:| -4119 $) (|:| |upper| $)) $ (-882 |#2|)) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-2067 (($ (-1 (-112) (-796 |#1| (-882 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-3 (-796 |#1| (-882 |#2|)) "failed") $ (-882 |#2|)) NIL)) (-1534 (($) NIL T CONST)) (-2474 (((-112) $) NIL (|has| |#1| (-569)))) (-2492 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2483 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2500 (((-112) $) NIL (|has| |#1| (-569)))) (-2435 (((-660 (-796 |#1| (-882 |#2|))) (-660 (-796 |#1| (-882 |#2|))) $ (-1 (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|))) (-1 (-112) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)))) NIL)) (-2434 (((-660 (-796 |#1| (-882 |#2|))) (-660 (-796 |#1| (-882 |#2|))) $) NIL (|has| |#1| (-569)))) (-2446 (((-660 (-796 |#1| (-882 |#2|))) (-660 (-796 |#1| (-882 |#2|))) $) NIL (|has| |#1| (-569)))) (-1628 (((-3 $ "failed") (-660 (-796 |#1| (-882 |#2|)))) NIL)) (-2921 (($ (-660 (-796 |#1| (-882 |#2|)))) NIL)) (-3563 (((-3 $ "failed") $) NIL)) (-2399 (((-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) $) NIL)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-796 |#1| (-882 |#2|)) (-1125))))) (-3904 (($ (-796 |#1| (-882 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-796 |#1| (-882 |#2|)) (-1125)))) (($ (-1 (-112) (-796 |#1| (-882 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2457 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-796 |#1| (-882 |#2|))) (|:| |den| |#1|)) (-796 |#1| (-882 |#2|)) $) NIL (|has| |#1| (-569)))) (-2484 (((-112) (-796 |#1| (-882 |#2|)) $ (-1 (-112) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)))) NIL)) (-2382 (((-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) $) NIL)) (-3654 (((-796 |#1| (-882 |#2|)) (-1 (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|))) $ (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-796 |#1| (-882 |#2|)) (-1125)))) (((-796 |#1| (-882 |#2|)) (-1 (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|))) $ (-796 |#1| (-882 |#2|))) NIL (|has| $ (-6 -4470))) (((-796 |#1| (-882 |#2|)) (-1 (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) $ (-1 (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|))) (-1 (-112) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)))) NIL)) (-4364 (((-2 (|:| -2045 (-660 (-796 |#1| (-882 |#2|)))) (|:| -3253 (-660 (-796 |#1| (-882 |#2|))))) $) NIL)) (-2524 (((-112) (-796 |#1| (-882 |#2|)) $) NIL)) (-2505 (((-112) (-796 |#1| (-882 |#2|)) $) NIL)) (-2532 (((-112) (-796 |#1| (-882 |#2|)) $) NIL) (((-112) $) NIL)) (-1461 (((-660 (-796 |#1| (-882 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-4354 (((-112) (-796 |#1| (-882 |#2|)) $) NIL) (((-112) $) NIL)) (-3514 (((-882 |#2|) $) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 (-796 |#1| (-882 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) (-796 |#1| (-882 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-796 |#1| (-882 |#2|)) (-1125))))) (-2182 (($ (-1 (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|))) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|))) $) NIL)) (-2555 (((-660 (-882 |#2|)) $) NIL)) (-2545 (((-112) (-882 |#2|) $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL)) (-2471 (((-3 (-796 |#1| (-882 |#2|)) (-660 $)) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) $) NIL)) (-3605 (((-660 (-2 (|:| |val| (-796 |#1| (-882 |#2|))) (|:| -3952 $))) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) $) NIL)) (-3927 (((-3 (-796 |#1| (-882 |#2|)) "failed") $) NIL)) (-2479 (((-660 $) (-796 |#1| (-882 |#2|)) $) NIL)) (-2496 (((-3 (-112) (-660 $)) (-796 |#1| (-882 |#2|)) $) NIL)) (-2488 (((-660 (-2 (|:| |val| (-112)) (|:| -3952 $))) (-796 |#1| (-882 |#2|)) $) NIL) (((-112) (-796 |#1| (-882 |#2|)) $) NIL)) (-2785 (((-660 $) (-796 |#1| (-882 |#2|)) $) NIL) (((-660 $) (-660 (-796 |#1| (-882 |#2|))) $) NIL) (((-660 $) (-660 (-796 |#1| (-882 |#2|))) (-660 $)) NIL) (((-660 $) (-796 |#1| (-882 |#2|)) (-660 $)) NIL)) (-3986 (($ (-796 |#1| (-882 |#2|)) $) NIL) (($ (-660 (-796 |#1| (-882 |#2|))) $) NIL)) (-4375 (((-660 (-796 |#1| (-882 |#2|))) $) NIL)) (-2458 (((-112) (-796 |#1| (-882 |#2|)) $) NIL) (((-112) $) NIL)) (-2408 (((-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) $) NIL)) (-4396 (((-112) $ $) NIL)) (-2466 (((-2 (|:| |num| (-796 |#1| (-882 |#2|))) (|:| |den| |#1|)) (-796 |#1| (-882 |#2|)) $) NIL (|has| |#1| (-569)))) (-2467 (((-112) (-796 |#1| (-882 |#2|)) $) NIL) (((-112) $) NIL)) (-2418 (((-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)) $) NIL)) (-1474 (((-1145) $) NIL)) (-3552 (((-3 (-796 |#1| (-882 |#2|)) "failed") $) NIL)) (-1828 (((-3 (-796 |#1| (-882 |#2|)) "failed") (-1 (-112) (-796 |#1| (-882 |#2|))) $) NIL)) (-2343 (((-3 $ "failed") $ (-796 |#1| (-882 |#2|))) NIL)) (-3792 (($ $ (-796 |#1| (-882 |#2|))) NIL) (((-660 $) (-796 |#1| (-882 |#2|)) $) NIL) (((-660 $) (-796 |#1| (-882 |#2|)) (-660 $)) NIL) (((-660 $) (-660 (-796 |#1| (-882 |#2|))) $) NIL) (((-660 $) (-660 (-796 |#1| (-882 |#2|))) (-660 $)) NIL)) (-1514 (((-112) (-1 (-112) (-796 |#1| (-882 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-796 |#1| (-882 |#2|))) (-660 (-796 |#1| (-882 |#2|)))) NIL (-12 (|has| (-796 |#1| (-882 |#2|)) (-320 (-796 |#1| (-882 |#2|)))) (|has| (-796 |#1| (-882 |#2|)) (-1125)))) (($ $ (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|))) NIL (-12 (|has| (-796 |#1| (-882 |#2|)) (-320 (-796 |#1| (-882 |#2|)))) (|has| (-796 |#1| (-882 |#2|)) (-1125)))) (($ $ (-305 (-796 |#1| (-882 |#2|)))) NIL (-12 (|has| (-796 |#1| (-882 |#2|)) (-320 (-796 |#1| (-882 |#2|)))) (|has| (-796 |#1| (-882 |#2|)) (-1125)))) (($ $ (-660 (-305 (-796 |#1| (-882 |#2|))))) NIL (-12 (|has| (-796 |#1| (-882 |#2|)) (-320 (-796 |#1| (-882 |#2|)))) (|has| (-796 |#1| (-882 |#2|)) (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2887 (((-787) $) NIL)) (-1485 (((-787) (-796 |#1| (-882 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-796 |#1| (-882 |#2|)) (-1125)))) (((-787) (-1 (-112) (-796 |#1| (-882 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| (-796 |#1| (-882 |#2|)) (-627 (-549))))) (-3553 (($ (-660 (-796 |#1| (-882 |#2|)))) NIL)) (-2518 (($ $ (-882 |#2|)) NIL)) (-2536 (($ $ (-882 |#2|)) NIL)) (-2391 (($ $) NIL)) (-2527 (($ $ (-882 |#2|)) NIL)) (-3544 (((-880) $) NIL) (((-660 (-796 |#1| (-882 |#2|))) $) NIL)) (-2332 (((-787) $) NIL (|has| (-882 |#2|) (-380)))) (-4448 (((-112) $ $) NIL)) (-4385 (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 (-796 |#1| (-882 |#2|))))) "failed") (-660 (-796 |#1| (-882 |#2|))) (-1 (-112) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 (-796 |#1| (-882 |#2|))))) "failed") (-660 (-796 |#1| (-882 |#2|))) (-1 (-112) (-796 |#1| (-882 |#2|))) (-1 (-112) (-796 |#1| (-882 |#2|)) (-796 |#1| (-882 |#2|)))) NIL)) (-2447 (((-112) $ (-1 (-112) (-796 |#1| (-882 |#2|)) (-660 (-796 |#1| (-882 |#2|))))) NIL)) (-3594 (((-660 $) (-796 |#1| (-882 |#2|)) $) NIL) (((-660 $) (-796 |#1| (-882 |#2|)) (-660 $)) NIL) (((-660 $) (-660 (-796 |#1| (-882 |#2|))) $) NIL) (((-660 $) (-660 (-796 |#1| (-882 |#2|))) (-660 $)) NIL)) (-1524 (((-112) (-1 (-112) (-796 |#1| (-882 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2352 (((-660 (-882 |#2|)) $) NIL)) (-2515 (((-112) (-796 |#1| (-882 |#2|)) $) NIL)) (-2776 (((-112) (-882 |#2|) $) NIL)) (-2970 (((-112) $ $) NIL)) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-1071 |#1| |#2|) (-13 (-1096 |#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|))) (-10 -8 (-15 -2371 ((-660 $) (-660 (-796 |#1| (-882 |#2|))) (-112) (-112))))) (-465) (-660 (-1201))) (T -1071)) +((-2371 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) (-14 *6 (-660 (-1201))) (-5 *2 (-660 (-1071 *5 *6))) (-5 *1 (-1071 *5 *6))))) +(-13 (-1096 |#1| (-544 (-882 |#2|)) (-882 |#2|) (-796 |#1| (-882 |#2|))) (-10 -8 (-15 -2371 ((-660 $) (-660 (-796 |#1| (-882 |#2|))) (-112) (-112))))) +((-3839 (((-1 (-577)) (-1119 (-577))) 32)) (-3884 (((-577) (-577) (-577) (-577) (-577)) 29)) (-3862 (((-1 (-577)) |RationalNumber|) NIL)) (-3873 (((-1 (-577)) |RationalNumber|) NIL)) (-3850 (((-1 (-577)) (-577) |RationalNumber|) NIL))) +(((-1072) (-10 -7 (-15 -3839 ((-1 (-577)) (-1119 (-577)))) (-15 -3850 ((-1 (-577)) (-577) |RationalNumber|)) (-15 -3862 ((-1 (-577)) |RationalNumber|)) (-15 -3873 ((-1 (-577)) |RationalNumber|)) (-15 -3884 ((-577) (-577) (-577) (-577) (-577))))) (T -1072)) +((-3884 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1072)))) (-3873 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1072)))) (-3862 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1072)))) (-3850 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1072)) (-5 *3 (-577)))) (-3839 (*1 *2 *3) (-12 (-5 *3 (-1119 (-577))) (-5 *2 (-1 (-577))) (-5 *1 (-1072))))) +(-10 -7 (-15 -3839 ((-1 (-577)) (-1119 (-577)))) (-15 -3850 ((-1 (-577)) (-577) |RationalNumber|)) (-15 -3862 ((-1 (-577)) |RationalNumber|)) (-15 -3873 ((-1 (-577)) |RationalNumber|)) (-15 -3884 ((-577) (-577) (-577) (-577) (-577)))) +((-3544 (((-880) $) NIL) (($ (-577)) 10))) +(((-1073 |#1|) (-10 -8 (-15 -3544 (|#1| (-577))) (-15 -3544 ((-880) |#1|))) (-1074)) (T -1073)) +NIL +(-10 -8 (-15 -3544 (|#1| (-577))) (-15 -3544 ((-880) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-4187 (((-3 $ "failed") $) 37)) (-2487 (((-112) $) 35)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12) (($ (-577)) 33)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) +(((-1074) (-141)) (T -1074)) +((-4068 (*1 *2) (-12 (-4 *1 (-1074)) (-5 *2 (-787))))) +(-13 (-1083) (-742) (-664 $) (-629 (-577)) (-10 -7 (-15 -4068 ((-787)) -1512) (-6 -4467))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-629 (-577)) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-742) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3895 (((-420 (-975 |#2|)) (-660 |#2|) (-660 |#2|) (-787) (-787)) 54))) +(((-1075 |#1| |#2|) (-10 -7 (-15 -3895 ((-420 (-975 |#2|)) (-660 |#2|) (-660 |#2|) (-787) (-787)))) (-1201) (-375)) (T -1075)) +((-3895 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-660 *6)) (-5 *4 (-787)) (-4 *6 (-375)) (-5 *2 (-420 (-975 *6))) (-5 *1 (-1075 *5 *6)) (-14 *5 (-1201))))) +(-10 -7 (-15 -3895 ((-420 (-975 |#2|)) (-660 |#2|) (-660 |#2|) (-787) (-787)))) +((-3473 (((-112) $ $) 7)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8)) (* (($ $ |#1|) 14))) +(((-1076 |#1|) (-141) (-1137)) (T -1076)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1137))))) +(-13 (-1125) (-10 -8 (-15 * ($ $ |t#1|)))) +(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-4025 (((-112) $) 38)) (-4046 (((-112) $) 17)) (-2414 (((-787) $) 13)) (-2424 (((-787) $) 14)) (-4035 (((-112) $) 30)) (-4015 (((-112) $) 40))) +(((-1077 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2424 ((-787) |#1|)) (-15 -2414 ((-787) |#1|)) (-15 -4015 ((-112) |#1|)) (-15 -4025 ((-112) |#1|)) (-15 -4035 ((-112) |#1|)) (-15 -4046 ((-112) |#1|))) (-1078 |#2| |#3| |#4| |#5| |#6|) (-787) (-787) (-1074) (-244 |#3| |#4|) (-244 |#2| |#4|)) (T -1077)) +NIL +(-10 -8 (-15 -2424 ((-787) |#1|)) (-15 -2414 ((-787) |#1|)) (-15 -4015 ((-112) |#1|)) (-15 -4025 ((-112) |#1|)) (-15 -4035 ((-112) |#1|)) (-15 -4046 ((-112) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-4025 (((-112) $) 56)) (-1956 (((-3 $ "failed") $ $) 20)) (-4046 (((-112) $) 58)) (-3828 (((-112) $ (-787)) 66)) (-1534 (($) 18 T CONST)) (-3931 (($ $) 39 (|has| |#3| (-318)))) (-3956 ((|#4| $ (-577)) 44)) (-1545 (((-787) $) 38 (|has| |#3| (-569)))) (-2117 ((|#3| $ (-577) (-577)) 46)) (-1461 (((-660 |#3|) $) 73 (|has| $ (-6 -4470)))) (-3919 (((-787) $) 37 (|has| |#3| (-569)))) (-3908 (((-660 |#5|) $) 36 (|has| |#3| (-569)))) (-2414 (((-787) $) 50)) (-2424 (((-787) $) 49)) (-1479 (((-112) $ (-787)) 65)) (-4002 (((-577) $) 54)) (-3979 (((-577) $) 52)) (-2530 (((-660 |#3|) $) 74 (|has| $ (-6 -4470)))) (-2820 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1125)) (|has| $ (-6 -4470))))) (-3990 (((-577) $) 53)) (-3968 (((-577) $) 51)) (-2550 (($ (-660 (-660 |#3|))) 59)) (-2182 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-2737 (((-660 (-660 |#3|)) $) 48)) (-1443 (((-112) $ (-787)) 64)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3462 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-569)))) (-1514 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 |#3|) (-660 |#3|)) 80 (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) (($ $ (-305 |#3|)) 78 (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) (($ $ (-660 (-305 |#3|))) 77 (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))))) (-3840 (((-112) $ $) 60)) (-3697 (((-112) $) 63)) (-3639 (($) 62)) (-2872 ((|#3| $ (-577) (-577)) 47) ((|#3| $ (-577) (-577) |#3|) 45)) (-4035 (((-112) $) 57)) (-1485 (((-787) |#3| $) 75 (-12 (|has| |#3| (-1125)) (|has| $ (-6 -4470)))) (((-787) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4470)))) (-1944 (($ $) 61)) (-3943 ((|#5| $ (-577)) 43)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-1524 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4470)))) (-4015 (((-112) $) 55)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3077 (($ $ |#3|) 40 (|has| |#3| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-3484 (((-787) $) 67 (|has| $ (-6 -4470))))) +(((-1078 |#1| |#2| |#3| |#4| |#5|) (-141) (-787) (-787) (-1074) (-244 |t#2| |t#3|) (-244 |t#1| |t#3|)) (T -1078)) +((-4087 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-2550 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *5))) (-4 *5 (-1074)) (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-4046 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-4035 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-4025 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-4015 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112)))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577)))) (-3990 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577)))) (-3968 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577)))) (-2414 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-787)))) (-2424 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-787)))) (-2737 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-660 (-660 *5))))) (-2872 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1074)))) (-2117 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *2 *6 *7)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1074)))) (-2872 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *2 *6 *7)) (-4 *2 (-1074)) (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) (-3956 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *6 *2 *7)) (-4 *6 (-1074)) (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6)))) (-3943 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *6 *7 *2)) (-4 *6 (-1074)) (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6)))) (-4087 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) (-3462 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1078 *3 *4 *2 *5 *6)) (-4 *2 (-1074)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-569)))) (-3077 (*1 *1 *1 *2) (-12 (-4 *1 (-1078 *3 *4 *2 *5 *6)) (-4 *2 (-1074)) (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-375)))) (-3931 (*1 *1 *1) (-12 (-4 *1 (-1078 *2 *3 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-318)))) (-1545 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) (-5 *2 (-787)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) (-5 *2 (-787)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) (-5 *2 (-660 *7))))) +(-13 (-111 |t#3| |t#3|) (-502 |t#3|) (-10 -8 (-6 -4470) (IF (|has| |t#3| (-174)) (-6 (-733 |t#3|)) |%noBranch|) (-15 -2550 ($ (-660 (-660 |t#3|)))) (-15 -4046 ((-112) $)) (-15 -4035 ((-112) $)) (-15 -4025 ((-112) $)) (-15 -4015 ((-112) $)) (-15 -4002 ((-577) $)) (-15 -3990 ((-577) $)) (-15 -3979 ((-577) $)) (-15 -3968 ((-577) $)) (-15 -2414 ((-787) $)) (-15 -2424 ((-787) $)) (-15 -2737 ((-660 (-660 |t#3|)) $)) (-15 -2872 (|t#3| $ (-577) (-577))) (-15 -2117 (|t#3| $ (-577) (-577))) (-15 -2872 (|t#3| $ (-577) (-577) |t#3|)) (-15 -3956 (|t#4| $ (-577))) (-15 -3943 (|t#5| $ (-577))) (-15 -4087 ($ (-1 |t#3| |t#3|) $)) (-15 -4087 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-569)) (-15 -3462 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-375)) (-15 -3077 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-318)) (-15 -3931 ($ $)) |%noBranch|) (IF (|has| |t#3| (-569)) (PROGN (-15 -1545 ((-787) $)) (-15 -3919 ((-787) $)) (-15 -3908 ((-660 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-626 (-880)) . T) ((-320 |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ((-502 |#3|) . T) ((-527 |#3| |#3|) -12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))) ((-662 (-577)) . T) ((-662 |#3|) . T) ((-664 |#3|) . T) ((-656 |#3|) |has| |#3| (-174)) ((-733 |#3|) |has| |#3| (-174)) ((-1076 |#3|) . T) ((-1081 |#3|) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-4025 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-4046 (((-112) $) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-1534 (($) NIL T CONST)) (-3931 (($ $) 47 (|has| |#3| (-318)))) (-3956 (((-246 |#2| |#3|) $ (-577)) 36)) (-4056 (($ (-705 |#3|)) 45)) (-1545 (((-787) $) 49 (|has| |#3| (-569)))) (-2117 ((|#3| $ (-577) (-577)) NIL)) (-1461 (((-660 |#3|) $) NIL (|has| $ (-6 -4470)))) (-3919 (((-787) $) 51 (|has| |#3| (-569)))) (-3908 (((-660 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-569)))) (-2414 (((-787) $) NIL)) (-2424 (((-787) $) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-4002 (((-577) $) NIL)) (-3979 (((-577) $) NIL)) (-2530 (((-660 |#3|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#3| (-1125))))) (-3990 (((-577) $) NIL)) (-3968 (((-577) $) NIL)) (-2550 (($ (-660 (-660 |#3|))) 31)) (-2182 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2737 (((-660 (-660 |#3|)) $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3462 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-569)))) (-1514 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 |#3|) (-660 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) (($ $ (-660 (-305 |#3|))) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#3| $ (-577) (-577)) NIL) ((|#3| $ (-577) (-577) |#3|) NIL)) (-2561 (((-135)) 59 (|has| |#3| (-375)))) (-4035 (((-112) $) NIL)) (-1485 (((-787) |#3| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#3| (-1125)))) (((-787) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) 65 (|has| |#3| (-627 (-549))))) (-3943 (((-246 |#1| |#3|) $ (-577)) 40)) (-3544 (((-880) $) 19) (((-705 |#3|) $) 42)) (-4448 (((-112) $ $) NIL)) (-1524 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4470)))) (-4015 (((-112) $) NIL)) (-2806 (($) 16 T CONST)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#3|) NIL (|has| |#3| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-1079 |#1| |#2| |#3|) (-13 (-1078 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-626 (-705 |#3|)) (-10 -8 (IF (|has| |#3| (-375)) (-6 (-1299 |#3|)) |%noBranch|) (IF (|has| |#3| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (-15 -4056 ($ (-705 |#3|))))) (-787) (-787) (-1074)) (T -1079)) +((-4056 (*1 *1 *2) (-12 (-5 *2 (-705 *5)) (-4 *5 (-1074)) (-5 *1 (-1079 *3 *4 *5)) (-14 *3 (-787)) (-14 *4 (-787))))) +(-13 (-1078 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-626 (-705 |#3|)) (-10 -8 (IF (|has| |#3| (-375)) (-6 (-1299 |#3|)) |%noBranch|) (IF (|has| |#3| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|) (-15 -4056 ($ (-705 |#3|))))) +((-3654 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-4087 ((|#10| (-1 |#7| |#3|) |#6|) 34))) +(((-1080 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4087 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3654 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-787) (-787) (-1074) (-244 |#2| |#3|) (-244 |#1| |#3|) (-1078 |#1| |#2| |#3| |#4| |#5|) (-1074) (-244 |#2| |#7|) (-244 |#1| |#7|) (-1078 |#1| |#2| |#7| |#8| |#9|)) (T -1080)) +((-3654 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1074)) (-4 *2 (-1074)) (-14 *5 (-787)) (-14 *6 (-787)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) (-5 *1 (-1080 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1078 *5 *6 *7 *8 *9)) (-4 *12 (-1078 *5 *6 *2 *10 *11)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1074)) (-4 *10 (-1074)) (-14 *5 (-787)) (-14 *6 (-787)) (-4 *8 (-244 *6 *7)) (-4 *9 (-244 *5 *7)) (-4 *2 (-1078 *5 *6 *10 *11 *12)) (-5 *1 (-1080 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1078 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) (-4 *12 (-244 *5 *10))))) +(-10 -7 (-15 -4087 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3654 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ |#1|) 27))) +(((-1081 |#1|) (-141) (-1083)) (T -1081)) +NIL +(-13 (-21) (-1076 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-1076 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-3076 (((-1201) $) 11)) (-2362 ((|#1| $) 12)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-2448 (($ (-1201) |#1|) 10)) (-3544 (((-880) $) 22 (|has| |#1| (-1125)))) (-4448 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-2970 (((-112) $ $) 17 (|has| |#1| (-1125))))) +(((-1082 |#1| |#2|) (-13 (-1242) (-10 -8 (-15 -2448 ($ (-1201) |#1|)) (-15 -3076 ((-1201) $)) (-15 -2362 (|#1| $)) (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|))) (-1118 |#2|) (-1242)) (T -1082)) +((-2448 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-4 *4 (-1242)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1118 *4)))) (-3076 (*1 *2 *1) (-12 (-4 *4 (-1242)) (-5 *2 (-1201)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1118 *4)))) (-2362 (*1 *2 *1) (-12 (-4 *2 (-1118 *3)) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1242))))) +(-13 (-1242) (-10 -8 (-15 -2448 ($ (-1201) |#1|)) (-15 -3076 ((-1201) $)) (-15 -2362 (|#1| $)) (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) +(((-1083) (-141)) (T -1083)) +NIL +(-13 (-21) (-1137)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3804 (($ $) 17)) (-4080 (($ $) 25)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 55)) (-4145 (($ $) 27)) (-4093 (($ $) 12)) (-4119 (($ $) 43)) (-4152 (((-391) $) NIL) (((-228) $) NIL) (((-911 (-391)) $) 36)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL) (($ (-420 (-577))) 31) (($ (-577)) NIL) (($ (-420 (-577))) 31)) (-4068 (((-787)) 9)) (-4132 (($ $) 45))) +(((-1084 |#1|) (-10 -8 (-15 -4080 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -4093 (|#1| |#1|)) (-15 -4119 (|#1| |#1|)) (-15 -4132 (|#1| |#1|)) (-15 -4145 (|#1| |#1|)) (-15 -3795 ((-908 (-391) |#1|) |#1| (-911 (-391)) (-908 (-391) |#1|))) (-15 -4152 ((-911 (-391)) |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -3544 (|#1| (-577))) (-15 -4152 ((-228) |#1|)) (-15 -4152 ((-391) |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -3544 (|#1| |#1|)) (-15 -4068 ((-787))) (-15 -3544 (|#1| (-577))) (-15 -3544 ((-880) |#1|))) (-1085)) (T -1084)) +((-4068 (*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1084 *3)) (-4 *3 (-1085))))) +(-10 -8 (-15 -4080 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -4093 (|#1| |#1|)) (-15 -4119 (|#1| |#1|)) (-15 -4132 (|#1| |#1|)) (-15 -4145 (|#1| |#1|)) (-15 -3795 ((-908 (-391) |#1|) |#1| (-911 (-391)) (-908 (-391) |#1|))) (-15 -4152 ((-911 (-391)) |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -3544 (|#1| (-577))) (-15 -4152 ((-228) |#1|)) (-15 -4152 ((-391) |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -3544 (|#1| |#1|)) (-15 -4068 ((-787))) (-15 -3544 (|#1| (-577))) (-15 -3544 ((-880) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-4105 (((-577) $) 98)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-3804 (($ $) 96)) (-1956 (((-3 $ "failed") $ $) 20)) (-3841 (($ $) 81)) (-3029 (((-431 $) $) 80)) (-1913 (($ $) 106)) (-1939 (((-112) $ $) 65)) (-3010 (((-577) $) 123)) (-1534 (($) 18 T CONST)) (-4080 (($ $) 95)) (-1628 (((-3 (-577) "failed") $) 111) (((-3 (-420 (-577)) "failed") $) 108)) (-2921 (((-577) $) 112) (((-420 (-577)) $) 109)) (-3418 (($ $ $) 61)) (-4187 (((-3 $ "failed") $) 37)) (-3429 (($ $ $) 62)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 57)) (-1522 (((-112) $) 79)) (-3567 (((-112) $) 121)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 102)) (-2487 (((-112) $) 35)) (-2381 (($ $ (-577)) 105)) (-4145 (($ $) 101)) (-3578 (((-112) $) 122)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 58)) (-3732 (($ $ $) 115)) (-3201 (($ $ $) 116)) (-3446 (($ $ $) 52) (($ (-660 $)) 51)) (-2810 (((-1183) $) 10)) (-2171 (($ $) 78)) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 50)) (-3480 (($ $ $) 54) (($ (-660 $)) 53)) (-4093 (($ $) 97)) (-4119 (($ $) 99)) (-1902 (((-431 $) $) 82)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3462 (((-3 $ "failed") $ $) 48)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 56)) (-1927 (((-787) $) 64)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 63)) (-4152 (((-391) $) 114) (((-228) $) 113) (((-911 (-391)) $) 103)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49) (($ (-420 (-577))) 74) (($ (-577)) 110) (($ (-420 (-577))) 107)) (-4068 (((-787)) 32 T CONST)) (-4132 (($ $) 100)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 45)) (-1654 (($ $) 124)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-3025 (((-112) $ $) 117)) (-3000 (((-112) $ $) 119)) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 118)) (-2990 (((-112) $ $) 120)) (-3077 (($ $ $) 73)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 77) (($ $ (-420 (-577))) 104)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ (-420 (-577))) 76) (($ (-420 (-577)) $) 75))) +(((-1085) (-141)) (T -1085)) +((-1654 (*1 *1 *1) (-4 *1 (-1085))) (-4145 (*1 *1 *1) (-4 *1 (-1085))) (-4132 (*1 *1 *1) (-4 *1 (-1085))) (-4119 (*1 *1 *1) (-4 *1 (-1085))) (-4105 (*1 *2 *1) (-12 (-4 *1 (-1085)) (-5 *2 (-577)))) (-4093 (*1 *1 *1) (-4 *1 (-1085))) (-3804 (*1 *1 *1) (-4 *1 (-1085))) (-4080 (*1 *1 *1) (-4 *1 (-1085)))) +(-13 (-375) (-864) (-1047) (-1063 (-577)) (-1063 (-420 (-577))) (-1027) (-627 (-911 (-391))) (-905 (-391)) (-148) (-10 -8 (-15 -4145 ($ $)) (-15 -4132 ($ $)) (-15 -4119 ($ $)) (-15 -4105 ((-577) $)) (-15 -4093 ($ $)) (-15 -3804 ($ $)) (-15 -4080 ($ $)) (-15 -1654 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-627 (-228)) . T) ((-627 (-391)) . T) ((-627 (-911 (-391))) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-465) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 $) . T) ((-733 #0#) . T) ((-733 $) . T) ((-742) . T) ((-807) . T) ((-808) . T) ((-810) . T) ((-811) . T) ((-864) . T) ((-865) . T) ((-868) . T) ((-905 (-391)) . T) ((-943) . T) ((-1027) . T) ((-1047) . T) ((-1063 (-420 (-577))) . T) ((-1063 (-577)) . T) ((-1076 #0#) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) |#2| $) 26)) (-2229 ((|#1| $) 10)) (-3010 (((-577) |#2| $) 116)) (-3535 (((-3 $ "failed") |#2| (-944)) 75)) (-4239 ((|#1| $) 31)) (-3524 ((|#1| |#2| $ |#1|) 40)) (-4169 (($ $) 28)) (-4187 (((-3 |#2| "failed") |#2| $) 111)) (-3567 (((-112) |#2| $) NIL)) (-3578 (((-112) |#2| $) NIL)) (-4157 (((-112) |#2| $) 27)) (-4180 ((|#1| $) 117)) (-4228 ((|#1| $) 30)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3557 ((|#2| $) 102)) (-3544 (((-880) $) 92)) (-4448 (((-112) $ $) NIL)) (-4148 ((|#1| |#2| $ |#1|) 41)) (-3546 (((-660 $) |#2|) 77)) (-2970 (((-112) $ $) 97))) +(((-1086 |#1| |#2|) (-13 (-1093 |#1| |#2|) (-10 -8 (-15 -4228 (|#1| $)) (-15 -4239 (|#1| $)) (-15 -2229 (|#1| $)) (-15 -4180 (|#1| $)) (-15 -4169 ($ $)) (-15 -4157 ((-112) |#2| $)) (-15 -3524 (|#1| |#2| $ |#1|)))) (-13 (-864) (-375)) (-1268 |#1|)) (T -1086)) +((-3524 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) (-4 *3 (-1268 *2)))) (-4228 (*1 *2 *1) (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) (-4 *3 (-1268 *2)))) (-4239 (*1 *2 *1) (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) (-4 *3 (-1268 *2)))) (-2229 (*1 *2 *1) (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) (-4 *3 (-1268 *2)))) (-4180 (*1 *2 *1) (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) (-4 *3 (-1268 *2)))) (-4169 (*1 *1 *1) (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) (-4 *3 (-1268 *2)))) (-4157 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-864) (-375))) (-5 *2 (-112)) (-5 *1 (-1086 *4 *3)) (-4 *3 (-1268 *4))))) +(-13 (-1093 |#1| |#2|) (-10 -8 (-15 -4228 (|#1| $)) (-15 -4239 (|#1| $)) (-15 -2229 (|#1| $)) (-15 -4180 (|#1| $)) (-15 -4169 ($ $)) (-15 -4157 ((-112) |#2| $)) (-15 -3524 (|#1| |#2| $ |#1|)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-3129 (($ $ $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-3107 (($ $ $ $) NIL)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1939 (((-112) $ $) NIL)) (-3010 (((-577) $) NIL)) (-2826 (($ $ $) NIL)) (-1534 (($) NIL T CONST)) (-4190 (($ (-1201)) 10) (($ (-577)) 7)) (-1628 (((-3 (-577) "failed") $) NIL)) (-2921 (((-577) $) NIL)) (-3418 (($ $ $) NIL)) (-1647 (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL) (((-705 (-577)) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-4363 (((-3 (-420 (-577)) "failed") $) NIL)) (-4353 (((-112) $) NIL)) (-4341 (((-420 (-577)) $) NIL)) (-1910 (($) NIL) (($ $) NIL)) (-3429 (($ $ $) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-3091 (($ $ $ $) NIL)) (-3140 (($ $ $) NIL)) (-3567 (((-112) $) NIL)) (-1992 (($ $ $) NIL)) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL)) (-2487 (((-112) $) NIL)) (-1912 (((-112) $) NIL)) (-4021 (((-3 $ "failed") $) NIL)) (-3578 (((-112) $) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3099 (($ $ $ $) NIL)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-4199 (($ $) NIL)) (-3402 (($ $) NIL)) (-1657 (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL) (((-705 (-577)) (-1292 $)) NIL)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-3082 (($ $ $) NIL)) (-1709 (($) NIL T CONST)) (-1383 (($ $) NIL)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) NIL) (($ (-660 $)) NIL)) (-1969 (($ $) NIL)) (-1902 (((-431 $) $) NIL)) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1924 (((-112) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-2852 (($ $) NIL) (($ $ (-787)) NIL)) (-1877 (($ $) NIL)) (-1944 (($ $) NIL)) (-4152 (((-577) $) 16) (((-549) $) NIL) (((-911 (-577)) $) NIL) (((-391) $) NIL) (((-228) $) NIL) (($ (-1201)) 9)) (-3544 (((-880) $) 23) (($ (-577)) 6) (($ $) NIL) (($ (-577)) 6)) (-4068 (((-787)) NIL T CONST)) (-3151 (((-112) $ $) NIL)) (-3850 (($ $ $) NIL)) (-4448 (((-112) $ $) NIL)) (-4146 (($) NIL)) (-3281 (((-112) $ $) NIL)) (-3118 (($ $ $ $) NIL)) (-1654 (($ $) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $) NIL) (($ $ (-787)) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL)) (-3066 (($ $) 22) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ (-577) $) NIL))) +(((-1087) (-13 (-558) (-631 (-1201)) (-10 -8 (-6 -4457) (-6 -4462) (-6 -4458) (-15 -4190 ($ (-1201))) (-15 -4190 ($ (-577)))))) (T -1087)) +((-4190 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1087)))) (-4190 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1087))))) +(-13 (-558) (-631 (-1201)) (-10 -8 (-6 -4457) (-6 -4462) (-6 -4458) (-15 -4190 ($ (-1201))) (-15 -4190 ($ (-577))))) +((-3473 (((-112) $ $) NIL (-2839 (|has| (-52) (-102)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-102))))) (-4100 (($) NIL) (($ (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) NIL)) (-2389 (((-1297) $ (-1201) (-1201)) NIL (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) NIL)) (-4213 (($) 9)) (-3709 (((-52) $ (-1201) (-52)) NIL)) (-3080 (($ $) 32)) (-3105 (($ $) 30)) (-3114 (($ $) 29)) (-3097 (($ $) 31)) (-3070 (($ $) 35)) (-3058 (($ $) 36)) (-3126 (($ $) 28)) (-3089 (($ $) 33)) (-2463 (($ (-1 (-112) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) 27 (|has| $ (-6 -4470)))) (-2325 (((-3 (-52) "failed") (-1201) $) 43)) (-1534 (($) NIL T CONST)) (-3136 (($) 7)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125))))) (-3719 (($ (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) $) 53 (|has| $ (-6 -4470))) (($ (-1 (-112) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470))) (((-3 (-52) "failed") (-1201) $) NIL)) (-3904 (($ (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125)))) (($ (-1 (-112) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470)))) (-3654 (((-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $ (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125)))) (((-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $ (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) NIL (|has| $ (-6 -4470))) (((-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470)))) (-4201 (((-3 (-1183) "failed") $ (-1183) (-577)) 72)) (-2192 (((-52) $ (-1201) (-52)) NIL (|has| $ (-6 -4471)))) (-2117 (((-52) $ (-1201)) NIL)) (-1461 (((-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470))) (((-660 (-52)) $) NIL (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-1201) $) NIL (|has| (-1201) (-865)))) (-2530 (((-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) 38 (|has| $ (-6 -4470))) (((-660 (-52)) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-52) (-1125))))) (-2416 (((-1201) $) NIL (|has| (-1201) (-865)))) (-2182 (($ (-1 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4471))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (-2839 (|has| (-52) (-1125)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125))))) (-3203 (((-660 (-1201)) $) NIL)) (-4317 (((-112) (-1201) $) NIL)) (-4330 (((-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) $) NIL)) (-2881 (($ (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) $) 46)) (-4285 (((-660 (-1201)) $) NIL)) (-4298 (((-112) (-1201) $) NIL)) (-1474 (((-1145) $) NIL (-2839 (|has| (-52) (-1125)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125))))) (-4245 (((-391) $ (-1201)) 52)) (-4233 (((-660 (-1183)) $ (-1183)) 74)) (-3552 (((-52) $) NIL (|has| (-1201) (-865)))) (-1828 (((-3 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) "failed") (-1 (-112) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL)) (-2397 (($ $ (-52)) NIL (|has| $ (-6 -4471)))) (-3530 (((-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) $) NIL)) (-1514 (((-112) (-1 (-112) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))))) NIL (-12 (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-320 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125)))) (($ $ (-305 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) NIL (-12 (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-320 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125)))) (($ $ (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) NIL (-12 (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-320 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125)))) (($ $ (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) NIL (-12 (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-320 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125)))) (($ $ (-660 (-52)) (-660 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125)))) (($ $ (-305 (-52))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125)))) (($ $ (-660 (-305 (-52)))) NIL (-12 (|has| (-52) (-320 (-52))) (|has| (-52) (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-52) (-1125))))) (-4306 (((-660 (-52)) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 (((-52) $ (-1201)) NIL) (((-52) $ (-1201) (-52)) NIL)) (-3736 (($) NIL) (($ (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) NIL)) (-4224 (($ $ (-1201)) 54)) (-1485 (((-787) (-1 (-112) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470))) (((-787) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-1125)))) (((-787) (-52) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-52) (-1125)))) (((-787) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-627 (-549))))) (-3553 (($ (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) 40)) (-1677 (($ $ $) 41)) (-3544 (((-880) $) NIL (-2839 (|has| (-52) (-626 (-880))) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-626 (-880)))))) (-3047 (($ $ (-1201) (-391)) 50)) (-4255 (($ $ (-1201) (-391)) 51)) (-4448 (((-112) $ $) NIL (-2839 (|has| (-52) (-102)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-102))))) (-3541 (($ (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))))) NIL)) (-1524 (((-112) (-1 (-112) (-2 (|:| -4295 (-1201)) (|:| -4444 (-52)))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (-2839 (|has| (-52) (-102)) (|has| (-2 (|:| -4295 (-1201)) (|:| -4444 (-52))) (-102))))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-1088) (-13 (-1218 (-1201) (-52)) (-10 -8 (-15 -1677 ($ $ $)) (-15 -3136 ($)) (-15 -3126 ($ $)) (-15 -3114 ($ $)) (-15 -3105 ($ $)) (-15 -3097 ($ $)) (-15 -3089 ($ $)) (-15 -3080 ($ $)) (-15 -3070 ($ $)) (-15 -3058 ($ $)) (-15 -3047 ($ $ (-1201) (-391))) (-15 -4255 ($ $ (-1201) (-391))) (-15 -4245 ((-391) $ (-1201))) (-15 -4233 ((-660 (-1183)) $ (-1183))) (-15 -4224 ($ $ (-1201))) (-15 -4213 ($)) (-15 -4201 ((-3 (-1183) "failed") $ (-1183) (-577))) (-6 -4470)))) (T -1088)) +((-1677 (*1 *1 *1 *1) (-5 *1 (-1088))) (-3136 (*1 *1) (-5 *1 (-1088))) (-3126 (*1 *1 *1) (-5 *1 (-1088))) (-3114 (*1 *1 *1) (-5 *1 (-1088))) (-3105 (*1 *1 *1) (-5 *1 (-1088))) (-3097 (*1 *1 *1) (-5 *1 (-1088))) (-3089 (*1 *1 *1) (-5 *1 (-1088))) (-3080 (*1 *1 *1) (-5 *1 (-1088))) (-3070 (*1 *1 *1) (-5 *1 (-1088))) (-3058 (*1 *1 *1) (-5 *1 (-1088))) (-3047 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-391)) (-5 *1 (-1088)))) (-4255 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-391)) (-5 *1 (-1088)))) (-4245 (*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-391)) (-5 *1 (-1088)))) (-4233 (*1 *2 *1 *3) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1088)) (-5 *3 (-1183)))) (-4224 (*1 *1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1088)))) (-4213 (*1 *1) (-5 *1 (-1088))) (-4201 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1183)) (-5 *3 (-577)) (-5 *1 (-1088))))) +(-13 (-1218 (-1201) (-52)) (-10 -8 (-15 -1677 ($ $ $)) (-15 -3136 ($)) (-15 -3126 ($ $)) (-15 -3114 ($ $)) (-15 -3105 ($ $)) (-15 -3097 ($ $)) (-15 -3089 ($ $)) (-15 -3080 ($ $)) (-15 -3070 ($ $)) (-15 -3058 ($ $)) (-15 -3047 ($ $ (-1201) (-391))) (-15 -4255 ($ $ (-1201) (-391))) (-15 -4245 ((-391) $ (-1201))) (-15 -4233 ((-660 (-1183)) $ (-1183))) (-15 -4224 ($ $ (-1201))) (-15 -4213 ($)) (-15 -4201 ((-3 (-1183) "failed") $ (-1183) (-577))) (-6 -4470))) +((-4428 (($ $) 46)) (-3375 (((-112) $ $) 82)) (-1628 (((-3 |#2| "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL) (((-3 (-577) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-975 (-420 (-577)))) 247) (((-3 $ "failed") (-975 (-577))) 246) (((-3 $ "failed") (-975 |#2|)) 249)) (-2921 ((|#2| $) NIL) (((-420 (-577)) $) NIL) (((-577) $) NIL) ((|#4| $) NIL) (($ (-975 (-420 (-577)))) 235) (($ (-975 (-577))) 231) (($ (-975 |#2|)) 255)) (-2248 (($ $) NIL) (($ $ |#4|) 44)) (-2484 (((-112) $ $) 131) (((-112) $ (-660 $)) 135)) (-3439 (((-112) $) 60)) (-1776 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 125)) (-3179 (($ $) 160)) (-3277 (($ $) 156)) (-3287 (($ $) 155)) (-3366 (($ $ $) 87) (($ $ $ |#4|) 92)) (-3356 (($ $ $) 90) (($ $ $ |#4|) 94)) (-4354 (((-112) $ $) 143) (((-112) $ (-660 $)) 144)) (-3514 ((|#4| $) 32)) (-3306 (($ $ $) 128)) (-3449 (((-112) $) 59)) (-3505 (((-787) $) 35)) (-3148 (($ $) 174)) (-3159 (($ $) 171)) (-3393 (((-660 $) $) 72)) (-3427 (($ $) 62)) (-3169 (($ $) 167)) (-3404 (((-660 $) $) 69)) (-3415 (($ $) 64)) (-2221 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3297 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3101 (-787))) $ $) 130)) (-3317 (((-2 (|:| -1777 $) (|:| |gap| (-787)) (|:| -3637 $) (|:| -2457 $)) $ $) 126) (((-2 (|:| -1777 $) (|:| |gap| (-787)) (|:| -3637 $) (|:| -2457 $)) $ $ |#4|) 127)) (-3326 (((-2 (|:| -1777 $) (|:| |gap| (-787)) (|:| -2457 $)) $ $) 121) (((-2 (|:| -1777 $) (|:| |gap| (-787)) (|:| -2457 $)) $ $ |#4|) 123)) (-3346 (($ $ $) 97) (($ $ $ |#4|) 106)) (-3337 (($ $ $) 98) (($ $ $ |#4|) 107)) (-3471 (((-660 $) $) 54)) (-2458 (((-112) $ $) 140) (((-112) $ (-660 $)) 141)) (-2408 (($ $ $) 116)) (-1709 (($ $) 37)) (-4396 (((-112) $ $) 80)) (-2467 (((-112) $ $) 136) (((-112) $ (-660 $)) 138)) (-2418 (($ $ $) 112)) (-3494 (($ $) 41)) (-3480 ((|#2| |#2| $) 164) (($ (-660 $)) NIL) (($ $ $) NIL)) (-3258 (($ $ |#2|) NIL) (($ $ $) 153)) (-3268 (($ $ |#2|) 148) (($ $ $) 151)) (-3482 (($ $) 49)) (-3460 (($ $) 55)) (-4152 (((-911 (-391)) $) NIL) (((-911 (-577)) $) NIL) (((-549) $) NIL) (($ (-975 (-420 (-577)))) 237) (($ (-975 (-577))) 233) (($ (-975 |#2|)) 248) (((-1183) $) 279) (((-975 |#2|) $) 184)) (-3544 (((-880) $) 29) (($ (-577)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-975 |#2|) $) 185) (($ (-420 (-577))) NIL) (($ $) NIL)) (-3384 (((-3 (-112) "failed") $ $) 79))) +(((-1089 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3544 (|#1| |#1|)) (-15 -3480 (|#1| |#1| |#1|)) (-15 -3480 (|#1| (-660 |#1|))) (-15 -3544 (|#1| (-420 (-577)))) (-15 -3544 ((-975 |#2|) |#1|)) (-15 -4152 ((-975 |#2|) |#1|)) (-15 -4152 ((-1183) |#1|)) (-15 -3148 (|#1| |#1|)) (-15 -3159 (|#1| |#1|)) (-15 -3169 (|#1| |#1|)) (-15 -3179 (|#1| |#1|)) (-15 -3480 (|#2| |#2| |#1|)) (-15 -3258 (|#1| |#1| |#1|)) (-15 -3268 (|#1| |#1| |#1|)) (-15 -3258 (|#1| |#1| |#2|)) (-15 -3268 (|#1| |#1| |#2|)) (-15 -3277 (|#1| |#1|)) (-15 -3287 (|#1| |#1|)) (-15 -4152 (|#1| (-975 |#2|))) (-15 -2921 (|#1| (-975 |#2|))) (-15 -1628 ((-3 |#1| "failed") (-975 |#2|))) (-15 -4152 (|#1| (-975 (-577)))) (-15 -2921 (|#1| (-975 (-577)))) (-15 -1628 ((-3 |#1| "failed") (-975 (-577)))) (-15 -4152 (|#1| (-975 (-420 (-577))))) (-15 -2921 (|#1| (-975 (-420 (-577))))) (-15 -1628 ((-3 |#1| "failed") (-975 (-420 (-577))))) (-15 -2408 (|#1| |#1| |#1|)) (-15 -2418 (|#1| |#1| |#1|)) (-15 -3297 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3101 (-787))) |#1| |#1|)) (-15 -3306 (|#1| |#1| |#1|)) (-15 -1776 ((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|)) (-15 -3317 ((-2 (|:| -1777 |#1|) (|:| |gap| (-787)) (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1| |#4|)) (-15 -3317 ((-2 (|:| -1777 |#1|) (|:| |gap| (-787)) (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|)) (-15 -3326 ((-2 (|:| -1777 |#1|) (|:| |gap| (-787)) (|:| -2457 |#1|)) |#1| |#1| |#4|)) (-15 -3326 ((-2 (|:| -1777 |#1|) (|:| |gap| (-787)) (|:| -2457 |#1|)) |#1| |#1|)) (-15 -3337 (|#1| |#1| |#1| |#4|)) (-15 -3346 (|#1| |#1| |#1| |#4|)) (-15 -3337 (|#1| |#1| |#1|)) (-15 -3346 (|#1| |#1| |#1|)) (-15 -3356 (|#1| |#1| |#1| |#4|)) (-15 -3366 (|#1| |#1| |#1| |#4|)) (-15 -3356 (|#1| |#1| |#1|)) (-15 -3366 (|#1| |#1| |#1|)) (-15 -4354 ((-112) |#1| (-660 |#1|))) (-15 -4354 ((-112) |#1| |#1|)) (-15 -2458 ((-112) |#1| (-660 |#1|))) (-15 -2458 ((-112) |#1| |#1|)) (-15 -2467 ((-112) |#1| (-660 |#1|))) (-15 -2467 ((-112) |#1| |#1|)) (-15 -2484 ((-112) |#1| (-660 |#1|))) (-15 -2484 ((-112) |#1| |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -4396 ((-112) |#1| |#1|)) (-15 -3384 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3393 ((-660 |#1|) |#1|)) (-15 -3404 ((-660 |#1|) |#1|)) (-15 -3415 (|#1| |#1|)) (-15 -3427 (|#1| |#1|)) (-15 -3439 ((-112) |#1|)) (-15 -3449 ((-112) |#1|)) (-15 -2248 (|#1| |#1| |#4|)) (-15 -2221 (|#1| |#1| |#4|)) (-15 -3460 (|#1| |#1|)) (-15 -3471 ((-660 |#1|) |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -4428 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -3505 ((-787) |#1|)) (-15 -3514 (|#4| |#1|)) (-15 -4152 ((-549) |#1|)) (-15 -4152 ((-911 (-577)) |#1|)) (-15 -4152 ((-911 (-391)) |#1|)) (-15 -3544 (|#1| |#4|)) (-15 -1628 ((-3 |#4| "failed") |#1|)) (-15 -2921 (|#4| |#1|)) (-15 -2221 (|#2| |#1|)) (-15 -2248 (|#1| |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -3544 (|#1| |#2|)) (-15 -3544 (|#1| (-577))) (-15 -3544 ((-880) |#1|))) (-1090 |#2| |#3| |#4|) (-1074) (-809) (-865)) (T -1089)) +NIL +(-10 -8 (-15 -3544 (|#1| |#1|)) (-15 -3480 (|#1| |#1| |#1|)) (-15 -3480 (|#1| (-660 |#1|))) (-15 -3544 (|#1| (-420 (-577)))) (-15 -3544 ((-975 |#2|) |#1|)) (-15 -4152 ((-975 |#2|) |#1|)) (-15 -4152 ((-1183) |#1|)) (-15 -3148 (|#1| |#1|)) (-15 -3159 (|#1| |#1|)) (-15 -3169 (|#1| |#1|)) (-15 -3179 (|#1| |#1|)) (-15 -3480 (|#2| |#2| |#1|)) (-15 -3258 (|#1| |#1| |#1|)) (-15 -3268 (|#1| |#1| |#1|)) (-15 -3258 (|#1| |#1| |#2|)) (-15 -3268 (|#1| |#1| |#2|)) (-15 -3277 (|#1| |#1|)) (-15 -3287 (|#1| |#1|)) (-15 -4152 (|#1| (-975 |#2|))) (-15 -2921 (|#1| (-975 |#2|))) (-15 -1628 ((-3 |#1| "failed") (-975 |#2|))) (-15 -4152 (|#1| (-975 (-577)))) (-15 -2921 (|#1| (-975 (-577)))) (-15 -1628 ((-3 |#1| "failed") (-975 (-577)))) (-15 -4152 (|#1| (-975 (-420 (-577))))) (-15 -2921 (|#1| (-975 (-420 (-577))))) (-15 -1628 ((-3 |#1| "failed") (-975 (-420 (-577))))) (-15 -2408 (|#1| |#1| |#1|)) (-15 -2418 (|#1| |#1| |#1|)) (-15 -3297 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3101 (-787))) |#1| |#1|)) (-15 -3306 (|#1| |#1| |#1|)) (-15 -1776 ((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|)) (-15 -3317 ((-2 (|:| -1777 |#1|) (|:| |gap| (-787)) (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1| |#4|)) (-15 -3317 ((-2 (|:| -1777 |#1|) (|:| |gap| (-787)) (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|)) (-15 -3326 ((-2 (|:| -1777 |#1|) (|:| |gap| (-787)) (|:| -2457 |#1|)) |#1| |#1| |#4|)) (-15 -3326 ((-2 (|:| -1777 |#1|) (|:| |gap| (-787)) (|:| -2457 |#1|)) |#1| |#1|)) (-15 -3337 (|#1| |#1| |#1| |#4|)) (-15 -3346 (|#1| |#1| |#1| |#4|)) (-15 -3337 (|#1| |#1| |#1|)) (-15 -3346 (|#1| |#1| |#1|)) (-15 -3356 (|#1| |#1| |#1| |#4|)) (-15 -3366 (|#1| |#1| |#1| |#4|)) (-15 -3356 (|#1| |#1| |#1|)) (-15 -3366 (|#1| |#1| |#1|)) (-15 -4354 ((-112) |#1| (-660 |#1|))) (-15 -4354 ((-112) |#1| |#1|)) (-15 -2458 ((-112) |#1| (-660 |#1|))) (-15 -2458 ((-112) |#1| |#1|)) (-15 -2467 ((-112) |#1| (-660 |#1|))) (-15 -2467 ((-112) |#1| |#1|)) (-15 -2484 ((-112) |#1| (-660 |#1|))) (-15 -2484 ((-112) |#1| |#1|)) (-15 -3375 ((-112) |#1| |#1|)) (-15 -4396 ((-112) |#1| |#1|)) (-15 -3384 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3393 ((-660 |#1|) |#1|)) (-15 -3404 ((-660 |#1|) |#1|)) (-15 -3415 (|#1| |#1|)) (-15 -3427 (|#1| |#1|)) (-15 -3439 ((-112) |#1|)) (-15 -3449 ((-112) |#1|)) (-15 -2248 (|#1| |#1| |#4|)) (-15 -2221 (|#1| |#1| |#4|)) (-15 -3460 (|#1| |#1|)) (-15 -3471 ((-660 |#1|) |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -4428 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -1709 (|#1| |#1|)) (-15 -3505 ((-787) |#1|)) (-15 -3514 (|#4| |#1|)) (-15 -4152 ((-549) |#1|)) (-15 -4152 ((-911 (-577)) |#1|)) (-15 -4152 ((-911 (-391)) |#1|)) (-15 -3544 (|#1| |#4|)) (-15 -1628 ((-3 |#4| "failed") |#1|)) (-15 -2921 (|#4| |#1|)) (-15 -2221 (|#2| |#1|)) (-15 -2248 (|#1| |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -3544 (|#1| |#2|)) (-15 -3544 (|#1| (-577))) (-15 -3544 ((-880) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-2058 (((-660 |#3|) $) 113)) (-1867 (((-1197 $) $ |#3|) 128) (((-1197 |#1|) $) 127)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 90 (|has| |#1| (-569)))) (-3290 (($ $) 91 (|has| |#1| (-569)))) (-3271 (((-112) $) 93 (|has| |#1| (-569)))) (-4050 (((-787) $) 115) (((-787) $ (-660 |#3|)) 114)) (-4428 (($ $) 278)) (-3375 (((-112) $ $) 264)) (-1956 (((-3 $ "failed") $ $) 20)) (-1807 (($ $ $) 223 (|has| |#1| (-569)))) (-3216 (((-660 $) $ $) 218 (|has| |#1| (-569)))) (-2294 (((-431 (-1197 $)) (-1197 $)) 103 (|has| |#1| (-932)))) (-3841 (($ $) 101 (|has| |#1| (-465)))) (-3029 (((-431 $) $) 100 (|has| |#1| (-465)))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 106 (|has| |#1| (-932)))) (-1534 (($) 18 T CONST)) (-1628 (((-3 |#1| "failed") $) 171) (((-3 (-420 (-577)) "failed") $) 168 (|has| |#1| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) 166 (|has| |#1| (-1063 (-577)))) (((-3 |#3| "failed") $) 143) (((-3 $ "failed") (-975 (-420 (-577)))) 238 (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-627 (-1201))))) (((-3 $ "failed") (-975 (-577))) 235 (-2839 (-12 (-2749 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-627 (-1201)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-627 (-1201)))))) (((-3 $ "failed") (-975 |#1|)) 232 (-2839 (-12 (-2749 (|has| |#1| (-38 (-420 (-577))))) (-2749 (|has| |#1| (-38 (-577)))) (|has| |#3| (-627 (-1201)))) (-12 (-2749 (|has| |#1| (-558))) (-2749 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-627 (-1201)))) (-12 (-2749 (|has| |#1| (-1017 (-577)))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-627 (-1201))))))) (-2921 ((|#1| $) 170) (((-420 (-577)) $) 169 (|has| |#1| (-1063 (-420 (-577))))) (((-577) $) 167 (|has| |#1| (-1063 (-577)))) ((|#3| $) 144) (($ (-975 (-420 (-577)))) 237 (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-627 (-1201))))) (($ (-975 (-577))) 234 (-2839 (-12 (-2749 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-627 (-1201)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-627 (-1201)))))) (($ (-975 |#1|)) 231 (-2839 (-12 (-2749 (|has| |#1| (-38 (-420 (-577))))) (-2749 (|has| |#1| (-38 (-577)))) (|has| |#3| (-627 (-1201)))) (-12 (-2749 (|has| |#1| (-558))) (-2749 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-627 (-1201)))) (-12 (-2749 (|has| |#1| (-1017 (-577)))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-627 (-1201))))))) (-1816 (($ $ $ |#3|) 111 (|has| |#1| (-174))) (($ $ $) 219 (|has| |#1| (-569)))) (-2248 (($ $) 161) (($ $ |#3|) 273)) (-1647 (((-705 (-577)) (-705 $)) 139 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 138 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 137) (((-705 |#1|) (-705 $)) 136)) (-2484 (((-112) $ $) 263) (((-112) $ (-660 $)) 262)) (-4187 (((-3 $ "failed") $) 37)) (-3439 (((-112) $) 271)) (-1776 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 243)) (-3179 (($ $) 212 (|has| |#1| (-465)))) (-3143 (($ $) 183 (|has| |#1| (-465))) (($ $ |#3|) 108 (|has| |#1| (-465)))) (-2234 (((-660 $) $) 112)) (-1522 (((-112) $) 99 (|has| |#1| (-932)))) (-3277 (($ $) 228 (|has| |#1| (-569)))) (-3287 (($ $) 229 (|has| |#1| (-569)))) (-3366 (($ $ $) 255) (($ $ $ |#3|) 253)) (-3356 (($ $ $) 254) (($ $ $ |#3|) 252)) (-2137 (($ $ |#1| |#2| $) 179)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 87 (-12 (|has| |#3| (-905 (-391))) (|has| |#1| (-905 (-391))))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 86 (-12 (|has| |#3| (-905 (-577))) (|has| |#1| (-905 (-577)))))) (-2487 (((-112) $) 35)) (-2548 (((-787) $) 176)) (-4354 (((-112) $ $) 257) (((-112) $ (-660 $)) 256)) (-3188 (($ $ $ $ $) 214 (|has| |#1| (-569)))) (-3514 ((|#3| $) 282)) (-2043 (($ (-1197 |#1|) |#3|) 120) (($ (-1197 $) |#3|) 119)) (-4074 (((-660 $) $) 129)) (-2811 (((-112) $) 159)) (-2030 (($ |#1| |#2|) 160) (($ $ |#3| (-787)) 122) (($ $ (-660 |#3|) (-660 (-787))) 121)) (-3306 (($ $ $) 242)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ |#3|) 123)) (-3449 (((-112) $) 272)) (-4061 ((|#2| $) 177) (((-787) $ |#3|) 125) (((-660 (-787)) $ (-660 |#3|)) 124)) (-3505 (((-787) $) 281)) (-2151 (($ (-1 |#2| |#2|) $) 178)) (-4087 (($ (-1 |#1| |#1|) $) 158)) (-3691 (((-3 |#3| "failed") $) 126)) (-3148 (($ $) 209 (|has| |#1| (-465)))) (-3159 (($ $) 210 (|has| |#1| (-465)))) (-3393 (((-660 $) $) 267)) (-3427 (($ $) 270)) (-3169 (($ $) 211 (|has| |#1| (-465)))) (-3404 (((-660 $) $) 268)) (-1657 (((-705 (-577)) (-1292 $)) 141 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 140 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 135) (((-705 |#1|) (-1292 $)) 134)) (-3415 (($ $) 269)) (-2209 (($ $) 156)) (-2221 ((|#1| $) 155) (($ $ |#3|) 274)) (-3446 (($ (-660 $)) 97 (|has| |#1| (-465))) (($ $ $) 96 (|has| |#1| (-465)))) (-3297 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3101 (-787))) $ $) 241)) (-3317 (((-2 (|:| -1777 $) (|:| |gap| (-787)) (|:| -3637 $) (|:| -2457 $)) $ $) 245) (((-2 (|:| -1777 $) (|:| |gap| (-787)) (|:| -3637 $) (|:| -2457 $)) $ $ |#3|) 244)) (-3326 (((-2 (|:| -1777 $) (|:| |gap| (-787)) (|:| -2457 $)) $ $) 247) (((-2 (|:| -1777 $) (|:| |gap| (-787)) (|:| -2457 $)) $ $ |#3|) 246)) (-3346 (($ $ $) 251) (($ $ $ |#3|) 249)) (-3337 (($ $ $) 250) (($ $ $ |#3|) 248)) (-2810 (((-1183) $) 10)) (-3605 (($ $ $) 217 (|has| |#1| (-569)))) (-3471 (((-660 $) $) 276)) (-4098 (((-3 (-660 $) "failed") $) 117)) (-4086 (((-3 (-660 $) "failed") $) 118)) (-4111 (((-3 (-2 (|:| |var| |#3|) (|:| -3556 (-787))) "failed") $) 116)) (-2458 (((-112) $ $) 259) (((-112) $ (-660 $)) 258)) (-2408 (($ $ $) 239)) (-1709 (($ $) 280)) (-4396 (((-112) $ $) 265)) (-2467 (((-112) $ $) 261) (((-112) $ (-660 $)) 260)) (-2418 (($ $ $) 240)) (-3494 (($ $) 279)) (-1474 (((-1145) $) 11)) (-3226 (((-2 (|:| -3480 $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-569)))) (-3236 (((-2 (|:| -3480 $) (|:| |coef1| $)) $ $) 221 (|has| |#1| (-569)))) (-2180 (((-112) $) 173)) (-2193 ((|#1| $) 174)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 98 (|has| |#1| (-465)))) (-3480 ((|#1| |#1| $) 213 (|has| |#1| (-465))) (($ (-660 $)) 95 (|has| |#1| (-465))) (($ $ $) 94 (|has| |#1| (-465)))) (-2269 (((-431 (-1197 $)) (-1197 $)) 105 (|has| |#1| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) 104 (|has| |#1| (-932)))) (-1902 (((-431 $) $) 102 (|has| |#1| (-932)))) (-3246 (((-2 (|:| -3480 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 222 (|has| |#1| (-569)))) (-3462 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-569))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-569)))) (-3258 (($ $ |#1|) 226 (|has| |#1| (-569))) (($ $ $) 224 (|has| |#1| (-569)))) (-3268 (($ $ |#1|) 227 (|has| |#1| (-569))) (($ $ $) 225 (|has| |#1| (-569)))) (-3280 (($ $ (-660 (-305 $))) 152) (($ $ (-305 $)) 151) (($ $ $ $) 150) (($ $ (-660 $) (-660 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-660 |#3|) (-660 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-660 |#3|) (-660 $)) 145)) (-1827 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2852 (($ $ (-660 |#3|) (-660 (-787))) 44) (($ $ |#3| (-787)) 43) (($ $ (-660 |#3|)) 42) (($ $ |#3|) 40)) (-2887 ((|#2| $) 157) (((-787) $ |#3|) 133) (((-660 (-787)) $ (-660 |#3|)) 132)) (-3482 (($ $) 277)) (-3460 (($ $) 275)) (-4152 (((-911 (-391)) $) 85 (-12 (|has| |#3| (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391)))))) (((-911 (-577)) $) 84 (-12 (|has| |#3| (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577)))))) (((-549) $) 83 (-12 (|has| |#3| (-627 (-549))) (|has| |#1| (-627 (-549))))) (($ (-975 (-420 (-577)))) 236 (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-627 (-1201))))) (($ (-975 (-577))) 233 (-2839 (-12 (-2749 (|has| |#1| (-38 (-420 (-577))))) (|has| |#1| (-38 (-577))) (|has| |#3| (-627 (-1201)))) (-12 (|has| |#1| (-38 (-420 (-577)))) (|has| |#3| (-627 (-1201)))))) (($ (-975 |#1|)) 230 (|has| |#3| (-627 (-1201)))) (((-1183) $) 208 (-12 (|has| |#1| (-1063 (-577))) (|has| |#3| (-627 (-1201))))) (((-975 |#1|) $) 207 (|has| |#3| (-627 (-1201))))) (-4039 ((|#1| $) 182 (|has| |#1| (-465))) (($ $ |#3|) 109 (|has| |#1| (-465)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) 107 (-2761 (|has| $ (-146)) (|has| |#1| (-932))))) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 172) (($ |#3|) 142) (((-975 |#1|) $) 206 (|has| |#3| (-627 (-1201)))) (($ (-420 (-577))) 81 (-2839 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))))) (($ $) 88 (|has| |#1| (-569)))) (-4182 (((-660 |#1|) $) 175)) (-2322 ((|#1| $ |#2|) 162) (($ $ |#3| (-787)) 131) (($ $ (-660 |#3|) (-660 (-787))) 130)) (-2233 (((-3 $ "failed") $) 82 (-2839 (-2761 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))))) (-4068 (((-787)) 32 T CONST)) (-2122 (($ $ $ (-787)) 180 (|has| |#1| (-174)))) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 92 (|has| |#1| (-569)))) (-2806 (($) 19 T CONST)) (-3384 (((-3 (-112) "failed") $ $) 266)) (-2816 (($) 34 T CONST)) (-3197 (($ $ $ $ (-787)) 215 (|has| |#1| (-569)))) (-3207 (($ $ $ (-787)) 216 (|has| |#1| (-569)))) (-2132 (($ $ (-660 |#3|) (-660 (-787))) 47) (($ $ |#3| (-787)) 46) (($ $ (-660 |#3|)) 45) (($ $ |#3|) 41)) (-2970 (((-112) $ $) 8)) (-3077 (($ $ |#1|) 163 (|has| |#1| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ (-420 (-577))) 165 (|has| |#1| (-38 (-420 (-577))))) (($ (-420 (-577)) $) 164 (|has| |#1| (-38 (-420 (-577))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +(((-1090 |#1| |#2| |#3|) (-141) (-1074) (-809) (-865)) (T -1090)) +((-3514 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-787)))) (-1709 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-3494 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-4428 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-3482 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-3471 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-1090 *3 *4 *5)))) (-3460 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-2221 (*1 *1 *1 *2) (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)))) (-2248 (*1 *1 *1 *2) (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)))) (-3427 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-3415 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-3404 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-1090 *3 *4 *5)))) (-3393 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-1090 *3 *4 *5)))) (-3384 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)))) (-4396 (*1 *2 *1 *1) (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)))) (-3375 (*1 *2 *1 *1) (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)))) (-2484 (*1 *2 *1 *1) (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)))) (-2484 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *1)) (-4 *1 (-1090 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)))) (-2467 (*1 *2 *1 *1) (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)))) (-2467 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *1)) (-4 *1 (-1090 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)))) (-2458 (*1 *2 *1 *1) (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)))) (-2458 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *1)) (-4 *1 (-1090 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)))) (-4354 (*1 *2 *1 *1) (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)))) (-4354 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *1)) (-4 *1 (-1090 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)))) (-3366 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-3356 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-3366 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)))) (-3356 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)))) (-3346 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-3337 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-3346 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)))) (-3337 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *2 (-865)))) (-3326 (*1 *2 *1 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-2 (|:| -1777 *1) (|:| |gap| (-787)) (|:| -2457 *1))) (-4 *1 (-1090 *3 *4 *5)))) (-3326 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-5 *2 (-2 (|:| -1777 *1) (|:| |gap| (-787)) (|:| -2457 *1))) (-4 *1 (-1090 *4 *5 *3)))) (-3317 (*1 *2 *1 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-2 (|:| -1777 *1) (|:| |gap| (-787)) (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-1090 *3 *4 *5)))) (-3317 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-5 *2 (-2 (|:| -1777 *1) (|:| |gap| (-787)) (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-1090 *4 *5 *3)))) (-1776 (*1 *2 *1 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-2 (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-1090 *3 *4 *5)))) (-3306 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-3297 (*1 *2 *1 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3101 (-787)))) (-4 *1 (-1090 *3 *4 *5)))) (-2418 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-2408 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)))) (-1628 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-420 (-577)))) (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201))) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-975 (-420 (-577)))) (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201))) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-975 (-420 (-577)))) (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201))) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)))) (-1628 (*1 *1 *2) (|partial| -2839 (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) (-12 (-2749 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))) (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))))) (-2921 (*1 *1 *2) (-2839 (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) (-12 (-2749 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))) (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))))) (-4152 (*1 *1 *2) (-2839 (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) (-12 (-2749 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))) (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))))) (-1628 (*1 *1 *2) (|partial| -2839 (-12 (-5 *2 (-975 *3)) (-12 (-2749 (-4 *3 (-38 (-420 (-577))))) (-2749 (-4 *3 (-38 (-577)))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) (-4 *5 (-865))) (-12 (-5 *2 (-975 *3)) (-12 (-2749 (-4 *3 (-558))) (-2749 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) (-4 *5 (-865))) (-12 (-5 *2 (-975 *3)) (-12 (-2749 (-4 *3 (-1017 (-577)))) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) (-4 *5 (-865))))) (-2921 (*1 *1 *2) (-2839 (-12 (-5 *2 (-975 *3)) (-12 (-2749 (-4 *3 (-38 (-420 (-577))))) (-2749 (-4 *3 (-38 (-577)))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) (-4 *5 (-865))) (-12 (-5 *2 (-975 *3)) (-12 (-2749 (-4 *3 (-558))) (-2749 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) (-4 *5 (-865))) (-12 (-5 *2 (-975 *3)) (-12 (-2749 (-4 *3 (-1017 (-577)))) (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201)))) (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) (-4 *5 (-865))))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-975 *3)) (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *5 (-627 (-1201))) (-4 *4 (-809)) (-4 *5 (-865)))) (-3287 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-3277 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-3268 (*1 *1 *1 *2) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-3258 (*1 *1 *1 *2) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-3268 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-3258 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-1807 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-3246 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-2 (|:| -3480 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1090 *3 *4 *5)))) (-3236 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-2 (|:| -3480 *1) (|:| |coef1| *1))) (-4 *1 (-1090 *3 *4 *5)))) (-3226 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-2 (|:| -3480 *1) (|:| |coef2| *1))) (-4 *1 (-1090 *3 *4 *5)))) (-1816 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-3216 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-1090 *3 *4 *5)))) (-3605 (*1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-3207 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *3 (-569)))) (-3197 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *3 (-569)))) (-3188 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-569)))) (-3480 (*1 *2 *2 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-465)))) (-3179 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-465)))) (-3169 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-465)))) (-3159 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-465)))) (-3148 (*1 *1 *1) (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-465))))) +(-13 (-972 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3514 (|t#3| $)) (-15 -3505 ((-787) $)) (-15 -1709 ($ $)) (-15 -3494 ($ $)) (-15 -4428 ($ $)) (-15 -3482 ($ $)) (-15 -3471 ((-660 $) $)) (-15 -3460 ($ $)) (-15 -2221 ($ $ |t#3|)) (-15 -2248 ($ $ |t#3|)) (-15 -3449 ((-112) $)) (-15 -3439 ((-112) $)) (-15 -3427 ($ $)) (-15 -3415 ($ $)) (-15 -3404 ((-660 $) $)) (-15 -3393 ((-660 $) $)) (-15 -3384 ((-3 (-112) "failed") $ $)) (-15 -4396 ((-112) $ $)) (-15 -3375 ((-112) $ $)) (-15 -2484 ((-112) $ $)) (-15 -2484 ((-112) $ (-660 $))) (-15 -2467 ((-112) $ $)) (-15 -2467 ((-112) $ (-660 $))) (-15 -2458 ((-112) $ $)) (-15 -2458 ((-112) $ (-660 $))) (-15 -4354 ((-112) $ $)) (-15 -4354 ((-112) $ (-660 $))) (-15 -3366 ($ $ $)) (-15 -3356 ($ $ $)) (-15 -3366 ($ $ $ |t#3|)) (-15 -3356 ($ $ $ |t#3|)) (-15 -3346 ($ $ $)) (-15 -3337 ($ $ $)) (-15 -3346 ($ $ $ |t#3|)) (-15 -3337 ($ $ $ |t#3|)) (-15 -3326 ((-2 (|:| -1777 $) (|:| |gap| (-787)) (|:| -2457 $)) $ $)) (-15 -3326 ((-2 (|:| -1777 $) (|:| |gap| (-787)) (|:| -2457 $)) $ $ |t#3|)) (-15 -3317 ((-2 (|:| -1777 $) (|:| |gap| (-787)) (|:| -3637 $) (|:| -2457 $)) $ $)) (-15 -3317 ((-2 (|:| -1777 $) (|:| |gap| (-787)) (|:| -3637 $) (|:| -2457 $)) $ $ |t#3|)) (-15 -1776 ((-2 (|:| -3637 $) (|:| -2457 $)) $ $)) (-15 -3306 ($ $ $)) (-15 -3297 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3101 (-787))) $ $)) (-15 -2418 ($ $ $)) (-15 -2408 ($ $ $)) (IF (|has| |t#3| (-627 (-1201))) (PROGN (-6 (-626 (-975 |t#1|))) (-6 (-627 (-975 |t#1|))) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -1628 ((-3 $ "failed") (-975 (-420 (-577))))) (-15 -2921 ($ (-975 (-420 (-577))))) (-15 -4152 ($ (-975 (-420 (-577))))) (-15 -1628 ((-3 $ "failed") (-975 (-577)))) (-15 -2921 ($ (-975 (-577)))) (-15 -4152 ($ (-975 (-577)))) (IF (|has| |t#1| (-1017 (-577))) |%noBranch| (PROGN (-15 -1628 ((-3 $ "failed") (-975 |t#1|))) (-15 -2921 ($ (-975 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-577))) (IF (|has| |t#1| (-38 (-420 (-577)))) |%noBranch| (PROGN (-15 -1628 ((-3 $ "failed") (-975 (-577)))) (-15 -2921 ($ (-975 (-577)))) (-15 -4152 ($ (-975 (-577)))) (IF (|has| |t#1| (-558)) |%noBranch| (PROGN (-15 -1628 ((-3 $ "failed") (-975 |t#1|))) (-15 -2921 ($ (-975 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-577))) |%noBranch| (IF (|has| |t#1| (-38 (-420 (-577)))) |%noBranch| (PROGN (-15 -1628 ((-3 $ "failed") (-975 |t#1|))) (-15 -2921 ($ (-975 |t#1|)))))) (-15 -4152 ($ (-975 |t#1|))) (IF (|has| |t#1| (-1063 (-577))) (-6 (-627 (-1183))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -3287 ($ $)) (-15 -3277 ($ $)) (-15 -3268 ($ $ |t#1|)) (-15 -3258 ($ $ |t#1|)) (-15 -3268 ($ $ $)) (-15 -3258 ($ $ $)) (-15 -1807 ($ $ $)) (-15 -3246 ((-2 (|:| -3480 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3236 ((-2 (|:| -3480 $) (|:| |coef1| $)) $ $)) (-15 -3226 ((-2 (|:| -3480 $) (|:| |coef2| $)) $ $)) (-15 -1816 ($ $ $)) (-15 -3216 ((-660 $) $ $)) (-15 -3605 ($ $ $)) (-15 -3207 ($ $ $ (-787))) (-15 -3197 ($ $ $ $ (-787))) (-15 -3188 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-465)) (PROGN (-15 -3480 (|t#1| |t#1| $)) (-15 -3179 ($ $)) (-15 -3169 ($ $)) (-15 -3159 ($ $)) (-15 -3148 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) -2839 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-629 |#3|) . T) ((-629 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-626 (-880)) . T) ((-626 (-975 |#1|)) |has| |#3| (-627 (-1201))) ((-174) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-627 (-549)) -12 (|has| |#1| (-627 (-549))) (|has| |#3| (-627 (-549)))) ((-627 (-911 (-391))) -12 (|has| |#1| (-627 (-911 (-391)))) (|has| |#3| (-627 (-911 (-391))))) ((-627 (-911 (-577))) -12 (|has| |#1| (-627 (-911 (-577)))) (|has| |#3| (-627 (-911 (-577))))) ((-627 (-975 |#1|)) |has| |#3| (-627 (-1201))) ((-627 (-1183)) -12 (|has| |#1| (-1063 (-577))) (|has| |#3| (-627 (-1201)))) ((-301) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-320 $) . T) ((-337 |#1| |#2|) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2839 (|has| |#1| (-932)) (|has| |#1| (-465))) ((-527 |#3| |#1|) . T) ((-527 |#3| $) . T) ((-527 $ $) . T) ((-569) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-662 #0#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) |has| |#1| (-38 (-420 (-577)))) ((-664 #1=(-577)) |has| |#1| (-654 (-577))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-654 #1#) |has| |#1| (-654 (-577))) ((-654 |#1|) . T) ((-733 #0#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465))) ((-742) . T) ((-915 $ |#3|) . T) ((-921 |#3|) . T) ((-923 |#3|) . T) ((-905 (-391)) -12 (|has| |#1| (-905 (-391))) (|has| |#3| (-905 (-391)))) ((-905 (-577)) -12 (|has| |#1| (-905 (-577))) (|has| |#3| (-905 (-577)))) ((-972 |#1| |#2| |#3|) . T) ((-932) |has| |#1| (-932)) ((-1063 (-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 |#1|) . T) ((-1063 |#3|) . T) ((-1076 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) |has| |#1| (-932))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-3085 (((-660 (-1160)) $) 18)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 27) (($ (-1206)) NIL) (((-1206) $) NIL)) (-2724 (((-1160) $) 20)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-1091) (-13 (-1108) (-10 -8 (-15 -3085 ((-660 (-1160)) $)) (-15 -2724 ((-1160) $))))) (T -1091)) +((-3085 (*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-1091)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1091))))) +(-13 (-1108) (-10 -8 (-15 -3085 ((-660 (-1160)) $)) (-15 -2724 ((-1160) $)))) +((-3585 (((-112) |#3| $) 15)) (-3535 (((-3 $ "failed") |#3| (-944)) 29)) (-4187 (((-3 |#3| "failed") |#3| $) 45)) (-3567 (((-112) |#3| $) 19)) (-3578 (((-112) |#3| $) 17))) +(((-1092 |#1| |#2| |#3|) (-10 -8 (-15 -3535 ((-3 |#1| "failed") |#3| (-944))) (-15 -4187 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3567 ((-112) |#3| |#1|)) (-15 -3578 ((-112) |#3| |#1|)) (-15 -3585 ((-112) |#3| |#1|))) (-1093 |#2| |#3|) (-13 (-864) (-375)) (-1268 |#2|)) (T -1092)) +NIL +(-10 -8 (-15 -3535 ((-3 |#1| "failed") |#3| (-944))) (-15 -4187 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3567 ((-112) |#3| |#1|)) (-15 -3578 ((-112) |#3| |#1|)) (-15 -3585 ((-112) |#3| |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) |#2| $) 22)) (-3010 (((-577) |#2| $) 23)) (-3535 (((-3 $ "failed") |#2| (-944)) 16)) (-3524 ((|#1| |#2| $ |#1|) 14)) (-4187 (((-3 |#2| "failed") |#2| $) 19)) (-3567 (((-112) |#2| $) 20)) (-3578 (((-112) |#2| $) 21)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3557 ((|#2| $) 18)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-4148 ((|#1| |#2| $ |#1|) 15)) (-3546 (((-660 $) |#2|) 17)) (-2970 (((-112) $ $) 8))) +(((-1093 |#1| |#2|) (-141) (-13 (-864) (-375)) (-1268 |t#1|)) (T -1093)) +((-3010 (*1 *2 *3 *1) (-12 (-4 *1 (-1093 *4 *3)) (-4 *4 (-13 (-864) (-375))) (-4 *3 (-1268 *4)) (-5 *2 (-577)))) (-3585 (*1 *2 *3 *1) (-12 (-4 *1 (-1093 *4 *3)) (-4 *4 (-13 (-864) (-375))) (-4 *3 (-1268 *4)) (-5 *2 (-112)))) (-3578 (*1 *2 *3 *1) (-12 (-4 *1 (-1093 *4 *3)) (-4 *4 (-13 (-864) (-375))) (-4 *3 (-1268 *4)) (-5 *2 (-112)))) (-3567 (*1 *2 *3 *1) (-12 (-4 *1 (-1093 *4 *3)) (-4 *4 (-13 (-864) (-375))) (-4 *3 (-1268 *4)) (-5 *2 (-112)))) (-4187 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1093 *3 *2)) (-4 *3 (-13 (-864) (-375))) (-4 *2 (-1268 *3)))) (-3557 (*1 *2 *1) (-12 (-4 *1 (-1093 *3 *2)) (-4 *3 (-13 (-864) (-375))) (-4 *2 (-1268 *3)))) (-3546 (*1 *2 *3) (-12 (-4 *4 (-13 (-864) (-375))) (-4 *3 (-1268 *4)) (-5 *2 (-660 *1)) (-4 *1 (-1093 *4 *3)))) (-3535 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-944)) (-4 *4 (-13 (-864) (-375))) (-4 *1 (-1093 *4 *2)) (-4 *2 (-1268 *4)))) (-4148 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1093 *2 *3)) (-4 *2 (-13 (-864) (-375))) (-4 *3 (-1268 *2)))) (-3524 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1093 *2 *3)) (-4 *2 (-13 (-864) (-375))) (-4 *3 (-1268 *2))))) +(-13 (-1125) (-10 -8 (-15 -3010 ((-577) |t#2| $)) (-15 -3585 ((-112) |t#2| $)) (-15 -3578 ((-112) |t#2| $)) (-15 -3567 ((-112) |t#2| $)) (-15 -4187 ((-3 |t#2| "failed") |t#2| $)) (-15 -3557 (|t#2| $)) (-15 -3546 ((-660 $) |t#2|)) (-15 -3535 ((-3 $ "failed") |t#2| (-944))) (-15 -4148 (|t#1| |t#2| $ |t#1|)) (-15 -3524 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-3951 (((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-660 |#4|) (-660 |#5|) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) (-787)) 114)) (-3915 (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-787)) 63)) (-4395 (((-1297) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-787)) 99)) (-3891 (((-787) (-660 |#4|) (-660 |#5|)) 30)) (-3926 (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-787)) 65) (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-787) (-112)) 67)) (-3938 (((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112)) 87)) (-4152 (((-1183) (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) 92)) (-3903 (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-112)) 62)) (-3880 (((-787) (-660 |#4|) (-660 |#5|)) 21))) +(((-1094 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3880 ((-787) (-660 |#4|) (-660 |#5|))) (-15 -3891 ((-787) (-660 |#4|) (-660 |#5|))) (-15 -3903 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-112))) (-15 -3915 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-787))) (-15 -3915 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5|)) (-15 -3926 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-787) (-112))) (-15 -3926 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-787))) (-15 -3926 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5|)) (-15 -3938 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112))) (-15 -3938 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3951 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-660 |#4|) (-660 |#5|) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) (-787))) (-15 -4152 ((-1183) (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|)))) (-15 -4395 ((-1297) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-787)))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3| |#4|)) (T -1094)) +((-4395 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -3952 *9)))) (-5 *4 (-787)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-1297)) (-5 *1 (-1094 *5 *6 *7 *8 *9)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -3952 *8))) (-4 *7 (-1090 *4 *5 *6)) (-4 *8 (-1096 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1183)) (-5 *1 (-1094 *4 *5 *6 *7 *8)))) (-3951 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-660 *11)) (|:| |todo| (-660 (-2 (|:| |val| *3) (|:| -3952 *11)))))) (-5 *6 (-787)) (-5 *2 (-660 (-2 (|:| |val| (-660 *10)) (|:| -3952 *11)))) (-5 *3 (-660 *10)) (-5 *4 (-660 *11)) (-4 *10 (-1090 *7 *8 *9)) (-4 *11 (-1096 *7 *8 *9 *10)) (-4 *7 (-465)) (-4 *8 (-809)) (-4 *9 (-865)) (-5 *1 (-1094 *7 *8 *9 *10 *11)))) (-3938 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1094 *5 *6 *7 *8 *9)))) (-3938 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1094 *5 *6 *7 *8 *9)))) (-3926 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-3926 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-787)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *3 (-1090 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) (-5 *1 (-1094 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) (-3926 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-787)) (-5 *6 (-112)) (-4 *7 (-465)) (-4 *8 (-809)) (-4 *9 (-865)) (-4 *3 (-1090 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) (-5 *1 (-1094 *7 *8 *9 *3 *4)) (-4 *4 (-1096 *7 *8 *9 *3)))) (-3915 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-3915 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-787)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *3 (-1090 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) (-5 *1 (-1094 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) (-3903 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *3 (-1090 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) (-5 *1 (-1094 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) (-3891 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-787)) (-5 *1 (-1094 *5 *6 *7 *8 *9)))) (-3880 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-787)) (-5 *1 (-1094 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3880 ((-787) (-660 |#4|) (-660 |#5|))) (-15 -3891 ((-787) (-660 |#4|) (-660 |#5|))) (-15 -3903 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-112))) (-15 -3915 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-787))) (-15 -3915 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5|)) (-15 -3926 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-787) (-112))) (-15 -3926 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-787))) (-15 -3926 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5|)) (-15 -3938 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112))) (-15 -3938 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3951 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-660 |#4|) (-660 |#5|) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) (-787))) (-15 -4152 ((-1183) (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|)))) (-15 -4395 ((-1297) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-787)))) +((-2524 (((-112) |#5| $) 26)) (-2505 (((-112) |#5| $) 29)) (-2532 (((-112) |#5| $) 18) (((-112) $) 52)) (-2785 (((-660 $) |#5| $) NIL) (((-660 $) (-660 |#5|) $) 94) (((-660 $) (-660 |#5|) (-660 $)) 92) (((-660 $) |#5| (-660 $)) 95)) (-3792 (($ $ |#5|) NIL) (((-660 $) |#5| $) NIL) (((-660 $) |#5| (-660 $)) 73) (((-660 $) (-660 |#5|) $) 75) (((-660 $) (-660 |#5|) (-660 $)) 77)) (-3594 (((-660 $) |#5| $) NIL) (((-660 $) |#5| (-660 $)) 64) (((-660 $) (-660 |#5|) $) 69) (((-660 $) (-660 |#5|) (-660 $)) 71)) (-2515 (((-112) |#5| $) 32))) +(((-1095 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3792 ((-660 |#1|) (-660 |#5|) (-660 |#1|))) (-15 -3792 ((-660 |#1|) (-660 |#5|) |#1|)) (-15 -3792 ((-660 |#1|) |#5| (-660 |#1|))) (-15 -3792 ((-660 |#1|) |#5| |#1|)) (-15 -3594 ((-660 |#1|) (-660 |#5|) (-660 |#1|))) (-15 -3594 ((-660 |#1|) (-660 |#5|) |#1|)) (-15 -3594 ((-660 |#1|) |#5| (-660 |#1|))) (-15 -3594 ((-660 |#1|) |#5| |#1|)) (-15 -2785 ((-660 |#1|) |#5| (-660 |#1|))) (-15 -2785 ((-660 |#1|) (-660 |#5|) (-660 |#1|))) (-15 -2785 ((-660 |#1|) (-660 |#5|) |#1|)) (-15 -2785 ((-660 |#1|) |#5| |#1|)) (-15 -2505 ((-112) |#5| |#1|)) (-15 -2532 ((-112) |#1|)) (-15 -2515 ((-112) |#5| |#1|)) (-15 -2524 ((-112) |#5| |#1|)) (-15 -2532 ((-112) |#5| |#1|)) (-15 -3792 (|#1| |#1| |#5|))) (-1096 |#2| |#3| |#4| |#5|) (-465) (-809) (-865) (-1090 |#2| |#3| |#4|)) (T -1095)) +NIL +(-10 -8 (-15 -3792 ((-660 |#1|) (-660 |#5|) (-660 |#1|))) (-15 -3792 ((-660 |#1|) (-660 |#5|) |#1|)) (-15 -3792 ((-660 |#1|) |#5| (-660 |#1|))) (-15 -3792 ((-660 |#1|) |#5| |#1|)) (-15 -3594 ((-660 |#1|) (-660 |#5|) (-660 |#1|))) (-15 -3594 ((-660 |#1|) (-660 |#5|) |#1|)) (-15 -3594 ((-660 |#1|) |#5| (-660 |#1|))) (-15 -3594 ((-660 |#1|) |#5| |#1|)) (-15 -2785 ((-660 |#1|) |#5| (-660 |#1|))) (-15 -2785 ((-660 |#1|) (-660 |#5|) (-660 |#1|))) (-15 -2785 ((-660 |#1|) (-660 |#5|) |#1|)) (-15 -2785 ((-660 |#1|) |#5| |#1|)) (-15 -2505 ((-112) |#5| |#1|)) (-15 -2532 ((-112) |#1|)) (-15 -2515 ((-112) |#5| |#1|)) (-15 -2524 ((-112) |#5| |#1|)) (-15 -2532 ((-112) |#5| |#1|)) (-15 -3792 (|#1| |#1| |#5|))) +((-3473 (((-112) $ $) 7)) (-2361 (((-660 (-2 (|:| -2045 $) (|:| -3253 (-660 |#4|)))) (-660 |#4|)) 86)) (-2371 (((-660 $) (-660 |#4|)) 87) (((-660 $) (-660 |#4|) (-112)) 112)) (-2058 (((-660 |#3|) $) 34)) (-2508 (((-112) $) 27)) (-3572 (((-112) $) 18 (|has| |#1| (-569)))) (-2475 (((-112) |#4| $) 102) (((-112) $) 98)) (-2426 ((|#4| |#4| $) 93)) (-3841 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 $))) |#4| $) 127)) (-1864 (((-2 (|:| |under| $) (|:| -4119 $) (|:| |upper| $)) $ |#3|) 28)) (-3828 (((-112) $ (-787)) 45)) (-2067 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4470))) (((-3 |#4| "failed") $ |#3|) 80)) (-1534 (($) 46 T CONST)) (-2474 (((-112) $) 23 (|has| |#1| (-569)))) (-2492 (((-112) $ $) 25 (|has| |#1| (-569)))) (-2483 (((-112) $ $) 24 (|has| |#1| (-569)))) (-2500 (((-112) $) 26 (|has| |#1| (-569)))) (-2435 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2434 (((-660 |#4|) (-660 |#4|) $) 19 (|has| |#1| (-569)))) (-2446 (((-660 |#4|) (-660 |#4|) $) 20 (|has| |#1| (-569)))) (-1628 (((-3 $ "failed") (-660 |#4|)) 37)) (-2921 (($ (-660 |#4|)) 36)) (-3563 (((-3 $ "failed") $) 83)) (-2399 ((|#4| |#4| $) 90)) (-1817 (($ $) 69 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))))) (-3904 (($ |#4| $) 68 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4470)))) (-2457 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)))) (-2484 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2382 ((|#4| |#4| $) 88)) (-3654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4470))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4470))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4364 (((-2 (|:| -2045 (-660 |#4|)) (|:| -3253 (-660 |#4|))) $) 106)) (-2524 (((-112) |#4| $) 137)) (-2505 (((-112) |#4| $) 134)) (-2532 (((-112) |#4| $) 138) (((-112) $) 135)) (-1461 (((-660 |#4|) $) 53 (|has| $ (-6 -4470)))) (-4354 (((-112) |#4| $) 105) (((-112) $) 104)) (-3514 ((|#3| $) 35)) (-1479 (((-112) $ (-787)) 44)) (-2530 (((-660 |#4|) $) 54 (|has| $ (-6 -4470)))) (-2820 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#4| |#4|) $) 48)) (-2555 (((-660 |#3|) $) 33)) (-2545 (((-112) |#3| $) 32)) (-1443 (((-112) $ (-787)) 43)) (-2810 (((-1183) $) 10)) (-2471 (((-3 |#4| (-660 $)) |#4| |#4| $) 129)) (-3605 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 $))) |#4| |#4| $) 128)) (-3927 (((-3 |#4| "failed") $) 84)) (-2479 (((-660 $) |#4| $) 130)) (-2496 (((-3 (-112) (-660 $)) |#4| $) 133)) (-2488 (((-660 (-2 (|:| |val| (-112)) (|:| -3952 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2785 (((-660 $) |#4| $) 126) (((-660 $) (-660 |#4|) $) 125) (((-660 $) (-660 |#4|) (-660 $)) 124) (((-660 $) |#4| (-660 $)) 123)) (-3986 (($ |#4| $) 118) (($ (-660 |#4|) $) 117)) (-4375 (((-660 |#4|) $) 108)) (-2458 (((-112) |#4| $) 100) (((-112) $) 96)) (-2408 ((|#4| |#4| $) 91)) (-4396 (((-112) $ $) 111)) (-2466 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)))) (-2467 (((-112) |#4| $) 101) (((-112) $) 97)) (-2418 ((|#4| |#4| $) 92)) (-1474 (((-1145) $) 11)) (-3552 (((-3 |#4| "failed") $) 85)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2343 (((-3 $ "failed") $ |#4|) 79)) (-3792 (($ $ |#4|) 78) (((-660 $) |#4| $) 116) (((-660 $) |#4| (-660 $)) 115) (((-660 $) (-660 |#4|) $) 114) (((-660 $) (-660 |#4|) (-660 $)) 113)) (-1514 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 |#4|) (-660 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-660 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))))) (-3840 (((-112) $ $) 39)) (-3697 (((-112) $) 42)) (-3639 (($) 41)) (-2887 (((-787) $) 107)) (-1485 (((-787) |#4| $) 55 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470)))) (((-787) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4470)))) (-1944 (($ $) 40)) (-4152 (((-549) $) 70 (|has| |#4| (-627 (-549))))) (-3553 (($ (-660 |#4|)) 61)) (-2518 (($ $ |#3|) 29)) (-2536 (($ $ |#3|) 31)) (-2391 (($ $) 89)) (-2527 (($ $ |#3|) 30)) (-3544 (((-880) $) 12) (((-660 |#4|) $) 38)) (-2332 (((-787) $) 77 (|has| |#3| (-380)))) (-4448 (((-112) $ $) 6)) (-4385 (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2447 (((-112) $ (-1 (-112) |#4| (-660 |#4|))) 99)) (-3594 (((-660 $) |#4| $) 122) (((-660 $) |#4| (-660 $)) 121) (((-660 $) (-660 |#4|) $) 120) (((-660 $) (-660 |#4|) (-660 $)) 119)) (-1524 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4470)))) (-2352 (((-660 |#3|) $) 82)) (-2515 (((-112) |#4| $) 136)) (-2776 (((-112) |#3| $) 81)) (-2970 (((-112) $ $) 8)) (-3484 (((-787) $) 47 (|has| $ (-6 -4470))))) +(((-1096 |#1| |#2| |#3| |#4|) (-141) (-465) (-809) (-865) (-1090 |t#1| |t#2| |t#3|)) (T -1096)) +((-2532 (*1 *2 *3 *1) (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-2524 (*1 *2 *3 *1) (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-2515 (*1 *2 *3 *1) (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) (-2505 (*1 *2 *3 *1) (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-2496 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-3 (-112) (-660 *1))) (-4 *1 (-1096 *4 *5 *6 *3)))) (-2488 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -3952 *1)))) (-4 *1 (-1096 *4 *5 *6 *3)))) (-2488 (*1 *2 *3 *1) (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-2479 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)))) (-2471 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-3 *3 (-660 *1))) (-4 *1 (-1096 *4 *5 *6 *3)))) (-3605 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *1)))) (-4 *1 (-1096 *4 *5 *6 *3)))) (-3841 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *1)))) (-4 *1 (-1096 *4 *5 *6 *3)))) (-2785 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)))) (-2785 (*1 *2 *3 *1) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *7)))) (-2785 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *1)) (-5 *3 (-660 *7)) (-4 *1 (-1096 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)))) (-2785 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)))) (-3594 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)))) (-3594 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)))) (-3594 (*1 *2 *3 *1) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *7)))) (-3594 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *1)) (-5 *3 (-660 *7)) (-4 *1 (-1096 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)))) (-3986 (*1 *1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *2)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-3986 (*1 *1 *2 *1) (-12 (-5 *2 (-660 *6)) (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)))) (-3792 (*1 *2 *3 *1) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)))) (-3792 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)))) (-3792 (*1 *2 *3 *1) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *7)))) (-3792 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *1)) (-5 *3 (-660 *7)) (-4 *1 (-1096 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-1096 *5 *6 *7 *8))))) +(-13 (-1235 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2532 ((-112) |t#4| $)) (-15 -2524 ((-112) |t#4| $)) (-15 -2515 ((-112) |t#4| $)) (-15 -2532 ((-112) $)) (-15 -2505 ((-112) |t#4| $)) (-15 -2496 ((-3 (-112) (-660 $)) |t#4| $)) (-15 -2488 ((-660 (-2 (|:| |val| (-112)) (|:| -3952 $))) |t#4| $)) (-15 -2488 ((-112) |t#4| $)) (-15 -2479 ((-660 $) |t#4| $)) (-15 -2471 ((-3 |t#4| (-660 $)) |t#4| |t#4| $)) (-15 -3605 ((-660 (-2 (|:| |val| |t#4|) (|:| -3952 $))) |t#4| |t#4| $)) (-15 -3841 ((-660 (-2 (|:| |val| |t#4|) (|:| -3952 $))) |t#4| $)) (-15 -2785 ((-660 $) |t#4| $)) (-15 -2785 ((-660 $) (-660 |t#4|) $)) (-15 -2785 ((-660 $) (-660 |t#4|) (-660 $))) (-15 -2785 ((-660 $) |t#4| (-660 $))) (-15 -3594 ((-660 $) |t#4| $)) (-15 -3594 ((-660 $) |t#4| (-660 $))) (-15 -3594 ((-660 $) (-660 |t#4|) $)) (-15 -3594 ((-660 $) (-660 |t#4|) (-660 $))) (-15 -3986 ($ |t#4| $)) (-15 -3986 ($ (-660 |t#4|) $)) (-15 -3792 ((-660 $) |t#4| $)) (-15 -3792 ((-660 $) |t#4| (-660 $))) (-15 -3792 ((-660 $) (-660 |t#4|) $)) (-15 -3792 ((-660 $) (-660 |t#4|) (-660 $))) (-15 -2371 ((-660 $) (-660 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-626 (-660 |#4|)) . T) ((-626 (-880)) . T) ((-152 |#4|) . T) ((-627 (-549)) |has| |#4| (-627 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-1001 |#1| |#2| |#3| |#4|) . T) ((-1125) . T) ((-1235 |#1| |#2| |#3| |#4|) . T) ((-1242) . T)) +((-2598 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#5|) 86)) (-2569 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#4| |#5|) 127)) (-2589 (((-660 |#5|) |#4| |#5|) 74)) (-2579 (((-660 (-2 (|:| |val| (-112)) (|:| -3952 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-1985 (((-1297)) 36)) (-1962 (((-1297)) 25)) (-1974 (((-1297) (-1183) (-1183) (-1183)) 32)) (-1950 (((-1297) (-1183) (-1183) (-1183)) 21)) (-2541 (((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) |#4| |#4| |#5|) 107)) (-2551 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) |#3| (-112)) 118) (((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2560 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#4| |#5|) 113))) +(((-1097 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1950 ((-1297) (-1183) (-1183) (-1183))) (-15 -1962 ((-1297))) (-15 -1974 ((-1297) (-1183) (-1183) (-1183))) (-15 -1985 ((-1297))) (-15 -2541 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) |#4| |#4| |#5|)) (-15 -2551 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2551 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) |#3| (-112))) (-15 -2560 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#4| |#5|)) (-15 -2569 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#4| |#5|)) (-15 -2579 ((-112) |#4| |#5|)) (-15 -2579 ((-660 (-2 (|:| |val| (-112)) (|:| -3952 |#5|))) |#4| |#5|)) (-15 -2589 ((-660 |#5|) |#4| |#5|)) (-15 -2598 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#5|))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3| |#4|)) (T -1097)) +((-2598 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2589 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 *4)) (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2579 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -3952 *4)))) (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2579 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2569 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2560 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2551 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -3952 *9)))) (-5 *5 (-112)) (-4 *8 (-1090 *6 *7 *4)) (-4 *9 (-1096 *6 *7 *4 *8)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *4 (-865)) (-5 *2 (-660 (-2 (|:| |val| *8) (|:| -3952 *9)))) (-5 *1 (-1097 *6 *7 *4 *8 *9)))) (-2551 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *3 (-1090 *6 *7 *8)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) (-5 *1 (-1097 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) (-2541 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))) (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-1985 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) (-5 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6)))) (-1974 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-1962 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) (-5 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6)))) (-1950 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) +(-10 -7 (-15 -1950 ((-1297) (-1183) (-1183) (-1183))) (-15 -1962 ((-1297))) (-15 -1974 ((-1297) (-1183) (-1183) (-1183))) (-15 -1985 ((-1297))) (-15 -2541 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) |#4| |#4| |#5|)) (-15 -2551 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2551 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) |#3| (-112))) (-15 -2560 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#4| |#5|)) (-15 -2569 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#4| |#5|)) (-15 -2579 ((-112) |#4| |#5|)) (-15 -2579 ((-660 (-2 (|:| |val| (-112)) (|:| -3952 |#5|))) |#4| |#5|)) (-15 -2589 ((-660 |#5|) |#4| |#5|)) (-15 -2598 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#5|))) +((-3473 (((-112) $ $) NIL)) (-3017 (((-1241) $) 13)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3131 (((-1160) $) 10)) (-3544 (((-880) $) 20) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-1098) (-13 (-1108) (-10 -8 (-15 -3131 ((-1160) $)) (-15 -3017 ((-1241) $))))) (T -1098)) +((-3131 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1098)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-1098))))) +(-13 (-1108) (-10 -8 (-15 -3131 ((-1160) $)) (-15 -3017 ((-1241) $)))) +((-3994 (((-112) $ $) 7))) +(((-1099) (-13 (-1242) (-10 -8 (-15 -3994 ((-112) $ $))))) (T -1099)) +((-3994 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1099))))) +(-13 (-1242) (-10 -8 (-15 -3994 ((-112) $ $)))) +((-3473 (((-112) $ $) NIL)) (-2713 (((-1201) $) 8)) (-2810 (((-1183) $) 17)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 11)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 14))) +(((-1100 |#1|) (-13 (-1125) (-10 -8 (-15 -2713 ((-1201) $)))) (-1201)) (T -1100)) +((-2713 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1100 *3)) (-14 *3 *2)))) +(-13 (-1125) (-10 -8 (-15 -2713 ((-1201) $)))) +((-3473 (((-112) $ $) NIL)) (-4241 (($ $ (-660 (-1201)) (-1 (-112) (-660 |#3|))) 34)) (-2510 (($ |#3| |#3|) 23) (($ |#3| |#3| (-660 (-1201))) 21)) (-1733 ((|#3| $) 13)) (-1628 (((-3 (-305 |#3|) "failed") $) 60)) (-2921 (((-305 |#3|) $) NIL)) (-2607 (((-660 (-1201)) $) 16)) (-2804 (((-911 |#1|) $) 11)) (-1721 ((|#3| $) 12)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2872 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-944)) 41)) (-3544 (((-880) $) 89) (($ (-305 |#3|)) 22)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 38))) +(((-1101 |#1| |#2| |#3|) (-13 (-1125) (-297 |#3| |#3|) (-1063 (-305 |#3|)) (-10 -8 (-15 -2510 ($ |#3| |#3|)) (-15 -2510 ($ |#3| |#3| (-660 (-1201)))) (-15 -4241 ($ $ (-660 (-1201)) (-1 (-112) (-660 |#3|)))) (-15 -2804 ((-911 |#1|) $)) (-15 -1721 (|#3| $)) (-15 -1733 (|#3| $)) (-15 -2872 (|#3| $ |#3| (-944))) (-15 -2607 ((-660 (-1201)) $)))) (-1125) (-13 (-1074) (-905 |#1|) (-627 (-911 |#1|))) (-13 (-443 |#2|) (-905 |#1|) (-627 (-911 |#1|)))) (T -1101)) +((-2510 (*1 *1 *2 *2) (-12 (-4 *3 (-1125)) (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))) (-5 *1 (-1101 *3 *4 *2)) (-4 *2 (-13 (-443 *4) (-905 *3) (-627 (-911 *3)))))) (-2510 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-660 (-1201))) (-4 *4 (-1125)) (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) (-5 *1 (-1101 *4 *5 *2)) (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))))) (-4241 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-1 (-112) (-660 *6))) (-4 *6 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))) (-4 *4 (-1125)) (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) (-5 *1 (-1101 *4 *5 *6)))) (-2804 (*1 *2 *1) (-12 (-4 *3 (-1125)) (-4 *4 (-13 (-1074) (-905 *3) (-627 *2))) (-5 *2 (-911 *3)) (-5 *1 (-1101 *3 *4 *5)) (-4 *5 (-13 (-443 *4) (-905 *3) (-627 *2))))) (-1721 (*1 *2 *1) (-12 (-4 *3 (-1125)) (-4 *2 (-13 (-443 *4) (-905 *3) (-627 (-911 *3)))) (-5 *1 (-1101 *3 *4 *2)) (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))))) (-1733 (*1 *2 *1) (-12 (-4 *3 (-1125)) (-4 *2 (-13 (-443 *4) (-905 *3) (-627 (-911 *3)))) (-5 *1 (-1101 *3 *4 *2)) (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))))) (-2872 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-944)) (-4 *4 (-1125)) (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) (-5 *1 (-1101 *4 *5 *2)) (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))))) (-2607 (*1 *2 *1) (-12 (-4 *3 (-1125)) (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))) (-5 *2 (-660 (-1201))) (-5 *1 (-1101 *3 *4 *5)) (-4 *5 (-13 (-443 *4) (-905 *3) (-627 (-911 *3))))))) +(-13 (-1125) (-297 |#3| |#3|) (-1063 (-305 |#3|)) (-10 -8 (-15 -2510 ($ |#3| |#3|)) (-15 -2510 ($ |#3| |#3| (-660 (-1201)))) (-15 -4241 ($ $ (-660 (-1201)) (-1 (-112) (-660 |#3|)))) (-15 -2804 ((-911 |#1|) $)) (-15 -1721 (|#3| $)) (-15 -1733 (|#3| $)) (-15 -2872 (|#3| $ |#3| (-944))) (-15 -2607 ((-660 (-1201)) $)))) +((-3473 (((-112) $ $) NIL)) (-4208 (($ (-660 (-1101 |#1| |#2| |#3|))) 14)) (-3360 (((-660 (-1101 |#1| |#2| |#3|)) $) 21)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2872 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-944)) 27)) (-3544 (((-880) $) 17)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 20))) +(((-1102 |#1| |#2| |#3|) (-13 (-1125) (-297 |#3| |#3|) (-10 -8 (-15 -4208 ($ (-660 (-1101 |#1| |#2| |#3|)))) (-15 -3360 ((-660 (-1101 |#1| |#2| |#3|)) $)) (-15 -2872 (|#3| $ |#3| (-944))))) (-1125) (-13 (-1074) (-905 |#1|) (-627 (-911 |#1|))) (-13 (-443 |#2|) (-905 |#1|) (-627 (-911 |#1|)))) (T -1102)) +((-4208 (*1 *1 *2) (-12 (-5 *2 (-660 (-1101 *3 *4 *5))) (-4 *3 (-1125)) (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))) (-4 *5 (-13 (-443 *4) (-905 *3) (-627 (-911 *3)))) (-5 *1 (-1102 *3 *4 *5)))) (-3360 (*1 *2 *1) (-12 (-4 *3 (-1125)) (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))) (-5 *2 (-660 (-1101 *3 *4 *5))) (-5 *1 (-1102 *3 *4 *5)) (-4 *5 (-13 (-443 *4) (-905 *3) (-627 (-911 *3)))))) (-2872 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-944)) (-4 *4 (-1125)) (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) (-5 *1 (-1102 *4 *5 *2)) (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4))))))) +(-13 (-1125) (-297 |#3| |#3|) (-10 -8 (-15 -4208 ($ (-660 (-1101 |#1| |#2| |#3|)))) (-15 -3360 ((-660 (-1101 |#1| |#2| |#3|)) $)) (-15 -2872 (|#3| $ |#3| (-944))))) +((-2617 (((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112) (-112)) 88) (((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|))) 92) (((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112)) 90))) +(((-1103 |#1| |#2|) (-10 -7 (-15 -2617 ((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112))) (-15 -2617 ((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)))) (-15 -2617 ((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112) (-112)))) (-13 (-318) (-148)) (-660 (-1201))) (T -1103)) +((-2617 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-2 (|:| -3024 (-1197 *5)) (|:| -2710 (-660 (-975 *5)))))) (-5 *1 (-1103 *5 *6)) (-5 *3 (-660 (-975 *5))) (-14 *6 (-660 (-1201))))) (-2617 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-148))) (-5 *2 (-660 (-2 (|:| -3024 (-1197 *4)) (|:| -2710 (-660 (-975 *4)))))) (-5 *1 (-1103 *4 *5)) (-5 *3 (-660 (-975 *4))) (-14 *5 (-660 (-1201))))) (-2617 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-2 (|:| -3024 (-1197 *5)) (|:| -2710 (-660 (-975 *5)))))) (-5 *1 (-1103 *5 *6)) (-5 *3 (-660 (-975 *5))) (-14 *6 (-660 (-1201)))))) +(-10 -7 (-15 -2617 ((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112))) (-15 -2617 ((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)))) (-15 -2617 ((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112) (-112)))) +((-1902 (((-431 |#3|) |#3|) 18))) +(((-1104 |#1| |#2| |#3|) (-10 -7 (-15 -1902 ((-431 |#3|) |#3|))) (-1268 (-420 (-577))) (-13 (-375) (-148) (-740 (-420 (-577)) |#1|)) (-1268 |#2|)) (T -1104)) +((-1902 (*1 *2 *3) (-12 (-4 *4 (-1268 (-420 (-577)))) (-4 *5 (-13 (-375) (-148) (-740 (-420 (-577)) *4))) (-5 *2 (-431 *3)) (-5 *1 (-1104 *4 *5 *3)) (-4 *3 (-1268 *5))))) +(-10 -7 (-15 -1902 ((-431 |#3|) |#3|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 136)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-375)))) (-3290 (($ $) NIL (|has| |#1| (-375)))) (-3271 (((-112) $) NIL (|has| |#1| (-375)))) (-3390 (((-705 |#1|) (-1292 $)) NIL) (((-705 |#1|)) 121)) (-2339 ((|#1| $) 125)) (-1595 (((-1214 (-944) (-787)) (-577)) NIL (|has| |#1| (-361)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL (|has| |#1| (-375)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-375)))) (-1939 (((-112) $ $) NIL (|has| |#1| (-375)))) (-2229 (((-787)) 43 (|has| |#1| (-380)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) NIL)) (-2921 (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) NIL)) (-3502 (($ (-1292 |#1|) (-1292 $)) NIL) (($ (-1292 |#1|)) 46)) (-1573 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-3418 (($ $ $) NIL (|has| |#1| (-375)))) (-3381 (((-705 |#1|) $ (-1292 $)) NIL) (((-705 |#1|) $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 113) (((-705 |#1|) (-705 $)) 108)) (-3654 (($ |#2|) 65) (((-3 $ "failed") (-420 |#2|)) NIL (|has| |#1| (-375)))) (-4187 (((-3 $ "failed") $) NIL)) (-1545 (((-944)) 84)) (-1910 (($) 47 (|has| |#1| (-380)))) (-3429 (($ $ $) NIL (|has| |#1| (-375)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| |#1| (-375)))) (-4205 (($) NIL (|has| |#1| (-361)))) (-1655 (((-112) $) NIL (|has| |#1| (-361)))) (-3233 (($ $ (-787)) NIL (|has| |#1| (-361))) (($ $) NIL (|has| |#1| (-361)))) (-1522 (((-112) $) NIL (|has| |#1| (-375)))) (-3817 (((-944) $) NIL (|has| |#1| (-361))) (((-849 (-944)) $) NIL (|has| |#1| (-361)))) (-2487 (((-112) $) NIL)) (-4145 ((|#1| $) NIL)) (-4021 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-4084 ((|#2| $) 91 (|has| |#1| (-375)))) (-4038 (((-944) $) 145 (|has| |#1| (-380)))) (-3642 ((|#2| $) 62)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL) (((-705 |#1|) (-1292 $)) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL (|has| |#1| (-375)))) (-1709 (($) NIL (|has| |#1| (-361)) CONST)) (-3222 (($ (-944)) 135 (|has| |#1| (-380)))) (-1474 (((-1145) $) NIL)) (-4101 (($) 127)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-1606 (((-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577))))) NIL (|has| |#1| (-361)))) (-1902 (((-431 $) $) NIL (|has| |#1| (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3462 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-1927 (((-787) $) NIL (|has| |#1| (-375)))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-375)))) (-1827 ((|#1| (-1292 $)) NIL) ((|#1|) 117)) (-3243 (((-787) $) NIL (|has| |#1| (-361))) (((-3 (-787) "failed") $ $) NIL (|has| |#1| (-361)))) (-2852 (($ $ (-787)) NIL (-2839 (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361)))) (($ $) NIL (-2839 (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201))))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201))))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201))))) (($ $ (-1201)) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-375))) (($ $ (-1 |#1| |#1|) (-787)) NIL (|has| |#1| (-375)))) (-2478 (((-705 |#1|) (-1292 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-375)))) (-3557 ((|#2|) 81)) (-1585 (($) NIL (|has| |#1| (-361)))) (-2710 (((-1292 |#1|) $ (-1292 $)) 96) (((-705 |#1|) (-1292 $) (-1292 $)) NIL) (((-1292 |#1|) $) 75) (((-705 |#1|) (-1292 $)) 92)) (-4152 (((-1292 |#1|) $) NIL) (($ (-1292 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (|has| |#1| (-361)))) (-3544 (((-880) $) 61) (($ (-577)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-375))) (($ (-420 (-577))) NIL (-2839 (|has| |#1| (-375)) (|has| |#1| (-1063 (-420 (-577))))))) (-2233 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3974 ((|#2| $) 89)) (-4068 (((-787)) 83 T CONST)) (-4448 (((-112) $ $) NIL)) (-4060 (((-1292 $)) 88)) (-3281 (((-112) $ $) NIL (|has| |#1| (-375)))) (-2806 (($) 32 T CONST)) (-2816 (($) 19 T CONST)) (-2132 (($ $ (-787)) NIL (-2839 (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361)))) (($ $) NIL (-2839 (-12 (|has| |#1| (-238)) (|has| |#1| (-375))) (|has| |#1| (-361)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201))))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201))))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201))))) (($ $ (-1201)) NIL (-12 (|has| |#1| (-375)) (|has| |#1| (-923 (-1201))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-375))) (($ $ (-1 |#1| |#1|) (-787)) NIL (|has| |#1| (-375)))) (-2970 (((-112) $ $) 67)) (-3077 (($ $ $) NIL (|has| |#1| (-375)))) (-3066 (($ $) 71) (($ $ $) NIL)) (-3055 (($ $ $) 69)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL (|has| |#1| (-375)))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-420 (-577)) $) NIL (|has| |#1| (-375))) (($ $ (-420 (-577))) NIL (|has| |#1| (-375))))) +(((-1105 |#1| |#2| |#3|) (-740 |#1| |#2|) (-174) (-1268 |#1|) |#2|) (T -1105)) +NIL +(-740 |#1| |#2|) +((-1902 (((-431 |#3|) |#3|) 19))) +(((-1106 |#1| |#2| |#3|) (-10 -7 (-15 -1902 ((-431 |#3|) |#3|))) (-1268 (-420 (-975 (-577)))) (-13 (-375) (-148) (-740 (-420 (-975 (-577))) |#1|)) (-1268 |#2|)) (T -1106)) +((-1902 (*1 *2 *3) (-12 (-4 *4 (-1268 (-420 (-975 (-577))))) (-4 *5 (-13 (-375) (-148) (-740 (-420 (-975 (-577))) *4))) (-5 *2 (-431 *3)) (-5 *1 (-1106 *4 *5 *3)) (-4 *3 (-1268 *5))))) +(-10 -7 (-15 -1902 ((-431 |#3|) |#3|))) +((-3473 (((-112) $ $) NIL)) (-3732 (($ $ $) 16)) (-3201 (($ $ $) 17)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2626 (($) 6)) (-4152 (((-1201) $) 20)) (-3544 (((-880) $) 13)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 15)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 9))) +(((-1107) (-13 (-865) (-627 (-1201)) (-10 -8 (-15 -2626 ($))))) (T -1107)) +((-2626 (*1 *1) (-5 *1 (-1107)))) +(-13 (-865) (-627 (-1201)) (-10 -8 (-15 -2626 ($)))) +((-3473 (((-112) $ $) 7)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12) (($ (-1206)) 17) (((-1206) $) 16)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8))) +(((-1108) (-141)) (T -1108)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-628 #0=(-1203)) . T) ((-625 (-877)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1122) . T) ((-1239) . T)) -((-2587 ((|#1| |#1| (-1 (-576) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-1727 (((-1294)) 21)) (-4000 (((-657 |#1|)) 13))) -(((-1106 |#1|) (-10 -7 (-15 -1727 ((-1294))) (-15 -4000 ((-657 |#1|))) (-15 -2587 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2587 (|#1| |#1| (-1 (-576) |#1| |#1|)))) (-133)) (T -1106)) -((-2587 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1106 *2)))) (-2587 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1106 *2)))) (-4000 (*1 *2) (-12 (-5 *2 (-657 *3)) (-5 *1 (-1106 *3)) (-4 *3 (-133)))) (-1727 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1106 *3)) (-4 *3 (-133))))) -(-10 -7 (-15 -1727 ((-1294))) (-15 -4000 ((-657 |#1|))) (-15 -2587 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2587 (|#1| |#1| (-1 (-576) |#1| |#1|)))) -((-1794 (($ (-109) $) 20)) (-4390 (((-704 (-109)) (-518) $) 19)) (-3581 (($) 7)) (-1980 (($) 21)) (-2684 (($) 22)) (-3070 (((-657 (-177)) $) 10)) (-3501 (((-877) $) 25))) -(((-1107) (-13 (-625 (-877)) (-10 -8 (-15 -3581 ($)) (-15 -3070 ((-657 (-177)) $)) (-15 -4390 ((-704 (-109)) (-518) $)) (-15 -1794 ($ (-109) $)) (-15 -1980 ($)) (-15 -2684 ($))))) (T -1107)) -((-3581 (*1 *1) (-5 *1 (-1107))) (-3070 (*1 *2 *1) (-12 (-5 *2 (-657 (-177))) (-5 *1 (-1107)))) (-4390 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-704 (-109))) (-5 *1 (-1107)))) (-1794 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1107)))) (-1980 (*1 *1) (-5 *1 (-1107))) (-2684 (*1 *1) (-5 *1 (-1107)))) -(-13 (-625 (-877)) (-10 -8 (-15 -3581 ($)) (-15 -3070 ((-657 (-177)) $)) (-15 -4390 ((-704 (-109)) (-518) $)) (-15 -1794 ($ (-109) $)) (-15 -1980 ($)) (-15 -2684 ($)))) -((-3213 (((-1289 (-702 |#1|)) (-657 (-702 |#1|))) 45) (((-1289 (-702 (-972 |#1|))) (-657 (-1198)) (-702 (-972 |#1|))) 75) (((-1289 (-702 (-419 (-972 |#1|)))) (-657 (-1198)) (-702 (-419 (-972 |#1|)))) 92)) (-2795 (((-1289 |#1|) (-702 |#1|) (-657 (-702 |#1|))) 39))) -(((-1108 |#1|) (-10 -7 (-15 -3213 ((-1289 (-702 (-419 (-972 |#1|)))) (-657 (-1198)) (-702 (-419 (-972 |#1|))))) (-15 -3213 ((-1289 (-702 (-972 |#1|))) (-657 (-1198)) (-702 (-972 |#1|)))) (-15 -3213 ((-1289 (-702 |#1|)) (-657 (-702 |#1|)))) (-15 -2795 ((-1289 |#1|) (-702 |#1|) (-657 (-702 |#1|))))) (-374)) (T -1108)) -((-2795 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-702 *5))) (-5 *3 (-702 *5)) (-4 *5 (-374)) (-5 *2 (-1289 *5)) (-5 *1 (-1108 *5)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-657 (-702 *4))) (-4 *4 (-374)) (-5 *2 (-1289 (-702 *4))) (-5 *1 (-1108 *4)))) (-3213 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-1198))) (-4 *5 (-374)) (-5 *2 (-1289 (-702 (-972 *5)))) (-5 *1 (-1108 *5)) (-5 *4 (-702 (-972 *5))))) (-3213 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-1198))) (-4 *5 (-374)) (-5 *2 (-1289 (-702 (-419 (-972 *5))))) (-5 *1 (-1108 *5)) (-5 *4 (-702 (-419 (-972 *5))))))) -(-10 -7 (-15 -3213 ((-1289 (-702 (-419 (-972 |#1|)))) (-657 (-1198)) (-702 (-419 (-972 |#1|))))) (-15 -3213 ((-1289 (-702 (-972 |#1|))) (-657 (-1198)) (-702 (-972 |#1|)))) (-15 -3213 ((-1289 (-702 |#1|)) (-657 (-702 |#1|)))) (-15 -2795 ((-1289 |#1|) (-702 |#1|) (-657 (-702 |#1|))))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2728 (((-657 (-784)) $) NIL) (((-657 (-784)) $ (-1198)) NIL)) (-3983 (((-784) $) NIL) (((-784) $ (-1198)) NIL)) (-2029 (((-657 (-1110 (-1198))) $) NIL)) (-1849 (((-1194 $) $ (-1110 (-1198))) NIL) (((-1194 |#1|) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-1775 (((-784) $) NIL) (((-784) $ (-657 (-1110 (-1198)))) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2638 (($ $) NIL (|has| |#1| (-464)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1594 (($ $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-1110 (-1198)) "failed") $) NIL) (((-3 (-1198) "failed") $) NIL) (((-3 (-1147 |#1| (-1198)) "failed") $) NIL)) (-2884 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-1110 (-1198)) $) NIL) (((-1198) $) NIL) (((-1147 |#1| (-1198)) $) NIL)) (-3203 (($ $ $ (-1110 (-1198))) NIL (|has| |#1| (-174)))) (-2212 (($ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3813 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1110 (-1198))) NIL (|has| |#1| (-464)))) (-2199 (((-657 $) $) NIL)) (-4257 (((-112) $) NIL (|has| |#1| (-929)))) (-3124 (($ $ |#1| (-543 (-1110 (-1198))) $) NIL)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-1110 (-1198)) (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-1110 (-1198)) (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-3182 (((-784) $ (-1198)) NIL) (((-784) $) NIL)) (-4094 (((-112) $) NIL)) (-4334 (((-784) $) NIL)) (-2014 (($ (-1194 |#1|) (-1110 (-1198))) NIL) (($ (-1194 $) (-1110 (-1198))) NIL)) (-3724 (((-657 $) $) NIL)) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-543 (-1110 (-1198)))) NIL) (($ $ (-1110 (-1198)) (-784)) NIL) (($ $ (-657 (-1110 (-1198))) (-657 (-784))) NIL)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ (-1110 (-1198))) NIL)) (-4436 (((-543 (-1110 (-1198))) $) NIL) (((-784) $ (-1110 (-1198))) NIL) (((-657 (-784)) $ (-657 (-1110 (-1198)))) NIL)) (-4056 (($ (-1 (-543 (-1110 (-1198))) (-543 (-1110 (-1198)))) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-3801 (((-1 $ (-784)) (-1198)) NIL) (((-1 $ (-784)) $) NIL (|has| |#1| (-238)))) (-2353 (((-3 (-1110 (-1198)) "failed") $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-1597 (((-1110 (-1198)) $) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2342 (((-1180) $) NIL)) (-3948 (((-112) $) NIL)) (-1392 (((-3 (-657 $) "failed") $) NIL)) (-2974 (((-3 (-657 $) "failed") $) NIL)) (-2999 (((-3 (-2 (|:| |var| (-1110 (-1198))) (|:| -1801 (-784))) "failed") $) NIL)) (-4276 (($ $) NIL)) (-1471 (((-1142) $) NIL)) (-2146 (((-112) $) NIL)) (-2160 ((|#1| $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-464)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1885 (((-430 $) $) NIL (|has| |#1| (-929)))) (-3418 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3236 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-1110 (-1198)) |#1|) NIL) (($ $ (-657 (-1110 (-1198))) (-657 |#1|)) NIL) (($ $ (-1110 (-1198)) $) NIL) (($ $ (-657 (-1110 (-1198))) (-657 $)) NIL) (($ $ (-1198) $) NIL (|has| |#1| (-238))) (($ $ (-657 (-1198)) (-657 $)) NIL (|has| |#1| (-238))) (($ $ (-1198) |#1|) NIL (|has| |#1| (-238))) (($ $ (-657 (-1198)) (-657 |#1|)) NIL (|has| |#1| (-238)))) (-1701 (($ $ (-1110 (-1198))) NIL (|has| |#1| (-174)))) (-2815 (($ $ (-657 (-1110 (-1198))) (-657 (-784))) NIL) (($ $ (-1110 (-1198)) (-784)) NIL) (($ $ (-657 (-1110 (-1198)))) NIL) (($ $ (-1110 (-1198))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237)))) (-3928 (((-657 (-1198)) $) NIL)) (-1770 (((-543 (-1110 (-1198))) $) NIL) (((-784) $ (-1110 (-1198))) NIL) (((-657 (-784)) $ (-657 (-1110 (-1198)))) NIL) (((-784) $ (-1198)) NIL)) (-4148 (((-908 (-390)) $) NIL (-12 (|has| (-1110 (-1198)) (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-1110 (-1198)) (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-1110 (-1198)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1450 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1110 (-1198))) NIL (|has| |#1| (-464)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1110 (-1198))) NIL) (($ (-1198)) NIL) (($ (-1147 |#1| (-1198))) NIL) (($ (-419 (-576))) NIL (-2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-4037 (((-657 |#1|) $) NIL)) (-2313 ((|#1| $ (-543 (-1110 (-1198)))) NIL) (($ $ (-1110 (-1198)) (-784)) NIL) (($ $ (-657 (-1110 (-1198))) (-657 (-784))) NIL)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-1960 (((-784)) NIL T CONST)) (-2702 (($ $ $ (-784)) NIL (|has| |#1| (-174)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-657 (-1110 (-1198))) (-657 (-784))) NIL) (($ $ (-1110 (-1198)) (-784)) NIL) (($ $ (-657 (-1110 (-1198)))) NIL) (($ $ (-1110 (-1198))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-784)) NIL (|has| |#1| (-237)))) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1109 |#1|) (-13 (-260 |#1| (-1198) (-1110 (-1198)) (-543 (-1110 (-1198)))) (-1060 (-1147 |#1| (-1198)))) (-1071)) (T -1109)) -NIL -(-13 (-260 |#1| (-1198) (-1110 (-1198)) (-543 (-1110 (-1198)))) (-1060 (-1147 |#1| (-1198)))) -((-3429 (((-112) $ $) NIL)) (-3983 (((-784) $) NIL)) (-3032 ((|#1| $) 10)) (-1624 (((-3 |#1| "failed") $) NIL)) (-2884 ((|#1| $) NIL)) (-3182 (((-784) $) 11)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-3801 (($ |#1| (-784)) 9)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2815 (($ $ (-784)) NIL) (($ $) NIL)) (-3501 (((-877) $) NIL) (($ |#1|) NIL)) (-2046 (((-112) $ $) NIL)) (-2097 (($ $ (-784)) NIL) (($ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 16))) -(((-1110 |#1|) (-275 |#1|) (-862)) (T -1110)) -NIL -(-275 |#1|) -((-4083 (((-657 |#2|) (-1 |#2| |#1|) (-1116 |#1|)) 29 (|has| |#1| (-861))) (((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|)) 14))) -(((-1111 |#1| |#2|) (-10 -7 (-15 -4083 ((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) (IF (|has| |#1| (-861)) (-15 -4083 ((-657 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) |%noBranch|)) (-1239) (-1239)) (T -1111)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-861)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-657 *6)) (-5 *1 (-1111 *5 *6)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-1116 *6)) (-5 *1 (-1111 *5 *6))))) -(-10 -7 (-15 -4083 ((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) (IF (|has| |#1| (-861)) (-15 -4083 ((-657 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) |%noBranch|)) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 16) (($ (-1203)) NIL) (((-1203) $) NIL)) (-3968 (((-657 (-1157)) $) 10)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-1112) (-13 (-1105) (-10 -8 (-15 -3968 ((-657 (-1157)) $))))) (T -1112)) -((-3968 (*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-1112))))) -(-13 (-1105) (-10 -8 (-15 -3968 ((-657 (-1157)) $)))) -((-4083 (((-1114 |#2|) (-1 |#2| |#1|) (-1114 |#1|)) 19))) -(((-1113 |#1| |#2|) (-10 -7 (-15 -4083 ((-1114 |#2|) (-1 |#2| |#1|) (-1114 |#1|)))) (-1239) (-1239)) (T -1113)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1114 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-1114 *6)) (-5 *1 (-1113 *5 *6))))) -(-10 -7 (-15 -4083 ((-1114 |#2|) (-1 |#2| |#1|) (-1114 |#1|)))) -((-3429 (((-112) $ $) NIL (|has| (-1116 |#1|) (-1122)))) (-3032 (((-1198) $) NIL)) (-2324 (((-1116 |#1|) $) NIL)) (-2342 (((-1180) $) NIL (|has| (-1116 |#1|) (-1122)))) (-1471 (((-1142) $) NIL (|has| (-1116 |#1|) (-1122)))) (-2411 (($ (-1198) (-1116 |#1|)) NIL)) (-3501 (((-877) $) NIL (|has| (-1116 |#1|) (-1122)))) (-2046 (((-112) $ $) NIL (|has| (-1116 |#1|) (-1122)))) (-2933 (((-112) $ $) NIL (|has| (-1116 |#1|) (-1122))))) -(((-1114 |#1|) (-13 (-1239) (-10 -8 (-15 -2411 ($ (-1198) (-1116 |#1|))) (-15 -3032 ((-1198) $)) (-15 -2324 ((-1116 |#1|) $)) (IF (|has| (-1116 |#1|) (-1122)) (-6 (-1122)) |%noBranch|))) (-1239)) (T -1114)) -((-2411 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1116 *4)) (-4 *4 (-1239)) (-5 *1 (-1114 *4)))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1114 *3)) (-4 *3 (-1239)))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-1116 *3)) (-5 *1 (-1114 *3)) (-4 *3 (-1239))))) -(-13 (-1239) (-10 -8 (-15 -2411 ($ (-1198) (-1116 |#1|))) (-15 -3032 ((-1198) $)) (-15 -2324 ((-1116 |#1|) $)) (IF (|has| (-1116 |#1|) (-1122)) (-6 (-1122)) |%noBranch|))) -((-2324 (($ |#1| |#1|) 8)) (-4059 ((|#1| $) 11)) (-3078 ((|#1| $) 13)) (-4205 (((-576) $) 9)) (-2698 ((|#1| $) 10)) (-4216 ((|#1| $) 12)) (-4148 (($ |#1|) 6)) (-1838 (($ |#1| |#1|) 15)) (-2718 (($ $ (-576)) 14))) -(((-1115 |#1|) (-141) (-1239)) (T -1115)) -((-1838 (*1 *1 *2 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239)))) (-2718 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1115 *3)) (-4 *3 (-1239)))) (-3078 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239)))) (-4216 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239)))) (-4059 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239)))) (-2698 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1239)) (-5 *2 (-576)))) (-2324 (*1 *1 *2 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239))))) -(-13 (-630 |t#1|) (-10 -8 (-15 -1838 ($ |t#1| |t#1|)) (-15 -2718 ($ $ (-576))) (-15 -3078 (|t#1| $)) (-15 -4216 (|t#1| $)) (-15 -4059 (|t#1| $)) (-15 -2698 (|t#1| $)) (-15 -4205 ((-576) $)) (-15 -2324 ($ |t#1| |t#1|)))) -(((-630 |#1|) . T)) -((-3429 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2324 (($ |#1| |#1|) 16)) (-4083 (((-657 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-861)))) (-4059 ((|#1| $) 12)) (-3078 ((|#1| $) 11)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-4205 (((-576) $) 15)) (-2698 ((|#1| $) 14)) (-4216 ((|#1| $) 13)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-1999 (((-657 |#1|) $) 44 (|has| |#1| (-861))) (((-657 |#1|) (-657 $)) 43 (|has| |#1| (-861)))) (-4148 (($ |#1|) 29)) (-3501 (((-877) $) 28 (|has| |#1| (-1122)))) (-2046 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-1838 (($ |#1| |#1|) 10)) (-2718 (($ $ (-576)) 17)) (-2933 (((-112) $ $) 22 (|has| |#1| (-1122))))) -(((-1116 |#1|) (-13 (-1115 |#1|) (-10 -7 (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |#1| (-861)) (-6 (-1117 |#1| (-657 |#1|))) |%noBranch|))) (-1239)) (T -1116)) -NIL -(-13 (-1115 |#1|) (-10 -7 (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |#1| (-861)) (-6 (-1117 |#1| (-657 |#1|))) |%noBranch|))) -((-2324 (($ |#1| |#1|) 8)) (-4083 ((|#2| (-1 |#1| |#1|) $) 16)) (-4059 ((|#1| $) 11)) (-3078 ((|#1| $) 13)) (-4205 (((-576) $) 9)) (-2698 ((|#1| $) 10)) (-4216 ((|#1| $) 12)) (-1999 ((|#2| (-657 $)) 18) ((|#2| $) 17)) (-4148 (($ |#1|) 6)) (-1838 (($ |#1| |#1|) 15)) (-2718 (($ $ (-576)) 14))) -(((-1117 |#1| |#2|) (-141) (-861) (-1171 |t#1|)) (T -1117)) -((-1999 (*1 *2 *3) (-12 (-5 *3 (-657 *1)) (-4 *1 (-1117 *4 *2)) (-4 *4 (-861)) (-4 *2 (-1171 *4)))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1171 *3)))) (-4083 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1117 *4 *2)) (-4 *4 (-861)) (-4 *2 (-1171 *4))))) -(-13 (-1115 |t#1|) (-10 -8 (-15 -1999 (|t#2| (-657 $))) (-15 -1999 (|t#2| $)) (-15 -4083 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-630 |#1|) . T) ((-1115 |#1|) . T)) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-3920 (((-1157) $) 12)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 18) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2687 (((-657 (-1157)) $) 10)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-1118) (-13 (-1105) (-10 -8 (-15 -2687 ((-657 (-1157)) $)) (-15 -3920 ((-1157) $))))) (T -1118)) -((-2687 (*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-1118)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1118))))) -(-13 (-1105) (-10 -8 (-15 -2687 ((-657 (-1157)) $)) (-15 -3920 ((-1157) $)))) -((-1876 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-4356 (($ $ $) 10)) (-3788 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1119 |#1| |#2|) (-10 -8 (-15 -1876 (|#1| |#2| |#1|)) (-15 -1876 (|#1| |#1| |#2|)) (-15 -1876 (|#1| |#1| |#1|)) (-15 -4356 (|#1| |#1| |#1|)) (-15 -3788 (|#1| |#1| |#2|)) (-15 -3788 (|#1| |#1| |#1|))) (-1120 |#2|) (-1122)) (T -1119)) -NIL -(-10 -8 (-15 -1876 (|#1| |#2| |#1|)) (-15 -1876 (|#1| |#1| |#2|)) (-15 -1876 (|#1| |#1| |#1|)) (-15 -4356 (|#1| |#1| |#1|)) (-15 -3788 (|#1| |#1| |#2|)) (-15 -3788 (|#1| |#1| |#1|))) -((-3429 (((-112) $ $) 7)) (-1876 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-4356 (($ $ $) 21)) (-2197 (((-112) $ $) 20)) (-3793 (((-112) $ (-784)) 36)) (-2162 (($) 26) (($ (-657 |#1|)) 25)) (-2035 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4466)))) (-4359 (($) 37 T CONST)) (-3914 (($ $) 60 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3895 (($ |#1| $) 59 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4466)))) (-1458 (((-657 |#1|) $) 44 (|has| $ (-6 -4466)))) (-3635 (((-112) $ $) 29)) (-1833 (((-112) $ (-784)) 35)) (-2070 (((-657 |#1|) $) 45 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 39)) (-4261 (((-112) $ (-784)) 34)) (-2342 (((-1180) $) 10)) (-3107 (($ $ $) 24)) (-1471 (((-1142) $) 11)) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-3399 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 |#1|) (-657 |#1|)) 51 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 49 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 (-304 |#1|))) 48 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 30)) (-3387 (((-112) $) 33)) (-3581 (($) 32)) (-3788 (($ $ $) 23) (($ $ |#1|) 22)) (-1482 (((-784) |#1| $) 46 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4466)))) (-1923 (($ $) 31)) (-4148 (((-548) $) 61 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 52)) (-3501 (((-877) $) 12)) (-1951 (($) 28) (($ (-657 |#1|)) 27)) (-2046 (((-112) $ $) 6)) (-2147 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 8)) (-3440 (((-784) $) 38 (|has| $ (-6 -4466))))) -(((-1120 |#1|) (-141) (-1122)) (T -1120)) -((-3635 (*1 *2 *1 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1122)) (-5 *2 (-112)))) (-1951 (*1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-1951 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-4 *1 (-1120 *3)))) (-2162 (*1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-2162 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-4 *1 (-1120 *3)))) (-3107 (*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-3788 (*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-3788 (*1 *1 *1 *2) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-4356 (*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-2197 (*1 *2 *1 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1122)) (-5 *2 (-112)))) (-1876 (*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-1876 (*1 *1 *1 *2) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-1876 (*1 *1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) -(-13 (-1122) (-152 |t#1|) (-10 -8 (-6 -4456) (-15 -3635 ((-112) $ $)) (-15 -1951 ($)) (-15 -1951 ($ (-657 |t#1|))) (-15 -2162 ($)) (-15 -2162 ($ (-657 |t#1|))) (-15 -3107 ($ $ $)) (-15 -3788 ($ $ $)) (-15 -3788 ($ $ |t#1|)) (-15 -4356 ($ $ $)) (-15 -2197 ((-112) $ $)) (-15 -1876 ($ $ $)) (-15 -1876 ($ $ |t#1|)) (-15 -1876 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-625 (-877)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) . T) ((-1239) . T)) -((-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 8))) -(((-1121 |#1|) (-10 -8 (-15 -2342 ((-1180) |#1|)) (-15 -1471 ((-1142) |#1|))) (-1122)) (T -1121)) -NIL -(-10 -8 (-15 -2342 ((-1180) |#1|)) (-15 -1471 ((-1142) |#1|))) -((-3429 (((-112) $ $) 7)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8))) -(((-1122) (-141)) (T -1122)) -((-1471 (*1 *2 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-1142)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-1180))))) -(-13 (-102) (-625 (-877)) (-10 -8 (-15 -1471 ((-1142) $)) (-15 -2342 ((-1180) $)))) -(((-102) . T) ((-625 (-877)) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2193 (((-784)) 36)) (-3784 (($ (-657 (-941))) 70)) (-2452 (((-3 $ "failed") $ (-941) (-941)) 81)) (-1892 (($) 40)) (-1627 (((-112) (-941) $) 42)) (-3007 (((-941) $) 64)) (-2342 (((-1180) $) NIL)) (-3178 (($ (-941)) 39)) (-2393 (((-3 $ "failed") $ (-941)) 77)) (-1471 (((-1142) $) NIL)) (-2935 (((-1289 $)) 47)) (-2448 (((-657 (-941)) $) 27)) (-4262 (((-784) $ (-941) (-941)) 78)) (-3501 (((-877) $) 32)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 24))) -(((-1123 |#1| |#2|) (-13 (-379) (-10 -8 (-15 -2393 ((-3 $ "failed") $ (-941))) (-15 -2452 ((-3 $ "failed") $ (-941) (-941))) (-15 -2448 ((-657 (-941)) $)) (-15 -3784 ($ (-657 (-941)))) (-15 -2935 ((-1289 $))) (-15 -1627 ((-112) (-941) $)) (-15 -4262 ((-784) $ (-941) (-941))))) (-941) (-941)) (T -1123)) -((-2393 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-941)) (-5 *1 (-1123 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2452 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-941)) (-5 *1 (-1123 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2448 (*1 *2 *1) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1123 *3 *4)) (-14 *3 (-941)) (-14 *4 (-941)))) (-3784 (*1 *1 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1123 *3 *4)) (-14 *3 (-941)) (-14 *4 (-941)))) (-2935 (*1 *2) (-12 (-5 *2 (-1289 (-1123 *3 *4))) (-5 *1 (-1123 *3 *4)) (-14 *3 (-941)) (-14 *4 (-941)))) (-1627 (*1 *2 *3 *1) (-12 (-5 *3 (-941)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-4262 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-941)) (-5 *2 (-784)) (-5 *1 (-1123 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-379) (-10 -8 (-15 -2393 ((-3 $ "failed") $ (-941))) (-15 -2452 ((-3 $ "failed") $ (-941) (-941))) (-15 -2448 ((-657 (-941)) $)) (-15 -3784 ($ (-657 (-941)))) (-15 -2935 ((-1289 $))) (-15 -1627 ((-112) (-941) $)) (-15 -4262 ((-784) $ (-941) (-941))))) -((-3429 (((-112) $ $) NIL)) (-1477 (($) NIL (|has| |#1| (-379)))) (-1876 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-4356 (($ $ $) 81)) (-2197 (((-112) $ $) 82)) (-3793 (((-112) $ (-784)) NIL)) (-2193 (((-784)) NIL (|has| |#1| (-379)))) (-2162 (($ (-657 |#1|)) NIL) (($) 13)) (-3162 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-4359 (($) NIL T CONST)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3647 (($ |#1| $) 74 (|has| $ (-6 -4466))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3895 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4466)))) (-1892 (($) NIL (|has| |#1| (-379)))) (-1458 (((-657 |#1|) $) 19 (|has| $ (-6 -4466)))) (-3635 (((-112) $ $) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-3707 ((|#1| $) 55 (|has| |#1| (-862)))) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1611 ((|#1| $) 53 (|has| |#1| (-862)))) (-2148 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 34)) (-3007 (((-941) $) NIL (|has| |#1| (-379)))) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL)) (-3107 (($ $ $) 79)) (-3050 ((|#1| $) 25)) (-2468 (($ |#1| $) 69)) (-3178 (($ (-941)) NIL (|has| |#1| (-379)))) (-1471 (((-1142) $) NIL)) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-2277 ((|#1| $) 27)) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) 21)) (-3581 (($) 11)) (-3788 (($ $ |#1|) NIL) (($ $ $) 80)) (-1504 (($) NIL) (($ (-657 |#1|)) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) 16)) (-4148 (((-548) $) 50 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 62)) (-3677 (($ $) NIL (|has| |#1| (-379)))) (-3501 (((-877) $) NIL)) (-4346 (((-784) $) NIL)) (-1951 (($ (-657 |#1|)) NIL) (($) 12)) (-2046 (((-112) $ $) NIL)) (-4079 (($ (-657 |#1|)) NIL)) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 52)) (-3440 (((-784) $) 10 (|has| $ (-6 -4466))))) -(((-1124 |#1|) (-437 |#1|) (-1122)) (T -1124)) -NIL -(-437 |#1|) -((-3429 (((-112) $ $) 7)) (-2515 (((-112) $) 33)) (-3077 ((|#2| $) 28)) (-3376 (((-112) $) 34)) (-1331 ((|#1| $) 29)) (-2568 (((-112) $) 36)) (-2415 (((-112) $) 38)) (-3144 (((-112) $) 35)) (-2342 (((-1180) $) 10)) (-3099 (((-112) $) 32)) (-3098 ((|#3| $) 27)) (-1471 (((-1142) $) 11)) (-3361 (((-112) $) 31)) (-3023 ((|#4| $) 26)) (-2994 ((|#5| $) 25)) (-3989 (((-112) $ $) 39)) (-2835 (($ $ (-576)) 41) (($ $ (-657 (-576))) 40)) (-1961 (((-657 $) $) 30)) (-4148 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-657 $)) 42)) (-3501 (((-877) $) 12)) (-1495 (($ $) 23)) (-2996 (($ $) 24)) (-2046 (((-112) $ $) 6)) (-2668 (((-112) $) 37)) (-2933 (((-112) $ $) 8)) (-3440 (((-576) $) 22))) -(((-1125 |#1| |#2| |#3| |#4| |#5|) (-141) (-1122) (-1122) (-1122) (-1122) (-1122)) (T -1125)) -((-3989 (*1 *2 *1 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112)))) (-2568 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112)))) (-3144 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112)))) (-2515 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112)))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112)))) (-1961 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-657 *1)) (-4 *1 (-1125 *3 *4 *5 *6 *7)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1125 *2 *3 *4 *5 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *2 *5 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)))) (-2994 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *2)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)))) (-2996 (*1 *1 *1) (-12 (-4 *1 (-1125 *2 *3 *4 *5 *6)) (-4 *2 (-1122)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)))) (-1495 (*1 *1 *1) (-12 (-4 *1 (-1125 *2 *3 *4 *5 *6)) (-4 *2 (-1122)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)))) (-3440 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-576))))) -(-13 (-1122) (-630 |t#1|) (-630 |t#2|) (-630 |t#3|) (-630 |t#4|) (-630 |t#4|) (-630 |t#5|) (-630 (-657 $)) (-296 (-576) $) (-296 (-657 (-576)) $) (-10 -8 (-15 -3989 ((-112) $ $)) (-15 -2415 ((-112) $)) (-15 -2668 ((-112) $)) (-15 -2568 ((-112) $)) (-15 -3144 ((-112) $)) (-15 -3376 ((-112) $)) (-15 -2515 ((-112) $)) (-15 -3099 ((-112) $)) (-15 -3361 ((-112) $)) (-15 -1961 ((-657 $) $)) (-15 -1331 (|t#1| $)) (-15 -3077 (|t#2| $)) (-15 -3098 (|t#3| $)) (-15 -3023 (|t#4| $)) (-15 -2994 (|t#5| $)) (-15 -2996 ($ $)) (-15 -1495 ($ $)) (-15 -3440 ((-576) $)))) -(((-102) . T) ((-625 (-877)) . T) ((-630 (-657 $)) . T) ((-630 |#1|) . T) ((-630 |#2|) . T) ((-630 |#3|) . T) ((-630 |#4|) . T) ((-630 |#5|) . T) ((-296 (-576) $) . T) ((-296 (-657 (-576)) $) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2515 (((-112) $) NIL)) (-3077 (((-1198) $) NIL)) (-3376 (((-112) $) NIL)) (-1331 (((-1180) $) NIL)) (-2568 (((-112) $) NIL)) (-2415 (((-112) $) NIL)) (-3144 (((-112) $) NIL)) (-2342 (((-1180) $) NIL)) (-3099 (((-112) $) NIL)) (-3098 (((-576) $) NIL)) (-1471 (((-1142) $) NIL)) (-3361 (((-112) $) NIL)) (-3023 (((-227) $) NIL)) (-2994 (((-877) $) NIL)) (-3989 (((-112) $ $) NIL)) (-2835 (($ $ (-576)) NIL) (($ $ (-657 (-576))) NIL)) (-1961 (((-657 $) $) NIL)) (-4148 (($ (-1180)) NIL) (($ (-1198)) NIL) (($ (-576)) NIL) (($ (-227)) NIL) (($ (-877)) NIL) (($ (-657 $)) NIL)) (-3501 (((-877) $) NIL)) (-1495 (($ $) NIL)) (-2996 (($ $) NIL)) (-2046 (((-112) $ $) NIL)) (-2668 (((-112) $) NIL)) (-2933 (((-112) $ $) NIL)) (-3440 (((-576) $) NIL))) -(((-1126) (-1125 (-1180) (-1198) (-576) (-227) (-877))) (T -1126)) -NIL -(-1125 (-1180) (-1198) (-576) (-227) (-877)) -((-3429 (((-112) $ $) NIL)) (-2515 (((-112) $) 45)) (-3077 ((|#2| $) 48)) (-3376 (((-112) $) 20)) (-1331 ((|#1| $) 21)) (-2568 (((-112) $) 42)) (-2415 (((-112) $) 14)) (-3144 (((-112) $) 44)) (-2342 (((-1180) $) NIL)) (-3099 (((-112) $) 46)) (-3098 ((|#3| $) 50)) (-1471 (((-1142) $) NIL)) (-3361 (((-112) $) 47)) (-3023 ((|#4| $) 49)) (-2994 ((|#5| $) 51)) (-3989 (((-112) $ $) 41)) (-2835 (($ $ (-576)) 62) (($ $ (-657 (-576))) 64)) (-1961 (((-657 $) $) 27)) (-4148 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-657 $)) 52)) (-3501 (((-877) $) 28)) (-1495 (($ $) 26)) (-2996 (($ $) 58)) (-2046 (((-112) $ $) NIL)) (-2668 (((-112) $) 23)) (-2933 (((-112) $ $) 40)) (-3440 (((-576) $) 60))) -(((-1127 |#1| |#2| |#3| |#4| |#5|) (-1125 |#1| |#2| |#3| |#4| |#5|) (-1122) (-1122) (-1122) (-1122) (-1122)) (T -1127)) -NIL -(-1125 |#1| |#2| |#3| |#4| |#5|) -((-2669 (((-1294) $) 22)) (-2829 (($ (-1198) (-446) |#2|) 11)) (-3501 (((-877) $) 16))) -(((-1128 |#1| |#2|) (-13 (-407) (-10 -8 (-15 -2829 ($ (-1198) (-446) |#2|)))) (-1122) (-442 |#1|)) (T -1128)) -((-2829 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-446)) (-4 *5 (-1122)) (-5 *1 (-1128 *5 *4)) (-4 *4 (-442 *5))))) -(-13 (-407) (-10 -8 (-15 -2829 ($ (-1198) (-446) |#2|)))) -((-3105 (((-112) |#5| |#5|) 44)) (-3681 (((-112) |#5| |#5|) 59)) (-3583 (((-112) |#5| (-657 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-3024 (((-112) (-657 |#4|) (-657 |#4|)) 65)) (-2222 (((-112) (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|)) (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) 70)) (-3884 (((-1294)) 32)) (-3082 (((-1294) (-1180) (-1180) (-1180)) 28)) (-2726 (((-657 |#5|) (-657 |#5|)) 101)) (-2865 (((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|)))) 93)) (-3517 (((-657 (-2 (|:| -3989 (-657 |#4|)) (|:| -3946 |#5|) (|:| |ineq| (-657 |#4|)))) (-657 |#4|) (-657 |#5|) (-112) (-112)) 123)) (-3643 (((-112) |#5| |#5|) 53)) (-4444 (((-3 (-112) "failed") |#5| |#5|) 78)) (-3515 (((-112) (-657 |#4|) (-657 |#4|)) 64)) (-1705 (((-112) (-657 |#4|) (-657 |#4|)) 66)) (-4015 (((-112) (-657 |#4|) (-657 |#4|)) 67)) (-2509 (((-3 (-2 (|:| -3989 (-657 |#4|)) (|:| -3946 |#5|) (|:| |ineq| (-657 |#4|))) "failed") (-657 |#4|) |#5| (-657 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3551 (((-657 |#5|) (-657 |#5|)) 49))) -(((-1129 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3082 ((-1294) (-1180) (-1180) (-1180))) (-15 -3884 ((-1294))) (-15 -3105 ((-112) |#5| |#5|)) (-15 -3551 ((-657 |#5|) (-657 |#5|))) (-15 -3643 ((-112) |#5| |#5|)) (-15 -3681 ((-112) |#5| |#5|)) (-15 -3024 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -3515 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -1705 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -4015 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -4444 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3583 ((-112) |#5| |#5|)) (-15 -3583 ((-112) |#5| (-657 |#5|))) (-15 -2726 ((-657 |#5|) (-657 |#5|))) (-15 -2222 ((-112) (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|)) (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|)))) (-15 -2865 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) (-15 -3517 ((-657 (-2 (|:| -3989 (-657 |#4|)) (|:| -3946 |#5|) (|:| |ineq| (-657 |#4|)))) (-657 |#4|) (-657 |#5|) (-112) (-112))) (-15 -2509 ((-3 (-2 (|:| -3989 (-657 |#4|)) (|:| -3946 |#5|) (|:| |ineq| (-657 |#4|))) "failed") (-657 |#4|) |#5| (-657 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3| |#4|)) (T -1129)) -((-2509 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *9 (-1087 *6 *7 *8)) (-5 *2 (-2 (|:| -3989 (-657 *9)) (|:| -3946 *4) (|:| |ineq| (-657 *9)))) (-5 *1 (-1129 *6 *7 *8 *9 *4)) (-5 *3 (-657 *9)) (-4 *4 (-1093 *6 *7 *8 *9)))) (-3517 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-657 *10)) (-5 *5 (-112)) (-4 *10 (-1093 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *9 (-1087 *6 *7 *8)) (-5 *2 (-657 (-2 (|:| -3989 (-657 *9)) (|:| -3946 *10) (|:| |ineq| (-657 *9))))) (-5 *1 (-1129 *6 *7 *8 *9 *10)) (-5 *3 (-657 *9)))) (-2865 (*1 *2 *2) (-12 (-5 *2 (-657 (-2 (|:| |val| (-657 *6)) (|:| -3946 *7)))) (-4 *6 (-1087 *3 *4 *5)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-1129 *3 *4 *5 *6 *7)))) (-2222 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-657 *7)) (|:| -3946 *8))) (-4 *7 (-1087 *4 *5 *6)) (-4 *8 (-1093 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *8)))) (-2726 (*1 *2 *2) (-12 (-5 *2 (-657 *7)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *1 (-1129 *3 *4 *5 *6 *7)))) (-3583 (*1 *2 *3 *4) (-12 (-5 *4 (-657 *3)) (-4 *3 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1129 *5 *6 *7 *8 *3)))) (-3583 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-4444 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-4015 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-1705 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-3515 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-3024 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-3681 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-3643 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-3551 (*1 *2 *2) (-12 (-5 *2 (-657 *7)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *1 (-1129 *3 *4 *5 *6 *7)))) (-3105 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) (-3884 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6)))) (-3082 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) -(-10 -7 (-15 -3082 ((-1294) (-1180) (-1180) (-1180))) (-15 -3884 ((-1294))) (-15 -3105 ((-112) |#5| |#5|)) (-15 -3551 ((-657 |#5|) (-657 |#5|))) (-15 -3643 ((-112) |#5| |#5|)) (-15 -3681 ((-112) |#5| |#5|)) (-15 -3024 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -3515 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -1705 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -4015 ((-112) (-657 |#4|) (-657 |#4|))) (-15 -4444 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3583 ((-112) |#5| |#5|)) (-15 -3583 ((-112) |#5| (-657 |#5|))) (-15 -2726 ((-657 |#5|) (-657 |#5|))) (-15 -2222 ((-112) (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|)) (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|)))) (-15 -2865 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) (-15 -3517 ((-657 (-2 (|:| -3989 (-657 |#4|)) (|:| -3946 |#5|) (|:| |ineq| (-657 |#4|)))) (-657 |#4|) (-657 |#5|) (-112) (-112))) (-15 -2509 ((-3 (-2 (|:| -3989 (-657 |#4|)) (|:| -3946 |#5|) (|:| |ineq| (-657 |#4|))) "failed") (-657 |#4|) |#5| (-657 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-1774 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#5|) 108)) (-1811 (((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) |#4| |#4| |#5|) 80)) (-2937 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#4| |#5|) 102)) (-3969 (((-657 |#5|) |#4| |#5|) 124)) (-2015 (((-657 |#5|) |#4| |#5|) 131)) (-3291 (((-657 |#5|) |#4| |#5|) 132)) (-1791 (((-657 (-2 (|:| |val| (-112)) (|:| -3946 |#5|))) |#4| |#5|) 109)) (-3417 (((-657 (-2 (|:| |val| (-112)) (|:| -3946 |#5|))) |#4| |#5|) 130)) (-4225 (((-657 (-2 (|:| |val| (-112)) (|:| -3946 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3887 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) |#3| (-112)) 92) (((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-1324 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#4| |#5|) 87)) (-2293 (((-1294)) 36)) (-3492 (((-1294)) 25)) (-1643 (((-1294) (-1180) (-1180) (-1180)) 32)) (-2458 (((-1294) (-1180) (-1180) (-1180)) 21))) -(((-1130 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2458 ((-1294) (-1180) (-1180) (-1180))) (-15 -3492 ((-1294))) (-15 -1643 ((-1294) (-1180) (-1180) (-1180))) (-15 -2293 ((-1294))) (-15 -1811 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) |#4| |#4| |#5|)) (-15 -3887 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3887 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) |#3| (-112))) (-15 -1324 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#4| |#5|)) (-15 -2937 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#4| |#5|)) (-15 -4225 ((-112) |#4| |#5|)) (-15 -1791 ((-657 (-2 (|:| |val| (-112)) (|:| -3946 |#5|))) |#4| |#5|)) (-15 -3969 ((-657 |#5|) |#4| |#5|)) (-15 -3417 ((-657 (-2 (|:| |val| (-112)) (|:| -3946 |#5|))) |#4| |#5|)) (-15 -2015 ((-657 |#5|) |#4| |#5|)) (-15 -4225 ((-657 (-2 (|:| |val| (-112)) (|:| -3946 |#5|))) |#4| |#5|)) (-15 -3291 ((-657 |#5|) |#4| |#5|)) (-15 -1774 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#5|))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|) (-1093 |#1| |#2| |#3| |#4|)) (T -1130)) -((-1774 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-3291 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 *4)) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-4225 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3946 *4)))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-2015 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 *4)) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-3417 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3946 *4)))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-3969 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 *4)) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-1791 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3946 *4)))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-4225 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-2937 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-1324 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-3887 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 (-2 (|:| |val| (-657 *8)) (|:| -3946 *9)))) (-5 *5 (-112)) (-4 *8 (-1087 *6 *7 *4)) (-4 *9 (-1093 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *4 (-862)) (-5 *2 (-657 (-2 (|:| |val| *8) (|:| -3946 *9)))) (-5 *1 (-1130 *6 *7 *4 *8 *9)))) (-3887 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *3 (-1087 *6 *7 *8)) (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) (-5 *1 (-1130 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) (-1811 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))) (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) (-2293 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) (-5 *1 (-1130 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6)))) (-1643 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1130 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) (-3492 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) (-5 *1 (-1130 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6)))) (-2458 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1130 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) -(-10 -7 (-15 -2458 ((-1294) (-1180) (-1180) (-1180))) (-15 -3492 ((-1294))) (-15 -1643 ((-1294) (-1180) (-1180) (-1180))) (-15 -2293 ((-1294))) (-15 -1811 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) |#4| |#4| |#5|)) (-15 -3887 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3887 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) |#3| (-112))) (-15 -1324 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#4| |#5|)) (-15 -2937 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#4| |#5|)) (-15 -4225 ((-112) |#4| |#5|)) (-15 -1791 ((-657 (-2 (|:| |val| (-112)) (|:| -3946 |#5|))) |#4| |#5|)) (-15 -3969 ((-657 |#5|) |#4| |#5|)) (-15 -3417 ((-657 (-2 (|:| |val| (-112)) (|:| -3946 |#5|))) |#4| |#5|)) (-15 -2015 ((-657 |#5|) |#4| |#5|)) (-15 -4225 ((-657 (-2 (|:| |val| (-112)) (|:| -3946 |#5|))) |#4| |#5|)) (-15 -3291 ((-657 |#5|) |#4| |#5|)) (-15 -1774 ((-657 (-2 (|:| |val| |#4|) (|:| -3946 |#5|))) |#4| |#5|))) -((-3429 (((-112) $ $) 7)) (-2856 (((-657 (-2 (|:| -2016 $) (|:| -3209 (-657 |#4|)))) (-657 |#4|)) 86)) (-3472 (((-657 $) (-657 |#4|)) 87) (((-657 $) (-657 |#4|) (-112)) 112)) (-2029 (((-657 |#3|) $) 34)) (-1626 (((-112) $) 27)) (-3072 (((-112) $) 18 (|has| |#1| (-568)))) (-4021 (((-112) |#4| $) 102) (((-112) $) 98)) (-1329 ((|#4| |#4| $) 93)) (-2638 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 $))) |#4| $) 127)) (-1850 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) 28)) (-3793 (((-112) $ (-784)) 45)) (-2035 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4466))) (((-3 |#4| "failed") $ |#3|) 80)) (-4359 (($) 46 T CONST)) (-2433 (((-112) $) 23 (|has| |#1| (-568)))) (-1688 (((-112) $ $) 25 (|has| |#1| (-568)))) (-4058 (((-112) $ $) 24 (|has| |#1| (-568)))) (-2995 (((-112) $) 26 (|has| |#1| (-568)))) (-2292 (((-657 |#4|) (-657 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1978 (((-657 |#4|) (-657 |#4|) $) 19 (|has| |#1| (-568)))) (-2410 (((-657 |#4|) (-657 |#4|) $) 20 (|has| |#1| (-568)))) (-1624 (((-3 $ "failed") (-657 |#4|)) 37)) (-2884 (($ (-657 |#4|)) 36)) (-3522 (((-3 $ "failed") $) 83)) (-2073 ((|#4| |#4| $) 90)) (-3914 (($ $) 69 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-3895 (($ |#4| $) 68 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4466)))) (-3644 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3206 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3003 ((|#4| |#4| $) 88)) (-3622 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4466))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1957 (((-2 (|:| -2016 (-657 |#4|)) (|:| -3209 (-657 |#4|))) $) 106)) (-3374 (((-112) |#4| $) 137)) (-4211 (((-112) |#4| $) 134)) (-2376 (((-112) |#4| $) 138) (((-112) $) 135)) (-1458 (((-657 |#4|) $) 53 (|has| $ (-6 -4466)))) (-1878 (((-112) |#4| $) 105) (((-112) $) 104)) (-3627 ((|#3| $) 35)) (-1833 (((-112) $ (-784)) 44)) (-2070 (((-657 |#4|) $) 54 (|has| $ (-6 -4466)))) (-1627 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#4| |#4|) $) 48)) (-1746 (((-657 |#3|) $) 33)) (-4089 (((-112) |#3| $) 32)) (-4261 (((-112) $ (-784)) 43)) (-2342 (((-1180) $) 10)) (-3674 (((-3 |#4| (-657 $)) |#4| |#4| $) 129)) (-2382 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 $))) |#4| |#4| $) 128)) (-3920 (((-3 |#4| "failed") $) 84)) (-3149 (((-657 $) |#4| $) 130)) (-1971 (((-3 (-112) (-657 $)) |#4| $) 133)) (-4183 (((-657 (-2 (|:| |val| (-112)) (|:| -3946 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3107 (((-657 $) |#4| $) 126) (((-657 $) (-657 |#4|) $) 125) (((-657 $) (-657 |#4|) (-657 $)) 124) (((-657 $) |#4| (-657 $)) 123)) (-4062 (($ |#4| $) 118) (($ (-657 |#4|) $) 117)) (-1765 (((-657 |#4|) $) 108)) (-4365 (((-112) |#4| $) 100) (((-112) $) 96)) (-2833 ((|#4| |#4| $) 91)) (-4015 (((-112) $ $) 111)) (-3404 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3965 (((-112) |#4| $) 101) (((-112) $) 97)) (-2843 ((|#4| |#4| $) 92)) (-1471 (((-1142) $) 11)) (-3510 (((-3 |#4| "failed") $) 85)) (-2951 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1548 (((-3 $ "failed") $ |#4|) 79)) (-3926 (($ $ |#4|) 78) (((-657 $) |#4| $) 116) (((-657 $) |#4| (-657 $)) 115) (((-657 $) (-657 |#4|) $) 114) (((-657 $) (-657 |#4|) (-657 $)) 113)) (-3399 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 |#4|) (-657 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-2806 (((-112) $ $) 39)) (-3387 (((-112) $) 42)) (-3581 (($) 41)) (-1770 (((-784) $) 107)) (-1482 (((-784) |#4| $) 55 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4466)))) (-1923 (($ $) 40)) (-4148 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3511 (($ (-657 |#4|)) 61)) (-2956 (($ $ |#3|) 29)) (-1664 (($ $ |#3|) 31)) (-3459 (($ $) 89)) (-3604 (($ $ |#3|) 30)) (-3501 (((-877) $) 12) (((-657 |#4|) $) 38)) (-3540 (((-784) $) 77 (|has| |#3| (-379)))) (-2046 (((-112) $ $) 6)) (-2631 (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3302 (((-112) $ (-1 (-112) |#4| (-657 |#4|))) 99)) (-2375 (((-657 $) |#4| $) 122) (((-657 $) |#4| (-657 $)) 121) (((-657 $) (-657 |#4|) $) 120) (((-657 $) (-657 |#4|) (-657 $)) 119)) (-2147 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4466)))) (-3039 (((-657 |#3|) $) 82)) (-3421 (((-112) |#4| $) 136)) (-1863 (((-112) |#3| $) 81)) (-2933 (((-112) $ $) 8)) (-3440 (((-784) $) 47 (|has| $ (-6 -4466))))) -(((-1131 |#1| |#2| |#3| |#4|) (-141) (-464) (-806) (-862) (-1087 |t#1| |t#2| |t#3|)) (T -1131)) -NIL -(-13 (-1093 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-625 (-657 |#4|)) . T) ((-625 (-877)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-998 |#1| |#2| |#3| |#4|) . T) ((-1093 |#1| |#2| |#3| |#4|) . T) ((-1122) . T) ((-1232 |#1| |#2| |#3| |#4|) . T) ((-1239) . T)) -((-4351 (((-657 (-576)) (-576) (-576) (-576)) 38)) (-1686 (((-657 (-576)) (-576) (-576) (-576)) 28)) (-3615 (((-657 (-576)) (-576) (-576) (-576)) 33)) (-2565 (((-576) (-576) (-576)) 21)) (-1983 (((-1289 (-576)) (-657 (-576)) (-1289 (-576)) (-576)) 77) (((-1289 (-576)) (-1289 (-576)) (-1289 (-576)) (-576)) 72)) (-1694 (((-657 (-576)) (-657 (-941)) (-657 (-576)) (-112)) 54)) (-2110 (((-702 (-576)) (-657 (-576)) (-657 (-576)) (-702 (-576))) 76)) (-4304 (((-702 (-576)) (-657 (-941)) (-657 (-576))) 59)) (-3850 (((-657 (-702 (-576))) (-657 (-941))) 65)) (-2981 (((-657 (-576)) (-657 (-576)) (-657 (-576)) (-702 (-576))) 80)) (-4030 (((-702 (-576)) (-657 (-576)) (-657 (-576)) (-657 (-576))) 90))) -(((-1132) (-10 -7 (-15 -4030 ((-702 (-576)) (-657 (-576)) (-657 (-576)) (-657 (-576)))) (-15 -2981 ((-657 (-576)) (-657 (-576)) (-657 (-576)) (-702 (-576)))) (-15 -3850 ((-657 (-702 (-576))) (-657 (-941)))) (-15 -4304 ((-702 (-576)) (-657 (-941)) (-657 (-576)))) (-15 -2110 ((-702 (-576)) (-657 (-576)) (-657 (-576)) (-702 (-576)))) (-15 -1694 ((-657 (-576)) (-657 (-941)) (-657 (-576)) (-112))) (-15 -1983 ((-1289 (-576)) (-1289 (-576)) (-1289 (-576)) (-576))) (-15 -1983 ((-1289 (-576)) (-657 (-576)) (-1289 (-576)) (-576))) (-15 -2565 ((-576) (-576) (-576))) (-15 -3615 ((-657 (-576)) (-576) (-576) (-576))) (-15 -1686 ((-657 (-576)) (-576) (-576) (-576))) (-15 -4351 ((-657 (-576)) (-576) (-576) (-576))))) (T -1132)) -((-4351 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1132)) (-5 *3 (-576)))) (-1686 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1132)) (-5 *3 (-576)))) (-3615 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1132)) (-5 *3 (-576)))) (-2565 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1132)))) (-1983 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1289 (-576))) (-5 *3 (-657 (-576))) (-5 *4 (-576)) (-5 *1 (-1132)))) (-1983 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1289 (-576))) (-5 *3 (-576)) (-5 *1 (-1132)))) (-1694 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-657 (-576))) (-5 *3 (-657 (-941))) (-5 *4 (-112)) (-5 *1 (-1132)))) (-2110 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-702 (-576))) (-5 *3 (-657 (-576))) (-5 *1 (-1132)))) (-4304 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-941))) (-5 *4 (-657 (-576))) (-5 *2 (-702 (-576))) (-5 *1 (-1132)))) (-3850 (*1 *2 *3) (-12 (-5 *3 (-657 (-941))) (-5 *2 (-657 (-702 (-576)))) (-5 *1 (-1132)))) (-2981 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-657 (-576))) (-5 *3 (-702 (-576))) (-5 *1 (-1132)))) (-4030 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-657 (-576))) (-5 *2 (-702 (-576))) (-5 *1 (-1132))))) -(-10 -7 (-15 -4030 ((-702 (-576)) (-657 (-576)) (-657 (-576)) (-657 (-576)))) (-15 -2981 ((-657 (-576)) (-657 (-576)) (-657 (-576)) (-702 (-576)))) (-15 -3850 ((-657 (-702 (-576))) (-657 (-941)))) (-15 -4304 ((-702 (-576)) (-657 (-941)) (-657 (-576)))) (-15 -2110 ((-702 (-576)) (-657 (-576)) (-657 (-576)) (-702 (-576)))) (-15 -1694 ((-657 (-576)) (-657 (-941)) (-657 (-576)) (-112))) (-15 -1983 ((-1289 (-576)) (-1289 (-576)) (-1289 (-576)) (-576))) (-15 -1983 ((-1289 (-576)) (-657 (-576)) (-1289 (-576)) (-576))) (-15 -2565 ((-576) (-576) (-576))) (-15 -3615 ((-657 (-576)) (-576) (-576) (-576))) (-15 -1686 ((-657 (-576)) (-576) (-576) (-576))) (-15 -4351 ((-657 (-576)) (-576) (-576) (-576)))) -((** (($ $ (-941)) 10))) -(((-1133 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-941)))) (-1134)) (T -1133)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-941)))) -((-3429 (((-112) $ $) 7)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8)) (** (($ $ (-941)) 14)) (* (($ $ $) 15))) -(((-1134) (-141)) (T -1134)) -((* (*1 *1 *1 *1) (-4 *1 (-1134))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-941))))) -(-13 (-1122) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-941))))) -(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL (|has| |#3| (-102)))) (-2364 (((-112) $) NIL (|has| |#3| (-23)))) (-3110 (($ (-941)) NIL (|has| |#3| (-1071)))) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-3733 (($ $ $) NIL (|has| |#3| (-806)))) (-2721 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-3793 (((-112) $ (-784)) NIL)) (-2193 (((-784)) NIL (|has| |#3| (-379)))) (-3682 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4467)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1122)))) (-2884 (((-576) $) NIL (-12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122)))) ((|#3| $) NIL (|has| |#3| (-1122)))) (-3306 (((-702 (-576)) (-702 $)) NIL (-12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) (((-2 (|:| -3750 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-702 $) (-1289 $)) NIL (|has| |#3| (-1071))) (((-702 |#3|) (-702 $)) NIL (|has| |#3| (-1071)))) (-3843 (((-3 $ "failed") $) NIL (|has| |#3| (-1071)))) (-1892 (($) NIL (|has| |#3| (-379)))) (-2158 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#3| $ (-576)) 12)) (-1458 (((-657 |#3|) $) NIL (|has| $ (-6 -4466)))) (-4094 (((-112) $) NIL (|has| |#3| (-1071)))) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) NIL (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| |#3| (-862)))) (-2070 (((-657 |#3|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#3| (-1122))))) (-2272 (((-576) $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| |#3| (-862)))) (-2148 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#3| |#3|) $) NIL)) (-3007 (((-941) $) NIL (|has| |#3| (-379)))) (-4261 (((-112) $ (-784)) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (-12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| |#3| (-652 (-576))) (|has| |#3| (-1071)))) (((-2 (|:| -3750 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-1289 $) $) NIL (|has| |#3| (-1071))) (((-702 |#3|) (-1289 $)) NIL (|has| |#3| (-1071)))) (-2342 (((-1180) $) NIL (|has| |#3| (-1122)))) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-3178 (($ (-941)) NIL (|has| |#3| (-379)))) (-1471 (((-1142) $) NIL (|has| |#3| (-1122)))) (-3510 ((|#3| $) NIL (|has| (-576) (-862)))) (-1987 (($ $ |#3|) NIL (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122)))) (($ $ (-657 |#3|) (-657 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#3| (-1122))))) (-2380 (((-657 |#3|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) NIL)) (-1374 ((|#3| $ $) NIL (|has| |#3| (-1071)))) (-1924 (($ (-1289 |#3|)) NIL)) (-3863 (((-135)) NIL (|has| |#3| (-374)))) (-2815 (($ $ (-784)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1071)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071)))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071)))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071)))) (($ $ (-1198)) NIL (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1071))) (($ $ (-1 |#3| |#3|) (-784)) NIL (|has| |#3| (-1071)))) (-1482 (((-784) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4466))) (((-784) |#3| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#3| (-1122))))) (-1923 (($ $) NIL)) (-3501 (((-1289 |#3|) $) NIL) (($ (-576)) NIL (-2802 (-12 (|has| |#3| (-1060 (-576))) (|has| |#3| (-1122))) (|has| |#3| (-1071)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1060 (-419 (-576)))) (|has| |#3| (-1122)))) (($ |#3|) NIL (|has| |#3| (-1122))) (((-877) $) NIL (|has| |#3| (-625 (-877))))) (-1960 (((-784)) NIL (|has| |#3| (-1071)) CONST)) (-2046 (((-112) $ $) NIL (|has| |#3| (-102)))) (-2147 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4466)))) (-2769 (($) NIL (|has| |#3| (-23)) CONST)) (-2779 (($) NIL (|has| |#3| (-1071)) CONST)) (-2097 (($ $ (-784)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1071)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1071)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071)))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071)))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071)))) (($ $ (-1198)) NIL (-12 (|has| |#3| (-920 (-1198))) (|has| |#3| (-1071)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1071))) (($ $ (-1 |#3| |#3|) (-784)) NIL (|has| |#3| (-1071)))) (-2985 (((-112) $ $) NIL (|has| |#3| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#3| (-862)))) (-2933 (((-112) $ $) NIL (|has| |#3| (-102)))) (-2973 (((-112) $ $) NIL (|has| |#3| (-862)))) (-2954 (((-112) $ $) 24 (|has| |#3| (-862)))) (-3034 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-3022 (($ $ $) NIL (|has| |#3| (-21))) (($ $) NIL (|has| |#3| (-21)))) (-3012 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-784)) NIL (|has| |#3| (-1071))) (($ $ (-941)) NIL (|has| |#3| (-1071)))) (* (($ $ $) NIL (|has| |#3| (-1071))) (($ $ |#3|) NIL (|has| |#3| (-739))) (($ |#3| $) NIL (|has| |#3| (-739))) (($ (-576) $) NIL (|has| |#3| (-21))) (($ (-784) $) NIL (|has| |#3| (-23))) (($ (-941) $) NIL (|has| |#3| (-25)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-1135 |#1| |#2| |#3|) (-243 |#1| |#3|) (-784) (-784) (-806)) (T -1135)) -NIL -(-243 |#1| |#3|) -((-2692 (((-657 (-1262 |#2| |#1|)) (-1262 |#2| |#1|) (-1262 |#2| |#1|)) 50)) (-1841 (((-576) (-1262 |#2| |#1|)) 94 (|has| |#1| (-464)))) (-3342 (((-576) (-1262 |#2| |#1|)) 76)) (-1737 (((-657 (-1262 |#2| |#1|)) (-1262 |#2| |#1|) (-1262 |#2| |#1|)) 58)) (-1756 (((-576) (-1262 |#2| |#1|) (-1262 |#2| |#1|)) 93 (|has| |#1| (-464)))) (-3083 (((-657 |#1|) (-1262 |#2| |#1|) (-1262 |#2| |#1|)) 61)) (-1556 (((-576) (-1262 |#2| |#1|) (-1262 |#2| |#1|)) 75))) -(((-1136 |#1| |#2|) (-10 -7 (-15 -2692 ((-657 (-1262 |#2| |#1|)) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -1737 ((-657 (-1262 |#2| |#1|)) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -3083 ((-657 |#1|) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -1556 ((-576) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -3342 ((-576) (-1262 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -1756 ((-576) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -1841 ((-576) (-1262 |#2| |#1|)))) |%noBranch|)) (-833) (-1198)) (T -1136)) -((-1841 (*1 *2 *3) (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-464)) (-4 *4 (-833)) (-14 *5 (-1198)) (-5 *2 (-576)) (-5 *1 (-1136 *4 *5)))) (-1756 (*1 *2 *3 *3) (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-464)) (-4 *4 (-833)) (-14 *5 (-1198)) (-5 *2 (-576)) (-5 *1 (-1136 *4 *5)))) (-3342 (*1 *2 *3) (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-833)) (-14 *5 (-1198)) (-5 *2 (-576)) (-5 *1 (-1136 *4 *5)))) (-1556 (*1 *2 *3 *3) (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-833)) (-14 *5 (-1198)) (-5 *2 (-576)) (-5 *1 (-1136 *4 *5)))) (-3083 (*1 *2 *3 *3) (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-833)) (-14 *5 (-1198)) (-5 *2 (-657 *4)) (-5 *1 (-1136 *4 *5)))) (-1737 (*1 *2 *3 *3) (-12 (-4 *4 (-833)) (-14 *5 (-1198)) (-5 *2 (-657 (-1262 *5 *4))) (-5 *1 (-1136 *4 *5)) (-5 *3 (-1262 *5 *4)))) (-2692 (*1 *2 *3 *3) (-12 (-4 *4 (-833)) (-14 *5 (-1198)) (-5 *2 (-657 (-1262 *5 *4))) (-5 *1 (-1136 *4 *5)) (-5 *3 (-1262 *5 *4))))) -(-10 -7 (-15 -2692 ((-657 (-1262 |#2| |#1|)) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -1737 ((-657 (-1262 |#2| |#1|)) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -3083 ((-657 |#1|) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -1556 ((-576) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -3342 ((-576) (-1262 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -1756 ((-576) (-1262 |#2| |#1|) (-1262 |#2| |#1|))) (-15 -1841 ((-576) (-1262 |#2| |#1|)))) |%noBranch|)) -((-3429 (((-112) $ $) NIL)) (-3824 (($ (-518) (-1140)) 13)) (-2753 (((-1140) $) 19)) (-2676 (((-518) $) 16)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 26) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-1137) (-13 (-1105) (-10 -8 (-15 -3824 ($ (-518) (-1140))) (-15 -2676 ((-518) $)) (-15 -2753 ((-1140) $))))) (T -1137)) -((-3824 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1140)) (-5 *1 (-1137)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1137)))) (-2753 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1137))))) -(-13 (-1105) (-10 -8 (-15 -3824 ($ (-518) (-1140))) (-15 -2676 ((-518) $)) (-15 -2753 ((-1140) $)))) -((-1536 (((-3 (-576) "failed") |#2| (-1198) |#2| (-1180)) 19) (((-3 (-576) "failed") |#2| (-1198) (-856 |#2|)) 17) (((-3 (-576) "failed") |#2|) 60))) -(((-1138 |#1| |#2|) (-10 -7 (-15 -1536 ((-3 (-576) "failed") |#2|)) (-15 -1536 ((-3 (-576) "failed") |#2| (-1198) (-856 |#2|))) (-15 -1536 ((-3 (-576) "failed") |#2| (-1198) |#2| (-1180)))) (-13 (-568) (-1060 (-576)) (-652 (-576)) (-464)) (-13 (-27) (-1224) (-442 |#1|))) (T -1138)) -((-1536 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-1180)) (-4 *6 (-13 (-568) (-1060 *2) (-652 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1138 *6 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *6))))) (-1536 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-856 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *6))) (-4 *6 (-13 (-568) (-1060 *2) (-652 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1138 *6 *3)))) (-1536 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1060 *2) (-652 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1138 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4)))))) -(-10 -7 (-15 -1536 ((-3 (-576) "failed") |#2|)) (-15 -1536 ((-3 (-576) "failed") |#2| (-1198) (-856 |#2|))) (-15 -1536 ((-3 (-576) "failed") |#2| (-1198) |#2| (-1180)))) -((-1536 (((-3 (-576) "failed") (-419 (-972 |#1|)) (-1198) (-419 (-972 |#1|)) (-1180)) 38) (((-3 (-576) "failed") (-419 (-972 |#1|)) (-1198) (-856 (-419 (-972 |#1|)))) 33) (((-3 (-576) "failed") (-419 (-972 |#1|))) 14))) -(((-1139 |#1|) (-10 -7 (-15 -1536 ((-3 (-576) "failed") (-419 (-972 |#1|)))) (-15 -1536 ((-3 (-576) "failed") (-419 (-972 |#1|)) (-1198) (-856 (-419 (-972 |#1|))))) (-15 -1536 ((-3 (-576) "failed") (-419 (-972 |#1|)) (-1198) (-419 (-972 |#1|)) (-1180)))) (-464)) (T -1139)) -((-1536 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-419 (-972 *6))) (-5 *4 (-1198)) (-5 *5 (-1180)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1139 *6)))) (-1536 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-856 (-419 (-972 *6)))) (-5 *3 (-419 (-972 *6))) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1139 *6)))) (-1536 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-464)) (-5 *2 (-576)) (-5 *1 (-1139 *4))))) -(-10 -7 (-15 -1536 ((-3 (-576) "failed") (-419 (-972 |#1|)))) (-15 -1536 ((-3 (-576) "failed") (-419 (-972 |#1|)) (-1198) (-856 (-419 (-972 |#1|))))) (-15 -1536 ((-3 (-576) "failed") (-419 (-972 |#1|)) (-1198) (-419 (-972 |#1|)) (-1180)))) -((-3429 (((-112) $ $) NIL)) (-2978 (((-1203) $) 12)) (-2926 (((-657 (-1203)) $) 14)) (-2753 (($ (-657 (-1203)) (-1203)) 10)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 29)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 17))) -(((-1140) (-13 (-1122) (-10 -8 (-15 -2753 ($ (-657 (-1203)) (-1203))) (-15 -2978 ((-1203) $)) (-15 -2926 ((-657 (-1203)) $))))) (T -1140)) -((-2753 (*1 *1 *2 *3) (-12 (-5 *2 (-657 (-1203))) (-5 *3 (-1203)) (-5 *1 (-1140)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-1203)) (-5 *1 (-1140)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-657 (-1203))) (-5 *1 (-1140))))) -(-13 (-1122) (-10 -8 (-15 -2753 ($ (-657 (-1203)) (-1203))) (-15 -2978 ((-1203) $)) (-15 -2926 ((-657 (-1203)) $)))) -((-2394 (((-326 (-576)) (-48)) 12))) -(((-1141) (-10 -7 (-15 -2394 ((-326 (-576)) (-48))))) (T -1141)) -((-2394 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1141))))) -(-10 -7 (-15 -2394 ((-326 (-576)) (-48)))) -((-3429 (((-112) $ $) NIL)) (-3452 (($ $) 44)) (-2364 (((-112) $) 70)) (-2744 (($ $ $) 53)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 98)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2061 (($ $ $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-3578 (($ $ $ $) 81)) (-2638 (($ $) NIL)) (-4402 (((-430 $) $) NIL)) (-2864 (((-112) $ $) NIL)) (-2193 (((-784)) 83)) (-1536 (((-576) $) NIL)) (-2790 (($ $ $) 78)) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL)) (-2884 (((-576) $) NIL)) (-3373 (($ $ $) 64)) (-3306 (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 92) (((-702 (-576)) (-702 $)) 32)) (-3843 (((-3 $ "failed") $) NIL)) (-2775 (((-3 (-419 (-576)) "failed") $) NIL)) (-3112 (((-112) $) NIL)) (-4239 (((-419 (-576)) $) NIL)) (-1892 (($) 95) (($ $) 96)) (-3385 (($ $ $) 63)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL)) (-4257 (((-112) $) NIL)) (-2798 (($ $ $ $) NIL)) (-3211 (($ $ $) 93)) (-2828 (((-112) $) NIL)) (-2194 (($ $ $) NIL)) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL)) (-2734 (($ $ $) 52)) (-4094 (((-112) $) 72)) (-2320 (((-112) $) 69)) (-2712 (($ $) 45)) (-4019 (((-3 $ "failed") $) NIL)) (-2881 (((-112) $) 82)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3767 (($ $ $ $) 79)) (-3707 (($ $ $) 74) (($) 42 T CONST)) (-1611 (($ $ $) 73) (($) 41 T CONST)) (-4195 (($ $) NIL)) (-3007 (((-941) $) 88)) (-3358 (($ $) 77)) (-3101 (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL) (((-702 (-576)) (-1289 $)) NIL)) (-3402 (($ $ $) NIL) (($ (-657 $)) NIL)) (-2342 (((-1180) $) NIL)) (-2233 (($ $ $) NIL)) (-1706 (($) NIL T CONST)) (-3178 (($ (-941)) 87)) (-1380 (($ $) 57)) (-1471 (((-1142) $) 76)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL)) (-3436 (($ $ $) 67) (($ (-657 $)) NIL)) (-3907 (($ $) NIL)) (-1885 (((-430 $) $) NIL)) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL)) (-3418 (((-3 $ "failed") $ $) NIL)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL)) (-3593 (((-112) $) NIL)) (-2034 (((-784) $) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 66)) (-2815 (($ $) NIL) (($ $ (-784)) NIL)) (-1862 (($ $) 58)) (-1923 (($ $) NIL)) (-4148 (((-576) $) 17) (((-548) $) NIL) (((-908 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL)) (-3501 (((-877) $) 35) (($ (-576)) 94) (($ $) NIL) (($ (-576)) 94)) (-1960 (((-784)) NIL T CONST)) (-3091 (((-112) $ $) NIL)) (-3871 (($ $ $) NIL)) (-2046 (((-112) $ $) NIL)) (-4143 (($) 40)) (-4041 (((-112) $ $) NIL)) (-2724 (($ $ $) 50)) (-2430 (($ $ $ $) 80)) (-1792 (($ $) 68)) (-3494 (($ $ $) 47)) (-2769 (($) 7 T CONST)) (-3805 (($ $ $) 51)) (-2779 (($) 39 T CONST)) (-3095 (((-1180) $) 26) (((-1180) $ (-112)) 27) (((-1294) (-835) $) 28) (((-1294) (-835) $ (-112)) 29)) (-3818 (($ $) 48)) (-2097 (($ $) NIL) (($ $ (-784)) NIL)) (-3791 (($ $ $) 49)) (-2985 (((-112) $ $) 56)) (-2963 (((-112) $ $) 54)) (-2933 (((-112) $ $) 43)) (-2973 (((-112) $ $) 55)) (-2954 (((-112) $ $) 10)) (-3482 (($ $ $) 46)) (-3022 (($ $) 16) (($ $ $) 60)) (-3012 (($ $ $) 59)) (** (($ $ (-941)) NIL) (($ $ (-784)) 62)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 38) (($ $ $) 37) (($ (-576) $) 38))) -(((-1142) (-13 (-557) (-857) (-113) (-674) (-841) (-10 -8 (-6 -4453) (-6 -4458) (-6 -4454) (-15 -2744 ($ $ $)) (-15 -3818 ($ $)) (-15 -3791 ($ $ $)) (-15 -3805 ($ $ $))))) (T -1142)) -((-2744 (*1 *1 *1 *1) (-5 *1 (-1142))) (-3818 (*1 *1 *1) (-5 *1 (-1142))) (-3791 (*1 *1 *1 *1) (-5 *1 (-1142))) (-3805 (*1 *1 *1 *1) (-5 *1 (-1142)))) -(-13 (-557) (-857) (-113) (-674) (-841) (-10 -8 (-6 -4453) (-6 -4458) (-6 -4454) (-15 -2744 ($ $ $)) (-15 -3818 ($ $)) (-15 -3791 ($ $ $)) (-15 -3805 ($ $ $)))) +(((-93) . T) ((-102) . T) ((-629 #0=(-1206)) . T) ((-626 (-880)) . T) ((-626 #0#) . T) ((-503 #0#) . T) ((-1125) . T) ((-1242) . T)) +((-2635 ((|#1| |#1| (-1 (-577) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-1730 (((-1297)) 21)) (-4003 (((-660 |#1|)) 13))) +(((-1109 |#1|) (-10 -7 (-15 -1730 ((-1297))) (-15 -4003 ((-660 |#1|))) (-15 -2635 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2635 (|#1| |#1| (-1 (-577) |#1| |#1|)))) (-133)) (T -1109)) +((-2635 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-577) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1109 *2)))) (-2635 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1109 *2)))) (-4003 (*1 *2) (-12 (-5 *2 (-660 *3)) (-5 *1 (-1109 *3)) (-4 *3 (-133)))) (-1730 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1109 *3)) (-4 *3 (-133))))) +(-10 -7 (-15 -1730 ((-1297))) (-15 -4003 ((-660 |#1|))) (-15 -2635 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2635 (|#1| |#1| (-1 (-577) |#1| |#1|)))) +((-2668 (($ (-109) $) 20)) (-2677 (((-707 (-109)) (-519) $) 19)) (-3639 (($) 7)) (-2654 (($) 21)) (-2644 (($) 22)) (-2689 (((-660 (-177)) $) 10)) (-3544 (((-880) $) 25))) +(((-1110) (-13 (-626 (-880)) (-10 -8 (-15 -3639 ($)) (-15 -2689 ((-660 (-177)) $)) (-15 -2677 ((-707 (-109)) (-519) $)) (-15 -2668 ($ (-109) $)) (-15 -2654 ($)) (-15 -2644 ($))))) (T -1110)) +((-3639 (*1 *1) (-5 *1 (-1110))) (-2689 (*1 *2 *1) (-12 (-5 *2 (-660 (-177))) (-5 *1 (-1110)))) (-2677 (*1 *2 *3 *1) (-12 (-5 *3 (-519)) (-5 *2 (-707 (-109))) (-5 *1 (-1110)))) (-2668 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1110)))) (-2654 (*1 *1) (-5 *1 (-1110))) (-2644 (*1 *1) (-5 *1 (-1110)))) +(-13 (-626 (-880)) (-10 -8 (-15 -3639 ($)) (-15 -2689 ((-660 (-177)) $)) (-15 -2677 ((-707 (-109)) (-519) $)) (-15 -2668 ($ (-109) $)) (-15 -2654 ($)) (-15 -2644 ($)))) +((-2700 (((-1292 (-705 |#1|)) (-660 (-705 |#1|))) 45) (((-1292 (-705 (-975 |#1|))) (-660 (-1201)) (-705 (-975 |#1|))) 75) (((-1292 (-705 (-420 (-975 |#1|)))) (-660 (-1201)) (-705 (-420 (-975 |#1|)))) 92)) (-2710 (((-1292 |#1|) (-705 |#1|) (-660 (-705 |#1|))) 39))) +(((-1111 |#1|) (-10 -7 (-15 -2700 ((-1292 (-705 (-420 (-975 |#1|)))) (-660 (-1201)) (-705 (-420 (-975 |#1|))))) (-15 -2700 ((-1292 (-705 (-975 |#1|))) (-660 (-1201)) (-705 (-975 |#1|)))) (-15 -2700 ((-1292 (-705 |#1|)) (-660 (-705 |#1|)))) (-15 -2710 ((-1292 |#1|) (-705 |#1|) (-660 (-705 |#1|))))) (-375)) (T -1111)) +((-2710 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-705 *5))) (-5 *3 (-705 *5)) (-4 *5 (-375)) (-5 *2 (-1292 *5)) (-5 *1 (-1111 *5)))) (-2700 (*1 *2 *3) (-12 (-5 *3 (-660 (-705 *4))) (-4 *4 (-375)) (-5 *2 (-1292 (-705 *4))) (-5 *1 (-1111 *4)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-1201))) (-4 *5 (-375)) (-5 *2 (-1292 (-705 (-975 *5)))) (-5 *1 (-1111 *5)) (-5 *4 (-705 (-975 *5))))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-1201))) (-4 *5 (-375)) (-5 *2 (-1292 (-705 (-420 (-975 *5))))) (-5 *1 (-1111 *5)) (-5 *4 (-705 (-420 (-975 *5))))))) +(-10 -7 (-15 -2700 ((-1292 (-705 (-420 (-975 |#1|)))) (-660 (-1201)) (-705 (-420 (-975 |#1|))))) (-15 -2700 ((-1292 (-705 (-975 |#1|))) (-660 (-1201)) (-705 (-975 |#1|)))) (-15 -2700 ((-1292 (-705 |#1|)) (-660 (-705 |#1|)))) (-15 -2710 ((-1292 |#1|) (-705 |#1|) (-660 (-705 |#1|))))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3887 (((-660 (-787)) $) NIL) (((-660 (-787)) $ (-1201)) NIL)) (-3030 (((-787) $) NIL) (((-787) $ (-1201)) NIL)) (-2058 (((-660 (-1113 (-1201))) $) NIL)) (-1867 (((-1197 $) $ (-1113 (-1201))) NIL) (((-1197 |#1|) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-4050 (((-787) $) NIL) (((-787) $ (-660 (-1113 (-1201)))) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-3841 (($ $) NIL (|has| |#1| (-465)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-465)))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-3865 (($ $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-1113 (-1201)) "failed") $) NIL) (((-3 (-1201) "failed") $) NIL) (((-3 (-1150 |#1| (-1201)) "failed") $) NIL)) (-2921 ((|#1| $) NIL) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-1113 (-1201)) $) NIL) (((-1201) $) NIL) (((-1150 |#1| (-1201)) $) NIL)) (-1816 (($ $ $ (-1113 (-1201))) NIL (|has| |#1| (-174)))) (-2248 (($ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL) (((-705 |#1|) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3143 (($ $) NIL (|has| |#1| (-465))) (($ $ (-1113 (-1201))) NIL (|has| |#1| (-465)))) (-2234 (((-660 $) $) NIL)) (-1522 (((-112) $) NIL (|has| |#1| (-932)))) (-2137 (($ $ |#1| (-544 (-1113 (-1201))) $) NIL)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-1113 (-1201)) (-905 (-391))) (|has| |#1| (-905 (-391))))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-1113 (-1201)) (-905 (-577))) (|has| |#1| (-905 (-577)))))) (-3817 (((-787) $ (-1201)) NIL) (((-787) $) NIL)) (-2487 (((-112) $) NIL)) (-2548 (((-787) $) NIL)) (-2043 (($ (-1197 |#1|) (-1113 (-1201))) NIL) (($ (-1197 $) (-1113 (-1201))) NIL)) (-4074 (((-660 $) $) NIL)) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-544 (-1113 (-1201)))) NIL) (($ $ (-1113 (-1201)) (-787)) NIL) (($ $ (-660 (-1113 (-1201))) (-660 (-787))) NIL)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ (-1113 (-1201))) NIL)) (-4061 (((-544 (-1113 (-1201))) $) NIL) (((-787) $ (-1113 (-1201))) NIL) (((-660 (-787)) $ (-660 (-1113 (-1201)))) NIL)) (-2151 (($ (-1 (-544 (-1113 (-1201))) (-544 (-1113 (-1201)))) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3039 (((-1 $ (-787)) (-1201)) NIL) (((-1 $ (-787)) $) NIL (|has| |#1| (-239)))) (-3691 (((-3 (-1113 (-1201)) "failed") $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL) (((-705 |#1|) (-1292 $)) NIL)) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-1601 (((-1113 (-1201)) $) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) NIL (|has| |#1| (-465)))) (-2810 (((-1183) $) NIL)) (-3876 (((-112) $) NIL)) (-4098 (((-3 (-660 $) "failed") $) NIL)) (-4086 (((-3 (-660 $) "failed") $) NIL)) (-4111 (((-3 (-2 (|:| |var| (-1113 (-1201))) (|:| -3556 (-787))) "failed") $) NIL)) (-4280 (($ $) NIL)) (-1474 (((-1145) $) NIL)) (-2180 (((-112) $) NIL)) (-2193 ((|#1| $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-465)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) NIL (|has| |#1| (-465)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-1902 (((-431 $) $) NIL (|has| |#1| (-932)))) (-3462 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)))) (-3280 (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ (-1113 (-1201)) |#1|) NIL) (($ $ (-660 (-1113 (-1201))) (-660 |#1|)) NIL) (($ $ (-1113 (-1201)) $) NIL) (($ $ (-660 (-1113 (-1201))) (-660 $)) NIL) (($ $ (-1201) $) NIL (|has| |#1| (-239))) (($ $ (-660 (-1201)) (-660 $)) NIL (|has| |#1| (-239))) (($ $ (-1201) |#1|) NIL (|has| |#1| (-239))) (($ $ (-660 (-1201)) (-660 |#1|)) NIL (|has| |#1| (-239)))) (-1827 (($ $ (-1113 (-1201))) NIL (|has| |#1| (-174)))) (-2852 (($ $ (-660 (-1113 (-1201))) (-660 (-787))) NIL) (($ $ (-1113 (-1201)) (-787)) NIL) (($ $ (-660 (-1113 (-1201)))) NIL) (($ $ (-1113 (-1201))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201)))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-787)) NIL (|has| |#1| (-238)))) (-3899 (((-660 (-1201)) $) NIL)) (-2887 (((-544 (-1113 (-1201))) $) NIL) (((-787) $ (-1113 (-1201))) NIL) (((-660 (-787)) $ (-660 (-1113 (-1201)))) NIL) (((-787) $ (-1201)) NIL)) (-4152 (((-911 (-391)) $) NIL (-12 (|has| (-1113 (-1201)) (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391)))))) (((-911 (-577)) $) NIL (-12 (|has| (-1113 (-1201)) (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577)))))) (((-549) $) NIL (-12 (|has| (-1113 (-1201)) (-627 (-549))) (|has| |#1| (-627 (-549)))))) (-4039 ((|#1| $) NIL (|has| |#1| (-465))) (($ $ (-1113 (-1201))) NIL (|has| |#1| (-465)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-932))))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#1|) NIL) (($ (-1113 (-1201))) NIL) (($ (-1201)) NIL) (($ (-1150 |#1| (-1201))) NIL) (($ (-420 (-577))) NIL (-2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577)))))) (($ $) NIL (|has| |#1| (-569)))) (-4182 (((-660 |#1|) $) NIL)) (-2322 ((|#1| $ (-544 (-1113 (-1201)))) NIL) (($ $ (-1113 (-1201)) (-787)) NIL) (($ $ (-660 (-1113 (-1201))) (-660 (-787))) NIL)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))))) (-4068 (((-787)) NIL T CONST)) (-2122 (($ $ $ (-787)) NIL (|has| |#1| (-174)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-660 (-1113 (-1201))) (-660 (-787))) NIL) (($ $ (-1113 (-1201)) (-787)) NIL) (($ $ (-660 (-1113 (-1201)))) NIL) (($ $ (-1113 (-1201))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201)))) (($ $) NIL (|has| |#1| (-238))) (($ $ (-787)) NIL (|has| |#1| (-238)))) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1112 |#1|) (-13 (-261 |#1| (-1201) (-1113 (-1201)) (-544 (-1113 (-1201)))) (-1063 (-1150 |#1| (-1201)))) (-1074)) (T -1112)) +NIL +(-13 (-261 |#1| (-1201) (-1113 (-1201)) (-544 (-1113 (-1201)))) (-1063 (-1150 |#1| (-1201)))) +((-3473 (((-112) $ $) NIL)) (-3030 (((-787) $) NIL)) (-3076 ((|#1| $) 10)) (-1628 (((-3 |#1| "failed") $) NIL)) (-2921 ((|#1| $) NIL)) (-3817 (((-787) $) 11)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-3039 (($ |#1| (-787)) 9)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2852 (($ $ (-787)) NIL) (($ $) NIL)) (-3544 (((-880) $) NIL) (($ |#1|) NIL)) (-4448 (((-112) $ $) NIL)) (-2132 (($ $ (-787)) NIL) (($ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 16))) +(((-1113 |#1|) (-276 |#1|) (-865)) (T -1113)) +NIL +(-276 |#1|) +((-4087 (((-660 |#2|) (-1 |#2| |#1|) (-1119 |#1|)) 29 (|has| |#1| (-864))) (((-1119 |#2|) (-1 |#2| |#1|) (-1119 |#1|)) 14))) +(((-1114 |#1| |#2|) (-10 -7 (-15 -4087 ((-1119 |#2|) (-1 |#2| |#1|) (-1119 |#1|))) (IF (|has| |#1| (-864)) (-15 -4087 ((-660 |#2|) (-1 |#2| |#1|) (-1119 |#1|))) |%noBranch|)) (-1242) (-1242)) (T -1114)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5)) (-4 *5 (-864)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-660 *6)) (-5 *1 (-1114 *5 *6)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-1119 *6)) (-5 *1 (-1114 *5 *6))))) +(-10 -7 (-15 -4087 ((-1119 |#2|) (-1 |#2| |#1|) (-1119 |#1|))) (IF (|has| |#1| (-864)) (-15 -4087 ((-660 |#2|) (-1 |#2| |#1|) (-1119 |#1|))) |%noBranch|)) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 16) (($ (-1206)) NIL) (((-1206) $) NIL)) (-2720 (((-660 (-1160)) $) 10)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-1115) (-13 (-1108) (-10 -8 (-15 -2720 ((-660 (-1160)) $))))) (T -1115)) +((-2720 (*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-1115))))) +(-13 (-1108) (-10 -8 (-15 -2720 ((-660 (-1160)) $)))) +((-4087 (((-1117 |#2|) (-1 |#2| |#1|) (-1117 |#1|)) 19))) +(((-1116 |#1| |#2|) (-10 -7 (-15 -4087 ((-1117 |#2|) (-1 |#2| |#1|) (-1117 |#1|)))) (-1242) (-1242)) (T -1116)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1117 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-1117 *6)) (-5 *1 (-1116 *5 *6))))) +(-10 -7 (-15 -4087 ((-1117 |#2|) (-1 |#2| |#1|) (-1117 |#1|)))) +((-3473 (((-112) $ $) NIL (|has| (-1119 |#1|) (-1125)))) (-3076 (((-1201) $) NIL)) (-2362 (((-1119 |#1|) $) NIL)) (-2810 (((-1183) $) NIL (|has| (-1119 |#1|) (-1125)))) (-1474 (((-1145) $) NIL (|has| (-1119 |#1|) (-1125)))) (-2448 (($ (-1201) (-1119 |#1|)) NIL)) (-3544 (((-880) $) NIL (|has| (-1119 |#1|) (-1125)))) (-4448 (((-112) $ $) NIL (|has| (-1119 |#1|) (-1125)))) (-2970 (((-112) $ $) NIL (|has| (-1119 |#1|) (-1125))))) +(((-1117 |#1|) (-13 (-1242) (-10 -8 (-15 -2448 ($ (-1201) (-1119 |#1|))) (-15 -3076 ((-1201) $)) (-15 -2362 ((-1119 |#1|) $)) (IF (|has| (-1119 |#1|) (-1125)) (-6 (-1125)) |%noBranch|))) (-1242)) (T -1117)) +((-2448 (*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1119 *4)) (-4 *4 (-1242)) (-5 *1 (-1117 *4)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1117 *3)) (-4 *3 (-1242)))) (-2362 (*1 *2 *1) (-12 (-5 *2 (-1119 *3)) (-5 *1 (-1117 *3)) (-4 *3 (-1242))))) +(-13 (-1242) (-10 -8 (-15 -2448 ($ (-1201) (-1119 |#1|))) (-15 -3076 ((-1201) $)) (-15 -2362 ((-1119 |#1|) $)) (IF (|has| (-1119 |#1|) (-1125)) (-6 (-1125)) |%noBranch|))) +((-2362 (($ |#1| |#1|) 8)) (-2742 ((|#1| $) 11)) (-3122 ((|#1| $) 13)) (-4209 (((-577) $) 9)) (-2731 ((|#1| $) 10)) (-4220 ((|#1| $) 12)) (-4152 (($ |#1|) 6)) (-1851 (($ |#1| |#1|) 15)) (-2755 (($ $ (-577)) 14))) +(((-1118 |#1|) (-141) (-1242)) (T -1118)) +((-1851 (*1 *1 *2 *2) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242)))) (-2755 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-1118 *3)) (-4 *3 (-1242)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242)))) (-4220 (*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242)))) (-2742 (*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242)))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1242)) (-5 *2 (-577)))) (-2362 (*1 *1 *2 *2) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242))))) +(-13 (-631 |t#1|) (-10 -8 (-15 -1851 ($ |t#1| |t#1|)) (-15 -2755 ($ $ (-577))) (-15 -3122 (|t#1| $)) (-15 -4220 (|t#1| $)) (-15 -2742 (|t#1| $)) (-15 -2731 (|t#1| $)) (-15 -4209 ((-577) $)) (-15 -2362 ($ |t#1| |t#1|)))) +(((-631 |#1|) . T)) +((-3473 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-2362 (($ |#1| |#1|) 16)) (-4087 (((-660 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-864)))) (-2742 ((|#1| $) 12)) (-3122 ((|#1| $) 11)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-4209 (((-577) $) 15)) (-2731 ((|#1| $) 14)) (-4220 ((|#1| $) 13)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-2027 (((-660 |#1|) $) 44 (|has| |#1| (-864))) (((-660 |#1|) (-660 $)) 43 (|has| |#1| (-864)))) (-4152 (($ |#1|) 29)) (-3544 (((-880) $) 28 (|has| |#1| (-1125)))) (-4448 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-1851 (($ |#1| |#1|) 10)) (-2755 (($ $ (-577)) 17)) (-2970 (((-112) $ $) 22 (|has| |#1| (-1125))))) +(((-1119 |#1|) (-13 (-1118 |#1|) (-10 -7 (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|) (IF (|has| |#1| (-864)) (-6 (-1120 |#1| (-660 |#1|))) |%noBranch|))) (-1242)) (T -1119)) +NIL +(-13 (-1118 |#1|) (-10 -7 (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|) (IF (|has| |#1| (-864)) (-6 (-1120 |#1| (-660 |#1|))) |%noBranch|))) +((-2362 (($ |#1| |#1|) 8)) (-4087 ((|#2| (-1 |#1| |#1|) $) 16)) (-2742 ((|#1| $) 11)) (-3122 ((|#1| $) 13)) (-4209 (((-577) $) 9)) (-2731 ((|#1| $) 10)) (-4220 ((|#1| $) 12)) (-2027 ((|#2| (-660 $)) 18) ((|#2| $) 17)) (-4152 (($ |#1|) 6)) (-1851 (($ |#1| |#1|) 15)) (-2755 (($ $ (-577)) 14))) +(((-1120 |#1| |#2|) (-141) (-864) (-1174 |t#1|)) (T -1120)) +((-2027 (*1 *2 *3) (-12 (-5 *3 (-660 *1)) (-4 *1 (-1120 *4 *2)) (-4 *4 (-864)) (-4 *2 (-1174 *4)))) (-2027 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *2)) (-4 *3 (-864)) (-4 *2 (-1174 *3)))) (-4087 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1120 *4 *2)) (-4 *4 (-864)) (-4 *2 (-1174 *4))))) +(-13 (-1118 |t#1|) (-10 -8 (-15 -2027 (|t#2| (-660 $))) (-15 -2027 (|t#2| $)) (-15 -4087 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-631 |#1|) . T) ((-1118 |#1|) . T)) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-3927 (((-1160) $) 12)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 18) (($ (-1206)) NIL) (((-1206) $) NIL)) (-2724 (((-660 (-1160)) $) 10)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-1121) (-13 (-1108) (-10 -8 (-15 -2724 ((-660 (-1160)) $)) (-15 -3927 ((-1160) $))))) (T -1121)) +((-2724 (*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-1121)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1121))))) +(-13 (-1108) (-10 -8 (-15 -2724 ((-660 (-1160)) $)) (-15 -3927 ((-1160) $)))) +((-1892 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2765 (($ $ $) 10)) (-2775 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1122 |#1| |#2|) (-10 -8 (-15 -1892 (|#1| |#2| |#1|)) (-15 -1892 (|#1| |#1| |#2|)) (-15 -1892 (|#1| |#1| |#1|)) (-15 -2765 (|#1| |#1| |#1|)) (-15 -2775 (|#1| |#1| |#2|)) (-15 -2775 (|#1| |#1| |#1|))) (-1123 |#2|) (-1125)) (T -1122)) +NIL +(-10 -8 (-15 -1892 (|#1| |#2| |#1|)) (-15 -1892 (|#1| |#1| |#2|)) (-15 -1892 (|#1| |#1| |#1|)) (-15 -2765 (|#1| |#1| |#1|)) (-15 -2775 (|#1| |#1| |#2|)) (-15 -2775 (|#1| |#1| |#1|))) +((-3473 (((-112) $ $) 7)) (-1892 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-2765 (($ $ $) 21)) (-2753 (((-112) $ $) 20)) (-3828 (((-112) $ (-787)) 36)) (-2198 (($) 26) (($ (-660 |#1|)) 25)) (-2067 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4470)))) (-1534 (($) 37 T CONST)) (-1817 (($ $) 60 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3904 (($ |#1| $) 59 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4470)))) (-1461 (((-660 |#1|) $) 44 (|has| $ (-6 -4470)))) (-2798 (((-112) $ $) 29)) (-1479 (((-112) $ (-787)) 35)) (-2530 (((-660 |#1|) $) 45 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 39)) (-1443 (((-112) $ (-787)) 34)) (-2810 (((-1183) $) 10)) (-2785 (($ $ $) 24)) (-1474 (((-1145) $) 11)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-1514 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 |#1|) (-660 |#1|)) 51 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 49 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 (-305 |#1|))) 48 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 30)) (-3697 (((-112) $) 33)) (-3639 (($) 32)) (-2775 (($ $ $) 23) (($ $ |#1|) 22)) (-1485 (((-787) |#1| $) 46 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) (((-787) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4470)))) (-1944 (($ $) 31)) (-4152 (((-549) $) 61 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 52)) (-3544 (((-880) $) 12)) (-1973 (($) 28) (($ (-660 |#1|)) 27)) (-4448 (((-112) $ $) 6)) (-1524 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 8)) (-3484 (((-787) $) 38 (|has| $ (-6 -4470))))) +(((-1123 |#1|) (-141) (-1125)) (T -1123)) +((-2798 (*1 *2 *1 *1) (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1125)) (-5 *2 (-112)))) (-1973 (*1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) (-1973 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-4 *1 (-1123 *3)))) (-2198 (*1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) (-2198 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-4 *1 (-1123 *3)))) (-2785 (*1 *1 *1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) (-2775 (*1 *1 *1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) (-2775 (*1 *1 *1 *2) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) (-2765 (*1 *1 *1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) (-2753 (*1 *2 *1 *1) (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1125)) (-5 *2 (-112)))) (-1892 (*1 *1 *1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) (-1892 (*1 *1 *1 *2) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) (-1892 (*1 *1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125))))) +(-13 (-1125) (-152 |t#1|) (-10 -8 (-6 -4460) (-15 -2798 ((-112) $ $)) (-15 -1973 ($)) (-15 -1973 ($ (-660 |t#1|))) (-15 -2198 ($)) (-15 -2198 ($ (-660 |t#1|))) (-15 -2785 ($ $ $)) (-15 -2775 ($ $ $)) (-15 -2775 ($ $ |t#1|)) (-15 -2765 ($ $ $)) (-15 -2753 ((-112) $ $)) (-15 -1892 ($ $ $)) (-15 -1892 ($ $ |t#1|)) (-15 -1892 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-626 (-880)) . T) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) . T) ((-1242) . T)) +((-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 8))) +(((-1124 |#1|) (-10 -8 (-15 -2810 ((-1183) |#1|)) (-15 -1474 ((-1145) |#1|))) (-1125)) (T -1124)) +NIL +(-10 -8 (-15 -2810 ((-1183) |#1|)) (-15 -1474 ((-1145) |#1|))) +((-3473 (((-112) $ $) 7)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8))) +(((-1125) (-141)) (T -1125)) +((-1474 (*1 *2 *1) (-12 (-4 *1 (-1125)) (-5 *2 (-1145)))) (-2810 (*1 *2 *1) (-12 (-4 *1 (-1125)) (-5 *2 (-1183))))) +(-13 (-102) (-626 (-880)) (-10 -8 (-15 -1474 ((-1145) $)) (-15 -2810 ((-1183) $)))) +(((-102) . T) ((-626 (-880)) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-2229 (((-787)) 36)) (-2844 (($ (-660 (-944))) 70)) (-2865 (((-3 $ "failed") $ (-944) (-944)) 81)) (-1910 (($) 40)) (-2820 (((-112) (-944) $) 42)) (-4038 (((-944) $) 64)) (-2810 (((-1183) $) NIL)) (-3222 (($ (-944)) 39)) (-2876 (((-3 $ "failed") $ (-944)) 77)) (-1474 (((-1145) $) NIL)) (-2832 (((-1292 $)) 47)) (-2856 (((-660 (-944)) $) 27)) (-4267 (((-787) $ (-944) (-944)) 78)) (-3544 (((-880) $) 32)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 24))) +(((-1126 |#1| |#2|) (-13 (-380) (-10 -8 (-15 -2876 ((-3 $ "failed") $ (-944))) (-15 -2865 ((-3 $ "failed") $ (-944) (-944))) (-15 -2856 ((-660 (-944)) $)) (-15 -2844 ($ (-660 (-944)))) (-15 -2832 ((-1292 $))) (-15 -2820 ((-112) (-944) $)) (-15 -4267 ((-787) $ (-944) (-944))))) (-944) (-944)) (T -1126)) +((-2876 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-944)) (-5 *1 (-1126 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2865 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-944)) (-5 *1 (-1126 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1126 *3 *4)) (-14 *3 (-944)) (-14 *4 (-944)))) (-2844 (*1 *1 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1126 *3 *4)) (-14 *3 (-944)) (-14 *4 (-944)))) (-2832 (*1 *2) (-12 (-5 *2 (-1292 (-1126 *3 *4))) (-5 *1 (-1126 *3 *4)) (-14 *3 (-944)) (-14 *4 (-944)))) (-2820 (*1 *2 *3 *1) (-12 (-5 *3 (-944)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-4267 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-944)) (-5 *2 (-787)) (-5 *1 (-1126 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-380) (-10 -8 (-15 -2876 ((-3 $ "failed") $ (-944))) (-15 -2865 ((-3 $ "failed") $ (-944) (-944))) (-15 -2856 ((-660 (-944)) $)) (-15 -2844 ($ (-660 (-944)))) (-15 -2832 ((-1292 $))) (-15 -2820 ((-112) (-944) $)) (-15 -4267 ((-787) $ (-944) (-944))))) +((-3473 (((-112) $ $) NIL)) (-2427 (($) NIL (|has| |#1| (-380)))) (-1892 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-2765 (($ $ $) 81)) (-2753 (((-112) $ $) 82)) (-3828 (((-112) $ (-787)) NIL)) (-2229 (((-787)) NIL (|has| |#1| (-380)))) (-2198 (($ (-660 |#1|)) NIL) (($) 13)) (-2463 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-1534 (($) NIL T CONST)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3719 (($ |#1| $) 74 (|has| $ (-6 -4470))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3904 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4470)))) (-1910 (($) NIL (|has| |#1| (-380)))) (-1461 (((-660 |#1|) $) 19 (|has| $ (-6 -4470)))) (-2798 (((-112) $ $) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-3732 ((|#1| $) 55 (|has| |#1| (-865)))) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3201 ((|#1| $) 53 (|has| |#1| (-865)))) (-2182 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 34)) (-4038 (((-944) $) NIL (|has| |#1| (-380)))) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL)) (-2785 (($ $ $) 79)) (-4330 ((|#1| $) 25)) (-2881 (($ |#1| $) 69)) (-3222 (($ (-944)) NIL (|has| |#1| (-380)))) (-1474 (((-1145) $) NIL)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3530 ((|#1| $) 27)) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) 21)) (-3639 (($) 11)) (-2775 (($ $ |#1|) NIL) (($ $ $) 80)) (-3736 (($) NIL) (($ (-660 |#1|)) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) 16)) (-4152 (((-549) $) 50 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 62)) (-2437 (($ $) NIL (|has| |#1| (-380)))) (-3544 (((-880) $) NIL)) (-2449 (((-787) $) NIL)) (-1973 (($ (-660 |#1|)) NIL) (($) 12)) (-4448 (((-112) $ $) NIL)) (-3541 (($ (-660 |#1|)) NIL)) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 52)) (-3484 (((-787) $) 10 (|has| $ (-6 -4470))))) +(((-1127 |#1|) (-438 |#1|) (-1125)) (T -1127)) +NIL +(-438 |#1|) +((-3473 (((-112) $ $) 7)) (-2925 (((-112) $) 33)) (-3120 ((|#2| $) 28)) (-2933 (((-112) $) 34)) (-1335 ((|#1| $) 29)) (-2954 (((-112) $) 36)) (-2973 (((-112) $) 38)) (-2944 (((-112) $) 35)) (-2810 (((-1183) $) 10)) (-2914 (((-112) $) 32)) (-3142 ((|#3| $) 27)) (-1474 (((-1145) $) 11)) (-2904 (((-112) $) 31)) (-3068 ((|#4| $) 26)) (-3035 ((|#5| $) 25)) (-3994 (((-112) $ $) 39)) (-2872 (($ $ (-577)) 41) (($ $ (-660 (-577))) 40)) (-1984 (((-660 $) $) 30)) (-4152 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-660 $)) 42)) (-3544 (((-880) $) 12)) (-2885 (($ $) 23)) (-2895 (($ $) 24)) (-4448 (((-112) $ $) 6)) (-2961 (((-112) $) 37)) (-2970 (((-112) $ $) 8)) (-3484 (((-577) $) 22))) +(((-1128 |#1| |#2| |#3| |#4| |#5|) (-141) (-1125) (-1125) (-1125) (-1125) (-1125)) (T -1128)) +((-3994 (*1 *2 *1 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112)))) (-2973 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112)))) (-2961 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112)))) (-2954 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112)))) (-2944 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112)))) (-2933 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112)))) (-2914 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112)))) (-2904 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112)))) (-1984 (*1 *2 *1) (-12 (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-660 *1)) (-4 *1 (-1128 *3 *4 *5 *6 *7)))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-1128 *2 *3 *4 *5 *6)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *2 *4 *5 *6)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *2 *5 *6)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *2 *6)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *2)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125)))) (-2895 (*1 *1 *1) (-12 (-4 *1 (-1128 *2 *3 *4 *5 *6)) (-4 *2 (-1125)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)))) (-2885 (*1 *1 *1) (-12 (-4 *1 (-1128 *2 *3 *4 *5 *6)) (-4 *2 (-1125)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-577))))) +(-13 (-1125) (-631 |t#1|) (-631 |t#2|) (-631 |t#3|) (-631 |t#4|) (-631 |t#4|) (-631 |t#5|) (-631 (-660 $)) (-297 (-577) $) (-297 (-660 (-577)) $) (-10 -8 (-15 -3994 ((-112) $ $)) (-15 -2973 ((-112) $)) (-15 -2961 ((-112) $)) (-15 -2954 ((-112) $)) (-15 -2944 ((-112) $)) (-15 -2933 ((-112) $)) (-15 -2925 ((-112) $)) (-15 -2914 ((-112) $)) (-15 -2904 ((-112) $)) (-15 -1984 ((-660 $) $)) (-15 -1335 (|t#1| $)) (-15 -3120 (|t#2| $)) (-15 -3142 (|t#3| $)) (-15 -3068 (|t#4| $)) (-15 -3035 (|t#5| $)) (-15 -2895 ($ $)) (-15 -2885 ($ $)) (-15 -3484 ((-577) $)))) +(((-102) . T) ((-626 (-880)) . T) ((-631 (-660 $)) . T) ((-631 |#1|) . T) ((-631 |#2|) . T) ((-631 |#3|) . T) ((-631 |#4|) . T) ((-631 |#5|) . T) ((-297 (-577) $) . T) ((-297 (-660 (-577)) $) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-2925 (((-112) $) NIL)) (-3120 (((-1201) $) NIL)) (-2933 (((-112) $) NIL)) (-1335 (((-1183) $) NIL)) (-2954 (((-112) $) NIL)) (-2973 (((-112) $) NIL)) (-2944 (((-112) $) NIL)) (-2810 (((-1183) $) NIL)) (-2914 (((-112) $) NIL)) (-3142 (((-577) $) NIL)) (-1474 (((-1145) $) NIL)) (-2904 (((-112) $) NIL)) (-3068 (((-228) $) NIL)) (-3035 (((-880) $) NIL)) (-3994 (((-112) $ $) NIL)) (-2872 (($ $ (-577)) NIL) (($ $ (-660 (-577))) NIL)) (-1984 (((-660 $) $) NIL)) (-4152 (($ (-1183)) NIL) (($ (-1201)) NIL) (($ (-577)) NIL) (($ (-228)) NIL) (($ (-880)) NIL) (($ (-660 $)) NIL)) (-3544 (((-880) $) NIL)) (-2885 (($ $) NIL)) (-2895 (($ $) NIL)) (-4448 (((-112) $ $) NIL)) (-2961 (((-112) $) NIL)) (-2970 (((-112) $ $) NIL)) (-3484 (((-577) $) NIL))) +(((-1129) (-1128 (-1183) (-1201) (-577) (-228) (-880))) (T -1129)) +NIL +(-1128 (-1183) (-1201) (-577) (-228) (-880)) +((-3473 (((-112) $ $) NIL)) (-2925 (((-112) $) 45)) (-3120 ((|#2| $) 48)) (-2933 (((-112) $) 20)) (-1335 ((|#1| $) 21)) (-2954 (((-112) $) 42)) (-2973 (((-112) $) 14)) (-2944 (((-112) $) 44)) (-2810 (((-1183) $) NIL)) (-2914 (((-112) $) 46)) (-3142 ((|#3| $) 50)) (-1474 (((-1145) $) NIL)) (-2904 (((-112) $) 47)) (-3068 ((|#4| $) 49)) (-3035 ((|#5| $) 51)) (-3994 (((-112) $ $) 41)) (-2872 (($ $ (-577)) 62) (($ $ (-660 (-577))) 64)) (-1984 (((-660 $) $) 27)) (-4152 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-660 $)) 52)) (-3544 (((-880) $) 28)) (-2885 (($ $) 26)) (-2895 (($ $) 58)) (-4448 (((-112) $ $) NIL)) (-2961 (((-112) $) 23)) (-2970 (((-112) $ $) 40)) (-3484 (((-577) $) 60))) +(((-1130 |#1| |#2| |#3| |#4| |#5|) (-1128 |#1| |#2| |#3| |#4| |#5|) (-1125) (-1125) (-1125) (-1125) (-1125)) (T -1130)) +NIL +(-1128 |#1| |#2| |#3| |#4| |#5|) +((-2706 (((-1297) $) 22)) (-2866 (($ (-1201) (-447) |#2|) 11)) (-3544 (((-880) $) 16))) +(((-1131 |#1| |#2|) (-13 (-408) (-10 -8 (-15 -2866 ($ (-1201) (-447) |#2|)))) (-1125) (-443 |#1|)) (T -1131)) +((-2866 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1201)) (-5 *3 (-447)) (-4 *5 (-1125)) (-5 *1 (-1131 *5 *4)) (-4 *4 (-443 *5))))) +(-13 (-408) (-10 -8 (-15 -2866 ($ (-1201) (-447) |#2|)))) +((-3003 (((-112) |#5| |#5|) 44)) (-1821 (((-112) |#5| |#5|) 59)) (-1880 (((-112) |#5| (-660 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-1833 (((-112) (-660 |#4|) (-660 |#4|)) 65)) (-1901 (((-112) (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|)) (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) 70)) (-2993 (((-1297)) 32)) (-2982 (((-1297) (-1183) (-1183) (-1183)) 28)) (-1890 (((-660 |#5|) (-660 |#5|)) 101)) (-1914 (((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|)))) 93)) (-1925 (((-660 (-2 (|:| -3994 (-660 |#4|)) (|:| -3952 |#5|) (|:| |ineq| (-660 |#4|)))) (-660 |#4|) (-660 |#5|) (-112) (-112)) 123)) (-3028 (((-112) |#5| |#5|) 53)) (-1868 (((-3 (-112) "failed") |#5| |#5|) 78)) (-1843 (((-112) (-660 |#4|) (-660 |#4|)) 64)) (-1855 (((-112) (-660 |#4|) (-660 |#4|)) 66)) (-4396 (((-112) (-660 |#4|) (-660 |#4|)) 67)) (-1936 (((-3 (-2 (|:| -3994 (-660 |#4|)) (|:| -3952 |#5|) (|:| |ineq| (-660 |#4|))) "failed") (-660 |#4|) |#5| (-660 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3015 (((-660 |#5|) (-660 |#5|)) 49))) +(((-1132 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2982 ((-1297) (-1183) (-1183) (-1183))) (-15 -2993 ((-1297))) (-15 -3003 ((-112) |#5| |#5|)) (-15 -3015 ((-660 |#5|) (-660 |#5|))) (-15 -3028 ((-112) |#5| |#5|)) (-15 -1821 ((-112) |#5| |#5|)) (-15 -1833 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -1843 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -1855 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -4396 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -1868 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1880 ((-112) |#5| |#5|)) (-15 -1880 ((-112) |#5| (-660 |#5|))) (-15 -1890 ((-660 |#5|) (-660 |#5|))) (-15 -1901 ((-112) (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|)) (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|)))) (-15 -1914 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) (-15 -1925 ((-660 (-2 (|:| -3994 (-660 |#4|)) (|:| -3952 |#5|) (|:| |ineq| (-660 |#4|)))) (-660 |#4|) (-660 |#5|) (-112) (-112))) (-15 -1936 ((-3 (-2 (|:| -3994 (-660 |#4|)) (|:| -3952 |#5|) (|:| |ineq| (-660 |#4|))) "failed") (-660 |#4|) |#5| (-660 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3| |#4|)) (T -1132)) +((-1936 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *9 (-1090 *6 *7 *8)) (-5 *2 (-2 (|:| -3994 (-660 *9)) (|:| -3952 *4) (|:| |ineq| (-660 *9)))) (-5 *1 (-1132 *6 *7 *8 *9 *4)) (-5 *3 (-660 *9)) (-4 *4 (-1096 *6 *7 *8 *9)))) (-1925 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-660 *10)) (-5 *5 (-112)) (-4 *10 (-1096 *6 *7 *8 *9)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *9 (-1090 *6 *7 *8)) (-5 *2 (-660 (-2 (|:| -3994 (-660 *9)) (|:| -3952 *10) (|:| |ineq| (-660 *9))))) (-5 *1 (-1132 *6 *7 *8 *9 *10)) (-5 *3 (-660 *9)))) (-1914 (*1 *2 *2) (-12 (-5 *2 (-660 (-2 (|:| |val| (-660 *6)) (|:| -3952 *7)))) (-4 *6 (-1090 *3 *4 *5)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1132 *3 *4 *5 *6 *7)))) (-1901 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -3952 *8))) (-4 *7 (-1090 *4 *5 *6)) (-4 *8 (-1096 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *8)))) (-1890 (*1 *2 *2) (-12 (-5 *2 (-660 *7)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *1 (-1132 *3 *4 *5 *6 *7)))) (-1880 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1132 *5 *6 *7 *8 *3)))) (-1880 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-1868 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-4396 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-1855 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-1843 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-1833 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-1821 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-3028 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-660 *7)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *1 (-1132 *3 *4 *5 *6 *7)))) (-3003 (*1 *2 *3 *3) (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) (-2993 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) (-5 *1 (-1132 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6)))) (-2982 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) +(-10 -7 (-15 -2982 ((-1297) (-1183) (-1183) (-1183))) (-15 -2993 ((-1297))) (-15 -3003 ((-112) |#5| |#5|)) (-15 -3015 ((-660 |#5|) (-660 |#5|))) (-15 -3028 ((-112) |#5| |#5|)) (-15 -1821 ((-112) |#5| |#5|)) (-15 -1833 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -1843 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -1855 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -4396 ((-112) (-660 |#4|) (-660 |#4|))) (-15 -1868 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1880 ((-112) |#5| |#5|)) (-15 -1880 ((-112) |#5| (-660 |#5|))) (-15 -1890 ((-660 |#5|) (-660 |#5|))) (-15 -1901 ((-112) (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|)) (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|)))) (-15 -1914 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) (-15 -1925 ((-660 (-2 (|:| -3994 (-660 |#4|)) (|:| -3952 |#5|) (|:| |ineq| (-660 |#4|)))) (-660 |#4|) (-660 |#5|) (-112) (-112))) (-15 -1936 ((-3 (-2 (|:| -3994 (-660 |#4|)) (|:| -3952 |#5|) (|:| |ineq| (-660 |#4|))) "failed") (-660 |#4|) |#5| (-660 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-2118 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#5|) 108)) (-1996 (((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) |#4| |#4| |#5|) 80)) (-2031 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#4| |#5|) 102)) (-2059 (((-660 |#5|) |#4| |#5|) 124)) (-2083 (((-660 |#5|) |#4| |#5|) 131)) (-2105 (((-660 |#5|) |#4| |#5|) 132)) (-2044 (((-660 (-2 (|:| |val| (-112)) (|:| -3952 |#5|))) |#4| |#5|) 109)) (-2071 (((-660 (-2 (|:| |val| (-112)) (|:| -3952 |#5|))) |#4| |#5|) 130)) (-2094 (((-660 (-2 (|:| |val| (-112)) (|:| -3952 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2008 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) |#3| (-112)) 92) (((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2018 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#4| |#5|) 87)) (-1985 (((-1297)) 36)) (-1962 (((-1297)) 25)) (-1974 (((-1297) (-1183) (-1183) (-1183)) 32)) (-1950 (((-1297) (-1183) (-1183) (-1183)) 21))) +(((-1133 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1950 ((-1297) (-1183) (-1183) (-1183))) (-15 -1962 ((-1297))) (-15 -1974 ((-1297) (-1183) (-1183) (-1183))) (-15 -1985 ((-1297))) (-15 -1996 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) |#4| |#4| |#5|)) (-15 -2008 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2008 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) |#3| (-112))) (-15 -2018 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#4| |#5|)) (-15 -2031 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#4| |#5|)) (-15 -2094 ((-112) |#4| |#5|)) (-15 -2044 ((-660 (-2 (|:| |val| (-112)) (|:| -3952 |#5|))) |#4| |#5|)) (-15 -2059 ((-660 |#5|) |#4| |#5|)) (-15 -2071 ((-660 (-2 (|:| |val| (-112)) (|:| -3952 |#5|))) |#4| |#5|)) (-15 -2083 ((-660 |#5|) |#4| |#5|)) (-15 -2094 ((-660 (-2 (|:| |val| (-112)) (|:| -3952 |#5|))) |#4| |#5|)) (-15 -2105 ((-660 |#5|) |#4| |#5|)) (-15 -2118 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#5|))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|) (-1096 |#1| |#2| |#3| |#4|)) (T -1133)) +((-2118 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2105 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 *4)) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2094 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -3952 *4)))) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2083 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 *4)) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2071 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -3952 *4)))) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2059 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 *4)) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2044 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -3952 *4)))) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2094 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2031 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2018 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-2008 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -3952 *9)))) (-5 *5 (-112)) (-4 *8 (-1090 *6 *7 *4)) (-4 *9 (-1096 *6 *7 *4 *8)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *4 (-865)) (-5 *2 (-660 (-2 (|:| |val| *8) (|:| -3952 *9)))) (-5 *1 (-1133 *6 *7 *4 *8 *9)))) (-2008 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *3 (-1090 *6 *7 *8)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) (-5 *1 (-1133 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) (-1996 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))) (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) (-1985 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) (-5 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6)))) (-1974 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) (-5 *1 (-1133 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) (-1962 (*1 *2) (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) (-5 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6)))) (-1950 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) (-5 *1 (-1133 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) +(-10 -7 (-15 -1950 ((-1297) (-1183) (-1183) (-1183))) (-15 -1962 ((-1297))) (-15 -1974 ((-1297) (-1183) (-1183) (-1183))) (-15 -1985 ((-1297))) (-15 -1996 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) |#4| |#4| |#5|)) (-15 -2008 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2008 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) |#3| (-112))) (-15 -2018 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#4| |#5|)) (-15 -2031 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#4| |#5|)) (-15 -2094 ((-112) |#4| |#5|)) (-15 -2044 ((-660 (-2 (|:| |val| (-112)) (|:| -3952 |#5|))) |#4| |#5|)) (-15 -2059 ((-660 |#5|) |#4| |#5|)) (-15 -2071 ((-660 (-2 (|:| |val| (-112)) (|:| -3952 |#5|))) |#4| |#5|)) (-15 -2083 ((-660 |#5|) |#4| |#5|)) (-15 -2094 ((-660 (-2 (|:| |val| (-112)) (|:| -3952 |#5|))) |#4| |#5|)) (-15 -2105 ((-660 |#5|) |#4| |#5|)) (-15 -2118 ((-660 (-2 (|:| |val| |#4|) (|:| -3952 |#5|))) |#4| |#5|))) +((-3473 (((-112) $ $) 7)) (-2361 (((-660 (-2 (|:| -2045 $) (|:| -3253 (-660 |#4|)))) (-660 |#4|)) 86)) (-2371 (((-660 $) (-660 |#4|)) 87) (((-660 $) (-660 |#4|) (-112)) 112)) (-2058 (((-660 |#3|) $) 34)) (-2508 (((-112) $) 27)) (-3572 (((-112) $) 18 (|has| |#1| (-569)))) (-2475 (((-112) |#4| $) 102) (((-112) $) 98)) (-2426 ((|#4| |#4| $) 93)) (-3841 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 $))) |#4| $) 127)) (-1864 (((-2 (|:| |under| $) (|:| -4119 $) (|:| |upper| $)) $ |#3|) 28)) (-3828 (((-112) $ (-787)) 45)) (-2067 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4470))) (((-3 |#4| "failed") $ |#3|) 80)) (-1534 (($) 46 T CONST)) (-2474 (((-112) $) 23 (|has| |#1| (-569)))) (-2492 (((-112) $ $) 25 (|has| |#1| (-569)))) (-2483 (((-112) $ $) 24 (|has| |#1| (-569)))) (-2500 (((-112) $) 26 (|has| |#1| (-569)))) (-2435 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2434 (((-660 |#4|) (-660 |#4|) $) 19 (|has| |#1| (-569)))) (-2446 (((-660 |#4|) (-660 |#4|) $) 20 (|has| |#1| (-569)))) (-1628 (((-3 $ "failed") (-660 |#4|)) 37)) (-2921 (($ (-660 |#4|)) 36)) (-3563 (((-3 $ "failed") $) 83)) (-2399 ((|#4| |#4| $) 90)) (-1817 (($ $) 69 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))))) (-3904 (($ |#4| $) 68 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4470)))) (-2457 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)))) (-2484 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2382 ((|#4| |#4| $) 88)) (-3654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4470))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4470))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4364 (((-2 (|:| -2045 (-660 |#4|)) (|:| -3253 (-660 |#4|))) $) 106)) (-2524 (((-112) |#4| $) 137)) (-2505 (((-112) |#4| $) 134)) (-2532 (((-112) |#4| $) 138) (((-112) $) 135)) (-1461 (((-660 |#4|) $) 53 (|has| $ (-6 -4470)))) (-4354 (((-112) |#4| $) 105) (((-112) $) 104)) (-3514 ((|#3| $) 35)) (-1479 (((-112) $ (-787)) 44)) (-2530 (((-660 |#4|) $) 54 (|has| $ (-6 -4470)))) (-2820 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#4| |#4|) $) 48)) (-2555 (((-660 |#3|) $) 33)) (-2545 (((-112) |#3| $) 32)) (-1443 (((-112) $ (-787)) 43)) (-2810 (((-1183) $) 10)) (-2471 (((-3 |#4| (-660 $)) |#4| |#4| $) 129)) (-3605 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 $))) |#4| |#4| $) 128)) (-3927 (((-3 |#4| "failed") $) 84)) (-2479 (((-660 $) |#4| $) 130)) (-2496 (((-3 (-112) (-660 $)) |#4| $) 133)) (-2488 (((-660 (-2 (|:| |val| (-112)) (|:| -3952 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2785 (((-660 $) |#4| $) 126) (((-660 $) (-660 |#4|) $) 125) (((-660 $) (-660 |#4|) (-660 $)) 124) (((-660 $) |#4| (-660 $)) 123)) (-3986 (($ |#4| $) 118) (($ (-660 |#4|) $) 117)) (-4375 (((-660 |#4|) $) 108)) (-2458 (((-112) |#4| $) 100) (((-112) $) 96)) (-2408 ((|#4| |#4| $) 91)) (-4396 (((-112) $ $) 111)) (-2466 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)))) (-2467 (((-112) |#4| $) 101) (((-112) $) 97)) (-2418 ((|#4| |#4| $) 92)) (-1474 (((-1145) $) 11)) (-3552 (((-3 |#4| "failed") $) 85)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2343 (((-3 $ "failed") $ |#4|) 79)) (-3792 (($ $ |#4|) 78) (((-660 $) |#4| $) 116) (((-660 $) |#4| (-660 $)) 115) (((-660 $) (-660 |#4|) $) 114) (((-660 $) (-660 |#4|) (-660 $)) 113)) (-1514 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 |#4|) (-660 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-660 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))))) (-3840 (((-112) $ $) 39)) (-3697 (((-112) $) 42)) (-3639 (($) 41)) (-2887 (((-787) $) 107)) (-1485 (((-787) |#4| $) 55 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470)))) (((-787) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4470)))) (-1944 (($ $) 40)) (-4152 (((-549) $) 70 (|has| |#4| (-627 (-549))))) (-3553 (($ (-660 |#4|)) 61)) (-2518 (($ $ |#3|) 29)) (-2536 (($ $ |#3|) 31)) (-2391 (($ $) 89)) (-2527 (($ $ |#3|) 30)) (-3544 (((-880) $) 12) (((-660 |#4|) $) 38)) (-2332 (((-787) $) 77 (|has| |#3| (-380)))) (-4448 (((-112) $ $) 6)) (-4385 (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2447 (((-112) $ (-1 (-112) |#4| (-660 |#4|))) 99)) (-3594 (((-660 $) |#4| $) 122) (((-660 $) |#4| (-660 $)) 121) (((-660 $) (-660 |#4|) $) 120) (((-660 $) (-660 |#4|) (-660 $)) 119)) (-1524 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4470)))) (-2352 (((-660 |#3|) $) 82)) (-2515 (((-112) |#4| $) 136)) (-2776 (((-112) |#3| $) 81)) (-2970 (((-112) $ $) 8)) (-3484 (((-787) $) 47 (|has| $ (-6 -4470))))) +(((-1134 |#1| |#2| |#3| |#4|) (-141) (-465) (-809) (-865) (-1090 |t#1| |t#2| |t#3|)) (T -1134)) +NIL +(-13 (-1096 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-626 (-660 |#4|)) . T) ((-626 (-880)) . T) ((-152 |#4|) . T) ((-627 (-549)) |has| |#4| (-627 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-1001 |#1| |#2| |#3| |#4|) . T) ((-1096 |#1| |#2| |#3| |#4|) . T) ((-1125) . T) ((-1235 |#1| |#2| |#3| |#4|) . T) ((-1242) . T)) +((-2260 (((-660 (-577)) (-577) (-577) (-577)) 38)) (-2247 (((-660 (-577)) (-577) (-577) (-577)) 28)) (-2235 (((-660 (-577)) (-577) (-577) (-577)) 33)) (-2222 (((-577) (-577) (-577)) 21)) (-2210 (((-1292 (-577)) (-660 (-577)) (-1292 (-577)) (-577)) 77) (((-1292 (-577)) (-1292 (-577)) (-1292 (-577)) (-577)) 72)) (-2197 (((-660 (-577)) (-660 (-944)) (-660 (-577)) (-112)) 54)) (-2185 (((-705 (-577)) (-660 (-577)) (-660 (-577)) (-705 (-577))) 76)) (-2173 (((-705 (-577)) (-660 (-944)) (-660 (-577))) 59)) (-2161 (((-660 (-705 (-577))) (-660 (-944))) 65)) (-2147 (((-660 (-577)) (-660 (-577)) (-660 (-577)) (-705 (-577))) 80)) (-2133 (((-705 (-577)) (-660 (-577)) (-660 (-577)) (-660 (-577))) 90))) +(((-1135) (-10 -7 (-15 -2133 ((-705 (-577)) (-660 (-577)) (-660 (-577)) (-660 (-577)))) (-15 -2147 ((-660 (-577)) (-660 (-577)) (-660 (-577)) (-705 (-577)))) (-15 -2161 ((-660 (-705 (-577))) (-660 (-944)))) (-15 -2173 ((-705 (-577)) (-660 (-944)) (-660 (-577)))) (-15 -2185 ((-705 (-577)) (-660 (-577)) (-660 (-577)) (-705 (-577)))) (-15 -2197 ((-660 (-577)) (-660 (-944)) (-660 (-577)) (-112))) (-15 -2210 ((-1292 (-577)) (-1292 (-577)) (-1292 (-577)) (-577))) (-15 -2210 ((-1292 (-577)) (-660 (-577)) (-1292 (-577)) (-577))) (-15 -2222 ((-577) (-577) (-577))) (-15 -2235 ((-660 (-577)) (-577) (-577) (-577))) (-15 -2247 ((-660 (-577)) (-577) (-577) (-577))) (-15 -2260 ((-660 (-577)) (-577) (-577) (-577))))) (T -1135)) +((-2260 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1135)) (-5 *3 (-577)))) (-2247 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1135)) (-5 *3 (-577)))) (-2235 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1135)) (-5 *3 (-577)))) (-2222 (*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1135)))) (-2210 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1292 (-577))) (-5 *3 (-660 (-577))) (-5 *4 (-577)) (-5 *1 (-1135)))) (-2210 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1292 (-577))) (-5 *3 (-577)) (-5 *1 (-1135)))) (-2197 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-660 (-577))) (-5 *3 (-660 (-944))) (-5 *4 (-112)) (-5 *1 (-1135)))) (-2185 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-705 (-577))) (-5 *3 (-660 (-577))) (-5 *1 (-1135)))) (-2173 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-944))) (-5 *4 (-660 (-577))) (-5 *2 (-705 (-577))) (-5 *1 (-1135)))) (-2161 (*1 *2 *3) (-12 (-5 *3 (-660 (-944))) (-5 *2 (-660 (-705 (-577)))) (-5 *1 (-1135)))) (-2147 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-660 (-577))) (-5 *3 (-705 (-577))) (-5 *1 (-1135)))) (-2133 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-660 (-577))) (-5 *2 (-705 (-577))) (-5 *1 (-1135))))) +(-10 -7 (-15 -2133 ((-705 (-577)) (-660 (-577)) (-660 (-577)) (-660 (-577)))) (-15 -2147 ((-660 (-577)) (-660 (-577)) (-660 (-577)) (-705 (-577)))) (-15 -2161 ((-660 (-705 (-577))) (-660 (-944)))) (-15 -2173 ((-705 (-577)) (-660 (-944)) (-660 (-577)))) (-15 -2185 ((-705 (-577)) (-660 (-577)) (-660 (-577)) (-705 (-577)))) (-15 -2197 ((-660 (-577)) (-660 (-944)) (-660 (-577)) (-112))) (-15 -2210 ((-1292 (-577)) (-1292 (-577)) (-1292 (-577)) (-577))) (-15 -2210 ((-1292 (-577)) (-660 (-577)) (-1292 (-577)) (-577))) (-15 -2222 ((-577) (-577) (-577))) (-15 -2235 ((-660 (-577)) (-577) (-577) (-577))) (-15 -2247 ((-660 (-577)) (-577) (-577) (-577))) (-15 -2260 ((-660 (-577)) (-577) (-577) (-577)))) +((** (($ $ (-944)) 10))) +(((-1136 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-944)))) (-1137)) (T -1136)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-944)))) +((-3473 (((-112) $ $) 7)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8)) (** (($ $ (-944)) 14)) (* (($ $ $) 15))) +(((-1137) (-141)) (T -1137)) +((* (*1 *1 *1 *1) (-4 *1 (-1137))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-944))))) +(-13 (-1125) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-944))))) +(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL (|has| |#3| (-102)))) (-3585 (((-112) $) NIL (|has| |#3| (-23)))) (-1352 (($ (-944)) NIL (|has| |#3| (-1074)))) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4243 (($ $ $) NIL (|has| |#3| (-809)))) (-1956 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-3828 (((-112) $ (-787)) NIL)) (-2229 (((-787)) NIL (|has| |#3| (-380)))) (-3709 ((|#3| $ (-577) |#3|) NIL (|has| $ (-6 -4471)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL (-12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125)))) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1125)))) (-2921 (((-577) $) NIL (-12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125)))) (((-420 (-577)) $) NIL (-12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125)))) ((|#3| $) NIL (|has| |#3| (-1125)))) (-1647 (((-705 (-577)) (-705 $)) NIL (-12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074)))) (((-2 (|:| -1881 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-705 $) (-1292 $)) NIL (|has| |#3| (-1074))) (((-705 |#3|) (-705 $)) NIL (|has| |#3| (-1074)))) (-4187 (((-3 $ "failed") $) NIL (|has| |#3| (-1074)))) (-1910 (($) NIL (|has| |#3| (-380)))) (-2192 ((|#3| $ (-577) |#3|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#3| $ (-577)) 12)) (-1461 (((-660 |#3|) $) NIL (|has| $ (-6 -4470)))) (-2487 (((-112) $) NIL (|has| |#3| (-1074)))) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) NIL (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| |#3| (-865)))) (-2530 (((-660 |#3|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#3| (-1125))))) (-2416 (((-577) $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| |#3| (-865)))) (-2182 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#3| |#3|) $) NIL)) (-4038 (((-944) $) NIL (|has| |#3| (-380)))) (-1443 (((-112) $ (-787)) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (-12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| |#3| (-654 (-577))) (|has| |#3| (-1074)))) (((-2 (|:| -1881 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-1292 $) $) NIL (|has| |#3| (-1074))) (((-705 |#3|) (-1292 $)) NIL (|has| |#3| (-1074)))) (-2810 (((-1183) $) NIL (|has| |#3| (-1125)))) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-3222 (($ (-944)) NIL (|has| |#3| (-380)))) (-1474 (((-1145) $) NIL (|has| |#3| (-1125)))) (-3552 ((|#3| $) NIL (|has| (-577) (-865)))) (-2397 (($ $ |#3|) NIL (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#3|))) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125)))) (($ $ (-660 |#3|) (-660 |#3|)) NIL (-12 (|has| |#3| (-320 |#3|)) (|has| |#3| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#3| (-1125))))) (-4306 (((-660 |#3|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#3| $ (-577) |#3|) NIL) ((|#3| $ (-577)) NIL)) (-3116 ((|#3| $ $) NIL (|has| |#3| (-1074)))) (-1946 (($ (-1292 |#3|)) NIL)) (-2561 (((-135)) NIL (|has| |#3| (-375)))) (-2852 (($ $ (-787)) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1074)))) (($ $) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1074)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074)))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074)))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074)))) (($ $ (-1201)) NIL (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1074))) (($ $ (-1 |#3| |#3|) (-787)) NIL (|has| |#3| (-1074)))) (-1485 (((-787) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4470))) (((-787) |#3| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#3| (-1125))))) (-1944 (($ $) NIL)) (-3544 (((-1292 |#3|) $) NIL) (($ (-577)) NIL (-2839 (-12 (|has| |#3| (-1063 (-577))) (|has| |#3| (-1125))) (|has| |#3| (-1074)))) (($ (-420 (-577))) NIL (-12 (|has| |#3| (-1063 (-420 (-577)))) (|has| |#3| (-1125)))) (($ |#3|) NIL (|has| |#3| (-1125))) (((-880) $) NIL (|has| |#3| (-626 (-880))))) (-4068 (((-787)) NIL (|has| |#3| (-1074)) CONST)) (-4448 (((-112) $ $) NIL (|has| |#3| (-102)))) (-1524 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4470)))) (-2806 (($) NIL (|has| |#3| (-23)) CONST)) (-2816 (($) NIL (|has| |#3| (-1074)) CONST)) (-2132 (($ $ (-787)) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1074)))) (($ $) NIL (-12 (|has| |#3| (-238)) (|has| |#3| (-1074)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074)))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074)))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074)))) (($ $ (-1201)) NIL (-12 (|has| |#3| (-923 (-1201))) (|has| |#3| (-1074)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1074))) (($ $ (-1 |#3| |#3|) (-787)) NIL (|has| |#3| (-1074)))) (-3025 (((-112) $ $) NIL (|has| |#3| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#3| (-865)))) (-2970 (((-112) $ $) NIL (|has| |#3| (-102)))) (-3012 (((-112) $ $) NIL (|has| |#3| (-865)))) (-2990 (((-112) $ $) 24 (|has| |#3| (-865)))) (-3077 (($ $ |#3|) NIL (|has| |#3| (-375)))) (-3066 (($ $ $) NIL (|has| |#3| (-21))) (($ $) NIL (|has| |#3| (-21)))) (-3055 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-787)) NIL (|has| |#3| (-1074))) (($ $ (-944)) NIL (|has| |#3| (-1074)))) (* (($ $ $) NIL (|has| |#3| (-1074))) (($ $ |#3|) NIL (|has| |#3| (-742))) (($ |#3| $) NIL (|has| |#3| (-742))) (($ (-577) $) NIL (|has| |#3| (-21))) (($ (-787) $) NIL (|has| |#3| (-23))) (($ (-944) $) NIL (|has| |#3| (-25)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-1138 |#1| |#2| |#3|) (-244 |#1| |#3|) (-787) (-787) (-809)) (T -1138)) +NIL +(-244 |#1| |#3|) +((-2271 (((-660 (-1265 |#2| |#1|)) (-1265 |#2| |#1|) (-1265 |#2| |#1|)) 50)) (-2338 (((-577) (-1265 |#2| |#1|)) 94 (|has| |#1| (-465)))) (-2317 (((-577) (-1265 |#2| |#1|)) 76)) (-2283 (((-660 (-1265 |#2| |#1|)) (-1265 |#2| |#1|) (-1265 |#2| |#1|)) 58)) (-2328 (((-577) (-1265 |#2| |#1|) (-1265 |#2| |#1|)) 93 (|has| |#1| (-465)))) (-2296 (((-660 |#1|) (-1265 |#2| |#1|) (-1265 |#2| |#1|)) 61)) (-2307 (((-577) (-1265 |#2| |#1|) (-1265 |#2| |#1|)) 75))) +(((-1139 |#1| |#2|) (-10 -7 (-15 -2271 ((-660 (-1265 |#2| |#1|)) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -2283 ((-660 (-1265 |#2| |#1|)) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -2296 ((-660 |#1|) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -2307 ((-577) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -2317 ((-577) (-1265 |#2| |#1|))) (IF (|has| |#1| (-465)) (PROGN (-15 -2328 ((-577) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -2338 ((-577) (-1265 |#2| |#1|)))) |%noBranch|)) (-836) (-1201)) (T -1139)) +((-2338 (*1 *2 *3) (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-465)) (-4 *4 (-836)) (-14 *5 (-1201)) (-5 *2 (-577)) (-5 *1 (-1139 *4 *5)))) (-2328 (*1 *2 *3 *3) (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-465)) (-4 *4 (-836)) (-14 *5 (-1201)) (-5 *2 (-577)) (-5 *1 (-1139 *4 *5)))) (-2317 (*1 *2 *3) (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-836)) (-14 *5 (-1201)) (-5 *2 (-577)) (-5 *1 (-1139 *4 *5)))) (-2307 (*1 *2 *3 *3) (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-836)) (-14 *5 (-1201)) (-5 *2 (-577)) (-5 *1 (-1139 *4 *5)))) (-2296 (*1 *2 *3 *3) (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-836)) (-14 *5 (-1201)) (-5 *2 (-660 *4)) (-5 *1 (-1139 *4 *5)))) (-2283 (*1 *2 *3 *3) (-12 (-4 *4 (-836)) (-14 *5 (-1201)) (-5 *2 (-660 (-1265 *5 *4))) (-5 *1 (-1139 *4 *5)) (-5 *3 (-1265 *5 *4)))) (-2271 (*1 *2 *3 *3) (-12 (-4 *4 (-836)) (-14 *5 (-1201)) (-5 *2 (-660 (-1265 *5 *4))) (-5 *1 (-1139 *4 *5)) (-5 *3 (-1265 *5 *4))))) +(-10 -7 (-15 -2271 ((-660 (-1265 |#2| |#1|)) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -2283 ((-660 (-1265 |#2| |#1|)) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -2296 ((-660 |#1|) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -2307 ((-577) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -2317 ((-577) (-1265 |#2| |#1|))) (IF (|has| |#1| (-465)) (PROGN (-15 -2328 ((-577) (-1265 |#2| |#1|) (-1265 |#2| |#1|))) (-15 -2338 ((-577) (-1265 |#2| |#1|)))) |%noBranch|)) +((-3473 (((-112) $ $) NIL)) (-2348 (($ (-519) (-1143)) 13)) (-2790 (((-1143) $) 19)) (-2713 (((-519) $) 16)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 26) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-1140) (-13 (-1108) (-10 -8 (-15 -2348 ($ (-519) (-1143))) (-15 -2713 ((-519) $)) (-15 -2790 ((-1143) $))))) (T -1140)) +((-2348 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1143)) (-5 *1 (-1140)))) (-2713 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1140)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1140))))) +(-13 (-1108) (-10 -8 (-15 -2348 ($ (-519) (-1143))) (-15 -2713 ((-519) $)) (-15 -2790 ((-1143) $)))) +((-3010 (((-3 (-577) "failed") |#2| (-1201) |#2| (-1183)) 19) (((-3 (-577) "failed") |#2| (-1201) (-859 |#2|)) 17) (((-3 (-577) "failed") |#2|) 60))) +(((-1141 |#1| |#2|) (-10 -7 (-15 -3010 ((-3 (-577) "failed") |#2|)) (-15 -3010 ((-3 (-577) "failed") |#2| (-1201) (-859 |#2|))) (-15 -3010 ((-3 (-577) "failed") |#2| (-1201) |#2| (-1183)))) (-13 (-569) (-1063 (-577)) (-654 (-577)) (-465)) (-13 (-27) (-1227) (-443 |#1|))) (T -1141)) +((-3010 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-1183)) (-4 *6 (-13 (-569) (-1063 *2) (-654 *2) (-465))) (-5 *2 (-577)) (-5 *1 (-1141 *6 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *6))))) (-3010 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-859 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *6))) (-4 *6 (-13 (-569) (-1063 *2) (-654 *2) (-465))) (-5 *2 (-577)) (-5 *1 (-1141 *6 *3)))) (-3010 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-1063 *2) (-654 *2) (-465))) (-5 *2 (-577)) (-5 *1 (-1141 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4)))))) +(-10 -7 (-15 -3010 ((-3 (-577) "failed") |#2|)) (-15 -3010 ((-3 (-577) "failed") |#2| (-1201) (-859 |#2|))) (-15 -3010 ((-3 (-577) "failed") |#2| (-1201) |#2| (-1183)))) +((-3010 (((-3 (-577) "failed") (-420 (-975 |#1|)) (-1201) (-420 (-975 |#1|)) (-1183)) 38) (((-3 (-577) "failed") (-420 (-975 |#1|)) (-1201) (-859 (-420 (-975 |#1|)))) 33) (((-3 (-577) "failed") (-420 (-975 |#1|))) 14))) +(((-1142 |#1|) (-10 -7 (-15 -3010 ((-3 (-577) "failed") (-420 (-975 |#1|)))) (-15 -3010 ((-3 (-577) "failed") (-420 (-975 |#1|)) (-1201) (-859 (-420 (-975 |#1|))))) (-15 -3010 ((-3 (-577) "failed") (-420 (-975 |#1|)) (-1201) (-420 (-975 |#1|)) (-1183)))) (-465)) (T -1142)) +((-3010 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-420 (-975 *6))) (-5 *4 (-1201)) (-5 *5 (-1183)) (-4 *6 (-465)) (-5 *2 (-577)) (-5 *1 (-1142 *6)))) (-3010 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-859 (-420 (-975 *6)))) (-5 *3 (-420 (-975 *6))) (-4 *6 (-465)) (-5 *2 (-577)) (-5 *1 (-1142 *6)))) (-3010 (*1 *2 *3) (|partial| -12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-465)) (-5 *2 (-577)) (-5 *1 (-1142 *4))))) +(-10 -7 (-15 -3010 ((-3 (-577) "failed") (-420 (-975 |#1|)))) (-15 -3010 ((-3 (-577) "failed") (-420 (-975 |#1|)) (-1201) (-859 (-420 (-975 |#1|))))) (-15 -3010 ((-3 (-577) "failed") (-420 (-975 |#1|)) (-1201) (-420 (-975 |#1|)) (-1183)))) +((-3473 (((-112) $ $) NIL)) (-3017 (((-1206) $) 12)) (-2962 (((-660 (-1206)) $) 14)) (-2790 (($ (-660 (-1206)) (-1206)) 10)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 29)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 17))) +(((-1143) (-13 (-1125) (-10 -8 (-15 -2790 ($ (-660 (-1206)) (-1206))) (-15 -3017 ((-1206) $)) (-15 -2962 ((-660 (-1206)) $))))) (T -1143)) +((-2790 (*1 *1 *2 *3) (-12 (-5 *2 (-660 (-1206))) (-5 *3 (-1206)) (-5 *1 (-1143)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1143)))) (-2962 (*1 *2 *1) (-12 (-5 *2 (-660 (-1206))) (-5 *1 (-1143))))) +(-13 (-1125) (-10 -8 (-15 -2790 ($ (-660 (-1206)) (-1206))) (-15 -3017 ((-1206) $)) (-15 -2962 ((-660 (-1206)) $)))) +((-1979 (((-327 (-577)) (-48)) 12))) +(((-1144) (-10 -7 (-15 -1979 ((-327 (-577)) (-48))))) (T -1144)) +((-1979 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-327 (-577))) (-5 *1 (-1144))))) +(-10 -7 (-15 -1979 ((-327 (-577)) (-48)))) +((-3473 (((-112) $ $) NIL)) (-3496 (($ $) 44)) (-3585 (((-112) $) 70)) (-2781 (($ $ $) 53)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 98)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-3129 (($ $ $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-3107 (($ $ $ $) 81)) (-3841 (($ $) NIL)) (-3029 (((-431 $) $) NIL)) (-1939 (((-112) $ $) NIL)) (-2229 (((-787)) 83)) (-3010 (((-577) $) NIL)) (-2826 (($ $ $) 78)) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL)) (-2921 (((-577) $) NIL)) (-3418 (($ $ $) 64)) (-1647 (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 92) (((-705 (-577)) (-705 $)) 32)) (-4187 (((-3 $ "failed") $) NIL)) (-4363 (((-3 (-420 (-577)) "failed") $) NIL)) (-4353 (((-112) $) NIL)) (-4341 (((-420 (-577)) $) NIL)) (-1910 (($) 95) (($ $) 96)) (-3429 (($ $ $) 63)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL)) (-1522 (((-112) $) NIL)) (-3091 (($ $ $ $) NIL)) (-3140 (($ $ $) 93)) (-3567 (((-112) $) NIL)) (-1992 (($ $ $) NIL)) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL)) (-2771 (($ $ $) 52)) (-2487 (((-112) $) 72)) (-1912 (((-112) $) 69)) (-2749 (($ $) 45)) (-4021 (((-3 $ "failed") $) NIL)) (-3578 (((-112) $) 82)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-3099 (($ $ $ $) 79)) (-3732 (($ $ $) 74) (($) 42 T CONST)) (-3201 (($ $ $) 73) (($) 41 T CONST)) (-4199 (($ $) NIL)) (-4038 (((-944) $) 88)) (-3402 (($ $) 77)) (-1657 (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL) (((-705 (-577)) (-1292 $)) NIL)) (-3446 (($ $ $) NIL) (($ (-660 $)) NIL)) (-2810 (((-1183) $) NIL)) (-3082 (($ $ $) NIL)) (-1709 (($) NIL T CONST)) (-3222 (($ (-944)) 87)) (-1383 (($ $) 57)) (-1474 (((-1145) $) 76)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL)) (-3480 (($ $ $) 67) (($ (-660 $)) NIL)) (-1969 (($ $) NIL)) (-1902 (((-431 $) $) NIL)) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL)) (-3462 (((-3 $ "failed") $ $) NIL)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL)) (-1924 (((-112) $) NIL)) (-1927 (((-787) $) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 66)) (-2852 (($ $) NIL) (($ $ (-787)) NIL)) (-1877 (($ $) 58)) (-1944 (($ $) NIL)) (-4152 (((-577) $) 17) (((-549) $) NIL) (((-911 (-577)) $) NIL) (((-391) $) NIL) (((-228) $) NIL)) (-3544 (((-880) $) 35) (($ (-577)) 94) (($ $) NIL) (($ (-577)) 94)) (-4068 (((-787)) NIL T CONST)) (-3151 (((-112) $ $) NIL)) (-3850 (($ $ $) NIL)) (-4448 (((-112) $ $) NIL)) (-4146 (($) 40)) (-3281 (((-112) $ $) NIL)) (-2761 (($ $ $) 50)) (-3118 (($ $ $ $) 80)) (-1654 (($ $) 68)) (-3538 (($ $ $) 47)) (-2806 (($) 7 T CONST)) (-3822 (($ $ $) 51)) (-2816 (($) 39 T CONST)) (-4013 (((-1183) $) 26) (((-1183) $ (-112)) 27) (((-1297) (-838) $) 28) (((-1297) (-838) $ (-112)) 29)) (-3834 (($ $) 48)) (-2132 (($ $) NIL) (($ $ (-787)) NIL)) (-3809 (($ $ $) 49)) (-3025 (((-112) $ $) 56)) (-3000 (((-112) $ $) 54)) (-2970 (((-112) $ $) 43)) (-3012 (((-112) $ $) 55)) (-2990 (((-112) $ $) 10)) (-3527 (($ $ $) 46)) (-3066 (($ $) 16) (($ $ $) 60)) (-3055 (($ $ $) 59)) (** (($ $ (-944)) NIL) (($ $ (-787)) 62)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 38) (($ $ $) 37) (($ (-577) $) 38))) +(((-1145) (-13 (-558) (-860) (-113) (-677) (-844) (-10 -8 (-6 -4457) (-6 -4462) (-6 -4458) (-15 -2781 ($ $ $)) (-15 -3834 ($ $)) (-15 -3809 ($ $ $)) (-15 -3822 ($ $ $))))) (T -1145)) +((-2781 (*1 *1 *1 *1) (-5 *1 (-1145))) (-3834 (*1 *1 *1) (-5 *1 (-1145))) (-3809 (*1 *1 *1 *1) (-5 *1 (-1145))) (-3822 (*1 *1 *1 *1) (-5 *1 (-1145)))) +(-13 (-558) (-860) (-113) (-677) (-844) (-10 -8 (-6 -4457) (-6 -4462) (-6 -4458) (-15 -2781 ($ $ $)) (-15 -3834 ($ $)) (-15 -3809 ($ $ $)) (-15 -3822 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1433 ((|#1| $) 45)) (-3793 (((-112) $ (-784)) 8)) (-4359 (($) 7 T CONST)) (-1949 ((|#1| |#1| $) 47)) (-2075 ((|#1| $) 46)) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) 9)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3050 ((|#1| $) 40)) (-2468 (($ |#1| $) 41)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-2277 ((|#1| $) 42)) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-1943 (((-784) $) 44)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-4079 (($ (-657 |#1|)) 43)) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-1143 |#1|) (-141) (-1239)) (T -1143)) -((-1949 (*1 *2 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1239)))) (-2075 (*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1239)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1239)))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1239)) (-5 *2 (-784))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4466) (-15 -1949 (|t#1| |t#1| $)) (-15 -2075 (|t#1| $)) (-15 -1433 (|t#1| $)) (-15 -1943 ((-784) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) -((-2302 ((|#3| $) 87)) (-1624 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2884 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#3| $) 47)) (-3306 (((-702 (-576)) (-702 $)) NIL) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL) (((-2 (|:| -3750 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-702 $) (-1289 $)) 84) (((-702 |#3|) (-702 $)) 76)) (-2815 (($ $ (-1 |#3| |#3|) (-784)) NIL) (($ $ (-1 |#3| |#3|)) 28) (($ $) NIL) (($ $ (-784)) NIL) (($ $ (-1198)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL)) (-2550 ((|#3| $) 89)) (-2732 ((|#4| $) 43)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#3|) 25)) (** (($ $ (-941)) NIL) (($ $ (-784)) 24) (($ $ (-576)) 95))) -(((-1144 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2550 (|#3| |#1|)) (-15 -2302 (|#3| |#1|)) (-15 -2732 (|#4| |#1|)) (-15 -3306 ((-702 |#3|) (-702 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-702 (-576)) (-702 |#1|))) (-15 -3501 (|#1| |#3|)) (-15 -1624 ((-3 |#3| "failed") |#1|)) (-15 -2884 (|#3| |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -2815 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2815 (|#1| |#1| (-1 |#3| |#3|) (-784))) (-15 -3501 (|#1| (-576))) (-15 ** (|#1| |#1| (-784))) (-15 ** (|#1| |#1| (-941))) (-15 -3501 ((-877) |#1|))) (-1145 |#2| |#3| |#4| |#5|) (-784) (-1071) (-243 |#2| |#3|) (-243 |#2| |#3|)) (T -1144)) -NIL -(-10 -8 (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2550 (|#3| |#1|)) (-15 -2302 (|#3| |#1|)) (-15 -2732 (|#4| |#1|)) (-15 -3306 ((-702 |#3|) (-702 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 |#3|)) (|:| |vec| (-1289 |#3|))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 |#1|) (-1289 |#1|))) (-15 -3306 ((-702 (-576)) (-702 |#1|))) (-15 -3501 (|#1| |#3|)) (-15 -1624 ((-3 |#3| "failed") |#1|)) (-15 -2884 (|#3| |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -2815 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2815 (|#1| |#1| (-1 |#3| |#3|) (-784))) (-15 -3501 (|#1| (-576))) (-15 ** (|#1| |#1| (-784))) (-15 ** (|#1| |#1| (-941))) (-15 -3501 ((-877) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2302 ((|#2| $) 80)) (-3864 (((-112) $) 124)) (-2721 (((-3 $ "failed") $ $) 20)) (-3186 (((-112) $) 122)) (-3793 (((-112) $ (-784)) 114)) (-1346 (($ |#2|) 83)) (-4359 (($) 18 T CONST)) (-3590 (($ $) 141 (|has| |#2| (-317)))) (-2911 ((|#3| $ (-576)) 136)) (-1624 (((-3 (-576) "failed") $) 99 (|has| |#2| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) 96 (|has| |#2| (-1060 (-419 (-576))))) (((-3 |#2| "failed") $) 93)) (-2884 (((-576) $) 98 (|has| |#2| (-1060 (-576)))) (((-419 (-576)) $) 95 (|has| |#2| (-1060 (-419 (-576))))) ((|#2| $) 94)) (-3306 (((-702 (-576)) (-702 $)) 89 (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 88 (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) 87) (((-702 |#2|) (-702 $)) 86)) (-3843 (((-3 $ "failed") $) 37)) (-1542 (((-784) $) 142 (|has| |#2| (-568)))) (-2083 ((|#2| $ (-576) (-576)) 134)) (-1458 (((-657 |#2|) $) 107 (|has| $ (-6 -4466)))) (-4094 (((-112) $) 35)) (-3662 (((-784) $) 143 (|has| |#2| (-568)))) (-1345 (((-657 |#4|) $) 144 (|has| |#2| (-568)))) (-2377 (((-784) $) 130)) (-2387 (((-784) $) 131)) (-1833 (((-112) $ (-784)) 115)) (-1969 ((|#2| $) 75 (|has| |#2| (-6 (-4468 "*"))))) (-2491 (((-576) $) 126)) (-3770 (((-576) $) 128)) (-2070 (((-657 |#2|) $) 106 (|has| $ (-6 -4466)))) (-1627 (((-112) |#2| $) 104 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466))))) (-3704 (((-576) $) 127)) (-1429 (((-576) $) 129)) (-2514 (($ (-657 (-657 |#2|))) 121)) (-2148 (($ (-1 |#2| |#2|) $) 111 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#2| |#2| |#2|) $ $) 138) (($ (-1 |#2| |#2|) $) 112)) (-2339 (((-657 (-657 |#2|)) $) 132)) (-4261 (((-112) $ (-784)) 116)) (-3101 (((-702 (-576)) (-1289 $)) 91 (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 90 (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) 85) (((-702 |#2|) (-1289 $)) 84)) (-2342 (((-1180) $) 10)) (-3913 (((-3 $ "failed") $) 74 (|has| |#2| (-374)))) (-1471 (((-1142) $) 11)) (-3418 (((-3 $ "failed") $ |#2|) 139 (|has| |#2| (-568)))) (-3399 (((-112) (-1 (-112) |#2|) $) 109 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#2|))) 103 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) 102 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) 101 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) 100 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-2806 (((-112) $ $) 120)) (-3387 (((-112) $) 117)) (-3581 (($) 118)) (-2835 ((|#2| $ (-576) (-576) |#2|) 135) ((|#2| $ (-576) (-576)) 133)) (-2815 (($ $ (-1 |#2| |#2|) (-784)) 57) (($ $ (-1 |#2| |#2|)) 56) (($ $) 47 (|has| |#2| (-237))) (($ $ (-784)) 45 (|has| |#2| (-237))) (($ $ (-1198)) 55 (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) 53 (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) 52 (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 51 (|has| |#2| (-920 (-1198))))) (-2550 ((|#2| $) 79)) (-4277 (($ (-657 |#2|)) 82)) (-2049 (((-112) $) 123)) (-2732 ((|#3| $) 81)) (-1493 ((|#2| $) 76 (|has| |#2| (-6 (-4468 "*"))))) (-1482 (((-784) (-1 (-112) |#2|) $) 108 (|has| $ (-6 -4466))) (((-784) |#2| $) 105 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 119)) (-3815 ((|#4| $ (-576)) 137)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 97 (|has| |#2| (-1060 (-419 (-576))))) (($ |#2|) 92)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-2147 (((-112) (-1 (-112) |#2|) $) 110 (|has| $ (-6 -4466)))) (-4299 (((-112) $) 125)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-1 |#2| |#2|) (-784)) 59) (($ $ (-1 |#2| |#2|)) 58) (($ $) 46 (|has| |#2| (-237))) (($ $ (-784)) 44 (|has| |#2| (-237))) (($ $ (-1198)) 54 (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) 50 (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) 49 (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 48 (|has| |#2| (-920 (-1198))))) (-2933 (((-112) $ $) 8)) (-3034 (($ $ |#2|) 140 (|has| |#2| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 73 (|has| |#2| (-374)))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#2|) 146) (($ |#2| $) 145) ((|#4| $ |#4|) 78) ((|#3| |#3| $) 77)) (-3440 (((-784) $) 113 (|has| $ (-6 -4466))))) -(((-1145 |#1| |#2| |#3| |#4|) (-141) (-784) (-1071) (-243 |t#1| |t#2|) (-243 |t#1| |t#2|)) (T -1145)) -((-1346 (*1 *1 *2) (-12 (-4 *2 (-1071)) (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)))) (-4277 (*1 *1 *2) (-12 (-5 *2 (-657 *4)) (-4 *4 (-1071)) (-4 *1 (-1145 *3 *4 *5 *6)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)))) (-2732 (*1 *2 *1) (-12 (-4 *1 (-1145 *3 *4 *2 *5)) (-4 *4 (-1071)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (-2302 (*1 *2 *1) (-12 (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1071)))) (-2550 (*1 *2 *1) (-12 (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1071)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1145 *3 *4 *5 *2)) (-4 *4 (-1071)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1145 *3 *4 *2 *5)) (-4 *4 (-1071)) (-4 *2 (-243 *3 *4)) (-4 *5 (-243 *3 *4)))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4468 "*"))) (-4 *2 (-1071)))) (-1969 (*1 *2 *1) (-12 (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4468 "*"))) (-4 *2 (-1071)))) (-3913 (*1 *1 *1) (|partial| -12 (-4 *1 (-1145 *2 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1145 *3 *4 *5 *6)) (-4 *4 (-1071)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-374))))) -(-13 (-232 |t#2|) (-111 |t#2| |t#2|) (-1075 |t#1| |t#1| |t#2| |t#3| |t#4|) (-423 |t#2|) (-388 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-730 |t#2|)) |%noBranch|) (-15 -1346 ($ |t#2|)) (-15 -4277 ($ (-657 |t#2|))) (-15 -2732 (|t#3| $)) (-15 -2302 (|t#2| $)) (-15 -2550 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4468 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -1493 (|t#2| $)) (-15 -1969 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-374)) (PROGN (-15 -3913 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4468 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#2| (-1060 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#2|) . T) ((-625 (-877)) . T) ((-234 $) -2802 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-232 |#2|) . T) ((-238) |has| |#2| (-238)) ((-237) -2802 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-272 |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-388 |#2|) . T) ((-423 |#2|) . T) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-659 (-576)) . T) ((-659 |#2|) . T) ((-659 $) . T) ((-661 #1=(-576)) |has| |#2| (-652 (-576))) ((-661 |#2|) . T) ((-661 $) . T) ((-653 |#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-6 (-4468 "*")))) ((-652 #1#) |has| |#2| (-652 (-576))) ((-652 |#2|) . T) ((-730 |#2|) -2802 (|has| |#2| (-174)) (|has| |#2| (-6 (-4468 "*")))) ((-739) . T) ((-912 $ #2=(-1198)) -2802 (|has| |#2| (-920 (-1198))) (|has| |#2| (-918 (-1198)))) ((-918 (-1198)) |has| |#2| (-918 (-1198))) ((-920 #2#) -2802 (|has| |#2| (-920 (-1198))) (|has| |#2| (-918 (-1198)))) ((-1075 |#1| |#1| |#2| |#3| |#4|) . T) ((-1060 #0#) |has| |#2| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#2| (-1060 (-576))) ((-1060 |#2|) . T) ((-1073 |#2|) . T) ((-1078 |#2|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3345 ((|#4| |#4|) 81)) (-3120 ((|#4| |#4|) 76)) (-4353 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1985 (-657 |#3|))) |#4| |#3|) 91)) (-3548 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-2880 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) -(((-1146 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3120 (|#4| |#4|)) (-15 -2880 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3345 (|#4| |#4|)) (-15 -3548 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4353 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1985 (-657 |#3|))) |#4| |#3|))) (-317) (-384 |#1|) (-384 |#1|) (-700 |#1| |#2| |#3|)) (T -1146)) -((-4353 (*1 *2 *3 *4) (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1985 (-657 *4)))) (-5 *1 (-1146 *5 *6 *4 *3)) (-4 *3 (-700 *5 *6 *4)))) (-3548 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1146 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) (-3345 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1146 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) (-2880 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1146 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) (-3120 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1146 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5))))) -(-10 -7 (-15 -3120 (|#4| |#4|)) (-15 -2880 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3345 (|#4| |#4|)) (-15 -3548 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4353 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1985 (-657 |#3|))) |#4| |#3|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 18)) (-2029 (((-657 |#2|) $) 174)) (-1849 (((-1194 $) $ |#2|) 60) (((-1194 |#1|) $) 49)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 116 (|has| |#1| (-568)))) (-3325 (($ $) 118 (|has| |#1| (-568)))) (-4306 (((-112) $) 120 (|has| |#1| (-568)))) (-1775 (((-784) $) NIL) (((-784) $ (-657 |#2|)) 213)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2638 (($ $) NIL (|has| |#1| (-464)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) 167) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 |#2| "failed") $) NIL)) (-2884 ((|#1| $) 165) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) ((|#2| $) NIL)) (-3203 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-2212 (($ $) 217)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) 90)) (-3813 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-2199 (((-657 $) $) NIL)) (-4257 (((-112) $) NIL (|has| |#1| (-929)))) (-3124 (($ $ |#1| (-543 |#2|) $) NIL)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| |#1| (-902 (-390))) (|has| |#2| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| |#1| (-902 (-576))) (|has| |#2| (-902 (-576)))))) (-4094 (((-112) $) 20)) (-4334 (((-784) $) 30)) (-2014 (($ (-1194 |#1|) |#2|) 54) (($ (-1194 $) |#2|) 71)) (-3724 (((-657 $) $) NIL)) (-3157 (((-112) $) 38)) (-2003 (($ |#1| (-543 |#2|)) 78) (($ $ |#2| (-784)) 58) (($ $ (-657 |#2|) (-657 (-784))) NIL)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ |#2|) NIL)) (-4436 (((-543 |#2|) $) 205) (((-784) $ |#2|) 206) (((-657 (-784)) $ (-657 |#2|)) 207)) (-4056 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) 128)) (-2353 (((-3 |#2| "failed") $) 177)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-2174 (($ $) 216)) (-2186 ((|#1| $) 43)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2342 (((-1180) $) NIL)) (-1392 (((-3 (-657 $) "failed") $) NIL)) (-2974 (((-3 (-657 $) "failed") $) NIL)) (-2999 (((-3 (-2 (|:| |var| |#2|) (|:| -1801 (-784))) "failed") $) NIL)) (-1471 (((-1142) $) NIL)) (-2146 (((-112) $) 39)) (-2160 ((|#1| $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 148 (|has| |#1| (-464)))) (-3436 (($ (-657 $)) 153 (|has| |#1| (-464))) (($ $ $) 138 (|has| |#1| (-464)))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#1| (-929)))) (-1885 (((-430 $) $) NIL (|has| |#1| (-929)))) (-3418 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-568)))) (-3236 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-657 |#2|) (-657 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-657 |#2|) (-657 $)) 194)) (-1701 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2815 (($ $ (-657 |#2|) (-657 (-784))) NIL) (($ $ |#2| (-784)) NIL) (($ $ (-657 |#2|)) NIL) (($ $ |#2|) 215)) (-1770 (((-543 |#2|) $) 201) (((-784) $ |#2|) 196) (((-657 (-784)) $ (-657 |#2|)) 199)) (-4148 (((-908 (-390)) $) NIL (-12 (|has| |#1| (-626 (-908 (-390)))) (|has| |#2| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| |#1| (-626 (-908 (-576)))) (|has| |#2| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1450 ((|#1| $) 134 (|has| |#1| (-464))) (($ $ |#2|) 137 (|has| |#1| (-464)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-3501 (((-877) $) 159) (($ (-576)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (-2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))))) (-4037 (((-657 |#1|) $) 162)) (-2313 ((|#1| $ (-543 |#2|)) 80) (($ $ |#2| (-784)) NIL) (($ $ (-657 |#2|) (-657 (-784))) NIL)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-1960 (((-784)) 87 T CONST)) (-2702 (($ $ $ (-784)) NIL (|has| |#1| (-174)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) 123 (|has| |#1| (-568)))) (-2769 (($) 12 T CONST)) (-2779 (($) 14 T CONST)) (-2097 (($ $ (-657 |#2|) (-657 (-784))) NIL) (($ $ |#2| (-784)) NIL) (($ $ (-657 |#2|)) NIL) (($ $ |#2|) NIL)) (-2933 (((-112) $ $) 106)) (-3034 (($ $ |#1|) 132 (|has| |#1| (-374)))) (-3022 (($ $) 93) (($ $ $) 104)) (-3012 (($ $ $) 55)) (** (($ $ (-941)) 110) (($ $ (-784)) 109)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 96) (($ $ $) 72) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) -(((-1147 |#1| |#2|) (-969 |#1| (-543 |#2|) |#2|) (-1071) (-862)) (T -1147)) -NIL -(-969 |#1| (-543 |#2|) |#2|) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2029 (((-657 |#2|) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-2176 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2030 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (((-3 $ "failed") $ $) NIL)) (-1896 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2150 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2004 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-2201 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2052 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4359 (($) NIL T CONST)) (-2212 (($ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3030 (((-972 |#1|) $ (-784)) NIL) (((-972 |#1|) $ (-784) (-784)) NIL)) (-2373 (((-112) $) NIL)) (-1657 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3182 (((-784) $ |#2|) NIL) (((-784) $ |#2| (-784)) NIL)) (-4094 (((-112) $) NIL)) (-2082 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3157 (((-112) $) NIL)) (-2003 (($ $ (-657 |#2|) (-657 (-543 |#2|))) NIL) (($ $ |#2| (-543 |#2|)) NIL) (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-784)) 63) (($ $ (-657 |#2|) (-657 (-784))) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-3670 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-2342 (((-1180) $) NIL)) (-4190 (($ $ |#2|) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-419 (-576)))))) (-1471 (((-1142) $) NIL)) (-1629 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3926 (($ $ (-784)) 16)) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4067 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-3236 (($ $ |#2| $) 106) (($ $ (-657 |#2|) (-657 $)) 99) (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL)) (-2815 (($ $ (-657 |#2|) (-657 (-784))) NIL) (($ $ |#2| (-784)) NIL) (($ $ (-657 |#2|)) NIL) (($ $ |#2|) 109)) (-1770 (((-543 |#2|) $) NIL)) (-2778 (((-1 (-1179 |#3|) |#3|) (-657 |#2|) (-657 (-1179 |#3|))) 87)) (-2213 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2062 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2188 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-2163 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2017 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-1431 (($ $) 18)) (-3501 (((-877) $) 198) (($ (-576)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#2|) 70) (($ |#3|) 68)) (-2313 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-784)) NIL) (($ $ (-657 |#2|) (-657 (-784))) NIL) ((|#3| $ (-784)) 43)) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-4110 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2225 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2072 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-2125 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2224 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-4124 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-2235 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-2085 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2769 (($) 52 T CONST)) (-2779 (($) 62 T CONST)) (-2097 (($ $ (-657 |#2|) (-657 (-784))) NIL) (($ $ |#2| (-784)) NIL) (($ $ (-657 |#2|)) NIL) (($ $ |#2|) NIL)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) 200 (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 66)) (** (($ $ (-941)) NIL) (($ $ (-784)) 77) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 112 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ $ (-419 (-576))) 117 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 115 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) -(((-1148 |#1| |#2| |#3|) (-13 (-753 |#1| |#2|) (-10 -8 (-15 -2313 (|#3| $ (-784))) (-15 -3501 ($ |#2|)) (-15 -3501 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2778 ((-1 (-1179 |#3|) |#3|) (-657 |#2|) (-657 (-1179 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4190 ($ $ |#2| |#1|)) (-15 -1629 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1071) (-862) (-969 |#1| (-543 |#2|) |#2|)) (T -1148)) -((-2313 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *2 (-969 *4 (-543 *5) *5)) (-5 *1 (-1148 *4 *5 *2)) (-4 *4 (-1071)) (-4 *5 (-862)))) (-3501 (*1 *1 *2) (-12 (-4 *3 (-1071)) (-4 *2 (-862)) (-5 *1 (-1148 *3 *2 *4)) (-4 *4 (-969 *3 (-543 *2) *2)))) (-3501 (*1 *1 *2) (-12 (-4 *3 (-1071)) (-4 *4 (-862)) (-5 *1 (-1148 *3 *4 *2)) (-4 *2 (-969 *3 (-543 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1071)) (-4 *4 (-862)) (-5 *1 (-1148 *3 *4 *2)) (-4 *2 (-969 *3 (-543 *4) *4)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *6)) (-5 *4 (-657 (-1179 *7))) (-4 *6 (-862)) (-4 *7 (-969 *5 (-543 *6) *6)) (-4 *5 (-1071)) (-5 *2 (-1 (-1179 *7) *7)) (-5 *1 (-1148 *5 *6 *7)))) (-4190 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-4 *2 (-862)) (-5 *1 (-1148 *3 *2 *4)) (-4 *4 (-969 *3 (-543 *2) *2)))) (-1629 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1148 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1071)) (-4 *3 (-862)) (-5 *1 (-1148 *4 *3 *5)) (-4 *5 (-969 *4 (-543 *3) *3))))) -(-13 (-753 |#1| |#2|) (-10 -8 (-15 -2313 (|#3| $ (-784))) (-15 -3501 ($ |#2|)) (-15 -3501 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2778 ((-1 (-1179 |#3|) |#3|) (-657 |#2|) (-657 (-1179 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4190 ($ $ |#2| |#1|)) (-15 -1629 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-3429 (((-112) $ $) 7)) (-2856 (((-657 (-2 (|:| -2016 $) (|:| -3209 (-657 |#4|)))) (-657 |#4|)) 86)) (-3472 (((-657 $) (-657 |#4|)) 87) (((-657 $) (-657 |#4|) (-112)) 112)) (-2029 (((-657 |#3|) $) 34)) (-1626 (((-112) $) 27)) (-3072 (((-112) $) 18 (|has| |#1| (-568)))) (-4021 (((-112) |#4| $) 102) (((-112) $) 98)) (-1329 ((|#4| |#4| $) 93)) (-2638 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 $))) |#4| $) 127)) (-1850 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) 28)) (-3793 (((-112) $ (-784)) 45)) (-2035 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4466))) (((-3 |#4| "failed") $ |#3|) 80)) (-4359 (($) 46 T CONST)) (-2433 (((-112) $) 23 (|has| |#1| (-568)))) (-1688 (((-112) $ $) 25 (|has| |#1| (-568)))) (-4058 (((-112) $ $) 24 (|has| |#1| (-568)))) (-2995 (((-112) $) 26 (|has| |#1| (-568)))) (-2292 (((-657 |#4|) (-657 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1978 (((-657 |#4|) (-657 |#4|) $) 19 (|has| |#1| (-568)))) (-2410 (((-657 |#4|) (-657 |#4|) $) 20 (|has| |#1| (-568)))) (-1624 (((-3 $ "failed") (-657 |#4|)) 37)) (-2884 (($ (-657 |#4|)) 36)) (-3522 (((-3 $ "failed") $) 83)) (-2073 ((|#4| |#4| $) 90)) (-3914 (($ $) 69 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-3895 (($ |#4| $) 68 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4466)))) (-3644 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3206 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3003 ((|#4| |#4| $) 88)) (-3622 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4466))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1957 (((-2 (|:| -2016 (-657 |#4|)) (|:| -3209 (-657 |#4|))) $) 106)) (-3374 (((-112) |#4| $) 137)) (-4211 (((-112) |#4| $) 134)) (-2376 (((-112) |#4| $) 138) (((-112) $) 135)) (-1458 (((-657 |#4|) $) 53 (|has| $ (-6 -4466)))) (-1878 (((-112) |#4| $) 105) (((-112) $) 104)) (-3627 ((|#3| $) 35)) (-1833 (((-112) $ (-784)) 44)) (-2070 (((-657 |#4|) $) 54 (|has| $ (-6 -4466)))) (-1627 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#4| |#4|) $) 48)) (-1746 (((-657 |#3|) $) 33)) (-4089 (((-112) |#3| $) 32)) (-4261 (((-112) $ (-784)) 43)) (-2342 (((-1180) $) 10)) (-3674 (((-3 |#4| (-657 $)) |#4| |#4| $) 129)) (-2382 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 $))) |#4| |#4| $) 128)) (-3920 (((-3 |#4| "failed") $) 84)) (-3149 (((-657 $) |#4| $) 130)) (-1971 (((-3 (-112) (-657 $)) |#4| $) 133)) (-4183 (((-657 (-2 (|:| |val| (-112)) (|:| -3946 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3107 (((-657 $) |#4| $) 126) (((-657 $) (-657 |#4|) $) 125) (((-657 $) (-657 |#4|) (-657 $)) 124) (((-657 $) |#4| (-657 $)) 123)) (-4062 (($ |#4| $) 118) (($ (-657 |#4|) $) 117)) (-1765 (((-657 |#4|) $) 108)) (-4365 (((-112) |#4| $) 100) (((-112) $) 96)) (-2833 ((|#4| |#4| $) 91)) (-4015 (((-112) $ $) 111)) (-3404 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3965 (((-112) |#4| $) 101) (((-112) $) 97)) (-2843 ((|#4| |#4| $) 92)) (-1471 (((-1142) $) 11)) (-3510 (((-3 |#4| "failed") $) 85)) (-2951 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1548 (((-3 $ "failed") $ |#4|) 79)) (-3926 (($ $ |#4|) 78) (((-657 $) |#4| $) 116) (((-657 $) |#4| (-657 $)) 115) (((-657 $) (-657 |#4|) $) 114) (((-657 $) (-657 |#4|) (-657 $)) 113)) (-3399 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 |#4|) (-657 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-2806 (((-112) $ $) 39)) (-3387 (((-112) $) 42)) (-3581 (($) 41)) (-1770 (((-784) $) 107)) (-1482 (((-784) |#4| $) 55 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4466)))) (-1923 (($ $) 40)) (-4148 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3511 (($ (-657 |#4|)) 61)) (-2956 (($ $ |#3|) 29)) (-1664 (($ $ |#3|) 31)) (-3459 (($ $) 89)) (-3604 (($ $ |#3|) 30)) (-3501 (((-877) $) 12) (((-657 |#4|) $) 38)) (-3540 (((-784) $) 77 (|has| |#3| (-379)))) (-2046 (((-112) $ $) 6)) (-2631 (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3302 (((-112) $ (-1 (-112) |#4| (-657 |#4|))) 99)) (-2375 (((-657 $) |#4| $) 122) (((-657 $) |#4| (-657 $)) 121) (((-657 $) (-657 |#4|) $) 120) (((-657 $) (-657 |#4|) (-657 $)) 119)) (-2147 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4466)))) (-3039 (((-657 |#3|) $) 82)) (-3421 (((-112) |#4| $) 136)) (-1863 (((-112) |#3| $) 81)) (-2933 (((-112) $ $) 8)) (-3440 (((-784) $) 47 (|has| $ (-6 -4466))))) -(((-1149 |#1| |#2| |#3| |#4|) (-141) (-464) (-806) (-862) (-1087 |t#1| |t#2| |t#3|)) (T -1149)) -NIL -(-13 (-1131 |t#1| |t#2| |t#3| |t#4|) (-797 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-625 (-657 |#4|)) . T) ((-625 (-877)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-797 |#1| |#2| |#3| |#4|) . T) ((-998 |#1| |#2| |#3| |#4|) . T) ((-1093 |#1| |#2| |#3| |#4|) . T) ((-1122) . T) ((-1131 |#1| |#2| |#3| |#4|) . T) ((-1232 |#1| |#2| |#3| |#4|) . T) ((-1239) . T)) -((-3036 (((-657 |#2|) |#1|) 15)) (-1596 (((-657 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-657 |#2|) |#1|) 61)) (-2882 (((-657 |#2|) |#2| |#2| |#2|) 45) (((-657 |#2|) |#1|) 59)) (-4178 ((|#2| |#1|) 54)) (-3796 (((-2 (|:| |solns| (-657 |#2|)) (|:| |maps| (-657 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3009 (((-657 |#2|) |#2| |#2|) 42) (((-657 |#2|) |#1|) 58)) (-3320 (((-657 |#2|) |#2| |#2| |#2| |#2|) 46) (((-657 |#2|) |#1|) 60)) (-3273 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-4011 ((|#2| |#2| |#2| |#2|) 51)) (-1749 ((|#2| |#2| |#2|) 50)) (-3455 ((|#2| |#2| |#2| |#2| |#2|) 52))) -(((-1150 |#1| |#2|) (-10 -7 (-15 -3036 ((-657 |#2|) |#1|)) (-15 -4178 (|#2| |#1|)) (-15 -3796 ((-2 (|:| |solns| (-657 |#2|)) (|:| |maps| (-657 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3009 ((-657 |#2|) |#1|)) (-15 -2882 ((-657 |#2|) |#1|)) (-15 -3320 ((-657 |#2|) |#1|)) (-15 -1596 ((-657 |#2|) |#1|)) (-15 -3009 ((-657 |#2|) |#2| |#2|)) (-15 -2882 ((-657 |#2|) |#2| |#2| |#2|)) (-15 -3320 ((-657 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1596 ((-657 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1749 (|#2| |#2| |#2|)) (-15 -4011 (|#2| |#2| |#2| |#2|)) (-15 -3455 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3273 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1265 |#2|) (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (T -1150)) -((-3273 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2)))) (-3455 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2)))) (-4011 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2)))) (-1749 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2)))) (-1596 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-657 *3)) (-5 *1 (-1150 *4 *3)) (-4 *4 (-1265 *3)))) (-3320 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-657 *3)) (-5 *1 (-1150 *4 *3)) (-4 *4 (-1265 *3)))) (-2882 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-657 *3)) (-5 *1 (-1150 *4 *3)) (-4 *4 (-1265 *3)))) (-3009 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-657 *3)) (-5 *1 (-1150 *4 *3)) (-4 *4 (-1265 *3)))) (-1596 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4)))) (-3320 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4)))) (-2882 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4)))) (-3009 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4)))) (-3796 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-2 (|:| |solns| (-657 *5)) (|:| |maps| (-657 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1150 *3 *5)) (-4 *3 (-1265 *5)))) (-4178 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2)))) (-3036 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4))))) -(-10 -7 (-15 -3036 ((-657 |#2|) |#1|)) (-15 -4178 (|#2| |#1|)) (-15 -3796 ((-2 (|:| |solns| (-657 |#2|)) (|:| |maps| (-657 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3009 ((-657 |#2|) |#1|)) (-15 -2882 ((-657 |#2|) |#1|)) (-15 -3320 ((-657 |#2|) |#1|)) (-15 -1596 ((-657 |#2|) |#1|)) (-15 -3009 ((-657 |#2|) |#2| |#2|)) (-15 -2882 ((-657 |#2|) |#2| |#2| |#2|)) (-15 -3320 ((-657 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1596 ((-657 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1749 (|#2| |#2| |#2|)) (-15 -4011 (|#2| |#2| |#2| |#2|)) (-15 -3455 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3273 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3594 (((-657 (-657 (-304 (-326 |#1|)))) (-657 (-304 (-419 (-972 |#1|))))) 118) (((-657 (-657 (-304 (-326 |#1|)))) (-657 (-304 (-419 (-972 |#1|)))) (-657 (-1198))) 117) (((-657 (-657 (-304 (-326 |#1|)))) (-657 (-419 (-972 |#1|)))) 115) (((-657 (-657 (-304 (-326 |#1|)))) (-657 (-419 (-972 |#1|))) (-657 (-1198))) 113) (((-657 (-304 (-326 |#1|))) (-304 (-419 (-972 |#1|)))) 97) (((-657 (-304 (-326 |#1|))) (-304 (-419 (-972 |#1|))) (-1198)) 98) (((-657 (-304 (-326 |#1|))) (-419 (-972 |#1|))) 92) (((-657 (-304 (-326 |#1|))) (-419 (-972 |#1|)) (-1198)) 82)) (-2436 (((-657 (-657 (-326 |#1|))) (-657 (-419 (-972 |#1|))) (-657 (-1198))) 111) (((-657 (-326 |#1|)) (-419 (-972 |#1|)) (-1198)) 54)) (-3524 (((-1187 (-657 (-326 |#1|)) (-657 (-304 (-326 |#1|)))) (-419 (-972 |#1|)) (-1198)) 122) (((-1187 (-657 (-326 |#1|)) (-657 (-304 (-326 |#1|)))) (-304 (-419 (-972 |#1|))) (-1198)) 121))) -(((-1151 |#1|) (-10 -7 (-15 -3594 ((-657 (-304 (-326 |#1|))) (-419 (-972 |#1|)) (-1198))) (-15 -3594 ((-657 (-304 (-326 |#1|))) (-419 (-972 |#1|)))) (-15 -3594 ((-657 (-304 (-326 |#1|))) (-304 (-419 (-972 |#1|))) (-1198))) (-15 -3594 ((-657 (-304 (-326 |#1|))) (-304 (-419 (-972 |#1|))))) (-15 -3594 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-419 (-972 |#1|))) (-657 (-1198)))) (-15 -3594 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-419 (-972 |#1|))))) (-15 -3594 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-304 (-419 (-972 |#1|)))) (-657 (-1198)))) (-15 -3594 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-304 (-419 (-972 |#1|)))))) (-15 -2436 ((-657 (-326 |#1|)) (-419 (-972 |#1|)) (-1198))) (-15 -2436 ((-657 (-657 (-326 |#1|))) (-657 (-419 (-972 |#1|))) (-657 (-1198)))) (-15 -3524 ((-1187 (-657 (-326 |#1|)) (-657 (-304 (-326 |#1|)))) (-304 (-419 (-972 |#1|))) (-1198))) (-15 -3524 ((-1187 (-657 (-326 |#1|)) (-657 (-304 (-326 |#1|)))) (-419 (-972 |#1|)) (-1198)))) (-13 (-317) (-148))) (T -1151)) -((-3524 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1187 (-657 (-326 *5)) (-657 (-304 (-326 *5))))) (-5 *1 (-1151 *5)))) (-3524 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-972 *5)))) (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1187 (-657 (-326 *5)) (-657 (-304 (-326 *5))))) (-5 *1 (-1151 *5)))) (-2436 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-419 (-972 *5)))) (-5 *4 (-657 (-1198))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-657 (-326 *5)))) (-5 *1 (-1151 *5)))) (-2436 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-326 *5))) (-5 *1 (-1151 *5)))) (-3594 (*1 *2 *3) (-12 (-5 *3 (-657 (-304 (-419 (-972 *4))))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-657 (-657 (-304 (-326 *4))))) (-5 *1 (-1151 *4)))) (-3594 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-304 (-419 (-972 *5))))) (-5 *4 (-657 (-1198))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-657 (-304 (-326 *5))))) (-5 *1 (-1151 *5)))) (-3594 (*1 *2 *3) (-12 (-5 *3 (-657 (-419 (-972 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-657 (-657 (-304 (-326 *4))))) (-5 *1 (-1151 *4)))) (-3594 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-419 (-972 *5)))) (-5 *4 (-657 (-1198))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-657 (-304 (-326 *5))))) (-5 *1 (-1151 *5)))) (-3594 (*1 *2 *3) (-12 (-5 *3 (-304 (-419 (-972 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-657 (-304 (-326 *4)))) (-5 *1 (-1151 *4)))) (-3594 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-972 *5)))) (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-304 (-326 *5)))) (-5 *1 (-1151 *5)))) (-3594 (*1 *2 *3) (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-657 (-304 (-326 *4)))) (-5 *1 (-1151 *4)))) (-3594 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-304 (-326 *5)))) (-5 *1 (-1151 *5))))) -(-10 -7 (-15 -3594 ((-657 (-304 (-326 |#1|))) (-419 (-972 |#1|)) (-1198))) (-15 -3594 ((-657 (-304 (-326 |#1|))) (-419 (-972 |#1|)))) (-15 -3594 ((-657 (-304 (-326 |#1|))) (-304 (-419 (-972 |#1|))) (-1198))) (-15 -3594 ((-657 (-304 (-326 |#1|))) (-304 (-419 (-972 |#1|))))) (-15 -3594 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-419 (-972 |#1|))) (-657 (-1198)))) (-15 -3594 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-419 (-972 |#1|))))) (-15 -3594 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-304 (-419 (-972 |#1|)))) (-657 (-1198)))) (-15 -3594 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-304 (-419 (-972 |#1|)))))) (-15 -2436 ((-657 (-326 |#1|)) (-419 (-972 |#1|)) (-1198))) (-15 -2436 ((-657 (-657 (-326 |#1|))) (-657 (-419 (-972 |#1|))) (-657 (-1198)))) (-15 -3524 ((-1187 (-657 (-326 |#1|)) (-657 (-304 (-326 |#1|)))) (-304 (-419 (-972 |#1|))) (-1198))) (-15 -3524 ((-1187 (-657 (-326 |#1|)) (-657 (-304 (-326 |#1|)))) (-419 (-972 |#1|)) (-1198)))) -((-3539 (((-419 (-1194 (-326 |#1|))) (-1289 (-326 |#1|)) (-419 (-1194 (-326 |#1|))) (-576)) 36)) (-3137 (((-419 (-1194 (-326 |#1|))) (-419 (-1194 (-326 |#1|))) (-419 (-1194 (-326 |#1|))) (-419 (-1194 (-326 |#1|)))) 48))) -(((-1152 |#1|) (-10 -7 (-15 -3137 ((-419 (-1194 (-326 |#1|))) (-419 (-1194 (-326 |#1|))) (-419 (-1194 (-326 |#1|))) (-419 (-1194 (-326 |#1|))))) (-15 -3539 ((-419 (-1194 (-326 |#1|))) (-1289 (-326 |#1|)) (-419 (-1194 (-326 |#1|))) (-576)))) (-568)) (T -1152)) -((-3539 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-419 (-1194 (-326 *5)))) (-5 *3 (-1289 (-326 *5))) (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1152 *5)))) (-3137 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-419 (-1194 (-326 *3)))) (-4 *3 (-568)) (-5 *1 (-1152 *3))))) -(-10 -7 (-15 -3137 ((-419 (-1194 (-326 |#1|))) (-419 (-1194 (-326 |#1|))) (-419 (-1194 (-326 |#1|))) (-419 (-1194 (-326 |#1|))))) (-15 -3539 ((-419 (-1194 (-326 |#1|))) (-1289 (-326 |#1|)) (-419 (-1194 (-326 |#1|))) (-576)))) -((-3036 (((-657 (-657 (-304 (-326 |#1|)))) (-657 (-304 (-326 |#1|))) (-657 (-1198))) 244) (((-657 (-304 (-326 |#1|))) (-326 |#1|) (-1198)) 23) (((-657 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1198)) 29) (((-657 (-304 (-326 |#1|))) (-304 (-326 |#1|))) 28) (((-657 (-304 (-326 |#1|))) (-326 |#1|)) 24))) -(((-1153 |#1|) (-10 -7 (-15 -3036 ((-657 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -3036 ((-657 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -3036 ((-657 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1198))) (-15 -3036 ((-657 (-304 (-326 |#1|))) (-326 |#1|) (-1198))) (-15 -3036 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-304 (-326 |#1|))) (-657 (-1198))))) (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (T -1153)) -((-3036 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-1198))) (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-657 (-657 (-304 (-326 *5))))) (-5 *1 (-1153 *5)) (-5 *3 (-657 (-304 (-326 *5)))))) (-3036 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-657 (-304 (-326 *5)))) (-5 *1 (-1153 *5)) (-5 *3 (-326 *5)))) (-3036 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-657 (-304 (-326 *5)))) (-5 *1 (-1153 *5)) (-5 *3 (-304 (-326 *5))))) (-3036 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-657 (-304 (-326 *4)))) (-5 *1 (-1153 *4)) (-5 *3 (-304 (-326 *4))))) (-3036 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) (-5 *2 (-657 (-304 (-326 *4)))) (-5 *1 (-1153 *4)) (-5 *3 (-326 *4))))) -(-10 -7 (-15 -3036 ((-657 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -3036 ((-657 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -3036 ((-657 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1198))) (-15 -3036 ((-657 (-304 (-326 |#1|))) (-326 |#1|) (-1198))) (-15 -3036 ((-657 (-657 (-304 (-326 |#1|)))) (-657 (-304 (-326 |#1|))) (-657 (-1198))))) -((-2256 ((|#2| |#2|) 28 (|has| |#1| (-862))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-1795 ((|#2| |#2|) 27 (|has| |#1| (-862))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) -(((-1154 |#1| |#2|) (-10 -7 (-15 -1795 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2256 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-862)) (PROGN (-15 -1795 (|#2| |#2|)) (-15 -2256 (|#2| |#2|))) |%noBranch|)) (-1239) (-13 (-616 (-576) |#1|) (-10 -7 (-6 -4466) (-6 -4467)))) (T -1154)) -((-2256 (*1 *2 *2) (-12 (-4 *3 (-862)) (-4 *3 (-1239)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4466) (-6 -4467)))))) (-1795 (*1 *2 *2) (-12 (-4 *3 (-862)) (-4 *3 (-1239)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4466) (-6 -4467)))))) (-2256 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-1154 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4466) (-6 -4467)))))) (-1795 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-1154 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4466) (-6 -4467))))))) -(-10 -7 (-15 -1795 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2256 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-862)) (PROGN (-15 -1795 (|#2| |#2|)) (-15 -2256 (|#2| |#2|))) |%noBranch|)) -((-3429 (((-112) $ $) NIL)) (-2896 (((-1186 3 |#1|) $) 141)) (-3587 (((-112) $) 101)) (-3192 (($ $ (-657 (-963 |#1|))) 44) (($ $ (-657 (-657 |#1|))) 104) (($ (-657 (-963 |#1|))) 103) (((-657 (-963 |#1|)) $) 102)) (-2901 (((-112) $) 72)) (-3624 (($ $ (-963 |#1|)) 76) (($ $ (-657 |#1|)) 81) (($ $ (-784)) 83) (($ (-963 |#1|)) 77) (((-963 |#1|) $) 75)) (-4130 (((-2 (|:| -2047 (-784)) (|:| |curves| (-784)) (|:| |polygons| (-784)) (|:| |constructs| (-784))) $) 139)) (-1481 (((-784) $) 53)) (-3181 (((-784) $) 52)) (-1927 (($ $ (-784) (-963 |#1|)) 67)) (-2407 (((-112) $) 111)) (-1894 (($ $ (-657 (-657 (-963 |#1|))) (-657 (-173)) (-173)) 118) (($ $ (-657 (-657 (-657 |#1|))) (-657 (-173)) (-173)) 120) (($ $ (-657 (-657 (-963 |#1|))) (-112) (-112)) 115) (($ $ (-657 (-657 (-657 |#1|))) (-112) (-112)) 127) (($ (-657 (-657 (-963 |#1|)))) 116) (($ (-657 (-657 (-963 |#1|))) (-112) (-112)) 117) (((-657 (-657 (-963 |#1|))) $) 114)) (-3073 (($ (-657 $)) 56) (($ $ $) 57)) (-4167 (((-657 (-173)) $) 133)) (-2648 (((-657 (-963 |#1|)) $) 130)) (-3307 (((-657 (-657 (-173))) $) 132)) (-2661 (((-657 (-657 (-657 (-963 |#1|)))) $) NIL)) (-2350 (((-657 (-657 (-657 (-784)))) $) 131)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-1461 (((-784) $ (-657 (-963 |#1|))) 65)) (-3151 (((-112) $) 84)) (-3215 (($ $ (-657 (-963 |#1|))) 86) (($ $ (-657 (-657 |#1|))) 92) (($ (-657 (-963 |#1|))) 87) (((-657 (-963 |#1|)) $) 85)) (-2019 (($) 48) (($ (-1186 3 |#1|)) 49)) (-1923 (($ $) 63)) (-2574 (((-657 $) $) 62)) (-3432 (($ (-657 $)) 59)) (-2561 (((-657 $) $) 61)) (-3501 (((-877) $) 146)) (-1663 (((-112) $) 94)) (-2451 (($ $ (-657 (-963 |#1|))) 96) (($ $ (-657 (-657 |#1|))) 99) (($ (-657 (-963 |#1|))) 97) (((-657 (-963 |#1|)) $) 95)) (-1554 (($ $) 140)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-1155 |#1|) (-1156 |#1|) (-1071)) (T -1155)) -NIL -(-1156 |#1|) -((-3429 (((-112) $ $) 7)) (-2896 (((-1186 3 |#1|) $) 14)) (-3587 (((-112) $) 30)) (-3192 (($ $ (-657 (-963 |#1|))) 34) (($ $ (-657 (-657 |#1|))) 33) (($ (-657 (-963 |#1|))) 32) (((-657 (-963 |#1|)) $) 31)) (-2901 (((-112) $) 45)) (-3624 (($ $ (-963 |#1|)) 50) (($ $ (-657 |#1|)) 49) (($ $ (-784)) 48) (($ (-963 |#1|)) 47) (((-963 |#1|) $) 46)) (-4130 (((-2 (|:| -2047 (-784)) (|:| |curves| (-784)) (|:| |polygons| (-784)) (|:| |constructs| (-784))) $) 16)) (-1481 (((-784) $) 59)) (-3181 (((-784) $) 60)) (-1927 (($ $ (-784) (-963 |#1|)) 51)) (-2407 (((-112) $) 22)) (-1894 (($ $ (-657 (-657 (-963 |#1|))) (-657 (-173)) (-173)) 29) (($ $ (-657 (-657 (-657 |#1|))) (-657 (-173)) (-173)) 28) (($ $ (-657 (-657 (-963 |#1|))) (-112) (-112)) 27) (($ $ (-657 (-657 (-657 |#1|))) (-112) (-112)) 26) (($ (-657 (-657 (-963 |#1|)))) 25) (($ (-657 (-657 (-963 |#1|))) (-112) (-112)) 24) (((-657 (-657 (-963 |#1|))) $) 23)) (-3073 (($ (-657 $)) 58) (($ $ $) 57)) (-4167 (((-657 (-173)) $) 17)) (-2648 (((-657 (-963 |#1|)) $) 21)) (-3307 (((-657 (-657 (-173))) $) 18)) (-2661 (((-657 (-657 (-657 (-963 |#1|)))) $) 19)) (-2350 (((-657 (-657 (-657 (-784)))) $) 20)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-1461 (((-784) $ (-657 (-963 |#1|))) 52)) (-3151 (((-112) $) 40)) (-3215 (($ $ (-657 (-963 |#1|))) 44) (($ $ (-657 (-657 |#1|))) 43) (($ (-657 (-963 |#1|))) 42) (((-657 (-963 |#1|)) $) 41)) (-2019 (($) 62) (($ (-1186 3 |#1|)) 61)) (-1923 (($ $) 53)) (-2574 (((-657 $) $) 54)) (-3432 (($ (-657 $)) 56)) (-2561 (((-657 $) $) 55)) (-3501 (((-877) $) 12)) (-1663 (((-112) $) 35)) (-2451 (($ $ (-657 (-963 |#1|))) 39) (($ $ (-657 (-657 |#1|))) 38) (($ (-657 (-963 |#1|))) 37) (((-657 (-963 |#1|)) $) 36)) (-1554 (($ $) 15)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8))) -(((-1156 |#1|) (-141) (-1071)) (T -1156)) -((-3501 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-877)))) (-2019 (*1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1071)))) (-2019 (*1 *1 *2) (-12 (-5 *2 (-1186 3 *3)) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) (-1481 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) (-3073 (*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-3073 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1071)))) (-3432 (*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-2561 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-5 *2 (-657 *1)) (-4 *1 (-1156 *3)))) (-2574 (*1 *2 *1) (-12 (-4 *3 (-1071)) (-5 *2 (-657 *1)) (-4 *1 (-1156 *3)))) (-1923 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1071)))) (-1461 (*1 *2 *1 *3) (-12 (-5 *3 (-657 (-963 *4))) (-4 *1 (-1156 *4)) (-4 *4 (-1071)) (-5 *2 (-784)))) (-1927 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *3 (-963 *4)) (-4 *1 (-1156 *4)) (-4 *4 (-1071)))) (-3624 (*1 *1 *1 *2) (-12 (-5 *2 (-963 *3)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-3624 (*1 *1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-3624 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-3624 (*1 *1 *2) (-12 (-5 *2 (-963 *3)) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) (-3624 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-963 *3)))) (-2901 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112)))) (-3215 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-963 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-3215 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-3215 (*1 *1 *2) (-12 (-5 *2 (-657 (-963 *3))) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) (-3215 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-963 *3))))) (-3151 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112)))) (-2451 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-963 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-2451 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-2451 (*1 *1 *2) (-12 (-5 *2 (-657 (-963 *3))) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) (-2451 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-963 *3))))) (-1663 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112)))) (-3192 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-963 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-3192 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) (-3192 (*1 *1 *2) (-12 (-5 *2 (-657 (-963 *3))) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-963 *3))))) (-3587 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112)))) (-1894 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-657 (-657 (-963 *5)))) (-5 *3 (-657 (-173))) (-5 *4 (-173)) (-4 *1 (-1156 *5)) (-4 *5 (-1071)))) (-1894 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-657 (-657 (-657 *5)))) (-5 *3 (-657 (-173))) (-5 *4 (-173)) (-4 *1 (-1156 *5)) (-4 *5 (-1071)))) (-1894 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-657 (-657 (-963 *4)))) (-5 *3 (-112)) (-4 *1 (-1156 *4)) (-4 *4 (-1071)))) (-1894 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-657 (-657 (-657 *4)))) (-5 *3 (-112)) (-4 *1 (-1156 *4)) (-4 *4 (-1071)))) (-1894 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 (-963 *3)))) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) (-1894 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-657 (-657 (-963 *4)))) (-5 *3 (-112)) (-4 *4 (-1071)) (-4 *1 (-1156 *4)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-657 (-963 *3)))))) (-2407 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112)))) (-2648 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-963 *3))))) (-2350 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-657 (-657 (-784))))))) (-2661 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-657 (-657 (-963 *3))))))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-657 (-173)))))) (-4167 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-173))))) (-4130 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-2 (|:| -2047 (-784)) (|:| |curves| (-784)) (|:| |polygons| (-784)) (|:| |constructs| (-784)))))) (-1554 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1071)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-1186 3 *3))))) -(-13 (-1122) (-10 -8 (-15 -2019 ($)) (-15 -2019 ($ (-1186 3 |t#1|))) (-15 -3181 ((-784) $)) (-15 -1481 ((-784) $)) (-15 -3073 ($ (-657 $))) (-15 -3073 ($ $ $)) (-15 -3432 ($ (-657 $))) (-15 -2561 ((-657 $) $)) (-15 -2574 ((-657 $) $)) (-15 -1923 ($ $)) (-15 -1461 ((-784) $ (-657 (-963 |t#1|)))) (-15 -1927 ($ $ (-784) (-963 |t#1|))) (-15 -3624 ($ $ (-963 |t#1|))) (-15 -3624 ($ $ (-657 |t#1|))) (-15 -3624 ($ $ (-784))) (-15 -3624 ($ (-963 |t#1|))) (-15 -3624 ((-963 |t#1|) $)) (-15 -2901 ((-112) $)) (-15 -3215 ($ $ (-657 (-963 |t#1|)))) (-15 -3215 ($ $ (-657 (-657 |t#1|)))) (-15 -3215 ($ (-657 (-963 |t#1|)))) (-15 -3215 ((-657 (-963 |t#1|)) $)) (-15 -3151 ((-112) $)) (-15 -2451 ($ $ (-657 (-963 |t#1|)))) (-15 -2451 ($ $ (-657 (-657 |t#1|)))) (-15 -2451 ($ (-657 (-963 |t#1|)))) (-15 -2451 ((-657 (-963 |t#1|)) $)) (-15 -1663 ((-112) $)) (-15 -3192 ($ $ (-657 (-963 |t#1|)))) (-15 -3192 ($ $ (-657 (-657 |t#1|)))) (-15 -3192 ($ (-657 (-963 |t#1|)))) (-15 -3192 ((-657 (-963 |t#1|)) $)) (-15 -3587 ((-112) $)) (-15 -1894 ($ $ (-657 (-657 (-963 |t#1|))) (-657 (-173)) (-173))) (-15 -1894 ($ $ (-657 (-657 (-657 |t#1|))) (-657 (-173)) (-173))) (-15 -1894 ($ $ (-657 (-657 (-963 |t#1|))) (-112) (-112))) (-15 -1894 ($ $ (-657 (-657 (-657 |t#1|))) (-112) (-112))) (-15 -1894 ($ (-657 (-657 (-963 |t#1|))))) (-15 -1894 ($ (-657 (-657 (-963 |t#1|))) (-112) (-112))) (-15 -1894 ((-657 (-657 (-963 |t#1|))) $)) (-15 -2407 ((-112) $)) (-15 -2648 ((-657 (-963 |t#1|)) $)) (-15 -2350 ((-657 (-657 (-657 (-784)))) $)) (-15 -2661 ((-657 (-657 (-657 (-963 |t#1|)))) $)) (-15 -3307 ((-657 (-657 (-173))) $)) (-15 -4167 ((-657 (-173)) $)) (-15 -4130 ((-2 (|:| -2047 (-784)) (|:| |curves| (-784)) (|:| |polygons| (-784)) (|:| |constructs| (-784))) $)) (-15 -1554 ($ $)) (-15 -2896 ((-1186 3 |t#1|) $)) (-15 -3501 ((-877) $)))) -(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 184) (($ (-1203)) NIL) (((-1203) $) 7)) (-2756 (((-112) $ (|[\|\|]| (-536))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-689))) 27) (((-112) $ (|[\|\|]| (-1299))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-618))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1137))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-694))) 55) (((-112) $ (|[\|\|]| (-529))) 59) (((-112) $ (|[\|\|]| (-1088))) 63) (((-112) $ (|[\|\|]| (-1300))) 67) (((-112) $ (|[\|\|]| (-537))) 71) (((-112) $ (|[\|\|]| (-1173))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-684))) 83) (((-112) $ (|[\|\|]| (-321))) 87) (((-112) $ (|[\|\|]| (-1058))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-992))) 99) (((-112) $ (|[\|\|]| (-1095))) 103) (((-112) $ (|[\|\|]| (-1112))) 107) (((-112) $ (|[\|\|]| (-1118))) 111) (((-112) $ (|[\|\|]| (-638))) 115) (((-112) $ (|[\|\|]| (-1188))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-490))) 131) (((-112) $ (|[\|\|]| (-604))) 135) (((-112) $ (|[\|\|]| (-518))) 139) (((-112) $ (|[\|\|]| (-1180))) 143) (((-112) $ (|[\|\|]| (-576))) 147)) (-2046 (((-112) $ $) NIL)) (-1977 (((-536) $) 20) (((-220) $) 24) (((-689) $) 28) (((-1299) $) 32) (((-139) $) 36) (((-618) $) 40) (((-134) $) 44) (((-1137) $) 48) (((-96) $) 52) (((-694) $) 56) (((-529) $) 60) (((-1088) $) 64) (((-1300) $) 68) (((-537) $) 72) (((-1173) $) 76) (((-155) $) 80) (((-684) $) 84) (((-321) $) 88) (((-1058) $) 92) (((-182) $) 96) (((-992) $) 100) (((-1095) $) 104) (((-1112) $) 108) (((-1118) $) 112) (((-638) $) 116) (((-1188) $) 120) (((-157) $) 124) (((-138) $) 128) (((-490) $) 132) (((-604) $) 136) (((-518) $) 140) (((-1180) $) 144) (((-576) $) 148)) (-2933 (((-112) $ $) NIL))) -(((-1157) (-1159)) (T -1157)) -NIL -(-1159) -((-4333 (((-657 (-1203)) (-1180)) 9))) -(((-1158) (-10 -7 (-15 -4333 ((-657 (-1203)) (-1180))))) (T -1158)) -((-4333 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-657 (-1203))) (-5 *1 (-1158))))) -(-10 -7 (-15 -4333 ((-657 (-1203)) (-1180)))) -((-3429 (((-112) $ $) 7)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12) (($ (-1203)) 17) (((-1203) $) 16)) (-2756 (((-112) $ (|[\|\|]| (-536))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-689))) 81) (((-112) $ (|[\|\|]| (-1299))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-618))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1137))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-694))) 67) (((-112) $ (|[\|\|]| (-529))) 65) (((-112) $ (|[\|\|]| (-1088))) 63) (((-112) $ (|[\|\|]| (-1300))) 61) (((-112) $ (|[\|\|]| (-537))) 59) (((-112) $ (|[\|\|]| (-1173))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-684))) 53) (((-112) $ (|[\|\|]| (-321))) 51) (((-112) $ (|[\|\|]| (-1058))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-992))) 45) (((-112) $ (|[\|\|]| (-1095))) 43) (((-112) $ (|[\|\|]| (-1112))) 41) (((-112) $ (|[\|\|]| (-1118))) 39) (((-112) $ (|[\|\|]| (-638))) 37) (((-112) $ (|[\|\|]| (-1188))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-490))) 29) (((-112) $ (|[\|\|]| (-604))) 27) (((-112) $ (|[\|\|]| (-518))) 25) (((-112) $ (|[\|\|]| (-1180))) 23) (((-112) $ (|[\|\|]| (-576))) 21)) (-2046 (((-112) $ $) 6)) (-1977 (((-536) $) 84) (((-220) $) 82) (((-689) $) 80) (((-1299) $) 78) (((-139) $) 76) (((-618) $) 74) (((-134) $) 72) (((-1137) $) 70) (((-96) $) 68) (((-694) $) 66) (((-529) $) 64) (((-1088) $) 62) (((-1300) $) 60) (((-537) $) 58) (((-1173) $) 56) (((-155) $) 54) (((-684) $) 52) (((-321) $) 50) (((-1058) $) 48) (((-182) $) 46) (((-992) $) 44) (((-1095) $) 42) (((-1112) $) 40) (((-1118) $) 38) (((-638) $) 36) (((-1188) $) 34) (((-157) $) 32) (((-138) $) 30) (((-490) $) 28) (((-604) $) 26) (((-518) $) 24) (((-1180) $) 22) (((-576) $) 20)) (-2933 (((-112) $ $) 8))) -(((-1159) (-141)) (T -1159)) -((-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-536)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-220)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-689))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-689)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1299))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1299)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-139)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-618)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-134)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1137))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1137)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-96)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-694))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-694)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-529)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1088))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1088)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1300))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1300)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-537)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1173))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1173)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-155)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-684))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-684)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-321)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1058))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1058)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-182)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-992))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-992)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1095))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1095)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1112))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1112)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1118))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1118)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-638)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1188)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-157)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-138)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-490)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-604)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-518)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1180)))) (-2756 (*1 *2 *1 *3) (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-576))))) -(-13 (-1105) (-1284) (-10 -8 (-15 -2756 ((-112) $ (|[\|\|]| (-536)))) (-15 -1977 ((-536) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-220)))) (-15 -1977 ((-220) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-689)))) (-15 -1977 ((-689) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-1299)))) (-15 -1977 ((-1299) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-139)))) (-15 -1977 ((-139) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-618)))) (-15 -1977 ((-618) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-134)))) (-15 -1977 ((-134) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-1137)))) (-15 -1977 ((-1137) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-96)))) (-15 -1977 ((-96) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-694)))) (-15 -1977 ((-694) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-529)))) (-15 -1977 ((-529) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-1088)))) (-15 -1977 ((-1088) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-1300)))) (-15 -1977 ((-1300) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-537)))) (-15 -1977 ((-537) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-1173)))) (-15 -1977 ((-1173) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-155)))) (-15 -1977 ((-155) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-684)))) (-15 -1977 ((-684) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-321)))) (-15 -1977 ((-321) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-1058)))) (-15 -1977 ((-1058) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-182)))) (-15 -1977 ((-182) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-992)))) (-15 -1977 ((-992) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-1095)))) (-15 -1977 ((-1095) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-1112)))) (-15 -1977 ((-1112) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-1118)))) (-15 -1977 ((-1118) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-638)))) (-15 -1977 ((-638) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-1188)))) (-15 -1977 ((-1188) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-157)))) (-15 -1977 ((-157) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-138)))) (-15 -1977 ((-138) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-490)))) (-15 -1977 ((-490) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-604)))) (-15 -1977 ((-604) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-518)))) (-15 -1977 ((-518) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-1180)))) (-15 -1977 ((-1180) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-576)))) (-15 -1977 ((-576) $)))) -(((-93) . T) ((-102) . T) ((-628 #0=(-1203)) . T) ((-625 (-877)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1122) . T) ((-1105) . T) ((-1239) . T) ((-1284) . T)) -((-2699 (((-1294) (-657 (-877))) 22) (((-1294) (-877)) 21)) (-4256 (((-1294) (-657 (-877))) 20) (((-1294) (-877)) 19)) (-2669 (((-1294) (-657 (-877))) 18) (((-1294) (-877)) 10) (((-1294) (-1180) (-877)) 16))) -(((-1160) (-10 -7 (-15 -2669 ((-1294) (-1180) (-877))) (-15 -2669 ((-1294) (-877))) (-15 -4256 ((-1294) (-877))) (-15 -2699 ((-1294) (-877))) (-15 -2669 ((-1294) (-657 (-877)))) (-15 -4256 ((-1294) (-657 (-877)))) (-15 -2699 ((-1294) (-657 (-877)))))) (T -1160)) -((-2699 (*1 *2 *3) (-12 (-5 *3 (-657 (-877))) (-5 *2 (-1294)) (-5 *1 (-1160)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-657 (-877))) (-5 *2 (-1294)) (-5 *1 (-1160)))) (-2669 (*1 *2 *3) (-12 (-5 *3 (-657 (-877))) (-5 *2 (-1294)) (-5 *1 (-1160)))) (-2699 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-1160)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-1160)))) (-2669 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-1160)))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-877)) (-5 *2 (-1294)) (-5 *1 (-1160))))) -(-10 -7 (-15 -2669 ((-1294) (-1180) (-877))) (-15 -2669 ((-1294) (-877))) (-15 -4256 ((-1294) (-877))) (-15 -2699 ((-1294) (-877))) (-15 -2669 ((-1294) (-657 (-877)))) (-15 -4256 ((-1294) (-657 (-877)))) (-15 -2699 ((-1294) (-657 (-877))))) -((-4399 (($ $ $) 10)) (-1379 (($ $) 9)) (-3806 (($ $ $) 13)) (-2751 (($ $ $) 15)) (-2239 (($ $ $) 12)) (-2467 (($ $ $) 14)) (-3270 (($ $) 17)) (-3480 (($ $) 16)) (-1792 (($ $) 6)) (-2238 (($ $ $) 11) (($ $) 7)) (-1717 (($ $ $) 8))) -(((-1161) (-141)) (T -1161)) -((-3270 (*1 *1 *1) (-4 *1 (-1161))) (-3480 (*1 *1 *1) (-4 *1 (-1161))) (-2751 (*1 *1 *1 *1) (-4 *1 (-1161))) (-2467 (*1 *1 *1 *1) (-4 *1 (-1161))) (-3806 (*1 *1 *1 *1) (-4 *1 (-1161))) (-2239 (*1 *1 *1 *1) (-4 *1 (-1161))) (-2238 (*1 *1 *1 *1) (-4 *1 (-1161))) (-4399 (*1 *1 *1 *1) (-4 *1 (-1161))) (-1379 (*1 *1 *1) (-4 *1 (-1161))) (-1717 (*1 *1 *1 *1) (-4 *1 (-1161))) (-2238 (*1 *1 *1) (-4 *1 (-1161))) (-1792 (*1 *1 *1) (-4 *1 (-1161)))) -(-13 (-10 -8 (-15 -1792 ($ $)) (-15 -2238 ($ $)) (-15 -1717 ($ $ $)) (-15 -1379 ($ $)) (-15 -4399 ($ $ $)) (-15 -2238 ($ $ $)) (-15 -2239 ($ $ $)) (-15 -3806 ($ $ $)) (-15 -2467 ($ $ $)) (-15 -2751 ($ $ $)) (-15 -3480 ($ $)) (-15 -3270 ($ $)))) -((-3429 (((-112) $ $) 44)) (-3071 ((|#1| $) 17)) (-3441 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-3448 (((-112) $) 19)) (-2883 (($ $ |#1|) 30)) (-1451 (($ $ (-112)) 32)) (-1609 (($ $) 33)) (-2603 (($ $ |#2|) 31)) (-2342 (((-1180) $) NIL)) (-3958 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-1471 (((-1142) $) NIL)) (-3387 (((-112) $) 16)) (-3581 (($) 13)) (-1923 (($ $) 29)) (-3511 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -3946 |#2|))) 23) (((-657 $) (-657 (-2 (|:| |val| |#1|) (|:| -3946 |#2|)))) 26) (((-657 $) |#1| (-657 |#2|)) 28)) (-3943 ((|#2| $) 18)) (-3501 (((-877) $) 53)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 42))) -(((-1162 |#1| |#2|) (-13 (-1122) (-10 -8 (-15 -3581 ($)) (-15 -3387 ((-112) $)) (-15 -3071 (|#1| $)) (-15 -3943 (|#2| $)) (-15 -3448 ((-112) $)) (-15 -3511 ($ |#1| |#2| (-112))) (-15 -3511 ($ |#1| |#2|)) (-15 -3511 ($ (-2 (|:| |val| |#1|) (|:| -3946 |#2|)))) (-15 -3511 ((-657 $) (-657 (-2 (|:| |val| |#1|) (|:| -3946 |#2|))))) (-15 -3511 ((-657 $) |#1| (-657 |#2|))) (-15 -1923 ($ $)) (-15 -2883 ($ $ |#1|)) (-15 -2603 ($ $ |#2|)) (-15 -1451 ($ $ (-112))) (-15 -1609 ($ $)) (-15 -3958 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3441 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1122) (-34)) (-13 (-1122) (-34))) (T -1162)) -((-3581 (*1 *1) (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))))) (-3071 (*1 *2 *1) (-12 (-4 *2 (-13 (-1122) (-34))) (-5 *1 (-1162 *2 *3)) (-4 *3 (-13 (-1122) (-34))))) (-3943 (*1 *2 *1) (-12 (-4 *2 (-13 (-1122) (-34))) (-5 *1 (-1162 *3 *2)) (-4 *3 (-13 (-1122) (-34))))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))))) (-3511 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3511 (*1 *1 *2 *3) (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3511 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3946 *4))) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1162 *3 *4)))) (-3511 (*1 *2 *3) (-12 (-5 *3 (-657 (-2 (|:| |val| *4) (|:| -3946 *5)))) (-4 *4 (-13 (-1122) (-34))) (-4 *5 (-13 (-1122) (-34))) (-5 *2 (-657 (-1162 *4 *5))) (-5 *1 (-1162 *4 *5)))) (-3511 (*1 *2 *3 *4) (-12 (-5 *4 (-657 *5)) (-4 *5 (-13 (-1122) (-34))) (-5 *2 (-657 (-1162 *3 *5))) (-5 *1 (-1162 *3 *5)) (-4 *3 (-13 (-1122) (-34))))) (-1923 (*1 *1 *1) (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-2883 (*1 *1 *1 *2) (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-2603 (*1 *1 *1 *2) (-12 (-5 *1 (-1162 *3 *2)) (-4 *3 (-13 (-1122) (-34))) (-4 *2 (-13 (-1122) (-34))))) (-1451 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))))) (-1609 (*1 *1 *1) (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3958 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1122) (-34))) (-4 *6 (-13 (-1122) (-34))) (-5 *2 (-112)) (-5 *1 (-1162 *5 *6)))) (-3441 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1122) (-34))) (-5 *2 (-112)) (-5 *1 (-1162 *4 *5)) (-4 *4 (-13 (-1122) (-34)))))) -(-13 (-1122) (-10 -8 (-15 -3581 ($)) (-15 -3387 ((-112) $)) (-15 -3071 (|#1| $)) (-15 -3943 (|#2| $)) (-15 -3448 ((-112) $)) (-15 -3511 ($ |#1| |#2| (-112))) (-15 -3511 ($ |#1| |#2|)) (-15 -3511 ($ (-2 (|:| |val| |#1|) (|:| -3946 |#2|)))) (-15 -3511 ((-657 $) (-657 (-2 (|:| |val| |#1|) (|:| -3946 |#2|))))) (-15 -3511 ((-657 $) |#1| (-657 |#2|))) (-15 -1923 ($ $)) (-15 -2883 ($ $ |#1|)) (-15 -2603 ($ $ |#2|)) (-15 -1451 ($ $ (-112))) (-15 -1609 ($ $)) (-15 -3958 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3441 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-3429 (((-112) $ $) NIL (|has| (-1162 |#1| |#2|) (-102)))) (-3071 (((-1162 |#1| |#2|) $) 27)) (-4233 (($ $) 91)) (-2453 (((-112) (-1162 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-3248 (($ $ $ (-657 (-1162 |#1| |#2|))) 108) (($ $ $ (-657 (-1162 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-3793 (((-112) $ (-784)) NIL)) (-3734 (((-1162 |#1| |#2|) $ (-1162 |#1| |#2|)) 46 (|has| $ (-6 -4467)))) (-3682 (((-1162 |#1| |#2|) $ "value" (-1162 |#1| |#2|)) NIL (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) 44 (|has| $ (-6 -4467)))) (-4359 (($) NIL T CONST)) (-2575 (((-657 (-2 (|:| |val| |#1|) (|:| -3946 |#2|))) $) 95)) (-3647 (($ (-1162 |#1| |#2|) $) 42)) (-3895 (($ (-1162 |#1| |#2|) $) 34)) (-1458 (((-657 (-1162 |#1| |#2|)) $) NIL (|has| $ (-6 -4466)))) (-2877 (((-657 $) $) 54)) (-2801 (((-112) (-1162 |#1| |#2|) $) 97)) (-1700 (((-112) $ $) NIL (|has| (-1162 |#1| |#2|) (-1122)))) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 (-1162 |#1| |#2|)) $) 58 (|has| $ (-6 -4466)))) (-1627 (((-112) (-1162 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-1162 |#1| |#2|) (-1122))))) (-2148 (($ (-1 (-1162 |#1| |#2|) (-1162 |#1| |#2|)) $) 50 (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-1162 |#1| |#2|) (-1162 |#1| |#2|)) $) 49)) (-4261 (((-112) $ (-784)) NIL)) (-2424 (((-657 (-1162 |#1| |#2|)) $) 56)) (-2633 (((-112) $) 45)) (-2342 (((-1180) $) NIL (|has| (-1162 |#1| |#2|) (-1122)))) (-1471 (((-1142) $) NIL (|has| (-1162 |#1| |#2|) (-1122)))) (-1405 (((-3 $ "failed") $) 89)) (-3399 (((-112) (-1 (-112) (-1162 |#1| |#2|)) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-1162 |#1| |#2|)))) NIL (-12 (|has| (-1162 |#1| |#2|) (-319 (-1162 |#1| |#2|))) (|has| (-1162 |#1| |#2|) (-1122)))) (($ $ (-304 (-1162 |#1| |#2|))) NIL (-12 (|has| (-1162 |#1| |#2|) (-319 (-1162 |#1| |#2|))) (|has| (-1162 |#1| |#2|) (-1122)))) (($ $ (-1162 |#1| |#2|) (-1162 |#1| |#2|)) NIL (-12 (|has| (-1162 |#1| |#2|) (-319 (-1162 |#1| |#2|))) (|has| (-1162 |#1| |#2|) (-1122)))) (($ $ (-657 (-1162 |#1| |#2|)) (-657 (-1162 |#1| |#2|))) NIL (-12 (|has| (-1162 |#1| |#2|) (-319 (-1162 |#1| |#2|))) (|has| (-1162 |#1| |#2|) (-1122))))) (-2806 (((-112) $ $) 53)) (-3387 (((-112) $) 24)) (-3581 (($) 26)) (-2835 (((-1162 |#1| |#2|) $ "value") NIL)) (-3883 (((-576) $ $) NIL)) (-3628 (((-112) $) 47)) (-1482 (((-784) (-1 (-112) (-1162 |#1| |#2|)) $) NIL (|has| $ (-6 -4466))) (((-784) (-1162 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-1162 |#1| |#2|) (-1122))))) (-1923 (($ $) 52)) (-3511 (($ (-1162 |#1| |#2|)) 10) (($ |#1| |#2| (-657 $)) 13) (($ |#1| |#2| (-657 (-1162 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-657 |#2|)) 18)) (-1351 (((-657 |#2|) $) 96)) (-3501 (((-877) $) 87 (|has| (-1162 |#1| |#2|) (-625 (-877))))) (-1986 (((-657 $) $) 31)) (-1633 (((-112) $ $) NIL (|has| (-1162 |#1| |#2|) (-1122)))) (-2046 (((-112) $ $) NIL (|has| (-1162 |#1| |#2|) (-102)))) (-2147 (((-112) (-1 (-112) (-1162 |#1| |#2|)) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 70 (|has| (-1162 |#1| |#2|) (-102)))) (-3440 (((-784) $) 64 (|has| $ (-6 -4466))))) -(((-1163 |#1| |#2|) (-13 (-1032 (-1162 |#1| |#2|)) (-10 -8 (-6 -4467) (-6 -4466) (-15 -1405 ((-3 $ "failed") $)) (-15 -4233 ($ $)) (-15 -3511 ($ (-1162 |#1| |#2|))) (-15 -3511 ($ |#1| |#2| (-657 $))) (-15 -3511 ($ |#1| |#2| (-657 (-1162 |#1| |#2|)))) (-15 -3511 ($ |#1| |#2| |#1| (-657 |#2|))) (-15 -1351 ((-657 |#2|) $)) (-15 -2575 ((-657 (-2 (|:| |val| |#1|) (|:| -3946 |#2|))) $)) (-15 -2801 ((-112) (-1162 |#1| |#2|) $)) (-15 -2453 ((-112) (-1162 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3895 ($ (-1162 |#1| |#2|) $)) (-15 -3647 ($ (-1162 |#1| |#2|) $)) (-15 -3248 ($ $ $ (-657 (-1162 |#1| |#2|)))) (-15 -3248 ($ $ $ (-657 (-1162 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1122) (-34)) (-13 (-1122) (-34))) (T -1163)) -((-1405 (*1 *1 *1) (|partial| -12 (-5 *1 (-1163 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-4233 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3511 (*1 *1 *2) (-12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1163 *3 *4)))) (-3511 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-657 (-1163 *2 *3))) (-5 *1 (-1163 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3511 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-657 (-1162 *2 *3))) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))) (-5 *1 (-1163 *2 *3)))) (-3511 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-657 *3)) (-4 *3 (-13 (-1122) (-34))) (-5 *1 (-1163 *2 *3)) (-4 *2 (-13 (-1122) (-34))))) (-1351 (*1 *2 *1) (-12 (-5 *2 (-657 *4)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))))) (-2575 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) (-5 *1 (-1163 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))))) (-2801 (*1 *2 *3 *1) (-12 (-5 *3 (-1162 *4 *5)) (-4 *4 (-13 (-1122) (-34))) (-4 *5 (-13 (-1122) (-34))) (-5 *2 (-112)) (-5 *1 (-1163 *4 *5)))) (-2453 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1162 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1122) (-34))) (-4 *6 (-13 (-1122) (-34))) (-5 *2 (-112)) (-5 *1 (-1163 *5 *6)))) (-3895 (*1 *1 *2 *1) (-12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1163 *3 *4)))) (-3647 (*1 *1 *2 *1) (-12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1163 *3 *4)))) (-3248 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-657 (-1162 *3 *4))) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1163 *3 *4)))) (-3248 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-1162 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1122) (-34))) (-4 *5 (-13 (-1122) (-34))) (-5 *1 (-1163 *4 *5))))) -(-13 (-1032 (-1162 |#1| |#2|)) (-10 -8 (-6 -4467) (-6 -4466) (-15 -1405 ((-3 $ "failed") $)) (-15 -4233 ($ $)) (-15 -3511 ($ (-1162 |#1| |#2|))) (-15 -3511 ($ |#1| |#2| (-657 $))) (-15 -3511 ($ |#1| |#2| (-657 (-1162 |#1| |#2|)))) (-15 -3511 ($ |#1| |#2| |#1| (-657 |#2|))) (-15 -1351 ((-657 |#2|) $)) (-15 -2575 ((-657 (-2 (|:| |val| |#1|) (|:| -3946 |#2|))) $)) (-15 -2801 ((-112) (-1162 |#1| |#2|) $)) (-15 -2453 ((-112) (-1162 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3895 ($ (-1162 |#1| |#2|) $)) (-15 -3647 ($ (-1162 |#1| |#2|) $)) (-15 -3248 ($ $ $ (-657 (-1162 |#1| |#2|)))) (-15 -3248 ($ $ $ (-657 (-1162 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2153 (($ $) NIL)) (-2302 ((|#2| $) NIL)) (-3864 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-3148 (($ (-702 |#2|)) 56)) (-3186 (((-112) $) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-1346 (($ |#2|) 14)) (-4359 (($) NIL T CONST)) (-3590 (($ $) 69 (|has| |#2| (-317)))) (-2911 (((-245 |#1| |#2|) $ (-576)) 42)) (-1624 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2884 (((-576) $) NIL (|has| |#2| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1060 (-419 (-576))))) ((|#2| $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL) (((-702 |#2|) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) 83)) (-1542 (((-784) $) 71 (|has| |#2| (-568)))) (-2083 ((|#2| $ (-576) (-576)) NIL)) (-1458 (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-4094 (((-112) $) NIL)) (-3662 (((-784) $) 73 (|has| |#2| (-568)))) (-1345 (((-657 (-245 |#1| |#2|)) $) 77 (|has| |#2| (-568)))) (-2377 (((-784) $) NIL)) (-4109 (($ |#2|) 25)) (-2387 (((-784) $) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-1969 ((|#2| $) 67 (|has| |#2| (-6 (-4468 "*"))))) (-2491 (((-576) $) NIL)) (-3770 (((-576) $) NIL)) (-2070 (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-3704 (((-576) $) NIL)) (-1429 (((-576) $) NIL)) (-2514 (($ (-657 (-657 |#2|))) 37)) (-2148 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2339 (((-657 (-657 |#2|)) $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-2342 (((-1180) $) NIL)) (-3913 (((-3 $ "failed") $) 80 (|has| |#2| (-374)))) (-1471 (((-1142) $) NIL)) (-3418 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-3399 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) NIL)) (-2815 (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-784)) NIL (|has| |#2| (-237))) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198))))) (-2550 ((|#2| $) NIL)) (-4277 (($ (-657 |#2|)) 50)) (-2049 (((-112) $) NIL)) (-2732 (((-245 |#1| |#2|) $) NIL)) (-1493 ((|#2| $) 65 (|has| |#2| (-6 (-4468 "*"))))) (-1482 (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-1923 (($ $) NIL)) (-4148 (((-548) $) 89 (|has| |#2| (-626 (-548))))) (-3815 (((-245 |#1| |#2|) $ (-576)) 44)) (-3501 (((-877) $) 47) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1060 (-419 (-576))))) (($ |#2|) NIL) (((-702 |#2|) $) 52)) (-1960 (((-784)) 23 T CONST)) (-2046 (((-112) $ $) NIL)) (-2147 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-4299 (((-112) $) NIL)) (-2769 (($) 16 T CONST)) (-2779 (($) 21 T CONST)) (-2097 (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-784)) NIL (|has| |#2| (-237))) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198))))) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) 63) (($ $ (-576)) 82 (|has| |#2| (-374)))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) 59) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) 61)) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-1164 |#1| |#2|) (-13 (-1145 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-702 |#2|)) (-10 -8 (-15 -4109 ($ |#2|)) (-15 -2153 ($ $)) (-15 -3148 ($ (-702 |#2|))) (IF (|has| |#2| (-6 (-4468 "*"))) (-6 -4455) |%noBranch|) (IF (|has| |#2| (-6 (-4468 "*"))) (IF (|has| |#2| (-6 -4463)) (-6 -4463) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-784) (-1071)) (T -1164)) -((-4109 (*1 *1 *2) (-12 (-5 *1 (-1164 *3 *2)) (-14 *3 (-784)) (-4 *2 (-1071)))) (-2153 (*1 *1 *1) (-12 (-5 *1 (-1164 *2 *3)) (-14 *2 (-784)) (-4 *3 (-1071)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-702 *4)) (-4 *4 (-1071)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-784))))) -(-13 (-1145 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-702 |#2|)) (-10 -8 (-15 -4109 ($ |#2|)) (-15 -2153 ($ $)) (-15 -3148 ($ (-702 |#2|))) (IF (|has| |#2| (-6 (-4468 "*"))) (-6 -4455) |%noBranch|) (IF (|has| |#2| (-6 (-4468 "*"))) (IF (|has| |#2| (-6 -4463)) (-6 -4463) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) -((-1973 (($ $) 19)) (-1906 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-4112 (((-112) $ $) 24)) (-4378 (($ $) 17)) (-2835 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1256 (-576))) NIL) (($ $ $) 31)) (-3501 (($ (-145)) 29) (((-877) $) NIL))) -(((-1165 |#1|) (-10 -8 (-15 -3501 ((-877) |#1|)) (-15 -2835 (|#1| |#1| |#1|)) (-15 -1906 (|#1| |#1| (-142))) (-15 -1906 (|#1| |#1| (-145))) (-15 -3501 (|#1| (-145))) (-15 -4112 ((-112) |#1| |#1|)) (-15 -1973 (|#1| |#1|)) (-15 -4378 (|#1| |#1|)) (-15 -2835 (|#1| |#1| (-1256 (-576)))) (-15 -2835 ((-145) |#1| (-576))) (-15 -2835 ((-145) |#1| (-576) (-145)))) (-1166)) (T -1165)) -NIL -(-10 -8 (-15 -3501 ((-877) |#1|)) (-15 -2835 (|#1| |#1| |#1|)) (-15 -1906 (|#1| |#1| (-142))) (-15 -1906 (|#1| |#1| (-145))) (-15 -3501 (|#1| (-145))) (-15 -4112 ((-112) |#1| |#1|)) (-15 -1973 (|#1| |#1|)) (-15 -4378 (|#1| |#1|)) (-15 -2835 (|#1| |#1| (-1256 (-576)))) (-15 -2835 ((-145) |#1| (-576))) (-15 -2835 ((-145) |#1| (-576) (-145)))) -((-3429 (((-112) $ $) 20 (|has| (-145) (-102)))) (-1335 (($ $) 123)) (-1973 (($ $) 124)) (-1906 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-4313 (((-1294) $ (-576) (-576)) 41 (|has| $ (-6 -4467)))) (-4085 (((-112) $ $) 121)) (-4060 (((-112) $ $ (-576)) 120)) (-1407 (((-657 $) $ (-145)) 113) (((-657 $) $ (-142)) 112)) (-1568 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-862)))) (-3363 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4467))) (($ $) 91 (-12 (|has| (-145) (-862)) (|has| $ (-6 -4467))))) (-1850 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-862)))) (-3793 (((-112) $ (-784)) 8)) (-3682 (((-145) $ (-576) (-145)) 53 (|has| $ (-6 -4467))) (((-145) $ (-1256 (-576)) (-145)) 60 (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4466)))) (-4359 (($) 7 T CONST)) (-2685 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-3606 (($ $) 93 (|has| $ (-6 -4467)))) (-3768 (($ $) 103)) (-2846 (($ $ (-1256 (-576)) $) 117)) (-3914 (($ $) 80 (-12 (|has| (-145) (-1122)) (|has| $ (-6 -4466))))) (-3895 (($ (-145) $) 79 (-12 (|has| (-145) (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4466)))) (-3622 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1122)) (|has| $ (-6 -4466)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4466))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4466)))) (-2158 (((-145) $ (-576) (-145)) 54 (|has| $ (-6 -4467)))) (-2083 (((-145) $ (-576)) 52)) (-4112 (((-112) $ $) 122)) (-3582 (((-576) (-1 (-112) (-145)) $) 100) (((-576) (-145) $) 99 (|has| (-145) (-1122))) (((-576) (-145) $ (-576)) 98 (|has| (-145) (-1122))) (((-576) $ $ (-576)) 116) (((-576) (-142) $ (-576)) 115)) (-1458 (((-657 (-145)) $) 31 (|has| $ (-6 -4466)))) (-4109 (($ (-784) (-145)) 70)) (-1833 (((-112) $ (-784)) 9)) (-3853 (((-576) $) 44 (|has| (-576) (-862)))) (-3707 (($ $ $) 85 (|has| (-145) (-862)))) (-3073 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-862)))) (-2070 (((-657 (-145)) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1122)) (|has| $ (-6 -4466))))) (-2272 (((-576) $) 45 (|has| (-576) (-862)))) (-1611 (($ $ $) 86 (|has| (-145) (-862)))) (-1972 (((-112) $ $ (-145)) 118)) (-1364 (((-784) $ $ (-145)) 119)) (-2148 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-4380 (($ $) 125)) (-4378 (($ $) 126)) (-4261 (((-112) $ (-784)) 10)) (-2696 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-2342 (((-1180) $) 23 (|has| (-145) (-1122)))) (-2271 (($ (-145) $ (-576)) 62) (($ $ $ (-576)) 61)) (-1430 (((-657 (-576)) $) 47)) (-4242 (((-112) (-576) $) 48)) (-1471 (((-1142) $) 22 (|has| (-145) (-1122)))) (-3510 (((-145) $) 43 (|has| (-576) (-862)))) (-2951 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-1987 (($ $ (-145)) 42 (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-145)))) 27 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-304 (-145))) 26 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-657 (-145)) (-657 (-145))) 24 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122))))) (-2806 (((-112) $ $) 14)) (-1515 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-2380 (((-657 (-145)) $) 49)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 (((-145) $ (-576) (-145)) 51) (((-145) $ (-576)) 50) (($ $ (-1256 (-576))) 71) (($ $ $) 105)) (-3409 (($ $ (-576)) 64) (($ $ (-1256 (-576))) 63)) (-1482 (((-784) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4466))) (((-784) (-145) $) 29 (-12 (|has| (-145) (-1122)) (|has| $ (-6 -4466))))) (-2114 (($ $ $ (-576)) 94 (|has| $ (-6 -4467)))) (-1923 (($ $) 13)) (-4148 (((-548) $) 81 (|has| (-145) (-626 (-548))))) (-3511 (($ (-657 (-145))) 72)) (-1674 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-657 $)) 66)) (-3501 (($ (-145)) 114) (((-877) $) 18 (|has| (-145) (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| (-145) (-102)))) (-2147 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) 87 (|has| (-145) (-862)))) (-2963 (((-112) $ $) 89 (|has| (-145) (-862)))) (-2933 (((-112) $ $) 19 (|has| (-145) (-102)))) (-2973 (((-112) $ $) 88 (|has| (-145) (-862)))) (-2954 (((-112) $ $) 90 (|has| (-145) (-862)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-1166) (-141)) (T -1166)) -((-4378 (*1 *1 *1) (-4 *1 (-1166))) (-4380 (*1 *1 *1) (-4 *1 (-1166))) (-1973 (*1 *1 *1) (-4 *1 (-1166))) (-1335 (*1 *1 *1) (-4 *1 (-1166))) (-4112 (*1 *2 *1 *1) (-12 (-4 *1 (-1166)) (-5 *2 (-112)))) (-4085 (*1 *2 *1 *1) (-12 (-4 *1 (-1166)) (-5 *2 (-112)))) (-4060 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1166)) (-5 *3 (-576)) (-5 *2 (-112)))) (-1364 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1166)) (-5 *3 (-145)) (-5 *2 (-784)))) (-1972 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1166)) (-5 *3 (-145)) (-5 *2 (-112)))) (-2846 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1166)) (-5 *2 (-1256 (-576))))) (-3582 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-576)))) (-3582 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-576)) (-5 *3 (-142)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1166)))) (-1407 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-657 *1)) (-4 *1 (-1166)))) (-1407 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-657 *1)) (-4 *1 (-1166)))) (-1906 (*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-145)))) (-1906 (*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-142)))) (-2696 (*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-145)))) (-2696 (*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-142)))) (-2685 (*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-145)))) (-2685 (*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-142)))) (-2835 (*1 *1 *1 *1) (-4 *1 (-1166)))) -(-13 (-19 (-145)) (-10 -8 (-15 -4378 ($ $)) (-15 -4380 ($ $)) (-15 -1973 ($ $)) (-15 -1335 ($ $)) (-15 -4112 ((-112) $ $)) (-15 -4085 ((-112) $ $)) (-15 -4060 ((-112) $ $ (-576))) (-15 -1364 ((-784) $ $ (-145))) (-15 -1972 ((-112) $ $ (-145))) (-15 -2846 ($ $ (-1256 (-576)) $)) (-15 -3582 ((-576) $ $ (-576))) (-15 -3582 ((-576) (-142) $ (-576))) (-15 -3501 ($ (-145))) (-15 -1407 ((-657 $) $ (-145))) (-15 -1407 ((-657 $) $ (-142))) (-15 -1906 ($ $ (-145))) (-15 -1906 ($ $ (-142))) (-15 -2696 ($ $ (-145))) (-15 -2696 ($ $ (-142))) (-15 -2685 ($ $ (-145))) (-15 -2685 ($ $ (-142))) (-15 -2835 ($ $ $)))) -(((-34) . T) ((-102) -2802 (|has| (-145) (-1122)) (|has| (-145) (-862)) (|has| (-145) (-102))) ((-625 (-877)) -2802 (|has| (-145) (-1122)) (|has| (-145) (-862)) (|has| (-145) (-625 (-877)))) ((-152 #0=(-145)) . T) ((-626 (-548)) |has| (-145) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122))) ((-664 #0#) . T) ((-19 #0#) . T) ((-862) |has| (-145) (-862)) ((-865) |has| (-145) (-862)) ((-1122) -2802 (|has| (-145) (-1122)) (|has| (-145) (-862))) ((-1239) . T)) -((-3384 (((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-657 |#4|) (-657 |#5|) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) (-784)) 112)) (-3744 (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-784)) 61)) (-4391 (((-1294) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-784)) 97)) (-2459 (((-784) (-657 |#4|) (-657 |#5|)) 30)) (-3257 (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-784)) 63) (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-784) (-112)) 65)) (-1954 (((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112)) 85)) (-4148 (((-1180) (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) 90)) (-3771 (((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5|) 60)) (-3781 (((-784) (-657 |#4|) (-657 |#5|)) 21))) -(((-1167 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3781 ((-784) (-657 |#4|) (-657 |#5|))) (-15 -2459 ((-784) (-657 |#4|) (-657 |#5|))) (-15 -3771 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5|)) (-15 -3744 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-784))) (-15 -3744 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5|)) (-15 -3257 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-784) (-112))) (-15 -3257 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-784))) (-15 -3257 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5|)) (-15 -1954 ((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112))) (-15 -1954 ((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3384 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-657 |#4|) (-657 |#5|) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) (-784))) (-15 -4148 ((-1180) (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|)))) (-15 -4391 ((-1294) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-784)))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|) (-1131 |#1| |#2| |#3| |#4|)) (T -1167)) -((-4391 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-2 (|:| |val| (-657 *8)) (|:| -3946 *9)))) (-5 *4 (-784)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1131 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-1294)) (-5 *1 (-1167 *5 *6 *7 *8 *9)))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-657 *7)) (|:| -3946 *8))) (-4 *7 (-1087 *4 *5 *6)) (-4 *8 (-1131 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1180)) (-5 *1 (-1167 *4 *5 *6 *7 *8)))) (-3384 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-657 *11)) (|:| |todo| (-657 (-2 (|:| |val| *3) (|:| -3946 *11)))))) (-5 *6 (-784)) (-5 *2 (-657 (-2 (|:| |val| (-657 *10)) (|:| -3946 *11)))) (-5 *3 (-657 *10)) (-5 *4 (-657 *11)) (-4 *10 (-1087 *7 *8 *9)) (-4 *11 (-1131 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-806)) (-4 *9 (-862)) (-5 *1 (-1167 *7 *8 *9 *10 *11)))) (-1954 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-657 *9)) (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1131 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1167 *5 *6 *7 *8 *9)))) (-1954 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-657 *9)) (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1131 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1167 *5 *6 *7 *8 *9)))) (-3257 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) (-5 *1 (-1167 *5 *6 *7 *3 *4)) (-4 *4 (-1131 *5 *6 *7 *3)))) (-3257 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-784)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *3 (-1087 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) (-5 *1 (-1167 *6 *7 *8 *3 *4)) (-4 *4 (-1131 *6 *7 *8 *3)))) (-3257 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-784)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-806)) (-4 *9 (-862)) (-4 *3 (-1087 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) (-5 *1 (-1167 *7 *8 *9 *3 *4)) (-4 *4 (-1131 *7 *8 *9 *3)))) (-3744 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) (-5 *1 (-1167 *5 *6 *7 *3 *4)) (-4 *4 (-1131 *5 *6 *7 *3)))) (-3744 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-784)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *3 (-1087 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) (-5 *1 (-1167 *6 *7 *8 *3 *4)) (-4 *4 (-1131 *6 *7 *8 *3)))) (-3771 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-657 *4)) (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) (-5 *1 (-1167 *5 *6 *7 *3 *4)) (-4 *4 (-1131 *5 *6 *7 *3)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *9)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1131 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-784)) (-5 *1 (-1167 *5 *6 *7 *8 *9)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *9)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1131 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-784)) (-5 *1 (-1167 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3781 ((-784) (-657 |#4|) (-657 |#5|))) (-15 -2459 ((-784) (-657 |#4|) (-657 |#5|))) (-15 -3771 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5|)) (-15 -3744 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-784))) (-15 -3744 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5|)) (-15 -3257 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-784) (-112))) (-15 -3257 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5| (-784))) (-15 -3257 ((-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) |#4| |#5|)) (-15 -1954 ((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112))) (-15 -1954 ((-657 |#5|) (-657 |#4|) (-657 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3384 ((-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-657 |#4|) (-657 |#5|) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-2 (|:| |done| (-657 |#5|)) (|:| |todo| (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))))) (-784))) (-15 -4148 ((-1180) (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|)))) (-15 -4391 ((-1294) (-657 (-2 (|:| |val| (-657 |#4|)) (|:| -3946 |#5|))) (-784)))) -((-3429 (((-112) $ $) NIL)) (-2856 (((-657 (-2 (|:| -2016 $) (|:| -3209 (-657 |#4|)))) (-657 |#4|)) NIL)) (-3472 (((-657 $) (-657 |#4|)) 124) (((-657 $) (-657 |#4|) (-112)) 125) (((-657 $) (-657 |#4|) (-112) (-112)) 123) (((-657 $) (-657 |#4|) (-112) (-112) (-112) (-112)) 126)) (-2029 (((-657 |#3|) $) NIL)) (-1626 (((-112) $) NIL)) (-3072 (((-112) $) NIL (|has| |#1| (-568)))) (-4021 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1329 ((|#4| |#4| $) NIL)) (-2638 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 $))) |#4| $) 97)) (-1850 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-2035 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466))) (((-3 |#4| "failed") $ |#3|) 75)) (-4359 (($) NIL T CONST)) (-2433 (((-112) $) 29 (|has| |#1| (-568)))) (-1688 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4058 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2995 (((-112) $) NIL (|has| |#1| (-568)))) (-2292 (((-657 |#4|) (-657 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1978 (((-657 |#4|) (-657 |#4|) $) NIL (|has| |#1| (-568)))) (-2410 (((-657 |#4|) (-657 |#4|) $) NIL (|has| |#1| (-568)))) (-1624 (((-3 $ "failed") (-657 |#4|)) NIL)) (-2884 (($ (-657 |#4|)) NIL)) (-3522 (((-3 $ "failed") $) 45)) (-2073 ((|#4| |#4| $) 78)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-3895 (($ |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3644 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-568)))) (-3206 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3003 ((|#4| |#4| $) NIL)) (-3622 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4466))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1957 (((-2 (|:| -2016 (-657 |#4|)) (|:| -3209 (-657 |#4|))) $) NIL)) (-3374 (((-112) |#4| $) NIL)) (-4211 (((-112) |#4| $) NIL)) (-2376 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3371 (((-2 (|:| |val| (-657 |#4|)) (|:| |towers| (-657 $))) (-657 |#4|) (-112) (-112)) 139)) (-1458 (((-657 |#4|) $) 18 (|has| $ (-6 -4466)))) (-1878 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3627 ((|#3| $) 38)) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 |#4|) $) 19 (|has| $ (-6 -4466)))) (-1627 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-2148 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#4| |#4|) $) 23)) (-1746 (((-657 |#3|) $) NIL)) (-4089 (((-112) |#3| $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL)) (-3674 (((-3 |#4| (-657 $)) |#4| |#4| $) NIL)) (-2382 (((-657 (-2 (|:| |val| |#4|) (|:| -3946 $))) |#4| |#4| $) 117)) (-3920 (((-3 |#4| "failed") $) 42)) (-3149 (((-657 $) |#4| $) 102)) (-1971 (((-3 (-112) (-657 $)) |#4| $) NIL)) (-4183 (((-657 (-2 (|:| |val| (-112)) (|:| -3946 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3107 (((-657 $) |#4| $) 121) (((-657 $) (-657 |#4|) $) NIL) (((-657 $) (-657 |#4|) (-657 $)) 122) (((-657 $) |#4| (-657 $)) NIL)) (-3602 (((-657 $) (-657 |#4|) (-112) (-112) (-112)) 134)) (-4062 (($ |#4| $) 88) (($ (-657 |#4|) $) 89) (((-657 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-1765 (((-657 |#4|) $) NIL)) (-4365 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2833 ((|#4| |#4| $) NIL)) (-4015 (((-112) $ $) NIL)) (-3404 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3965 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2843 ((|#4| |#4| $) NIL)) (-1471 (((-1142) $) NIL)) (-3510 (((-3 |#4| "failed") $) 40)) (-2951 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1548 (((-3 $ "failed") $ |#4|) 59)) (-3926 (($ $ |#4|) NIL) (((-657 $) |#4| $) 104) (((-657 $) |#4| (-657 $)) NIL) (((-657 $) (-657 |#4|) $) NIL) (((-657 $) (-657 |#4|) (-657 $)) 99)) (-3399 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 |#4|) (-657 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) 17)) (-3581 (($) 14)) (-1770 (((-784) $) NIL)) (-1482 (((-784) |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (((-784) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) 13)) (-4148 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3511 (($ (-657 |#4|)) 22)) (-2956 (($ $ |#3|) 52)) (-1664 (($ $ |#3|) 54)) (-3459 (($ $) NIL)) (-3604 (($ $ |#3|) NIL)) (-3501 (((-877) $) 35) (((-657 |#4|) $) 46)) (-3540 (((-784) $) NIL (|has| |#3| (-379)))) (-2046 (((-112) $ $) NIL)) (-2631 (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3302 (((-112) $ (-1 (-112) |#4| (-657 |#4|))) NIL)) (-2375 (((-657 $) |#4| $) 66) (((-657 $) |#4| (-657 $)) NIL) (((-657 $) (-657 |#4|) $) NIL) (((-657 $) (-657 |#4|) (-657 $)) NIL)) (-2147 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3039 (((-657 |#3|) $) NIL)) (-3421 (((-112) |#4| $) NIL)) (-1863 (((-112) |#3| $) 74)) (-2933 (((-112) $ $) NIL)) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-1168 |#1| |#2| |#3| |#4|) (-13 (-1131 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4062 ((-657 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3472 ((-657 $) (-657 |#4|) (-112) (-112))) (-15 -3472 ((-657 $) (-657 |#4|) (-112) (-112) (-112) (-112))) (-15 -3602 ((-657 $) (-657 |#4|) (-112) (-112) (-112))) (-15 -3371 ((-2 (|:| |val| (-657 |#4|)) (|:| |towers| (-657 $))) (-657 |#4|) (-112) (-112))))) (-464) (-806) (-862) (-1087 |#1| |#2| |#3|)) (T -1168)) -((-4062 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 (-1168 *5 *6 *7 *3))) (-5 *1 (-1168 *5 *6 *7 *3)) (-4 *3 (-1087 *5 *6 *7)))) (-3472 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 (-1168 *5 *6 *7 *8))) (-5 *1 (-1168 *5 *6 *7 *8)))) (-3472 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 (-1168 *5 *6 *7 *8))) (-5 *1 (-1168 *5 *6 *7 *8)))) (-3602 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 (-1168 *5 *6 *7 *8))) (-5 *1 (-1168 *5 *6 *7 *8)))) (-3371 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-657 *8)) (|:| |towers| (-657 (-1168 *5 *6 *7 *8))))) (-5 *1 (-1168 *5 *6 *7 *8)) (-5 *3 (-657 *8))))) -(-13 (-1131 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4062 ((-657 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3472 ((-657 $) (-657 |#4|) (-112) (-112))) (-15 -3472 ((-657 $) (-657 |#4|) (-112) (-112) (-112) (-112))) (-15 -3602 ((-657 $) (-657 |#4|) (-112) (-112) (-112))) (-15 -3371 ((-2 (|:| |val| (-657 |#4|)) (|:| |towers| (-657 $))) (-657 |#4|) (-112) (-112))))) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1433 ((|#1| $) 37)) (-2707 (($ (-657 |#1|)) 45)) (-3793 (((-112) $ (-784)) NIL)) (-4359 (($) NIL T CONST)) (-1949 ((|#1| |#1| $) 40)) (-2075 ((|#1| $) 35)) (-1458 (((-657 |#1|) $) 18 (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2148 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 22)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3050 ((|#1| $) 38)) (-2468 (($ |#1| $) 41)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2277 ((|#1| $) 36)) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) 32)) (-3581 (($) 43)) (-1943 (((-784) $) 30)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) 27)) (-3501 (((-877) $) 14 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-4079 (($ (-657 |#1|)) NIL)) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 17 (|has| |#1| (-102)))) (-3440 (((-784) $) 31 (|has| $ (-6 -4466))))) -(((-1169 |#1|) (-13 (-1143 |#1|) (-10 -8 (-15 -2707 ($ (-657 |#1|))))) (-1239)) (T -1169)) -((-2707 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-1169 *3))))) -(-13 (-1143 |#1|) (-10 -8 (-15 -2707 ($ (-657 |#1|))))) -((-3682 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1256 (-576)) |#2|) 53) ((|#2| $ (-576) |#2|) 50)) (-1628 (((-112) $) 12)) (-2148 (($ (-1 |#2| |#2|) $) 48)) (-3510 ((|#2| $) NIL) (($ $ (-784)) 17)) (-1987 (($ $ |#2|) 49)) (-4286 (((-112) $) 11)) (-2835 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1256 (-576))) 36) ((|#2| $ (-576)) 26) ((|#2| $ (-576) |#2|) NIL)) (-2858 (($ $ $) 56) (($ $ |#2|) NIL)) (-1674 (($ $ $) 38) (($ |#2| $) NIL) (($ (-657 $)) 45) (($ $ |#2|) NIL))) -(((-1170 |#1| |#2|) (-10 -8 (-15 -1628 ((-112) |#1|)) (-15 -4286 ((-112) |#1|)) (-15 -3682 (|#2| |#1| (-576) |#2|)) (-15 -2835 (|#2| |#1| (-576) |#2|)) (-15 -2835 (|#2| |#1| (-576))) (-15 -1987 (|#1| |#1| |#2|)) (-15 -2835 (|#1| |#1| (-1256 (-576)))) (-15 -1674 (|#1| |#1| |#2|)) (-15 -1674 (|#1| (-657 |#1|))) (-15 -3682 (|#2| |#1| (-1256 (-576)) |#2|)) (-15 -3682 (|#2| |#1| "last" |#2|)) (-15 -3682 (|#1| |#1| "rest" |#1|)) (-15 -3682 (|#2| |#1| "first" |#2|)) (-15 -2858 (|#1| |#1| |#2|)) (-15 -2858 (|#1| |#1| |#1|)) (-15 -2835 (|#2| |#1| "last")) (-15 -2835 (|#1| |#1| "rest")) (-15 -3510 (|#1| |#1| (-784))) (-15 -2835 (|#2| |#1| "first")) (-15 -3510 (|#2| |#1|)) (-15 -1674 (|#1| |#2| |#1|)) (-15 -1674 (|#1| |#1| |#1|)) (-15 -3682 (|#2| |#1| "value" |#2|)) (-15 -2835 (|#2| |#1| "value")) (-15 -2148 (|#1| (-1 |#2| |#2|) |#1|))) (-1171 |#2|) (-1239)) (T -1170)) -NIL -(-10 -8 (-15 -1628 ((-112) |#1|)) (-15 -4286 ((-112) |#1|)) (-15 -3682 (|#2| |#1| (-576) |#2|)) (-15 -2835 (|#2| |#1| (-576) |#2|)) (-15 -2835 (|#2| |#1| (-576))) (-15 -1987 (|#1| |#1| |#2|)) (-15 -2835 (|#1| |#1| (-1256 (-576)))) (-15 -1674 (|#1| |#1| |#2|)) (-15 -1674 (|#1| (-657 |#1|))) (-15 -3682 (|#2| |#1| (-1256 (-576)) |#2|)) (-15 -3682 (|#2| |#1| "last" |#2|)) (-15 -3682 (|#1| |#1| "rest" |#1|)) (-15 -3682 (|#2| |#1| "first" |#2|)) (-15 -2858 (|#1| |#1| |#2|)) (-15 -2858 (|#1| |#1| |#1|)) (-15 -2835 (|#2| |#1| "last")) (-15 -2835 (|#1| |#1| "rest")) (-15 -3510 (|#1| |#1| (-784))) (-15 -2835 (|#2| |#1| "first")) (-15 -3510 (|#2| |#1|)) (-15 -1674 (|#1| |#2| |#1|)) (-15 -1674 (|#1| |#1| |#1|)) (-15 -3682 (|#2| |#1| "value" |#2|)) (-15 -2835 (|#2| |#1| "value")) (-15 -2148 (|#1| (-1 |#2| |#2|) |#1|))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3071 ((|#1| $) 49)) (-2913 ((|#1| $) 66)) (-4424 (($ $) 68)) (-4313 (((-1294) $ (-576) (-576)) 99 (|has| $ (-6 -4467)))) (-3605 (($ $ (-576)) 53 (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) 8)) (-3734 ((|#1| $ |#1|) 40 (|has| $ (-6 -4467)))) (-2823 (($ $ $) 57 (|has| $ (-6 -4467)))) (-2045 ((|#1| $ |#1|) 55 (|has| $ (-6 -4467)))) (-4013 ((|#1| $ |#1|) 59 (|has| $ (-6 -4467)))) (-3682 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4467))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4467))) (($ $ "rest" $) 56 (|has| $ (-6 -4467))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 119 (|has| $ (-6 -4467))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) 42 (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4466)))) (-2902 ((|#1| $) 67)) (-4359 (($) 7 T CONST)) (-3522 (($ $) 74) (($ $ (-784)) 72)) (-3914 (($ $) 101 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3895 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4466))) (($ |#1| $) 102 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2158 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) 89)) (-1628 (((-112) $) 85)) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-2877 (((-657 $) $) 51)) (-1700 (((-112) $ $) 43 (|has| |#1| (-1122)))) (-4109 (($ (-784) |#1|) 111)) (-1833 (((-112) $ (-784)) 9)) (-3853 (((-576) $) 97 (|has| (-576) (-862)))) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2272 (((-576) $) 96 (|has| (-576) (-862)))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-4261 (((-112) $ (-784)) 10)) (-2424 (((-657 |#1|) $) 46)) (-2633 (((-112) $) 50)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3920 ((|#1| $) 71) (($ $ (-784)) 69)) (-2271 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-1430 (((-657 (-576)) $) 94)) (-4242 (((-112) (-576) $) 93)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3510 ((|#1| $) 77) (($ $ (-784)) 75)) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-1987 (($ $ |#1|) 98 (|has| $ (-6 -4467)))) (-4286 (((-112) $) 86)) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-1515 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) 92)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1256 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3883 (((-576) $ $) 45)) (-3409 (($ $ (-1256 (-576))) 116) (($ $ (-576)) 115)) (-3628 (((-112) $) 47)) (-3600 (($ $) 63)) (-1921 (($ $) 60 (|has| $ (-6 -4467)))) (-4027 (((-784) $) 64)) (-4087 (($ $) 65)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-4148 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 109)) (-2858 (($ $ $) 62 (|has| $ (-6 -4467))) (($ $ |#1|) 61 (|has| $ (-6 -4467)))) (-1674 (($ $ $) 79) (($ |#1| $) 78) (($ (-657 $)) 113) (($ $ |#1|) 112)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-1986 (((-657 $) $) 52)) (-1633 (((-112) $ $) 44 (|has| |#1| (-1122)))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-1171 |#1|) (-141) (-1239)) (T -1171)) -((-4286 (*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-1239)) (-5 *2 (-112)))) (-1628 (*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-1239)) (-5 *2 (-112))))) -(-13 (-1277 |t#1|) (-664 |t#1|) (-10 -8 (-15 -4286 ((-112) $)) (-15 -1628 ((-112) $)))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-664 |#1|) . T) ((-1032 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1239) . T) ((-1277 |#1|) . T)) -((-3429 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4095 (($) NIL) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-4313 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 ((|#2| $ |#1| |#2|) NIL)) (-3162 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2287 (((-3 |#2| "failed") |#1| $) NIL)) (-4359 (($) NIL T CONST)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3647 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) NIL)) (-3895 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3622 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2158 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#2| $ |#1|) NIL)) (-1458 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) NIL)) (-3853 ((|#1| $) NIL (|has| |#1| (-862)))) (-2070 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2272 ((|#1| $) NIL (|has| |#1| (-862)))) (-2148 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4467))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3159 (((-657 |#1|) $) NIL)) (-1708 (((-112) |#1| $) NIL)) (-3050 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2468 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-1430 (((-657 |#1|) $) NIL)) (-4242 (((-112) |#1| $) NIL)) (-1471 (((-1142) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3510 ((|#2| $) NIL (|has| |#1| (-862)))) (-2951 (((-3 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1987 (($ $ |#2|) NIL (|has| $ (-6 -4467)))) (-2277 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-3399 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2380 (((-657 |#2|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1504 (($) NIL) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-1482 (((-784) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3511 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-3501 (((-877) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-625 (-877))) (|has| |#2| (-625 (-877)))))) (-2046 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4079 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-2147 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-1172 |#1| |#2| |#3|) (-1215 |#1| |#2|) (-1122) (-1122) |#2|) (T -1172)) -NIL -(-1215 |#1| |#2|) -((-3429 (((-112) $ $) NIL)) (-1990 (((-704 (-1157)) $) 27)) (-1675 (((-1157) $) 15)) (-3258 (((-1157) $) 17)) (-2342 (((-1180) $) NIL)) (-3142 (((-518) $) 13)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 37) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-1173) (-13 (-1105) (-10 -8 (-15 -3142 ((-518) $)) (-15 -3258 ((-1157) $)) (-15 -1990 ((-704 (-1157)) $)) (-15 -1675 ((-1157) $))))) (T -1173)) -((-3142 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1173)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1173)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-704 (-1157))) (-5 *1 (-1173)))) (-1675 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1173))))) -(-13 (-1105) (-10 -8 (-15 -3142 ((-518) $)) (-15 -3258 ((-1157) $)) (-15 -1990 ((-704 (-1157)) $)) (-15 -1675 ((-1157) $)))) -((-3429 (((-112) $ $) 7)) (-4019 (((-3 $ "failed") $) 14)) (-2342 (((-1180) $) 10)) (-1706 (($) 15 T CONST)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2933 (((-112) $ $) 8))) -(((-1174) (-141)) (T -1174)) -((-1706 (*1 *1) (-4 *1 (-1174))) (-4019 (*1 *1 *1) (|partial| -4 *1 (-1174)))) -(-13 (-1122) (-10 -8 (-15 -1706 ($) -1509) (-15 -4019 ((-3 $ "failed") $)))) -(((-102) . T) ((-625 (-877)) . T) ((-1122) . T) ((-1239) . T)) -((-1608 (((-1179 |#1|) (-1179 |#1|)) 17)) (-2764 (((-1179 |#1|) (-1179 |#1|)) 13)) (-1905 (((-1179 |#1|) (-1179 |#1|) (-576) (-576)) 20)) (-3013 (((-1179 |#1|) (-1179 |#1|)) 15))) -(((-1175 |#1|) (-10 -7 (-15 -2764 ((-1179 |#1|) (-1179 |#1|))) (-15 -3013 ((-1179 |#1|) (-1179 |#1|))) (-15 -1608 ((-1179 |#1|) (-1179 |#1|))) (-15 -1905 ((-1179 |#1|) (-1179 |#1|) (-576) (-576)))) (-13 (-568) (-148))) (T -1175)) -((-1905 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1175 *4)))) (-1608 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1175 *3)))) (-3013 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1175 *3)))) (-2764 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1175 *3))))) -(-10 -7 (-15 -2764 ((-1179 |#1|) (-1179 |#1|))) (-15 -3013 ((-1179 |#1|) (-1179 |#1|))) (-15 -1608 ((-1179 |#1|) (-1179 |#1|))) (-15 -1905 ((-1179 |#1|) (-1179 |#1|) (-576) (-576)))) -((-1674 (((-1179 |#1|) (-1179 (-1179 |#1|))) 15))) -(((-1176 |#1|) (-10 -7 (-15 -1674 ((-1179 |#1|) (-1179 (-1179 |#1|))))) (-1239)) (T -1176)) -((-1674 (*1 *2 *3) (-12 (-5 *3 (-1179 (-1179 *4))) (-5 *2 (-1179 *4)) (-5 *1 (-1176 *4)) (-4 *4 (-1239))))) -(-10 -7 (-15 -1674 ((-1179 |#1|) (-1179 (-1179 |#1|))))) -((-4417 (((-1179 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1179 |#1|)) 25)) (-3622 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1179 |#1|)) 26)) (-4083 (((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|)) 16))) -(((-1177 |#1| |#2|) (-10 -7 (-15 -4083 ((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|))) (-15 -4417 ((-1179 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1179 |#1|))) (-15 -3622 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1179 |#1|)))) (-1239) (-1239)) (T -1177)) -((-3622 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1179 *5)) (-4 *5 (-1239)) (-4 *2 (-1239)) (-5 *1 (-1177 *5 *2)))) (-4417 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1179 *6)) (-4 *6 (-1239)) (-4 *3 (-1239)) (-5 *2 (-1179 *3)) (-5 *1 (-1177 *6 *3)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-1179 *6)) (-5 *1 (-1177 *5 *6))))) -(-10 -7 (-15 -4083 ((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|))) (-15 -4417 ((-1179 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1179 |#1|))) (-15 -3622 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1179 |#1|)))) -((-4083 (((-1179 |#3|) (-1 |#3| |#1| |#2|) (-1179 |#1|) (-1179 |#2|)) 21))) -(((-1178 |#1| |#2| |#3|) (-10 -7 (-15 -4083 ((-1179 |#3|) (-1 |#3| |#1| |#2|) (-1179 |#1|) (-1179 |#2|)))) (-1239) (-1239) (-1239)) (T -1178)) -((-4083 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1179 *6)) (-5 *5 (-1179 *7)) (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-1179 *8)) (-5 *1 (-1178 *6 *7 *8))))) -(-10 -7 (-15 -4083 ((-1179 |#3|) (-1 |#3| |#1| |#2|) (-1179 |#1|) (-1179 |#2|)))) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3071 ((|#1| $) NIL)) (-2913 ((|#1| $) NIL)) (-4424 (($ $) 67)) (-4313 (((-1294) $ (-576) (-576)) 99 (|has| $ (-6 -4467)))) (-3605 (($ $ (-576)) 128 (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) NIL)) (-1339 (((-877) $) 56 (|has| |#1| (-1122)))) (-2600 (((-112)) 55 (|has| |#1| (-1122)))) (-3734 ((|#1| $ |#1|) NIL (|has| $ (-6 -4467)))) (-2823 (($ $ $) 115 (|has| $ (-6 -4467))) (($ $ (-576) $) 141)) (-2045 ((|#1| $ |#1|) 125 (|has| $ (-6 -4467)))) (-4013 ((|#1| $ |#1|) 120 (|has| $ (-6 -4467)))) (-3682 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4467))) (($ $ "rest" $) 124 (|has| $ (-6 -4467))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 112 (|has| $ (-6 -4467))) ((|#1| $ (-576) |#1|) 77 (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) NIL (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) |#1|) $) 80)) (-2902 ((|#1| $) NIL)) (-4359 (($) NIL T CONST)) (-3219 (($ $) 14)) (-3522 (($ $) 40) (($ $ (-784)) 111)) (-4126 (((-112) (-657 |#1|) $) 134 (|has| |#1| (-1122)))) (-3876 (($ (-657 |#1|)) 130)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3895 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) 79)) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2158 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) NIL)) (-1628 (((-112) $) NIL)) (-1458 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-2796 (((-1294) (-576) $) 140 (|has| |#1| (-1122)))) (-1870 (((-784) $) 137)) (-2877 (((-657 $) $) NIL)) (-1700 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-4109 (($ (-784) |#1|) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) NIL (|has| (-576) (-862)))) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2272 (((-576) $) NIL (|has| (-576) (-862)))) (-2148 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-4261 (((-112) $ (-784)) NIL)) (-2424 (((-657 |#1|) $) NIL)) (-2633 (((-112) $) NIL)) (-1533 (($ $) 113)) (-2507 (((-112) $) 13)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-3920 ((|#1| $) NIL) (($ $ (-784)) NIL)) (-2271 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) 96)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-4345 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-1605 ((|#1| $) 10)) (-3510 ((|#1| $) 39) (($ $ (-784)) 65)) (-3817 (((-2 (|:| |cycle?| (-112)) (|:| -3966 (-784)) (|:| |period| (-784))) (-784) $) 34)) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2011 (($ (-1 (-112) |#1|) $) 145)) (-2024 (($ (-1 (-112) |#1|) $) 146)) (-1987 (($ $ |#1|) 90 (|has| $ (-6 -4467)))) (-3926 (($ $ (-576)) 45)) (-4286 (((-112) $) 94)) (-4104 (((-112) $) 12)) (-3324 (((-112) $) 136)) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 30)) (-1515 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) NIL)) (-3387 (((-112) $) 20)) (-3581 (($) 60)) (-2835 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1256 (-576))) NIL) ((|#1| $ (-576)) 75) ((|#1| $ (-576) |#1|) NIL)) (-3883 (((-576) $ $) 64)) (-3409 (($ $ (-1256 (-576))) NIL) (($ $ (-576)) NIL)) (-2831 (($ (-1 $)) 63)) (-3628 (((-112) $) 91)) (-3600 (($ $) 92)) (-1921 (($ $) 116 (|has| $ (-6 -4467)))) (-4027 (((-784) $) NIL)) (-4087 (($ $) NIL)) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) 59)) (-4148 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 73)) (-2869 (($ |#1| $) 114)) (-2858 (($ $ $) 118 (|has| $ (-6 -4467))) (($ $ |#1|) 119 (|has| $ (-6 -4467)))) (-1674 (($ $ $) 101) (($ |#1| $) 61) (($ (-657 $)) 106) (($ $ |#1|) 100)) (-1431 (($ $) 66)) (-3501 (($ (-657 |#1|)) 129) (((-877) $) 57 (|has| |#1| (-625 (-877))))) (-1986 (((-657 $) $) NIL)) (-1633 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 132 (|has| |#1| (-102)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-1179 |#1|) (-13 (-687 |#1|) (-628 (-657 |#1|)) (-10 -8 (-6 -4467) (-15 -3876 ($ (-657 |#1|))) (IF (|has| |#1| (-1122)) (-15 -4126 ((-112) (-657 |#1|) $)) |%noBranch|) (-15 -3817 ((-2 (|:| |cycle?| (-112)) (|:| -3966 (-784)) (|:| |period| (-784))) (-784) $)) (-15 -2831 ($ (-1 $))) (-15 -2869 ($ |#1| $)) (IF (|has| |#1| (-1122)) (PROGN (-15 -2796 ((-1294) (-576) $)) (-15 -1339 ((-877) $)) (-15 -2600 ((-112)))) |%noBranch|) (-15 -2823 ($ $ (-576) $)) (-15 -4345 ($ (-1 |#1|))) (-15 -4345 ($ (-1 |#1| |#1|) |#1|)) (-15 -2011 ($ (-1 (-112) |#1|) $)) (-15 -2024 ($ (-1 (-112) |#1|) $)))) (-1239)) (T -1179)) -((-3876 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3)))) (-4126 (*1 *2 *3 *1) (-12 (-5 *3 (-657 *4)) (-4 *4 (-1122)) (-4 *4 (-1239)) (-5 *2 (-112)) (-5 *1 (-1179 *4)))) (-3817 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3966 (-784)) (|:| |period| (-784)))) (-5 *1 (-1179 *4)) (-4 *4 (-1239)) (-5 *3 (-784)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-1 (-1179 *3))) (-5 *1 (-1179 *3)) (-4 *3 (-1239)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *1 (-1179 *2)) (-4 *2 (-1239)))) (-2796 (*1 *2 *3 *1) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-1179 *4)) (-4 *4 (-1122)) (-4 *4 (-1239)))) (-1339 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1179 *3)) (-4 *3 (-1122)) (-4 *3 (-1239)))) (-2600 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1179 *3)) (-4 *3 (-1122)) (-4 *3 (-1239)))) (-2823 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1179 *3)) (-4 *3 (-1239)))) (-4345 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3)))) (-4345 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3)))) (-2011 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3)))) (-2024 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3))))) -(-13 (-687 |#1|) (-628 (-657 |#1|)) (-10 -8 (-6 -4467) (-15 -3876 ($ (-657 |#1|))) (IF (|has| |#1| (-1122)) (-15 -4126 ((-112) (-657 |#1|) $)) |%noBranch|) (-15 -3817 ((-2 (|:| |cycle?| (-112)) (|:| -3966 (-784)) (|:| |period| (-784))) (-784) $)) (-15 -2831 ($ (-1 $))) (-15 -2869 ($ |#1| $)) (IF (|has| |#1| (-1122)) (PROGN (-15 -2796 ((-1294) (-576) $)) (-15 -1339 ((-877) $)) (-15 -2600 ((-112)))) |%noBranch|) (-15 -2823 ($ $ (-576) $)) (-15 -4345 ($ (-1 |#1|))) (-15 -4345 ($ (-1 |#1| |#1|) |#1|)) (-15 -2011 ($ (-1 (-112) |#1|) $)) (-15 -2024 ($ (-1 (-112) |#1|) $)))) -((-3429 (((-112) $ $) NIL (|has| (-145) (-102)))) (-1335 (($ $) NIL)) (-1973 (($ $) NIL)) (-1906 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-4085 (((-112) $ $) NIL)) (-4060 (((-112) $ $ (-576)) NIL)) (-1331 (($ (-576)) 8) (($ (-227)) 10)) (-1407 (((-657 $) $ (-145)) NIL) (((-657 $) $ (-142)) NIL)) (-1568 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-862)))) (-3363 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| (-145) (-862))))) (-1850 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-862)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4467))) (((-145) $ (-1256 (-576)) (-145)) NIL (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-4359 (($) NIL T CONST)) (-2685 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3606 (($ $) NIL (|has| $ (-6 -4467)))) (-3768 (($ $) NIL)) (-2846 (($ $ (-1256 (-576)) $) NIL)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-3895 (($ (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-3622 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4466))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4466)))) (-2158 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4467)))) (-2083 (((-145) $ (-576)) NIL)) (-4112 (((-112) $ $) NIL)) (-3582 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1122))) (((-576) (-145) $ (-576)) NIL (|has| (-145) (-1122))) (((-576) $ $ (-576)) NIL) (((-576) (-142) $ (-576)) NIL)) (-1458 (((-657 (-145)) $) NIL (|has| $ (-6 -4466)))) (-4109 (($ (-784) (-145)) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) NIL (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| (-145) (-862)))) (-3073 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-862)))) (-2070 (((-657 (-145)) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-2272 (((-576) $) NIL (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| (-145) (-862)))) (-1972 (((-112) $ $ (-145)) NIL)) (-1364 (((-784) $ $ (-145)) NIL)) (-2148 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-4380 (($ $) NIL)) (-4378 (($ $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2696 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2342 (((-1180) $) NIL (|has| (-145) (-1122)))) (-2271 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-1471 (((-1142) $) NIL (|has| (-145) (-1122)))) (-3510 (((-145) $) NIL (|has| (-576) (-862)))) (-2951 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-1987 (($ $ (-145)) NIL (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122)))) (($ $ (-657 (-145)) (-657 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-2380 (((-657 (-145)) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1256 (-576))) NIL) (($ $ $) NIL)) (-3409 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-1482 (((-784) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466))) (((-784) (-145) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-145) (-1122))))) (-2114 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-3511 (($ (-657 (-145))) NIL)) (-1674 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-657 $)) NIL)) (-3501 (($ (-145)) NIL) (((-877) $) NIL (|has| (-145) (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2147 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4466)))) (-3095 (((-1180) $) 21) (((-1180) $ (-112)) 23) (((-1294) (-835) $) 24) (((-1294) (-835) $ (-112)) 25)) (-2985 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2963 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2933 (((-112) $ $) NIL (|has| (-145) (-102)))) (-2973 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2954 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-1180) (-13 (-1166) (-841) (-10 -8 (-15 -1331 ($ (-576))) (-15 -1331 ($ (-227)))))) (T -1180)) -((-1331 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1180)))) (-1331 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1180))))) -(-13 (-1166) (-841) (-10 -8 (-15 -1331 ($ (-576))) (-15 -1331 ($ (-227))))) -((-3429 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-102)) (|has| |#1| (-102))))) (-4095 (($) NIL) (($ (-657 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) NIL)) (-4313 (((-1294) $ (-1180) (-1180)) NIL (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 ((|#1| $ (-1180) |#1|) NIL)) (-3162 (($ (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-2287 (((-3 |#1| "failed") (-1180) $) NIL)) (-4359 (($) NIL T CONST)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122))))) (-3647 (($ (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (((-3 |#1| "failed") (-1180) $) NIL)) (-3895 (($ (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122)))) (($ (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-3622 (((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $ (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122)))) (((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $ (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466)))) (-2158 ((|#1| $ (-1180) |#1|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-1180)) NIL)) (-1458 (((-657 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-1180) $) NIL (|has| (-1180) (-862)))) (-2070 (((-657 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2272 (((-1180) $) NIL (|has| (-1180) (-862)))) (-2148 (($ (-1 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4467))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (-2802 (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122)) (|has| |#1| (-1122))))) (-3159 (((-657 (-1180)) $) NIL)) (-1708 (((-112) (-1180) $) NIL)) (-3050 (((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) $) NIL)) (-2468 (($ (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) $) NIL)) (-1430 (((-657 (-1180)) $) NIL)) (-4242 (((-112) (-1180) $) NIL)) (-1471 (((-1142) $) NIL (-2802 (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122)) (|has| |#1| (-1122))))) (-3510 ((|#1| $) NIL (|has| (-1180) (-862)))) (-2951 (((-3 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) "failed") (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL)) (-1987 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-2277 (((-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) $) NIL)) (-3399 (((-112) (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))))) NIL (-12 (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122)))) (($ $ (-304 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) NIL (-12 (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122)))) (($ $ (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) NIL (-12 (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122)))) (($ $ (-657 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) (-657 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) NIL (-12 (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-319 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#1| $ (-1180)) NIL) ((|#1| $ (-1180) |#1|) NIL)) (-1504 (($) NIL) (($ (-657 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) NIL)) (-1482 (((-784) (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-1122)))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-626 (-548))))) (-3511 (($ (-657 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) NIL)) (-3501 (((-877) $) NIL (-2802 (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-625 (-877))) (|has| |#1| (-625 (-877)))))) (-2046 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-102)) (|has| |#1| (-102))))) (-4079 (($ (-657 (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)))) NIL)) (-2147 (((-112) (-1 (-112) (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 (-1180)) (|:| -4440 |#1|)) (-102)) (|has| |#1| (-102))))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-1181 |#1|) (-13 (-1215 (-1180) |#1|) (-10 -7 (-6 -4466))) (-1122)) (T -1181)) -NIL -(-13 (-1215 (-1180) |#1|) (-10 -7 (-6 -4466))) -((-1455 (((-1179 |#1|) (-1179 |#1|)) 83)) (-3843 (((-3 (-1179 |#1|) "failed") (-1179 |#1|)) 39)) (-3626 (((-1179 |#1|) (-419 (-576)) (-1179 |#1|)) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3897 (((-1179 |#1|) |#1| (-1179 |#1|)) 139 (|has| |#1| (-374)))) (-3040 (((-1179 |#1|) (-1179 |#1|)) 97)) (-3476 (((-1179 (-576)) (-576)) 63)) (-3683 (((-1179 |#1|) (-1179 (-1179 |#1|))) 116 (|has| |#1| (-38 (-419 (-576)))))) (-2906 (((-1179 |#1|) (-576) (-576) (-1179 |#1|)) 102)) (-3607 (((-1179 |#1|) |#1| (-576)) 51)) (-3809 (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 66)) (-2318 (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 136 (|has| |#1| (-374)))) (-3722 (((-1179 |#1|) |#1| (-1 (-1179 |#1|))) 115 (|has| |#1| (-38 (-419 (-576)))))) (-2345 (((-1179 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1179 |#1|))) 137 (|has| |#1| (-374)))) (-1325 (((-1179 |#1|) (-1179 |#1|)) 96)) (-1491 (((-1179 |#1|) (-1179 |#1|)) 82)) (-4263 (((-1179 |#1|) (-576) (-576) (-1179 |#1|)) 103)) (-4190 (((-1179 |#1|) |#1| (-1179 |#1|)) 112 (|has| |#1| (-38 (-419 (-576)))))) (-2263 (((-1179 (-576)) (-576)) 62)) (-3845 (((-1179 |#1|) |#1|) 65)) (-3819 (((-1179 |#1|) (-1179 |#1|) (-576) (-576)) 99)) (-3196 (((-1179 |#1|) (-1 |#1| (-576)) (-1179 |#1|)) 72)) (-3418 (((-3 (-1179 |#1|) "failed") (-1179 |#1|) (-1179 |#1|)) 37)) (-4330 (((-1179 |#1|) (-1179 |#1|)) 98)) (-3236 (((-1179 |#1|) (-1179 |#1|) |#1|) 77)) (-2426 (((-1179 |#1|) (-1179 |#1|)) 68)) (-4035 (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 78)) (-3501 (((-1179 |#1|) |#1|) 73)) (-4357 (((-1179 |#1|) (-1179 (-1179 |#1|))) 88)) (-3034 (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 38)) (-3022 (((-1179 |#1|) (-1179 |#1|)) 21) (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 23)) (-3012 (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 17)) (* (((-1179 |#1|) (-1179 |#1|) |#1|) 29) (((-1179 |#1|) |#1| (-1179 |#1|)) 26) (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 27))) -(((-1182 |#1|) (-10 -7 (-15 -3012 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3022 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3022 ((-1179 |#1|) (-1179 |#1|))) (-15 * ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 * ((-1179 |#1|) |#1| (-1179 |#1|))) (-15 * ((-1179 |#1|) (-1179 |#1|) |#1|)) (-15 -3418 ((-3 (-1179 |#1|) "failed") (-1179 |#1|) (-1179 |#1|))) (-15 -3034 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3843 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -3607 ((-1179 |#1|) |#1| (-576))) (-15 -2263 ((-1179 (-576)) (-576))) (-15 -3476 ((-1179 (-576)) (-576))) (-15 -3845 ((-1179 |#1|) |#1|)) (-15 -3809 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2426 ((-1179 |#1|) (-1179 |#1|))) (-15 -3196 ((-1179 |#1|) (-1 |#1| (-576)) (-1179 |#1|))) (-15 -3501 ((-1179 |#1|) |#1|)) (-15 -3236 ((-1179 |#1|) (-1179 |#1|) |#1|)) (-15 -4035 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -1491 ((-1179 |#1|) (-1179 |#1|))) (-15 -1455 ((-1179 |#1|) (-1179 |#1|))) (-15 -4357 ((-1179 |#1|) (-1179 (-1179 |#1|)))) (-15 -1325 ((-1179 |#1|) (-1179 |#1|))) (-15 -3040 ((-1179 |#1|) (-1179 |#1|))) (-15 -4330 ((-1179 |#1|) (-1179 |#1|))) (-15 -3819 ((-1179 |#1|) (-1179 |#1|) (-576) (-576))) (-15 -2906 ((-1179 |#1|) (-576) (-576) (-1179 |#1|))) (-15 -4263 ((-1179 |#1|) (-576) (-576) (-1179 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4190 ((-1179 |#1|) |#1| (-1179 |#1|))) (-15 -3722 ((-1179 |#1|) |#1| (-1 (-1179 |#1|)))) (-15 -3683 ((-1179 |#1|) (-1179 (-1179 |#1|)))) (-15 -3626 ((-1179 |#1|) (-419 (-576)) (-1179 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2318 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2345 ((-1179 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1179 |#1|)))) (-15 -3897 ((-1179 |#1|) |#1| (-1179 |#1|)))) |%noBranch|)) (-1071)) (T -1182)) -((-3897 (*1 *2 *3 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-374)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-2345 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1179 *4))) (-4 *4 (-374)) (-4 *4 (-1071)) (-5 *2 (-1179 *4)) (-5 *1 (-1182 *4)))) (-2318 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-374)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3626 (*1 *2 *3 *2) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1071)) (-5 *3 (-419 (-576))) (-5 *1 (-1182 *4)))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-1179 (-1179 *4))) (-5 *2 (-1179 *4)) (-5 *1 (-1182 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1071)))) (-3722 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1179 *3))) (-5 *2 (-1179 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)))) (-4190 (*1 *2 *3 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-4263 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-576)) (-4 *4 (-1071)) (-5 *1 (-1182 *4)))) (-2906 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-576)) (-4 *4 (-1071)) (-5 *1 (-1182 *4)))) (-3819 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-576)) (-4 *4 (-1071)) (-5 *1 (-1182 *4)))) (-4330 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3040 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-1325 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-4357 (*1 *2 *3) (-12 (-5 *3 (-1179 (-1179 *4))) (-5 *2 (-1179 *4)) (-5 *1 (-1182 *4)) (-4 *4 (-1071)))) (-1455 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-1491 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-4035 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3236 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3501 (*1 *2 *3) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-1071)))) (-3196 (*1 *2 *3 *2) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1071)) (-5 *1 (-1182 *4)))) (-2426 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3809 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3845 (*1 *2 *3) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-1071)))) (-3476 (*1 *2 *3) (-12 (-5 *2 (-1179 (-576))) (-5 *1 (-1182 *4)) (-4 *4 (-1071)) (-5 *3 (-576)))) (-2263 (*1 *2 *3) (-12 (-5 *2 (-1179 (-576))) (-5 *1 (-1182 *4)) (-4 *4 (-1071)) (-5 *3 (-576)))) (-3607 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-1179 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-1071)))) (-3843 (*1 *2 *2) (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3034 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3418 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3022 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3022 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) (-3012 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3))))) -(-10 -7 (-15 -3012 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3022 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3022 ((-1179 |#1|) (-1179 |#1|))) (-15 * ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 * ((-1179 |#1|) |#1| (-1179 |#1|))) (-15 * ((-1179 |#1|) (-1179 |#1|) |#1|)) (-15 -3418 ((-3 (-1179 |#1|) "failed") (-1179 |#1|) (-1179 |#1|))) (-15 -3034 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3843 ((-3 (-1179 |#1|) "failed") (-1179 |#1|))) (-15 -3607 ((-1179 |#1|) |#1| (-576))) (-15 -2263 ((-1179 (-576)) (-576))) (-15 -3476 ((-1179 (-576)) (-576))) (-15 -3845 ((-1179 |#1|) |#1|)) (-15 -3809 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2426 ((-1179 |#1|) (-1179 |#1|))) (-15 -3196 ((-1179 |#1|) (-1 |#1| (-576)) (-1179 |#1|))) (-15 -3501 ((-1179 |#1|) |#1|)) (-15 -3236 ((-1179 |#1|) (-1179 |#1|) |#1|)) (-15 -4035 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -1491 ((-1179 |#1|) (-1179 |#1|))) (-15 -1455 ((-1179 |#1|) (-1179 |#1|))) (-15 -4357 ((-1179 |#1|) (-1179 (-1179 |#1|)))) (-15 -1325 ((-1179 |#1|) (-1179 |#1|))) (-15 -3040 ((-1179 |#1|) (-1179 |#1|))) (-15 -4330 ((-1179 |#1|) (-1179 |#1|))) (-15 -3819 ((-1179 |#1|) (-1179 |#1|) (-576) (-576))) (-15 -2906 ((-1179 |#1|) (-576) (-576) (-1179 |#1|))) (-15 -4263 ((-1179 |#1|) (-576) (-576) (-1179 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4190 ((-1179 |#1|) |#1| (-1179 |#1|))) (-15 -3722 ((-1179 |#1|) |#1| (-1 (-1179 |#1|)))) (-15 -3683 ((-1179 |#1|) (-1179 (-1179 |#1|)))) (-15 -3626 ((-1179 |#1|) (-419 (-576)) (-1179 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2318 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2345 ((-1179 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1179 |#1|)))) (-15 -3897 ((-1179 |#1|) |#1| (-1179 |#1|)))) |%noBranch|)) -((-2176 (((-1179 |#1|) (-1179 |#1|)) 60)) (-2030 (((-1179 |#1|) (-1179 |#1|)) 42)) (-2150 (((-1179 |#1|) (-1179 |#1|)) 56)) (-2004 (((-1179 |#1|) (-1179 |#1|)) 38)) (-2201 (((-1179 |#1|) (-1179 |#1|)) 63)) (-2052 (((-1179 |#1|) (-1179 |#1|)) 45)) (-3670 (((-1179 |#1|) (-1179 |#1|)) 34)) (-4067 (((-1179 |#1|) (-1179 |#1|)) 29)) (-2213 (((-1179 |#1|) (-1179 |#1|)) 64)) (-2062 (((-1179 |#1|) (-1179 |#1|)) 46)) (-2188 (((-1179 |#1|) (-1179 |#1|)) 61)) (-2042 (((-1179 |#1|) (-1179 |#1|)) 43)) (-2163 (((-1179 |#1|) (-1179 |#1|)) 58)) (-2017 (((-1179 |#1|) (-1179 |#1|)) 40)) (-4110 (((-1179 |#1|) (-1179 |#1|)) 68)) (-2100 (((-1179 |#1|) (-1179 |#1|)) 50)) (-2225 (((-1179 |#1|) (-1179 |#1|)) 66)) (-2072 (((-1179 |#1|) (-1179 |#1|)) 48)) (-4137 (((-1179 |#1|) (-1179 |#1|)) 71)) (-2125 (((-1179 |#1|) (-1179 |#1|)) 53)) (-2224 (((-1179 |#1|) (-1179 |#1|)) 72)) (-2137 (((-1179 |#1|) (-1179 |#1|)) 54)) (-4124 (((-1179 |#1|) (-1179 |#1|)) 70)) (-2113 (((-1179 |#1|) (-1179 |#1|)) 52)) (-2235 (((-1179 |#1|) (-1179 |#1|)) 69)) (-2085 (((-1179 |#1|) (-1179 |#1|)) 51)) (** (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 36))) -(((-1183 |#1|) (-10 -7 (-15 -4067 ((-1179 |#1|) (-1179 |#1|))) (-15 -3670 ((-1179 |#1|) (-1179 |#1|))) (-15 ** ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2004 ((-1179 |#1|) (-1179 |#1|))) (-15 -2017 ((-1179 |#1|) (-1179 |#1|))) (-15 -2030 ((-1179 |#1|) (-1179 |#1|))) (-15 -2042 ((-1179 |#1|) (-1179 |#1|))) (-15 -2052 ((-1179 |#1|) (-1179 |#1|))) (-15 -2062 ((-1179 |#1|) (-1179 |#1|))) (-15 -2072 ((-1179 |#1|) (-1179 |#1|))) (-15 -2085 ((-1179 |#1|) (-1179 |#1|))) (-15 -2100 ((-1179 |#1|) (-1179 |#1|))) (-15 -2113 ((-1179 |#1|) (-1179 |#1|))) (-15 -2125 ((-1179 |#1|) (-1179 |#1|))) (-15 -2137 ((-1179 |#1|) (-1179 |#1|))) (-15 -2150 ((-1179 |#1|) (-1179 |#1|))) (-15 -2163 ((-1179 |#1|) (-1179 |#1|))) (-15 -2176 ((-1179 |#1|) (-1179 |#1|))) (-15 -2188 ((-1179 |#1|) (-1179 |#1|))) (-15 -2201 ((-1179 |#1|) (-1179 |#1|))) (-15 -2213 ((-1179 |#1|) (-1179 |#1|))) (-15 -2225 ((-1179 |#1|) (-1179 |#1|))) (-15 -2235 ((-1179 |#1|) (-1179 |#1|))) (-15 -4110 ((-1179 |#1|) (-1179 |#1|))) (-15 -4124 ((-1179 |#1|) (-1179 |#1|))) (-15 -4137 ((-1179 |#1|) (-1179 |#1|))) (-15 -2224 ((-1179 |#1|) (-1179 |#1|)))) (-38 (-419 (-576)))) (T -1183)) -((-2224 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4137 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4110 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2235 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2225 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2213 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2201 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2188 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2176 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2163 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2150 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2137 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2125 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2113 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2100 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2072 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2062 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2052 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2042 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2030 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2017 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-2004 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-3670 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3)))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1183 *3))))) -(-10 -7 (-15 -4067 ((-1179 |#1|) (-1179 |#1|))) (-15 -3670 ((-1179 |#1|) (-1179 |#1|))) (-15 ** ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2004 ((-1179 |#1|) (-1179 |#1|))) (-15 -2017 ((-1179 |#1|) (-1179 |#1|))) (-15 -2030 ((-1179 |#1|) (-1179 |#1|))) (-15 -2042 ((-1179 |#1|) (-1179 |#1|))) (-15 -2052 ((-1179 |#1|) (-1179 |#1|))) (-15 -2062 ((-1179 |#1|) (-1179 |#1|))) (-15 -2072 ((-1179 |#1|) (-1179 |#1|))) (-15 -2085 ((-1179 |#1|) (-1179 |#1|))) (-15 -2100 ((-1179 |#1|) (-1179 |#1|))) (-15 -2113 ((-1179 |#1|) (-1179 |#1|))) (-15 -2125 ((-1179 |#1|) (-1179 |#1|))) (-15 -2137 ((-1179 |#1|) (-1179 |#1|))) (-15 -2150 ((-1179 |#1|) (-1179 |#1|))) (-15 -2163 ((-1179 |#1|) (-1179 |#1|))) (-15 -2176 ((-1179 |#1|) (-1179 |#1|))) (-15 -2188 ((-1179 |#1|) (-1179 |#1|))) (-15 -2201 ((-1179 |#1|) (-1179 |#1|))) (-15 -2213 ((-1179 |#1|) (-1179 |#1|))) (-15 -2225 ((-1179 |#1|) (-1179 |#1|))) (-15 -2235 ((-1179 |#1|) (-1179 |#1|))) (-15 -4110 ((-1179 |#1|) (-1179 |#1|))) (-15 -4124 ((-1179 |#1|) (-1179 |#1|))) (-15 -4137 ((-1179 |#1|) (-1179 |#1|))) (-15 -2224 ((-1179 |#1|) (-1179 |#1|)))) -((-2176 (((-1179 |#1|) (-1179 |#1|)) 102)) (-2030 (((-1179 |#1|) (-1179 |#1|)) 61)) (-3769 (((-2 (|:| -2150 (-1179 |#1|)) (|:| -2163 (-1179 |#1|))) (-1179 |#1|)) 98)) (-2150 (((-1179 |#1|) (-1179 |#1|)) 99)) (-2172 (((-2 (|:| -2004 (-1179 |#1|)) (|:| -2017 (-1179 |#1|))) (-1179 |#1|)) 54)) (-2004 (((-1179 |#1|) (-1179 |#1|)) 55)) (-2201 (((-1179 |#1|) (-1179 |#1|)) 104)) (-2052 (((-1179 |#1|) (-1179 |#1|)) 68)) (-3670 (((-1179 |#1|) (-1179 |#1|)) 40)) (-4067 (((-1179 |#1|) (-1179 |#1|)) 37)) (-2213 (((-1179 |#1|) (-1179 |#1|)) 105)) (-2062 (((-1179 |#1|) (-1179 |#1|)) 69)) (-2188 (((-1179 |#1|) (-1179 |#1|)) 103)) (-2042 (((-1179 |#1|) (-1179 |#1|)) 64)) (-2163 (((-1179 |#1|) (-1179 |#1|)) 100)) (-2017 (((-1179 |#1|) (-1179 |#1|)) 56)) (-4110 (((-1179 |#1|) (-1179 |#1|)) 113)) (-2100 (((-1179 |#1|) (-1179 |#1|)) 88)) (-2225 (((-1179 |#1|) (-1179 |#1|)) 107)) (-2072 (((-1179 |#1|) (-1179 |#1|)) 84)) (-4137 (((-1179 |#1|) (-1179 |#1|)) 117)) (-2125 (((-1179 |#1|) (-1179 |#1|)) 92)) (-2224 (((-1179 |#1|) (-1179 |#1|)) 119)) (-2137 (((-1179 |#1|) (-1179 |#1|)) 94)) (-4124 (((-1179 |#1|) (-1179 |#1|)) 115)) (-2113 (((-1179 |#1|) (-1179 |#1|)) 90)) (-2235 (((-1179 |#1|) (-1179 |#1|)) 109)) (-2085 (((-1179 |#1|) (-1179 |#1|)) 86)) (** (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 41))) -(((-1184 |#1|) (-10 -7 (-15 -4067 ((-1179 |#1|) (-1179 |#1|))) (-15 -3670 ((-1179 |#1|) (-1179 |#1|))) (-15 ** ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2172 ((-2 (|:| -2004 (-1179 |#1|)) (|:| -2017 (-1179 |#1|))) (-1179 |#1|))) (-15 -2004 ((-1179 |#1|) (-1179 |#1|))) (-15 -2017 ((-1179 |#1|) (-1179 |#1|))) (-15 -2030 ((-1179 |#1|) (-1179 |#1|))) (-15 -2042 ((-1179 |#1|) (-1179 |#1|))) (-15 -2052 ((-1179 |#1|) (-1179 |#1|))) (-15 -2062 ((-1179 |#1|) (-1179 |#1|))) (-15 -2072 ((-1179 |#1|) (-1179 |#1|))) (-15 -2085 ((-1179 |#1|) (-1179 |#1|))) (-15 -2100 ((-1179 |#1|) (-1179 |#1|))) (-15 -2113 ((-1179 |#1|) (-1179 |#1|))) (-15 -2125 ((-1179 |#1|) (-1179 |#1|))) (-15 -2137 ((-1179 |#1|) (-1179 |#1|))) (-15 -3769 ((-2 (|:| -2150 (-1179 |#1|)) (|:| -2163 (-1179 |#1|))) (-1179 |#1|))) (-15 -2150 ((-1179 |#1|) (-1179 |#1|))) (-15 -2163 ((-1179 |#1|) (-1179 |#1|))) (-15 -2176 ((-1179 |#1|) (-1179 |#1|))) (-15 -2188 ((-1179 |#1|) (-1179 |#1|))) (-15 -2201 ((-1179 |#1|) (-1179 |#1|))) (-15 -2213 ((-1179 |#1|) (-1179 |#1|))) (-15 -2225 ((-1179 |#1|) (-1179 |#1|))) (-15 -2235 ((-1179 |#1|) (-1179 |#1|))) (-15 -4110 ((-1179 |#1|) (-1179 |#1|))) (-15 -4124 ((-1179 |#1|) (-1179 |#1|))) (-15 -4137 ((-1179 |#1|) (-1179 |#1|))) (-15 -2224 ((-1179 |#1|) (-1179 |#1|)))) (-38 (-419 (-576)))) (T -1184)) -((-2224 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-4137 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-4110 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2235 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2225 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2213 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2201 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2188 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2176 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2163 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2150 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-3769 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -2150 (-1179 *4)) (|:| -2163 (-1179 *4)))) (-5 *1 (-1184 *4)) (-5 *3 (-1179 *4)))) (-2137 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2125 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2113 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2100 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2072 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2062 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2052 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2042 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2030 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2017 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2004 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-2172 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -2004 (-1179 *4)) (|:| -2017 (-1179 *4)))) (-5 *1 (-1184 *4)) (-5 *3 (-1179 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-3670 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3)))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1184 *3))))) -(-10 -7 (-15 -4067 ((-1179 |#1|) (-1179 |#1|))) (-15 -3670 ((-1179 |#1|) (-1179 |#1|))) (-15 ** ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -2172 ((-2 (|:| -2004 (-1179 |#1|)) (|:| -2017 (-1179 |#1|))) (-1179 |#1|))) (-15 -2004 ((-1179 |#1|) (-1179 |#1|))) (-15 -2017 ((-1179 |#1|) (-1179 |#1|))) (-15 -2030 ((-1179 |#1|) (-1179 |#1|))) (-15 -2042 ((-1179 |#1|) (-1179 |#1|))) (-15 -2052 ((-1179 |#1|) (-1179 |#1|))) (-15 -2062 ((-1179 |#1|) (-1179 |#1|))) (-15 -2072 ((-1179 |#1|) (-1179 |#1|))) (-15 -2085 ((-1179 |#1|) (-1179 |#1|))) (-15 -2100 ((-1179 |#1|) (-1179 |#1|))) (-15 -2113 ((-1179 |#1|) (-1179 |#1|))) (-15 -2125 ((-1179 |#1|) (-1179 |#1|))) (-15 -2137 ((-1179 |#1|) (-1179 |#1|))) (-15 -3769 ((-2 (|:| -2150 (-1179 |#1|)) (|:| -2163 (-1179 |#1|))) (-1179 |#1|))) (-15 -2150 ((-1179 |#1|) (-1179 |#1|))) (-15 -2163 ((-1179 |#1|) (-1179 |#1|))) (-15 -2176 ((-1179 |#1|) (-1179 |#1|))) (-15 -2188 ((-1179 |#1|) (-1179 |#1|))) (-15 -2201 ((-1179 |#1|) (-1179 |#1|))) (-15 -2213 ((-1179 |#1|) (-1179 |#1|))) (-15 -2225 ((-1179 |#1|) (-1179 |#1|))) (-15 -2235 ((-1179 |#1|) (-1179 |#1|))) (-15 -4110 ((-1179 |#1|) (-1179 |#1|))) (-15 -4124 ((-1179 |#1|) (-1179 |#1|))) (-15 -4137 ((-1179 |#1|) (-1179 |#1|))) (-15 -2224 ((-1179 |#1|) (-1179 |#1|)))) -((-3048 (((-978 |#2|) |#2| |#2|) 50)) (-3813 ((|#2| |#2| |#1|) 19 (|has| |#1| (-317))))) -(((-1185 |#1| |#2|) (-10 -7 (-15 -3048 ((-978 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -3813 (|#2| |#2| |#1|)) |%noBranch|)) (-568) (-1265 |#1|)) (T -1185)) -((-3813 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1185 *3 *2)) (-4 *2 (-1265 *3)))) (-3048 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-978 *3)) (-5 *1 (-1185 *4 *3)) (-4 *3 (-1265 *4))))) -(-10 -7 (-15 -3048 ((-978 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -3813 (|#2| |#2| |#1|)) |%noBranch|)) -((-3429 (((-112) $ $) NIL)) (-1753 (($ $ (-657 (-784))) 79)) (-2896 (($) 33)) (-1757 (($ $) 51)) (-3757 (((-657 $) $) 60)) (-3854 (((-112) $) 19)) (-3428 (((-657 (-963 |#2|)) $) 86)) (-2059 (($ $) 80)) (-3222 (((-784) $) 47)) (-4109 (($) 32)) (-3841 (($ $ (-657 (-784)) (-963 |#2|)) 72) (($ $ (-657 (-784)) (-784)) 73) (($ $ (-784) (-963 |#2|)) 75)) (-3073 (($ $ $) 57) (($ (-657 $)) 59)) (-2849 (((-784) $) 87)) (-2633 (((-112) $) 15)) (-2342 (((-1180) $) NIL)) (-3684 (((-112) $) 22)) (-1471 (((-1142) $) NIL)) (-2895 (((-173) $) 85)) (-3691 (((-963 |#2|) $) 81)) (-3532 (((-784) $) 82)) (-3451 (((-112) $) 84)) (-2056 (($ $ (-657 (-784)) (-173)) 78)) (-2563 (($ $) 52)) (-3501 (((-877) $) 99)) (-1659 (($ $ (-657 (-784)) (-112)) 77)) (-1986 (((-657 $) $) 11)) (-1858 (($ $ (-784)) 46)) (-1370 (($ $) 43)) (-2046 (((-112) $ $) NIL)) (-3573 (($ $ $ (-963 |#2|) (-784)) 68)) (-2874 (($ $ (-963 |#2|)) 67)) (-2912 (($ $ (-657 (-784)) (-963 |#2|)) 66) (($ $ (-657 (-784)) (-784)) 70) (((-784) $ (-963 |#2|)) 71)) (-2933 (((-112) $ $) 92))) -(((-1186 |#1| |#2|) (-13 (-1122) (-10 -8 (-15 -2633 ((-112) $)) (-15 -3854 ((-112) $)) (-15 -3684 ((-112) $)) (-15 -4109 ($)) (-15 -2896 ($)) (-15 -1370 ($ $)) (-15 -1858 ($ $ (-784))) (-15 -1986 ((-657 $) $)) (-15 -3222 ((-784) $)) (-15 -1757 ($ $)) (-15 -2563 ($ $)) (-15 -3073 ($ $ $)) (-15 -3073 ($ (-657 $))) (-15 -3757 ((-657 $) $)) (-15 -2912 ($ $ (-657 (-784)) (-963 |#2|))) (-15 -2874 ($ $ (-963 |#2|))) (-15 -3573 ($ $ $ (-963 |#2|) (-784))) (-15 -3841 ($ $ (-657 (-784)) (-963 |#2|))) (-15 -2912 ($ $ (-657 (-784)) (-784))) (-15 -3841 ($ $ (-657 (-784)) (-784))) (-15 -2912 ((-784) $ (-963 |#2|))) (-15 -3841 ($ $ (-784) (-963 |#2|))) (-15 -1659 ($ $ (-657 (-784)) (-112))) (-15 -2056 ($ $ (-657 (-784)) (-173))) (-15 -1753 ($ $ (-657 (-784)))) (-15 -3691 ((-963 |#2|) $)) (-15 -3532 ((-784) $)) (-15 -3451 ((-112) $)) (-15 -2895 ((-173) $)) (-15 -2849 ((-784) $)) (-15 -2059 ($ $)) (-15 -3428 ((-657 (-963 |#2|)) $)))) (-941) (-1071)) (T -1186)) -((-2633 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-4109 (*1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071)))) (-2896 (*1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071)))) (-1370 (*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071)))) (-1858 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-1986 (*1 *2 *1) (-12 (-5 *2 (-657 (-1186 *3 *4))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-1757 (*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071)))) (-2563 (*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071)))) (-3073 (*1 *1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071)))) (-3073 (*1 *1 *2) (-12 (-5 *2 (-657 (-1186 *3 *4))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-657 (-1186 *3 *4))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-2912 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-784))) (-5 *3 (-963 *5)) (-4 *5 (-1071)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)))) (-2874 (*1 *1 *1 *2) (-12 (-5 *2 (-963 *4)) (-4 *4 (-1071)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)))) (-3573 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-963 *5)) (-5 *3 (-784)) (-4 *5 (-1071)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)))) (-3841 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-784))) (-5 *3 (-963 *5)) (-4 *5 (-1071)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)))) (-2912 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-784))) (-5 *3 (-784)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)) (-4 *5 (-1071)))) (-3841 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-784))) (-5 *3 (-784)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)) (-4 *5 (-1071)))) (-2912 (*1 *2 *1 *3) (-12 (-5 *3 (-963 *5)) (-4 *5 (-1071)) (-5 *2 (-784)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)))) (-3841 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *3 (-963 *5)) (-4 *5 (-1071)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)))) (-1659 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-784))) (-5 *3 (-112)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)) (-4 *5 (-1071)))) (-2056 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-657 (-784))) (-5 *3 (-173)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)) (-4 *5 (-1071)))) (-1753 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-784))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-963 *4)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-3532 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-2895 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071)))) (-2059 (*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071)))) (-3428 (*1 *2 *1) (-12 (-5 *2 (-657 (-963 *4))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) (-4 *4 (-1071))))) -(-13 (-1122) (-10 -8 (-15 -2633 ((-112) $)) (-15 -3854 ((-112) $)) (-15 -3684 ((-112) $)) (-15 -4109 ($)) (-15 -2896 ($)) (-15 -1370 ($ $)) (-15 -1858 ($ $ (-784))) (-15 -1986 ((-657 $) $)) (-15 -3222 ((-784) $)) (-15 -1757 ($ $)) (-15 -2563 ($ $)) (-15 -3073 ($ $ $)) (-15 -3073 ($ (-657 $))) (-15 -3757 ((-657 $) $)) (-15 -2912 ($ $ (-657 (-784)) (-963 |#2|))) (-15 -2874 ($ $ (-963 |#2|))) (-15 -3573 ($ $ $ (-963 |#2|) (-784))) (-15 -3841 ($ $ (-657 (-784)) (-963 |#2|))) (-15 -2912 ($ $ (-657 (-784)) (-784))) (-15 -3841 ($ $ (-657 (-784)) (-784))) (-15 -2912 ((-784) $ (-963 |#2|))) (-15 -3841 ($ $ (-784) (-963 |#2|))) (-15 -1659 ($ $ (-657 (-784)) (-112))) (-15 -2056 ($ $ (-657 (-784)) (-173))) (-15 -1753 ($ $ (-657 (-784)))) (-15 -3691 ((-963 |#2|) $)) (-15 -3532 ((-784) $)) (-15 -3451 ((-112) $)) (-15 -2895 ((-173) $)) (-15 -2849 ((-784) $)) (-15 -2059 ($ $)) (-15 -3428 ((-657 (-963 |#2|)) $)))) -((-3429 (((-112) $ $) NIL)) (-1730 ((|#2| $) 11)) (-1718 ((|#1| $) 10)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3511 (($ |#1| |#2|) 9)) (-3501 (((-877) $) 16)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-1187 |#1| |#2|) (-13 (-1122) (-10 -8 (-15 -3511 ($ |#1| |#2|)) (-15 -1718 (|#1| $)) (-15 -1730 (|#2| $)))) (-1122) (-1122)) (T -1187)) -((-3511 (*1 *1 *2 *3) (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-1718 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-1187 *2 *3)) (-4 *3 (-1122)))) (-1730 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-1187 *3 *2)) (-4 *3 (-1122))))) -(-13 (-1122) (-10 -8 (-15 -3511 ($ |#1| |#2|)) (-15 -1718 (|#1| $)) (-15 -1730 (|#2| $)))) -((-3429 (((-112) $ $) NIL)) (-2086 (((-1157) $) 9)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 15) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-1188) (-13 (-1105) (-10 -8 (-15 -2086 ((-1157) $))))) (T -1188)) -((-2086 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1188))))) -(-13 (-1105) (-10 -8 (-15 -2086 ((-1157) $)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3931 (((-1196 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-2029 (((-657 (-1104)) $) NIL)) (-3032 (((-1198) $) 11)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3325 (($ $) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4306 (((-112) $) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4374 (($ $ (-576)) NIL) (($ $ (-576) (-576)) 75)) (-2886 (((-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-2584 (((-1196 |#1| |#2| |#3|) $) 42)) (-1854 (((-3 (-1196 |#1| |#2| |#3|) "failed") $) 32)) (-2084 (((-1196 |#1| |#2| |#3|) $) 33)) (-2176 (($ $) 116 (|has| |#1| (-38 (-419 (-576)))))) (-2030 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-2638 (($ $) NIL (|has| |#1| (-374)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1896 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-2864 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2150 (($ $) 112 (|has| |#1| (-38 (-419 (-576)))))) (-2004 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-1536 (((-576) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))))) (-3660 (($ (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-2201 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-2052 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-1196 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1198) "failed") $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1060 (-1198))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374))))) (-2884 (((-1196 |#1| |#2| |#3|) $) 140) (((-1198) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1060 (-1198))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374))))) (-3106 (($ $) 37) (($ (-576) $) 38)) (-3373 (($ $ $) NIL (|has| |#1| (-374)))) (-2212 (($ $) NIL)) (-3306 (((-702 (-1196 |#1| |#2| |#3|)) (-702 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3750 (-702 (-1196 |#1| |#2| |#3|))) (|:| |vec| (-1289 (-1196 |#1| |#2| |#3|)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-652 (-576))) (|has| |#1| (-374)))) (((-702 (-576)) (-702 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-652 (-576))) (|has| |#1| (-374))))) (-3843 (((-3 $ "failed") $) 54)) (-3588 (((-419 (-972 |#1|)) $ (-576)) 74 (|has| |#1| (-568))) (((-419 (-972 |#1|)) $ (-576) (-576)) 76 (|has| |#1| (-568)))) (-1892 (($) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3385 (($ $ $) NIL (|has| |#1| (-374)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-4257 (((-112) $) NIL (|has| |#1| (-374)))) (-2828 (((-112) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))))) (-2373 (((-112) $) 28)) (-1657 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-902 (-390))) (|has| |#1| (-374)))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-902 (-576))) (|has| |#1| (-374))))) (-3182 (((-576) $) NIL) (((-576) $ (-576)) 26)) (-4094 (((-112) $) NIL)) (-2752 (($ $) NIL (|has| |#1| (-374)))) (-1621 (((-1196 |#1| |#2| |#3|) $) 44 (|has| |#1| (-374)))) (-2082 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4019 (((-3 $ "failed") $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1174)) (|has| |#1| (-374))))) (-2881 (((-112) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))))) (-1525 (($ $ (-941)) NIL)) (-2008 (($ (-1 |#1| (-576)) $) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-576)) 19) (($ $ (-1104) (-576)) NIL) (($ $ (-657 (-1104)) (-657 (-576))) NIL)) (-3707 (($ $ $) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-1611 (($ $ $) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-4083 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-3670 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-3101 (((-702 (-1196 |#1| |#2| |#3|)) (-1289 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3750 (-702 (-1196 |#1| |#2| |#3|))) (|:| |vec| (-1289 (-1196 |#1| |#2| |#3|)))) (-1289 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-652 (-576))) (|has| |#1| (-374)))) (((-702 (-576)) (-1289 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-652 (-576))) (|has| |#1| (-374))))) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2098 (($ (-576) (-1196 |#1| |#2| |#3|)) 36)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-374)))) (-4190 (($ $) 79 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| |#1| (-15 -4190 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -2029 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224))))) (($ $ (-1285 |#2|)) 80 (|has| |#1| (-38 (-419 (-576)))))) (-1706 (($) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1174)) (|has| |#1| (-374))) CONST)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2900 (($ $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-3427 (((-1196 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-1885 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-3926 (($ $ (-576)) 158)) (-3418 (((-3 $ "failed") $ $) 55 (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-4067 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-3236 (((-1179 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1198) (-1196 |#1| |#2| |#3|)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-526 (-1198) (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-657 (-1198)) (-657 (-1196 |#1| |#2| |#3|))) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-526 (-1198) (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-657 (-304 (-1196 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-319 (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1196 |#1| |#2| |#3|))) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-319 (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-319 (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-657 (-1196 |#1| |#2| |#3|)) (-657 (-1196 |#1| |#2| |#3|))) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-319 (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-2034 (((-784) $) NIL (|has| |#1| (-374)))) (-2835 ((|#1| $ (-576)) NIL) (($ $ $) 61 (|has| (-576) (-1134))) (($ $ (-1196 |#1| |#2| |#3|)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-296 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-374)))) (-2815 (($ $ (-1 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|)) (-784)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1285 |#2|)) 57) (($ $) 56 (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-784)) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))))) (-1396 (($ $) NIL (|has| |#1| (-374)))) (-1635 (((-1196 |#1| |#2| |#3|) $) 46 (|has| |#1| (-374)))) (-1770 (((-576) $) 43)) (-2213 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-2062 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-2188 (($ $) 118 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-2163 (($ $) 114 (|has| |#1| (-38 (-419 (-576)))))) (-2017 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-4148 (((-548) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1044)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1044)) (|has| |#1| (-374)))) (((-908 (-390)) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-626 (-908 (-390)))) (|has| |#1| (-374)))) (((-908 (-576)) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-626 (-908 (-576)))) (|has| |#1| (-374))))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-1431 (($ $) NIL)) (-3501 (((-877) $) 162) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1196 |#1| |#2| |#3|)) 30) (($ (-1285 |#2|)) 25) (($ (-1198)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1060 (-1198))) (|has| |#1| (-374)))) (($ $) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-2313 ((|#1| $ (-576)) 77)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-1960 (((-784)) NIL T CONST)) (-3665 ((|#1| $) 12)) (-1893 (((-1196 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2046 (((-112) $ $) NIL)) (-4110 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-4041 (((-112) $ $) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2225 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-2072 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2125 (($ $) 108 (|has| |#1| (-38 (-419 (-576)))))) (-4144 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3501 (|#1| (-1198))))))) (-2224 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 110 (|has| |#1| (-38 (-419 (-576)))))) (-4124 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-2235 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-2085 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-1792 (($ $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))))) (-2769 (($) 21 T CONST)) (-2779 (($) 16 T CONST)) (-2097 (($ $ (-1 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|)) (-784)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1285 |#2|)) NIL) (($ $) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-784)) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))))) (-2985 (((-112) $ $) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2963 (((-112) $ $) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2954 (((-112) $ $) NIL (-2802 (-12 (|has| (-1196 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 49 (|has| |#1| (-374))) (($ (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|)) 50 (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 23)) (** (($ $ (-941)) NIL) (($ $ (-784)) 60) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) 83 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 137 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1196 |#1| |#2| |#3|)) 48 (|has| |#1| (-374))) (($ (-1196 |#1| |#2| |#3|) $) 47 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1189 |#1| |#2| |#3|) (-13 (-1251 |#1| (-1196 |#1| |#2| |#3|)) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3501 ($ (-1285 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4190 ($ $ (-1285 |#2|))) |%noBranch|))) (-1071) (-1198) |#1|) (T -1189)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-1071)) (-14 *5 *3))) (-4190 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3)))) -(-13 (-1251 |#1| (-1196 |#1| |#2| |#3|)) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3501 ($ (-1285 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4190 ($ $ (-1285 |#2|))) |%noBranch|))) -((-2619 ((|#2| |#2| (-1114 |#2|)) 26) ((|#2| |#2| (-1198)) 28))) -(((-1190 |#1| |#2|) (-10 -7 (-15 -2619 (|#2| |#2| (-1198))) (-15 -2619 (|#2| |#2| (-1114 |#2|)))) (-13 (-568) (-1060 (-576)) (-652 (-576))) (-13 (-442 |#1|) (-161) (-27) (-1224))) (T -1190)) -((-2619 (*1 *2 *2 *3) (-12 (-5 *3 (-1114 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1224))) (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-1190 *4 *2)))) (-2619 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-1190 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1224)))))) -(-10 -7 (-15 -2619 (|#2| |#2| (-1198))) (-15 -2619 (|#2| |#2| (-1114 |#2|)))) -((-2619 (((-3 (-419 (-972 |#1|)) (-326 |#1|)) (-419 (-972 |#1|)) (-1114 (-419 (-972 |#1|)))) 31) (((-419 (-972 |#1|)) (-972 |#1|) (-1114 (-972 |#1|))) 44) (((-3 (-419 (-972 |#1|)) (-326 |#1|)) (-419 (-972 |#1|)) (-1198)) 33) (((-419 (-972 |#1|)) (-972 |#1|) (-1198)) 36))) -(((-1191 |#1|) (-10 -7 (-15 -2619 ((-419 (-972 |#1|)) (-972 |#1|) (-1198))) (-15 -2619 ((-3 (-419 (-972 |#1|)) (-326 |#1|)) (-419 (-972 |#1|)) (-1198))) (-15 -2619 ((-419 (-972 |#1|)) (-972 |#1|) (-1114 (-972 |#1|)))) (-15 -2619 ((-3 (-419 (-972 |#1|)) (-326 |#1|)) (-419 (-972 |#1|)) (-1114 (-419 (-972 |#1|)))))) (-13 (-568) (-1060 (-576)))) (T -1191)) -((-2619 (*1 *2 *3 *4) (-12 (-5 *4 (-1114 (-419 (-972 *5)))) (-5 *3 (-419 (-972 *5))) (-4 *5 (-13 (-568) (-1060 (-576)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1191 *5)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *4 (-1114 (-972 *5))) (-5 *3 (-972 *5)) (-4 *5 (-13 (-568) (-1060 (-576)))) (-5 *2 (-419 *3)) (-5 *1 (-1191 *5)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-568) (-1060 (-576)))) (-5 *2 (-3 (-419 (-972 *5)) (-326 *5))) (-5 *1 (-1191 *5)) (-5 *3 (-419 (-972 *5))))) (-2619 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-568) (-1060 (-576)))) (-5 *2 (-419 (-972 *5))) (-5 *1 (-1191 *5)) (-5 *3 (-972 *5))))) -(-10 -7 (-15 -2619 ((-419 (-972 |#1|)) (-972 |#1|) (-1198))) (-15 -2619 ((-3 (-419 (-972 |#1|)) (-326 |#1|)) (-419 (-972 |#1|)) (-1198))) (-15 -2619 ((-419 (-972 |#1|)) (-972 |#1|) (-1114 (-972 |#1|)))) (-15 -2619 ((-3 (-419 (-972 |#1|)) (-326 |#1|)) (-419 (-972 |#1|)) (-1114 (-419 (-972 |#1|)))))) -((-4083 (((-1194 |#2|) (-1 |#2| |#1|) (-1194 |#1|)) 13))) -(((-1192 |#1| |#2|) (-10 -7 (-15 -4083 ((-1194 |#2|) (-1 |#2| |#1|) (-1194 |#1|)))) (-1071) (-1071)) (T -1192)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1194 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-5 *2 (-1194 *6)) (-5 *1 (-1192 *5 *6))))) -(-10 -7 (-15 -4083 ((-1194 |#2|) (-1 |#2| |#1|) (-1194 |#1|)))) -((-4402 (((-430 (-1194 (-419 |#4|))) (-1194 (-419 |#4|))) 51)) (-1885 (((-430 (-1194 (-419 |#4|))) (-1194 (-419 |#4|))) 52))) -(((-1193 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1885 ((-430 (-1194 (-419 |#4|))) (-1194 (-419 |#4|)))) (-15 -4402 ((-430 (-1194 (-419 |#4|))) (-1194 (-419 |#4|))))) (-806) (-862) (-464) (-969 |#3| |#1| |#2|)) (T -1193)) -((-4402 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-464)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-430 (-1194 (-419 *7)))) (-5 *1 (-1193 *4 *5 *6 *7)) (-5 *3 (-1194 (-419 *7))))) (-1885 (*1 *2 *3) (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-464)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-430 (-1194 (-419 *7)))) (-5 *1 (-1193 *4 *5 *6 *7)) (-5 *3 (-1194 (-419 *7)))))) -(-10 -7 (-15 -1885 ((-430 (-1194 (-419 |#4|))) (-1194 (-419 |#4|)))) (-15 -4402 ((-430 (-1194 (-419 |#4|))) (-1194 (-419 |#4|))))) -((-3429 (((-112) $ $) 171)) (-2364 (((-112) $) 43)) (-2266 (((-1289 |#1|) $ (-784)) NIL)) (-2029 (((-657 (-1104)) $) NIL)) (-3745 (($ (-1194 |#1|)) NIL)) (-1849 (((-1194 $) $ (-1104)) 82) (((-1194 |#1|) $) 71)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) 164 (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-1775 (((-784) $) NIL) (((-784) $ (-657 (-1104))) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-1558 (($ $ $) 158 (|has| |#1| (-568)))) (-4250 (((-430 (-1194 $)) (-1194 $)) 95 (|has| |#1| (-929)))) (-2638 (($ $) NIL (|has| |#1| (-464)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-464)))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 115 (|has| |#1| (-929)))) (-2864 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2794 (($ $ (-784)) 61)) (-1462 (($ $ (-784)) 63)) (-3757 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-1104) "failed") $) NIL)) (-2884 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-1104) $) NIL)) (-3203 (($ $ $ (-1104)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-3373 (($ $ $) NIL (|has| |#1| (-374)))) (-2212 (($ $) 80)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) NIL) (((-702 |#1|) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3385 (($ $ $) NIL (|has| |#1| (-374)))) (-3327 (($ $ $) 131)) (-2432 (($ $ $) NIL (|has| |#1| (-568)))) (-4267 (((-2 (|:| -1771 |#1|) (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-568)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-3813 (($ $) 165 (|has| |#1| (-464))) (($ $ (-1104)) NIL (|has| |#1| (-464)))) (-2199 (((-657 $) $) NIL)) (-4257 (((-112) $) NIL (|has| |#1| (-929)))) (-3124 (($ $ |#1| (-784) $) 69)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-1104) (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-1104) (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-3716 (((-877) $ (-877)) 148)) (-3182 (((-784) $ $) NIL (|has| |#1| (-568)))) (-4094 (((-112) $) 48)) (-4334 (((-784) $) NIL)) (-4019 (((-3 $ "failed") $) NIL (|has| |#1| (-1174)))) (-2014 (($ (-1194 |#1|) (-1104)) 73) (($ (-1194 $) (-1104)) 89)) (-1525 (($ $ (-784)) 51)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3724 (((-657 $) $) NIL)) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-784)) 87) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ (-1104)) NIL) (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 153)) (-4436 (((-784) $) NIL) (((-784) $ (-1104)) NIL) (((-657 (-784)) $ (-657 (-1104))) NIL)) (-4056 (($ (-1 (-784) (-784)) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-2890 (((-1194 |#1|) $) NIL)) (-2353 (((-3 (-1104) "failed") $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) NIL) (((-702 |#1|) (-1289 $)) NIL)) (-2174 (($ $) NIL)) (-2186 ((|#1| $) 76)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-2342 (((-1180) $) NIL)) (-2025 (((-2 (|:| -2335 $) (|:| -3644 $)) $ (-784)) 60)) (-1392 (((-3 (-657 $) "failed") $) NIL)) (-2974 (((-3 (-657 $) "failed") $) NIL)) (-2999 (((-3 (-2 (|:| |var| (-1104)) (|:| -1801 (-784))) "failed") $) NIL)) (-4190 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1706 (($) NIL (|has| |#1| (-1174)) CONST)) (-1471 (((-1142) $) NIL)) (-2146 (((-112) $) 50)) (-2160 ((|#1| $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 103 (|has| |#1| (-464)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-464))) (($ $ $) 167 (|has| |#1| (-464)))) (-2303 (($ $ (-784) |#1| $) 123)) (-2861 (((-430 (-1194 $)) (-1194 $)) 101 (|has| |#1| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) 100 (|has| |#1| (-929)))) (-1885 (((-430 $) $) 108 (|has| |#1| (-929)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-3418 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-568)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3236 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-1104) |#1|) NIL) (($ $ (-657 (-1104)) (-657 |#1|)) NIL) (($ $ (-1104) $) NIL) (($ $ (-657 (-1104)) (-657 $)) NIL)) (-2034 (((-784) $) NIL (|has| |#1| (-374)))) (-2835 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-4337 (((-3 $ "failed") $ (-784)) 54)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 172 (|has| |#1| (-374)))) (-1701 (($ $ (-1104)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-2815 (($ $ (-657 (-1104)) (-657 (-784))) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104))) NIL) (($ $ (-1104)) NIL) (($ $) NIL) (($ $ (-784)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-1770 (((-784) $) 78) (((-784) $ (-1104)) NIL) (((-657 (-784)) $ (-657 (-1104))) NIL)) (-4148 (((-908 (-390)) $) NIL (-12 (|has| (-1104) (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-1104) (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-1104) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1450 ((|#1| $) 162 (|has| |#1| (-464))) (($ $ (-1104)) NIL (|has| |#1| (-464)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-929))))) (-3432 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-3501 (((-877) $) 149) (($ (-576)) NIL) (($ |#1|) 77) (($ (-1104)) NIL) (($ (-419 (-576))) NIL (-2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-4037 (((-657 |#1|) $) NIL)) (-2313 ((|#1| $ (-784)) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-1960 (((-784)) NIL T CONST)) (-2702 (($ $ $ (-784)) 41 (|has| |#1| (-174)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2769 (($) 17 T CONST)) (-2779 (($) 19 T CONST)) (-2097 (($ $ (-657 (-1104)) (-657 (-784))) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104))) NIL) (($ $ (-1104)) NIL) (($ $) NIL) (($ $ (-784)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#1| (-920 (-1198))))) (-2933 (((-112) $ $) 120)) (-3034 (($ $ |#1|) 173 (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 90)) (** (($ $ (-941)) 14) (($ $ (-784)) 12)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) -(((-1194 |#1|) (-13 (-1265 |#1|) (-10 -8 (-15 -3716 ((-877) $ (-877))) (-15 -2303 ($ $ (-784) |#1| $)))) (-1071)) (T -1194)) -((-3716 (*1 *2 *1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1194 *3)) (-4 *3 (-1071)))) (-2303 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-784)) (-5 *1 (-1194 *3)) (-4 *3 (-1071))))) -(-13 (-1265 |#1|) (-10 -8 (-15 -3716 ((-877) $ (-877))) (-15 -2303 ($ $ (-784) |#1| $)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2029 (((-657 (-1104)) $) NIL)) (-3032 (((-1198) $) 11)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-4374 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-2886 (((-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-2176 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2030 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL (|has| |#1| (-374)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1896 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2864 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2150 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2004 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3660 (($ (-784) (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-2201 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2052 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-1189 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1196 |#1| |#2| |#3|) "failed") $) 36)) (-2884 (((-1189 |#1| |#2| |#3|) $) NIL) (((-1196 |#1| |#2| |#3|) $) NIL)) (-3373 (($ $ $) NIL (|has| |#1| (-374)))) (-2212 (($ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-4253 (((-419 (-576)) $) 59)) (-3385 (($ $ $) NIL (|has| |#1| (-374)))) (-2111 (($ (-419 (-576)) (-1189 |#1| |#2| |#3|)) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-4257 (((-112) $) NIL (|has| |#1| (-374)))) (-2373 (((-112) $) NIL)) (-1657 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3182 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-4094 (((-112) $) NIL)) (-2082 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1525 (($ $ (-941)) NIL) (($ $ (-419 (-576))) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-419 (-576))) 20) (($ $ (-1104) (-419 (-576))) NIL) (($ $ (-657 (-1104)) (-657 (-419 (-576)))) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-3670 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3986 (((-1189 |#1| |#2| |#3|) $) 41)) (-3438 (((-3 (-1189 |#1| |#2| |#3|) "failed") $) NIL)) (-2098 (((-1189 |#1| |#2| |#3|) $) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-374)))) (-4190 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| |#1| (-15 -4190 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -2029 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224))))) (($ $ (-1285 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1885 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-3926 (($ $ (-419 (-576))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3236 (((-1179 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2034 (((-784) $) NIL (|has| |#1| (-374)))) (-2835 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1134)))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-374)))) (-2815 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1285 |#2|)) 38)) (-1770 (((-419 (-576)) $) NIL)) (-2213 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2062 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2188 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2163 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1431 (($ $) NIL)) (-3501 (((-877) $) 62) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1189 |#1| |#2| |#3|)) 30) (($ (-1196 |#1| |#2| |#3|)) 31) (($ (-1285 |#2|)) 26) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2313 ((|#1| $ (-419 (-576))) NIL)) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) NIL T CONST)) (-3665 ((|#1| $) 12)) (-2046 (((-112) $ $) NIL)) (-4110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2225 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2072 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2125 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4144 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3501 (|#1| (-1198))))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4124 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2235 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2085 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2769 (($) 22 T CONST)) (-2779 (($) 16 T CONST)) (-2097 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1285 |#2|)) NIL)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 24)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1195 |#1| |#2| |#3|) (-13 (-1272 |#1| (-1189 |#1| |#2| |#3|)) (-912 $ (-1285 |#2|)) (-1060 (-1196 |#1| |#2| |#3|)) (-628 (-1285 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4190 ($ $ (-1285 |#2|))) |%noBranch|))) (-1071) (-1198) |#1|) (T -1195)) -((-4190 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3)))) -(-13 (-1272 |#1| (-1189 |#1| |#2| |#3|)) (-912 $ (-1285 |#2|)) (-1060 (-1196 |#1| |#2| |#3|)) (-628 (-1285 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4190 ($ $ (-1285 |#2|))) |%noBranch|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 129)) (-2029 (((-657 (-1104)) $) NIL)) (-3032 (((-1198) $) 119)) (-2421 (((-1262 |#2| |#1|) $ (-784)) 69)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-4374 (($ $ (-784)) 85) (($ $ (-784) (-784)) 82)) (-2886 (((-1179 (-2 (|:| |k| (-784)) (|:| |c| |#1|))) $) 105)) (-2176 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-2030 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (((-3 $ "failed") $ $) NIL)) (-1896 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2150 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-2004 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3660 (($ (-1179 (-2 (|:| |k| (-784)) (|:| |c| |#1|)))) 118) (($ (-1179 |#1|)) 113)) (-2201 (($ $) 177 (|has| |#1| (-38 (-419 (-576)))))) (-2052 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-4359 (($) NIL T CONST)) (-2212 (($ $) NIL)) (-3843 (((-3 $ "failed") $) 25)) (-2237 (($ $) 28)) (-3030 (((-972 |#1|) $ (-784)) 81) (((-972 |#1|) $ (-784) (-784)) 83)) (-2373 (((-112) $) 124)) (-1657 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3182 (((-784) $) 126) (((-784) $ (-784)) 128)) (-4094 (((-112) $) NIL)) (-2082 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1525 (($ $ (-941)) NIL)) (-2008 (($ (-1 |#1| (-576)) $) NIL)) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-784)) 13) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-3670 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-2342 (((-1180) $) NIL)) (-4190 (($ $) 133 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| |#1| (-15 -4190 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -2029 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224))))) (($ $ (-1285 |#2|)) 134 (|has| |#1| (-38 (-419 (-576)))))) (-1471 (((-1142) $) NIL)) (-3926 (($ $ (-784)) 15)) (-3418 (((-3 $ "failed") $ $) 26 (|has| |#1| (-568)))) (-4067 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3236 (((-1179 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-784)))))) (-2835 ((|#1| $ (-784)) 122) (($ $ $) 132 (|has| (-784) (-1134)))) (-2815 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-1285 |#2|)) 31)) (-1770 (((-784) $) NIL)) (-2213 (($ $) 179 (|has| |#1| (-38 (-419 (-576)))))) (-2062 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2188 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2163 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-2017 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-1431 (($ $) NIL)) (-3501 (((-877) $) 206) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1262 |#2| |#1|)) 55) (($ (-1285 |#2|)) 36)) (-4037 (((-1179 |#1|) $) 101)) (-2313 ((|#1| $ (-784)) 121)) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) NIL T CONST)) (-3665 ((|#1| $) 58)) (-2046 (((-112) $ $) NIL)) (-4110 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2225 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-2072 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-2125 (($ $) 165 (|has| |#1| (-38 (-419 (-576)))))) (-4144 ((|#1| $ (-784)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-784)))) (|has| |#1| (-15 -3501 (|#1| (-1198))))))) (-2224 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 167 (|has| |#1| (-38 (-419 (-576)))))) (-4124 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) 163 (|has| |#1| (-38 (-419 (-576)))))) (-2235 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-2085 (($ $) 159 (|has| |#1| (-38 (-419 (-576)))))) (-2769 (($) 17 T CONST)) (-2779 (($) 20 T CONST)) (-2097 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-1285 |#2|)) NIL)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) 198)) (-3012 (($ $ $) 35)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ |#1|) 203 (|has| |#1| (-374))) (($ $ $) 138 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 141 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1196 |#1| |#2| |#3|) (-13 (-1280 |#1|) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3501 ($ (-1262 |#2| |#1|))) (-15 -2421 ((-1262 |#2| |#1|) $ (-784))) (-15 -3501 ($ (-1285 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4190 ($ $ (-1285 |#2|))) |%noBranch|))) (-1071) (-1198) |#1|) (T -1196)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1262 *4 *3)) (-4 *3 (-1071)) (-14 *4 (-1198)) (-14 *5 *3) (-5 *1 (-1196 *3 *4 *5)))) (-2421 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1262 *5 *4)) (-5 *1 (-1196 *4 *5 *6)) (-4 *4 (-1071)) (-14 *5 (-1198)) (-14 *6 *4))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1196 *3 *4 *5)) (-4 *3 (-1071)) (-14 *5 *3))) (-4190 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1196 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3)))) -(-13 (-1280 |#1|) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3501 ($ (-1262 |#2| |#1|))) (-15 -2421 ((-1262 |#2| |#1|) $ (-784))) (-15 -3501 ($ (-1285 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4190 ($ $ (-1285 |#2|))) |%noBranch|))) -((-3501 (((-877) $) 33) (($ (-1198)) 35)) (-2802 (($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 46)) (-2791 (($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 39) (($ $) 40)) (-3133 (($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 41)) (-3123 (($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 43)) (-3113 (($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 42)) (-3102 (($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 44)) (-2118 (($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 45))) -(((-1197) (-13 (-625 (-877)) (-10 -8 (-15 -3501 ($ (-1198))) (-15 -3133 ($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3113 ($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3123 ($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3102 ($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2802 ($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2118 ($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2791 ($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2791 ($ $))))) (T -1197)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1197)))) (-3133 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-3113 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-3123 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-3102 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-2802 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-2118 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-2791 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-2791 (*1 *1 *1) (-5 *1 (-1197)))) -(-13 (-625 (-877)) (-10 -8 (-15 -3501 ($ (-1198))) (-15 -3133 ($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3113 ($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3123 ($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3102 ($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2802 ($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2118 ($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2791 ($ (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2791 ($ $)))) -((-3429 (((-112) $ $) NIL)) (-3836 (($ $ (-657 (-877))) 62)) (-3352 (($ $ (-657 (-877))) 60)) (-1331 (((-1180) $) 101)) (-3369 (((-2 (|:| -4240 (-657 (-877))) (|:| -3733 (-657 (-877))) (|:| |presup| (-657 (-877))) (|:| -2773 (-657 (-877))) (|:| |args| (-657 (-877)))) $) 108)) (-3847 (((-112) $) 23)) (-2946 (($ $ (-657 (-657 (-877)))) 59) (($ $ (-2 (|:| -4240 (-657 (-877))) (|:| -3733 (-657 (-877))) (|:| |presup| (-657 (-877))) (|:| -2773 (-657 (-877))) (|:| |args| (-657 (-877))))) 99)) (-4359 (($) 163 T CONST)) (-1569 (((-1294)) 135)) (-3200 (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 69) (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 76)) (-4109 (($) 122) (($ $) 131)) (-2676 (($ $) 100)) (-3707 (($ $ $) NIL)) (-1611 (($ $ $) NIL)) (-1710 (((-657 $) $) 136)) (-2342 (((-1180) $) 114)) (-1471 (((-1142) $) NIL)) (-2835 (($ $ (-657 (-877))) 61)) (-4148 (((-548) $) 48) (((-1198) $) 49) (((-908 (-576)) $) 80) (((-908 (-390)) $) 78)) (-3501 (((-877) $) 55) (($ (-1180)) 50)) (-2046 (((-112) $ $) NIL)) (-1416 (($ $ (-657 (-877))) 63)) (-3095 (((-1180) $) 34) (((-1180) $ (-112)) 35) (((-1294) (-835) $) 36) (((-1294) (-835) $ (-112)) 37)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 51)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) 52))) -(((-1198) (-13 (-862) (-626 (-548)) (-841) (-626 (-1198)) (-628 (-1180)) (-626 (-908 (-576))) (-626 (-908 (-390))) (-902 (-576)) (-902 (-390)) (-10 -8 (-15 -4109 ($)) (-15 -4109 ($ $)) (-15 -1569 ((-1294))) (-15 -2676 ($ $)) (-15 -3847 ((-112) $)) (-15 -3369 ((-2 (|:| -4240 (-657 (-877))) (|:| -3733 (-657 (-877))) (|:| |presup| (-657 (-877))) (|:| -2773 (-657 (-877))) (|:| |args| (-657 (-877)))) $)) (-15 -2946 ($ $ (-657 (-657 (-877))))) (-15 -2946 ($ $ (-2 (|:| -4240 (-657 (-877))) (|:| -3733 (-657 (-877))) (|:| |presup| (-657 (-877))) (|:| -2773 (-657 (-877))) (|:| |args| (-657 (-877)))))) (-15 -3352 ($ $ (-657 (-877)))) (-15 -3836 ($ $ (-657 (-877)))) (-15 -1416 ($ $ (-657 (-877)))) (-15 -2835 ($ $ (-657 (-877)))) (-15 -1331 ((-1180) $)) (-15 -1710 ((-657 $) $)) (-15 -4359 ($) -1509)))) (T -1198)) -((-4109 (*1 *1) (-5 *1 (-1198))) (-4109 (*1 *1 *1) (-5 *1 (-1198))) (-1569 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1198)))) (-2676 (*1 *1 *1) (-5 *1 (-1198))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198)))) (-3369 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4240 (-657 (-877))) (|:| -3733 (-657 (-877))) (|:| |presup| (-657 (-877))) (|:| -2773 (-657 (-877))) (|:| |args| (-657 (-877))))) (-5 *1 (-1198)))) (-2946 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-657 (-877)))) (-5 *1 (-1198)))) (-2946 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -4240 (-657 (-877))) (|:| -3733 (-657 (-877))) (|:| |presup| (-657 (-877))) (|:| -2773 (-657 (-877))) (|:| |args| (-657 (-877))))) (-5 *1 (-1198)))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-1198)))) (-3836 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-1198)))) (-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-1198)))) (-2835 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-1198)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1198)))) (-1710 (*1 *2 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-1198)))) (-4359 (*1 *1) (-5 *1 (-1198)))) -(-13 (-862) (-626 (-548)) (-841) (-626 (-1198)) (-628 (-1180)) (-626 (-908 (-576))) (-626 (-908 (-390))) (-902 (-576)) (-902 (-390)) (-10 -8 (-15 -4109 ($)) (-15 -4109 ($ $)) (-15 -1569 ((-1294))) (-15 -2676 ($ $)) (-15 -3847 ((-112) $)) (-15 -3369 ((-2 (|:| -4240 (-657 (-877))) (|:| -3733 (-657 (-877))) (|:| |presup| (-657 (-877))) (|:| -2773 (-657 (-877))) (|:| |args| (-657 (-877)))) $)) (-15 -2946 ($ $ (-657 (-657 (-877))))) (-15 -2946 ($ $ (-2 (|:| -4240 (-657 (-877))) (|:| -3733 (-657 (-877))) (|:| |presup| (-657 (-877))) (|:| -2773 (-657 (-877))) (|:| |args| (-657 (-877)))))) (-15 -3352 ($ $ (-657 (-877)))) (-15 -3836 ($ $ (-657 (-877)))) (-15 -1416 ($ $ (-657 (-877)))) (-15 -2835 ($ $ (-657 (-877)))) (-15 -1331 ((-1180) $)) (-15 -1710 ((-657 $) $)) (-15 -4359 ($) -1509))) -((-2642 (((-1289 |#1|) |#1| (-941)) 18) (((-1289 |#1|) (-657 |#1|)) 25))) -(((-1199 |#1|) (-10 -7 (-15 -2642 ((-1289 |#1|) (-657 |#1|))) (-15 -2642 ((-1289 |#1|) |#1| (-941)))) (-1071)) (T -1199)) -((-2642 (*1 *2 *3 *4) (-12 (-5 *4 (-941)) (-5 *2 (-1289 *3)) (-5 *1 (-1199 *3)) (-4 *3 (-1071)))) (-2642 (*1 *2 *3) (-12 (-5 *3 (-657 *4)) (-4 *4 (-1071)) (-5 *2 (-1289 *4)) (-5 *1 (-1199 *4))))) -(-10 -7 (-15 -2642 ((-1289 |#1|) (-657 |#1|))) (-15 -2642 ((-1289 |#1|) |#1| (-941)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1060 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2884 (((-576) $) NIL (|has| |#1| (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1060 (-419 (-576))))) ((|#1| $) NIL)) (-2212 (($ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3813 (($ $) NIL (|has| |#1| (-464)))) (-3124 (($ $ |#1| (-993) $) NIL)) (-4094 (((-112) $) 17)) (-4334 (((-784) $) NIL)) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-993)) NIL)) (-4436 (((-993) $) NIL)) (-4056 (($ (-1 (-993) (-993)) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2146 (((-112) $) NIL)) (-2160 ((|#1| $) NIL)) (-2303 (($ $ (-993) |#1| $) NIL (-12 (|has| (-993) (-132)) (|has| |#1| (-568))))) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-1770 (((-993) $) NIL)) (-1450 ((|#1| $) NIL (|has| |#1| (-464)))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-2802 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1060 (-419 (-576))))))) (-4037 (((-657 |#1|) $) NIL)) (-2313 ((|#1| $ (-993)) NIL)) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) NIL T CONST)) (-2702 (($ $ $ (-784)) NIL (|has| |#1| (-174)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2769 (($) 10 T CONST)) (-2779 (($) NIL T CONST)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 21)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1200 |#1|) (-13 (-336 |#1| (-993)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-993) (-132)) (-15 -2303 ($ $ (-993) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4464)) (-6 -4464) |%noBranch|))) (-1071)) (T -1200)) -((-2303 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-993)) (-4 *2 (-132)) (-5 *1 (-1200 *3)) (-4 *3 (-568)) (-4 *3 (-1071))))) -(-13 (-336 |#1| (-993)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-993) (-132)) (-15 -2303 ($ $ (-993) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4464)) (-6 -4464) |%noBranch|))) -((-3297 (((-1202) (-1198) $) 25)) (-3557 (($) 29)) (-1521 (((-3 (|:| |fst| (-446)) (|:| -2927 "void")) (-1198) $) 22)) (-4325 (((-1294) (-1198) (-3 (|:| |fst| (-446)) (|:| -2927 "void")) $) 41) (((-1294) (-1198) (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) 42) (((-1294) (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) 43)) (-1463 (((-1294) (-1198)) 58)) (-1540 (((-1294) (-1198) $) 55) (((-1294) (-1198)) 56) (((-1294)) 57)) (-2654 (((-1294) (-1198)) 37)) (-1524 (((-1198)) 36)) (-3581 (($) 34)) (-2253 (((-449) (-1198) (-449) (-1198) $) 45) (((-449) (-657 (-1198)) (-449) (-1198) $) 49) (((-449) (-1198) (-449)) 46) (((-449) (-1198) (-449) (-1198)) 50)) (-3224 (((-1198)) 35)) (-3501 (((-877) $) 28)) (-2461 (((-1294)) 30) (((-1294) (-1198)) 33)) (-3902 (((-657 (-1198)) (-1198) $) 24)) (-3388 (((-1294) (-1198) (-657 (-1198)) $) 38) (((-1294) (-1198) (-657 (-1198))) 39) (((-1294) (-657 (-1198))) 40))) -(((-1201) (-13 (-625 (-877)) (-10 -8 (-15 -3557 ($)) (-15 -2461 ((-1294))) (-15 -2461 ((-1294) (-1198))) (-15 -2253 ((-449) (-1198) (-449) (-1198) $)) (-15 -2253 ((-449) (-657 (-1198)) (-449) (-1198) $)) (-15 -2253 ((-449) (-1198) (-449))) (-15 -2253 ((-449) (-1198) (-449) (-1198))) (-15 -2654 ((-1294) (-1198))) (-15 -3224 ((-1198))) (-15 -1524 ((-1198))) (-15 -3388 ((-1294) (-1198) (-657 (-1198)) $)) (-15 -3388 ((-1294) (-1198) (-657 (-1198)))) (-15 -3388 ((-1294) (-657 (-1198)))) (-15 -4325 ((-1294) (-1198) (-3 (|:| |fst| (-446)) (|:| -2927 "void")) $)) (-15 -4325 ((-1294) (-1198) (-3 (|:| |fst| (-446)) (|:| -2927 "void")))) (-15 -4325 ((-1294) (-3 (|:| |fst| (-446)) (|:| -2927 "void")))) (-15 -1540 ((-1294) (-1198) $)) (-15 -1540 ((-1294) (-1198))) (-15 -1540 ((-1294))) (-15 -1463 ((-1294) (-1198))) (-15 -3581 ($)) (-15 -1521 ((-3 (|:| |fst| (-446)) (|:| -2927 "void")) (-1198) $)) (-15 -3902 ((-657 (-1198)) (-1198) $)) (-15 -3297 ((-1202) (-1198) $))))) (T -1201)) -((-3557 (*1 *1) (-5 *1 (-1201))) (-2461 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1201)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-2253 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1198)) (-5 *1 (-1201)))) (-2253 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-449)) (-5 *3 (-657 (-1198))) (-5 *4 (-1198)) (-5 *1 (-1201)))) (-2253 (*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1198)) (-5 *1 (-1201)))) (-2253 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-449)) (-5 *3 (-1198)) (-5 *1 (-1201)))) (-2654 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3224 (*1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1201)))) (-1524 (*1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1201)))) (-3388 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-657 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3388 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-657 (-1198))) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-4325 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1198)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-1540 (*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-1540 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1201)))) (-1463 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3581 (*1 *1) (-5 *1 (-1201))) (-1521 (*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-5 *1 (-1201)))) (-3902 (*1 *2 *3 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-1201)) (-5 *3 (-1198)))) (-3297 (*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-1202)) (-5 *1 (-1201))))) -(-13 (-625 (-877)) (-10 -8 (-15 -3557 ($)) (-15 -2461 ((-1294))) (-15 -2461 ((-1294) (-1198))) (-15 -2253 ((-449) (-1198) (-449) (-1198) $)) (-15 -2253 ((-449) (-657 (-1198)) (-449) (-1198) $)) (-15 -2253 ((-449) (-1198) (-449))) (-15 -2253 ((-449) (-1198) (-449) (-1198))) (-15 -2654 ((-1294) (-1198))) (-15 -3224 ((-1198))) (-15 -1524 ((-1198))) (-15 -3388 ((-1294) (-1198) (-657 (-1198)) $)) (-15 -3388 ((-1294) (-1198) (-657 (-1198)))) (-15 -3388 ((-1294) (-657 (-1198)))) (-15 -4325 ((-1294) (-1198) (-3 (|:| |fst| (-446)) (|:| -2927 "void")) $)) (-15 -4325 ((-1294) (-1198) (-3 (|:| |fst| (-446)) (|:| -2927 "void")))) (-15 -4325 ((-1294) (-3 (|:| |fst| (-446)) (|:| -2927 "void")))) (-15 -1540 ((-1294) (-1198) $)) (-15 -1540 ((-1294) (-1198))) (-15 -1540 ((-1294))) (-15 -1463 ((-1294) (-1198))) (-15 -3581 ($)) (-15 -1521 ((-3 (|:| |fst| (-446)) (|:| -2927 "void")) (-1198) $)) (-15 -3902 ((-657 (-1198)) (-1198) $)) (-15 -3297 ((-1202) (-1198) $)))) -((-2217 (((-657 (-657 (-3 (|:| -2676 (-1198)) (|:| -3968 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576))))))))) $) 66)) (-2922 (((-657 (-3 (|:| -2676 (-1198)) (|:| -3968 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576)))))))) (-446) $) 47)) (-2627 (($ (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-449))))) 17)) (-1463 (((-1294) $) 73)) (-1763 (((-657 (-1198)) $) 22)) (-2116 (((-1126) $) 60)) (-1942 (((-449) (-1198) $) 27)) (-4383 (((-657 (-1198)) $) 30)) (-3581 (($) 19)) (-2253 (((-449) (-657 (-1198)) (-449) $) 25) (((-449) (-1198) (-449) $) 24)) (-3501 (((-877) $) 9) (((-1211 (-1198) (-449)) $) 13))) -(((-1202) (-13 (-625 (-877)) (-10 -8 (-15 -3501 ((-1211 (-1198) (-449)) $)) (-15 -3581 ($)) (-15 -2253 ((-449) (-657 (-1198)) (-449) $)) (-15 -2253 ((-449) (-1198) (-449) $)) (-15 -1942 ((-449) (-1198) $)) (-15 -1763 ((-657 (-1198)) $)) (-15 -2922 ((-657 (-3 (|:| -2676 (-1198)) (|:| -3968 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576)))))))) (-446) $)) (-15 -4383 ((-657 (-1198)) $)) (-15 -2217 ((-657 (-657 (-3 (|:| -2676 (-1198)) (|:| -3968 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576))))))))) $)) (-15 -2116 ((-1126) $)) (-15 -1463 ((-1294) $)) (-15 -2627 ($ (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-449))))))))) (T -1202)) -((-3501 (*1 *2 *1) (-12 (-5 *2 (-1211 (-1198) (-449))) (-5 *1 (-1202)))) (-3581 (*1 *1) (-5 *1 (-1202))) (-2253 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-657 (-1198))) (-5 *1 (-1202)))) (-2253 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1198)) (-5 *1 (-1202)))) (-1942 (*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-449)) (-5 *1 (-1202)))) (-1763 (*1 *2 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-1202)))) (-2922 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-657 (-3 (|:| -2676 (-1198)) (|:| -3968 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576))))))))) (-5 *1 (-1202)))) (-4383 (*1 *2 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-1202)))) (-2217 (*1 *2 *1) (-12 (-5 *2 (-657 (-657 (-3 (|:| -2676 (-1198)) (|:| -3968 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576)))))))))) (-5 *1 (-1202)))) (-2116 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1202)))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1202)))) (-2627 (*1 *1 *2) (-12 (-5 *2 (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-449))))) (-5 *1 (-1202))))) -(-13 (-625 (-877)) (-10 -8 (-15 -3501 ((-1211 (-1198) (-449)) $)) (-15 -3581 ($)) (-15 -2253 ((-449) (-657 (-1198)) (-449) $)) (-15 -2253 ((-449) (-1198) (-449) $)) (-15 -1942 ((-449) (-1198) $)) (-15 -1763 ((-657 (-1198)) $)) (-15 -2922 ((-657 (-3 (|:| -2676 (-1198)) (|:| -3968 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576)))))))) (-446) $)) (-15 -4383 ((-657 (-1198)) $)) (-15 -2217 ((-657 (-657 (-3 (|:| -2676 (-1198)) (|:| -3968 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576))))))))) $)) (-15 -2116 ((-1126) $)) (-15 -1463 ((-1294) $)) (-15 -2627 ($ (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-449)))))))) -((-3429 (((-112) $ $) NIL)) (-1624 (((-3 (-576) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-518) "failed") $) 43) (((-3 (-1180) "failed") $) 47)) (-2884 (((-576) $) 30) (((-227) $) 36) (((-518) $) 40) (((-1180) $) 48)) (-1853 (((-112) $) 53)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-1776 (((-3 (-576) (-227) (-518) (-1180) $) $) 55)) (-2472 (((-657 $) $) 57)) (-4148 (((-1126) $) 24) (($ (-1126)) 25)) (-4203 (((-112) $) 56)) (-3501 (((-877) $) 23) (($ (-576)) 26) (($ (-227)) 32) (($ (-518)) 38) (($ (-1180)) 44) (((-548) $) 59) (((-576) $) 31) (((-227) $) 37) (((-518) $) 41) (((-1180) $) 49)) (-2756 (((-112) $ (|[\|\|]| (-576))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-518))) 19) (((-112) $ (|[\|\|]| (-1180))) 16)) (-3389 (($ (-518) (-657 $)) 51) (($ $ (-657 $)) 52)) (-2046 (((-112) $ $) NIL)) (-1977 (((-576) $) 27) (((-227) $) 33) (((-518) $) 39) (((-1180) $) 45)) (-2933 (((-112) $ $) 7))) -(((-1203) (-13 (-1284) (-1122) (-1060 (-576)) (-1060 (-227)) (-1060 (-518)) (-1060 (-1180)) (-625 (-548)) (-10 -8 (-15 -4148 ((-1126) $)) (-15 -4148 ($ (-1126))) (-15 -3501 ((-576) $)) (-15 -1977 ((-576) $)) (-15 -3501 ((-227) $)) (-15 -1977 ((-227) $)) (-15 -3501 ((-518) $)) (-15 -1977 ((-518) $)) (-15 -3501 ((-1180) $)) (-15 -1977 ((-1180) $)) (-15 -3389 ($ (-518) (-657 $))) (-15 -3389 ($ $ (-657 $))) (-15 -1853 ((-112) $)) (-15 -1776 ((-3 (-576) (-227) (-518) (-1180) $) $)) (-15 -2472 ((-657 $) $)) (-15 -4203 ((-112) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-576)))) (-15 -2756 ((-112) $ (|[\|\|]| (-227)))) (-15 -2756 ((-112) $ (|[\|\|]| (-518)))) (-15 -2756 ((-112) $ (|[\|\|]| (-1180))))))) (T -1203)) -((-4148 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1203)))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1203)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1203)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1203)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1203)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1203)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1203)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1203)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1203)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1203)))) (-3389 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-657 (-1203))) (-5 *1 (-1203)))) (-3389 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-1203))) (-5 *1 (-1203)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1180) (-1203))) (-5 *1 (-1203)))) (-2472 (*1 *2 *1) (-12 (-5 *2 (-657 (-1203))) (-5 *1 (-1203)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203)))) (-2756 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1203)))) (-2756 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1203)))) (-2756 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1203)))) (-2756 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-112)) (-5 *1 (-1203))))) -(-13 (-1284) (-1122) (-1060 (-576)) (-1060 (-227)) (-1060 (-518)) (-1060 (-1180)) (-625 (-548)) (-10 -8 (-15 -4148 ((-1126) $)) (-15 -4148 ($ (-1126))) (-15 -3501 ((-576) $)) (-15 -1977 ((-576) $)) (-15 -3501 ((-227) $)) (-15 -1977 ((-227) $)) (-15 -3501 ((-518) $)) (-15 -1977 ((-518) $)) (-15 -3501 ((-1180) $)) (-15 -1977 ((-1180) $)) (-15 -3389 ($ (-518) (-657 $))) (-15 -3389 ($ $ (-657 $))) (-15 -1853 ((-112) $)) (-15 -1776 ((-3 (-576) (-227) (-518) (-1180) $) $)) (-15 -2472 ((-657 $) $)) (-15 -4203 ((-112) $)) (-15 -2756 ((-112) $ (|[\|\|]| (-576)))) (-15 -2756 ((-112) $ (|[\|\|]| (-227)))) (-15 -2756 ((-112) $ (|[\|\|]| (-518)))) (-15 -2756 ((-112) $ (|[\|\|]| (-1180)))))) -((-3429 (((-112) $ $) NIL)) (-2193 (((-784)) 22)) (-4359 (($) 12 T CONST)) (-1892 (($) 26)) (-3707 (($ $ $) NIL) (($) 19 T CONST)) (-1611 (($ $ $) NIL) (($) 20 T CONST)) (-3007 (((-941) $) 24)) (-2342 (((-1180) $) NIL)) (-3178 (($ (-941)) 23)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL))) -(((-1204 |#1|) (-13 (-857) (-10 -8 (-15 -4359 ($) -1509))) (-941)) (T -1204)) -((-4359 (*1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-941))))) -(-13 (-857) (-10 -8 (-15 -4359 ($) -1509))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-1436 ((|#1| $) 45)) (-3828 (((-112) $ (-787)) 8)) (-1534 (($) 7 T CONST)) (-2367 ((|#1| |#1| $) 47)) (-2357 ((|#1| $) 46)) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) 9)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-4330 ((|#1| $) 40)) (-2881 (($ |#1| $) 41)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-3530 ((|#1| $) 42)) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-1965 (((-787) $) 44)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-3541 (($ (-660 |#1|)) 43)) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-1146 |#1|) (-141) (-1242)) (T -1146)) +((-2367 (*1 *2 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1242)))) (-2357 (*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1242)))) (-1436 (*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1242)))) (-1965 (*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1242)) (-5 *2 (-787))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4470) (-15 -2367 (|t#1| |t#1| $)) (-15 -2357 (|t#1| $)) (-15 -1436 (|t#1| $)) (-15 -1965 ((-787) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) +((-2339 ((|#3| $) 87)) (-1628 (((-3 (-577) "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2921 (((-577) $) NIL) (((-420 (-577)) $) NIL) ((|#3| $) 47)) (-1647 (((-705 (-577)) (-705 $)) NIL) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL) (((-2 (|:| -1881 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-705 $) (-1292 $)) 84) (((-705 |#3|) (-705 $)) 76)) (-2852 (($ $ (-1 |#3| |#3|) (-787)) NIL) (($ $ (-1 |#3| |#3|)) 28) (($ $) NIL) (($ $ (-787)) NIL) (($ $ (-1201)) NIL) (($ $ (-660 (-1201))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL)) (-2395 ((|#3| $) 89)) (-2404 ((|#4| $) 43)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ (-420 (-577))) NIL) (($ |#3|) 25)) (** (($ $ (-944)) NIL) (($ $ (-787)) 24) (($ $ (-577)) 95))) +(((-1147 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -2395 (|#3| |#1|)) (-15 -2339 (|#3| |#1|)) (-15 -2404 (|#4| |#1|)) (-15 -1647 ((-705 |#3|) (-705 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-705 (-577)) (-705 |#1|))) (-15 -3544 (|#1| |#3|)) (-15 -1628 ((-3 |#3| "failed") |#1|)) (-15 -2921 (|#3| |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -2852 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2852 (|#1| |#1| (-1 |#3| |#3|) (-787))) (-15 -3544 (|#1| (-577))) (-15 ** (|#1| |#1| (-787))) (-15 ** (|#1| |#1| (-944))) (-15 -3544 ((-880) |#1|))) (-1148 |#2| |#3| |#4| |#5|) (-787) (-1074) (-244 |#2| |#3|) (-244 |#2| |#3|)) (T -1147)) +NIL +(-10 -8 (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1|)) (-15 ** (|#1| |#1| (-577))) (-15 -2395 (|#3| |#1|)) (-15 -2339 (|#3| |#1|)) (-15 -2404 (|#4| |#1|)) (-15 -1647 ((-705 |#3|) (-705 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 |#3|)) (|:| |vec| (-1292 |#3|))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 |#1|) (-1292 |#1|))) (-15 -1647 ((-705 (-577)) (-705 |#1|))) (-15 -3544 (|#1| |#3|)) (-15 -1628 ((-3 |#3| "failed") |#1|)) (-15 -2921 (|#3| |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -2852 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2852 (|#1| |#1| (-1 |#3| |#3|) (-787))) (-15 -3544 (|#1| (-577))) (-15 ** (|#1| |#1| (-787))) (-15 ** (|#1| |#1| (-944))) (-15 -3544 ((-880) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-2339 ((|#2| $) 80)) (-4025 (((-112) $) 124)) (-1956 (((-3 $ "failed") $ $) 20)) (-4046 (((-112) $) 122)) (-3828 (((-112) $ (-787)) 114)) (-2423 (($ |#2|) 83)) (-1534 (($) 18 T CONST)) (-3931 (($ $) 141 (|has| |#2| (-318)))) (-3956 ((|#3| $ (-577)) 136)) (-1628 (((-3 (-577) "failed") $) 99 (|has| |#2| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) 96 (|has| |#2| (-1063 (-420 (-577))))) (((-3 |#2| "failed") $) 93)) (-2921 (((-577) $) 98 (|has| |#2| (-1063 (-577)))) (((-420 (-577)) $) 95 (|has| |#2| (-1063 (-420 (-577))))) ((|#2| $) 94)) (-1647 (((-705 (-577)) (-705 $)) 89 (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 88 (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) 87) (((-705 |#2|) (-705 $)) 86)) (-4187 (((-3 $ "failed") $) 37)) (-1545 (((-787) $) 142 (|has| |#2| (-569)))) (-2117 ((|#2| $ (-577) (-577)) 134)) (-1461 (((-660 |#2|) $) 107 (|has| $ (-6 -4470)))) (-2487 (((-112) $) 35)) (-3919 (((-787) $) 143 (|has| |#2| (-569)))) (-3908 (((-660 |#4|) $) 144 (|has| |#2| (-569)))) (-2414 (((-787) $) 130)) (-2424 (((-787) $) 131)) (-1479 (((-112) $ (-787)) 115)) (-2376 ((|#2| $) 75 (|has| |#2| (-6 (-4472 "*"))))) (-4002 (((-577) $) 126)) (-3979 (((-577) $) 128)) (-2530 (((-660 |#2|) $) 106 (|has| $ (-6 -4470)))) (-2820 (((-112) |#2| $) 104 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470))))) (-3990 (((-577) $) 127)) (-3968 (((-577) $) 129)) (-2550 (($ (-660 (-660 |#2|))) 121)) (-2182 (($ (-1 |#2| |#2|) $) 111 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#2| |#2| |#2|) $ $) 138) (($ (-1 |#2| |#2|) $) 112)) (-2737 (((-660 (-660 |#2|)) $) 132)) (-1443 (((-112) $ (-787)) 116)) (-1657 (((-705 (-577)) (-1292 $)) 91 (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 90 (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) 85) (((-705 |#2|) (-1292 $)) 84)) (-2810 (((-1183) $) 10)) (-2705 (((-3 $ "failed") $) 74 (|has| |#2| (-375)))) (-1474 (((-1145) $) 11)) (-3462 (((-3 $ "failed") $ |#2|) 139 (|has| |#2| (-569)))) (-1514 (((-112) (-1 (-112) |#2|) $) 109 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#2|))) 103 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-305 |#2|)) 102 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ |#2| |#2|) 101 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 |#2|) (-660 |#2|)) 100 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))))) (-3840 (((-112) $ $) 120)) (-3697 (((-112) $) 117)) (-3639 (($) 118)) (-2872 ((|#2| $ (-577) (-577) |#2|) 135) ((|#2| $ (-577) (-577)) 133)) (-2852 (($ $ (-1 |#2| |#2|) (-787)) 57) (($ $ (-1 |#2| |#2|)) 56) (($ $) 47 (|has| |#2| (-238))) (($ $ (-787)) 45 (|has| |#2| (-238))) (($ $ (-1201)) 55 (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201))) 53 (|has| |#2| (-923 (-1201)))) (($ $ (-1201) (-787)) 52 (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) 51 (|has| |#2| (-923 (-1201))))) (-2395 ((|#2| $) 79)) (-2413 (($ (-660 |#2|)) 82)) (-4035 (((-112) $) 123)) (-2404 ((|#3| $) 81)) (-2387 ((|#2| $) 76 (|has| |#2| (-6 (-4472 "*"))))) (-1485 (((-787) (-1 (-112) |#2|) $) 108 (|has| $ (-6 -4470))) (((-787) |#2| $) 105 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 119)) (-3943 ((|#4| $ (-577)) 137)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ (-420 (-577))) 97 (|has| |#2| (-1063 (-420 (-577))))) (($ |#2|) 92)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-1524 (((-112) (-1 (-112) |#2|) $) 110 (|has| $ (-6 -4470)))) (-4015 (((-112) $) 125)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-1 |#2| |#2|) (-787)) 59) (($ $ (-1 |#2| |#2|)) 58) (($ $) 46 (|has| |#2| (-238))) (($ $ (-787)) 44 (|has| |#2| (-238))) (($ $ (-1201)) 54 (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201))) 50 (|has| |#2| (-923 (-1201)))) (($ $ (-1201) (-787)) 49 (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) 48 (|has| |#2| (-923 (-1201))))) (-2970 (((-112) $ $) 8)) (-3077 (($ $ |#2|) 140 (|has| |#2| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 73 (|has| |#2| (-375)))) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#2|) 146) (($ |#2| $) 145) ((|#4| $ |#4|) 78) ((|#3| |#3| $) 77)) (-3484 (((-787) $) 113 (|has| $ (-6 -4470))))) +(((-1148 |#1| |#2| |#3| |#4|) (-141) (-787) (-1074) (-244 |t#1| |t#2|) (-244 |t#1| |t#2|)) (T -1148)) +((-2423 (*1 *1 *2) (-12 (-4 *2 (-1074)) (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)))) (-2413 (*1 *1 *2) (-12 (-5 *2 (-660 *4)) (-4 *4 (-1074)) (-4 *1 (-1148 *3 *4 *5 *6)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)))) (-2404 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *4 *2 *5)) (-4 *4 (-1074)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (-2339 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1074)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (-4 *2 (-1074)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1148 *3 *4 *5 *2)) (-4 *4 (-1074)) (-4 *5 (-244 *3 *4)) (-4 *2 (-244 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1148 *3 *4 *2 *5)) (-4 *4 (-1074)) (-4 *2 (-244 *3 *4)) (-4 *5 (-244 *3 *4)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4472 "*"))) (-4 *2 (-1074)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4472 "*"))) (-4 *2 (-1074)))) (-2705 (*1 *1 *1) (|partial| -12 (-4 *1 (-1148 *2 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-375)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-1148 *3 *4 *5 *6)) (-4 *4 (-1074)) (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-375))))) +(-13 (-233 |t#2|) (-111 |t#2| |t#2|) (-1078 |t#1| |t#1| |t#2| |t#3| |t#4|) (-424 |t#2|) (-389 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-733 |t#2|)) |%noBranch|) (-15 -2423 ($ |t#2|)) (-15 -2413 ($ (-660 |t#2|))) (-15 -2404 (|t#3| $)) (-15 -2339 (|t#2| $)) (-15 -2395 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4472 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2387 (|t#2| $)) (-15 -2376 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-375)) (PROGN (-15 -2705 ((-3 $ "failed") $)) (-15 ** ($ $ (-577)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4472 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-629 #0=(-420 (-577))) |has| |#2| (-1063 (-420 (-577)))) ((-629 (-577)) . T) ((-629 |#2|) . T) ((-626 (-880)) . T) ((-235 $) -2839 (|has| |#2| (-238)) (|has| |#2| (-239))) ((-233 |#2|) . T) ((-239) |has| |#2| (-239)) ((-238) -2839 (|has| |#2| (-238)) (|has| |#2| (-239))) ((-273 |#2|) . T) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-389 |#2|) . T) ((-424 |#2|) . T) ((-502 |#2|) . T) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-662 (-577)) . T) ((-662 |#2|) . T) ((-662 $) . T) ((-664 #1=(-577)) |has| |#2| (-654 (-577))) ((-664 |#2|) . T) ((-664 $) . T) ((-656 |#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-6 (-4472 "*")))) ((-654 #1#) |has| |#2| (-654 (-577))) ((-654 |#2|) . T) ((-733 |#2|) -2839 (|has| |#2| (-174)) (|has| |#2| (-6 (-4472 "*")))) ((-742) . T) ((-915 $ #2=(-1201)) -2839 (|has| |#2| (-923 (-1201))) (|has| |#2| (-921 (-1201)))) ((-921 (-1201)) |has| |#2| (-921 (-1201))) ((-923 #2#) -2839 (|has| |#2| (-923 (-1201))) (|has| |#2| (-921 (-1201)))) ((-1078 |#1| |#1| |#2| |#3| |#4|) . T) ((-1063 #0#) |has| |#2| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#2| (-1063 (-577))) ((-1063 |#2|) . T) ((-1076 |#2|) . T) ((-1081 |#2|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-2453 ((|#4| |#4|) 81)) (-2431 ((|#4| |#4|) 76)) (-4325 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4060 (-660 |#3|))) |#4| |#3|) 91)) (-4313 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-2441 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) +(((-1149 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2431 (|#4| |#4|)) (-15 -2441 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2453 (|#4| |#4|)) (-15 -4313 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4325 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4060 (-660 |#3|))) |#4| |#3|))) (-318) (-385 |#1|) (-385 |#1|) (-703 |#1| |#2| |#3|)) (T -1149)) +((-4325 (*1 *2 *3 *4) (-12 (-4 *5 (-318)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4060 (-660 *4)))) (-5 *1 (-1149 *5 *6 *4 *3)) (-4 *3 (-703 *5 *6 *4)))) (-4313 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1149 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) (-2453 (*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1149 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) (-2441 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1149 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) (-2431 (*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1149 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5))))) +(-10 -7 (-15 -2431 (|#4| |#4|)) (-15 -2441 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2453 (|#4| |#4|)) (-15 -4313 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4325 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4060 (-660 |#3|))) |#4| |#3|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 18)) (-2058 (((-660 |#2|) $) 174)) (-1867 (((-1197 $) $ |#2|) 60) (((-1197 |#1|) $) 49)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 116 (|has| |#1| (-569)))) (-3290 (($ $) 118 (|has| |#1| (-569)))) (-3271 (((-112) $) 120 (|has| |#1| (-569)))) (-4050 (((-787) $) NIL) (((-787) $ (-660 |#2|)) 213)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-3841 (($ $) NIL (|has| |#1| (-465)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-465)))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) 167) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 |#2| "failed") $) NIL)) (-2921 ((|#1| $) 165) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-577) $) NIL (|has| |#1| (-1063 (-577)))) ((|#2| $) NIL)) (-1816 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-2248 (($ $) 217)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL) (((-705 |#1|) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) 90)) (-3143 (($ $) NIL (|has| |#1| (-465))) (($ $ |#2|) NIL (|has| |#1| (-465)))) (-2234 (((-660 $) $) NIL)) (-1522 (((-112) $) NIL (|has| |#1| (-932)))) (-2137 (($ $ |#1| (-544 |#2|) $) NIL)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| |#1| (-905 (-391))) (|has| |#2| (-905 (-391))))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| |#1| (-905 (-577))) (|has| |#2| (-905 (-577)))))) (-2487 (((-112) $) 20)) (-2548 (((-787) $) 30)) (-2043 (($ (-1197 |#1|) |#2|) 54) (($ (-1197 $) |#2|) 71)) (-4074 (((-660 $) $) NIL)) (-2811 (((-112) $) 38)) (-2030 (($ |#1| (-544 |#2|)) 78) (($ $ |#2| (-787)) 58) (($ $ (-660 |#2|) (-660 (-787))) NIL)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ |#2|) NIL)) (-4061 (((-544 |#2|) $) 205) (((-787) $ |#2|) 206) (((-660 (-787)) $ (-660 |#2|)) 207)) (-2151 (($ (-1 (-544 |#2|) (-544 |#2|)) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) 128)) (-3691 (((-3 |#2| "failed") $) 177)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL) (((-705 |#1|) (-1292 $)) NIL)) (-2209 (($ $) 216)) (-2221 ((|#1| $) 43)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) NIL (|has| |#1| (-465)))) (-2810 (((-1183) $) NIL)) (-4098 (((-3 (-660 $) "failed") $) NIL)) (-4086 (((-3 (-660 $) "failed") $) NIL)) (-4111 (((-3 (-2 (|:| |var| |#2|) (|:| -3556 (-787))) "failed") $) NIL)) (-1474 (((-1145) $) NIL)) (-2180 (((-112) $) 39)) (-2193 ((|#1| $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 148 (|has| |#1| (-465)))) (-3480 (($ (-660 $)) 153 (|has| |#1| (-465))) (($ $ $) 138 (|has| |#1| (-465)))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#1| (-932)))) (-1902 (((-431 $) $) NIL (|has| |#1| (-932)))) (-3462 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-569)))) (-3280 (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-660 |#2|) (-660 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-660 |#2|) (-660 $)) 194)) (-1827 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2852 (($ $ (-660 |#2|) (-660 (-787))) NIL) (($ $ |#2| (-787)) NIL) (($ $ (-660 |#2|)) NIL) (($ $ |#2|) 215)) (-2887 (((-544 |#2|) $) 201) (((-787) $ |#2|) 196) (((-660 (-787)) $ (-660 |#2|)) 199)) (-4152 (((-911 (-391)) $) NIL (-12 (|has| |#1| (-627 (-911 (-391)))) (|has| |#2| (-627 (-911 (-391)))))) (((-911 (-577)) $) NIL (-12 (|has| |#1| (-627 (-911 (-577)))) (|has| |#2| (-627 (-911 (-577)))))) (((-549) $) NIL (-12 (|has| |#1| (-627 (-549))) (|has| |#2| (-627 (-549)))))) (-4039 ((|#1| $) 134 (|has| |#1| (-465))) (($ $ |#2|) 137 (|has| |#1| (-465)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-932))))) (-3544 (((-880) $) 159) (($ (-577)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-569))) (($ (-420 (-577))) NIL (-2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))))) (-4182 (((-660 |#1|) $) 162)) (-2322 ((|#1| $ (-544 |#2|)) 80) (($ $ |#2| (-787)) NIL) (($ $ (-660 |#2|) (-660 (-787))) NIL)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))))) (-4068 (((-787)) 87 T CONST)) (-2122 (($ $ $ (-787)) NIL (|has| |#1| (-174)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) 123 (|has| |#1| (-569)))) (-2806 (($) 12 T CONST)) (-2816 (($) 14 T CONST)) (-2132 (($ $ (-660 |#2|) (-660 (-787))) NIL) (($ $ |#2| (-787)) NIL) (($ $ (-660 |#2|)) NIL) (($ $ |#2|) NIL)) (-2970 (((-112) $ $) 106)) (-3077 (($ $ |#1|) 132 (|has| |#1| (-375)))) (-3066 (($ $) 93) (($ $ $) 104)) (-3055 (($ $ $) 55)) (** (($ $ (-944)) 110) (($ $ (-787)) 109)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 96) (($ $ $) 72) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) +(((-1150 |#1| |#2|) (-972 |#1| (-544 |#2|) |#2|) (-1074) (-865)) (T -1150)) +NIL +(-972 |#1| (-544 |#2|) |#2|) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-2058 (((-660 |#2|) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-2212 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))))) (-2060 (($ $) 128 (|has| |#1| (-38 (-420 (-577)))))) (-1956 (((-3 $ "failed") $ $) NIL)) (-1913 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2186 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))))) (-2032 (($ $) 124 (|has| |#1| (-38 (-420 (-577)))))) (-2237 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))))) (-2084 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))))) (-1534 (($) NIL T CONST)) (-2248 (($ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3074 (((-975 |#1|) $ (-787)) NIL) (((-975 |#1|) $ (-787) (-787)) NIL)) (-3550 (((-112) $) NIL)) (-1659 (($) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3817 (((-787) $ |#2|) NIL) (((-787) $ |#2| (-787)) NIL)) (-2487 (((-112) $) NIL)) (-2381 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2811 (((-112) $) NIL)) (-2030 (($ $ (-660 |#2|) (-660 (-544 |#2|))) NIL) (($ $ |#2| (-544 |#2|)) NIL) (($ |#1| (-544 |#2|)) NIL) (($ $ |#2| (-787)) 63) (($ $ (-660 |#2|) (-660 (-787))) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3698 (($ $) 122 (|has| |#1| (-38 (-420 (-577)))))) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-2810 (((-1183) $) NIL)) (-4147 (($ $ |#2|) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-420 (-577)))))) (-1474 (((-1145) $) NIL)) (-2312 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-420 (-577)))))) (-3792 (($ $ (-787)) 16)) (-3462 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)))) (-4072 (($ $) 120 (|has| |#1| (-38 (-420 (-577)))))) (-3280 (($ $ |#2| $) 106) (($ $ (-660 |#2|) (-660 $)) 99) (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL)) (-2852 (($ $ (-660 |#2|) (-660 (-787))) NIL) (($ $ |#2| (-787)) NIL) (($ $ (-660 |#2|)) NIL) (($ $ |#2|) 109)) (-2887 (((-544 |#2|) $) NIL)) (-4336 (((-1 (-1182 |#3|) |#3|) (-660 |#2|) (-660 (-1182 |#3|))) 87)) (-2249 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))))) (-2095 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))))) (-2224 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))))) (-2073 (($ $) 130 (|has| |#1| (-38 (-420 (-577)))))) (-2199 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))))) (-2046 (($ $) 126 (|has| |#1| (-38 (-420 (-577)))))) (-3540 (($ $) 18)) (-3544 (((-880) $) 198) (($ (-577)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-569))) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))) (($ |#2|) 70) (($ |#3|) 68)) (-2322 ((|#1| $ (-544 |#2|)) NIL) (($ $ |#2| (-787)) NIL) (($ $ (-660 |#2|) (-660 (-787))) NIL) ((|#3| $ (-787)) 43)) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-4114 (($ $) 164 (|has| |#1| (-38 (-420 (-577)))))) (-2136 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))))) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2262 (($ $) 160 (|has| |#1| (-38 (-420 (-577)))))) (-2106 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))))) (-4141 (($ $) 168 (|has| |#1| (-38 (-420 (-577)))))) (-2162 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))))) (-2261 (($ $) 170 (|has| |#1| (-38 (-420 (-577)))))) (-2174 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))))) (-4128 (($ $) 166 (|has| |#1| (-38 (-420 (-577)))))) (-2150 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))))) (-2272 (($ $) 162 (|has| |#1| (-38 (-420 (-577)))))) (-2120 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))))) (-2806 (($) 52 T CONST)) (-2816 (($) 62 T CONST)) (-2132 (($ $ (-660 |#2|) (-660 (-787))) NIL) (($ $ |#2| (-787)) NIL) (($ $ (-660 |#2|)) NIL) (($ $ |#2|) NIL)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) 200 (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) 66)) (** (($ $ (-944)) NIL) (($ $ (-787)) 77) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 112 (|has| |#1| (-38 (-420 (-577)))))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 65) (($ $ (-420 (-577))) 117 (|has| |#1| (-38 (-420 (-577))))) (($ (-420 (-577)) $) 115 (|has| |#1| (-38 (-420 (-577))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) +(((-1151 |#1| |#2| |#3|) (-13 (-756 |#1| |#2|) (-10 -8 (-15 -2322 (|#3| $ (-787))) (-15 -3544 ($ |#2|)) (-15 -3544 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4336 ((-1 (-1182 |#3|) |#3|) (-660 |#2|) (-660 (-1182 |#3|)))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4147 ($ $ |#2| |#1|)) (-15 -2312 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1074) (-865) (-972 |#1| (-544 |#2|) |#2|)) (T -1151)) +((-2322 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *2 (-972 *4 (-544 *5) *5)) (-5 *1 (-1151 *4 *5 *2)) (-4 *4 (-1074)) (-4 *5 (-865)))) (-3544 (*1 *1 *2) (-12 (-4 *3 (-1074)) (-4 *2 (-865)) (-5 *1 (-1151 *3 *2 *4)) (-4 *4 (-972 *3 (-544 *2) *2)))) (-3544 (*1 *1 *2) (-12 (-4 *3 (-1074)) (-4 *4 (-865)) (-5 *1 (-1151 *3 *4 *2)) (-4 *2 (-972 *3 (-544 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-865)) (-5 *1 (-1151 *3 *4 *2)) (-4 *2 (-972 *3 (-544 *4) *4)))) (-4336 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 (-1182 *7))) (-4 *6 (-865)) (-4 *7 (-972 *5 (-544 *6) *6)) (-4 *5 (-1074)) (-5 *2 (-1 (-1182 *7) *7)) (-5 *1 (-1151 *5 *6 *7)))) (-4147 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-4 *2 (-865)) (-5 *1 (-1151 *3 *2 *4)) (-4 *4 (-972 *3 (-544 *2) *2)))) (-2312 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1151 *4 *3 *5))) (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1074)) (-4 *3 (-865)) (-5 *1 (-1151 *4 *3 *5)) (-4 *5 (-972 *4 (-544 *3) *3))))) +(-13 (-756 |#1| |#2|) (-10 -8 (-15 -2322 (|#3| $ (-787))) (-15 -3544 ($ |#2|)) (-15 -3544 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4336 ((-1 (-1182 |#3|) |#3|) (-660 |#2|) (-660 (-1182 |#3|)))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4147 ($ $ |#2| |#1|)) (-15 -2312 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-3473 (((-112) $ $) 7)) (-2361 (((-660 (-2 (|:| -2045 $) (|:| -3253 (-660 |#4|)))) (-660 |#4|)) 86)) (-2371 (((-660 $) (-660 |#4|)) 87) (((-660 $) (-660 |#4|) (-112)) 112)) (-2058 (((-660 |#3|) $) 34)) (-2508 (((-112) $) 27)) (-3572 (((-112) $) 18 (|has| |#1| (-569)))) (-2475 (((-112) |#4| $) 102) (((-112) $) 98)) (-2426 ((|#4| |#4| $) 93)) (-3841 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 $))) |#4| $) 127)) (-1864 (((-2 (|:| |under| $) (|:| -4119 $) (|:| |upper| $)) $ |#3|) 28)) (-3828 (((-112) $ (-787)) 45)) (-2067 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4470))) (((-3 |#4| "failed") $ |#3|) 80)) (-1534 (($) 46 T CONST)) (-2474 (((-112) $) 23 (|has| |#1| (-569)))) (-2492 (((-112) $ $) 25 (|has| |#1| (-569)))) (-2483 (((-112) $ $) 24 (|has| |#1| (-569)))) (-2500 (((-112) $) 26 (|has| |#1| (-569)))) (-2435 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2434 (((-660 |#4|) (-660 |#4|) $) 19 (|has| |#1| (-569)))) (-2446 (((-660 |#4|) (-660 |#4|) $) 20 (|has| |#1| (-569)))) (-1628 (((-3 $ "failed") (-660 |#4|)) 37)) (-2921 (($ (-660 |#4|)) 36)) (-3563 (((-3 $ "failed") $) 83)) (-2399 ((|#4| |#4| $) 90)) (-1817 (($ $) 69 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))))) (-3904 (($ |#4| $) 68 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4470)))) (-2457 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)))) (-2484 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2382 ((|#4| |#4| $) 88)) (-3654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4470))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4470))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4364 (((-2 (|:| -2045 (-660 |#4|)) (|:| -3253 (-660 |#4|))) $) 106)) (-2524 (((-112) |#4| $) 137)) (-2505 (((-112) |#4| $) 134)) (-2532 (((-112) |#4| $) 138) (((-112) $) 135)) (-1461 (((-660 |#4|) $) 53 (|has| $ (-6 -4470)))) (-4354 (((-112) |#4| $) 105) (((-112) $) 104)) (-3514 ((|#3| $) 35)) (-1479 (((-112) $ (-787)) 44)) (-2530 (((-660 |#4|) $) 54 (|has| $ (-6 -4470)))) (-2820 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#4| |#4|) $) 48)) (-2555 (((-660 |#3|) $) 33)) (-2545 (((-112) |#3| $) 32)) (-1443 (((-112) $ (-787)) 43)) (-2810 (((-1183) $) 10)) (-2471 (((-3 |#4| (-660 $)) |#4| |#4| $) 129)) (-3605 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 $))) |#4| |#4| $) 128)) (-3927 (((-3 |#4| "failed") $) 84)) (-2479 (((-660 $) |#4| $) 130)) (-2496 (((-3 (-112) (-660 $)) |#4| $) 133)) (-2488 (((-660 (-2 (|:| |val| (-112)) (|:| -3952 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2785 (((-660 $) |#4| $) 126) (((-660 $) (-660 |#4|) $) 125) (((-660 $) (-660 |#4|) (-660 $)) 124) (((-660 $) |#4| (-660 $)) 123)) (-3986 (($ |#4| $) 118) (($ (-660 |#4|) $) 117)) (-4375 (((-660 |#4|) $) 108)) (-2458 (((-112) |#4| $) 100) (((-112) $) 96)) (-2408 ((|#4| |#4| $) 91)) (-4396 (((-112) $ $) 111)) (-2466 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)))) (-2467 (((-112) |#4| $) 101) (((-112) $) 97)) (-2418 ((|#4| |#4| $) 92)) (-1474 (((-1145) $) 11)) (-3552 (((-3 |#4| "failed") $) 85)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2343 (((-3 $ "failed") $ |#4|) 79)) (-3792 (($ $ |#4|) 78) (((-660 $) |#4| $) 116) (((-660 $) |#4| (-660 $)) 115) (((-660 $) (-660 |#4|) $) 114) (((-660 $) (-660 |#4|) (-660 $)) 113)) (-1514 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 |#4|) (-660 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-660 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))))) (-3840 (((-112) $ $) 39)) (-3697 (((-112) $) 42)) (-3639 (($) 41)) (-2887 (((-787) $) 107)) (-1485 (((-787) |#4| $) 55 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470)))) (((-787) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4470)))) (-1944 (($ $) 40)) (-4152 (((-549) $) 70 (|has| |#4| (-627 (-549))))) (-3553 (($ (-660 |#4|)) 61)) (-2518 (($ $ |#3|) 29)) (-2536 (($ $ |#3|) 31)) (-2391 (($ $) 89)) (-2527 (($ $ |#3|) 30)) (-3544 (((-880) $) 12) (((-660 |#4|) $) 38)) (-2332 (((-787) $) 77 (|has| |#3| (-380)))) (-4448 (((-112) $ $) 6)) (-4385 (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2447 (((-112) $ (-1 (-112) |#4| (-660 |#4|))) 99)) (-3594 (((-660 $) |#4| $) 122) (((-660 $) |#4| (-660 $)) 121) (((-660 $) (-660 |#4|) $) 120) (((-660 $) (-660 |#4|) (-660 $)) 119)) (-1524 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4470)))) (-2352 (((-660 |#3|) $) 82)) (-2515 (((-112) |#4| $) 136)) (-2776 (((-112) |#3| $) 81)) (-2970 (((-112) $ $) 8)) (-3484 (((-787) $) 47 (|has| $ (-6 -4470))))) +(((-1152 |#1| |#2| |#3| |#4|) (-141) (-465) (-809) (-865) (-1090 |t#1| |t#2| |t#3|)) (T -1152)) +NIL +(-13 (-1134 |t#1| |t#2| |t#3| |t#4|) (-800 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-626 (-660 |#4|)) . T) ((-626 (-880)) . T) ((-152 |#4|) . T) ((-627 (-549)) |has| |#4| (-627 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-800 |#1| |#2| |#3| |#4|) . T) ((-1001 |#1| |#2| |#3| |#4|) . T) ((-1096 |#1| |#2| |#3| |#4|) . T) ((-1125) . T) ((-1134 |#1| |#2| |#3| |#4|) . T) ((-1235 |#1| |#2| |#3| |#4|) . T) ((-1242) . T)) +((-2546 (((-660 |#2|) |#1|) 15)) (-4390 (((-660 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-660 |#2|) |#1|) 61)) (-4369 (((-660 |#2|) |#2| |#2| |#2|) 45) (((-660 |#2|) |#1|) 59)) (-4348 ((|#2| |#1|) 54)) (-4359 (((-2 (|:| |solns| (-660 |#2|)) (|:| |maps| (-660 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3052 (((-660 |#2|) |#2| |#2|) 42) (((-660 |#2|) |#1|) 58)) (-4380 (((-660 |#2|) |#2| |#2| |#2| |#2|) 46) (((-660 |#2|) |#1|) 60)) (-4435 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-4411 ((|#2| |#2| |#2| |#2|) 51)) (-4401 ((|#2| |#2| |#2|) 50)) (-4421 ((|#2| |#2| |#2| |#2| |#2|) 52))) +(((-1153 |#1| |#2|) (-10 -7 (-15 -2546 ((-660 |#2|) |#1|)) (-15 -4348 (|#2| |#1|)) (-15 -4359 ((-2 (|:| |solns| (-660 |#2|)) (|:| |maps| (-660 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3052 ((-660 |#2|) |#1|)) (-15 -4369 ((-660 |#2|) |#1|)) (-15 -4380 ((-660 |#2|) |#1|)) (-15 -4390 ((-660 |#2|) |#1|)) (-15 -3052 ((-660 |#2|) |#2| |#2|)) (-15 -4369 ((-660 |#2|) |#2| |#2| |#2|)) (-15 -4380 ((-660 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4390 ((-660 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -4401 (|#2| |#2| |#2|)) (-15 -4411 (|#2| |#2| |#2| |#2|)) (-15 -4421 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4435 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1268 |#2|) (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (T -1153)) +((-4435 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2)))) (-4421 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2)))) (-4411 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2)))) (-4401 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2)))) (-4390 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-660 *3)) (-5 *1 (-1153 *4 *3)) (-4 *4 (-1268 *3)))) (-4380 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-660 *3)) (-5 *1 (-1153 *4 *3)) (-4 *4 (-1268 *3)))) (-4369 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-660 *3)) (-5 *1 (-1153 *4 *3)) (-4 *4 (-1268 *3)))) (-3052 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-660 *3)) (-5 *1 (-1153 *4 *3)) (-4 *4 (-1268 *3)))) (-4390 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4)))) (-4380 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4)))) (-4369 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4)))) (-3052 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4)))) (-4359 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-2 (|:| |solns| (-660 *5)) (|:| |maps| (-660 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1153 *3 *5)) (-4 *3 (-1268 *5)))) (-4348 (*1 *2 *3) (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2)))) (-2546 (*1 *2 *3) (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4))))) +(-10 -7 (-15 -2546 ((-660 |#2|) |#1|)) (-15 -4348 (|#2| |#1|)) (-15 -4359 ((-2 (|:| |solns| (-660 |#2|)) (|:| |maps| (-660 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3052 ((-660 |#2|) |#1|)) (-15 -4369 ((-660 |#2|) |#1|)) (-15 -4380 ((-660 |#2|) |#1|)) (-15 -4390 ((-660 |#2|) |#1|)) (-15 -3052 ((-660 |#2|) |#2| |#2|)) (-15 -4369 ((-660 |#2|) |#2| |#2| |#2|)) (-15 -4380 ((-660 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4390 ((-660 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -4401 (|#2| |#2| |#2|)) (-15 -4411 (|#2| |#2| |#2| |#2|)) (-15 -4421 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4435 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-4447 (((-660 (-660 (-305 (-327 |#1|)))) (-660 (-305 (-420 (-975 |#1|))))) 118) (((-660 (-660 (-305 (-327 |#1|)))) (-660 (-305 (-420 (-975 |#1|)))) (-660 (-1201))) 117) (((-660 (-660 (-305 (-327 |#1|)))) (-660 (-420 (-975 |#1|)))) 115) (((-660 (-660 (-305 (-327 |#1|)))) (-660 (-420 (-975 |#1|))) (-660 (-1201))) 113) (((-660 (-305 (-327 |#1|))) (-305 (-420 (-975 |#1|)))) 97) (((-660 (-305 (-327 |#1|))) (-305 (-420 (-975 |#1|))) (-1201)) 98) (((-660 (-305 (-327 |#1|))) (-420 (-975 |#1|))) 92) (((-660 (-305 (-327 |#1|))) (-420 (-975 |#1|)) (-1201)) 82)) (-1334 (((-660 (-660 (-327 |#1|))) (-660 (-420 (-975 |#1|))) (-660 (-1201))) 111) (((-660 (-327 |#1|)) (-420 (-975 |#1|)) (-1201)) 54)) (-1346 (((-1190 (-660 (-327 |#1|)) (-660 (-305 (-327 |#1|)))) (-420 (-975 |#1|)) (-1201)) 122) (((-1190 (-660 (-327 |#1|)) (-660 (-305 (-327 |#1|)))) (-305 (-420 (-975 |#1|))) (-1201)) 121))) +(((-1154 |#1|) (-10 -7 (-15 -4447 ((-660 (-305 (-327 |#1|))) (-420 (-975 |#1|)) (-1201))) (-15 -4447 ((-660 (-305 (-327 |#1|))) (-420 (-975 |#1|)))) (-15 -4447 ((-660 (-305 (-327 |#1|))) (-305 (-420 (-975 |#1|))) (-1201))) (-15 -4447 ((-660 (-305 (-327 |#1|))) (-305 (-420 (-975 |#1|))))) (-15 -4447 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-420 (-975 |#1|))) (-660 (-1201)))) (-15 -4447 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-420 (-975 |#1|))))) (-15 -4447 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-305 (-420 (-975 |#1|)))) (-660 (-1201)))) (-15 -4447 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-305 (-420 (-975 |#1|)))))) (-15 -1334 ((-660 (-327 |#1|)) (-420 (-975 |#1|)) (-1201))) (-15 -1334 ((-660 (-660 (-327 |#1|))) (-660 (-420 (-975 |#1|))) (-660 (-1201)))) (-15 -1346 ((-1190 (-660 (-327 |#1|)) (-660 (-305 (-327 |#1|)))) (-305 (-420 (-975 |#1|))) (-1201))) (-15 -1346 ((-1190 (-660 (-327 |#1|)) (-660 (-305 (-327 |#1|)))) (-420 (-975 |#1|)) (-1201)))) (-13 (-318) (-148))) (T -1154)) +((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-1190 (-660 (-327 *5)) (-660 (-305 (-327 *5))))) (-5 *1 (-1154 *5)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-420 (-975 *5)))) (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-1190 (-660 (-327 *5)) (-660 (-305 (-327 *5))))) (-5 *1 (-1154 *5)))) (-1334 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-420 (-975 *5)))) (-5 *4 (-660 (-1201))) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-660 (-327 *5)))) (-5 *1 (-1154 *5)))) (-1334 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-327 *5))) (-5 *1 (-1154 *5)))) (-4447 (*1 *2 *3) (-12 (-5 *3 (-660 (-305 (-420 (-975 *4))))) (-4 *4 (-13 (-318) (-148))) (-5 *2 (-660 (-660 (-305 (-327 *4))))) (-5 *1 (-1154 *4)))) (-4447 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-305 (-420 (-975 *5))))) (-5 *4 (-660 (-1201))) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-660 (-305 (-327 *5))))) (-5 *1 (-1154 *5)))) (-4447 (*1 *2 *3) (-12 (-5 *3 (-660 (-420 (-975 *4)))) (-4 *4 (-13 (-318) (-148))) (-5 *2 (-660 (-660 (-305 (-327 *4))))) (-5 *1 (-1154 *4)))) (-4447 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-420 (-975 *5)))) (-5 *4 (-660 (-1201))) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-660 (-305 (-327 *5))))) (-5 *1 (-1154 *5)))) (-4447 (*1 *2 *3) (-12 (-5 *3 (-305 (-420 (-975 *4)))) (-4 *4 (-13 (-318) (-148))) (-5 *2 (-660 (-305 (-327 *4)))) (-5 *1 (-1154 *4)))) (-4447 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-420 (-975 *5)))) (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-305 (-327 *5)))) (-5 *1 (-1154 *5)))) (-4447 (*1 *2 *3) (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-13 (-318) (-148))) (-5 *2 (-660 (-305 (-327 *4)))) (-5 *1 (-1154 *4)))) (-4447 (*1 *2 *3 *4) (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-305 (-327 *5)))) (-5 *1 (-1154 *5))))) +(-10 -7 (-15 -4447 ((-660 (-305 (-327 |#1|))) (-420 (-975 |#1|)) (-1201))) (-15 -4447 ((-660 (-305 (-327 |#1|))) (-420 (-975 |#1|)))) (-15 -4447 ((-660 (-305 (-327 |#1|))) (-305 (-420 (-975 |#1|))) (-1201))) (-15 -4447 ((-660 (-305 (-327 |#1|))) (-305 (-420 (-975 |#1|))))) (-15 -4447 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-420 (-975 |#1|))) (-660 (-1201)))) (-15 -4447 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-420 (-975 |#1|))))) (-15 -4447 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-305 (-420 (-975 |#1|)))) (-660 (-1201)))) (-15 -4447 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-305 (-420 (-975 |#1|)))))) (-15 -1334 ((-660 (-327 |#1|)) (-420 (-975 |#1|)) (-1201))) (-15 -1334 ((-660 (-660 (-327 |#1|))) (-660 (-420 (-975 |#1|))) (-660 (-1201)))) (-15 -1346 ((-1190 (-660 (-327 |#1|)) (-660 (-305 (-327 |#1|)))) (-305 (-420 (-975 |#1|))) (-1201))) (-15 -1346 ((-1190 (-660 (-327 |#1|)) (-660 (-305 (-327 |#1|)))) (-420 (-975 |#1|)) (-1201)))) +((-1370 (((-420 (-1197 (-327 |#1|))) (-1292 (-327 |#1|)) (-420 (-1197 (-327 |#1|))) (-577)) 36)) (-1358 (((-420 (-1197 (-327 |#1|))) (-420 (-1197 (-327 |#1|))) (-420 (-1197 (-327 |#1|))) (-420 (-1197 (-327 |#1|)))) 48))) +(((-1155 |#1|) (-10 -7 (-15 -1358 ((-420 (-1197 (-327 |#1|))) (-420 (-1197 (-327 |#1|))) (-420 (-1197 (-327 |#1|))) (-420 (-1197 (-327 |#1|))))) (-15 -1370 ((-420 (-1197 (-327 |#1|))) (-1292 (-327 |#1|)) (-420 (-1197 (-327 |#1|))) (-577)))) (-569)) (T -1155)) +((-1370 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-420 (-1197 (-327 *5)))) (-5 *3 (-1292 (-327 *5))) (-5 *4 (-577)) (-4 *5 (-569)) (-5 *1 (-1155 *5)))) (-1358 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-420 (-1197 (-327 *3)))) (-4 *3 (-569)) (-5 *1 (-1155 *3))))) +(-10 -7 (-15 -1358 ((-420 (-1197 (-327 |#1|))) (-420 (-1197 (-327 |#1|))) (-420 (-1197 (-327 |#1|))) (-420 (-1197 (-327 |#1|))))) (-15 -1370 ((-420 (-1197 (-327 |#1|))) (-1292 (-327 |#1|)) (-420 (-1197 (-327 |#1|))) (-577)))) +((-2546 (((-660 (-660 (-305 (-327 |#1|)))) (-660 (-305 (-327 |#1|))) (-660 (-1201))) 244) (((-660 (-305 (-327 |#1|))) (-327 |#1|) (-1201)) 23) (((-660 (-305 (-327 |#1|))) (-305 (-327 |#1|)) (-1201)) 29) (((-660 (-305 (-327 |#1|))) (-305 (-327 |#1|))) 28) (((-660 (-305 (-327 |#1|))) (-327 |#1|)) 24))) +(((-1156 |#1|) (-10 -7 (-15 -2546 ((-660 (-305 (-327 |#1|))) (-327 |#1|))) (-15 -2546 ((-660 (-305 (-327 |#1|))) (-305 (-327 |#1|)))) (-15 -2546 ((-660 (-305 (-327 |#1|))) (-305 (-327 |#1|)) (-1201))) (-15 -2546 ((-660 (-305 (-327 |#1|))) (-327 |#1|) (-1201))) (-15 -2546 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-305 (-327 |#1|))) (-660 (-1201))))) (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (T -1156)) +((-2546 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-1201))) (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-660 (-660 (-305 (-327 *5))))) (-5 *1 (-1156 *5)) (-5 *3 (-660 (-305 (-327 *5)))))) (-2546 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-660 (-305 (-327 *5)))) (-5 *1 (-1156 *5)) (-5 *3 (-327 *5)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-660 (-305 (-327 *5)))) (-5 *1 (-1156 *5)) (-5 *3 (-305 (-327 *5))))) (-2546 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-660 (-305 (-327 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-305 (-327 *4))))) (-2546 (*1 *2 *3) (-12 (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 (-660 (-305 (-327 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-327 *4))))) +(-10 -7 (-15 -2546 ((-660 (-305 (-327 |#1|))) (-327 |#1|))) (-15 -2546 ((-660 (-305 (-327 |#1|))) (-305 (-327 |#1|)))) (-15 -2546 ((-660 (-305 (-327 |#1|))) (-305 (-327 |#1|)) (-1201))) (-15 -2546 ((-660 (-305 (-327 |#1|))) (-327 |#1|) (-1201))) (-15 -2546 ((-660 (-660 (-305 (-327 |#1|)))) (-660 (-305 (-327 |#1|))) (-660 (-1201))))) +((-1393 ((|#2| |#2|) 28 (|has| |#1| (-865))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-1382 ((|#2| |#2|) 27 (|has| |#1| (-865))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) +(((-1157 |#1| |#2|) (-10 -7 (-15 -1382 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1393 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-865)) (PROGN (-15 -1382 (|#2| |#2|)) (-15 -1393 (|#2| |#2|))) |%noBranch|)) (-1242) (-13 (-617 (-577) |#1|) (-10 -7 (-6 -4470) (-6 -4471)))) (T -1157)) +((-1393 (*1 *2 *2) (-12 (-4 *3 (-865)) (-4 *3 (-1242)) (-5 *1 (-1157 *3 *2)) (-4 *2 (-13 (-617 (-577) *3) (-10 -7 (-6 -4470) (-6 -4471)))))) (-1382 (*1 *2 *2) (-12 (-4 *3 (-865)) (-4 *3 (-1242)) (-5 *1 (-1157 *3 *2)) (-4 *2 (-13 (-617 (-577) *3) (-10 -7 (-6 -4470) (-6 -4471)))))) (-1393 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-1157 *4 *2)) (-4 *2 (-13 (-617 (-577) *4) (-10 -7 (-6 -4470) (-6 -4471)))))) (-1382 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-1157 *4 *2)) (-4 *2 (-13 (-617 (-577) *4) (-10 -7 (-6 -4470) (-6 -4471))))))) +(-10 -7 (-15 -1382 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1393 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-865)) (PROGN (-15 -1382 (|#2| |#2|)) (-15 -1393 (|#2| |#2|))) |%noBranch|)) +((-3473 (((-112) $ $) NIL)) (-3495 (((-1189 3 |#1|) $) 141)) (-1484 (((-112) $) 101)) (-1496 (($ $ (-660 (-966 |#1|))) 44) (($ $ (-660 (-660 |#1|))) 104) (($ (-660 (-966 |#1|))) 103) (((-660 (-966 |#1|)) $) 102)) (-1551 (((-112) $) 72)) (-3656 (($ $ (-966 |#1|)) 76) (($ $ (-660 |#1|)) 81) (($ $ (-787)) 83) (($ (-966 |#1|)) 77) (((-966 |#1|) $) 75)) (-4133 (((-2 (|:| -3189 (-787)) (|:| |curves| (-787)) (|:| |polygons| (-787)) (|:| |constructs| (-787))) $) 139)) (-1594 (((-787) $) 53)) (-1605 (((-787) $) 52)) (-3483 (($ $ (-787) (-966 |#1|)) 67)) (-1460 (((-112) $) 111)) (-1472 (($ $ (-660 (-660 (-966 |#1|))) (-660 (-173)) (-173)) 118) (($ $ (-660 (-660 (-660 |#1|))) (-660 (-173)) (-173)) 120) (($ $ (-660 (-660 (-966 |#1|))) (-112) (-112)) 115) (($ $ (-660 (-660 (-660 |#1|))) (-112) (-112)) 127) (($ (-660 (-660 (-966 |#1|)))) 116) (($ (-660 (-660 (-966 |#1|))) (-112) (-112)) 117) (((-660 (-660 (-966 |#1|))) $) 114)) (-3283 (($ (-660 $)) 56) (($ $ $) 57)) (-1417 (((-660 (-173)) $) 133)) (-2685 (((-660 (-966 |#1|)) $) 130)) (-1427 (((-660 (-660 (-173))) $) 132)) (-1438 (((-660 (-660 (-660 (-966 |#1|)))) $) NIL)) (-1449 (((-660 (-660 (-660 (-787)))) $) 131)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-1561 (((-787) $ (-660 (-966 |#1|))) 65)) (-1528 (((-112) $) 84)) (-1539 (($ $ (-660 (-966 |#1|))) 86) (($ $ (-660 (-660 |#1|))) 92) (($ (-660 (-966 |#1|))) 87) (((-660 (-966 |#1|)) $) 85)) (-1616 (($) 48) (($ (-1189 3 |#1|)) 49)) (-1944 (($ $) 63)) (-1572 (((-660 $) $) 62)) (-1797 (($ (-660 $)) 59)) (-1583 (((-660 $) $) 61)) (-3544 (((-880) $) 146)) (-1506 (((-112) $) 94)) (-1517 (($ $ (-660 (-966 |#1|))) 96) (($ $ (-660 (-660 |#1|))) 99) (($ (-660 (-966 |#1|))) 97) (((-660 (-966 |#1|)) $) 95)) (-1406 (($ $) 140)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-1158 |#1|) (-1159 |#1|) (-1074)) (T -1158)) +NIL +(-1159 |#1|) +((-3473 (((-112) $ $) 7)) (-3495 (((-1189 3 |#1|) $) 14)) (-1484 (((-112) $) 30)) (-1496 (($ $ (-660 (-966 |#1|))) 34) (($ $ (-660 (-660 |#1|))) 33) (($ (-660 (-966 |#1|))) 32) (((-660 (-966 |#1|)) $) 31)) (-1551 (((-112) $) 45)) (-3656 (($ $ (-966 |#1|)) 50) (($ $ (-660 |#1|)) 49) (($ $ (-787)) 48) (($ (-966 |#1|)) 47) (((-966 |#1|) $) 46)) (-4133 (((-2 (|:| -3189 (-787)) (|:| |curves| (-787)) (|:| |polygons| (-787)) (|:| |constructs| (-787))) $) 16)) (-1594 (((-787) $) 59)) (-1605 (((-787) $) 60)) (-3483 (($ $ (-787) (-966 |#1|)) 51)) (-1460 (((-112) $) 22)) (-1472 (($ $ (-660 (-660 (-966 |#1|))) (-660 (-173)) (-173)) 29) (($ $ (-660 (-660 (-660 |#1|))) (-660 (-173)) (-173)) 28) (($ $ (-660 (-660 (-966 |#1|))) (-112) (-112)) 27) (($ $ (-660 (-660 (-660 |#1|))) (-112) (-112)) 26) (($ (-660 (-660 (-966 |#1|)))) 25) (($ (-660 (-660 (-966 |#1|))) (-112) (-112)) 24) (((-660 (-660 (-966 |#1|))) $) 23)) (-3283 (($ (-660 $)) 58) (($ $ $) 57)) (-1417 (((-660 (-173)) $) 17)) (-2685 (((-660 (-966 |#1|)) $) 21)) (-1427 (((-660 (-660 (-173))) $) 18)) (-1438 (((-660 (-660 (-660 (-966 |#1|)))) $) 19)) (-1449 (((-660 (-660 (-660 (-787)))) $) 20)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-1561 (((-787) $ (-660 (-966 |#1|))) 52)) (-1528 (((-112) $) 40)) (-1539 (($ $ (-660 (-966 |#1|))) 44) (($ $ (-660 (-660 |#1|))) 43) (($ (-660 (-966 |#1|))) 42) (((-660 (-966 |#1|)) $) 41)) (-1616 (($) 62) (($ (-1189 3 |#1|)) 61)) (-1944 (($ $) 53)) (-1572 (((-660 $) $) 54)) (-1797 (($ (-660 $)) 56)) (-1583 (((-660 $) $) 55)) (-3544 (((-880) $) 12)) (-1506 (((-112) $) 35)) (-1517 (($ $ (-660 (-966 |#1|))) 39) (($ $ (-660 (-660 |#1|))) 38) (($ (-660 (-966 |#1|))) 37) (((-660 (-966 |#1|)) $) 36)) (-1406 (($ $) 15)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8))) +(((-1159 |#1|) (-141) (-1074)) (T -1159)) +((-3544 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-880)))) (-1616 (*1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1074)))) (-1616 (*1 *1 *2) (-12 (-5 *2 (-1189 3 *3)) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) (-1594 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) (-3283 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-3283 (*1 *1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1074)))) (-1797 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-1583 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-5 *2 (-660 *1)) (-4 *1 (-1159 *3)))) (-1572 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-5 *2 (-660 *1)) (-4 *1 (-1159 *3)))) (-1944 (*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1074)))) (-1561 (*1 *2 *1 *3) (-12 (-5 *3 (-660 (-966 *4))) (-4 *1 (-1159 *4)) (-4 *4 (-1074)) (-5 *2 (-787)))) (-3483 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-966 *4)) (-4 *1 (-1159 *4)) (-4 *4 (-1074)))) (-3656 (*1 *1 *1 *2) (-12 (-5 *2 (-966 *3)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-3656 (*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-3656 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-966 *3)) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) (-3656 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-966 *3)))) (-1551 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-1539 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-966 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-1539 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-1539 (*1 *1 *2) (-12 (-5 *2 (-660 (-966 *3))) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-966 *3))))) (-1528 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-1517 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-966 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-1517 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-660 (-966 *3))) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) (-1517 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-966 *3))))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-966 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-660 (-966 *3))) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-966 *3))))) (-1484 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-1472 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-660 (-660 (-966 *5)))) (-5 *3 (-660 (-173))) (-5 *4 (-173)) (-4 *1 (-1159 *5)) (-4 *5 (-1074)))) (-1472 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-660 (-660 (-660 *5)))) (-5 *3 (-660 (-173))) (-5 *4 (-173)) (-4 *1 (-1159 *5)) (-4 *5 (-1074)))) (-1472 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-660 (-660 (-966 *4)))) (-5 *3 (-112)) (-4 *1 (-1159 *4)) (-4 *4 (-1074)))) (-1472 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-660 (-660 (-660 *4)))) (-5 *3 (-112)) (-4 *1 (-1159 *4)) (-4 *4 (-1074)))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-966 *3)))) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) (-1472 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-660 (-660 (-966 *4)))) (-5 *3 (-112)) (-4 *4 (-1074)) (-4 *1 (-1159 *4)))) (-1472 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-660 (-966 *3)))))) (-1460 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-2685 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-966 *3))))) (-1449 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-660 (-660 (-787))))))) (-1438 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-660 (-660 (-966 *3))))))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-660 (-173)))))) (-1417 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-173))))) (-4133 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-2 (|:| -3189 (-787)) (|:| |curves| (-787)) (|:| |polygons| (-787)) (|:| |constructs| (-787)))))) (-1406 (*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1074)))) (-3495 (*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-1189 3 *3))))) +(-13 (-1125) (-10 -8 (-15 -1616 ($)) (-15 -1616 ($ (-1189 3 |t#1|))) (-15 -1605 ((-787) $)) (-15 -1594 ((-787) $)) (-15 -3283 ($ (-660 $))) (-15 -3283 ($ $ $)) (-15 -1797 ($ (-660 $))) (-15 -1583 ((-660 $) $)) (-15 -1572 ((-660 $) $)) (-15 -1944 ($ $)) (-15 -1561 ((-787) $ (-660 (-966 |t#1|)))) (-15 -3483 ($ $ (-787) (-966 |t#1|))) (-15 -3656 ($ $ (-966 |t#1|))) (-15 -3656 ($ $ (-660 |t#1|))) (-15 -3656 ($ $ (-787))) (-15 -3656 ($ (-966 |t#1|))) (-15 -3656 ((-966 |t#1|) $)) (-15 -1551 ((-112) $)) (-15 -1539 ($ $ (-660 (-966 |t#1|)))) (-15 -1539 ($ $ (-660 (-660 |t#1|)))) (-15 -1539 ($ (-660 (-966 |t#1|)))) (-15 -1539 ((-660 (-966 |t#1|)) $)) (-15 -1528 ((-112) $)) (-15 -1517 ($ $ (-660 (-966 |t#1|)))) (-15 -1517 ($ $ (-660 (-660 |t#1|)))) (-15 -1517 ($ (-660 (-966 |t#1|)))) (-15 -1517 ((-660 (-966 |t#1|)) $)) (-15 -1506 ((-112) $)) (-15 -1496 ($ $ (-660 (-966 |t#1|)))) (-15 -1496 ($ $ (-660 (-660 |t#1|)))) (-15 -1496 ($ (-660 (-966 |t#1|)))) (-15 -1496 ((-660 (-966 |t#1|)) $)) (-15 -1484 ((-112) $)) (-15 -1472 ($ $ (-660 (-660 (-966 |t#1|))) (-660 (-173)) (-173))) (-15 -1472 ($ $ (-660 (-660 (-660 |t#1|))) (-660 (-173)) (-173))) (-15 -1472 ($ $ (-660 (-660 (-966 |t#1|))) (-112) (-112))) (-15 -1472 ($ $ (-660 (-660 (-660 |t#1|))) (-112) (-112))) (-15 -1472 ($ (-660 (-660 (-966 |t#1|))))) (-15 -1472 ($ (-660 (-660 (-966 |t#1|))) (-112) (-112))) (-15 -1472 ((-660 (-660 (-966 |t#1|))) $)) (-15 -1460 ((-112) $)) (-15 -2685 ((-660 (-966 |t#1|)) $)) (-15 -1449 ((-660 (-660 (-660 (-787)))) $)) (-15 -1438 ((-660 (-660 (-660 (-966 |t#1|)))) $)) (-15 -1427 ((-660 (-660 (-173))) $)) (-15 -1417 ((-660 (-173)) $)) (-15 -4133 ((-2 (|:| -3189 (-787)) (|:| |curves| (-787)) (|:| |polygons| (-787)) (|:| |constructs| (-787))) $)) (-15 -1406 ($ $)) (-15 -3495 ((-1189 3 |t#1|) $)) (-15 -3544 ((-880) $)))) +(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 184) (($ (-1206)) NIL) (((-1206) $) 7)) (-2793 (((-112) $ (|[\|\|]| (-537))) 19) (((-112) $ (|[\|\|]| (-221))) 23) (((-112) $ (|[\|\|]| (-692))) 27) (((-112) $ (|[\|\|]| (-1302))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-619))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1140))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-697))) 55) (((-112) $ (|[\|\|]| (-530))) 59) (((-112) $ (|[\|\|]| (-1091))) 63) (((-112) $ (|[\|\|]| (-1303))) 67) (((-112) $ (|[\|\|]| (-538))) 71) (((-112) $ (|[\|\|]| (-1176))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-687))) 83) (((-112) $ (|[\|\|]| (-322))) 87) (((-112) $ (|[\|\|]| (-1061))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-995))) 99) (((-112) $ (|[\|\|]| (-1098))) 103) (((-112) $ (|[\|\|]| (-1115))) 107) (((-112) $ (|[\|\|]| (-1121))) 111) (((-112) $ (|[\|\|]| (-639))) 115) (((-112) $ (|[\|\|]| (-1191))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-491))) 131) (((-112) $ (|[\|\|]| (-605))) 135) (((-112) $ (|[\|\|]| (-519))) 139) (((-112) $ (|[\|\|]| (-1183))) 143) (((-112) $ (|[\|\|]| (-577))) 147)) (-4448 (((-112) $ $) NIL)) (-2003 (((-537) $) 20) (((-221) $) 24) (((-692) $) 28) (((-1302) $) 32) (((-139) $) 36) (((-619) $) 40) (((-134) $) 44) (((-1140) $) 48) (((-96) $) 52) (((-697) $) 56) (((-530) $) 60) (((-1091) $) 64) (((-1303) $) 68) (((-538) $) 72) (((-1176) $) 76) (((-155) $) 80) (((-687) $) 84) (((-322) $) 88) (((-1061) $) 92) (((-182) $) 96) (((-995) $) 100) (((-1098) $) 104) (((-1115) $) 108) (((-1121) $) 112) (((-639) $) 116) (((-1191) $) 120) (((-157) $) 124) (((-138) $) 128) (((-491) $) 132) (((-605) $) 136) (((-519) $) 140) (((-1183) $) 144) (((-577) $) 148)) (-2970 (((-112) $ $) NIL))) +(((-1160) (-1162)) (T -1160)) +NIL +(-1162) +((-4337 (((-660 (-1206)) (-1183)) 9))) +(((-1161) (-10 -7 (-15 -4337 ((-660 (-1206)) (-1183))))) (T -1161)) +((-4337 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-660 (-1206))) (-5 *1 (-1161))))) +(-10 -7 (-15 -4337 ((-660 (-1206)) (-1183)))) +((-3473 (((-112) $ $) 7)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12) (($ (-1206)) 17) (((-1206) $) 16)) (-2793 (((-112) $ (|[\|\|]| (-537))) 85) (((-112) $ (|[\|\|]| (-221))) 83) (((-112) $ (|[\|\|]| (-692))) 81) (((-112) $ (|[\|\|]| (-1302))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-619))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1140))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-697))) 67) (((-112) $ (|[\|\|]| (-530))) 65) (((-112) $ (|[\|\|]| (-1091))) 63) (((-112) $ (|[\|\|]| (-1303))) 61) (((-112) $ (|[\|\|]| (-538))) 59) (((-112) $ (|[\|\|]| (-1176))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-687))) 53) (((-112) $ (|[\|\|]| (-322))) 51) (((-112) $ (|[\|\|]| (-1061))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-995))) 45) (((-112) $ (|[\|\|]| (-1098))) 43) (((-112) $ (|[\|\|]| (-1115))) 41) (((-112) $ (|[\|\|]| (-1121))) 39) (((-112) $ (|[\|\|]| (-639))) 37) (((-112) $ (|[\|\|]| (-1191))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-491))) 29) (((-112) $ (|[\|\|]| (-605))) 27) (((-112) $ (|[\|\|]| (-519))) 25) (((-112) $ (|[\|\|]| (-1183))) 23) (((-112) $ (|[\|\|]| (-577))) 21)) (-4448 (((-112) $ $) 6)) (-2003 (((-537) $) 84) (((-221) $) 82) (((-692) $) 80) (((-1302) $) 78) (((-139) $) 76) (((-619) $) 74) (((-134) $) 72) (((-1140) $) 70) (((-96) $) 68) (((-697) $) 66) (((-530) $) 64) (((-1091) $) 62) (((-1303) $) 60) (((-538) $) 58) (((-1176) $) 56) (((-155) $) 54) (((-687) $) 52) (((-322) $) 50) (((-1061) $) 48) (((-182) $) 46) (((-995) $) 44) (((-1098) $) 42) (((-1115) $) 40) (((-1121) $) 38) (((-639) $) 36) (((-1191) $) 34) (((-157) $) 32) (((-138) $) 30) (((-491) $) 28) (((-605) $) 26) (((-519) $) 24) (((-1183) $) 22) (((-577) $) 20)) (-2970 (((-112) $ $) 8))) +(((-1162) (-141)) (T -1162)) +((-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-537)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-221)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-692))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-692)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1302))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1302)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-139)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-619)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-134)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1140))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1140)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-96)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-697))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-697)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-530)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1091))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1091)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1303))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1303)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-538)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1176)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-155)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-687))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-687)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-322))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-322)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1061))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1061)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-182)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-995))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-995)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1098))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1098)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1115))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1115)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1121))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1121)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-639))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-639)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1191)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-157)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-138)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-491))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-491)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-605))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-605)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-519)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1183)))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-577))))) +(-13 (-1108) (-1287) (-10 -8 (-15 -2793 ((-112) $ (|[\|\|]| (-537)))) (-15 -2003 ((-537) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-221)))) (-15 -2003 ((-221) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-692)))) (-15 -2003 ((-692) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-1302)))) (-15 -2003 ((-1302) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-139)))) (-15 -2003 ((-139) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-619)))) (-15 -2003 ((-619) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-134)))) (-15 -2003 ((-134) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-1140)))) (-15 -2003 ((-1140) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-96)))) (-15 -2003 ((-96) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-697)))) (-15 -2003 ((-697) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-530)))) (-15 -2003 ((-530) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-1091)))) (-15 -2003 ((-1091) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-1303)))) (-15 -2003 ((-1303) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-538)))) (-15 -2003 ((-538) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-1176)))) (-15 -2003 ((-1176) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-155)))) (-15 -2003 ((-155) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-687)))) (-15 -2003 ((-687) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-322)))) (-15 -2003 ((-322) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-1061)))) (-15 -2003 ((-1061) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-182)))) (-15 -2003 ((-182) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-995)))) (-15 -2003 ((-995) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-1098)))) (-15 -2003 ((-1098) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-1115)))) (-15 -2003 ((-1115) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-1121)))) (-15 -2003 ((-1121) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-639)))) (-15 -2003 ((-639) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-1191)))) (-15 -2003 ((-1191) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-157)))) (-15 -2003 ((-157) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-138)))) (-15 -2003 ((-138) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-491)))) (-15 -2003 ((-491) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-605)))) (-15 -2003 ((-605) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-519)))) (-15 -2003 ((-519) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-1183)))) (-15 -2003 ((-1183) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-577)))) (-15 -2003 ((-577) $)))) +(((-93) . T) ((-102) . T) ((-629 #0=(-1206)) . T) ((-626 (-880)) . T) ((-626 #0#) . T) ((-503 #0#) . T) ((-1125) . T) ((-1108) . T) ((-1242) . T) ((-1287) . T)) +((-1644 (((-1297) (-660 (-880))) 22) (((-1297) (-880)) 21)) (-1632 (((-1297) (-660 (-880))) 20) (((-1297) (-880)) 19)) (-2706 (((-1297) (-660 (-880))) 18) (((-1297) (-880)) 10) (((-1297) (-1183) (-880)) 16))) +(((-1163) (-10 -7 (-15 -2706 ((-1297) (-1183) (-880))) (-15 -2706 ((-1297) (-880))) (-15 -1632 ((-1297) (-880))) (-15 -1644 ((-1297) (-880))) (-15 -2706 ((-1297) (-660 (-880)))) (-15 -1632 ((-1297) (-660 (-880)))) (-15 -1644 ((-1297) (-660 (-880)))))) (T -1163)) +((-1644 (*1 *2 *3) (-12 (-5 *3 (-660 (-880))) (-5 *2 (-1297)) (-5 *1 (-1163)))) (-1632 (*1 *2 *3) (-12 (-5 *3 (-660 (-880))) (-5 *2 (-1297)) (-5 *1 (-1163)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-660 (-880))) (-5 *2 (-1297)) (-5 *1 (-1163)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-1163)))) (-1632 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-1163)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-1163)))) (-2706 (*1 *2 *3 *4) (-12 (-5 *3 (-1183)) (-5 *4 (-880)) (-5 *2 (-1297)) (-5 *1 (-1163))))) +(-10 -7 (-15 -2706 ((-1297) (-1183) (-880))) (-15 -2706 ((-1297) (-880))) (-15 -1632 ((-1297) (-880))) (-15 -1644 ((-1297) (-880))) (-15 -2706 ((-1297) (-660 (-880)))) (-15 -1632 ((-1297) (-660 (-880)))) (-15 -1644 ((-1297) (-660 (-880))))) +((-1689 (($ $ $) 10)) (-1676 (($ $) 9)) (-1720 (($ $ $) 13)) (-1740 (($ $ $) 15)) (-1708 (($ $ $) 12)) (-1732 (($ $ $) 14)) (-1761 (($ $) 17)) (-1749 (($ $) 16)) (-1654 (($ $) 6)) (-1699 (($ $ $) 11) (($ $) 7)) (-1664 (($ $ $) 8))) +(((-1164) (-141)) (T -1164)) +((-1761 (*1 *1 *1) (-4 *1 (-1164))) (-1749 (*1 *1 *1) (-4 *1 (-1164))) (-1740 (*1 *1 *1 *1) (-4 *1 (-1164))) (-1732 (*1 *1 *1 *1) (-4 *1 (-1164))) (-1720 (*1 *1 *1 *1) (-4 *1 (-1164))) (-1708 (*1 *1 *1 *1) (-4 *1 (-1164))) (-1699 (*1 *1 *1 *1) (-4 *1 (-1164))) (-1689 (*1 *1 *1 *1) (-4 *1 (-1164))) (-1676 (*1 *1 *1) (-4 *1 (-1164))) (-1664 (*1 *1 *1 *1) (-4 *1 (-1164))) (-1699 (*1 *1 *1) (-4 *1 (-1164))) (-1654 (*1 *1 *1) (-4 *1 (-1164)))) +(-13 (-10 -8 (-15 -1654 ($ $)) (-15 -1699 ($ $)) (-15 -1664 ($ $ $)) (-15 -1676 ($ $)) (-15 -1689 ($ $ $)) (-15 -1699 ($ $ $)) (-15 -1708 ($ $ $)) (-15 -1720 ($ $ $)) (-15 -1732 ($ $ $)) (-15 -1740 ($ $ $)) (-15 -1749 ($ $)) (-15 -1761 ($ $)))) +((-3473 (((-112) $ $) 44)) (-3115 ((|#1| $) 17)) (-1772 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-3685 (((-112) $) 19)) (-3675 (($ $ |#1|) 30)) (-1802 (($ $ (-112)) 32)) (-1792 (($ $) 33)) (-3664 (($ $ |#2|) 31)) (-2810 (((-1183) $) NIL)) (-1782 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-1474 (((-1145) $) NIL)) (-3697 (((-112) $) 16)) (-3639 (($) 13)) (-1944 (($ $) 29)) (-3553 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -3952 |#2|))) 23) (((-660 $) (-660 (-2 (|:| |val| |#1|) (|:| -3952 |#2|)))) 26) (((-660 $) |#1| (-660 |#2|)) 28)) (-3949 ((|#2| $) 18)) (-3544 (((-880) $) 53)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 42))) +(((-1165 |#1| |#2|) (-13 (-1125) (-10 -8 (-15 -3639 ($)) (-15 -3697 ((-112) $)) (-15 -3115 (|#1| $)) (-15 -3949 (|#2| $)) (-15 -3685 ((-112) $)) (-15 -3553 ($ |#1| |#2| (-112))) (-15 -3553 ($ |#1| |#2|)) (-15 -3553 ($ (-2 (|:| |val| |#1|) (|:| -3952 |#2|)))) (-15 -3553 ((-660 $) (-660 (-2 (|:| |val| |#1|) (|:| -3952 |#2|))))) (-15 -3553 ((-660 $) |#1| (-660 |#2|))) (-15 -1944 ($ $)) (-15 -3675 ($ $ |#1|)) (-15 -3664 ($ $ |#2|)) (-15 -1802 ($ $ (-112))) (-15 -1792 ($ $)) (-15 -1782 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1772 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1125) (-34)) (-13 (-1125) (-34))) (T -1165)) +((-3639 (*1 *1) (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))))) (-3115 (*1 *2 *1) (-12 (-4 *2 (-13 (-1125) (-34))) (-5 *1 (-1165 *2 *3)) (-4 *3 (-13 (-1125) (-34))))) (-3949 (*1 *2 *1) (-12 (-4 *2 (-13 (-1125) (-34))) (-5 *1 (-1165 *3 *2)) (-4 *3 (-13 (-1125) (-34))))) (-3685 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))))) (-3553 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) (-3553 (*1 *1 *2 *3) (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3952 *4))) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))) (-5 *1 (-1165 *3 *4)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| |val| *4) (|:| -3952 *5)))) (-4 *4 (-13 (-1125) (-34))) (-4 *5 (-13 (-1125) (-34))) (-5 *2 (-660 (-1165 *4 *5))) (-5 *1 (-1165 *4 *5)))) (-3553 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *5)) (-4 *5 (-13 (-1125) (-34))) (-5 *2 (-660 (-1165 *3 *5))) (-5 *1 (-1165 *3 *5)) (-4 *3 (-13 (-1125) (-34))))) (-1944 (*1 *1 *1) (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) (-3675 (*1 *1 *1 *2) (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) (-3664 (*1 *1 *1 *2) (-12 (-5 *1 (-1165 *3 *2)) (-4 *3 (-13 (-1125) (-34))) (-4 *2 (-13 (-1125) (-34))))) (-1802 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))))) (-1792 (*1 *1 *1) (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) (-1782 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1125) (-34))) (-4 *6 (-13 (-1125) (-34))) (-5 *2 (-112)) (-5 *1 (-1165 *5 *6)))) (-1772 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1125) (-34))) (-5 *2 (-112)) (-5 *1 (-1165 *4 *5)) (-4 *4 (-13 (-1125) (-34)))))) +(-13 (-1125) (-10 -8 (-15 -3639 ($)) (-15 -3697 ((-112) $)) (-15 -3115 (|#1| $)) (-15 -3949 (|#2| $)) (-15 -3685 ((-112) $)) (-15 -3553 ($ |#1| |#2| (-112))) (-15 -3553 ($ |#1| |#2|)) (-15 -3553 ($ (-2 (|:| |val| |#1|) (|:| -3952 |#2|)))) (-15 -3553 ((-660 $) (-660 (-2 (|:| |val| |#1|) (|:| -3952 |#2|))))) (-15 -3553 ((-660 $) |#1| (-660 |#2|))) (-15 -1944 ($ $)) (-15 -3675 ($ $ |#1|)) (-15 -3664 ($ $ |#2|)) (-15 -1802 ($ $ (-112))) (-15 -1792 ($ $)) (-15 -1782 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1772 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-3473 (((-112) $ $) NIL (|has| (-1165 |#1| |#2|) (-102)))) (-3115 (((-1165 |#1| |#2|) $) 27)) (-3750 (($ $) 91)) (-3729 (((-112) (-1165 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-3708 (($ $ $ (-660 (-1165 |#1| |#2|))) 108) (($ $ $ (-660 (-1165 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-3828 (((-112) $ (-787)) NIL)) (-4374 (((-1165 |#1| |#2|) $ (-1165 |#1| |#2|)) 46 (|has| $ (-6 -4471)))) (-3709 (((-1165 |#1| |#2|) $ "value" (-1165 |#1| |#2|)) NIL (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) 44 (|has| $ (-6 -4471)))) (-1534 (($) NIL T CONST)) (-2612 (((-660 (-2 (|:| |val| |#1|) (|:| -3952 |#2|))) $) 95)) (-3719 (($ (-1165 |#1| |#2|) $) 42)) (-3904 (($ (-1165 |#1| |#2|) $) 34)) (-1461 (((-660 (-1165 |#1| |#2|)) $) NIL (|has| $ (-6 -4470)))) (-4426 (((-660 $) $) 54)) (-3740 (((-112) (-1165 |#1| |#2|) $) 97)) (-4394 (((-112) $ $) NIL (|has| (-1165 |#1| |#2|) (-1125)))) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 (-1165 |#1| |#2|)) $) 58 (|has| $ (-6 -4470)))) (-2820 (((-112) (-1165 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-1165 |#1| |#2|) (-1125))))) (-2182 (($ (-1 (-1165 |#1| |#2|) (-1165 |#1| |#2|)) $) 50 (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-1165 |#1| |#2|) (-1165 |#1| |#2|)) $) 49)) (-1443 (((-112) $ (-787)) NIL)) (-2461 (((-660 (-1165 |#1| |#2|)) $) 56)) (-3371 (((-112) $) 45)) (-2810 (((-1183) $) NIL (|has| (-1165 |#1| |#2|) (-1125)))) (-1474 (((-1145) $) NIL (|has| (-1165 |#1| |#2|) (-1125)))) (-3761 (((-3 $ "failed") $) 89)) (-1514 (((-112) (-1 (-112) (-1165 |#1| |#2|)) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-1165 |#1| |#2|)))) NIL (-12 (|has| (-1165 |#1| |#2|) (-320 (-1165 |#1| |#2|))) (|has| (-1165 |#1| |#2|) (-1125)))) (($ $ (-305 (-1165 |#1| |#2|))) NIL (-12 (|has| (-1165 |#1| |#2|) (-320 (-1165 |#1| |#2|))) (|has| (-1165 |#1| |#2|) (-1125)))) (($ $ (-1165 |#1| |#2|) (-1165 |#1| |#2|)) NIL (-12 (|has| (-1165 |#1| |#2|) (-320 (-1165 |#1| |#2|))) (|has| (-1165 |#1| |#2|) (-1125)))) (($ $ (-660 (-1165 |#1| |#2|)) (-660 (-1165 |#1| |#2|))) NIL (-12 (|has| (-1165 |#1| |#2|) (-320 (-1165 |#1| |#2|))) (|has| (-1165 |#1| |#2|) (-1125))))) (-3840 (((-112) $ $) 53)) (-3697 (((-112) $) 24)) (-3639 (($) 26)) (-2872 (((-1165 |#1| |#2|) $ "value") NIL)) (-4415 (((-577) $ $) NIL)) (-1885 (((-112) $) 47)) (-1485 (((-787) (-1 (-112) (-1165 |#1| |#2|)) $) NIL (|has| $ (-6 -4470))) (((-787) (-1165 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-1165 |#1| |#2|) (-1125))))) (-1944 (($ $) 52)) (-3553 (($ (-1165 |#1| |#2|)) 10) (($ |#1| |#2| (-660 $)) 13) (($ |#1| |#2| (-660 (-1165 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-660 |#2|)) 18)) (-1354 (((-660 |#2|) $) 96)) (-3544 (((-880) $) 87 (|has| (-1165 |#1| |#2|) (-626 (-880))))) (-3322 (((-660 $) $) 31)) (-4405 (((-112) $ $) NIL (|has| (-1165 |#1| |#2|) (-1125)))) (-4448 (((-112) $ $) NIL (|has| (-1165 |#1| |#2|) (-102)))) (-1524 (((-112) (-1 (-112) (-1165 |#1| |#2|)) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 70 (|has| (-1165 |#1| |#2|) (-102)))) (-3484 (((-787) $) 64 (|has| $ (-6 -4470))))) +(((-1166 |#1| |#2|) (-13 (-1035 (-1165 |#1| |#2|)) (-10 -8 (-6 -4471) (-6 -4470) (-15 -3761 ((-3 $ "failed") $)) (-15 -3750 ($ $)) (-15 -3553 ($ (-1165 |#1| |#2|))) (-15 -3553 ($ |#1| |#2| (-660 $))) (-15 -3553 ($ |#1| |#2| (-660 (-1165 |#1| |#2|)))) (-15 -3553 ($ |#1| |#2| |#1| (-660 |#2|))) (-15 -1354 ((-660 |#2|) $)) (-15 -2612 ((-660 (-2 (|:| |val| |#1|) (|:| -3952 |#2|))) $)) (-15 -3740 ((-112) (-1165 |#1| |#2|) $)) (-15 -3729 ((-112) (-1165 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3904 ($ (-1165 |#1| |#2|) $)) (-15 -3719 ($ (-1165 |#1| |#2|) $)) (-15 -3708 ($ $ $ (-660 (-1165 |#1| |#2|)))) (-15 -3708 ($ $ $ (-660 (-1165 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1125) (-34)) (-13 (-1125) (-34))) (T -1166)) +((-3761 (*1 *1 *1) (|partial| -12 (-5 *1 (-1166 *2 *3)) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) (-3750 (*1 *1 *1) (-12 (-5 *1 (-1166 *2 *3)) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))) (-5 *1 (-1166 *3 *4)))) (-3553 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-660 (-1166 *2 *3))) (-5 *1 (-1166 *2 *3)) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) (-3553 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-660 (-1165 *2 *3))) (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))) (-5 *1 (-1166 *2 *3)))) (-3553 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-13 (-1125) (-34))) (-5 *1 (-1166 *2 *3)) (-4 *2 (-13 (-1125) (-34))))) (-1354 (*1 *2 *1) (-12 (-5 *2 (-660 *4)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) (-5 *1 (-1166 *3 *4)) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))))) (-3740 (*1 *2 *3 *1) (-12 (-5 *3 (-1165 *4 *5)) (-4 *4 (-13 (-1125) (-34))) (-4 *5 (-13 (-1125) (-34))) (-5 *2 (-112)) (-5 *1 (-1166 *4 *5)))) (-3729 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1165 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1125) (-34))) (-4 *6 (-13 (-1125) (-34))) (-5 *2 (-112)) (-5 *1 (-1166 *5 *6)))) (-3904 (*1 *1 *2 *1) (-12 (-5 *2 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))) (-5 *1 (-1166 *3 *4)))) (-3719 (*1 *1 *2 *1) (-12 (-5 *2 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))) (-5 *1 (-1166 *3 *4)))) (-3708 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-660 (-1165 *3 *4))) (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))) (-5 *1 (-1166 *3 *4)))) (-3708 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1165 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1125) (-34))) (-4 *5 (-13 (-1125) (-34))) (-5 *1 (-1166 *4 *5))))) +(-13 (-1035 (-1165 |#1| |#2|)) (-10 -8 (-6 -4471) (-6 -4470) (-15 -3761 ((-3 $ "failed") $)) (-15 -3750 ($ $)) (-15 -3553 ($ (-1165 |#1| |#2|))) (-15 -3553 ($ |#1| |#2| (-660 $))) (-15 -3553 ($ |#1| |#2| (-660 (-1165 |#1| |#2|)))) (-15 -3553 ($ |#1| |#2| |#1| (-660 |#2|))) (-15 -1354 ((-660 |#2|) $)) (-15 -2612 ((-660 (-2 (|:| |val| |#1|) (|:| -3952 |#2|))) $)) (-15 -3740 ((-112) (-1165 |#1| |#2|) $)) (-15 -3729 ((-112) (-1165 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3904 ($ (-1165 |#1| |#2|) $)) (-15 -3719 ($ (-1165 |#1| |#2|) $)) (-15 -3708 ($ $ $ (-660 (-1165 |#1| |#2|)))) (-15 -3708 ($ $ $ (-660 (-1165 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3784 (($ $) NIL)) (-2339 ((|#2| $) NIL)) (-4025 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-3772 (($ (-705 |#2|)) 56)) (-4046 (((-112) $) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-2423 (($ |#2|) 14)) (-1534 (($) NIL T CONST)) (-3931 (($ $) 69 (|has| |#2| (-318)))) (-3956 (((-246 |#1| |#2|) $ (-577)) 42)) (-1628 (((-3 (-577) "failed") $) NIL (|has| |#2| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1063 (-420 (-577))))) (((-3 |#2| "failed") $) NIL)) (-2921 (((-577) $) NIL (|has| |#2| (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| |#2| (-1063 (-420 (-577))))) ((|#2| $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL) (((-705 |#2|) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) 83)) (-1545 (((-787) $) 71 (|has| |#2| (-569)))) (-2117 ((|#2| $ (-577) (-577)) NIL)) (-1461 (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-2487 (((-112) $) NIL)) (-3919 (((-787) $) 73 (|has| |#2| (-569)))) (-3908 (((-660 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-569)))) (-2414 (((-787) $) NIL)) (-4113 (($ |#2|) 25)) (-2424 (((-787) $) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2376 ((|#2| $) 67 (|has| |#2| (-6 (-4472 "*"))))) (-4002 (((-577) $) NIL)) (-3979 (((-577) $) NIL)) (-2530 (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-3990 (((-577) $) NIL)) (-3968 (((-577) $) NIL)) (-2550 (($ (-660 (-660 |#2|))) 37)) (-2182 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2737 (((-660 (-660 |#2|)) $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL) (((-705 |#2|) (-1292 $)) NIL)) (-2810 (((-1183) $) NIL)) (-2705 (((-3 $ "failed") $) 80 (|has| |#2| (-375)))) (-1474 (((-1145) $) NIL)) (-3462 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569)))) (-1514 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#2| $ (-577) (-577) |#2|) NIL) ((|#2| $ (-577) (-577)) NIL)) (-2852 (($ $ (-1 |#2| |#2|) (-787)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-238))) (($ $ (-787)) NIL (|has| |#2| (-238))) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201))))) (-2395 ((|#2| $) NIL)) (-2413 (($ (-660 |#2|)) 50)) (-4035 (((-112) $) NIL)) (-2404 (((-246 |#1| |#2|) $) NIL)) (-2387 ((|#2| $) 65 (|has| |#2| (-6 (-4472 "*"))))) (-1485 (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470))) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-1944 (($ $) NIL)) (-4152 (((-549) $) 89 (|has| |#2| (-627 (-549))))) (-3943 (((-246 |#1| |#2|) $ (-577)) 44)) (-3544 (((-880) $) 47) (($ (-577)) NIL) (($ (-420 (-577))) NIL (|has| |#2| (-1063 (-420 (-577))))) (($ |#2|) NIL) (((-705 |#2|) $) 52)) (-4068 (((-787)) 23 T CONST)) (-4448 (((-112) $ $) NIL)) (-1524 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-4015 (((-112) $) NIL)) (-2806 (($) 16 T CONST)) (-2816 (($) 21 T CONST)) (-2132 (($ $ (-1 |#2| |#2|) (-787)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-238))) (($ $ (-787)) NIL (|has| |#2| (-238))) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201))))) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#2|) NIL (|has| |#2| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) 63) (($ $ (-577)) 82 (|has| |#2| (-375)))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61)) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-1167 |#1| |#2|) (-13 (-1148 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-626 (-705 |#2|)) (-10 -8 (-15 -4113 ($ |#2|)) (-15 -3784 ($ $)) (-15 -3772 ($ (-705 |#2|))) (IF (|has| |#2| (-6 (-4472 "*"))) (-6 -4459) |%noBranch|) (IF (|has| |#2| (-6 (-4472 "*"))) (IF (|has| |#2| (-6 -4467)) (-6 -4467) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|))) (-787) (-1074)) (T -1167)) +((-4113 (*1 *1 *2) (-12 (-5 *1 (-1167 *3 *2)) (-14 *3 (-787)) (-4 *2 (-1074)))) (-3784 (*1 *1 *1) (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-787)) (-4 *3 (-1074)))) (-3772 (*1 *1 *2) (-12 (-5 *2 (-705 *4)) (-4 *4 (-1074)) (-5 *1 (-1167 *3 *4)) (-14 *3 (-787))))) +(-13 (-1148 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-626 (-705 |#2|)) (-10 -8 (-15 -4113 ($ |#2|)) (-15 -3784 ($ $)) (-15 -3772 ($ (-705 |#2|))) (IF (|has| |#2| (-6 (-4472 "*"))) (-6 -4459) |%noBranch|) (IF (|has| |#2| (-6 (-4472 "*"))) (IF (|has| |#2| (-6 -4467)) (-6 -4467) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-627 (-549))) (-6 (-627 (-549))) |%noBranch|))) +((-3846 (($ $) 19)) (-3797 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-4116 (((-112) $ $) 24)) (-3869 (($ $) 17)) (-2872 (((-145) $ (-577) (-145)) NIL) (((-145) $ (-577)) NIL) (($ $ (-1259 (-577))) NIL) (($ $ $) 31)) (-3544 (($ (-145)) 29) (((-880) $) NIL))) +(((-1168 |#1|) (-10 -8 (-15 -3544 ((-880) |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1| (-142))) (-15 -3797 (|#1| |#1| (-145))) (-15 -3544 (|#1| (-145))) (-15 -4116 ((-112) |#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -2872 (|#1| |#1| (-1259 (-577)))) (-15 -2872 ((-145) |#1| (-577))) (-15 -2872 ((-145) |#1| (-577) (-145)))) (-1169)) (T -1168)) +NIL +(-10 -8 (-15 -3544 ((-880) |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1| (-142))) (-15 -3797 (|#1| |#1| (-145))) (-15 -3544 (|#1| (-145))) (-15 -4116 ((-112) |#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -2872 (|#1| |#1| (-1259 (-577)))) (-15 -2872 ((-145) |#1| (-577))) (-15 -2872 ((-145) |#1| (-577) (-145)))) +((-3473 (((-112) $ $) 20 (|has| (-145) (-102)))) (-3835 (($ $) 123)) (-3846 (($ $) 124)) (-3797 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-2389 (((-1297) $ (-577) (-577)) 41 (|has| $ (-6 -4471)))) (-4090 (((-112) $ $) 121)) (-4065 (((-112) $ $ (-577)) 120)) (-3810 (((-660 $) $ (-145)) 113) (((-660 $) $ (-142)) 112)) (-4077 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-865)))) (-4053 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4471))) (($ $) 91 (-12 (|has| (-145) (-865)) (|has| $ (-6 -4471))))) (-1864 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-865)))) (-3828 (((-112) $ (-787)) 8)) (-3709 (((-145) $ (-577) (-145)) 53 (|has| $ (-6 -4471))) (((-145) $ (-1259 (-577)) (-145)) 60 (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4470)))) (-1534 (($) 7 T CONST)) (-2722 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-3645 (($ $) 93 (|has| $ (-6 -4471)))) (-3787 (($ $) 103)) (-3823 (($ $ (-1259 (-577)) $) 117)) (-1817 (($ $) 80 (-12 (|has| (-145) (-1125)) (|has| $ (-6 -4470))))) (-3904 (($ (-145) $) 79 (-12 (|has| (-145) (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4470)))) (-3654 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1125)) (|has| $ (-6 -4470)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4470))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4470)))) (-2192 (((-145) $ (-577) (-145)) 54 (|has| $ (-6 -4471)))) (-2117 (((-145) $ (-577)) 52)) (-4116 (((-112) $ $) 122)) (-3618 (((-577) (-1 (-112) (-145)) $) 100) (((-577) (-145) $) 99 (|has| (-145) (-1125))) (((-577) (-145) $ (-577)) 98 (|has| (-145) (-1125))) (((-577) $ $ (-577)) 116) (((-577) (-142) $ (-577)) 115)) (-1461 (((-660 (-145)) $) 31 (|has| $ (-6 -4470)))) (-4113 (($ (-787) (-145)) 70)) (-1479 (((-112) $ (-787)) 9)) (-2406 (((-577) $) 44 (|has| (-577) (-865)))) (-3732 (($ $ $) 85 (|has| (-145) (-865)))) (-3283 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-865)))) (-2530 (((-660 (-145)) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1125)) (|has| $ (-6 -4470))))) (-2416 (((-577) $) 45 (|has| (-577) (-865)))) (-3201 (($ $ $) 86 (|has| (-145) (-865)))) (-1997 (((-112) $ $ (-145)) 118)) (-1367 (((-787) $ $ (-145)) 119)) (-2182 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-3857 (($ $) 125)) (-3869 (($ $) 126)) (-1443 (((-112) $ (-787)) 10)) (-2733 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-2810 (((-1183) $) 23 (|has| (-145) (-1125)))) (-2308 (($ (-145) $ (-577)) 62) (($ $ $ (-577)) 61)) (-4285 (((-660 (-577)) $) 47)) (-4298 (((-112) (-577) $) 48)) (-1474 (((-1145) $) 22 (|has| (-145) (-1125)))) (-3552 (((-145) $) 43 (|has| (-577) (-865)))) (-1828 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-2397 (($ $ (-145)) 42 (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-145)))) 27 (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125)))) (($ $ (-305 (-145))) 26 (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125)))) (($ $ (-660 (-145)) (-660 (-145))) 24 (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))))) (-3840 (((-112) $ $) 14)) (-4274 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))))) (-4306 (((-660 (-145)) $) 49)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 (((-145) $ (-577) (-145)) 51) (((-145) $ (-577)) 50) (($ $ (-1259 (-577))) 71) (($ $ $) 105)) (-3453 (($ $ (-577)) 64) (($ $ (-1259 (-577))) 63)) (-1485 (((-787) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4470))) (((-787) (-145) $) 29 (-12 (|has| (-145) (-1125)) (|has| $ (-6 -4470))))) (-4064 (($ $ $ (-577)) 94 (|has| $ (-6 -4471)))) (-1944 (($ $) 13)) (-4152 (((-549) $) 81 (|has| (-145) (-627 (-549))))) (-3553 (($ (-660 (-145))) 72)) (-1677 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-660 $)) 66)) (-3544 (($ (-145)) 114) (((-880) $) 18 (|has| (-145) (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| (-145) (-102)))) (-1524 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) 87 (|has| (-145) (-865)))) (-3000 (((-112) $ $) 89 (|has| (-145) (-865)))) (-2970 (((-112) $ $) 19 (|has| (-145) (-102)))) (-3012 (((-112) $ $) 88 (|has| (-145) (-865)))) (-2990 (((-112) $ $) 90 (|has| (-145) (-865)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-1169) (-141)) (T -1169)) +((-3869 (*1 *1 *1) (-4 *1 (-1169))) (-3857 (*1 *1 *1) (-4 *1 (-1169))) (-3846 (*1 *1 *1) (-4 *1 (-1169))) (-3835 (*1 *1 *1) (-4 *1 (-1169))) (-4116 (*1 *2 *1 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-112)))) (-4090 (*1 *2 *1 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-112)))) (-4065 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (-577)) (-5 *2 (-112)))) (-1367 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (-145)) (-5 *2 (-787)))) (-1997 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (-145)) (-5 *2 (-112)))) (-3823 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1259 (-577))))) (-3618 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-577)))) (-3618 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-577)) (-5 *3 (-142)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1169)))) (-3810 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-660 *1)) (-4 *1 (-1169)))) (-3810 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-660 *1)) (-4 *1 (-1169)))) (-3797 (*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-145)))) (-3797 (*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-142)))) (-2733 (*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-145)))) (-2733 (*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-142)))) (-2722 (*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-145)))) (-2722 (*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-142)))) (-2872 (*1 *1 *1 *1) (-4 *1 (-1169)))) +(-13 (-19 (-145)) (-10 -8 (-15 -3869 ($ $)) (-15 -3857 ($ $)) (-15 -3846 ($ $)) (-15 -3835 ($ $)) (-15 -4116 ((-112) $ $)) (-15 -4090 ((-112) $ $)) (-15 -4065 ((-112) $ $ (-577))) (-15 -1367 ((-787) $ $ (-145))) (-15 -1997 ((-112) $ $ (-145))) (-15 -3823 ($ $ (-1259 (-577)) $)) (-15 -3618 ((-577) $ $ (-577))) (-15 -3618 ((-577) (-142) $ (-577))) (-15 -3544 ($ (-145))) (-15 -3810 ((-660 $) $ (-145))) (-15 -3810 ((-660 $) $ (-142))) (-15 -3797 ($ $ (-145))) (-15 -3797 ($ $ (-142))) (-15 -2733 ($ $ (-145))) (-15 -2733 ($ $ (-142))) (-15 -2722 ($ $ (-145))) (-15 -2722 ($ $ (-142))) (-15 -2872 ($ $ $)))) +(((-34) . T) ((-102) -2839 (|has| (-145) (-1125)) (|has| (-145) (-865)) (|has| (-145) (-102))) ((-626 (-880)) -2839 (|has| (-145) (-1125)) (|has| (-145) (-865)) (|has| (-145) (-626 (-880)))) ((-152 #0=(-145)) . T) ((-627 (-549)) |has| (-145) (-627 (-549))) ((-297 #1=(-577) #0#) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #1# #0#) . T) ((-320 #0#) -12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ((-385 #0#) . T) ((-502 #0#) . T) ((-617 #1# #0#) . T) ((-527 #0# #0#) -12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))) ((-667 #0#) . T) ((-19 #0#) . T) ((-865) |has| (-145) (-865)) ((-868) |has| (-145) (-865)) ((-1125) -2839 (|has| (-145) (-1125)) (|has| (-145) (-865))) ((-1242) . T)) +((-3951 (((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-660 |#4|) (-660 |#5|) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) (-787)) 112)) (-3915 (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-787)) 61)) (-4395 (((-1297) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-787)) 97)) (-3891 (((-787) (-660 |#4|) (-660 |#5|)) 30)) (-3926 (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-787)) 63) (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-787) (-112)) 65)) (-3938 (((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112)) 85)) (-4152 (((-1183) (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) 90)) (-3903 (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5|) 60)) (-3880 (((-787) (-660 |#4|) (-660 |#5|)) 21))) +(((-1170 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3880 ((-787) (-660 |#4|) (-660 |#5|))) (-15 -3891 ((-787) (-660 |#4|) (-660 |#5|))) (-15 -3903 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5|)) (-15 -3915 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-787))) (-15 -3915 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5|)) (-15 -3926 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-787) (-112))) (-15 -3926 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-787))) (-15 -3926 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5|)) (-15 -3938 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112))) (-15 -3938 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3951 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-660 |#4|) (-660 |#5|) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) (-787))) (-15 -4152 ((-1183) (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|)))) (-15 -4395 ((-1297) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-787)))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|) (-1134 |#1| |#2| |#3| |#4|)) (T -1170)) +((-4395 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -3952 *9)))) (-5 *4 (-787)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1134 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-1297)) (-5 *1 (-1170 *5 *6 *7 *8 *9)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -3952 *8))) (-4 *7 (-1090 *4 *5 *6)) (-4 *8 (-1134 *4 *5 *6 *7)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1183)) (-5 *1 (-1170 *4 *5 *6 *7 *8)))) (-3951 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-660 *11)) (|:| |todo| (-660 (-2 (|:| |val| *3) (|:| -3952 *11)))))) (-5 *6 (-787)) (-5 *2 (-660 (-2 (|:| |val| (-660 *10)) (|:| -3952 *11)))) (-5 *3 (-660 *10)) (-5 *4 (-660 *11)) (-4 *10 (-1090 *7 *8 *9)) (-4 *11 (-1134 *7 *8 *9 *10)) (-4 *7 (-465)) (-4 *8 (-809)) (-4 *9 (-865)) (-5 *1 (-1170 *7 *8 *9 *10 *11)))) (-3938 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1134 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1170 *5 *6 *7 *8 *9)))) (-3938 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1134 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1170 *5 *6 *7 *8 *9)))) (-3926 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) (-5 *1 (-1170 *5 *6 *7 *3 *4)) (-4 *4 (-1134 *5 *6 *7 *3)))) (-3926 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-787)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *3 (-1090 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) (-5 *1 (-1170 *6 *7 *8 *3 *4)) (-4 *4 (-1134 *6 *7 *8 *3)))) (-3926 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-787)) (-5 *6 (-112)) (-4 *7 (-465)) (-4 *8 (-809)) (-4 *9 (-865)) (-4 *3 (-1090 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) (-5 *1 (-1170 *7 *8 *9 *3 *4)) (-4 *4 (-1134 *7 *8 *9 *3)))) (-3915 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) (-5 *1 (-1170 *5 *6 *7 *3 *4)) (-4 *4 (-1134 *5 *6 *7 *3)))) (-3915 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-787)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *3 (-1090 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) (-5 *1 (-1170 *6 *7 *8 *3 *4)) (-4 *4 (-1134 *6 *7 *8 *3)))) (-3903 (*1 *2 *3 *4) (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) (-5 *1 (-1170 *5 *6 *7 *3 *4)) (-4 *4 (-1134 *5 *6 *7 *3)))) (-3891 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1134 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-787)) (-5 *1 (-1170 *5 *6 *7 *8 *9)))) (-3880 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1134 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-787)) (-5 *1 (-1170 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3880 ((-787) (-660 |#4|) (-660 |#5|))) (-15 -3891 ((-787) (-660 |#4|) (-660 |#5|))) (-15 -3903 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5|)) (-15 -3915 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-787))) (-15 -3915 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5|)) (-15 -3926 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-787) (-112))) (-15 -3926 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5| (-787))) (-15 -3926 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) |#4| |#5|)) (-15 -3938 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112))) (-15 -3938 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3951 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-660 |#4|) (-660 |#5|) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))))) (-787))) (-15 -4152 ((-1183) (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|)))) (-15 -4395 ((-1297) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -3952 |#5|))) (-787)))) +((-3473 (((-112) $ $) NIL)) (-2361 (((-660 (-2 (|:| -2045 $) (|:| -3253 (-660 |#4|)))) (-660 |#4|)) NIL)) (-2371 (((-660 $) (-660 |#4|)) 124) (((-660 $) (-660 |#4|) (-112)) 125) (((-660 $) (-660 |#4|) (-112) (-112)) 123) (((-660 $) (-660 |#4|) (-112) (-112) (-112) (-112)) 126)) (-2058 (((-660 |#3|) $) NIL)) (-2508 (((-112) $) NIL)) (-3572 (((-112) $) NIL (|has| |#1| (-569)))) (-2475 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2426 ((|#4| |#4| $) NIL)) (-3841 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 $))) |#4| $) 97)) (-1864 (((-2 (|:| |under| $) (|:| -4119 $) (|:| |upper| $)) $ |#3|) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-2067 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470))) (((-3 |#4| "failed") $ |#3|) 75)) (-1534 (($) NIL T CONST)) (-2474 (((-112) $) 29 (|has| |#1| (-569)))) (-2492 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2483 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2500 (((-112) $) NIL (|has| |#1| (-569)))) (-2435 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2434 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)))) (-2446 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)))) (-1628 (((-3 $ "failed") (-660 |#4|)) NIL)) (-2921 (($ (-660 |#4|)) NIL)) (-3563 (((-3 $ "failed") $) 45)) (-2399 ((|#4| |#4| $) 78)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))))) (-3904 (($ |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-2457 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-569)))) (-2484 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2382 ((|#4| |#4| $) NIL)) (-3654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4470))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4470))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4364 (((-2 (|:| -2045 (-660 |#4|)) (|:| -3253 (-660 |#4|))) $) NIL)) (-2524 (((-112) |#4| $) NIL)) (-2505 (((-112) |#4| $) NIL)) (-2532 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3963 (((-2 (|:| |val| (-660 |#4|)) (|:| |towers| (-660 $))) (-660 |#4|) (-112) (-112)) 139)) (-1461 (((-660 |#4|) $) 18 (|has| $ (-6 -4470)))) (-4354 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3514 ((|#3| $) 38)) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 |#4|) $) 19 (|has| $ (-6 -4470)))) (-2820 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))))) (-2182 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#4| |#4|) $) 23)) (-2555 (((-660 |#3|) $) NIL)) (-2545 (((-112) |#3| $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL)) (-2471 (((-3 |#4| (-660 $)) |#4| |#4| $) NIL)) (-3605 (((-660 (-2 (|:| |val| |#4|) (|:| -3952 $))) |#4| |#4| $) 117)) (-3927 (((-3 |#4| "failed") $) 42)) (-2479 (((-660 $) |#4| $) 102)) (-2496 (((-3 (-112) (-660 $)) |#4| $) NIL)) (-2488 (((-660 (-2 (|:| |val| (-112)) (|:| -3952 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-2785 (((-660 $) |#4| $) 121) (((-660 $) (-660 |#4|) $) NIL) (((-660 $) (-660 |#4|) (-660 $)) 122) (((-660 $) |#4| (-660 $)) NIL)) (-3975 (((-660 $) (-660 |#4|) (-112) (-112) (-112)) 134)) (-3986 (($ |#4| $) 88) (($ (-660 |#4|) $) 89) (((-660 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-4375 (((-660 |#4|) $) NIL)) (-2458 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2408 ((|#4| |#4| $) NIL)) (-4396 (((-112) $ $) NIL)) (-2466 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)))) (-2467 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2418 ((|#4| |#4| $) NIL)) (-1474 (((-1145) $) NIL)) (-3552 (((-3 |#4| "failed") $) 40)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2343 (((-3 $ "failed") $ |#4|) 59)) (-3792 (($ $ |#4|) NIL) (((-660 $) |#4| $) 104) (((-660 $) |#4| (-660 $)) NIL) (((-660 $) (-660 |#4|) $) NIL) (((-660 $) (-660 |#4|) (-660 $)) 99)) (-1514 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 |#4|) (-660 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-660 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) 17)) (-3639 (($) 14)) (-2887 (((-787) $) NIL)) (-1485 (((-787) |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125)))) (((-787) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) 13)) (-4152 (((-549) $) NIL (|has| |#4| (-627 (-549))))) (-3553 (($ (-660 |#4|)) 22)) (-2518 (($ $ |#3|) 52)) (-2536 (($ $ |#3|) 54)) (-2391 (($ $) NIL)) (-2527 (($ $ |#3|) NIL)) (-3544 (((-880) $) 35) (((-660 |#4|) $) 46)) (-2332 (((-787) $) NIL (|has| |#3| (-380)))) (-4448 (((-112) $ $) NIL)) (-4385 (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2447 (((-112) $ (-1 (-112) |#4| (-660 |#4|))) NIL)) (-3594 (((-660 $) |#4| $) 66) (((-660 $) |#4| (-660 $)) NIL) (((-660 $) (-660 |#4|) $) NIL) (((-660 $) (-660 |#4|) (-660 $)) NIL)) (-1524 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-2352 (((-660 |#3|) $) NIL)) (-2515 (((-112) |#4| $) NIL)) (-2776 (((-112) |#3| $) 74)) (-2970 (((-112) $ $) NIL)) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-1171 |#1| |#2| |#3| |#4|) (-13 (-1134 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3986 ((-660 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2371 ((-660 $) (-660 |#4|) (-112) (-112))) (-15 -2371 ((-660 $) (-660 |#4|) (-112) (-112) (-112) (-112))) (-15 -3975 ((-660 $) (-660 |#4|) (-112) (-112) (-112))) (-15 -3963 ((-2 (|:| |val| (-660 |#4|)) (|:| |towers| (-660 $))) (-660 |#4|) (-112) (-112))))) (-465) (-809) (-865) (-1090 |#1| |#2| |#3|)) (T -1171)) +((-3986 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 (-1171 *5 *6 *7 *3))) (-5 *1 (-1171 *5 *6 *7 *3)) (-4 *3 (-1090 *5 *6 *7)))) (-2371 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 (-1171 *5 *6 *7 *8))) (-5 *1 (-1171 *5 *6 *7 *8)))) (-2371 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 (-1171 *5 *6 *7 *8))) (-5 *1 (-1171 *5 *6 *7 *8)))) (-3975 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 (-1171 *5 *6 *7 *8))) (-5 *1 (-1171 *5 *6 *7 *8)))) (-3963 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-660 *8)) (|:| |towers| (-660 (-1171 *5 *6 *7 *8))))) (-5 *1 (-1171 *5 *6 *7 *8)) (-5 *3 (-660 *8))))) +(-13 (-1134 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3986 ((-660 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2371 ((-660 $) (-660 |#4|) (-112) (-112))) (-15 -2371 ((-660 $) (-660 |#4|) (-112) (-112) (-112) (-112))) (-15 -3975 ((-660 $) (-660 |#4|) (-112) (-112) (-112))) (-15 -3963 ((-2 (|:| |val| (-660 |#4|)) (|:| |towers| (-660 $))) (-660 |#4|) (-112) (-112))))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1436 ((|#1| $) 37)) (-2743 (($ (-660 |#1|)) 45)) (-3828 (((-112) $ (-787)) NIL)) (-1534 (($) NIL T CONST)) (-2367 ((|#1| |#1| $) 40)) (-2357 ((|#1| $) 35)) (-1461 (((-660 |#1|) $) 18 (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2182 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 22)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-4330 ((|#1| $) 38)) (-2881 (($ |#1| $) 41)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-3530 ((|#1| $) 36)) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) 32)) (-3639 (($) 43)) (-1965 (((-787) $) 30)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) 27)) (-3544 (((-880) $) 14 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3541 (($ (-660 |#1|)) NIL)) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 17 (|has| |#1| (-102)))) (-3484 (((-787) $) 31 (|has| $ (-6 -4470))))) +(((-1172 |#1|) (-13 (-1146 |#1|) (-10 -8 (-15 -2743 ($ (-660 |#1|))))) (-1242)) (T -1172)) +((-2743 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-1172 *3))))) +(-13 (-1146 |#1|) (-10 -8 (-15 -2743 ($ (-660 |#1|))))) +((-3709 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1259 (-577)) |#2|) 53) ((|#2| $ (-577) |#2|) 50)) (-3998 (((-112) $) 12)) (-2182 (($ (-1 |#2| |#2|) $) 48)) (-3552 ((|#2| $) NIL) (($ $ (-787)) 17)) (-2397 (($ $ |#2|) 49)) (-4010 (((-112) $) 11)) (-2872 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1259 (-577))) 36) ((|#2| $ (-577)) 26) ((|#2| $ (-577) |#2|) NIL)) (-3992 (($ $ $) 56) (($ $ |#2|) NIL)) (-1677 (($ $ $) 38) (($ |#2| $) NIL) (($ (-660 $)) 45) (($ $ |#2|) NIL))) +(((-1173 |#1| |#2|) (-10 -8 (-15 -3998 ((-112) |#1|)) (-15 -4010 ((-112) |#1|)) (-15 -3709 (|#2| |#1| (-577) |#2|)) (-15 -2872 (|#2| |#1| (-577) |#2|)) (-15 -2872 (|#2| |#1| (-577))) (-15 -2397 (|#1| |#1| |#2|)) (-15 -2872 (|#1| |#1| (-1259 (-577)))) (-15 -1677 (|#1| |#1| |#2|)) (-15 -1677 (|#1| (-660 |#1|))) (-15 -3709 (|#2| |#1| (-1259 (-577)) |#2|)) (-15 -3709 (|#2| |#1| "last" |#2|)) (-15 -3709 (|#1| |#1| "rest" |#1|)) (-15 -3709 (|#2| |#1| "first" |#2|)) (-15 -3992 (|#1| |#1| |#2|)) (-15 -3992 (|#1| |#1| |#1|)) (-15 -2872 (|#2| |#1| "last")) (-15 -2872 (|#1| |#1| "rest")) (-15 -3552 (|#1| |#1| (-787))) (-15 -2872 (|#2| |#1| "first")) (-15 -3552 (|#2| |#1|)) (-15 -1677 (|#1| |#2| |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -3709 (|#2| |#1| "value" |#2|)) (-15 -2872 (|#2| |#1| "value")) (-15 -2182 (|#1| (-1 |#2| |#2|) |#1|))) (-1174 |#2|) (-1242)) (T -1173)) +NIL +(-10 -8 (-15 -3998 ((-112) |#1|)) (-15 -4010 ((-112) |#1|)) (-15 -3709 (|#2| |#1| (-577) |#2|)) (-15 -2872 (|#2| |#1| (-577) |#2|)) (-15 -2872 (|#2| |#1| (-577))) (-15 -2397 (|#1| |#1| |#2|)) (-15 -2872 (|#1| |#1| (-1259 (-577)))) (-15 -1677 (|#1| |#1| |#2|)) (-15 -1677 (|#1| (-660 |#1|))) (-15 -3709 (|#2| |#1| (-1259 (-577)) |#2|)) (-15 -3709 (|#2| |#1| "last" |#2|)) (-15 -3709 (|#1| |#1| "rest" |#1|)) (-15 -3709 (|#2| |#1| "first" |#2|)) (-15 -3992 (|#1| |#1| |#2|)) (-15 -3992 (|#1| |#1| |#1|)) (-15 -2872 (|#2| |#1| "last")) (-15 -2872 (|#1| |#1| "rest")) (-15 -3552 (|#1| |#1| (-787))) (-15 -2872 (|#2| |#1| "first")) (-15 -3552 (|#2| |#1|)) (-15 -1677 (|#1| |#2| |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -3709 (|#2| |#1| "value" |#2|)) (-15 -2872 (|#2| |#1| "value")) (-15 -2182 (|#1| (-1 |#2| |#2|) |#1|))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3115 ((|#1| $) 49)) (-2950 ((|#1| $) 66)) (-4428 (($ $) 68)) (-2389 (((-1297) $ (-577) (-577)) 99 (|has| $ (-6 -4471)))) (-3933 (($ $ (-577)) 53 (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) 8)) (-4374 ((|#1| $ |#1|) 40 (|has| $ (-6 -4471)))) (-3958 (($ $ $) 57 (|has| $ (-6 -4471)))) (-3945 ((|#1| $ |#1|) 55 (|has| $ (-6 -4471)))) (-3969 ((|#1| $ |#1|) 59 (|has| $ (-6 -4471)))) (-3709 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4471))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4471))) (($ $ "rest" $) 56 (|has| $ (-6 -4471))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) 119 (|has| $ (-6 -4471))) ((|#1| $ (-577) |#1|) 88 (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) 42 (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4470)))) (-2939 ((|#1| $) 67)) (-1534 (($) 7 T CONST)) (-3563 (($ $) 74) (($ $ (-787)) 72)) (-1817 (($ $) 101 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3904 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4470))) (($ |#1| $) 102 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2192 ((|#1| $ (-577) |#1|) 87 (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) 89)) (-3998 (((-112) $) 85)) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-4426 (((-660 $) $) 51)) (-4394 (((-112) $ $) 43 (|has| |#1| (-1125)))) (-4113 (($ (-787) |#1|) 111)) (-1479 (((-112) $ (-787)) 9)) (-2406 (((-577) $) 97 (|has| (-577) (-865)))) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2416 (((-577) $) 96 (|has| (-577) (-865)))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1443 (((-112) $ (-787)) 10)) (-2461 (((-660 |#1|) $) 46)) (-3371 (((-112) $) 50)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-3927 ((|#1| $) 71) (($ $ (-787)) 69)) (-2308 (($ $ $ (-577)) 118) (($ |#1| $ (-577)) 117)) (-4285 (((-660 (-577)) $) 94)) (-4298 (((-112) (-577) $) 93)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-3552 ((|#1| $) 77) (($ $ (-787)) 75)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2397 (($ $ |#1|) 98 (|has| $ (-6 -4471)))) (-4010 (((-112) $) 86)) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-4274 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) 92)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1259 (-577))) 110) ((|#1| $ (-577)) 91) ((|#1| $ (-577) |#1|) 90)) (-4415 (((-577) $ $) 45)) (-3453 (($ $ (-1259 (-577))) 116) (($ $ (-577)) 115)) (-1885 (((-112) $) 47)) (-4004 (($ $) 63)) (-3981 (($ $) 60 (|has| $ (-6 -4471)))) (-4016 (((-787) $) 64)) (-4026 (($ $) 65)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-4152 (((-549) $) 100 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 109)) (-3992 (($ $ $) 62 (|has| $ (-6 -4471))) (($ $ |#1|) 61 (|has| $ (-6 -4471)))) (-1677 (($ $ $) 79) (($ |#1| $) 78) (($ (-660 $)) 113) (($ $ |#1|) 112)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-3322 (((-660 $) $) 52)) (-4405 (((-112) $ $) 44 (|has| |#1| (-1125)))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-1174 |#1|) (-141) (-1242)) (T -1174)) +((-4010 (*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-1242)) (-5 *2 (-112)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-1242)) (-5 *2 (-112))))) +(-13 (-1280 |t#1|) (-667 |t#1|) (-10 -8 (-15 -4010 ((-112) $)) (-15 -3998 ((-112) $)))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-667 |#1|) . T) ((-1035 |#1|) . T) ((-1125) |has| |#1| (-1125)) ((-1242) . T) ((-1280 |#1|) . T)) +((-3473 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-4100 (($) NIL) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-2389 (((-1297) $ |#1| |#1|) NIL (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 ((|#2| $ |#1| |#2|) NIL)) (-2463 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2325 (((-3 |#2| "failed") |#1| $) NIL)) (-1534 (($) NIL T CONST)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))))) (-3719 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (|has| $ (-6 -4470))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-3 |#2| "failed") |#1| $) NIL)) (-3904 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-3654 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (|has| $ (-6 -4470))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2192 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#2| $ |#1|) NIL)) (-1461 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) NIL)) (-2406 ((|#1| $) NIL (|has| |#1| (-865)))) (-2530 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-2416 ((|#1| $) NIL (|has| |#1| (-865)))) (-2182 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4471))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| |#2| (-1125))))) (-3203 (((-660 |#1|) $) NIL)) (-4317 (((-112) |#1| $) NIL)) (-4330 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-2881 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-4285 (((-660 |#1|) $) NIL)) (-4298 (((-112) |#1| $) NIL)) (-1474 (((-1145) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| |#2| (-1125))))) (-3552 ((|#2| $) NIL (|has| |#1| (-865)))) (-1828 (((-3 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) "failed") (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL)) (-2397 (($ $ |#2|) NIL (|has| $ (-6 -4471)))) (-3530 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-1514 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-4306 (((-660 |#2|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3736 (($) NIL) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-1485 (((-787) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-787) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125)))) (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-627 (-549))))) (-3553 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-3544 (((-880) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-626 (-880))) (|has| |#2| (-626 (-880)))))) (-4448 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-3541 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-1524 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-1175 |#1| |#2| |#3|) (-1218 |#1| |#2|) (-1125) (-1125) |#2|) (T -1175)) +NIL +(-1218 |#1| |#2|) +((-3473 (((-112) $ $) NIL)) (-4031 (((-707 (-1160)) $) 27)) (-1678 (((-1160) $) 15)) (-4041 (((-1160) $) 17)) (-2810 (((-1183) $) NIL)) (-4052 (((-519) $) 13)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 37) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-1176) (-13 (-1108) (-10 -8 (-15 -4052 ((-519) $)) (-15 -4041 ((-1160) $)) (-15 -4031 ((-707 (-1160)) $)) (-15 -1678 ((-1160) $))))) (T -1176)) +((-4052 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1176)))) (-4041 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1176)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-707 (-1160))) (-5 *1 (-1176)))) (-1678 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1176))))) +(-13 (-1108) (-10 -8 (-15 -4052 ((-519) $)) (-15 -4041 ((-1160) $)) (-15 -4031 ((-707 (-1160)) $)) (-15 -1678 ((-1160) $)))) +((-3473 (((-112) $ $) 7)) (-4021 (((-3 $ "failed") $) 14)) (-2810 (((-1183) $) 10)) (-1709 (($) 15 T CONST)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2970 (((-112) $ $) 8))) +(((-1177) (-141)) (T -1177)) +((-1709 (*1 *1) (-4 *1 (-1177))) (-4021 (*1 *1 *1) (|partial| -4 *1 (-1177)))) +(-13 (-1125) (-10 -8 (-15 -1709 ($) -1512) (-15 -4021 ((-3 $ "failed") $)))) +(((-102) . T) ((-626 (-880)) . T) ((-1125) . T) ((-1242) . T)) +((-4088 (((-1182 |#1|) (-1182 |#1|)) 17)) (-4063 (((-1182 |#1|) (-1182 |#1|)) 13)) (-4099 (((-1182 |#1|) (-1182 |#1|) (-577) (-577)) 20)) (-4076 (((-1182 |#1|) (-1182 |#1|)) 15))) +(((-1178 |#1|) (-10 -7 (-15 -4063 ((-1182 |#1|) (-1182 |#1|))) (-15 -4076 ((-1182 |#1|) (-1182 |#1|))) (-15 -4088 ((-1182 |#1|) (-1182 |#1|))) (-15 -4099 ((-1182 |#1|) (-1182 |#1|) (-577) (-577)))) (-13 (-569) (-148))) (T -1178)) +((-4099 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1182 *4)) (-5 *3 (-577)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-1178 *4)))) (-4088 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1178 *3)))) (-4076 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1178 *3)))) (-4063 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1178 *3))))) +(-10 -7 (-15 -4063 ((-1182 |#1|) (-1182 |#1|))) (-15 -4076 ((-1182 |#1|) (-1182 |#1|))) (-15 -4088 ((-1182 |#1|) (-1182 |#1|))) (-15 -4099 ((-1182 |#1|) (-1182 |#1|) (-577) (-577)))) +((-1677 (((-1182 |#1|) (-1182 (-1182 |#1|))) 15))) +(((-1179 |#1|) (-10 -7 (-15 -1677 ((-1182 |#1|) (-1182 (-1182 |#1|))))) (-1242)) (T -1179)) +((-1677 (*1 *2 *3) (-12 (-5 *3 (-1182 (-1182 *4))) (-5 *2 (-1182 *4)) (-5 *1 (-1179 *4)) (-4 *4 (-1242))))) +(-10 -7 (-15 -1677 ((-1182 |#1|) (-1182 (-1182 |#1|))))) +((-3127 (((-1182 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1182 |#1|)) 25)) (-3654 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1182 |#1|)) 26)) (-4087 (((-1182 |#2|) (-1 |#2| |#1|) (-1182 |#1|)) 16))) +(((-1180 |#1| |#2|) (-10 -7 (-15 -4087 ((-1182 |#2|) (-1 |#2| |#1|) (-1182 |#1|))) (-15 -3127 ((-1182 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1182 |#1|))) (-15 -3654 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1182 |#1|)))) (-1242) (-1242)) (T -1180)) +((-3654 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1182 *5)) (-4 *5 (-1242)) (-4 *2 (-1242)) (-5 *1 (-1180 *5 *2)))) (-3127 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1182 *6)) (-4 *6 (-1242)) (-4 *3 (-1242)) (-5 *2 (-1182 *3)) (-5 *1 (-1180 *6 *3)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1182 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-1182 *6)) (-5 *1 (-1180 *5 *6))))) +(-10 -7 (-15 -4087 ((-1182 |#2|) (-1 |#2| |#1|) (-1182 |#1|))) (-15 -3127 ((-1182 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1182 |#1|))) (-15 -3654 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1182 |#1|)))) +((-4087 (((-1182 |#3|) (-1 |#3| |#1| |#2|) (-1182 |#1|) (-1182 |#2|)) 21))) +(((-1181 |#1| |#2| |#3|) (-10 -7 (-15 -4087 ((-1182 |#3|) (-1 |#3| |#1| |#2|) (-1182 |#1|) (-1182 |#2|)))) (-1242) (-1242) (-1242)) (T -1181)) +((-4087 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1182 *6)) (-5 *5 (-1182 *7)) (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-1182 *8)) (-5 *1 (-1181 *6 *7 *8))))) +(-10 -7 (-15 -4087 ((-1182 |#3|) (-1 |#3| |#1| |#2|) (-1182 |#1|) (-1182 |#2|)))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3115 ((|#1| $) NIL)) (-2950 ((|#1| $) NIL)) (-4428 (($ $) 67)) (-2389 (((-1297) $ (-577) (-577)) 99 (|has| $ (-6 -4471)))) (-3933 (($ $ (-577)) 128 (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) NIL)) (-4127 (((-880) $) 56 (|has| |#1| (-1125)))) (-4112 (((-112)) 55 (|has| |#1| (-1125)))) (-4374 ((|#1| $ |#1|) NIL (|has| $ (-6 -4471)))) (-3958 (($ $ $) 115 (|has| $ (-6 -4471))) (($ $ (-577) $) 141)) (-3945 ((|#1| $ |#1|) 125 (|has| $ (-6 -4471)))) (-3969 ((|#1| $ |#1|) 120 (|has| $ (-6 -4471)))) (-3709 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4471))) (($ $ "rest" $) 124 (|has| $ (-6 -4471))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) 112 (|has| $ (-6 -4471))) ((|#1| $ (-577) |#1|) 77 (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) NIL (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) |#1|) $) 80)) (-2939 ((|#1| $) NIL)) (-1534 (($) NIL T CONST)) (-3872 (($ $) 14)) (-3563 (($ $) 40) (($ $ (-787)) 111)) (-4164 (((-112) (-660 |#1|) $) 134 (|has| |#1| (-1125)))) (-4175 (($ (-660 |#1|)) 130)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3904 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) (($ (-1 (-112) |#1|) $) 79)) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2192 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) NIL)) (-3998 (((-112) $) NIL)) (-1461 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2833 (((-1297) (-577) $) 140 (|has| |#1| (-1125)))) (-3861 (((-787) $) 137)) (-4426 (((-660 $) $) NIL)) (-4394 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-4113 (($ (-787) |#1|) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) NIL (|has| (-577) (-865)))) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2416 (((-577) $) NIL (|has| (-577) (-865)))) (-2182 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-1443 (((-112) $ (-787)) NIL)) (-2461 (((-660 |#1|) $) NIL)) (-3371 (((-112) $) NIL)) (-3894 (($ $) 113)) (-3907 (((-112) $) 13)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-3927 ((|#1| $) NIL) (($ $ (-787)) NIL)) (-2308 (($ $ $ (-577)) NIL) (($ |#1| $ (-577)) NIL)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) 96)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-4349 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-3883 ((|#1| $) 10)) (-3552 ((|#1| $) 39) (($ $ (-787)) 65)) (-4153 (((-2 (|:| |cycle?| (-112)) (|:| -3970 (-787)) (|:| |period| (-787))) (-787) $) 34)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2040 (($ (-1 (-112) |#1|) $) 145)) (-2055 (($ (-1 (-112) |#1|) $) 146)) (-2397 (($ $ |#1|) 90 (|has| $ (-6 -4471)))) (-3792 (($ $ (-577)) 45)) (-4010 (((-112) $) 94)) (-3918 (((-112) $) 12)) (-3930 (((-112) $) 136)) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 30)) (-4274 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) NIL)) (-3697 (((-112) $) 20)) (-3639 (($) 60)) (-2872 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1259 (-577))) NIL) ((|#1| $ (-577)) 75) ((|#1| $ (-577) |#1|) NIL)) (-4415 (((-577) $ $) 64)) (-3453 (($ $ (-1259 (-577))) NIL) (($ $ (-577)) NIL)) (-4140 (($ (-1 $)) 63)) (-1885 (((-112) $) 91)) (-4004 (($ $) 92)) (-3981 (($ $) 116 (|has| $ (-6 -4471)))) (-4016 (((-787) $) NIL)) (-4026 (($ $) NIL)) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) 59)) (-4152 (((-549) $) NIL (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 73)) (-2905 (($ |#1| $) 114)) (-3992 (($ $ $) 118 (|has| $ (-6 -4471))) (($ $ |#1|) 119 (|has| $ (-6 -4471)))) (-1677 (($ $ $) 101) (($ |#1| $) 61) (($ (-660 $)) 106) (($ $ |#1|) 100)) (-3540 (($ $) 66)) (-3544 (($ (-660 |#1|)) 129) (((-880) $) 57 (|has| |#1| (-626 (-880))))) (-3322 (((-660 $) $) NIL)) (-4405 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 132 (|has| |#1| (-102)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-1182 |#1|) (-13 (-690 |#1|) (-629 (-660 |#1|)) (-10 -8 (-6 -4471) (-15 -4175 ($ (-660 |#1|))) (IF (|has| |#1| (-1125)) (-15 -4164 ((-112) (-660 |#1|) $)) |%noBranch|) (-15 -4153 ((-2 (|:| |cycle?| (-112)) (|:| -3970 (-787)) (|:| |period| (-787))) (-787) $)) (-15 -4140 ($ (-1 $))) (-15 -2905 ($ |#1| $)) (IF (|has| |#1| (-1125)) (PROGN (-15 -2833 ((-1297) (-577) $)) (-15 -4127 ((-880) $)) (-15 -4112 ((-112)))) |%noBranch|) (-15 -3958 ($ $ (-577) $)) (-15 -4349 ($ (-1 |#1|))) (-15 -4349 ($ (-1 |#1| |#1|) |#1|)) (-15 -2040 ($ (-1 (-112) |#1|) $)) (-15 -2055 ($ (-1 (-112) |#1|) $)))) (-1242)) (T -1182)) +((-4175 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3)))) (-4164 (*1 *2 *3 *1) (-12 (-5 *3 (-660 *4)) (-4 *4 (-1125)) (-4 *4 (-1242)) (-5 *2 (-112)) (-5 *1 (-1182 *4)))) (-4153 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3970 (-787)) (|:| |period| (-787)))) (-5 *1 (-1182 *4)) (-4 *4 (-1242)) (-5 *3 (-787)))) (-4140 (*1 *1 *2) (-12 (-5 *2 (-1 (-1182 *3))) (-5 *1 (-1182 *3)) (-4 *3 (-1242)))) (-2905 (*1 *1 *2 *1) (-12 (-5 *1 (-1182 *2)) (-4 *2 (-1242)))) (-2833 (*1 *2 *3 *1) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-1182 *4)) (-4 *4 (-1125)) (-4 *4 (-1242)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-880)) (-5 *1 (-1182 *3)) (-4 *3 (-1125)) (-4 *3 (-1242)))) (-4112 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3)) (-4 *3 (-1125)) (-4 *3 (-1242)))) (-3958 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1182 *3)) (-4 *3 (-1242)))) (-4349 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3)))) (-4349 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3)))) (-2040 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3)))) (-2055 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3))))) +(-13 (-690 |#1|) (-629 (-660 |#1|)) (-10 -8 (-6 -4471) (-15 -4175 ($ (-660 |#1|))) (IF (|has| |#1| (-1125)) (-15 -4164 ((-112) (-660 |#1|) $)) |%noBranch|) (-15 -4153 ((-2 (|:| |cycle?| (-112)) (|:| -3970 (-787)) (|:| |period| (-787))) (-787) $)) (-15 -4140 ($ (-1 $))) (-15 -2905 ($ |#1| $)) (IF (|has| |#1| (-1125)) (PROGN (-15 -2833 ((-1297) (-577) $)) (-15 -4127 ((-880) $)) (-15 -4112 ((-112)))) |%noBranch|) (-15 -3958 ($ $ (-577) $)) (-15 -4349 ($ (-1 |#1|))) (-15 -4349 ($ (-1 |#1| |#1|) |#1|)) (-15 -2040 ($ (-1 (-112) |#1|) $)) (-15 -2055 ($ (-1 (-112) |#1|) $)))) +((-3473 (((-112) $ $) NIL (|has| (-145) (-102)))) (-3835 (($ $) NIL)) (-3846 (($ $) NIL)) (-3797 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4090 (((-112) $ $) NIL)) (-4065 (((-112) $ $ (-577)) NIL)) (-1335 (($ (-577)) 8) (($ (-228)) 10)) (-3810 (((-660 $) $ (-145)) NIL) (((-660 $) $ (-142)) NIL)) (-4077 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-865)))) (-4053 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4471))) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| (-145) (-865))))) (-1864 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-865)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 (((-145) $ (-577) (-145)) NIL (|has| $ (-6 -4471))) (((-145) $ (-1259 (-577)) (-145)) NIL (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)))) (-1534 (($) NIL T CONST)) (-2722 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3645 (($ $) NIL (|has| $ (-6 -4471)))) (-3787 (($ $) NIL)) (-3823 (($ $ (-1259 (-577)) $) NIL)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))))) (-3904 (($ (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)))) (-3654 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4470))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4470)))) (-2192 (((-145) $ (-577) (-145)) NIL (|has| $ (-6 -4471)))) (-2117 (((-145) $ (-577)) NIL)) (-4116 (((-112) $ $) NIL)) (-3618 (((-577) (-1 (-112) (-145)) $) NIL) (((-577) (-145) $) NIL (|has| (-145) (-1125))) (((-577) (-145) $ (-577)) NIL (|has| (-145) (-1125))) (((-577) $ $ (-577)) NIL) (((-577) (-142) $ (-577)) NIL)) (-1461 (((-660 (-145)) $) NIL (|has| $ (-6 -4470)))) (-4113 (($ (-787) (-145)) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) NIL (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| (-145) (-865)))) (-3283 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-865)))) (-2530 (((-660 (-145)) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))))) (-2416 (((-577) $) NIL (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| (-145) (-865)))) (-1997 (((-112) $ $ (-145)) NIL)) (-1367 (((-787) $ $ (-145)) NIL)) (-2182 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-3857 (($ $) NIL)) (-3869 (($ $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2733 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2810 (((-1183) $) NIL (|has| (-145) (-1125)))) (-2308 (($ (-145) $ (-577)) NIL) (($ $ $ (-577)) NIL)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-1474 (((-1145) $) NIL (|has| (-145) (-1125)))) (-3552 (((-145) $) NIL (|has| (-577) (-865)))) (-1828 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2397 (($ $ (-145)) NIL (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-145)))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125)))) (($ $ (-305 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125)))) (($ $ (-660 (-145)) (-660 (-145))) NIL (-12 (|has| (-145) (-320 (-145))) (|has| (-145) (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))))) (-4306 (((-660 (-145)) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 (((-145) $ (-577) (-145)) NIL) (((-145) $ (-577)) NIL) (($ $ (-1259 (-577))) NIL) (($ $ $) NIL)) (-3453 (($ $ (-577)) NIL) (($ $ (-1259 (-577))) NIL)) (-1485 (((-787) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470))) (((-787) (-145) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-145) (-1125))))) (-4064 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| (-145) (-627 (-549))))) (-3553 (($ (-660 (-145))) NIL)) (-1677 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-660 $)) NIL)) (-3544 (($ (-145)) NIL) (((-880) $) NIL (|has| (-145) (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| (-145) (-102)))) (-1524 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4470)))) (-4013 (((-1183) $) 21) (((-1183) $ (-112)) 23) (((-1297) (-838) $) 24) (((-1297) (-838) $ (-112)) 25)) (-3025 (((-112) $ $) NIL (|has| (-145) (-865)))) (-3000 (((-112) $ $) NIL (|has| (-145) (-865)))) (-2970 (((-112) $ $) NIL (|has| (-145) (-102)))) (-3012 (((-112) $ $) NIL (|has| (-145) (-865)))) (-2990 (((-112) $ $) NIL (|has| (-145) (-865)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-1183) (-13 (-1169) (-844) (-10 -8 (-15 -1335 ($ (-577))) (-15 -1335 ($ (-228)))))) (T -1183)) +((-1335 (*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1183)))) (-1335 (*1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-1183))))) +(-13 (-1169) (-844) (-10 -8 (-15 -1335 ($ (-577))) (-15 -1335 ($ (-228))))) +((-3473 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-102)) (|has| |#1| (-102))))) (-4100 (($) NIL) (($ (-660 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) NIL)) (-2389 (((-1297) $ (-1183) (-1183)) NIL (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 ((|#1| $ (-1183) |#1|) NIL)) (-2463 (($ (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470)))) (-2325 (((-3 |#1| "failed") (-1183) $) NIL)) (-1534 (($) NIL T CONST)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125))))) (-3719 (($ (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) $) NIL (|has| $ (-6 -4470))) (($ (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470))) (((-3 |#1| "failed") (-1183) $) NIL)) (-3904 (($ (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125)))) (($ (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470)))) (-3654 (((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $ (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125)))) (((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $ (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) NIL (|has| $ (-6 -4470))) (((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470)))) (-2192 ((|#1| $ (-1183) |#1|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-1183)) NIL)) (-1461 (((-660 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470))) (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-1183) $) NIL (|has| (-1183) (-865)))) (-2530 (((-660 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470))) (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2416 (((-1183) $) NIL (|has| (-1183) (-865)))) (-2182 (($ (-1 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4471))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (-2839 (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125)) (|has| |#1| (-1125))))) (-3203 (((-660 (-1183)) $) NIL)) (-4317 (((-112) (-1183) $) NIL)) (-4330 (((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) $) NIL)) (-2881 (($ (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) $) NIL)) (-4285 (((-660 (-1183)) $) NIL)) (-4298 (((-112) (-1183) $) NIL)) (-1474 (((-1145) $) NIL (-2839 (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125)) (|has| |#1| (-1125))))) (-3552 ((|#1| $) NIL (|has| (-1183) (-865)))) (-1828 (((-3 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) "failed") (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL)) (-2397 (($ $ |#1|) NIL (|has| $ (-6 -4471)))) (-3530 (((-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) $) NIL)) (-1514 (((-112) (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))))) NIL (-12 (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-320 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125)))) (($ $ (-305 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) NIL (-12 (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-320 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125)))) (($ $ (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) NIL (-12 (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-320 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125)))) (($ $ (-660 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) (-660 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) NIL (-12 (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-320 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#1| $ (-1183)) NIL) ((|#1| $ (-1183) |#1|) NIL)) (-3736 (($) NIL) (($ (-660 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) NIL)) (-1485 (((-787) (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470))) (((-787) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-1125)))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-627 (-549))))) (-3553 (($ (-660 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) NIL)) (-3544 (((-880) $) NIL (-2839 (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-626 (-880))) (|has| |#1| (-626 (-880)))))) (-4448 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-102)) (|has| |#1| (-102))))) (-3541 (($ (-660 (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)))) NIL)) (-1524 (((-112) (-1 (-112) (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 (-1183)) (|:| -4444 |#1|)) (-102)) (|has| |#1| (-102))))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-1184 |#1|) (-13 (-1218 (-1183) |#1|) (-10 -7 (-6 -4470))) (-1125)) (T -1184)) +NIL +(-13 (-1218 (-1183) |#1|) (-10 -7 (-6 -4470))) +((-4058 (((-1182 |#1|) (-1182 |#1|)) 83)) (-4187 (((-3 (-1182 |#1|) "failed") (-1182 |#1|)) 39)) (-4294 (((-1182 |#1|) (-420 (-577)) (-1182 |#1|)) 133 (|has| |#1| (-38 (-420 (-577)))))) (-3101 (((-1182 |#1|) |#1| (-1182 |#1|)) 139 (|has| |#1| (-375)))) (-4094 (((-1182 |#1|) (-1182 |#1|)) 97)) (-4207 (((-1182 (-577)) (-577)) 63)) (-4282 (((-1182 |#1|) (-1182 (-1182 |#1|))) 116 (|has| |#1| (-38 (-420 (-577)))))) (-4047 (((-1182 |#1|) (-577) (-577) (-1182 |#1|)) 102)) (-3640 (((-1182 |#1|) |#1| (-577)) 51)) (-4219 (((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) 66)) (-3084 (((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) 136 (|has| |#1| (-375)))) (-4271 (((-1182 |#1|) |#1| (-1 (-1182 |#1|))) 115 (|has| |#1| (-38 (-420 (-577)))))) (-3093 (((-1182 |#1|) (-1 |#1| (-577)) |#1| (-1 (-1182 |#1|))) 137 (|has| |#1| (-375)))) (-4106 (((-1182 |#1|) (-1182 |#1|)) 96)) (-4120 (((-1182 |#1|) (-1182 |#1|)) 82)) (-4036 (((-1182 |#1|) (-577) (-577) (-1182 |#1|)) 103)) (-4147 (((-1182 |#1|) |#1| (-1182 |#1|)) 112 (|has| |#1| (-38 (-420 (-577)))))) (-4196 (((-1182 (-577)) (-577)) 62)) (-3858 (((-1182 |#1|) |#1|) 65)) (-4070 (((-1182 |#1|) (-1182 |#1|) (-577) (-577)) 99)) (-4240 (((-1182 |#1|) (-1 |#1| (-577)) (-1182 |#1|)) 72)) (-3462 (((-3 (-1182 |#1|) "failed") (-1182 |#1|) (-1182 |#1|)) 37)) (-4082 (((-1182 |#1|) (-1182 |#1|)) 98)) (-3280 (((-1182 |#1|) (-1182 |#1|) |#1|) 77)) (-4229 (((-1182 |#1|) (-1182 |#1|)) 68)) (-4251 (((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) 78)) (-3544 (((-1182 |#1|) |#1|) 73)) (-4261 (((-1182 |#1|) (-1182 (-1182 |#1|))) 88)) (-3077 (((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) 38)) (-3066 (((-1182 |#1|) (-1182 |#1|)) 21) (((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) 23)) (-3055 (((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) 17)) (* (((-1182 |#1|) (-1182 |#1|) |#1|) 29) (((-1182 |#1|) |#1| (-1182 |#1|)) 26) (((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) 27))) +(((-1185 |#1|) (-10 -7 (-15 -3055 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -3066 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -3066 ((-1182 |#1|) (-1182 |#1|))) (-15 * ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 * ((-1182 |#1|) |#1| (-1182 |#1|))) (-15 * ((-1182 |#1|) (-1182 |#1|) |#1|)) (-15 -3462 ((-3 (-1182 |#1|) "failed") (-1182 |#1|) (-1182 |#1|))) (-15 -3077 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -4187 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -3640 ((-1182 |#1|) |#1| (-577))) (-15 -4196 ((-1182 (-577)) (-577))) (-15 -4207 ((-1182 (-577)) (-577))) (-15 -3858 ((-1182 |#1|) |#1|)) (-15 -4219 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -4229 ((-1182 |#1|) (-1182 |#1|))) (-15 -4240 ((-1182 |#1|) (-1 |#1| (-577)) (-1182 |#1|))) (-15 -3544 ((-1182 |#1|) |#1|)) (-15 -3280 ((-1182 |#1|) (-1182 |#1|) |#1|)) (-15 -4251 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -4120 ((-1182 |#1|) (-1182 |#1|))) (-15 -4058 ((-1182 |#1|) (-1182 |#1|))) (-15 -4261 ((-1182 |#1|) (-1182 (-1182 |#1|)))) (-15 -4106 ((-1182 |#1|) (-1182 |#1|))) (-15 -4094 ((-1182 |#1|) (-1182 |#1|))) (-15 -4082 ((-1182 |#1|) (-1182 |#1|))) (-15 -4070 ((-1182 |#1|) (-1182 |#1|) (-577) (-577))) (-15 -4047 ((-1182 |#1|) (-577) (-577) (-1182 |#1|))) (-15 -4036 ((-1182 |#1|) (-577) (-577) (-1182 |#1|))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4147 ((-1182 |#1|) |#1| (-1182 |#1|))) (-15 -4271 ((-1182 |#1|) |#1| (-1 (-1182 |#1|)))) (-15 -4282 ((-1182 |#1|) (-1182 (-1182 |#1|)))) (-15 -4294 ((-1182 |#1|) (-420 (-577)) (-1182 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -3084 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -3093 ((-1182 |#1|) (-1 |#1| (-577)) |#1| (-1 (-1182 |#1|)))) (-15 -3101 ((-1182 |#1|) |#1| (-1182 |#1|)))) |%noBranch|)) (-1074)) (T -1185)) +((-3101 (*1 *2 *3 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-375)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3093 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-577))) (-5 *5 (-1 (-1182 *4))) (-4 *4 (-375)) (-4 *4 (-1074)) (-5 *2 (-1182 *4)) (-5 *1 (-1185 *4)))) (-3084 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-375)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-4294 (*1 *2 *3 *2) (-12 (-5 *2 (-1182 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1074)) (-5 *3 (-420 (-577))) (-5 *1 (-1185 *4)))) (-4282 (*1 *2 *3) (-12 (-5 *3 (-1182 (-1182 *4))) (-5 *2 (-1182 *4)) (-5 *1 (-1185 *4)) (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1074)))) (-4271 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1182 *3))) (-5 *2 (-1182 *3)) (-5 *1 (-1185 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)))) (-4147 (*1 *2 *3 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-4036 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1182 *4)) (-5 *3 (-577)) (-4 *4 (-1074)) (-5 *1 (-1185 *4)))) (-4047 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1182 *4)) (-5 *3 (-577)) (-4 *4 (-1074)) (-5 *1 (-1185 *4)))) (-4070 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1182 *4)) (-5 *3 (-577)) (-4 *4 (-1074)) (-5 *1 (-1185 *4)))) (-4082 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-4094 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-4106 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-4261 (*1 *2 *3) (-12 (-5 *3 (-1182 (-1182 *4))) (-5 *2 (-1182 *4)) (-5 *1 (-1185 *4)) (-4 *4 (-1074)))) (-4058 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-4120 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-4251 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3280 (*1 *2 *2 *3) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3544 (*1 *2 *3) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-1185 *3)) (-4 *3 (-1074)))) (-4240 (*1 *2 *3 *2) (-12 (-5 *2 (-1182 *4)) (-5 *3 (-1 *4 (-577))) (-4 *4 (-1074)) (-5 *1 (-1185 *4)))) (-4229 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-4219 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3858 (*1 *2 *3) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-1185 *3)) (-4 *3 (-1074)))) (-4207 (*1 *2 *3) (-12 (-5 *2 (-1182 (-577))) (-5 *1 (-1185 *4)) (-4 *4 (-1074)) (-5 *3 (-577)))) (-4196 (*1 *2 *3) (-12 (-5 *2 (-1182 (-577))) (-5 *1 (-1185 *4)) (-4 *4 (-1074)) (-5 *3 (-577)))) (-3640 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-5 *2 (-1182 *3)) (-5 *1 (-1185 *3)) (-4 *3 (-1074)))) (-4187 (*1 *2 *2) (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3077 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3462 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3066 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) (-3055 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3))))) +(-10 -7 (-15 -3055 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -3066 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -3066 ((-1182 |#1|) (-1182 |#1|))) (-15 * ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 * ((-1182 |#1|) |#1| (-1182 |#1|))) (-15 * ((-1182 |#1|) (-1182 |#1|) |#1|)) (-15 -3462 ((-3 (-1182 |#1|) "failed") (-1182 |#1|) (-1182 |#1|))) (-15 -3077 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -4187 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -3640 ((-1182 |#1|) |#1| (-577))) (-15 -4196 ((-1182 (-577)) (-577))) (-15 -4207 ((-1182 (-577)) (-577))) (-15 -3858 ((-1182 |#1|) |#1|)) (-15 -4219 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -4229 ((-1182 |#1|) (-1182 |#1|))) (-15 -4240 ((-1182 |#1|) (-1 |#1| (-577)) (-1182 |#1|))) (-15 -3544 ((-1182 |#1|) |#1|)) (-15 -3280 ((-1182 |#1|) (-1182 |#1|) |#1|)) (-15 -4251 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -4120 ((-1182 |#1|) (-1182 |#1|))) (-15 -4058 ((-1182 |#1|) (-1182 |#1|))) (-15 -4261 ((-1182 |#1|) (-1182 (-1182 |#1|)))) (-15 -4106 ((-1182 |#1|) (-1182 |#1|))) (-15 -4094 ((-1182 |#1|) (-1182 |#1|))) (-15 -4082 ((-1182 |#1|) (-1182 |#1|))) (-15 -4070 ((-1182 |#1|) (-1182 |#1|) (-577) (-577))) (-15 -4047 ((-1182 |#1|) (-577) (-577) (-1182 |#1|))) (-15 -4036 ((-1182 |#1|) (-577) (-577) (-1182 |#1|))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4147 ((-1182 |#1|) |#1| (-1182 |#1|))) (-15 -4271 ((-1182 |#1|) |#1| (-1 (-1182 |#1|)))) (-15 -4282 ((-1182 |#1|) (-1182 (-1182 |#1|)))) (-15 -4294 ((-1182 |#1|) (-420 (-577)) (-1182 |#1|)))) |%noBranch|) (IF (|has| |#1| (-375)) (PROGN (-15 -3084 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -3093 ((-1182 |#1|) (-1 |#1| (-577)) |#1| (-1 (-1182 |#1|)))) (-15 -3101 ((-1182 |#1|) |#1| (-1182 |#1|)))) |%noBranch|)) +((-2212 (((-1182 |#1|) (-1182 |#1|)) 60)) (-2060 (((-1182 |#1|) (-1182 |#1|)) 42)) (-2186 (((-1182 |#1|) (-1182 |#1|)) 56)) (-2032 (((-1182 |#1|) (-1182 |#1|)) 38)) (-2237 (((-1182 |#1|) (-1182 |#1|)) 63)) (-2084 (((-1182 |#1|) (-1182 |#1|)) 45)) (-3698 (((-1182 |#1|) (-1182 |#1|)) 34)) (-4072 (((-1182 |#1|) (-1182 |#1|)) 29)) (-2249 (((-1182 |#1|) (-1182 |#1|)) 64)) (-2095 (((-1182 |#1|) (-1182 |#1|)) 46)) (-2224 (((-1182 |#1|) (-1182 |#1|)) 61)) (-2073 (((-1182 |#1|) (-1182 |#1|)) 43)) (-2199 (((-1182 |#1|) (-1182 |#1|)) 58)) (-2046 (((-1182 |#1|) (-1182 |#1|)) 40)) (-4114 (((-1182 |#1|) (-1182 |#1|)) 68)) (-2136 (((-1182 |#1|) (-1182 |#1|)) 50)) (-2262 (((-1182 |#1|) (-1182 |#1|)) 66)) (-2106 (((-1182 |#1|) (-1182 |#1|)) 48)) (-4141 (((-1182 |#1|) (-1182 |#1|)) 71)) (-2162 (((-1182 |#1|) (-1182 |#1|)) 53)) (-2261 (((-1182 |#1|) (-1182 |#1|)) 72)) (-2174 (((-1182 |#1|) (-1182 |#1|)) 54)) (-4128 (((-1182 |#1|) (-1182 |#1|)) 70)) (-2150 (((-1182 |#1|) (-1182 |#1|)) 52)) (-2272 (((-1182 |#1|) (-1182 |#1|)) 69)) (-2120 (((-1182 |#1|) (-1182 |#1|)) 51)) (** (((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) 36))) +(((-1186 |#1|) (-10 -7 (-15 -4072 ((-1182 |#1|) (-1182 |#1|))) (-15 -3698 ((-1182 |#1|) (-1182 |#1|))) (-15 ** ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -2032 ((-1182 |#1|) (-1182 |#1|))) (-15 -2046 ((-1182 |#1|) (-1182 |#1|))) (-15 -2060 ((-1182 |#1|) (-1182 |#1|))) (-15 -2073 ((-1182 |#1|) (-1182 |#1|))) (-15 -2084 ((-1182 |#1|) (-1182 |#1|))) (-15 -2095 ((-1182 |#1|) (-1182 |#1|))) (-15 -2106 ((-1182 |#1|) (-1182 |#1|))) (-15 -2120 ((-1182 |#1|) (-1182 |#1|))) (-15 -2136 ((-1182 |#1|) (-1182 |#1|))) (-15 -2150 ((-1182 |#1|) (-1182 |#1|))) (-15 -2162 ((-1182 |#1|) (-1182 |#1|))) (-15 -2174 ((-1182 |#1|) (-1182 |#1|))) (-15 -2186 ((-1182 |#1|) (-1182 |#1|))) (-15 -2199 ((-1182 |#1|) (-1182 |#1|))) (-15 -2212 ((-1182 |#1|) (-1182 |#1|))) (-15 -2224 ((-1182 |#1|) (-1182 |#1|))) (-15 -2237 ((-1182 |#1|) (-1182 |#1|))) (-15 -2249 ((-1182 |#1|) (-1182 |#1|))) (-15 -2262 ((-1182 |#1|) (-1182 |#1|))) (-15 -2272 ((-1182 |#1|) (-1182 |#1|))) (-15 -4114 ((-1182 |#1|) (-1182 |#1|))) (-15 -4128 ((-1182 |#1|) (-1182 |#1|))) (-15 -4141 ((-1182 |#1|) (-1182 |#1|))) (-15 -2261 ((-1182 |#1|) (-1182 |#1|)))) (-38 (-420 (-577)))) (T -1186)) +((-2261 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-4141 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-4128 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-4114 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2272 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2262 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2249 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2224 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2212 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2199 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2186 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2174 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2162 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2150 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2136 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2120 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2106 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2095 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2073 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2060 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2046 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-2032 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-3698 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3)))) (-4072 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1186 *3))))) +(-10 -7 (-15 -4072 ((-1182 |#1|) (-1182 |#1|))) (-15 -3698 ((-1182 |#1|) (-1182 |#1|))) (-15 ** ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -2032 ((-1182 |#1|) (-1182 |#1|))) (-15 -2046 ((-1182 |#1|) (-1182 |#1|))) (-15 -2060 ((-1182 |#1|) (-1182 |#1|))) (-15 -2073 ((-1182 |#1|) (-1182 |#1|))) (-15 -2084 ((-1182 |#1|) (-1182 |#1|))) (-15 -2095 ((-1182 |#1|) (-1182 |#1|))) (-15 -2106 ((-1182 |#1|) (-1182 |#1|))) (-15 -2120 ((-1182 |#1|) (-1182 |#1|))) (-15 -2136 ((-1182 |#1|) (-1182 |#1|))) (-15 -2150 ((-1182 |#1|) (-1182 |#1|))) (-15 -2162 ((-1182 |#1|) (-1182 |#1|))) (-15 -2174 ((-1182 |#1|) (-1182 |#1|))) (-15 -2186 ((-1182 |#1|) (-1182 |#1|))) (-15 -2199 ((-1182 |#1|) (-1182 |#1|))) (-15 -2212 ((-1182 |#1|) (-1182 |#1|))) (-15 -2224 ((-1182 |#1|) (-1182 |#1|))) (-15 -2237 ((-1182 |#1|) (-1182 |#1|))) (-15 -2249 ((-1182 |#1|) (-1182 |#1|))) (-15 -2262 ((-1182 |#1|) (-1182 |#1|))) (-15 -2272 ((-1182 |#1|) (-1182 |#1|))) (-15 -4114 ((-1182 |#1|) (-1182 |#1|))) (-15 -4128 ((-1182 |#1|) (-1182 |#1|))) (-15 -4141 ((-1182 |#1|) (-1182 |#1|))) (-15 -2261 ((-1182 |#1|) (-1182 |#1|)))) +((-2212 (((-1182 |#1|) (-1182 |#1|)) 102)) (-2060 (((-1182 |#1|) (-1182 |#1|)) 61)) (-3121 (((-2 (|:| -2186 (-1182 |#1|)) (|:| -2199 (-1182 |#1|))) (-1182 |#1|)) 98)) (-2186 (((-1182 |#1|) (-1182 |#1|)) 99)) (-3109 (((-2 (|:| -2032 (-1182 |#1|)) (|:| -2046 (-1182 |#1|))) (-1182 |#1|)) 54)) (-2032 (((-1182 |#1|) (-1182 |#1|)) 55)) (-2237 (((-1182 |#1|) (-1182 |#1|)) 104)) (-2084 (((-1182 |#1|) (-1182 |#1|)) 68)) (-3698 (((-1182 |#1|) (-1182 |#1|)) 40)) (-4072 (((-1182 |#1|) (-1182 |#1|)) 37)) (-2249 (((-1182 |#1|) (-1182 |#1|)) 105)) (-2095 (((-1182 |#1|) (-1182 |#1|)) 69)) (-2224 (((-1182 |#1|) (-1182 |#1|)) 103)) (-2073 (((-1182 |#1|) (-1182 |#1|)) 64)) (-2199 (((-1182 |#1|) (-1182 |#1|)) 100)) (-2046 (((-1182 |#1|) (-1182 |#1|)) 56)) (-4114 (((-1182 |#1|) (-1182 |#1|)) 113)) (-2136 (((-1182 |#1|) (-1182 |#1|)) 88)) (-2262 (((-1182 |#1|) (-1182 |#1|)) 107)) (-2106 (((-1182 |#1|) (-1182 |#1|)) 84)) (-4141 (((-1182 |#1|) (-1182 |#1|)) 117)) (-2162 (((-1182 |#1|) (-1182 |#1|)) 92)) (-2261 (((-1182 |#1|) (-1182 |#1|)) 119)) (-2174 (((-1182 |#1|) (-1182 |#1|)) 94)) (-4128 (((-1182 |#1|) (-1182 |#1|)) 115)) (-2150 (((-1182 |#1|) (-1182 |#1|)) 90)) (-2272 (((-1182 |#1|) (-1182 |#1|)) 109)) (-2120 (((-1182 |#1|) (-1182 |#1|)) 86)) (** (((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) 41))) +(((-1187 |#1|) (-10 -7 (-15 -4072 ((-1182 |#1|) (-1182 |#1|))) (-15 -3698 ((-1182 |#1|) (-1182 |#1|))) (-15 ** ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -3109 ((-2 (|:| -2032 (-1182 |#1|)) (|:| -2046 (-1182 |#1|))) (-1182 |#1|))) (-15 -2032 ((-1182 |#1|) (-1182 |#1|))) (-15 -2046 ((-1182 |#1|) (-1182 |#1|))) (-15 -2060 ((-1182 |#1|) (-1182 |#1|))) (-15 -2073 ((-1182 |#1|) (-1182 |#1|))) (-15 -2084 ((-1182 |#1|) (-1182 |#1|))) (-15 -2095 ((-1182 |#1|) (-1182 |#1|))) (-15 -2106 ((-1182 |#1|) (-1182 |#1|))) (-15 -2120 ((-1182 |#1|) (-1182 |#1|))) (-15 -2136 ((-1182 |#1|) (-1182 |#1|))) (-15 -2150 ((-1182 |#1|) (-1182 |#1|))) (-15 -2162 ((-1182 |#1|) (-1182 |#1|))) (-15 -2174 ((-1182 |#1|) (-1182 |#1|))) (-15 -3121 ((-2 (|:| -2186 (-1182 |#1|)) (|:| -2199 (-1182 |#1|))) (-1182 |#1|))) (-15 -2186 ((-1182 |#1|) (-1182 |#1|))) (-15 -2199 ((-1182 |#1|) (-1182 |#1|))) (-15 -2212 ((-1182 |#1|) (-1182 |#1|))) (-15 -2224 ((-1182 |#1|) (-1182 |#1|))) (-15 -2237 ((-1182 |#1|) (-1182 |#1|))) (-15 -2249 ((-1182 |#1|) (-1182 |#1|))) (-15 -2262 ((-1182 |#1|) (-1182 |#1|))) (-15 -2272 ((-1182 |#1|) (-1182 |#1|))) (-15 -4114 ((-1182 |#1|) (-1182 |#1|))) (-15 -4128 ((-1182 |#1|) (-1182 |#1|))) (-15 -4141 ((-1182 |#1|) (-1182 |#1|))) (-15 -2261 ((-1182 |#1|) (-1182 |#1|)))) (-38 (-420 (-577)))) (T -1187)) +((-2261 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-4141 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-4128 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-4114 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2272 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2262 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2249 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2224 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2212 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2199 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2186 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-3121 (*1 *2 *3) (-12 (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-2 (|:| -2186 (-1182 *4)) (|:| -2199 (-1182 *4)))) (-5 *1 (-1187 *4)) (-5 *3 (-1182 *4)))) (-2174 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2162 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2150 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2136 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2120 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2106 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2095 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2073 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2060 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2046 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-2032 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-2 (|:| -2032 (-1182 *4)) (|:| -2046 (-1182 *4)))) (-5 *1 (-1187 *4)) (-5 *3 (-1182 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-3698 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3)))) (-4072 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1187 *3))))) +(-10 -7 (-15 -4072 ((-1182 |#1|) (-1182 |#1|))) (-15 -3698 ((-1182 |#1|) (-1182 |#1|))) (-15 ** ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -3109 ((-2 (|:| -2032 (-1182 |#1|)) (|:| -2046 (-1182 |#1|))) (-1182 |#1|))) (-15 -2032 ((-1182 |#1|) (-1182 |#1|))) (-15 -2046 ((-1182 |#1|) (-1182 |#1|))) (-15 -2060 ((-1182 |#1|) (-1182 |#1|))) (-15 -2073 ((-1182 |#1|) (-1182 |#1|))) (-15 -2084 ((-1182 |#1|) (-1182 |#1|))) (-15 -2095 ((-1182 |#1|) (-1182 |#1|))) (-15 -2106 ((-1182 |#1|) (-1182 |#1|))) (-15 -2120 ((-1182 |#1|) (-1182 |#1|))) (-15 -2136 ((-1182 |#1|) (-1182 |#1|))) (-15 -2150 ((-1182 |#1|) (-1182 |#1|))) (-15 -2162 ((-1182 |#1|) (-1182 |#1|))) (-15 -2174 ((-1182 |#1|) (-1182 |#1|))) (-15 -3121 ((-2 (|:| -2186 (-1182 |#1|)) (|:| -2199 (-1182 |#1|))) (-1182 |#1|))) (-15 -2186 ((-1182 |#1|) (-1182 |#1|))) (-15 -2199 ((-1182 |#1|) (-1182 |#1|))) (-15 -2212 ((-1182 |#1|) (-1182 |#1|))) (-15 -2224 ((-1182 |#1|) (-1182 |#1|))) (-15 -2237 ((-1182 |#1|) (-1182 |#1|))) (-15 -2249 ((-1182 |#1|) (-1182 |#1|))) (-15 -2262 ((-1182 |#1|) (-1182 |#1|))) (-15 -2272 ((-1182 |#1|) (-1182 |#1|))) (-15 -4114 ((-1182 |#1|) (-1182 |#1|))) (-15 -4128 ((-1182 |#1|) (-1182 |#1|))) (-15 -4141 ((-1182 |#1|) (-1182 |#1|))) (-15 -2261 ((-1182 |#1|) (-1182 |#1|)))) +((-3132 (((-981 |#2|) |#2| |#2|) 50)) (-3143 ((|#2| |#2| |#1|) 19 (|has| |#1| (-318))))) +(((-1188 |#1| |#2|) (-10 -7 (-15 -3132 ((-981 |#2|) |#2| |#2|)) (IF (|has| |#1| (-318)) (-15 -3143 (|#2| |#2| |#1|)) |%noBranch|)) (-569) (-1268 |#1|)) (T -1188)) +((-3143 (*1 *2 *2 *3) (-12 (-4 *3 (-318)) (-4 *3 (-569)) (-5 *1 (-1188 *3 *2)) (-4 *2 (-1268 *3)))) (-3132 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-981 *3)) (-5 *1 (-1188 *4 *3)) (-4 *3 (-1268 *4))))) +(-10 -7 (-15 -3132 ((-981 |#2|) |#2| |#2|)) (IF (|has| |#1| (-318)) (-15 -3143 (|#2| |#2| |#1|)) |%noBranch|)) +((-3473 (((-112) $ $) NIL)) (-3212 (($ $ (-660 (-787))) 79)) (-3495 (($) 33)) (-3302 (($ $) 51)) (-1767 (((-660 $) $) 60)) (-3362 (((-112) $) 19)) (-3154 (((-660 (-966 |#2|)) $) 86)) (-3164 (($ $) 80)) (-3313 (((-787) $) 47)) (-4113 (($) 32)) (-3242 (($ $ (-660 (-787)) (-966 |#2|)) 72) (($ $ (-660 (-787)) (-787)) 73) (($ $ (-787) (-966 |#2|)) 75)) (-3283 (($ $ $) 57) (($ (-660 $)) 59)) (-2886 (((-787) $) 87)) (-3371 (((-112) $) 15)) (-2810 (((-1183) $) NIL)) (-3351 (((-112) $) 22)) (-1474 (((-1145) $) NIL)) (-3174 (((-173) $) 85)) (-3202 (((-966 |#2|) $) 81)) (-3193 (((-787) $) 82)) (-3184 (((-112) $) 84)) (-3221 (($ $ (-660 (-787)) (-173)) 78)) (-3292 (($ $) 52)) (-3544 (((-880) $) 99)) (-3232 (($ $ (-660 (-787)) (-112)) 77)) (-3322 (((-660 $) $) 11)) (-3332 (($ $ (-787)) 46)) (-3342 (($ $) 43)) (-4448 (((-112) $ $) NIL)) (-3251 (($ $ $ (-966 |#2|) (-787)) 68)) (-3264 (($ $ (-966 |#2|)) 67)) (-3273 (($ $ (-660 (-787)) (-966 |#2|)) 66) (($ $ (-660 (-787)) (-787)) 70) (((-787) $ (-966 |#2|)) 71)) (-2970 (((-112) $ $) 92))) +(((-1189 |#1| |#2|) (-13 (-1125) (-10 -8 (-15 -3371 ((-112) $)) (-15 -3362 ((-112) $)) (-15 -3351 ((-112) $)) (-15 -4113 ($)) (-15 -3495 ($)) (-15 -3342 ($ $)) (-15 -3332 ($ $ (-787))) (-15 -3322 ((-660 $) $)) (-15 -3313 ((-787) $)) (-15 -3302 ($ $)) (-15 -3292 ($ $)) (-15 -3283 ($ $ $)) (-15 -3283 ($ (-660 $))) (-15 -1767 ((-660 $) $)) (-15 -3273 ($ $ (-660 (-787)) (-966 |#2|))) (-15 -3264 ($ $ (-966 |#2|))) (-15 -3251 ($ $ $ (-966 |#2|) (-787))) (-15 -3242 ($ $ (-660 (-787)) (-966 |#2|))) (-15 -3273 ($ $ (-660 (-787)) (-787))) (-15 -3242 ($ $ (-660 (-787)) (-787))) (-15 -3273 ((-787) $ (-966 |#2|))) (-15 -3242 ($ $ (-787) (-966 |#2|))) (-15 -3232 ($ $ (-660 (-787)) (-112))) (-15 -3221 ($ $ (-660 (-787)) (-173))) (-15 -3212 ($ $ (-660 (-787)))) (-15 -3202 ((-966 |#2|) $)) (-15 -3193 ((-787) $)) (-15 -3184 ((-112) $)) (-15 -3174 ((-173) $)) (-15 -2886 ((-787) $)) (-15 -3164 ($ $)) (-15 -3154 ((-660 (-966 |#2|)) $)))) (-944) (-1074)) (T -1189)) +((-3371 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-4113 (*1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074)))) (-3495 (*1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074)))) (-3342 (*1 *1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074)))) (-3332 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-660 (-1189 *3 *4))) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-3313 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-3302 (*1 *1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074)))) (-3292 (*1 *1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074)))) (-3283 (*1 *1 *1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074)))) (-3283 (*1 *1 *2) (-12 (-5 *2 (-660 (-1189 *3 *4))) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-660 (-1189 *3 *4))) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-3273 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-787))) (-5 *3 (-966 *5)) (-4 *5 (-1074)) (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)))) (-3264 (*1 *1 *1 *2) (-12 (-5 *2 (-966 *4)) (-4 *4 (-1074)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)))) (-3251 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-966 *5)) (-5 *3 (-787)) (-4 *5 (-1074)) (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)))) (-3242 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-787))) (-5 *3 (-966 *5)) (-4 *5 (-1074)) (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)))) (-3273 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-787))) (-5 *3 (-787)) (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)) (-4 *5 (-1074)))) (-3242 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-787))) (-5 *3 (-787)) (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)) (-4 *5 (-1074)))) (-3273 (*1 *2 *1 *3) (-12 (-5 *3 (-966 *5)) (-4 *5 (-1074)) (-5 *2 (-787)) (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)))) (-3242 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-966 *5)) (-4 *5 (-1074)) (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)))) (-3232 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-787))) (-5 *3 (-112)) (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)) (-4 *5 (-1074)))) (-3221 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-787))) (-5 *3 (-173)) (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)) (-4 *5 (-1074)))) (-3212 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-787))) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-966 *4)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-3193 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-3184 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-3174 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074)))) (-3164 (*1 *1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074)))) (-3154 (*1 *2 *1) (-12 (-5 *2 (-660 (-966 *4))) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) (-4 *4 (-1074))))) +(-13 (-1125) (-10 -8 (-15 -3371 ((-112) $)) (-15 -3362 ((-112) $)) (-15 -3351 ((-112) $)) (-15 -4113 ($)) (-15 -3495 ($)) (-15 -3342 ($ $)) (-15 -3332 ($ $ (-787))) (-15 -3322 ((-660 $) $)) (-15 -3313 ((-787) $)) (-15 -3302 ($ $)) (-15 -3292 ($ $)) (-15 -3283 ($ $ $)) (-15 -3283 ($ (-660 $))) (-15 -1767 ((-660 $) $)) (-15 -3273 ($ $ (-660 (-787)) (-966 |#2|))) (-15 -3264 ($ $ (-966 |#2|))) (-15 -3251 ($ $ $ (-966 |#2|) (-787))) (-15 -3242 ($ $ (-660 (-787)) (-966 |#2|))) (-15 -3273 ($ $ (-660 (-787)) (-787))) (-15 -3242 ($ $ (-660 (-787)) (-787))) (-15 -3273 ((-787) $ (-966 |#2|))) (-15 -3242 ($ $ (-787) (-966 |#2|))) (-15 -3232 ($ $ (-660 (-787)) (-112))) (-15 -3221 ($ $ (-660 (-787)) (-173))) (-15 -3212 ($ $ (-660 (-787)))) (-15 -3202 ((-966 |#2|) $)) (-15 -3193 ((-787) $)) (-15 -3184 ((-112) $)) (-15 -3174 ((-173) $)) (-15 -2886 ((-787) $)) (-15 -3164 ($ $)) (-15 -3154 ((-660 (-966 |#2|)) $)))) +((-3473 (((-112) $ $) NIL)) (-1733 ((|#2| $) 11)) (-1721 ((|#1| $) 10)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3553 (($ |#1| |#2|) 9)) (-3544 (((-880) $) 16)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-1190 |#1| |#2|) (-13 (-1125) (-10 -8 (-15 -3553 ($ |#1| |#2|)) (-15 -1721 (|#1| $)) (-15 -1733 (|#2| $)))) (-1125) (-1125)) (T -1190)) +((-3553 (*1 *1 *2 *3) (-12 (-5 *1 (-1190 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) (-1721 (*1 *2 *1) (-12 (-4 *2 (-1125)) (-5 *1 (-1190 *2 *3)) (-4 *3 (-1125)))) (-1733 (*1 *2 *1) (-12 (-4 *2 (-1125)) (-5 *1 (-1190 *3 *2)) (-4 *3 (-1125))))) +(-13 (-1125) (-10 -8 (-15 -3553 ($ |#1| |#2|)) (-15 -1721 (|#1| $)) (-15 -1733 (|#2| $)))) +((-3473 (((-112) $ $) NIL)) (-2121 (((-1160) $) 9)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 15) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-1191) (-13 (-1108) (-10 -8 (-15 -2121 ((-1160) $))))) (T -1191)) +((-2121 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1191))))) +(-13 (-1108) (-10 -8 (-15 -2121 ((-1160) $)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-4105 (((-1199 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-318)) (|has| |#1| (-375))))) (-2058 (((-660 (-1107)) $) NIL)) (-3076 (((-1201) $) 11)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))))) (-3290 (($ $) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))))) (-3271 (((-112) $) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))))) (-3804 (($ $ (-577)) NIL) (($ $ (-577) (-577)) 75)) (-3829 (((-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) NIL)) (-1577 (((-1199 |#1| |#2| |#3|) $) 42)) (-1556 (((-3 (-1199 |#1| |#2| |#3|) "failed") $) 32)) (-2119 (((-1199 |#1| |#2| |#3|) $) 33)) (-2212 (($ $) 116 (|has| |#1| (-38 (-420 (-577)))))) (-2060 (($ $) 92 (|has| |#1| (-38 (-420 (-577)))))) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))))) (-3841 (($ $) NIL (|has| |#1| (-375)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-375)))) (-1913 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))))) (-1939 (((-112) $ $) NIL (|has| |#1| (-375)))) (-2186 (($ $) 112 (|has| |#1| (-38 (-420 (-577)))))) (-2032 (($ $) 88 (|has| |#1| (-38 (-420 (-577)))))) (-3010 (((-577) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))))) (-3689 (($ (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) NIL)) (-2237 (($ $) 120 (|has| |#1| (-38 (-420 (-577)))))) (-2084 (($ $) 96 (|has| |#1| (-38 (-420 (-577)))))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-1199 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1201) "failed") $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1063 (-1201))) (|has| |#1| (-375)))) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375)))) (((-3 (-577) "failed") $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375))))) (-2921 (((-1199 |#1| |#2| |#3|) $) 140) (((-1201) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1063 (-1201))) (|has| |#1| (-375)))) (((-420 (-577)) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375)))) (((-577) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375))))) (-1566 (($ $) 37) (($ (-577) $) 38)) (-3418 (($ $ $) NIL (|has| |#1| (-375)))) (-2248 (($ $) NIL)) (-1647 (((-705 (-1199 |#1| |#2| |#3|)) (-705 $)) NIL (|has| |#1| (-375))) (((-2 (|:| -1881 (-705 (-1199 |#1| |#2| |#3|))) (|:| |vec| (-1292 (-1199 |#1| |#2| |#3|)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-375))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-654 (-577))) (|has| |#1| (-375)))) (((-705 (-577)) (-705 $)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-654 (-577))) (|has| |#1| (-375))))) (-4187 (((-3 $ "failed") $) 54)) (-1544 (((-420 (-975 |#1|)) $ (-577)) 74 (|has| |#1| (-569))) (((-420 (-975 |#1|)) $ (-577) (-577)) 76 (|has| |#1| (-569)))) (-1910 (($) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))))) (-3429 (($ $ $) NIL (|has| |#1| (-375)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| |#1| (-375)))) (-1522 (((-112) $) NIL (|has| |#1| (-375)))) (-3567 (((-112) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))))) (-3550 (((-112) $) 28)) (-1659 (($) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-905 (-391))) (|has| |#1| (-375)))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-905 (-577))) (|has| |#1| (-375))))) (-3817 (((-577) $) NIL) (((-577) $ (-577)) 26)) (-2487 (((-112) $) NIL)) (-2240 (($ $) NIL (|has| |#1| (-375)))) (-1623 (((-1199 |#1| |#2| |#3|) $) 44 (|has| |#1| (-375)))) (-2381 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4021 (((-3 $ "failed") $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1177)) (|has| |#1| (-375))))) (-3578 (((-112) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))))) (-3864 (($ $ (-944)) NIL)) (-4158 (($ (-1 |#1| (-577)) $) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-577)) 19) (($ $ (-1107) (-577)) NIL) (($ $ (-660 (-1107)) (-660 (-577))) NIL)) (-3732 (($ $ $) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))))) (-3201 (($ $ $) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))))) (-4087 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1199 |#1| |#2| |#3|) (-1199 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-375)))) (-3698 (($ $) 81 (|has| |#1| (-38 (-420 (-577)))))) (-1657 (((-705 (-1199 |#1| |#2| |#3|)) (-1292 $)) NIL (|has| |#1| (-375))) (((-2 (|:| -1881 (-705 (-1199 |#1| |#2| |#3|))) (|:| |vec| (-1292 (-1199 |#1| |#2| |#3|)))) (-1292 $) $) NIL (|has| |#1| (-375))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-654 (-577))) (|has| |#1| (-375)))) (((-705 (-577)) (-1292 $)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-654 (-577))) (|has| |#1| (-375))))) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-2134 (($ (-577) (-1199 |#1| |#2| |#3|)) 36)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL (|has| |#1| (-375)))) (-4147 (($ $) 79 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| |#1| (-15 -4147 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -2058 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227))))) (($ $ (-1288 |#2|)) 80 (|has| |#1| (-38 (-420 (-577)))))) (-1709 (($) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1177)) (|has| |#1| (-375))) CONST)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-4093 (($ $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-318)) (|has| |#1| (-375))))) (-4119 (((-1199 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))))) (-1902 (((-431 $) $) NIL (|has| |#1| (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3792 (($ $ (-577)) 158)) (-3462 (((-3 $ "failed") $ $) 55 (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-4072 (($ $) 82 (|has| |#1| (-38 (-420 (-577)))))) (-3280 (((-1182 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-577))))) (($ $ (-1201) (-1199 |#1| |#2| |#3|)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-527 (-1201) (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375)))) (($ $ (-660 (-1201)) (-660 (-1199 |#1| |#2| |#3|))) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-527 (-1201) (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375)))) (($ $ (-660 (-305 (-1199 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-320 (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375)))) (($ $ (-305 (-1199 |#1| |#2| |#3|))) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-320 (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375)))) (($ $ (-1199 |#1| |#2| |#3|) (-1199 |#1| |#2| |#3|)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-320 (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375)))) (($ $ (-660 (-1199 |#1| |#2| |#3|)) (-660 (-1199 |#1| |#2| |#3|))) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-320 (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375))))) (-1927 (((-787) $) NIL (|has| |#1| (-375)))) (-2872 ((|#1| $ (-577)) NIL) (($ $ $) 61 (|has| (-577) (-1137))) (($ $ (-1199 |#1| |#2| |#3|)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-297 (-1199 |#1| |#2| |#3|) (-1199 |#1| |#2| |#3|))) (|has| |#1| (-375))))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-375)))) (-2852 (($ $ (-1 (-1199 |#1| |#2| |#3|) (-1199 |#1| |#2| |#3|)) (-787)) NIL (|has| |#1| (-375))) (($ $ (-1 (-1199 |#1| |#2| |#3|) (-1199 |#1| |#2| |#3|))) NIL (|has| |#1| (-375))) (($ $ (-1288 |#2|)) 57) (($ $) 56 (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-787)) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) (($ $ (-660 (-1201))) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) (($ $ (-1201) (-787)) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))))) (-2227 (($ $) NIL (|has| |#1| (-375)))) (-1637 (((-1199 |#1| |#2| |#3|) $) 46 (|has| |#1| (-375)))) (-2887 (((-577) $) 43)) (-2249 (($ $) 122 (|has| |#1| (-38 (-420 (-577)))))) (-2095 (($ $) 98 (|has| |#1| (-38 (-420 (-577)))))) (-2224 (($ $) 118 (|has| |#1| (-38 (-420 (-577)))))) (-2073 (($ $) 94 (|has| |#1| (-38 (-420 (-577)))))) (-2199 (($ $) 114 (|has| |#1| (-38 (-420 (-577)))))) (-2046 (($ $) 90 (|has| |#1| (-38 (-420 (-577)))))) (-4152 (((-549) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-627 (-549))) (|has| |#1| (-375)))) (((-391) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1047)) (|has| |#1| (-375)))) (((-228) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1047)) (|has| |#1| (-375)))) (((-911 (-391)) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-627 (-911 (-391)))) (|has| |#1| (-375)))) (((-911 (-577)) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-627 (-911 (-577)))) (|has| |#1| (-375))))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))))) (-3540 (($ $) NIL)) (-3544 (((-880) $) 162) (($ (-577)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1199 |#1| |#2| |#3|)) 30) (($ (-1288 |#2|)) 25) (($ (-1201)) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-1063 (-1201))) (|has| |#1| (-375)))) (($ $) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569)))) (($ (-420 (-577))) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375))) (|has| |#1| (-38 (-420 (-577))))))) (-2322 ((|#1| $ (-577)) 77)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))))) (-4068 (((-787)) NIL T CONST)) (-3693 ((|#1| $) 12)) (-4132 (((-1199 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))))) (-4448 (((-112) $ $) NIL)) (-4114 (($ $) 128 (|has| |#1| (-38 (-420 (-577)))))) (-2136 (($ $) 104 (|has| |#1| (-38 (-420 (-577)))))) (-3281 (((-112) $ $) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))))) (-2262 (($ $) 124 (|has| |#1| (-38 (-420 (-577)))))) (-2106 (($ $) 100 (|has| |#1| (-38 (-420 (-577)))))) (-4141 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))))) (-2162 (($ $) 108 (|has| |#1| (-38 (-420 (-577)))))) (-4148 ((|#1| $ (-577)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -3544 (|#1| (-1201))))))) (-2261 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))))) (-2174 (($ $) 110 (|has| |#1| (-38 (-420 (-577)))))) (-4128 (($ $) 130 (|has| |#1| (-38 (-420 (-577)))))) (-2150 (($ $) 106 (|has| |#1| (-38 (-420 (-577)))))) (-2272 (($ $) 126 (|has| |#1| (-38 (-420 (-577)))))) (-2120 (($ $) 102 (|has| |#1| (-38 (-420 (-577)))))) (-1654 (($ $) NIL (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))))) (-2806 (($) 21 T CONST)) (-2816 (($) 16 T CONST)) (-2132 (($ $ (-1 (-1199 |#1| |#2| |#3|) (-1199 |#1| |#2| |#3|)) (-787)) NIL (|has| |#1| (-375))) (($ $ (-1 (-1199 |#1| |#2| |#3|) (-1199 |#1| |#2| |#3|))) NIL (|has| |#1| (-375))) (($ $ (-1288 |#2|)) NIL) (($ $) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-787)) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) (($ $ (-660 (-1201))) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) (($ $ (-1201) (-787)) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))))) (-3025 (((-112) $ $) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))))) (-3000 (((-112) $ $) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))))) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))))) (-2990 (((-112) $ $) NIL (-2839 (-12 (|has| (-1199 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1199 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))))) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375))) (($ $ $) 49 (|has| |#1| (-375))) (($ (-1199 |#1| |#2| |#3|) (-1199 |#1| |#2| |#3|)) 50 (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) 23)) (** (($ $ (-944)) NIL) (($ $ (-787)) 60) (($ $ (-577)) NIL (|has| |#1| (-375))) (($ $ $) 83 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 137 (|has| |#1| (-38 (-420 (-577)))))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1199 |#1| |#2| |#3|)) 48 (|has| |#1| (-375))) (($ (-1199 |#1| |#2| |#3|) $) 47 (|has| |#1| (-375))) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))))) +(((-1192 |#1| |#2| |#3|) (-13 (-1254 |#1| (-1199 |#1| |#2| |#3|)) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3544 ($ (-1288 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4147 ($ $ (-1288 |#2|))) |%noBranch|))) (-1074) (-1201) |#1|) (T -1192)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-1074)) (-14 *5 *3))) (-4147 (*1 *1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3)))) +(-13 (-1254 |#1| (-1199 |#1| |#2| |#3|)) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3544 ($ (-1288 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4147 ($ $ (-1288 |#2|))) |%noBranch|))) +((-2656 ((|#2| |#2| (-1117 |#2|)) 26) ((|#2| |#2| (-1201)) 28))) +(((-1193 |#1| |#2|) (-10 -7 (-15 -2656 (|#2| |#2| (-1201))) (-15 -2656 (|#2| |#2| (-1117 |#2|)))) (-13 (-569) (-1063 (-577)) (-654 (-577))) (-13 (-443 |#1|) (-161) (-27) (-1227))) (T -1193)) +((-2656 (*1 *2 *2 *3) (-12 (-5 *3 (-1117 *2)) (-4 *2 (-13 (-443 *4) (-161) (-27) (-1227))) (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-1193 *4 *2)))) (-2656 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-1193 *4 *2)) (-4 *2 (-13 (-443 *4) (-161) (-27) (-1227)))))) +(-10 -7 (-15 -2656 (|#2| |#2| (-1201))) (-15 -2656 (|#2| |#2| (-1117 |#2|)))) +((-2656 (((-3 (-420 (-975 |#1|)) (-327 |#1|)) (-420 (-975 |#1|)) (-1117 (-420 (-975 |#1|)))) 31) (((-420 (-975 |#1|)) (-975 |#1|) (-1117 (-975 |#1|))) 44) (((-3 (-420 (-975 |#1|)) (-327 |#1|)) (-420 (-975 |#1|)) (-1201)) 33) (((-420 (-975 |#1|)) (-975 |#1|) (-1201)) 36))) +(((-1194 |#1|) (-10 -7 (-15 -2656 ((-420 (-975 |#1|)) (-975 |#1|) (-1201))) (-15 -2656 ((-3 (-420 (-975 |#1|)) (-327 |#1|)) (-420 (-975 |#1|)) (-1201))) (-15 -2656 ((-420 (-975 |#1|)) (-975 |#1|) (-1117 (-975 |#1|)))) (-15 -2656 ((-3 (-420 (-975 |#1|)) (-327 |#1|)) (-420 (-975 |#1|)) (-1117 (-420 (-975 |#1|)))))) (-13 (-569) (-1063 (-577)))) (T -1194)) +((-2656 (*1 *2 *3 *4) (-12 (-5 *4 (-1117 (-420 (-975 *5)))) (-5 *3 (-420 (-975 *5))) (-4 *5 (-13 (-569) (-1063 (-577)))) (-5 *2 (-3 *3 (-327 *5))) (-5 *1 (-1194 *5)))) (-2656 (*1 *2 *3 *4) (-12 (-5 *4 (-1117 (-975 *5))) (-5 *3 (-975 *5)) (-4 *5 (-13 (-569) (-1063 (-577)))) (-5 *2 (-420 *3)) (-5 *1 (-1194 *5)))) (-2656 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-569) (-1063 (-577)))) (-5 *2 (-3 (-420 (-975 *5)) (-327 *5))) (-5 *1 (-1194 *5)) (-5 *3 (-420 (-975 *5))))) (-2656 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-569) (-1063 (-577)))) (-5 *2 (-420 (-975 *5))) (-5 *1 (-1194 *5)) (-5 *3 (-975 *5))))) +(-10 -7 (-15 -2656 ((-420 (-975 |#1|)) (-975 |#1|) (-1201))) (-15 -2656 ((-3 (-420 (-975 |#1|)) (-327 |#1|)) (-420 (-975 |#1|)) (-1201))) (-15 -2656 ((-420 (-975 |#1|)) (-975 |#1|) (-1117 (-975 |#1|)))) (-15 -2656 ((-3 (-420 (-975 |#1|)) (-327 |#1|)) (-420 (-975 |#1|)) (-1117 (-420 (-975 |#1|)))))) +((-4087 (((-1197 |#2|) (-1 |#2| |#1|) (-1197 |#1|)) 13))) +(((-1195 |#1| |#2|) (-10 -7 (-15 -4087 ((-1197 |#2|) (-1 |#2| |#1|) (-1197 |#1|)))) (-1074) (-1074)) (T -1195)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1197 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-1197 *6)) (-5 *1 (-1195 *5 *6))))) +(-10 -7 (-15 -4087 ((-1197 |#2|) (-1 |#2| |#1|) (-1197 |#1|)))) +((-3029 (((-431 (-1197 (-420 |#4|))) (-1197 (-420 |#4|))) 51)) (-1902 (((-431 (-1197 (-420 |#4|))) (-1197 (-420 |#4|))) 52))) +(((-1196 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1902 ((-431 (-1197 (-420 |#4|))) (-1197 (-420 |#4|)))) (-15 -3029 ((-431 (-1197 (-420 |#4|))) (-1197 (-420 |#4|))))) (-809) (-865) (-465) (-972 |#3| |#1| |#2|)) (T -1196)) +((-3029 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-465)) (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-431 (-1197 (-420 *7)))) (-5 *1 (-1196 *4 *5 *6 *7)) (-5 *3 (-1197 (-420 *7))))) (-1902 (*1 *2 *3) (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-465)) (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-431 (-1197 (-420 *7)))) (-5 *1 (-1196 *4 *5 *6 *7)) (-5 *3 (-1197 (-420 *7)))))) +(-10 -7 (-15 -1902 ((-431 (-1197 (-420 |#4|))) (-1197 (-420 |#4|)))) (-15 -3029 ((-431 (-1197 (-420 |#4|))) (-1197 (-420 |#4|))))) +((-3473 (((-112) $ $) 171)) (-3585 (((-112) $) 43)) (-3779 (((-1292 |#1|) $ (-787)) NIL)) (-2058 (((-660 (-1107)) $) NIL)) (-3756 (($ (-1197 |#1|)) NIL)) (-1867 (((-1197 $) $ (-1107)) 82) (((-1197 |#1|) $) 71)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) 164 (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-4050 (((-787) $) NIL) (((-787) $ (-660 (-1107))) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1807 (($ $ $) 158 (|has| |#1| (-569)))) (-2294 (((-431 (-1197 $)) (-1197 $)) 95 (|has| |#1| (-932)))) (-3841 (($ $) NIL (|has| |#1| (-465)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-465)))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 115 (|has| |#1| (-932)))) (-1939 (((-112) $ $) NIL (|has| |#1| (-375)))) (-3714 (($ $ (-787)) 61)) (-3703 (($ $ (-787)) 63)) (-1767 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-465)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#1| "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-1107) "failed") $) NIL)) (-2921 ((|#1| $) NIL) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-1107) $) NIL)) (-1816 (($ $ $ (-1107)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-3418 (($ $ $) NIL (|has| |#1| (-375)))) (-2248 (($ $) 80)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) NIL) (((-705 |#1|) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL (|has| |#1| (-375)))) (-1838 (($ $ $) 131)) (-1787 (($ $ $) NIL (|has| |#1| (-569)))) (-1776 (((-2 (|:| -1777 |#1|) (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-569)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| |#1| (-375)))) (-3143 (($ $) 165 (|has| |#1| (-465))) (($ $ (-1107)) NIL (|has| |#1| (-465)))) (-2234 (((-660 $) $) NIL)) (-1522 (((-112) $) NIL (|has| |#1| (-932)))) (-2137 (($ $ |#1| (-787) $) 69)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-1107) (-905 (-391))) (|has| |#1| (-905 (-391))))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-1107) (-905 (-577))) (|has| |#1| (-905 (-577)))))) (-3380 (((-880) $ (-880)) 148)) (-3817 (((-787) $ $) NIL (|has| |#1| (-569)))) (-2487 (((-112) $) 48)) (-2548 (((-787) $) NIL)) (-4021 (((-3 $ "failed") $) NIL (|has| |#1| (-1177)))) (-2043 (($ (-1197 |#1|) (-1107)) 73) (($ (-1197 $) (-1107)) 89)) (-3864 (($ $ (-787)) 51)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-4074 (((-660 $) $) NIL)) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-787)) 87) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107)) (-660 (-787))) NIL)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ (-1107)) NIL) (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 153)) (-4061 (((-787) $) NIL) (((-787) $ (-1107)) NIL) (((-660 (-787)) $ (-660 (-1107))) NIL)) (-2151 (($ (-1 (-787) (-787)) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3767 (((-1197 |#1|) $) NIL)) (-3691 (((-3 (-1107) "failed") $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) NIL) (((-705 |#1|) (-1292 $)) NIL)) (-2209 (($ $) NIL)) (-2221 ((|#1| $) 76)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) NIL (|has| |#1| (-465)))) (-2810 (((-1183) $) NIL)) (-3724 (((-2 (|:| -3637 $) (|:| -2457 $)) $ (-787)) 60)) (-4098 (((-3 (-660 $) "failed") $) NIL)) (-4086 (((-3 (-660 $) "failed") $) NIL)) (-4111 (((-3 (-2 (|:| |var| (-1107)) (|:| -3556 (-787))) "failed") $) NIL)) (-4147 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1709 (($) NIL (|has| |#1| (-1177)) CONST)) (-1474 (((-1145) $) NIL)) (-2180 (((-112) $) 50)) (-2193 ((|#1| $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 103 (|has| |#1| (-465)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-465))) (($ $ $) 167 (|has| |#1| (-465)))) (-1624 (($ $ (-787) |#1| $) 123)) (-2269 (((-431 (-1197 $)) (-1197 $)) 101 (|has| |#1| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) 100 (|has| |#1| (-932)))) (-1902 (((-431 $) $) 108 (|has| |#1| (-932)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3462 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-569))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-569)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-3280 (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ (-1107) |#1|) NIL) (($ $ (-660 (-1107)) (-660 |#1|)) NIL) (($ $ (-1107) $) NIL) (($ $ (-660 (-1107)) (-660 $)) NIL)) (-1927 (((-787) $) NIL (|has| |#1| (-375)))) (-2872 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-420 $) (-420 $) (-420 $)) NIL (|has| |#1| (-569))) ((|#1| (-420 $) |#1|) NIL (|has| |#1| (-375))) (((-420 $) $ (-420 $)) NIL (|has| |#1| (-569)))) (-3745 (((-3 $ "failed") $ (-787)) 54)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 172 (|has| |#1| (-375)))) (-1827 (($ $ (-1107)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-2852 (($ $ (-660 (-1107)) (-660 (-787))) NIL) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107))) NIL) (($ $ (-1107)) NIL) (($ $) NIL) (($ $ (-787)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))))) (-2887 (((-787) $) 78) (((-787) $ (-1107)) NIL) (((-660 (-787)) $ (-660 (-1107))) NIL)) (-4152 (((-911 (-391)) $) NIL (-12 (|has| (-1107) (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391)))))) (((-911 (-577)) $) NIL (-12 (|has| (-1107) (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577)))))) (((-549) $) NIL (-12 (|has| (-1107) (-627 (-549))) (|has| |#1| (-627 (-549)))))) (-4039 ((|#1| $) 162 (|has| |#1| (-465))) (($ $ (-1107)) NIL (|has| |#1| (-465)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-932))))) (-1797 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569))) (((-3 (-420 $) "failed") (-420 $) $) NIL (|has| |#1| (-569)))) (-3544 (((-880) $) 149) (($ (-577)) NIL) (($ |#1|) 77) (($ (-1107)) NIL) (($ (-420 (-577))) NIL (-2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577)))))) (($ $) NIL (|has| |#1| (-569)))) (-4182 (((-660 |#1|) $) NIL)) (-2322 ((|#1| $ (-787)) NIL) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107)) (-660 (-787))) NIL)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))))) (-4068 (((-787)) NIL T CONST)) (-2122 (($ $ $ (-787)) 41 (|has| |#1| (-174)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2806 (($) 17 T CONST)) (-2816 (($) 19 T CONST)) (-2132 (($ $ (-660 (-1107)) (-660 (-787))) NIL) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107))) NIL) (($ $ (-1107)) NIL) (($ $) NIL) (($ $ (-787)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-787)) NIL) (($ $ (-1201)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#1| (-923 (-1201))))) (-2970 (((-112) $ $) 120)) (-3077 (($ $ |#1|) 173 (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) 90)) (** (($ $ (-944)) 14) (($ $ (-787)) 12)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 39) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) +(((-1197 |#1|) (-13 (-1268 |#1|) (-10 -8 (-15 -3380 ((-880) $ (-880))) (-15 -1624 ($ $ (-787) |#1| $)))) (-1074)) (T -1197)) +((-3380 (*1 *2 *1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1197 *3)) (-4 *3 (-1074)))) (-1624 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1197 *3)) (-4 *3 (-1074))))) +(-13 (-1268 |#1|) (-10 -8 (-15 -3380 ((-880) $ (-880))) (-15 -1624 ($ $ (-787) |#1| $)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-2058 (((-660 (-1107)) $) NIL)) (-3076 (((-1201) $) 11)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-3804 (($ $ (-420 (-577))) NIL) (($ $ (-420 (-577)) (-420 (-577))) NIL)) (-3829 (((-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) NIL)) (-2212 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2060 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL (|has| |#1| (-375)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-375)))) (-1913 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1939 (((-112) $ $) NIL (|has| |#1| (-375)))) (-2186 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2032 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3689 (($ (-787) (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) NIL)) (-2237 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2084 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-1192 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1199 |#1| |#2| |#3|) "failed") $) 36)) (-2921 (((-1192 |#1| |#2| |#3|) $) NIL) (((-1199 |#1| |#2| |#3|) $) NIL)) (-3418 (($ $ $) NIL (|has| |#1| (-375)))) (-2248 (($ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3897 (((-420 (-577)) $) 59)) (-3429 (($ $ $) NIL (|has| |#1| (-375)))) (-2148 (($ (-420 (-577)) (-1192 |#1| |#2| |#3|)) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| |#1| (-375)))) (-1522 (((-112) $) NIL (|has| |#1| (-375)))) (-3550 (((-112) $) NIL)) (-1659 (($) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3817 (((-420 (-577)) $) NIL) (((-420 (-577)) $ (-420 (-577))) NIL)) (-2487 (((-112) $) NIL)) (-2381 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3864 (($ $ (-944)) NIL) (($ $ (-420 (-577))) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-420 (-577))) 20) (($ $ (-1107) (-420 (-577))) NIL) (($ $ (-660 (-1107)) (-660 (-420 (-577)))) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3698 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-3886 (((-1192 |#1| |#2| |#3|) $) 41)) (-3875 (((-3 (-1192 |#1| |#2| |#3|) "failed") $) NIL)) (-2134 (((-1192 |#1| |#2| |#3|) $) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL (|has| |#1| (-375)))) (-4147 (($ $) 39 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| |#1| (-15 -4147 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -2058 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227))))) (($ $ (-1288 |#2|)) 40 (|has| |#1| (-38 (-420 (-577)))))) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-1902 (((-431 $) $) NIL (|has| |#1| (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3792 (($ $ (-420 (-577))) NIL)) (-3462 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-4072 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3280 (((-1182 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))))) (-1927 (((-787) $) NIL (|has| |#1| (-375)))) (-2872 ((|#1| $ (-420 (-577))) NIL) (($ $ $) NIL (|has| (-420 (-577)) (-1137)))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-375)))) (-2852 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-1288 |#2|)) 38)) (-2887 (((-420 (-577)) $) NIL)) (-2249 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2095 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2073 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2199 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2046 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3540 (($ $) NIL)) (-3544 (((-880) $) 62) (($ (-577)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1192 |#1| |#2| |#3|)) 30) (($ (-1199 |#1| |#2| |#3|)) 31) (($ (-1288 |#2|)) 26) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $) NIL (|has| |#1| (-569)))) (-2322 ((|#1| $ (-420 (-577))) NIL)) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) NIL T CONST)) (-3693 ((|#1| $) 12)) (-4448 (((-112) $ $) NIL)) (-4114 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2136 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2262 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2106 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4141 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2162 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4148 ((|#1| $ (-420 (-577))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3544 (|#1| (-1201))))))) (-2261 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2174 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4128 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2150 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2272 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2120 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2806 (($) 22 T CONST)) (-2816 (($) 16 T CONST)) (-2132 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-1288 |#2|)) NIL)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) 24)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))))) +(((-1198 |#1| |#2| |#3|) (-13 (-1275 |#1| (-1192 |#1| |#2| |#3|)) (-915 $ (-1288 |#2|)) (-1063 (-1199 |#1| |#2| |#3|)) (-629 (-1288 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4147 ($ $ (-1288 |#2|))) |%noBranch|))) (-1074) (-1201) |#1|) (T -1198)) +((-4147 (*1 *1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1198 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3)))) +(-13 (-1275 |#1| (-1192 |#1| |#2| |#3|)) (-915 $ (-1288 |#2|)) (-1063 (-1199 |#1| |#2| |#3|)) (-629 (-1288 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4147 ($ $ (-1288 |#2|))) |%noBranch|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 129)) (-2058 (((-660 (-1107)) $) NIL)) (-3076 (((-1201) $) 119)) (-4134 (((-1265 |#2| |#1|) $ (-787)) 69)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-3804 (($ $ (-787)) 85) (($ $ (-787) (-787)) 82)) (-3829 (((-1182 (-2 (|:| |k| (-787)) (|:| |c| |#1|))) $) 105)) (-2212 (($ $) 173 (|has| |#1| (-38 (-420 (-577)))))) (-2060 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))))) (-1956 (((-3 $ "failed") $ $) NIL)) (-1913 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2186 (($ $) 169 (|has| |#1| (-38 (-420 (-577)))))) (-2032 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))))) (-3689 (($ (-1182 (-2 (|:| |k| (-787)) (|:| |c| |#1|)))) 118) (($ (-1182 |#1|)) 113)) (-2237 (($ $) 177 (|has| |#1| (-38 (-420 (-577)))))) (-2084 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))))) (-1534 (($) NIL T CONST)) (-2248 (($ $) NIL)) (-4187 (((-3 $ "failed") $) 25)) (-4170 (($ $) 28)) (-3074 (((-975 |#1|) $ (-787)) 81) (((-975 |#1|) $ (-787) (-787)) 83)) (-3550 (((-112) $) 124)) (-1659 (($) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3817 (((-787) $) 126) (((-787) $ (-787)) 128)) (-2487 (((-112) $) NIL)) (-2381 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3864 (($ $ (-944)) NIL)) (-4158 (($ (-1 |#1| (-577)) $) NIL)) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-787)) 13) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107)) (-660 (-787))) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3698 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))))) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-2810 (((-1183) $) NIL)) (-4147 (($ $) 133 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| |#1| (-15 -4147 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -2058 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227))))) (($ $ (-1288 |#2|)) 134 (|has| |#1| (-38 (-420 (-577)))))) (-1474 (((-1145) $) NIL)) (-3792 (($ $ (-787)) 15)) (-3462 (((-3 $ "failed") $ $) 26 (|has| |#1| (-569)))) (-4072 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))))) (-3280 (((-1182 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-787)))))) (-2872 ((|#1| $ (-787)) 122) (($ $ $) 132 (|has| (-787) (-1137)))) (-2852 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-787) |#1|)))) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-787) |#1|)))) (($ $ (-1288 |#2|)) 31)) (-2887 (((-787) $) NIL)) (-2249 (($ $) 179 (|has| |#1| (-38 (-420 (-577)))))) (-2095 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))))) (-2224 (($ $) 175 (|has| |#1| (-38 (-420 (-577)))))) (-2073 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))))) (-2199 (($ $) 171 (|has| |#1| (-38 (-420 (-577)))))) (-2046 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))))) (-3540 (($ $) NIL)) (-3544 (((-880) $) 206) (($ (-577)) NIL) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $) NIL (|has| |#1| (-569))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1265 |#2| |#1|)) 55) (($ (-1288 |#2|)) 36)) (-4182 (((-1182 |#1|) $) 101)) (-2322 ((|#1| $ (-787)) 121)) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) NIL T CONST)) (-3693 ((|#1| $) 58)) (-4448 (((-112) $ $) NIL)) (-4114 (($ $) 185 (|has| |#1| (-38 (-420 (-577)))))) (-2136 (($ $) 161 (|has| |#1| (-38 (-420 (-577)))))) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2262 (($ $) 181 (|has| |#1| (-38 (-420 (-577)))))) (-2106 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))))) (-4141 (($ $) 189 (|has| |#1| (-38 (-420 (-577)))))) (-2162 (($ $) 165 (|has| |#1| (-38 (-420 (-577)))))) (-4148 ((|#1| $ (-787)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-787)))) (|has| |#1| (-15 -3544 (|#1| (-1201))))))) (-2261 (($ $) 191 (|has| |#1| (-38 (-420 (-577)))))) (-2174 (($ $) 167 (|has| |#1| (-38 (-420 (-577)))))) (-4128 (($ $) 187 (|has| |#1| (-38 (-420 (-577)))))) (-2150 (($ $) 163 (|has| |#1| (-38 (-420 (-577)))))) (-2272 (($ $) 183 (|has| |#1| (-38 (-420 (-577)))))) (-2120 (($ $) 159 (|has| |#1| (-38 (-420 (-577)))))) (-2806 (($) 17 T CONST)) (-2816 (($) 20 T CONST)) (-2132 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-787) |#1|)))) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-787) |#1|)))) (($ $ (-1288 |#2|)) NIL)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) 198)) (-3055 (($ $ $) 35)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ |#1|) 203 (|has| |#1| (-375))) (($ $ $) 138 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 141 (|has| |#1| (-38 (-420 (-577)))))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))))) +(((-1199 |#1| |#2| |#3|) (-13 (-1283 |#1|) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3544 ($ (-1265 |#2| |#1|))) (-15 -4134 ((-1265 |#2| |#1|) $ (-787))) (-15 -3544 ($ (-1288 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4147 ($ $ (-1288 |#2|))) |%noBranch|))) (-1074) (-1201) |#1|) (T -1199)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1265 *4 *3)) (-4 *3 (-1074)) (-14 *4 (-1201)) (-14 *5 *3) (-5 *1 (-1199 *3 *4 *5)))) (-4134 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1265 *5 *4)) (-5 *1 (-1199 *4 *5 *6)) (-4 *4 (-1074)) (-14 *5 (-1201)) (-14 *6 *4))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1199 *3 *4 *5)) (-4 *3 (-1074)) (-14 *5 *3))) (-4147 (*1 *1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1199 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3)))) +(-13 (-1283 |#1|) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3544 ($ (-1265 |#2| |#1|))) (-15 -4134 ((-1265 |#2| |#1|) $ (-787))) (-15 -3544 ($ (-1288 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4147 ($ $ (-1288 |#2|))) |%noBranch|))) +((-3544 (((-880) $) 33) (($ (-1201)) 35)) (-2839 (($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 46)) (-2828 (($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 39) (($ $) 40)) (-3177 (($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 41)) (-3167 (($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 43)) (-3157 (($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 42)) (-3146 (($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 44)) (-2155 (($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $))) 45))) +(((-1200) (-13 (-626 (-880)) (-10 -8 (-15 -3544 ($ (-1201))) (-15 -3177 ($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3157 ($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3167 ($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3146 ($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2839 ($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2155 ($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2828 ($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2828 ($ $))))) (T -1200)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1200)))) (-3177 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) (-5 *1 (-1200)))) (-3157 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) (-5 *1 (-1200)))) (-3167 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) (-5 *1 (-1200)))) (-3146 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) (-5 *1 (-1200)))) (-2839 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) (-5 *1 (-1200)))) (-2155 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) (-5 *1 (-1200)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) (-5 *1 (-1200)))) (-2828 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) (-5 *1 (-1200)))) (-2828 (*1 *1 *1) (-5 *1 (-1200)))) +(-13 (-626 (-880)) (-10 -8 (-15 -3544 ($ (-1201))) (-15 -3177 ($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3157 ($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3167 ($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -3146 ($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2839 ($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2155 ($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2828 ($ (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) (|:| CF (-327 (-171 (-391)))) (|:| |switch| $)))) (-15 -2828 ($ $)))) +((-3473 (((-112) $ $) NIL)) (-3399 (($ $ (-660 (-880))) 62)) (-3410 (($ $ (-660 (-880))) 60)) (-1335 (((-1183) $) 101)) (-3413 (((-2 (|:| -3512 (-660 (-880))) (|:| -4243 (-660 (-880))) (|:| |presup| (-660 (-880))) (|:| -3503 (-660 (-880))) (|:| |args| (-660 (-880)))) $) 108)) (-3423 (((-112) $) 23)) (-2983 (($ $ (-660 (-660 (-880)))) 59) (($ $ (-2 (|:| -3512 (-660 (-880))) (|:| -4243 (-660 (-880))) (|:| |presup| (-660 (-880))) (|:| -3503 (-660 (-880))) (|:| |args| (-660 (-880))))) 99)) (-1534 (($) 163 T CONST)) (-3434 (((-1297)) 135)) (-3795 (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 69) (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 76)) (-4113 (($) 122) (($ $) 131)) (-2713 (($ $) 100)) (-3732 (($ $ $) NIL)) (-3201 (($ $ $) NIL)) (-1712 (((-660 $) $) 136)) (-2810 (((-1183) $) 114)) (-1474 (((-1145) $) NIL)) (-2872 (($ $ (-660 (-880))) 61)) (-4152 (((-549) $) 48) (((-1201) $) 49) (((-911 (-577)) $) 80) (((-911 (-391)) $) 78)) (-3544 (((-880) $) 55) (($ (-1183)) 50)) (-4448 (((-112) $ $) NIL)) (-3389 (($ $ (-660 (-880))) 63)) (-4013 (((-1183) $) 34) (((-1183) $ (-112)) 35) (((-1297) (-838) $) 36) (((-1297) (-838) $ (-112)) 37)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 51)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) 52))) +(((-1201) (-13 (-865) (-627 (-549)) (-844) (-627 (-1201)) (-629 (-1183)) (-627 (-911 (-577))) (-627 (-911 (-391))) (-905 (-577)) (-905 (-391)) (-10 -8 (-15 -4113 ($)) (-15 -4113 ($ $)) (-15 -3434 ((-1297))) (-15 -2713 ($ $)) (-15 -3423 ((-112) $)) (-15 -3413 ((-2 (|:| -3512 (-660 (-880))) (|:| -4243 (-660 (-880))) (|:| |presup| (-660 (-880))) (|:| -3503 (-660 (-880))) (|:| |args| (-660 (-880)))) $)) (-15 -2983 ($ $ (-660 (-660 (-880))))) (-15 -2983 ($ $ (-2 (|:| -3512 (-660 (-880))) (|:| -4243 (-660 (-880))) (|:| |presup| (-660 (-880))) (|:| -3503 (-660 (-880))) (|:| |args| (-660 (-880)))))) (-15 -3410 ($ $ (-660 (-880)))) (-15 -3399 ($ $ (-660 (-880)))) (-15 -3389 ($ $ (-660 (-880)))) (-15 -2872 ($ $ (-660 (-880)))) (-15 -1335 ((-1183) $)) (-15 -1712 ((-660 $) $)) (-15 -1534 ($) -1512)))) (T -1201)) +((-4113 (*1 *1) (-5 *1 (-1201))) (-4113 (*1 *1 *1) (-5 *1 (-1201))) (-3434 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1201)))) (-2713 (*1 *1 *1) (-5 *1 (-1201))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3512 (-660 (-880))) (|:| -4243 (-660 (-880))) (|:| |presup| (-660 (-880))) (|:| -3503 (-660 (-880))) (|:| |args| (-660 (-880))))) (-5 *1 (-1201)))) (-2983 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-660 (-880)))) (-5 *1 (-1201)))) (-2983 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3512 (-660 (-880))) (|:| -4243 (-660 (-880))) (|:| |presup| (-660 (-880))) (|:| -3503 (-660 (-880))) (|:| |args| (-660 (-880))))) (-5 *1 (-1201)))) (-3410 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-1201)))) (-3399 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-1201)))) (-3389 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-1201)))) (-2872 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-1201)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1201)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-1201)))) (-1534 (*1 *1) (-5 *1 (-1201)))) +(-13 (-865) (-627 (-549)) (-844) (-627 (-1201)) (-629 (-1183)) (-627 (-911 (-577))) (-627 (-911 (-391))) (-905 (-577)) (-905 (-391)) (-10 -8 (-15 -4113 ($)) (-15 -4113 ($ $)) (-15 -3434 ((-1297))) (-15 -2713 ($ $)) (-15 -3423 ((-112) $)) (-15 -3413 ((-2 (|:| -3512 (-660 (-880))) (|:| -4243 (-660 (-880))) (|:| |presup| (-660 (-880))) (|:| -3503 (-660 (-880))) (|:| |args| (-660 (-880)))) $)) (-15 -2983 ($ $ (-660 (-660 (-880))))) (-15 -2983 ($ $ (-2 (|:| -3512 (-660 (-880))) (|:| -4243 (-660 (-880))) (|:| |presup| (-660 (-880))) (|:| -3503 (-660 (-880))) (|:| |args| (-660 (-880)))))) (-15 -3410 ($ $ (-660 (-880)))) (-15 -3399 ($ $ (-660 (-880)))) (-15 -3389 ($ $ (-660 (-880)))) (-15 -2872 ($ $ (-660 (-880)))) (-15 -1335 ((-1183) $)) (-15 -1712 ((-660 $) $)) (-15 -1534 ($) -1512))) +((-3444 (((-1292 |#1|) |#1| (-944)) 18) (((-1292 |#1|) (-660 |#1|)) 25))) +(((-1202 |#1|) (-10 -7 (-15 -3444 ((-1292 |#1|) (-660 |#1|))) (-15 -3444 ((-1292 |#1|) |#1| (-944)))) (-1074)) (T -1202)) +((-3444 (*1 *2 *3 *4) (-12 (-5 *4 (-944)) (-5 *2 (-1292 *3)) (-5 *1 (-1202 *3)) (-4 *3 (-1074)))) (-3444 (*1 *2 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-1074)) (-5 *2 (-1292 *4)) (-5 *1 (-1202 *4))))) +(-10 -7 (-15 -3444 ((-1292 |#1|) (-660 |#1|))) (-15 -3444 ((-1292 |#1|) |#1| (-944)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL (|has| |#1| (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#1| (-1063 (-420 (-577))))) (((-3 |#1| "failed") $) NIL)) (-2921 (((-577) $) NIL (|has| |#1| (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| |#1| (-1063 (-420 (-577))))) ((|#1| $) NIL)) (-2248 (($ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3143 (($ $) NIL (|has| |#1| (-465)))) (-2137 (($ $ |#1| (-996) $) NIL)) (-2487 (((-112) $) 17)) (-2548 (((-787) $) NIL)) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-996)) NIL)) (-4061 (((-996) $) NIL)) (-2151 (($ (-1 (-996) (-996)) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2180 (((-112) $) NIL)) (-2193 ((|#1| $) NIL)) (-1624 (($ $ (-996) |#1| $) NIL (-12 (|has| (-996) (-132)) (|has| |#1| (-569))))) (-3462 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-569)))) (-2887 (((-996) $) NIL)) (-4039 ((|#1| $) NIL (|has| |#1| (-465)))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ $) NIL (|has| |#1| (-569))) (($ |#1|) NIL) (($ (-420 (-577))) NIL (-2839 (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-1063 (-420 (-577))))))) (-4182 (((-660 |#1|) $) NIL)) (-2322 ((|#1| $ (-996)) NIL)) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) NIL T CONST)) (-2122 (($ $ $ (-787)) NIL (|has| |#1| (-174)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2806 (($) 10 T CONST)) (-2816 (($) NIL T CONST)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) 21)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))))) +(((-1203 |#1|) (-13 (-337 |#1| (-996)) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| (-996) (-132)) (-15 -1624 ($ $ (-996) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4468)) (-6 -4468) |%noBranch|))) (-1074)) (T -1203)) +((-1624 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-996)) (-4 *2 (-132)) (-5 *1 (-1203 *3)) (-4 *3 (-569)) (-4 *3 (-1074))))) +(-13 (-337 |#1| (-996)) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| (-996) (-132)) (-15 -1624 ($ $ (-996) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4468)) (-6 -4468) |%noBranch|))) +((-3456 (((-1205) (-1201) $) 25)) (-3562 (($) 29)) (-3477 (((-3 (|:| |fst| (-447)) (|:| -2963 "void")) (-1201) $) 22)) (-3500 (((-1297) (-1201) (-3 (|:| |fst| (-447)) (|:| -2963 "void")) $) 41) (((-1297) (-1201) (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) 42) (((-1297) (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) 43)) (-3574 (((-1297) (-1201)) 58)) (-3488 (((-1297) (-1201) $) 55) (((-1297) (-1201)) 56) (((-1297)) 57)) (-3542 (((-1297) (-1201)) 37)) (-3520 (((-1201)) 36)) (-3639 (($) 34)) (-2290 (((-450) (-1201) (-450) (-1201) $) 45) (((-450) (-660 (-1201)) (-450) (-1201) $) 49) (((-450) (-1201) (-450)) 46) (((-450) (-1201) (-450) (-1201)) 50)) (-3531 (((-1201)) 35)) (-3544 (((-880) $) 28)) (-3551 (((-1297)) 30) (((-1297) (-1201)) 33)) (-3466 (((-660 (-1201)) (-1201) $) 24)) (-3510 (((-1297) (-1201) (-660 (-1201)) $) 38) (((-1297) (-1201) (-660 (-1201))) 39) (((-1297) (-660 (-1201))) 40))) +(((-1204) (-13 (-626 (-880)) (-10 -8 (-15 -3562 ($)) (-15 -3551 ((-1297))) (-15 -3551 ((-1297) (-1201))) (-15 -2290 ((-450) (-1201) (-450) (-1201) $)) (-15 -2290 ((-450) (-660 (-1201)) (-450) (-1201) $)) (-15 -2290 ((-450) (-1201) (-450))) (-15 -2290 ((-450) (-1201) (-450) (-1201))) (-15 -3542 ((-1297) (-1201))) (-15 -3531 ((-1201))) (-15 -3520 ((-1201))) (-15 -3510 ((-1297) (-1201) (-660 (-1201)) $)) (-15 -3510 ((-1297) (-1201) (-660 (-1201)))) (-15 -3510 ((-1297) (-660 (-1201)))) (-15 -3500 ((-1297) (-1201) (-3 (|:| |fst| (-447)) (|:| -2963 "void")) $)) (-15 -3500 ((-1297) (-1201) (-3 (|:| |fst| (-447)) (|:| -2963 "void")))) (-15 -3500 ((-1297) (-3 (|:| |fst| (-447)) (|:| -2963 "void")))) (-15 -3488 ((-1297) (-1201) $)) (-15 -3488 ((-1297) (-1201))) (-15 -3488 ((-1297))) (-15 -3574 ((-1297) (-1201))) (-15 -3639 ($)) (-15 -3477 ((-3 (|:| |fst| (-447)) (|:| -2963 "void")) (-1201) $)) (-15 -3466 ((-660 (-1201)) (-1201) $)) (-15 -3456 ((-1205) (-1201) $))))) (T -1204)) +((-3562 (*1 *1) (-5 *1 (-1204))) (-3551 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1204)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-2290 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-450)) (-5 *3 (-1201)) (-5 *1 (-1204)))) (-2290 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-450)) (-5 *3 (-660 (-1201))) (-5 *4 (-1201)) (-5 *1 (-1204)))) (-2290 (*1 *2 *3 *2) (-12 (-5 *2 (-450)) (-5 *3 (-1201)) (-5 *1 (-1204)))) (-2290 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-1201)) (-5 *1 (-1204)))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-3531 (*1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1204)))) (-3520 (*1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1204)))) (-3510 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-660 (-1201))) (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-3510 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-1201))) (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-660 (-1201))) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-3500 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1201)) (-5 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-3500 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-5 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-3500 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-3488 (*1 *2 *3 *1) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-3488 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-3488 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1204)))) (-3574 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) (-3639 (*1 *1) (-5 *1 (-1204))) (-3477 (*1 *2 *3 *1) (-12 (-5 *3 (-1201)) (-5 *2 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-5 *1 (-1204)))) (-3466 (*1 *2 *3 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-1204)) (-5 *3 (-1201)))) (-3456 (*1 *2 *3 *1) (-12 (-5 *3 (-1201)) (-5 *2 (-1205)) (-5 *1 (-1204))))) +(-13 (-626 (-880)) (-10 -8 (-15 -3562 ($)) (-15 -3551 ((-1297))) (-15 -3551 ((-1297) (-1201))) (-15 -2290 ((-450) (-1201) (-450) (-1201) $)) (-15 -2290 ((-450) (-660 (-1201)) (-450) (-1201) $)) (-15 -2290 ((-450) (-1201) (-450))) (-15 -2290 ((-450) (-1201) (-450) (-1201))) (-15 -3542 ((-1297) (-1201))) (-15 -3531 ((-1201))) (-15 -3520 ((-1201))) (-15 -3510 ((-1297) (-1201) (-660 (-1201)) $)) (-15 -3510 ((-1297) (-1201) (-660 (-1201)))) (-15 -3510 ((-1297) (-660 (-1201)))) (-15 -3500 ((-1297) (-1201) (-3 (|:| |fst| (-447)) (|:| -2963 "void")) $)) (-15 -3500 ((-1297) (-1201) (-3 (|:| |fst| (-447)) (|:| -2963 "void")))) (-15 -3500 ((-1297) (-3 (|:| |fst| (-447)) (|:| -2963 "void")))) (-15 -3488 ((-1297) (-1201) $)) (-15 -3488 ((-1297) (-1201))) (-15 -3488 ((-1297))) (-15 -3574 ((-1297) (-1201))) (-15 -3639 ($)) (-15 -3477 ((-3 (|:| |fst| (-447)) (|:| -2963 "void")) (-1201) $)) (-15 -3466 ((-660 (-1201)) (-1201) $)) (-15 -3456 ((-1205) (-1201) $)))) +((-3590 (((-660 (-660 (-3 (|:| -2713 (-1201)) (|:| -2720 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577))))))))) $) 66)) (-3610 (((-660 (-3 (|:| -2713 (-1201)) (|:| -2720 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577)))))))) (-447) $) 47)) (-2664 (($ (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-450))))) 17)) (-3574 (((-1297) $) 73)) (-3619 (((-660 (-1201)) $) 22)) (-3581 (((-1129) $) 60)) (-3629 (((-450) (-1201) $) 27)) (-3600 (((-660 (-1201)) $) 30)) (-3639 (($) 19)) (-2290 (((-450) (-660 (-1201)) (-450) $) 25) (((-450) (-1201) (-450) $) 24)) (-3544 (((-880) $) 9) (((-1214 (-1201) (-450)) $) 13))) +(((-1205) (-13 (-626 (-880)) (-10 -8 (-15 -3544 ((-1214 (-1201) (-450)) $)) (-15 -3639 ($)) (-15 -2290 ((-450) (-660 (-1201)) (-450) $)) (-15 -2290 ((-450) (-1201) (-450) $)) (-15 -3629 ((-450) (-1201) $)) (-15 -3619 ((-660 (-1201)) $)) (-15 -3610 ((-660 (-3 (|:| -2713 (-1201)) (|:| -2720 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577)))))))) (-447) $)) (-15 -3600 ((-660 (-1201)) $)) (-15 -3590 ((-660 (-660 (-3 (|:| -2713 (-1201)) (|:| -2720 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577))))))))) $)) (-15 -3581 ((-1129) $)) (-15 -3574 ((-1297) $)) (-15 -2664 ($ (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-450))))))))) (T -1205)) +((-3544 (*1 *2 *1) (-12 (-5 *2 (-1214 (-1201) (-450))) (-5 *1 (-1205)))) (-3639 (*1 *1) (-5 *1 (-1205))) (-2290 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-450)) (-5 *3 (-660 (-1201))) (-5 *1 (-1205)))) (-2290 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-450)) (-5 *3 (-1201)) (-5 *1 (-1205)))) (-3629 (*1 *2 *3 *1) (-12 (-5 *3 (-1201)) (-5 *2 (-450)) (-5 *1 (-1205)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-1205)))) (-3610 (*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-660 (-3 (|:| -2713 (-1201)) (|:| -2720 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577))))))))) (-5 *1 (-1205)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-1205)))) (-3590 (*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-3 (|:| -2713 (-1201)) (|:| -2720 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577)))))))))) (-5 *1 (-1205)))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1205)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1205)))) (-2664 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-450))))) (-5 *1 (-1205))))) +(-13 (-626 (-880)) (-10 -8 (-15 -3544 ((-1214 (-1201) (-450)) $)) (-15 -3639 ($)) (-15 -2290 ((-450) (-660 (-1201)) (-450) $)) (-15 -2290 ((-450) (-1201) (-450) $)) (-15 -3629 ((-450) (-1201) $)) (-15 -3619 ((-660 (-1201)) $)) (-15 -3610 ((-660 (-3 (|:| -2713 (-1201)) (|:| -2720 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577)))))))) (-447) $)) (-15 -3600 ((-660 (-1201)) $)) (-15 -3590 ((-660 (-660 (-3 (|:| -2713 (-1201)) (|:| -2720 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577))))))))) $)) (-15 -3581 ((-1129) $)) (-15 -3574 ((-1297) $)) (-15 -2664 ($ (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-450)))))))) +((-3473 (((-112) $ $) NIL)) (-1628 (((-3 (-577) "failed") $) 29) (((-3 (-228) "failed") $) 35) (((-3 (-519) "failed") $) 43) (((-3 (-1183) "failed") $) 47)) (-2921 (((-577) $) 30) (((-228) $) 36) (((-519) $) 40) (((-1183) $) 48)) (-2528 (((-112) $) 53)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2520 (((-3 (-577) (-228) (-519) (-1183) $) $) 55)) (-2509 (((-660 $) $) 57)) (-4152 (((-1129) $) 24) (($ (-1129)) 25)) (-2501 (((-112) $) 56)) (-3544 (((-880) $) 23) (($ (-577)) 26) (($ (-228)) 32) (($ (-519)) 38) (($ (-1183)) 44) (((-549) $) 59) (((-577) $) 31) (((-228) $) 37) (((-519) $) 41) (((-1183) $) 49)) (-2793 (((-112) $ (|[\|\|]| (-577))) 10) (((-112) $ (|[\|\|]| (-228))) 13) (((-112) $ (|[\|\|]| (-519))) 19) (((-112) $ (|[\|\|]| (-1183))) 16)) (-2537 (($ (-519) (-660 $)) 51) (($ $ (-660 $)) 52)) (-4448 (((-112) $ $) NIL)) (-2003 (((-577) $) 27) (((-228) $) 33) (((-519) $) 39) (((-1183) $) 45)) (-2970 (((-112) $ $) 7))) +(((-1206) (-13 (-1287) (-1125) (-1063 (-577)) (-1063 (-228)) (-1063 (-519)) (-1063 (-1183)) (-626 (-549)) (-10 -8 (-15 -4152 ((-1129) $)) (-15 -4152 ($ (-1129))) (-15 -3544 ((-577) $)) (-15 -2003 ((-577) $)) (-15 -3544 ((-228) $)) (-15 -2003 ((-228) $)) (-15 -3544 ((-519) $)) (-15 -2003 ((-519) $)) (-15 -3544 ((-1183) $)) (-15 -2003 ((-1183) $)) (-15 -2537 ($ (-519) (-660 $))) (-15 -2537 ($ $ (-660 $))) (-15 -2528 ((-112) $)) (-15 -2520 ((-3 (-577) (-228) (-519) (-1183) $) $)) (-15 -2509 ((-660 $) $)) (-15 -2501 ((-112) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-577)))) (-15 -2793 ((-112) $ (|[\|\|]| (-228)))) (-15 -2793 ((-112) $ (|[\|\|]| (-519)))) (-15 -2793 ((-112) $ (|[\|\|]| (-1183))))))) (T -1206)) +((-4152 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1206)))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1206)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1206)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1206)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-1206)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-1206)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1206)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1206)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1206)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1206)))) (-2537 (*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-660 (-1206))) (-5 *1 (-1206)))) (-2537 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-1206))) (-5 *1 (-1206)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-3 (-577) (-228) (-519) (-1183) (-1206))) (-5 *1 (-1206)))) (-2509 (*1 *2 *1) (-12 (-5 *2 (-660 (-1206))) (-5 *1 (-1206)))) (-2501 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206)))) (-2793 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)) (-5 *1 (-1206)))) (-2793 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-228))) (-5 *2 (-112)) (-5 *1 (-1206)))) (-2793 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)) (-5 *1 (-1206)))) (-2793 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-112)) (-5 *1 (-1206))))) +(-13 (-1287) (-1125) (-1063 (-577)) (-1063 (-228)) (-1063 (-519)) (-1063 (-1183)) (-626 (-549)) (-10 -8 (-15 -4152 ((-1129) $)) (-15 -4152 ($ (-1129))) (-15 -3544 ((-577) $)) (-15 -2003 ((-577) $)) (-15 -3544 ((-228) $)) (-15 -2003 ((-228) $)) (-15 -3544 ((-519) $)) (-15 -2003 ((-519) $)) (-15 -3544 ((-1183) $)) (-15 -2003 ((-1183) $)) (-15 -2537 ($ (-519) (-660 $))) (-15 -2537 ($ $ (-660 $))) (-15 -2528 ((-112) $)) (-15 -2520 ((-3 (-577) (-228) (-519) (-1183) $) $)) (-15 -2509 ((-660 $) $)) (-15 -2501 ((-112) $)) (-15 -2793 ((-112) $ (|[\|\|]| (-577)))) (-15 -2793 ((-112) $ (|[\|\|]| (-228)))) (-15 -2793 ((-112) $ (|[\|\|]| (-519)))) (-15 -2793 ((-112) $ (|[\|\|]| (-1183)))))) +((-3473 (((-112) $ $) NIL)) (-2229 (((-787)) 22)) (-1534 (($) 12 T CONST)) (-1910 (($) 26)) (-3732 (($ $ $) NIL) (($) 19 T CONST)) (-3201 (($ $ $) NIL) (($) 20 T CONST)) (-4038 (((-944) $) 24)) (-2810 (((-1183) $) NIL)) (-3222 (($ (-944)) 23)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL))) +(((-1207 |#1|) (-13 (-860) (-10 -8 (-15 -1534 ($) -1512))) (-944)) (T -1207)) +((-1534 (*1 *1) (-12 (-5 *1 (-1207 *2)) (-14 *2 (-944))))) +(-13 (-860) (-10 -8 (-15 -1534 ($) -1512))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-3429 (((-112) $ $) NIL)) (-2193 (((-784)) NIL)) (-4359 (($) 19 T CONST)) (-1892 (($) NIL)) (-3707 (($ $ $) NIL) (($) 12 T CONST)) (-1611 (($ $ $) NIL) (($) 18 T CONST)) (-3007 (((-941) $) NIL)) (-2342 (((-1180) $) NIL)) (-3178 (($ (-941)) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2427 (($ $ $) 21)) (-2418 (($ $ $) 20)) (-2046 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL))) -(((-1205 |#1|) (-13 (-857) (-10 -8 (-15 -2418 ($ $ $)) (-15 -2427 ($ $ $)) (-15 -4359 ($) -1509))) (-941)) (T -1205)) -((-2418 (*1 *1 *1 *1) (-12 (-5 *1 (-1205 *2)) (-14 *2 (-941)))) (-2427 (*1 *1 *1 *1) (-12 (-5 *1 (-1205 *2)) (-14 *2 (-941)))) (-4359 (*1 *1) (-12 (-5 *1 (-1205 *2)) (-14 *2 (-941))))) -(-13 (-857) (-10 -8 (-15 -2418 ($ $ $)) (-15 -2427 ($ $ $)) (-15 -4359 ($) -1509))) +((-3473 (((-112) $ $) NIL)) (-2229 (((-787)) NIL)) (-1534 (($) 19 T CONST)) (-1910 (($) NIL)) (-3732 (($ $ $) NIL) (($) 12 T CONST)) (-3201 (($ $ $) NIL) (($) 18 T CONST)) (-4038 (((-944) $) NIL)) (-2810 (((-1183) $) NIL)) (-3222 (($ (-944)) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-2464 (($ $ $) 21)) (-2455 (($ $ $) 20)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL))) +(((-1208 |#1|) (-13 (-860) (-10 -8 (-15 -2455 ($ $ $)) (-15 -2464 ($ $ $)) (-15 -1534 ($) -1512))) (-944)) (T -1208)) +((-2455 (*1 *1 *1 *1) (-12 (-5 *1 (-1208 *2)) (-14 *2 (-944)))) (-2464 (*1 *1 *1 *1) (-12 (-5 *1 (-1208 *2)) (-14 *2 (-944)))) (-1534 (*1 *1) (-12 (-5 *1 (-1208 *2)) (-14 *2 (-944))))) +(-13 (-860) (-10 -8 (-15 -2455 ($ $ $)) (-15 -2464 ($ $ $)) (-15 -1534 ($) -1512))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 9)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 7))) -(((-1206) (-1122)) (T -1206)) -NIL -(-1122) -((-3183 (((-657 (-657 (-972 |#1|))) (-657 (-419 (-972 |#1|))) (-657 (-1198))) 69)) (-3036 (((-657 (-304 (-419 (-972 |#1|)))) (-304 (-419 (-972 |#1|)))) 80) (((-657 (-304 (-419 (-972 |#1|)))) (-419 (-972 |#1|))) 76) (((-657 (-304 (-419 (-972 |#1|)))) (-304 (-419 (-972 |#1|))) (-1198)) 81) (((-657 (-304 (-419 (-972 |#1|)))) (-419 (-972 |#1|)) (-1198)) 75) (((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-304 (-419 (-972 |#1|))))) 106) (((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-419 (-972 |#1|)))) 105) (((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-304 (-419 (-972 |#1|)))) (-657 (-1198))) 107) (((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-419 (-972 |#1|))) (-657 (-1198))) 104))) -(((-1207 |#1|) (-10 -7 (-15 -3036 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-419 (-972 |#1|))) (-657 (-1198)))) (-15 -3036 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-304 (-419 (-972 |#1|)))) (-657 (-1198)))) (-15 -3036 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-419 (-972 |#1|))))) (-15 -3036 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-304 (-419 (-972 |#1|)))))) (-15 -3036 ((-657 (-304 (-419 (-972 |#1|)))) (-419 (-972 |#1|)) (-1198))) (-15 -3036 ((-657 (-304 (-419 (-972 |#1|)))) (-304 (-419 (-972 |#1|))) (-1198))) (-15 -3036 ((-657 (-304 (-419 (-972 |#1|)))) (-419 (-972 |#1|)))) (-15 -3036 ((-657 (-304 (-419 (-972 |#1|)))) (-304 (-419 (-972 |#1|))))) (-15 -3183 ((-657 (-657 (-972 |#1|))) (-657 (-419 (-972 |#1|))) (-657 (-1198))))) (-568)) (T -1207)) -((-3183 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-419 (-972 *5)))) (-5 *4 (-657 (-1198))) (-4 *5 (-568)) (-5 *2 (-657 (-657 (-972 *5)))) (-5 *1 (-1207 *5)))) (-3036 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-657 (-304 (-419 (-972 *4))))) (-5 *1 (-1207 *4)) (-5 *3 (-304 (-419 (-972 *4)))))) (-3036 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-657 (-304 (-419 (-972 *4))))) (-5 *1 (-1207 *4)) (-5 *3 (-419 (-972 *4))))) (-3036 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-568)) (-5 *2 (-657 (-304 (-419 (-972 *5))))) (-5 *1 (-1207 *5)) (-5 *3 (-304 (-419 (-972 *5)))))) (-3036 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-568)) (-5 *2 (-657 (-304 (-419 (-972 *5))))) (-5 *1 (-1207 *5)) (-5 *3 (-419 (-972 *5))))) (-3036 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *4)))))) (-5 *1 (-1207 *4)) (-5 *3 (-657 (-304 (-419 (-972 *4))))))) (-3036 (*1 *2 *3) (-12 (-5 *3 (-657 (-419 (-972 *4)))) (-4 *4 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *4)))))) (-5 *1 (-1207 *4)))) (-3036 (*1 *2 *3 *4) (-12 (-5 *4 (-657 (-1198))) (-4 *5 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *5)))))) (-5 *1 (-1207 *5)) (-5 *3 (-657 (-304 (-419 (-972 *5))))))) (-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-419 (-972 *5)))) (-5 *4 (-657 (-1198))) (-4 *5 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *5)))))) (-5 *1 (-1207 *5))))) -(-10 -7 (-15 -3036 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-419 (-972 |#1|))) (-657 (-1198)))) (-15 -3036 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-304 (-419 (-972 |#1|)))) (-657 (-1198)))) (-15 -3036 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-419 (-972 |#1|))))) (-15 -3036 ((-657 (-657 (-304 (-419 (-972 |#1|))))) (-657 (-304 (-419 (-972 |#1|)))))) (-15 -3036 ((-657 (-304 (-419 (-972 |#1|)))) (-419 (-972 |#1|)) (-1198))) (-15 -3036 ((-657 (-304 (-419 (-972 |#1|)))) (-304 (-419 (-972 |#1|))) (-1198))) (-15 -3036 ((-657 (-304 (-419 (-972 |#1|)))) (-419 (-972 |#1|)))) (-15 -3036 ((-657 (-304 (-419 (-972 |#1|)))) (-304 (-419 (-972 |#1|))))) (-15 -3183 ((-657 (-657 (-972 |#1|))) (-657 (-419 (-972 |#1|))) (-657 (-1198))))) -((-3764 (((-1180)) 7)) (-1848 (((-1180)) 11 T CONST)) (-3620 (((-1294) (-1180)) 13)) (-4316 (((-1180)) 8 T CONST)) (-4171 (((-131)) 10 T CONST))) -(((-1208) (-13 (-1239) (-10 -7 (-15 -3764 ((-1180))) (-15 -4316 ((-1180)) -1509) (-15 -4171 ((-131)) -1509) (-15 -1848 ((-1180)) -1509) (-15 -3620 ((-1294) (-1180)))))) (T -1208)) -((-3764 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1208)))) (-4316 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1208)))) (-4171 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1208)))) (-1848 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1208)))) (-3620 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1208))))) -(-13 (-1239) (-10 -7 (-15 -3764 ((-1180))) (-15 -4316 ((-1180)) -1509) (-15 -4171 ((-131)) -1509) (-15 -1848 ((-1180)) -1509) (-15 -3620 ((-1294) (-1180))))) -((-2697 (((-657 (-657 |#1|)) (-657 (-657 |#1|)) (-657 (-657 (-657 |#1|)))) 56)) (-2662 (((-657 (-657 (-657 |#1|))) (-657 (-657 |#1|))) 38)) (-3613 (((-1210 (-657 |#1|)) (-657 |#1|)) 49)) (-3565 (((-657 (-657 |#1|)) (-657 |#1|)) 45)) (-3351 (((-2 (|:| |f1| (-657 |#1|)) (|:| |f2| (-657 (-657 (-657 |#1|)))) (|:| |f3| (-657 (-657 |#1|))) (|:| |f4| (-657 (-657 (-657 |#1|))))) (-657 (-657 (-657 |#1|)))) 53)) (-3326 (((-2 (|:| |f1| (-657 |#1|)) (|:| |f2| (-657 (-657 (-657 |#1|)))) (|:| |f3| (-657 (-657 |#1|))) (|:| |f4| (-657 (-657 (-657 |#1|))))) (-657 |#1|) (-657 (-657 (-657 |#1|))) (-657 (-657 |#1|)) (-657 (-657 (-657 |#1|))) (-657 (-657 (-657 |#1|))) (-657 (-657 (-657 |#1|)))) 52)) (-1389 (((-657 (-657 |#1|)) (-657 (-657 |#1|))) 43)) (-3913 (((-657 |#1|) (-657 |#1|)) 46)) (-1711 (((-657 (-657 (-657 |#1|))) (-657 |#1|) (-657 (-657 (-657 |#1|)))) 32)) (-2449 (((-657 (-657 (-657 |#1|))) (-1 (-112) |#1| |#1|) (-657 |#1|) (-657 (-657 (-657 |#1|)))) 29)) (-3464 (((-2 (|:| |fs| (-112)) (|:| |sd| (-657 |#1|)) (|:| |td| (-657 (-657 |#1|)))) (-1 (-112) |#1| |#1|) (-657 |#1|) (-657 (-657 |#1|))) 24)) (-3904 (((-657 (-657 |#1|)) (-657 (-657 (-657 |#1|)))) 58)) (-3483 (((-657 (-657 |#1|)) (-1210 (-657 |#1|))) 60))) -(((-1209 |#1|) (-10 -7 (-15 -3464 ((-2 (|:| |fs| (-112)) (|:| |sd| (-657 |#1|)) (|:| |td| (-657 (-657 |#1|)))) (-1 (-112) |#1| |#1|) (-657 |#1|) (-657 (-657 |#1|)))) (-15 -2449 ((-657 (-657 (-657 |#1|))) (-1 (-112) |#1| |#1|) (-657 |#1|) (-657 (-657 (-657 |#1|))))) (-15 -1711 ((-657 (-657 (-657 |#1|))) (-657 |#1|) (-657 (-657 (-657 |#1|))))) (-15 -2697 ((-657 (-657 |#1|)) (-657 (-657 |#1|)) (-657 (-657 (-657 |#1|))))) (-15 -3904 ((-657 (-657 |#1|)) (-657 (-657 (-657 |#1|))))) (-15 -3483 ((-657 (-657 |#1|)) (-1210 (-657 |#1|)))) (-15 -2662 ((-657 (-657 (-657 |#1|))) (-657 (-657 |#1|)))) (-15 -3613 ((-1210 (-657 |#1|)) (-657 |#1|))) (-15 -1389 ((-657 (-657 |#1|)) (-657 (-657 |#1|)))) (-15 -3565 ((-657 (-657 |#1|)) (-657 |#1|))) (-15 -3913 ((-657 |#1|) (-657 |#1|))) (-15 -3326 ((-2 (|:| |f1| (-657 |#1|)) (|:| |f2| (-657 (-657 (-657 |#1|)))) (|:| |f3| (-657 (-657 |#1|))) (|:| |f4| (-657 (-657 (-657 |#1|))))) (-657 |#1|) (-657 (-657 (-657 |#1|))) (-657 (-657 |#1|)) (-657 (-657 (-657 |#1|))) (-657 (-657 (-657 |#1|))) (-657 (-657 (-657 |#1|))))) (-15 -3351 ((-2 (|:| |f1| (-657 |#1|)) (|:| |f2| (-657 (-657 (-657 |#1|)))) (|:| |f3| (-657 (-657 |#1|))) (|:| |f4| (-657 (-657 (-657 |#1|))))) (-657 (-657 (-657 |#1|)))))) (-862)) (T -1209)) -((-3351 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-2 (|:| |f1| (-657 *4)) (|:| |f2| (-657 (-657 (-657 *4)))) (|:| |f3| (-657 (-657 *4))) (|:| |f4| (-657 (-657 (-657 *4)))))) (-5 *1 (-1209 *4)) (-5 *3 (-657 (-657 (-657 *4)))))) (-3326 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-862)) (-5 *3 (-657 *6)) (-5 *5 (-657 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-657 *5)) (|:| |f3| *5) (|:| |f4| (-657 *5)))) (-5 *1 (-1209 *6)) (-5 *4 (-657 *5)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-1209 *3)))) (-3565 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-657 (-657 *4))) (-5 *1 (-1209 *4)) (-5 *3 (-657 *4)))) (-1389 (*1 *2 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-862)) (-5 *1 (-1209 *3)))) (-3613 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-1210 (-657 *4))) (-5 *1 (-1209 *4)) (-5 *3 (-657 *4)))) (-2662 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-657 (-657 (-657 *4)))) (-5 *1 (-1209 *4)) (-5 *3 (-657 (-657 *4))))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-1210 (-657 *4))) (-4 *4 (-862)) (-5 *2 (-657 (-657 *4))) (-5 *1 (-1209 *4)))) (-3904 (*1 *2 *3) (-12 (-5 *3 (-657 (-657 (-657 *4)))) (-5 *2 (-657 (-657 *4))) (-5 *1 (-1209 *4)) (-4 *4 (-862)))) (-2697 (*1 *2 *2 *3) (-12 (-5 *3 (-657 (-657 (-657 *4)))) (-5 *2 (-657 (-657 *4))) (-4 *4 (-862)) (-5 *1 (-1209 *4)))) (-1711 (*1 *2 *3 *2) (-12 (-5 *2 (-657 (-657 (-657 *4)))) (-5 *3 (-657 *4)) (-4 *4 (-862)) (-5 *1 (-1209 *4)))) (-2449 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-657 (-657 (-657 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-657 *5)) (-4 *5 (-862)) (-5 *1 (-1209 *5)))) (-3464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-862)) (-5 *4 (-657 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-657 *4)))) (-5 *1 (-1209 *6)) (-5 *5 (-657 *4))))) -(-10 -7 (-15 -3464 ((-2 (|:| |fs| (-112)) (|:| |sd| (-657 |#1|)) (|:| |td| (-657 (-657 |#1|)))) (-1 (-112) |#1| |#1|) (-657 |#1|) (-657 (-657 |#1|)))) (-15 -2449 ((-657 (-657 (-657 |#1|))) (-1 (-112) |#1| |#1|) (-657 |#1|) (-657 (-657 (-657 |#1|))))) (-15 -1711 ((-657 (-657 (-657 |#1|))) (-657 |#1|) (-657 (-657 (-657 |#1|))))) (-15 -2697 ((-657 (-657 |#1|)) (-657 (-657 |#1|)) (-657 (-657 (-657 |#1|))))) (-15 -3904 ((-657 (-657 |#1|)) (-657 (-657 (-657 |#1|))))) (-15 -3483 ((-657 (-657 |#1|)) (-1210 (-657 |#1|)))) (-15 -2662 ((-657 (-657 (-657 |#1|))) (-657 (-657 |#1|)))) (-15 -3613 ((-1210 (-657 |#1|)) (-657 |#1|))) (-15 -1389 ((-657 (-657 |#1|)) (-657 (-657 |#1|)))) (-15 -3565 ((-657 (-657 |#1|)) (-657 |#1|))) (-15 -3913 ((-657 |#1|) (-657 |#1|))) (-15 -3326 ((-2 (|:| |f1| (-657 |#1|)) (|:| |f2| (-657 (-657 (-657 |#1|)))) (|:| |f3| (-657 (-657 |#1|))) (|:| |f4| (-657 (-657 (-657 |#1|))))) (-657 |#1|) (-657 (-657 (-657 |#1|))) (-657 (-657 |#1|)) (-657 (-657 (-657 |#1|))) (-657 (-657 (-657 |#1|))) (-657 (-657 (-657 |#1|))))) (-15 -3351 ((-2 (|:| |f1| (-657 |#1|)) (|:| |f2| (-657 (-657 (-657 |#1|)))) (|:| |f3| (-657 (-657 |#1|))) (|:| |f4| (-657 (-657 (-657 |#1|))))) (-657 (-657 (-657 |#1|)))))) -((-1750 (($ (-657 (-657 |#1|))) 10)) (-2339 (((-657 (-657 |#1|)) $) 11)) (-3501 (((-877) $) 33))) -(((-1210 |#1|) (-10 -8 (-15 -1750 ($ (-657 (-657 |#1|)))) (-15 -2339 ((-657 (-657 |#1|)) $)) (-15 -3501 ((-877) $))) (-1122)) (T -1210)) -((-3501 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1210 *3)) (-4 *3 (-1122)))) (-2339 (*1 *2 *1) (-12 (-5 *2 (-657 (-657 *3))) (-5 *1 (-1210 *3)) (-4 *3 (-1122)))) (-1750 (*1 *1 *2) (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-5 *1 (-1210 *3))))) -(-10 -8 (-15 -1750 ($ (-657 (-657 |#1|)))) (-15 -2339 ((-657 (-657 |#1|)) $)) (-15 -3501 ((-877) $))) -((-3429 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4095 (($) NIL) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-4313 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 ((|#2| $ |#1| |#2|) NIL)) (-3162 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2287 (((-3 |#2| "failed") |#1| $) NIL)) (-4359 (($) NIL T CONST)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3647 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) NIL)) (-3895 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-3622 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (|has| $ (-6 -4466))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466)))) (-2158 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#2| $ |#1|) NIL)) (-1458 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) NIL)) (-3853 ((|#1| $) NIL (|has| |#1| (-862)))) (-2070 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-657 |#2|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2272 ((|#1| $) NIL (|has| |#1| (-862)))) (-2148 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4467))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3159 (((-657 |#1|) $) NIL)) (-1708 (((-112) |#1| $) NIL)) (-3050 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-2468 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-1430 (((-657 |#1|) $) NIL)) (-4242 (((-112) |#1| $) NIL)) (-1471 (((-1142) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| |#2| (-1122))))) (-3510 ((|#2| $) NIL (|has| |#1| (-862)))) (-2951 (((-3 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL)) (-1987 (($ $ |#2|) NIL (|has| $ (-6 -4467)))) (-2277 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL)) (-3399 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2380 (((-657 |#2|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1504 (($) NIL) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-1482 (((-784) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) NIL (-12 (|has| $ (-6 -4466)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (((-784) |#2| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122)))) (((-784) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3511 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-3501 (((-877) $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-625 (-877))) (|has| |#2| (-625 (-877)))))) (-2046 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-4079 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) NIL)) (-2147 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) NIL (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) NIL (-2802 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102)) (|has| |#2| (-102))))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-1211 |#1| |#2|) (-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4466))) (-1122) (-1122)) (T -1211)) -NIL -(-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4466))) -((-3429 (((-112) $ $) NIL)) (-1832 (($ |#1| (-55)) 10)) (-2676 ((|#1| $) 12)) (-2342 (((-1180) $) NIL)) (-4412 (((-112) $ |#1|) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2046 (((-112) $ $) NIL)) (-4335 (((-55) $) 14)) (-2933 (((-112) $ $) NIL))) -(((-1212 |#1|) (-13 (-848 |#1|) (-10 -8 (-15 -1832 ($ |#1| (-55))))) (-1122)) (T -1212)) -((-1832 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1212 *2)) (-4 *2 (-1122))))) -(-13 (-848 |#1|) (-10 -8 (-15 -1832 ($ |#1| (-55))))) -((-2541 ((|#1| (-657 |#1|)) 46)) (-2837 ((|#1| |#1| (-576)) 24)) (-3912 (((-1194 |#1|) |#1| (-941)) 20))) -(((-1213 |#1|) (-10 -7 (-15 -2541 (|#1| (-657 |#1|))) (-15 -3912 ((-1194 |#1|) |#1| (-941))) (-15 -2837 (|#1| |#1| (-576)))) (-374)) (T -1213)) -((-2837 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1213 *2)) (-4 *2 (-374)))) (-3912 (*1 *2 *3 *4) (-12 (-5 *4 (-941)) (-5 *2 (-1194 *3)) (-5 *1 (-1213 *3)) (-4 *3 (-374)))) (-2541 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-5 *1 (-1213 *2)) (-4 *2 (-374))))) -(-10 -7 (-15 -2541 (|#1| (-657 |#1|))) (-15 -3912 ((-1194 |#1|) |#1| (-941))) (-15 -2837 (|#1| |#1| (-576)))) -((-4095 (($) 10) (($ (-657 (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)))) 14)) (-3647 (($ (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1458 (((-657 (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) $) 39) (((-657 |#3|) $) 41)) (-2148 (($ (-1 (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-4083 (($ (-1 (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3050 (((-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) $) 60)) (-2468 (($ (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) $) 16)) (-1430 (((-657 |#2|) $) 19)) (-4242 (((-112) |#2| $) 65)) (-2951 (((-3 (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) "failed") (-1 (-112) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) $) 64)) (-2277 (((-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) $) 69)) (-3399 (((-112) (-1 (-112) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2380 (((-657 |#3|) $) 43)) (-2835 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-1482 (((-784) (-1 (-112) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) $) NIL) (((-784) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) $) NIL) (((-784) |#3| $) NIL) (((-784) (-1 (-112) |#3|) $) 79)) (-3501 (((-877) $) 27)) (-2147 (((-112) (-1 (-112) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2933 (((-112) $ $) 51))) -(((-1214 |#1| |#2| |#3|) (-10 -8 (-15 -2933 ((-112) |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -4083 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4095 (|#1| (-657 (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))))) (-15 -4095 (|#1|)) (-15 -4083 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2148 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2147 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3399 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1482 ((-784) (-1 (-112) |#3|) |#1|)) (-15 -1458 ((-657 |#3|) |#1|)) (-15 -1482 ((-784) |#3| |#1|)) (-15 -2835 (|#3| |#1| |#2| |#3|)) (-15 -2835 (|#3| |#1| |#2|)) (-15 -2380 ((-657 |#3|) |#1|)) (-15 -4242 ((-112) |#2| |#1|)) (-15 -1430 ((-657 |#2|) |#1|)) (-15 -3647 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3647 (|#1| (-1 (-112) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -3647 (|#1| (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -2951 ((-3 (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) "failed") (-1 (-112) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -3050 ((-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -2468 (|#1| (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -2277 ((-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -1482 ((-784) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -1458 ((-657 (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -1482 ((-784) (-1 (-112) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -3399 ((-112) (-1 (-112) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -2147 ((-112) (-1 (-112) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -2148 (|#1| (-1 (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -4083 (|#1| (-1 (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) |#1|))) (-1215 |#2| |#3|) (-1122) (-1122)) (T -1214)) -NIL -(-10 -8 (-15 -2933 ((-112) |#1| |#1|)) (-15 -3501 ((-877) |#1|)) (-15 -4083 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4095 (|#1| (-657 (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))))) (-15 -4095 (|#1|)) (-15 -4083 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2148 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2147 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3399 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1482 ((-784) (-1 (-112) |#3|) |#1|)) (-15 -1458 ((-657 |#3|) |#1|)) (-15 -1482 ((-784) |#3| |#1|)) (-15 -2835 (|#3| |#1| |#2| |#3|)) (-15 -2835 (|#3| |#1| |#2|)) (-15 -2380 ((-657 |#3|) |#1|)) (-15 -4242 ((-112) |#2| |#1|)) (-15 -1430 ((-657 |#2|) |#1|)) (-15 -3647 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3647 (|#1| (-1 (-112) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -3647 (|#1| (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -2951 ((-3 (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) "failed") (-1 (-112) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -3050 ((-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -2468 (|#1| (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -2277 ((-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -1482 ((-784) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) |#1|)) (-15 -1458 ((-657 (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -1482 ((-784) (-1 (-112) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -3399 ((-112) (-1 (-112) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -2147 ((-112) (-1 (-112) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -2148 (|#1| (-1 (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) |#1|)) (-15 -4083 (|#1| (-1 (-2 (|:| -4291 |#2|) (|:| -4440 |#3|)) (-2 (|:| -4291 |#2|) (|:| -4440 |#3|))) |#1|))) -((-3429 (((-112) $ $) 20 (-2802 (|has| |#2| (-102)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102))))) (-4095 (($) 73) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 72)) (-4313 (((-1294) $ |#1| |#1|) 100 (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) 8)) (-3682 ((|#2| $ |#1| |#2|) 74)) (-3162 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 46 (|has| $ (-6 -4466)))) (-2035 (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 56 (|has| $ (-6 -4466)))) (-2287 (((-3 |#2| "failed") |#1| $) 62)) (-4359 (($) 7 T CONST)) (-3914 (($ $) 59 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466))))) (-3647 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 48 (|has| $ (-6 -4466))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 47 (|has| $ (-6 -4466))) (((-3 |#2| "failed") |#1| $) 63)) (-3895 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 55 (|has| $ (-6 -4466)))) (-3622 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 57 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 54 (|has| $ (-6 -4466))) (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 53 (|has| $ (-6 -4466)))) (-2158 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4467)))) (-2083 ((|#2| $ |#1|) 89)) (-1458 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 31 (|has| $ (-6 -4466))) (((-657 |#2|) $) 80 (|has| $ (-6 -4466)))) (-1833 (((-112) $ (-784)) 9)) (-3853 ((|#1| $) 97 (|has| |#1| (-862)))) (-2070 (((-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 30 (|has| $ (-6 -4466))) (((-657 |#2|) $) 81 (|has| $ (-6 -4466)))) (-1627 (((-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466))))) (-2272 ((|#1| $) 96 (|has| |#1| (-862)))) (-2148 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 35 (|has| $ (-6 -4467))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4467)))) (-4083 (($ (-1 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-4261 (((-112) $ (-784)) 10)) (-2342 (((-1180) $) 23 (-2802 (|has| |#2| (-1122)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3159 (((-657 |#1|) $) 64)) (-1708 (((-112) |#1| $) 65)) (-3050 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 40)) (-2468 (($ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 41)) (-1430 (((-657 |#1|) $) 94)) (-4242 (((-112) |#1| $) 93)) (-1471 (((-1142) $) 22 (-2802 (|has| |#2| (-1122)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))))) (-3510 ((|#2| $) 98 (|has| |#1| (-862)))) (-2951 (((-3 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) "failed") (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 52)) (-1987 (($ $ |#2|) 99 (|has| $ (-6 -4467)))) (-2277 (((-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 42)) (-3399 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 33 (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))))) 27 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-304 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 26 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) 25 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 24 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)))) (($ $ (-657 |#2|) (-657 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122)))) (($ $ (-657 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))))) (-2806 (((-112) $ $) 14)) (-1515 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4466)) (|has| |#2| (-1122))))) (-2380 (((-657 |#2|) $) 92)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-1504 (($) 50) (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 49)) (-1482 (((-784) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 32 (|has| $ (-6 -4466))) (((-784) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| $ (-6 -4466)))) (((-784) |#2| $) 82 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4466)))) (-1923 (($ $) 13)) (-4148 (((-548) $) 60 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-626 (-548))))) (-3511 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 51)) (-3501 (((-877) $) 18 (-2802 (|has| |#2| (-625 (-877))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-625 (-877)))))) (-2046 (((-112) $ $) 21 (-2802 (|has| |#2| (-102)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102))))) (-4079 (($ (-657 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) 43)) (-2147 (((-112) (-1 (-112) (-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) $) 34 (|has| $ (-6 -4466))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (-2802 (|has| |#2| (-102)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102))))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-1215 |#1| |#2|) (-141) (-1122) (-1122)) (T -1215)) -((-3682 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122)))) (-4095 (*1 *1) (-12 (-4 *1 (-1215 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-4095 (*1 *1 *2) (-12 (-5 *2 (-657 (-2 (|:| -4291 *3) (|:| -4440 *4)))) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *1 (-1215 *3 *4)))) (-4083 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1215 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) -(-13 (-622 |t#1| |t#2|) (-616 |t#1| |t#2|) (-10 -8 (-15 -3682 (|t#2| $ |t#1| |t#2|)) (-15 -4095 ($)) (-15 -4095 ($ (-657 (-2 (|:| -4291 |t#1|) (|:| -4440 |t#2|))))) (-15 -4083 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -4291 |#1|) (|:| -4440 |#2|))) . T) ((-102) -2802 (|has| |#2| (-1122)) (|has| |#2| (-102)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-102))) ((-625 (-877)) -2802 (|has| |#2| (-1122)) (|has| |#2| (-625 (-877))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-625 (-877)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 #0#) -12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-501 #0#) . T) ((-501 |#2|) . T) ((-616 |#1| |#2|) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-319 (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)))) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1122))) ((-622 |#1| |#2|) . T) ((-1122) -2802 (|has| |#2| (-1122)) (|has| (-2 (|:| -4291 |#1|) (|:| -4440 |#2|)) (-1122))) ((-1239) . T)) -((-1625 (((-112)) 29)) (-2857 (((-1294) (-1180)) 31)) (-3235 (((-112)) 41)) (-2934 (((-1294)) 39)) (-3520 (((-1294) (-1180) (-1180)) 30)) (-2013 (((-112)) 42)) (-2468 (((-1294) |#1| |#2|) 53)) (-2827 (((-1294)) 26)) (-2333 (((-3 |#2| "failed") |#1|) 51)) (-3271 (((-1294)) 40))) -(((-1216 |#1| |#2|) (-10 -7 (-15 -2827 ((-1294))) (-15 -3520 ((-1294) (-1180) (-1180))) (-15 -2857 ((-1294) (-1180))) (-15 -2934 ((-1294))) (-15 -3271 ((-1294))) (-15 -1625 ((-112))) (-15 -3235 ((-112))) (-15 -2013 ((-112))) (-15 -2333 ((-3 |#2| "failed") |#1|)) (-15 -2468 ((-1294) |#1| |#2|))) (-1122) (-1122)) (T -1216)) -((-2468 (*1 *2 *3 *4) (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-2333 (*1 *2 *3) (|partial| -12 (-4 *2 (-1122)) (-5 *1 (-1216 *3 *2)) (-4 *3 (-1122)))) (-2013 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-3235 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-1625 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-3271 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-2934 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-2857 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1216 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1122)))) (-3520 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1216 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1122)))) (-2827 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) -(-10 -7 (-15 -2827 ((-1294))) (-15 -3520 ((-1294) (-1180) (-1180))) (-15 -2857 ((-1294) (-1180))) (-15 -2934 ((-1294))) (-15 -3271 ((-1294))) (-15 -1625 ((-112))) (-15 -3235 ((-112))) (-15 -2013 ((-112))) (-15 -2333 ((-3 |#2| "failed") |#1|)) (-15 -2468 ((-1294) |#1| |#2|))) -((-1532 (((-1180) (-1180)) 22)) (-2076 (((-52) (-1180)) 25))) -(((-1217) (-10 -7 (-15 -2076 ((-52) (-1180))) (-15 -1532 ((-1180) (-1180))))) (T -1217)) -((-1532 (*1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1217)))) (-2076 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-52)) (-5 *1 (-1217))))) -(-10 -7 (-15 -2076 ((-52) (-1180))) (-15 -1532 ((-1180) (-1180)))) -((-3501 (((-1219) |#1|) 11))) -(((-1218 |#1|) (-10 -7 (-15 -3501 ((-1219) |#1|))) (-1122)) (T -1218)) -((-3501 (*1 *2 *3) (-12 (-5 *2 (-1219)) (-5 *1 (-1218 *3)) (-4 *3 (-1122))))) -(-10 -7 (-15 -3501 ((-1219) |#1|))) -((-3429 (((-112) $ $) NIL)) (-2977 (((-657 (-1180)) $) 39)) (-2330 (((-657 (-1180)) $ (-657 (-1180))) 42)) (-4327 (((-657 (-1180)) $ (-657 (-1180))) 41)) (-1945 (((-657 (-1180)) $ (-657 (-1180))) 43)) (-2334 (((-657 (-1180)) $) 38)) (-4109 (($) 28)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2259 (((-657 (-1180)) $) 40)) (-2041 (((-1294) $ (-576)) 35) (((-1294) $) 36)) (-4148 (($ (-877) (-576)) 33) (($ (-877) (-576) (-877)) NIL)) (-3501 (((-877) $) 49) (($ (-877)) 32)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-1219) (-13 (-1122) (-628 (-877)) (-10 -8 (-15 -4148 ($ (-877) (-576))) (-15 -4148 ($ (-877) (-576) (-877))) (-15 -2041 ((-1294) $ (-576))) (-15 -2041 ((-1294) $)) (-15 -2259 ((-657 (-1180)) $)) (-15 -2977 ((-657 (-1180)) $)) (-15 -4109 ($)) (-15 -2334 ((-657 (-1180)) $)) (-15 -1945 ((-657 (-1180)) $ (-657 (-1180)))) (-15 -2330 ((-657 (-1180)) $ (-657 (-1180)))) (-15 -4327 ((-657 (-1180)) $ (-657 (-1180))))))) (T -1219)) -((-4148 (*1 *1 *2 *3) (-12 (-5 *2 (-877)) (-5 *3 (-576)) (-5 *1 (-1219)))) (-4148 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-877)) (-5 *3 (-576)) (-5 *1 (-1219)))) (-2041 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-1219)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1219)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219)))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219)))) (-4109 (*1 *1) (-5 *1 (-1219))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219)))) (-1945 (*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219)))) (-2330 (*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219)))) (-4327 (*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219))))) -(-13 (-1122) (-628 (-877)) (-10 -8 (-15 -4148 ($ (-877) (-576))) (-15 -4148 ($ (-877) (-576) (-877))) (-15 -2041 ((-1294) $ (-576))) (-15 -2041 ((-1294) $)) (-15 -2259 ((-657 (-1180)) $)) (-15 -2977 ((-657 (-1180)) $)) (-15 -4109 ($)) (-15 -2334 ((-657 (-1180)) $)) (-15 -1945 ((-657 (-1180)) $ (-657 (-1180)))) (-15 -2330 ((-657 (-1180)) $ (-657 (-1180)))) (-15 -4327 ((-657 (-1180)) $ (-657 (-1180)))))) -((-3429 (((-112) $ $) NIL)) (-2490 (((-1180) $ (-1180)) 17) (((-1180) $) 16)) (-2121 (((-1180) $ (-1180)) 15)) (-1466 (($ $ (-1180)) NIL)) (-1341 (((-3 (-1180) "failed") $) 11)) (-3056 (((-1180) $) 8)) (-2611 (((-3 (-1180) "failed") $) 12)) (-2144 (((-1180) $) 9)) (-3209 (($ (-400)) NIL) (($ (-400) (-1180)) NIL)) (-2676 (((-400) $) NIL)) (-2342 (((-1180) $) NIL)) (-2316 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-1989 (((-112) $) 21)) (-3501 (((-877) $) NIL)) (-3632 (($ $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-1220) (-13 (-375 (-400) (-1180)) (-10 -8 (-15 -2490 ((-1180) $ (-1180))) (-15 -2490 ((-1180) $)) (-15 -3056 ((-1180) $)) (-15 -1341 ((-3 (-1180) "failed") $)) (-15 -2611 ((-3 (-1180) "failed") $)) (-15 -1989 ((-112) $))))) (T -1220)) -((-2490 (*1 *2 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1220)))) (-2490 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1220)))) (-3056 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1220)))) (-1341 (*1 *2 *1) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-1220)))) (-2611 (*1 *2 *1) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-1220)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220))))) -(-13 (-375 (-400) (-1180)) (-10 -8 (-15 -2490 ((-1180) $ (-1180))) (-15 -2490 ((-1180) $)) (-15 -3056 ((-1180) $)) (-15 -1341 ((-3 (-1180) "failed") $)) (-15 -2611 ((-3 (-1180) "failed") $)) (-15 -1989 ((-112) $)))) -((-1536 (((-3 (-576) "failed") |#1|) 19)) (-3645 (((-3 (-576) "failed") |#1|) 14)) (-3282 (((-576) (-1180)) 33))) -(((-1221 |#1|) (-10 -7 (-15 -1536 ((-3 (-576) "failed") |#1|)) (-15 -3645 ((-3 (-576) "failed") |#1|)) (-15 -3282 ((-576) (-1180)))) (-1071)) (T -1221)) -((-3282 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-576)) (-5 *1 (-1221 *4)) (-4 *4 (-1071)))) (-3645 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1221 *3)) (-4 *3 (-1071)))) (-1536 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1221 *3)) (-4 *3 (-1071))))) -(-10 -7 (-15 -1536 ((-3 (-576) "failed") |#1|)) (-15 -3645 ((-3 (-576) "failed") |#1|)) (-15 -3282 ((-576) (-1180)))) -((-1486 (((-1155 (-227))) 9))) -(((-1222) (-10 -7 (-15 -1486 ((-1155 (-227)))))) (T -1222)) -((-1486 (*1 *2) (-12 (-5 *2 (-1155 (-227))) (-5 *1 (-1222))))) -(-10 -7 (-15 -1486 ((-1155 (-227))))) -((-1657 (($) 12)) (-4110 (($ $) 36)) (-2225 (($ $) 34)) (-2072 (($ $) 26)) (-4137 (($ $) 18)) (-2224 (($ $) 16)) (-4124 (($ $) 20)) (-2113 (($ $) 31)) (-2235 (($ $) 35)) (-2085 (($ $) 30))) -(((-1223 |#1|) (-10 -8 (-15 -1657 (|#1|)) (-15 -4110 (|#1| |#1|)) (-15 -2225 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -2224 (|#1| |#1|)) (-15 -4124 (|#1| |#1|)) (-15 -2235 (|#1| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -2113 (|#1| |#1|)) (-15 -2085 (|#1| |#1|))) (-1224)) (T -1223)) -NIL -(-10 -8 (-15 -1657 (|#1|)) (-15 -4110 (|#1| |#1|)) (-15 -2225 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -2224 (|#1| |#1|)) (-15 -4124 (|#1| |#1|)) (-15 -2235 (|#1| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -2113 (|#1| |#1|)) (-15 -2085 (|#1| |#1|))) -((-2176 (($ $) 26)) (-2030 (($ $) 11)) (-2150 (($ $) 27)) (-2004 (($ $) 10)) (-2201 (($ $) 28)) (-2052 (($ $) 9)) (-1657 (($) 16)) (-3670 (($ $) 19)) (-4067 (($ $) 18)) (-2213 (($ $) 29)) (-2062 (($ $) 8)) (-2188 (($ $) 30)) (-2042 (($ $) 7)) (-2163 (($ $) 31)) (-2017 (($ $) 6)) (-4110 (($ $) 20)) (-2100 (($ $) 32)) (-2225 (($ $) 21)) (-2072 (($ $) 33)) (-4137 (($ $) 22)) (-2125 (($ $) 34)) (-2224 (($ $) 23)) (-2137 (($ $) 35)) (-4124 (($ $) 24)) (-2113 (($ $) 36)) (-2235 (($ $) 25)) (-2085 (($ $) 37)) (** (($ $ $) 17))) -(((-1224) (-141)) (T -1224)) -((-1657 (*1 *1) (-4 *1 (-1224)))) -(-13 (-1227) (-95) (-505) (-35) (-294) (-10 -8 (-15 -1657 ($)))) -(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-1227) . T)) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3071 ((|#1| $) 19)) (-3210 (($ |#1| (-657 $)) 28) (($ (-657 |#1|)) 35) (($ |#1|) 30)) (-3793 (((-112) $ (-784)) 72)) (-3734 ((|#1| $ |#1|) 14 (|has| $ (-6 -4467)))) (-3682 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) 13 (|has| $ (-6 -4467)))) (-4359 (($) NIL T CONST)) (-1458 (((-657 |#1|) $) 77 (|has| $ (-6 -4466)))) (-2877 (((-657 $) $) 64)) (-1700 (((-112) $ $) 50 (|has| |#1| (-1122)))) (-1833 (((-112) $ (-784)) 62)) (-2070 (((-657 |#1|) $) 78 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2148 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 27)) (-4261 (((-112) $ (-784)) 60)) (-2424 (((-657 |#1|) $) 55)) (-2633 (((-112) $) 53)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3399 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 107)) (-3387 (((-112) $) 9)) (-3581 (($) 10)) (-2835 ((|#1| $ "value") NIL)) (-3883 (((-576) $ $) 48)) (-3725 (((-657 $) $) 89)) (-1991 (((-112) $ $) 110)) (-2228 (((-657 $) $) 105)) (-3973 (($ $) 106)) (-3628 (((-112) $) 84)) (-1482 (((-784) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4466))) (((-784) |#1| $) 17 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-1923 (($ $) 88)) (-3501 (((-877) $) 91 (|has| |#1| (-625 (-877))))) (-1986 (((-657 $) $) 12)) (-1633 (((-112) $ $) 39 (|has| |#1| (-1122)))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 37 (|has| |#1| (-102)))) (-3440 (((-784) $) 58 (|has| $ (-6 -4466))))) -(((-1225 |#1|) (-13 (-1032 |#1|) (-10 -8 (-6 -4466) (-6 -4467) (-15 -3210 ($ |#1| (-657 $))) (-15 -3210 ($ (-657 |#1|))) (-15 -3210 ($ |#1|)) (-15 -3628 ((-112) $)) (-15 -3973 ($ $)) (-15 -2228 ((-657 $) $)) (-15 -1991 ((-112) $ $)) (-15 -3725 ((-657 $) $)))) (-1122)) (T -1225)) -((-3628 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-1122)))) (-3210 (*1 *1 *2 *3) (-12 (-5 *3 (-657 (-1225 *2))) (-5 *1 (-1225 *2)) (-4 *2 (-1122)))) (-3210 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-1225 *3)))) (-3210 (*1 *1 *2) (-12 (-5 *1 (-1225 *2)) (-4 *2 (-1122)))) (-3973 (*1 *1 *1) (-12 (-5 *1 (-1225 *2)) (-4 *2 (-1122)))) (-2228 (*1 *2 *1) (-12 (-5 *2 (-657 (-1225 *3))) (-5 *1 (-1225 *3)) (-4 *3 (-1122)))) (-1991 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-1122)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-657 (-1225 *3))) (-5 *1 (-1225 *3)) (-4 *3 (-1122))))) -(-13 (-1032 |#1|) (-10 -8 (-6 -4466) (-6 -4467) (-15 -3210 ($ |#1| (-657 $))) (-15 -3210 ($ (-657 |#1|))) (-15 -3210 ($ |#1|)) (-15 -3628 ((-112) $)) (-15 -3973 ($ $)) (-15 -2228 ((-657 $) $)) (-15 -1991 ((-112) $ $)) (-15 -3725 ((-657 $) $)))) -((-2030 (($ $) 15)) (-2052 (($ $) 12)) (-2062 (($ $) 10)) (-2042 (($ $) 17))) -(((-1226 |#1|) (-10 -8 (-15 -2042 (|#1| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 -2052 (|#1| |#1|)) (-15 -2030 (|#1| |#1|))) (-1227)) (T -1226)) -NIL -(-10 -8 (-15 -2042 (|#1| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 -2052 (|#1| |#1|)) (-15 -2030 (|#1| |#1|))) -((-2030 (($ $) 11)) (-2004 (($ $) 10)) (-2052 (($ $) 9)) (-2062 (($ $) 8)) (-2042 (($ $) 7)) (-2017 (($ $) 6))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 9)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 7))) +(((-1209) (-1125)) (T -1209)) +NIL +(-1125) +((-2556 (((-660 (-660 (-975 |#1|))) (-660 (-420 (-975 |#1|))) (-660 (-1201))) 69)) (-2546 (((-660 (-305 (-420 (-975 |#1|)))) (-305 (-420 (-975 |#1|)))) 80) (((-660 (-305 (-420 (-975 |#1|)))) (-420 (-975 |#1|))) 76) (((-660 (-305 (-420 (-975 |#1|)))) (-305 (-420 (-975 |#1|))) (-1201)) 81) (((-660 (-305 (-420 (-975 |#1|)))) (-420 (-975 |#1|)) (-1201)) 75) (((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-305 (-420 (-975 |#1|))))) 106) (((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-420 (-975 |#1|)))) 105) (((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-305 (-420 (-975 |#1|)))) (-660 (-1201))) 107) (((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-420 (-975 |#1|))) (-660 (-1201))) 104))) +(((-1210 |#1|) (-10 -7 (-15 -2546 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-420 (-975 |#1|))) (-660 (-1201)))) (-15 -2546 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-305 (-420 (-975 |#1|)))) (-660 (-1201)))) (-15 -2546 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-420 (-975 |#1|))))) (-15 -2546 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-305 (-420 (-975 |#1|)))))) (-15 -2546 ((-660 (-305 (-420 (-975 |#1|)))) (-420 (-975 |#1|)) (-1201))) (-15 -2546 ((-660 (-305 (-420 (-975 |#1|)))) (-305 (-420 (-975 |#1|))) (-1201))) (-15 -2546 ((-660 (-305 (-420 (-975 |#1|)))) (-420 (-975 |#1|)))) (-15 -2546 ((-660 (-305 (-420 (-975 |#1|)))) (-305 (-420 (-975 |#1|))))) (-15 -2556 ((-660 (-660 (-975 |#1|))) (-660 (-420 (-975 |#1|))) (-660 (-1201))))) (-569)) (T -1210)) +((-2556 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-420 (-975 *5)))) (-5 *4 (-660 (-1201))) (-4 *5 (-569)) (-5 *2 (-660 (-660 (-975 *5)))) (-5 *1 (-1210 *5)))) (-2546 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 (-305 (-420 (-975 *4))))) (-5 *1 (-1210 *4)) (-5 *3 (-305 (-420 (-975 *4)))))) (-2546 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 (-305 (-420 (-975 *4))))) (-5 *1 (-1210 *4)) (-5 *3 (-420 (-975 *4))))) (-2546 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-569)) (-5 *2 (-660 (-305 (-420 (-975 *5))))) (-5 *1 (-1210 *5)) (-5 *3 (-305 (-420 (-975 *5)))))) (-2546 (*1 *2 *3 *4) (-12 (-5 *4 (-1201)) (-4 *5 (-569)) (-5 *2 (-660 (-305 (-420 (-975 *5))))) (-5 *1 (-1210 *5)) (-5 *3 (-420 (-975 *5))))) (-2546 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *4)))))) (-5 *1 (-1210 *4)) (-5 *3 (-660 (-305 (-420 (-975 *4))))))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-660 (-420 (-975 *4)))) (-4 *4 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *4)))))) (-5 *1 (-1210 *4)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-1201))) (-4 *5 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *5)))))) (-5 *1 (-1210 *5)) (-5 *3 (-660 (-305 (-420 (-975 *5))))))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-420 (-975 *5)))) (-5 *4 (-660 (-1201))) (-4 *5 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *5)))))) (-5 *1 (-1210 *5))))) +(-10 -7 (-15 -2546 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-420 (-975 |#1|))) (-660 (-1201)))) (-15 -2546 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-305 (-420 (-975 |#1|)))) (-660 (-1201)))) (-15 -2546 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-420 (-975 |#1|))))) (-15 -2546 ((-660 (-660 (-305 (-420 (-975 |#1|))))) (-660 (-305 (-420 (-975 |#1|)))))) (-15 -2546 ((-660 (-305 (-420 (-975 |#1|)))) (-420 (-975 |#1|)) (-1201))) (-15 -2546 ((-660 (-305 (-420 (-975 |#1|)))) (-305 (-420 (-975 |#1|))) (-1201))) (-15 -2546 ((-660 (-305 (-420 (-975 |#1|)))) (-420 (-975 |#1|)))) (-15 -2546 ((-660 (-305 (-420 (-975 |#1|)))) (-305 (-420 (-975 |#1|))))) (-15 -2556 ((-660 (-660 (-975 |#1|))) (-660 (-420 (-975 |#1|))) (-660 (-1201))))) +((-2594 (((-1183)) 7)) (-2565 (((-1183)) 11 T CONST)) (-3652 (((-1297) (-1183)) 13)) (-2585 (((-1183)) 8 T CONST)) (-2574 (((-131)) 10 T CONST))) +(((-1211) (-13 (-1242) (-10 -7 (-15 -2594 ((-1183))) (-15 -2585 ((-1183)) -1512) (-15 -2574 ((-131)) -1512) (-15 -2565 ((-1183)) -1512) (-15 -3652 ((-1297) (-1183)))))) (T -1211)) +((-2594 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1211)))) (-2585 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1211)))) (-2574 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1211)))) (-2565 (*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1211)))) (-3652 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1211))))) +(-13 (-1242) (-10 -7 (-15 -2594 ((-1183))) (-15 -2585 ((-1183)) -1512) (-15 -2574 ((-131)) -1512) (-15 -2565 ((-1183)) -1512) (-15 -3652 ((-1297) (-1183))))) +((-2631 (((-660 (-660 |#1|)) (-660 (-660 |#1|)) (-660 (-660 (-660 |#1|)))) 56)) (-2662 (((-660 (-660 (-660 |#1|))) (-660 (-660 |#1|))) 38)) (-2673 (((-1213 (-660 |#1|)) (-660 |#1|)) 49)) (-2695 (((-660 (-660 |#1|)) (-660 |#1|)) 45)) (-3394 (((-2 (|:| |f1| (-660 |#1|)) (|:| |f2| (-660 (-660 (-660 |#1|)))) (|:| |f3| (-660 (-660 |#1|))) (|:| |f4| (-660 (-660 (-660 |#1|))))) (-660 (-660 (-660 |#1|)))) 53)) (-2716 (((-2 (|:| |f1| (-660 |#1|)) (|:| |f2| (-660 (-660 (-660 |#1|)))) (|:| |f3| (-660 (-660 |#1|))) (|:| |f4| (-660 (-660 (-660 |#1|))))) (-660 |#1|) (-660 (-660 (-660 |#1|))) (-660 (-660 |#1|)) (-660 (-660 (-660 |#1|))) (-660 (-660 (-660 |#1|))) (-660 (-660 (-660 |#1|)))) 52)) (-2682 (((-660 (-660 |#1|)) (-660 (-660 |#1|))) 43)) (-2705 (((-660 |#1|) (-660 |#1|)) 46)) (-2622 (((-660 (-660 (-660 |#1|))) (-660 |#1|) (-660 (-660 (-660 |#1|)))) 32)) (-2613 (((-660 (-660 (-660 |#1|))) (-1 (-112) |#1| |#1|) (-660 |#1|) (-660 (-660 (-660 |#1|)))) 29)) (-2603 (((-2 (|:| |fs| (-112)) (|:| |sd| (-660 |#1|)) (|:| |td| (-660 (-660 |#1|)))) (-1 (-112) |#1| |#1|) (-660 |#1|) (-660 (-660 |#1|))) 24)) (-2640 (((-660 (-660 |#1|)) (-660 (-660 (-660 |#1|)))) 58)) (-2650 (((-660 (-660 |#1|)) (-1213 (-660 |#1|))) 60))) +(((-1212 |#1|) (-10 -7 (-15 -2603 ((-2 (|:| |fs| (-112)) (|:| |sd| (-660 |#1|)) (|:| |td| (-660 (-660 |#1|)))) (-1 (-112) |#1| |#1|) (-660 |#1|) (-660 (-660 |#1|)))) (-15 -2613 ((-660 (-660 (-660 |#1|))) (-1 (-112) |#1| |#1|) (-660 |#1|) (-660 (-660 (-660 |#1|))))) (-15 -2622 ((-660 (-660 (-660 |#1|))) (-660 |#1|) (-660 (-660 (-660 |#1|))))) (-15 -2631 ((-660 (-660 |#1|)) (-660 (-660 |#1|)) (-660 (-660 (-660 |#1|))))) (-15 -2640 ((-660 (-660 |#1|)) (-660 (-660 (-660 |#1|))))) (-15 -2650 ((-660 (-660 |#1|)) (-1213 (-660 |#1|)))) (-15 -2662 ((-660 (-660 (-660 |#1|))) (-660 (-660 |#1|)))) (-15 -2673 ((-1213 (-660 |#1|)) (-660 |#1|))) (-15 -2682 ((-660 (-660 |#1|)) (-660 (-660 |#1|)))) (-15 -2695 ((-660 (-660 |#1|)) (-660 |#1|))) (-15 -2705 ((-660 |#1|) (-660 |#1|))) (-15 -2716 ((-2 (|:| |f1| (-660 |#1|)) (|:| |f2| (-660 (-660 (-660 |#1|)))) (|:| |f3| (-660 (-660 |#1|))) (|:| |f4| (-660 (-660 (-660 |#1|))))) (-660 |#1|) (-660 (-660 (-660 |#1|))) (-660 (-660 |#1|)) (-660 (-660 (-660 |#1|))) (-660 (-660 (-660 |#1|))) (-660 (-660 (-660 |#1|))))) (-15 -3394 ((-2 (|:| |f1| (-660 |#1|)) (|:| |f2| (-660 (-660 (-660 |#1|)))) (|:| |f3| (-660 (-660 |#1|))) (|:| |f4| (-660 (-660 (-660 |#1|))))) (-660 (-660 (-660 |#1|)))))) (-865)) (T -1212)) +((-3394 (*1 *2 *3) (-12 (-4 *4 (-865)) (-5 *2 (-2 (|:| |f1| (-660 *4)) (|:| |f2| (-660 (-660 (-660 *4)))) (|:| |f3| (-660 (-660 *4))) (|:| |f4| (-660 (-660 (-660 *4)))))) (-5 *1 (-1212 *4)) (-5 *3 (-660 (-660 (-660 *4)))))) (-2716 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-865)) (-5 *3 (-660 *6)) (-5 *5 (-660 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-660 *5)) (|:| |f3| *5) (|:| |f4| (-660 *5)))) (-5 *1 (-1212 *6)) (-5 *4 (-660 *5)))) (-2705 (*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-1212 *3)))) (-2695 (*1 *2 *3) (-12 (-4 *4 (-865)) (-5 *2 (-660 (-660 *4))) (-5 *1 (-1212 *4)) (-5 *3 (-660 *4)))) (-2682 (*1 *2 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-865)) (-5 *1 (-1212 *3)))) (-2673 (*1 *2 *3) (-12 (-4 *4 (-865)) (-5 *2 (-1213 (-660 *4))) (-5 *1 (-1212 *4)) (-5 *3 (-660 *4)))) (-2662 (*1 *2 *3) (-12 (-4 *4 (-865)) (-5 *2 (-660 (-660 (-660 *4)))) (-5 *1 (-1212 *4)) (-5 *3 (-660 (-660 *4))))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-1213 (-660 *4))) (-4 *4 (-865)) (-5 *2 (-660 (-660 *4))) (-5 *1 (-1212 *4)))) (-2640 (*1 *2 *3) (-12 (-5 *3 (-660 (-660 (-660 *4)))) (-5 *2 (-660 (-660 *4))) (-5 *1 (-1212 *4)) (-4 *4 (-865)))) (-2631 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-660 (-660 *4)))) (-5 *2 (-660 (-660 *4))) (-4 *4 (-865)) (-5 *1 (-1212 *4)))) (-2622 (*1 *2 *3 *2) (-12 (-5 *2 (-660 (-660 (-660 *4)))) (-5 *3 (-660 *4)) (-4 *4 (-865)) (-5 *1 (-1212 *4)))) (-2613 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-660 (-660 (-660 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-660 *5)) (-4 *5 (-865)) (-5 *1 (-1212 *5)))) (-2603 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-865)) (-5 *4 (-660 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-660 *4)))) (-5 *1 (-1212 *6)) (-5 *5 (-660 *4))))) +(-10 -7 (-15 -2603 ((-2 (|:| |fs| (-112)) (|:| |sd| (-660 |#1|)) (|:| |td| (-660 (-660 |#1|)))) (-1 (-112) |#1| |#1|) (-660 |#1|) (-660 (-660 |#1|)))) (-15 -2613 ((-660 (-660 (-660 |#1|))) (-1 (-112) |#1| |#1|) (-660 |#1|) (-660 (-660 (-660 |#1|))))) (-15 -2622 ((-660 (-660 (-660 |#1|))) (-660 |#1|) (-660 (-660 (-660 |#1|))))) (-15 -2631 ((-660 (-660 |#1|)) (-660 (-660 |#1|)) (-660 (-660 (-660 |#1|))))) (-15 -2640 ((-660 (-660 |#1|)) (-660 (-660 (-660 |#1|))))) (-15 -2650 ((-660 (-660 |#1|)) (-1213 (-660 |#1|)))) (-15 -2662 ((-660 (-660 (-660 |#1|))) (-660 (-660 |#1|)))) (-15 -2673 ((-1213 (-660 |#1|)) (-660 |#1|))) (-15 -2682 ((-660 (-660 |#1|)) (-660 (-660 |#1|)))) (-15 -2695 ((-660 (-660 |#1|)) (-660 |#1|))) (-15 -2705 ((-660 |#1|) (-660 |#1|))) (-15 -2716 ((-2 (|:| |f1| (-660 |#1|)) (|:| |f2| (-660 (-660 (-660 |#1|)))) (|:| |f3| (-660 (-660 |#1|))) (|:| |f4| (-660 (-660 (-660 |#1|))))) (-660 |#1|) (-660 (-660 (-660 |#1|))) (-660 (-660 |#1|)) (-660 (-660 (-660 |#1|))) (-660 (-660 (-660 |#1|))) (-660 (-660 (-660 |#1|))))) (-15 -3394 ((-2 (|:| |f1| (-660 |#1|)) (|:| |f2| (-660 (-660 (-660 |#1|)))) (|:| |f3| (-660 (-660 |#1|))) (|:| |f4| (-660 (-660 (-660 |#1|))))) (-660 (-660 (-660 |#1|)))))) +((-2727 (($ (-660 (-660 |#1|))) 10)) (-2737 (((-660 (-660 |#1|)) $) 11)) (-3544 (((-880) $) 33))) +(((-1213 |#1|) (-10 -8 (-15 -2727 ($ (-660 (-660 |#1|)))) (-15 -2737 ((-660 (-660 |#1|)) $)) (-15 -3544 ((-880) $))) (-1125)) (T -1213)) +((-3544 (*1 *2 *1) (-12 (-5 *2 (-880)) (-5 *1 (-1213 *3)) (-4 *3 (-1125)))) (-2737 (*1 *2 *1) (-12 (-5 *2 (-660 (-660 *3))) (-5 *1 (-1213 *3)) (-4 *3 (-1125)))) (-2727 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-5 *1 (-1213 *3))))) +(-10 -8 (-15 -2727 ($ (-660 (-660 |#1|)))) (-15 -2737 ((-660 (-660 |#1|)) $)) (-15 -3544 ((-880) $))) +((-3473 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-4100 (($) NIL) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-2389 (((-1297) $ |#1| |#1|) NIL (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 ((|#2| $ |#1| |#2|) NIL)) (-2463 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2325 (((-3 |#2| "failed") |#1| $) NIL)) (-1534 (($) NIL T CONST)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))))) (-3719 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (|has| $ (-6 -4470))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-3 |#2| "failed") |#1| $) NIL)) (-3904 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-3654 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (|has| $ (-6 -4470))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470)))) (-2192 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#2| $ |#1|) NIL)) (-1461 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) NIL)) (-2406 ((|#1| $) NIL (|has| |#1| (-865)))) (-2530 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-660 |#2|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-2416 ((|#1| $) NIL (|has| |#1| (-865)))) (-2182 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4471))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| |#2| (-1125))))) (-3203 (((-660 |#1|) $) NIL)) (-4317 (((-112) |#1| $) NIL)) (-4330 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-2881 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-4285 (((-660 |#1|) $) NIL)) (-4298 (((-112) |#1| $) NIL)) (-1474 (((-1145) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| |#2| (-1125))))) (-3552 ((|#2| $) NIL (|has| |#1| (-865)))) (-1828 (((-3 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) "failed") (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL)) (-2397 (($ $ |#2|) NIL (|has| $ (-6 -4471)))) (-3530 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL)) (-1514 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-4306 (((-660 |#2|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3736 (($) NIL) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-1485 (((-787) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-787) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) NIL (-12 (|has| $ (-6 -4470)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (((-787) |#2| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125)))) (((-787) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-627 (-549))))) (-3553 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-3544 (((-880) $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-626 (-880))) (|has| |#2| (-626 (-880)))))) (-4448 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-3541 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) NIL)) (-1524 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) NIL (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) NIL (-2839 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102)) (|has| |#2| (-102))))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-1214 |#1| |#2|) (-13 (-1218 |#1| |#2|) (-10 -7 (-6 -4470))) (-1125) (-1125)) (T -1214)) +NIL +(-13 (-1218 |#1| |#2|) (-10 -7 (-6 -4470))) +((-3473 (((-112) $ $) NIL)) (-1844 (($ |#1| (-55)) 10)) (-2713 ((|#1| $) 12)) (-2810 (((-1183) $) NIL)) (-2740 (((-112) $ |#1|) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-4448 (((-112) $ $) NIL)) (-3013 (((-55) $) 14)) (-2970 (((-112) $ $) NIL))) +(((-1215 |#1|) (-13 (-851 |#1|) (-10 -8 (-15 -1844 ($ |#1| (-55))))) (-1125)) (T -1215)) +((-1844 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1215 *2)) (-4 *2 (-1125))))) +(-13 (-851 |#1|) (-10 -8 (-15 -1844 ($ |#1| (-55))))) +((-2748 ((|#1| (-660 |#1|)) 46)) (-2770 ((|#1| |#1| (-577)) 24)) (-2760 (((-1197 |#1|) |#1| (-944)) 20))) +(((-1216 |#1|) (-10 -7 (-15 -2748 (|#1| (-660 |#1|))) (-15 -2760 ((-1197 |#1|) |#1| (-944))) (-15 -2770 (|#1| |#1| (-577)))) (-375)) (T -1216)) +((-2770 (*1 *2 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-1216 *2)) (-4 *2 (-375)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *4 (-944)) (-5 *2 (-1197 *3)) (-5 *1 (-1216 *3)) (-4 *3 (-375)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-5 *1 (-1216 *2)) (-4 *2 (-375))))) +(-10 -7 (-15 -2748 (|#1| (-660 |#1|))) (-15 -2760 ((-1197 |#1|) |#1| (-944))) (-15 -2770 (|#1| |#1| (-577)))) +((-4100 (($) 10) (($ (-660 (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)))) 14)) (-3719 (($ (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1461 (((-660 (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) $) 39) (((-660 |#3|) $) 41)) (-2182 (($ (-1 (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-4087 (($ (-1 (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-4330 (((-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) $) 60)) (-2881 (($ (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) $) 16)) (-4285 (((-660 |#2|) $) 19)) (-4298 (((-112) |#2| $) 65)) (-1828 (((-3 (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) "failed") (-1 (-112) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) $) 64)) (-3530 (((-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) $) 69)) (-1514 (((-112) (-1 (-112) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-4306 (((-660 |#3|) $) 43)) (-2872 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-1485 (((-787) (-1 (-112) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) $) NIL) (((-787) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) $) NIL) (((-787) |#3| $) NIL) (((-787) (-1 (-112) |#3|) $) 79)) (-3544 (((-880) $) 27)) (-1524 (((-112) (-1 (-112) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2970 (((-112) $ $) 51))) +(((-1217 |#1| |#2| |#3|) (-10 -8 (-15 -2970 ((-112) |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -4087 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4100 (|#1| (-660 (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))))) (-15 -4100 (|#1|)) (-15 -4087 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2182 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1524 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1514 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1485 ((-787) (-1 (-112) |#3|) |#1|)) (-15 -1461 ((-660 |#3|) |#1|)) (-15 -1485 ((-787) |#3| |#1|)) (-15 -2872 (|#3| |#1| |#2| |#3|)) (-15 -2872 (|#3| |#1| |#2|)) (-15 -4306 ((-660 |#3|) |#1|)) (-15 -4298 ((-112) |#2| |#1|)) (-15 -4285 ((-660 |#2|) |#1|)) (-15 -3719 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3719 (|#1| (-1 (-112) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) |#1|)) (-15 -3719 (|#1| (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) |#1|)) (-15 -1828 ((-3 (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) "failed") (-1 (-112) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) |#1|)) (-15 -4330 ((-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) |#1|)) (-15 -2881 (|#1| (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) |#1|)) (-15 -3530 ((-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) |#1|)) (-15 -1485 ((-787) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) |#1|)) (-15 -1461 ((-660 (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) |#1|)) (-15 -1485 ((-787) (-1 (-112) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) |#1|)) (-15 -1514 ((-112) (-1 (-112) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) |#1|)) (-15 -1524 ((-112) (-1 (-112) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) |#1|)) (-15 -2182 (|#1| (-1 (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) |#1|)) (-15 -4087 (|#1| (-1 (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) |#1|))) (-1218 |#2| |#3|) (-1125) (-1125)) (T -1217)) +NIL +(-10 -8 (-15 -2970 ((-112) |#1| |#1|)) (-15 -3544 ((-880) |#1|)) (-15 -4087 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4100 (|#1| (-660 (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))))) (-15 -4100 (|#1|)) (-15 -4087 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2182 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1524 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1514 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1485 ((-787) (-1 (-112) |#3|) |#1|)) (-15 -1461 ((-660 |#3|) |#1|)) (-15 -1485 ((-787) |#3| |#1|)) (-15 -2872 (|#3| |#1| |#2| |#3|)) (-15 -2872 (|#3| |#1| |#2|)) (-15 -4306 ((-660 |#3|) |#1|)) (-15 -4298 ((-112) |#2| |#1|)) (-15 -4285 ((-660 |#2|) |#1|)) (-15 -3719 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3719 (|#1| (-1 (-112) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) |#1|)) (-15 -3719 (|#1| (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) |#1|)) (-15 -1828 ((-3 (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) "failed") (-1 (-112) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) |#1|)) (-15 -4330 ((-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) |#1|)) (-15 -2881 (|#1| (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) |#1|)) (-15 -3530 ((-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) |#1|)) (-15 -1485 ((-787) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) |#1|)) (-15 -1461 ((-660 (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) |#1|)) (-15 -1485 ((-787) (-1 (-112) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) |#1|)) (-15 -1514 ((-112) (-1 (-112) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) |#1|)) (-15 -1524 ((-112) (-1 (-112) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) |#1|)) (-15 -2182 (|#1| (-1 (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) |#1|)) (-15 -4087 (|#1| (-1 (-2 (|:| -4295 |#2|) (|:| -4444 |#3|)) (-2 (|:| -4295 |#2|) (|:| -4444 |#3|))) |#1|))) +((-3473 (((-112) $ $) 20 (-2839 (|has| |#2| (-102)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102))))) (-4100 (($) 73) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 72)) (-2389 (((-1297) $ |#1| |#1|) 100 (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) 8)) (-3709 ((|#2| $ |#1| |#2|) 74)) (-2463 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 46 (|has| $ (-6 -4470)))) (-2067 (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 56 (|has| $ (-6 -4470)))) (-2325 (((-3 |#2| "failed") |#1| $) 62)) (-1534 (($) 7 T CONST)) (-1817 (($ $) 59 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470))))) (-3719 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 48 (|has| $ (-6 -4470))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 47 (|has| $ (-6 -4470))) (((-3 |#2| "failed") |#1| $) 63)) (-3904 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 55 (|has| $ (-6 -4470)))) (-3654 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 57 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470)))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 54 (|has| $ (-6 -4470))) (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 53 (|has| $ (-6 -4470)))) (-2192 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4471)))) (-2117 ((|#2| $ |#1|) 89)) (-1461 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 31 (|has| $ (-6 -4470))) (((-660 |#2|) $) 80 (|has| $ (-6 -4470)))) (-1479 (((-112) $ (-787)) 9)) (-2406 ((|#1| $) 97 (|has| |#1| (-865)))) (-2530 (((-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 30 (|has| $ (-6 -4470))) (((-660 |#2|) $) 81 (|has| $ (-6 -4470)))) (-2820 (((-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470))))) (-2416 ((|#1| $) 96 (|has| |#1| (-865)))) (-2182 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 35 (|has| $ (-6 -4471))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4471)))) (-4087 (($ (-1 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-1443 (((-112) $ (-787)) 10)) (-2810 (((-1183) $) 23 (-2839 (|has| |#2| (-1125)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))))) (-3203 (((-660 |#1|) $) 64)) (-4317 (((-112) |#1| $) 65)) (-4330 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 40)) (-2881 (($ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 41)) (-4285 (((-660 |#1|) $) 94)) (-4298 (((-112) |#1| $) 93)) (-1474 (((-1145) $) 22 (-2839 (|has| |#2| (-1125)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))))) (-3552 ((|#2| $) 98 (|has| |#1| (-865)))) (-1828 (((-3 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) "failed") (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 52)) (-2397 (($ $ |#2|) 99 (|has| $ (-6 -4471)))) (-3530 (((-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 42)) (-1514 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 33 (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))))) 27 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-305 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 26 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) 25 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 24 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)))) (($ $ (-660 |#2|) (-660 |#2|)) 87 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-305 |#2|)) 85 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125)))) (($ $ (-660 (-305 |#2|))) 84 (-12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))))) (-3840 (((-112) $ $) 14)) (-4274 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4470)) (|has| |#2| (-1125))))) (-4306 (((-660 |#2|) $) 92)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-3736 (($) 50) (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 49)) (-1485 (((-787) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 32 (|has| $ (-6 -4470))) (((-787) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| $ (-6 -4470)))) (((-787) |#2| $) 82 (-12 (|has| |#2| (-1125)) (|has| $ (-6 -4470)))) (((-787) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4470)))) (-1944 (($ $) 13)) (-4152 (((-549) $) 60 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-627 (-549))))) (-3553 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 51)) (-3544 (((-880) $) 18 (-2839 (|has| |#2| (-626 (-880))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-626 (-880)))))) (-4448 (((-112) $ $) 21 (-2839 (|has| |#2| (-102)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102))))) (-3541 (($ (-660 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) 43)) (-1524 (((-112) (-1 (-112) (-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) $) 34 (|has| $ (-6 -4470))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (-2839 (|has| |#2| (-102)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102))))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-1218 |#1| |#2|) (-141) (-1125) (-1125)) (T -1218)) +((-3709 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125)))) (-4100 (*1 *1) (-12 (-4 *1 (-1218 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -4295 *3) (|:| -4444 *4)))) (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *1 (-1218 *3 *4)))) (-4087 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1218 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125))))) +(-13 (-623 |t#1| |t#2|) (-617 |t#1| |t#2|) (-10 -8 (-15 -3709 (|t#2| $ |t#1| |t#2|)) (-15 -4100 ($)) (-15 -4100 ($ (-660 (-2 (|:| -4295 |t#1|) (|:| -4444 |t#2|))))) (-15 -4087 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4295 |#1|) (|:| -4444 |#2|))) . T) ((-102) -2839 (|has| |#2| (-1125)) (|has| |#2| (-102)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-102))) ((-626 (-880)) -2839 (|has| |#2| (-1125)) (|has| |#2| (-626 (-880))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-626 (-880)))) ((-152 #0#) . T) ((-627 (-549)) |has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-627 (-549))) ((-232 #0#) . T) ((-241 #0#) . T) ((-297 |#1| |#2|) . T) ((-299 |#1| |#2|) . T) ((-320 #0#) -12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))) ((-320 |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-502 #0#) . T) ((-502 |#2|) . T) ((-617 |#1| |#2|) . T) ((-527 #0# #0#) -12 (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-320 (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)))) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))) ((-527 |#2| |#2|) -12 (|has| |#2| (-320 |#2|)) (|has| |#2| (-1125))) ((-623 |#1| |#2|) . T) ((-1125) -2839 (|has| |#2| (-1125)) (|has| (-2 (|:| -4295 |#1|) (|:| -4444 |#2|)) (-1125))) ((-1242) . T)) +((-2838 (((-112)) 29)) (-2805 (((-1297) (-1183)) 31)) (-2850 (((-112)) 41)) (-2815 (((-1297)) 39)) (-2792 (((-1297) (-1183) (-1183)) 30)) (-2861 (((-112)) 42)) (-2881 (((-1297) |#1| |#2|) 53)) (-2780 (((-1297)) 26)) (-2871 (((-3 |#2| "failed") |#1|) 51)) (-2827 (((-1297)) 40))) +(((-1219 |#1| |#2|) (-10 -7 (-15 -2780 ((-1297))) (-15 -2792 ((-1297) (-1183) (-1183))) (-15 -2805 ((-1297) (-1183))) (-15 -2815 ((-1297))) (-15 -2827 ((-1297))) (-15 -2838 ((-112))) (-15 -2850 ((-112))) (-15 -2861 ((-112))) (-15 -2871 ((-3 |#2| "failed") |#1|)) (-15 -2881 ((-1297) |#1| |#2|))) (-1125) (-1125)) (T -1219)) +((-2881 (*1 *2 *3 *4) (-12 (-5 *2 (-1297)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) (-2871 (*1 *2 *3) (|partial| -12 (-4 *2 (-1125)) (-5 *1 (-1219 *3 *2)) (-4 *3 (-1125)))) (-2861 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) (-2850 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) (-2838 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) (-2827 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) (-2815 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1219 *4 *5)) (-4 *4 (-1125)) (-4 *5 (-1125)))) (-2792 (*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1219 *4 *5)) (-4 *4 (-1125)) (-4 *5 (-1125)))) (-2780 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125))))) +(-10 -7 (-15 -2780 ((-1297))) (-15 -2792 ((-1297) (-1183) (-1183))) (-15 -2805 ((-1297) (-1183))) (-15 -2815 ((-1297))) (-15 -2827 ((-1297))) (-15 -2838 ((-112))) (-15 -2850 ((-112))) (-15 -2861 ((-112))) (-15 -2871 ((-3 |#2| "failed") |#1|)) (-15 -2881 ((-1297) |#1| |#2|))) +((-2900 (((-1183) (-1183)) 22)) (-2891 (((-52) (-1183)) 25))) +(((-1220) (-10 -7 (-15 -2891 ((-52) (-1183))) (-15 -2900 ((-1183) (-1183))))) (T -1220)) +((-2900 (*1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1220)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-52)) (-5 *1 (-1220))))) +(-10 -7 (-15 -2891 ((-52) (-1183))) (-15 -2900 ((-1183) (-1183)))) +((-3544 (((-1222) |#1|) 11))) +(((-1221 |#1|) (-10 -7 (-15 -3544 ((-1222) |#1|))) (-1125)) (T -1221)) +((-3544 (*1 *2 *3) (-12 (-5 *2 (-1222)) (-5 *1 (-1221 *3)) (-4 *3 (-1125))))) +(-10 -7 (-15 -3544 ((-1222) |#1|))) +((-3473 (((-112) $ $) NIL)) (-3016 (((-660 (-1183)) $) 39)) (-2920 (((-660 (-1183)) $ (-660 (-1183))) 42)) (-2910 (((-660 (-1183)) $ (-660 (-1183))) 41)) (-2929 (((-660 (-1183)) $ (-660 (-1183))) 43)) (-2938 (((-660 (-1183)) $) 38)) (-4113 (($) 28)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2949 (((-660 (-1183)) $) 40)) (-2072 (((-1297) $ (-577)) 35) (((-1297) $) 36)) (-4152 (($ (-880) (-577)) 33) (($ (-880) (-577) (-880)) NIL)) (-3544 (((-880) $) 49) (($ (-880)) 32)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-1222) (-13 (-1125) (-629 (-880)) (-10 -8 (-15 -4152 ($ (-880) (-577))) (-15 -4152 ($ (-880) (-577) (-880))) (-15 -2072 ((-1297) $ (-577))) (-15 -2072 ((-1297) $)) (-15 -2949 ((-660 (-1183)) $)) (-15 -3016 ((-660 (-1183)) $)) (-15 -4113 ($)) (-15 -2938 ((-660 (-1183)) $)) (-15 -2929 ((-660 (-1183)) $ (-660 (-1183)))) (-15 -2920 ((-660 (-1183)) $ (-660 (-1183)))) (-15 -2910 ((-660 (-1183)) $ (-660 (-1183))))))) (T -1222)) +((-4152 (*1 *1 *2 *3) (-12 (-5 *2 (-880)) (-5 *3 (-577)) (-5 *1 (-1222)))) (-4152 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-880)) (-5 *3 (-577)) (-5 *1 (-1222)))) (-2072 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-1222)))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1222)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222)))) (-4113 (*1 *1) (-5 *1 (-1222))) (-2938 (*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222)))) (-2929 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222)))) (-2920 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222)))) (-2910 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222))))) +(-13 (-1125) (-629 (-880)) (-10 -8 (-15 -4152 ($ (-880) (-577))) (-15 -4152 ($ (-880) (-577) (-880))) (-15 -2072 ((-1297) $ (-577))) (-15 -2072 ((-1297) $)) (-15 -2949 ((-660 (-1183)) $)) (-15 -3016 ((-660 (-1183)) $)) (-15 -4113 ($)) (-15 -2938 ((-660 (-1183)) $)) (-15 -2929 ((-660 (-1183)) $ (-660 (-1183)))) (-15 -2920 ((-660 (-1183)) $ (-660 (-1183)))) (-15 -2910 ((-660 (-1183)) $ (-660 (-1183)))))) +((-3473 (((-112) $ $) NIL)) (-2997 (((-1183) $ (-1183)) 17) (((-1183) $) 16)) (-3687 (((-1183) $ (-1183)) 15)) (-3730 (($ $ (-1183)) NIL)) (-2978 (((-3 (-1183) "failed") $) 11)) (-2988 (((-1183) $) 8)) (-2968 (((-3 (-1183) "failed") $) 12)) (-3699 (((-1183) $) 9)) (-3253 (($ (-401)) NIL) (($ (-401) (-1183)) NIL)) (-2713 (((-401) $) NIL)) (-2810 (((-1183) $) NIL)) (-3710 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2959 (((-112) $) 21)) (-3544 (((-880) $) NIL)) (-3720 (($ $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-1223) (-13 (-376 (-401) (-1183)) (-10 -8 (-15 -2997 ((-1183) $ (-1183))) (-15 -2997 ((-1183) $)) (-15 -2988 ((-1183) $)) (-15 -2978 ((-3 (-1183) "failed") $)) (-15 -2968 ((-3 (-1183) "failed") $)) (-15 -2959 ((-112) $))))) (T -1223)) +((-2997 (*1 *2 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1223)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1223)))) (-2988 (*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1223)))) (-2978 (*1 *2 *1) (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-1223)))) (-2968 (*1 *2 *1) (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-1223)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223))))) +(-13 (-376 (-401) (-1183)) (-10 -8 (-15 -2997 ((-1183) $ (-1183))) (-15 -2997 ((-1183) $)) (-15 -2988 ((-1183) $)) (-15 -2978 ((-3 (-1183) "failed") $)) (-15 -2968 ((-3 (-1183) "failed") $)) (-15 -2959 ((-112) $)))) +((-3010 (((-3 (-577) "failed") |#1|) 19)) (-3023 (((-3 (-577) "failed") |#1|) 14)) (-3034 (((-577) (-1183)) 33))) +(((-1224 |#1|) (-10 -7 (-15 -3010 ((-3 (-577) "failed") |#1|)) (-15 -3023 ((-3 (-577) "failed") |#1|)) (-15 -3034 ((-577) (-1183)))) (-1074)) (T -1224)) +((-3034 (*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-577)) (-5 *1 (-1224 *4)) (-4 *4 (-1074)))) (-3023 (*1 *2 *3) (|partial| -12 (-5 *2 (-577)) (-5 *1 (-1224 *3)) (-4 *3 (-1074)))) (-3010 (*1 *2 *3) (|partial| -12 (-5 *2 (-577)) (-5 *1 (-1224 *3)) (-4 *3 (-1074))))) +(-10 -7 (-15 -3010 ((-3 (-577) "failed") |#1|)) (-15 -3023 ((-3 (-577) "failed") |#1|)) (-15 -3034 ((-577) (-1183)))) +((-3043 (((-1158 (-228))) 9))) +(((-1225) (-10 -7 (-15 -3043 ((-1158 (-228)))))) (T -1225)) +((-3043 (*1 *2) (-12 (-5 *2 (-1158 (-228))) (-5 *1 (-1225))))) +(-10 -7 (-15 -3043 ((-1158 (-228))))) +((-1659 (($) 12)) (-4114 (($ $) 36)) (-2262 (($ $) 34)) (-2106 (($ $) 26)) (-4141 (($ $) 18)) (-2261 (($ $) 16)) (-4128 (($ $) 20)) (-2150 (($ $) 31)) (-2272 (($ $) 35)) (-2120 (($ $) 30))) +(((-1226 |#1|) (-10 -8 (-15 -1659 (|#1|)) (-15 -4114 (|#1| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -2261 (|#1| |#1|)) (-15 -4128 (|#1| |#1|)) (-15 -2272 (|#1| |#1|)) (-15 -2106 (|#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -2120 (|#1| |#1|))) (-1227)) (T -1226)) +NIL +(-10 -8 (-15 -1659 (|#1|)) (-15 -4114 (|#1| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -2261 (|#1| |#1|)) (-15 -4128 (|#1| |#1|)) (-15 -2272 (|#1| |#1|)) (-15 -2106 (|#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -2120 (|#1| |#1|))) +((-2212 (($ $) 26)) (-2060 (($ $) 11)) (-2186 (($ $) 27)) (-2032 (($ $) 10)) (-2237 (($ $) 28)) (-2084 (($ $) 9)) (-1659 (($) 16)) (-3698 (($ $) 19)) (-4072 (($ $) 18)) (-2249 (($ $) 29)) (-2095 (($ $) 8)) (-2224 (($ $) 30)) (-2073 (($ $) 7)) (-2199 (($ $) 31)) (-2046 (($ $) 6)) (-4114 (($ $) 20)) (-2136 (($ $) 32)) (-2262 (($ $) 21)) (-2106 (($ $) 33)) (-4141 (($ $) 22)) (-2162 (($ $) 34)) (-2261 (($ $) 23)) (-2174 (($ $) 35)) (-4128 (($ $) 24)) (-2150 (($ $) 36)) (-2272 (($ $) 25)) (-2120 (($ $) 37)) (** (($ $ $) 17))) (((-1227) (-141)) (T -1227)) -((-2030 (*1 *1 *1) (-4 *1 (-1227))) (-2004 (*1 *1 *1) (-4 *1 (-1227))) (-2052 (*1 *1 *1) (-4 *1 (-1227))) (-2062 (*1 *1 *1) (-4 *1 (-1227))) (-2042 (*1 *1 *1) (-4 *1 (-1227))) (-2017 (*1 *1 *1) (-4 *1 (-1227)))) -(-13 (-10 -8 (-15 -2017 ($ $)) (-15 -2042 ($ $)) (-15 -2062 ($ $)) (-15 -2052 ($ $)) (-15 -2004 ($ $)) (-15 -2030 ($ $)))) -((-4355 ((|#2| |#2|) 98)) (-3356 (((-112) |#2|) 29)) (-1907 ((|#2| |#2|) 33)) (-1916 ((|#2| |#2|) 35)) (-1959 ((|#2| |#2| (-1198)) 92) ((|#2| |#2|) 93)) (-2108 (((-171 |#2|) |#2|) 31)) (-4405 ((|#2| |#2| (-1198)) 94) ((|#2| |#2|) 95))) -(((-1228 |#1| |#2|) (-10 -7 (-15 -1959 (|#2| |#2|)) (-15 -1959 (|#2| |#2| (-1198))) (-15 -4405 (|#2| |#2|)) (-15 -4405 (|#2| |#2| (-1198))) (-15 -4355 (|#2| |#2|)) (-15 -1907 (|#2| |#2|)) (-15 -1916 (|#2| |#2|)) (-15 -3356 ((-112) |#2|)) (-15 -2108 ((-171 |#2|) |#2|))) (-13 (-464) (-1060 (-576)) (-652 (-576))) (-13 (-27) (-1224) (-442 |#1|))) (T -1228)) -((-2108 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-171 *3)) (-5 *1 (-1228 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) (-3356 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-112)) (-5 *1 (-1228 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) (-1916 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3))))) (-1907 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3))))) (-4355 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3))))) (-4405 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-1228 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4))))) (-4405 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3))))) (-1959 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-1228 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4))))) (-1959 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3)))))) -(-10 -7 (-15 -1959 (|#2| |#2|)) (-15 -1959 (|#2| |#2| (-1198))) (-15 -4405 (|#2| |#2|)) (-15 -4405 (|#2| |#2| (-1198))) (-15 -4355 (|#2| |#2|)) (-15 -1907 (|#2| |#2|)) (-15 -1916 (|#2| |#2|)) (-15 -3356 ((-112) |#2|)) (-15 -2108 ((-171 |#2|) |#2|))) -((-3145 ((|#4| |#4| |#1|) 31)) (-3225 ((|#4| |#4| |#1|) 32))) -(((-1229 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3145 (|#4| |#4| |#1|)) (-15 -3225 (|#4| |#4| |#1|))) (-568) (-384 |#1|) (-384 |#1|) (-700 |#1| |#2| |#3|)) (T -1229)) -((-3225 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1229 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) (-3145 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1229 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5))))) -(-10 -7 (-15 -3145 (|#4| |#4| |#1|)) (-15 -3225 (|#4| |#4| |#1|))) -((-4147 ((|#2| |#2|) 148)) (-4381 ((|#2| |#2|) 145)) (-2840 ((|#2| |#2|) 136)) (-3651 ((|#2| |#2|) 133)) (-3354 ((|#2| |#2|) 141)) (-2559 ((|#2| |#2|) 129)) (-4101 ((|#2| |#2|) 44)) (-3636 ((|#2| |#2|) 105)) (-2394 ((|#2| |#2|) 88)) (-1842 ((|#2| |#2|) 143)) (-2542 ((|#2| |#2|) 131)) (-3393 ((|#2| |#2|) 153)) (-4230 ((|#2| |#2|) 151)) (-2524 ((|#2| |#2|) 152)) (-3201 ((|#2| |#2|) 150)) (-2878 ((|#2| |#2|) 163)) (-3595 ((|#2| |#2|) 30 (-12 (|has| |#2| (-626 (-908 |#1|))) (|has| |#2| (-902 |#1|)) (|has| |#1| (-626 (-908 |#1|))) (|has| |#1| (-902 |#1|))))) (-3577 ((|#2| |#2|) 89)) (-2811 ((|#2| |#2|) 154)) (-1999 ((|#2| |#2|) 155)) (-3584 ((|#2| |#2|) 142)) (-4187 ((|#2| |#2|) 130)) (-2257 ((|#2| |#2|) 149)) (-3849 ((|#2| |#2|) 147)) (-4296 ((|#2| |#2|) 137)) (-2254 ((|#2| |#2|) 135)) (-4186 ((|#2| |#2|) 139)) (-3165 ((|#2| |#2|) 127))) -(((-1230 |#1| |#2|) (-10 -7 (-15 -1999 (|#2| |#2|)) (-15 -2394 (|#2| |#2|)) (-15 -2878 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -4101 (|#2| |#2|)) (-15 -3577 (|#2| |#2|)) (-15 -2811 (|#2| |#2|)) (-15 -3165 (|#2| |#2|)) (-15 -4186 (|#2| |#2|)) (-15 -4296 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -4187 (|#2| |#2|)) (-15 -3584 (|#2| |#2|)) (-15 -2542 (|#2| |#2|)) (-15 -1842 (|#2| |#2|)) (-15 -2559 (|#2| |#2|)) (-15 -3354 (|#2| |#2|)) (-15 -2840 (|#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -4381 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -3849 (|#2| |#2|)) (-15 -3201 (|#2| |#2|)) (-15 -4230 (|#2| |#2|)) (-15 -2524 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (IF (|has| |#1| (-902 |#1|)) (IF (|has| |#1| (-626 (-908 |#1|))) (IF (|has| |#2| (-626 (-908 |#1|))) (IF (|has| |#2| (-902 |#1|)) (-15 -3595 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-464) (-13 (-442 |#1|) (-1224))) (T -1230)) -((-3595 (*1 *2 *2) (-12 (-4 *3 (-626 (-908 *3))) (-4 *3 (-902 *3)) (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-626 (-908 *3))) (-4 *2 (-902 *3)) (-4 *2 (-13 (-442 *3) (-1224))))) (-3393 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-2524 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-4230 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-3201 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-4381 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-2840 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-3354 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-2559 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-1842 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-2542 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-3584 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-4187 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-4296 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-4186 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-3165 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-2811 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-3577 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-4101 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-2878 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-2394 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224))))) (-1999 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-442 *3) (-1224)))))) -(-10 -7 (-15 -1999 (|#2| |#2|)) (-15 -2394 (|#2| |#2|)) (-15 -2878 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -4101 (|#2| |#2|)) (-15 -3577 (|#2| |#2|)) (-15 -2811 (|#2| |#2|)) (-15 -3165 (|#2| |#2|)) (-15 -4186 (|#2| |#2|)) (-15 -4296 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -4187 (|#2| |#2|)) (-15 -3584 (|#2| |#2|)) (-15 -2542 (|#2| |#2|)) (-15 -1842 (|#2| |#2|)) (-15 -2559 (|#2| |#2|)) (-15 -3354 (|#2| |#2|)) (-15 -2840 (|#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -4381 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -3849 (|#2| |#2|)) (-15 -3201 (|#2| |#2|)) (-15 -4230 (|#2| |#2|)) (-15 -2524 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (IF (|has| |#1| (-902 |#1|)) (IF (|has| |#1| (-626 (-908 |#1|))) (IF (|has| |#2| (-626 (-908 |#1|))) (IF (|has| |#2| (-902 |#1|)) (-15 -3595 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-4021 (((-112) |#5| $) 68) (((-112) $) 110)) (-1329 ((|#5| |#5| $) 83)) (-2035 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-2292 (((-657 |#5|) (-657 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-1624 (((-3 $ "failed") (-657 |#5|)) 135)) (-3522 (((-3 $ "failed") $) 120)) (-2073 ((|#5| |#5| $) 102)) (-3206 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3003 ((|#5| |#5| $) 106)) (-3622 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-1957 (((-2 (|:| -2016 (-657 |#5|)) (|:| -3209 (-657 |#5|))) $) 63)) (-1878 (((-112) |#5| $) 66) (((-112) $) 111)) (-3627 ((|#4| $) 116)) (-3920 (((-3 |#5| "failed") $) 118)) (-1765 (((-657 |#5|) $) 55)) (-4365 (((-112) |#5| $) 75) (((-112) $) 115)) (-2833 ((|#5| |#5| $) 89)) (-4015 (((-112) $ $) 29)) (-3965 (((-112) |#5| $) 71) (((-112) $) 113)) (-2843 ((|#5| |#5| $) 86)) (-3510 (((-3 |#5| "failed") $) 117)) (-3926 (($ $ |#5|) 136)) (-1770 (((-784) $) 60)) (-3511 (($ (-657 |#5|)) 133)) (-2956 (($ $ |#4|) 131)) (-1664 (($ $ |#4|) 129)) (-3459 (($ $) 128)) (-3501 (((-877) $) NIL) (((-657 |#5|) $) 121)) (-3540 (((-784) $) 140)) (-2631 (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#5|))) "failed") (-657 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#5|))) "failed") (-657 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-3302 (((-112) $ (-1 (-112) |#5| (-657 |#5|))) 108)) (-3039 (((-657 |#4|) $) 123)) (-1863 (((-112) |#4| $) 126)) (-2933 (((-112) $ $) 20))) -(((-1231 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3540 ((-784) |#1|)) (-15 -3926 (|#1| |#1| |#5|)) (-15 -2035 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1863 ((-112) |#4| |#1|)) (-15 -3039 ((-657 |#4|) |#1|)) (-15 -3522 ((-3 |#1| "failed") |#1|)) (-15 -3920 ((-3 |#5| "failed") |#1|)) (-15 -3510 ((-3 |#5| "failed") |#1|)) (-15 -3003 (|#5| |#5| |#1|)) (-15 -3459 (|#1| |#1|)) (-15 -2073 (|#5| |#5| |#1|)) (-15 -2833 (|#5| |#5| |#1|)) (-15 -2843 (|#5| |#5| |#1|)) (-15 -1329 (|#5| |#5| |#1|)) (-15 -2292 ((-657 |#5|) (-657 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3622 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4365 ((-112) |#1|)) (-15 -3965 ((-112) |#1|)) (-15 -4021 ((-112) |#1|)) (-15 -3302 ((-112) |#1| (-1 (-112) |#5| (-657 |#5|)))) (-15 -4365 ((-112) |#5| |#1|)) (-15 -3965 ((-112) |#5| |#1|)) (-15 -4021 ((-112) |#5| |#1|)) (-15 -3206 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1878 ((-112) |#1|)) (-15 -1878 ((-112) |#5| |#1|)) (-15 -1957 ((-2 (|:| -2016 (-657 |#5|)) (|:| -3209 (-657 |#5|))) |#1|)) (-15 -1770 ((-784) |#1|)) (-15 -1765 ((-657 |#5|) |#1|)) (-15 -2631 ((-3 (-2 (|:| |bas| |#1|) (|:| -1433 (-657 |#5|))) "failed") (-657 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2631 ((-3 (-2 (|:| |bas| |#1|) (|:| -1433 (-657 |#5|))) "failed") (-657 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4015 ((-112) |#1| |#1|)) (-15 -2956 (|#1| |#1| |#4|)) (-15 -1664 (|#1| |#1| |#4|)) (-15 -3627 (|#4| |#1|)) (-15 -1624 ((-3 |#1| "failed") (-657 |#5|))) (-15 -3501 ((-657 |#5|) |#1|)) (-15 -3511 (|#1| (-657 |#5|))) (-15 -3622 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3622 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2035 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3622 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3501 ((-877) |#1|)) (-15 -2933 ((-112) |#1| |#1|))) (-1232 |#2| |#3| |#4| |#5|) (-568) (-806) (-862) (-1087 |#2| |#3| |#4|)) (T -1231)) -NIL -(-10 -8 (-15 -3540 ((-784) |#1|)) (-15 -3926 (|#1| |#1| |#5|)) (-15 -2035 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1863 ((-112) |#4| |#1|)) (-15 -3039 ((-657 |#4|) |#1|)) (-15 -3522 ((-3 |#1| "failed") |#1|)) (-15 -3920 ((-3 |#5| "failed") |#1|)) (-15 -3510 ((-3 |#5| "failed") |#1|)) (-15 -3003 (|#5| |#5| |#1|)) (-15 -3459 (|#1| |#1|)) (-15 -2073 (|#5| |#5| |#1|)) (-15 -2833 (|#5| |#5| |#1|)) (-15 -2843 (|#5| |#5| |#1|)) (-15 -1329 (|#5| |#5| |#1|)) (-15 -2292 ((-657 |#5|) (-657 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3622 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4365 ((-112) |#1|)) (-15 -3965 ((-112) |#1|)) (-15 -4021 ((-112) |#1|)) (-15 -3302 ((-112) |#1| (-1 (-112) |#5| (-657 |#5|)))) (-15 -4365 ((-112) |#5| |#1|)) (-15 -3965 ((-112) |#5| |#1|)) (-15 -4021 ((-112) |#5| |#1|)) (-15 -3206 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1878 ((-112) |#1|)) (-15 -1878 ((-112) |#5| |#1|)) (-15 -1957 ((-2 (|:| -2016 (-657 |#5|)) (|:| -3209 (-657 |#5|))) |#1|)) (-15 -1770 ((-784) |#1|)) (-15 -1765 ((-657 |#5|) |#1|)) (-15 -2631 ((-3 (-2 (|:| |bas| |#1|) (|:| -1433 (-657 |#5|))) "failed") (-657 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2631 ((-3 (-2 (|:| |bas| |#1|) (|:| -1433 (-657 |#5|))) "failed") (-657 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4015 ((-112) |#1| |#1|)) (-15 -2956 (|#1| |#1| |#4|)) (-15 -1664 (|#1| |#1| |#4|)) (-15 -3627 (|#4| |#1|)) (-15 -1624 ((-3 |#1| "failed") (-657 |#5|))) (-15 -3501 ((-657 |#5|) |#1|)) (-15 -3511 (|#1| (-657 |#5|))) (-15 -3622 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3622 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2035 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3622 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3501 ((-877) |#1|)) (-15 -2933 ((-112) |#1| |#1|))) -((-3429 (((-112) $ $) 7)) (-2856 (((-657 (-2 (|:| -2016 $) (|:| -3209 (-657 |#4|)))) (-657 |#4|)) 86)) (-3472 (((-657 $) (-657 |#4|)) 87)) (-2029 (((-657 |#3|) $) 34)) (-1626 (((-112) $) 27)) (-3072 (((-112) $) 18 (|has| |#1| (-568)))) (-4021 (((-112) |#4| $) 102) (((-112) $) 98)) (-1329 ((|#4| |#4| $) 93)) (-1850 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) 28)) (-3793 (((-112) $ (-784)) 45)) (-2035 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4466))) (((-3 |#4| "failed") $ |#3|) 80)) (-4359 (($) 46 T CONST)) (-2433 (((-112) $) 23 (|has| |#1| (-568)))) (-1688 (((-112) $ $) 25 (|has| |#1| (-568)))) (-4058 (((-112) $ $) 24 (|has| |#1| (-568)))) (-2995 (((-112) $) 26 (|has| |#1| (-568)))) (-2292 (((-657 |#4|) (-657 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1978 (((-657 |#4|) (-657 |#4|) $) 19 (|has| |#1| (-568)))) (-2410 (((-657 |#4|) (-657 |#4|) $) 20 (|has| |#1| (-568)))) (-1624 (((-3 $ "failed") (-657 |#4|)) 37)) (-2884 (($ (-657 |#4|)) 36)) (-3522 (((-3 $ "failed") $) 83)) (-2073 ((|#4| |#4| $) 90)) (-3914 (($ $) 69 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-3895 (($ |#4| $) 68 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4466)))) (-3644 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3206 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3003 ((|#4| |#4| $) 88)) (-3622 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4466))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1957 (((-2 (|:| -2016 (-657 |#4|)) (|:| -3209 (-657 |#4|))) $) 106)) (-1458 (((-657 |#4|) $) 53 (|has| $ (-6 -4466)))) (-1878 (((-112) |#4| $) 105) (((-112) $) 104)) (-3627 ((|#3| $) 35)) (-1833 (((-112) $ (-784)) 44)) (-2070 (((-657 |#4|) $) 54 (|has| $ (-6 -4466)))) (-1627 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#4| |#4|) $) 48)) (-1746 (((-657 |#3|) $) 33)) (-4089 (((-112) |#3| $) 32)) (-4261 (((-112) $ (-784)) 43)) (-2342 (((-1180) $) 10)) (-3920 (((-3 |#4| "failed") $) 84)) (-1765 (((-657 |#4|) $) 108)) (-4365 (((-112) |#4| $) 100) (((-112) $) 96)) (-2833 ((|#4| |#4| $) 91)) (-4015 (((-112) $ $) 111)) (-3404 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3965 (((-112) |#4| $) 101) (((-112) $) 97)) (-2843 ((|#4| |#4| $) 92)) (-1471 (((-1142) $) 11)) (-3510 (((-3 |#4| "failed") $) 85)) (-2951 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1548 (((-3 $ "failed") $ |#4|) 79)) (-3926 (($ $ |#4|) 78)) (-3399 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 |#4|) (-657 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-2806 (((-112) $ $) 39)) (-3387 (((-112) $) 42)) (-3581 (($) 41)) (-1770 (((-784) $) 107)) (-1482 (((-784) |#4| $) 55 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4466)))) (((-784) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4466)))) (-1923 (($ $) 40)) (-4148 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3511 (($ (-657 |#4|)) 61)) (-2956 (($ $ |#3|) 29)) (-1664 (($ $ |#3|) 31)) (-3459 (($ $) 89)) (-3604 (($ $ |#3|) 30)) (-3501 (((-877) $) 12) (((-657 |#4|) $) 38)) (-3540 (((-784) $) 77 (|has| |#3| (-379)))) (-2046 (((-112) $ $) 6)) (-2631 (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-3302 (((-112) $ (-1 (-112) |#4| (-657 |#4|))) 99)) (-2147 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4466)))) (-3039 (((-657 |#3|) $) 82)) (-1863 (((-112) |#3| $) 81)) (-2933 (((-112) $ $) 8)) (-3440 (((-784) $) 47 (|has| $ (-6 -4466))))) -(((-1232 |#1| |#2| |#3| |#4|) (-141) (-568) (-806) (-862) (-1087 |t#1| |t#2| |t#3|)) (T -1232)) -((-4015 (*1 *2 *1 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) (-2631 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1433 (-657 *8)))) (-5 *3 (-657 *8)) (-4 *1 (-1232 *5 *6 *7 *8)))) (-2631 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1087 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-806)) (-4 *8 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1433 (-657 *9)))) (-5 *3 (-657 *9)) (-4 *1 (-1232 *6 *7 *8 *9)))) (-1765 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-657 *6)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-784)))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-2 (|:| -2016 (-657 *6)) (|:| -3209 (-657 *6)))))) (-1878 (*1 *2 *3 *1) (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-1878 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) (-3206 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1232 *5 *6 *7 *3)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-112)))) (-4021 (*1 *2 *3 *1) (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-3965 (*1 *2 *3 *1) (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-4365 (*1 *2 *3 *1) (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-3302 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-657 *7))) (-4 *1 (-1232 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) (-4365 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) (-3622 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1232 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *2 (-1087 *5 *6 *7)))) (-2292 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-657 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1232 *5 *6 *7 *8)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)))) (-1329 (*1 *2 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-2843 (*1 *2 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-2833 (*1 *2 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-2073 (*1 *2 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-3459 (*1 *1 *1) (-12 (-4 *1 (-1232 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-1087 *2 *3 *4)))) (-3003 (*1 *2 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *1)) (-4 *1 (-1232 *4 *5 *6 *7)))) (-2856 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-657 (-2 (|:| -2016 *1) (|:| -3209 (-657 *7))))) (-5 *3 (-657 *7)) (-4 *1 (-1232 *4 *5 *6 *7)))) (-3510 (*1 *2 *1) (|partial| -12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-3920 (*1 *2 *1) (|partial| -12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-3522 (*1 *1 *1) (|partial| -12 (-4 *1 (-1232 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-1087 *2 *3 *4)))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-657 *5)))) (-1863 (*1 *2 *3 *1) (-12 (-4 *1 (-1232 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *3 (-862)) (-4 *6 (-1087 *4 *5 *3)) (-5 *2 (-112)))) (-2035 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1232 *4 *5 *3 *2)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *3 (-862)) (-4 *2 (-1087 *4 *5 *3)))) (-1548 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-3926 (*1 *1 *1 *2) (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *5 (-379)) (-5 *2 (-784))))) -(-13 (-998 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4466) (-6 -4467) (-15 -4015 ((-112) $ $)) (-15 -2631 ((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |t#4|))) "failed") (-657 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2631 ((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |t#4|))) "failed") (-657 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1765 ((-657 |t#4|) $)) (-15 -1770 ((-784) $)) (-15 -1957 ((-2 (|:| -2016 (-657 |t#4|)) (|:| -3209 (-657 |t#4|))) $)) (-15 -1878 ((-112) |t#4| $)) (-15 -1878 ((-112) $)) (-15 -3206 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4021 ((-112) |t#4| $)) (-15 -3965 ((-112) |t#4| $)) (-15 -4365 ((-112) |t#4| $)) (-15 -3302 ((-112) $ (-1 (-112) |t#4| (-657 |t#4|)))) (-15 -4021 ((-112) $)) (-15 -3965 ((-112) $)) (-15 -4365 ((-112) $)) (-15 -3622 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2292 ((-657 |t#4|) (-657 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1329 (|t#4| |t#4| $)) (-15 -2843 (|t#4| |t#4| $)) (-15 -2833 (|t#4| |t#4| $)) (-15 -2073 (|t#4| |t#4| $)) (-15 -3459 ($ $)) (-15 -3003 (|t#4| |t#4| $)) (-15 -3472 ((-657 $) (-657 |t#4|))) (-15 -2856 ((-657 (-2 (|:| -2016 $) (|:| -3209 (-657 |t#4|)))) (-657 |t#4|))) (-15 -3510 ((-3 |t#4| "failed") $)) (-15 -3920 ((-3 |t#4| "failed") $)) (-15 -3522 ((-3 $ "failed") $)) (-15 -3039 ((-657 |t#3|) $)) (-15 -1863 ((-112) |t#3| $)) (-15 -2035 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1548 ((-3 $ "failed") $ |t#4|)) (-15 -3926 ($ $ |t#4|)) (IF (|has| |t#3| (-379)) (-15 -3540 ((-784) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-625 (-657 |#4|)) . T) ((-625 (-877)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))) ((-998 |#1| |#2| |#3| |#4|) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2029 (((-657 (-1198)) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-2176 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2030 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (((-3 $ "failed") $ $) NIL)) (-1896 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2150 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2004 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2201 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2052 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4359 (($) NIL T CONST)) (-2212 (($ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3030 (((-972 |#1|) $ (-784)) 17) (((-972 |#1|) $ (-784) (-784)) NIL)) (-2373 (((-112) $) NIL)) (-1657 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3182 (((-784) $ (-1198)) NIL) (((-784) $ (-1198) (-784)) NIL)) (-4094 (((-112) $) NIL)) (-2082 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3157 (((-112) $) NIL)) (-2003 (($ $ (-657 (-1198)) (-657 (-543 (-1198)))) NIL) (($ $ (-1198) (-543 (-1198))) NIL) (($ |#1| (-543 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-3670 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-2342 (((-1180) $) NIL)) (-4190 (($ $ (-1198)) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1471 (((-1142) $) NIL)) (-1629 (($ (-1 $) (-1198) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3926 (($ $ (-784)) NIL)) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3236 (($ $ (-1198) $) NIL) (($ $ (-657 (-1198)) (-657 $)) NIL) (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL)) (-2815 (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) NIL)) (-1770 (((-543 (-1198)) $) NIL)) (-2213 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2062 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2188 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2163 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1431 (($ $) NIL)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-1198)) NIL) (($ (-972 |#1|)) NIL)) (-2313 ((|#1| $ (-543 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL) (((-972 |#1|) $ (-784)) NIL)) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-4110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2225 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2072 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2125 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4124 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2235 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2085 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2097 (($ $ (-657 (-1198)) (-657 (-784))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198)) NIL)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1233 |#1|) (-13 (-753 |#1| (-1198)) (-10 -8 (-15 -2313 ((-972 |#1|) $ (-784))) (-15 -3501 ($ (-1198))) (-15 -3501 ($ (-972 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4190 ($ $ (-1198) |#1|)) (-15 -1629 ($ (-1 $) (-1198) |#1|))) |%noBranch|))) (-1071)) (T -1233)) -((-2313 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *2 (-972 *4)) (-5 *1 (-1233 *4)) (-4 *4 (-1071)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1233 *3)) (-4 *3 (-1071)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-1071)) (-5 *1 (-1233 *3)))) (-4190 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *1 (-1233 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)))) (-1629 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1233 *4))) (-5 *3 (-1198)) (-5 *1 (-1233 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1071))))) -(-13 (-753 |#1| (-1198)) (-10 -8 (-15 -2313 ((-972 |#1|) $ (-784))) (-15 -3501 ($ (-1198))) (-15 -3501 ($ (-972 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4190 ($ $ (-1198) |#1|)) (-15 -1629 ($ (-1 $) (-1198) |#1|))) |%noBranch|))) -((-2132 (($ |#1| (-657 (-657 (-963 (-227)))) (-112)) 19)) (-3980 (((-112) $ (-112)) 18)) (-1562 (((-112) $) 17)) (-4012 (((-657 (-657 (-963 (-227)))) $) 13)) (-1899 ((|#1| $) 8)) (-2853 (((-112) $) 15))) -(((-1234 |#1|) (-10 -8 (-15 -1899 (|#1| $)) (-15 -4012 ((-657 (-657 (-963 (-227)))) $)) (-15 -2853 ((-112) $)) (-15 -1562 ((-112) $)) (-15 -3980 ((-112) $ (-112))) (-15 -2132 ($ |#1| (-657 (-657 (-963 (-227)))) (-112)))) (-996)) (T -1234)) -((-2132 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-112)) (-5 *1 (-1234 *2)) (-4 *2 (-996)))) (-3980 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-996)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-996)))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-996)))) (-4012 (*1 *2 *1) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *1 (-1234 *3)) (-4 *3 (-996)))) (-1899 (*1 *2 *1) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-996))))) -(-10 -8 (-15 -1899 (|#1| $)) (-15 -4012 ((-657 (-657 (-963 (-227)))) $)) (-15 -2853 ((-112) $)) (-15 -1562 ((-112) $)) (-15 -3980 ((-112) $ (-112))) (-15 -2132 ($ |#1| (-657 (-657 (-963 (-227)))) (-112)))) -((-3110 (((-963 (-227)) (-963 (-227))) 31)) (-3624 (((-963 (-227)) (-227) (-227) (-227) (-227)) 10)) (-3885 (((-657 (-963 (-227))) (-963 (-227)) (-963 (-227)) (-963 (-227)) (-227) (-657 (-657 (-227)))) 56)) (-1374 (((-227) (-963 (-227)) (-963 (-227))) 27)) (-3461 (((-963 (-227)) (-963 (-227)) (-963 (-227))) 28)) (-2278 (((-657 (-657 (-227))) (-576)) 44)) (-3022 (((-963 (-227)) (-963 (-227)) (-963 (-227))) 26)) (-3012 (((-963 (-227)) (-963 (-227)) (-963 (-227))) 24)) (* (((-963 (-227)) (-227) (-963 (-227))) 22))) -(((-1235) (-10 -7 (-15 -3624 ((-963 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-963 (-227)) (-227) (-963 (-227)))) (-15 -3012 ((-963 (-227)) (-963 (-227)) (-963 (-227)))) (-15 -3022 ((-963 (-227)) (-963 (-227)) (-963 (-227)))) (-15 -1374 ((-227) (-963 (-227)) (-963 (-227)))) (-15 -3461 ((-963 (-227)) (-963 (-227)) (-963 (-227)))) (-15 -3110 ((-963 (-227)) (-963 (-227)))) (-15 -2278 ((-657 (-657 (-227))) (-576))) (-15 -3885 ((-657 (-963 (-227))) (-963 (-227)) (-963 (-227)) (-963 (-227)) (-227) (-657 (-657 (-227))))))) (T -1235)) -((-3885 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-657 (-657 (-227)))) (-5 *4 (-227)) (-5 *2 (-657 (-963 *4))) (-5 *1 (-1235)) (-5 *3 (-963 *4)))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-657 (-657 (-227)))) (-5 *1 (-1235)))) (-3110 (*1 *2 *2) (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235)))) (-3461 (*1 *2 *2 *2) (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235)))) (-1374 (*1 *2 *3 *3) (-12 (-5 *3 (-963 (-227))) (-5 *2 (-227)) (-5 *1 (-1235)))) (-3022 (*1 *2 *2 *2) (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235)))) (-3012 (*1 *2 *2 *2) (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-963 (-227))) (-5 *3 (-227)) (-5 *1 (-1235)))) (-3624 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235)) (-5 *3 (-227))))) -(-10 -7 (-15 -3624 ((-963 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-963 (-227)) (-227) (-963 (-227)))) (-15 -3012 ((-963 (-227)) (-963 (-227)) (-963 (-227)))) (-15 -3022 ((-963 (-227)) (-963 (-227)) (-963 (-227)))) (-15 -1374 ((-227) (-963 (-227)) (-963 (-227)))) (-15 -3461 ((-963 (-227)) (-963 (-227)) (-963 (-227)))) (-15 -3110 ((-963 (-227)) (-963 (-227)))) (-15 -2278 ((-657 (-657 (-227))) (-576))) (-15 -3885 ((-657 (-963 (-227))) (-963 (-227)) (-963 (-227)) (-963 (-227)) (-227) (-657 (-657 (-227)))))) -((-3429 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2035 ((|#1| $ (-784)) 18)) (-3358 (((-784) $) 13)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3501 (((-978 |#1|) $) 12) (($ (-978 |#1|)) 11) (((-877) $) 29 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2933 (((-112) $ $) 22 (|has| |#1| (-1122))))) -(((-1236 |#1|) (-13 (-502 (-978 |#1|)) (-10 -8 (-15 -2035 (|#1| $ (-784))) (-15 -3358 ((-784) $)) (IF (|has| |#1| (-625 (-877))) (-6 (-625 (-877))) |%noBranch|) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|))) (-1239)) (T -1236)) -((-2035 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *1 (-1236 *2)) (-4 *2 (-1239)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-1236 *3)) (-4 *3 (-1239))))) -(-13 (-502 (-978 |#1|)) (-10 -8 (-15 -2035 (|#1| $ (-784))) (-15 -3358 ((-784) $)) (IF (|has| |#1| (-625 (-877))) (-6 (-625 (-877))) |%noBranch|) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|))) -((-1382 (((-430 (-1194 (-1194 |#1|))) (-1194 (-1194 |#1|)) (-576)) 94)) (-3631 (((-430 (-1194 (-1194 |#1|))) (-1194 (-1194 |#1|))) 86)) (-2851 (((-430 (-1194 (-1194 |#1|))) (-1194 (-1194 |#1|))) 70))) -(((-1237 |#1|) (-10 -7 (-15 -3631 ((-430 (-1194 (-1194 |#1|))) (-1194 (-1194 |#1|)))) (-15 -2851 ((-430 (-1194 (-1194 |#1|))) (-1194 (-1194 |#1|)))) (-15 -1382 ((-430 (-1194 (-1194 |#1|))) (-1194 (-1194 |#1|)) (-576)))) (-360)) (T -1237)) -((-1382 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1194 (-1194 *5)))) (-5 *1 (-1237 *5)) (-5 *3 (-1194 (-1194 *5))))) (-2851 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1194 (-1194 *4)))) (-5 *1 (-1237 *4)) (-5 *3 (-1194 (-1194 *4))))) (-3631 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1194 (-1194 *4)))) (-5 *1 (-1237 *4)) (-5 *3 (-1194 (-1194 *4)))))) -(-10 -7 (-15 -3631 ((-430 (-1194 (-1194 |#1|))) (-1194 (-1194 |#1|)))) (-15 -2851 ((-430 (-1194 (-1194 |#1|))) (-1194 (-1194 |#1|)))) (-15 -1382 ((-430 (-1194 (-1194 |#1|))) (-1194 (-1194 |#1|)) (-576)))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 9) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-1238) (-1105)) (T -1238)) -NIL -(-1105) -NIL -(((-1239) (-141)) (T -1239)) -NIL -(-13 (-10 -7 (-6 -4103))) -((-1779 (((-112)) 18)) (-2429 (((-1294) (-657 |#1|) (-657 |#1|)) 22) (((-1294) (-657 |#1|)) 23)) (-1833 (((-112) |#1| |#1|) 37 (|has| |#1| (-862)))) (-4261 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-3255 ((|#1| (-657 |#1|)) 38 (|has| |#1| (-862))) ((|#1| (-657 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-3017 (((-2 (|:| -4059 (-657 |#1|)) (|:| -2698 (-657 |#1|)))) 20))) -(((-1240 |#1|) (-10 -7 (-15 -2429 ((-1294) (-657 |#1|))) (-15 -2429 ((-1294) (-657 |#1|) (-657 |#1|))) (-15 -3017 ((-2 (|:| -4059 (-657 |#1|)) (|:| -2698 (-657 |#1|))))) (-15 -4261 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4261 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3255 (|#1| (-657 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1779 ((-112))) (IF (|has| |#1| (-862)) (PROGN (-15 -3255 (|#1| (-657 |#1|))) (-15 -1833 ((-112) |#1| |#1|))) |%noBranch|)) (-1122)) (T -1240)) -((-1833 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1240 *3)) (-4 *3 (-862)) (-4 *3 (-1122)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-4 *2 (-1122)) (-4 *2 (-862)) (-5 *1 (-1240 *2)))) (-1779 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1240 *3)) (-4 *3 (-1122)))) (-3255 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1240 *2)) (-4 *2 (-1122)))) (-4261 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1122)) (-5 *2 (-112)) (-5 *1 (-1240 *3)))) (-4261 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1240 *3)) (-4 *3 (-1122)))) (-3017 (*1 *2) (-12 (-5 *2 (-2 (|:| -4059 (-657 *3)) (|:| -2698 (-657 *3)))) (-5 *1 (-1240 *3)) (-4 *3 (-1122)))) (-2429 (*1 *2 *3 *3) (-12 (-5 *3 (-657 *4)) (-4 *4 (-1122)) (-5 *2 (-1294)) (-5 *1 (-1240 *4)))) (-2429 (*1 *2 *3) (-12 (-5 *3 (-657 *4)) (-4 *4 (-1122)) (-5 *2 (-1294)) (-5 *1 (-1240 *4))))) -(-10 -7 (-15 -2429 ((-1294) (-657 |#1|))) (-15 -2429 ((-1294) (-657 |#1|) (-657 |#1|))) (-15 -3017 ((-2 (|:| -4059 (-657 |#1|)) (|:| -2698 (-657 |#1|))))) (-15 -4261 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4261 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3255 (|#1| (-657 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1779 ((-112))) (IF (|has| |#1| (-862)) (PROGN (-15 -3255 (|#1| (-657 |#1|))) (-15 -1833 ((-112) |#1| |#1|))) |%noBranch|)) -((-1353 (((-1294) (-657 (-1198)) (-657 (-1198))) 14) (((-1294) (-657 (-1198))) 12)) (-4078 (((-1294)) 16)) (-2653 (((-2 (|:| -2698 (-657 (-1198))) (|:| -4059 (-657 (-1198))))) 20))) -(((-1241) (-10 -7 (-15 -1353 ((-1294) (-657 (-1198)))) (-15 -1353 ((-1294) (-657 (-1198)) (-657 (-1198)))) (-15 -2653 ((-2 (|:| -2698 (-657 (-1198))) (|:| -4059 (-657 (-1198)))))) (-15 -4078 ((-1294))))) (T -1241)) -((-4078 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1241)))) (-2653 (*1 *2) (-12 (-5 *2 (-2 (|:| -2698 (-657 (-1198))) (|:| -4059 (-657 (-1198))))) (-5 *1 (-1241)))) (-1353 (*1 *2 *3 *3) (-12 (-5 *3 (-657 (-1198))) (-5 *2 (-1294)) (-5 *1 (-1241)))) (-1353 (*1 *2 *3) (-12 (-5 *3 (-657 (-1198))) (-5 *2 (-1294)) (-5 *1 (-1241))))) -(-10 -7 (-15 -1353 ((-1294) (-657 (-1198)))) (-15 -1353 ((-1294) (-657 (-1198)) (-657 (-1198)))) (-15 -2653 ((-2 (|:| -2698 (-657 (-1198))) (|:| -4059 (-657 (-1198)))))) (-15 -4078 ((-1294)))) -((-2638 (($ $) 17)) (-4257 (((-112) $) 28))) -(((-1242 |#1|) (-10 -8 (-15 -2638 (|#1| |#1|)) (-15 -4257 ((-112) |#1|))) (-1243)) (T -1242)) -NIL -(-10 -8 (-15 -2638 (|#1| |#1|)) (-15 -4257 ((-112) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-2721 (((-3 $ "failed") $ $) 20)) (-2638 (($ $) 57)) (-4402 (((-430 $) $) 58)) (-4359 (($) 18 T CONST)) (-3843 (((-3 $ "failed") $) 37)) (-4257 (((-112) $) 59)) (-4094 (((-112) $) 35)) (-3402 (($ $ $) 52) (($ (-657 $)) 51)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3436 (($ $ $) 54) (($ (-657 $)) 53)) (-1885 (((-430 $) $) 56)) (-3418 (((-3 $ "failed") $ $) 48)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 45)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-1243) (-141)) (T -1243)) -((-4257 (*1 *2 *1) (-12 (-4 *1 (-1243)) (-5 *2 (-112)))) (-4402 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1243)))) (-2638 (*1 *1 *1) (-4 *1 (-1243))) (-1885 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1243))))) -(-13 (-464) (-10 -8 (-15 -4257 ((-112) $)) (-15 -4402 ((-430 $) $)) (-15 -2638 ($ $)) (-15 -1885 ((-430 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-659 (-576)) . T) ((-659 $) . T) ((-661 $) . T) ((-653 $) . T) ((-730 $) . T) ((-739) . T) ((-1073 $) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) NIL)) (-2193 (((-784)) NIL)) (-4359 (($) NIL T CONST)) (-1892 (($) NIL)) (-3707 (($ $ $) NIL) (($) NIL T CONST)) (-1611 (($ $ $) NIL) (($) NIL T CONST)) (-3007 (((-941) $) NIL)) (-2342 (((-1180) $) NIL)) (-3178 (($ (-941)) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2427 (($ $ $) NIL)) (-2418 (($ $ $) NIL)) (-2046 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL))) -(((-1244) (-13 (-857) (-10 -8 (-15 -2418 ($ $ $)) (-15 -2427 ($ $ $)) (-15 -4359 ($) -1509)))) (T -1244)) -((-2418 (*1 *1 *1 *1) (-5 *1 (-1244))) (-2427 (*1 *1 *1 *1) (-5 *1 (-1244))) (-4359 (*1 *1) (-5 *1 (-1244)))) -(-13 (-857) (-10 -8 (-15 -2418 ($ $ $)) (-15 -2427 ($ $ $)) (-15 -4359 ($) -1509))) +((-1659 (*1 *1) (-4 *1 (-1227)))) +(-13 (-1230) (-95) (-506) (-35) (-295) (-10 -8 (-15 -1659 ($)))) +(((-35) . T) ((-95) . T) ((-295) . T) ((-506) . T) ((-1230) . T)) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3115 ((|#1| $) 19)) (-3254 (($ |#1| (-660 $)) 28) (($ (-660 |#1|)) 35) (($ |#1|) 30)) (-3828 (((-112) $ (-787)) 72)) (-4374 ((|#1| $ |#1|) 14 (|has| $ (-6 -4471)))) (-3709 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) 13 (|has| $ (-6 -4471)))) (-1534 (($) NIL T CONST)) (-1461 (((-660 |#1|) $) 77 (|has| $ (-6 -4470)))) (-4426 (((-660 $) $) 64)) (-4394 (((-112) $ $) 50 (|has| |#1| (-1125)))) (-1479 (((-112) $ (-787)) 62)) (-2530 (((-660 |#1|) $) 78 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2182 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 27)) (-1443 (((-112) $ (-787)) 60)) (-2461 (((-660 |#1|) $) 55)) (-3371 (((-112) $) 53)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-1514 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 107)) (-3697 (((-112) $) 9)) (-3639 (($) 10)) (-2872 ((|#1| $ "value") NIL)) (-4415 (((-577) $ $) 48)) (-3053 (((-660 $) $) 89)) (-3064 (((-112) $ $) 110)) (-1860 (((-660 $) $) 105)) (-1874 (($ $) 106)) (-1885 (((-112) $) 84)) (-1485 (((-787) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4470))) (((-787) |#1| $) 17 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-1944 (($ $) 88)) (-3544 (((-880) $) 91 (|has| |#1| (-626 (-880))))) (-3322 (((-660 $) $) 12)) (-4405 (((-112) $ $) 39 (|has| |#1| (-1125)))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 37 (|has| |#1| (-102)))) (-3484 (((-787) $) 58 (|has| $ (-6 -4470))))) +(((-1228 |#1|) (-13 (-1035 |#1|) (-10 -8 (-6 -4470) (-6 -4471) (-15 -3254 ($ |#1| (-660 $))) (-15 -3254 ($ (-660 |#1|))) (-15 -3254 ($ |#1|)) (-15 -1885 ((-112) $)) (-15 -1874 ($ $)) (-15 -1860 ((-660 $) $)) (-15 -3064 ((-112) $ $)) (-15 -3053 ((-660 $) $)))) (-1125)) (T -1228)) +((-1885 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-1125)))) (-3254 (*1 *1 *2 *3) (-12 (-5 *3 (-660 (-1228 *2))) (-5 *1 (-1228 *2)) (-4 *2 (-1125)))) (-3254 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-1228 *3)))) (-3254 (*1 *1 *2) (-12 (-5 *1 (-1228 *2)) (-4 *2 (-1125)))) (-1874 (*1 *1 *1) (-12 (-5 *1 (-1228 *2)) (-4 *2 (-1125)))) (-1860 (*1 *2 *1) (-12 (-5 *2 (-660 (-1228 *3))) (-5 *1 (-1228 *3)) (-4 *3 (-1125)))) (-3064 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-1125)))) (-3053 (*1 *2 *1) (-12 (-5 *2 (-660 (-1228 *3))) (-5 *1 (-1228 *3)) (-4 *3 (-1125))))) +(-13 (-1035 |#1|) (-10 -8 (-6 -4470) (-6 -4471) (-15 -3254 ($ |#1| (-660 $))) (-15 -3254 ($ (-660 |#1|))) (-15 -3254 ($ |#1|)) (-15 -1885 ((-112) $)) (-15 -1874 ($ $)) (-15 -1860 ((-660 $) $)) (-15 -3064 ((-112) $ $)) (-15 -3053 ((-660 $) $)))) +((-2060 (($ $) 15)) (-2084 (($ $) 12)) (-2095 (($ $) 10)) (-2073 (($ $) 17))) +(((-1229 |#1|) (-10 -8 (-15 -2073 (|#1| |#1|)) (-15 -2095 (|#1| |#1|)) (-15 -2084 (|#1| |#1|)) (-15 -2060 (|#1| |#1|))) (-1230)) (T -1229)) +NIL +(-10 -8 (-15 -2073 (|#1| |#1|)) (-15 -2095 (|#1| |#1|)) (-15 -2084 (|#1| |#1|)) (-15 -2060 (|#1| |#1|))) +((-2060 (($ $) 11)) (-2032 (($ $) 10)) (-2084 (($ $) 9)) (-2095 (($ $) 8)) (-2073 (($ $) 7)) (-2046 (($ $) 6))) +(((-1230) (-141)) (T -1230)) +((-2060 (*1 *1 *1) (-4 *1 (-1230))) (-2032 (*1 *1 *1) (-4 *1 (-1230))) (-2084 (*1 *1 *1) (-4 *1 (-1230))) (-2095 (*1 *1 *1) (-4 *1 (-1230))) (-2073 (*1 *1 *1) (-4 *1 (-1230))) (-2046 (*1 *1 *1) (-4 *1 (-1230)))) +(-13 (-10 -8 (-15 -2046 ($ $)) (-15 -2073 ($ $)) (-15 -2095 ($ $)) (-15 -2084 ($ $)) (-15 -2032 ($ $)) (-15 -2060 ($ $)))) +((-1919 ((|#2| |#2|) 98)) (-1931 (((-112) |#2|) 29)) (-1926 ((|#2| |#2|) 33)) (-1937 ((|#2| |#2|) 35)) (-1896 ((|#2| |#2| (-1201)) 92) ((|#2| |#2|) 93)) (-1943 (((-171 |#2|) |#2|) 31)) (-1907 ((|#2| |#2| (-1201)) 94) ((|#2| |#2|) 95))) +(((-1231 |#1| |#2|) (-10 -7 (-15 -1896 (|#2| |#2|)) (-15 -1896 (|#2| |#2| (-1201))) (-15 -1907 (|#2| |#2|)) (-15 -1907 (|#2| |#2| (-1201))) (-15 -1919 (|#2| |#2|)) (-15 -1926 (|#2| |#2|)) (-15 -1937 (|#2| |#2|)) (-15 -1931 ((-112) |#2|)) (-15 -1943 ((-171 |#2|) |#2|))) (-13 (-465) (-1063 (-577)) (-654 (-577))) (-13 (-27) (-1227) (-443 |#1|))) (T -1231)) +((-1943 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-171 *3)) (-5 *1 (-1231 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) (-1931 (*1 *2 *3) (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-112)) (-5 *1 (-1231 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) (-1937 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3))))) (-1926 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3))))) (-1919 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3))))) (-1907 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-1231 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4))))) (-1907 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3))))) (-1896 (*1 *2 *2 *3) (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-1231 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4))))) (-1896 (*1 *2 *2) (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3)))))) +(-10 -7 (-15 -1896 (|#2| |#2|)) (-15 -1896 (|#2| |#2| (-1201))) (-15 -1907 (|#2| |#2|)) (-15 -1907 (|#2| |#2| (-1201))) (-15 -1919 (|#2| |#2|)) (-15 -1926 (|#2| |#2|)) (-15 -1937 (|#2| |#2|)) (-15 -1931 ((-112) |#2|)) (-15 -1943 ((-171 |#2|) |#2|))) +((-1957 ((|#4| |#4| |#1|) 31)) (-1968 ((|#4| |#4| |#1|) 32))) +(((-1232 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1957 (|#4| |#4| |#1|)) (-15 -1968 (|#4| |#4| |#1|))) (-569) (-385 |#1|) (-385 |#1|) (-703 |#1| |#2| |#3|)) (T -1232)) +((-1968 (*1 *2 *2 *3) (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1232 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) (-1957 (*1 *2 *2 *3) (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1232 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5))))) +(-10 -7 (-15 -1957 (|#4| |#4| |#1|)) (-15 -1968 (|#4| |#4| |#1|))) +((-2190 ((|#2| |#2|) 148)) (-2216 ((|#2| |#2|) 145)) (-2178 ((|#2| |#2|) 136)) (-2204 ((|#2| |#2|) 133)) (-2166 ((|#2| |#2|) 141)) (-2154 ((|#2| |#2|) 129)) (-2013 ((|#2| |#2|) 44)) (-2002 ((|#2| |#2|) 105)) (-1979 ((|#2| |#2|) 88)) (-2141 ((|#2| |#2|) 143)) (-2126 ((|#2| |#2|) 131)) (-2291 ((|#2| |#2|) 153)) (-2266 ((|#2| |#2|) 151)) (-2278 ((|#2| |#2|) 152)) (-2254 ((|#2| |#2|) 150)) (-1991 ((|#2| |#2|) 163)) (-2302 ((|#2| |#2|) 30 (-12 (|has| |#2| (-627 (-911 |#1|))) (|has| |#2| (-905 |#1|)) (|has| |#1| (-627 (-911 |#1|))) (|has| |#1| (-905 |#1|))))) (-2024 ((|#2| |#2|) 89)) (-2037 ((|#2| |#2|) 154)) (-2027 ((|#2| |#2|) 155)) (-2111 ((|#2| |#2|) 142)) (-2100 ((|#2| |#2|) 130)) (-2089 ((|#2| |#2|) 149)) (-2241 ((|#2| |#2|) 147)) (-2078 ((|#2| |#2|) 137)) (-2228 ((|#2| |#2|) 135)) (-2065 ((|#2| |#2|) 139)) (-2052 ((|#2| |#2|) 127))) +(((-1233 |#1| |#2|) (-10 -7 (-15 -2027 (|#2| |#2|)) (-15 -1979 (|#2| |#2|)) (-15 -1991 (|#2| |#2|)) (-15 -2002 (|#2| |#2|)) (-15 -2013 (|#2| |#2|)) (-15 -2024 (|#2| |#2|)) (-15 -2037 (|#2| |#2|)) (-15 -2052 (|#2| |#2|)) (-15 -2065 (|#2| |#2|)) (-15 -2078 (|#2| |#2|)) (-15 -2089 (|#2| |#2|)) (-15 -2100 (|#2| |#2|)) (-15 -2111 (|#2| |#2|)) (-15 -2126 (|#2| |#2|)) (-15 -2141 (|#2| |#2|)) (-15 -2154 (|#2| |#2|)) (-15 -2166 (|#2| |#2|)) (-15 -2178 (|#2| |#2|)) (-15 -2190 (|#2| |#2|)) (-15 -2204 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -2228 (|#2| |#2|)) (-15 -2241 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -2266 (|#2| |#2|)) (-15 -2278 (|#2| |#2|)) (-15 -2291 (|#2| |#2|)) (IF (|has| |#1| (-905 |#1|)) (IF (|has| |#1| (-627 (-911 |#1|))) (IF (|has| |#2| (-627 (-911 |#1|))) (IF (|has| |#2| (-905 |#1|)) (-15 -2302 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-465) (-13 (-443 |#1|) (-1227))) (T -1233)) +((-2302 (*1 *2 *2) (-12 (-4 *3 (-627 (-911 *3))) (-4 *3 (-905 *3)) (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-627 (-911 *3))) (-4 *2 (-905 *3)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2291 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2278 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2241 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2228 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2216 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2204 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2190 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2178 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2166 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2154 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2141 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2126 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2111 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2100 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2089 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2078 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2065 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2052 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2037 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2024 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2013 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2002 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-1991 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-1979 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227))))) (-2027 (*1 *2 *2) (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) (-4 *2 (-13 (-443 *3) (-1227)))))) +(-10 -7 (-15 -2027 (|#2| |#2|)) (-15 -1979 (|#2| |#2|)) (-15 -1991 (|#2| |#2|)) (-15 -2002 (|#2| |#2|)) (-15 -2013 (|#2| |#2|)) (-15 -2024 (|#2| |#2|)) (-15 -2037 (|#2| |#2|)) (-15 -2052 (|#2| |#2|)) (-15 -2065 (|#2| |#2|)) (-15 -2078 (|#2| |#2|)) (-15 -2089 (|#2| |#2|)) (-15 -2100 (|#2| |#2|)) (-15 -2111 (|#2| |#2|)) (-15 -2126 (|#2| |#2|)) (-15 -2141 (|#2| |#2|)) (-15 -2154 (|#2| |#2|)) (-15 -2166 (|#2| |#2|)) (-15 -2178 (|#2| |#2|)) (-15 -2190 (|#2| |#2|)) (-15 -2204 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -2228 (|#2| |#2|)) (-15 -2241 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -2266 (|#2| |#2|)) (-15 -2278 (|#2| |#2|)) (-15 -2291 (|#2| |#2|)) (IF (|has| |#1| (-905 |#1|)) (IF (|has| |#1| (-627 (-911 |#1|))) (IF (|has| |#2| (-627 (-911 |#1|))) (IF (|has| |#2| (-905 |#1|)) (-15 -2302 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2475 (((-112) |#5| $) 68) (((-112) $) 110)) (-2426 ((|#5| |#5| $) 83)) (-2067 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-2435 (((-660 |#5|) (-660 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-1628 (((-3 $ "failed") (-660 |#5|)) 135)) (-3563 (((-3 $ "failed") $) 120)) (-2399 ((|#5| |#5| $) 102)) (-2484 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-2382 ((|#5| |#5| $) 106)) (-3654 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-4364 (((-2 (|:| -2045 (-660 |#5|)) (|:| -3253 (-660 |#5|))) $) 63)) (-4354 (((-112) |#5| $) 66) (((-112) $) 111)) (-3514 ((|#4| $) 116)) (-3927 (((-3 |#5| "failed") $) 118)) (-4375 (((-660 |#5|) $) 55)) (-2458 (((-112) |#5| $) 75) (((-112) $) 115)) (-2408 ((|#5| |#5| $) 89)) (-4396 (((-112) $ $) 29)) (-2467 (((-112) |#5| $) 71) (((-112) $) 113)) (-2418 ((|#5| |#5| $) 86)) (-3552 (((-3 |#5| "failed") $) 117)) (-3792 (($ $ |#5|) 136)) (-2887 (((-787) $) 60)) (-3553 (($ (-660 |#5|)) 133)) (-2518 (($ $ |#4|) 131)) (-2536 (($ $ |#4|) 129)) (-2391 (($ $) 128)) (-3544 (((-880) $) NIL) (((-660 |#5|) $) 121)) (-2332 (((-787) $) 140)) (-4385 (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#5|))) "failed") (-660 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#5|))) "failed") (-660 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-2447 (((-112) $ (-1 (-112) |#5| (-660 |#5|))) 108)) (-2352 (((-660 |#4|) $) 123)) (-2776 (((-112) |#4| $) 126)) (-2970 (((-112) $ $) 20))) +(((-1234 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2332 ((-787) |#1|)) (-15 -3792 (|#1| |#1| |#5|)) (-15 -2067 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2776 ((-112) |#4| |#1|)) (-15 -2352 ((-660 |#4|) |#1|)) (-15 -3563 ((-3 |#1| "failed") |#1|)) (-15 -3927 ((-3 |#5| "failed") |#1|)) (-15 -3552 ((-3 |#5| "failed") |#1|)) (-15 -2382 (|#5| |#5| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -2399 (|#5| |#5| |#1|)) (-15 -2408 (|#5| |#5| |#1|)) (-15 -2418 (|#5| |#5| |#1|)) (-15 -2426 (|#5| |#5| |#1|)) (-15 -2435 ((-660 |#5|) (-660 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3654 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2458 ((-112) |#1|)) (-15 -2467 ((-112) |#1|)) (-15 -2475 ((-112) |#1|)) (-15 -2447 ((-112) |#1| (-1 (-112) |#5| (-660 |#5|)))) (-15 -2458 ((-112) |#5| |#1|)) (-15 -2467 ((-112) |#5| |#1|)) (-15 -2475 ((-112) |#5| |#1|)) (-15 -2484 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4354 ((-112) |#1|)) (-15 -4354 ((-112) |#5| |#1|)) (-15 -4364 ((-2 (|:| -2045 (-660 |#5|)) (|:| -3253 (-660 |#5|))) |#1|)) (-15 -2887 ((-787) |#1|)) (-15 -4375 ((-660 |#5|) |#1|)) (-15 -4385 ((-3 (-2 (|:| |bas| |#1|) (|:| -1436 (-660 |#5|))) "failed") (-660 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4385 ((-3 (-2 (|:| |bas| |#1|) (|:| -1436 (-660 |#5|))) "failed") (-660 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4396 ((-112) |#1| |#1|)) (-15 -2518 (|#1| |#1| |#4|)) (-15 -2536 (|#1| |#1| |#4|)) (-15 -3514 (|#4| |#1|)) (-15 -1628 ((-3 |#1| "failed") (-660 |#5|))) (-15 -3544 ((-660 |#5|) |#1|)) (-15 -3553 (|#1| (-660 |#5|))) (-15 -3654 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3654 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2067 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3654 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3544 ((-880) |#1|)) (-15 -2970 ((-112) |#1| |#1|))) (-1235 |#2| |#3| |#4| |#5|) (-569) (-809) (-865) (-1090 |#2| |#3| |#4|)) (T -1234)) +NIL +(-10 -8 (-15 -2332 ((-787) |#1|)) (-15 -3792 (|#1| |#1| |#5|)) (-15 -2067 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2776 ((-112) |#4| |#1|)) (-15 -2352 ((-660 |#4|) |#1|)) (-15 -3563 ((-3 |#1| "failed") |#1|)) (-15 -3927 ((-3 |#5| "failed") |#1|)) (-15 -3552 ((-3 |#5| "failed") |#1|)) (-15 -2382 (|#5| |#5| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -2399 (|#5| |#5| |#1|)) (-15 -2408 (|#5| |#5| |#1|)) (-15 -2418 (|#5| |#5| |#1|)) (-15 -2426 (|#5| |#5| |#1|)) (-15 -2435 ((-660 |#5|) (-660 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3654 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2458 ((-112) |#1|)) (-15 -2467 ((-112) |#1|)) (-15 -2475 ((-112) |#1|)) (-15 -2447 ((-112) |#1| (-1 (-112) |#5| (-660 |#5|)))) (-15 -2458 ((-112) |#5| |#1|)) (-15 -2467 ((-112) |#5| |#1|)) (-15 -2475 ((-112) |#5| |#1|)) (-15 -2484 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4354 ((-112) |#1|)) (-15 -4354 ((-112) |#5| |#1|)) (-15 -4364 ((-2 (|:| -2045 (-660 |#5|)) (|:| -3253 (-660 |#5|))) |#1|)) (-15 -2887 ((-787) |#1|)) (-15 -4375 ((-660 |#5|) |#1|)) (-15 -4385 ((-3 (-2 (|:| |bas| |#1|) (|:| -1436 (-660 |#5|))) "failed") (-660 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4385 ((-3 (-2 (|:| |bas| |#1|) (|:| -1436 (-660 |#5|))) "failed") (-660 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4396 ((-112) |#1| |#1|)) (-15 -2518 (|#1| |#1| |#4|)) (-15 -2536 (|#1| |#1| |#4|)) (-15 -3514 (|#4| |#1|)) (-15 -1628 ((-3 |#1| "failed") (-660 |#5|))) (-15 -3544 ((-660 |#5|) |#1|)) (-15 -3553 (|#1| (-660 |#5|))) (-15 -3654 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3654 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2067 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3654 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3544 ((-880) |#1|)) (-15 -2970 ((-112) |#1| |#1|))) +((-3473 (((-112) $ $) 7)) (-2361 (((-660 (-2 (|:| -2045 $) (|:| -3253 (-660 |#4|)))) (-660 |#4|)) 86)) (-2371 (((-660 $) (-660 |#4|)) 87)) (-2058 (((-660 |#3|) $) 34)) (-2508 (((-112) $) 27)) (-3572 (((-112) $) 18 (|has| |#1| (-569)))) (-2475 (((-112) |#4| $) 102) (((-112) $) 98)) (-2426 ((|#4| |#4| $) 93)) (-1864 (((-2 (|:| |under| $) (|:| -4119 $) (|:| |upper| $)) $ |#3|) 28)) (-3828 (((-112) $ (-787)) 45)) (-2067 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4470))) (((-3 |#4| "failed") $ |#3|) 80)) (-1534 (($) 46 T CONST)) (-2474 (((-112) $) 23 (|has| |#1| (-569)))) (-2492 (((-112) $ $) 25 (|has| |#1| (-569)))) (-2483 (((-112) $ $) 24 (|has| |#1| (-569)))) (-2500 (((-112) $) 26 (|has| |#1| (-569)))) (-2435 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2434 (((-660 |#4|) (-660 |#4|) $) 19 (|has| |#1| (-569)))) (-2446 (((-660 |#4|) (-660 |#4|) $) 20 (|has| |#1| (-569)))) (-1628 (((-3 $ "failed") (-660 |#4|)) 37)) (-2921 (($ (-660 |#4|)) 36)) (-3563 (((-3 $ "failed") $) 83)) (-2399 ((|#4| |#4| $) 90)) (-1817 (($ $) 69 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))))) (-3904 (($ |#4| $) 68 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4470)))) (-2457 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-569)))) (-2484 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2382 ((|#4| |#4| $) 88)) (-3654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4470))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4470))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-4364 (((-2 (|:| -2045 (-660 |#4|)) (|:| -3253 (-660 |#4|))) $) 106)) (-1461 (((-660 |#4|) $) 53 (|has| $ (-6 -4470)))) (-4354 (((-112) |#4| $) 105) (((-112) $) 104)) (-3514 ((|#3| $) 35)) (-1479 (((-112) $ (-787)) 44)) (-2530 (((-660 |#4|) $) 54 (|has| $ (-6 -4470)))) (-2820 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#4| |#4|) $) 48)) (-2555 (((-660 |#3|) $) 33)) (-2545 (((-112) |#3| $) 32)) (-1443 (((-112) $ (-787)) 43)) (-2810 (((-1183) $) 10)) (-3927 (((-3 |#4| "failed") $) 84)) (-4375 (((-660 |#4|) $) 108)) (-2458 (((-112) |#4| $) 100) (((-112) $) 96)) (-2408 ((|#4| |#4| $) 91)) (-4396 (((-112) $ $) 111)) (-2466 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-569)))) (-2467 (((-112) |#4| $) 101) (((-112) $) 97)) (-2418 ((|#4| |#4| $) 92)) (-1474 (((-1145) $) 11)) (-3552 (((-3 |#4| "failed") $) 85)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2343 (((-3 $ "failed") $ |#4|) 79)) (-3792 (($ $ |#4|) 78)) (-1514 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 |#4|) (-660 |#4|)) 60 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-660 (-305 |#4|))) 57 (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))))) (-3840 (((-112) $ $) 39)) (-3697 (((-112) $) 42)) (-3639 (($) 41)) (-2887 (((-787) $) 107)) (-1485 (((-787) |#4| $) 55 (-12 (|has| |#4| (-1125)) (|has| $ (-6 -4470)))) (((-787) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4470)))) (-1944 (($ $) 40)) (-4152 (((-549) $) 70 (|has| |#4| (-627 (-549))))) (-3553 (($ (-660 |#4|)) 61)) (-2518 (($ $ |#3|) 29)) (-2536 (($ $ |#3|) 31)) (-2391 (($ $) 89)) (-2527 (($ $ |#3|) 30)) (-3544 (((-880) $) 12) (((-660 |#4|) $) 38)) (-2332 (((-787) $) 77 (|has| |#3| (-380)))) (-4448 (((-112) $ $) 6)) (-4385 (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2447 (((-112) $ (-1 (-112) |#4| (-660 |#4|))) 99)) (-1524 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4470)))) (-2352 (((-660 |#3|) $) 82)) (-2776 (((-112) |#3| $) 81)) (-2970 (((-112) $ $) 8)) (-3484 (((-787) $) 47 (|has| $ (-6 -4470))))) +(((-1235 |#1| |#2| |#3| |#4|) (-141) (-569) (-809) (-865) (-1090 |t#1| |t#2| |t#3|)) (T -1235)) +((-4396 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) (-4385 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1436 (-660 *8)))) (-5 *3 (-660 *8)) (-4 *1 (-1235 *5 *6 *7 *8)))) (-4385 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1090 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-809)) (-4 *8 (-865)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1436 (-660 *9)))) (-5 *3 (-660 *9)) (-4 *1 (-1235 *6 *7 *8 *9)))) (-4375 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-660 *6)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-787)))) (-4364 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-2 (|:| -2045 (-660 *6)) (|:| -3253 (-660 *6)))))) (-4354 (*1 *2 *3 *1) (-12 (-4 *1 (-1235 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-4354 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) (-2484 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1235 *5 *6 *7 *3)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-112)))) (-2475 (*1 *2 *3 *1) (-12 (-4 *1 (-1235 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-2467 (*1 *2 *3 *1) (-12 (-4 *1 (-1235 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-2458 (*1 *2 *3 *1) (-12 (-4 *1 (-1235 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-2447 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-660 *7))) (-4 *1 (-1235 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) (-2467 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) (-2458 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) (-3654 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1235 *5 *6 *7 *2)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *2 (-1090 *5 *6 *7)))) (-2435 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-660 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1235 *5 *6 *7 *8)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)))) (-2426 (*1 *2 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-2418 (*1 *2 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-2408 (*1 *2 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-2399 (*1 *2 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-2391 (*1 *1 *1) (-12 (-4 *1 (-1235 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-1090 *2 *3 *4)))) (-2382 (*1 *2 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *1)) (-4 *1 (-1235 *4 *5 *6 *7)))) (-2361 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-660 (-2 (|:| -2045 *1) (|:| -3253 (-660 *7))))) (-5 *3 (-660 *7)) (-4 *1 (-1235 *4 *5 *6 *7)))) (-3552 (*1 *2 *1) (|partial| -12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-3927 (*1 *2 *1) (|partial| -12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-3563 (*1 *1 *1) (|partial| -12 (-4 *1 (-1235 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-1090 *2 *3 *4)))) (-2352 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-660 *5)))) (-2776 (*1 *2 *3 *1) (-12 (-4 *1 (-1235 *4 *5 *3 *6)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *3 (-865)) (-4 *6 (-1090 *4 *5 *3)) (-5 *2 (-112)))) (-2067 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1235 *4 *5 *3 *2)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *3 (-865)) (-4 *2 (-1090 *4 *5 *3)))) (-2343 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-3792 (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) (-2332 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *5 (-380)) (-5 *2 (-787))))) +(-13 (-1001 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4470) (-6 -4471) (-15 -4396 ((-112) $ $)) (-15 -4385 ((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |t#4|))) "failed") (-660 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4385 ((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |t#4|))) "failed") (-660 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4375 ((-660 |t#4|) $)) (-15 -2887 ((-787) $)) (-15 -4364 ((-2 (|:| -2045 (-660 |t#4|)) (|:| -3253 (-660 |t#4|))) $)) (-15 -4354 ((-112) |t#4| $)) (-15 -4354 ((-112) $)) (-15 -2484 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2475 ((-112) |t#4| $)) (-15 -2467 ((-112) |t#4| $)) (-15 -2458 ((-112) |t#4| $)) (-15 -2447 ((-112) $ (-1 (-112) |t#4| (-660 |t#4|)))) (-15 -2475 ((-112) $)) (-15 -2467 ((-112) $)) (-15 -2458 ((-112) $)) (-15 -3654 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2435 ((-660 |t#4|) (-660 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2426 (|t#4| |t#4| $)) (-15 -2418 (|t#4| |t#4| $)) (-15 -2408 (|t#4| |t#4| $)) (-15 -2399 (|t#4| |t#4| $)) (-15 -2391 ($ $)) (-15 -2382 (|t#4| |t#4| $)) (-15 -2371 ((-660 $) (-660 |t#4|))) (-15 -2361 ((-660 (-2 (|:| -2045 $) (|:| -3253 (-660 |t#4|)))) (-660 |t#4|))) (-15 -3552 ((-3 |t#4| "failed") $)) (-15 -3927 ((-3 |t#4| "failed") $)) (-15 -3563 ((-3 $ "failed") $)) (-15 -2352 ((-660 |t#3|) $)) (-15 -2776 ((-112) |t#3| $)) (-15 -2067 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2343 ((-3 $ "failed") $ |t#4|)) (-15 -3792 ($ $ |t#4|)) (IF (|has| |t#3| (-380)) (-15 -2332 ((-787) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-626 (-660 |#4|)) . T) ((-626 (-880)) . T) ((-152 |#4|) . T) ((-627 (-549)) |has| |#4| (-627 (-549))) ((-320 |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-502 |#4|) . T) ((-527 |#4| |#4|) -12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))) ((-1001 |#1| |#2| |#3| |#4|) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-2058 (((-660 (-1201)) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-2212 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2060 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1956 (((-3 $ "failed") $ $) NIL)) (-1913 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2186 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2032 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2237 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2084 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1534 (($) NIL T CONST)) (-2248 (($ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3074 (((-975 |#1|) $ (-787)) 17) (((-975 |#1|) $ (-787) (-787)) NIL)) (-3550 (((-112) $) NIL)) (-1659 (($) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3817 (((-787) $ (-1201)) NIL) (((-787) $ (-1201) (-787)) NIL)) (-2487 (((-112) $) NIL)) (-2381 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2811 (((-112) $) NIL)) (-2030 (($ $ (-660 (-1201)) (-660 (-544 (-1201)))) NIL) (($ $ (-1201) (-544 (-1201))) NIL) (($ |#1| (-544 (-1201))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3698 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-2810 (((-1183) $) NIL)) (-4147 (($ $ (-1201)) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-1201) |#1|) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1474 (((-1145) $) NIL)) (-2312 (($ (-1 $) (-1201) |#1|) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3792 (($ $ (-787)) NIL)) (-3462 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)))) (-4072 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3280 (($ $ (-1201) $) NIL) (($ $ (-660 (-1201)) (-660 $)) NIL) (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL)) (-2852 (($ $ (-660 (-1201)) (-660 (-787))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201))) NIL) (($ $ (-1201)) NIL)) (-2887 (((-544 (-1201)) $) NIL)) (-2249 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2095 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2073 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2199 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2046 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3540 (($ $) NIL)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-569))) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))) (($ (-1201)) NIL) (($ (-975 |#1|)) NIL)) (-2322 ((|#1| $ (-544 (-1201))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL) (((-975 |#1|) $ (-787)) NIL)) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-4114 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2136 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2262 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2106 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4141 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2162 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2261 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2174 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4128 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2150 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2272 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2120 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2132 (($ $ (-660 (-1201)) (-660 (-787))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201))) NIL) (($ $ (-1201)) NIL)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1236 |#1|) (-13 (-756 |#1| (-1201)) (-10 -8 (-15 -2322 ((-975 |#1|) $ (-787))) (-15 -3544 ($ (-1201))) (-15 -3544 ($ (-975 |#1|))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4147 ($ $ (-1201) |#1|)) (-15 -2312 ($ (-1 $) (-1201) |#1|))) |%noBranch|))) (-1074)) (T -1236)) +((-2322 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *2 (-975 *4)) (-5 *1 (-1236 *4)) (-4 *4 (-1074)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1236 *3)) (-4 *3 (-1074)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-975 *3)) (-4 *3 (-1074)) (-5 *1 (-1236 *3)))) (-4147 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *1 (-1236 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)))) (-2312 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1236 *4))) (-5 *3 (-1201)) (-5 *1 (-1236 *4)) (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1074))))) +(-13 (-756 |#1| (-1201)) (-10 -8 (-15 -2322 ((-975 |#1|) $ (-787))) (-15 -3544 ($ (-1201))) (-15 -3544 ($ (-975 |#1|))) (IF (|has| |#1| (-38 (-420 (-577)))) (PROGN (-15 -4147 ($ $ (-1201) |#1|)) (-15 -2312 ($ (-1 $) (-1201) |#1|))) |%noBranch|))) +((-1341 (($ |#1| (-660 (-660 (-966 (-228)))) (-112)) 19)) (-1328 (((-112) $ (-112)) 18)) (-4440 (((-112) $) 17)) (-4416 (((-660 (-660 (-966 (-228)))) $) 13)) (-4406 ((|#1| $) 8)) (-4427 (((-112) $) 15))) +(((-1237 |#1|) (-10 -8 (-15 -4406 (|#1| $)) (-15 -4416 ((-660 (-660 (-966 (-228)))) $)) (-15 -4427 ((-112) $)) (-15 -4440 ((-112) $)) (-15 -1328 ((-112) $ (-112))) (-15 -1341 ($ |#1| (-660 (-660 (-966 (-228)))) (-112)))) (-999)) (T -1237)) +((-1341 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-112)) (-5 *1 (-1237 *2)) (-4 *2 (-999)))) (-1328 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-999)))) (-4440 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-999)))) (-4427 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-999)))) (-4416 (*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *1 (-1237 *3)) (-4 *3 (-999)))) (-4406 (*1 *2 *1) (-12 (-5 *1 (-1237 *2)) (-4 *2 (-999))))) +(-10 -8 (-15 -4406 (|#1| $)) (-15 -4416 ((-660 (-660 (-966 (-228)))) $)) (-15 -4427 ((-112) $)) (-15 -4440 ((-112) $)) (-15 -1328 ((-112) $ (-112))) (-15 -1341 ($ |#1| (-660 (-660 (-966 (-228)))) (-112)))) +((-1352 (((-966 (-228)) (-966 (-228))) 31)) (-3656 (((-966 (-228)) (-228) (-228) (-228) (-228)) 10)) (-1377 (((-660 (-966 (-228))) (-966 (-228)) (-966 (-228)) (-966 (-228)) (-228) (-660 (-660 (-228)))) 56)) (-3116 (((-228) (-966 (-228)) (-966 (-228))) 27)) (-4331 (((-966 (-228)) (-966 (-228)) (-966 (-228))) 28)) (-1363 (((-660 (-660 (-228))) (-577)) 44)) (-3066 (((-966 (-228)) (-966 (-228)) (-966 (-228))) 26)) (-3055 (((-966 (-228)) (-966 (-228)) (-966 (-228))) 24)) (* (((-966 (-228)) (-228) (-966 (-228))) 22))) +(((-1238) (-10 -7 (-15 -3656 ((-966 (-228)) (-228) (-228) (-228) (-228))) (-15 * ((-966 (-228)) (-228) (-966 (-228)))) (-15 -3055 ((-966 (-228)) (-966 (-228)) (-966 (-228)))) (-15 -3066 ((-966 (-228)) (-966 (-228)) (-966 (-228)))) (-15 -3116 ((-228) (-966 (-228)) (-966 (-228)))) (-15 -4331 ((-966 (-228)) (-966 (-228)) (-966 (-228)))) (-15 -1352 ((-966 (-228)) (-966 (-228)))) (-15 -1363 ((-660 (-660 (-228))) (-577))) (-15 -1377 ((-660 (-966 (-228))) (-966 (-228)) (-966 (-228)) (-966 (-228)) (-228) (-660 (-660 (-228))))))) (T -1238)) +((-1377 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-660 (-660 (-228)))) (-5 *4 (-228)) (-5 *2 (-660 (-966 *4))) (-5 *1 (-1238)) (-5 *3 (-966 *4)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-577)) (-5 *2 (-660 (-660 (-228)))) (-5 *1 (-1238)))) (-1352 (*1 *2 *2) (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238)))) (-4331 (*1 *2 *2 *2) (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238)))) (-3116 (*1 *2 *3 *3) (-12 (-5 *3 (-966 (-228))) (-5 *2 (-228)) (-5 *1 (-1238)))) (-3066 (*1 *2 *2 *2) (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238)))) (-3055 (*1 *2 *2 *2) (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-966 (-228))) (-5 *3 (-228)) (-5 *1 (-1238)))) (-3656 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238)) (-5 *3 (-228))))) +(-10 -7 (-15 -3656 ((-966 (-228)) (-228) (-228) (-228) (-228))) (-15 * ((-966 (-228)) (-228) (-966 (-228)))) (-15 -3055 ((-966 (-228)) (-966 (-228)) (-966 (-228)))) (-15 -3066 ((-966 (-228)) (-966 (-228)) (-966 (-228)))) (-15 -3116 ((-228) (-966 (-228)) (-966 (-228)))) (-15 -4331 ((-966 (-228)) (-966 (-228)) (-966 (-228)))) (-15 -1352 ((-966 (-228)) (-966 (-228)))) (-15 -1363 ((-660 (-660 (-228))) (-577))) (-15 -1377 ((-660 (-966 (-228))) (-966 (-228)) (-966 (-228)) (-966 (-228)) (-228) (-660 (-660 (-228)))))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-2067 ((|#1| $ (-787)) 18)) (-3402 (((-787) $) 13)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-3544 (((-981 |#1|) $) 12) (($ (-981 |#1|)) 11) (((-880) $) 29 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-2970 (((-112) $ $) 22 (|has| |#1| (-1125))))) +(((-1239 |#1|) (-13 (-503 (-981 |#1|)) (-10 -8 (-15 -2067 (|#1| $ (-787))) (-15 -3402 ((-787) $)) (IF (|has| |#1| (-626 (-880))) (-6 (-626 (-880))) |%noBranch|) (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|))) (-1242)) (T -1239)) +((-2067 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *1 (-1239 *2)) (-4 *2 (-1242)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1239 *3)) (-4 *3 (-1242))))) +(-13 (-503 (-981 |#1|)) (-10 -8 (-15 -2067 (|#1| $ (-787))) (-15 -3402 ((-787) $)) (IF (|has| |#1| (-626 (-880))) (-6 (-626 (-880))) |%noBranch|) (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|))) +((-1411 (((-431 (-1197 (-1197 |#1|))) (-1197 (-1197 |#1|)) (-577)) 94)) (-1388 (((-431 (-1197 (-1197 |#1|))) (-1197 (-1197 |#1|))) 86)) (-1399 (((-431 (-1197 (-1197 |#1|))) (-1197 (-1197 |#1|))) 70))) +(((-1240 |#1|) (-10 -7 (-15 -1388 ((-431 (-1197 (-1197 |#1|))) (-1197 (-1197 |#1|)))) (-15 -1399 ((-431 (-1197 (-1197 |#1|))) (-1197 (-1197 |#1|)))) (-15 -1411 ((-431 (-1197 (-1197 |#1|))) (-1197 (-1197 |#1|)) (-577)))) (-361)) (T -1240)) +((-1411 (*1 *2 *3 *4) (-12 (-5 *4 (-577)) (-4 *5 (-361)) (-5 *2 (-431 (-1197 (-1197 *5)))) (-5 *1 (-1240 *5)) (-5 *3 (-1197 (-1197 *5))))) (-1399 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-431 (-1197 (-1197 *4)))) (-5 *1 (-1240 *4)) (-5 *3 (-1197 (-1197 *4))))) (-1388 (*1 *2 *3) (-12 (-4 *4 (-361)) (-5 *2 (-431 (-1197 (-1197 *4)))) (-5 *1 (-1240 *4)) (-5 *3 (-1197 (-1197 *4)))))) +(-10 -7 (-15 -1388 ((-431 (-1197 (-1197 |#1|))) (-1197 (-1197 |#1|)))) (-15 -1399 ((-431 (-1197 (-1197 |#1|))) (-1197 (-1197 |#1|)))) (-15 -1411 ((-431 (-1197 (-1197 |#1|))) (-1197 (-1197 |#1|)) (-577)))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 9) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-1241) (-1108)) (T -1241)) +NIL +(-1108) +NIL +(((-1242) (-141)) (T -1242)) +NIL +(-13 (-10 -7 (-6 -4107))) +((-1454 (((-112)) 18)) (-1422 (((-1297) (-660 |#1|) (-660 |#1|)) 22) (((-1297) (-660 |#1|)) 23)) (-1479 (((-112) |#1| |#1|) 37 (|has| |#1| (-865)))) (-1443 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-1466 ((|#1| (-660 |#1|)) 38 (|has| |#1| (-865))) ((|#1| (-660 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-1432 (((-2 (|:| -2742 (-660 |#1|)) (|:| -2731 (-660 |#1|)))) 20))) +(((-1243 |#1|) (-10 -7 (-15 -1422 ((-1297) (-660 |#1|))) (-15 -1422 ((-1297) (-660 |#1|) (-660 |#1|))) (-15 -1432 ((-2 (|:| -2742 (-660 |#1|)) (|:| -2731 (-660 |#1|))))) (-15 -1443 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1443 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1466 (|#1| (-660 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1454 ((-112))) (IF (|has| |#1| (-865)) (PROGN (-15 -1466 (|#1| (-660 |#1|))) (-15 -1479 ((-112) |#1| |#1|))) |%noBranch|)) (-1125)) (T -1243)) +((-1479 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-865)) (-4 *3 (-1125)))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-1125)) (-4 *2 (-865)) (-5 *1 (-1243 *2)))) (-1454 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-1125)))) (-1466 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1243 *2)) (-4 *2 (-1125)))) (-1443 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1125)) (-5 *2 (-112)) (-5 *1 (-1243 *3)))) (-1443 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-1125)))) (-1432 (*1 *2) (-12 (-5 *2 (-2 (|:| -2742 (-660 *3)) (|:| -2731 (-660 *3)))) (-5 *1 (-1243 *3)) (-4 *3 (-1125)))) (-1422 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-1125)) (-5 *2 (-1297)) (-5 *1 (-1243 *4)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-1125)) (-5 *2 (-1297)) (-5 *1 (-1243 *4))))) +(-10 -7 (-15 -1422 ((-1297) (-660 |#1|))) (-15 -1422 ((-1297) (-660 |#1|) (-660 |#1|))) (-15 -1432 ((-2 (|:| -2742 (-660 |#1|)) (|:| -2731 (-660 |#1|))))) (-15 -1443 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1443 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -1466 (|#1| (-660 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1454 ((-112))) (IF (|has| |#1| (-865)) (PROGN (-15 -1466 (|#1| (-660 |#1|))) (-15 -1479 ((-112) |#1| |#1|))) |%noBranch|)) +((-1490 (((-1297) (-660 (-1201)) (-660 (-1201))) 14) (((-1297) (-660 (-1201))) 12)) (-1511 (((-1297)) 16)) (-1501 (((-2 (|:| -2731 (-660 (-1201))) (|:| -2742 (-660 (-1201))))) 20))) +(((-1244) (-10 -7 (-15 -1490 ((-1297) (-660 (-1201)))) (-15 -1490 ((-1297) (-660 (-1201)) (-660 (-1201)))) (-15 -1501 ((-2 (|:| -2731 (-660 (-1201))) (|:| -2742 (-660 (-1201)))))) (-15 -1511 ((-1297))))) (T -1244)) +((-1511 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1244)))) (-1501 (*1 *2) (-12 (-5 *2 (-2 (|:| -2731 (-660 (-1201))) (|:| -2742 (-660 (-1201))))) (-5 *1 (-1244)))) (-1490 (*1 *2 *3 *3) (-12 (-5 *3 (-660 (-1201))) (-5 *2 (-1297)) (-5 *1 (-1244)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-660 (-1201))) (-5 *2 (-1297)) (-5 *1 (-1244))))) +(-10 -7 (-15 -1490 ((-1297) (-660 (-1201)))) (-15 -1490 ((-1297) (-660 (-1201)) (-660 (-1201)))) (-15 -1501 ((-2 (|:| -2731 (-660 (-1201))) (|:| -2742 (-660 (-1201)))))) (-15 -1511 ((-1297)))) +((-3841 (($ $) 17)) (-1522 (((-112) $) 28))) +(((-1245 |#1|) (-10 -8 (-15 -3841 (|#1| |#1|)) (-15 -1522 ((-112) |#1|))) (-1246)) (T -1245)) +NIL +(-10 -8 (-15 -3841 (|#1| |#1|)) (-15 -1522 ((-112) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-1956 (((-3 $ "failed") $ $) 20)) (-3841 (($ $) 57)) (-3029 (((-431 $) $) 58)) (-1534 (($) 18 T CONST)) (-4187 (((-3 $ "failed") $) 37)) (-1522 (((-112) $) 59)) (-2487 (((-112) $) 35)) (-3446 (($ $ $) 52) (($ (-660 $)) 51)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 50)) (-3480 (($ $ $) 54) (($ (-660 $)) 53)) (-1902 (((-431 $) $) 56)) (-3462 (((-3 $ "failed") $ $) 48)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 45)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27))) +(((-1246) (-141)) (T -1246)) +((-1522 (*1 *2 *1) (-12 (-4 *1 (-1246)) (-5 *2 (-112)))) (-3029 (*1 *2 *1) (-12 (-5 *2 (-431 *1)) (-4 *1 (-1246)))) (-3841 (*1 *1 *1) (-4 *1 (-1246))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-431 *1)) (-4 *1 (-1246))))) +(-13 (-465) (-10 -8 (-15 -1522 ((-112) $)) (-15 -3029 ((-431 $) $)) (-15 -3841 ($ $)) (-15 -1902 ((-431 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-301) . T) ((-465) . T) ((-569) . T) ((-662 (-577)) . T) ((-662 $) . T) ((-664 $) . T) ((-656 $) . T) ((-733 $) . T) ((-742) . T) ((-1076 $) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) NIL)) (-2229 (((-787)) NIL)) (-1534 (($) NIL T CONST)) (-1910 (($) NIL)) (-3732 (($ $ $) NIL) (($) NIL T CONST)) (-3201 (($ $ $) NIL) (($) NIL T CONST)) (-4038 (((-944) $) NIL)) (-2810 (((-1183) $) NIL)) (-3222 (($ (-944)) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-2464 (($ $ $) NIL)) (-2455 (($ $ $) NIL)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL))) +(((-1247) (-13 (-860) (-10 -8 (-15 -2455 ($ $ $)) (-15 -2464 ($ $ $)) (-15 -1534 ($) -1512)))) (T -1247)) +((-2455 (*1 *1 *1 *1) (-5 *1 (-1247))) (-2464 (*1 *1 *1 *1) (-5 *1 (-1247))) (-1534 (*1 *1) (-5 *1 (-1247)))) +(-13 (-860) (-10 -8 (-15 -2455 ($ $ $)) (-15 -2464 ($ $ $)) (-15 -1534 ($) -1512))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-3429 (((-112) $ $) NIL)) (-2193 (((-784)) NIL)) (-4359 (($) NIL T CONST)) (-1892 (($) NIL)) (-3707 (($ $ $) NIL) (($) NIL T CONST)) (-1611 (($ $ $) NIL) (($) NIL T CONST)) (-3007 (((-941) $) NIL)) (-2342 (((-1180) $) NIL)) (-3178 (($ (-941)) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2427 (($ $ $) NIL)) (-2418 (($ $ $) NIL)) (-2046 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL))) -(((-1245) (-13 (-857) (-10 -8 (-15 -2418 ($ $ $)) (-15 -2427 ($ $ $)) (-15 -4359 ($) -1509)))) (T -1245)) -((-2418 (*1 *1 *1 *1) (-5 *1 (-1245))) (-2427 (*1 *1 *1 *1) (-5 *1 (-1245))) (-4359 (*1 *1) (-5 *1 (-1245)))) -(-13 (-857) (-10 -8 (-15 -2418 ($ $ $)) (-15 -2427 ($ $ $)) (-15 -4359 ($) -1509))) +((-3473 (((-112) $ $) NIL)) (-2229 (((-787)) NIL)) (-1534 (($) NIL T CONST)) (-1910 (($) NIL)) (-3732 (($ $ $) NIL) (($) NIL T CONST)) (-3201 (($ $ $) NIL) (($) NIL T CONST)) (-4038 (((-944) $) NIL)) (-2810 (((-1183) $) NIL)) (-3222 (($ (-944)) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-2464 (($ $ $) NIL)) (-2455 (($ $ $) NIL)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL))) +(((-1248) (-13 (-860) (-10 -8 (-15 -2455 ($ $ $)) (-15 -2464 ($ $ $)) (-15 -1534 ($) -1512)))) (T -1248)) +((-2455 (*1 *1 *1 *1) (-5 *1 (-1248))) (-2464 (*1 *1 *1 *1) (-5 *1 (-1248))) (-1534 (*1 *1) (-5 *1 (-1248)))) +(-13 (-860) (-10 -8 (-15 -2455 ($ $ $)) (-15 -2464 ($ $ $)) (-15 -1534 ($) -1512))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-3429 (((-112) $ $) NIL)) (-2193 (((-784)) NIL)) (-4359 (($) NIL T CONST)) (-1892 (($) NIL)) (-3707 (($ $ $) NIL) (($) NIL T CONST)) (-1611 (($ $ $) NIL) (($) NIL T CONST)) (-3007 (((-941) $) NIL)) (-2342 (((-1180) $) NIL)) (-3178 (($ (-941)) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2427 (($ $ $) NIL)) (-2418 (($ $ $) NIL)) (-2046 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL))) -(((-1246) (-13 (-857) (-10 -8 (-15 -2418 ($ $ $)) (-15 -2427 ($ $ $)) (-15 -4359 ($) -1509)))) (T -1246)) -((-2418 (*1 *1 *1 *1) (-5 *1 (-1246))) (-2427 (*1 *1 *1 *1) (-5 *1 (-1246))) (-4359 (*1 *1) (-5 *1 (-1246)))) -(-13 (-857) (-10 -8 (-15 -2418 ($ $ $)) (-15 -2427 ($ $ $)) (-15 -4359 ($) -1509))) +((-3473 (((-112) $ $) NIL)) (-2229 (((-787)) NIL)) (-1534 (($) NIL T CONST)) (-1910 (($) NIL)) (-3732 (($ $ $) NIL) (($) NIL T CONST)) (-3201 (($ $ $) NIL) (($) NIL T CONST)) (-4038 (((-944) $) NIL)) (-2810 (((-1183) $) NIL)) (-3222 (($ (-944)) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-2464 (($ $ $) NIL)) (-2455 (($ $ $) NIL)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL))) +(((-1249) (-13 (-860) (-10 -8 (-15 -2455 ($ $ $)) (-15 -2464 ($ $ $)) (-15 -1534 ($) -1512)))) (T -1249)) +((-2455 (*1 *1 *1 *1) (-5 *1 (-1249))) (-2464 (*1 *1 *1 *1) (-5 *1 (-1249))) (-1534 (*1 *1) (-5 *1 (-1249)))) +(-13 (-860) (-10 -8 (-15 -2455 ($ $ $)) (-15 -2464 ($ $ $)) (-15 -1534 ($) -1512))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-3429 (((-112) $ $) NIL)) (-2193 (((-784)) NIL)) (-4359 (($) NIL T CONST)) (-1892 (($) NIL)) (-3707 (($ $ $) NIL) (($) NIL T CONST)) (-1611 (($ $ $) NIL) (($) NIL T CONST)) (-3007 (((-941) $) NIL)) (-2342 (((-1180) $) NIL)) (-3178 (($ (-941)) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) NIL)) (-2427 (($ $ $) NIL)) (-2418 (($ $ $) NIL)) (-2046 (((-112) $ $) NIL)) (-2985 (((-112) $ $) NIL)) (-2963 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL)) (-2954 (((-112) $ $) NIL))) -(((-1247) (-13 (-857) (-10 -8 (-15 -2418 ($ $ $)) (-15 -2427 ($ $ $)) (-15 -4359 ($) -1509)))) (T -1247)) -((-2418 (*1 *1 *1 *1) (-5 *1 (-1247))) (-2427 (*1 *1 *1 *1) (-5 *1 (-1247))) (-4359 (*1 *1) (-5 *1 (-1247)))) -(-13 (-857) (-10 -8 (-15 -2418 ($ $ $)) (-15 -2427 ($ $ $)) (-15 -4359 ($) -1509))) +((-3473 (((-112) $ $) NIL)) (-2229 (((-787)) NIL)) (-1534 (($) NIL T CONST)) (-1910 (($) NIL)) (-3732 (($ $ $) NIL) (($) NIL T CONST)) (-3201 (($ $ $) NIL) (($) NIL T CONST)) (-4038 (((-944) $) NIL)) (-2810 (((-1183) $) NIL)) (-3222 (($ (-944)) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) NIL)) (-2464 (($ $ $) NIL)) (-2455 (($ $ $) NIL)) (-4448 (((-112) $ $) NIL)) (-3025 (((-112) $ $) NIL)) (-3000 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-2990 (((-112) $ $) NIL))) +(((-1250) (-13 (-860) (-10 -8 (-15 -2455 ($ $ $)) (-15 -2464 ($ $ $)) (-15 -1534 ($) -1512)))) (T -1250)) +((-2455 (*1 *1 *1 *1) (-5 *1 (-1250))) (-2464 (*1 *1 *1 *1) (-5 *1 (-1250))) (-1534 (*1 *1) (-5 *1 (-1250)))) +(-13 (-860) (-10 -8 (-15 -2455 ($ $ $)) (-15 -2464 ($ $ $)) (-15 -1534 ($) -1512))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-4083 (((-1253 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1253 |#1| |#3| |#5|)) 23))) -(((-1248 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4083 ((-1253 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1253 |#1| |#3| |#5|)))) (-1071) (-1071) (-1198) (-1198) |#1| |#2|) (T -1248)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5 *7 *9)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-14 *7 (-1198)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1253 *6 *8 *10)) (-5 *1 (-1248 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1198))))) -(-10 -7 (-15 -4083 ((-1253 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1253 |#1| |#3| |#5|)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2029 (((-657 (-1104)) $) 86)) (-3032 (((-1198) $) 118)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-3325 (($ $) 64 (|has| |#1| (-568)))) (-4306 (((-112) $) 66 (|has| |#1| (-568)))) (-4374 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-2886 (((-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-2176 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2030 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (((-3 $ "failed") $ $) 20)) (-2638 (($ $) 177 (|has| |#1| (-374)))) (-4402 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1896 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2864 (((-112) $ $) 168 (|has| |#1| (-374)))) (-2150 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2004 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3660 (($ (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-2201 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2052 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-4359 (($) 18 T CONST)) (-3373 (($ $ $) 172 (|has| |#1| (-374)))) (-2212 (($ $) 72)) (-3843 (((-3 $ "failed") $) 37)) (-3588 (((-419 (-972 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-972 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-3385 (($ $ $) 171 (|has| |#1| (-374)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 166 (|has| |#1| (-374)))) (-4257 (((-112) $) 179 (|has| |#1| (-374)))) (-2373 (((-112) $) 85)) (-1657 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3182 (((-576) $) 115) (((-576) $ (-576)) 114)) (-4094 (((-112) $) 35)) (-2082 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-1525 (($ $ (-941)) 116)) (-2008 (($ (-1 |#1| (-576)) $) 187)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 175 (|has| |#1| (-374)))) (-3157 (((-112) $) 74)) (-2003 (($ |#1| (-576)) 73) (($ $ (-1104) (-576)) 88) (($ $ (-657 (-1104)) (-657 (-576))) 87)) (-4083 (($ (-1 |#1| |#1|) $) 75)) (-3670 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2174 (($ $) 77)) (-2186 ((|#1| $) 78)) (-3402 (($ (-657 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2342 (((-1180) $) 10)) (-2134 (($ $) 180 (|has| |#1| (-374)))) (-4190 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) 183 (-2802 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-979)) (|has| |#1| (-1224)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -2029 ((-657 (-1198)) |#1|))) (|has| |#1| (-15 -4190 (|#1| |#1| (-1198)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 165 (|has| |#1| (-374)))) (-3436 (($ (-657 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1885 (((-430 $) $) 176 (|has| |#1| (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 173 (|has| |#1| (-374)))) (-3926 (($ $ (-576)) 110)) (-3418 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 167 (|has| |#1| (-374)))) (-4067 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3236 (((-1179 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-2034 (((-784) $) 169 (|has| |#1| (-374)))) (-2835 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1134)))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 170 (|has| |#1| (-374)))) (-2815 (($ $ (-1198)) 108 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-657 (-1198))) 106 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198) (-784)) 105 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 104 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-784)) 98 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-1770 (((-576) $) 76)) (-2213 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2062 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2188 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2163 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2017 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1431 (($ $) 84)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-2313 ((|#1| $ (-576)) 71)) (-3096 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1960 (((-784)) 32 T CONST)) (-3665 ((|#1| $) 117)) (-2046 (((-112) $ $) 6)) (-4110 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-4041 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2225 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2072 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2125 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4144 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3501 (|#1| (-1198))))))) (-2224 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-4124 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2235 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2085 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-1198)) 107 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-657 (-1198))) 103 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198) (-784)) 102 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 101 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-784)) 97 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2933 (((-112) $ $) 8)) (-3034 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1249 |#1|) (-141) (-1071)) (T -1249)) -((-3660 (*1 *1 *2) (-12 (-5 *2 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1071)) (-4 *1 (-1249 *3)))) (-2008 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1249 *3)) (-4 *3 (-1071)))) (-3588 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1249 *4)) (-4 *4 (-1071)) (-4 *4 (-568)) (-5 *2 (-419 (-972 *4))))) (-3588 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1249 *4)) (-4 *4 (-1071)) (-4 *4 (-568)) (-5 *2 (-419 (-972 *4))))) (-4190 (*1 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1071)) (-4 *2 (-38 (-419 (-576)))))) (-4190 (*1 *1 *1 *2) (-2802 (-12 (-5 *2 (-1198)) (-4 *1 (-1249 *3)) (-4 *3 (-1071)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-979)) (-4 *3 (-1224)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1198)) (-4 *1 (-1249 *3)) (-4 *3 (-1071)) (-12 (|has| *3 (-15 -2029 ((-657 *2) *3))) (|has| *3 (-15 -4190 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) -(-13 (-1267 |t#1| (-576)) (-10 -8 (-15 -3660 ($ (-1179 (-2 (|:| |k| (-576)) (|:| |c| |t#1|))))) (-15 -2008 ($ (-1 |t#1| (-576)) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -3588 ((-419 (-972 |t#1|)) $ (-576))) (-15 -3588 ((-419 (-972 |t#1|)) $ (-576) (-576)))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -4190 ($ $)) (IF (|has| |t#1| (-15 -4190 (|t#1| |t#1| (-1198)))) (IF (|has| |t#1| (-15 -2029 ((-657 (-1198)) |t#1|))) (-15 -4190 ($ $ (-1198))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1224)) (IF (|has| |t#1| (-979)) (IF (|has| |t#1| (-29 (-576))) (-15 -4190 ($ $ (-1198))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1024)) (-6 (-1224))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-877)) . T) ((-174) -2802 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-576) (-1134)) ((-300) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-659 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-730 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-739) . T) ((-912 $ #2=(-1198)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))) ((-918 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))) ((-920 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))) ((-995 |#1| #0# (-1104)) . T) ((-940) |has| |#1| (-374)) ((-1024) |has| |#1| (-38 (-419 (-576)))) ((-1073 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1073 |#1|) . T) ((-1073 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1078 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1078 |#1|) . T) ((-1078 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1227) |has| |#1| (-38 (-419 (-576)))) ((-1239) . T) ((-1243) |has| |#1| (-374)) ((-1267 |#1| #0#) . T)) -((-2364 (((-112) $) 12)) (-1624 (((-3 |#3| "failed") $) 17) (((-3 (-1198) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL)) (-2884 ((|#3| $) 14) (((-1198) $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL))) -(((-1250 |#1| |#2| |#3|) (-10 -8 (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -1624 ((-3 (-1198) "failed") |#1|)) (-15 -2884 ((-1198) |#1|)) (-15 -1624 ((-3 |#3| "failed") |#1|)) (-15 -2884 (|#3| |#1|)) (-15 -2364 ((-112) |#1|))) (-1251 |#2| |#3|) (-1071) (-1280 |#2|)) (T -1250)) -NIL -(-10 -8 (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -1624 ((-3 (-1198) "failed") |#1|)) (-15 -2884 ((-1198) |#1|)) (-15 -1624 ((-3 |#3| "failed") |#1|)) (-15 -2884 (|#3| |#1|)) (-15 -2364 ((-112) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3931 ((|#2| $) 251 (-2724 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-2029 (((-657 (-1104)) $) 86)) (-3032 (((-1198) $) 118)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-3325 (($ $) 64 (|has| |#1| (-568)))) (-4306 (((-112) $) 66 (|has| |#1| (-568)))) (-4374 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-2886 (((-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-2584 ((|#2| $) 287)) (-1854 (((-3 |#2| "failed") $) 283)) (-2084 ((|#2| $) 284)) (-2176 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2030 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (((-3 $ "failed") $ $) 20)) (-4250 (((-430 (-1194 $)) (-1194 $)) 260 (-2724 (|has| |#2| (-929)) (|has| |#1| (-374))))) (-2638 (($ $) 177 (|has| |#1| (-374)))) (-4402 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1896 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 257 (-2724 (|has| |#2| (-929)) (|has| |#1| (-374))))) (-2864 (((-112) $ $) 168 (|has| |#1| (-374)))) (-2150 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2004 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-1536 (((-576) $) 269 (-2724 (|has| |#2| (-833)) (|has| |#1| (-374))))) (-3660 (($ (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-2201 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2052 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-4359 (($) 18 T CONST)) (-1624 (((-3 |#2| "failed") $) 290) (((-3 (-576) "failed") $) 280 (-2724 (|has| |#2| (-1060 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) 278 (-2724 (|has| |#2| (-1060 (-576))) (|has| |#1| (-374)))) (((-3 (-1198) "failed") $) 262 (-2724 (|has| |#2| (-1060 (-1198))) (|has| |#1| (-374))))) (-2884 ((|#2| $) 291) (((-576) $) 279 (-2724 (|has| |#2| (-1060 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) 277 (-2724 (|has| |#2| (-1060 (-576))) (|has| |#1| (-374)))) (((-1198) $) 261 (-2724 (|has| |#2| (-1060 (-1198))) (|has| |#1| (-374))))) (-3106 (($ $) 286) (($ (-576) $) 285)) (-3373 (($ $ $) 172 (|has| |#1| (-374)))) (-2212 (($ $) 72)) (-3306 (((-702 |#2|) (-702 $)) 239 (|has| |#1| (-374))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) 238 (|has| |#1| (-374))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 237 (-2724 (|has| |#2| (-652 (-576))) (|has| |#1| (-374)))) (((-702 (-576)) (-702 $)) 236 (-2724 (|has| |#2| (-652 (-576))) (|has| |#1| (-374))))) (-3843 (((-3 $ "failed") $) 37)) (-3588 (((-419 (-972 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-972 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-1892 (($) 253 (-2724 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3385 (($ $ $) 171 (|has| |#1| (-374)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 166 (|has| |#1| (-374)))) (-4257 (((-112) $) 179 (|has| |#1| (-374)))) (-2828 (((-112) $) 267 (-2724 (|has| |#2| (-833)) (|has| |#1| (-374))))) (-2373 (((-112) $) 85)) (-1657 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 245 (-2724 (|has| |#2| (-902 (-390))) (|has| |#1| (-374)))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 244 (-2724 (|has| |#2| (-902 (-576))) (|has| |#1| (-374))))) (-3182 (((-576) $) 115) (((-576) $ (-576)) 114)) (-4094 (((-112) $) 35)) (-2752 (($ $) 249 (|has| |#1| (-374)))) (-1621 ((|#2| $) 247 (|has| |#1| (-374)))) (-2082 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4019 (((-3 $ "failed") $) 281 (-2724 (|has| |#2| (-1174)) (|has| |#1| (-374))))) (-2881 (((-112) $) 268 (-2724 (|has| |#2| (-833)) (|has| |#1| (-374))))) (-1525 (($ $ (-941)) 116)) (-2008 (($ (-1 |#1| (-576)) $) 187)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 175 (|has| |#1| (-374)))) (-3157 (((-112) $) 74)) (-2003 (($ |#1| (-576)) 73) (($ $ (-1104) (-576)) 88) (($ $ (-657 (-1104)) (-657 (-576))) 87)) (-3707 (($ $ $) 276 (-2724 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-1611 (($ $ $) 275 (-2724 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-4083 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 229 (|has| |#1| (-374)))) (-3670 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-3101 (((-702 |#2|) (-1289 $)) 241 (|has| |#1| (-374))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) 240 (|has| |#1| (-374))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 235 (-2724 (|has| |#2| (-652 (-576))) (|has| |#1| (-374)))) (((-702 (-576)) (-1289 $)) 234 (-2724 (|has| |#2| (-652 (-576))) (|has| |#1| (-374))))) (-2174 (($ $) 77)) (-2186 ((|#1| $) 78)) (-3402 (($ (-657 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2098 (($ (-576) |#2|) 288)) (-2342 (((-1180) $) 10)) (-2134 (($ $) 180 (|has| |#1| (-374)))) (-4190 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) 183 (-2802 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-979)) (|has| |#1| (-1224)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -2029 ((-657 (-1198)) |#1|))) (|has| |#1| (-15 -4190 (|#1| |#1| (-1198)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1706 (($) 282 (-2724 (|has| |#2| (-1174)) (|has| |#1| (-374))) CONST)) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 165 (|has| |#1| (-374)))) (-3436 (($ (-657 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-2900 (($ $) 252 (-2724 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-3427 ((|#2| $) 255 (-2724 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2861 (((-430 (-1194 $)) (-1194 $)) 258 (-2724 (|has| |#2| (-929)) (|has| |#1| (-374))))) (-2988 (((-430 (-1194 $)) (-1194 $)) 259 (-2724 (|has| |#2| (-929)) (|has| |#1| (-374))))) (-1885 (((-430 $) $) 176 (|has| |#1| (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 173 (|has| |#1| (-374)))) (-3926 (($ $ (-576)) 110)) (-3418 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 167 (|has| |#1| (-374)))) (-4067 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3236 (((-1179 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1198) |#2|) 228 (-2724 (|has| |#2| (-526 (-1198) |#2|)) (|has| |#1| (-374)))) (($ $ (-657 (-1198)) (-657 |#2|)) 227 (-2724 (|has| |#2| (-526 (-1198) |#2|)) (|has| |#1| (-374)))) (($ $ (-657 (-304 |#2|))) 226 (-2724 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) 225 (-2724 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) 224 (-2724 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-657 |#2|) (-657 |#2|)) 223 (-2724 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-2034 (((-784) $) 169 (|has| |#1| (-374)))) (-2835 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1134))) (($ $ |#2|) 222 (-2724 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 170 (|has| |#1| (-374)))) (-2815 (($ $ (-1 |#2| |#2|) (-784)) 231 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-374))) (($ $) 100 (-2802 (-2724 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-784)) 98 (-2802 (-2724 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198)) 108 (-2802 (-2724 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-657 (-1198))) 106 (-2802 (-2724 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1198) (-784)) 105 (-2802 (-2724 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-657 (-1198)) (-657 (-784))) 104 (-2802 (-2724 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-1396 (($ $) 250 (|has| |#1| (-374)))) (-1635 ((|#2| $) 248 (|has| |#1| (-374)))) (-1770 (((-576) $) 76)) (-2213 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2062 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2188 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2163 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2017 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-4148 (((-227) $) 266 (-2724 (|has| |#2| (-1044)) (|has| |#1| (-374)))) (((-390) $) 265 (-2724 (|has| |#2| (-1044)) (|has| |#1| (-374)))) (((-548) $) 264 (-2724 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-908 (-390)) $) 243 (-2724 (|has| |#2| (-626 (-908 (-390)))) (|has| |#1| (-374)))) (((-908 (-576)) $) 242 (-2724 (|has| |#2| (-626 (-908 (-576)))) (|has| |#1| (-374))))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) 256 (-2724 (-2724 (|has| $ (-146)) (|has| |#2| (-929))) (|has| |#1| (-374))))) (-1431 (($ $) 84)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 289) (($ (-1198)) 263 (-2724 (|has| |#2| (-1060 (-1198))) (|has| |#1| (-374)))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-2313 ((|#1| $ (-576)) 71)) (-3096 (((-3 $ "failed") $) 60 (-2802 (-2724 (-2802 (|has| |#2| (-146)) (-2724 (|has| $ (-146)) (|has| |#2| (-929)))) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-1960 (((-784)) 32 T CONST)) (-3665 ((|#1| $) 117)) (-1893 ((|#2| $) 254 (-2724 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2046 (((-112) $ $) 6)) (-4110 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-4041 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2225 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2072 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2125 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4144 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3501 (|#1| (-1198))))))) (-2224 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-4124 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2235 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2085 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-1792 (($ $) 270 (-2724 (|has| |#2| (-833)) (|has| |#1| (-374))))) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-1 |#2| |#2|) (-784)) 233 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 232 (|has| |#1| (-374))) (($ $) 99 (-2802 (-2724 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-784)) 97 (-2802 (-2724 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198)) 107 (-2802 (-2724 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-657 (-1198))) 103 (-2802 (-2724 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1198) (-784)) 102 (-2802 (-2724 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-657 (-1198)) (-657 (-784))) 101 (-2802 (-2724 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-2985 (((-112) $ $) 274 (-2724 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2963 (((-112) $ $) 272 (-2724 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2933 (((-112) $ $) 8)) (-2973 (((-112) $ $) 273 (-2724 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2954 (((-112) $ $) 271 (-2724 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3034 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374))) (($ |#2| |#2|) 246 (|has| |#1| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 221 (|has| |#1| (-374))) (($ |#2| $) 220 (|has| |#1| (-374))) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1251 |#1| |#2|) (-141) (-1071) (-1280 |t#1|)) (T -1251)) -((-1770 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1280 *3)) (-5 *2 (-576)))) (-2098 (*1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *4 (-1071)) (-4 *1 (-1251 *4 *3)) (-4 *3 (-1280 *4)))) (-2584 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1280 *3)))) (-3106 (*1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-1280 *2)))) (-3106 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1280 *3)))) (-2084 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1280 *3)))) (-1854 (*1 *2 *1) (|partial| -12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1280 *3))))) -(-13 (-1249 |t#1|) (-1060 |t#2|) (-628 |t#2|) (-10 -8 (-15 -2098 ($ (-576) |t#2|)) (-15 -1770 ((-576) $)) (-15 -2584 (|t#2| $)) (-15 -3106 ($ $)) (-15 -3106 ($ (-576) $)) (-15 -2084 (|t#2| $)) (-15 -1854 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-374)) (-6 (-1014 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-374)) ((-38 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-374)) ((-111 $ $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2802 (-12 (|has| |#1| (-374)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2802 (-12 (|has| |#1| (-374)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-628 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1198)) -12 (|has| |#1| (-374)) (|has| |#2| (-1060 (-1198)))) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-877)) . T) ((-174) -2802 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1044))) ((-626 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1044))) ((-626 (-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548)))) ((-626 (-908 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-908 (-390))))) ((-626 (-908 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-908 (-576))))) ((-234 $) -2802 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-232 |#2|) |has| |#1| (-374)) ((-238) -2802 (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-237) -2802 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-272 |#2|) |has| |#1| (-374)) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 |#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) ((-296 $ $) |has| (-576) (-1134)) ((-300) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-374) |has| |#1| (-374)) ((-349 |#2|) |has| |#1| (-374)) ((-388 |#2|) |has| |#1| (-374)) ((-412 |#2|) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 (-1198) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1198) |#2|))) ((-526 |#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-568) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-659 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 |#2|) |has| |#1| (-374)) ((-659 $) . T) ((-661 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-661 #3=(-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-652 (-576)))) ((-661 |#1|) . T) ((-661 |#2|) |has| |#1| (-374)) ((-661 $) . T) ((-653 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-653 |#1|) |has| |#1| (-174)) ((-653 |#2|) |has| |#1| (-374)) ((-653 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-652 #3#) -12 (|has| |#1| (-374)) (|has| |#2| (-652 (-576)))) ((-652 |#2|) |has| |#1| (-374)) ((-730 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-730 |#1|) |has| |#1| (-174)) ((-730 |#2|) |has| |#1| (-374)) ((-730 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-739) . T) ((-804) -12 (|has| |#1| (-374)) (|has| |#2| (-833))) ((-805) -12 (|has| |#1| (-374)) (|has| |#2| (-833))) ((-807) -12 (|has| |#1| (-374)) (|has| |#2| (-833))) ((-808) -12 (|has| |#1| (-374)) (|has| |#2| (-833))) ((-833) -12 (|has| |#1| (-374)) (|has| |#2| (-833))) ((-861) -12 (|has| |#1| (-374)) (|has| |#2| (-833))) ((-862) -2802 (-12 (|has| |#1| (-374)) (|has| |#2| (-862))) (-12 (|has| |#1| (-374)) (|has| |#2| (-833)))) ((-865) -2802 (-12 (|has| |#1| (-374)) (|has| |#2| (-862))) (-12 (|has| |#1| (-374)) (|has| |#2| (-833)))) ((-912 $ #4=(-1198)) -2802 (-12 (|has| |#1| (-374)) (|has| |#2| (-920 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-918 (-1198)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) ((-918 (-1198)) -2802 (-12 (|has| |#1| (-374)) (|has| |#2| (-918 (-1198)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) ((-920 #4#) -2802 (-12 (|has| |#1| (-374)) (|has| |#2| (-920 (-1198)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-918 (-1198)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))) ((-902 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-902 (-390)))) ((-902 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-902 (-576)))) ((-900 |#2|) |has| |#1| (-374)) ((-929) -12 (|has| |#1| (-374)) (|has| |#2| (-929))) ((-995 |#1| #0# (-1104)) . T) ((-940) |has| |#1| (-374)) ((-1014 |#2|) |has| |#1| (-374)) ((-1024) |has| |#1| (-38 (-419 (-576)))) ((-1044) -12 (|has| |#1| (-374)) (|has| |#2| (-1044))) ((-1060 (-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1060 (-576)))) ((-1060 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1060 (-576)))) ((-1060 #2#) -12 (|has| |#1| (-374)) (|has| |#2| (-1060 (-1198)))) ((-1060 |#2|) . T) ((-1073 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1073 |#1|) . T) ((-1073 |#2|) |has| |#1| (-374)) ((-1073 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1078 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1078 |#1|) . T) ((-1078 |#2|) |has| |#1| (-374)) ((-1078 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1174) -12 (|has| |#1| (-374)) (|has| |#2| (-1174))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1227) |has| |#1| (-38 (-419 (-576)))) ((-1239) . T) ((-1243) |has| |#1| (-374)) ((-1249 |#1|) . T) ((-1267 |#1| #0#) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 81)) (-3931 ((|#2| $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-2029 (((-657 (-1104)) $) NIL)) (-3032 (((-1198) $) 100)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-4374 (($ $ (-576)) 109) (($ $ (-576) (-576)) 111)) (-2886 (((-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 51)) (-2584 ((|#2| $) 11)) (-1854 (((-3 |#2| "failed") $) 35)) (-2084 ((|#2| $) 36)) (-2176 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-2030 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| |#2| (-929)) (|has| |#1| (-374))))) (-2638 (($ $) NIL (|has| |#1| (-374)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1896 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (-12 (|has| |#2| (-929)) (|has| |#1| (-374))))) (-2864 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2150 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-2004 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-1536 (((-576) $) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-374))))) (-3660 (($ (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 59)) (-2201 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-2052 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#2| "failed") $) 157) (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#1| (-374)))) (((-3 (-1198) "failed") $) NIL (-12 (|has| |#2| (-1060 (-1198))) (|has| |#1| (-374))))) (-2884 ((|#2| $) 156) (((-576) $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1060 (-576))) (|has| |#1| (-374)))) (((-1198) $) NIL (-12 (|has| |#2| (-1060 (-1198))) (|has| |#1| (-374))))) (-3106 (($ $) 65) (($ (-576) $) 28)) (-3373 (($ $ $) NIL (|has| |#1| (-374)))) (-2212 (($ $) NIL)) (-3306 (((-702 |#2|) (-702 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#1| (-374)))) (((-702 (-576)) (-702 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#1| (-374))))) (-3843 (((-3 $ "failed") $) 88)) (-3588 (((-419 (-972 |#1|)) $ (-576)) 124 (|has| |#1| (-568))) (((-419 (-972 |#1|)) $ (-576) (-576)) 126 (|has| |#1| (-568)))) (-1892 (($) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3385 (($ $ $) NIL (|has| |#1| (-374)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-4257 (((-112) $) NIL (|has| |#1| (-374)))) (-2828 (((-112) $) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-374))))) (-2373 (((-112) $) 74)) (-1657 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| |#2| (-902 (-390))) (|has| |#1| (-374)))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| |#2| (-902 (-576))) (|has| |#1| (-374))))) (-3182 (((-576) $) 105) (((-576) $ (-576)) 107)) (-4094 (((-112) $) NIL)) (-2752 (($ $) NIL (|has| |#1| (-374)))) (-1621 ((|#2| $) 165 (|has| |#1| (-374)))) (-2082 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4019 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1174)) (|has| |#1| (-374))))) (-2881 (((-112) $) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-374))))) (-1525 (($ $ (-941)) 148)) (-2008 (($ (-1 |#1| (-576)) $) 144)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-576)) 20) (($ $ (-1104) (-576)) NIL) (($ $ (-657 (-1104)) (-657 (-576))) NIL)) (-3707 (($ $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-1611 (($ $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-4083 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-374)))) (-3670 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-3101 (((-702 |#2|) (-1289 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#1| (-374)))) (((-702 (-576)) (-1289 $)) NIL (-12 (|has| |#2| (-652 (-576))) (|has| |#1| (-374))))) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2098 (($ (-576) |#2|) 10)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) 159 (|has| |#1| (-374)))) (-4190 (($ $) 228 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) 233 (-2802 (-12 (|has| |#1| (-15 -4190 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -2029 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224)))))) (-1706 (($) NIL (-12 (|has| |#2| (-1174)) (|has| |#1| (-374))) CONST)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2900 (($ $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-3427 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| |#2| (-929)) (|has| |#1| (-374))))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| |#2| (-929)) (|has| |#1| (-374))))) (-1885 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-3926 (($ $ (-576)) 138)) (-3418 (((-3 $ "failed") $ $) 128 (|has| |#1| (-568)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-4067 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3236 (((-1179 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1198) |#2|) NIL (-12 (|has| |#2| (-526 (-1198) |#2|)) (|has| |#1| (-374)))) (($ $ (-657 (-1198)) (-657 |#2|)) NIL (-12 (|has| |#2| (-526 (-1198) |#2|)) (|has| |#1| (-374)))) (($ $ (-657 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-657 |#2|) (-657 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-2034 (((-784) $) NIL (|has| |#1| (-374)))) (-2835 ((|#1| $ (-576)) 103) (($ $ $) 90 (|has| (-576) (-1134))) (($ $ |#2|) NIL (-12 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-374)))) (-2815 (($ $ (-1 |#2| |#2|) (-784)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) 149 (-2802 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-784)) NIL (-2802 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198)) 153 (-2802 (-12 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2802 (-12 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2802 (-12 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2802 (-12 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))))) (-1396 (($ $) NIL (|has| |#1| (-374)))) (-1635 ((|#2| $) 166 (|has| |#1| (-374)))) (-1770 (((-576) $) 12)) (-2213 (($ $) 212 (|has| |#1| (-38 (-419 (-576)))))) (-2062 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-2188 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-2163 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-2017 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-4148 (((-227) $) NIL (-12 (|has| |#2| (-1044)) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| |#2| (-1044)) (|has| |#1| (-374)))) (((-548) $) NIL (-12 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-908 (-390)) $) NIL (-12 (|has| |#2| (-626 (-908 (-390)))) (|has| |#1| (-374)))) (((-908 (-576)) $) NIL (-12 (|has| |#2| (-626 (-908 (-576)))) (|has| |#1| (-374))))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-929)) (|has| |#1| (-374))))) (-1431 (($ $) 136)) (-3501 (((-877) $) 266) (($ (-576)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1198)) NIL (-12 (|has| |#2| (-1060 (-1198))) (|has| |#1| (-374)))) (($ (-419 (-576))) 169 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2313 ((|#1| $ (-576)) 85)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| |#2| (-929)) (|has| |#1| (-374))) (-12 (|has| |#2| (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-1960 (((-784)) 155 T CONST)) (-3665 ((|#1| $) 102)) (-1893 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-2046 (((-112) $ $) NIL)) (-4110 (($ $) 218 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2225 (($ $) 214 (|has| |#1| (-38 (-419 (-576)))))) (-2072 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 222 (|has| |#1| (-38 (-419 (-576)))))) (-2125 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-4144 ((|#1| $ (-576)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3501 (|#1| (-1198))))))) (-2224 (($ $) 224 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-4124 (($ $) 220 (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-2235 (($ $) 216 (|has| |#1| (-38 (-419 (-576)))))) (-2085 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-1792 (($ $) NIL (-12 (|has| |#2| (-833)) (|has| |#1| (-374))))) (-2769 (($) 13 T CONST)) (-2779 (($) 18 T CONST)) (-2097 (($ $ (-1 |#2| |#2|) (-784)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) NIL (-2802 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-784)) NIL (-2802 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2802 (-12 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2802 (-12 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2802 (-12 (|has| |#2| (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))))) (-2985 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2963 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2933 (((-112) $ $) 72)) (-2973 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2954 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374))) (($ |#2| |#2|) 164 (|has| |#1| (-374)))) (-3022 (($ $) 227) (($ $ $) 78)) (-3012 (($ $ $) 76)) (** (($ $ (-941)) NIL) (($ $ (-784)) 84) (($ $ (-576)) 160 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 172 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-374))) (($ |#2| $) 161 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1252 |#1| |#2|) (-1251 |#1| |#2|) (-1071) (-1280 |#1|)) (T -1252)) -NIL -(-1251 |#1| |#2|) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3931 (((-1281 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-2029 (((-657 (-1104)) $) NIL)) (-3032 (((-1198) $) 10)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3325 (($ $) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4306 (((-112) $) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4374 (($ $ (-576)) NIL) (($ $ (-576) (-576)) NIL)) (-2886 (((-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-2584 (((-1281 |#1| |#2| |#3|) $) NIL)) (-1854 (((-3 (-1281 |#1| |#2| |#3|) "failed") $) NIL)) (-2084 (((-1281 |#1| |#2| |#3|) $) NIL)) (-2176 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2030 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (((-3 $ "failed") $ $) NIL)) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-2638 (($ $) NIL (|has| |#1| (-374)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1896 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-2864 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2150 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2004 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1536 (((-576) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))))) (-3660 (($ (-1179 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-2201 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2052 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-1281 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1198) "failed") $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1060 (-1198))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374))))) (-2884 (((-1281 |#1| |#2| |#3|) $) NIL) (((-1198) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1060 (-1198))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374))))) (-3106 (($ $) NIL) (($ (-576) $) NIL)) (-3373 (($ $ $) NIL (|has| |#1| (-374)))) (-2212 (($ $) NIL)) (-3306 (((-702 (-1281 |#1| |#2| |#3|)) (-702 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3750 (-702 (-1281 |#1| |#2| |#3|))) (|:| |vec| (-1289 (-1281 |#1| |#2| |#3|)))) (-702 $) (-1289 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-652 (-576))) (|has| |#1| (-374)))) (((-702 (-576)) (-702 $)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-652 (-576))) (|has| |#1| (-374))))) (-3843 (((-3 $ "failed") $) NIL)) (-3588 (((-419 (-972 |#1|)) $ (-576)) NIL (|has| |#1| (-568))) (((-419 (-972 |#1|)) $ (-576) (-576)) NIL (|has| |#1| (-568)))) (-1892 (($) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3385 (($ $ $) NIL (|has| |#1| (-374)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-4257 (((-112) $) NIL (|has| |#1| (-374)))) (-2828 (((-112) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))))) (-2373 (((-112) $) NIL)) (-1657 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-902 (-390))) (|has| |#1| (-374)))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-902 (-576))) (|has| |#1| (-374))))) (-3182 (((-576) $) NIL) (((-576) $ (-576)) NIL)) (-4094 (((-112) $) NIL)) (-2752 (($ $) NIL (|has| |#1| (-374)))) (-1621 (((-1281 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-2082 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4019 (((-3 $ "failed") $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1174)) (|has| |#1| (-374))))) (-2881 (((-112) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))))) (-1525 (($ $ (-941)) NIL)) (-2008 (($ (-1 |#1| (-576)) $) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-576)) 18) (($ $ (-1104) (-576)) NIL) (($ $ (-657 (-1104)) (-657 (-576))) NIL)) (-3707 (($ $ $) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-1611 (($ $ $) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-4083 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-3670 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3101 (((-702 (-1281 |#1| |#2| |#3|)) (-1289 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -3750 (-702 (-1281 |#1| |#2| |#3|))) (|:| |vec| (-1289 (-1281 |#1| |#2| |#3|)))) (-1289 $) $) NIL (|has| |#1| (-374))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-652 (-576))) (|has| |#1| (-374)))) (((-702 (-576)) (-1289 $)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-652 (-576))) (|has| |#1| (-374))))) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2098 (($ (-576) (-1281 |#1| |#2| |#3|)) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-374)))) (-4190 (($ $) 27 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| |#1| (-15 -4190 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -2029 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224))))) (($ $ (-1285 |#2|)) 28 (|has| |#1| (-38 (-419 (-576)))))) (-1706 (($) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1174)) (|has| |#1| (-374))) CONST)) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2900 (($ $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-3427 (((-1281 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-1885 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-3926 (($ $ (-576)) NIL)) (-3418 (((-3 $ "failed") $ $) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3236 (((-1179 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1198) (-1281 |#1| |#2| |#3|)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-526 (-1198) (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-657 (-1198)) (-657 (-1281 |#1| |#2| |#3|))) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-526 (-1198) (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-657 (-304 (-1281 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-319 (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1281 |#1| |#2| |#3|))) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-319 (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-319 (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-657 (-1281 |#1| |#2| |#3|)) (-657 (-1281 |#1| |#2| |#3|))) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-319 (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-2034 (((-784) $) NIL (|has| |#1| (-374)))) (-2835 ((|#1| $ (-576)) NIL) (($ $ $) NIL (|has| (-576) (-1134))) (($ $ (-1281 |#1| |#2| |#3|)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-296 (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-374)))) (-2815 (($ $ (-1 (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|)) (-784)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1285 |#2|)) 26) (($ $) 25 (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-784)) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))))) (-1396 (($ $) NIL (|has| |#1| (-374)))) (-1635 (((-1281 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-1770 (((-576) $) NIL)) (-2213 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2062 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2188 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2163 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4148 (((-548) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1044)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1044)) (|has| |#1| (-374)))) (((-908 (-390)) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-626 (-908 (-390)))) (|has| |#1| (-374)))) (((-908 (-576)) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-626 (-908 (-576)))) (|has| |#1| (-374))))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))))) (-1431 (($ $) NIL)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1281 |#1| |#2| |#3|)) NIL) (($ (-1285 |#2|)) 24) (($ (-1198)) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-1060 (-1198))) (|has| |#1| (-374)))) (($ $) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-1060 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-2313 ((|#1| $ (-576)) NIL)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-1960 (((-784)) NIL T CONST)) (-3665 ((|#1| $) 11)) (-1893 (((-1281 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-2046 (((-112) $ $) NIL)) (-4110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4041 (((-112) $ $) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-929)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2225 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2072 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2125 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4144 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3501 (|#1| (-1198))))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4124 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2235 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2085 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1792 (($ $) NIL (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))))) (-2769 (($) 20 T CONST)) (-2779 (($) 15 T CONST)) (-2097 (($ $ (-1 (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|)) (-784)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1285 |#2|)) NIL) (($ $) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-784)) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198))) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-1198) (-784)) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198)))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-918 (-1198))) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-920 (-1198))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-918 (-1198))))))) (-2985 (((-112) $ $) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2963 (((-112) $ $) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2933 (((-112) $ $) NIL)) (-2973 (((-112) $ $) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2954 (((-112) $ $) NIL (-2802 (-12 (|has| (-1281 |#1| |#2| |#3|) (-833)) (|has| |#1| (-374))) (-12 (|has| (-1281 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374))) (($ (-1281 |#1| |#2| |#3|) (-1281 |#1| |#2| |#3|)) NIL (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 22)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1281 |#1| |#2| |#3|)) NIL (|has| |#1| (-374))) (($ (-1281 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1253 |#1| |#2| |#3|) (-13 (-1251 |#1| (-1281 |#1| |#2| |#3|)) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3501 ($ (-1285 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4190 ($ $ (-1285 |#2|))) |%noBranch|))) (-1071) (-1198) |#1|) (T -1253)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1253 *3 *4 *5)) (-4 *3 (-1071)) (-14 *5 *3))) (-4190 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1253 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3)))) -(-13 (-1251 |#1| (-1281 |#1| |#2| |#3|)) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3501 ($ (-1285 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4190 ($ $ (-1285 |#2|))) |%noBranch|))) -((-2839 (((-2 (|:| |contp| (-576)) (|:| -2067 (-657 (-2 (|:| |irr| |#1|) (|:| -1439 (-576)))))) |#1| (-112)) 13)) (-1679 (((-430 |#1|) |#1|) 26)) (-1885 (((-430 |#1|) |#1|) 24))) -(((-1254 |#1|) (-10 -7 (-15 -1885 ((-430 |#1|) |#1|)) (-15 -1679 ((-430 |#1|) |#1|)) (-15 -2839 ((-2 (|:| |contp| (-576)) (|:| -2067 (-657 (-2 (|:| |irr| |#1|) (|:| -1439 (-576)))))) |#1| (-112)))) (-1265 (-576))) (T -1254)) -((-2839 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -2067 (-657 (-2 (|:| |irr| *3) (|:| -1439 (-576))))))) (-5 *1 (-1254 *3)) (-4 *3 (-1265 (-576))))) (-1679 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1254 *3)) (-4 *3 (-1265 (-576))))) (-1885 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1254 *3)) (-4 *3 (-1265 (-576)))))) -(-10 -7 (-15 -1885 ((-430 |#1|) |#1|)) (-15 -1679 ((-430 |#1|) |#1|)) (-15 -2839 ((-2 (|:| |contp| (-576)) (|:| -2067 (-657 (-2 (|:| |irr| |#1|) (|:| -1439 (-576)))))) |#1| (-112)))) -((-4083 (((-1179 |#2|) (-1 |#2| |#1|) (-1256 |#1|)) 23 (|has| |#1| (-861))) (((-1256 |#2|) (-1 |#2| |#1|) (-1256 |#1|)) 17))) -(((-1255 |#1| |#2|) (-10 -7 (-15 -4083 ((-1256 |#2|) (-1 |#2| |#1|) (-1256 |#1|))) (IF (|has| |#1| (-861)) (-15 -4083 ((-1179 |#2|) (-1 |#2| |#1|) (-1256 |#1|))) |%noBranch|)) (-1239) (-1239)) (T -1255)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-861)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-1179 *6)) (-5 *1 (-1255 *5 *6)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-1256 *6)) (-5 *1 (-1255 *5 *6))))) -(-10 -7 (-15 -4083 ((-1256 |#2|) (-1 |#2| |#1|) (-1256 |#1|))) (IF (|has| |#1| (-861)) (-15 -4083 ((-1179 |#2|) (-1 |#2| |#1|) (-1256 |#1|))) |%noBranch|)) -((-3429 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-2324 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-4083 (((-1179 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-861)))) (-4059 ((|#1| $) 15)) (-3078 ((|#1| $) 12)) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-4205 (((-576) $) 19)) (-2698 ((|#1| $) 18)) (-4216 ((|#1| $) 13)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-2466 (((-112) $) 17)) (-1999 (((-1179 |#1|) $) 41 (|has| |#1| (-861))) (((-1179 |#1|) (-657 $)) 40 (|has| |#1| (-861)))) (-4148 (($ |#1|) 26)) (-3501 (($ (-1116 |#1|)) 25) (((-877) $) 37 (|has| |#1| (-1122)))) (-2046 (((-112) $ $) NIL (|has| |#1| (-1122)))) (-1838 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2718 (($ $ (-576)) 14)) (-2933 (((-112) $ $) 30 (|has| |#1| (-1122))))) -(((-1256 |#1|) (-13 (-1115 |#1|) (-10 -8 (-15 -1838 ($ |#1|)) (-15 -2324 ($ |#1|)) (-15 -3501 ($ (-1116 |#1|))) (-15 -2466 ((-112) $)) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |#1| (-861)) (-6 (-1117 |#1| (-1179 |#1|))) |%noBranch|))) (-1239)) (T -1256)) -((-1838 (*1 *1 *2) (-12 (-5 *1 (-1256 *2)) (-4 *2 (-1239)))) (-2324 (*1 *1 *2) (-12 (-5 *1 (-1256 *2)) (-4 *2 (-1239)))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1239)) (-5 *1 (-1256 *3)))) (-2466 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1256 *3)) (-4 *3 (-1239))))) -(-13 (-1115 |#1|) (-10 -8 (-15 -1838 ($ |#1|)) (-15 -2324 ($ |#1|)) (-15 -3501 ($ (-1116 |#1|))) (-15 -2466 ((-112) $)) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |#1| (-861)) (-6 (-1117 |#1| (-1179 |#1|))) |%noBranch|))) -((-4083 (((-1262 |#3| |#4|) (-1 |#4| |#2|) (-1262 |#1| |#2|)) 15))) -(((-1257 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4083 ((-1262 |#3| |#4|) (-1 |#4| |#2|) (-1262 |#1| |#2|)))) (-1198) (-1071) (-1198) (-1071)) (T -1257)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1262 *5 *6)) (-14 *5 (-1198)) (-4 *6 (-1071)) (-4 *8 (-1071)) (-5 *2 (-1262 *7 *8)) (-5 *1 (-1257 *5 *6 *7 *8)) (-14 *7 (-1198))))) -(-10 -7 (-15 -4083 ((-1262 |#3| |#4|) (-1 |#4| |#2|) (-1262 |#1| |#2|)))) -((-1460 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1591 ((|#1| |#3|) 13)) (-1671 ((|#3| |#3|) 19))) -(((-1258 |#1| |#2| |#3|) (-10 -7 (-15 -1591 (|#1| |#3|)) (-15 -1671 (|#3| |#3|)) (-15 -1460 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1014 |#1|) (-1265 |#2|)) (T -1258)) -((-1460 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1014 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1258 *4 *5 *3)) (-4 *3 (-1265 *5)))) (-1671 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1014 *3)) (-5 *1 (-1258 *3 *4 *2)) (-4 *2 (-1265 *4)))) (-1591 (*1 *2 *3) (-12 (-4 *4 (-1014 *2)) (-4 *2 (-568)) (-5 *1 (-1258 *2 *4 *3)) (-4 *3 (-1265 *4))))) -(-10 -7 (-15 -1591 (|#1| |#3|)) (-15 -1671 (|#3| |#3|)) (-15 -1460 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2354 (((-3 |#2| "failed") |#2| (-784) |#1|) 35)) (-2358 (((-3 |#2| "failed") |#2| (-784)) 36)) (-1560 (((-3 (-2 (|:| -4224 |#2|) (|:| -4236 |#2|)) "failed") |#2|) 50)) (-2325 (((-657 |#2|) |#2|) 52)) (-1830 (((-3 |#2| "failed") |#2| |#2|) 46))) -(((-1259 |#1| |#2|) (-10 -7 (-15 -2358 ((-3 |#2| "failed") |#2| (-784))) (-15 -2354 ((-3 |#2| "failed") |#2| (-784) |#1|)) (-15 -1830 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1560 ((-3 (-2 (|:| -4224 |#2|) (|:| -4236 |#2|)) "failed") |#2|)) (-15 -2325 ((-657 |#2|) |#2|))) (-13 (-568) (-148)) (-1265 |#1|)) (T -1259)) -((-2325 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-657 *3)) (-5 *1 (-1259 *4 *3)) (-4 *3 (-1265 *4)))) (-1560 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| -4224 *3) (|:| -4236 *3))) (-5 *1 (-1259 *4 *3)) (-4 *3 (-1265 *4)))) (-1830 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1259 *3 *2)) (-4 *2 (-1265 *3)))) (-2354 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-784)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1259 *4 *2)) (-4 *2 (-1265 *4)))) (-2358 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-784)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1259 *4 *2)) (-4 *2 (-1265 *4))))) -(-10 -7 (-15 -2358 ((-3 |#2| "failed") |#2| (-784))) (-15 -2354 ((-3 |#2| "failed") |#2| (-784) |#1|)) (-15 -1830 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1560 ((-3 (-2 (|:| -4224 |#2|) (|:| -4236 |#2|)) "failed") |#2|)) (-15 -2325 ((-657 |#2|) |#2|))) -((-3329 (((-3 (-2 (|:| -2335 |#2|) (|:| -3644 |#2|)) "failed") |#2| |#2|) 30))) -(((-1260 |#1| |#2|) (-10 -7 (-15 -3329 ((-3 (-2 (|:| -2335 |#2|) (|:| -3644 |#2|)) "failed") |#2| |#2|))) (-568) (-1265 |#1|)) (T -1260)) -((-3329 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2335 *3) (|:| -3644 *3))) (-5 *1 (-1260 *4 *3)) (-4 *3 (-1265 *4))))) -(-10 -7 (-15 -3329 ((-3 (-2 (|:| -2335 |#2|) (|:| -3644 |#2|)) "failed") |#2| |#2|))) -((-1583 ((|#2| |#2| |#2|) 22)) (-2703 ((|#2| |#2| |#2|) 36)) (-4363 ((|#2| |#2| |#2| (-784) (-784)) 44))) -(((-1261 |#1| |#2|) (-10 -7 (-15 -1583 (|#2| |#2| |#2|)) (-15 -2703 (|#2| |#2| |#2|)) (-15 -4363 (|#2| |#2| |#2| (-784) (-784)))) (-1071) (-1265 |#1|)) (T -1261)) -((-4363 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-784)) (-4 *4 (-1071)) (-5 *1 (-1261 *4 *2)) (-4 *2 (-1265 *4)))) (-2703 (*1 *2 *2 *2) (-12 (-4 *3 (-1071)) (-5 *1 (-1261 *3 *2)) (-4 *2 (-1265 *3)))) (-1583 (*1 *2 *2 *2) (-12 (-4 *3 (-1071)) (-5 *1 (-1261 *3 *2)) (-4 *2 (-1265 *3))))) -(-10 -7 (-15 -1583 (|#2| |#2| |#2|)) (-15 -2703 (|#2| |#2| |#2|)) (-15 -4363 (|#2| |#2| |#2| (-784) (-784)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2266 (((-1289 |#2|) $ (-784)) NIL)) (-2029 (((-657 (-1104)) $) NIL)) (-3745 (($ (-1194 |#2|)) NIL)) (-1849 (((-1194 $) $ (-1104)) NIL) (((-1194 |#2|) $) NIL)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-3325 (($ $) NIL (|has| |#2| (-568)))) (-4306 (((-112) $) NIL (|has| |#2| (-568)))) (-1775 (((-784) $) NIL) (((-784) $ (-657 (-1104))) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-1558 (($ $ $) NIL (|has| |#2| (-568)))) (-4250 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-2638 (($ $) NIL (|has| |#2| (-464)))) (-4402 (((-430 $) $) NIL (|has| |#2| (-464)))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-2864 (((-112) $ $) NIL (|has| |#2| (-374)))) (-2794 (($ $ (-784)) NIL)) (-1462 (($ $ (-784)) NIL)) (-3757 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-464)))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1060 (-576)))) (((-3 (-1104) "failed") $) NIL)) (-2884 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1060 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1060 (-576)))) (((-1104) $) NIL)) (-3203 (($ $ $ (-1104)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-3373 (($ $ $) NIL (|has| |#2| (-374)))) (-2212 (($ $) NIL)) (-3306 (((-702 (-576)) (-702 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-702 $) (-1289 $)) NIL) (((-702 |#2|) (-702 $)) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-3385 (($ $ $) NIL (|has| |#2| (-374)))) (-3327 (($ $ $) NIL)) (-2432 (($ $ $) NIL (|has| |#2| (-568)))) (-4267 (((-2 (|:| -1771 |#2|) (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#2| (-568)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| |#2| (-374)))) (-3813 (($ $) NIL (|has| |#2| (-464))) (($ $ (-1104)) NIL (|has| |#2| (-464)))) (-2199 (((-657 $) $) NIL)) (-4257 (((-112) $) NIL (|has| |#2| (-929)))) (-3124 (($ $ |#2| (-784) $) NIL)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) NIL (-12 (|has| (-1104) (-902 (-390))) (|has| |#2| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) NIL (-12 (|has| (-1104) (-902 (-576))) (|has| |#2| (-902 (-576)))))) (-3182 (((-784) $ $) NIL (|has| |#2| (-568)))) (-4094 (((-112) $) NIL)) (-4334 (((-784) $) NIL)) (-4019 (((-3 $ "failed") $) NIL (|has| |#2| (-1174)))) (-2014 (($ (-1194 |#2|) (-1104)) NIL) (($ (-1194 $) (-1104)) NIL)) (-1525 (($ $ (-784)) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#2| (-374)))) (-3724 (((-657 $) $) NIL)) (-3157 (((-112) $) NIL)) (-2003 (($ |#2| (-784)) 18) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ (-1104)) NIL) (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL)) (-4436 (((-784) $) NIL) (((-784) $ (-1104)) NIL) (((-657 (-784)) $ (-657 (-1104))) NIL)) (-4056 (($ (-1 (-784) (-784)) $) NIL)) (-4083 (($ (-1 |#2| |#2|) $) NIL)) (-2890 (((-1194 |#2|) $) NIL)) (-2353 (((-3 (-1104) "failed") $) NIL)) (-3101 (((-702 (-576)) (-1289 $)) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) NIL (|has| |#2| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#2|)) (|:| |vec| (-1289 |#2|))) (-1289 $) $) NIL) (((-702 |#2|) (-1289 $)) NIL)) (-2174 (($ $) NIL)) (-2186 ((|#2| $) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2342 (((-1180) $) NIL)) (-2025 (((-2 (|:| -2335 $) (|:| -3644 $)) $ (-784)) NIL)) (-1392 (((-3 (-657 $) "failed") $) NIL)) (-2974 (((-3 (-657 $) "failed") $) NIL)) (-2999 (((-3 (-2 (|:| |var| (-1104)) (|:| -1801 (-784))) "failed") $) NIL)) (-4190 (($ $) NIL (|has| |#2| (-38 (-419 (-576)))))) (-1706 (($) NIL (|has| |#2| (-1174)) CONST)) (-1471 (((-1142) $) NIL)) (-2146 (((-112) $) NIL)) (-2160 ((|#2| $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#2| (-464)))) (-3436 (($ (-657 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-2303 (($ $ (-784) |#2| $) NIL)) (-2861 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) NIL (|has| |#2| (-929)))) (-1885 (((-430 $) $) NIL (|has| |#2| (-929)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#2| (-374)))) (-3418 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#2| (-374)))) (-3236 (($ $ (-657 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-1104) |#2|) NIL) (($ $ (-657 (-1104)) (-657 |#2|)) NIL) (($ $ (-1104) $) NIL) (($ $ (-657 (-1104)) (-657 $)) NIL)) (-2034 (((-784) $) NIL (|has| |#2| (-374)))) (-2835 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#2| (-568))) ((|#2| (-419 $) |#2|) NIL (|has| |#2| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#2| (-568)))) (-4337 (((-3 $ "failed") $ (-784)) NIL)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#2| (-374)))) (-1701 (($ $ (-1104)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-2815 (($ $ (-657 (-1104)) (-657 (-784))) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104))) NIL) (($ $ (-1104)) NIL) (($ $) NIL) (($ $ (-784)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1 |#2| |#2|) $) NIL) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198))))) (-1770 (((-784) $) NIL) (((-784) $ (-1104)) NIL) (((-657 (-784)) $ (-657 (-1104))) NIL)) (-4148 (((-908 (-390)) $) NIL (-12 (|has| (-1104) (-626 (-908 (-390)))) (|has| |#2| (-626 (-908 (-390)))))) (((-908 (-576)) $) NIL (-12 (|has| (-1104) (-626 (-908 (-576)))) (|has| |#2| (-626 (-908 (-576)))))) (((-548) $) NIL (-12 (|has| (-1104) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-1450 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-1104)) NIL (|has| |#2| (-464)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-929))))) (-3432 (((-3 $ "failed") $ $) NIL (|has| |#2| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#2| (-568)))) (-3501 (((-877) $) 13) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1104)) NIL) (($ (-1285 |#1|)) 20) (($ (-419 (-576))) NIL (-2802 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1060 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-4037 (((-657 |#2|) $) NIL)) (-2313 ((|#2| $ (-784)) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-3096 (((-3 $ "failed") $) NIL (-2802 (-12 (|has| $ (-146)) (|has| |#2| (-929))) (|has| |#2| (-146))))) (-1960 (((-784)) NIL T CONST)) (-2702 (($ $ $ (-784)) NIL (|has| |#2| (-174)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2769 (($) NIL T CONST)) (-2779 (($) 14 T CONST)) (-2097 (($ $ (-657 (-1104)) (-657 (-784))) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104))) NIL) (($ $ (-1104)) NIL) (($ $) NIL) (($ $ (-784)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1198)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198))) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-1198) (-784)) NIL (|has| |#2| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (|has| |#2| (-920 (-1198))))) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1262 |#1| |#2|) (-13 (-1265 |#2|) (-628 (-1285 |#1|)) (-10 -8 (-15 -2303 ($ $ (-784) |#2| $)))) (-1198) (-1071)) (T -1262)) -((-2303 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-784)) (-5 *1 (-1262 *4 *3)) (-14 *4 (-1198)) (-4 *3 (-1071))))) -(-13 (-1265 |#2|) (-628 (-1285 |#1|)) (-10 -8 (-15 -2303 ($ $ (-784) |#2| $)))) -((-4083 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1263 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4083 (|#4| (-1 |#3| |#1|) |#2|))) (-1071) (-1265 |#1|) (-1071) (-1265 |#3|)) (T -1263)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-4 *2 (-1265 *6)) (-5 *1 (-1263 *5 *4 *6 *2)) (-4 *4 (-1265 *5))))) -(-10 -7 (-15 -4083 (|#4| (-1 |#3| |#1|) |#2|))) -((-2266 (((-1289 |#2|) $ (-784)) 129)) (-2029 (((-657 (-1104)) $) 16)) (-3745 (($ (-1194 |#2|)) 80)) (-1775 (((-784) $) NIL) (((-784) $ (-657 (-1104))) 21)) (-4250 (((-430 (-1194 $)) (-1194 $)) 204)) (-2638 (($ $) 194)) (-4402 (((-430 $) $) 192)) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 95)) (-2794 (($ $ (-784)) 84)) (-1462 (($ $ (-784)) 86)) (-3757 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-1624 (((-3 |#2| "failed") $) 132) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-1104) "failed") $) NIL)) (-2884 ((|#2| $) 130) (((-419 (-576)) $) NIL) (((-576) $) NIL) (((-1104) $) NIL)) (-2432 (($ $ $) 170)) (-4267 (((-2 (|:| -1771 |#2|) (|:| -2335 $) (|:| -3644 $)) $ $) 172)) (-3182 (((-784) $ $) 189)) (-4019 (((-3 $ "failed") $) 138)) (-2003 (($ |#2| (-784)) NIL) (($ $ (-1104) (-784)) 59) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-4436 (((-784) $) NIL) (((-784) $ (-1104)) 54) (((-657 (-784)) $ (-657 (-1104))) 55)) (-2890 (((-1194 |#2|) $) 72)) (-2353 (((-3 (-1104) "failed") $) 52)) (-2025 (((-2 (|:| -2335 $) (|:| -3644 $)) $ (-784)) 83)) (-4190 (($ $) 219)) (-1706 (($) 134)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 201)) (-2861 (((-430 (-1194 $)) (-1194 $)) 101)) (-2988 (((-430 (-1194 $)) (-1194 $)) 99)) (-1885 (((-430 $) $) 120)) (-3236 (($ $ (-657 (-304 $))) 51) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-657 $) (-657 $)) NIL) (($ $ (-1104) |#2|) 39) (($ $ (-657 (-1104)) (-657 |#2|)) 36) (($ $ (-1104) $) 32) (($ $ (-657 (-1104)) (-657 $)) 30)) (-2034 (((-784) $) 207)) (-2835 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) 164) ((|#2| (-419 $) |#2|) 206) (((-419 $) $ (-419 $)) 188)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 212)) (-2815 (($ $ (-657 (-1104)) (-657 (-784))) NIL) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104))) NIL) (($ $ (-1104)) 157) (($ $) 155) (($ $ (-784)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) (-784)) NIL) (($ $ (-1 |#2| |#2|) $) 149) (($ $ (-1198)) NIL) (($ $ (-657 (-1198))) NIL) (($ $ (-1198) (-784)) NIL) (($ $ (-657 (-1198)) (-657 (-784))) NIL)) (-1770 (((-784) $) NIL) (((-784) $ (-1104)) 17) (((-657 (-784)) $ (-657 (-1104))) 23)) (-1450 ((|#2| $) NIL) (($ $ (-1104)) 140)) (-3432 (((-3 $ "failed") $ $) 180) (((-3 (-419 $) "failed") (-419 $) $) 176)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1104)) 64) (($ (-419 (-576))) NIL) (($ $) NIL))) -(((-1264 |#1| |#2|) (-10 -8 (-15 -3501 (|#1| |#1|)) (-15 -2226 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|))) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -4402 ((-430 |#1|) |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -1706 (|#1|)) (-15 -4019 ((-3 |#1| "failed") |#1|)) (-15 -2835 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -2034 ((-784) |#1|)) (-15 -3944 ((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|)) (-15 -4190 (|#1| |#1|)) (-15 -2835 (|#2| (-419 |#1|) |#2|)) (-15 -3757 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4267 ((-2 (|:| -1771 |#2|) (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|)) (-15 -2432 (|#1| |#1| |#1|)) (-15 -3432 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -3432 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3182 ((-784) |#1| |#1|)) (-15 -2835 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1462 (|#1| |#1| (-784))) (-15 -2794 (|#1| |#1| (-784))) (-15 -2025 ((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| (-784))) (-15 -3745 (|#1| (-1194 |#2|))) (-15 -2890 ((-1194 |#2|) |#1|)) (-15 -2266 ((-1289 |#2|) |#1| (-784))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1|)) (-15 -2835 (|#1| |#1| |#1|)) (-15 -2835 (|#2| |#1| |#2|)) (-15 -1885 ((-430 |#1|) |#1|)) (-15 -4250 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -2988 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -2861 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -1359 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|))) (-15 -1450 (|#1| |#1| (-1104))) (-15 -2029 ((-657 (-1104)) |#1|)) (-15 -1775 ((-784) |#1| (-657 (-1104)))) (-15 -1775 ((-784) |#1|)) (-15 -2003 (|#1| |#1| (-657 (-1104)) (-657 (-784)))) (-15 -2003 (|#1| |#1| (-1104) (-784))) (-15 -4436 ((-657 (-784)) |#1| (-657 (-1104)))) (-15 -4436 ((-784) |#1| (-1104))) (-15 -2353 ((-3 (-1104) "failed") |#1|)) (-15 -1770 ((-657 (-784)) |#1| (-657 (-1104)))) (-15 -1770 ((-784) |#1| (-1104))) (-15 -3501 (|#1| (-1104))) (-15 -1624 ((-3 (-1104) "failed") |#1|)) (-15 -2884 ((-1104) |#1|)) (-15 -3236 (|#1| |#1| (-657 (-1104)) (-657 |#1|))) (-15 -3236 (|#1| |#1| (-1104) |#1|)) (-15 -3236 (|#1| |#1| (-657 (-1104)) (-657 |#2|))) (-15 -3236 (|#1| |#1| (-1104) |#2|)) (-15 -3236 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3236 (|#1| |#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| (-304 |#1|))) (-15 -3236 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -1770 ((-784) |#1|)) (-15 -2003 (|#1| |#2| (-784))) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -3501 (|#1| |#2|)) (-15 -4436 ((-784) |#1|)) (-15 -1450 (|#2| |#1|)) (-15 -2815 (|#1| |#1| (-1104))) (-15 -2815 (|#1| |#1| (-657 (-1104)))) (-15 -2815 (|#1| |#1| (-1104) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1104)) (-657 (-784)))) (-15 -3501 (|#1| (-576))) (-15 -3501 ((-877) |#1|))) (-1265 |#2|) (-1071)) (T -1264)) -NIL -(-10 -8 (-15 -3501 (|#1| |#1|)) (-15 -2226 ((-1194 |#1|) (-1194 |#1|) (-1194 |#1|))) (-15 -2815 (|#1| |#1| (-657 (-1198)) (-657 (-784)))) (-15 -2815 (|#1| |#1| (-1198) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1198)))) (-15 -2815 (|#1| |#1| (-1198))) (-15 -4402 ((-430 |#1|) |#1|)) (-15 -2638 (|#1| |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -1706 (|#1|)) (-15 -4019 ((-3 |#1| "failed") |#1|)) (-15 -2835 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -2034 ((-784) |#1|)) (-15 -3944 ((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|)) (-15 -4190 (|#1| |#1|)) (-15 -2835 (|#2| (-419 |#1|) |#2|)) (-15 -3757 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4267 ((-2 (|:| -1771 |#2|) (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| |#1|)) (-15 -2432 (|#1| |#1| |#1|)) (-15 -3432 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -3432 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3182 ((-784) |#1| |#1|)) (-15 -2835 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1462 (|#1| |#1| (-784))) (-15 -2794 (|#1| |#1| (-784))) (-15 -2025 ((-2 (|:| -2335 |#1|) (|:| -3644 |#1|)) |#1| (-784))) (-15 -3745 (|#1| (-1194 |#2|))) (-15 -2890 ((-1194 |#2|) |#1|)) (-15 -2266 ((-1289 |#2|) |#1| (-784))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|) (-784))) (-15 -2815 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2815 (|#1| |#1| (-784))) (-15 -2815 (|#1| |#1|)) (-15 -2835 (|#1| |#1| |#1|)) (-15 -2835 (|#2| |#1| |#2|)) (-15 -1885 ((-430 |#1|) |#1|)) (-15 -4250 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -2988 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -2861 ((-430 (-1194 |#1|)) (-1194 |#1|))) (-15 -1359 ((-3 (-657 (-1194 |#1|)) "failed") (-657 (-1194 |#1|)) (-1194 |#1|))) (-15 -1450 (|#1| |#1| (-1104))) (-15 -2029 ((-657 (-1104)) |#1|)) (-15 -1775 ((-784) |#1| (-657 (-1104)))) (-15 -1775 ((-784) |#1|)) (-15 -2003 (|#1| |#1| (-657 (-1104)) (-657 (-784)))) (-15 -2003 (|#1| |#1| (-1104) (-784))) (-15 -4436 ((-657 (-784)) |#1| (-657 (-1104)))) (-15 -4436 ((-784) |#1| (-1104))) (-15 -2353 ((-3 (-1104) "failed") |#1|)) (-15 -1770 ((-657 (-784)) |#1| (-657 (-1104)))) (-15 -1770 ((-784) |#1| (-1104))) (-15 -3501 (|#1| (-1104))) (-15 -1624 ((-3 (-1104) "failed") |#1|)) (-15 -2884 ((-1104) |#1|)) (-15 -3236 (|#1| |#1| (-657 (-1104)) (-657 |#1|))) (-15 -3236 (|#1| |#1| (-1104) |#1|)) (-15 -3236 (|#1| |#1| (-657 (-1104)) (-657 |#2|))) (-15 -3236 (|#1| |#1| (-1104) |#2|)) (-15 -3236 (|#1| |#1| (-657 |#1|) (-657 |#1|))) (-15 -3236 (|#1| |#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| (-304 |#1|))) (-15 -3236 (|#1| |#1| (-657 (-304 |#1|)))) (-15 -1770 ((-784) |#1|)) (-15 -2003 (|#1| |#2| (-784))) (-15 -1624 ((-3 (-576) "failed") |#1|)) (-15 -2884 ((-576) |#1|)) (-15 -1624 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2884 ((-419 (-576)) |#1|)) (-15 -2884 (|#2| |#1|)) (-15 -1624 ((-3 |#2| "failed") |#1|)) (-15 -3501 (|#1| |#2|)) (-15 -4436 ((-784) |#1|)) (-15 -1450 (|#2| |#1|)) (-15 -2815 (|#1| |#1| (-1104))) (-15 -2815 (|#1| |#1| (-657 (-1104)))) (-15 -2815 (|#1| |#1| (-1104) (-784))) (-15 -2815 (|#1| |#1| (-657 (-1104)) (-657 (-784)))) (-15 -3501 (|#1| (-576))) (-15 -3501 ((-877) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2266 (((-1289 |#1|) $ (-784)) 256)) (-2029 (((-657 (-1104)) $) 113)) (-3745 (($ (-1194 |#1|)) 254)) (-1849 (((-1194 $) $ (-1104)) 128) (((-1194 |#1|) $) 127)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-3325 (($ $) 91 (|has| |#1| (-568)))) (-4306 (((-112) $) 93 (|has| |#1| (-568)))) (-1775 (((-784) $) 115) (((-784) $ (-657 (-1104))) 114)) (-2721 (((-3 $ "failed") $ $) 20)) (-1558 (($ $ $) 241 (|has| |#1| (-568)))) (-4250 (((-430 (-1194 $)) (-1194 $)) 103 (|has| |#1| (-929)))) (-2638 (($ $) 101 (|has| |#1| (-464)))) (-4402 (((-430 $) $) 100 (|has| |#1| (-464)))) (-1359 (((-3 (-657 (-1194 $)) "failed") (-657 (-1194 $)) (-1194 $)) 106 (|has| |#1| (-929)))) (-2864 (((-112) $ $) 226 (|has| |#1| (-374)))) (-2794 (($ $ (-784)) 249)) (-1462 (($ $ (-784)) 248)) (-3757 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 236 (|has| |#1| (-464)))) (-4359 (($) 18 T CONST)) (-1624 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1060 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1060 (-576)))) (((-3 (-1104) "failed") $) 143)) (-2884 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1060 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1060 (-576)))) (((-1104) $) 144)) (-3203 (($ $ $ (-1104)) 111 (|has| |#1| (-174))) ((|#1| $ $) 244 (|has| |#1| (-174)))) (-3373 (($ $ $) 230 (|has| |#1| (-374)))) (-2212 (($ $) 161)) (-3306 (((-702 (-576)) (-702 $)) 139 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-702 $) (-1289 $)) 138 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-702 $) (-1289 $)) 137) (((-702 |#1|) (-702 $)) 136)) (-3843 (((-3 $ "failed") $) 37)) (-3385 (($ $ $) 229 (|has| |#1| (-374)))) (-3327 (($ $ $) 247)) (-2432 (($ $ $) 238 (|has| |#1| (-568)))) (-4267 (((-2 (|:| -1771 |#1|) (|:| -2335 $) (|:| -3644 $)) $ $) 237 (|has| |#1| (-568)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 224 (|has| |#1| (-374)))) (-3813 (($ $) 183 (|has| |#1| (-464))) (($ $ (-1104)) 108 (|has| |#1| (-464)))) (-2199 (((-657 $) $) 112)) (-4257 (((-112) $) 99 (|has| |#1| (-929)))) (-3124 (($ $ |#1| (-784) $) 179)) (-3200 (((-905 (-390) $) $ (-908 (-390)) (-905 (-390) $)) 87 (-12 (|has| (-1104) (-902 (-390))) (|has| |#1| (-902 (-390))))) (((-905 (-576) $) $ (-908 (-576)) (-905 (-576) $)) 86 (-12 (|has| (-1104) (-902 (-576))) (|has| |#1| (-902 (-576)))))) (-3182 (((-784) $ $) 242 (|has| |#1| (-568)))) (-4094 (((-112) $) 35)) (-4334 (((-784) $) 176)) (-4019 (((-3 $ "failed") $) 222 (|has| |#1| (-1174)))) (-2014 (($ (-1194 |#1|) (-1104)) 120) (($ (-1194 $) (-1104)) 119)) (-1525 (($ $ (-784)) 253)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 233 (|has| |#1| (-374)))) (-3724 (((-657 $) $) 129)) (-3157 (((-112) $) 159)) (-2003 (($ |#1| (-784)) 160) (($ $ (-1104) (-784)) 122) (($ $ (-657 (-1104)) (-657 (-784))) 121)) (-3317 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $ (-1104)) 123) (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 251)) (-4436 (((-784) $) 177) (((-784) $ (-1104)) 125) (((-657 (-784)) $ (-657 (-1104))) 124)) (-4056 (($ (-1 (-784) (-784)) $) 178)) (-4083 (($ (-1 |#1| |#1|) $) 158)) (-2890 (((-1194 |#1|) $) 255)) (-2353 (((-3 (-1104) "failed") $) 126)) (-3101 (((-702 (-576)) (-1289 $)) 141 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 (-576))) (|:| |vec| (-1289 (-576)))) (-1289 $) $) 140 (|has| |#1| (-652 (-576)))) (((-2 (|:| -3750 (-702 |#1|)) (|:| |vec| (-1289 |#1|))) (-1289 $) $) 135) (((-702 |#1|) (-1289 $)) 134)) (-2174 (($ $) 156)) (-2186 ((|#1| $) 155)) (-3402 (($ (-657 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-2342 (((-1180) $) 10)) (-2025 (((-2 (|:| -2335 $) (|:| -3644 $)) $ (-784)) 250)) (-1392 (((-3 (-657 $) "failed") $) 117)) (-2974 (((-3 (-657 $) "failed") $) 118)) (-2999 (((-3 (-2 (|:| |var| (-1104)) (|:| -1801 (-784))) "failed") $) 116)) (-4190 (($ $) 234 (|has| |#1| (-38 (-419 (-576)))))) (-1706 (($) 221 (|has| |#1| (-1174)) CONST)) (-1471 (((-1142) $) 11)) (-2146 (((-112) $) 173)) (-2160 ((|#1| $) 174)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 98 (|has| |#1| (-464)))) (-3436 (($ (-657 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-2861 (((-430 (-1194 $)) (-1194 $)) 105 (|has| |#1| (-929)))) (-2988 (((-430 (-1194 $)) (-1194 $)) 104 (|has| |#1| (-929)))) (-1885 (((-430 $) $) 102 (|has| |#1| (-929)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 232 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 231 (|has| |#1| (-374)))) (-3418 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 225 (|has| |#1| (-374)))) (-3236 (($ $ (-657 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-657 $) (-657 $)) 149) (($ $ (-1104) |#1|) 148) (($ $ (-657 (-1104)) (-657 |#1|)) 147) (($ $ (-1104) $) 146) (($ $ (-657 (-1104)) (-657 $)) 145)) (-2034 (((-784) $) 227 (|has| |#1| (-374)))) (-2835 ((|#1| $ |#1|) 266) (($ $ $) 265) (((-419 $) (-419 $) (-419 $)) 243 (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) 235 (|has| |#1| (-374))) (((-419 $) $ (-419 $)) 223 (|has| |#1| (-568)))) (-4337 (((-3 $ "failed") $ (-784)) 252)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 228 (|has| |#1| (-374)))) (-1701 (($ $ (-1104)) 110 (|has| |#1| (-174))) ((|#1| $) 245 (|has| |#1| (-174)))) (-2815 (($ $ (-657 (-1104)) (-657 (-784))) 44) (($ $ (-1104) (-784)) 43) (($ $ (-657 (-1104))) 42) (($ $ (-1104)) 40) (($ $) 264) (($ $ (-784)) 262) (($ $ (-1 |#1| |#1|)) 260) (($ $ (-1 |#1| |#1|) (-784)) 259) (($ $ (-1 |#1| |#1|) $) 246) (($ $ (-1198)) 220 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 218 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 217 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 216 (|has| |#1| (-920 (-1198))))) (-1770 (((-784) $) 157) (((-784) $ (-1104)) 133) (((-657 (-784)) $ (-657 (-1104))) 132)) (-4148 (((-908 (-390)) $) 85 (-12 (|has| (-1104) (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390)))))) (((-908 (-576)) $) 84 (-12 (|has| (-1104) (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576)))))) (((-548) $) 83 (-12 (|has| (-1104) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-1450 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ (-1104)) 109 (|has| |#1| (-464)))) (-3610 (((-3 (-1289 $) "failed") (-702 $)) 107 (-2724 (|has| $ (-146)) (|has| |#1| (-929))))) (-3432 (((-3 $ "failed") $ $) 240 (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) 239 (|has| |#1| (-568)))) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ (-1104)) 142) (($ (-419 (-576))) 81 (-2802 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-4037 (((-657 |#1|) $) 175)) (-2313 ((|#1| $ (-784)) 162) (($ $ (-1104) (-784)) 131) (($ $ (-657 (-1104)) (-657 (-784))) 130)) (-3096 (((-3 $ "failed") $) 82 (-2802 (-2724 (|has| $ (-146)) (|has| |#1| (-929))) (|has| |#1| (-146))))) (-1960 (((-784)) 32 T CONST)) (-2702 (($ $ $ (-784)) 180 (|has| |#1| (-174)))) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-657 (-1104)) (-657 (-784))) 47) (($ $ (-1104) (-784)) 46) (($ $ (-657 (-1104))) 45) (($ $ (-1104)) 41) (($ $) 263) (($ $ (-784)) 261) (($ $ (-1 |#1| |#1|)) 258) (($ $ (-1 |#1| |#1|) (-784)) 257) (($ $ (-1198)) 219 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198))) 215 (|has| |#1| (-920 (-1198)))) (($ $ (-1198) (-784)) 214 (|has| |#1| (-920 (-1198)))) (($ $ (-657 (-1198)) (-657 (-784))) 213 (|has| |#1| (-920 (-1198))))) (-2933 (((-112) $ $) 8)) (-3034 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) -(((-1265 |#1|) (-141) (-1071)) (T -1265)) -((-2266 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *1 (-1265 *4)) (-4 *4 (-1071)) (-5 *2 (-1289 *4)))) (-2890 (*1 *2 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-1071)) (-5 *2 (-1194 *3)))) (-3745 (*1 *1 *2) (-12 (-5 *2 (-1194 *3)) (-4 *3 (-1071)) (-4 *1 (-1265 *3)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)))) (-4337 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-784)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)))) (-3317 (*1 *2 *1 *1) (-12 (-4 *3 (-1071)) (-5 *2 (-2 (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-1265 *3)))) (-2025 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *4 (-1071)) (-5 *2 (-2 (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-1265 *4)))) (-2794 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)))) (-1462 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)))) (-3327 (*1 *1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)))) (-2815 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)))) (-1701 (*1 *2 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-174)))) (-3203 (*1 *2 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-174)))) (-2835 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)) (-4 *3 (-568)))) (-3182 (*1 *2 *1 *1) (-12 (-4 *1 (-1265 *3)) (-4 *3 (-1071)) (-4 *3 (-568)) (-5 *2 (-784)))) (-1558 (*1 *1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-568)))) (-3432 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-568)))) (-3432 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)) (-4 *3 (-568)))) (-2432 (*1 *1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-568)))) (-4267 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-5 *2 (-2 (|:| -1771 *3) (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-1265 *3)))) (-3757 (*1 *2 *1 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1071)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1265 *3)))) (-2835 (*1 *2 *3 *2) (-12 (-5 *3 (-419 *1)) (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-4190 (*1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-38 (-419 (-576))))))) -(-13 (-969 |t#1| (-784) (-1104)) (-296 |t#1| |t#1|) (-296 $ $) (-238) (-232 |t#1|) (-10 -8 (-15 -2266 ((-1289 |t#1|) $ (-784))) (-15 -2890 ((-1194 |t#1|) $)) (-15 -3745 ($ (-1194 |t#1|))) (-15 -1525 ($ $ (-784))) (-15 -4337 ((-3 $ "failed") $ (-784))) (-15 -3317 ((-2 (|:| -2335 $) (|:| -3644 $)) $ $)) (-15 -2025 ((-2 (|:| -2335 $) (|:| -3644 $)) $ (-784))) (-15 -2794 ($ $ (-784))) (-15 -1462 ($ $ (-784))) (-15 -3327 ($ $ $)) (-15 -2815 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1174)) (-6 (-1174)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -1701 (|t#1| $)) (-15 -3203 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-296 (-419 $) (-419 $))) (-15 -2835 ((-419 $) (-419 $) (-419 $))) (-15 -3182 ((-784) $ $)) (-15 -1558 ($ $ $)) (-15 -3432 ((-3 $ "failed") $ $)) (-15 -3432 ((-3 (-419 $) "failed") (-419 $) $)) (-15 -2432 ($ $ $)) (-15 -4267 ((-2 (|:| -1771 |t#1|) (|:| -2335 $) (|:| -3644 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (-15 -3757 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-317)) (-6 -4462) (-15 -2835 (|t#1| (-419 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-15 -4190 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-784)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2802 (|has| |#1| (-1060 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1104)) . T) ((-628 |#1|) . T) ((-628 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-625 (-877)) . T) ((-174) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| (-1104) (-626 (-548))) (|has| |#1| (-626 (-548)))) ((-626 (-908 (-390))) -12 (|has| (-1104) (-626 (-908 (-390)))) (|has| |#1| (-626 (-908 (-390))))) ((-626 (-908 (-576))) -12 (|has| (-1104) (-626 (-908 (-576)))) (|has| |#1| (-626 (-908 (-576))))) ((-234 $) . T) ((-232 |#1|) . T) ((-238) . T) ((-237) . T) ((-272 |#1|) . T) ((-296 (-419 $) (-419 $)) |has| |#1| (-568)) ((-296 |#1| |#1|) . T) ((-296 $ $) . T) ((-300) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 $) . T) ((-336 |#1| #0#) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2802 (|has| |#1| (-929)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-526 #2# |#1|) . T) ((-526 #2# $) . T) ((-526 $ $) . T) ((-568) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-659 #1#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #1#) |has| |#1| (-38 (-419 (-576)))) ((-661 #3=(-576)) |has| |#1| (-652 (-576))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #1#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-652 #3#) |has| |#1| (-652 (-576))) ((-652 |#1|) . T) ((-730 #1#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-739) . T) ((-912 $ #2#) . T) ((-912 $ #4=(-1198)) -2802 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-918 #2#) . T) ((-918 (-1198)) |has| |#1| (-918 (-1198))) ((-920 #2#) . T) ((-920 #4#) -2802 (|has| |#1| (-920 (-1198))) (|has| |#1| (-918 (-1198)))) ((-902 (-390)) -12 (|has| (-1104) (-902 (-390))) (|has| |#1| (-902 (-390)))) ((-902 (-576)) -12 (|has| (-1104) (-902 (-576))) (|has| |#1| (-902 (-576)))) ((-969 |#1| #0# #2#) . T) ((-929) |has| |#1| (-929)) ((-940) |has| |#1| (-374)) ((-1060 (-419 (-576))) |has| |#1| (-1060 (-419 (-576)))) ((-1060 (-576)) |has| |#1| (-1060 (-576))) ((-1060 #2#) . T) ((-1060 |#1|) . T) ((-1073 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1078 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2802 (|has| |#1| (-929)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1174) |has| |#1| (-1174)) ((-1239) . T) ((-1243) |has| |#1| (-929))) -((-2029 (((-657 (-1104)) $) 34)) (-2212 (($ $) 31)) (-2003 (($ |#2| |#3|) NIL) (($ $ (-1104) |#3|) 28) (($ $ (-657 (-1104)) (-657 |#3|)) 27)) (-2174 (($ $) 14)) (-2186 ((|#2| $) 12)) (-1770 ((|#3| $) 10))) -(((-1266 |#1| |#2| |#3|) (-10 -8 (-15 -2029 ((-657 (-1104)) |#1|)) (-15 -2003 (|#1| |#1| (-657 (-1104)) (-657 |#3|))) (-15 -2003 (|#1| |#1| (-1104) |#3|)) (-15 -2212 (|#1| |#1|)) (-15 -2003 (|#1| |#2| |#3|)) (-15 -1770 (|#3| |#1|)) (-15 -2174 (|#1| |#1|)) (-15 -2186 (|#2| |#1|))) (-1267 |#2| |#3|) (-1071) (-805)) (T -1266)) -NIL -(-10 -8 (-15 -2029 ((-657 (-1104)) |#1|)) (-15 -2003 (|#1| |#1| (-657 (-1104)) (-657 |#3|))) (-15 -2003 (|#1| |#1| (-1104) |#3|)) (-15 -2212 (|#1| |#1|)) (-15 -2003 (|#1| |#2| |#3|)) (-15 -1770 (|#3| |#1|)) (-15 -2174 (|#1| |#1|)) (-15 -2186 (|#2| |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2029 (((-657 (-1104)) $) 86)) (-3032 (((-1198) $) 118)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-3325 (($ $) 64 (|has| |#1| (-568)))) (-4306 (((-112) $) 66 (|has| |#1| (-568)))) (-4374 (($ $ |#2|) 113) (($ $ |#2| |#2|) 112)) (-2886 (((-1179 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2212 (($ $) 72)) (-3843 (((-3 $ "failed") $) 37)) (-2373 (((-112) $) 85)) (-3182 ((|#2| $) 115) ((|#2| $ |#2|) 114)) (-4094 (((-112) $) 35)) (-1525 (($ $ (-941)) 116)) (-3157 (((-112) $) 74)) (-2003 (($ |#1| |#2|) 73) (($ $ (-1104) |#2|) 88) (($ $ (-657 (-1104)) (-657 |#2|)) 87)) (-4083 (($ (-1 |#1| |#1|) $) 75)) (-2174 (($ $) 77)) (-2186 ((|#1| $) 78)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3926 (($ $ |#2|) 110)) (-3418 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3236 (((-1179 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2835 ((|#1| $ |#2|) 120) (($ $ $) 96 (|has| |#2| (-1134)))) (-2815 (($ $ (-1198)) 108 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-657 (-1198))) 106 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1198) (-784)) 105 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 104 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-784)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1770 ((|#2| $) 76)) (-1431 (($ $) 84)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2313 ((|#1| $ |#2|) 71)) (-3096 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1960 (((-784)) 32 T CONST)) (-3665 ((|#1| $) 117)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4144 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3501 (|#1| (-1198))))))) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-1198)) 107 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-657 (-1198))) 103 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1198) (-784)) 102 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 101 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-784)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2933 (((-112) $ $) 8)) (-3034 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1267 |#1| |#2|) (-141) (-1071) (-805)) (T -1267)) -((-2886 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) (-5 *2 (-1179 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) (-5 *2 (-1198)))) (-3665 (*1 *2 *1) (-12 (-4 *1 (-1267 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-941)) (-4 *1 (-1267 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) (-3182 (*1 *2 *1 *2) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) (-4374 (*1 *1 *1 *2) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) (-4374 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) (-4144 (*1 *2 *1 *3) (-12 (-4 *1 (-1267 *2 *3)) (-4 *3 (-805)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3501 (*2 (-1198)))) (-4 *2 (-1071)))) (-3926 (*1 *1 *1 *2) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) (-3236 (*1 *2 *1 *3) (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1179 *3))))) -(-13 (-995 |t#1| |t#2| (-1104)) (-296 |t#2| |t#1|) (-10 -8 (-15 -2886 ((-1179 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3032 ((-1198) $)) (-15 -3665 (|t#1| $)) (-15 -1525 ($ $ (-941))) (-15 -3182 (|t#2| $)) (-15 -3182 (|t#2| $ |t#2|)) (-15 -4374 ($ $ |t#2|)) (-15 -4374 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3501 (|t#1| (-1198)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4144 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3926 ($ $ |t#2|)) (IF (|has| |t#2| (-1134)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-238)) (IF (|has| |t#1| (-918 (-1198))) (-6 (-918 (-1198))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3236 ((-1179 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-877)) . T) ((-174) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-237) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-296 |#2| |#1|) . T) ((-296 $ $) |has| |#2| (-1134)) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-659 #0#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) |has| |#1| (-38 (-419 (-576)))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) |has| |#1| (-568)) ((-730 #0#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) |has| |#1| (-568)) ((-739) . T) ((-912 $ #1=(-1198)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-918 (-1198)))) ((-918 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-918 (-1198)))) ((-920 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-918 (-1198)))) ((-995 |#1| |#2| (-1104)) . T) ((-1073 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1078 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-2638 ((|#2| |#2|) 12)) (-4402 (((-430 |#2|) |#2|) 14)) (-2180 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))) 30))) -(((-1268 |#1| |#2|) (-10 -7 (-15 -4402 ((-430 |#2|) |#2|)) (-15 -2638 (|#2| |#2|)) (-15 -2180 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) (-568) (-13 (-1265 |#1|) (-568) (-10 -8 (-15 -3436 ($ $ $))))) (T -1268)) -((-2180 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-576)))) (-4 *4 (-13 (-1265 *3) (-568) (-10 -8 (-15 -3436 ($ $ $))))) (-4 *3 (-568)) (-5 *1 (-1268 *3 *4)))) (-2638 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-1268 *3 *2)) (-4 *2 (-13 (-1265 *3) (-568) (-10 -8 (-15 -3436 ($ $ $))))))) (-4402 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1268 *4 *3)) (-4 *3 (-13 (-1265 *4) (-568) (-10 -8 (-15 -3436 ($ $ $)))))))) -(-10 -7 (-15 -4402 ((-430 |#2|) |#2|)) (-15 -2638 (|#2| |#2|)) (-15 -2180 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) -((-4083 (((-1274 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1274 |#1| |#3| |#5|)) 24))) -(((-1269 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4083 ((-1274 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1274 |#1| |#3| |#5|)))) (-1071) (-1071) (-1198) (-1198) |#1| |#2|) (T -1269)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1274 *5 *7 *9)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-14 *7 (-1198)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1274 *6 *8 *10)) (-5 *1 (-1269 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1198))))) -(-10 -7 (-15 -4083 ((-1274 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1274 |#1| |#3| |#5|)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2029 (((-657 (-1104)) $) 86)) (-3032 (((-1198) $) 118)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-3325 (($ $) 64 (|has| |#1| (-568)))) (-4306 (((-112) $) 66 (|has| |#1| (-568)))) (-4374 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-2886 (((-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-2176 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2030 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (((-3 $ "failed") $ $) 20)) (-2638 (($ $) 177 (|has| |#1| (-374)))) (-4402 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1896 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2864 (((-112) $ $) 168 (|has| |#1| (-374)))) (-2150 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2004 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3660 (($ (-784) (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-2201 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2052 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-4359 (($) 18 T CONST)) (-3373 (($ $ $) 172 (|has| |#1| (-374)))) (-2212 (($ $) 72)) (-3843 (((-3 $ "failed") $) 37)) (-3385 (($ $ $) 171 (|has| |#1| (-374)))) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 166 (|has| |#1| (-374)))) (-4257 (((-112) $) 179 (|has| |#1| (-374)))) (-2373 (((-112) $) 85)) (-1657 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3182 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-4094 (((-112) $) 35)) (-2082 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-1525 (($ $ (-941)) 116) (($ $ (-419 (-576))) 185)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 175 (|has| |#1| (-374)))) (-3157 (((-112) $) 74)) (-2003 (($ |#1| (-419 (-576))) 73) (($ $ (-1104) (-419 (-576))) 88) (($ $ (-657 (-1104)) (-657 (-419 (-576)))) 87)) (-4083 (($ (-1 |#1| |#1|) $) 75)) (-3670 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2174 (($ $) 77)) (-2186 ((|#1| $) 78)) (-3402 (($ (-657 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2342 (((-1180) $) 10)) (-2134 (($ $) 180 (|has| |#1| (-374)))) (-4190 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) 183 (-2802 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-979)) (|has| |#1| (-1224)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -2029 ((-657 (-1198)) |#1|))) (|has| |#1| (-15 -4190 (|#1| |#1| (-1198)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 165 (|has| |#1| (-374)))) (-3436 (($ (-657 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1885 (((-430 $) $) 176 (|has| |#1| (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 173 (|has| |#1| (-374)))) (-3926 (($ $ (-419 (-576))) 110)) (-3418 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 167 (|has| |#1| (-374)))) (-4067 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3236 (((-1179 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2034 (((-784) $) 169 (|has| |#1| (-374)))) (-2835 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1134)))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 170 (|has| |#1| (-374)))) (-2815 (($ $ (-1198)) 108 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-657 (-1198))) 106 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1198) (-784)) 105 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 104 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-1770 (((-419 (-576)) $) 76)) (-2213 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2062 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2188 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2163 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2017 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1431 (($ $) 84)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-2313 ((|#1| $ (-419 (-576))) 71)) (-3096 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1960 (((-784)) 32 T CONST)) (-3665 ((|#1| $) 117)) (-2046 (((-112) $ $) 6)) (-4110 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-4041 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2225 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2072 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2125 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4144 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3501 (|#1| (-1198))))))) (-2224 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-4124 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2235 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2085 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-1198)) 107 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-657 (-1198))) 103 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1198) (-784)) 102 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 101 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2933 (((-112) $ $) 8)) (-3034 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1270 |#1|) (-141) (-1071)) (T -1270)) -((-3660 (*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *3 (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) (-4 *4 (-1071)) (-4 *1 (-1270 *4)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1270 *3)) (-4 *3 (-1071)))) (-4190 (*1 *1 *1) (-12 (-4 *1 (-1270 *2)) (-4 *2 (-1071)) (-4 *2 (-38 (-419 (-576)))))) (-4190 (*1 *1 *1 *2) (-2802 (-12 (-5 *2 (-1198)) (-4 *1 (-1270 *3)) (-4 *3 (-1071)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-979)) (-4 *3 (-1224)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1198)) (-4 *1 (-1270 *3)) (-4 *3 (-1071)) (-12 (|has| *3 (-15 -2029 ((-657 *2) *3))) (|has| *3 (-15 -4190 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) -(-13 (-1267 |t#1| (-419 (-576))) (-10 -8 (-15 -3660 ($ (-784) (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |t#1|))))) (-15 -1525 ($ $ (-419 (-576)))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -4190 ($ $)) (IF (|has| |t#1| (-15 -4190 (|t#1| |t#1| (-1198)))) (IF (|has| |t#1| (-15 -2029 ((-657 (-1198)) |t#1|))) (-15 -4190 ($ $ (-1198))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1224)) (IF (|has| |t#1| (-979)) (IF (|has| |t#1| (-29 (-576))) (-15 -4190 ($ $ (-1198))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1024)) (-6 (-1224))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-877)) . T) ((-174) -2802 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1134)) ((-300) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-659 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-730 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-739) . T) ((-912 $ #2=(-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198)))) ((-918 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198)))) ((-920 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198)))) ((-995 |#1| #0# (-1104)) . T) ((-940) |has| |#1| (-374)) ((-1024) |has| |#1| (-38 (-419 (-576)))) ((-1073 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1073 |#1|) . T) ((-1073 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1078 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1078 |#1|) . T) ((-1078 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1227) |has| |#1| (-38 (-419 (-576)))) ((-1239) . T) ((-1243) |has| |#1| (-374)) ((-1267 |#1| #0#) . T)) -((-2364 (((-112) $) 12)) (-1624 (((-3 |#3| "failed") $) 17)) (-2884 ((|#3| $) 14))) -(((-1271 |#1| |#2| |#3|) (-10 -8 (-15 -1624 ((-3 |#3| "failed") |#1|)) (-15 -2884 (|#3| |#1|)) (-15 -2364 ((-112) |#1|))) (-1272 |#2| |#3|) (-1071) (-1249 |#2|)) (T -1271)) -NIL -(-10 -8 (-15 -1624 ((-3 |#3| "failed") |#1|)) (-15 -2884 (|#3| |#1|)) (-15 -2364 ((-112) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2029 (((-657 (-1104)) $) 86)) (-3032 (((-1198) $) 118)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-3325 (($ $) 64 (|has| |#1| (-568)))) (-4306 (((-112) $) 66 (|has| |#1| (-568)))) (-4374 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-2886 (((-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-2176 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2030 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (((-3 $ "failed") $ $) 20)) (-2638 (($ $) 177 (|has| |#1| (-374)))) (-4402 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1896 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2864 (((-112) $ $) 168 (|has| |#1| (-374)))) (-2150 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2004 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3660 (($ (-784) (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-2201 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2052 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-4359 (($) 18 T CONST)) (-1624 (((-3 |#2| "failed") $) 197)) (-2884 ((|#2| $) 198)) (-3373 (($ $ $) 172 (|has| |#1| (-374)))) (-2212 (($ $) 72)) (-3843 (((-3 $ "failed") $) 37)) (-4253 (((-419 (-576)) $) 194)) (-3385 (($ $ $) 171 (|has| |#1| (-374)))) (-2111 (($ (-419 (-576)) |#2|) 195)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 166 (|has| |#1| (-374)))) (-4257 (((-112) $) 179 (|has| |#1| (-374)))) (-2373 (((-112) $) 85)) (-1657 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3182 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-4094 (((-112) $) 35)) (-2082 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-1525 (($ $ (-941)) 116) (($ $ (-419 (-576))) 185)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 175 (|has| |#1| (-374)))) (-3157 (((-112) $) 74)) (-2003 (($ |#1| (-419 (-576))) 73) (($ $ (-1104) (-419 (-576))) 88) (($ $ (-657 (-1104)) (-657 (-419 (-576)))) 87)) (-4083 (($ (-1 |#1| |#1|) $) 75)) (-3670 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2174 (($ $) 77)) (-2186 ((|#1| $) 78)) (-3402 (($ (-657 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-3986 ((|#2| $) 193)) (-3438 (((-3 |#2| "failed") $) 191)) (-2098 ((|#2| $) 192)) (-2342 (((-1180) $) 10)) (-2134 (($ $) 180 (|has| |#1| (-374)))) (-4190 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) 183 (-2802 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-979)) (|has| |#1| (-1224)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -2029 ((-657 (-1198)) |#1|))) (|has| |#1| (-15 -4190 (|#1| |#1| (-1198)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 165 (|has| |#1| (-374)))) (-3436 (($ (-657 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1885 (((-430 $) $) 176 (|has| |#1| (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 173 (|has| |#1| (-374)))) (-3926 (($ $ (-419 (-576))) 110)) (-3418 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 167 (|has| |#1| (-374)))) (-4067 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3236 (((-1179 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2034 (((-784) $) 169 (|has| |#1| (-374)))) (-2835 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1134)))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 170 (|has| |#1| (-374)))) (-2815 (($ $ (-1198)) 108 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-657 (-1198))) 106 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1198) (-784)) 105 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 104 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-1770 (((-419 (-576)) $) 76)) (-2213 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2062 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2188 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2163 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2017 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1431 (($ $) 84)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 196) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-2313 ((|#1| $ (-419 (-576))) 71)) (-3096 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1960 (((-784)) 32 T CONST)) (-3665 ((|#1| $) 117)) (-2046 (((-112) $ $) 6)) (-4110 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-4041 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2225 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2072 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2125 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4144 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3501 (|#1| (-1198))))))) (-2224 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-4124 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2235 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2085 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-1198)) 107 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-657 (-1198))) 103 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1198) (-784)) 102 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 101 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2933 (((-112) $ $) 8)) (-3034 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1272 |#1| |#2|) (-141) (-1071) (-1249 |t#1|)) (T -1272)) -((-1770 (*1 *2 *1) (-12 (-4 *1 (-1272 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1249 *3)) (-5 *2 (-419 (-576))))) (-2111 (*1 *1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1071)) (-4 *1 (-1272 *4 *3)) (-4 *3 (-1249 *4)))) (-4253 (*1 *2 *1) (-12 (-4 *1 (-1272 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1249 *3)) (-5 *2 (-419 (-576))))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-1272 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1249 *3)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-1272 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1249 *3)))) (-3438 (*1 *2 *1) (|partial| -12 (-4 *1 (-1272 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1249 *3))))) -(-13 (-1270 |t#1|) (-1060 |t#2|) (-628 |t#2|) (-10 -8 (-15 -2111 ($ (-419 (-576)) |t#2|)) (-15 -4253 ((-419 (-576)) $)) (-15 -3986 (|t#2| $)) (-15 -1770 ((-419 (-576)) $)) (-15 -2098 (|t#2| $)) (-15 -3438 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-877)) . T) ((-174) -2802 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1134)) ((-300) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-659 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-730 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-739) . T) ((-912 $ #2=(-1198)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198)))) ((-918 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198)))) ((-920 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198)))) ((-995 |#1| #0# (-1104)) . T) ((-940) |has| |#1| (-374)) ((-1024) |has| |#1| (-38 (-419 (-576)))) ((-1060 |#2|) . T) ((-1073 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1073 |#1|) . T) ((-1073 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1078 #1#) -2802 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1078 |#1|) . T) ((-1078 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1227) |has| |#1| (-38 (-419 (-576)))) ((-1239) . T) ((-1243) |has| |#1| (-374)) ((-1267 |#1| #0#) . T) ((-1270 |#1|) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2029 (((-657 (-1104)) $) NIL)) (-3032 (((-1198) $) 104)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-4374 (($ $ (-419 (-576))) 116) (($ $ (-419 (-576)) (-419 (-576))) 118)) (-2886 (((-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 54)) (-2176 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-2030 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL (|has| |#1| (-374)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1896 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2864 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2150 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-2004 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-3660 (($ (-784) (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 65)) (-2201 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-2052 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#2| "failed") $) NIL)) (-2884 ((|#2| $) NIL)) (-3373 (($ $ $) NIL (|has| |#1| (-374)))) (-2212 (($ $) NIL)) (-3843 (((-3 $ "failed") $) 85)) (-4253 (((-419 (-576)) $) 13)) (-3385 (($ $ $) NIL (|has| |#1| (-374)))) (-2111 (($ (-419 (-576)) |#2|) 11)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-4257 (((-112) $) NIL (|has| |#1| (-374)))) (-2373 (((-112) $) 74)) (-1657 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3182 (((-419 (-576)) $) 113) (((-419 (-576)) $ (-419 (-576))) 114)) (-4094 (((-112) $) NIL)) (-2082 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1525 (($ $ (-941)) 130) (($ $ (-419 (-576))) 128)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-419 (-576))) 33) (($ $ (-1104) (-419 (-576))) NIL) (($ $ (-657 (-1104)) (-657 (-419 (-576)))) NIL)) (-4083 (($ (-1 |#1| |#1|) $) 125)) (-3670 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3986 ((|#2| $) 12)) (-3438 (((-3 |#2| "failed") $) 44)) (-2098 ((|#2| $) 45)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) 101 (|has| |#1| (-374)))) (-4190 (($ $) 146 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) 151 (-2802 (-12 (|has| |#1| (-15 -4190 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -2029 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224)))))) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1885 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-3926 (($ $ (-419 (-576))) 122)) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-4067 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3236 (((-1179 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2034 (((-784) $) NIL (|has| |#1| (-374)))) (-2835 ((|#1| $ (-419 (-576))) 108) (($ $ $) 94 (|has| (-419 (-576)) (-1134)))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-374)))) (-2815 (($ $ (-1198)) 138 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-1770 (((-419 (-576)) $) 16)) (-2213 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-2062 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-2188 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-2163 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-2017 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-1431 (($ $) 120)) (-3501 (((-877) $) NIL) (($ (-576)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-419 (-576))) 139 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2313 ((|#1| $ (-419 (-576))) 107)) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) 127 T CONST)) (-3665 ((|#1| $) 106)) (-2046 (((-112) $ $) NIL)) (-4110 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2225 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-2072 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-2125 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-4144 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3501 (|#1| (-1198))))))) (-2224 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-4124 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-2235 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-2085 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-2769 (($) 21 T CONST)) (-2779 (($) 17 T CONST)) (-2097 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2933 (((-112) $ $) 72)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 100 (|has| |#1| (-374)))) (-3022 (($ $) 142) (($ $ $) 78)) (-3012 (($ $ $) 76)) (** (($ $ (-941)) NIL) (($ $ (-784)) 82) (($ $ (-576)) 157 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 158 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1273 |#1| |#2|) (-1272 |#1| |#2|) (-1071) (-1249 |#1|)) (T -1273)) -NIL -(-1272 |#1| |#2|) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2029 (((-657 (-1104)) $) NIL)) (-3032 (((-1198) $) 11)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-4374 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-2886 (((-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-2176 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2030 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (((-3 $ "failed") $ $) NIL)) (-2638 (($ $) NIL (|has| |#1| (-374)))) (-4402 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1896 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2864 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2150 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2004 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3660 (($ (-784) (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-2201 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2052 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-1253 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1281 |#1| |#2| |#3|) "failed") $) 22)) (-2884 (((-1253 |#1| |#2| |#3|) $) NIL) (((-1281 |#1| |#2| |#3|) $) NIL)) (-3373 (($ $ $) NIL (|has| |#1| (-374)))) (-2212 (($ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-4253 (((-419 (-576)) $) 69)) (-3385 (($ $ $) NIL (|has| |#1| (-374)))) (-2111 (($ (-419 (-576)) (-1253 |#1| |#2| |#3|)) NIL)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) NIL (|has| |#1| (-374)))) (-4257 (((-112) $) NIL (|has| |#1| (-374)))) (-2373 (((-112) $) NIL)) (-1657 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3182 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-4094 (((-112) $) NIL)) (-2082 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1525 (($ $ (-941)) NIL) (($ $ (-419 (-576))) NIL)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-419 (-576))) 30) (($ $ (-1104) (-419 (-576))) NIL) (($ $ (-657 (-1104)) (-657 (-419 (-576)))) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-3670 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-3402 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3986 (((-1253 |#1| |#2| |#3|) $) 72)) (-3438 (((-3 (-1253 |#1| |#2| |#3|) "failed") $) NIL)) (-2098 (((-1253 |#1| |#2| |#3|) $) NIL)) (-2342 (((-1180) $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-374)))) (-4190 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) NIL (-2802 (-12 (|has| |#1| (-15 -4190 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -2029 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224))))) (($ $ (-1285 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-1471 (((-1142) $) NIL)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) NIL (|has| |#1| (-374)))) (-3436 (($ (-657 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1885 (((-430 $) $) NIL (|has| |#1| (-374)))) (-2143 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) NIL (|has| |#1| (-374)))) (-3926 (($ $ (-419 (-576))) NIL)) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3161 (((-3 (-657 $) "failed") (-657 $) $) NIL (|has| |#1| (-374)))) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3236 (((-1179 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-2034 (((-784) $) NIL (|has| |#1| (-374)))) (-2835 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1134)))) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) NIL (|has| |#1| (-374)))) (-2815 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1285 |#2|)) 38)) (-1770 (((-419 (-576)) $) NIL)) (-2213 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2062 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2188 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2163 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1431 (($ $) NIL)) (-3501 (((-877) $) 107) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1253 |#1| |#2| |#3|)) 16) (($ (-1281 |#1| |#2| |#3|)) 17) (($ (-1285 |#2|)) 36) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2313 ((|#1| $ (-419 (-576))) NIL)) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) NIL T CONST)) (-3665 ((|#1| $) 12)) (-2046 (((-112) $ $) NIL)) (-4110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2225 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2072 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2125 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4144 ((|#1| $ (-419 (-576))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3501 (|#1| (-1198))))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4124 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2235 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2085 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2769 (($) 32 T CONST)) (-2779 (($) 26 T CONST)) (-2097 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1285 |#2|)) NIL)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 34)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1274 |#1| |#2| |#3|) (-13 (-1272 |#1| (-1253 |#1| |#2| |#3|)) (-912 $ (-1285 |#2|)) (-1060 (-1281 |#1| |#2| |#3|)) (-628 (-1285 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4190 ($ $ (-1285 |#2|))) |%noBranch|))) (-1071) (-1198) |#1|) (T -1274)) -((-4190 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1274 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3)))) -(-13 (-1272 |#1| (-1253 |#1| |#2| |#3|)) (-912 $ (-1285 |#2|)) (-1060 (-1281 |#1| |#2| |#3|)) (-628 (-1285 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4190 ($ $ (-1285 |#2|))) |%noBranch|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 37)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL)) (-3325 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 (-576) "failed") $) NIL (|has| (-1274 |#2| |#3| |#4|) (-1060 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1274 |#2| |#3| |#4|) (-1060 (-419 (-576))))) (((-3 (-1274 |#2| |#3| |#4|) "failed") $) 22)) (-2884 (((-576) $) NIL (|has| (-1274 |#2| |#3| |#4|) (-1060 (-576)))) (((-419 (-576)) $) NIL (|has| (-1274 |#2| |#3| |#4|) (-1060 (-419 (-576))))) (((-1274 |#2| |#3| |#4|) $) NIL)) (-2212 (($ $) 41)) (-3843 (((-3 $ "failed") $) 27)) (-3813 (($ $) NIL (|has| (-1274 |#2| |#3| |#4|) (-464)))) (-3124 (($ $ (-1274 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|) $) NIL)) (-4094 (((-112) $) NIL)) (-4334 (((-784) $) 11)) (-3157 (((-112) $) NIL)) (-2003 (($ (-1274 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) 25)) (-4436 (((-329 |#2| |#3| |#4|) $) NIL)) (-4056 (($ (-1 (-329 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) $) NIL)) (-4083 (($ (-1 (-1274 |#2| |#3| |#4|) (-1274 |#2| |#3| |#4|)) $) NIL)) (-2546 (((-3 (-856 |#2|) "failed") $) 90)) (-2174 (($ $) NIL)) (-2186 (((-1274 |#2| |#3| |#4|) $) 20)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2146 (((-112) $) NIL)) (-2160 (((-1274 |#2| |#3| |#4|) $) NIL)) (-3418 (((-3 $ "failed") $ (-1274 |#2| |#3| |#4|)) NIL (|has| (-1274 |#2| |#3| |#4|) (-568))) (((-3 $ "failed") $ $) NIL)) (-2936 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1274 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-657 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1180))) "failed") $) 74)) (-1770 (((-329 |#2| |#3| |#4|) $) 17)) (-1450 (((-1274 |#2| |#3| |#4|) $) NIL (|has| (-1274 |#2| |#3| |#4|) (-464)))) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ (-1274 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL (-2802 (|has| (-1274 |#2| |#3| |#4|) (-38 (-419 (-576)))) (|has| (-1274 |#2| |#3| |#4|) (-1060 (-419 (-576))))))) (-4037 (((-657 (-1274 |#2| |#3| |#4|)) $) NIL)) (-2313 (((-1274 |#2| |#3| |#4|) $ (-329 |#2| |#3| |#4|)) NIL)) (-3096 (((-3 $ "failed") $) NIL (|has| (-1274 |#2| |#3| |#4|) (-146)))) (-1960 (((-784)) NIL T CONST)) (-2702 (($ $ $ (-784)) NIL (|has| (-1274 |#2| |#3| |#4|) (-174)))) (-2046 (((-112) $ $) NIL)) (-4041 (((-112) $ $) NIL)) (-2769 (($) NIL T CONST)) (-2779 (($) NIL T CONST)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ (-1274 |#2| |#3| |#4|)) NIL (|has| (-1274 |#2| |#3| |#4|) (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-1274 |#2| |#3| |#4|)) NIL) (($ (-1274 |#2| |#3| |#4|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-1274 |#2| |#3| |#4|) (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| (-1274 |#2| |#3| |#4|) (-38 (-419 (-576))))))) -(((-1275 |#1| |#2| |#3| |#4|) (-13 (-336 (-1274 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -2546 ((-3 (-856 |#2|) "failed") $)) (-15 -2936 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1274 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-657 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1180))) "failed") $)))) (-13 (-1060 (-576)) (-652 (-576)) (-464)) (-13 (-27) (-1224) (-442 |#1|)) (-1198) |#2|) (T -1275)) -((-2546 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1060 (-576)) (-652 (-576)) (-464))) (-5 *2 (-856 *4)) (-5 *1 (-1275 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1224) (-442 *3))) (-14 *5 (-1198)) (-14 *6 *4))) (-2936 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1060 (-576)) (-652 (-576)) (-464))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1274 *4 *5 *6)) (|:| |%expon| (-329 *4 *5 *6)) (|:| |%expTerms| (-657 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) (|:| |%type| (-1180)))) (-5 *1 (-1275 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1224) (-442 *3))) (-14 *5 (-1198)) (-14 *6 *4)))) -(-13 (-336 (-1274 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -2546 ((-3 (-856 |#2|) "failed") $)) (-15 -2936 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1274 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-657 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1180))) "failed") $)))) -((-3071 ((|#2| $) 34)) (-2913 ((|#2| $) 18)) (-4424 (($ $) 53)) (-3605 (($ $ (-576)) 85)) (-3793 (((-112) $ (-784)) 46)) (-3734 ((|#2| $ |#2|) 82)) (-2045 ((|#2| $ |#2|) 78)) (-3682 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-2983 (($ $ (-657 $)) 81)) (-2902 ((|#2| $) 17)) (-3522 (($ $) NIL) (($ $ (-784)) 59)) (-2877 (((-657 $) $) 31)) (-1700 (((-112) $ $) 69)) (-1833 (((-112) $ (-784)) 45)) (-4261 (((-112) $ (-784)) 43)) (-2633 (((-112) $) 33)) (-3920 ((|#2| $) 25) (($ $ (-784)) 64)) (-2835 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3628 (((-112) $) 23)) (-3600 (($ $) 56)) (-1921 (($ $) 86)) (-4027 (((-784) $) 58)) (-4087 (($ $) 57)) (-1674 (($ $ $) 77) (($ |#2| $) NIL)) (-1986 (((-657 $) $) 32)) (-2933 (((-112) $ $) 67)) (-3440 (((-784) $) 52))) -(((-1276 |#1| |#2|) (-10 -8 (-15 -2933 ((-112) |#1| |#1|)) (-15 -3605 (|#1| |#1| (-576))) (-15 -3682 (|#2| |#1| "last" |#2|)) (-15 -2045 (|#2| |#1| |#2|)) (-15 -3682 (|#1| |#1| "rest" |#1|)) (-15 -3682 (|#2| |#1| "first" |#2|)) (-15 -1921 (|#1| |#1|)) (-15 -3600 (|#1| |#1|)) (-15 -4027 ((-784) |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -2913 (|#2| |#1|)) (-15 -2902 (|#2| |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -3920 (|#1| |#1| (-784))) (-15 -2835 (|#2| |#1| "last")) (-15 -3920 (|#2| |#1|)) (-15 -3522 (|#1| |#1| (-784))) (-15 -2835 (|#1| |#1| "rest")) (-15 -3522 (|#1| |#1|)) (-15 -2835 (|#2| |#1| "first")) (-15 -1674 (|#1| |#2| |#1|)) (-15 -1674 (|#1| |#1| |#1|)) (-15 -3734 (|#2| |#1| |#2|)) (-15 -3682 (|#2| |#1| "value" |#2|)) (-15 -2983 (|#1| |#1| (-657 |#1|))) (-15 -1700 ((-112) |#1| |#1|)) (-15 -3628 ((-112) |#1|)) (-15 -2835 (|#2| |#1| "value")) (-15 -3071 (|#2| |#1|)) (-15 -2633 ((-112) |#1|)) (-15 -2877 ((-657 |#1|) |#1|)) (-15 -1986 ((-657 |#1|) |#1|)) (-15 -3440 ((-784) |#1|)) (-15 -3793 ((-112) |#1| (-784))) (-15 -1833 ((-112) |#1| (-784))) (-15 -4261 ((-112) |#1| (-784)))) (-1277 |#2|) (-1239)) (T -1276)) -NIL -(-10 -8 (-15 -2933 ((-112) |#1| |#1|)) (-15 -3605 (|#1| |#1| (-576))) (-15 -3682 (|#2| |#1| "last" |#2|)) (-15 -2045 (|#2| |#1| |#2|)) (-15 -3682 (|#1| |#1| "rest" |#1|)) (-15 -3682 (|#2| |#1| "first" |#2|)) (-15 -1921 (|#1| |#1|)) (-15 -3600 (|#1| |#1|)) (-15 -4027 ((-784) |#1|)) (-15 -4087 (|#1| |#1|)) (-15 -2913 (|#2| |#1|)) (-15 -2902 (|#2| |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -3920 (|#1| |#1| (-784))) (-15 -2835 (|#2| |#1| "last")) (-15 -3920 (|#2| |#1|)) (-15 -3522 (|#1| |#1| (-784))) (-15 -2835 (|#1| |#1| "rest")) (-15 -3522 (|#1| |#1|)) (-15 -2835 (|#2| |#1| "first")) (-15 -1674 (|#1| |#2| |#1|)) (-15 -1674 (|#1| |#1| |#1|)) (-15 -3734 (|#2| |#1| |#2|)) (-15 -3682 (|#2| |#1| "value" |#2|)) (-15 -2983 (|#1| |#1| (-657 |#1|))) (-15 -1700 ((-112) |#1| |#1|)) (-15 -3628 ((-112) |#1|)) (-15 -2835 (|#2| |#1| "value")) (-15 -3071 (|#2| |#1|)) (-15 -2633 ((-112) |#1|)) (-15 -2877 ((-657 |#1|) |#1|)) (-15 -1986 ((-657 |#1|) |#1|)) (-15 -3440 ((-784) |#1|)) (-15 -3793 ((-112) |#1| (-784))) (-15 -1833 ((-112) |#1| (-784))) (-15 -4261 ((-112) |#1| (-784)))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3071 ((|#1| $) 49)) (-2913 ((|#1| $) 66)) (-4424 (($ $) 68)) (-3605 (($ $ (-576)) 53 (|has| $ (-6 -4467)))) (-3793 (((-112) $ (-784)) 8)) (-3734 ((|#1| $ |#1|) 40 (|has| $ (-6 -4467)))) (-2823 (($ $ $) 57 (|has| $ (-6 -4467)))) (-2045 ((|#1| $ |#1|) 55 (|has| $ (-6 -4467)))) (-4013 ((|#1| $ |#1|) 59 (|has| $ (-6 -4467)))) (-3682 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4467))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4467))) (($ $ "rest" $) 56 (|has| $ (-6 -4467))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4467)))) (-2983 (($ $ (-657 $)) 42 (|has| $ (-6 -4467)))) (-2902 ((|#1| $) 67)) (-4359 (($) 7 T CONST)) (-3522 (($ $) 74) (($ $ (-784)) 72)) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-2877 (((-657 $) $) 51)) (-1700 (((-112) $ $) 43 (|has| |#1| (-1122)))) (-1833 (((-112) $ (-784)) 9)) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36)) (-4261 (((-112) $ (-784)) 10)) (-2424 (((-657 |#1|) $) 46)) (-2633 (((-112) $) 50)) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-3920 ((|#1| $) 71) (($ $ (-784)) 69)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3510 ((|#1| $) 77) (($ $ (-784)) 75)) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-3883 (((-576) $ $) 45)) (-3628 (((-112) $) 47)) (-3600 (($ $) 63)) (-1921 (($ $) 60 (|has| $ (-6 -4467)))) (-4027 (((-784) $) 64)) (-4087 (($ $) 65)) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-1923 (($ $) 13)) (-2858 (($ $ $) 62 (|has| $ (-6 -4467))) (($ $ |#1|) 61 (|has| $ (-6 -4467)))) (-1674 (($ $ $) 79) (($ |#1| $) 78)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-1986 (((-657 $) $) 52)) (-1633 (((-112) $ $) 44 (|has| |#1| (-1122)))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-1277 |#1|) (-141) (-1239)) (T -1277)) -((-1674 (*1 *1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-1674 (*1 *1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-2835 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-3510 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1277 *3)) (-4 *3 (-1239)))) (-3522 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-2835 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1277 *3)) (-4 *3 (-1239)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1277 *3)) (-4 *3 (-1239)))) (-3920 (*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-2835 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-3920 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1277 *3)) (-4 *3 (-1239)))) (-4424 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-2902 (*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-2913 (*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-4087 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-4027 (*1 *2 *1) (-12 (-4 *1 (-1277 *3)) (-4 *3 (-1239)) (-5 *2 (-784)))) (-3600 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-2858 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-2858 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-1921 (*1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-4013 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-3682 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-2823 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-3682 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4467)) (-4 *1 (-1277 *3)) (-4 *3 (-1239)))) (-2045 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-3682 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) (-3605 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4467)) (-4 *1 (-1277 *3)) (-4 *3 (-1239))))) -(-13 (-1032 |t#1|) (-10 -8 (-15 -1674 ($ $ $)) (-15 -1674 ($ |t#1| $)) (-15 -3510 (|t#1| $)) (-15 -2835 (|t#1| $ "first")) (-15 -3510 ($ $ (-784))) (-15 -3522 ($ $)) (-15 -2835 ($ $ "rest")) (-15 -3522 ($ $ (-784))) (-15 -3920 (|t#1| $)) (-15 -2835 (|t#1| $ "last")) (-15 -3920 ($ $ (-784))) (-15 -4424 ($ $)) (-15 -2902 (|t#1| $)) (-15 -2913 (|t#1| $)) (-15 -4087 ($ $)) (-15 -4027 ((-784) $)) (-15 -3600 ($ $)) (IF (|has| $ (-6 -4467)) (PROGN (-15 -2858 ($ $ $)) (-15 -2858 ($ $ |t#1|)) (-15 -1921 ($ $)) (-15 -4013 (|t#1| $ |t#1|)) (-15 -3682 (|t#1| $ "first" |t#1|)) (-15 -2823 ($ $ $)) (-15 -3682 ($ $ "rest" $)) (-15 -2045 (|t#1| $ |t#1|)) (-15 -3682 (|t#1| $ "last" |t#1|)) (-15 -3605 ($ $ (-576)))) |%noBranch|))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-625 (-877)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-1032 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1239) . T)) -((-4083 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1278 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4083 (|#4| (-1 |#2| |#1|) |#3|))) (-1071) (-1071) (-1280 |#1|) (-1280 |#2|)) (T -1278)) -((-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) (-4 *2 (-1280 *6)) (-5 *1 (-1278 *5 *6 *4 *2)) (-4 *4 (-1280 *5))))) -(-10 -7 (-15 -4083 (|#4| (-1 |#2| |#1|) |#3|))) -((-2364 (((-112) $) 17)) (-2176 (($ $) 105)) (-2030 (($ $) 81)) (-2150 (($ $) 101)) (-2004 (($ $) 77)) (-2201 (($ $) 109)) (-2052 (($ $) 85)) (-3670 (($ $) 75)) (-4067 (($ $) 73)) (-2213 (($ $) 111)) (-2062 (($ $) 87)) (-2188 (($ $) 107)) (-2042 (($ $) 83)) (-2163 (($ $) 103)) (-2017 (($ $) 79)) (-3501 (((-877) $) 61) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-4110 (($ $) 117)) (-2100 (($ $) 93)) (-2225 (($ $) 113)) (-2072 (($ $) 89)) (-4137 (($ $) 121)) (-2125 (($ $) 97)) (-2224 (($ $) 123)) (-2137 (($ $) 99)) (-4124 (($ $) 119)) (-2113 (($ $) 95)) (-2235 (($ $) 115)) (-2085 (($ $) 91)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-419 (-576))) 71))) -(((-1279 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2030 (|#1| |#1|)) (-15 -2004 (|#1| |#1|)) (-15 -2052 (|#1| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2017 (|#1| |#1|)) (-15 -2085 (|#1| |#1|)) (-15 -2113 (|#1| |#1|)) (-15 -2137 (|#1| |#1|)) (-15 -2125 (|#1| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -2100 (|#1| |#1|)) (-15 -2163 (|#1| |#1|)) (-15 -2188 (|#1| |#1|)) (-15 -2213 (|#1| |#1|)) (-15 -2201 (|#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -2176 (|#1| |#1|)) (-15 -2235 (|#1| |#1|)) (-15 -4124 (|#1| |#1|)) (-15 -2224 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -2225 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -4067 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3501 (|#1| |#2|)) (-15 -3501 (|#1| |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -3501 (|#1| (-576))) (-15 ** (|#1| |#1| (-784))) (-15 ** (|#1| |#1| (-941))) (-15 -2364 ((-112) |#1|)) (-15 -3501 ((-877) |#1|))) (-1280 |#2|) (-1071)) (T -1279)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2030 (|#1| |#1|)) (-15 -2004 (|#1| |#1|)) (-15 -2052 (|#1| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2017 (|#1| |#1|)) (-15 -2085 (|#1| |#1|)) (-15 -2113 (|#1| |#1|)) (-15 -2137 (|#1| |#1|)) (-15 -2125 (|#1| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -2100 (|#1| |#1|)) (-15 -2163 (|#1| |#1|)) (-15 -2188 (|#1| |#1|)) (-15 -2213 (|#1| |#1|)) (-15 -2201 (|#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -2176 (|#1| |#1|)) (-15 -2235 (|#1| |#1|)) (-15 -4124 (|#1| |#1|)) (-15 -2224 (|#1| |#1|)) (-15 -4137 (|#1| |#1|)) (-15 -2225 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -4067 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3501 (|#1| |#2|)) (-15 -3501 (|#1| |#1|)) (-15 -3501 (|#1| (-419 (-576)))) (-15 -3501 (|#1| (-576))) (-15 ** (|#1| |#1| (-784))) (-15 ** (|#1| |#1| (-941))) (-15 -2364 ((-112) |#1|)) (-15 -3501 ((-877) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2029 (((-657 (-1104)) $) 86)) (-3032 (((-1198) $) 118)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-3325 (($ $) 64 (|has| |#1| (-568)))) (-4306 (((-112) $) 66 (|has| |#1| (-568)))) (-4374 (($ $ (-784)) 113) (($ $ (-784) (-784)) 112)) (-2886 (((-1179 (-2 (|:| |k| (-784)) (|:| |c| |#1|))) $) 119)) (-2176 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2030 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2721 (((-3 $ "failed") $ $) 20)) (-1896 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2150 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2004 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3660 (($ (-1179 (-2 (|:| |k| (-784)) (|:| |c| |#1|)))) 170) (($ (-1179 |#1|)) 168)) (-2201 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2052 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-4359 (($) 18 T CONST)) (-2212 (($ $) 72)) (-3843 (((-3 $ "failed") $) 37)) (-2237 (($ $) 167)) (-3030 (((-972 |#1|) $ (-784)) 165) (((-972 |#1|) $ (-784) (-784)) 164)) (-2373 (((-112) $) 85)) (-1657 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3182 (((-784) $) 115) (((-784) $ (-784)) 114)) (-4094 (((-112) $) 35)) (-2082 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-1525 (($ $ (-941)) 116)) (-2008 (($ (-1 |#1| (-576)) $) 166)) (-3157 (((-112) $) 74)) (-2003 (($ |#1| (-784)) 73) (($ $ (-1104) (-784)) 88) (($ $ (-657 (-1104)) (-657 (-784))) 87)) (-4083 (($ (-1 |#1| |#1|) $) 75)) (-3670 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2174 (($ $) 77)) (-2186 ((|#1| $) 78)) (-2342 (((-1180) $) 10)) (-4190 (($ $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) 161 (-2802 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-979)) (|has| |#1| (-1224)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -2029 ((-657 (-1198)) |#1|))) (|has| |#1| (-15 -4190 (|#1| |#1| (-1198)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1471 (((-1142) $) 11)) (-3926 (($ $ (-784)) 110)) (-3418 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-4067 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3236 (((-1179 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-784)))))) (-2835 ((|#1| $ (-784)) 120) (($ $ $) 96 (|has| (-784) (-1134)))) (-2815 (($ $ (-1198)) 108 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (($ $ (-657 (-1198))) 106 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (($ $ (-1198) (-784)) 105 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 104 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-784)) 98 (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (-1770 (((-784) $) 76)) (-2213 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2062 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2188 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2163 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2017 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1431 (($ $) 84)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4037 (((-1179 |#1|) $) 169)) (-2313 ((|#1| $ (-784)) 71)) (-3096 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1960 (((-784)) 32 T CONST)) (-3665 ((|#1| $) 117)) (-2046 (((-112) $ $) 6)) (-4110 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-4041 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2225 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2072 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2125 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4144 ((|#1| $ (-784)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-784)))) (|has| |#1| (-15 -3501 (|#1| (-1198))))))) (-2224 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-4124 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2235 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2085 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2097 (($ $ (-1198)) 107 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (($ $ (-657 (-1198))) 103 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (($ $ (-1198) (-784)) 102 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (($ $ (-657 (-1198)) (-657 (-784))) 101 (-12 (|has| |#1| (-918 (-1198))) (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-784)) 97 (|has| |#1| (-15 * (|#1| (-784) |#1|))))) (-2933 (((-112) $ $) 8)) (-3034 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ |#1|) 163 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1280 |#1|) (-141) (-1071)) (T -1280)) -((-3660 (*1 *1 *2) (-12 (-5 *2 (-1179 (-2 (|:| |k| (-784)) (|:| |c| *3)))) (-4 *3 (-1071)) (-4 *1 (-1280 *3)))) (-4037 (*1 *2 *1) (-12 (-4 *1 (-1280 *3)) (-4 *3 (-1071)) (-5 *2 (-1179 *3)))) (-3660 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-4 *1 (-1280 *3)))) (-2237 (*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1071)))) (-2008 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1280 *3)) (-4 *3 (-1071)))) (-3030 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *1 (-1280 *4)) (-4 *4 (-1071)) (-5 *2 (-972 *4)))) (-3030 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-784)) (-4 *1 (-1280 *4)) (-4 *4 (-1071)) (-5 *2 (-972 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) (-4190 (*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1071)) (-4 *2 (-38 (-419 (-576)))))) (-4190 (*1 *1 *1 *2) (-2802 (-12 (-5 *2 (-1198)) (-4 *1 (-1280 *3)) (-4 *3 (-1071)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-979)) (-4 *3 (-1224)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1198)) (-4 *1 (-1280 *3)) (-4 *3 (-1071)) (-12 (|has| *3 (-15 -2029 ((-657 *2) *3))) (|has| *3 (-15 -4190 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) -(-13 (-1267 |t#1| (-784)) (-10 -8 (-15 -3660 ($ (-1179 (-2 (|:| |k| (-784)) (|:| |c| |t#1|))))) (-15 -4037 ((-1179 |t#1|) $)) (-15 -3660 ($ (-1179 |t#1|))) (-15 -2237 ($ $)) (-15 -2008 ($ (-1 |t#1| (-576)) $)) (-15 -3030 ((-972 |t#1|) $ (-784))) (-15 -3030 ((-972 |t#1|) $ (-784) (-784))) (IF (|has| |t#1| (-374)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -4190 ($ $)) (IF (|has| |t#1| (-15 -4190 (|t#1| |t#1| (-1198)))) (IF (|has| |t#1| (-15 -2029 ((-657 (-1198)) |t#1|))) (-15 -4190 ($ $ (-1198))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1224)) (IF (|has| |t#1| (-979)) (IF (|has| |t#1| (-29 (-576))) (-15 -4190 ($ $ (-1198))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1024)) (-6 (-1224))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-784)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-877)) . T) ((-174) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-784) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-784) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-784) |#1|))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-784) (-1134)) ((-300) |has| |#1| (-568)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) |has| |#1| (-568)) ((-659 #1#) |has| |#1| (-38 (-419 (-576)))) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #1#) |has| |#1| (-38 (-419 (-576)))) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #1#) |has| |#1| (-38 (-419 (-576)))) ((-653 |#1|) |has| |#1| (-174)) ((-653 $) |has| |#1| (-568)) ((-730 #1#) |has| |#1| (-38 (-419 (-576)))) ((-730 |#1|) |has| |#1| (-174)) ((-730 $) |has| |#1| (-568)) ((-739) . T) ((-912 $ #2=(-1198)) -12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198)))) ((-918 #2#) -12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198)))) ((-920 #2#) -12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198)))) ((-995 |#1| #0# (-1104)) . T) ((-1024) |has| |#1| (-38 (-419 (-576)))) ((-1073 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1073 |#1|) . T) ((-1073 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1078 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1078 |#1|) . T) ((-1078 $) -2802 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1227) |has| |#1| (-38 (-419 (-576)))) ((-1239) . T) ((-1267 |#1| #0#) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2029 (((-657 (-1104)) $) NIL)) (-3032 (((-1198) $) 90)) (-2421 (((-1262 |#2| |#1|) $ (-784)) 73)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-3325 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) 142 (|has| |#1| (-568)))) (-4374 (($ $ (-784)) 127) (($ $ (-784) (-784)) 130)) (-2886 (((-1179 (-2 (|:| |k| (-784)) (|:| |c| |#1|))) $) 43)) (-2176 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2030 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2721 (((-3 $ "failed") $ $) NIL)) (-1896 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2150 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2004 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3660 (($ (-1179 (-2 (|:| |k| (-784)) (|:| |c| |#1|)))) 52) (($ (-1179 |#1|)) NIL)) (-2201 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2052 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4359 (($) NIL T CONST)) (-1455 (($ $) 134)) (-2212 (($ $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-2237 (($ $) 140)) (-3030 (((-972 |#1|) $ (-784)) 63) (((-972 |#1|) $ (-784) (-784)) 65)) (-2373 (((-112) $) NIL)) (-1657 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3182 (((-784) $) NIL) (((-784) $ (-784)) NIL)) (-4094 (((-112) $) NIL)) (-3040 (($ $) 117)) (-2082 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2906 (($ (-576) (-576) $) 136)) (-1525 (($ $ (-941)) 139)) (-2008 (($ (-1 |#1| (-576)) $) 111)) (-3157 (((-112) $) NIL)) (-2003 (($ |#1| (-784)) 16) (($ $ (-1104) (-784)) NIL) (($ $ (-657 (-1104)) (-657 (-784))) NIL)) (-4083 (($ (-1 |#1| |#1|) $) 98)) (-3670 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2174 (($ $) NIL)) (-2186 ((|#1| $) NIL)) (-2342 (((-1180) $) NIL)) (-1325 (($ $) 115)) (-1491 (($ $) 113)) (-4263 (($ (-576) (-576) $) 138)) (-4190 (($ $) 150 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1198)) 156 (-2802 (-12 (|has| |#1| (-15 -4190 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -2029 ((-657 (-1198)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-979)) (|has| |#1| (-1224))))) (($ $ (-1285 |#2|)) 151 (|has| |#1| (-38 (-419 (-576)))))) (-1471 (((-1142) $) NIL)) (-3819 (($ $ (-576) (-576)) 121)) (-3926 (($ $ (-784)) 123)) (-3418 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4330 (($ $) 119)) (-3236 (((-1179 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-784)))))) (-2835 ((|#1| $ (-784)) 95) (($ $ $) 132 (|has| (-784) (-1134)))) (-2815 (($ $ (-1198)) 108 (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-1285 |#2|)) 103)) (-1770 (((-784) $) NIL)) (-2213 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2062 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2188 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2042 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2163 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2017 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1431 (($ $) 125)) (-3501 (((-877) $) NIL) (($ (-576)) 26) (($ (-419 (-576))) 148 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1262 |#2| |#1|)) 81) (($ (-1285 |#2|)) 22)) (-4037 (((-1179 |#1|) $) NIL)) (-2313 ((|#1| $ (-784)) 94)) (-3096 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1960 (((-784)) NIL T CONST)) (-3665 ((|#1| $) 91)) (-2046 (((-112) $ $) NIL)) (-4110 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2100 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4041 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2225 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2072 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2125 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4144 ((|#1| $ (-784)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-784)))) (|has| |#1| (-15 -3501 (|#1| (-1198))))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2137 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4124 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2235 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2085 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2769 (($) 18 T CONST)) (-2779 (($) 13 T CONST)) (-2097 (($ $ (-1198)) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198))) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-1198) (-784)) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $ (-657 (-1198)) (-657 (-784))) NIL (-12 (|has| |#1| (-15 * (|#1| (-784) |#1|))) (|has| |#1| (-918 (-1198))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-784)) NIL (|has| |#1| (-15 * (|#1| (-784) |#1|)))) (($ $ (-1285 |#2|)) NIL)) (-2933 (((-112) $ $) NIL)) (-3034 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) 107)) (-3012 (($ $ $) 20)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL) (($ $ |#1|) 145 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1281 |#1| |#2| |#3|) (-13 (-1280 |#1|) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3501 ($ (-1262 |#2| |#1|))) (-15 -2421 ((-1262 |#2| |#1|) $ (-784))) (-15 -3501 ($ (-1285 |#2|))) (-15 -1491 ($ $)) (-15 -1325 ($ $)) (-15 -3040 ($ $)) (-15 -4330 ($ $)) (-15 -3819 ($ $ (-576) (-576))) (-15 -1455 ($ $)) (-15 -2906 ($ (-576) (-576) $)) (-15 -4263 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4190 ($ $ (-1285 |#2|))) |%noBranch|))) (-1071) (-1198) |#1|) (T -1281)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-1262 *4 *3)) (-4 *3 (-1071)) (-14 *4 (-1198)) (-14 *5 *3) (-5 *1 (-1281 *3 *4 *5)))) (-2421 (*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1262 *5 *4)) (-5 *1 (-1281 *4 *5 *6)) (-4 *4 (-1071)) (-14 *5 (-1198)) (-14 *6 *4))) (-3501 (*1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1281 *3 *4 *5)) (-4 *3 (-1071)) (-14 *5 *3))) (-1491 (*1 *1 *1) (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) (-14 *4 *2))) (-1325 (*1 *1 *1) (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) (-14 *4 *2))) (-3040 (*1 *1 *1) (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) (-14 *4 *2))) (-4330 (*1 *1 *1) (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) (-14 *4 *2))) (-3819 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1281 *3 *4 *5)) (-4 *3 (-1071)) (-14 *4 (-1198)) (-14 *5 *3))) (-1455 (*1 *1 *1) (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) (-14 *4 *2))) (-2906 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1281 *3 *4 *5)) (-4 *3 (-1071)) (-14 *4 (-1198)) (-14 *5 *3))) (-4263 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1281 *3 *4 *5)) (-4 *3 (-1071)) (-14 *4 (-1198)) (-14 *5 *3))) (-4190 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1281 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3)))) -(-13 (-1280 |#1|) (-912 $ (-1285 |#2|)) (-10 -8 (-15 -3501 ($ (-1262 |#2| |#1|))) (-15 -2421 ((-1262 |#2| |#1|) $ (-784))) (-15 -3501 ($ (-1285 |#2|))) (-15 -1491 ($ $)) (-15 -1325 ($ $)) (-15 -3040 ($ $)) (-15 -4330 ($ $)) (-15 -3819 ($ $ (-576) (-576))) (-15 -1455 ($ $)) (-15 -2906 ($ (-576) (-576) $)) (-15 -4263 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4190 ($ $ (-1285 |#2|))) |%noBranch|))) -((-4241 (((-1 (-1179 |#1|) (-657 (-1179 |#1|))) (-1 |#2| (-657 |#2|))) 24)) (-3521 (((-1 (-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3241 (((-1 (-1179 |#1|) (-1179 |#1|)) (-1 |#2| |#2|)) 13)) (-1797 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3238 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2103 ((|#2| (-1 |#2| (-657 |#2|)) (-657 |#1|)) 60)) (-2736 (((-657 |#2|) (-657 |#1|) (-657 (-1 |#2| (-657 |#2|)))) 66)) (-3202 ((|#2| |#2| |#2|) 43))) -(((-1282 |#1| |#2|) (-10 -7 (-15 -3241 ((-1 (-1179 |#1|) (-1179 |#1|)) (-1 |#2| |#2|))) (-15 -3521 ((-1 (-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4241 ((-1 (-1179 |#1|) (-657 (-1179 |#1|))) (-1 |#2| (-657 |#2|)))) (-15 -3202 (|#2| |#2| |#2|)) (-15 -3238 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1797 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2103 (|#2| (-1 |#2| (-657 |#2|)) (-657 |#1|))) (-15 -2736 ((-657 |#2|) (-657 |#1|) (-657 (-1 |#2| (-657 |#2|)))))) (-38 (-419 (-576))) (-1280 |#1|)) (T -1282)) -((-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 (-1 *6 (-657 *6)))) (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1280 *5)) (-5 *2 (-657 *6)) (-5 *1 (-1282 *5 *6)))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-657 *2))) (-5 *4 (-657 *5)) (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1280 *5)) (-5 *1 (-1282 *5 *2)))) (-1797 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1280 *4)) (-5 *1 (-1282 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-3238 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1280 *4)) (-5 *1 (-1282 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-3202 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1282 *3 *2)) (-4 *2 (-1280 *3)))) (-4241 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-657 *5))) (-4 *5 (-1280 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1179 *4) (-657 (-1179 *4)))) (-5 *1 (-1282 *4 *5)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1280 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1179 *4) (-1179 *4) (-1179 *4))) (-5 *1 (-1282 *4 *5)))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1280 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1179 *4) (-1179 *4))) (-5 *1 (-1282 *4 *5))))) -(-10 -7 (-15 -3241 ((-1 (-1179 |#1|) (-1179 |#1|)) (-1 |#2| |#2|))) (-15 -3521 ((-1 (-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4241 ((-1 (-1179 |#1|) (-657 (-1179 |#1|))) (-1 |#2| (-657 |#2|)))) (-15 -3202 (|#2| |#2| |#2|)) (-15 -3238 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1797 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2103 (|#2| (-1 |#2| (-657 |#2|)) (-657 |#1|))) (-15 -2736 ((-657 |#2|) (-657 |#1|) (-657 (-1 |#2| (-657 |#2|)))))) -((-2294 ((|#2| |#4| (-784)) 31)) (-1602 ((|#4| |#2|) 26)) (-4429 ((|#4| (-419 |#2|)) 49 (|has| |#1| (-568)))) (-4409 (((-1 |#4| (-657 |#4|)) |#3|) 43))) -(((-1283 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1602 (|#4| |#2|)) (-15 -2294 (|#2| |#4| (-784))) (-15 -4409 ((-1 |#4| (-657 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -4429 (|#4| (-419 |#2|))) |%noBranch|)) (-1071) (-1265 |#1|) (-669 |#2|) (-1280 |#1|)) (T -1283)) -((-4429 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-568)) (-4 *4 (-1071)) (-4 *2 (-1280 *4)) (-5 *1 (-1283 *4 *5 *6 *2)) (-4 *6 (-669 *5)))) (-4409 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-4 *5 (-1265 *4)) (-5 *2 (-1 *6 (-657 *6))) (-5 *1 (-1283 *4 *5 *3 *6)) (-4 *3 (-669 *5)) (-4 *6 (-1280 *4)))) (-2294 (*1 *2 *3 *4) (-12 (-5 *4 (-784)) (-4 *5 (-1071)) (-4 *2 (-1265 *5)) (-5 *1 (-1283 *5 *2 *6 *3)) (-4 *6 (-669 *2)) (-4 *3 (-1280 *5)))) (-1602 (*1 *2 *3) (-12 (-4 *4 (-1071)) (-4 *3 (-1265 *4)) (-4 *2 (-1280 *4)) (-5 *1 (-1283 *4 *3 *5 *2)) (-4 *5 (-669 *3))))) -(-10 -7 (-15 -1602 (|#4| |#2|)) (-15 -2294 (|#2| |#4| (-784))) (-15 -4409 ((-1 |#4| (-657 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -4429 (|#4| (-419 |#2|))) |%noBranch|)) -NIL -(((-1284) (-141)) (T -1284)) -NIL -(-13 (-10 -7 (-6 -4103))) -((-3429 (((-112) $ $) NIL)) (-3032 (((-1198)) 12)) (-2342 (((-1180) $) 18)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 11) (((-1198) $) 8)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 15))) -(((-1285 |#1|) (-13 (-1122) (-625 (-1198)) (-10 -8 (-15 -3501 ((-1198) $)) (-15 -3032 ((-1198))))) (-1198)) (T -1285)) -((-3501 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1285 *3)) (-14 *3 *2))) (-3032 (*1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1285 *3)) (-14 *3 *2)))) -(-13 (-1122) (-625 (-1198)) (-10 -8 (-15 -3501 ((-1198) $)) (-15 -3032 ((-1198))))) -((-3765 (($ (-784)) 19)) (-2425 (((-702 |#2|) $ $) 41)) (-2742 ((|#2| $) 51)) (-3358 ((|#2| $) 50)) (-1374 ((|#2| $ $) 36)) (-3461 (($ $ $) 47)) (-3022 (($ $) 23) (($ $ $) 29)) (-3012 (($ $ $) 15)) (* (($ (-576) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) -(((-1286 |#1| |#2|) (-10 -8 (-15 -2742 (|#2| |#1|)) (-15 -3358 (|#2| |#1|)) (-15 -3461 (|#1| |#1| |#1|)) (-15 -2425 ((-702 |#2|) |#1| |#1|)) (-15 -1374 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3022 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 -3765 (|#1| (-784))) (-15 -3012 (|#1| |#1| |#1|))) (-1287 |#2|) (-1239)) (T -1286)) -NIL -(-10 -8 (-15 -2742 (|#2| |#1|)) (-15 -3358 (|#2| |#1|)) (-15 -3461 (|#1| |#1| |#1|)) (-15 -2425 ((-702 |#2|) |#1| |#1|)) (-15 -1374 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3022 (|#1| |#1| |#1|)) (-15 -3022 (|#1| |#1|)) (-15 -3765 (|#1| (-784))) (-15 -3012 (|#1| |#1| |#1|))) -((-3429 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3765 (($ (-784)) 115 (|has| |#1| (-23)))) (-4313 (((-1294) $ (-576) (-576)) 41 (|has| $ (-6 -4467)))) (-1568 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-3363 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4467))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4467))))) (-1850 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-3793 (((-112) $ (-784)) 8)) (-3682 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) 60 (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4466)))) (-4359 (($) 7 T CONST)) (-3606 (($ $) 93 (|has| $ (-6 -4467)))) (-3768 (($ $) 103)) (-3914 (($ $) 80 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-3895 (($ |#1| $) 79 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4466)))) (-2158 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) 52)) (-3582 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1122)))) (-1458 (((-657 |#1|) $) 31 (|has| $ (-6 -4466)))) (-2425 (((-702 |#1|) $ $) 108 (|has| |#1| (-1071)))) (-4109 (($ (-784) |#1|) 70)) (-1833 (((-112) $ (-784)) 9)) (-3853 (((-576) $) 44 (|has| (-576) (-862)))) (-3707 (($ $ $) 85 (|has| |#1| (-862)))) (-3073 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-2070 (((-657 |#1|) $) 30 (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2272 (((-576) $) 45 (|has| (-576) (-862)))) (-1611 (($ $ $) 86 (|has| |#1| (-862)))) (-2148 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2742 ((|#1| $) 105 (-12 (|has| |#1| (-1071)) (|has| |#1| (-1024))))) (-4261 (((-112) $ (-784)) 10)) (-3358 ((|#1| $) 106 (-12 (|has| |#1| (-1071)) (|has| |#1| (-1024))))) (-2342 (((-1180) $) 23 (|has| |#1| (-1122)))) (-2271 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-1430 (((-657 (-576)) $) 47)) (-4242 (((-112) (-576) $) 48)) (-1471 (((-1142) $) 22 (|has| |#1| (-1122)))) (-3510 ((|#1| $) 43 (|has| (-576) (-862)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-1987 (($ $ |#1|) 42 (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) 14)) (-1515 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) 49)) (-3387 (((-112) $) 11)) (-3581 (($) 12)) (-2835 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1256 (-576))) 71)) (-1374 ((|#1| $ $) 109 (|has| |#1| (-1071)))) (-3409 (($ $ (-576)) 64) (($ $ (-1256 (-576))) 63)) (-3461 (($ $ $) 107 (|has| |#1| (-1071)))) (-1482 (((-784) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4466))) (((-784) |#1| $) 29 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4466))))) (-2114 (($ $ $ (-576)) 94 (|has| $ (-6 -4467)))) (-1923 (($ $) 13)) (-4148 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 72)) (-1674 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-657 $)) 66)) (-3501 (((-877) $) 18 (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) 21 (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) 87 (|has| |#1| (-862)))) (-2963 (((-112) $ $) 89 (|has| |#1| (-862)))) (-2933 (((-112) $ $) 19 (|has| |#1| (-102)))) (-2973 (((-112) $ $) 88 (|has| |#1| (-862)))) (-2954 (((-112) $ $) 90 (|has| |#1| (-862)))) (-3022 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3012 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-739))) (($ $ |#1|) 110 (|has| |#1| (-739)))) (-3440 (((-784) $) 6 (|has| $ (-6 -4466))))) -(((-1287 |#1|) (-141) (-1239)) (T -1287)) -((-3012 (*1 *1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-25)))) (-3765 (*1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1287 *3)) (-4 *3 (-23)) (-4 *3 (-1239)))) (-3022 (*1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-21)))) (-3022 (*1 *1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1287 *3)) (-4 *3 (-1239)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-739)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-739)))) (-1374 (*1 *2 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-1071)))) (-2425 (*1 *2 *1 *1) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-1239)) (-4 *3 (-1071)) (-5 *2 (-702 *3)))) (-3461 (*1 *1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-1071)))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-1024)) (-4 *2 (-1071)))) (-2742 (*1 *2 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-1024)) (-4 *2 (-1071))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3012 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3765 ($ (-784))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3022 ($ $)) (-15 -3022 ($ $ $)) (-15 * ($ (-576) $))) |%noBranch|) (IF (|has| |t#1| (-739)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1071)) (PROGN (-15 -1374 (|t#1| $ $)) (-15 -2425 ((-702 |t#1|) $ $)) (-15 -3461 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1024)) (IF (|has| |t#1| (-1071)) (PROGN (-15 -3358 (|t#1| $)) (-15 -2742 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -2802 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-102))) ((-625 (-877)) -2802 (|has| |#1| (-1122)) (|has| |#1| (-862)) (|has| |#1| (-625 (-877)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1256 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))) ((-664 |#1|) . T) ((-19 |#1|) . T) ((-862) |has| |#1| (-862)) ((-865) |has| |#1| (-862)) ((-1122) -2802 (|has| |#1| (-1122)) (|has| |#1| (-862))) ((-1239) . T)) -((-4417 (((-1289 |#2|) (-1 |#2| |#1| |#2|) (-1289 |#1|) |#2|) 13)) (-3622 ((|#2| (-1 |#2| |#1| |#2|) (-1289 |#1|) |#2|) 15)) (-4083 (((-3 (-1289 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1289 |#1|)) 30) (((-1289 |#2|) (-1 |#2| |#1|) (-1289 |#1|)) 18))) -(((-1288 |#1| |#2|) (-10 -7 (-15 -4417 ((-1289 |#2|) (-1 |#2| |#1| |#2|) (-1289 |#1|) |#2|)) (-15 -3622 (|#2| (-1 |#2| |#1| |#2|) (-1289 |#1|) |#2|)) (-15 -4083 ((-1289 |#2|) (-1 |#2| |#1|) (-1289 |#1|))) (-15 -4083 ((-3 (-1289 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1289 |#1|)))) (-1239) (-1239)) (T -1288)) -((-4083 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1289 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-1289 *6)) (-5 *1 (-1288 *5 *6)))) (-4083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1289 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-1289 *6)) (-5 *1 (-1288 *5 *6)))) (-3622 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1289 *5)) (-4 *5 (-1239)) (-4 *2 (-1239)) (-5 *1 (-1288 *5 *2)))) (-4417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1289 *6)) (-4 *6 (-1239)) (-4 *5 (-1239)) (-5 *2 (-1289 *5)) (-5 *1 (-1288 *6 *5))))) -(-10 -7 (-15 -4417 ((-1289 |#2|) (-1 |#2| |#1| |#2|) (-1289 |#1|) |#2|)) (-15 -3622 (|#2| (-1 |#2| |#1| |#2|) (-1289 |#1|) |#2|)) (-15 -4083 ((-1289 |#2|) (-1 |#2| |#1|) (-1289 |#1|))) (-15 -4083 ((-3 (-1289 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1289 |#1|)))) -((-3429 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3765 (($ (-784)) NIL (|has| |#1| (-23)))) (-2803 (($ (-657 |#1|)) 11)) (-4313 (((-1294) $ (-576) (-576)) NIL (|has| $ (-6 -4467)))) (-1568 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3363 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4467))) (($ $) NIL (-12 (|has| $ (-6 -4467)) (|has| |#1| (-862))))) (-1850 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3793 (((-112) $ (-784)) NIL)) (-3682 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467))) ((|#1| $ (-1256 (-576)) |#1|) NIL (|has| $ (-6 -4467)))) (-2035 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-4359 (($) NIL T CONST)) (-3606 (($ $) NIL (|has| $ (-6 -4467)))) (-3768 (($ $) NIL)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-3895 (($ |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3622 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4466))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4466)))) (-2158 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4467)))) (-2083 ((|#1| $ (-576)) NIL)) (-3582 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1122))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1122)))) (-1458 (((-657 |#1|) $) 16 (|has| $ (-6 -4466)))) (-2425 (((-702 |#1|) $ $) NIL (|has| |#1| (-1071)))) (-4109 (($ (-784) |#1|) NIL)) (-1833 (((-112) $ (-784)) NIL)) (-3853 (((-576) $) NIL (|has| (-576) (-862)))) (-3707 (($ $ $) NIL (|has| |#1| (-862)))) (-3073 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2070 (((-657 |#1|) $) NIL (|has| $ (-6 -4466)))) (-1627 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2272 (((-576) $) 12 (|has| (-576) (-862)))) (-1611 (($ $ $) NIL (|has| |#1| (-862)))) (-2148 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2742 ((|#1| $) NIL (-12 (|has| |#1| (-1024)) (|has| |#1| (-1071))))) (-4261 (((-112) $ (-784)) NIL)) (-3358 ((|#1| $) NIL (-12 (|has| |#1| (-1024)) (|has| |#1| (-1071))))) (-2342 (((-1180) $) NIL (|has| |#1| (-1122)))) (-2271 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-1430 (((-657 (-576)) $) NIL)) (-4242 (((-112) (-576) $) NIL)) (-1471 (((-1142) $) NIL (|has| |#1| (-1122)))) (-3510 ((|#1| $) NIL (|has| (-576) (-862)))) (-2951 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1987 (($ $ |#1|) NIL (|has| $ (-6 -4467)))) (-3399 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122)))) (($ $ (-657 |#1|) (-657 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1122))))) (-2806 (((-112) $ $) NIL)) (-1515 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2380 (((-657 |#1|) $) NIL)) (-3387 (((-112) $) NIL)) (-3581 (($) NIL)) (-2835 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-1374 ((|#1| $ $) NIL (|has| |#1| (-1071)))) (-3409 (($ $ (-576)) NIL) (($ $ (-1256 (-576))) NIL)) (-3461 (($ $ $) NIL (|has| |#1| (-1071)))) (-1482 (((-784) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466))) (((-784) |#1| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#1| (-1122))))) (-2114 (($ $ $ (-576)) NIL (|has| $ (-6 -4467)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) 20 (|has| |#1| (-626 (-548))))) (-3511 (($ (-657 |#1|)) 10)) (-1674 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-657 $)) NIL)) (-3501 (((-877) $) NIL (|has| |#1| (-625 (-877))))) (-2046 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2147 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4466)))) (-2985 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2963 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2933 (((-112) $ $) NIL (|has| |#1| (-102)))) (-2973 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2954 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3022 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3012 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-739))) (($ $ |#1|) NIL (|has| |#1| (-739)))) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-1289 |#1|) (-13 (-1287 |#1|) (-10 -8 (-15 -2803 ($ (-657 |#1|))))) (-1239)) (T -1289)) -((-2803 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-1289 *3))))) -(-13 (-1287 |#1|) (-10 -8 (-15 -2803 ($ (-657 |#1|))))) -((-3429 (((-112) $ $) NIL)) (-1391 (((-1180) $ (-1180)) 107) (((-1180) $ (-1180) (-1180)) 105) (((-1180) $ (-1180) (-657 (-1180))) 104)) (-1715 (($) 69)) (-3534 (((-1294) $ (-480) (-941)) 54)) (-2405 (((-1294) $ (-941) (-1180)) 89) (((-1294) $ (-941) (-889)) 90)) (-1933 (((-1294) $ (-941) (-390) (-390)) 57)) (-1362 (((-1294) $ (-1180)) 84)) (-2281 (((-1294) $ (-941) (-1180)) 94)) (-3243 (((-1294) $ (-941) (-390) (-390)) 58)) (-2479 (((-1294) $ (-941) (-941)) 55)) (-1368 (((-1294) $) 85)) (-2314 (((-1294) $ (-941) (-1180)) 93)) (-3994 (((-1294) $ (-480) (-941)) 41)) (-2047 (((-1294) $ (-941) (-1180)) 92)) (-4418 (((-657 (-270)) $) 29) (($ $ (-657 (-270))) 30)) (-1826 (((-1294) $ (-784) (-784)) 52)) (-4422 (($ $) 70) (($ (-480) (-657 (-270))) 71)) (-2342 (((-1180) $) NIL)) (-4291 (((-576) $) 48)) (-1471 (((-1142) $) NIL)) (-3414 (((-1289 (-3 (-480) "undefined")) $) 47)) (-3220 (((-1289 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2047 (-576)) (|:| -3146 (-576)) (|:| |spline| (-576)) (|:| -2383 (-576)) (|:| |axesColor| (-889)) (|:| -2405 (-576)) (|:| |unitsColor| (-889)) (|:| |showing| (-576)))) $) 46)) (-2612 (((-1294) $ (-941) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-889) (-576) (-889) (-576)) 83)) (-2079 (((-657 (-963 (-227))) $) NIL)) (-1932 (((-480) $ (-941)) 43)) (-3945 (((-1294) $ (-784) (-784) (-941) (-941)) 50)) (-2391 (((-1294) $ (-1180)) 95)) (-3146 (((-1294) $ (-941) (-1180)) 91)) (-3501 (((-877) $) 102)) (-2016 (((-1294) $) 96)) (-2046 (((-112) $ $) NIL)) (-2383 (((-1294) $ (-941) (-1180)) 87) (((-1294) $ (-941) (-889)) 88)) (-2933 (((-112) $ $) NIL))) -(((-1290) (-13 (-1122) (-10 -8 (-15 -2079 ((-657 (-963 (-227))) $)) (-15 -1715 ($)) (-15 -4422 ($ $)) (-15 -4418 ((-657 (-270)) $)) (-15 -4418 ($ $ (-657 (-270)))) (-15 -4422 ($ (-480) (-657 (-270)))) (-15 -2612 ((-1294) $ (-941) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-889) (-576) (-889) (-576))) (-15 -3220 ((-1289 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2047 (-576)) (|:| -3146 (-576)) (|:| |spline| (-576)) (|:| -2383 (-576)) (|:| |axesColor| (-889)) (|:| -2405 (-576)) (|:| |unitsColor| (-889)) (|:| |showing| (-576)))) $)) (-15 -3414 ((-1289 (-3 (-480) "undefined")) $)) (-15 -1362 ((-1294) $ (-1180))) (-15 -3994 ((-1294) $ (-480) (-941))) (-15 -1932 ((-480) $ (-941))) (-15 -2383 ((-1294) $ (-941) (-1180))) (-15 -2383 ((-1294) $ (-941) (-889))) (-15 -2405 ((-1294) $ (-941) (-1180))) (-15 -2405 ((-1294) $ (-941) (-889))) (-15 -2047 ((-1294) $ (-941) (-1180))) (-15 -2314 ((-1294) $ (-941) (-1180))) (-15 -3146 ((-1294) $ (-941) (-1180))) (-15 -2391 ((-1294) $ (-1180))) (-15 -2016 ((-1294) $)) (-15 -3945 ((-1294) $ (-784) (-784) (-941) (-941))) (-15 -3243 ((-1294) $ (-941) (-390) (-390))) (-15 -1933 ((-1294) $ (-941) (-390) (-390))) (-15 -2281 ((-1294) $ (-941) (-1180))) (-15 -1826 ((-1294) $ (-784) (-784))) (-15 -3534 ((-1294) $ (-480) (-941))) (-15 -2479 ((-1294) $ (-941) (-941))) (-15 -1391 ((-1180) $ (-1180))) (-15 -1391 ((-1180) $ (-1180) (-1180))) (-15 -1391 ((-1180) $ (-1180) (-657 (-1180)))) (-15 -1368 ((-1294) $)) (-15 -4291 ((-576) $)) (-15 -3501 ((-877) $))))) (T -1290)) -((-3501 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1290)))) (-2079 (*1 *2 *1) (-12 (-5 *2 (-657 (-963 (-227)))) (-5 *1 (-1290)))) (-1715 (*1 *1) (-5 *1 (-1290))) (-4422 (*1 *1 *1) (-5 *1 (-1290))) (-4418 (*1 *2 *1) (-12 (-5 *2 (-657 (-270))) (-5 *1 (-1290)))) (-4418 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-270))) (-5 *1 (-1290)))) (-4422 (*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-657 (-270))) (-5 *1 (-1290)))) (-2612 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-941)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-889)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-1289 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2047 (-576)) (|:| -3146 (-576)) (|:| |spline| (-576)) (|:| -2383 (-576)) (|:| |axesColor| (-889)) (|:| -2405 (-576)) (|:| |unitsColor| (-889)) (|:| |showing| (-576))))) (-5 *1 (-1290)))) (-3414 (*1 *2 *1) (-12 (-5 *2 (-1289 (-3 (-480) "undefined"))) (-5 *1 (-1290)))) (-1362 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-3994 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-941)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-1932 (*1 *2 *1 *3) (-12 (-5 *3 (-941)) (-5 *2 (-480)) (-5 *1 (-1290)))) (-2383 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-2383 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-889)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-2405 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-2405 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-889)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-2047 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-2314 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-3146 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-2391 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-2016 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1290)))) (-3945 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-784)) (-5 *4 (-941)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-3243 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-941)) (-5 *4 (-390)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-1933 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-941)) (-5 *4 (-390)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-2281 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-1826 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-3534 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-941)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-2479 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1294)) (-5 *1 (-1290)))) (-1391 (*1 *2 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1290)))) (-1391 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1290)))) (-1391 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-1180)) (-5 *1 (-1290)))) (-1368 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1290)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1290))))) -(-13 (-1122) (-10 -8 (-15 -2079 ((-657 (-963 (-227))) $)) (-15 -1715 ($)) (-15 -4422 ($ $)) (-15 -4418 ((-657 (-270)) $)) (-15 -4418 ($ $ (-657 (-270)))) (-15 -4422 ($ (-480) (-657 (-270)))) (-15 -2612 ((-1294) $ (-941) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-889) (-576) (-889) (-576))) (-15 -3220 ((-1289 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2047 (-576)) (|:| -3146 (-576)) (|:| |spline| (-576)) (|:| -2383 (-576)) (|:| |axesColor| (-889)) (|:| -2405 (-576)) (|:| |unitsColor| (-889)) (|:| |showing| (-576)))) $)) (-15 -3414 ((-1289 (-3 (-480) "undefined")) $)) (-15 -1362 ((-1294) $ (-1180))) (-15 -3994 ((-1294) $ (-480) (-941))) (-15 -1932 ((-480) $ (-941))) (-15 -2383 ((-1294) $ (-941) (-1180))) (-15 -2383 ((-1294) $ (-941) (-889))) (-15 -2405 ((-1294) $ (-941) (-1180))) (-15 -2405 ((-1294) $ (-941) (-889))) (-15 -2047 ((-1294) $ (-941) (-1180))) (-15 -2314 ((-1294) $ (-941) (-1180))) (-15 -3146 ((-1294) $ (-941) (-1180))) (-15 -2391 ((-1294) $ (-1180))) (-15 -2016 ((-1294) $)) (-15 -3945 ((-1294) $ (-784) (-784) (-941) (-941))) (-15 -3243 ((-1294) $ (-941) (-390) (-390))) (-15 -1933 ((-1294) $ (-941) (-390) (-390))) (-15 -2281 ((-1294) $ (-941) (-1180))) (-15 -1826 ((-1294) $ (-784) (-784))) (-15 -3534 ((-1294) $ (-480) (-941))) (-15 -2479 ((-1294) $ (-941) (-941))) (-15 -1391 ((-1180) $ (-1180))) (-15 -1391 ((-1180) $ (-1180) (-1180))) (-15 -1391 ((-1180) $ (-1180) (-657 (-1180)))) (-15 -1368 ((-1294) $)) (-15 -4291 ((-576) $)) (-15 -3501 ((-877) $)))) -((-3429 (((-112) $ $) NIL)) (-2495 (((-1294) $ (-390)) 169) (((-1294) $ (-390) (-390) (-390)) 170)) (-1391 (((-1180) $ (-1180)) 179) (((-1180) $ (-1180) (-1180)) 177) (((-1180) $ (-1180) (-657 (-1180))) 176)) (-3792 (($) 67)) (-1484 (((-1294) $ (-390) (-390) (-390) (-390) (-390)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1294) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1294) $ (-576) (-576) (-390) (-390) (-390)) 144) (((-1294) $ (-390) (-390)) 145) (((-1294) $ (-390) (-390) (-390)) 152)) (-4384 (((-390)) 122) (((-390) (-390)) 123)) (-4312 (((-390)) 117) (((-390) (-390)) 119)) (-2976 (((-390)) 120) (((-390) (-390)) 121)) (-4200 (((-390)) 126) (((-390) (-390)) 127)) (-3045 (((-390)) 124) (((-390) (-390)) 125)) (-1933 (((-1294) $ (-390) (-390)) 171)) (-1362 (((-1294) $ (-1180)) 153)) (-2896 (((-1155 (-227)) $) 68) (($ $ (-1155 (-227))) 69)) (-3115 (((-1294) $ (-1180)) 187)) (-1393 (((-1294) $ (-1180)) 188)) (-3782 (((-1294) $ (-390) (-390)) 151) (((-1294) $ (-576) (-576)) 168)) (-2479 (((-1294) $ (-941) (-941)) 160)) (-1368 (((-1294) $) 137)) (-3287 (((-1294) $ (-1180)) 186)) (-3214 (((-1294) $ (-1180)) 134)) (-4418 (((-657 (-270)) $) 70) (($ $ (-657 (-270))) 71)) (-1826 (((-1294) $ (-784) (-784)) 159)) (-1927 (((-1294) $ (-784) (-963 (-227))) 193)) (-1755 (($ $) 73) (($ (-1155 (-227)) (-1180)) 74) (($ (-1155 (-227)) (-657 (-270))) 75)) (-1387 (((-1294) $ (-390) (-390) (-390)) 131)) (-2342 (((-1180) $) NIL)) (-4291 (((-576) $) 128)) (-4197 (((-1294) $ (-390)) 174)) (-4218 (((-1294) $ (-390)) 191)) (-1471 (((-1142) $) NIL)) (-2275 (((-1294) $ (-390)) 190)) (-4278 (((-1294) $ (-1180)) 136)) (-3945 (((-1294) $ (-784) (-784) (-941) (-941)) 158)) (-1587 (((-1294) $ (-1180)) 133)) (-2391 (((-1294) $ (-1180)) 135)) (-2859 (((-1294) $ (-158) (-158)) 157)) (-3501 (((-877) $) 166)) (-2016 (((-1294) $) 138)) (-2891 (((-1294) $ (-1180)) 189)) (-2046 (((-112) $ $) NIL)) (-2383 (((-1294) $ (-1180)) 132)) (-2933 (((-112) $ $) NIL))) -(((-1291) (-13 (-1122) (-10 -8 (-15 -4312 ((-390))) (-15 -4312 ((-390) (-390))) (-15 -2976 ((-390))) (-15 -2976 ((-390) (-390))) (-15 -4384 ((-390))) (-15 -4384 ((-390) (-390))) (-15 -3045 ((-390))) (-15 -3045 ((-390) (-390))) (-15 -4200 ((-390))) (-15 -4200 ((-390) (-390))) (-15 -3792 ($)) (-15 -1755 ($ $)) (-15 -1755 ($ (-1155 (-227)) (-1180))) (-15 -1755 ($ (-1155 (-227)) (-657 (-270)))) (-15 -2896 ((-1155 (-227)) $)) (-15 -2896 ($ $ (-1155 (-227)))) (-15 -1927 ((-1294) $ (-784) (-963 (-227)))) (-15 -4418 ((-657 (-270)) $)) (-15 -4418 ($ $ (-657 (-270)))) (-15 -1826 ((-1294) $ (-784) (-784))) (-15 -2479 ((-1294) $ (-941) (-941))) (-15 -1362 ((-1294) $ (-1180))) (-15 -3945 ((-1294) $ (-784) (-784) (-941) (-941))) (-15 -1484 ((-1294) $ (-390) (-390) (-390) (-390) (-390))) (-15 -1484 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -1484 ((-1294) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1484 ((-1294) $ (-576) (-576) (-390) (-390) (-390))) (-15 -1484 ((-1294) $ (-390) (-390))) (-15 -1484 ((-1294) $ (-390) (-390) (-390))) (-15 -2391 ((-1294) $ (-1180))) (-15 -2383 ((-1294) $ (-1180))) (-15 -1587 ((-1294) $ (-1180))) (-15 -3214 ((-1294) $ (-1180))) (-15 -4278 ((-1294) $ (-1180))) (-15 -3782 ((-1294) $ (-390) (-390))) (-15 -3782 ((-1294) $ (-576) (-576))) (-15 -2495 ((-1294) $ (-390))) (-15 -2495 ((-1294) $ (-390) (-390) (-390))) (-15 -1933 ((-1294) $ (-390) (-390))) (-15 -3287 ((-1294) $ (-1180))) (-15 -2275 ((-1294) $ (-390))) (-15 -4218 ((-1294) $ (-390))) (-15 -3115 ((-1294) $ (-1180))) (-15 -1393 ((-1294) $ (-1180))) (-15 -2891 ((-1294) $ (-1180))) (-15 -1387 ((-1294) $ (-390) (-390) (-390))) (-15 -4197 ((-1294) $ (-390))) (-15 -1368 ((-1294) $)) (-15 -2859 ((-1294) $ (-158) (-158))) (-15 -1391 ((-1180) $ (-1180))) (-15 -1391 ((-1180) $ (-1180) (-1180))) (-15 -1391 ((-1180) $ (-1180) (-657 (-1180)))) (-15 -2016 ((-1294) $)) (-15 -4291 ((-576) $))))) (T -1291)) -((-4312 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-4312 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-2976 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-2976 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-4384 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-4384 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-3045 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-3045 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-4200 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-4200 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) (-3792 (*1 *1) (-5 *1 (-1291))) (-1755 (*1 *1 *1) (-5 *1 (-1291))) (-1755 (*1 *1 *2 *3) (-12 (-5 *2 (-1155 (-227))) (-5 *3 (-1180)) (-5 *1 (-1291)))) (-1755 (*1 *1 *2 *3) (-12 (-5 *2 (-1155 (-227))) (-5 *3 (-657 (-270))) (-5 *1 (-1291)))) (-2896 (*1 *2 *1) (-12 (-5 *2 (-1155 (-227))) (-5 *1 (-1291)))) (-2896 (*1 *1 *1 *2) (-12 (-5 *2 (-1155 (-227))) (-5 *1 (-1291)))) (-1927 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-784)) (-5 *4 (-963 (-227))) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4418 (*1 *2 *1) (-12 (-5 *2 (-657 (-270))) (-5 *1 (-1291)))) (-4418 (*1 *1 *1 *2) (-12 (-5 *2 (-657 (-270))) (-5 *1 (-1291)))) (-1826 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-2479 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1362 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-3945 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-784)) (-5 *4 (-941)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1484 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1484 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1291)))) (-1484 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1484 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1484 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1484 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-2391 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-2383 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1587 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-3214 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4278 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-3782 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-3782 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-2495 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-2495 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1933 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-3287 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-2275 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4218 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-3115 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1393 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-2891 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1387 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4197 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1368 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1291)))) (-2859 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-1391 (*1 *2 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1291)))) (-1391 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1291)))) (-1391 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-1180)) (-5 *1 (-1291)))) (-2016 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1291))))) -(-13 (-1122) (-10 -8 (-15 -4312 ((-390))) (-15 -4312 ((-390) (-390))) (-15 -2976 ((-390))) (-15 -2976 ((-390) (-390))) (-15 -4384 ((-390))) (-15 -4384 ((-390) (-390))) (-15 -3045 ((-390))) (-15 -3045 ((-390) (-390))) (-15 -4200 ((-390))) (-15 -4200 ((-390) (-390))) (-15 -3792 ($)) (-15 -1755 ($ $)) (-15 -1755 ($ (-1155 (-227)) (-1180))) (-15 -1755 ($ (-1155 (-227)) (-657 (-270)))) (-15 -2896 ((-1155 (-227)) $)) (-15 -2896 ($ $ (-1155 (-227)))) (-15 -1927 ((-1294) $ (-784) (-963 (-227)))) (-15 -4418 ((-657 (-270)) $)) (-15 -4418 ($ $ (-657 (-270)))) (-15 -1826 ((-1294) $ (-784) (-784))) (-15 -2479 ((-1294) $ (-941) (-941))) (-15 -1362 ((-1294) $ (-1180))) (-15 -3945 ((-1294) $ (-784) (-784) (-941) (-941))) (-15 -1484 ((-1294) $ (-390) (-390) (-390) (-390) (-390))) (-15 -1484 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -1484 ((-1294) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1484 ((-1294) $ (-576) (-576) (-390) (-390) (-390))) (-15 -1484 ((-1294) $ (-390) (-390))) (-15 -1484 ((-1294) $ (-390) (-390) (-390))) (-15 -2391 ((-1294) $ (-1180))) (-15 -2383 ((-1294) $ (-1180))) (-15 -1587 ((-1294) $ (-1180))) (-15 -3214 ((-1294) $ (-1180))) (-15 -4278 ((-1294) $ (-1180))) (-15 -3782 ((-1294) $ (-390) (-390))) (-15 -3782 ((-1294) $ (-576) (-576))) (-15 -2495 ((-1294) $ (-390))) (-15 -2495 ((-1294) $ (-390) (-390) (-390))) (-15 -1933 ((-1294) $ (-390) (-390))) (-15 -3287 ((-1294) $ (-1180))) (-15 -2275 ((-1294) $ (-390))) (-15 -4218 ((-1294) $ (-390))) (-15 -3115 ((-1294) $ (-1180))) (-15 -1393 ((-1294) $ (-1180))) (-15 -2891 ((-1294) $ (-1180))) (-15 -1387 ((-1294) $ (-390) (-390) (-390))) (-15 -4197 ((-1294) $ (-390))) (-15 -1368 ((-1294) $)) (-15 -2859 ((-1294) $ (-158) (-158))) (-15 -1391 ((-1180) $ (-1180))) (-15 -1391 ((-1180) $ (-1180) (-1180))) (-15 -1391 ((-1180) $ (-1180) (-657 (-1180)))) (-15 -2016 ((-1294) $)) (-15 -4291 ((-576) $)))) -((-1891 (((-657 (-1180)) (-657 (-1180))) 104) (((-657 (-1180))) 96)) (-1330 (((-657 (-1180))) 94)) (-1805 (((-657 (-941)) (-657 (-941))) 69) (((-657 (-941))) 64)) (-3499 (((-657 (-784)) (-657 (-784))) 61) (((-657 (-784))) 55)) (-2746 (((-1294)) 71)) (-2527 (((-941) (-941)) 87) (((-941)) 86)) (-4201 (((-941) (-941)) 85) (((-941)) 84)) (-1865 (((-889) (-889)) 81) (((-889)) 80)) (-3300 (((-227)) 91) (((-227) (-390)) 93)) (-3576 (((-941)) 88) (((-941) (-941)) 89)) (-3280 (((-941) (-941)) 83) (((-941)) 82)) (-4284 (((-889) (-889)) 75) (((-889)) 73)) (-3406 (((-889) (-889)) 77) (((-889)) 76)) (-3982 (((-889) (-889)) 79) (((-889)) 78))) -(((-1292) (-10 -7 (-15 -4284 ((-889))) (-15 -4284 ((-889) (-889))) (-15 -3406 ((-889))) (-15 -3406 ((-889) (-889))) (-15 -3982 ((-889))) (-15 -3982 ((-889) (-889))) (-15 -1865 ((-889))) (-15 -1865 ((-889) (-889))) (-15 -3280 ((-941))) (-15 -3280 ((-941) (-941))) (-15 -3499 ((-657 (-784)))) (-15 -3499 ((-657 (-784)) (-657 (-784)))) (-15 -1805 ((-657 (-941)))) (-15 -1805 ((-657 (-941)) (-657 (-941)))) (-15 -2746 ((-1294))) (-15 -1891 ((-657 (-1180)))) (-15 -1891 ((-657 (-1180)) (-657 (-1180)))) (-15 -1330 ((-657 (-1180)))) (-15 -4201 ((-941))) (-15 -2527 ((-941))) (-15 -4201 ((-941) (-941))) (-15 -2527 ((-941) (-941))) (-15 -3576 ((-941) (-941))) (-15 -3576 ((-941))) (-15 -3300 ((-227) (-390))) (-15 -3300 ((-227))))) (T -1292)) -((-3300 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1292)))) (-3300 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1292)))) (-3576 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) (-3576 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) (-2527 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) (-4201 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) (-2527 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) (-4201 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) (-1330 (*1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1292)))) (-1891 (*1 *2 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1292)))) (-1891 (*1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1292)))) (-2746 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1292)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1292)))) (-1805 (*1 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1292)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-657 (-784))) (-5 *1 (-1292)))) (-3499 (*1 *2) (-12 (-5 *2 (-657 (-784))) (-5 *1 (-1292)))) (-3280 (*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) (-3280 (*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) (-1865 (*1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) (-3982 (*1 *2 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) (-3982 (*1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) (-3406 (*1 *2 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) (-3406 (*1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) (-4284 (*1 *2 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) (-4284 (*1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292))))) -(-10 -7 (-15 -4284 ((-889))) (-15 -4284 ((-889) (-889))) (-15 -3406 ((-889))) (-15 -3406 ((-889) (-889))) (-15 -3982 ((-889))) (-15 -3982 ((-889) (-889))) (-15 -1865 ((-889))) (-15 -1865 ((-889) (-889))) (-15 -3280 ((-941))) (-15 -3280 ((-941) (-941))) (-15 -3499 ((-657 (-784)))) (-15 -3499 ((-657 (-784)) (-657 (-784)))) (-15 -1805 ((-657 (-941)))) (-15 -1805 ((-657 (-941)) (-657 (-941)))) (-15 -2746 ((-1294))) (-15 -1891 ((-657 (-1180)))) (-15 -1891 ((-657 (-1180)) (-657 (-1180)))) (-15 -1330 ((-657 (-1180)))) (-15 -4201 ((-941))) (-15 -2527 ((-941))) (-15 -4201 ((-941) (-941))) (-15 -2527 ((-941) (-941))) (-15 -3576 ((-941) (-941))) (-15 -3576 ((-941))) (-15 -3300 ((-227) (-390))) (-15 -3300 ((-227)))) -((-2907 (((-480) (-657 (-657 (-963 (-227)))) (-657 (-270))) 22) (((-480) (-657 (-657 (-963 (-227))))) 21) (((-480) (-657 (-657 (-963 (-227)))) (-889) (-889) (-941) (-657 (-270))) 20)) (-1938 (((-1290) (-657 (-657 (-963 (-227)))) (-657 (-270))) 30) (((-1290) (-657 (-657 (-963 (-227)))) (-889) (-889) (-941) (-657 (-270))) 29)) (-3501 (((-1290) (-480)) 46))) -(((-1293) (-10 -7 (-15 -2907 ((-480) (-657 (-657 (-963 (-227)))) (-889) (-889) (-941) (-657 (-270)))) (-15 -2907 ((-480) (-657 (-657 (-963 (-227)))))) (-15 -2907 ((-480) (-657 (-657 (-963 (-227)))) (-657 (-270)))) (-15 -1938 ((-1290) (-657 (-657 (-963 (-227)))) (-889) (-889) (-941) (-657 (-270)))) (-15 -1938 ((-1290) (-657 (-657 (-963 (-227)))) (-657 (-270)))) (-15 -3501 ((-1290) (-480))))) (T -1293)) -((-3501 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1290)) (-5 *1 (-1293)))) (-1938 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-657 (-270))) (-5 *2 (-1290)) (-5 *1 (-1293)))) (-1938 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-889)) (-5 *5 (-941)) (-5 *6 (-657 (-270))) (-5 *2 (-1290)) (-5 *1 (-1293)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-657 (-270))) (-5 *2 (-480)) (-5 *1 (-1293)))) (-2907 (*1 *2 *3) (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *2 (-480)) (-5 *1 (-1293)))) (-2907 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-889)) (-5 *5 (-941)) (-5 *6 (-657 (-270))) (-5 *2 (-480)) (-5 *1 (-1293))))) -(-10 -7 (-15 -2907 ((-480) (-657 (-657 (-963 (-227)))) (-889) (-889) (-941) (-657 (-270)))) (-15 -2907 ((-480) (-657 (-657 (-963 (-227)))))) (-15 -2907 ((-480) (-657 (-657 (-963 (-227)))) (-657 (-270)))) (-15 -1938 ((-1290) (-657 (-657 (-963 (-227)))) (-889) (-889) (-941) (-657 (-270)))) (-15 -1938 ((-1290) (-657 (-657 (-963 (-227)))) (-657 (-270)))) (-15 -3501 ((-1290) (-480)))) -((-2927 (($) 6)) (-3501 (((-877) $) 9))) -(((-1294) (-13 (-625 (-877)) (-10 -8 (-15 -2927 ($))))) (T -1294)) -((-2927 (*1 *1) (-5 *1 (-1294)))) -(-13 (-625 (-877)) (-10 -8 (-15 -2927 ($)))) -((-3034 (($ $ |#2|) 10))) -(((-1295 |#1| |#2|) (-10 -8 (-15 -3034 (|#1| |#1| |#2|))) (-1296 |#2|) (-374)) (T -1295)) -NIL -(-10 -8 (-15 -3034 (|#1| |#1| |#2|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3863 (((-135)) 33)) (-3501 (((-877) $) 12)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2933 (((-112) $ $) 8)) (-3034 (($ $ |#1|) 34)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-1296 |#1|) (-141) (-374)) (T -1296)) -((-3034 (*1 *1 *1 *2) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-374)))) (-3863 (*1 *2) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) -(-13 (-730 |t#1|) (-10 -8 (-15 -3034 ($ $ |t#1|)) (-15 -3863 ((-135))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-661 |#1|) . T) ((-653 |#1|) . T) ((-730 |#1|) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1122) . T) ((-1239) . T)) -((-1512 (((-657 (-1233 |#1|)) (-1198) (-1233 |#1|)) 83)) (-1534 (((-1179 (-1179 (-972 |#1|))) (-1198) (-1179 (-972 |#1|))) 63)) (-3639 (((-1 (-1179 (-1233 |#1|)) (-1179 (-1233 |#1|))) (-784) (-1233 |#1|) (-1179 (-1233 |#1|))) 74)) (-3140 (((-1 (-1179 (-972 |#1|)) (-1179 (-972 |#1|))) (-784)) 65)) (-2261 (((-1 (-1194 (-972 |#1|)) (-972 |#1|)) (-1198)) 32)) (-1617 (((-1 (-1179 (-972 |#1|)) (-1179 (-972 |#1|))) (-784)) 64))) -(((-1297 |#1|) (-10 -7 (-15 -3140 ((-1 (-1179 (-972 |#1|)) (-1179 (-972 |#1|))) (-784))) (-15 -1617 ((-1 (-1179 (-972 |#1|)) (-1179 (-972 |#1|))) (-784))) (-15 -1534 ((-1179 (-1179 (-972 |#1|))) (-1198) (-1179 (-972 |#1|)))) (-15 -2261 ((-1 (-1194 (-972 |#1|)) (-972 |#1|)) (-1198))) (-15 -1512 ((-657 (-1233 |#1|)) (-1198) (-1233 |#1|))) (-15 -3639 ((-1 (-1179 (-1233 |#1|)) (-1179 (-1233 |#1|))) (-784) (-1233 |#1|) (-1179 (-1233 |#1|))))) (-374)) (T -1297)) -((-3639 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-784)) (-4 *6 (-374)) (-5 *4 (-1233 *6)) (-5 *2 (-1 (-1179 *4) (-1179 *4))) (-5 *1 (-1297 *6)) (-5 *5 (-1179 *4)))) (-1512 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-4 *5 (-374)) (-5 *2 (-657 (-1233 *5))) (-5 *1 (-1297 *5)) (-5 *4 (-1233 *5)))) (-2261 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1 (-1194 (-972 *4)) (-972 *4))) (-5 *1 (-1297 *4)) (-4 *4 (-374)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-4 *5 (-374)) (-5 *2 (-1179 (-1179 (-972 *5)))) (-5 *1 (-1297 *5)) (-5 *4 (-1179 (-972 *5))))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1 (-1179 (-972 *4)) (-1179 (-972 *4)))) (-5 *1 (-1297 *4)) (-4 *4 (-374)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1 (-1179 (-972 *4)) (-1179 (-972 *4)))) (-5 *1 (-1297 *4)) (-4 *4 (-374))))) -(-10 -7 (-15 -3140 ((-1 (-1179 (-972 |#1|)) (-1179 (-972 |#1|))) (-784))) (-15 -1617 ((-1 (-1179 (-972 |#1|)) (-1179 (-972 |#1|))) (-784))) (-15 -1534 ((-1179 (-1179 (-972 |#1|))) (-1198) (-1179 (-972 |#1|)))) (-15 -2261 ((-1 (-1194 (-972 |#1|)) (-972 |#1|)) (-1198))) (-15 -1512 ((-657 (-1233 |#1|)) (-1198) (-1233 |#1|))) (-15 -3639 ((-1 (-1179 (-1233 |#1|)) (-1179 (-1233 |#1|))) (-784) (-1233 |#1|) (-1179 (-1233 |#1|))))) -((-3984 (((-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) |#2|) 80)) (-1613 (((-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|)))) 79))) -(((-1298 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1613 ((-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))))) (-15 -3984 ((-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) |#2|))) (-360) (-1265 |#1|) (-1265 |#2|) (-421 |#2| |#3|)) (T -1298)) -((-3984 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 *3)) (-5 *2 (-2 (|:| -1985 (-702 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-702 *3)))) (-5 *1 (-1298 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5)))) (-1613 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 *4)) (-5 *2 (-2 (|:| -1985 (-702 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-702 *4)))) (-5 *1 (-1298 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) -(-10 -7 (-15 -1613 ((-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))))) (-15 -3984 ((-2 (|:| -1985 (-702 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-702 |#2|))) |#2|))) -((-3429 (((-112) $ $) NIL)) (-2080 (((-1157) $) 11)) (-2875 (((-1157) $) 9)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 17) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-1299) (-13 (-1105) (-10 -8 (-15 -2875 ((-1157) $)) (-15 -2080 ((-1157) $))))) (T -1299)) -((-2875 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1299)))) (-2080 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1299))))) -(-13 (-1105) (-10 -8 (-15 -2875 ((-1157) $)) (-15 -2080 ((-1157) $)))) -((-3429 (((-112) $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3943 (((-1157) $) 9)) (-3501 (((-877) $) 15) (($ (-1203)) NIL) (((-1203) $) NIL)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) NIL))) -(((-1300) (-13 (-1105) (-10 -8 (-15 -3943 ((-1157) $))))) (T -1300)) -((-3943 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1300))))) -(-13 (-1105) (-10 -8 (-15 -3943 ((-1157) $)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 58)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-3843 (((-3 $ "failed") $) NIL)) (-4094 (((-112) $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 81) (($ (-576)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-1960 (((-784)) NIL T CONST)) (-3366 (((-1294) (-784)) 16)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 37 T CONST)) (-2779 (($) 84 T CONST)) (-2933 (((-112) $ $) 87)) (-3034 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3022 (($ $) 89) (($ $ $) NIL)) (-3012 (($ $ $) 63)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-1301 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1071) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3034 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3366 ((-1294) (-784))))) (-1071) (-862) (-806) (-969 |#1| |#3| |#2|) (-657 |#2|) (-657 (-784)) (-784)) (T -1301)) -((-3034 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1071)) (-4 *3 (-862)) (-4 *4 (-806)) (-14 *6 (-657 *3)) (-5 *1 (-1301 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-969 *2 *4 *3)) (-14 *7 (-657 (-784))) (-14 *8 (-784)))) (-3366 (*1 *2 *3) (-12 (-5 *3 (-784)) (-4 *4 (-1071)) (-4 *5 (-862)) (-4 *6 (-806)) (-14 *8 (-657 *5)) (-5 *2 (-1294)) (-5 *1 (-1301 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-969 *4 *6 *5)) (-14 *9 (-657 *3)) (-14 *10 *3)))) -(-13 (-1071) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3034 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3366 ((-1294) (-784))))) -((-3429 (((-112) $ $) NIL)) (-2856 (((-657 (-2 (|:| -2016 $) (|:| -3209 (-657 |#4|)))) (-657 |#4|)) NIL)) (-3472 (((-657 $) (-657 |#4|)) 96)) (-2029 (((-657 |#3|) $) NIL)) (-1626 (((-112) $) NIL)) (-3072 (((-112) $) NIL (|has| |#1| (-568)))) (-4021 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1329 ((|#4| |#4| $) NIL)) (-1850 (((-2 (|:| |under| $) (|:| -3427 $) (|:| |upper| $)) $ |#3|) NIL)) (-3793 (((-112) $ (-784)) NIL)) (-2035 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4359 (($) NIL T CONST)) (-2433 (((-112) $) NIL (|has| |#1| (-568)))) (-1688 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4058 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2995 (((-112) $) NIL (|has| |#1| (-568)))) (-2292 (((-657 |#4|) (-657 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-1978 (((-657 |#4|) (-657 |#4|) $) 28 (|has| |#1| (-568)))) (-2410 (((-657 |#4|) (-657 |#4|) $) NIL (|has| |#1| (-568)))) (-1624 (((-3 $ "failed") (-657 |#4|)) NIL)) (-2884 (($ (-657 |#4|)) NIL)) (-3522 (((-3 $ "failed") $) 78)) (-2073 ((|#4| |#4| $) 83)) (-3914 (($ $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-3895 (($ |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3644 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3206 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3003 ((|#4| |#4| $) NIL)) (-3622 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4466))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4466))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1957 (((-2 (|:| -2016 (-657 |#4|)) (|:| -3209 (-657 |#4|))) $) NIL)) (-1458 (((-657 |#4|) $) NIL (|has| $ (-6 -4466)))) (-1878 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3627 ((|#3| $) 84)) (-1833 (((-112) $ (-784)) NIL)) (-2070 (((-657 |#4|) $) 32 (|has| $ (-6 -4466)))) (-1627 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122))))) (-3108 (((-3 $ "failed") (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-657 |#4|)) 38)) (-2148 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4467)))) (-4083 (($ (-1 |#4| |#4|) $) NIL)) (-1746 (((-657 |#3|) $) NIL)) (-4089 (((-112) |#3| $) NIL)) (-4261 (((-112) $ (-784)) NIL)) (-2342 (((-1180) $) NIL)) (-3920 (((-3 |#4| "failed") $) NIL)) (-1765 (((-657 |#4|) $) 54)) (-4365 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2833 ((|#4| |#4| $) 82)) (-4015 (((-112) $ $) 93)) (-3404 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3965 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2843 ((|#4| |#4| $) NIL)) (-1471 (((-1142) $) NIL)) (-3510 (((-3 |#4| "failed") $) 77)) (-2951 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1548 (((-3 $ "failed") $ |#4|) NIL)) (-3926 (($ $ |#4|) NIL)) (-3399 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3236 (($ $ (-657 |#4|) (-657 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122)))) (($ $ (-657 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1122))))) (-2806 (((-112) $ $) NIL)) (-3387 (((-112) $) 75)) (-3581 (($) 46)) (-1770 (((-784) $) NIL)) (-1482 (((-784) |#4| $) NIL (-12 (|has| $ (-6 -4466)) (|has| |#4| (-1122)))) (((-784) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-1923 (($ $) NIL)) (-4148 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3511 (($ (-657 |#4|)) NIL)) (-2956 (($ $ |#3|) NIL)) (-1664 (($ $ |#3|) NIL)) (-3459 (($ $) NIL)) (-3604 (($ $ |#3|) NIL)) (-3501 (((-877) $) NIL) (((-657 |#4|) $) 63)) (-3540 (((-784) $) NIL (|has| |#3| (-379)))) (-4435 (((-3 $ "failed") (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-657 |#4|)) 45)) (-3357 (((-657 $) (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-657 $) (-657 |#4|)) 74)) (-2046 (((-112) $ $) NIL)) (-2631 (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -1433 (-657 |#4|))) "failed") (-657 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3302 (((-112) $ (-1 (-112) |#4| (-657 |#4|))) NIL)) (-2147 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4466)))) (-3039 (((-657 |#3|) $) NIL)) (-1863 (((-112) |#3| $) NIL)) (-2933 (((-112) $ $) NIL)) (-3440 (((-784) $) NIL (|has| $ (-6 -4466))))) -(((-1302 |#1| |#2| |#3| |#4|) (-13 (-1232 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3108 ((-3 $ "failed") (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3108 ((-3 $ "failed") (-657 |#4|))) (-15 -4435 ((-3 $ "failed") (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4435 ((-3 $ "failed") (-657 |#4|))) (-15 -3357 ((-657 $) (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3357 ((-657 $) (-657 |#4|))))) (-568) (-806) (-862) (-1087 |#1| |#2| |#3|)) (T -1302)) -((-3108 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-657 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1302 *5 *6 *7 *8)))) (-3108 (*1 *1 *2) (|partial| -12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-1302 *3 *4 *5 *6)))) (-4435 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-657 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1302 *5 *6 *7 *8)))) (-4435 (*1 *1 *2) (|partial| -12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-1302 *3 *4 *5 *6)))) (-3357 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-657 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1087 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-806)) (-4 *8 (-862)) (-5 *2 (-657 (-1302 *6 *7 *8 *9))) (-5 *1 (-1302 *6 *7 *8 *9)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 (-1302 *4 *5 *6 *7))) (-5 *1 (-1302 *4 *5 *6 *7))))) -(-13 (-1232 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3108 ((-3 $ "failed") (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3108 ((-3 $ "failed") (-657 |#4|))) (-15 -4435 ((-3 $ "failed") (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4435 ((-3 $ "failed") (-657 |#4|))) (-15 -3357 ((-657 $) (-657 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3357 ((-657 $) (-657 |#4|))))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-2721 (((-3 $ "failed") $ $) 20)) (-4359 (($) 18 T CONST)) (-3843 (((-3 $ "failed") $) 37)) (-4094 (((-112) $) 35)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#1|) 45)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) -(((-1303 |#1|) (-141) (-1071)) (T -1303)) -NIL -(-13 (-1071) (-111 |t#1| |t#1|) (-628 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 |#1|) |has| |#1| (-174)) ((-730 |#1|) |has| |#1| (-174)) ((-739) . T) ((-1073 |#1|) . T) ((-1078 |#1|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T)) -((-3429 (((-112) $ $) 67)) (-2364 (((-112) $) NIL)) (-3391 (((-657 |#1|) $) 52)) (-1332 (($ $ (-784)) 46)) (-2721 (((-3 $ "failed") $ $) NIL)) (-1859 (($ $ (-784)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-4359 (($) NIL T CONST)) (-2299 (($ $ $) 70) (($ $ (-832 |#1|)) 56) (($ $ |#1|) 60)) (-1624 (((-3 (-832 |#1|) "failed") $) NIL)) (-2884 (((-832 |#1|) $) NIL)) (-2212 (($ $) 39)) (-3843 (((-3 $ "failed") $) NIL)) (-2020 (((-112) $) NIL)) (-4210 (($ $) NIL)) (-4094 (((-112) $) NIL)) (-4334 (((-784) $) NIL)) (-3724 (((-657 $) $) NIL)) (-3157 (((-112) $) NIL)) (-3607 (($ (-832 |#1|) |#2|) 38)) (-1874 (($ $) 40)) (-1414 (((-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|)) $) 12)) (-2416 (((-832 |#1|) $) NIL)) (-1550 (((-832 |#1|) $) 41)) (-4083 (($ (-1 |#2| |#2|) $) NIL)) (-1825 (($ $ $) 69) (($ $ (-832 |#1|)) 58) (($ $ |#1|) 62)) (-4063 (((-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2174 (((-832 |#1|) $) 35)) (-2186 ((|#2| $) 37)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-1770 (((-784) $) 43)) (-2005 (((-112) $) 47)) (-1509 ((|#2| $) NIL)) (-3501 (((-877) $) NIL) (($ (-832 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-576)) NIL)) (-4037 (((-657 |#2|) $) NIL)) (-2313 ((|#2| $ (-832 |#1|)) NIL)) (-1771 ((|#2| $ $) 76) ((|#2| $ (-832 |#1|)) NIL)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 13 T CONST)) (-2779 (($) 19 T CONST)) (-2329 (((-657 (-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2933 (((-112) $ $) 44)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 28)) (** (($ $ (-784)) NIL) (($ $ (-941)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-832 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) -(((-1304 |#1| |#2|) (-13 (-393 |#2| (-832 |#1|)) (-1310 |#1| |#2|)) (-862) (-1071)) (T -1304)) -NIL -(-13 (-393 |#2| (-832 |#1|)) (-1310 |#1| |#2|)) -((-3670 ((|#3| |#3| (-784)) 28)) (-4067 ((|#3| |#3| (-784)) 34)) (-4096 ((|#3| |#3| |#3| (-784)) 35))) -(((-1305 |#1| |#2| |#3|) (-10 -7 (-15 -4067 (|#3| |#3| (-784))) (-15 -3670 (|#3| |#3| (-784))) (-15 -4096 (|#3| |#3| |#3| (-784)))) (-13 (-1071) (-730 (-419 (-576)))) (-862) (-1310 |#2| |#1|)) (T -1305)) -((-4096 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-784)) (-4 *4 (-13 (-1071) (-730 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1305 *4 *5 *2)) (-4 *2 (-1310 *5 *4)))) (-3670 (*1 *2 *2 *3) (-12 (-5 *3 (-784)) (-4 *4 (-13 (-1071) (-730 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1305 *4 *5 *2)) (-4 *2 (-1310 *5 *4)))) (-4067 (*1 *2 *2 *3) (-12 (-5 *3 (-784)) (-4 *4 (-13 (-1071) (-730 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1305 *4 *5 *2)) (-4 *2 (-1310 *5 *4))))) -(-10 -7 (-15 -4067 (|#3| |#3| (-784))) (-15 -3670 (|#3| |#3| (-784))) (-15 -4096 (|#3| |#3| |#3| (-784)))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3391 (((-657 |#1|) $) 47)) (-2721 (((-3 $ "failed") $ $) 20)) (-1859 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-784)) 49 (|has| |#2| (-174)))) (-4359 (($) 18 T CONST)) (-2299 (($ $ |#1|) 61) (($ $ (-832 |#1|)) 60) (($ $ $) 59)) (-1624 (((-3 (-832 |#1|) "failed") $) 71)) (-2884 (((-832 |#1|) $) 72)) (-3843 (((-3 $ "failed") $) 37)) (-2020 (((-112) $) 52)) (-4210 (($ $) 51)) (-4094 (((-112) $) 35)) (-3157 (((-112) $) 57)) (-3607 (($ (-832 |#1|) |#2|) 58)) (-1874 (($ $) 56)) (-1414 (((-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|)) $) 67)) (-2416 (((-832 |#1|) $) 68)) (-4083 (($ (-1 |#2| |#2|) $) 48)) (-1825 (($ $ |#1|) 64) (($ $ (-832 |#1|)) 63) (($ $ $) 62)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-2005 (((-112) $) 54)) (-1509 ((|#2| $) 53)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-832 |#1|)) 70) (($ |#1|) 55)) (-1771 ((|#2| $ (-832 |#1|)) 66) ((|#2| $ $) 65)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1306 |#1| |#2|) (-141) (-862) (-1071)) (T -1306)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1306 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1071)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-5 *2 (-832 *3)))) (-1414 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-5 *2 (-2 (|:| |k| (-832 *3)) (|:| |c| *4))))) (-1771 (*1 *2 *1 *3) (-12 (-5 *3 (-832 *4)) (-4 *1 (-1306 *4 *2)) (-4 *4 (-862)) (-4 *2 (-1071)))) (-1771 (*1 *2 *1 *1) (-12 (-4 *1 (-1306 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1071)))) (-1825 (*1 *1 *1 *2) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) (-1825 (*1 *1 *1 *2) (-12 (-5 *2 (-832 *3)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)))) (-1825 (*1 *1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) (-2299 (*1 *1 *1 *2) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) (-2299 (*1 *1 *1 *2) (-12 (-5 *2 (-832 *3)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)))) (-2299 (*1 *1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) (-3607 (*1 *1 *2 *3) (-12 (-5 *2 (-832 *4)) (-4 *4 (-862)) (-4 *1 (-1306 *4 *3)) (-4 *3 (-1071)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-5 *2 (-112)))) (-1874 (*1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) (-3501 (*1 *1 *2) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) (-2005 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-5 *2 (-112)))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1071)))) (-2020 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-5 *2 (-112)))) (-4210 (*1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) (-1859 (*1 *1 *1 *1) (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)) (-4 *3 (-174)))) (-1859 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-4 *4 (-174)))) (-4083 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-5 *2 (-657 *3))))) -(-13 (-1071) (-1303 |t#2|) (-1060 (-832 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2416 ((-832 |t#1|) $)) (-15 -1414 ((-2 (|:| |k| (-832 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1771 (|t#2| $ (-832 |t#1|))) (-15 -1771 (|t#2| $ $)) (-15 -1825 ($ $ |t#1|)) (-15 -1825 ($ $ (-832 |t#1|))) (-15 -1825 ($ $ $)) (-15 -2299 ($ $ |t#1|)) (-15 -2299 ($ $ (-832 |t#1|))) (-15 -2299 ($ $ $)) (-15 -3607 ($ (-832 |t#1|) |t#2|)) (-15 -3157 ((-112) $)) (-15 -1874 ($ $)) (-15 -3501 ($ |t#1|)) (-15 -2005 ((-112) $)) (-15 -1509 (|t#2| $)) (-15 -2020 ((-112) $)) (-15 -4210 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -1859 ($ $ $)) (-15 -1859 ($ $ (-784)))) |%noBranch|) (-15 -4083 ($ (-1 |t#2| |t#2|) $)) (-15 -3391 ((-657 |t#1|) $)) (IF (|has| |t#2| (-6 -4459)) (-6 -4459) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-832 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#2|) . T) ((-659 $) . T) ((-661 |#2|) . T) ((-661 $) . T) ((-653 |#2|) |has| |#2| (-174)) ((-730 |#2|) |has| |#2| (-174)) ((-739) . T) ((-1060 #0#) . T) ((-1073 |#2|) . T) ((-1078 |#2|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1303 |#2|) . T)) -((-2175 (((-112) $) 15)) (-1863 (((-112) $) 14)) (-1508 (($ $) 19) (($ $ (-784)) 21))) -(((-1307 |#1| |#2|) (-10 -8 (-15 -1508 (|#1| |#1| (-784))) (-15 -1508 (|#1| |#1|)) (-15 -2175 ((-112) |#1|)) (-15 -1863 ((-112) |#1|))) (-1308 |#2|) (-374)) (T -1307)) -NIL -(-10 -8 (-15 -1508 (|#1| |#1| (-784))) (-15 -1508 (|#1| |#1|)) (-15 -2175 ((-112) |#1|)) (-15 -1863 ((-112) |#1|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3167 (((-2 (|:| -2824 $) (|:| -4453 $) (|:| |associate| $)) $) 47)) (-3325 (($ $) 46)) (-4306 (((-112) $) 44)) (-2175 (((-112) $) 104)) (-3158 (((-784)) 100)) (-2721 (((-3 $ "failed") $ $) 20)) (-2638 (($ $) 81)) (-4402 (((-430 $) $) 80)) (-2864 (((-112) $ $) 65)) (-4359 (($) 18 T CONST)) (-1624 (((-3 |#1| "failed") $) 111)) (-2884 ((|#1| $) 112)) (-3373 (($ $ $) 61)) (-3843 (((-3 $ "failed") $) 37)) (-3385 (($ $ $) 62)) (-4120 (((-2 (|:| -1771 (-657 $)) (|:| -4097 $)) (-657 $)) 57)) (-1780 (($ $ (-784)) 97 (-2802 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4257 (((-112) $) 79)) (-3182 (((-846 (-941)) $) 94 (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-4094 (((-112) $) 35)) (-2941 (((-3 (-657 $) "failed") (-657 $) $) 58)) (-3402 (($ $ $) 52) (($ (-657 $)) 51)) (-2342 (((-1180) $) 10)) (-2134 (($ $) 78)) (-2463 (((-112) $) 103)) (-1471 (((-1142) $) 11)) (-2226 (((-1194 $) (-1194 $) (-1194 $)) 50)) (-3436 (($ $ $) 54) (($ (-657 $)) 53)) (-1885 (((-430 $) $) 82)) (-1453 (((-846 (-941))) 101)) (-2143 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4097 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3418 (((-3 $ "failed") $ $) 48)) (-3161 (((-3 (-657 $) "failed") (-657 $) $) 56)) (-2034 (((-784) $) 64)) (-3944 (((-2 (|:| -2335 $) (|:| -3644 $)) $ $) 63)) (-2284 (((-3 (-784) "failed") $ $) 95 (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3863 (((-135)) 109)) (-1770 (((-846 (-941)) $) 102)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-3096 (((-3 $ "failed") $) 93 (-2802 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-4041 (((-112) $ $) 45)) (-1863 (((-112) $) 105)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-1508 (($ $) 99 (|has| |#1| (-379))) (($ $ (-784)) 98 (|has| |#1| (-379)))) (-2933 (((-112) $ $) 8)) (-3034 (($ $ $) 73) (($ $ |#1|) 108)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36) (($ $ (-576)) 77)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-1308 |#1|) (-141) (-374)) (T -1308)) -((-1863 (*1 *2 *1) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-2175 (*1 *2 *1) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-2463 (*1 *2 *1) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-846 (-941))))) (-1453 (*1 *2) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-846 (-941))))) (-3158 (*1 *2) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-784)))) (-1508 (*1 *1 *1) (-12 (-4 *1 (-1308 *2)) (-4 *2 (-374)) (-4 *2 (-379)))) (-1508 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-4 *3 (-379))))) -(-13 (-374) (-1060 |t#1|) (-1296 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-414)) |%noBranch|) (-15 -1863 ((-112) $)) (-15 -2175 ((-112) $)) (-15 -2463 ((-112) $)) (-15 -1770 ((-846 (-941)) $)) (-15 -1453 ((-846 (-941)))) (-15 -3158 ((-784))) (IF (|has| |t#1| (-379)) (PROGN (-6 (-414)) (-15 -1508 ($ $)) (-15 -1508 ($ $ (-784)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2802 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-877)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) -2802 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-464) . T) ((-568) . T) ((-659 #0#) . T) ((-659 (-576)) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-661 #0#) . T) ((-661 |#1|) . T) ((-661 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-730 #0#) . T) ((-730 |#1|) . T) ((-730 $) . T) ((-739) . T) ((-940) . T) ((-1060 |#1|) . T) ((-1073 #0#) . T) ((-1073 |#1|) . T) ((-1073 $) . T) ((-1078 #0#) . T) ((-1078 |#1|) . T) ((-1078 $) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1243) . T) ((-1296 |#1|) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3391 (((-657 |#1|) $) 98)) (-1332 (($ $ (-784)) 102)) (-2721 (((-3 $ "failed") $ $) NIL)) (-1859 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-784)) NIL (|has| |#2| (-174)))) (-4359 (($) NIL T CONST)) (-2299 (($ $ |#1|) NIL) (($ $ (-832 |#1|)) NIL) (($ $ $) NIL)) (-1624 (((-3 (-832 |#1|) "failed") $) NIL) (((-3 (-909 |#1|) "failed") $) NIL)) (-2884 (((-832 |#1|) $) NIL) (((-909 |#1|) $) NIL)) (-2212 (($ $) 101)) (-3843 (((-3 $ "failed") $) NIL)) (-2020 (((-112) $) 90)) (-4210 (($ $) 93)) (-3778 (($ $ $ (-784)) 103)) (-4094 (((-112) $) NIL)) (-4334 (((-784) $) NIL)) (-3724 (((-657 $) $) NIL)) (-3157 (((-112) $) NIL)) (-3607 (($ (-832 |#1|) |#2|) NIL) (($ (-909 |#1|) |#2|) 29)) (-1874 (($ $) 119)) (-1414 (((-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2416 (((-832 |#1|) $) NIL)) (-1550 (((-832 |#1|) $) NIL)) (-4083 (($ (-1 |#2| |#2|) $) NIL)) (-1825 (($ $ |#1|) NIL) (($ $ (-832 |#1|)) NIL) (($ $ $) NIL)) (-3670 (($ $ (-784)) 112 (|has| |#2| (-730 (-419 (-576)))))) (-4063 (((-2 (|:| |k| (-909 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2174 (((-909 |#1|) $) 83)) (-2186 ((|#2| $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-4067 (($ $ (-784)) 109 (|has| |#2| (-730 (-419 (-576)))))) (-1770 (((-784) $) 99)) (-2005 (((-112) $) 84)) (-1509 ((|#2| $) 88)) (-3501 (((-877) $) 69) (($ (-576)) NIL) (($ |#2|) 60) (($ (-832 |#1|)) NIL) (($ |#1|) 71) (($ (-909 |#1|)) NIL) (($ (-677 |#1| |#2|)) 48) (((-1304 |#1| |#2|) $) 76) (((-1313 |#1| |#2|) $) 81)) (-4037 (((-657 |#2|) $) NIL)) (-2313 ((|#2| $ (-909 |#1|)) NIL)) (-1771 ((|#2| $ (-832 |#1|)) NIL) ((|#2| $ $) NIL)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 21 T CONST)) (-2779 (($) 28 T CONST)) (-2329 (((-657 (-2 (|:| |k| (-909 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4046 (((-3 (-677 |#1| |#2|) "failed") $) 118)) (-2933 (((-112) $ $) 77)) (-3022 (($ $) 111) (($ $ $) 110)) (-3012 (($ $ $) 20)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-909 |#1|)) NIL))) -(((-1309 |#1| |#2|) (-13 (-1310 |#1| |#2|) (-393 |#2| (-909 |#1|)) (-10 -8 (-15 -3501 ($ (-677 |#1| |#2|))) (-15 -3501 ((-1304 |#1| |#2|) $)) (-15 -3501 ((-1313 |#1| |#2|) $)) (-15 -4046 ((-3 (-677 |#1| |#2|) "failed") $)) (-15 -3778 ($ $ $ (-784))) (IF (|has| |#2| (-730 (-419 (-576)))) (PROGN (-15 -4067 ($ $ (-784))) (-15 -3670 ($ $ (-784)))) |%noBranch|))) (-862) (-174)) (T -1309)) -((-3501 (*1 *1 *2) (-12 (-5 *2 (-677 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *1 (-1309 *3 *4)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-4046 (*1 *2 *1) (|partial| -12 (-5 *2 (-677 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3778 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-4067 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1309 *3 *4)) (-4 *4 (-730 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174)))) (-3670 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1309 *3 *4)) (-4 *4 (-730 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174))))) -(-13 (-1310 |#1| |#2|) (-393 |#2| (-909 |#1|)) (-10 -8 (-15 -3501 ($ (-677 |#1| |#2|))) (-15 -3501 ((-1304 |#1| |#2|) $)) (-15 -3501 ((-1313 |#1| |#2|) $)) (-15 -4046 ((-3 (-677 |#1| |#2|) "failed") $)) (-15 -3778 ($ $ $ (-784))) (IF (|has| |#2| (-730 (-419 (-576)))) (PROGN (-15 -4067 ($ $ (-784))) (-15 -3670 ($ $ (-784)))) |%noBranch|))) -((-3429 (((-112) $ $) 7)) (-2364 (((-112) $) 17)) (-3391 (((-657 |#1|) $) 47)) (-1332 (($ $ (-784)) 80)) (-2721 (((-3 $ "failed") $ $) 20)) (-1859 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-784)) 49 (|has| |#2| (-174)))) (-4359 (($) 18 T CONST)) (-2299 (($ $ |#1|) 61) (($ $ (-832 |#1|)) 60) (($ $ $) 59)) (-1624 (((-3 (-832 |#1|) "failed") $) 71)) (-2884 (((-832 |#1|) $) 72)) (-3843 (((-3 $ "failed") $) 37)) (-2020 (((-112) $) 52)) (-4210 (($ $) 51)) (-4094 (((-112) $) 35)) (-3157 (((-112) $) 57)) (-3607 (($ (-832 |#1|) |#2|) 58)) (-1874 (($ $) 56)) (-1414 (((-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|)) $) 67)) (-2416 (((-832 |#1|) $) 68)) (-1550 (((-832 |#1|) $) 82)) (-4083 (($ (-1 |#2| |#2|) $) 48)) (-1825 (($ $ |#1|) 64) (($ $ (-832 |#1|)) 63) (($ $ $) 62)) (-2342 (((-1180) $) 10)) (-1471 (((-1142) $) 11)) (-1770 (((-784) $) 81)) (-2005 (((-112) $) 54)) (-1509 ((|#2| $) 53)) (-3501 (((-877) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-832 |#1|)) 70) (($ |#1|) 55)) (-1771 ((|#2| $ (-832 |#1|)) 66) ((|#2| $ $) 65)) (-1960 (((-784)) 32 T CONST)) (-2046 (((-112) $ $) 6)) (-2769 (($) 19 T CONST)) (-2779 (($) 34 T CONST)) (-2933 (((-112) $ $) 8)) (-3022 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-941)) 28) (($ $ (-784)) 36)) (* (($ (-941) $) 14) (($ (-784) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1310 |#1| |#2|) (-141) (-862) (-1071)) (T -1310)) -((-1550 (*1 *2 *1) (-12 (-4 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-5 *2 (-832 *3)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-5 *2 (-784)))) (-1332 (*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-4 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071))))) -(-13 (-1306 |t#1| |t#2|) (-10 -8 (-15 -1550 ((-832 |t#1|) $)) (-15 -1770 ((-784) $)) (-15 -1332 ($ $ (-784))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-832 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-877)) . T) ((-659 (-576)) . T) ((-659 |#2|) . T) ((-659 $) . T) ((-661 |#2|) . T) ((-661 $) . T) ((-653 |#2|) |has| |#2| (-174)) ((-730 |#2|) |has| |#2| (-174)) ((-739) . T) ((-1060 #0#) . T) ((-1073 |#2|) . T) ((-1078 |#2|) . T) ((-1071) . T) ((-1080) . T) ((-1134) . T) ((-1122) . T) ((-1239) . T) ((-1303 |#2|) . T) ((-1306 |#1| |#2|) . T)) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-3391 (((-657 (-1198)) $) NIL)) (-3746 (($ (-1304 (-1198) |#1|)) NIL)) (-1332 (($ $ (-784)) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-1859 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-784)) NIL (|has| |#1| (-174)))) (-4359 (($) NIL T CONST)) (-2299 (($ $ (-1198)) NIL) (($ $ (-832 (-1198))) NIL) (($ $ $) NIL)) (-1624 (((-3 (-832 (-1198)) "failed") $) NIL)) (-2884 (((-832 (-1198)) $) NIL)) (-3843 (((-3 $ "failed") $) NIL)) (-2020 (((-112) $) NIL)) (-4210 (($ $) NIL)) (-4094 (((-112) $) NIL)) (-3157 (((-112) $) NIL)) (-3607 (($ (-832 (-1198)) |#1|) NIL)) (-1874 (($ $) NIL)) (-1414 (((-2 (|:| |k| (-832 (-1198))) (|:| |c| |#1|)) $) NIL)) (-2416 (((-832 (-1198)) $) NIL)) (-1550 (((-832 (-1198)) $) NIL)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-1825 (($ $ (-1198)) NIL) (($ $ (-832 (-1198))) NIL) (($ $ $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-1999 (((-1304 (-1198) |#1|) $) NIL)) (-1770 (((-784) $) NIL)) (-2005 (((-112) $) NIL)) (-1509 ((|#1| $) NIL)) (-3501 (((-877) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-832 (-1198))) NIL) (($ (-1198)) NIL)) (-1771 ((|#1| $ (-832 (-1198))) NIL) ((|#1| $ $) NIL)) (-1960 (((-784)) NIL T CONST)) (-2046 (((-112) $ $) NIL)) (-2769 (($) NIL T CONST)) (-4031 (((-657 (-2 (|:| |k| (-1198)) (|:| |c| $))) $) NIL)) (-2779 (($) NIL T CONST)) (-2933 (((-112) $ $) NIL)) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-941)) NIL) (($ $ (-784)) NIL)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1198) $) NIL))) -(((-1311 |#1|) (-13 (-1310 (-1198) |#1|) (-10 -8 (-15 -1999 ((-1304 (-1198) |#1|) $)) (-15 -3746 ($ (-1304 (-1198) |#1|))) (-15 -4031 ((-657 (-2 (|:| |k| (-1198)) (|:| |c| $))) $)))) (-1071)) (T -1311)) -((-1999 (*1 *2 *1) (-12 (-5 *2 (-1304 (-1198) *3)) (-5 *1 (-1311 *3)) (-4 *3 (-1071)))) (-3746 (*1 *1 *2) (-12 (-5 *2 (-1304 (-1198) *3)) (-4 *3 (-1071)) (-5 *1 (-1311 *3)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |k| (-1198)) (|:| |c| (-1311 *3))))) (-5 *1 (-1311 *3)) (-4 *3 (-1071))))) -(-13 (-1310 (-1198) |#1|) (-10 -8 (-15 -1999 ((-1304 (-1198) |#1|) $)) (-15 -3746 ($ (-1304 (-1198) |#1|))) (-15 -4031 ((-657 (-2 (|:| |k| (-1198)) (|:| |c| $))) $)))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) NIL)) (-2721 (((-3 $ "failed") $ $) NIL)) (-4359 (($) NIL T CONST)) (-1624 (((-3 |#2| "failed") $) NIL)) (-2884 ((|#2| $) NIL)) (-2212 (($ $) NIL)) (-3843 (((-3 $ "failed") $) 42)) (-2020 (((-112) $) 35)) (-4210 (($ $) 37)) (-4094 (((-112) $) NIL)) (-4334 (((-784) $) NIL)) (-3724 (((-657 $) $) NIL)) (-3157 (((-112) $) NIL)) (-3607 (($ |#2| |#1|) NIL)) (-2416 ((|#2| $) 24)) (-1550 ((|#2| $) 22)) (-4083 (($ (-1 |#1| |#1|) $) NIL)) (-4063 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2174 ((|#2| $) NIL)) (-2186 ((|#1| $) NIL)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-2005 (((-112) $) 32)) (-1509 ((|#1| $) 33)) (-3501 (((-877) $) 65) (($ (-576)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-4037 (((-657 |#1|) $) NIL)) (-2313 ((|#1| $ |#2|) NIL)) (-1771 ((|#1| $ |#2|) 28)) (-1960 (((-784)) 14 T CONST)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 29 T CONST)) (-2779 (($) 11 T CONST)) (-2329 (((-657 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2933 (((-112) $ $) 30)) (-3034 (($ $ |#1|) 67 (|has| |#1| (-374)))) (-3022 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 50)) (** (($ $ (-941)) NIL) (($ $ (-784)) 52)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3440 (((-784) $) 16))) -(((-1312 |#1| |#2|) (-13 (-1071) (-1303 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3440 ((-784) $)) (-15 -1550 (|#2| $)) (-15 -2416 (|#2| $)) (-15 -2212 ($ $)) (-15 -1771 (|#1| $ |#2|)) (-15 -2005 ((-112) $)) (-15 -1509 (|#1| $)) (-15 -2020 ((-112) $)) (-15 -4210 ($ $)) (-15 -4083 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -3034 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|) (IF (|has| |#1| (-6 -4463)) (-6 -4463) |%noBranch|) (IF (|has| |#1| (-6 -4464)) (-6 -4464) |%noBranch|))) (-1071) (-859)) (T -1312)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-859)))) (-2212 (*1 *1 *1) (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-859)))) (-4083 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-1312 *3 *4)) (-4 *4 (-859)))) (-3440 (*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-859)))) (-1550 (*1 *2 *1) (-12 (-4 *2 (-859)) (-5 *1 (-1312 *3 *2)) (-4 *3 (-1071)))) (-2416 (*1 *2 *1) (-12 (-4 *2 (-859)) (-5 *1 (-1312 *3 *2)) (-4 *3 (-1071)))) (-1771 (*1 *2 *1 *3) (-12 (-4 *2 (-1071)) (-5 *1 (-1312 *2 *3)) (-4 *3 (-859)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-859)))) (-1509 (*1 *2 *1) (-12 (-4 *2 (-1071)) (-5 *1 (-1312 *2 *3)) (-4 *3 (-859)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-859)))) (-4210 (*1 *1 *1) (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-859)))) (-3034 (*1 *1 *1 *2) (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1071)) (-4 *3 (-859))))) -(-13 (-1071) (-1303 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3440 ((-784) $)) (-15 -1550 (|#2| $)) (-15 -2416 (|#2| $)) (-15 -2212 ($ $)) (-15 -1771 (|#1| $ |#2|)) (-15 -2005 ((-112) $)) (-15 -1509 (|#1| $)) (-15 -2020 ((-112) $)) (-15 -4210 ($ $)) (-15 -4083 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -3034 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|) (IF (|has| |#1| (-6 -4463)) (-6 -4463) |%noBranch|) (IF (|has| |#1| (-6 -4464)) (-6 -4464) |%noBranch|))) -((-3429 (((-112) $ $) 27)) (-2364 (((-112) $) NIL)) (-3391 (((-657 |#1|) $) 132)) (-3746 (($ (-1304 |#1| |#2|)) 50)) (-1332 (($ $ (-784)) 38)) (-2721 (((-3 $ "failed") $ $) NIL)) (-1859 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-784)) 52 (|has| |#2| (-174)))) (-4359 (($) NIL T CONST)) (-2299 (($ $ |#1|) 114) (($ $ (-832 |#1|)) 115) (($ $ $) 26)) (-1624 (((-3 (-832 |#1|) "failed") $) NIL)) (-2884 (((-832 |#1|) $) NIL)) (-3843 (((-3 $ "failed") $) 122)) (-2020 (((-112) $) 117)) (-4210 (($ $) 118)) (-4094 (((-112) $) NIL)) (-3157 (((-112) $) NIL)) (-3607 (($ (-832 |#1|) |#2|) 20)) (-1874 (($ $) NIL)) (-1414 (((-2 (|:| |k| (-832 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2416 (((-832 |#1|) $) 123)) (-1550 (((-832 |#1|) $) 126)) (-4083 (($ (-1 |#2| |#2|) $) 131)) (-1825 (($ $ |#1|) 112) (($ $ (-832 |#1|)) 113) (($ $ $) 62)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-1999 (((-1304 |#1| |#2|) $) 94)) (-1770 (((-784) $) 129)) (-2005 (((-112) $) 81)) (-1509 ((|#2| $) 32)) (-3501 (((-877) $) 73) (($ (-576)) 87) (($ |#2|) 85) (($ (-832 |#1|)) 18) (($ |#1|) 84)) (-1771 ((|#2| $ (-832 |#1|)) 116) ((|#2| $ $) 28)) (-1960 (((-784)) 120 T CONST)) (-2046 (((-112) $ $) NIL)) (-2769 (($) 15 T CONST)) (-4031 (((-657 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2779 (($) 33 T CONST)) (-2933 (((-112) $ $) 14)) (-3022 (($ $) 98) (($ $ $) 101)) (-3012 (($ $ $) 61)) (** (($ $ (-941)) NIL) (($ $ (-784)) 55)) (* (($ (-941) $) NIL) (($ (-784) $) 53) (($ (-576) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) -(((-1313 |#1| |#2|) (-13 (-1310 |#1| |#2|) (-10 -8 (-15 -1999 ((-1304 |#1| |#2|) $)) (-15 -3746 ($ (-1304 |#1| |#2|))) (-15 -4031 ((-657 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-862) (-1071)) (T -1313)) -((-1999 (*1 *2 *1) (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-1313 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)))) (-3746 (*1 *1 *2) (-12 (-5 *2 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) (-5 *1 (-1313 *3 *4)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-657 (-2 (|:| |k| *3) (|:| |c| (-1313 *3 *4))))) (-5 *1 (-1313 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071))))) -(-13 (-1310 |#1| |#2|) (-10 -8 (-15 -1999 ((-1304 |#1| |#2|) $)) (-15 -3746 ($ (-1304 |#1| |#2|))) (-15 -4031 ((-657 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-3429 (((-112) $ $) NIL)) (-2748 (($ (-657 (-941))) 10)) (-2434 (((-993) $) 12)) (-2342 (((-1180) $) NIL)) (-1471 (((-1142) $) NIL)) (-3501 (((-877) $) 25) (($ (-993)) 14) (((-993) $) 13)) (-2046 (((-112) $ $) NIL)) (-2933 (((-112) $ $) 17))) -(((-1314) (-13 (-1122) (-502 (-993)) (-10 -8 (-15 -2748 ($ (-657 (-941)))) (-15 -2434 ((-993) $))))) (T -1314)) -((-2748 (*1 *1 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1314)))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-993)) (-5 *1 (-1314))))) -(-13 (-1122) (-502 (-993)) (-10 -8 (-15 -2748 ($ (-657 (-941)))) (-15 -2434 ((-993) $)))) -((-2538 (((-657 (-1179 |#1|)) (-1 (-657 (-1179 |#1|)) (-657 (-1179 |#1|))) (-576)) 16) (((-1179 |#1|) (-1 (-1179 |#1|) (-1179 |#1|))) 13))) -(((-1315 |#1|) (-10 -7 (-15 -2538 ((-1179 |#1|) (-1 (-1179 |#1|) (-1179 |#1|)))) (-15 -2538 ((-657 (-1179 |#1|)) (-1 (-657 (-1179 |#1|)) (-657 (-1179 |#1|))) (-576)))) (-1239)) (T -1315)) -((-2538 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-657 (-1179 *5)) (-657 (-1179 *5)))) (-5 *4 (-576)) (-5 *2 (-657 (-1179 *5))) (-5 *1 (-1315 *5)) (-4 *5 (-1239)))) (-2538 (*1 *2 *3) (-12 (-5 *3 (-1 (-1179 *4) (-1179 *4))) (-5 *2 (-1179 *4)) (-5 *1 (-1315 *4)) (-4 *4 (-1239))))) -(-10 -7 (-15 -2538 ((-1179 |#1|) (-1 (-1179 |#1|) (-1179 |#1|)))) (-15 -2538 ((-657 (-1179 |#1|)) (-1 (-657 (-1179 |#1|)) (-657 (-1179 |#1|))) (-576)))) -((-2573 (((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|))) 174) (((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112)) 173) (((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112) (-112)) 172) (((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112) (-112) (-112)) 171) (((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-1068 |#1| |#2|)) 156)) (-2437 (((-657 (-1068 |#1| |#2|)) (-657 (-972 |#1|))) 85) (((-657 (-1068 |#1| |#2|)) (-657 (-972 |#1|)) (-112)) 84) (((-657 (-1068 |#1| |#2|)) (-657 (-972 |#1|)) (-112) (-112)) 83)) (-4402 (((-657 (-1168 |#1| (-543 (-879 |#3|)) (-879 |#3|) (-793 |#1| (-879 |#3|)))) (-1068 |#1| |#2|)) 73)) (-2663 (((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|))) 140) (((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112)) 139) (((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112) (-112)) 138) (((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112) (-112) (-112)) 137) (((-657 (-657 (-1046 (-419 |#1|)))) (-1068 |#1| |#2|)) 132)) (-3649 (((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|))) 145) (((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112)) 144) (((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112) (-112)) 143) (((-657 (-657 (-1046 (-419 |#1|)))) (-1068 |#1| |#2|)) 142)) (-4148 (((-657 (-793 |#1| (-879 |#3|))) (-1168 |#1| (-543 (-879 |#3|)) (-879 |#3|) (-793 |#1| (-879 |#3|)))) 111) (((-1194 (-1046 (-419 |#1|))) (-1194 |#1|)) 102) (((-972 (-1046 (-419 |#1|))) (-793 |#1| (-879 |#3|))) 109) (((-972 (-1046 (-419 |#1|))) (-972 |#1|)) 107) (((-793 |#1| (-879 |#3|)) (-793 |#1| (-879 |#2|))) 33))) -(((-1316 |#1| |#2| |#3|) (-10 -7 (-15 -2437 ((-657 (-1068 |#1| |#2|)) (-657 (-972 |#1|)) (-112) (-112))) (-15 -2437 ((-657 (-1068 |#1| |#2|)) (-657 (-972 |#1|)) (-112))) (-15 -2437 ((-657 (-1068 |#1| |#2|)) (-657 (-972 |#1|)))) (-15 -2573 ((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-1068 |#1| |#2|))) (-15 -2573 ((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112) (-112) (-112))) (-15 -2573 ((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112) (-112))) (-15 -2573 ((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112))) (-15 -2573 ((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)))) (-15 -2663 ((-657 (-657 (-1046 (-419 |#1|)))) (-1068 |#1| |#2|))) (-15 -2663 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112) (-112) (-112))) (-15 -2663 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112) (-112))) (-15 -2663 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112))) (-15 -2663 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)))) (-15 -3649 ((-657 (-657 (-1046 (-419 |#1|)))) (-1068 |#1| |#2|))) (-15 -3649 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112) (-112))) (-15 -3649 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112))) (-15 -3649 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)))) (-15 -4402 ((-657 (-1168 |#1| (-543 (-879 |#3|)) (-879 |#3|) (-793 |#1| (-879 |#3|)))) (-1068 |#1| |#2|))) (-15 -4148 ((-793 |#1| (-879 |#3|)) (-793 |#1| (-879 |#2|)))) (-15 -4148 ((-972 (-1046 (-419 |#1|))) (-972 |#1|))) (-15 -4148 ((-972 (-1046 (-419 |#1|))) (-793 |#1| (-879 |#3|)))) (-15 -4148 ((-1194 (-1046 (-419 |#1|))) (-1194 |#1|))) (-15 -4148 ((-657 (-793 |#1| (-879 |#3|))) (-1168 |#1| (-543 (-879 |#3|)) (-879 |#3|) (-793 |#1| (-879 |#3|)))))) (-13 (-861) (-317) (-148) (-1044)) (-657 (-1198)) (-657 (-1198))) (T -1316)) -((-4148 (*1 *2 *3) (-12 (-5 *3 (-1168 *4 (-543 (-879 *6)) (-879 *6) (-793 *4 (-879 *6)))) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *6 (-657 (-1198))) (-5 *2 (-657 (-793 *4 (-879 *6)))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-657 (-1198))))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-1194 *4)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-1194 (-1046 (-419 *4)))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198))))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-793 *4 (-879 *6))) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *6 (-657 (-1198))) (-5 *2 (-972 (-1046 (-419 *4)))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-657 (-1198))))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-972 *4)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-972 (-1046 (-419 *4)))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198))))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-793 *4 (-879 *5))) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *5 (-657 (-1198))) (-5 *2 (-793 *4 (-879 *6))) (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-657 (-1198))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-1068 *4 *5)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *5 (-657 (-1198))) (-5 *2 (-657 (-1168 *4 (-543 (-879 *6)) (-879 *6) (-793 *4 (-879 *6))))) (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-657 (-1198))))) (-3649 (*1 *2 *3) (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-657 (-1046 (-419 *4))))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198))))) (-3649 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) (-3649 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) (-3649 (*1 *2 *3) (-12 (-5 *3 (-1068 *4 *5)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *5 (-657 (-1198))) (-5 *2 (-657 (-657 (-1046 (-419 *4))))) (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-657 (-1198))))) (-2663 (*1 *2 *3) (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-657 (-1046 (-419 *4))))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198))))) (-2663 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) (-2663 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) (-2663 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) (-2663 (*1 *2 *3) (-12 (-5 *3 (-1068 *4 *5)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *5 (-657 (-1198))) (-5 *2 (-657 (-657 (-1046 (-419 *4))))) (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-657 (-1198))))) (-2573 (*1 *2 *3) (-12 (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-2 (|:| -3011 (-1194 *4)) (|:| -2795 (-657 (-972 *4)))))) (-5 *1 (-1316 *4 *5 *6)) (-5 *3 (-657 (-972 *4))) (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198))))) (-2573 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-2 (|:| -3011 (-1194 *5)) (|:| -2795 (-657 (-972 *5)))))) (-5 *1 (-1316 *5 *6 *7)) (-5 *3 (-657 (-972 *5))) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) (-2573 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-2 (|:| -3011 (-1194 *5)) (|:| -2795 (-657 (-972 *5)))))) (-5 *1 (-1316 *5 *6 *7)) (-5 *3 (-657 (-972 *5))) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) (-2573 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-2 (|:| -3011 (-1194 *5)) (|:| -2795 (-657 (-972 *5)))))) (-5 *1 (-1316 *5 *6 *7)) (-5 *3 (-657 (-972 *5))) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) (-2573 (*1 *2 *3) (-12 (-5 *3 (-1068 *4 *5)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *5 (-657 (-1198))) (-5 *2 (-657 (-2 (|:| -3011 (-1194 *4)) (|:| -2795 (-657 (-972 *4)))))) (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-657 (-1198))))) (-2437 (*1 *2 *3) (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-1068 *4 *5))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198))))) (-2437 (*1 *2 *3 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-1068 *5 *6))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) (-2437 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) (-5 *2 (-657 (-1068 *5 *6))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198)))))) -(-10 -7 (-15 -2437 ((-657 (-1068 |#1| |#2|)) (-657 (-972 |#1|)) (-112) (-112))) (-15 -2437 ((-657 (-1068 |#1| |#2|)) (-657 (-972 |#1|)) (-112))) (-15 -2437 ((-657 (-1068 |#1| |#2|)) (-657 (-972 |#1|)))) (-15 -2573 ((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-1068 |#1| |#2|))) (-15 -2573 ((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112) (-112) (-112))) (-15 -2573 ((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112) (-112))) (-15 -2573 ((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)) (-112))) (-15 -2573 ((-657 (-2 (|:| -3011 (-1194 |#1|)) (|:| -2795 (-657 (-972 |#1|))))) (-657 (-972 |#1|)))) (-15 -2663 ((-657 (-657 (-1046 (-419 |#1|)))) (-1068 |#1| |#2|))) (-15 -2663 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112) (-112) (-112))) (-15 -2663 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112) (-112))) (-15 -2663 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112))) (-15 -2663 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)))) (-15 -3649 ((-657 (-657 (-1046 (-419 |#1|)))) (-1068 |#1| |#2|))) (-15 -3649 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112) (-112))) (-15 -3649 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)) (-112))) (-15 -3649 ((-657 (-657 (-1046 (-419 |#1|)))) (-657 (-972 |#1|)))) (-15 -4402 ((-657 (-1168 |#1| (-543 (-879 |#3|)) (-879 |#3|) (-793 |#1| (-879 |#3|)))) (-1068 |#1| |#2|))) (-15 -4148 ((-793 |#1| (-879 |#3|)) (-793 |#1| (-879 |#2|)))) (-15 -4148 ((-972 (-1046 (-419 |#1|))) (-972 |#1|))) (-15 -4148 ((-972 (-1046 (-419 |#1|))) (-793 |#1| (-879 |#3|)))) (-15 -4148 ((-1194 (-1046 (-419 |#1|))) (-1194 |#1|))) (-15 -4148 ((-657 (-793 |#1| (-879 |#3|))) (-1168 |#1| (-543 (-879 |#3|)) (-879 |#3|) (-793 |#1| (-879 |#3|)))))) -((-3053 (((-3 (-1289 (-419 (-576))) "failed") (-1289 |#1|) |#1|) 21)) (-1917 (((-112) (-1289 |#1|)) 12)) (-1440 (((-3 (-1289 (-576)) "failed") (-1289 |#1|)) 16))) -(((-1317 |#1|) (-10 -7 (-15 -1917 ((-112) (-1289 |#1|))) (-15 -1440 ((-3 (-1289 (-576)) "failed") (-1289 |#1|))) (-15 -3053 ((-3 (-1289 (-419 (-576))) "failed") (-1289 |#1|) |#1|))) (-13 (-1071) (-652 (-576)))) (T -1317)) -((-3053 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 (-576)))) (-5 *2 (-1289 (-419 (-576)))) (-5 *1 (-1317 *4)))) (-1440 (*1 *2 *3) (|partial| -12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 (-576)))) (-5 *2 (-1289 (-576))) (-5 *1 (-1317 *4)))) (-1917 (*1 *2 *3) (-12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 (-576)))) (-5 *2 (-112)) (-5 *1 (-1317 *4))))) -(-10 -7 (-15 -1917 ((-112) (-1289 |#1|))) (-15 -1440 ((-3 (-1289 (-576)) "failed") (-1289 |#1|))) (-15 -3053 ((-3 (-1289 (-419 (-576))) "failed") (-1289 |#1|) |#1|))) -((-3429 (((-112) $ $) NIL)) (-2364 (((-112) $) 11)) (-2721 (((-3 $ "failed") $ $) NIL)) (-2193 (((-784)) 8)) (-4359 (($) NIL T CONST)) (-3843 (((-3 $ "failed") $) 58)) (-1892 (($) 49)) (-4094 (((-112) $) 57)) (-4019 (((-3 $ "failed") $) 40)) (-3007 (((-941) $) 15)) (-2342 (((-1180) $) NIL)) (-1706 (($) 32 T CONST)) (-3178 (($ (-941)) 50)) (-1471 (((-1142) $) NIL)) (-4148 (((-576) $) 13)) (-3501 (((-877) $) 27) (($ (-576)) 24)) (-1960 (((-784)) 9 T CONST)) (-2046 (((-112) $ $) 60)) (-2769 (($) 29 T CONST)) (-2779 (($) 31 T CONST)) (-2933 (((-112) $ $) 38)) (-3022 (($ $) 52) (($ $ $) 47)) (-3012 (($ $ $) 35)) (** (($ $ (-941)) NIL) (($ $ (-784)) 54)) (* (($ (-941) $) NIL) (($ (-784) $) NIL) (($ (-576) $) 44) (($ $ $) 43))) -(((-1318 |#1|) (-13 (-174) (-379) (-626 (-576)) (-1174)) (-941)) (T -1318)) -NIL -(-13 (-174) (-379) (-626 (-576)) (-1174)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3264106 3264111 3264116 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3264091 3264096 3264101 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3264076 3264081 3264086 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3264061 3264066 3264071 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1318 3263204 3263936 3264013 "ZMOD" 3264018 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1317 3262258 3262422 3262645 "ZLINDEP" 3263036 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1316 3251558 3253326 3255298 "ZDSOLVE" 3260388 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1315 3250804 3250945 3251134 "YSTREAM" 3251404 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1314 3250232 3250478 3250591 "YDIAGRAM" 3250713 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1313 3248006 3249533 3249737 "XRPOLY" 3250075 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1312 3244559 3245877 3246452 "XPR" 3247478 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1311 3242280 3243890 3244094 "XPOLY" 3244390 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1310 3239919 3241287 3241342 "XPOLYC" 3241630 NIL XPOLYC (NIL T T) -9 NIL 3241743 NIL) (-1309 3236295 3238436 3238824 "XPBWPOLY" 3239577 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1308 3231976 3234271 3234313 "XF" 3234934 NIL XF (NIL T) -9 NIL 3235334 NIL) (-1307 3231597 3231685 3231854 "XF-" 3231859 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1306 3226779 3228068 3228123 "XFALG" 3230295 NIL XFALG (NIL T T) -9 NIL 3231084 NIL) (-1305 3225912 3226016 3226221 "XEXPPKG" 3226671 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1304 3224021 3225762 3225858 "XDPOLY" 3225863 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1303 3222814 3223414 3223457 "XALG" 3223462 NIL XALG (NIL T) -9 NIL 3223573 NIL) (-1302 3216256 3220791 3221285 "WUTSET" 3222406 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1301 3214512 3215308 3215631 "WP" 3216067 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1300 3214114 3214334 3214404 "WHILEAST" 3214464 T WHILEAST (NIL) -8 NIL NIL NIL) (-1299 3213586 3213831 3213925 "WHEREAST" 3214042 T WHEREAST (NIL) -8 NIL NIL NIL) (-1298 3212472 3212670 3212965 "WFFINTBS" 3213383 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1297 3210376 3210803 3211265 "WEIER" 3212044 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1296 3209408 3209858 3209900 "VSPACE" 3210036 NIL VSPACE (NIL T) -9 NIL 3210110 NIL) (-1295 3209246 3209273 3209364 "VSPACE-" 3209369 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1294 3209055 3209097 3209165 "VOID" 3209200 T VOID (NIL) -8 NIL NIL NIL) (-1293 3207191 3207550 3207956 "VIEW" 3208671 T VIEW (NIL) -7 NIL NIL NIL) (-1292 3203615 3204254 3204991 "VIEWDEF" 3206476 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1291 3192919 3195163 3197336 "VIEW3D" 3201464 T VIEW3D (NIL) -8 NIL NIL NIL) (-1290 3185170 3186830 3188409 "VIEW2D" 3191362 T VIEW2D (NIL) -8 NIL NIL NIL) (-1289 3180526 3184940 3185032 "VECTOR" 3185113 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1288 3179103 3179362 3179680 "VECTOR2" 3180256 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1287 3172501 3176807 3176850 "VECTCAT" 3177845 NIL VECTCAT (NIL T) -9 NIL 3178432 NIL) (-1286 3171515 3171769 3172159 "VECTCAT-" 3172164 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1285 3170969 3171166 3171286 "VARIABLE" 3171430 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1284 3170902 3170907 3170937 "UTYPE" 3170942 T UTYPE (NIL) -9 NIL NIL NIL) (-1283 3169732 3169886 3170148 "UTSODETL" 3170728 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1282 3167172 3167632 3168156 "UTSODE" 3169273 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1281 3159120 3164933 3165413 "UTS" 3166750 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1280 3149684 3155054 3155097 "UTSCAT" 3156209 NIL UTSCAT (NIL T) -9 NIL 3156967 NIL) (-1279 3147032 3147754 3148743 "UTSCAT-" 3148748 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1278 3146659 3146702 3146835 "UTS2" 3146983 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1277 3140860 3143469 3143512 "URAGG" 3145582 NIL URAGG (NIL T) -9 NIL 3146305 NIL) (-1276 3137799 3138662 3139785 "URAGG-" 3139790 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1275 3133508 3136434 3136899 "UPXSSING" 3137463 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1274 3125684 3132890 3133154 "UPXS" 3133302 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1273 3118757 3125588 3125660 "UPXSCONS" 3125665 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1272 3108164 3114960 3115022 "UPXSCCA" 3115596 NIL UPXSCCA (NIL T T) -9 NIL 3115829 NIL) (-1271 3107802 3107887 3108061 "UPXSCCA-" 3108066 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1270 3097061 3103630 3103673 "UPXSCAT" 3104321 NIL UPXSCAT (NIL T) -9 NIL 3104930 NIL) (-1269 3096491 3096570 3096749 "UPXS2" 3096976 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1268 3095145 3095398 3095749 "UPSQFREE" 3096234 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1267 3088353 3091413 3091468 "UPSCAT" 3092548 NIL UPSCAT (NIL T T) -9 NIL 3093313 NIL) (-1266 3087557 3087764 3088091 "UPSCAT-" 3088096 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1265 3072639 3080684 3080727 "UPOLYC" 3082828 NIL UPOLYC (NIL T) -9 NIL 3084049 NIL) (-1264 3063967 3066393 3069540 "UPOLYC-" 3069545 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1263 3063594 3063637 3063770 "UPOLYC2" 3063918 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1262 3055129 3063277 3063406 "UP" 3063513 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1261 3054468 3054575 3054739 "UPMP" 3055018 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1260 3054021 3054102 3054241 "UPDIVP" 3054381 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1259 3052589 3052838 3053154 "UPDECOMP" 3053770 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1258 3051820 3051932 3052118 "UPCDEN" 3052473 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1257 3051339 3051408 3051557 "UP2" 3051745 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1256 3049806 3050543 3050820 "UNISEG" 3051097 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1255 3049021 3049148 3049353 "UNISEG2" 3049649 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1254 3048081 3048261 3048487 "UNIFACT" 3048837 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1253 3030833 3047393 3047635 "ULS" 3047897 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1252 3018463 3030737 3030809 "ULSCONS" 3030814 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1251 2999184 3011544 3011606 "ULSCCAT" 3012244 NIL ULSCCAT (NIL T T) -9 NIL 3012533 NIL) (-1250 2998234 2998479 2998867 "ULSCCAT-" 2998872 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1249 2987298 2993781 2993824 "ULSCAT" 2994687 NIL ULSCAT (NIL T) -9 NIL 2995418 NIL) (-1248 2986728 2986807 2986986 "ULS2" 2987213 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1247 2985847 2986357 2986464 "UINT8" 2986575 T UINT8 (NIL) -8 NIL NIL 2986660) (-1246 2984965 2985475 2985582 "UINT64" 2985693 T UINT64 (NIL) -8 NIL NIL 2985778) (-1245 2984083 2984593 2984700 "UINT32" 2984811 T UINT32 (NIL) -8 NIL NIL 2984896) (-1244 2983201 2983711 2983818 "UINT16" 2983929 T UINT16 (NIL) -8 NIL NIL 2984014) (-1243 2981490 2982447 2982477 "UFD" 2982689 T UFD (NIL) -9 NIL 2982803 NIL) (-1242 2981284 2981330 2981425 "UFD-" 2981430 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1241 2980366 2980549 2980765 "UDVO" 2981090 T UDVO (NIL) -7 NIL NIL NIL) (-1240 2978182 2978591 2979062 "UDPO" 2979930 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1239 2978115 2978120 2978150 "TYPE" 2978155 T TYPE (NIL) -9 NIL NIL NIL) (-1238 2977875 2978070 2978101 "TYPEAST" 2978106 T TYPEAST (NIL) -8 NIL NIL NIL) (-1237 2976846 2977048 2977288 "TWOFACT" 2977669 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1236 2975869 2976255 2976490 "TUPLE" 2976646 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1235 2973560 2974079 2974618 "TUBETOOL" 2975352 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1234 2972409 2972614 2972855 "TUBE" 2973353 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1233 2967138 2971381 2971664 "TS" 2972161 NIL TS (NIL T) -8 NIL NIL NIL) (-1232 2955778 2959897 2959994 "TSETCAT" 2965263 NIL TSETCAT (NIL T T T T) -9 NIL 2966794 NIL) (-1231 2950510 2952110 2954001 "TSETCAT-" 2954006 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1230 2945149 2945996 2946925 "TRMANIP" 2949646 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1229 2944590 2944653 2944816 "TRIMAT" 2945081 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1228 2942456 2942693 2943050 "TRIGMNIP" 2944339 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1227 2941976 2942089 2942119 "TRIGCAT" 2942332 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1226 2941645 2941724 2941865 "TRIGCAT-" 2941870 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1225 2938493 2940503 2940784 "TREE" 2941399 NIL TREE (NIL T) -8 NIL NIL NIL) (-1224 2937767 2938295 2938325 "TRANFUN" 2938360 T TRANFUN (NIL) -9 NIL 2938426 NIL) (-1223 2937046 2937237 2937517 "TRANFUN-" 2937522 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1222 2936850 2936882 2936943 "TOPSP" 2937007 T TOPSP (NIL) -7 NIL NIL NIL) (-1221 2936198 2936313 2936467 "TOOLSIGN" 2936731 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1220 2934832 2935375 2935614 "TEXTFILE" 2935981 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1219 2932744 2933285 2933714 "TEX" 2934425 T TEX (NIL) -8 NIL NIL NIL) (-1218 2932525 2932556 2932628 "TEX1" 2932707 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1217 2932173 2932236 2932326 "TEMUTL" 2932457 T TEMUTL (NIL) -7 NIL NIL NIL) (-1216 2930327 2930607 2930932 "TBCMPPK" 2931896 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1215 2922036 2928413 2928469 "TBAGG" 2928869 NIL TBAGG (NIL T T) -9 NIL 2929080 NIL) (-1214 2917106 2918594 2920348 "TBAGG-" 2920353 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1213 2916490 2916597 2916742 "TANEXP" 2916995 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1212 2916001 2916265 2916355 "TALGOP" 2916435 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1211 2909397 2915858 2915951 "TABLE" 2915956 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1210 2908809 2908908 2909046 "TABLEAU" 2909294 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1209 2903417 2904637 2905885 "TABLBUMP" 2907595 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1208 2902639 2902786 2902967 "SYSTEM" 2903258 T SYSTEM (NIL) -8 NIL NIL NIL) (-1207 2899098 2899797 2900580 "SYSSOLP" 2901890 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1206 2898896 2899053 2899084 "SYSPTR" 2899089 T SYSPTR (NIL) -8 NIL NIL NIL) (-1205 2897932 2898437 2898556 "SYSNNI" 2898742 NIL SYSNNI (NIL NIL) -8 NIL NIL 2898827) (-1204 2897231 2897690 2897769 "SYSINT" 2897829 NIL SYSINT (NIL NIL) -8 NIL NIL 2897874) (-1203 2893563 2894509 2895219 "SYNTAX" 2896543 T SYNTAX (NIL) -8 NIL NIL NIL) (-1202 2890721 2891323 2891955 "SYMTAB" 2892953 T SYMTAB (NIL) -8 NIL NIL NIL) (-1201 2885970 2886872 2887855 "SYMS" 2889760 T SYMS (NIL) -8 NIL NIL NIL) (-1200 2883205 2885428 2885658 "SYMPOLY" 2885775 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1199 2882722 2882797 2882920 "SYMFUNC" 2883117 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1198 2878742 2880034 2880847 "SYMBOL" 2881931 T SYMBOL (NIL) -8 NIL NIL NIL) (-1197 2872281 2873970 2875690 "SWITCH" 2877044 T SWITCH (NIL) -8 NIL NIL NIL) (-1196 2865625 2871237 2871531 "SUTS" 2872045 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1195 2857801 2865007 2865271 "SUPXS" 2865419 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1194 2849284 2857419 2857545 "SUP" 2857710 NIL SUP (NIL T) -8 NIL NIL NIL) (-1193 2848443 2848570 2848787 "SUPFRACF" 2849152 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1192 2848064 2848123 2848236 "SUP2" 2848378 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1191 2846512 2846786 2847142 "SUMRF" 2847763 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1190 2845847 2845913 2846105 "SUMFS" 2846433 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1189 2828634 2845159 2845401 "SULS" 2845663 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1188 2828236 2828456 2828526 "SUCHTAST" 2828586 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1187 2827531 2827761 2827901 "SUCH" 2828144 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1186 2821398 2822437 2823396 "SUBSPACE" 2826619 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1185 2820828 2820918 2821082 "SUBRESP" 2821286 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1184 2814196 2815493 2816804 "STTF" 2819564 NIL STTF (NIL T) -7 NIL NIL NIL) (-1183 2808369 2809489 2810636 "STTFNC" 2813096 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1182 2799682 2801551 2803345 "STTAYLOR" 2806610 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1181 2792818 2799546 2799629 "STRTBL" 2799634 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1180 2787779 2792527 2792626 "STRING" 2792741 T STRING (NIL) -8 NIL NIL NIL) (-1179 2780535 2785398 2786009 "STREAM" 2787203 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1178 2780045 2780122 2780266 "STREAM3" 2780452 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1177 2779027 2779210 2779445 "STREAM2" 2779858 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1176 2778715 2778767 2778860 "STREAM1" 2778969 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1175 2777731 2777912 2778143 "STINPROD" 2778531 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1174 2777269 2777479 2777509 "STEP" 2777589 T STEP (NIL) -9 NIL 2777667 NIL) (-1173 2776456 2776758 2776906 "STEPAST" 2777143 T STEPAST (NIL) -8 NIL NIL NIL) (-1172 2769894 2776355 2776432 "STBL" 2776437 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1171 2764964 2769057 2769100 "STAGG" 2769253 NIL STAGG (NIL T) -9 NIL 2769342 NIL) (-1170 2762666 2763268 2764140 "STAGG-" 2764145 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1169 2760816 2762436 2762528 "STACK" 2762609 NIL STACK (NIL T) -8 NIL NIL NIL) (-1168 2753511 2758957 2759413 "SREGSET" 2760446 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1167 2745936 2747305 2748818 "SRDCMPK" 2752117 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1166 2738773 2743295 2743325 "SRAGG" 2744628 T SRAGG (NIL) -9 NIL 2745236 NIL) (-1165 2737790 2738045 2738424 "SRAGG-" 2738429 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1164 2731974 2736737 2737158 "SQMATRIX" 2737416 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1163 2725662 2728692 2729419 "SPLTREE" 2731319 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1162 2721625 2722318 2722964 "SPLNODE" 2725088 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1161 2720672 2720905 2720935 "SPFCAT" 2721379 T SPFCAT (NIL) -9 NIL NIL NIL) (-1160 2719409 2719619 2719883 "SPECOUT" 2720430 T SPECOUT (NIL) -7 NIL NIL NIL) (-1159 2710505 2712377 2712407 "SPADXPT" 2717083 T SPADXPT (NIL) -9 NIL 2719247 NIL) (-1158 2710266 2710306 2710375 "SPADPRSR" 2710458 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1157 2708315 2710221 2710252 "SPADAST" 2710257 T SPADAST (NIL) -8 NIL NIL NIL) (-1156 2700246 2702019 2702062 "SPACEC" 2706435 NIL SPACEC (NIL T) -9 NIL 2708251 NIL) (-1155 2698376 2700178 2700227 "SPACE3" 2700232 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1154 2697128 2697299 2697590 "SORTPAK" 2698181 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1153 2695220 2695523 2695935 "SOLVETRA" 2696792 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1152 2694270 2694492 2694753 "SOLVESER" 2694993 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1151 2689574 2690462 2691457 "SOLVERAD" 2693322 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1150 2685389 2685998 2686727 "SOLVEFOR" 2688941 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1149 2679659 2684738 2684835 "SNTSCAT" 2684840 NIL SNTSCAT (NIL T T T T) -9 NIL 2684910 NIL) (-1148 2673765 2677982 2678373 "SMTS" 2679349 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1147 2668174 2673653 2673730 "SMP" 2673735 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1146 2666333 2666634 2667032 "SMITH" 2667871 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1145 2658437 2662912 2663015 "SMATCAT" 2664366 NIL SMATCAT (NIL NIL T T T) -9 NIL 2664916 NIL) (-1144 2655377 2656200 2657378 "SMATCAT-" 2657383 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1143 2653018 2654585 2654628 "SKAGG" 2654889 NIL SKAGG (NIL T) -9 NIL 2655024 NIL) (-1142 2649208 2652491 2652675 "SINT" 2652827 T SINT (NIL) -8 NIL NIL 2652989) (-1141 2648980 2649018 2649084 "SIMPAN" 2649164 T SIMPAN (NIL) -7 NIL NIL NIL) (-1140 2648259 2648515 2648655 "SIG" 2648862 T SIG (NIL) -8 NIL NIL NIL) (-1139 2647097 2647318 2647593 "SIGNRF" 2648018 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1138 2645930 2646081 2646365 "SIGNEF" 2646926 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1137 2645236 2645513 2645637 "SIGAST" 2645828 T SIGAST (NIL) -8 NIL NIL NIL) (-1136 2642926 2643380 2643886 "SHP" 2644777 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1135 2636755 2642827 2642903 "SHDP" 2642908 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1134 2636314 2636506 2636536 "SGROUP" 2636629 T SGROUP (NIL) -9 NIL 2636691 NIL) (-1133 2636172 2636198 2636271 "SGROUP-" 2636276 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1132 2632963 2633661 2634384 "SGCF" 2635471 T SGCF (NIL) -7 NIL NIL NIL) (-1131 2627331 2632410 2632507 "SFRTCAT" 2632512 NIL SFRTCAT (NIL T T T T) -9 NIL 2632551 NIL) (-1130 2620752 2621770 2622906 "SFRGCD" 2626314 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1129 2613878 2614951 2616137 "SFQCMPK" 2619685 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1128 2613498 2613587 2613698 "SFORT" 2613819 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1127 2612616 2613338 2613459 "SEXOF" 2613464 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1126 2611723 2612497 2612565 "SEX" 2612570 T SEX (NIL) -8 NIL NIL NIL) (-1125 2607504 2608219 2608314 "SEXCAT" 2610936 NIL SEXCAT (NIL T T T T T) -9 NIL 2611496 NIL) (-1124 2604657 2607438 2607486 "SET" 2607491 NIL SET (NIL T) -8 NIL NIL NIL) (-1123 2602881 2603370 2603675 "SETMN" 2604398 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1122 2602447 2602599 2602629 "SETCAT" 2602746 T SETCAT (NIL) -9 NIL 2602831 NIL) (-1121 2602227 2602279 2602378 "SETCAT-" 2602383 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1120 2598588 2600688 2600731 "SETAGG" 2601601 NIL SETAGG (NIL T) -9 NIL 2601941 NIL) (-1119 2598046 2598162 2598399 "SETAGG-" 2598404 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1118 2597489 2597742 2597843 "SEQAST" 2597967 T SEQAST (NIL) -8 NIL NIL NIL) (-1117 2596688 2596982 2597043 "SEGXCAT" 2597329 NIL SEGXCAT (NIL T T) -9 NIL 2597449 NIL) (-1116 2595694 2596354 2596536 "SEG" 2596541 NIL SEG (NIL T) -8 NIL NIL NIL) (-1115 2594673 2594887 2594930 "SEGCAT" 2595452 NIL SEGCAT (NIL T) -9 NIL 2595673 NIL) (-1114 2593605 2594036 2594244 "SEGBIND" 2594500 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1113 2593226 2593285 2593398 "SEGBIND2" 2593540 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1112 2592799 2593027 2593104 "SEGAST" 2593171 T SEGAST (NIL) -8 NIL NIL NIL) (-1111 2592018 2592144 2592348 "SEG2" 2592643 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1110 2591389 2591953 2592000 "SDVAR" 2592005 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1109 2583640 2591159 2591289 "SDPOL" 2591294 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1108 2582233 2582499 2582818 "SCPKG" 2583355 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1107 2581397 2581569 2581761 "SCOPE" 2582063 T SCOPE (NIL) -8 NIL NIL NIL) (-1106 2580617 2580751 2580930 "SCACHE" 2581252 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1105 2580249 2580435 2580465 "SASTCAT" 2580470 T SASTCAT (NIL) -9 NIL 2580483 NIL) (-1104 2579736 2580084 2580160 "SAOS" 2580195 T SAOS (NIL) -8 NIL NIL NIL) (-1103 2579301 2579336 2579509 "SAERFFC" 2579695 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1102 2572964 2579198 2579278 "SAE" 2579283 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1101 2572557 2572592 2572751 "SAEFACT" 2572923 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1100 2570878 2571192 2571593 "RURPK" 2572223 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1099 2569515 2569821 2570126 "RULESET" 2570712 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1098 2566738 2567268 2567726 "RULE" 2569196 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1097 2566350 2566532 2566615 "RULECOLD" 2566690 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1096 2566140 2566168 2566239 "RTVALUE" 2566301 T RTVALUE (NIL) -8 NIL NIL NIL) (-1095 2565611 2565857 2565951 "RSTRCAST" 2566068 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1094 2560459 2561254 2562174 "RSETGCD" 2564810 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1093 2549689 2554768 2554865 "RSETCAT" 2558984 NIL RSETCAT (NIL T T T T) -9 NIL 2560081 NIL) (-1092 2547616 2548155 2548979 "RSETCAT-" 2548984 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1091 2540002 2541378 2542898 "RSDCMPK" 2546215 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1090 2537967 2538434 2538508 "RRCC" 2539594 NIL RRCC (NIL T T) -9 NIL 2539938 NIL) (-1089 2537318 2537492 2537771 "RRCC-" 2537776 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1088 2536761 2537014 2537115 "RPTAST" 2537239 T RPTAST (NIL) -8 NIL NIL NIL) (-1087 2510237 2519873 2519940 "RPOLCAT" 2530606 NIL RPOLCAT (NIL T T T) -9 NIL 2533766 NIL) (-1086 2501735 2504075 2507197 "RPOLCAT-" 2507202 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1085 2492672 2499946 2500428 "ROUTINE" 2501275 T ROUTINE (NIL) -8 NIL NIL NIL) (-1084 2489333 2492298 2492438 "ROMAN" 2492554 T ROMAN (NIL) -8 NIL NIL NIL) (-1083 2487577 2488193 2488453 "ROIRC" 2489138 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1082 2483781 2486066 2486096 "RNS" 2486400 T RNS (NIL) -9 NIL 2486674 NIL) (-1081 2482290 2482673 2483207 "RNS-" 2483282 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1080 2481679 2482087 2482117 "RNG" 2482122 T RNG (NIL) -9 NIL 2482143 NIL) (-1079 2480682 2481044 2481246 "RNGBIND" 2481530 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1078 2480067 2480455 2480498 "RMODULE" 2480503 NIL RMODULE (NIL T) -9 NIL 2480530 NIL) (-1077 2478903 2478997 2479333 "RMCAT2" 2479968 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1076 2475753 2478249 2478546 "RMATRIX" 2478665 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1075 2468580 2470840 2470955 "RMATCAT" 2474314 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2475296 NIL) (-1074 2467955 2468102 2468409 "RMATCAT-" 2468414 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1073 2467570 2467742 2467785 "RLINSET" 2467847 NIL RLINSET (NIL T) -9 NIL 2467891 NIL) (-1072 2467137 2467212 2467340 "RINTERP" 2467489 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1071 2466181 2466735 2466765 "RING" 2466821 T RING (NIL) -9 NIL 2466913 NIL) (-1070 2465973 2466017 2466114 "RING-" 2466119 NIL RING- (NIL T) -8 NIL NIL NIL) (-1069 2464814 2465051 2465309 "RIDIST" 2465737 T RIDIST (NIL) -7 NIL NIL NIL) (-1068 2456103 2464282 2464488 "RGCHAIN" 2464662 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1067 2455439 2455845 2455886 "RGBCSPC" 2455944 NIL RGBCSPC (NIL T) -9 NIL 2455996 NIL) (-1066 2454583 2454964 2455005 "RGBCMDL" 2455237 NIL RGBCMDL (NIL T) -9 NIL 2455351 NIL) (-1065 2451577 2452191 2452861 "RF" 2453947 NIL RF (NIL T) -7 NIL NIL NIL) (-1064 2451223 2451286 2451389 "RFFACTOR" 2451508 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1063 2450948 2450983 2451080 "RFFACT" 2451182 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1062 2449065 2449429 2449811 "RFDIST" 2450588 T RFDIST (NIL) -7 NIL NIL NIL) (-1061 2448518 2448610 2448773 "RETSOL" 2448967 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1060 2448154 2448234 2448277 "RETRACT" 2448410 NIL RETRACT (NIL T) -9 NIL 2448497 NIL) (-1059 2448003 2448028 2448115 "RETRACT-" 2448120 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1058 2447605 2447825 2447895 "RETAST" 2447955 T RETAST (NIL) -8 NIL NIL NIL) (-1057 2440349 2447258 2447385 "RESULT" 2447500 T RESULT (NIL) -8 NIL NIL NIL) (-1056 2438940 2439618 2439817 "RESRING" 2440252 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1055 2438576 2438625 2438723 "RESLATC" 2438877 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1054 2438281 2438316 2438423 "REPSQ" 2438535 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1053 2435703 2436283 2436885 "REP" 2437701 T REP (NIL) -7 NIL NIL NIL) (-1052 2435400 2435435 2435546 "REPDB" 2435662 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1051 2429300 2430689 2431912 "REP2" 2434212 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1050 2425677 2426358 2427166 "REP1" 2428527 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1049 2418373 2423818 2424274 "REGSET" 2425307 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1048 2417138 2417521 2417771 "REF" 2418158 NIL REF (NIL T) -8 NIL NIL NIL) (-1047 2416515 2416618 2416785 "REDORDER" 2417022 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1046 2412483 2415728 2415955 "RECLOS" 2416343 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1045 2411535 2411716 2411931 "REALSOLV" 2412290 T REALSOLV (NIL) -7 NIL NIL NIL) (-1044 2411381 2411422 2411452 "REAL" 2411457 T REAL (NIL) -9 NIL 2411492 NIL) (-1043 2407864 2408666 2409550 "REAL0Q" 2410546 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1042 2403465 2404453 2405514 "REAL0" 2406845 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1041 2402936 2403182 2403276 "RDUCEAST" 2403393 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1040 2402341 2402413 2402620 "RDIV" 2402858 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1039 2401409 2401583 2401796 "RDIST" 2402163 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1038 2400006 2400293 2400665 "RDETRS" 2401117 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1037 2397818 2398272 2398810 "RDETR" 2399548 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1036 2396443 2396721 2397118 "RDEEFS" 2397534 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1035 2394952 2395258 2395683 "RDEEF" 2396131 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1034 2388985 2391906 2391936 "RCFIELD" 2393231 T RCFIELD (NIL) -9 NIL 2393962 NIL) (-1033 2387049 2387553 2388249 "RCFIELD-" 2388324 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1032 2383293 2385122 2385165 "RCAGG" 2386249 NIL RCAGG (NIL T) -9 NIL 2386714 NIL) (-1031 2382921 2383015 2383178 "RCAGG-" 2383183 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1030 2382256 2382368 2382533 "RATRET" 2382805 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1029 2381809 2381876 2381997 "RATFACT" 2382184 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1028 2381117 2381237 2381389 "RANDSRC" 2381679 T RANDSRC (NIL) -7 NIL NIL NIL) (-1027 2380851 2380895 2380968 "RADUTIL" 2381066 T RADUTIL (NIL) -7 NIL NIL NIL) (-1026 2373679 2379682 2379993 "RADIX" 2380574 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1025 2364139 2373521 2373651 "RADFF" 2373656 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1024 2363786 2363861 2363891 "RADCAT" 2364051 T RADCAT (NIL) -9 NIL NIL NIL) (-1023 2363568 2363616 2363716 "RADCAT-" 2363721 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1022 2361669 2363338 2363430 "QUEUE" 2363511 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1021 2357930 2361602 2361650 "QUAT" 2361655 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1020 2357561 2357604 2357735 "QUATCT2" 2357881 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1019 2350359 2353984 2354026 "QUATCAT" 2354817 NIL QUATCAT (NIL T) -9 NIL 2355583 NIL) (-1018 2346498 2347535 2348925 "QUATCAT-" 2349021 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1017 2343938 2345546 2345589 "QUAGG" 2345970 NIL QUAGG (NIL T) -9 NIL 2346145 NIL) (-1016 2343540 2343760 2343830 "QQUTAST" 2343890 T QQUTAST (NIL) -8 NIL NIL NIL) (-1015 2342553 2343053 2343218 "QFORM" 2343421 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1014 2332885 2338400 2338442 "QFCAT" 2339110 NIL QFCAT (NIL T) -9 NIL 2340111 NIL) (-1013 2328452 2329653 2331247 "QFCAT-" 2331343 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1012 2328083 2328126 2328257 "QFCAT2" 2328403 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1011 2327538 2327648 2327780 "QEQUAT" 2327973 T QEQUAT (NIL) -8 NIL NIL NIL) (-1010 2320664 2321737 2322923 "QCMPACK" 2326471 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1009 2318202 2318650 2319080 "QALGSET" 2320319 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1008 2317437 2317613 2317849 "QALGSET2" 2318020 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1007 2316122 2316346 2316665 "PWFFINTB" 2317210 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1006 2314297 2314465 2314821 "PUSHVAR" 2315936 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1005 2310186 2311240 2311283 "PTRANFN" 2313194 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1004 2308577 2308868 2309192 "PTPACK" 2309897 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1003 2308206 2308263 2308374 "PTFUNC2" 2308514 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-1002 2302601 2306995 2307038 "PTCAT" 2307338 NIL PTCAT (NIL T) -9 NIL 2307491 NIL) (-1001 2302256 2302291 2302417 "PSQFR" 2302560 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-1000 2300846 2301144 2301480 "PSEUDLIN" 2301954 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-999 2287609 2289980 2292304 "PSETPK" 2298606 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-998 2280627 2283367 2283463 "PSETCAT" 2286484 NIL PSETCAT (NIL T T T T) -9 NIL 2287298 NIL) (-997 2278463 2279097 2279918 "PSETCAT-" 2279923 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-996 2277812 2277977 2278005 "PSCURVE" 2278273 T PSCURVE (NIL) -9 NIL 2278440 NIL) (-995 2273796 2275312 2275377 "PSCAT" 2276221 NIL PSCAT (NIL T T T) -9 NIL 2276461 NIL) (-994 2272859 2273075 2273475 "PSCAT-" 2273480 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-993 2271218 2271928 2272191 "PRTITION" 2272616 T PRTITION (NIL) -8 NIL NIL NIL) (-992 2270693 2270939 2271031 "PRTDAST" 2271146 T PRTDAST (NIL) -8 NIL NIL NIL) (-991 2259783 2261997 2264185 "PRS" 2268555 NIL PRS (NIL T T) -7 NIL NIL NIL) (-990 2257569 2259105 2259145 "PRQAGG" 2259328 NIL PRQAGG (NIL T) -9 NIL 2259430 NIL) (-989 2256905 2257210 2257238 "PROPLOG" 2257377 T PROPLOG (NIL) -9 NIL 2257492 NIL) (-988 2256509 2256566 2256689 "PROPFUN2" 2256828 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-987 2255824 2255945 2256117 "PROPFUN1" 2256370 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-986 2254005 2254571 2254868 "PROPFRML" 2255560 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-985 2253474 2253581 2253709 "PROPERTY" 2253897 T PROPERTY (NIL) -8 NIL NIL NIL) (-984 2247532 2251640 2252460 "PRODUCT" 2252700 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-983 2244810 2246990 2247224 "PR" 2247343 NIL PR (NIL T T) -8 NIL NIL NIL) (-982 2244606 2244638 2244697 "PRINT" 2244771 T PRINT (NIL) -7 NIL NIL NIL) (-981 2243946 2244063 2244215 "PRIMES" 2244486 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-980 2242011 2242412 2242878 "PRIMELT" 2243525 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-979 2241740 2241789 2241817 "PRIMCAT" 2241941 T PRIMCAT (NIL) -9 NIL NIL NIL) (-978 2237858 2241678 2241723 "PRIMARR" 2241728 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-977 2236865 2237043 2237271 "PRIMARR2" 2237676 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-976 2236508 2236564 2236675 "PREASSOC" 2236803 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-975 2235983 2236116 2236144 "PPCURVE" 2236349 T PPCURVE (NIL) -9 NIL 2236485 NIL) (-974 2235578 2235778 2235861 "PORTNUM" 2235920 T PORTNUM (NIL) -8 NIL NIL NIL) (-973 2232937 2233336 2233928 "POLYROOT" 2235159 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-972 2226843 2232541 2232701 "POLY" 2232810 NIL POLY (NIL T) -8 NIL NIL NIL) (-971 2226226 2226284 2226518 "POLYLIFT" 2226779 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-970 2222501 2222950 2223579 "POLYCATQ" 2225771 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-969 2208843 2214248 2214313 "POLYCAT" 2217827 NIL POLYCAT (NIL T T T) -9 NIL 2219705 NIL) (-968 2202292 2204154 2206538 "POLYCAT-" 2206543 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-967 2201879 2201947 2202067 "POLY2UP" 2202218 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-966 2201511 2201568 2201677 "POLY2" 2201816 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-965 2200196 2200435 2200711 "POLUTIL" 2201285 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-964 2198551 2198828 2199159 "POLTOPOL" 2199918 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-963 2194017 2198485 2198532 "POINT" 2198537 NIL POINT (NIL T) -8 NIL NIL NIL) (-962 2192204 2192561 2192936 "PNTHEORY" 2193662 T PNTHEORY (NIL) -7 NIL NIL NIL) (-961 2190662 2190959 2191358 "PMTOOLS" 2191902 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-960 2190255 2190333 2190450 "PMSYM" 2190578 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-959 2189763 2189832 2190007 "PMQFCAT" 2190180 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-958 2189118 2189228 2189384 "PMPRED" 2189640 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-957 2188511 2188597 2188759 "PMPREDFS" 2189019 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-956 2187175 2187383 2187761 "PMPLCAT" 2188273 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-955 2186707 2186786 2186938 "PMLSAGG" 2187090 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-954 2186180 2186256 2186438 "PMKERNEL" 2186625 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-953 2185797 2185872 2185985 "PMINS" 2186099 NIL PMINS (NIL T) -7 NIL NIL NIL) (-952 2185239 2185308 2185517 "PMFS" 2185722 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-951 2184467 2184585 2184790 "PMDOWN" 2185116 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-950 2183634 2183792 2183973 "PMASS" 2184306 T PMASS (NIL) -7 NIL NIL NIL) (-949 2182907 2183017 2183180 "PMASSFS" 2183521 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-948 2182562 2182630 2182724 "PLOTTOOL" 2182833 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-947 2177169 2178373 2179521 "PLOT" 2181434 T PLOT (NIL) -8 NIL NIL NIL) (-946 2172973 2174017 2174938 "PLOT3D" 2176268 T PLOT3D (NIL) -8 NIL NIL NIL) (-945 2171885 2172062 2172297 "PLOT1" 2172777 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-944 2147276 2151951 2156802 "PLEQN" 2167151 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-943 2146594 2146716 2146896 "PINTERP" 2147141 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-942 2146287 2146334 2146437 "PINTERPA" 2146541 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-941 2145503 2146051 2146138 "PI" 2146178 T PI (NIL) -8 NIL NIL 2146245) (-940 2143786 2144761 2144789 "PID" 2144971 T PID (NIL) -9 NIL 2145105 NIL) (-939 2143537 2143574 2143649 "PICOERCE" 2143743 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-938 2142857 2142996 2143172 "PGROEB" 2143393 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-937 2138444 2139258 2140163 "PGE" 2141972 T PGE (NIL) -7 NIL NIL NIL) (-936 2136567 2136814 2137180 "PGCD" 2138161 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-935 2135905 2136008 2136169 "PFRPAC" 2136451 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-934 2132545 2134453 2134806 "PFR" 2135584 NIL PFR (NIL T) -8 NIL NIL NIL) (-933 2130934 2131178 2131503 "PFOTOOLS" 2132292 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-932 2129467 2129706 2130057 "PFOQ" 2130691 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-931 2127968 2128180 2128536 "PFO" 2129251 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-930 2124521 2127857 2127926 "PF" 2127931 NIL PF (NIL NIL) -8 NIL NIL NIL) (-929 2121841 2123112 2123140 "PFECAT" 2123725 T PFECAT (NIL) -9 NIL 2124109 NIL) (-928 2121286 2121440 2121654 "PFECAT-" 2121659 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-927 2119889 2120141 2120442 "PFBRU" 2121035 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-926 2117755 2118107 2118539 "PFBR" 2119540 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-925 2113801 2115267 2115914 "PERM" 2117141 NIL PERM (NIL T) -8 NIL NIL NIL) (-924 2109035 2110008 2110878 "PERMGRP" 2112964 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-923 2107099 2108059 2108100 "PERMCAT" 2108500 NIL PERMCAT (NIL T) -9 NIL 2108798 NIL) (-922 2106752 2106793 2106917 "PERMAN" 2107052 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-921 2104243 2106417 2106539 "PENDTREE" 2106663 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-920 2103172 2103387 2103428 "PDSPC" 2103961 NIL PDSPC (NIL T) -9 NIL 2104206 NIL) (-919 2102275 2102493 2102855 "PDSPC-" 2102860 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-918 2101157 2101925 2101966 "PDRING" 2101971 NIL PDRING (NIL T) -9 NIL 2101999 NIL) (-917 2100044 2100662 2100716 "PDMOD" 2100721 NIL PDMOD (NIL T T) -9 NIL 2100825 NIL) (-916 2097259 2098037 2098705 "PDEPROB" 2099396 T PDEPROB (NIL) -8 NIL NIL NIL) (-915 2094804 2095308 2095863 "PDEPACK" 2096724 T PDEPACK (NIL) -7 NIL NIL NIL) (-914 2093716 2093906 2094157 "PDECOMP" 2094603 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-913 2091281 2092124 2092152 "PDECAT" 2092939 T PDECAT (NIL) -9 NIL 2093652 NIL) (-912 2090910 2090965 2091019 "PDDOM" 2091184 NIL PDDOM (NIL T T) -9 NIL 2091264 NIL) (-911 2090729 2090759 2090866 "PDDOM-" 2090871 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-910 2090480 2090513 2090603 "PCOMP" 2090690 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-909 2088658 2089281 2089578 "PBWLB" 2090209 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-908 2081131 2082731 2084069 "PATTERN" 2087341 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-907 2080763 2080820 2080929 "PATTERN2" 2081068 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-906 2078520 2078908 2079365 "PATTERN1" 2080352 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-905 2075888 2076469 2076950 "PATRES" 2078085 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-904 2075452 2075519 2075651 "PATRES2" 2075815 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-903 2073335 2073740 2074147 "PATMATCH" 2075119 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-902 2072831 2073040 2073081 "PATMAB" 2073188 NIL PATMAB (NIL T) -9 NIL 2073271 NIL) (-901 2071349 2071685 2071943 "PATLRES" 2072636 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-900 2070895 2071018 2071059 "PATAB" 2071064 NIL PATAB (NIL T) -9 NIL 2071236 NIL) (-899 2069077 2069472 2069895 "PARTPERM" 2070492 T PARTPERM (NIL) -7 NIL NIL NIL) (-898 2068698 2068761 2068863 "PARSURF" 2069008 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-897 2068330 2068387 2068496 "PARSU2" 2068635 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-896 2068094 2068134 2068201 "PARSER" 2068283 T PARSER (NIL) -7 NIL NIL NIL) (-895 2067715 2067778 2067880 "PARSCURV" 2068025 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-894 2067347 2067404 2067513 "PARSC2" 2067652 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-893 2066986 2067044 2067141 "PARPCURV" 2067283 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-892 2066618 2066675 2066784 "PARPC2" 2066923 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-891 2065679 2065991 2066173 "PARAMAST" 2066456 T PARAMAST (NIL) -8 NIL NIL NIL) (-890 2065199 2065285 2065404 "PAN2EXPR" 2065580 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-889 2063976 2064320 2064548 "PALETTE" 2064991 T PALETTE (NIL) -8 NIL NIL NIL) (-888 2062369 2062981 2063341 "PAIR" 2063662 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-887 2055961 2061626 2061821 "PADICRC" 2062223 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-886 2048877 2055305 2055490 "PADICRAT" 2055808 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-885 2047192 2048814 2048859 "PADIC" 2048864 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-884 2044288 2045852 2045892 "PADICCT" 2046473 NIL PADICCT (NIL NIL) -9 NIL 2046755 NIL) (-883 2043245 2043445 2043713 "PADEPAC" 2044075 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-882 2042457 2042590 2042796 "PADE" 2043107 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-881 2040844 2041665 2041945 "OWP" 2042261 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-880 2040337 2040550 2040647 "OVERSET" 2040767 T OVERSET (NIL) -8 NIL NIL NIL) (-879 2039383 2039942 2040114 "OVAR" 2040205 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-878 2038647 2038768 2038929 "OUT" 2039242 T OUT (NIL) -7 NIL NIL NIL) (-877 2027519 2029756 2031956 "OUTFORM" 2036467 T OUTFORM (NIL) -8 NIL NIL NIL) (-876 2026855 2027116 2027243 "OUTBFILE" 2027412 T OUTBFILE (NIL) -8 NIL NIL NIL) (-875 2026162 2026327 2026355 "OUTBCON" 2026673 T OUTBCON (NIL) -9 NIL 2026839 NIL) (-874 2025763 2025875 2026032 "OUTBCON-" 2026037 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-873 2025143 2025492 2025581 "OSI" 2025694 T OSI (NIL) -8 NIL NIL NIL) (-872 2024646 2024984 2025012 "OSGROUP" 2025017 T OSGROUP (NIL) -9 NIL 2025039 NIL) (-871 2023391 2023618 2023903 "ORTHPOL" 2024393 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-870 2020942 2023226 2023347 "OREUP" 2023352 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-869 2018345 2020633 2020760 "ORESUP" 2020884 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-868 2015873 2016373 2016934 "OREPCTO" 2017834 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-867 2009545 2011746 2011787 "OREPCAT" 2014135 NIL OREPCAT (NIL T) -9 NIL 2015239 NIL) (-866 2006692 2007474 2008532 "OREPCAT-" 2008537 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-865 2005939 2006162 2006190 "ORDTYPE" 2006499 T ORDTYPE (NIL) -9 NIL 2006662 NIL) (-864 2005282 2005456 2005711 "ORDTYPE-" 2005716 NIL ORDTYPE- (NIL T) -8 NIL NIL NIL) (-863 2004708 2005021 2005179 "ORDSTRCT" 2005184 NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-862 2004278 2004576 2004604 "ORDSET" 2004609 T ORDSET (NIL) -9 NIL 2004631 NIL) (-861 2002816 2003607 2003635 "ORDRING" 2003837 T ORDRING (NIL) -9 NIL 2003962 NIL) (-860 2002461 2002555 2002699 "ORDRING-" 2002704 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-859 2001814 2002277 2002305 "ORDMON" 2002310 T ORDMON (NIL) -9 NIL 2002331 NIL) (-858 2000976 2001123 2001318 "ORDFUNS" 2001663 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-857 2000287 2000706 2000734 "ORDFIN" 2000799 T ORDFIN (NIL) -9 NIL 2000873 NIL) (-856 1996846 1998873 1999282 "ORDCOMP" 1999911 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-855 1996112 1996239 1996425 "ORDCOMP2" 1996706 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-854 1992693 1993603 1994417 "OPTPROB" 1995318 T OPTPROB (NIL) -8 NIL NIL NIL) (-853 1989495 1990134 1990838 "OPTPACK" 1992009 T OPTPACK (NIL) -7 NIL NIL NIL) (-852 1987168 1987934 1987962 "OPTCAT" 1988781 T OPTCAT (NIL) -9 NIL 1989431 NIL) (-851 1986552 1986845 1986950 "OPSIG" 1987083 T OPSIG (NIL) -8 NIL NIL NIL) (-850 1986320 1986359 1986425 "OPQUERY" 1986506 T OPQUERY (NIL) -7 NIL NIL NIL) (-849 1983451 1984631 1985135 "OP" 1985849 NIL OP (NIL T) -8 NIL NIL NIL) (-848 1982811 1983037 1983078 "OPERCAT" 1983290 NIL OPERCAT (NIL T) -9 NIL 1983387 NIL) (-847 1982566 1982622 1982739 "OPERCAT-" 1982744 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-846 1979379 1981363 1981732 "ONECOMP" 1982230 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-845 1978684 1978799 1978973 "ONECOMP2" 1979251 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-844 1978103 1978209 1978339 "OMSERVER" 1978574 T OMSERVER (NIL) -7 NIL NIL NIL) (-843 1974965 1977543 1977583 "OMSAGG" 1977644 NIL OMSAGG (NIL T) -9 NIL 1977708 NIL) (-842 1973588 1973851 1974133 "OMPKG" 1974703 T OMPKG (NIL) -7 NIL NIL NIL) (-841 1973018 1973121 1973149 "OM" 1973448 T OM (NIL) -9 NIL NIL NIL) (-840 1971565 1972567 1972736 "OMLO" 1972899 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-839 1970525 1970672 1970892 "OMEXPR" 1971391 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-838 1969816 1970071 1970207 "OMERR" 1970409 T OMERR (NIL) -8 NIL NIL NIL) (-837 1968967 1969237 1969397 "OMERRK" 1969676 T OMERRK (NIL) -8 NIL NIL NIL) (-836 1968418 1968644 1968752 "OMENC" 1968879 T OMENC (NIL) -8 NIL NIL NIL) (-835 1962313 1963498 1964669 "OMDEV" 1967267 T OMDEV (NIL) -8 NIL NIL NIL) (-834 1961382 1961553 1961747 "OMCONN" 1962139 T OMCONN (NIL) -8 NIL NIL NIL) (-833 1959876 1960852 1960880 "OINTDOM" 1960885 T OINTDOM (NIL) -9 NIL 1960906 NIL) (-832 1957214 1958564 1958901 "OFMONOID" 1959571 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-831 1956586 1957151 1957196 "ODVAR" 1957201 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-830 1954009 1956331 1956486 "ODR" 1956491 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-829 1946314 1953785 1953911 "ODPOL" 1953916 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-828 1940113 1946186 1946291 "ODP" 1946296 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-827 1938879 1939094 1939369 "ODETOOLS" 1939887 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-826 1935846 1936504 1937220 "ODESYS" 1938212 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-825 1930728 1931636 1932661 "ODERTRIC" 1934921 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-824 1930154 1930236 1930430 "ODERED" 1930640 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-823 1927042 1927590 1928267 "ODERAT" 1929577 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-822 1924001 1924466 1925063 "ODEPRRIC" 1926571 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-821 1921944 1922540 1923026 "ODEPROB" 1923535 T ODEPROB (NIL) -8 NIL NIL NIL) (-820 1918464 1918949 1919596 "ODEPRIM" 1921423 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-819 1917713 1917815 1918075 "ODEPAL" 1918356 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-818 1913875 1914666 1915530 "ODEPACK" 1916869 T ODEPACK (NIL) -7 NIL NIL NIL) (-817 1912936 1913043 1913265 "ODEINT" 1913764 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-816 1907037 1908462 1909909 "ODEIFTBL" 1911509 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-815 1902435 1903221 1904173 "ODEEF" 1906196 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-814 1901784 1901873 1902096 "ODECONST" 1902340 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-813 1899895 1900556 1900584 "ODECAT" 1901189 T ODECAT (NIL) -9 NIL 1901720 NIL) (-812 1896750 1899600 1899722 "OCT" 1899805 NIL OCT (NIL T) -8 NIL NIL NIL) (-811 1896388 1896431 1896558 "OCTCT2" 1896701 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-810 1890995 1893431 1893471 "OC" 1894568 NIL OC (NIL T) -9 NIL 1895426 NIL) (-809 1888222 1888970 1889960 "OC-" 1890054 NIL OC- (NIL T T) -8 NIL NIL NIL) (-808 1887547 1888015 1888043 "OCAMON" 1888048 T OCAMON (NIL) -9 NIL 1888069 NIL) (-807 1887051 1887392 1887420 "OASGP" 1887425 T OASGP (NIL) -9 NIL 1887445 NIL) (-806 1886285 1886774 1886802 "OAMONS" 1886842 T OAMONS (NIL) -9 NIL 1886885 NIL) (-805 1885672 1886105 1886133 "OAMON" 1886138 T OAMON (NIL) -9 NIL 1886158 NIL) (-804 1884903 1885421 1885449 "OAGROUP" 1885454 T OAGROUP (NIL) -9 NIL 1885474 NIL) (-803 1884593 1884643 1884731 "NUMTUBE" 1884847 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-802 1878166 1879684 1881220 "NUMQUAD" 1883077 T NUMQUAD (NIL) -7 NIL NIL NIL) (-801 1873922 1874910 1875935 "NUMODE" 1877161 T NUMODE (NIL) -7 NIL NIL NIL) (-800 1871263 1872143 1872171 "NUMINT" 1873094 T NUMINT (NIL) -9 NIL 1873858 NIL) (-799 1870211 1870408 1870626 "NUMFMT" 1871065 T NUMFMT (NIL) -7 NIL NIL NIL) (-798 1856570 1859515 1862047 "NUMERIC" 1867718 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-797 1850940 1856019 1856114 "NTSCAT" 1856119 NIL NTSCAT (NIL T T T T) -9 NIL 1856158 NIL) (-796 1850134 1850299 1850492 "NTPOLFN" 1850779 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-795 1837935 1846959 1847771 "NSUP" 1849355 NIL NSUP (NIL T) -8 NIL NIL NIL) (-794 1837567 1837624 1837733 "NSUP2" 1837872 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-793 1827517 1837341 1837474 "NSMP" 1837479 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-792 1825949 1826250 1826607 "NREP" 1827205 NIL NREP (NIL T) -7 NIL NIL NIL) (-791 1824540 1824792 1825150 "NPCOEF" 1825692 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-790 1823606 1823721 1823937 "NORMRETR" 1824421 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-789 1821647 1821937 1822346 "NORMPK" 1823314 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-788 1821332 1821360 1821484 "NORMMA" 1821613 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-787 1821132 1821289 1821318 "NONE" 1821323 T NONE (NIL) -8 NIL NIL NIL) (-786 1820921 1820950 1821019 "NONE1" 1821096 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-785 1820418 1820480 1820659 "NODE1" 1820853 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-784 1818699 1819550 1819805 "NNI" 1820152 T NNI (NIL) -8 NIL NIL 1820387) (-783 1817119 1817432 1817796 "NLINSOL" 1818367 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-782 1813360 1814355 1815254 "NIPROB" 1816240 T NIPROB (NIL) -8 NIL NIL NIL) (-781 1812117 1812351 1812653 "NFINTBAS" 1813122 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-780 1811291 1811767 1811808 "NETCLT" 1811980 NIL NETCLT (NIL T) -9 NIL 1812062 NIL) (-779 1809999 1810230 1810511 "NCODIV" 1811059 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-778 1809761 1809798 1809873 "NCNTFRAC" 1809956 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-777 1807941 1808305 1808725 "NCEP" 1809386 NIL NCEP (NIL T) -7 NIL NIL NIL) (-776 1806778 1807551 1807579 "NASRING" 1807689 T NASRING (NIL) -9 NIL 1807769 NIL) (-775 1806573 1806617 1806711 "NASRING-" 1806716 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-774 1805666 1806191 1806219 "NARNG" 1806336 T NARNG (NIL) -9 NIL 1806427 NIL) (-773 1805358 1805425 1805559 "NARNG-" 1805564 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-772 1804237 1804444 1804679 "NAGSP" 1805143 T NAGSP (NIL) -7 NIL NIL NIL) (-771 1795509 1797193 1798866 "NAGS" 1802584 T NAGS (NIL) -7 NIL NIL NIL) (-770 1794057 1794365 1794696 "NAGF07" 1795198 T NAGF07 (NIL) -7 NIL NIL NIL) (-769 1788595 1789886 1791193 "NAGF04" 1792770 T NAGF04 (NIL) -7 NIL NIL NIL) (-768 1781563 1783177 1784810 "NAGF02" 1786982 T NAGF02 (NIL) -7 NIL NIL NIL) (-767 1776787 1777887 1779004 "NAGF01" 1780466 T NAGF01 (NIL) -7 NIL NIL NIL) (-766 1770415 1771981 1773566 "NAGE04" 1775222 T NAGE04 (NIL) -7 NIL NIL NIL) (-765 1761584 1763705 1765835 "NAGE02" 1768305 T NAGE02 (NIL) -7 NIL NIL NIL) (-764 1757537 1758484 1759448 "NAGE01" 1760640 T NAGE01 (NIL) -7 NIL NIL NIL) (-763 1755332 1755866 1756424 "NAGD03" 1756999 T NAGD03 (NIL) -7 NIL NIL NIL) (-762 1747082 1749010 1750964 "NAGD02" 1753398 T NAGD02 (NIL) -7 NIL NIL NIL) (-761 1740893 1742318 1743758 "NAGD01" 1745662 T NAGD01 (NIL) -7 NIL NIL NIL) (-760 1737102 1737924 1738761 "NAGC06" 1740076 T NAGC06 (NIL) -7 NIL NIL NIL) (-759 1735567 1735899 1736255 "NAGC05" 1736766 T NAGC05 (NIL) -7 NIL NIL NIL) (-758 1734943 1735062 1735206 "NAGC02" 1735443 T NAGC02 (NIL) -7 NIL NIL NIL) (-757 1733888 1734471 1734511 "NAALG" 1734590 NIL NAALG (NIL T) -9 NIL 1734651 NIL) (-756 1733723 1733752 1733842 "NAALG-" 1733847 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-755 1727673 1728781 1729968 "MULTSQFR" 1732619 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-754 1726992 1727067 1727251 "MULTFACT" 1727585 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-753 1719663 1723577 1723630 "MTSCAT" 1724700 NIL MTSCAT (NIL T T) -9 NIL 1725215 NIL) (-752 1719375 1719429 1719521 "MTHING" 1719603 NIL MTHING (NIL T) -7 NIL NIL NIL) (-751 1719167 1719200 1719260 "MSYSCMD" 1719335 T MSYSCMD (NIL) -7 NIL NIL NIL) (-750 1715249 1717922 1718242 "MSET" 1718880 NIL MSET (NIL T) -8 NIL NIL NIL) (-749 1712318 1714810 1714851 "MSETAGG" 1714856 NIL MSETAGG (NIL T) -9 NIL 1714890 NIL) (-748 1708160 1709697 1710442 "MRING" 1711618 NIL MRING (NIL T T) -8 NIL NIL NIL) (-747 1707726 1707793 1707924 "MRF2" 1708087 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-746 1707344 1707379 1707523 "MRATFAC" 1707685 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-745 1704956 1705251 1705682 "MPRFF" 1707049 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-744 1698977 1704810 1704907 "MPOLY" 1704912 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-743 1698467 1698502 1698710 "MPCPF" 1698936 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-742 1697981 1698024 1698208 "MPC3" 1698418 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-741 1697176 1697257 1697478 "MPC2" 1697896 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-740 1695477 1695814 1696204 "MONOTOOL" 1696836 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-739 1694688 1695005 1695033 "MONOID" 1695252 T MONOID (NIL) -9 NIL 1695399 NIL) (-738 1694234 1694353 1694534 "MONOID-" 1694539 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-737 1683824 1690054 1690113 "MONOGEN" 1690787 NIL MONOGEN (NIL T T) -9 NIL 1691243 NIL) (-736 1681042 1681777 1682777 "MONOGEN-" 1682896 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-735 1679861 1680307 1680335 "MONADWU" 1680727 T MONADWU (NIL) -9 NIL 1680965 NIL) (-734 1679233 1679392 1679640 "MONADWU-" 1679645 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-733 1678578 1678822 1678850 "MONAD" 1679057 T MONAD (NIL) -9 NIL 1679169 NIL) (-732 1678263 1678341 1678473 "MONAD-" 1678478 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-731 1676552 1677176 1677455 "MOEBIUS" 1678016 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-730 1675816 1676220 1676260 "MODULE" 1676265 NIL MODULE (NIL T) -9 NIL 1676304 NIL) (-729 1675384 1675480 1675670 "MODULE-" 1675675 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-728 1673064 1673748 1674075 "MODRING" 1675208 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-727 1670008 1671169 1671690 "MODOP" 1672593 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-726 1668596 1669075 1669352 "MODMONOM" 1669871 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-725 1658364 1666887 1667301 "MODMON" 1668233 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-724 1655520 1657208 1657484 "MODFIELD" 1658239 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-723 1654497 1654801 1654991 "MMLFORM" 1655350 T MMLFORM (NIL) -8 NIL NIL NIL) (-722 1654023 1654066 1654245 "MMAP" 1654448 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-721 1652088 1652855 1652896 "MLO" 1653319 NIL MLO (NIL T) -9 NIL 1653561 NIL) (-720 1649454 1649970 1650572 "MLIFT" 1651569 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-719 1648845 1648929 1649083 "MKUCFUNC" 1649365 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-718 1648444 1648514 1648637 "MKRECORD" 1648768 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-717 1647491 1647653 1647881 "MKFUNC" 1648255 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-716 1646879 1646983 1647139 "MKFLCFN" 1647374 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-715 1646156 1646258 1646443 "MKBCFUNC" 1646772 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-714 1642745 1645710 1645846 "MINT" 1646040 T MINT (NIL) -8 NIL NIL NIL) (-713 1641557 1641800 1642077 "MHROWRED" 1642500 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-712 1636937 1640092 1640497 "MFLOAT" 1641172 T MFLOAT (NIL) -8 NIL NIL NIL) (-711 1636294 1636370 1636541 "MFINFACT" 1636849 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-710 1632609 1633457 1634341 "MESH" 1635430 T MESH (NIL) -7 NIL NIL NIL) (-709 1630999 1631311 1631664 "MDDFACT" 1632296 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-708 1627769 1630130 1630171 "MDAGG" 1630426 NIL MDAGG (NIL T) -9 NIL 1630569 NIL) (-707 1616463 1627062 1627269 "MCMPLX" 1627582 T MCMPLX (NIL) -8 NIL NIL NIL) (-706 1615600 1615746 1615947 "MCDEN" 1616312 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-705 1613490 1613760 1614140 "MCALCFN" 1615330 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-704 1612415 1612655 1612888 "MAYBE" 1613296 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-703 1610027 1610550 1611112 "MATSTOR" 1611886 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-702 1605939 1609399 1609647 "MATRIX" 1609812 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-701 1601705 1602412 1603148 "MATLIN" 1605296 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-700 1591531 1594762 1594839 "MATCAT" 1599871 NIL MATCAT (NIL T T T) -9 NIL 1601343 NIL) (-699 1587724 1588794 1590207 "MATCAT-" 1590212 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-698 1586318 1586471 1586804 "MATCAT2" 1587559 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-697 1584430 1584754 1585138 "MAPPKG3" 1585993 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-696 1583411 1583584 1583806 "MAPPKG2" 1584254 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-695 1581910 1582194 1582521 "MAPPKG1" 1583117 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-694 1580989 1581316 1581493 "MAPPAST" 1581753 T MAPPAST (NIL) -8 NIL NIL NIL) (-693 1580600 1580658 1580781 "MAPHACK3" 1580925 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-692 1580192 1580253 1580367 "MAPHACK2" 1580532 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-691 1579630 1579733 1579875 "MAPHACK1" 1580083 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-690 1577709 1578330 1578634 "MAGMA" 1579358 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-689 1577188 1577433 1577524 "MACROAST" 1577638 T MACROAST (NIL) -8 NIL NIL NIL) (-688 1573609 1575427 1575888 "M3D" 1576760 NIL M3D (NIL T) -8 NIL NIL NIL) (-687 1567659 1571920 1571961 "LZSTAGG" 1572743 NIL LZSTAGG (NIL T) -9 NIL 1573038 NIL) (-686 1563617 1564790 1566247 "LZSTAGG-" 1566252 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-685 1560704 1561508 1561995 "LWORD" 1563162 NIL LWORD (NIL T) -8 NIL NIL NIL) (-684 1560280 1560508 1560583 "LSTAST" 1560649 T LSTAST (NIL) -8 NIL NIL NIL) (-683 1553170 1560051 1560185 "LSQM" 1560190 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-682 1552394 1552533 1552761 "LSPP" 1553025 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-681 1550206 1550507 1550963 "LSMP" 1552083 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-680 1546985 1547659 1548389 "LSMP1" 1549508 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-679 1540787 1546075 1546116 "LSAGG" 1546178 NIL LSAGG (NIL T) -9 NIL 1546256 NIL) (-678 1537482 1538406 1539619 "LSAGG-" 1539624 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-677 1535081 1536626 1536875 "LPOLY" 1537277 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-676 1534663 1534748 1534871 "LPEFRAC" 1534990 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-675 1532984 1533757 1534010 "LO" 1534495 NIL LO (NIL T T T) -8 NIL NIL NIL) (-674 1532596 1532734 1532762 "LOGIC" 1532873 T LOGIC (NIL) -9 NIL 1532954 NIL) (-673 1532458 1532481 1532552 "LOGIC-" 1532557 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-672 1531651 1531791 1531984 "LODOOPS" 1532314 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-671 1529074 1531567 1531633 "LODO" 1531638 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-670 1527612 1527847 1528200 "LODOF" 1528821 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-669 1523816 1526247 1526288 "LODOCAT" 1526726 NIL LODOCAT (NIL T) -9 NIL 1526937 NIL) (-668 1523549 1523607 1523734 "LODOCAT-" 1523739 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-667 1520869 1523390 1523508 "LODO2" 1523513 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-666 1518304 1520806 1520851 "LODO1" 1520856 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-665 1517185 1517350 1517655 "LODEEF" 1518127 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-664 1512463 1515351 1515392 "LNAGG" 1516254 NIL LNAGG (NIL T) -9 NIL 1516689 NIL) (-663 1511610 1511824 1512166 "LNAGG-" 1512171 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-662 1507746 1508535 1509174 "LMOPS" 1511025 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-661 1507135 1507523 1507564 "LMODULE" 1507569 NIL LMODULE (NIL T) -9 NIL 1507595 NIL) (-660 1504336 1506780 1506903 "LMDICT" 1507045 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-659 1503954 1504126 1504167 "LLINSET" 1504228 NIL LLINSET (NIL T) -9 NIL 1504272 NIL) (-658 1503653 1503862 1503922 "LITERAL" 1503927 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-657 1496819 1502587 1502891 "LIST" 1503382 NIL LIST (NIL T) -8 NIL NIL NIL) (-656 1496344 1496418 1496557 "LIST3" 1496739 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-655 1495351 1495529 1495757 "LIST2" 1496162 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-654 1493485 1493797 1494196 "LIST2MAP" 1494998 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-653 1493116 1493304 1493345 "LINSET" 1493350 NIL LINSET (NIL T) -9 NIL 1493384 NIL) (-652 1491529 1492143 1492184 "LINEXP" 1492674 NIL LINEXP (NIL T) -9 NIL 1492947 NIL) (-651 1490421 1490991 1491167 "LINELT" 1491405 NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-650 1488998 1489258 1489569 "LINDEP" 1490173 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-649 1485765 1486484 1487261 "LIMITRF" 1488253 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-648 1484068 1484364 1484773 "LIMITPS" 1485460 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-647 1478496 1483579 1483807 "LIE" 1483889 NIL LIE (NIL T T) -8 NIL NIL NIL) (-646 1477430 1477899 1477939 "LIECAT" 1478079 NIL LIECAT (NIL T) -9 NIL 1478230 NIL) (-645 1477271 1477298 1477386 "LIECAT-" 1477391 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-644 1469864 1476811 1476967 "LIB" 1477135 T LIB (NIL) -8 NIL NIL NIL) (-643 1465499 1466382 1467317 "LGROBP" 1468981 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-642 1463497 1463771 1464121 "LF" 1465220 NIL LF (NIL T T) -7 NIL NIL NIL) (-641 1462337 1463029 1463057 "LFCAT" 1463264 T LFCAT (NIL) -9 NIL 1463403 NIL) (-640 1459239 1459869 1460557 "LEXTRIPK" 1461701 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-639 1455983 1456809 1457312 "LEXP" 1458819 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-638 1455459 1455704 1455796 "LETAST" 1455911 T LETAST (NIL) -8 NIL NIL NIL) (-637 1453857 1454170 1454571 "LEADCDET" 1455141 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-636 1453047 1453121 1453350 "LAZM3PK" 1453778 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-635 1447964 1451124 1451662 "LAUPOL" 1452559 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-634 1447543 1447587 1447748 "LAPLACE" 1447914 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-633 1445482 1446644 1446895 "LA" 1447376 NIL LA (NIL T T T) -8 NIL NIL NIL) (-632 1444462 1445046 1445087 "LALG" 1445149 NIL LALG (NIL T) -9 NIL 1445208 NIL) (-631 1444176 1444235 1444371 "LALG-" 1444376 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-630 1444011 1444035 1444076 "KVTFROM" 1444138 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-629 1442934 1443378 1443563 "KTVLOGIC" 1443846 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-628 1442769 1442793 1442834 "KRCFROM" 1442896 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-627 1441673 1441860 1442159 "KOVACIC" 1442569 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-626 1441508 1441532 1441573 "KONVERT" 1441635 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-625 1441343 1441367 1441408 "KOERCE" 1441470 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-624 1439174 1439936 1440313 "KERNEL" 1440999 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-623 1438670 1438751 1438883 "KERNEL2" 1439088 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-622 1432381 1437147 1437201 "KDAGG" 1437578 NIL KDAGG (NIL T T) -9 NIL 1437784 NIL) (-621 1431910 1432034 1432239 "KDAGG-" 1432244 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-620 1425058 1431571 1431726 "KAFILE" 1431788 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-619 1419486 1424569 1424797 "JORDAN" 1424879 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-618 1418865 1419135 1419256 "JOINAST" 1419385 T JOINAST (NIL) -8 NIL NIL NIL) (-617 1418711 1418770 1418825 "JAVACODE" 1418830 T JAVACODE (NIL) -8 NIL NIL NIL) (-616 1414938 1416888 1416942 "IXAGG" 1417871 NIL IXAGG (NIL T T) -9 NIL 1418330 NIL) (-615 1413857 1414163 1414582 "IXAGG-" 1414587 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-614 1409390 1413779 1413838 "IVECTOR" 1413843 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-613 1408156 1408393 1408659 "ITUPLE" 1409157 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-612 1406658 1406835 1407130 "ITRIGMNP" 1407978 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-611 1405403 1405607 1405890 "ITFUN3" 1406434 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-610 1405035 1405092 1405201 "ITFUN2" 1405340 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-609 1404194 1404515 1404689 "ITFORM" 1404881 T ITFORM (NIL) -8 NIL NIL NIL) (-608 1402155 1403214 1403492 "ITAYLOR" 1403949 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-607 1391100 1396292 1397455 "ISUPS" 1401025 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-606 1390204 1390344 1390580 "ISUMP" 1390947 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-605 1385582 1390149 1390190 "ISTRING" 1390195 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-604 1385058 1385303 1385395 "ISAST" 1385510 T ISAST (NIL) -8 NIL NIL NIL) (-603 1384267 1384349 1384565 "IRURPK" 1384972 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-602 1383203 1383404 1383644 "IRSN" 1384047 T IRSN (NIL) -7 NIL NIL NIL) (-601 1381274 1381629 1382058 "IRRF2F" 1382841 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-600 1381021 1381059 1381135 "IRREDFFX" 1381230 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-599 1379636 1379895 1380194 "IROOT" 1380754 NIL IROOT (NIL T) -7 NIL NIL NIL) (-598 1376240 1377320 1378012 "IR" 1378976 NIL IR (NIL T) -8 NIL NIL NIL) (-597 1375445 1375733 1375884 "IRFORM" 1376109 T IRFORM (NIL) -8 NIL NIL NIL) (-596 1373058 1373553 1374119 "IR2" 1374923 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-595 1372158 1372271 1372485 "IR2F" 1372941 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-594 1371949 1371983 1372043 "IPRNTPK" 1372118 T IPRNTPK (NIL) -7 NIL NIL NIL) (-593 1368530 1371838 1371907 "IPF" 1371912 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-592 1366857 1368455 1368512 "IPADIC" 1368517 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-591 1366169 1366417 1366547 "IP4ADDR" 1366747 T IP4ADDR (NIL) -8 NIL NIL NIL) (-590 1365543 1365798 1365930 "IOMODE" 1366057 T IOMODE (NIL) -8 NIL NIL NIL) (-589 1364616 1365140 1365267 "IOBFILE" 1365436 T IOBFILE (NIL) -8 NIL NIL NIL) (-588 1364104 1364520 1364548 "IOBCON" 1364553 T IOBCON (NIL) -9 NIL 1364574 NIL) (-587 1363615 1363673 1363856 "INVLAPLA" 1364040 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-586 1353263 1355617 1358003 "INTTR" 1361279 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-585 1349598 1350340 1351205 "INTTOOLS" 1352448 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-584 1349184 1349275 1349392 "INTSLPE" 1349501 T INTSLPE (NIL) -7 NIL NIL NIL) (-583 1347137 1349107 1349166 "INTRVL" 1349171 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-582 1344739 1345251 1345826 "INTRF" 1346622 NIL INTRF (NIL T) -7 NIL NIL NIL) (-581 1344150 1344247 1344389 "INTRET" 1344637 NIL INTRET (NIL T) -7 NIL NIL NIL) (-580 1342147 1342536 1343006 "INTRAT" 1343758 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-579 1339410 1339993 1340612 "INTPM" 1341632 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-578 1336155 1336754 1337492 "INTPAF" 1338796 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-577 1331334 1332296 1333347 "INTPACK" 1335124 T INTPACK (NIL) -7 NIL NIL NIL) (-576 1328146 1331131 1331240 "INT" 1331245 T INT (NIL) -8 NIL NIL NIL) (-575 1327398 1327550 1327758 "INTHERTR" 1327988 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-574 1326837 1326917 1327105 "INTHERAL" 1327312 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-573 1324683 1325126 1325583 "INTHEORY" 1326400 T INTHEORY (NIL) -7 NIL NIL NIL) (-572 1316089 1317710 1319482 "INTG0" 1323035 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-571 1296662 1301452 1306262 "INTFTBL" 1311299 T INTFTBL (NIL) -8 NIL NIL NIL) (-570 1295911 1296049 1296222 "INTFACT" 1296521 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-569 1293338 1293784 1294341 "INTEF" 1295465 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-568 1291691 1292430 1292458 "INTDOM" 1292759 T INTDOM (NIL) -9 NIL 1292966 NIL) (-567 1291060 1291234 1291476 "INTDOM-" 1291481 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-566 1287420 1289349 1289403 "INTCAT" 1290202 NIL INTCAT (NIL T) -9 NIL 1290523 NIL) (-565 1286892 1286995 1287123 "INTBIT" 1287312 T INTBIT (NIL) -7 NIL NIL NIL) (-564 1285591 1285745 1286052 "INTALG" 1286737 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-563 1285074 1285164 1285321 "INTAF" 1285495 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-562 1278423 1284884 1285024 "INTABL" 1285029 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-561 1277756 1278222 1278287 "INT8" 1278321 T INT8 (NIL) -8 NIL NIL 1278366) (-560 1277088 1277554 1277619 "INT64" 1277653 T INT64 (NIL) -8 NIL NIL 1277698) (-559 1276420 1276886 1276951 "INT32" 1276985 T INT32 (NIL) -8 NIL NIL 1277030) (-558 1275752 1276218 1276283 "INT16" 1276317 T INT16 (NIL) -8 NIL NIL 1276362) (-557 1270447 1273300 1273328 "INS" 1274262 T INS (NIL) -9 NIL 1274927 NIL) (-556 1267687 1268458 1269432 "INS-" 1269505 NIL INS- (NIL T) -8 NIL NIL NIL) (-555 1266462 1266689 1266987 "INPSIGN" 1267440 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-554 1265580 1265697 1265894 "INPRODPF" 1266342 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-553 1264474 1264591 1264828 "INPRODFF" 1265460 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-552 1263474 1263626 1263886 "INNMFACT" 1264310 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-551 1262671 1262768 1262956 "INMODGCD" 1263373 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-550 1261179 1261424 1261748 "INFSP" 1262416 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-549 1260363 1260480 1260663 "INFPROD0" 1261059 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-548 1257218 1258428 1258943 "INFORM" 1259856 T INFORM (NIL) -8 NIL NIL NIL) (-547 1256828 1256888 1256986 "INFORM1" 1257153 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-546 1256351 1256440 1256554 "INFINITY" 1256734 T INFINITY (NIL) -7 NIL NIL NIL) (-545 1255527 1256071 1256172 "INETCLTS" 1256270 T INETCLTS (NIL) -8 NIL NIL NIL) (-544 1254143 1254393 1254714 "INEP" 1255275 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-543 1253348 1254040 1254105 "INDE" 1254110 NIL INDE (NIL T) -8 NIL NIL NIL) (-542 1252912 1252980 1253097 "INCRMAPS" 1253275 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-541 1251730 1252181 1252387 "INBFILE" 1252726 T INBFILE (NIL) -8 NIL NIL NIL) (-540 1247029 1247966 1248910 "INBFF" 1250818 NIL INBFF (NIL T) -7 NIL NIL NIL) (-539 1245937 1246206 1246234 "INBCON" 1246747 T INBCON (NIL) -9 NIL 1247013 NIL) (-538 1245189 1245412 1245688 "INBCON-" 1245693 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-537 1244668 1244913 1245004 "INAST" 1245118 T INAST (NIL) -8 NIL NIL NIL) (-536 1244095 1244347 1244453 "IMPTAST" 1244582 T IMPTAST (NIL) -8 NIL NIL NIL) (-535 1240496 1243939 1244043 "IMATRIX" 1244048 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-534 1239204 1239327 1239643 "IMATQF" 1240352 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-533 1237424 1237651 1237988 "IMATLIN" 1238960 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-532 1232005 1237348 1237406 "ILIST" 1237411 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-531 1229913 1231865 1231978 "IIARRAY2" 1231983 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-530 1225311 1229824 1229888 "IFF" 1229893 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-529 1224658 1224928 1225044 "IFAST" 1225215 T IFAST (NIL) -8 NIL NIL NIL) (-528 1219656 1223950 1224138 "IFARRAY" 1224515 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-527 1218836 1219560 1219633 "IFAMON" 1219638 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-526 1218420 1218485 1218539 "IEVALAB" 1218746 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-525 1218095 1218163 1218323 "IEVALAB-" 1218328 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-524 1217542 1218010 1218072 "IDPO" 1218077 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-523 1216750 1217431 1217506 "IDPOAMS" 1217511 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-522 1216015 1216639 1216714 "IDPOAM" 1216719 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-521 1214561 1215022 1215074 "IDPC" 1215586 NIL IDPC (NIL T T) -9 NIL 1215867 NIL) (-520 1213989 1214453 1214526 "IDPAM" 1214531 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-519 1213324 1213881 1213954 "IDPAG" 1213959 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-518 1212969 1213160 1213235 "IDENT" 1213269 T IDENT (NIL) -8 NIL NIL NIL) (-517 1209224 1210072 1210967 "IDECOMP" 1212126 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-516 1202061 1203147 1204194 "IDEAL" 1208260 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-515 1201221 1201333 1201533 "ICDEN" 1201945 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-514 1200292 1200701 1200848 "ICARD" 1201094 T ICARD (NIL) -8 NIL NIL NIL) (-513 1198352 1198665 1199070 "IBPTOOLS" 1199969 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-512 1193959 1197972 1198085 "IBITS" 1198271 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-511 1190682 1191258 1191953 "IBATOOL" 1193376 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-510 1188461 1188923 1189456 "IBACHIN" 1190217 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-509 1186293 1188307 1188410 "IARRAY2" 1188415 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-508 1182402 1186219 1186276 "IARRAY1" 1186281 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-507 1176262 1180814 1181295 "IAN" 1181941 T IAN (NIL) -8 NIL NIL NIL) (-506 1175773 1175830 1176003 "IALGFACT" 1176199 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-505 1175301 1175414 1175442 "HYPCAT" 1175649 T HYPCAT (NIL) -9 NIL NIL NIL) (-504 1174839 1174956 1175142 "HYPCAT-" 1175147 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-503 1174434 1174634 1174717 "HOSTNAME" 1174776 T HOSTNAME (NIL) -8 NIL NIL NIL) (-502 1174279 1174316 1174357 "HOMOTOP" 1174362 NIL HOMOTOP (NIL T) -9 NIL 1174395 NIL) (-501 1170836 1172211 1172252 "HOAGG" 1173233 NIL HOAGG (NIL T) -9 NIL 1173962 NIL) (-500 1169430 1169829 1170355 "HOAGG-" 1170360 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-499 1163146 1169023 1169173 "HEXADEC" 1169300 T HEXADEC (NIL) -8 NIL NIL NIL) (-498 1161894 1162116 1162379 "HEUGCD" 1162923 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-497 1160970 1161731 1161861 "HELLFDIV" 1161866 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-496 1159152 1160747 1160835 "HEAP" 1160914 NIL HEAP (NIL T) -8 NIL NIL NIL) (-495 1158415 1158704 1158838 "HEADAST" 1159038 T HEADAST (NIL) -8 NIL NIL NIL) (-494 1152258 1158330 1158392 "HDP" 1158397 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-493 1145970 1151893 1152045 "HDMP" 1152159 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-492 1145294 1145434 1145598 "HB" 1145826 T HB (NIL) -7 NIL NIL NIL) (-491 1138686 1145140 1145244 "HASHTBL" 1145249 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-490 1138162 1138407 1138499 "HASAST" 1138614 T HASAST (NIL) -8 NIL NIL NIL) (-489 1135940 1137784 1137966 "HACKPI" 1138000 T HACKPI (NIL) -8 NIL NIL NIL) (-488 1131608 1135793 1135906 "GTSET" 1135911 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-487 1125029 1131486 1131584 "GSTBL" 1131589 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-486 1117416 1124194 1124450 "GSERIES" 1124829 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-485 1116543 1116960 1116988 "GROUP" 1117191 T GROUP (NIL) -9 NIL 1117325 NIL) (-484 1115909 1116068 1116319 "GROUP-" 1116324 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-483 1114276 1114597 1114984 "GROEBSOL" 1115586 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-482 1113176 1113464 1113515 "GRMOD" 1114044 NIL GRMOD (NIL T T) -9 NIL 1114212 NIL) (-481 1112944 1112980 1113108 "GRMOD-" 1113113 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-480 1108234 1109298 1110298 "GRIMAGE" 1111964 T GRIMAGE (NIL) -8 NIL NIL NIL) (-479 1106700 1106961 1107285 "GRDEF" 1107930 T GRDEF (NIL) -7 NIL NIL NIL) (-478 1106144 1106260 1106401 "GRAY" 1106579 T GRAY (NIL) -7 NIL NIL NIL) (-477 1105317 1105723 1105774 "GRALG" 1105927 NIL GRALG (NIL T T) -9 NIL 1106020 NIL) (-476 1104978 1105051 1105214 "GRALG-" 1105219 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-475 1101755 1104563 1104741 "GPOLSET" 1104885 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-474 1101109 1101166 1101424 "GOSPER" 1101692 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-473 1096841 1097547 1098073 "GMODPOL" 1100808 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-472 1095846 1096030 1096268 "GHENSEL" 1096653 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-471 1090002 1090845 1091865 "GENUPS" 1094930 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-470 1089699 1089750 1089839 "GENUFACT" 1089945 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-469 1089111 1089188 1089353 "GENPGCD" 1089617 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-468 1088585 1088620 1088833 "GENMFACT" 1089070 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-467 1087151 1087408 1087715 "GENEEZ" 1088328 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-466 1081023 1086762 1086924 "GDMP" 1087074 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-465 1070366 1074794 1075900 "GCNAALG" 1080006 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-464 1068679 1069541 1069569 "GCDDOM" 1069824 T GCDDOM (NIL) -9 NIL 1069981 NIL) (-463 1068149 1068276 1068491 "GCDDOM-" 1068496 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-462 1066821 1067006 1067310 "GB" 1067928 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-461 1055437 1057767 1060159 "GBINTERN" 1064512 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-460 1053274 1053566 1053987 "GBF" 1055112 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-459 1052055 1052220 1052487 "GBEUCLID" 1053090 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-458 1051404 1051529 1051678 "GAUSSFAC" 1051926 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-457 1049771 1050073 1050387 "GALUTIL" 1051123 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-456 1048079 1048353 1048677 "GALPOLYU" 1049498 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-455 1045444 1045734 1046141 "GALFACTU" 1047776 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-454 1037250 1038749 1040357 "GALFACT" 1043876 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-453 1034638 1035296 1035324 "FVFUN" 1036480 T FVFUN (NIL) -9 NIL 1037200 NIL) (-452 1033904 1034086 1034114 "FVC" 1034405 T FVC (NIL) -9 NIL 1034588 NIL) (-451 1033547 1033729 1033797 "FUNDESC" 1033856 T FUNDESC (NIL) -8 NIL NIL NIL) (-450 1033162 1033344 1033425 "FUNCTION" 1033499 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-449 1030906 1031484 1031950 "FT" 1032716 T FT (NIL) -8 NIL NIL NIL) (-448 1029697 1030207 1030410 "FTEM" 1030723 T FTEM (NIL) -8 NIL NIL NIL) (-447 1027988 1028277 1028674 "FSUPFACT" 1029388 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-446 1026385 1026674 1027006 "FST" 1027676 T FST (NIL) -8 NIL NIL NIL) (-445 1025584 1025690 1025878 "FSRED" 1026267 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-444 1024283 1024539 1024886 "FSPRMELT" 1025299 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-443 1021589 1022027 1022513 "FSPECF" 1023846 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-442 1002654 1011363 1011404 "FS" 1015288 NIL FS (NIL T) -9 NIL 1017577 NIL) (-441 991297 994290 998347 "FS-" 998647 NIL FS- (NIL T T) -8 NIL NIL NIL) (-440 990825 990879 991049 "FSINT" 991238 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-439 989117 989818 990121 "FSERIES" 990604 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-438 988159 988275 988499 "FSCINT" 988997 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-437 984367 987103 987144 "FSAGG" 987514 NIL FSAGG (NIL T) -9 NIL 987773 NIL) (-436 982129 982730 983526 "FSAGG-" 983621 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-435 981171 981314 981541 "FSAGG2" 981982 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-434 978849 979129 979677 "FS2UPS" 980889 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-433 978483 978526 978655 "FS2" 978800 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-432 977361 977532 977834 "FS2EXPXP" 978308 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-431 976787 976902 977054 "FRUTIL" 977241 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-430 968200 972282 973640 "FR" 975461 NIL FR (NIL T) -8 NIL NIL NIL) (-429 963214 965889 965929 "FRNAALG" 967249 NIL FRNAALG (NIL T) -9 NIL 967847 NIL) (-428 958887 959963 961238 "FRNAALG-" 961988 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-427 958525 958568 958695 "FRNAAF2" 958838 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-426 956900 957374 957670 "FRMOD" 958337 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-425 954643 955275 955593 "FRIDEAL" 956691 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-424 953834 953921 954212 "FRIDEAL2" 954550 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-423 952967 953381 953422 "FRETRCT" 953427 NIL FRETRCT (NIL T) -9 NIL 953603 NIL) (-422 952079 952310 952661 "FRETRCT-" 952666 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-421 949153 950363 950422 "FRAMALG" 951304 NIL FRAMALG (NIL T T) -9 NIL 951596 NIL) (-420 947287 947742 948372 "FRAMALG-" 948595 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-419 940930 946760 947037 "FRAC" 947042 NIL FRAC (NIL T) -8 NIL NIL NIL) (-418 940566 940623 940730 "FRAC2" 940867 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-417 940202 940259 940366 "FR2" 940503 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-416 934687 937581 937609 "FPS" 938728 T FPS (NIL) -9 NIL 939285 NIL) (-415 934136 934245 934409 "FPS-" 934555 NIL FPS- (NIL T) -8 NIL NIL NIL) (-414 931424 933093 933121 "FPC" 933346 T FPC (NIL) -9 NIL 933488 NIL) (-413 931217 931257 931354 "FPC-" 931359 NIL FPC- (NIL T) -8 NIL NIL NIL) (-412 930007 930705 930746 "FPATMAB" 930751 NIL FPATMAB (NIL T) -9 NIL 930903 NIL) (-411 928246 928749 929096 "FPARFRAC" 929723 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-410 923640 924138 924820 "FORTRAN" 927678 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-409 921356 921856 922395 "FORT" 923121 T FORT (NIL) -7 NIL NIL NIL) (-408 919032 919594 919622 "FORTFN" 920682 T FORTFN (NIL) -9 NIL 921306 NIL) (-407 918796 918846 918874 "FORTCAT" 918933 T FORTCAT (NIL) -9 NIL 918995 NIL) (-406 916902 917412 917802 "FORMULA" 918426 T FORMULA (NIL) -8 NIL NIL NIL) (-405 916690 916720 916789 "FORMULA1" 916866 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-404 916213 916265 916438 "FORDER" 916632 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-403 915309 915473 915666 "FOP" 916040 T FOP (NIL) -7 NIL NIL NIL) (-402 913890 914589 914763 "FNLA" 915191 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-401 912605 913020 913048 "FNCAT" 913508 T FNCAT (NIL) -9 NIL 913768 NIL) (-400 912144 912564 912592 "FNAME" 912597 T FNAME (NIL) -8 NIL NIL NIL) (-399 910680 911643 911671 "FMTC" 911676 T FMTC (NIL) -9 NIL 911712 NIL) (-398 909426 910616 910662 "FMONOID" 910667 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-397 906213 907381 907422 "FMONCAT" 908639 NIL FMONCAT (NIL T) -9 NIL 909244 NIL) (-396 905363 905955 906104 "FM" 906109 NIL FM (NIL T T) -8 NIL NIL NIL) (-395 902787 903433 903461 "FMFUN" 904605 T FMFUN (NIL) -9 NIL 905313 NIL) (-394 902056 902237 902265 "FMC" 902555 T FMC (NIL) -9 NIL 902737 NIL) (-393 899121 899981 900035 "FMCAT" 901230 NIL FMCAT (NIL T T) -9 NIL 901725 NIL) (-392 897987 898887 898987 "FM1" 899066 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-391 895761 896177 896671 "FLOATRP" 897538 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-390 889339 893490 894111 "FLOAT" 895160 T FLOAT (NIL) -8 NIL NIL NIL) (-389 886777 887277 887855 "FLOATCP" 888806 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-388 885425 886369 886410 "FLINEXP" 886415 NIL FLINEXP (NIL T) -9 NIL 886508 NIL) (-387 884579 884814 885142 "FLINEXP-" 885147 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-386 883655 883799 884023 "FLASORT" 884431 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-385 880757 881625 881677 "FLALG" 882904 NIL FLALG (NIL T T) -9 NIL 883371 NIL) (-384 874417 878166 878207 "FLAGG" 879469 NIL FLAGG (NIL T) -9 NIL 880121 NIL) (-383 873143 873482 873972 "FLAGG-" 873977 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-382 872185 872328 872555 "FLAGG2" 872996 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-381 869022 870030 870089 "FINRALG" 871217 NIL FINRALG (NIL T T) -9 NIL 871725 NIL) (-380 868182 868411 868750 "FINRALG-" 868755 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-379 867548 867787 867815 "FINITE" 868011 T FINITE (NIL) -9 NIL 868118 NIL) (-378 859891 862078 862118 "FINAALG" 865785 NIL FINAALG (NIL T) -9 NIL 867238 NIL) (-377 855223 856273 857417 "FINAALG-" 858796 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-376 854591 854978 855081 "FILE" 855153 NIL FILE (NIL T) -8 NIL NIL NIL) (-375 853235 853573 853627 "FILECAT" 854311 NIL FILECAT (NIL T T) -9 NIL 854527 NIL) (-374 850937 852465 852493 "FIELD" 852533 T FIELD (NIL) -9 NIL 852613 NIL) (-373 849557 849942 850453 "FIELD-" 850458 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-372 847407 848192 848539 "FGROUP" 849243 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-371 846497 846661 846881 "FGLMICPK" 847239 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-370 842329 846422 846479 "FFX" 846484 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-369 841930 841991 842126 "FFSLPE" 842262 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-368 837920 838702 839498 "FFPOLY" 841166 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-367 837424 837460 837669 "FFPOLY2" 837878 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-366 833270 837343 837406 "FFP" 837411 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-365 828668 833181 833245 "FF" 833250 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-364 823794 828011 828201 "FFNBX" 828522 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-363 818722 822929 823187 "FFNBP" 823648 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-362 813355 818006 818217 "FFNB" 818555 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-361 812187 812385 812700 "FFINTBAS" 813152 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-360 808213 810434 810462 "FFIELDC" 811082 T FFIELDC (NIL) -9 NIL 811458 NIL) (-359 806875 807246 807743 "FFIELDC-" 807748 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-358 806444 806490 806614 "FFHOM" 806817 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-357 804139 804626 805143 "FFF" 805959 NIL FFF (NIL T) -7 NIL NIL NIL) (-356 799757 803881 803982 "FFCGX" 804082 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-355 795379 799489 799596 "FFCGP" 799700 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-354 790562 795106 795214 "FFCG" 795315 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-353 770091 780294 780380 "FFCAT" 785545 NIL FFCAT (NIL T T T) -9 NIL 786996 NIL) (-352 765288 766336 767650 "FFCAT-" 768880 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-351 764699 764742 764977 "FFCAT2" 765239 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-350 754022 757671 758891 "FEXPR" 763551 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-349 752984 753419 753460 "FEVALAB" 753544 NIL FEVALAB (NIL T) -9 NIL 753805 NIL) (-348 752143 752353 752691 "FEVALAB-" 752696 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-347 750709 751526 751729 "FDIV" 752042 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-346 747715 748456 748571 "FDIVCAT" 750139 NIL FDIVCAT (NIL T T T T) -9 NIL 750576 NIL) (-345 747477 747504 747674 "FDIVCAT-" 747679 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-344 746697 746784 747061 "FDIV2" 747384 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-343 745671 745992 746194 "FCTRDATA" 746515 T FCTRDATA (NIL) -8 NIL NIL NIL) (-342 744357 744616 744905 "FCPAK1" 745402 T FCPAK1 (NIL) -7 NIL NIL NIL) (-341 743456 743857 743998 "FCOMP" 744248 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-340 727161 730606 734144 "FC" 739938 T FC (NIL) -8 NIL NIL NIL) (-339 719454 723482 723522 "FAXF" 725324 NIL FAXF (NIL T) -9 NIL 726016 NIL) (-338 716731 717388 718213 "FAXF-" 718678 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-337 711786 716107 716283 "FARRAY" 716588 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-336 706666 708733 708786 "FAMR" 709809 NIL FAMR (NIL T T) -9 NIL 710269 NIL) (-335 705556 705858 706293 "FAMR-" 706298 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-334 704725 705478 705531 "FAMONOID" 705536 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-333 702497 703207 703260 "FAMONC" 704201 NIL FAMONC (NIL T T) -9 NIL 704587 NIL) (-332 701161 702251 702388 "FAGROUP" 702393 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-331 698956 699275 699678 "FACUTIL" 700842 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-330 698055 698240 698462 "FACTFUNC" 698766 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-329 690477 697358 697557 "EXPUPXS" 697911 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-328 687960 688500 689086 "EXPRTUBE" 689911 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-327 684231 684823 685553 "EXPRODE" 687299 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-326 669715 682880 683309 "EXPR" 683835 NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 664269 664856 665662 "EXPR2UPS" 669013 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-324 663901 663958 664067 "EXPR2" 664206 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-323 654898 663052 663343 "EXPEXPAN" 663737 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-322 654698 654855 654884 "EXIT" 654889 T EXIT (NIL) -8 NIL NIL NIL) (-321 654178 654422 654513 "EXITAST" 654627 T EXITAST (NIL) -8 NIL NIL NIL) (-320 653805 653867 653980 "EVALCYC" 654110 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-319 653346 653464 653505 "EVALAB" 653675 NIL EVALAB (NIL T) -9 NIL 653779 NIL) (-318 652827 652949 653170 "EVALAB-" 653175 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-317 650181 651483 651511 "EUCDOM" 652066 T EUCDOM (NIL) -9 NIL 652416 NIL) (-316 648586 649028 649618 "EUCDOM-" 649623 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-315 636125 638884 641634 "ESTOOLS" 645856 T ESTOOLS (NIL) -7 NIL NIL NIL) (-314 635757 635814 635923 "ESTOOLS2" 636062 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-313 635508 635550 635630 "ESTOOLS1" 635709 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-312 629531 631139 631167 "ES" 633935 T ES (NIL) -9 NIL 635345 NIL) (-311 624478 625765 627582 "ES-" 627746 NIL ES- (NIL T) -8 NIL NIL NIL) (-310 620852 621613 622393 "ESCONT" 623718 T ESCONT (NIL) -7 NIL NIL NIL) (-309 620597 620629 620711 "ESCONT1" 620814 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-308 620272 620322 620422 "ES2" 620541 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-307 619902 619960 620069 "ES1" 620208 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-306 619118 619247 619423 "ERROR" 619746 T ERROR (NIL) -7 NIL NIL NIL) (-305 612516 618977 619068 "EQTBL" 619073 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-304 605019 607830 609279 "EQ" 611100 NIL -2118 (NIL T) -8 NIL NIL NIL) (-303 604651 604708 604817 "EQ2" 604956 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-302 599942 600989 602082 "EP" 603590 NIL EP (NIL T) -7 NIL NIL NIL) (-301 598542 598833 599139 "ENV" 599656 T ENV (NIL) -8 NIL NIL NIL) (-300 597622 598176 598204 "ENTIRER" 598209 T ENTIRER (NIL) -9 NIL 598255 NIL) (-299 594316 595804 596165 "EMR" 597430 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-298 593446 593631 593685 "ELTAGG" 594065 NIL ELTAGG (NIL T T) -9 NIL 594276 NIL) (-297 593165 593227 593368 "ELTAGG-" 593373 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-296 592929 592958 593012 "ELTAB" 593096 NIL ELTAB (NIL T T) -9 NIL 593148 NIL) (-295 592055 592201 592400 "ELFUTS" 592780 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-294 591797 591853 591881 "ELEMFUN" 591986 T ELEMFUN (NIL) -9 NIL NIL NIL) (-293 591667 591688 591756 "ELEMFUN-" 591761 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-292 586456 589709 589750 "ELAGG" 590690 NIL ELAGG (NIL T) -9 NIL 591153 NIL) (-291 584741 585175 585838 "ELAGG-" 585843 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-290 584053 584190 584346 "ELABOR" 584605 T ELABOR (NIL) -8 NIL NIL NIL) (-289 582714 582993 583287 "ELABEXPR" 583779 T ELABEXPR (NIL) -8 NIL NIL NIL) (-288 575548 577351 578180 "EFUPXS" 581989 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-287 568996 570797 571608 "EFULS" 574823 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-286 566481 566839 567311 "EFSTRUC" 568628 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-285 556272 557838 559386 "EF" 564996 NIL EF (NIL T T) -7 NIL NIL NIL) (-284 555346 555757 555906 "EAB" 556143 T EAB (NIL) -8 NIL NIL NIL) (-283 554528 555305 555333 "E04UCFA" 555338 T E04UCFA (NIL) -8 NIL NIL NIL) (-282 553710 554487 554515 "E04NAFA" 554520 T E04NAFA (NIL) -8 NIL NIL NIL) (-281 552892 553669 553697 "E04MBFA" 553702 T E04MBFA (NIL) -8 NIL NIL NIL) (-280 552074 552851 552879 "E04JAFA" 552884 T E04JAFA (NIL) -8 NIL NIL NIL) (-279 551258 552033 552061 "E04GCFA" 552066 T E04GCFA (NIL) -8 NIL NIL NIL) (-278 550442 551217 551245 "E04FDFA" 551250 T E04FDFA (NIL) -8 NIL NIL NIL) (-277 549624 550401 550429 "E04DGFA" 550434 T E04DGFA (NIL) -8 NIL NIL NIL) (-276 543797 545149 546513 "E04AGNT" 548280 T E04AGNT (NIL) -7 NIL NIL NIL) (-275 542555 543098 543138 "DVARCAT" 543479 NIL DVARCAT (NIL T) -9 NIL 543642 NIL) (-274 541759 541971 542285 "DVARCAT-" 542290 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-273 534620 541558 541687 "DSMP" 541692 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-272 533043 533762 533803 "DSEXT" 534166 NIL DSEXT (NIL T) -9 NIL 534460 NIL) (-271 531328 531756 532422 "DSEXT-" 532427 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-270 526109 527273 528341 "DROPT" 530280 T DROPT (NIL) -8 NIL NIL NIL) (-269 525774 525833 525931 "DROPT1" 526044 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-268 520889 522015 523152 "DROPT0" 524657 T DROPT0 (NIL) -7 NIL NIL NIL) (-267 519234 519559 519945 "DRAWPT" 520523 T DRAWPT (NIL) -7 NIL NIL NIL) (-266 513821 514744 515823 "DRAW" 518208 NIL DRAW (NIL T) -7 NIL NIL NIL) (-265 513454 513507 513625 "DRAWHACK" 513762 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-264 512185 512454 512745 "DRAWCX" 513183 T DRAWCX (NIL) -7 NIL NIL NIL) (-263 511700 511769 511920 "DRAWCURV" 512111 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-262 502168 504130 506245 "DRAWCFUN" 509605 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-261 498907 500833 500874 "DQAGG" 501503 NIL DQAGG (NIL T) -9 NIL 501777 NIL) (-260 486372 493118 493201 "DPOLCAT" 495053 NIL DPOLCAT (NIL T T T T) -9 NIL 495598 NIL) (-259 481209 482557 484515 "DPOLCAT-" 484520 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-258 474556 481070 481168 "DPMO" 481173 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-257 467806 474336 474503 "DPMM" 474508 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-256 467376 467590 467679 "DOMTMPLT" 467737 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-255 466809 467178 467258 "DOMCTOR" 467316 T DOMCTOR (NIL) -8 NIL NIL NIL) (-254 466021 466289 466440 "DOMAIN" 466678 T DOMAIN (NIL) -8 NIL NIL NIL) (-253 459733 465656 465808 "DMP" 465922 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-252 457678 458800 458841 "DMEXT" 458846 NIL DMEXT (NIL T) -9 NIL 459022 NIL) (-251 457278 457334 457478 "DLP" 457616 NIL DLP (NIL T) -7 NIL NIL NIL) (-250 451103 456605 456795 "DLIST" 457120 NIL DLIST (NIL T) -8 NIL NIL NIL) (-249 447875 449928 449969 "DLAGG" 450519 NIL DLAGG (NIL T) -9 NIL 450749 NIL) (-248 446537 447201 447229 "DIVRING" 447321 T DIVRING (NIL) -9 NIL 447404 NIL) (-247 445774 445964 446264 "DIVRING-" 446269 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-246 443876 444233 444639 "DISPLAY" 445388 T DISPLAY (NIL) -7 NIL NIL NIL) (-245 437739 443790 443853 "DIRPROD" 443858 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-244 436587 436790 437055 "DIRPROD2" 437532 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-243 425262 431298 431351 "DIRPCAT" 431609 NIL DIRPCAT (NIL NIL T) -9 NIL 432484 NIL) (-242 422588 423230 424111 "DIRPCAT-" 424448 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-241 421875 422035 422221 "DIOSP" 422422 T DIOSP (NIL) -7 NIL NIL NIL) (-240 418505 420759 420800 "DIOPS" 421234 NIL DIOPS (NIL T) -9 NIL 421463 NIL) (-239 418054 418168 418359 "DIOPS-" 418364 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-238 417105 417733 417761 "DIFRING" 417766 T DIFRING (NIL) -9 NIL 417788 NIL) (-237 416777 416851 416879 "DIFFSPC" 416998 T DIFFSPC (NIL) -9 NIL 417073 NIL) (-236 416422 416500 416652 "DIFFSPC-" 416657 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-235 415478 415956 415997 "DIFFMOD" 416002 NIL DIFFMOD (NIL T) -9 NIL 416100 NIL) (-234 415186 415231 415272 "DIFFDOM" 415393 NIL DIFFDOM (NIL T) -9 NIL 415461 NIL) (-233 415039 415063 415147 "DIFFDOM-" 415152 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-232 412971 414243 414284 "DIFEXT" 414289 NIL DIFEXT (NIL T) -9 NIL 414442 NIL) (-231 410221 412475 412516 "DIAGG" 412521 NIL DIAGG (NIL T) -9 NIL 412541 NIL) (-230 409605 409762 410014 "DIAGG-" 410019 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 404977 408564 408841 "DHMATRIX" 409374 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 400589 401498 402508 "DFSFUN" 403987 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 395667 399520 399832 "DFLOAT" 400297 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 393930 394211 394600 "DFINTTLS" 395375 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 390959 391951 392351 "DERHAM" 393596 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 388763 390734 390823 "DEQUEUE" 390903 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 388017 388150 388333 "DEGRED" 388625 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 384447 385192 386038 "DEFINTRF" 387245 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 382002 382471 383063 "DEFINTEF" 383966 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 381352 381622 381737 "DEFAST" 381907 T DEFAST (NIL) -8 NIL NIL NIL) (-219 375068 380945 381095 "DECIMAL" 381222 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 372580 373038 373544 "DDFACT" 374612 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 372176 372219 372370 "DBLRESP" 372531 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 370044 370406 370767 "DBASE" 371942 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 369286 369524 369670 "DATAARY" 369943 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 368392 369245 369273 "D03FAFA" 369278 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 367499 368351 368379 "D03EEFA" 368384 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 365449 365915 366404 "D03AGNT" 367030 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 364738 365408 365436 "D02EJFA" 365441 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 364027 364697 364725 "D02CJFA" 364730 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 363316 363986 364014 "D02BHFA" 364019 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 362605 363275 363303 "D02BBFA" 363308 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 355802 357391 358997 "D02AGNT" 361019 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 353570 354093 354639 "D01WGTS" 355276 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 352637 353529 353557 "D01TRNS" 353562 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 351705 352596 352624 "D01GBFA" 352629 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 350773 351664 351692 "D01FCFA" 351697 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 349841 350732 350760 "D01ASFA" 350765 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 348909 349800 349828 "D01AQFA" 349833 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 347977 348868 348896 "D01APFA" 348901 T D01APFA (NIL) -8 NIL NIL NIL) (-199 347045 347936 347964 "D01ANFA" 347969 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 346113 347004 347032 "D01AMFA" 347037 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 345181 346072 346100 "D01ALFA" 346105 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 344249 345140 345168 "D01AKFA" 345173 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 343317 344208 344236 "D01AJFA" 344241 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 336612 338165 339726 "D01AGNT" 341776 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 335949 336077 336229 "CYCLOTOM" 336480 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 332682 333397 334124 "CYCLES" 335242 T CYCLES (NIL) -7 NIL NIL NIL) (-191 331994 332128 332299 "CVMP" 332543 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 329835 330093 330462 "CTRIGMNP" 331722 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 329271 329629 329702 "CTOR" 329782 T CTOR (NIL) -8 NIL NIL NIL) (-188 328780 329002 329103 "CTORKIND" 329190 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 328057 328373 328401 "CTORCAT" 328583 T CTORCAT (NIL) -9 NIL 328696 NIL) (-186 327655 327766 327925 "CTORCAT-" 327930 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 327117 327329 327437 "CTORCALL" 327579 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 326491 326590 326743 "CSTTOOLS" 327014 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 322290 322947 323705 "CRFP" 325803 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 321765 322011 322103 "CRCEAST" 322218 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 320812 320997 321225 "CRAPACK" 321569 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 320196 320297 320501 "CPMATCH" 320688 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 319921 319949 320055 "CPIMA" 320162 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 316269 316941 317660 "COORDSYS" 319256 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 315681 315802 315944 "CONTOUR" 316147 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 311572 313684 314176 "CONTFRAC" 315221 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 311452 311473 311501 "CONDUIT" 311538 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 310526 311080 311108 "COMRING" 311113 T COMRING (NIL) -9 NIL 311165 NIL) (-173 309580 309884 310068 "COMPPROP" 310362 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 309241 309276 309404 "COMPLPAT" 309539 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 298544 309050 309159 "COMPLEX" 309164 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 298180 298237 298344 "COMPLEX2" 298481 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 297519 297640 297800 "COMPILER" 298040 T COMPILER (NIL) -8 NIL NIL NIL) (-168 297237 297272 297370 "COMPFACT" 297478 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 279516 290941 290981 "COMPCAT" 291985 NIL COMPCAT (NIL T) -9 NIL 293333 NIL) (-166 269028 271955 275582 "COMPCAT-" 275938 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 268757 268785 268888 "COMMUPC" 268994 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 268551 268585 268644 "COMMONOP" 268718 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 268107 268302 268389 "COMM" 268484 T COMM (NIL) -8 NIL NIL NIL) (-162 267683 267911 267986 "COMMAAST" 268052 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 266932 267126 267154 "COMBOPC" 267492 T COMBOPC (NIL) -9 NIL 267667 NIL) (-160 265828 266038 266280 "COMBINAT" 266722 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 262285 262859 263486 "COMBF" 265250 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 261043 261401 261636 "COLOR" 262070 T COLOR (NIL) -8 NIL NIL NIL) (-157 260519 260764 260856 "COLONAST" 260971 T COLONAST (NIL) -8 NIL NIL NIL) (-156 260159 260206 260331 "CMPLXRT" 260466 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 259607 259859 259958 "CLLCTAST" 260080 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 255109 256137 257217 "CLIP" 258547 T CLIP (NIL) -7 NIL NIL NIL) (-153 253450 254210 254450 "CLIF" 254936 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 249600 251568 251609 "CLAGG" 252538 NIL CLAGG (NIL T) -9 NIL 253074 NIL) (-151 248022 248479 249062 "CLAGG-" 249067 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 247566 247651 247791 "CINTSLPE" 247931 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 245067 245538 246086 "CHVAR" 247094 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 244227 244781 244809 "CHARZ" 244814 T CHARZ (NIL) -9 NIL 244829 NIL) (-147 243981 244021 244099 "CHARPOL" 244181 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 243025 243612 243640 "CHARNZ" 243687 T CHARNZ (NIL) -9 NIL 243743 NIL) (-145 240931 241679 242032 "CHAR" 242692 T CHAR (NIL) -8 NIL NIL NIL) (-144 240657 240718 240746 "CFCAT" 240857 T CFCAT (NIL) -9 NIL NIL NIL) (-143 239898 240009 240192 "CDEN" 240541 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 235863 239051 239331 "CCLASS" 239638 T CCLASS (NIL) -8 NIL NIL NIL) (-141 235114 235271 235448 "CATEGORY" 235706 T -10 (NIL) -8 NIL NIL NIL) (-140 234687 235033 235081 "CATCTOR" 235086 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 234138 234390 234488 "CATAST" 234609 T CATAST (NIL) -8 NIL NIL NIL) (-138 233614 233859 233951 "CASEAST" 234066 T CASEAST (NIL) -8 NIL NIL NIL) (-137 228752 229771 230515 "CARTEN" 232926 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 227860 228008 228229 "CARTEN2" 228599 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 226176 227010 227267 "CARD" 227623 T CARD (NIL) -8 NIL NIL NIL) (-134 225752 225980 226055 "CAPSLAST" 226121 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 225242 225450 225478 "CACHSET" 225610 T CACHSET (NIL) -9 NIL 225688 NIL) (-132 224698 225020 225048 "CABMON" 225098 T CABMON (NIL) -9 NIL 225154 NIL) (-131 224171 224402 224512 "BYTEORD" 224608 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 223148 223700 223842 "BYTE" 224005 T BYTE (NIL) -8 NIL NIL 224127) (-129 218501 222653 222825 "BYTEBUF" 222996 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 216013 218193 218300 "BTREE" 218427 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 213465 215661 215783 "BTOURN" 215923 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 210810 212907 212948 "BTCAT" 213016 NIL BTCAT (NIL T) -9 NIL 213093 NIL) (-125 210477 210557 210706 "BTCAT-" 210711 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 205842 209723 209751 "BTAGG" 209865 T BTAGG (NIL) -9 NIL 209975 NIL) (-123 205332 205457 205663 "BTAGG-" 205668 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 202330 204610 204825 "BSTREE" 205149 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 201468 201594 201778 "BRILL" 202186 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 198095 200166 200207 "BRAGG" 200856 NIL BRAGG (NIL T) -9 NIL 201114 NIL) (-119 196624 197030 197585 "BRAGG-" 197590 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 189540 195968 196153 "BPADICRT" 196471 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 187855 189477 189522 "BPADIC" 189527 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 187553 187583 187697 "BOUNDZRO" 187819 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 182781 183979 184891 "BOP" 186661 T BOP (NIL) -8 NIL NIL NIL) (-114 180562 180966 181441 "BOP1" 182339 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 180263 180324 180352 "BOOLE" 180463 T BOOLE (NIL) -9 NIL 180545 NIL) (-112 179088 179837 179986 "BOOLEAN" 180134 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 178353 178757 178811 "BMODULE" 178816 NIL BMODULE (NIL T T) -9 NIL 178881 NIL) (-110 174154 178151 178224 "BITS" 178300 T BITS (NIL) -8 NIL NIL NIL) (-109 173575 173694 173834 "BINDING" 174034 T BINDING (NIL) -8 NIL NIL NIL) (-108 167294 173170 173319 "BINARY" 173446 T BINARY (NIL) -8 NIL NIL NIL) (-107 165049 166521 166562 "BGAGG" 166822 NIL BGAGG (NIL T) -9 NIL 166959 NIL) (-106 164880 164912 165003 "BGAGG-" 165008 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 163951 164264 164469 "BFUNCT" 164695 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 162641 162819 163107 "BEZOUT" 163775 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 159113 161493 161823 "BBTREE" 162344 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 158714 158792 158820 "BASTYPE" 158997 T BASTYPE (NIL) -9 NIL 159096 NIL) (-101 158390 158471 158606 "BASTYPE-" 158611 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 157824 157900 158052 "BALFACT" 158301 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 156680 157239 157425 "AUTOMOR" 157669 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 156406 156411 156437 "ATTREG" 156442 T ATTREG (NIL) -9 NIL NIL NIL) (-97 154658 155103 155455 "ATTRBUT" 156072 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 154266 154486 154552 "ATTRAST" 154610 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 153802 153915 153941 "ATRIG" 154142 T ATRIG (NIL) -9 NIL NIL NIL) (-94 153611 153652 153739 "ATRIG-" 153744 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 153242 153428 153454 "ASTCAT" 153459 T ASTCAT (NIL) -9 NIL 153489 NIL) (-92 152969 153028 153147 "ASTCAT-" 153152 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 151121 152745 152833 "ASTACK" 152912 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 149626 149923 150288 "ASSOCEQ" 150803 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 148658 149285 149409 "ASP9" 149533 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 148421 148606 148645 "ASP8" 148650 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 147289 148026 148168 "ASP80" 148310 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 146187 146924 147056 "ASP7" 147188 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 145141 145864 145982 "ASP78" 146100 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 144110 144821 144938 "ASP77" 145055 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 143022 143748 143879 "ASP74" 144010 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 141922 142657 142789 "ASP73" 142921 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 141026 141748 141848 "ASP6" 141853 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 139973 140703 140821 "ASP55" 140939 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 138922 139647 139766 "ASP50" 139885 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 138010 138623 138733 "ASP4" 138843 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 137098 137711 137821 "ASP49" 137931 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 135882 136637 136805 "ASP42" 136987 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 134659 135415 135585 "ASP41" 135769 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 133609 134336 134454 "ASP35" 134572 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 133374 133557 133596 "ASP34" 133601 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 133111 133178 133254 "ASP33" 133329 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 132005 132746 132878 "ASP31" 133010 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 131770 131953 131992 "ASP30" 131997 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 131505 131574 131650 "ASP29" 131725 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 131270 131453 131492 "ASP28" 131497 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 131035 131218 131257 "ASP27" 131262 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 130119 130733 130844 "ASP24" 130955 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 129196 129921 130033 "ASP20" 130038 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 128284 128897 129007 "ASP1" 129117 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 127227 127958 128077 "ASP19" 128196 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 126964 127031 127107 "ASP12" 127182 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 125816 126563 126707 "ASP10" 126851 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 123670 125660 125751 "ARRAY2" 125756 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 119438 123318 123432 "ARRAY1" 123587 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 118470 118643 118864 "ARRAY12" 119261 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 112757 114672 114747 "ARR2CAT" 117377 NIL ARR2CAT (NIL T T T) -9 NIL 118135 NIL) (-56 110191 110935 111889 "ARR2CAT-" 111894 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 109508 109818 109943 "ARITY" 110084 T ARITY (NIL) -8 NIL NIL NIL) (-54 108284 108436 108735 "APPRULE" 109344 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 107935 107983 108102 "APPLYORE" 108230 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 107289 107528 107648 "ANY" 107833 T ANY (NIL) -8 NIL NIL NIL) (-51 106567 106690 106847 "ANY1" 107163 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 104097 105004 105331 "ANTISYM" 106291 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 103589 103804 103900 "ANON" 104019 T ANON (NIL) -8 NIL NIL NIL) (-48 97589 102128 102582 "AN" 103153 T AN (NIL) -8 NIL NIL NIL) (-47 93473 94861 94912 "AMR" 95660 NIL AMR (NIL T T) -9 NIL 96260 NIL) (-46 92585 92806 93169 "AMR-" 93174 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 77030 92502 92563 "ALIST" 92568 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73835 76624 76793 "ALGSC" 76948 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70391 70945 71552 "ALGPKG" 73275 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 69668 69769 69953 "ALGMFACT" 70277 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 65703 66282 66876 "ALGMANIP" 69252 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55914 65329 65479 "ALGFF" 65636 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55110 55241 55420 "ALGFACT" 55772 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54037 54637 54675 "ALGEBRA" 54680 NIL ALGEBRA (NIL T) -9 NIL 54721 NIL) (-37 53755 53814 53946 "ALGEBRA-" 53951 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35692 51592 51644 "ALAGG" 51780 NIL ALAGG (NIL T T) -9 NIL 51941 NIL) (-35 35228 35341 35367 "AHYP" 35568 T AHYP (NIL) -9 NIL NIL NIL) (-34 34159 34407 34433 "AGG" 34932 T AGG (NIL) -9 NIL 35211 NIL) (-33 33593 33755 33969 "AGG-" 33974 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 31399 31822 32227 "AF" 33235 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30879 31124 31214 "ADDAST" 31327 T ADDAST (NIL) -8 NIL NIL NIL) (-30 30147 30406 30562 "ACPLOT" 30741 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18770 27079 27117 "ACFS" 27724 NIL ACFS (NIL T) -9 NIL 27963 NIL) (-28 16797 17287 18049 "ACFS-" 18054 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12901 14830 14856 "ACF" 15735 T ACF (NIL) -9 NIL 16148 NIL) (-26 11605 11939 12432 "ACF-" 12437 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11163 11358 11384 "ABELSG" 11476 T ABELSG (NIL) -9 NIL 11541 NIL) (-24 11030 11055 11121 "ABELSG-" 11126 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10359 10646 10672 "ABELMON" 10842 T ABELMON (NIL) -9 NIL 10954 NIL) (-22 10023 10107 10245 "ABELMON-" 10250 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9357 9729 9755 "ABELGRP" 9827 T ABELGRP (NIL) -9 NIL 9902 NIL) (-20 8820 8949 9165 "ABELGRP-" 9170 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8082 8121 "A1AGG" 8126 NIL A1AGG (NIL T) -9 NIL 8166 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-4087 (((-1256 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1256 |#1| |#3| |#5|)) 23))) +(((-1251 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4087 ((-1256 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1256 |#1| |#3| |#5|)))) (-1074) (-1074) (-1201) (-1201) |#1| |#2|) (T -1251)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1256 *5 *7 *9)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-14 *7 (-1201)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1256 *6 *8 *10)) (-5 *1 (-1251 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1201))))) +(-10 -7 (-15 -4087 ((-1256 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1256 |#1| |#3| |#5|)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-2058 (((-660 (-1107)) $) 86)) (-3076 (((-1201) $) 118)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)))) (-3290 (($ $) 64 (|has| |#1| (-569)))) (-3271 (((-112) $) 66 (|has| |#1| (-569)))) (-3804 (($ $ (-577)) 113) (($ $ (-577) (-577)) 112)) (-3829 (((-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 119)) (-2212 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))))) (-2060 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))))) (-1956 (((-3 $ "failed") $ $) 20)) (-3841 (($ $) 177 (|has| |#1| (-375)))) (-3029 (((-431 $) $) 178 (|has| |#1| (-375)))) (-1913 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))))) (-1939 (((-112) $ $) 168 (|has| |#1| (-375)))) (-2186 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))))) (-2032 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))))) (-3689 (($ (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 188)) (-2237 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))))) (-2084 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))))) (-1534 (($) 18 T CONST)) (-3418 (($ $ $) 172 (|has| |#1| (-375)))) (-2248 (($ $) 72)) (-4187 (((-3 $ "failed") $) 37)) (-1544 (((-420 (-975 |#1|)) $ (-577)) 186 (|has| |#1| (-569))) (((-420 (-975 |#1|)) $ (-577) (-577)) 185 (|has| |#1| (-569)))) (-3429 (($ $ $) 171 (|has| |#1| (-375)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 166 (|has| |#1| (-375)))) (-1522 (((-112) $) 179 (|has| |#1| (-375)))) (-3550 (((-112) $) 85)) (-1659 (($) 160 (|has| |#1| (-38 (-420 (-577)))))) (-3817 (((-577) $) 115) (((-577) $ (-577)) 114)) (-2487 (((-112) $) 35)) (-2381 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))))) (-3864 (($ $ (-944)) 116)) (-4158 (($ (-1 |#1| (-577)) $) 187)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 175 (|has| |#1| (-375)))) (-2811 (((-112) $) 74)) (-2030 (($ |#1| (-577)) 73) (($ $ (-1107) (-577)) 88) (($ $ (-660 (-1107)) (-660 (-577))) 87)) (-4087 (($ (-1 |#1| |#1|) $) 75)) (-3698 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))))) (-2209 (($ $) 77)) (-2221 ((|#1| $) 78)) (-3446 (($ (-660 $)) 164 (|has| |#1| (-375))) (($ $ $) 163 (|has| |#1| (-375)))) (-2810 (((-1183) $) 10)) (-2171 (($ $) 180 (|has| |#1| (-375)))) (-4147 (($ $) 184 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-1201)) 183 (-2839 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-982)) (|has| |#1| (-1227)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -2058 ((-660 (-1201)) |#1|))) (|has| |#1| (-15 -4147 (|#1| |#1| (-1201)))) (|has| |#1| (-38 (-420 (-577)))))))) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 165 (|has| |#1| (-375)))) (-3480 (($ (-660 $)) 162 (|has| |#1| (-375))) (($ $ $) 161 (|has| |#1| (-375)))) (-1902 (((-431 $) $) 176 (|has| |#1| (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 173 (|has| |#1| (-375)))) (-3792 (($ $ (-577)) 110)) (-3462 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 167 (|has| |#1| (-375)))) (-4072 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))))) (-3280 (((-1182 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-577)))))) (-1927 (((-787) $) 169 (|has| |#1| (-375)))) (-2872 ((|#1| $ (-577)) 120) (($ $ $) 96 (|has| (-577) (-1137)))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 170 (|has| |#1| (-375)))) (-2852 (($ $ (-1201)) 108 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-660 (-1201))) 106 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-1201) (-787)) 105 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-660 (-1201)) (-660 (-787))) 104 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-577) |#1|)))) (($ $ (-787)) 98 (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (-2887 (((-577) $) 76)) (-2249 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))))) (-2095 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))))) (-2224 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))))) (-2073 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))))) (-2199 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))))) (-2046 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))))) (-3540 (($ $) 84)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577))))) (($ $) 61 (|has| |#1| (-569)))) (-2322 ((|#1| $ (-577)) 71)) (-2233 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4068 (((-787)) 32 T CONST)) (-3693 ((|#1| $) 117)) (-4448 (((-112) $ $) 6)) (-4114 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))))) (-2136 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))))) (-3281 (((-112) $ $) 65 (|has| |#1| (-569)))) (-2262 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))))) (-2106 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))))) (-4141 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))))) (-2162 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))))) (-4148 ((|#1| $ (-577)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -3544 (|#1| (-1201))))))) (-2261 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))))) (-2174 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))))) (-4128 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))))) (-2150 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))))) (-2272 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))))) (-2120 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))))) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-1201)) 107 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-660 (-1201))) 103 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-1201) (-787)) 102 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-660 (-1201)) (-660 (-787))) 101 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-577) |#1|)))) (($ $ (-787)) 97 (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (-2970 (((-112) $ $) 8)) (-3077 (($ $ |#1|) 70 (|has| |#1| (-375))) (($ $ $) 182 (|has| |#1| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 181 (|has| |#1| (-375))) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))))) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577))))))) +(((-1252 |#1|) (-141) (-1074)) (T -1252)) +((-3689 (*1 *1 *2) (-12 (-5 *2 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *3)))) (-4 *3 (-1074)) (-4 *1 (-1252 *3)))) (-4158 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-577))) (-4 *1 (-1252 *3)) (-4 *3 (-1074)))) (-1544 (*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1252 *4)) (-4 *4 (-1074)) (-4 *4 (-569)) (-5 *2 (-420 (-975 *4))))) (-1544 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-4 *1 (-1252 *4)) (-4 *4 (-1074)) (-4 *4 (-569)) (-5 *2 (-420 (-975 *4))))) (-4147 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1074)) (-4 *2 (-38 (-420 (-577)))))) (-4147 (*1 *1 *1 *2) (-2839 (-12 (-5 *2 (-1201)) (-4 *1 (-1252 *3)) (-4 *3 (-1074)) (-12 (-4 *3 (-29 (-577))) (-4 *3 (-982)) (-4 *3 (-1227)) (-4 *3 (-38 (-420 (-577)))))) (-12 (-5 *2 (-1201)) (-4 *1 (-1252 *3)) (-4 *3 (-1074)) (-12 (|has| *3 (-15 -2058 ((-660 *2) *3))) (|has| *3 (-15 -4147 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577))))))))) +(-13 (-1270 |t#1| (-577)) (-10 -8 (-15 -3689 ($ (-1182 (-2 (|:| |k| (-577)) (|:| |c| |t#1|))))) (-15 -4158 ($ (-1 |t#1| (-577)) $)) (IF (|has| |t#1| (-569)) (PROGN (-15 -1544 ((-420 (-975 |t#1|)) $ (-577))) (-15 -1544 ((-420 (-975 |t#1|)) $ (-577) (-577)))) |%noBranch|) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -4147 ($ $)) (IF (|has| |t#1| (-15 -4147 (|t#1| |t#1| (-1201)))) (IF (|has| |t#1| (-15 -2058 ((-660 (-1201)) |t#1|))) (-15 -4147 ($ $ (-1201))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1227)) (IF (|has| |t#1| (-982)) (IF (|has| |t#1| (-29 (-577))) (-15 -4147 ($ $ (-1201))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1027)) (-6 (-1227))) |%noBranch|) (IF (|has| |t#1| (-375)) (-6 (-375)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-577)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-629 (-577)) . T) ((-629 |#1|) |has| |#1| (-174)) ((-629 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-626 (-880)) . T) ((-174) -2839 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-577) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-577) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-577) |#1|))) ((-249) |has| |#1| (-375)) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 $ $) |has| (-577) (-1137)) ((-301) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-375) |has| |#1| (-375)) ((-465) |has| |#1| (-375)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-569) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-662 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-733 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-742) . T) ((-915 $ #2=(-1201)) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) ((-921 #2#) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) ((-923 #2#) -12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))) ((-998 |#1| #0# (-1107)) . T) ((-943) |has| |#1| (-375)) ((-1027) |has| |#1| (-38 (-420 (-577)))) ((-1076 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1076 |#1|) . T) ((-1076 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1081 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1081 |#1|) . T) ((-1081 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1227) |has| |#1| (-38 (-420 (-577)))) ((-1230) |has| |#1| (-38 (-420 (-577)))) ((-1242) . T) ((-1246) |has| |#1| (-375)) ((-1270 |#1| #0#) . T)) +((-3585 (((-112) $) 12)) (-1628 (((-3 |#3| "failed") $) 17) (((-3 (-1201) "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL) (((-3 (-577) "failed") $) NIL)) (-2921 ((|#3| $) 14) (((-1201) $) NIL) (((-420 (-577)) $) NIL) (((-577) $) NIL))) +(((-1253 |#1| |#2| |#3|) (-10 -8 (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -1628 ((-3 (-1201) "failed") |#1|)) (-15 -2921 ((-1201) |#1|)) (-15 -1628 ((-3 |#3| "failed") |#1|)) (-15 -2921 (|#3| |#1|)) (-15 -3585 ((-112) |#1|))) (-1254 |#2| |#3|) (-1074) (-1283 |#2|)) (T -1253)) +NIL +(-10 -8 (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -1628 ((-3 (-1201) "failed") |#1|)) (-15 -2921 ((-1201) |#1|)) (-15 -1628 ((-3 |#3| "failed") |#1|)) (-15 -2921 (|#3| |#1|)) (-15 -3585 ((-112) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-4105 ((|#2| $) 251 (-2761 (|has| |#2| (-318)) (|has| |#1| (-375))))) (-2058 (((-660 (-1107)) $) 86)) (-3076 (((-1201) $) 118)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)))) (-3290 (($ $) 64 (|has| |#1| (-569)))) (-3271 (((-112) $) 66 (|has| |#1| (-569)))) (-3804 (($ $ (-577)) 113) (($ $ (-577) (-577)) 112)) (-3829 (((-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 119)) (-1577 ((|#2| $) 287)) (-1556 (((-3 |#2| "failed") $) 283)) (-2119 ((|#2| $) 284)) (-2212 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))))) (-2060 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))))) (-1956 (((-3 $ "failed") $ $) 20)) (-2294 (((-431 (-1197 $)) (-1197 $)) 260 (-2761 (|has| |#2| (-932)) (|has| |#1| (-375))))) (-3841 (($ $) 177 (|has| |#1| (-375)))) (-3029 (((-431 $) $) 178 (|has| |#1| (-375)))) (-1913 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 257 (-2761 (|has| |#2| (-932)) (|has| |#1| (-375))))) (-1939 (((-112) $ $) 168 (|has| |#1| (-375)))) (-2186 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))))) (-2032 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))))) (-3010 (((-577) $) 269 (-2761 (|has| |#2| (-836)) (|has| |#1| (-375))))) (-3689 (($ (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 188)) (-2237 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))))) (-2084 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))))) (-1534 (($) 18 T CONST)) (-1628 (((-3 |#2| "failed") $) 290) (((-3 (-577) "failed") $) 280 (-2761 (|has| |#2| (-1063 (-577))) (|has| |#1| (-375)))) (((-3 (-420 (-577)) "failed") $) 278 (-2761 (|has| |#2| (-1063 (-577))) (|has| |#1| (-375)))) (((-3 (-1201) "failed") $) 262 (-2761 (|has| |#2| (-1063 (-1201))) (|has| |#1| (-375))))) (-2921 ((|#2| $) 291) (((-577) $) 279 (-2761 (|has| |#2| (-1063 (-577))) (|has| |#1| (-375)))) (((-420 (-577)) $) 277 (-2761 (|has| |#2| (-1063 (-577))) (|has| |#1| (-375)))) (((-1201) $) 261 (-2761 (|has| |#2| (-1063 (-1201))) (|has| |#1| (-375))))) (-1566 (($ $) 286) (($ (-577) $) 285)) (-3418 (($ $ $) 172 (|has| |#1| (-375)))) (-2248 (($ $) 72)) (-1647 (((-705 |#2|) (-705 $)) 239 (|has| |#1| (-375))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) 238 (|has| |#1| (-375))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 237 (-2761 (|has| |#2| (-654 (-577))) (|has| |#1| (-375)))) (((-705 (-577)) (-705 $)) 236 (-2761 (|has| |#2| (-654 (-577))) (|has| |#1| (-375))))) (-4187 (((-3 $ "failed") $) 37)) (-1544 (((-420 (-975 |#1|)) $ (-577)) 186 (|has| |#1| (-569))) (((-420 (-975 |#1|)) $ (-577) (-577)) 185 (|has| |#1| (-569)))) (-1910 (($) 253 (-2761 (|has| |#2| (-558)) (|has| |#1| (-375))))) (-3429 (($ $ $) 171 (|has| |#1| (-375)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 166 (|has| |#1| (-375)))) (-1522 (((-112) $) 179 (|has| |#1| (-375)))) (-3567 (((-112) $) 267 (-2761 (|has| |#2| (-836)) (|has| |#1| (-375))))) (-3550 (((-112) $) 85)) (-1659 (($) 160 (|has| |#1| (-38 (-420 (-577)))))) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 245 (-2761 (|has| |#2| (-905 (-391))) (|has| |#1| (-375)))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 244 (-2761 (|has| |#2| (-905 (-577))) (|has| |#1| (-375))))) (-3817 (((-577) $) 115) (((-577) $ (-577)) 114)) (-2487 (((-112) $) 35)) (-2240 (($ $) 249 (|has| |#1| (-375)))) (-1623 ((|#2| $) 247 (|has| |#1| (-375)))) (-2381 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))))) (-4021 (((-3 $ "failed") $) 281 (-2761 (|has| |#2| (-1177)) (|has| |#1| (-375))))) (-3578 (((-112) $) 268 (-2761 (|has| |#2| (-836)) (|has| |#1| (-375))))) (-3864 (($ $ (-944)) 116)) (-4158 (($ (-1 |#1| (-577)) $) 187)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 175 (|has| |#1| (-375)))) (-2811 (((-112) $) 74)) (-2030 (($ |#1| (-577)) 73) (($ $ (-1107) (-577)) 88) (($ $ (-660 (-1107)) (-660 (-577))) 87)) (-3732 (($ $ $) 276 (-2761 (|has| |#2| (-865)) (|has| |#1| (-375))))) (-3201 (($ $ $) 275 (-2761 (|has| |#2| (-865)) (|has| |#1| (-375))))) (-4087 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 229 (|has| |#1| (-375)))) (-3698 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))))) (-1657 (((-705 |#2|) (-1292 $)) 241 (|has| |#1| (-375))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) 240 (|has| |#1| (-375))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 235 (-2761 (|has| |#2| (-654 (-577))) (|has| |#1| (-375)))) (((-705 (-577)) (-1292 $)) 234 (-2761 (|has| |#2| (-654 (-577))) (|has| |#1| (-375))))) (-2209 (($ $) 77)) (-2221 ((|#1| $) 78)) (-3446 (($ (-660 $)) 164 (|has| |#1| (-375))) (($ $ $) 163 (|has| |#1| (-375)))) (-2134 (($ (-577) |#2|) 288)) (-2810 (((-1183) $) 10)) (-2171 (($ $) 180 (|has| |#1| (-375)))) (-4147 (($ $) 184 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-1201)) 183 (-2839 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-982)) (|has| |#1| (-1227)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -2058 ((-660 (-1201)) |#1|))) (|has| |#1| (-15 -4147 (|#1| |#1| (-1201)))) (|has| |#1| (-38 (-420 (-577)))))))) (-1709 (($) 282 (-2761 (|has| |#2| (-1177)) (|has| |#1| (-375))) CONST)) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 165 (|has| |#1| (-375)))) (-3480 (($ (-660 $)) 162 (|has| |#1| (-375))) (($ $ $) 161 (|has| |#1| (-375)))) (-4093 (($ $) 252 (-2761 (|has| |#2| (-318)) (|has| |#1| (-375))))) (-4119 ((|#2| $) 255 (-2761 (|has| |#2| (-558)) (|has| |#1| (-375))))) (-2269 (((-431 (-1197 $)) (-1197 $)) 258 (-2761 (|has| |#2| (-932)) (|has| |#1| (-375))))) (-2281 (((-431 (-1197 $)) (-1197 $)) 259 (-2761 (|has| |#2| (-932)) (|has| |#1| (-375))))) (-1902 (((-431 $) $) 176 (|has| |#1| (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 173 (|has| |#1| (-375)))) (-3792 (($ $ (-577)) 110)) (-3462 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 167 (|has| |#1| (-375)))) (-4072 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))))) (-3280 (((-1182 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-577))))) (($ $ (-1201) |#2|) 228 (-2761 (|has| |#2| (-527 (-1201) |#2|)) (|has| |#1| (-375)))) (($ $ (-660 (-1201)) (-660 |#2|)) 227 (-2761 (|has| |#2| (-527 (-1201) |#2|)) (|has| |#1| (-375)))) (($ $ (-660 (-305 |#2|))) 226 (-2761 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375)))) (($ $ (-305 |#2|)) 225 (-2761 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375)))) (($ $ |#2| |#2|) 224 (-2761 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375)))) (($ $ (-660 |#2|) (-660 |#2|)) 223 (-2761 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))))) (-1927 (((-787) $) 169 (|has| |#1| (-375)))) (-2872 ((|#1| $ (-577)) 120) (($ $ $) 96 (|has| (-577) (-1137))) (($ $ |#2|) 222 (-2761 (|has| |#2| (-297 |#2| |#2|)) (|has| |#1| (-375))))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 170 (|has| |#1| (-375)))) (-2852 (($ $ (-1 |#2| |#2|) (-787)) 231 (|has| |#1| (-375))) (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-375))) (($ $) 100 (-2839 (-2761 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-787)) 98 (-2839 (-2761 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-1201)) 108 (-2839 (-2761 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))))) (($ $ (-660 (-1201))) 106 (-2839 (-2761 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))))) (($ $ (-1201) (-787)) 105 (-2839 (-2761 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))))) (($ $ (-660 (-1201)) (-660 (-787))) 104 (-2839 (-2761 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))))) (-2227 (($ $) 250 (|has| |#1| (-375)))) (-1637 ((|#2| $) 248 (|has| |#1| (-375)))) (-2887 (((-577) $) 76)) (-2249 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))))) (-2095 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))))) (-2224 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))))) (-2073 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))))) (-2199 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))))) (-2046 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))))) (-4152 (((-228) $) 266 (-2761 (|has| |#2| (-1047)) (|has| |#1| (-375)))) (((-391) $) 265 (-2761 (|has| |#2| (-1047)) (|has| |#1| (-375)))) (((-549) $) 264 (-2761 (|has| |#2| (-627 (-549))) (|has| |#1| (-375)))) (((-911 (-391)) $) 243 (-2761 (|has| |#2| (-627 (-911 (-391)))) (|has| |#1| (-375)))) (((-911 (-577)) $) 242 (-2761 (|has| |#2| (-627 (-911 (-577)))) (|has| |#1| (-375))))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) 256 (-2761 (-2761 (|has| $ (-146)) (|has| |#2| (-932))) (|has| |#1| (-375))))) (-3540 (($ $) 84)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 289) (($ (-1201)) 263 (-2761 (|has| |#2| (-1063 (-1201))) (|has| |#1| (-375)))) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577))))) (($ $) 61 (|has| |#1| (-569)))) (-2322 ((|#1| $ (-577)) 71)) (-2233 (((-3 $ "failed") $) 60 (-2839 (-2761 (-2839 (|has| |#2| (-146)) (-2761 (|has| $ (-146)) (|has| |#2| (-932)))) (|has| |#1| (-375))) (|has| |#1| (-146))))) (-4068 (((-787)) 32 T CONST)) (-3693 ((|#1| $) 117)) (-4132 ((|#2| $) 254 (-2761 (|has| |#2| (-558)) (|has| |#1| (-375))))) (-4448 (((-112) $ $) 6)) (-4114 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))))) (-2136 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))))) (-3281 (((-112) $ $) 65 (|has| |#1| (-569)))) (-2262 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))))) (-2106 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))))) (-4141 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))))) (-2162 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))))) (-4148 ((|#1| $ (-577)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -3544 (|#1| (-1201))))))) (-2261 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))))) (-2174 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))))) (-4128 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))))) (-2150 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))))) (-2272 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))))) (-2120 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))))) (-1654 (($ $) 270 (-2761 (|has| |#2| (-836)) (|has| |#1| (-375))))) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-1 |#2| |#2|) (-787)) 233 (|has| |#1| (-375))) (($ $ (-1 |#2| |#2|)) 232 (|has| |#1| (-375))) (($ $) 99 (-2839 (-2761 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-787)) 97 (-2839 (-2761 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-1201)) 107 (-2839 (-2761 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))))) (($ $ (-660 (-1201))) 103 (-2839 (-2761 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))))) (($ $ (-1201) (-787)) 102 (-2839 (-2761 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))))) (($ $ (-660 (-1201)) (-660 (-787))) 101 (-2839 (-2761 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))))) (-3025 (((-112) $ $) 274 (-2761 (|has| |#2| (-865)) (|has| |#1| (-375))))) (-3000 (((-112) $ $) 272 (-2761 (|has| |#2| (-865)) (|has| |#1| (-375))))) (-2970 (((-112) $ $) 8)) (-3012 (((-112) $ $) 273 (-2761 (|has| |#2| (-865)) (|has| |#1| (-375))))) (-2990 (((-112) $ $) 271 (-2761 (|has| |#2| (-865)) (|has| |#1| (-375))))) (-3077 (($ $ |#1|) 70 (|has| |#1| (-375))) (($ $ $) 182 (|has| |#1| (-375))) (($ |#2| |#2|) 246 (|has| |#1| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 181 (|has| |#1| (-375))) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))))) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 221 (|has| |#1| (-375))) (($ |#2| $) 220 (|has| |#1| (-375))) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577))))))) +(((-1254 |#1| |#2|) (-141) (-1074) (-1283 |t#1|)) (T -1254)) +((-2887 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1283 *3)) (-5 *2 (-577)))) (-2134 (*1 *1 *2 *3) (-12 (-5 *2 (-577)) (-4 *4 (-1074)) (-4 *1 (-1254 *4 *3)) (-4 *3 (-1283 *4)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1283 *3)))) (-1566 (*1 *1 *1) (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1283 *2)))) (-1566 (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-4 *1 (-1254 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1283 *3)))) (-2119 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1283 *3)))) (-1556 (*1 *2 *1) (|partial| -12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1283 *3))))) +(-13 (-1252 |t#1|) (-1063 |t#2|) (-629 |t#2|) (-10 -8 (-15 -2134 ($ (-577) |t#2|)) (-15 -2887 ((-577) $)) (-15 -1577 (|t#2| $)) (-15 -1566 ($ $)) (-15 -1566 ($ (-577) $)) (-15 -2119 (|t#2| $)) (-15 -1556 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-375)) (-6 (-1017 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-577)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-375)) ((-38 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-375)) ((-111 $ $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2839 (-12 (|has| |#1| (-375)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2839 (-12 (|has| |#1| (-375)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-629 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-629 (-577)) . T) ((-629 #2=(-1201)) -12 (|has| |#1| (-375)) (|has| |#2| (-1063 (-1201)))) ((-629 |#1|) |has| |#1| (-174)) ((-629 |#2|) . T) ((-629 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-626 (-880)) . T) ((-174) -2839 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-627 (-228)) -12 (|has| |#1| (-375)) (|has| |#2| (-1047))) ((-627 (-391)) -12 (|has| |#1| (-375)) (|has| |#2| (-1047))) ((-627 (-549)) -12 (|has| |#1| (-375)) (|has| |#2| (-627 (-549)))) ((-627 (-911 (-391))) -12 (|has| |#1| (-375)) (|has| |#2| (-627 (-911 (-391))))) ((-627 (-911 (-577))) -12 (|has| |#1| (-375)) (|has| |#2| (-627 (-911 (-577))))) ((-235 $) -2839 (-12 (|has| |#1| (-375)) (|has| |#2| (-238))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ((-233 |#2|) |has| |#1| (-375)) ((-239) -2839 (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ((-238) -2839 (-12 (|has| |#1| (-375)) (|has| |#2| (-238))) (-12 (|has| |#1| (-375)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-577) |#1|)))) ((-273 |#2|) |has| |#1| (-375)) ((-249) |has| |#1| (-375)) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 |#2| $) -12 (|has| |#1| (-375)) (|has| |#2| (-297 |#2| |#2|))) ((-297 $ $) |has| (-577) (-1137)) ((-301) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-320 |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-320 |#2|))) ((-375) |has| |#1| (-375)) ((-350 |#2|) |has| |#1| (-375)) ((-389 |#2|) |has| |#1| (-375)) ((-413 |#2|) |has| |#1| (-375)) ((-465) |has| |#1| (-375)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-527 (-1201) |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-527 (-1201) |#2|))) ((-527 |#2| |#2|) -12 (|has| |#1| (-375)) (|has| |#2| (-320 |#2|))) ((-569) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-662 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 |#2|) |has| |#1| (-375)) ((-662 $) . T) ((-664 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-664 #3=(-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-654 (-577)))) ((-664 |#1|) . T) ((-664 |#2|) |has| |#1| (-375)) ((-664 $) . T) ((-656 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-656 |#1|) |has| |#1| (-174)) ((-656 |#2|) |has| |#1| (-375)) ((-656 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-654 #3#) -12 (|has| |#1| (-375)) (|has| |#2| (-654 (-577)))) ((-654 |#2|) |has| |#1| (-375)) ((-733 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-733 |#1|) |has| |#1| (-174)) ((-733 |#2|) |has| |#1| (-375)) ((-733 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-742) . T) ((-807) -12 (|has| |#1| (-375)) (|has| |#2| (-836))) ((-808) -12 (|has| |#1| (-375)) (|has| |#2| (-836))) ((-810) -12 (|has| |#1| (-375)) (|has| |#2| (-836))) ((-811) -12 (|has| |#1| (-375)) (|has| |#2| (-836))) ((-836) -12 (|has| |#1| (-375)) (|has| |#2| (-836))) ((-864) -12 (|has| |#1| (-375)) (|has| |#2| (-836))) ((-865) -2839 (-12 (|has| |#1| (-375)) (|has| |#2| (-865))) (-12 (|has| |#1| (-375)) (|has| |#2| (-836)))) ((-868) -2839 (-12 (|has| |#1| (-375)) (|has| |#2| (-865))) (-12 (|has| |#1| (-375)) (|has| |#2| (-836)))) ((-915 $ #4=(-1201)) -2839 (-12 (|has| |#1| (-375)) (|has| |#2| (-923 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-921 (-1201)))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ((-921 (-1201)) -2839 (-12 (|has| |#1| (-375)) (|has| |#2| (-921 (-1201)))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ((-923 #4#) -2839 (-12 (|has| |#1| (-375)) (|has| |#2| (-923 (-1201)))) (-12 (|has| |#1| (-375)) (|has| |#2| (-921 (-1201)))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))) ((-905 (-391)) -12 (|has| |#1| (-375)) (|has| |#2| (-905 (-391)))) ((-905 (-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-905 (-577)))) ((-903 |#2|) |has| |#1| (-375)) ((-932) -12 (|has| |#1| (-375)) (|has| |#2| (-932))) ((-998 |#1| #0# (-1107)) . T) ((-943) |has| |#1| (-375)) ((-1017 |#2|) |has| |#1| (-375)) ((-1027) |has| |#1| (-38 (-420 (-577)))) ((-1047) -12 (|has| |#1| (-375)) (|has| |#2| (-1047))) ((-1063 (-420 (-577))) -12 (|has| |#1| (-375)) (|has| |#2| (-1063 (-577)))) ((-1063 (-577)) -12 (|has| |#1| (-375)) (|has| |#2| (-1063 (-577)))) ((-1063 #2#) -12 (|has| |#1| (-375)) (|has| |#2| (-1063 (-1201)))) ((-1063 |#2|) . T) ((-1076 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1076 |#1|) . T) ((-1076 |#2|) |has| |#1| (-375)) ((-1076 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1081 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1081 |#1|) . T) ((-1081 |#2|) |has| |#1| (-375)) ((-1081 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1177) -12 (|has| |#1| (-375)) (|has| |#2| (-1177))) ((-1227) |has| |#1| (-38 (-420 (-577)))) ((-1230) |has| |#1| (-38 (-420 (-577)))) ((-1242) . T) ((-1246) |has| |#1| (-375)) ((-1252 |#1|) . T) ((-1270 |#1| #0#) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 81)) (-4105 ((|#2| $) NIL (-12 (|has| |#2| (-318)) (|has| |#1| (-375))))) (-2058 (((-660 (-1107)) $) NIL)) (-3076 (((-1201) $) 100)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-3804 (($ $ (-577)) 109) (($ $ (-577) (-577)) 111)) (-3829 (((-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) 51)) (-1577 ((|#2| $) 11)) (-1556 (((-3 |#2| "failed") $) 35)) (-2119 ((|#2| $) 36)) (-2212 (($ $) 206 (|has| |#1| (-38 (-420 (-577)))))) (-2060 (($ $) 182 (|has| |#1| (-38 (-420 (-577)))))) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| |#2| (-932)) (|has| |#1| (-375))))) (-3841 (($ $) NIL (|has| |#1| (-375)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-375)))) (-1913 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (-12 (|has| |#2| (-932)) (|has| |#1| (-375))))) (-1939 (((-112) $ $) NIL (|has| |#1| (-375)))) (-2186 (($ $) 202 (|has| |#1| (-38 (-420 (-577)))))) (-2032 (($ $) 178 (|has| |#1| (-38 (-420 (-577)))))) (-3010 (((-577) $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-375))))) (-3689 (($ (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) 59)) (-2237 (($ $) 210 (|has| |#1| (-38 (-420 (-577)))))) (-2084 (($ $) 186 (|has| |#1| (-38 (-420 (-577)))))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#2| "failed") $) 157) (((-3 (-577) "failed") $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#1| (-375)))) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#1| (-375)))) (((-3 (-1201) "failed") $) NIL (-12 (|has| |#2| (-1063 (-1201))) (|has| |#1| (-375))))) (-2921 ((|#2| $) 156) (((-577) $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#1| (-375)))) (((-420 (-577)) $) NIL (-12 (|has| |#2| (-1063 (-577))) (|has| |#1| (-375)))) (((-1201) $) NIL (-12 (|has| |#2| (-1063 (-1201))) (|has| |#1| (-375))))) (-1566 (($ $) 65) (($ (-577) $) 28)) (-3418 (($ $ $) NIL (|has| |#1| (-375)))) (-2248 (($ $) NIL)) (-1647 (((-705 |#2|) (-705 $)) NIL (|has| |#1| (-375))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL (|has| |#1| (-375))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#1| (-375)))) (((-705 (-577)) (-705 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#1| (-375))))) (-4187 (((-3 $ "failed") $) 88)) (-1544 (((-420 (-975 |#1|)) $ (-577)) 124 (|has| |#1| (-569))) (((-420 (-975 |#1|)) $ (-577) (-577)) 126 (|has| |#1| (-569)))) (-1910 (($) NIL (-12 (|has| |#2| (-558)) (|has| |#1| (-375))))) (-3429 (($ $ $) NIL (|has| |#1| (-375)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| |#1| (-375)))) (-1522 (((-112) $) NIL (|has| |#1| (-375)))) (-3567 (((-112) $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-375))))) (-3550 (((-112) $) 74)) (-1659 (($) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| |#2| (-905 (-391))) (|has| |#1| (-375)))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| |#2| (-905 (-577))) (|has| |#1| (-375))))) (-3817 (((-577) $) 105) (((-577) $ (-577)) 107)) (-2487 (((-112) $) NIL)) (-2240 (($ $) NIL (|has| |#1| (-375)))) (-1623 ((|#2| $) 165 (|has| |#1| (-375)))) (-2381 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4021 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1177)) (|has| |#1| (-375))))) (-3578 (((-112) $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-375))))) (-3864 (($ $ (-944)) 148)) (-4158 (($ (-1 |#1| (-577)) $) 144)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-577)) 20) (($ $ (-1107) (-577)) NIL) (($ $ (-660 (-1107)) (-660 (-577))) NIL)) (-3732 (($ $ $) NIL (-12 (|has| |#2| (-865)) (|has| |#1| (-375))))) (-3201 (($ $ $) NIL (-12 (|has| |#2| (-865)) (|has| |#1| (-375))))) (-4087 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-375)))) (-3698 (($ $) 176 (|has| |#1| (-38 (-420 (-577)))))) (-1657 (((-705 |#2|) (-1292 $)) NIL (|has| |#1| (-375))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL (|has| |#1| (-375))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#1| (-375)))) (((-705 (-577)) (-1292 $)) NIL (-12 (|has| |#2| (-654 (-577))) (|has| |#1| (-375))))) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-2134 (($ (-577) |#2|) 10)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) 159 (|has| |#1| (-375)))) (-4147 (($ $) 228 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-1201)) 233 (-2839 (-12 (|has| |#1| (-15 -4147 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -2058 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227)))))) (-1709 (($) NIL (-12 (|has| |#2| (-1177)) (|has| |#1| (-375))) CONST)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-4093 (($ $) NIL (-12 (|has| |#2| (-318)) (|has| |#1| (-375))))) (-4119 ((|#2| $) NIL (-12 (|has| |#2| (-558)) (|has| |#1| (-375))))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| |#2| (-932)) (|has| |#1| (-375))))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| |#2| (-932)) (|has| |#1| (-375))))) (-1902 (((-431 $) $) NIL (|has| |#1| (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3792 (($ $ (-577)) 138)) (-3462 (((-3 $ "failed") $ $) 128 (|has| |#1| (-569)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-4072 (($ $) 174 (|has| |#1| (-38 (-420 (-577)))))) (-3280 (((-1182 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-577))))) (($ $ (-1201) |#2|) NIL (-12 (|has| |#2| (-527 (-1201) |#2|)) (|has| |#1| (-375)))) (($ $ (-660 (-1201)) (-660 |#2|)) NIL (-12 (|has| |#2| (-527 (-1201) |#2|)) (|has| |#1| (-375)))) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375)))) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375)))) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-320 |#2|)) (|has| |#1| (-375))))) (-1927 (((-787) $) NIL (|has| |#1| (-375)))) (-2872 ((|#1| $ (-577)) 103) (($ $ $) 90 (|has| (-577) (-1137))) (($ $ |#2|) NIL (-12 (|has| |#2| (-297 |#2| |#2|)) (|has| |#1| (-375))))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-375)))) (-2852 (($ $ (-1 |#2| |#2|) (-787)) NIL (|has| |#1| (-375))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-375))) (($ $) 149 (-2839 (-12 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-787)) NIL (-2839 (-12 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-1201)) 153 (-2839 (-12 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) (($ $ (-660 (-1201))) NIL (-2839 (-12 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) (($ $ (-1201) (-787)) NIL (-2839 (-12 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2839 (-12 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))))) (-2227 (($ $) NIL (|has| |#1| (-375)))) (-1637 ((|#2| $) 166 (|has| |#1| (-375)))) (-2887 (((-577) $) 12)) (-2249 (($ $) 212 (|has| |#1| (-38 (-420 (-577)))))) (-2095 (($ $) 188 (|has| |#1| (-38 (-420 (-577)))))) (-2224 (($ $) 208 (|has| |#1| (-38 (-420 (-577)))))) (-2073 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))))) (-2199 (($ $) 204 (|has| |#1| (-38 (-420 (-577)))))) (-2046 (($ $) 180 (|has| |#1| (-38 (-420 (-577)))))) (-4152 (((-228) $) NIL (-12 (|has| |#2| (-1047)) (|has| |#1| (-375)))) (((-391) $) NIL (-12 (|has| |#2| (-1047)) (|has| |#1| (-375)))) (((-549) $) NIL (-12 (|has| |#2| (-627 (-549))) (|has| |#1| (-375)))) (((-911 (-391)) $) NIL (-12 (|has| |#2| (-627 (-911 (-391)))) (|has| |#1| (-375)))) (((-911 (-577)) $) NIL (-12 (|has| |#2| (-627 (-911 (-577)))) (|has| |#1| (-375))))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-932)) (|has| |#1| (-375))))) (-3540 (($ $) 136)) (-3544 (((-880) $) 266) (($ (-577)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1201)) NIL (-12 (|has| |#2| (-1063 (-1201))) (|has| |#1| (-375)))) (($ (-420 (-577))) 169 (|has| |#1| (-38 (-420 (-577))))) (($ $) NIL (|has| |#1| (-569)))) (-2322 ((|#1| $ (-577)) 85)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| |#2| (-932)) (|has| |#1| (-375))) (-12 (|has| |#2| (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))))) (-4068 (((-787)) 155 T CONST)) (-3693 ((|#1| $) 102)) (-4132 ((|#2| $) NIL (-12 (|has| |#2| (-558)) (|has| |#1| (-375))))) (-4448 (((-112) $ $) NIL)) (-4114 (($ $) 218 (|has| |#1| (-38 (-420 (-577)))))) (-2136 (($ $) 194 (|has| |#1| (-38 (-420 (-577)))))) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2262 (($ $) 214 (|has| |#1| (-38 (-420 (-577)))))) (-2106 (($ $) 190 (|has| |#1| (-38 (-420 (-577)))))) (-4141 (($ $) 222 (|has| |#1| (-38 (-420 (-577)))))) (-2162 (($ $) 198 (|has| |#1| (-38 (-420 (-577)))))) (-4148 ((|#1| $ (-577)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -3544 (|#1| (-1201))))))) (-2261 (($ $) 224 (|has| |#1| (-38 (-420 (-577)))))) (-2174 (($ $) 200 (|has| |#1| (-38 (-420 (-577)))))) (-4128 (($ $) 220 (|has| |#1| (-38 (-420 (-577)))))) (-2150 (($ $) 196 (|has| |#1| (-38 (-420 (-577)))))) (-2272 (($ $) 216 (|has| |#1| (-38 (-420 (-577)))))) (-2120 (($ $) 192 (|has| |#1| (-38 (-420 (-577)))))) (-1654 (($ $) NIL (-12 (|has| |#2| (-836)) (|has| |#1| (-375))))) (-2806 (($) 13 T CONST)) (-2816 (($) 18 T CONST)) (-2132 (($ $ (-1 |#2| |#2|) (-787)) NIL (|has| |#1| (-375))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-375))) (($ $) NIL (-2839 (-12 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-787)) NIL (-2839 (-12 (|has| |#2| (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) (($ $ (-660 (-1201))) NIL (-2839 (-12 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) (($ $ (-1201) (-787)) NIL (-2839 (-12 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2839 (-12 (|has| |#2| (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))))) (-3025 (((-112) $ $) NIL (-12 (|has| |#2| (-865)) (|has| |#1| (-375))))) (-3000 (((-112) $ $) NIL (-12 (|has| |#2| (-865)) (|has| |#1| (-375))))) (-2970 (((-112) $ $) 72)) (-3012 (((-112) $ $) NIL (-12 (|has| |#2| (-865)) (|has| |#1| (-375))))) (-2990 (((-112) $ $) NIL (-12 (|has| |#2| (-865)) (|has| |#1| (-375))))) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375))) (($ $ $) 163 (|has| |#1| (-375))) (($ |#2| |#2|) 164 (|has| |#1| (-375)))) (-3066 (($ $) 227) (($ $ $) 78)) (-3055 (($ $ $) 76)) (** (($ $ (-944)) NIL) (($ $ (-787)) 84) (($ $ (-577)) 160 (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 172 (|has| |#1| (-38 (-420 (-577)))))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-375))) (($ |#2| $) 161 (|has| |#1| (-375))) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))))) +(((-1255 |#1| |#2|) (-1254 |#1| |#2|) (-1074) (-1283 |#1|)) (T -1255)) +NIL +(-1254 |#1| |#2|) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-4105 (((-1284 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-318)) (|has| |#1| (-375))))) (-2058 (((-660 (-1107)) $) NIL)) (-3076 (((-1201) $) 10)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))))) (-3290 (($ $) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))))) (-3271 (((-112) $) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))))) (-3804 (($ $ (-577)) NIL) (($ $ (-577) (-577)) NIL)) (-3829 (((-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|))) $) NIL)) (-1577 (((-1284 |#1| |#2| |#3|) $) NIL)) (-1556 (((-3 (-1284 |#1| |#2| |#3|) "failed") $) NIL)) (-2119 (((-1284 |#1| |#2| |#3|) $) NIL)) (-2212 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2060 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1956 (((-3 $ "failed") $ $) NIL)) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))))) (-3841 (($ $) NIL (|has| |#1| (-375)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-375)))) (-1913 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))))) (-1939 (((-112) $ $) NIL (|has| |#1| (-375)))) (-2186 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2032 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3010 (((-577) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))))) (-3689 (($ (-1182 (-2 (|:| |k| (-577)) (|:| |c| |#1|)))) NIL)) (-2237 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2084 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-1284 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1201) "failed") $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1063 (-1201))) (|has| |#1| (-375)))) (((-3 (-420 (-577)) "failed") $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375)))) (((-3 (-577) "failed") $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375))))) (-2921 (((-1284 |#1| |#2| |#3|) $) NIL) (((-1201) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1063 (-1201))) (|has| |#1| (-375)))) (((-420 (-577)) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375)))) (((-577) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375))))) (-1566 (($ $) NIL) (($ (-577) $) NIL)) (-3418 (($ $ $) NIL (|has| |#1| (-375)))) (-2248 (($ $) NIL)) (-1647 (((-705 (-1284 |#1| |#2| |#3|)) (-705 $)) NIL (|has| |#1| (-375))) (((-2 (|:| -1881 (-705 (-1284 |#1| |#2| |#3|))) (|:| |vec| (-1292 (-1284 |#1| |#2| |#3|)))) (-705 $) (-1292 $)) NIL (|has| |#1| (-375))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-654 (-577))) (|has| |#1| (-375)))) (((-705 (-577)) (-705 $)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-654 (-577))) (|has| |#1| (-375))))) (-4187 (((-3 $ "failed") $) NIL)) (-1544 (((-420 (-975 |#1|)) $ (-577)) NIL (|has| |#1| (-569))) (((-420 (-975 |#1|)) $ (-577) (-577)) NIL (|has| |#1| (-569)))) (-1910 (($) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))))) (-3429 (($ $ $) NIL (|has| |#1| (-375)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| |#1| (-375)))) (-1522 (((-112) $) NIL (|has| |#1| (-375)))) (-3567 (((-112) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))))) (-3550 (((-112) $) NIL)) (-1659 (($) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-905 (-391))) (|has| |#1| (-375)))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-905 (-577))) (|has| |#1| (-375))))) (-3817 (((-577) $) NIL) (((-577) $ (-577)) NIL)) (-2487 (((-112) $) NIL)) (-2240 (($ $) NIL (|has| |#1| (-375)))) (-1623 (((-1284 |#1| |#2| |#3|) $) NIL (|has| |#1| (-375)))) (-2381 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4021 (((-3 $ "failed") $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1177)) (|has| |#1| (-375))))) (-3578 (((-112) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))))) (-3864 (($ $ (-944)) NIL)) (-4158 (($ (-1 |#1| (-577)) $) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-577)) 18) (($ $ (-1107) (-577)) NIL) (($ $ (-660 (-1107)) (-660 (-577))) NIL)) (-3732 (($ $ $) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))))) (-3201 (($ $ $) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))))) (-4087 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-375)))) (-3698 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1657 (((-705 (-1284 |#1| |#2| |#3|)) (-1292 $)) NIL (|has| |#1| (-375))) (((-2 (|:| -1881 (-705 (-1284 |#1| |#2| |#3|))) (|:| |vec| (-1292 (-1284 |#1| |#2| |#3|)))) (-1292 $) $) NIL (|has| |#1| (-375))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-654 (-577))) (|has| |#1| (-375)))) (((-705 (-577)) (-1292 $)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-654 (-577))) (|has| |#1| (-375))))) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-2134 (($ (-577) (-1284 |#1| |#2| |#3|)) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL (|has| |#1| (-375)))) (-4147 (($ $) 27 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| |#1| (-15 -4147 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -2058 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227))))) (($ $ (-1288 |#2|)) 28 (|has| |#1| (-38 (-420 (-577)))))) (-1709 (($) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1177)) (|has| |#1| (-375))) CONST)) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-4093 (($ $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-318)) (|has| |#1| (-375))))) (-4119 (((-1284 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))))) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))))) (-1902 (((-431 $) $) NIL (|has| |#1| (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3792 (($ $ (-577)) NIL)) (-3462 (((-3 $ "failed") $ $) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-4072 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3280 (((-1182 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-577))))) (($ $ (-1201) (-1284 |#1| |#2| |#3|)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-527 (-1201) (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375)))) (($ $ (-660 (-1201)) (-660 (-1284 |#1| |#2| |#3|))) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-527 (-1201) (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375)))) (($ $ (-660 (-305 (-1284 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-320 (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375)))) (($ $ (-305 (-1284 |#1| |#2| |#3|))) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-320 (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375)))) (($ $ (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-320 (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375)))) (($ $ (-660 (-1284 |#1| |#2| |#3|)) (-660 (-1284 |#1| |#2| |#3|))) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-320 (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375))))) (-1927 (((-787) $) NIL (|has| |#1| (-375)))) (-2872 ((|#1| $ (-577)) NIL) (($ $ $) NIL (|has| (-577) (-1137))) (($ $ (-1284 |#1| |#2| |#3|)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-297 (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|))) (|has| |#1| (-375))))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-375)))) (-2852 (($ $ (-1 (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|)) (-787)) NIL (|has| |#1| (-375))) (($ $ (-1 (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|))) NIL (|has| |#1| (-375))) (($ $ (-1288 |#2|)) 26) (($ $) 25 (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-787)) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) (($ $ (-660 (-1201))) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) (($ $ (-1201) (-787)) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))))) (-2227 (($ $) NIL (|has| |#1| (-375)))) (-1637 (((-1284 |#1| |#2| |#3|) $) NIL (|has| |#1| (-375)))) (-2887 (((-577) $) NIL)) (-2249 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2095 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2073 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2199 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2046 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4152 (((-549) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-627 (-549))) (|has| |#1| (-375)))) (((-391) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1047)) (|has| |#1| (-375)))) (((-228) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1047)) (|has| |#1| (-375)))) (((-911 (-391)) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-627 (-911 (-391)))) (|has| |#1| (-375)))) (((-911 (-577)) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-627 (-911 (-577)))) (|has| |#1| (-375))))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))))) (-3540 (($ $) NIL)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1284 |#1| |#2| |#3|)) NIL) (($ (-1288 |#2|)) 24) (($ (-1201)) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-1063 (-1201))) (|has| |#1| (-375)))) (($ $) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569)))) (($ (-420 (-577))) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-1063 (-577))) (|has| |#1| (-375))) (|has| |#1| (-38 (-420 (-577))))))) (-2322 ((|#1| $ (-577)) NIL)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-146)) (|has| |#1| (-375))) (|has| |#1| (-146))))) (-4068 (((-787)) NIL T CONST)) (-3693 ((|#1| $) 11)) (-4132 (((-1284 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-558)) (|has| |#1| (-375))))) (-4448 (((-112) $ $) NIL)) (-4114 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2136 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3281 (((-112) $ $) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-932)) (|has| |#1| (-375))) (|has| |#1| (-569))))) (-2262 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2106 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4141 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2162 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4148 ((|#1| $ (-577)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-577)))) (|has| |#1| (-15 -3544 (|#1| (-1201))))))) (-2261 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2174 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4128 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2150 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2272 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2120 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1654 (($ $) NIL (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))))) (-2806 (($) 20 T CONST)) (-2816 (($) 15 T CONST)) (-2132 (($ $ (-1 (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|)) (-787)) NIL (|has| |#1| (-375))) (($ $ (-1 (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|))) NIL (|has| |#1| (-375))) (($ $ (-1288 |#2|)) NIL) (($ $) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-787)) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-239)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-238)) (|has| |#1| (-375))) (|has| |#1| (-15 * (|#1| (-577) |#1|))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) (($ $ (-660 (-1201))) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) (($ $ (-1201) (-787)) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201)))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-921 (-1201))) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-923 (-1201))) (|has| |#1| (-375))) (-12 (|has| |#1| (-15 * (|#1| (-577) |#1|))) (|has| |#1| (-921 (-1201))))))) (-3025 (((-112) $ $) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))))) (-3000 (((-112) $ $) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))))) (-2970 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))))) (-2990 (((-112) $ $) NIL (-2839 (-12 (|has| (-1284 |#1| |#2| |#3|) (-836)) (|has| |#1| (-375))) (-12 (|has| (-1284 |#1| |#2| |#3|) (-865)) (|has| |#1| (-375)))))) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375))) (($ (-1284 |#1| |#2| |#3|) (-1284 |#1| |#2| |#3|)) NIL (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) 22)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1284 |#1| |#2| |#3|)) NIL (|has| |#1| (-375))) (($ (-1284 |#1| |#2| |#3|) $) NIL (|has| |#1| (-375))) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))))) +(((-1256 |#1| |#2| |#3|) (-13 (-1254 |#1| (-1284 |#1| |#2| |#3|)) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3544 ($ (-1288 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4147 ($ $ (-1288 |#2|))) |%noBranch|))) (-1074) (-1201) |#1|) (T -1256)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-1074)) (-14 *5 *3))) (-4147 (*1 *1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1256 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3)))) +(-13 (-1254 |#1| (-1284 |#1| |#2| |#3|)) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3544 ($ (-1288 |#2|))) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4147 ($ $ (-1288 |#2|))) |%noBranch|))) +((-1599 (((-2 (|:| |contp| (-577)) (|:| -3363 (-660 (-2 (|:| |irr| |#1|) (|:| -3504 (-577)))))) |#1| (-112)) 13)) (-1589 (((-431 |#1|) |#1|) 26)) (-1902 (((-431 |#1|) |#1|) 24))) +(((-1257 |#1|) (-10 -7 (-15 -1902 ((-431 |#1|) |#1|)) (-15 -1589 ((-431 |#1|) |#1|)) (-15 -1599 ((-2 (|:| |contp| (-577)) (|:| -3363 (-660 (-2 (|:| |irr| |#1|) (|:| -3504 (-577)))))) |#1| (-112)))) (-1268 (-577))) (T -1257)) +((-1599 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-577)) (|:| -3363 (-660 (-2 (|:| |irr| *3) (|:| -3504 (-577))))))) (-5 *1 (-1257 *3)) (-4 *3 (-1268 (-577))))) (-1589 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1257 *3)) (-4 *3 (-1268 (-577))))) (-1902 (*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-1257 *3)) (-4 *3 (-1268 (-577)))))) +(-10 -7 (-15 -1902 ((-431 |#1|) |#1|)) (-15 -1589 ((-431 |#1|) |#1|)) (-15 -1599 ((-2 (|:| |contp| (-577)) (|:| -3363 (-660 (-2 (|:| |irr| |#1|) (|:| -3504 (-577)))))) |#1| (-112)))) +((-4087 (((-1182 |#2|) (-1 |#2| |#1|) (-1259 |#1|)) 23 (|has| |#1| (-864))) (((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|)) 17))) +(((-1258 |#1| |#2|) (-10 -7 (-15 -4087 ((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) (IF (|has| |#1| (-864)) (-15 -4087 ((-1182 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) |%noBranch|)) (-1242) (-1242)) (T -1258)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-864)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-1182 *6)) (-5 *1 (-1258 *5 *6)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6))))) +(-10 -7 (-15 -4087 ((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) (IF (|has| |#1| (-864)) (-15 -4087 ((-1182 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) |%noBranch|)) +((-3473 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-2362 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-4087 (((-1182 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-864)))) (-2742 ((|#1| $) 15)) (-3122 ((|#1| $) 12)) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-4209 (((-577) $) 19)) (-2731 ((|#1| $) 18)) (-4220 ((|#1| $) 13)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-1610 (((-112) $) 17)) (-2027 (((-1182 |#1|) $) 41 (|has| |#1| (-864))) (((-1182 |#1|) (-660 $)) 40 (|has| |#1| (-864)))) (-4152 (($ |#1|) 26)) (-3544 (($ (-1119 |#1|)) 25) (((-880) $) 37 (|has| |#1| (-1125)))) (-4448 (((-112) $ $) NIL (|has| |#1| (-1125)))) (-1851 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2755 (($ $ (-577)) 14)) (-2970 (((-112) $ $) 30 (|has| |#1| (-1125))))) +(((-1259 |#1|) (-13 (-1118 |#1|) (-10 -8 (-15 -1851 ($ |#1|)) (-15 -2362 ($ |#1|)) (-15 -3544 ($ (-1119 |#1|))) (-15 -1610 ((-112) $)) (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|) (IF (|has| |#1| (-864)) (-6 (-1120 |#1| (-1182 |#1|))) |%noBranch|))) (-1242)) (T -1259)) +((-1851 (*1 *1 *2) (-12 (-5 *1 (-1259 *2)) (-4 *2 (-1242)))) (-2362 (*1 *1 *2) (-12 (-5 *1 (-1259 *2)) (-4 *2 (-1242)))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1242)) (-5 *1 (-1259 *3)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1259 *3)) (-4 *3 (-1242))))) +(-13 (-1118 |#1|) (-10 -8 (-15 -1851 ($ |#1|)) (-15 -2362 ($ |#1|)) (-15 -3544 ($ (-1119 |#1|))) (-15 -1610 ((-112) $)) (IF (|has| |#1| (-1125)) (-6 (-1125)) |%noBranch|) (IF (|has| |#1| (-864)) (-6 (-1120 |#1| (-1182 |#1|))) |%noBranch|))) +((-4087 (((-1265 |#3| |#4|) (-1 |#4| |#2|) (-1265 |#1| |#2|)) 15))) +(((-1260 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 ((-1265 |#3| |#4|) (-1 |#4| |#2|) (-1265 |#1| |#2|)))) (-1201) (-1074) (-1201) (-1074)) (T -1260)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1265 *5 *6)) (-14 *5 (-1201)) (-4 *6 (-1074)) (-4 *8 (-1074)) (-5 *2 (-1265 *7 *8)) (-5 *1 (-1260 *5 *6 *7 *8)) (-14 *7 (-1201))))) +(-10 -7 (-15 -4087 ((-1265 |#3| |#4|) (-1 |#4| |#2|) (-1265 |#1| |#2|)))) +((-1660 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1638 ((|#1| |#3|) 13)) (-1649 ((|#3| |#3|) 19))) +(((-1261 |#1| |#2| |#3|) (-10 -7 (-15 -1638 (|#1| |#3|)) (-15 -1649 (|#3| |#3|)) (-15 -1660 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-569) (-1017 |#1|) (-1268 |#2|)) (T -1261)) +((-1660 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1017 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1261 *4 *5 *3)) (-4 *3 (-1268 *5)))) (-1649 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *4 (-1017 *3)) (-5 *1 (-1261 *3 *4 *2)) (-4 *2 (-1268 *4)))) (-1638 (*1 *2 *3) (-12 (-4 *4 (-1017 *2)) (-4 *2 (-569)) (-5 *1 (-1261 *2 *4 *3)) (-4 *3 (-1268 *4))))) +(-10 -7 (-15 -1638 (|#1| |#3|)) (-15 -1649 (|#3| |#3|)) (-15 -1660 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1683 (((-3 |#2| "failed") |#2| (-787) |#1|) 35)) (-1670 (((-3 |#2| "failed") |#2| (-787)) 36)) (-1703 (((-3 (-2 (|:| -4228 |#2|) (|:| -4239 |#2|)) "failed") |#2|) 50)) (-1714 (((-660 |#2|) |#2|) 52)) (-1694 (((-3 |#2| "failed") |#2| |#2|) 46))) +(((-1262 |#1| |#2|) (-10 -7 (-15 -1670 ((-3 |#2| "failed") |#2| (-787))) (-15 -1683 ((-3 |#2| "failed") |#2| (-787) |#1|)) (-15 -1694 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1703 ((-3 (-2 (|:| -4228 |#2|) (|:| -4239 |#2|)) "failed") |#2|)) (-15 -1714 ((-660 |#2|) |#2|))) (-13 (-569) (-148)) (-1268 |#1|)) (T -1262)) +((-1714 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-148))) (-5 *2 (-660 *3)) (-5 *1 (-1262 *4 *3)) (-4 *3 (-1268 *4)))) (-1703 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-148))) (-5 *2 (-2 (|:| -4228 *3) (|:| -4239 *3))) (-5 *1 (-1262 *4 *3)) (-4 *3 (-1268 *4)))) (-1694 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1262 *3 *2)) (-4 *2 (-1268 *3)))) (-1683 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-787)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-1262 *4 *2)) (-4 *2 (-1268 *4)))) (-1670 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-787)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-1262 *4 *2)) (-4 *2 (-1268 *4))))) +(-10 -7 (-15 -1670 ((-3 |#2| "failed") |#2| (-787))) (-15 -1683 ((-3 |#2| "failed") |#2| (-787) |#1|)) (-15 -1694 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1703 ((-3 (-2 (|:| -4228 |#2|) (|:| -4239 |#2|)) "failed") |#2|)) (-15 -1714 ((-660 |#2|) |#2|))) +((-1726 (((-3 (-2 (|:| -3637 |#2|) (|:| -2457 |#2|)) "failed") |#2| |#2|) 30))) +(((-1263 |#1| |#2|) (-10 -7 (-15 -1726 ((-3 (-2 (|:| -3637 |#2|) (|:| -2457 |#2|)) "failed") |#2| |#2|))) (-569) (-1268 |#1|)) (T -1263)) +((-1726 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -3637 *3) (|:| -2457 *3))) (-5 *1 (-1263 *4 *3)) (-4 *3 (-1268 *4))))) +(-10 -7 (-15 -1726 ((-3 (-2 (|:| -3637 |#2|) (|:| -2457 |#2|)) "failed") |#2| |#2|))) +((-1737 ((|#2| |#2| |#2|) 22)) (-1744 ((|#2| |#2| |#2|) 36)) (-1755 ((|#2| |#2| |#2| (-787) (-787)) 44))) +(((-1264 |#1| |#2|) (-10 -7 (-15 -1737 (|#2| |#2| |#2|)) (-15 -1744 (|#2| |#2| |#2|)) (-15 -1755 (|#2| |#2| |#2| (-787) (-787)))) (-1074) (-1268 |#1|)) (T -1264)) +((-1755 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-787)) (-4 *4 (-1074)) (-5 *1 (-1264 *4 *2)) (-4 *2 (-1268 *4)))) (-1744 (*1 *2 *2 *2) (-12 (-4 *3 (-1074)) (-5 *1 (-1264 *3 *2)) (-4 *2 (-1268 *3)))) (-1737 (*1 *2 *2 *2) (-12 (-4 *3 (-1074)) (-5 *1 (-1264 *3 *2)) (-4 *2 (-1268 *3))))) +(-10 -7 (-15 -1737 (|#2| |#2| |#2|)) (-15 -1744 (|#2| |#2| |#2|)) (-15 -1755 (|#2| |#2| |#2| (-787) (-787)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3779 (((-1292 |#2|) $ (-787)) NIL)) (-2058 (((-660 (-1107)) $) NIL)) (-3756 (($ (-1197 |#2|)) NIL)) (-1867 (((-1197 $) $ (-1107)) NIL) (((-1197 |#2|) $) NIL)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)))) (-3290 (($ $) NIL (|has| |#2| (-569)))) (-3271 (((-112) $) NIL (|has| |#2| (-569)))) (-4050 (((-787) $) NIL) (((-787) $ (-660 (-1107))) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1807 (($ $ $) NIL (|has| |#2| (-569)))) (-2294 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-3841 (($ $) NIL (|has| |#2| (-465)))) (-3029 (((-431 $) $) NIL (|has| |#2| (-465)))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-1939 (((-112) $ $) NIL (|has| |#2| (-375)))) (-3714 (($ $ (-787)) NIL)) (-3703 (($ $ (-787)) NIL)) (-1767 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-465)))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#2| "failed") $) NIL) (((-3 (-420 (-577)) "failed") $) NIL (|has| |#2| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) NIL (|has| |#2| (-1063 (-577)))) (((-3 (-1107) "failed") $) NIL)) (-2921 ((|#2| $) NIL) (((-420 (-577)) $) NIL (|has| |#2| (-1063 (-420 (-577))))) (((-577) $) NIL (|has| |#2| (-1063 (-577)))) (((-1107) $) NIL)) (-1816 (($ $ $ (-1107)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-3418 (($ $ $) NIL (|has| |#2| (-375)))) (-2248 (($ $) NIL)) (-1647 (((-705 (-577)) (-705 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-705 $) (-1292 $)) NIL) (((-705 |#2|) (-705 $)) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3429 (($ $ $) NIL (|has| |#2| (-375)))) (-1838 (($ $ $) NIL)) (-1787 (($ $ $) NIL (|has| |#2| (-569)))) (-1776 (((-2 (|:| -1777 |#2|) (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#2| (-569)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| |#2| (-375)))) (-3143 (($ $) NIL (|has| |#2| (-465))) (($ $ (-1107)) NIL (|has| |#2| (-465)))) (-2234 (((-660 $) $) NIL)) (-1522 (((-112) $) NIL (|has| |#2| (-932)))) (-2137 (($ $ |#2| (-787) $) NIL)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) NIL (-12 (|has| (-1107) (-905 (-391))) (|has| |#2| (-905 (-391))))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) NIL (-12 (|has| (-1107) (-905 (-577))) (|has| |#2| (-905 (-577)))))) (-3817 (((-787) $ $) NIL (|has| |#2| (-569)))) (-2487 (((-112) $) NIL)) (-2548 (((-787) $) NIL)) (-4021 (((-3 $ "failed") $) NIL (|has| |#2| (-1177)))) (-2043 (($ (-1197 |#2|) (-1107)) NIL) (($ (-1197 $) (-1107)) NIL)) (-3864 (($ $ (-787)) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#2| (-375)))) (-4074 (((-660 $) $) NIL)) (-2811 (((-112) $) NIL)) (-2030 (($ |#2| (-787)) 18) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107)) (-660 (-787))) NIL)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ (-1107)) NIL) (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL)) (-4061 (((-787) $) NIL) (((-787) $ (-1107)) NIL) (((-660 (-787)) $ (-660 (-1107))) NIL)) (-2151 (($ (-1 (-787) (-787)) $) NIL)) (-4087 (($ (-1 |#2| |#2|) $) NIL)) (-3767 (((-1197 |#2|) $) NIL)) (-3691 (((-3 (-1107) "failed") $) NIL)) (-1657 (((-705 (-577)) (-1292 $)) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) NIL (|has| |#2| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#2|)) (|:| |vec| (-1292 |#2|))) (-1292 $) $) NIL) (((-705 |#2|) (-1292 $)) NIL)) (-2209 (($ $) NIL)) (-2221 ((|#2| $) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#2| (-465))) (($ $ $) NIL (|has| |#2| (-465)))) (-2810 (((-1183) $) NIL)) (-3724 (((-2 (|:| -3637 $) (|:| -2457 $)) $ (-787)) NIL)) (-4098 (((-3 (-660 $) "failed") $) NIL)) (-4086 (((-3 (-660 $) "failed") $) NIL)) (-4111 (((-3 (-2 (|:| |var| (-1107)) (|:| -3556 (-787))) "failed") $) NIL)) (-4147 (($ $) NIL (|has| |#2| (-38 (-420 (-577)))))) (-1709 (($) NIL (|has| |#2| (-1177)) CONST)) (-1474 (((-1145) $) NIL)) (-2180 (((-112) $) NIL)) (-2193 ((|#2| $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#2| (-465)))) (-3480 (($ (-660 $)) NIL (|has| |#2| (-465))) (($ $ $) NIL (|has| |#2| (-465)))) (-1624 (($ $ (-787) |#2| $) NIL)) (-2269 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) NIL (|has| |#2| (-932)))) (-1902 (((-431 $) $) NIL (|has| |#2| (-932)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#2| (-375)))) (-3462 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-569))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-569)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#2| (-375)))) (-3280 (($ $ (-660 (-305 $))) NIL) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ (-1107) |#2|) NIL) (($ $ (-660 (-1107)) (-660 |#2|)) NIL) (($ $ (-1107) $) NIL) (($ $ (-660 (-1107)) (-660 $)) NIL)) (-1927 (((-787) $) NIL (|has| |#2| (-375)))) (-2872 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-420 $) (-420 $) (-420 $)) NIL (|has| |#2| (-569))) ((|#2| (-420 $) |#2|) NIL (|has| |#2| (-375))) (((-420 $) $ (-420 $)) NIL (|has| |#2| (-569)))) (-3745 (((-3 $ "failed") $ (-787)) NIL)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#2| (-375)))) (-1827 (($ $ (-1107)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-2852 (($ $ (-660 (-1107)) (-660 (-787))) NIL) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107))) NIL) (($ $ (-1107)) NIL) (($ $) NIL) (($ $ (-787)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-787)) NIL) (($ $ (-1 |#2| |#2|) $) NIL) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201))))) (-2887 (((-787) $) NIL) (((-787) $ (-1107)) NIL) (((-660 (-787)) $ (-660 (-1107))) NIL)) (-4152 (((-911 (-391)) $) NIL (-12 (|has| (-1107) (-627 (-911 (-391)))) (|has| |#2| (-627 (-911 (-391)))))) (((-911 (-577)) $) NIL (-12 (|has| (-1107) (-627 (-911 (-577)))) (|has| |#2| (-627 (-911 (-577)))))) (((-549) $) NIL (-12 (|has| (-1107) (-627 (-549))) (|has| |#2| (-627 (-549)))))) (-4039 ((|#2| $) NIL (|has| |#2| (-465))) (($ $ (-1107)) NIL (|has| |#2| (-465)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-932))))) (-1797 (((-3 $ "failed") $ $) NIL (|has| |#2| (-569))) (((-3 (-420 $) "failed") (-420 $) $) NIL (|has| |#2| (-569)))) (-3544 (((-880) $) 13) (($ (-577)) NIL) (($ |#2|) NIL) (($ (-1107)) NIL) (($ (-1288 |#1|)) 20) (($ (-420 (-577))) NIL (-2839 (|has| |#2| (-38 (-420 (-577)))) (|has| |#2| (-1063 (-420 (-577)))))) (($ $) NIL (|has| |#2| (-569)))) (-4182 (((-660 |#2|) $) NIL)) (-2322 ((|#2| $ (-787)) NIL) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107)) (-660 (-787))) NIL)) (-2233 (((-3 $ "failed") $) NIL (-2839 (-12 (|has| $ (-146)) (|has| |#2| (-932))) (|has| |#2| (-146))))) (-4068 (((-787)) NIL T CONST)) (-2122 (($ $ $ (-787)) NIL (|has| |#2| (-174)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL (|has| |#2| (-569)))) (-2806 (($) NIL T CONST)) (-2816 (($) 14 T CONST)) (-2132 (($ $ (-660 (-1107)) (-660 (-787))) NIL) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107))) NIL) (($ $ (-1107)) NIL) (($ $) NIL) (($ $ (-787)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-787)) NIL) (($ $ (-1201)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201))) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-1201) (-787)) NIL (|has| |#2| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (|has| |#2| (-923 (-1201))))) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#2|) NIL (|has| |#2| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-420 (-577))) NIL (|has| |#2| (-38 (-420 (-577))))) (($ (-420 (-577)) $) NIL (|has| |#2| (-38 (-420 (-577))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1265 |#1| |#2|) (-13 (-1268 |#2|) (-629 (-1288 |#1|)) (-10 -8 (-15 -1624 ($ $ (-787) |#2| $)))) (-1201) (-1074)) (T -1265)) +((-1624 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1265 *4 *3)) (-14 *4 (-1201)) (-4 *3 (-1074))))) +(-13 (-1268 |#2|) (-629 (-1288 |#1|)) (-10 -8 (-15 -1624 ($ $ (-787) |#2| $)))) +((-4087 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1266 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 (|#4| (-1 |#3| |#1|) |#2|))) (-1074) (-1268 |#1|) (-1074) (-1268 |#3|)) (T -1266)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1268 *6)) (-5 *1 (-1266 *5 *4 *6 *2)) (-4 *4 (-1268 *5))))) +(-10 -7 (-15 -4087 (|#4| (-1 |#3| |#1|) |#2|))) +((-3779 (((-1292 |#2|) $ (-787)) 129)) (-2058 (((-660 (-1107)) $) 16)) (-3756 (($ (-1197 |#2|)) 80)) (-4050 (((-787) $) NIL) (((-787) $ (-660 (-1107))) 21)) (-2294 (((-431 (-1197 $)) (-1197 $)) 204)) (-3841 (($ $) 194)) (-3029 (((-431 $) $) 192)) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 95)) (-3714 (($ $ (-787)) 84)) (-3703 (($ $ (-787)) 86)) (-1767 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-1628 (((-3 |#2| "failed") $) 132) (((-3 (-420 (-577)) "failed") $) NIL) (((-3 (-577) "failed") $) NIL) (((-3 (-1107) "failed") $) NIL)) (-2921 ((|#2| $) 130) (((-420 (-577)) $) NIL) (((-577) $) NIL) (((-1107) $) NIL)) (-1787 (($ $ $) 170)) (-1776 (((-2 (|:| -1777 |#2|) (|:| -3637 $) (|:| -2457 $)) $ $) 172)) (-3817 (((-787) $ $) 189)) (-4021 (((-3 $ "failed") $) 138)) (-2030 (($ |#2| (-787)) NIL) (($ $ (-1107) (-787)) 59) (($ $ (-660 (-1107)) (-660 (-787))) NIL)) (-4061 (((-787) $) NIL) (((-787) $ (-1107)) 54) (((-660 (-787)) $ (-660 (-1107))) 55)) (-3767 (((-1197 |#2|) $) 72)) (-3691 (((-3 (-1107) "failed") $) 52)) (-3724 (((-2 (|:| -3637 $) (|:| -2457 $)) $ (-787)) 83)) (-4147 (($ $) 219)) (-1709 (($) 134)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 201)) (-2269 (((-431 (-1197 $)) (-1197 $)) 101)) (-2281 (((-431 (-1197 $)) (-1197 $)) 99)) (-1902 (((-431 $) $) 120)) (-3280 (($ $ (-660 (-305 $))) 51) (($ $ (-305 $)) NIL) (($ $ $ $) NIL) (($ $ (-660 $) (-660 $)) NIL) (($ $ (-1107) |#2|) 39) (($ $ (-660 (-1107)) (-660 |#2|)) 36) (($ $ (-1107) $) 32) (($ $ (-660 (-1107)) (-660 $)) 30)) (-1927 (((-787) $) 207)) (-2872 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-420 $) (-420 $) (-420 $)) 164) ((|#2| (-420 $) |#2|) 206) (((-420 $) $ (-420 $)) 188)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 212)) (-2852 (($ $ (-660 (-1107)) (-660 (-787))) NIL) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107))) NIL) (($ $ (-1107)) 157) (($ $) 155) (($ $ (-787)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) (-787)) NIL) (($ $ (-1 |#2| |#2|) $) 149) (($ $ (-1201)) NIL) (($ $ (-660 (-1201))) NIL) (($ $ (-1201) (-787)) NIL) (($ $ (-660 (-1201)) (-660 (-787))) NIL)) (-2887 (((-787) $) NIL) (((-787) $ (-1107)) 17) (((-660 (-787)) $ (-660 (-1107))) 23)) (-4039 ((|#2| $) NIL) (($ $ (-1107)) 140)) (-1797 (((-3 $ "failed") $ $) 180) (((-3 (-420 $) "failed") (-420 $) $) 176)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#2|) NIL) (($ (-1107)) 64) (($ (-420 (-577))) NIL) (($ $) NIL))) +(((-1267 |#1| |#2|) (-10 -8 (-15 -3544 (|#1| |#1|)) (-15 -2305 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|))) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -3029 ((-431 |#1|) |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -1709 (|#1|)) (-15 -4021 ((-3 |#1| "failed") |#1|)) (-15 -2872 ((-420 |#1|) |#1| (-420 |#1|))) (-15 -1927 ((-787) |#1|)) (-15 -3422 ((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -2872 (|#2| (-420 |#1|) |#2|)) (-15 -1767 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1776 ((-2 (|:| -1777 |#2|) (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|)) (-15 -1787 (|#1| |#1| |#1|)) (-15 -1797 ((-3 (-420 |#1|) "failed") (-420 |#1|) |#1|)) (-15 -1797 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3817 ((-787) |#1| |#1|)) (-15 -2872 ((-420 |#1|) (-420 |#1|) (-420 |#1|))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3703 (|#1| |#1| (-787))) (-15 -3714 (|#1| |#1| (-787))) (-15 -3724 ((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| (-787))) (-15 -3756 (|#1| (-1197 |#2|))) (-15 -3767 ((-1197 |#2|) |#1|)) (-15 -3779 ((-1292 |#2|) |#1| (-787))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2872 (|#2| |#1| |#2|)) (-15 -1902 ((-431 |#1|) |#1|)) (-15 -2294 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2281 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2269 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2259 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|))) (-15 -4039 (|#1| |#1| (-1107))) (-15 -2058 ((-660 (-1107)) |#1|)) (-15 -4050 ((-787) |#1| (-660 (-1107)))) (-15 -4050 ((-787) |#1|)) (-15 -2030 (|#1| |#1| (-660 (-1107)) (-660 (-787)))) (-15 -2030 (|#1| |#1| (-1107) (-787))) (-15 -4061 ((-660 (-787)) |#1| (-660 (-1107)))) (-15 -4061 ((-787) |#1| (-1107))) (-15 -3691 ((-3 (-1107) "failed") |#1|)) (-15 -2887 ((-660 (-787)) |#1| (-660 (-1107)))) (-15 -2887 ((-787) |#1| (-1107))) (-15 -3544 (|#1| (-1107))) (-15 -1628 ((-3 (-1107) "failed") |#1|)) (-15 -2921 ((-1107) |#1|)) (-15 -3280 (|#1| |#1| (-660 (-1107)) (-660 |#1|))) (-15 -3280 (|#1| |#1| (-1107) |#1|)) (-15 -3280 (|#1| |#1| (-660 (-1107)) (-660 |#2|))) (-15 -3280 (|#1| |#1| (-1107) |#2|)) (-15 -3280 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3280 (|#1| |#1| |#1| |#1|)) (-15 -3280 (|#1| |#1| (-305 |#1|))) (-15 -3280 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -2887 ((-787) |#1|)) (-15 -2030 (|#1| |#2| (-787))) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -3544 (|#1| |#2|)) (-15 -4061 ((-787) |#1|)) (-15 -4039 (|#2| |#1|)) (-15 -2852 (|#1| |#1| (-1107))) (-15 -2852 (|#1| |#1| (-660 (-1107)))) (-15 -2852 (|#1| |#1| (-1107) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1107)) (-660 (-787)))) (-15 -3544 (|#1| (-577))) (-15 -3544 ((-880) |#1|))) (-1268 |#2|) (-1074)) (T -1267)) +NIL +(-10 -8 (-15 -3544 (|#1| |#1|)) (-15 -2305 ((-1197 |#1|) (-1197 |#1|) (-1197 |#1|))) (-15 -2852 (|#1| |#1| (-660 (-1201)) (-660 (-787)))) (-15 -2852 (|#1| |#1| (-1201) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1201)))) (-15 -2852 (|#1| |#1| (-1201))) (-15 -3029 ((-431 |#1|) |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -1709 (|#1|)) (-15 -4021 ((-3 |#1| "failed") |#1|)) (-15 -2872 ((-420 |#1|) |#1| (-420 |#1|))) (-15 -1927 ((-787) |#1|)) (-15 -3422 ((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -2872 (|#2| (-420 |#1|) |#2|)) (-15 -1767 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1776 ((-2 (|:| -1777 |#2|) (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| |#1|)) (-15 -1787 (|#1| |#1| |#1|)) (-15 -1797 ((-3 (-420 |#1|) "failed") (-420 |#1|) |#1|)) (-15 -1797 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3817 ((-787) |#1| |#1|)) (-15 -2872 ((-420 |#1|) (-420 |#1|) (-420 |#1|))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3703 (|#1| |#1| (-787))) (-15 -3714 (|#1| |#1| (-787))) (-15 -3724 ((-2 (|:| -3637 |#1|) (|:| -2457 |#1|)) |#1| (-787))) (-15 -3756 (|#1| (-1197 |#2|))) (-15 -3767 ((-1197 |#2|) |#1|)) (-15 -3779 ((-1292 |#2|) |#1| (-787))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|) (-787))) (-15 -2852 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2852 (|#1| |#1| (-787))) (-15 -2852 (|#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2872 (|#2| |#1| |#2|)) (-15 -1902 ((-431 |#1|) |#1|)) (-15 -2294 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2281 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2269 ((-431 (-1197 |#1|)) (-1197 |#1|))) (-15 -2259 ((-3 (-660 (-1197 |#1|)) "failed") (-660 (-1197 |#1|)) (-1197 |#1|))) (-15 -4039 (|#1| |#1| (-1107))) (-15 -2058 ((-660 (-1107)) |#1|)) (-15 -4050 ((-787) |#1| (-660 (-1107)))) (-15 -4050 ((-787) |#1|)) (-15 -2030 (|#1| |#1| (-660 (-1107)) (-660 (-787)))) (-15 -2030 (|#1| |#1| (-1107) (-787))) (-15 -4061 ((-660 (-787)) |#1| (-660 (-1107)))) (-15 -4061 ((-787) |#1| (-1107))) (-15 -3691 ((-3 (-1107) "failed") |#1|)) (-15 -2887 ((-660 (-787)) |#1| (-660 (-1107)))) (-15 -2887 ((-787) |#1| (-1107))) (-15 -3544 (|#1| (-1107))) (-15 -1628 ((-3 (-1107) "failed") |#1|)) (-15 -2921 ((-1107) |#1|)) (-15 -3280 (|#1| |#1| (-660 (-1107)) (-660 |#1|))) (-15 -3280 (|#1| |#1| (-1107) |#1|)) (-15 -3280 (|#1| |#1| (-660 (-1107)) (-660 |#2|))) (-15 -3280 (|#1| |#1| (-1107) |#2|)) (-15 -3280 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -3280 (|#1| |#1| |#1| |#1|)) (-15 -3280 (|#1| |#1| (-305 |#1|))) (-15 -3280 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -2887 ((-787) |#1|)) (-15 -2030 (|#1| |#2| (-787))) (-15 -1628 ((-3 (-577) "failed") |#1|)) (-15 -2921 ((-577) |#1|)) (-15 -1628 ((-3 (-420 (-577)) "failed") |#1|)) (-15 -2921 ((-420 (-577)) |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -1628 ((-3 |#2| "failed") |#1|)) (-15 -3544 (|#1| |#2|)) (-15 -4061 ((-787) |#1|)) (-15 -4039 (|#2| |#1|)) (-15 -2852 (|#1| |#1| (-1107))) (-15 -2852 (|#1| |#1| (-660 (-1107)))) (-15 -2852 (|#1| |#1| (-1107) (-787))) (-15 -2852 (|#1| |#1| (-660 (-1107)) (-660 (-787)))) (-15 -3544 (|#1| (-577))) (-15 -3544 ((-880) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3779 (((-1292 |#1|) $ (-787)) 256)) (-2058 (((-660 (-1107)) $) 113)) (-3756 (($ (-1197 |#1|)) 254)) (-1867 (((-1197 $) $ (-1107)) 128) (((-1197 |#1|) $) 127)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 90 (|has| |#1| (-569)))) (-3290 (($ $) 91 (|has| |#1| (-569)))) (-3271 (((-112) $) 93 (|has| |#1| (-569)))) (-4050 (((-787) $) 115) (((-787) $ (-660 (-1107))) 114)) (-1956 (((-3 $ "failed") $ $) 20)) (-1807 (($ $ $) 241 (|has| |#1| (-569)))) (-2294 (((-431 (-1197 $)) (-1197 $)) 103 (|has| |#1| (-932)))) (-3841 (($ $) 101 (|has| |#1| (-465)))) (-3029 (((-431 $) $) 100 (|has| |#1| (-465)))) (-2259 (((-3 (-660 (-1197 $)) "failed") (-660 (-1197 $)) (-1197 $)) 106 (|has| |#1| (-932)))) (-1939 (((-112) $ $) 226 (|has| |#1| (-375)))) (-3714 (($ $ (-787)) 249)) (-3703 (($ $ (-787)) 248)) (-1767 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 236 (|has| |#1| (-465)))) (-1534 (($) 18 T CONST)) (-1628 (((-3 |#1| "failed") $) 171) (((-3 (-420 (-577)) "failed") $) 168 (|has| |#1| (-1063 (-420 (-577))))) (((-3 (-577) "failed") $) 166 (|has| |#1| (-1063 (-577)))) (((-3 (-1107) "failed") $) 143)) (-2921 ((|#1| $) 170) (((-420 (-577)) $) 169 (|has| |#1| (-1063 (-420 (-577))))) (((-577) $) 167 (|has| |#1| (-1063 (-577)))) (((-1107) $) 144)) (-1816 (($ $ $ (-1107)) 111 (|has| |#1| (-174))) ((|#1| $ $) 244 (|has| |#1| (-174)))) (-3418 (($ $ $) 230 (|has| |#1| (-375)))) (-2248 (($ $) 161)) (-1647 (((-705 (-577)) (-705 $)) 139 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-705 $) (-1292 $)) 138 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-705 $) (-1292 $)) 137) (((-705 |#1|) (-705 $)) 136)) (-4187 (((-3 $ "failed") $) 37)) (-3429 (($ $ $) 229 (|has| |#1| (-375)))) (-1838 (($ $ $) 247)) (-1787 (($ $ $) 238 (|has| |#1| (-569)))) (-1776 (((-2 (|:| -1777 |#1|) (|:| -3637 $) (|:| -2457 $)) $ $) 237 (|has| |#1| (-569)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 224 (|has| |#1| (-375)))) (-3143 (($ $) 183 (|has| |#1| (-465))) (($ $ (-1107)) 108 (|has| |#1| (-465)))) (-2234 (((-660 $) $) 112)) (-1522 (((-112) $) 99 (|has| |#1| (-932)))) (-2137 (($ $ |#1| (-787) $) 179)) (-3795 (((-908 (-391) $) $ (-911 (-391)) (-908 (-391) $)) 87 (-12 (|has| (-1107) (-905 (-391))) (|has| |#1| (-905 (-391))))) (((-908 (-577) $) $ (-911 (-577)) (-908 (-577) $)) 86 (-12 (|has| (-1107) (-905 (-577))) (|has| |#1| (-905 (-577)))))) (-3817 (((-787) $ $) 242 (|has| |#1| (-569)))) (-2487 (((-112) $) 35)) (-2548 (((-787) $) 176)) (-4021 (((-3 $ "failed") $) 222 (|has| |#1| (-1177)))) (-2043 (($ (-1197 |#1|) (-1107)) 120) (($ (-1197 $) (-1107)) 119)) (-3864 (($ $ (-787)) 253)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 233 (|has| |#1| (-375)))) (-4074 (((-660 $) $) 129)) (-2811 (((-112) $) 159)) (-2030 (($ |#1| (-787)) 160) (($ $ (-1107) (-787)) 122) (($ $ (-660 (-1107)) (-660 (-787))) 121)) (-3735 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $ (-1107)) 123) (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 251)) (-4061 (((-787) $) 177) (((-787) $ (-1107)) 125) (((-660 (-787)) $ (-660 (-1107))) 124)) (-2151 (($ (-1 (-787) (-787)) $) 178)) (-4087 (($ (-1 |#1| |#1|) $) 158)) (-3767 (((-1197 |#1|) $) 255)) (-3691 (((-3 (-1107) "failed") $) 126)) (-1657 (((-705 (-577)) (-1292 $)) 141 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 (-577))) (|:| |vec| (-1292 (-577)))) (-1292 $) $) 140 (|has| |#1| (-654 (-577)))) (((-2 (|:| -1881 (-705 |#1|)) (|:| |vec| (-1292 |#1|))) (-1292 $) $) 135) (((-705 |#1|) (-1292 $)) 134)) (-2209 (($ $) 156)) (-2221 ((|#1| $) 155)) (-3446 (($ (-660 $)) 97 (|has| |#1| (-465))) (($ $ $) 96 (|has| |#1| (-465)))) (-2810 (((-1183) $) 10)) (-3724 (((-2 (|:| -3637 $) (|:| -2457 $)) $ (-787)) 250)) (-4098 (((-3 (-660 $) "failed") $) 117)) (-4086 (((-3 (-660 $) "failed") $) 118)) (-4111 (((-3 (-2 (|:| |var| (-1107)) (|:| -3556 (-787))) "failed") $) 116)) (-4147 (($ $) 234 (|has| |#1| (-38 (-420 (-577)))))) (-1709 (($) 221 (|has| |#1| (-1177)) CONST)) (-1474 (((-1145) $) 11)) (-2180 (((-112) $) 173)) (-2193 ((|#1| $) 174)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 98 (|has| |#1| (-465)))) (-3480 (($ (-660 $)) 95 (|has| |#1| (-465))) (($ $ $) 94 (|has| |#1| (-465)))) (-2269 (((-431 (-1197 $)) (-1197 $)) 105 (|has| |#1| (-932)))) (-2281 (((-431 (-1197 $)) (-1197 $)) 104 (|has| |#1| (-932)))) (-1902 (((-431 $) $) 102 (|has| |#1| (-932)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 232 (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 231 (|has| |#1| (-375)))) (-3462 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-569))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-569)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 225 (|has| |#1| (-375)))) (-3280 (($ $ (-660 (-305 $))) 152) (($ $ (-305 $)) 151) (($ $ $ $) 150) (($ $ (-660 $) (-660 $)) 149) (($ $ (-1107) |#1|) 148) (($ $ (-660 (-1107)) (-660 |#1|)) 147) (($ $ (-1107) $) 146) (($ $ (-660 (-1107)) (-660 $)) 145)) (-1927 (((-787) $) 227 (|has| |#1| (-375)))) (-2872 ((|#1| $ |#1|) 266) (($ $ $) 265) (((-420 $) (-420 $) (-420 $)) 243 (|has| |#1| (-569))) ((|#1| (-420 $) |#1|) 235 (|has| |#1| (-375))) (((-420 $) $ (-420 $)) 223 (|has| |#1| (-569)))) (-3745 (((-3 $ "failed") $ (-787)) 252)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 228 (|has| |#1| (-375)))) (-1827 (($ $ (-1107)) 110 (|has| |#1| (-174))) ((|#1| $) 245 (|has| |#1| (-174)))) (-2852 (($ $ (-660 (-1107)) (-660 (-787))) 44) (($ $ (-1107) (-787)) 43) (($ $ (-660 (-1107))) 42) (($ $ (-1107)) 40) (($ $) 264) (($ $ (-787)) 262) (($ $ (-1 |#1| |#1|)) 260) (($ $ (-1 |#1| |#1|) (-787)) 259) (($ $ (-1 |#1| |#1|) $) 246) (($ $ (-1201)) 220 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) 218 (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) 217 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) 216 (|has| |#1| (-923 (-1201))))) (-2887 (((-787) $) 157) (((-787) $ (-1107)) 133) (((-660 (-787)) $ (-660 (-1107))) 132)) (-4152 (((-911 (-391)) $) 85 (-12 (|has| (-1107) (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391)))))) (((-911 (-577)) $) 84 (-12 (|has| (-1107) (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577)))))) (((-549) $) 83 (-12 (|has| (-1107) (-627 (-549))) (|has| |#1| (-627 (-549)))))) (-4039 ((|#1| $) 182 (|has| |#1| (-465))) (($ $ (-1107)) 109 (|has| |#1| (-465)))) (-2245 (((-3 (-1292 $) "failed") (-705 $)) 107 (-2761 (|has| $ (-146)) (|has| |#1| (-932))))) (-1797 (((-3 $ "failed") $ $) 240 (|has| |#1| (-569))) (((-3 (-420 $) "failed") (-420 $) $) 239 (|has| |#1| (-569)))) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 172) (($ (-1107)) 142) (($ (-420 (-577))) 81 (-2839 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577)))))) (($ $) 88 (|has| |#1| (-569)))) (-4182 (((-660 |#1|) $) 175)) (-2322 ((|#1| $ (-787)) 162) (($ $ (-1107) (-787)) 131) (($ $ (-660 (-1107)) (-660 (-787))) 130)) (-2233 (((-3 $ "failed") $) 82 (-2839 (-2761 (|has| $ (-146)) (|has| |#1| (-932))) (|has| |#1| (-146))))) (-4068 (((-787)) 32 T CONST)) (-2122 (($ $ $ (-787)) 180 (|has| |#1| (-174)))) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 92 (|has| |#1| (-569)))) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-660 (-1107)) (-660 (-787))) 47) (($ $ (-1107) (-787)) 46) (($ $ (-660 (-1107))) 45) (($ $ (-1107)) 41) (($ $) 263) (($ $ (-787)) 261) (($ $ (-1 |#1| |#1|)) 258) (($ $ (-1 |#1| |#1|) (-787)) 257) (($ $ (-1201)) 219 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201))) 215 (|has| |#1| (-923 (-1201)))) (($ $ (-1201) (-787)) 214 (|has| |#1| (-923 (-1201)))) (($ $ (-660 (-1201)) (-660 (-787))) 213 (|has| |#1| (-923 (-1201))))) (-2970 (((-112) $ $) 8)) (-3077 (($ $ |#1|) 163 (|has| |#1| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ (-420 (-577))) 165 (|has| |#1| (-38 (-420 (-577))))) (($ (-420 (-577)) $) 164 (|has| |#1| (-38 (-420 (-577))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +(((-1268 |#1|) (-141) (-1074)) (T -1268)) +((-3779 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *1 (-1268 *4)) (-4 *4 (-1074)) (-5 *2 (-1292 *4)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-1268 *3)) (-4 *3 (-1074)) (-5 *2 (-1197 *3)))) (-3756 (*1 *1 *2) (-12 (-5 *2 (-1197 *3)) (-4 *3 (-1074)) (-4 *1 (-1268 *3)))) (-3864 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)))) (-3745 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-787)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)))) (-3735 (*1 *2 *1 *1) (-12 (-4 *3 (-1074)) (-5 *2 (-2 (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-1268 *3)))) (-3724 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *4 (-1074)) (-5 *2 (-2 (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-1268 *4)))) (-3714 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)))) (-3703 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)))) (-1838 (*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)))) (-2852 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)))) (-1827 (*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-174)))) (-1816 (*1 *2 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-174)))) (-2872 (*1 *2 *2 *2) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)) (-4 *3 (-569)))) (-3817 (*1 *2 *1 *1) (-12 (-4 *1 (-1268 *3)) (-4 *3 (-1074)) (-4 *3 (-569)) (-5 *2 (-787)))) (-1807 (*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-569)))) (-1797 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-569)))) (-1797 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-420 *1)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)) (-4 *3 (-569)))) (-1787 (*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-569)))) (-1776 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-5 *2 (-2 (|:| -1777 *3) (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-1268 *3)))) (-1767 (*1 *2 *1 *1) (-12 (-4 *3 (-465)) (-4 *3 (-1074)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1268 *3)))) (-2872 (*1 *2 *3 *2) (-12 (-5 *3 (-420 *1)) (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-4147 (*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-38 (-420 (-577))))))) +(-13 (-972 |t#1| (-787) (-1107)) (-297 |t#1| |t#1|) (-297 $ $) (-239) (-233 |t#1|) (-10 -8 (-15 -3779 ((-1292 |t#1|) $ (-787))) (-15 -3767 ((-1197 |t#1|) $)) (-15 -3756 ($ (-1197 |t#1|))) (-15 -3864 ($ $ (-787))) (-15 -3745 ((-3 $ "failed") $ (-787))) (-15 -3735 ((-2 (|:| -3637 $) (|:| -2457 $)) $ $)) (-15 -3724 ((-2 (|:| -3637 $) (|:| -2457 $)) $ (-787))) (-15 -3714 ($ $ (-787))) (-15 -3703 ($ $ (-787))) (-15 -1838 ($ $ $)) (-15 -2852 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1177)) (-6 (-1177)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -1827 (|t#1| $)) (-15 -1816 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-6 (-297 (-420 $) (-420 $))) (-15 -2872 ((-420 $) (-420 $) (-420 $))) (-15 -3817 ((-787) $ $)) (-15 -1807 ($ $ $)) (-15 -1797 ((-3 $ "failed") $ $)) (-15 -1797 ((-3 (-420 $) "failed") (-420 $) $)) (-15 -1787 ($ $ $)) (-15 -1776 ((-2 (|:| -1777 |t#1|) (|:| -3637 $) (|:| -2457 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-465)) (-15 -1767 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-375)) (PROGN (-6 (-318)) (-6 -4466) (-15 -2872 (|t#1| (-420 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-420 (-577)))) (-15 -4147 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-787)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #1#) -2839 (|has| |#1| (-1063 (-420 (-577)))) (|has| |#1| (-38 (-420 (-577))))) ((-629 (-577)) . T) ((-629 #2=(-1107)) . T) ((-629 |#1|) . T) ((-629 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-626 (-880)) . T) ((-174) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-627 (-549)) -12 (|has| (-1107) (-627 (-549))) (|has| |#1| (-627 (-549)))) ((-627 (-911 (-391))) -12 (|has| (-1107) (-627 (-911 (-391)))) (|has| |#1| (-627 (-911 (-391))))) ((-627 (-911 (-577))) -12 (|has| (-1107) (-627 (-911 (-577)))) (|has| |#1| (-627 (-911 (-577))))) ((-235 $) . T) ((-233 |#1|) . T) ((-239) . T) ((-238) . T) ((-273 |#1|) . T) ((-297 (-420 $) (-420 $)) |has| |#1| (-569)) ((-297 |#1| |#1|) . T) ((-297 $ $) . T) ((-301) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-320 $) . T) ((-337 |#1| #0#) . T) ((-389 |#1|) . T) ((-424 |#1|) . T) ((-465) -2839 (|has| |#1| (-932)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-527 #2# |#1|) . T) ((-527 #2# $) . T) ((-527 $ $) . T) ((-569) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-662 #1#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #1#) |has| |#1| (-38 (-420 (-577)))) ((-664 #3=(-577)) |has| |#1| (-654 (-577))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #1#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-654 #3#) |has| |#1| (-654 (-577))) ((-654 |#1|) . T) ((-733 #1#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375))) ((-742) . T) ((-915 $ #2#) . T) ((-915 $ #4=(-1201)) -2839 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-921 #2#) . T) ((-921 (-1201)) |has| |#1| (-921 (-1201))) ((-923 #2#) . T) ((-923 #4#) -2839 (|has| |#1| (-923 (-1201))) (|has| |#1| (-921 (-1201)))) ((-905 (-391)) -12 (|has| (-1107) (-905 (-391))) (|has| |#1| (-905 (-391)))) ((-905 (-577)) -12 (|has| (-1107) (-905 (-577))) (|has| |#1| (-905 (-577)))) ((-972 |#1| #0# #2#) . T) ((-932) |has| |#1| (-932)) ((-943) |has| |#1| (-375)) ((-1063 (-420 (-577))) |has| |#1| (-1063 (-420 (-577)))) ((-1063 (-577)) |has| |#1| (-1063 (-577))) ((-1063 #2#) . T) ((-1063 |#1|) . T) ((-1076 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1081 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2839 (|has| |#1| (-932)) (|has| |#1| (-569)) (|has| |#1| (-465)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1177) |has| |#1| (-1177)) ((-1242) . T) ((-1246) |has| |#1| (-932))) +((-2058 (((-660 (-1107)) $) 34)) (-2248 (($ $) 31)) (-2030 (($ |#2| |#3|) NIL) (($ $ (-1107) |#3|) 28) (($ $ (-660 (-1107)) (-660 |#3|)) 27)) (-2209 (($ $) 14)) (-2221 ((|#2| $) 12)) (-2887 ((|#3| $) 10))) +(((-1269 |#1| |#2| |#3|) (-10 -8 (-15 -2058 ((-660 (-1107)) |#1|)) (-15 -2030 (|#1| |#1| (-660 (-1107)) (-660 |#3|))) (-15 -2030 (|#1| |#1| (-1107) |#3|)) (-15 -2248 (|#1| |#1|)) (-15 -2030 (|#1| |#2| |#3|)) (-15 -2887 (|#3| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -2221 (|#2| |#1|))) (-1270 |#2| |#3|) (-1074) (-808)) (T -1269)) +NIL +(-10 -8 (-15 -2058 ((-660 (-1107)) |#1|)) (-15 -2030 (|#1| |#1| (-660 (-1107)) (-660 |#3|))) (-15 -2030 (|#1| |#1| (-1107) |#3|)) (-15 -2248 (|#1| |#1|)) (-15 -2030 (|#1| |#2| |#3|)) (-15 -2887 (|#3| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -2221 (|#2| |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-2058 (((-660 (-1107)) $) 86)) (-3076 (((-1201) $) 118)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)))) (-3290 (($ $) 64 (|has| |#1| (-569)))) (-3271 (((-112) $) 66 (|has| |#1| (-569)))) (-3804 (($ $ |#2|) 113) (($ $ |#2| |#2|) 112)) (-3829 (((-1182 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2248 (($ $) 72)) (-4187 (((-3 $ "failed") $) 37)) (-3550 (((-112) $) 85)) (-3817 ((|#2| $) 115) ((|#2| $ |#2|) 114)) (-2487 (((-112) $) 35)) (-3864 (($ $ (-944)) 116)) (-2811 (((-112) $) 74)) (-2030 (($ |#1| |#2|) 73) (($ $ (-1107) |#2|) 88) (($ $ (-660 (-1107)) (-660 |#2|)) 87)) (-4087 (($ (-1 |#1| |#1|) $) 75)) (-2209 (($ $) 77)) (-2221 ((|#1| $) 78)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3792 (($ $ |#2|) 110)) (-3462 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)))) (-3280 (((-1182 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2872 ((|#1| $ |#2|) 120) (($ $ $) 96 (|has| |#2| (-1137)))) (-2852 (($ $ (-1201)) 108 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-660 (-1201))) 106 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1201) (-787)) 105 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-660 (-1201)) (-660 (-787))) 104 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-787)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2887 ((|#2| $) 76)) (-3540 (($ $) 84)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577))))) (($ $) 61 (|has| |#1| (-569))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2322 ((|#1| $ |#2|) 71)) (-2233 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4068 (((-787)) 32 T CONST)) (-3693 ((|#1| $) 117)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 65 (|has| |#1| (-569)))) (-4148 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3544 (|#1| (-1201))))))) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-1201)) 107 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-660 (-1201))) 103 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1201) (-787)) 102 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-660 (-1201)) (-660 (-787))) 101 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-787)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2970 (((-112) $ $) 8)) (-3077 (($ $ |#1|) 70 (|has| |#1| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577))))))) +(((-1270 |#1| |#2|) (-141) (-1074) (-808)) (T -1270)) +((-3829 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) (-5 *2 (-1182 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) (-5 *2 (-1201)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-1270 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074)))) (-3864 (*1 *1 *1 *2) (-12 (-5 *2 (-944)) (-4 *1 (-1270 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)))) (-3817 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) (-3817 (*1 *2 *1 *2) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) (-3804 (*1 *1 *1 *2) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) (-3804 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) (-4148 (*1 *2 *1 *3) (-12 (-4 *1 (-1270 *2 *3)) (-4 *3 (-808)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3544 (*2 (-1201)))) (-4 *2 (-1074)))) (-3792 (*1 *1 *1 *2) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) (-3280 (*1 *2 *1 *3) (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1182 *3))))) +(-13 (-998 |t#1| |t#2| (-1107)) (-297 |t#2| |t#1|) (-10 -8 (-15 -3829 ((-1182 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3076 ((-1201) $)) (-15 -3693 (|t#1| $)) (-15 -3864 ($ $ (-944))) (-15 -3817 (|t#2| $)) (-15 -3817 (|t#2| $ |t#2|)) (-15 -3804 ($ $ |t#2|)) (-15 -3804 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3544 (|t#1| (-1201)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4148 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3792 ($ $ |t#2|)) (IF (|has| |t#2| (-1137)) (-6 (-297 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-239)) (IF (|has| |t#1| (-921 (-1201))) (-6 (-921 (-1201))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3280 ((-1182 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #0#) |has| |#1| (-38 (-420 (-577)))) ((-629 (-577)) . T) ((-629 |#1|) |has| |#1| (-174)) ((-629 $) |has| |#1| (-569)) ((-626 (-880)) . T) ((-174) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-297 |#2| |#1|) . T) ((-297 $ $) |has| |#2| (-1137)) ((-301) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-662 #0#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) |has| |#1| (-38 (-420 (-577)))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) |has| |#1| (-569)) ((-733 #0#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) |has| |#1| (-569)) ((-742) . T) ((-915 $ #1=(-1201)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-921 (-1201)))) ((-921 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-921 (-1201)))) ((-923 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-921 (-1201)))) ((-998 |#1| |#2| (-1107)) . T) ((-1076 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1081 #0#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3841 ((|#2| |#2|) 12)) (-3029 (((-431 |#2|) |#2|) 14)) (-3852 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577)))) 30))) +(((-1271 |#1| |#2|) (-10 -7 (-15 -3029 ((-431 |#2|) |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -3852 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577)))))) (-569) (-13 (-1268 |#1|) (-569) (-10 -8 (-15 -3480 ($ $ $))))) (T -1271)) +((-3852 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-577)))) (-4 *4 (-13 (-1268 *3) (-569) (-10 -8 (-15 -3480 ($ $ $))))) (-4 *3 (-569)) (-5 *1 (-1271 *3 *4)))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-1271 *3 *2)) (-4 *2 (-13 (-1268 *3) (-569) (-10 -8 (-15 -3480 ($ $ $))))))) (-3029 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-431 *3)) (-5 *1 (-1271 *4 *3)) (-4 *3 (-13 (-1268 *4) (-569) (-10 -8 (-15 -3480 ($ $ $)))))))) +(-10 -7 (-15 -3029 ((-431 |#2|) |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -3852 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-577)))))) +((-4087 (((-1277 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1277 |#1| |#3| |#5|)) 24))) +(((-1272 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4087 ((-1277 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1277 |#1| |#3| |#5|)))) (-1074) (-1074) (-1201) (-1201) |#1| |#2|) (T -1272)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1277 *5 *7 *9)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-14 *7 (-1201)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1277 *6 *8 *10)) (-5 *1 (-1272 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1201))))) +(-10 -7 (-15 -4087 ((-1277 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1277 |#1| |#3| |#5|)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-2058 (((-660 (-1107)) $) 86)) (-3076 (((-1201) $) 118)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)))) (-3290 (($ $) 64 (|has| |#1| (-569)))) (-3271 (((-112) $) 66 (|has| |#1| (-569)))) (-3804 (($ $ (-420 (-577))) 113) (($ $ (-420 (-577)) (-420 (-577))) 112)) (-3829 (((-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) 119)) (-2212 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))))) (-2060 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))))) (-1956 (((-3 $ "failed") $ $) 20)) (-3841 (($ $) 177 (|has| |#1| (-375)))) (-3029 (((-431 $) $) 178 (|has| |#1| (-375)))) (-1913 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))))) (-1939 (((-112) $ $) 168 (|has| |#1| (-375)))) (-2186 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))))) (-2032 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))))) (-3689 (($ (-787) (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) 186)) (-2237 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))))) (-2084 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))))) (-1534 (($) 18 T CONST)) (-3418 (($ $ $) 172 (|has| |#1| (-375)))) (-2248 (($ $) 72)) (-4187 (((-3 $ "failed") $) 37)) (-3429 (($ $ $) 171 (|has| |#1| (-375)))) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 166 (|has| |#1| (-375)))) (-1522 (((-112) $) 179 (|has| |#1| (-375)))) (-3550 (((-112) $) 85)) (-1659 (($) 160 (|has| |#1| (-38 (-420 (-577)))))) (-3817 (((-420 (-577)) $) 115) (((-420 (-577)) $ (-420 (-577))) 114)) (-2487 (((-112) $) 35)) (-2381 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))))) (-3864 (($ $ (-944)) 116) (($ $ (-420 (-577))) 185)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 175 (|has| |#1| (-375)))) (-2811 (((-112) $) 74)) (-2030 (($ |#1| (-420 (-577))) 73) (($ $ (-1107) (-420 (-577))) 88) (($ $ (-660 (-1107)) (-660 (-420 (-577)))) 87)) (-4087 (($ (-1 |#1| |#1|) $) 75)) (-3698 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))))) (-2209 (($ $) 77)) (-2221 ((|#1| $) 78)) (-3446 (($ (-660 $)) 164 (|has| |#1| (-375))) (($ $ $) 163 (|has| |#1| (-375)))) (-2810 (((-1183) $) 10)) (-2171 (($ $) 180 (|has| |#1| (-375)))) (-4147 (($ $) 184 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-1201)) 183 (-2839 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-982)) (|has| |#1| (-1227)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -2058 ((-660 (-1201)) |#1|))) (|has| |#1| (-15 -4147 (|#1| |#1| (-1201)))) (|has| |#1| (-38 (-420 (-577)))))))) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 165 (|has| |#1| (-375)))) (-3480 (($ (-660 $)) 162 (|has| |#1| (-375))) (($ $ $) 161 (|has| |#1| (-375)))) (-1902 (((-431 $) $) 176 (|has| |#1| (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 173 (|has| |#1| (-375)))) (-3792 (($ $ (-420 (-577))) 110)) (-3462 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 167 (|has| |#1| (-375)))) (-4072 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))))) (-3280 (((-1182 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))))) (-1927 (((-787) $) 169 (|has| |#1| (-375)))) (-2872 ((|#1| $ (-420 (-577))) 120) (($ $ $) 96 (|has| (-420 (-577)) (-1137)))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 170 (|has| |#1| (-375)))) (-2852 (($ $ (-1201)) 108 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (($ $ (-660 (-1201))) 106 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (($ $ (-1201) (-787)) 105 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (($ $ (-660 (-1201)) (-660 (-787))) 104 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-787)) 98 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (-2887 (((-420 (-577)) $) 76)) (-2249 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))))) (-2095 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))))) (-2224 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))))) (-2073 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))))) (-2199 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))))) (-2046 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))))) (-3540 (($ $) 84)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577))))) (($ $) 61 (|has| |#1| (-569)))) (-2322 ((|#1| $ (-420 (-577))) 71)) (-2233 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4068 (((-787)) 32 T CONST)) (-3693 ((|#1| $) 117)) (-4448 (((-112) $ $) 6)) (-4114 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))))) (-2136 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))))) (-3281 (((-112) $ $) 65 (|has| |#1| (-569)))) (-2262 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))))) (-2106 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))))) (-4141 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))))) (-2162 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))))) (-4148 ((|#1| $ (-420 (-577))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3544 (|#1| (-1201))))))) (-2261 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))))) (-2174 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))))) (-4128 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))))) (-2150 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))))) (-2272 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))))) (-2120 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))))) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-1201)) 107 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (($ $ (-660 (-1201))) 103 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (($ $ (-1201) (-787)) 102 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (($ $ (-660 (-1201)) (-660 (-787))) 101 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-787)) 97 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (-2970 (((-112) $ $) 8)) (-3077 (($ $ |#1|) 70 (|has| |#1| (-375))) (($ $ $) 182 (|has| |#1| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 181 (|has| |#1| (-375))) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))))) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577))))))) +(((-1273 |#1|) (-141) (-1074)) (T -1273)) +((-3689 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| *4)))) (-4 *4 (-1074)) (-4 *1 (-1273 *4)))) (-3864 (*1 *1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-4 *1 (-1273 *3)) (-4 *3 (-1074)))) (-4147 (*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1074)) (-4 *2 (-38 (-420 (-577)))))) (-4147 (*1 *1 *1 *2) (-2839 (-12 (-5 *2 (-1201)) (-4 *1 (-1273 *3)) (-4 *3 (-1074)) (-12 (-4 *3 (-29 (-577))) (-4 *3 (-982)) (-4 *3 (-1227)) (-4 *3 (-38 (-420 (-577)))))) (-12 (-5 *2 (-1201)) (-4 *1 (-1273 *3)) (-4 *3 (-1074)) (-12 (|has| *3 (-15 -2058 ((-660 *2) *3))) (|has| *3 (-15 -4147 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577))))))))) +(-13 (-1270 |t#1| (-420 (-577))) (-10 -8 (-15 -3689 ($ (-787) (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |t#1|))))) (-15 -3864 ($ $ (-420 (-577)))) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -4147 ($ $)) (IF (|has| |t#1| (-15 -4147 (|t#1| |t#1| (-1201)))) (IF (|has| |t#1| (-15 -2058 ((-660 (-1201)) |t#1|))) (-15 -4147 ($ $ (-1201))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1227)) (IF (|has| |t#1| (-982)) (IF (|has| |t#1| (-29 (-577))) (-15 -4147 ($ $ (-1201))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1027)) (-6 (-1227))) |%noBranch|) (IF (|has| |t#1| (-375)) (-6 (-375)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-420 (-577))) . T) ((-25) . T) ((-38 #1=(-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-629 (-577)) . T) ((-629 |#1|) |has| |#1| (-174)) ((-629 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-626 (-880)) . T) ((-174) -2839 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-249) |has| |#1| (-375)) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 $ $) |has| (-420 (-577)) (-1137)) ((-301) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-375) |has| |#1| (-375)) ((-465) |has| |#1| (-375)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-569) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-662 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-733 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-742) . T) ((-915 $ #2=(-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ((-921 #2#) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ((-923 #2#) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ((-998 |#1| #0# (-1107)) . T) ((-943) |has| |#1| (-375)) ((-1027) |has| |#1| (-38 (-420 (-577)))) ((-1076 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1076 |#1|) . T) ((-1076 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1081 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1081 |#1|) . T) ((-1081 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1227) |has| |#1| (-38 (-420 (-577)))) ((-1230) |has| |#1| (-38 (-420 (-577)))) ((-1242) . T) ((-1246) |has| |#1| (-375)) ((-1270 |#1| #0#) . T)) +((-3585 (((-112) $) 12)) (-1628 (((-3 |#3| "failed") $) 17)) (-2921 ((|#3| $) 14))) +(((-1274 |#1| |#2| |#3|) (-10 -8 (-15 -1628 ((-3 |#3| "failed") |#1|)) (-15 -2921 (|#3| |#1|)) (-15 -3585 ((-112) |#1|))) (-1275 |#2| |#3|) (-1074) (-1252 |#2|)) (T -1274)) +NIL +(-10 -8 (-15 -1628 ((-3 |#3| "failed") |#1|)) (-15 -2921 (|#3| |#1|)) (-15 -3585 ((-112) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-2058 (((-660 (-1107)) $) 86)) (-3076 (((-1201) $) 118)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)))) (-3290 (($ $) 64 (|has| |#1| (-569)))) (-3271 (((-112) $) 66 (|has| |#1| (-569)))) (-3804 (($ $ (-420 (-577))) 113) (($ $ (-420 (-577)) (-420 (-577))) 112)) (-3829 (((-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) 119)) (-2212 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))))) (-2060 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))))) (-1956 (((-3 $ "failed") $ $) 20)) (-3841 (($ $) 177 (|has| |#1| (-375)))) (-3029 (((-431 $) $) 178 (|has| |#1| (-375)))) (-1913 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))))) (-1939 (((-112) $ $) 168 (|has| |#1| (-375)))) (-2186 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))))) (-2032 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))))) (-3689 (($ (-787) (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) 186)) (-2237 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))))) (-2084 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))))) (-1534 (($) 18 T CONST)) (-1628 (((-3 |#2| "failed") $) 197)) (-2921 ((|#2| $) 198)) (-3418 (($ $ $) 172 (|has| |#1| (-375)))) (-2248 (($ $) 72)) (-4187 (((-3 $ "failed") $) 37)) (-3897 (((-420 (-577)) $) 194)) (-3429 (($ $ $) 171 (|has| |#1| (-375)))) (-2148 (($ (-420 (-577)) |#2|) 195)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 166 (|has| |#1| (-375)))) (-1522 (((-112) $) 179 (|has| |#1| (-375)))) (-3550 (((-112) $) 85)) (-1659 (($) 160 (|has| |#1| (-38 (-420 (-577)))))) (-3817 (((-420 (-577)) $) 115) (((-420 (-577)) $ (-420 (-577))) 114)) (-2487 (((-112) $) 35)) (-2381 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))))) (-3864 (($ $ (-944)) 116) (($ $ (-420 (-577))) 185)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 175 (|has| |#1| (-375)))) (-2811 (((-112) $) 74)) (-2030 (($ |#1| (-420 (-577))) 73) (($ $ (-1107) (-420 (-577))) 88) (($ $ (-660 (-1107)) (-660 (-420 (-577)))) 87)) (-4087 (($ (-1 |#1| |#1|) $) 75)) (-3698 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))))) (-2209 (($ $) 77)) (-2221 ((|#1| $) 78)) (-3446 (($ (-660 $)) 164 (|has| |#1| (-375))) (($ $ $) 163 (|has| |#1| (-375)))) (-3886 ((|#2| $) 193)) (-3875 (((-3 |#2| "failed") $) 191)) (-2134 ((|#2| $) 192)) (-2810 (((-1183) $) 10)) (-2171 (($ $) 180 (|has| |#1| (-375)))) (-4147 (($ $) 184 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-1201)) 183 (-2839 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-982)) (|has| |#1| (-1227)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -2058 ((-660 (-1201)) |#1|))) (|has| |#1| (-15 -4147 (|#1| |#1| (-1201)))) (|has| |#1| (-38 (-420 (-577)))))))) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 165 (|has| |#1| (-375)))) (-3480 (($ (-660 $)) 162 (|has| |#1| (-375))) (($ $ $) 161 (|has| |#1| (-375)))) (-1902 (((-431 $) $) 176 (|has| |#1| (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 173 (|has| |#1| (-375)))) (-3792 (($ $ (-420 (-577))) 110)) (-3462 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 167 (|has| |#1| (-375)))) (-4072 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))))) (-3280 (((-1182 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))))) (-1927 (((-787) $) 169 (|has| |#1| (-375)))) (-2872 ((|#1| $ (-420 (-577))) 120) (($ $ $) 96 (|has| (-420 (-577)) (-1137)))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 170 (|has| |#1| (-375)))) (-2852 (($ $ (-1201)) 108 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (($ $ (-660 (-1201))) 106 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (($ $ (-1201) (-787)) 105 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (($ $ (-660 (-1201)) (-660 (-787))) 104 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-787)) 98 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (-2887 (((-420 (-577)) $) 76)) (-2249 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))))) (-2095 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))))) (-2224 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))))) (-2073 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))))) (-2199 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))))) (-2046 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))))) (-3540 (($ $) 84)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 196) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577))))) (($ $) 61 (|has| |#1| (-569)))) (-2322 ((|#1| $ (-420 (-577))) 71)) (-2233 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4068 (((-787)) 32 T CONST)) (-3693 ((|#1| $) 117)) (-4448 (((-112) $ $) 6)) (-4114 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))))) (-2136 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))))) (-3281 (((-112) $ $) 65 (|has| |#1| (-569)))) (-2262 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))))) (-2106 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))))) (-4141 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))))) (-2162 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))))) (-4148 ((|#1| $ (-420 (-577))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3544 (|#1| (-1201))))))) (-2261 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))))) (-2174 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))))) (-4128 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))))) (-2150 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))))) (-2272 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))))) (-2120 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))))) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-1201)) 107 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (($ $ (-660 (-1201))) 103 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (($ $ (-1201) (-787)) 102 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (($ $ (-660 (-1201)) (-660 (-787))) 101 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-787)) 97 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (-2970 (((-112) $ $) 8)) (-3077 (($ $ |#1|) 70 (|has| |#1| (-375))) (($ $ $) 182 (|has| |#1| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 181 (|has| |#1| (-375))) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))))) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577))))))) +(((-1275 |#1| |#2|) (-141) (-1074) (-1252 |t#1|)) (T -1275)) +((-2887 (*1 *2 *1) (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1252 *3)) (-5 *2 (-420 (-577))))) (-2148 (*1 *1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-4 *4 (-1074)) (-4 *1 (-1275 *4 *3)) (-4 *3 (-1252 *4)))) (-3897 (*1 *2 *1) (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1252 *3)) (-5 *2 (-420 (-577))))) (-3886 (*1 *2 *1) (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1252 *3)))) (-2134 (*1 *2 *1) (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1252 *3)))) (-3875 (*1 *2 *1) (|partial| -12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1252 *3))))) +(-13 (-1273 |t#1|) (-1063 |t#2|) (-629 |t#2|) (-10 -8 (-15 -2148 ($ (-420 (-577)) |t#2|)) (-15 -3897 ((-420 (-577)) $)) (-15 -3886 (|t#2| $)) (-15 -2887 ((-420 (-577)) $)) (-15 -2134 (|t#2| $)) (-15 -3875 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-420 (-577))) . T) ((-25) . T) ((-38 #1=(-420 (-577))) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-629 (-577)) . T) ((-629 |#1|) |has| |#1| (-174)) ((-629 |#2|) . T) ((-629 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-626 (-880)) . T) ((-174) -2839 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) ((-249) |has| |#1| (-375)) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 $ $) |has| (-420 (-577)) (-1137)) ((-301) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-318) |has| |#1| (-375)) ((-375) |has| |#1| (-375)) ((-465) |has| |#1| (-375)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-569) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-662 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-733 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375))) ((-742) . T) ((-915 $ #2=(-1201)) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ((-921 #2#) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ((-923 #2#) -12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201)))) ((-998 |#1| #0# (-1107)) . T) ((-943) |has| |#1| (-375)) ((-1027) |has| |#1| (-38 (-420 (-577)))) ((-1063 |#2|) . T) ((-1076 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1076 |#1|) . T) ((-1076 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1081 #1#) -2839 (|has| |#1| (-375)) (|has| |#1| (-38 (-420 (-577))))) ((-1081 |#1|) . T) ((-1081 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-375)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1227) |has| |#1| (-38 (-420 (-577)))) ((-1230) |has| |#1| (-38 (-420 (-577)))) ((-1242) . T) ((-1246) |has| |#1| (-375)) ((-1270 |#1| #0#) . T) ((-1273 |#1|) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-2058 (((-660 (-1107)) $) NIL)) (-3076 (((-1201) $) 104)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-3804 (($ $ (-420 (-577))) 116) (($ $ (-420 (-577)) (-420 (-577))) 118)) (-3829 (((-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) 54)) (-2212 (($ $) 192 (|has| |#1| (-38 (-420 (-577)))))) (-2060 (($ $) 168 (|has| |#1| (-38 (-420 (-577)))))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL (|has| |#1| (-375)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-375)))) (-1913 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1939 (((-112) $ $) NIL (|has| |#1| (-375)))) (-2186 (($ $) 188 (|has| |#1| (-38 (-420 (-577)))))) (-2032 (($ $) 164 (|has| |#1| (-38 (-420 (-577)))))) (-3689 (($ (-787) (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) 65)) (-2237 (($ $) 196 (|has| |#1| (-38 (-420 (-577)))))) (-2084 (($ $) 172 (|has| |#1| (-38 (-420 (-577)))))) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#2| "failed") $) NIL)) (-2921 ((|#2| $) NIL)) (-3418 (($ $ $) NIL (|has| |#1| (-375)))) (-2248 (($ $) NIL)) (-4187 (((-3 $ "failed") $) 85)) (-3897 (((-420 (-577)) $) 13)) (-3429 (($ $ $) NIL (|has| |#1| (-375)))) (-2148 (($ (-420 (-577)) |#2|) 11)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| |#1| (-375)))) (-1522 (((-112) $) NIL (|has| |#1| (-375)))) (-3550 (((-112) $) 74)) (-1659 (($) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3817 (((-420 (-577)) $) 113) (((-420 (-577)) $ (-420 (-577))) 114)) (-2487 (((-112) $) NIL)) (-2381 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3864 (($ $ (-944)) 130) (($ $ (-420 (-577))) 128)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-420 (-577))) 33) (($ $ (-1107) (-420 (-577))) NIL) (($ $ (-660 (-1107)) (-660 (-420 (-577)))) NIL)) (-4087 (($ (-1 |#1| |#1|) $) 125)) (-3698 (($ $) 162 (|has| |#1| (-38 (-420 (-577)))))) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-3886 ((|#2| $) 12)) (-3875 (((-3 |#2| "failed") $) 44)) (-2134 ((|#2| $) 45)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) 101 (|has| |#1| (-375)))) (-4147 (($ $) 146 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-1201)) 151 (-2839 (-12 (|has| |#1| (-15 -4147 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -2058 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227)))))) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-1902 (((-431 $) $) NIL (|has| |#1| (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3792 (($ $ (-420 (-577))) 122)) (-3462 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-4072 (($ $) 160 (|has| |#1| (-38 (-420 (-577)))))) (-3280 (((-1182 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))))) (-1927 (((-787) $) NIL (|has| |#1| (-375)))) (-2872 ((|#1| $ (-420 (-577))) 108) (($ $ $) 94 (|has| (-420 (-577)) (-1137)))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-375)))) (-2852 (($ $ (-1201)) 138 (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (-2887 (((-420 (-577)) $) 16)) (-2249 (($ $) 198 (|has| |#1| (-38 (-420 (-577)))))) (-2095 (($ $) 174 (|has| |#1| (-38 (-420 (-577)))))) (-2224 (($ $) 194 (|has| |#1| (-38 (-420 (-577)))))) (-2073 (($ $) 170 (|has| |#1| (-38 (-420 (-577)))))) (-2199 (($ $) 190 (|has| |#1| (-38 (-420 (-577)))))) (-2046 (($ $) 166 (|has| |#1| (-38 (-420 (-577)))))) (-3540 (($ $) 120)) (-3544 (((-880) $) NIL) (($ (-577)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-420 (-577))) 139 (|has| |#1| (-38 (-420 (-577))))) (($ $) NIL (|has| |#1| (-569)))) (-2322 ((|#1| $ (-420 (-577))) 107)) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) 127 T CONST)) (-3693 ((|#1| $) 106)) (-4448 (((-112) $ $) NIL)) (-4114 (($ $) 204 (|has| |#1| (-38 (-420 (-577)))))) (-2136 (($ $) 180 (|has| |#1| (-38 (-420 (-577)))))) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2262 (($ $) 200 (|has| |#1| (-38 (-420 (-577)))))) (-2106 (($ $) 176 (|has| |#1| (-38 (-420 (-577)))))) (-4141 (($ $) 208 (|has| |#1| (-38 (-420 (-577)))))) (-2162 (($ $) 184 (|has| |#1| (-38 (-420 (-577)))))) (-4148 ((|#1| $ (-420 (-577))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3544 (|#1| (-1201))))))) (-2261 (($ $) 210 (|has| |#1| (-38 (-420 (-577)))))) (-2174 (($ $) 186 (|has| |#1| (-38 (-420 (-577)))))) (-4128 (($ $) 206 (|has| |#1| (-38 (-420 (-577)))))) (-2150 (($ $) 182 (|has| |#1| (-38 (-420 (-577)))))) (-2272 (($ $) 202 (|has| |#1| (-38 (-420 (-577)))))) (-2120 (($ $) 178 (|has| |#1| (-38 (-420 (-577)))))) (-2806 (($) 21 T CONST)) (-2816 (($) 17 T CONST)) (-2132 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))))) (-2970 (((-112) $ $) 72)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375))) (($ $ $) 100 (|has| |#1| (-375)))) (-3066 (($ $) 142) (($ $ $) 78)) (-3055 (($ $ $) 76)) (** (($ $ (-944)) NIL) (($ $ (-787)) 82) (($ $ (-577)) 157 (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 158 (|has| |#1| (-38 (-420 (-577)))))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))))) +(((-1276 |#1| |#2|) (-1275 |#1| |#2|) (-1074) (-1252 |#1|)) (T -1276)) +NIL +(-1275 |#1| |#2|) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-2058 (((-660 (-1107)) $) NIL)) (-3076 (((-1201) $) 11)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) NIL (|has| |#1| (-569)))) (-3804 (($ $ (-420 (-577))) NIL) (($ $ (-420 (-577)) (-420 (-577))) NIL)) (-3829 (((-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|))) $) NIL)) (-2212 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2060 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1956 (((-3 $ "failed") $ $) NIL)) (-3841 (($ $) NIL (|has| |#1| (-375)))) (-3029 (((-431 $) $) NIL (|has| |#1| (-375)))) (-1913 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1939 (((-112) $ $) NIL (|has| |#1| (-375)))) (-2186 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2032 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3689 (($ (-787) (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#1|)))) NIL)) (-2237 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2084 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-1256 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1284 |#1| |#2| |#3|) "failed") $) 22)) (-2921 (((-1256 |#1| |#2| |#3|) $) NIL) (((-1284 |#1| |#2| |#3|) $) NIL)) (-3418 (($ $ $) NIL (|has| |#1| (-375)))) (-2248 (($ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-3897 (((-420 (-577)) $) 69)) (-3429 (($ $ $) NIL (|has| |#1| (-375)))) (-2148 (($ (-420 (-577)) (-1256 |#1| |#2| |#3|)) NIL)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) NIL (|has| |#1| (-375)))) (-1522 (((-112) $) NIL (|has| |#1| (-375)))) (-3550 (((-112) $) NIL)) (-1659 (($) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3817 (((-420 (-577)) $) NIL) (((-420 (-577)) $ (-420 (-577))) NIL)) (-2487 (((-112) $) NIL)) (-2381 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3864 (($ $ (-944)) NIL) (($ $ (-420 (-577))) NIL)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-420 (-577))) 30) (($ $ (-1107) (-420 (-577))) NIL) (($ $ (-660 (-1107)) (-660 (-420 (-577)))) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3698 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-3446 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-3886 (((-1256 |#1| |#2| |#3|) $) 72)) (-3875 (((-3 (-1256 |#1| |#2| |#3|) "failed") $) NIL)) (-2134 (((-1256 |#1| |#2| |#3|) $) NIL)) (-2810 (((-1183) $) NIL)) (-2171 (($ $) NIL (|has| |#1| (-375)))) (-4147 (($ $) 39 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-1201)) NIL (-2839 (-12 (|has| |#1| (-15 -4147 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -2058 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227))))) (($ $ (-1288 |#2|)) 40 (|has| |#1| (-38 (-420 (-577)))))) (-1474 (((-1145) $) NIL)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) NIL (|has| |#1| (-375)))) (-3480 (($ (-660 $)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-1902 (((-431 $) $) NIL (|has| |#1| (-375)))) (-1915 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-375))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) NIL (|has| |#1| (-375)))) (-3792 (($ $ (-420 (-577))) NIL)) (-3462 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)))) (-1369 (((-3 (-660 $) "failed") (-660 $) $) NIL (|has| |#1| (-375)))) (-4072 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3280 (((-1182 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))))) (-1927 (((-787) $) NIL (|has| |#1| (-375)))) (-2872 ((|#1| $ (-420 (-577))) NIL) (($ $ $) NIL (|has| (-420 (-577)) (-1137)))) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) NIL (|has| |#1| (-375)))) (-2852 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-1288 |#2|)) 38)) (-2887 (((-420 (-577)) $) NIL)) (-2249 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2095 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2073 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2199 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2046 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3540 (($ $) NIL)) (-3544 (((-880) $) 107) (($ (-577)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1256 |#1| |#2| |#3|)) 16) (($ (-1284 |#1| |#2| |#3|)) 17) (($ (-1288 |#2|)) 36) (($ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $) NIL (|has| |#1| (-569)))) (-2322 ((|#1| $ (-420 (-577))) NIL)) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) NIL T CONST)) (-3693 ((|#1| $) 12)) (-4448 (((-112) $ $) NIL)) (-4114 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2136 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2262 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2106 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4141 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2162 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4148 ((|#1| $ (-420 (-577))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-420 (-577))))) (|has| |#1| (-15 -3544 (|#1| (-1201))))))) (-2261 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2174 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4128 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2150 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2272 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2120 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2806 (($) 32 T CONST)) (-2816 (($) 26 T CONST)) (-2132 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-420 (-577)) |#1|)))) (($ $ (-1288 |#2|)) NIL)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) 34)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ (-577)) NIL (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))))) +(((-1277 |#1| |#2| |#3|) (-13 (-1275 |#1| (-1256 |#1| |#2| |#3|)) (-915 $ (-1288 |#2|)) (-1063 (-1284 |#1| |#2| |#3|)) (-629 (-1288 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4147 ($ $ (-1288 |#2|))) |%noBranch|))) (-1074) (-1201) |#1|) (T -1277)) +((-4147 (*1 *1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3)))) +(-13 (-1275 |#1| (-1256 |#1| |#2| |#3|)) (-915 $ (-1288 |#2|)) (-1063 (-1284 |#1| |#2| |#3|)) (-629 (-1288 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4147 ($ $ (-1288 |#2|))) |%noBranch|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 37)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL)) (-3290 (($ $) NIL)) (-3271 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 (-577) "failed") $) NIL (|has| (-1277 |#2| |#3| |#4|) (-1063 (-577)))) (((-3 (-420 (-577)) "failed") $) NIL (|has| (-1277 |#2| |#3| |#4|) (-1063 (-420 (-577))))) (((-3 (-1277 |#2| |#3| |#4|) "failed") $) 22)) (-2921 (((-577) $) NIL (|has| (-1277 |#2| |#3| |#4|) (-1063 (-577)))) (((-420 (-577)) $) NIL (|has| (-1277 |#2| |#3| |#4|) (-1063 (-420 (-577))))) (((-1277 |#2| |#3| |#4|) $) NIL)) (-2248 (($ $) 41)) (-4187 (((-3 $ "failed") $) 27)) (-3143 (($ $) NIL (|has| (-1277 |#2| |#3| |#4|) (-465)))) (-2137 (($ $ (-1277 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|) $) NIL)) (-2487 (((-112) $) NIL)) (-2548 (((-787) $) 11)) (-2811 (((-112) $) NIL)) (-2030 (($ (-1277 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) 25)) (-4061 (((-330 |#2| |#3| |#4|) $) NIL)) (-2151 (($ (-1 (-330 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) $) NIL)) (-4087 (($ (-1 (-1277 |#2| |#3| |#4|) (-1277 |#2| |#3| |#4|)) $) NIL)) (-3921 (((-3 (-859 |#2|) "failed") $) 90)) (-2209 (($ $) NIL)) (-2221 (((-1277 |#2| |#3| |#4|) $) 20)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2180 (((-112) $) NIL)) (-2193 (((-1277 |#2| |#3| |#4|) $) NIL)) (-3462 (((-3 $ "failed") $ (-1277 |#2| |#3| |#4|)) NIL (|has| (-1277 |#2| |#3| |#4|) (-569))) (((-3 $ "failed") $ $) NIL)) (-3910 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1277 |#2| |#3| |#4|)) (|:| |%expon| (-330 |#2| |#3| |#4|)) (|:| |%expTerms| (-660 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#2|)))))) (|:| |%type| (-1183))) "failed") $) 74)) (-2887 (((-330 |#2| |#3| |#4|) $) 17)) (-4039 (((-1277 |#2| |#3| |#4|) $) NIL (|has| (-1277 |#2| |#3| |#4|) (-465)))) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ (-1277 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-420 (-577))) NIL (-2839 (|has| (-1277 |#2| |#3| |#4|) (-38 (-420 (-577)))) (|has| (-1277 |#2| |#3| |#4|) (-1063 (-420 (-577))))))) (-4182 (((-660 (-1277 |#2| |#3| |#4|)) $) NIL)) (-2322 (((-1277 |#2| |#3| |#4|) $ (-330 |#2| |#3| |#4|)) NIL)) (-2233 (((-3 $ "failed") $) NIL (|has| (-1277 |#2| |#3| |#4|) (-146)))) (-4068 (((-787)) NIL T CONST)) (-2122 (($ $ $ (-787)) NIL (|has| (-1277 |#2| |#3| |#4|) (-174)))) (-4448 (((-112) $ $) NIL)) (-3281 (((-112) $ $) NIL)) (-2806 (($) NIL T CONST)) (-2816 (($) NIL T CONST)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ (-1277 |#2| |#3| |#4|)) NIL (|has| (-1277 |#2| |#3| |#4|) (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ (-1277 |#2| |#3| |#4|)) NIL) (($ (-1277 |#2| |#3| |#4|) $) NIL) (($ (-420 (-577)) $) NIL (|has| (-1277 |#2| |#3| |#4|) (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| (-1277 |#2| |#3| |#4|) (-38 (-420 (-577))))))) +(((-1278 |#1| |#2| |#3| |#4|) (-13 (-337 (-1277 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) (-569) (-10 -8 (-15 -3921 ((-3 (-859 |#2|) "failed") $)) (-15 -3910 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1277 |#2| |#3| |#4|)) (|:| |%expon| (-330 |#2| |#3| |#4|)) (|:| |%expTerms| (-660 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#2|)))))) (|:| |%type| (-1183))) "failed") $)))) (-13 (-1063 (-577)) (-654 (-577)) (-465)) (-13 (-27) (-1227) (-443 |#1|)) (-1201) |#2|) (T -1278)) +((-3921 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1063 (-577)) (-654 (-577)) (-465))) (-5 *2 (-859 *4)) (-5 *1 (-1278 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1227) (-443 *3))) (-14 *5 (-1201)) (-14 *6 *4))) (-3910 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1063 (-577)) (-654 (-577)) (-465))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1277 *4 *5 *6)) (|:| |%expon| (-330 *4 *5 *6)) (|:| |%expTerms| (-660 (-2 (|:| |k| (-420 (-577))) (|:| |c| *4)))))) (|:| |%type| (-1183)))) (-5 *1 (-1278 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1227) (-443 *3))) (-14 *5 (-1201)) (-14 *6 *4)))) +(-13 (-337 (-1277 |#2| |#3| |#4|) (-330 |#2| |#3| |#4|)) (-569) (-10 -8 (-15 -3921 ((-3 (-859 |#2|) "failed") $)) (-15 -3910 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1277 |#2| |#3| |#4|)) (|:| |%expon| (-330 |#2| |#3| |#4|)) (|:| |%expTerms| (-660 (-2 (|:| |k| (-420 (-577))) (|:| |c| |#2|)))))) (|:| |%type| (-1183))) "failed") $)))) +((-3115 ((|#2| $) 34)) (-2950 ((|#2| $) 18)) (-4428 (($ $) 53)) (-3933 (($ $ (-577)) 85)) (-3828 (((-112) $ (-787)) 46)) (-4374 ((|#2| $ |#2|) 82)) (-3945 ((|#2| $ |#2|) 78)) (-3709 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-4384 (($ $ (-660 $)) 81)) (-2939 ((|#2| $) 17)) (-3563 (($ $) NIL) (($ $ (-787)) 59)) (-4426 (((-660 $) $) 31)) (-4394 (((-112) $ $) 69)) (-1479 (((-112) $ (-787)) 45)) (-1443 (((-112) $ (-787)) 43)) (-3371 (((-112) $) 33)) (-3927 ((|#2| $) 25) (($ $ (-787)) 64)) (-2872 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1885 (((-112) $) 23)) (-4004 (($ $) 56)) (-3981 (($ $) 86)) (-4016 (((-787) $) 58)) (-4026 (($ $) 57)) (-1677 (($ $ $) 77) (($ |#2| $) NIL)) (-3322 (((-660 $) $) 32)) (-2970 (((-112) $ $) 67)) (-3484 (((-787) $) 52))) +(((-1279 |#1| |#2|) (-10 -8 (-15 -2970 ((-112) |#1| |#1|)) (-15 -3933 (|#1| |#1| (-577))) (-15 -3709 (|#2| |#1| "last" |#2|)) (-15 -3945 (|#2| |#1| |#2|)) (-15 -3709 (|#1| |#1| "rest" |#1|)) (-15 -3709 (|#2| |#1| "first" |#2|)) (-15 -3981 (|#1| |#1|)) (-15 -4004 (|#1| |#1|)) (-15 -4016 ((-787) |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -2950 (|#2| |#1|)) (-15 -2939 (|#2| |#1|)) (-15 -4428 (|#1| |#1|)) (-15 -3927 (|#1| |#1| (-787))) (-15 -2872 (|#2| |#1| "last")) (-15 -3927 (|#2| |#1|)) (-15 -3563 (|#1| |#1| (-787))) (-15 -2872 (|#1| |#1| "rest")) (-15 -3563 (|#1| |#1|)) (-15 -2872 (|#2| |#1| "first")) (-15 -1677 (|#1| |#2| |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -4374 (|#2| |#1| |#2|)) (-15 -3709 (|#2| |#1| "value" |#2|)) (-15 -4384 (|#1| |#1| (-660 |#1|))) (-15 -4394 ((-112) |#1| |#1|)) (-15 -1885 ((-112) |#1|)) (-15 -2872 (|#2| |#1| "value")) (-15 -3115 (|#2| |#1|)) (-15 -3371 ((-112) |#1|)) (-15 -4426 ((-660 |#1|) |#1|)) (-15 -3322 ((-660 |#1|) |#1|)) (-15 -3484 ((-787) |#1|)) (-15 -3828 ((-112) |#1| (-787))) (-15 -1479 ((-112) |#1| (-787))) (-15 -1443 ((-112) |#1| (-787)))) (-1280 |#2|) (-1242)) (T -1279)) +NIL +(-10 -8 (-15 -2970 ((-112) |#1| |#1|)) (-15 -3933 (|#1| |#1| (-577))) (-15 -3709 (|#2| |#1| "last" |#2|)) (-15 -3945 (|#2| |#1| |#2|)) (-15 -3709 (|#1| |#1| "rest" |#1|)) (-15 -3709 (|#2| |#1| "first" |#2|)) (-15 -3981 (|#1| |#1|)) (-15 -4004 (|#1| |#1|)) (-15 -4016 ((-787) |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -2950 (|#2| |#1|)) (-15 -2939 (|#2| |#1|)) (-15 -4428 (|#1| |#1|)) (-15 -3927 (|#1| |#1| (-787))) (-15 -2872 (|#2| |#1| "last")) (-15 -3927 (|#2| |#1|)) (-15 -3563 (|#1| |#1| (-787))) (-15 -2872 (|#1| |#1| "rest")) (-15 -3563 (|#1| |#1|)) (-15 -2872 (|#2| |#1| "first")) (-15 -1677 (|#1| |#2| |#1|)) (-15 -1677 (|#1| |#1| |#1|)) (-15 -4374 (|#2| |#1| |#2|)) (-15 -3709 (|#2| |#1| "value" |#2|)) (-15 -4384 (|#1| |#1| (-660 |#1|))) (-15 -4394 ((-112) |#1| |#1|)) (-15 -1885 ((-112) |#1|)) (-15 -2872 (|#2| |#1| "value")) (-15 -3115 (|#2| |#1|)) (-15 -3371 ((-112) |#1|)) (-15 -4426 ((-660 |#1|) |#1|)) (-15 -3322 ((-660 |#1|) |#1|)) (-15 -3484 ((-787) |#1|)) (-15 -3828 ((-112) |#1| (-787))) (-15 -1479 ((-112) |#1| (-787))) (-15 -1443 ((-112) |#1| (-787)))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3115 ((|#1| $) 49)) (-2950 ((|#1| $) 66)) (-4428 (($ $) 68)) (-3933 (($ $ (-577)) 53 (|has| $ (-6 -4471)))) (-3828 (((-112) $ (-787)) 8)) (-4374 ((|#1| $ |#1|) 40 (|has| $ (-6 -4471)))) (-3958 (($ $ $) 57 (|has| $ (-6 -4471)))) (-3945 ((|#1| $ |#1|) 55 (|has| $ (-6 -4471)))) (-3969 ((|#1| $ |#1|) 59 (|has| $ (-6 -4471)))) (-3709 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4471))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4471))) (($ $ "rest" $) 56 (|has| $ (-6 -4471))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4471)))) (-4384 (($ $ (-660 $)) 42 (|has| $ (-6 -4471)))) (-2939 ((|#1| $) 67)) (-1534 (($) 7 T CONST)) (-3563 (($ $) 74) (($ $ (-787)) 72)) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-4426 (((-660 $) $) 51)) (-4394 (((-112) $ $) 43 (|has| |#1| (-1125)))) (-1479 (((-112) $ (-787)) 9)) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36)) (-1443 (((-112) $ (-787)) 10)) (-2461 (((-660 |#1|) $) 46)) (-3371 (((-112) $) 50)) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-3927 ((|#1| $) 71) (($ $ (-787)) 69)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-3552 ((|#1| $) 77) (($ $ (-787)) 75)) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-4415 (((-577) $ $) 45)) (-1885 (((-112) $) 47)) (-4004 (($ $) 63)) (-3981 (($ $) 60 (|has| $ (-6 -4471)))) (-4016 (((-787) $) 64)) (-4026 (($ $) 65)) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-1944 (($ $) 13)) (-3992 (($ $ $) 62 (|has| $ (-6 -4471))) (($ $ |#1|) 61 (|has| $ (-6 -4471)))) (-1677 (($ $ $) 79) (($ |#1| $) 78)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-3322 (((-660 $) $) 52)) (-4405 (((-112) $ $) 44 (|has| |#1| (-1125)))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-1280 |#1|) (-141) (-1242)) (T -1280)) +((-1677 (*1 *1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-1677 (*1 *1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-3552 (*1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-2872 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-3552 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1280 *3)) (-4 *3 (-1242)))) (-3563 (*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-2872 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1280 *3)) (-4 *3 (-1242)))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1280 *3)) (-4 *3 (-1242)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-2872 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-3927 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1280 *3)) (-4 *3 (-1242)))) (-4428 (*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-2939 (*1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-4026 (*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-4016 (*1 *2 *1) (-12 (-4 *1 (-1280 *3)) (-4 *3 (-1242)) (-5 *2 (-787)))) (-4004 (*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-3992 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-3992 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-3981 (*1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-3969 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-3709 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-3958 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-3709 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4471)) (-4 *1 (-1280 *3)) (-4 *3 (-1242)))) (-3945 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-3709 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-577)) (|has| *1 (-6 -4471)) (-4 *1 (-1280 *3)) (-4 *3 (-1242))))) +(-13 (-1035 |t#1|) (-10 -8 (-15 -1677 ($ $ $)) (-15 -1677 ($ |t#1| $)) (-15 -3552 (|t#1| $)) (-15 -2872 (|t#1| $ "first")) (-15 -3552 ($ $ (-787))) (-15 -3563 ($ $)) (-15 -2872 ($ $ "rest")) (-15 -3563 ($ $ (-787))) (-15 -3927 (|t#1| $)) (-15 -2872 (|t#1| $ "last")) (-15 -3927 ($ $ (-787))) (-15 -4428 ($ $)) (-15 -2939 (|t#1| $)) (-15 -2950 (|t#1| $)) (-15 -4026 ($ $)) (-15 -4016 ((-787) $)) (-15 -4004 ($ $)) (IF (|has| $ (-6 -4471)) (PROGN (-15 -3992 ($ $ $)) (-15 -3992 ($ $ |t#1|)) (-15 -3981 ($ $)) (-15 -3969 (|t#1| $ |t#1|)) (-15 -3709 (|t#1| $ "first" |t#1|)) (-15 -3958 ($ $ $)) (-15 -3709 ($ $ "rest" $)) (-15 -3945 (|t#1| $ |t#1|)) (-15 -3709 (|t#1| $ "last" |t#1|)) (-15 -3933 ($ $ (-577)))) |%noBranch|))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-626 (-880)))) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-502 |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-1035 |#1|) . T) ((-1125) |has| |#1| (-1125)) ((-1242) . T)) +((-4087 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1281 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 (|#4| (-1 |#2| |#1|) |#3|))) (-1074) (-1074) (-1283 |#1|) (-1283 |#2|)) (T -1281)) +((-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1283 *6)) (-5 *1 (-1281 *5 *6 *4 *2)) (-4 *4 (-1283 *5))))) +(-10 -7 (-15 -4087 (|#4| (-1 |#2| |#1|) |#3|))) +((-3585 (((-112) $) 17)) (-2212 (($ $) 105)) (-2060 (($ $) 81)) (-2186 (($ $) 101)) (-2032 (($ $) 77)) (-2237 (($ $) 109)) (-2084 (($ $) 85)) (-3698 (($ $) 75)) (-4072 (($ $) 73)) (-2249 (($ $) 111)) (-2095 (($ $) 87)) (-2224 (($ $) 107)) (-2073 (($ $) 83)) (-2199 (($ $) 103)) (-2046 (($ $) 79)) (-3544 (((-880) $) 61) (($ (-577)) NIL) (($ (-420 (-577))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-4114 (($ $) 117)) (-2136 (($ $) 93)) (-2262 (($ $) 113)) (-2106 (($ $) 89)) (-4141 (($ $) 121)) (-2162 (($ $) 97)) (-2261 (($ $) 123)) (-2174 (($ $) 99)) (-4128 (($ $) 119)) (-2150 (($ $) 95)) (-2272 (($ $) 115)) (-2120 (($ $) 91)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-420 (-577))) 71))) +(((-1282 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -2060 (|#1| |#1|)) (-15 -2032 (|#1| |#1|)) (-15 -2084 (|#1| |#1|)) (-15 -2095 (|#1| |#1|)) (-15 -2073 (|#1| |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -2120 (|#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -2174 (|#1| |#1|)) (-15 -2162 (|#1| |#1|)) (-15 -2106 (|#1| |#1|)) (-15 -2136 (|#1| |#1|)) (-15 -2199 (|#1| |#1|)) (-15 -2224 (|#1| |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -2237 (|#1| |#1|)) (-15 -2186 (|#1| |#1|)) (-15 -2212 (|#1| |#1|)) (-15 -2272 (|#1| |#1|)) (-15 -4128 (|#1| |#1|)) (-15 -2261 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -3698 (|#1| |#1|)) (-15 -4072 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3544 (|#1| |#2|)) (-15 -3544 (|#1| |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -3544 (|#1| (-577))) (-15 ** (|#1| |#1| (-787))) (-15 ** (|#1| |#1| (-944))) (-15 -3585 ((-112) |#1|)) (-15 -3544 ((-880) |#1|))) (-1283 |#2|) (-1074)) (T -1282)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-420 (-577)))) (-15 -2060 (|#1| |#1|)) (-15 -2032 (|#1| |#1|)) (-15 -2084 (|#1| |#1|)) (-15 -2095 (|#1| |#1|)) (-15 -2073 (|#1| |#1|)) (-15 -2046 (|#1| |#1|)) (-15 -2120 (|#1| |#1|)) (-15 -2150 (|#1| |#1|)) (-15 -2174 (|#1| |#1|)) (-15 -2162 (|#1| |#1|)) (-15 -2106 (|#1| |#1|)) (-15 -2136 (|#1| |#1|)) (-15 -2199 (|#1| |#1|)) (-15 -2224 (|#1| |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -2237 (|#1| |#1|)) (-15 -2186 (|#1| |#1|)) (-15 -2212 (|#1| |#1|)) (-15 -2272 (|#1| |#1|)) (-15 -4128 (|#1| |#1|)) (-15 -2261 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -2262 (|#1| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -3698 (|#1| |#1|)) (-15 -4072 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3544 (|#1| |#2|)) (-15 -3544 (|#1| |#1|)) (-15 -3544 (|#1| (-420 (-577)))) (-15 -3544 (|#1| (-577))) (-15 ** (|#1| |#1| (-787))) (-15 ** (|#1| |#1| (-944))) (-15 -3585 ((-112) |#1|)) (-15 -3544 ((-880) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-2058 (((-660 (-1107)) $) 86)) (-3076 (((-1201) $) 118)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 63 (|has| |#1| (-569)))) (-3290 (($ $) 64 (|has| |#1| (-569)))) (-3271 (((-112) $) 66 (|has| |#1| (-569)))) (-3804 (($ $ (-787)) 113) (($ $ (-787) (-787)) 112)) (-3829 (((-1182 (-2 (|:| |k| (-787)) (|:| |c| |#1|))) $) 119)) (-2212 (($ $) 150 (|has| |#1| (-38 (-420 (-577)))))) (-2060 (($ $) 133 (|has| |#1| (-38 (-420 (-577)))))) (-1956 (((-3 $ "failed") $ $) 20)) (-1913 (($ $) 132 (|has| |#1| (-38 (-420 (-577)))))) (-2186 (($ $) 149 (|has| |#1| (-38 (-420 (-577)))))) (-2032 (($ $) 134 (|has| |#1| (-38 (-420 (-577)))))) (-3689 (($ (-1182 (-2 (|:| |k| (-787)) (|:| |c| |#1|)))) 170) (($ (-1182 |#1|)) 168)) (-2237 (($ $) 148 (|has| |#1| (-38 (-420 (-577)))))) (-2084 (($ $) 135 (|has| |#1| (-38 (-420 (-577)))))) (-1534 (($) 18 T CONST)) (-2248 (($ $) 72)) (-4187 (((-3 $ "failed") $) 37)) (-4170 (($ $) 167)) (-3074 (((-975 |#1|) $ (-787)) 165) (((-975 |#1|) $ (-787) (-787)) 164)) (-3550 (((-112) $) 85)) (-1659 (($) 160 (|has| |#1| (-38 (-420 (-577)))))) (-3817 (((-787) $) 115) (((-787) $ (-787)) 114)) (-2487 (((-112) $) 35)) (-2381 (($ $ (-577)) 131 (|has| |#1| (-38 (-420 (-577)))))) (-3864 (($ $ (-944)) 116)) (-4158 (($ (-1 |#1| (-577)) $) 166)) (-2811 (((-112) $) 74)) (-2030 (($ |#1| (-787)) 73) (($ $ (-1107) (-787)) 88) (($ $ (-660 (-1107)) (-660 (-787))) 87)) (-4087 (($ (-1 |#1| |#1|) $) 75)) (-3698 (($ $) 157 (|has| |#1| (-38 (-420 (-577)))))) (-2209 (($ $) 77)) (-2221 ((|#1| $) 78)) (-2810 (((-1183) $) 10)) (-4147 (($ $) 162 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-1201)) 161 (-2839 (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-982)) (|has| |#1| (-1227)) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-15 -2058 ((-660 (-1201)) |#1|))) (|has| |#1| (-15 -4147 (|#1| |#1| (-1201)))) (|has| |#1| (-38 (-420 (-577)))))))) (-1474 (((-1145) $) 11)) (-3792 (($ $ (-787)) 110)) (-3462 (((-3 $ "failed") $ $) 62 (|has| |#1| (-569)))) (-4072 (($ $) 158 (|has| |#1| (-38 (-420 (-577)))))) (-3280 (((-1182 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-787)))))) (-2872 ((|#1| $ (-787)) 120) (($ $ $) 96 (|has| (-787) (-1137)))) (-2852 (($ $ (-1201)) 108 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-787) |#1|))))) (($ $ (-660 (-1201))) 106 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-787) |#1|))))) (($ $ (-1201) (-787)) 105 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-787) |#1|))))) (($ $ (-660 (-1201)) (-660 (-787))) 104 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-787) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-787) |#1|)))) (($ $ (-787)) 98 (|has| |#1| (-15 * (|#1| (-787) |#1|))))) (-2887 (((-787) $) 76)) (-2249 (($ $) 147 (|has| |#1| (-38 (-420 (-577)))))) (-2095 (($ $) 136 (|has| |#1| (-38 (-420 (-577)))))) (-2224 (($ $) 146 (|has| |#1| (-38 (-420 (-577)))))) (-2073 (($ $) 137 (|has| |#1| (-38 (-420 (-577)))))) (-2199 (($ $) 145 (|has| |#1| (-38 (-420 (-577)))))) (-2046 (($ $) 138 (|has| |#1| (-38 (-420 (-577)))))) (-3540 (($ $) 84)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ (-420 (-577))) 69 (|has| |#1| (-38 (-420 (-577))))) (($ $) 61 (|has| |#1| (-569))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4182 (((-1182 |#1|) $) 169)) (-2322 ((|#1| $ (-787)) 71)) (-2233 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-4068 (((-787)) 32 T CONST)) (-3693 ((|#1| $) 117)) (-4448 (((-112) $ $) 6)) (-4114 (($ $) 156 (|has| |#1| (-38 (-420 (-577)))))) (-2136 (($ $) 144 (|has| |#1| (-38 (-420 (-577)))))) (-3281 (((-112) $ $) 65 (|has| |#1| (-569)))) (-2262 (($ $) 155 (|has| |#1| (-38 (-420 (-577)))))) (-2106 (($ $) 143 (|has| |#1| (-38 (-420 (-577)))))) (-4141 (($ $) 154 (|has| |#1| (-38 (-420 (-577)))))) (-2162 (($ $) 142 (|has| |#1| (-38 (-420 (-577)))))) (-4148 ((|#1| $ (-787)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-787)))) (|has| |#1| (-15 -3544 (|#1| (-1201))))))) (-2261 (($ $) 153 (|has| |#1| (-38 (-420 (-577)))))) (-2174 (($ $) 141 (|has| |#1| (-38 (-420 (-577)))))) (-4128 (($ $) 152 (|has| |#1| (-38 (-420 (-577)))))) (-2150 (($ $) 140 (|has| |#1| (-38 (-420 (-577)))))) (-2272 (($ $) 151 (|has| |#1| (-38 (-420 (-577)))))) (-2120 (($ $) 139 (|has| |#1| (-38 (-420 (-577)))))) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2132 (($ $ (-1201)) 107 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-787) |#1|))))) (($ $ (-660 (-1201))) 103 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-787) |#1|))))) (($ $ (-1201) (-787)) 102 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-787) |#1|))))) (($ $ (-660 (-1201)) (-660 (-787))) 101 (-12 (|has| |#1| (-921 (-1201))) (|has| |#1| (-15 * (|#1| (-787) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-787) |#1|)))) (($ $ (-787)) 97 (|has| |#1| (-15 * (|#1| (-787) |#1|))))) (-2970 (((-112) $ $) 8)) (-3077 (($ $ |#1|) 70 (|has| |#1| (-375)))) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ |#1|) 163 (|has| |#1| (-375))) (($ $ $) 159 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 130 (|has| |#1| (-38 (-420 (-577)))))) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-420 (-577)) $) 68 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) 67 (|has| |#1| (-38 (-420 (-577))))))) +(((-1283 |#1|) (-141) (-1074)) (T -1283)) +((-3689 (*1 *1 *2) (-12 (-5 *2 (-1182 (-2 (|:| |k| (-787)) (|:| |c| *3)))) (-4 *3 (-1074)) (-4 *1 (-1283 *3)))) (-4182 (*1 *2 *1) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-1074)) (-5 *2 (-1182 *3)))) (-3689 (*1 *1 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-4 *1 (-1283 *3)))) (-4170 (*1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1074)))) (-4158 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-577))) (-4 *1 (-1283 *3)) (-4 *3 (-1074)))) (-3074 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *1 (-1283 *4)) (-4 *4 (-1074)) (-5 *2 (-975 *4)))) (-3074 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-787)) (-4 *1 (-1283 *4)) (-4 *4 (-1074)) (-5 *2 (-975 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) (-4147 (*1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1074)) (-4 *2 (-38 (-420 (-577)))))) (-4147 (*1 *1 *1 *2) (-2839 (-12 (-5 *2 (-1201)) (-4 *1 (-1283 *3)) (-4 *3 (-1074)) (-12 (-4 *3 (-29 (-577))) (-4 *3 (-982)) (-4 *3 (-1227)) (-4 *3 (-38 (-420 (-577)))))) (-12 (-5 *2 (-1201)) (-4 *1 (-1283 *3)) (-4 *3 (-1074)) (-12 (|has| *3 (-15 -2058 ((-660 *2) *3))) (|has| *3 (-15 -4147 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577))))))))) +(-13 (-1270 |t#1| (-787)) (-10 -8 (-15 -3689 ($ (-1182 (-2 (|:| |k| (-787)) (|:| |c| |t#1|))))) (-15 -4182 ((-1182 |t#1|) $)) (-15 -3689 ($ (-1182 |t#1|))) (-15 -4170 ($ $)) (-15 -4158 ($ (-1 |t#1| (-577)) $)) (-15 -3074 ((-975 |t#1|) $ (-787))) (-15 -3074 ((-975 |t#1|) $ (-787) (-787))) (IF (|has| |t#1| (-375)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-420 (-577)))) (PROGN (-15 -4147 ($ $)) (IF (|has| |t#1| (-15 -4147 (|t#1| |t#1| (-1201)))) (IF (|has| |t#1| (-15 -2058 ((-660 (-1201)) |t#1|))) (-15 -4147 ($ $ (-1201))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1227)) (IF (|has| |t#1| (-982)) (IF (|has| |t#1| (-29 (-577))) (-15 -4147 ($ $ (-1201))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1027)) (-6 (-1227))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-787)) . T) ((-25) . T) ((-38 #1=(-420 (-577))) |has| |#1| (-38 (-420 (-577)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-569)) ((-35) |has| |#1| (-38 (-420 (-577)))) ((-95) |has| |#1| (-38 (-420 (-577)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-420 (-577)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-629 #1#) |has| |#1| (-38 (-420 (-577)))) ((-629 (-577)) . T) ((-629 |#1|) |has| |#1| (-174)) ((-629 $) |has| |#1| (-569)) ((-626 (-880)) . T) ((-174) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-235 $) |has| |#1| (-15 * (|#1| (-787) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-787) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-787) |#1|))) ((-295) |has| |#1| (-38 (-420 (-577)))) ((-297 #0# |#1|) . T) ((-297 $ $) |has| (-787) (-1137)) ((-301) |has| |#1| (-569)) ((-506) |has| |#1| (-38 (-420 (-577)))) ((-569) |has| |#1| (-569)) ((-662 #1#) |has| |#1| (-38 (-420 (-577)))) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #1#) |has| |#1| (-38 (-420 (-577)))) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #1#) |has| |#1| (-38 (-420 (-577)))) ((-656 |#1|) |has| |#1| (-174)) ((-656 $) |has| |#1| (-569)) ((-733 #1#) |has| |#1| (-38 (-420 (-577)))) ((-733 |#1|) |has| |#1| (-174)) ((-733 $) |has| |#1| (-569)) ((-742) . T) ((-915 $ #2=(-1201)) -12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ((-921 #2#) -12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ((-923 #2#) -12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201)))) ((-998 |#1| #0# (-1107)) . T) ((-1027) |has| |#1| (-38 (-420 (-577)))) ((-1076 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1076 |#1|) . T) ((-1076 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1081 #1#) |has| |#1| (-38 (-420 (-577)))) ((-1081 |#1|) . T) ((-1081 $) -2839 (|has| |#1| (-569)) (|has| |#1| (-174))) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1227) |has| |#1| (-38 (-420 (-577)))) ((-1230) |has| |#1| (-38 (-420 (-577)))) ((-1242) . T) ((-1270 |#1| #0#) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-2058 (((-660 (-1107)) $) NIL)) (-3076 (((-1201) $) 90)) (-4134 (((-1265 |#2| |#1|) $ (-787)) 73)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)))) (-3290 (($ $) NIL (|has| |#1| (-569)))) (-3271 (((-112) $) 142 (|has| |#1| (-569)))) (-3804 (($ $ (-787)) 127) (($ $ (-787) (-787)) 130)) (-3829 (((-1182 (-2 (|:| |k| (-787)) (|:| |c| |#1|))) $) 43)) (-2212 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2060 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1956 (((-3 $ "failed") $ $) NIL)) (-1913 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2186 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2032 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3689 (($ (-1182 (-2 (|:| |k| (-787)) (|:| |c| |#1|)))) 52) (($ (-1182 |#1|)) NIL)) (-2237 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2084 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-1534 (($) NIL T CONST)) (-4058 (($ $) 134)) (-2248 (($ $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-4170 (($ $) 140)) (-3074 (((-975 |#1|) $ (-787)) 63) (((-975 |#1|) $ (-787) (-787)) 65)) (-3550 (((-112) $) NIL)) (-1659 (($) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3817 (((-787) $) NIL) (((-787) $ (-787)) NIL)) (-2487 (((-112) $) NIL)) (-4094 (($ $) 117)) (-2381 (($ $ (-577)) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4047 (($ (-577) (-577) $) 136)) (-3864 (($ $ (-944)) 139)) (-4158 (($ (-1 |#1| (-577)) $) 111)) (-2811 (((-112) $) NIL)) (-2030 (($ |#1| (-787)) 16) (($ $ (-1107) (-787)) NIL) (($ $ (-660 (-1107)) (-660 (-787))) NIL)) (-4087 (($ (-1 |#1| |#1|) $) 98)) (-3698 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2209 (($ $) NIL)) (-2221 ((|#1| $) NIL)) (-2810 (((-1183) $) NIL)) (-4106 (($ $) 115)) (-4120 (($ $) 113)) (-4036 (($ (-577) (-577) $) 138)) (-4147 (($ $) 150 (|has| |#1| (-38 (-420 (-577))))) (($ $ (-1201)) 156 (-2839 (-12 (|has| |#1| (-15 -4147 (|#1| |#1| (-1201)))) (|has| |#1| (-15 -2058 ((-660 (-1201)) |#1|))) (|has| |#1| (-38 (-420 (-577))))) (-12 (|has| |#1| (-29 (-577))) (|has| |#1| (-38 (-420 (-577)))) (|has| |#1| (-982)) (|has| |#1| (-1227))))) (($ $ (-1288 |#2|)) 151 (|has| |#1| (-38 (-420 (-577)))))) (-1474 (((-1145) $) NIL)) (-4070 (($ $ (-577) (-577)) 121)) (-3792 (($ $ (-787)) 123)) (-3462 (((-3 $ "failed") $ $) NIL (|has| |#1| (-569)))) (-4072 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4082 (($ $) 119)) (-3280 (((-1182 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-787)))))) (-2872 ((|#1| $ (-787)) 95) (($ $ $) 132 (|has| (-787) (-1137)))) (-2852 (($ $ (-1201)) 108 (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-787) |#1|)))) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-787) |#1|)))) (($ $ (-1288 |#2|)) 103)) (-2887 (((-787) $) NIL)) (-2249 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2095 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2224 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2073 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2199 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2046 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3540 (($ $) 125)) (-3544 (((-880) $) NIL) (($ (-577)) 26) (($ (-420 (-577))) 148 (|has| |#1| (-38 (-420 (-577))))) (($ $) NIL (|has| |#1| (-569))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1265 |#2| |#1|)) 81) (($ (-1288 |#2|)) 22)) (-4182 (((-1182 |#1|) $) NIL)) (-2322 ((|#1| $ (-787)) 94)) (-2233 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4068 (((-787)) NIL T CONST)) (-3693 ((|#1| $) 91)) (-4448 (((-112) $ $) NIL)) (-4114 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2136 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-3281 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2262 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2106 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4141 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2162 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4148 ((|#1| $ (-787)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-787)))) (|has| |#1| (-15 -3544 (|#1| (-1201))))))) (-2261 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2174 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-4128 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2150 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2272 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2120 (($ $) NIL (|has| |#1| (-38 (-420 (-577)))))) (-2806 (($) 18 T CONST)) (-2816 (($) 13 T CONST)) (-2132 (($ $ (-1201)) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201))) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-1201) (-787)) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $ (-660 (-1201)) (-660 (-787))) NIL (-12 (|has| |#1| (-15 * (|#1| (-787) |#1|))) (|has| |#1| (-921 (-1201))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-787) |#1|)))) (($ $ (-787)) NIL (|has| |#1| (-15 * (|#1| (-787) |#1|)))) (($ $ (-1288 |#2|)) NIL)) (-2970 (((-112) $ $) NIL)) (-3077 (($ $ |#1|) NIL (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) 107)) (-3055 (($ $ $) 20)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL) (($ $ |#1|) 145 (|has| |#1| (-375))) (($ $ $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577)))))) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-420 (-577)) $) NIL (|has| |#1| (-38 (-420 (-577))))) (($ $ (-420 (-577))) NIL (|has| |#1| (-38 (-420 (-577))))))) +(((-1284 |#1| |#2| |#3|) (-13 (-1283 |#1|) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3544 ($ (-1265 |#2| |#1|))) (-15 -4134 ((-1265 |#2| |#1|) $ (-787))) (-15 -3544 ($ (-1288 |#2|))) (-15 -4120 ($ $)) (-15 -4106 ($ $)) (-15 -4094 ($ $)) (-15 -4082 ($ $)) (-15 -4070 ($ $ (-577) (-577))) (-15 -4058 ($ $)) (-15 -4047 ($ (-577) (-577) $)) (-15 -4036 ($ (-577) (-577) $)) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4147 ($ $ (-1288 |#2|))) |%noBranch|))) (-1074) (-1201) |#1|) (T -1284)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-1265 *4 *3)) (-4 *3 (-1074)) (-14 *4 (-1201)) (-14 *5 *3) (-5 *1 (-1284 *3 *4 *5)))) (-4134 (*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1265 *5 *4)) (-5 *1 (-1284 *4 *5 *6)) (-4 *4 (-1074)) (-14 *5 (-1201)) (-14 *6 *4))) (-3544 (*1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1284 *3 *4 *5)) (-4 *3 (-1074)) (-14 *5 *3))) (-4120 (*1 *1 *1) (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) (-14 *4 *2))) (-4106 (*1 *1 *1) (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) (-14 *4 *2))) (-4094 (*1 *1 *1) (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) (-14 *4 *2))) (-4082 (*1 *1 *1) (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) (-14 *4 *2))) (-4070 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1284 *3 *4 *5)) (-4 *3 (-1074)) (-14 *4 (-1201)) (-14 *5 *3))) (-4058 (*1 *1 *1) (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) (-14 *4 *2))) (-4047 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1284 *3 *4 *5)) (-4 *3 (-1074)) (-14 *4 (-1201)) (-14 *5 *3))) (-4036 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1284 *3 *4 *5)) (-4 *3 (-1074)) (-14 *4 (-1201)) (-14 *5 *3))) (-4147 (*1 *1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1284 *3 *4 *5)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3)))) +(-13 (-1283 |#1|) (-915 $ (-1288 |#2|)) (-10 -8 (-15 -3544 ($ (-1265 |#2| |#1|))) (-15 -4134 ((-1265 |#2| |#1|) $ (-787))) (-15 -3544 ($ (-1288 |#2|))) (-15 -4120 ($ $)) (-15 -4106 ($ $)) (-15 -4094 ($ $)) (-15 -4082 ($ $)) (-15 -4070 ($ $ (-577) (-577))) (-15 -4058 ($ $)) (-15 -4047 ($ (-577) (-577) $)) (-15 -4036 ($ (-577) (-577) $)) (IF (|has| |#1| (-38 (-420 (-577)))) (-15 -4147 ($ $ (-1288 |#2|))) |%noBranch|))) +((-4214 (((-1 (-1182 |#1|) (-660 (-1182 |#1|))) (-1 |#2| (-660 |#2|))) 24)) (-4202 (((-1 (-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4191 (((-1 (-1182 |#1|) (-1182 |#1|)) (-1 |#2| |#2|)) 13)) (-4246 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4234 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4256 ((|#2| (-1 |#2| (-660 |#2|)) (-660 |#1|)) 60)) (-4265 (((-660 |#2|) (-660 |#1|) (-660 (-1 |#2| (-660 |#2|)))) 66)) (-4225 ((|#2| |#2| |#2|) 43))) +(((-1285 |#1| |#2|) (-10 -7 (-15 -4191 ((-1 (-1182 |#1|) (-1182 |#1|)) (-1 |#2| |#2|))) (-15 -4202 ((-1 (-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4214 ((-1 (-1182 |#1|) (-660 (-1182 |#1|))) (-1 |#2| (-660 |#2|)))) (-15 -4225 (|#2| |#2| |#2|)) (-15 -4234 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4246 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4256 (|#2| (-1 |#2| (-660 |#2|)) (-660 |#1|))) (-15 -4265 ((-660 |#2|) (-660 |#1|) (-660 (-1 |#2| (-660 |#2|)))))) (-38 (-420 (-577))) (-1283 |#1|)) (T -1285)) +((-4265 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 (-1 *6 (-660 *6)))) (-4 *5 (-38 (-420 (-577)))) (-4 *6 (-1283 *5)) (-5 *2 (-660 *6)) (-5 *1 (-1285 *5 *6)))) (-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-660 *2))) (-5 *4 (-660 *5)) (-4 *5 (-38 (-420 (-577)))) (-4 *2 (-1283 *5)) (-5 *1 (-1285 *5 *2)))) (-4246 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1283 *4)) (-5 *1 (-1285 *4 *2)) (-4 *4 (-38 (-420 (-577)))))) (-4234 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1283 *4)) (-5 *1 (-1285 *4 *2)) (-4 *4 (-38 (-420 (-577)))))) (-4225 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1285 *3 *2)) (-4 *2 (-1283 *3)))) (-4214 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-660 *5))) (-4 *5 (-1283 *4)) (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-1 (-1182 *4) (-660 (-1182 *4)))) (-5 *1 (-1285 *4 *5)))) (-4202 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1283 *4)) (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-1 (-1182 *4) (-1182 *4) (-1182 *4))) (-5 *1 (-1285 *4 *5)))) (-4191 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1283 *4)) (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-1 (-1182 *4) (-1182 *4))) (-5 *1 (-1285 *4 *5))))) +(-10 -7 (-15 -4191 ((-1 (-1182 |#1|) (-1182 |#1|)) (-1 |#2| |#2|))) (-15 -4202 ((-1 (-1182 |#1|) (-1182 |#1|) (-1182 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4214 ((-1 (-1182 |#1|) (-660 (-1182 |#1|))) (-1 |#2| (-660 |#2|)))) (-15 -4225 (|#2| |#2| |#2|)) (-15 -4234 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4246 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4256 (|#2| (-1 |#2| (-660 |#2|)) (-660 |#1|))) (-15 -4265 ((-660 |#2|) (-660 |#1|) (-660 (-1 |#2| (-660 |#2|)))))) +((-4288 ((|#2| |#4| (-787)) 31)) (-4276 ((|#4| |#2|) 26)) (-4308 ((|#4| (-420 |#2|)) 49 (|has| |#1| (-569)))) (-4300 (((-1 |#4| (-660 |#4|)) |#3|) 43))) +(((-1286 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4276 (|#4| |#2|)) (-15 -4288 (|#2| |#4| (-787))) (-15 -4300 ((-1 |#4| (-660 |#4|)) |#3|)) (IF (|has| |#1| (-569)) (-15 -4308 (|#4| (-420 |#2|))) |%noBranch|)) (-1074) (-1268 |#1|) (-672 |#2|) (-1283 |#1|)) (T -1286)) +((-4308 (*1 *2 *3) (-12 (-5 *3 (-420 *5)) (-4 *5 (-1268 *4)) (-4 *4 (-569)) (-4 *4 (-1074)) (-4 *2 (-1283 *4)) (-5 *1 (-1286 *4 *5 *6 *2)) (-4 *6 (-672 *5)))) (-4300 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-4 *5 (-1268 *4)) (-5 *2 (-1 *6 (-660 *6))) (-5 *1 (-1286 *4 *5 *3 *6)) (-4 *3 (-672 *5)) (-4 *6 (-1283 *4)))) (-4288 (*1 *2 *3 *4) (-12 (-5 *4 (-787)) (-4 *5 (-1074)) (-4 *2 (-1268 *5)) (-5 *1 (-1286 *5 *2 *6 *3)) (-4 *6 (-672 *2)) (-4 *3 (-1283 *5)))) (-4276 (*1 *2 *3) (-12 (-4 *4 (-1074)) (-4 *3 (-1268 *4)) (-4 *2 (-1283 *4)) (-5 *1 (-1286 *4 *3 *5 *2)) (-4 *5 (-672 *3))))) +(-10 -7 (-15 -4276 (|#4| |#2|)) (-15 -4288 (|#2| |#4| (-787))) (-15 -4300 ((-1 |#4| (-660 |#4|)) |#3|)) (IF (|has| |#1| (-569)) (-15 -4308 (|#4| (-420 |#2|))) |%noBranch|)) +NIL +(((-1287) (-141)) (T -1287)) +NIL +(-13 (-10 -7 (-6 -4107))) +((-3473 (((-112) $ $) NIL)) (-3076 (((-1201)) 12)) (-2810 (((-1183) $) 18)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 11) (((-1201) $) 8)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 15))) +(((-1288 |#1|) (-13 (-1125) (-626 (-1201)) (-10 -8 (-15 -3544 ((-1201) $)) (-15 -3076 ((-1201))))) (-1201)) (T -1288)) +((-3544 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1288 *3)) (-14 *3 *2))) (-3076 (*1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1288 *3)) (-14 *3 *2)))) +(-13 (-1125) (-626 (-1201)) (-10 -8 (-15 -3544 ((-1201) $)) (-15 -3076 ((-1201))))) +((-3785 (($ (-787)) 19)) (-2462 (((-705 |#2|) $ $) 41)) (-4320 ((|#2| $) 51)) (-3402 ((|#2| $) 50)) (-3116 ((|#2| $ $) 36)) (-4331 (($ $ $) 47)) (-3066 (($ $) 23) (($ $ $) 29)) (-3055 (($ $ $) 15)) (* (($ (-577) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) +(((-1289 |#1| |#2|) (-10 -8 (-15 -4320 (|#2| |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -4331 (|#1| |#1| |#1|)) (-15 -2462 ((-705 |#2|) |#1| |#1|)) (-15 -3116 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -3066 (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -3785 (|#1| (-787))) (-15 -3055 (|#1| |#1| |#1|))) (-1290 |#2|) (-1242)) (T -1289)) +NIL +(-10 -8 (-15 -4320 (|#2| |#1|)) (-15 -3402 (|#2| |#1|)) (-15 -4331 (|#1| |#1| |#1|)) (-15 -2462 ((-705 |#2|) |#1| |#1|)) (-15 -3116 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-577) |#1|)) (-15 -3066 (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -3785 (|#1| (-787))) (-15 -3055 (|#1| |#1| |#1|))) +((-3473 (((-112) $ $) 20 (|has| |#1| (-102)))) (-3785 (($ (-787)) 115 (|has| |#1| (-23)))) (-2389 (((-1297) $ (-577) (-577)) 41 (|has| $ (-6 -4471)))) (-4077 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-865)))) (-4053 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4471))) (($ $) 91 (-12 (|has| |#1| (-865)) (|has| $ (-6 -4471))))) (-1864 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-865)))) (-3828 (((-112) $ (-787)) 8)) (-3709 ((|#1| $ (-577) |#1|) 53 (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) 60 (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4470)))) (-1534 (($) 7 T CONST)) (-3645 (($ $) 93 (|has| $ (-6 -4471)))) (-3787 (($ $) 103)) (-1817 (($ $) 80 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-3904 (($ |#1| $) 79 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4470)))) (-2192 ((|#1| $ (-577) |#1|) 54 (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) 52)) (-3618 (((-577) (-1 (-112) |#1|) $) 100) (((-577) |#1| $) 99 (|has| |#1| (-1125))) (((-577) |#1| $ (-577)) 98 (|has| |#1| (-1125)))) (-1461 (((-660 |#1|) $) 31 (|has| $ (-6 -4470)))) (-2462 (((-705 |#1|) $ $) 108 (|has| |#1| (-1074)))) (-4113 (($ (-787) |#1|) 70)) (-1479 (((-112) $ (-787)) 9)) (-2406 (((-577) $) 44 (|has| (-577) (-865)))) (-3732 (($ $ $) 85 (|has| |#1| (-865)))) (-3283 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-865)))) (-2530 (((-660 |#1|) $) 30 (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-2416 (((-577) $) 45 (|has| (-577) (-865)))) (-3201 (($ $ $) 86 (|has| |#1| (-865)))) (-2182 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4320 ((|#1| $) 105 (-12 (|has| |#1| (-1074)) (|has| |#1| (-1027))))) (-1443 (((-112) $ (-787)) 10)) (-3402 ((|#1| $) 106 (-12 (|has| |#1| (-1074)) (|has| |#1| (-1027))))) (-2810 (((-1183) $) 23 (|has| |#1| (-1125)))) (-2308 (($ |#1| $ (-577)) 62) (($ $ $ (-577)) 61)) (-4285 (((-660 (-577)) $) 47)) (-4298 (((-112) (-577) $) 48)) (-1474 (((-1145) $) 22 (|has| |#1| (-1125)))) (-3552 ((|#1| $) 43 (|has| (-577) (-865)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2397 (($ $ |#1|) 42 (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) 27 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) 24 (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) 14)) (-4274 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) 49)) (-3697 (((-112) $) 11)) (-3639 (($) 12)) (-2872 ((|#1| $ (-577) |#1|) 51) ((|#1| $ (-577)) 50) (($ $ (-1259 (-577))) 71)) (-3116 ((|#1| $ $) 109 (|has| |#1| (-1074)))) (-3453 (($ $ (-577)) 64) (($ $ (-1259 (-577))) 63)) (-4331 (($ $ $) 107 (|has| |#1| (-1074)))) (-1485 (((-787) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4470))) (((-787) |#1| $) 29 (-12 (|has| |#1| (-1125)) (|has| $ (-6 -4470))))) (-4064 (($ $ $ (-577)) 94 (|has| $ (-6 -4471)))) (-1944 (($ $) 13)) (-4152 (((-549) $) 81 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 72)) (-1677 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-660 $)) 66)) (-3544 (((-880) $) 18 (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) 21 (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) 87 (|has| |#1| (-865)))) (-3000 (((-112) $ $) 89 (|has| |#1| (-865)))) (-2970 (((-112) $ $) 19 (|has| |#1| (-102)))) (-3012 (((-112) $ $) 88 (|has| |#1| (-865)))) (-2990 (((-112) $ $) 90 (|has| |#1| (-865)))) (-3066 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3055 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-577) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-742))) (($ $ |#1|) 110 (|has| |#1| (-742)))) (-3484 (((-787) $) 6 (|has| $ (-6 -4470))))) +(((-1290 |#1|) (-141) (-1242)) (T -1290)) +((-3055 (*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-25)))) (-3785 (*1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1290 *3)) (-4 *3 (-23)) (-4 *3 (-1242)))) (-3066 (*1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-21)))) (-3066 (*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-4 *1 (-1290 *3)) (-4 *3 (-1242)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-742)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-742)))) (-3116 (*1 *2 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-1074)))) (-2462 (*1 *2 *1 *1) (-12 (-4 *1 (-1290 *3)) (-4 *3 (-1242)) (-4 *3 (-1074)) (-5 *2 (-705 *3)))) (-4331 (*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-1074)))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-1027)) (-4 *2 (-1074)))) (-4320 (*1 *2 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-1027)) (-4 *2 (-1074))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3055 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3785 ($ (-787))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3066 ($ $)) (-15 -3066 ($ $ $)) (-15 * ($ (-577) $))) |%noBranch|) (IF (|has| |t#1| (-742)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1074)) (PROGN (-15 -3116 (|t#1| $ $)) (-15 -2462 ((-705 |t#1|) $ $)) (-15 -4331 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1027)) (IF (|has| |t#1| (-1074)) (PROGN (-15 -3402 (|t#1| $)) (-15 -4320 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -2839 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-102))) ((-626 (-880)) -2839 (|has| |#1| (-1125)) (|has| |#1| (-865)) (|has| |#1| (-626 (-880)))) ((-152 |#1|) . T) ((-627 (-549)) |has| |#1| (-627 (-549))) ((-297 #0=(-577) |#1|) . T) ((-297 (-1259 (-577)) $) . T) ((-299 #0# |#1|) . T) ((-320 |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-385 |#1|) . T) ((-502 |#1|) . T) ((-617 #0# |#1|) . T) ((-527 |#1| |#1|) -12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))) ((-667 |#1|) . T) ((-19 |#1|) . T) ((-865) |has| |#1| (-865)) ((-868) |has| |#1| (-865)) ((-1125) -2839 (|has| |#1| (-1125)) (|has| |#1| (-865))) ((-1242) . T)) +((-3127 (((-1292 |#2|) (-1 |#2| |#1| |#2|) (-1292 |#1|) |#2|) 13)) (-3654 ((|#2| (-1 |#2| |#1| |#2|) (-1292 |#1|) |#2|) 15)) (-4087 (((-3 (-1292 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1292 |#1|)) 30) (((-1292 |#2|) (-1 |#2| |#1|) (-1292 |#1|)) 18))) +(((-1291 |#1| |#2|) (-10 -7 (-15 -3127 ((-1292 |#2|) (-1 |#2| |#1| |#2|) (-1292 |#1|) |#2|)) (-15 -3654 (|#2| (-1 |#2| |#1| |#2|) (-1292 |#1|) |#2|)) (-15 -4087 ((-1292 |#2|) (-1 |#2| |#1|) (-1292 |#1|))) (-15 -4087 ((-3 (-1292 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1292 |#1|)))) (-1242) (-1242)) (T -1291)) +((-4087 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1292 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-1292 *6)) (-5 *1 (-1291 *5 *6)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1292 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-1292 *6)) (-5 *1 (-1291 *5 *6)))) (-3654 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1292 *5)) (-4 *5 (-1242)) (-4 *2 (-1242)) (-5 *1 (-1291 *5 *2)))) (-3127 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1292 *6)) (-4 *6 (-1242)) (-4 *5 (-1242)) (-5 *2 (-1292 *5)) (-5 *1 (-1291 *6 *5))))) +(-10 -7 (-15 -3127 ((-1292 |#2|) (-1 |#2| |#1| |#2|) (-1292 |#1|) |#2|)) (-15 -3654 (|#2| (-1 |#2| |#1| |#2|) (-1292 |#1|) |#2|)) (-15 -4087 ((-1292 |#2|) (-1 |#2| |#1|) (-1292 |#1|))) (-15 -4087 ((-3 (-1292 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1292 |#1|)))) +((-3473 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3785 (($ (-787)) NIL (|has| |#1| (-23)))) (-2840 (($ (-660 |#1|)) 11)) (-2389 (((-1297) $ (-577) (-577)) NIL (|has| $ (-6 -4471)))) (-4077 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-865)))) (-4053 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4471))) (($ $) NIL (-12 (|has| $ (-6 -4471)) (|has| |#1| (-865))))) (-1864 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-865)))) (-3828 (((-112) $ (-787)) NIL)) (-3709 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471))) ((|#1| $ (-1259 (-577)) |#1|) NIL (|has| $ (-6 -4471)))) (-2067 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-1534 (($) NIL T CONST)) (-3645 (($ $) NIL (|has| $ (-6 -4471)))) (-3787 (($ $) NIL)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-3904 (($ |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3654 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4470))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4470)))) (-2192 ((|#1| $ (-577) |#1|) NIL (|has| $ (-6 -4471)))) (-2117 ((|#1| $ (-577)) NIL)) (-3618 (((-577) (-1 (-112) |#1|) $) NIL) (((-577) |#1| $) NIL (|has| |#1| (-1125))) (((-577) |#1| $ (-577)) NIL (|has| |#1| (-1125)))) (-1461 (((-660 |#1|) $) 16 (|has| $ (-6 -4470)))) (-2462 (((-705 |#1|) $ $) NIL (|has| |#1| (-1074)))) (-4113 (($ (-787) |#1|) NIL)) (-1479 (((-112) $ (-787)) NIL)) (-2406 (((-577) $) NIL (|has| (-577) (-865)))) (-3732 (($ $ $) NIL (|has| |#1| (-865)))) (-3283 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-865)))) (-2530 (((-660 |#1|) $) NIL (|has| $ (-6 -4470)))) (-2820 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-2416 (((-577) $) 12 (|has| (-577) (-865)))) (-3201 (($ $ $) NIL (|has| |#1| (-865)))) (-2182 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4320 ((|#1| $) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1074))))) (-1443 (((-112) $ (-787)) NIL)) (-3402 ((|#1| $) NIL (-12 (|has| |#1| (-1027)) (|has| |#1| (-1074))))) (-2810 (((-1183) $) NIL (|has| |#1| (-1125)))) (-2308 (($ |#1| $ (-577)) NIL) (($ $ $ (-577)) NIL)) (-4285 (((-660 (-577)) $) NIL)) (-4298 (((-112) (-577) $) NIL)) (-1474 (((-1145) $) NIL (|has| |#1| (-1125)))) (-3552 ((|#1| $) NIL (|has| (-577) (-865)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2397 (($ $ |#1|) NIL (|has| $ (-6 -4471)))) (-1514 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125)))) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-320 |#1|)) (|has| |#1| (-1125))))) (-3840 (((-112) $ $) NIL)) (-4274 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4306 (((-660 |#1|) $) NIL)) (-3697 (((-112) $) NIL)) (-3639 (($) NIL)) (-2872 ((|#1| $ (-577) |#1|) NIL) ((|#1| $ (-577)) NIL) (($ $ (-1259 (-577))) NIL)) (-3116 ((|#1| $ $) NIL (|has| |#1| (-1074)))) (-3453 (($ $ (-577)) NIL) (($ $ (-1259 (-577))) NIL)) (-4331 (($ $ $) NIL (|has| |#1| (-1074)))) (-1485 (((-787) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470))) (((-787) |#1| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#1| (-1125))))) (-4064 (($ $ $ (-577)) NIL (|has| $ (-6 -4471)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) 20 (|has| |#1| (-627 (-549))))) (-3553 (($ (-660 |#1|)) 10)) (-1677 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-660 $)) NIL)) (-3544 (((-880) $) NIL (|has| |#1| (-626 (-880))))) (-4448 (((-112) $ $) NIL (|has| |#1| (-102)))) (-1524 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4470)))) (-3025 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3000 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2970 (((-112) $ $) NIL (|has| |#1| (-102)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-865)))) (-2990 (((-112) $ $) NIL (|has| |#1| (-865)))) (-3066 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3055 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-577) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-742))) (($ $ |#1|) NIL (|has| |#1| (-742)))) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-1292 |#1|) (-13 (-1290 |#1|) (-10 -8 (-15 -2840 ($ (-660 |#1|))))) (-1242)) (T -1292)) +((-2840 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-1292 *3))))) +(-13 (-1290 |#1|) (-10 -8 (-15 -2840 ($ (-660 |#1|))))) +((-3473 (((-112) $ $) NIL)) (-1394 (((-1183) $ (-1183)) 107) (((-1183) $ (-1183) (-1183)) 105) (((-1183) $ (-1183) (-660 (-1183))) 104)) (-3259 (($) 69)) (-3573 (((-1297) $ (-481) (-944)) 54)) (-2442 (((-1297) $ (-944) (-1183)) 89) (((-1297) $ (-944) (-892)) 90)) (-1954 (((-1297) $ (-944) (-391) (-391)) 57)) (-1365 (((-1297) $ (-1183)) 84)) (-2318 (((-1297) $ (-944) (-1183)) 94)) (-3160 (((-1297) $ (-944) (-391) (-391)) 58)) (-3461 (((-1297) $ (-944) (-944)) 55)) (-1371 (((-1297) $) 85)) (-3180 (((-1297) $ (-944) (-1183)) 93)) (-3208 (((-1297) $ (-481) (-944)) 41)) (-3189 (((-1297) $ (-944) (-1183)) 92)) (-4422 (((-660 (-271)) $) 29) (($ $ (-660 (-271))) 30)) (-3472 (((-1297) $ (-787) (-787)) 52)) (-3247 (($ $) 70) (($ (-481) (-660 (-271))) 71)) (-2810 (((-1183) $) NIL)) (-4295 (((-577) $) 48)) (-1474 (((-1145) $) NIL)) (-3217 (((-1292 (-3 (-481) "undefined")) $) 47)) (-3227 (((-1292 (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -3189 (-577)) (|:| -3170 (-577)) (|:| |spline| (-577)) (|:| -3416 (-577)) (|:| |axesColor| (-892)) (|:| -2442 (-577)) (|:| |unitsColor| (-892)) (|:| |showing| (-577)))) $) 46)) (-3237 (((-1297) $ (-944) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-892) (-577) (-892) (-577)) 83)) (-3269 (((-660 (-966 (-228))) $) NIL)) (-3198 (((-481) $ (-944)) 43)) (-3450 (((-1297) $ (-787) (-787) (-944) (-944)) 50)) (-3428 (((-1297) $ (-1183)) 95)) (-3170 (((-1297) $ (-944) (-1183)) 91)) (-3544 (((-880) $) 102)) (-2045 (((-1297) $) 96)) (-4448 (((-112) $ $) NIL)) (-3416 (((-1297) $ (-944) (-1183)) 87) (((-1297) $ (-944) (-892)) 88)) (-2970 (((-112) $ $) NIL))) +(((-1293) (-13 (-1125) (-10 -8 (-15 -3269 ((-660 (-966 (-228))) $)) (-15 -3259 ($)) (-15 -3247 ($ $)) (-15 -4422 ((-660 (-271)) $)) (-15 -4422 ($ $ (-660 (-271)))) (-15 -3247 ($ (-481) (-660 (-271)))) (-15 -3237 ((-1297) $ (-944) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-892) (-577) (-892) (-577))) (-15 -3227 ((-1292 (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -3189 (-577)) (|:| -3170 (-577)) (|:| |spline| (-577)) (|:| -3416 (-577)) (|:| |axesColor| (-892)) (|:| -2442 (-577)) (|:| |unitsColor| (-892)) (|:| |showing| (-577)))) $)) (-15 -3217 ((-1292 (-3 (-481) "undefined")) $)) (-15 -1365 ((-1297) $ (-1183))) (-15 -3208 ((-1297) $ (-481) (-944))) (-15 -3198 ((-481) $ (-944))) (-15 -3416 ((-1297) $ (-944) (-1183))) (-15 -3416 ((-1297) $ (-944) (-892))) (-15 -2442 ((-1297) $ (-944) (-1183))) (-15 -2442 ((-1297) $ (-944) (-892))) (-15 -3189 ((-1297) $ (-944) (-1183))) (-15 -3180 ((-1297) $ (-944) (-1183))) (-15 -3170 ((-1297) $ (-944) (-1183))) (-15 -3428 ((-1297) $ (-1183))) (-15 -2045 ((-1297) $)) (-15 -3450 ((-1297) $ (-787) (-787) (-944) (-944))) (-15 -3160 ((-1297) $ (-944) (-391) (-391))) (-15 -1954 ((-1297) $ (-944) (-391) (-391))) (-15 -2318 ((-1297) $ (-944) (-1183))) (-15 -3472 ((-1297) $ (-787) (-787))) (-15 -3573 ((-1297) $ (-481) (-944))) (-15 -3461 ((-1297) $ (-944) (-944))) (-15 -1394 ((-1183) $ (-1183))) (-15 -1394 ((-1183) $ (-1183) (-1183))) (-15 -1394 ((-1183) $ (-1183) (-660 (-1183)))) (-15 -1371 ((-1297) $)) (-15 -4295 ((-577) $)) (-15 -3544 ((-880) $))))) (T -1293)) +((-3544 (*1 *2 *1) (-12 (-5 *2 (-880)) (-5 *1 (-1293)))) (-3269 (*1 *2 *1) (-12 (-5 *2 (-660 (-966 (-228)))) (-5 *1 (-1293)))) (-3259 (*1 *1) (-5 *1 (-1293))) (-3247 (*1 *1 *1) (-5 *1 (-1293))) (-4422 (*1 *2 *1) (-12 (-5 *2 (-660 (-271))) (-5 *1 (-1293)))) (-4422 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-271))) (-5 *1 (-1293)))) (-3247 (*1 *1 *2 *3) (-12 (-5 *2 (-481)) (-5 *3 (-660 (-271))) (-5 *1 (-1293)))) (-3237 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-944)) (-5 *4 (-228)) (-5 *5 (-577)) (-5 *6 (-892)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-3227 (*1 *2 *1) (-12 (-5 *2 (-1292 (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -3189 (-577)) (|:| -3170 (-577)) (|:| |spline| (-577)) (|:| -3416 (-577)) (|:| |axesColor| (-892)) (|:| -2442 (-577)) (|:| |unitsColor| (-892)) (|:| |showing| (-577))))) (-5 *1 (-1293)))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-1292 (-3 (-481) "undefined"))) (-5 *1 (-1293)))) (-1365 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-3208 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-481)) (-5 *4 (-944)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-3198 (*1 *2 *1 *3) (-12 (-5 *3 (-944)) (-5 *2 (-481)) (-5 *1 (-1293)))) (-3416 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-3416 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-892)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-2442 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-2442 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-892)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-3189 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-3180 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-3170 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-3428 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1293)))) (-3450 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-787)) (-5 *4 (-944)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-3160 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-944)) (-5 *4 (-391)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-1954 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-944)) (-5 *4 (-391)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-2318 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-3472 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-3573 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-481)) (-5 *4 (-944)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-3461 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1297)) (-5 *1 (-1293)))) (-1394 (*1 *2 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1293)))) (-1394 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1293)))) (-1394 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-1183)) (-5 *1 (-1293)))) (-1371 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1293)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1293))))) +(-13 (-1125) (-10 -8 (-15 -3269 ((-660 (-966 (-228))) $)) (-15 -3259 ($)) (-15 -3247 ($ $)) (-15 -4422 ((-660 (-271)) $)) (-15 -4422 ($ $ (-660 (-271)))) (-15 -3247 ($ (-481) (-660 (-271)))) (-15 -3237 ((-1297) $ (-944) (-228) (-228) (-228) (-228) (-577) (-577) (-577) (-577) (-892) (-577) (-892) (-577))) (-15 -3227 ((-1292 (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -3189 (-577)) (|:| -3170 (-577)) (|:| |spline| (-577)) (|:| -3416 (-577)) (|:| |axesColor| (-892)) (|:| -2442 (-577)) (|:| |unitsColor| (-892)) (|:| |showing| (-577)))) $)) (-15 -3217 ((-1292 (-3 (-481) "undefined")) $)) (-15 -1365 ((-1297) $ (-1183))) (-15 -3208 ((-1297) $ (-481) (-944))) (-15 -3198 ((-481) $ (-944))) (-15 -3416 ((-1297) $ (-944) (-1183))) (-15 -3416 ((-1297) $ (-944) (-892))) (-15 -2442 ((-1297) $ (-944) (-1183))) (-15 -2442 ((-1297) $ (-944) (-892))) (-15 -3189 ((-1297) $ (-944) (-1183))) (-15 -3180 ((-1297) $ (-944) (-1183))) (-15 -3170 ((-1297) $ (-944) (-1183))) (-15 -3428 ((-1297) $ (-1183))) (-15 -2045 ((-1297) $)) (-15 -3450 ((-1297) $ (-787) (-787) (-944) (-944))) (-15 -3160 ((-1297) $ (-944) (-391) (-391))) (-15 -1954 ((-1297) $ (-944) (-391) (-391))) (-15 -2318 ((-1297) $ (-944) (-1183))) (-15 -3472 ((-1297) $ (-787) (-787))) (-15 -3573 ((-1297) $ (-481) (-944))) (-15 -3461 ((-1297) $ (-944) (-944))) (-15 -1394 ((-1183) $ (-1183))) (-15 -1394 ((-1183) $ (-1183) (-1183))) (-15 -1394 ((-1183) $ (-1183) (-660 (-1183)))) (-15 -1371 ((-1297) $)) (-15 -4295 ((-577) $)) (-15 -3544 ((-880) $)))) +((-3473 (((-112) $ $) NIL)) (-3367 (((-1297) $ (-391)) 169) (((-1297) $ (-391) (-391) (-391)) 170)) (-1394 (((-1183) $ (-1183)) 179) (((-1183) $ (-1183) (-1183)) 177) (((-1183) $ (-1183) (-660 (-1183))) 176)) (-3515 (($) 67)) (-3440 (((-1297) $ (-391) (-391) (-391) (-391) (-391)) 141) (((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) $) 139) (((-1297) $ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) 140) (((-1297) $ (-577) (-577) (-391) (-391) (-391)) 144) (((-1297) $ (-391) (-391)) 145) (((-1297) $ (-391) (-391) (-391)) 152)) (-3547 (((-391)) 122) (((-391) (-391)) 123)) (-3568 (((-391)) 117) (((-391) (-391)) 119)) (-3558 (((-391)) 120) (((-391) (-391)) 121)) (-3525 (((-391)) 126) (((-391) (-391)) 127)) (-3536 (((-391)) 124) (((-391) (-391)) 125)) (-1954 (((-1297) $ (-391) (-391)) 171)) (-1365 (((-1297) $ (-1183)) 153)) (-3495 (((-1158 (-228)) $) 68) (($ $ (-1158 (-228))) 69)) (-3328 (((-1297) $ (-1183)) 187)) (-3318 (((-1297) $ (-1183)) 188)) (-3376 (((-1297) $ (-391) (-391)) 151) (((-1297) $ (-577) (-577)) 168)) (-3461 (((-1297) $ (-944) (-944)) 160)) (-1371 (((-1297) $) 137)) (-3357 (((-1297) $ (-1183)) 186)) (-3395 (((-1297) $ (-1183)) 134)) (-4422 (((-660 (-271)) $) 70) (($ $ (-660 (-271))) 71)) (-3472 (((-1297) $ (-787) (-787)) 159)) (-3483 (((-1297) $ (-787) (-966 (-228))) 193)) (-3506 (($ $) 73) (($ (-1158 (-228)) (-1183)) 74) (($ (-1158 (-228)) (-660 (-271))) 75)) (-3298 (((-1297) $ (-391) (-391) (-391)) 131)) (-2810 (((-1183) $) NIL)) (-4295 (((-577) $) 128)) (-3288 (((-1297) $ (-391)) 174)) (-3338 (((-1297) $ (-391)) 191)) (-1474 (((-1145) $) NIL)) (-3347 (((-1297) $ (-391)) 190)) (-3385 (((-1297) $ (-1183)) 136)) (-3450 (((-1297) $ (-787) (-787) (-944) (-944)) 158)) (-3405 (((-1297) $ (-1183)) 133)) (-3428 (((-1297) $ (-1183)) 135)) (-3278 (((-1297) $ (-158) (-158)) 157)) (-3544 (((-880) $) 166)) (-2045 (((-1297) $) 138)) (-3308 (((-1297) $ (-1183)) 189)) (-4448 (((-112) $ $) NIL)) (-3416 (((-1297) $ (-1183)) 132)) (-2970 (((-112) $ $) NIL))) +(((-1294) (-13 (-1125) (-10 -8 (-15 -3568 ((-391))) (-15 -3568 ((-391) (-391))) (-15 -3558 ((-391))) (-15 -3558 ((-391) (-391))) (-15 -3547 ((-391))) (-15 -3547 ((-391) (-391))) (-15 -3536 ((-391))) (-15 -3536 ((-391) (-391))) (-15 -3525 ((-391))) (-15 -3525 ((-391) (-391))) (-15 -3515 ($)) (-15 -3506 ($ $)) (-15 -3506 ($ (-1158 (-228)) (-1183))) (-15 -3506 ($ (-1158 (-228)) (-660 (-271)))) (-15 -3495 ((-1158 (-228)) $)) (-15 -3495 ($ $ (-1158 (-228)))) (-15 -3483 ((-1297) $ (-787) (-966 (-228)))) (-15 -4422 ((-660 (-271)) $)) (-15 -4422 ($ $ (-660 (-271)))) (-15 -3472 ((-1297) $ (-787) (-787))) (-15 -3461 ((-1297) $ (-944) (-944))) (-15 -1365 ((-1297) $ (-1183))) (-15 -3450 ((-1297) $ (-787) (-787) (-944) (-944))) (-15 -3440 ((-1297) $ (-391) (-391) (-391) (-391) (-391))) (-15 -3440 ((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) $)) (-15 -3440 ((-1297) $ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -3440 ((-1297) $ (-577) (-577) (-391) (-391) (-391))) (-15 -3440 ((-1297) $ (-391) (-391))) (-15 -3440 ((-1297) $ (-391) (-391) (-391))) (-15 -3428 ((-1297) $ (-1183))) (-15 -3416 ((-1297) $ (-1183))) (-15 -3405 ((-1297) $ (-1183))) (-15 -3395 ((-1297) $ (-1183))) (-15 -3385 ((-1297) $ (-1183))) (-15 -3376 ((-1297) $ (-391) (-391))) (-15 -3376 ((-1297) $ (-577) (-577))) (-15 -3367 ((-1297) $ (-391))) (-15 -3367 ((-1297) $ (-391) (-391) (-391))) (-15 -1954 ((-1297) $ (-391) (-391))) (-15 -3357 ((-1297) $ (-1183))) (-15 -3347 ((-1297) $ (-391))) (-15 -3338 ((-1297) $ (-391))) (-15 -3328 ((-1297) $ (-1183))) (-15 -3318 ((-1297) $ (-1183))) (-15 -3308 ((-1297) $ (-1183))) (-15 -3298 ((-1297) $ (-391) (-391) (-391))) (-15 -3288 ((-1297) $ (-391))) (-15 -1371 ((-1297) $)) (-15 -3278 ((-1297) $ (-158) (-158))) (-15 -1394 ((-1183) $ (-1183))) (-15 -1394 ((-1183) $ (-1183) (-1183))) (-15 -1394 ((-1183) $ (-1183) (-660 (-1183)))) (-15 -2045 ((-1297) $)) (-15 -4295 ((-577) $))))) (T -1294)) +((-3568 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-3568 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-3558 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-3558 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-3547 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-3547 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-3536 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-3536 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-3525 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-3525 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) (-3515 (*1 *1) (-5 *1 (-1294))) (-3506 (*1 *1 *1) (-5 *1 (-1294))) (-3506 (*1 *1 *2 *3) (-12 (-5 *2 (-1158 (-228))) (-5 *3 (-1183)) (-5 *1 (-1294)))) (-3506 (*1 *1 *2 *3) (-12 (-5 *2 (-1158 (-228))) (-5 *3 (-660 (-271))) (-5 *1 (-1294)))) (-3495 (*1 *2 *1) (-12 (-5 *2 (-1158 (-228))) (-5 *1 (-1294)))) (-3495 (*1 *1 *1 *2) (-12 (-5 *2 (-1158 (-228))) (-5 *1 (-1294)))) (-3483 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-787)) (-5 *4 (-966 (-228))) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-4422 (*1 *2 *1) (-12 (-5 *2 (-660 (-271))) (-5 *1 (-1294)))) (-4422 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-271))) (-5 *1 (-1294)))) (-3472 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3461 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-1365 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3450 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-787)) (-5 *4 (-944)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3440 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3440 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) (-5 *1 (-1294)))) (-3440 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3440 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-577)) (-5 *4 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3440 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3440 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3428 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3416 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3405 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3395 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3385 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3376 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3376 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3367 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3367 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-1954 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3357 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3347 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3338 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3328 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3318 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3308 (*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3298 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3288 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-1371 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1294)))) (-3278 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1297)) (-5 *1 (-1294)))) (-1394 (*1 *2 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1294)))) (-1394 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1294)))) (-1394 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-1183)) (-5 *1 (-1294)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1294)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1294))))) +(-13 (-1125) (-10 -8 (-15 -3568 ((-391))) (-15 -3568 ((-391) (-391))) (-15 -3558 ((-391))) (-15 -3558 ((-391) (-391))) (-15 -3547 ((-391))) (-15 -3547 ((-391) (-391))) (-15 -3536 ((-391))) (-15 -3536 ((-391) (-391))) (-15 -3525 ((-391))) (-15 -3525 ((-391) (-391))) (-15 -3515 ($)) (-15 -3506 ($ $)) (-15 -3506 ($ (-1158 (-228)) (-1183))) (-15 -3506 ($ (-1158 (-228)) (-660 (-271)))) (-15 -3495 ((-1158 (-228)) $)) (-15 -3495 ($ $ (-1158 (-228)))) (-15 -3483 ((-1297) $ (-787) (-966 (-228)))) (-15 -4422 ((-660 (-271)) $)) (-15 -4422 ($ $ (-660 (-271)))) (-15 -3472 ((-1297) $ (-787) (-787))) (-15 -3461 ((-1297) $ (-944) (-944))) (-15 -1365 ((-1297) $ (-1183))) (-15 -3450 ((-1297) $ (-787) (-787) (-944) (-944))) (-15 -3440 ((-1297) $ (-391) (-391) (-391) (-391) (-391))) (-15 -3440 ((-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))) $)) (-15 -3440 ((-1297) $ (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) (|:| |deltaX| (-228)) (|:| |deltaY| (-228))))) (-15 -3440 ((-1297) $ (-577) (-577) (-391) (-391) (-391))) (-15 -3440 ((-1297) $ (-391) (-391))) (-15 -3440 ((-1297) $ (-391) (-391) (-391))) (-15 -3428 ((-1297) $ (-1183))) (-15 -3416 ((-1297) $ (-1183))) (-15 -3405 ((-1297) $ (-1183))) (-15 -3395 ((-1297) $ (-1183))) (-15 -3385 ((-1297) $ (-1183))) (-15 -3376 ((-1297) $ (-391) (-391))) (-15 -3376 ((-1297) $ (-577) (-577))) (-15 -3367 ((-1297) $ (-391))) (-15 -3367 ((-1297) $ (-391) (-391) (-391))) (-15 -1954 ((-1297) $ (-391) (-391))) (-15 -3357 ((-1297) $ (-1183))) (-15 -3347 ((-1297) $ (-391))) (-15 -3338 ((-1297) $ (-391))) (-15 -3328 ((-1297) $ (-1183))) (-15 -3318 ((-1297) $ (-1183))) (-15 -3308 ((-1297) $ (-1183))) (-15 -3298 ((-1297) $ (-391) (-391) (-391))) (-15 -3288 ((-1297) $ (-391))) (-15 -1371 ((-1297) $)) (-15 -3278 ((-1297) $ (-158) (-158))) (-15 -1394 ((-1183) $ (-1183))) (-15 -1394 ((-1183) $ (-1183) (-1183))) (-15 -1394 ((-1183) $ (-1183) (-660 (-1183)))) (-15 -2045 ((-1297) $)) (-15 -4295 ((-577) $)))) +((-3659 (((-660 (-1183)) (-660 (-1183))) 104) (((-660 (-1183))) 96)) (-3670 (((-660 (-1183))) 94)) (-3635 (((-660 (-944)) (-660 (-944))) 69) (((-660 (-944))) 64)) (-3624 (((-660 (-787)) (-660 (-787))) 61) (((-660 (-787))) 55)) (-3647 (((-1297)) 71)) (-2533 (((-944) (-944)) 87) (((-944)) 86)) (-3680 (((-944) (-944)) 85) (((-944)) 84)) (-3606 (((-892) (-892)) 81) (((-892)) 80)) (-2552 (((-228)) 91) (((-228) (-391)) 93)) (-2542 (((-944)) 88) (((-944) (-944)) 89)) (-3613 (((-944) (-944)) 83) (((-944)) 82)) (-3579 (((-892) (-892)) 75) (((-892)) 73)) (-3586 (((-892) (-892)) 77) (((-892)) 76)) (-3595 (((-892) (-892)) 79) (((-892)) 78))) +(((-1295) (-10 -7 (-15 -3579 ((-892))) (-15 -3579 ((-892) (-892))) (-15 -3586 ((-892))) (-15 -3586 ((-892) (-892))) (-15 -3595 ((-892))) (-15 -3595 ((-892) (-892))) (-15 -3606 ((-892))) (-15 -3606 ((-892) (-892))) (-15 -3613 ((-944))) (-15 -3613 ((-944) (-944))) (-15 -3624 ((-660 (-787)))) (-15 -3624 ((-660 (-787)) (-660 (-787)))) (-15 -3635 ((-660 (-944)))) (-15 -3635 ((-660 (-944)) (-660 (-944)))) (-15 -3647 ((-1297))) (-15 -3659 ((-660 (-1183)))) (-15 -3659 ((-660 (-1183)) (-660 (-1183)))) (-15 -3670 ((-660 (-1183)))) (-15 -3680 ((-944))) (-15 -2533 ((-944))) (-15 -3680 ((-944) (-944))) (-15 -2533 ((-944) (-944))) (-15 -2542 ((-944) (-944))) (-15 -2542 ((-944))) (-15 -2552 ((-228) (-391))) (-15 -2552 ((-228))))) (T -1295)) +((-2552 (*1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-1295)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-228)) (-5 *1 (-1295)))) (-2542 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) (-2542 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) (-2533 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) (-3680 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) (-2533 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) (-3680 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) (-3670 (*1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1295)))) (-3659 (*1 *2 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1295)))) (-3659 (*1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1295)))) (-3647 (*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1295)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1295)))) (-3635 (*1 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1295)))) (-3624 (*1 *2 *2) (-12 (-5 *2 (-660 (-787))) (-5 *1 (-1295)))) (-3624 (*1 *2) (-12 (-5 *2 (-660 (-787))) (-5 *1 (-1295)))) (-3613 (*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) (-3613 (*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) (-3606 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) (-3606 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) (-3595 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) (-3595 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) (-3586 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) (-3586 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) (-3579 (*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) (-3579 (*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295))))) +(-10 -7 (-15 -3579 ((-892))) (-15 -3579 ((-892) (-892))) (-15 -3586 ((-892))) (-15 -3586 ((-892) (-892))) (-15 -3595 ((-892))) (-15 -3595 ((-892) (-892))) (-15 -3606 ((-892))) (-15 -3606 ((-892) (-892))) (-15 -3613 ((-944))) (-15 -3613 ((-944) (-944))) (-15 -3624 ((-660 (-787)))) (-15 -3624 ((-660 (-787)) (-660 (-787)))) (-15 -3635 ((-660 (-944)))) (-15 -3635 ((-660 (-944)) (-660 (-944)))) (-15 -3647 ((-1297))) (-15 -3659 ((-660 (-1183)))) (-15 -3659 ((-660 (-1183)) (-660 (-1183)))) (-15 -3670 ((-660 (-1183)))) (-15 -3680 ((-944))) (-15 -2533 ((-944))) (-15 -3680 ((-944) (-944))) (-15 -2533 ((-944) (-944))) (-15 -2542 ((-944) (-944))) (-15 -2542 ((-944))) (-15 -2552 ((-228) (-391))) (-15 -2552 ((-228)))) +((-3137 (((-481) (-660 (-660 (-966 (-228)))) (-660 (-271))) 22) (((-481) (-660 (-660 (-966 (-228))))) 21) (((-481) (-660 (-660 (-966 (-228)))) (-892) (-892) (-944) (-660 (-271))) 20)) (-3149 (((-1293) (-660 (-660 (-966 (-228)))) (-660 (-271))) 30) (((-1293) (-660 (-660 (-966 (-228)))) (-892) (-892) (-944) (-660 (-271))) 29)) (-3544 (((-1293) (-481)) 46))) +(((-1296) (-10 -7 (-15 -3137 ((-481) (-660 (-660 (-966 (-228)))) (-892) (-892) (-944) (-660 (-271)))) (-15 -3137 ((-481) (-660 (-660 (-966 (-228)))))) (-15 -3137 ((-481) (-660 (-660 (-966 (-228)))) (-660 (-271)))) (-15 -3149 ((-1293) (-660 (-660 (-966 (-228)))) (-892) (-892) (-944) (-660 (-271)))) (-15 -3149 ((-1293) (-660 (-660 (-966 (-228)))) (-660 (-271)))) (-15 -3544 ((-1293) (-481))))) (T -1296)) +((-3544 (*1 *2 *3) (-12 (-5 *3 (-481)) (-5 *2 (-1293)) (-5 *1 (-1296)))) (-3149 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-660 (-271))) (-5 *2 (-1293)) (-5 *1 (-1296)))) (-3149 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-892)) (-5 *5 (-944)) (-5 *6 (-660 (-271))) (-5 *2 (-1293)) (-5 *1 (-1296)))) (-3137 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-660 (-271))) (-5 *2 (-481)) (-5 *1 (-1296)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *2 (-481)) (-5 *1 (-1296)))) (-3137 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-892)) (-5 *5 (-944)) (-5 *6 (-660 (-271))) (-5 *2 (-481)) (-5 *1 (-1296))))) +(-10 -7 (-15 -3137 ((-481) (-660 (-660 (-966 (-228)))) (-892) (-892) (-944) (-660 (-271)))) (-15 -3137 ((-481) (-660 (-660 (-966 (-228)))))) (-15 -3137 ((-481) (-660 (-660 (-966 (-228)))) (-660 (-271)))) (-15 -3149 ((-1293) (-660 (-660 (-966 (-228)))) (-892) (-892) (-944) (-660 (-271)))) (-15 -3149 ((-1293) (-660 (-660 (-966 (-228)))) (-660 (-271)))) (-15 -3544 ((-1293) (-481)))) +((-2963 (($) 6)) (-3544 (((-880) $) 9))) +(((-1297) (-13 (-626 (-880)) (-10 -8 (-15 -2963 ($))))) (T -1297)) +((-2963 (*1 *1) (-5 *1 (-1297)))) +(-13 (-626 (-880)) (-10 -8 (-15 -2963 ($)))) +((-3077 (($ $ |#2|) 10))) +(((-1298 |#1| |#2|) (-10 -8 (-15 -3077 (|#1| |#1| |#2|))) (-1299 |#2|) (-375)) (T -1298)) +NIL +(-10 -8 (-15 -3077 (|#1| |#1| |#2|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2561 (((-135)) 33)) (-3544 (((-880) $) 12)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2970 (((-112) $ $) 8)) (-3077 (($ $ |#1|) 34)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-1299 |#1|) (-141) (-375)) (T -1299)) +((-3077 (*1 *1 *1 *2) (-12 (-4 *1 (-1299 *2)) (-4 *2 (-375)))) (-2561 (*1 *2) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-375)) (-5 *2 (-135))))) +(-13 (-733 |t#1|) (-10 -8 (-15 -3077 ($ $ |t#1|)) (-15 -2561 ((-135))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-664 |#1|) . T) ((-656 |#1|) . T) ((-733 |#1|) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1125) . T) ((-1242) . T)) +((-2608 (((-660 (-1236 |#1|)) (-1201) (-1236 |#1|)) 83)) (-2590 (((-1182 (-1182 (-975 |#1|))) (-1201) (-1182 (-975 |#1|))) 63)) (-2618 (((-1 (-1182 (-1236 |#1|)) (-1182 (-1236 |#1|))) (-787) (-1236 |#1|) (-1182 (-1236 |#1|))) 74)) (-2570 (((-1 (-1182 (-975 |#1|)) (-1182 (-975 |#1|))) (-787)) 65)) (-2599 (((-1 (-1197 (-975 |#1|)) (-975 |#1|)) (-1201)) 32)) (-2580 (((-1 (-1182 (-975 |#1|)) (-1182 (-975 |#1|))) (-787)) 64))) +(((-1300 |#1|) (-10 -7 (-15 -2570 ((-1 (-1182 (-975 |#1|)) (-1182 (-975 |#1|))) (-787))) (-15 -2580 ((-1 (-1182 (-975 |#1|)) (-1182 (-975 |#1|))) (-787))) (-15 -2590 ((-1182 (-1182 (-975 |#1|))) (-1201) (-1182 (-975 |#1|)))) (-15 -2599 ((-1 (-1197 (-975 |#1|)) (-975 |#1|)) (-1201))) (-15 -2608 ((-660 (-1236 |#1|)) (-1201) (-1236 |#1|))) (-15 -2618 ((-1 (-1182 (-1236 |#1|)) (-1182 (-1236 |#1|))) (-787) (-1236 |#1|) (-1182 (-1236 |#1|))))) (-375)) (T -1300)) +((-2618 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-787)) (-4 *6 (-375)) (-5 *4 (-1236 *6)) (-5 *2 (-1 (-1182 *4) (-1182 *4))) (-5 *1 (-1300 *6)) (-5 *5 (-1182 *4)))) (-2608 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-4 *5 (-375)) (-5 *2 (-660 (-1236 *5))) (-5 *1 (-1300 *5)) (-5 *4 (-1236 *5)))) (-2599 (*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1 (-1197 (-975 *4)) (-975 *4))) (-5 *1 (-1300 *4)) (-4 *4 (-375)))) (-2590 (*1 *2 *3 *4) (-12 (-5 *3 (-1201)) (-4 *5 (-375)) (-5 *2 (-1182 (-1182 (-975 *5)))) (-5 *1 (-1300 *5)) (-5 *4 (-1182 (-975 *5))))) (-2580 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1 (-1182 (-975 *4)) (-1182 (-975 *4)))) (-5 *1 (-1300 *4)) (-4 *4 (-375)))) (-2570 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1 (-1182 (-975 *4)) (-1182 (-975 *4)))) (-5 *1 (-1300 *4)) (-4 *4 (-375))))) +(-10 -7 (-15 -2570 ((-1 (-1182 (-975 |#1|)) (-1182 (-975 |#1|))) (-787))) (-15 -2580 ((-1 (-1182 (-975 |#1|)) (-1182 (-975 |#1|))) (-787))) (-15 -2590 ((-1182 (-1182 (-975 |#1|))) (-1201) (-1182 (-975 |#1|)))) (-15 -2599 ((-1 (-1197 (-975 |#1|)) (-975 |#1|)) (-1201))) (-15 -2608 ((-660 (-1236 |#1|)) (-1201) (-1236 |#1|))) (-15 -2618 ((-1 (-1182 (-1236 |#1|)) (-1182 (-1236 |#1|))) (-787) (-1236 |#1|) (-1182 (-1236 |#1|))))) +((-2636 (((-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) |#2|) 80)) (-2627 (((-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|)))) 79))) +(((-1301 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2627 ((-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))))) (-15 -2636 ((-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) |#2|))) (-361) (-1268 |#1|) (-1268 |#2|) (-422 |#2| |#3|)) (T -1301)) +((-2636 (*1 *2 *3) (-12 (-4 *4 (-361)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 *3)) (-5 *2 (-2 (|:| -4060 (-705 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-705 *3)))) (-5 *1 (-1301 *4 *3 *5 *6)) (-4 *6 (-422 *3 *5)))) (-2627 (*1 *2) (-12 (-4 *3 (-361)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 *4)) (-5 *2 (-2 (|:| -4060 (-705 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-705 *4)))) (-5 *1 (-1301 *3 *4 *5 *6)) (-4 *6 (-422 *4 *5))))) +(-10 -7 (-15 -2627 ((-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))))) (-15 -2636 ((-2 (|:| -4060 (-705 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-705 |#2|))) |#2|))) +((-3473 (((-112) $ $) NIL)) (-2646 (((-1160) $) 11)) (-2655 (((-1160) $) 9)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 17) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-1302) (-13 (-1108) (-10 -8 (-15 -2655 ((-1160) $)) (-15 -2646 ((-1160) $))))) (T -1302)) +((-2655 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1302)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1302))))) +(-13 (-1108) (-10 -8 (-15 -2655 ((-1160) $)) (-15 -2646 ((-1160) $)))) +((-3473 (((-112) $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3949 (((-1160) $) 9)) (-3544 (((-880) $) 15) (($ (-1206)) NIL) (((-1206) $) NIL)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) NIL))) +(((-1303) (-13 (-1108) (-10 -8 (-15 -3949 ((-1160) $))))) (T -1303)) +((-3949 (*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1303))))) +(-13 (-1108) (-10 -8 (-15 -3949 ((-1160) $)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 58)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-4187 (((-3 $ "failed") $) NIL)) (-2487 (((-112) $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 81) (($ (-577)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-4068 (((-787)) NIL T CONST)) (-2669 (((-1297) (-787)) 16)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 37 T CONST)) (-2816 (($) 84 T CONST)) (-2970 (((-112) $ $) 87)) (-3077 (((-3 $ "failed") $ $) NIL (|has| |#1| (-375)))) (-3066 (($ $) 89) (($ $ $) NIL)) (-3055 (($ $ $) 63)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-1304 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1074) (-503 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -3077 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2669 ((-1297) (-787))))) (-1074) (-865) (-809) (-972 |#1| |#3| |#2|) (-660 |#2|) (-660 (-787)) (-787)) (T -1304)) +((-3077 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-375)) (-4 *2 (-1074)) (-4 *3 (-865)) (-4 *4 (-809)) (-14 *6 (-660 *3)) (-5 *1 (-1304 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-972 *2 *4 *3)) (-14 *7 (-660 (-787))) (-14 *8 (-787)))) (-2669 (*1 *2 *3) (-12 (-5 *3 (-787)) (-4 *4 (-1074)) (-4 *5 (-865)) (-4 *6 (-809)) (-14 *8 (-660 *5)) (-5 *2 (-1297)) (-5 *1 (-1304 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-972 *4 *6 *5)) (-14 *9 (-660 *3)) (-14 *10 *3)))) +(-13 (-1074) (-503 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-375)) (-15 -3077 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2669 ((-1297) (-787))))) +((-3473 (((-112) $ $) NIL)) (-2361 (((-660 (-2 (|:| -2045 $) (|:| -3253 (-660 |#4|)))) (-660 |#4|)) NIL)) (-2371 (((-660 $) (-660 |#4|)) 96)) (-2058 (((-660 |#3|) $) NIL)) (-2508 (((-112) $) NIL)) (-3572 (((-112) $) NIL (|has| |#1| (-569)))) (-2475 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2426 ((|#4| |#4| $) NIL)) (-1864 (((-2 (|:| |under| $) (|:| -4119 $) (|:| |upper| $)) $ |#3|) NIL)) (-3828 (((-112) $ (-787)) NIL)) (-2067 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1534 (($) NIL T CONST)) (-2474 (((-112) $) NIL (|has| |#1| (-569)))) (-2492 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2483 (((-112) $ $) NIL (|has| |#1| (-569)))) (-2500 (((-112) $) NIL (|has| |#1| (-569)))) (-2435 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2434 (((-660 |#4|) (-660 |#4|) $) 28 (|has| |#1| (-569)))) (-2446 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)))) (-1628 (((-3 $ "failed") (-660 |#4|)) NIL)) (-2921 (($ (-660 |#4|)) NIL)) (-3563 (((-3 $ "failed") $) 78)) (-2399 ((|#4| |#4| $) 83)) (-1817 (($ $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))))) (-3904 (($ |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-2457 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)))) (-2484 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2382 ((|#4| |#4| $) NIL)) (-3654 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4470))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4470))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4364 (((-2 (|:| -2045 (-660 |#4|)) (|:| -3253 (-660 |#4|))) $) NIL)) (-1461 (((-660 |#4|) $) NIL (|has| $ (-6 -4470)))) (-4354 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3514 ((|#3| $) 84)) (-1479 (((-112) $ (-787)) NIL)) (-2530 (((-660 |#4|) $) 32 (|has| $ (-6 -4470)))) (-2820 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125))))) (-2701 (((-3 $ "failed") (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-660 |#4|)) 38)) (-2182 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4471)))) (-4087 (($ (-1 |#4| |#4|) $) NIL)) (-2555 (((-660 |#3|) $) NIL)) (-2545 (((-112) |#3| $) NIL)) (-1443 (((-112) $ (-787)) NIL)) (-2810 (((-1183) $) NIL)) (-3927 (((-3 |#4| "failed") $) NIL)) (-4375 (((-660 |#4|) $) 54)) (-2458 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2408 ((|#4| |#4| $) 82)) (-4396 (((-112) $ $) 93)) (-2466 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)))) (-2467 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2418 ((|#4| |#4| $) NIL)) (-1474 (((-1145) $) NIL)) (-3552 (((-3 |#4| "failed") $) 77)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2343 (((-3 $ "failed") $ |#4|) NIL)) (-3792 (($ $ |#4|) NIL)) (-1514 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-3280 (($ $ (-660 |#4|) (-660 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125)))) (($ $ (-660 (-305 |#4|))) NIL (-12 (|has| |#4| (-320 |#4|)) (|has| |#4| (-1125))))) (-3840 (((-112) $ $) NIL)) (-3697 (((-112) $) 75)) (-3639 (($) 46)) (-2887 (((-787) $) NIL)) (-1485 (((-787) |#4| $) NIL (-12 (|has| $ (-6 -4470)) (|has| |#4| (-1125)))) (((-787) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-1944 (($ $) NIL)) (-4152 (((-549) $) NIL (|has| |#4| (-627 (-549))))) (-3553 (($ (-660 |#4|)) NIL)) (-2518 (($ $ |#3|) NIL)) (-2536 (($ $ |#3|) NIL)) (-2391 (($ $) NIL)) (-2527 (($ $ |#3|) NIL)) (-3544 (((-880) $) NIL) (((-660 |#4|) $) 63)) (-2332 (((-787) $) NIL (|has| |#3| (-380)))) (-2690 (((-3 $ "failed") (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-660 |#4|)) 45)) (-2678 (((-660 $) (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-660 $) (-660 |#4|)) 74)) (-4448 (((-112) $ $) NIL)) (-4385 (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -1436 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2447 (((-112) $ (-1 (-112) |#4| (-660 |#4|))) NIL)) (-1524 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4470)))) (-2352 (((-660 |#3|) $) NIL)) (-2776 (((-112) |#3| $) NIL)) (-2970 (((-112) $ $) NIL)) (-3484 (((-787) $) NIL (|has| $ (-6 -4470))))) +(((-1305 |#1| |#2| |#3| |#4|) (-13 (-1235 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2701 ((-3 $ "failed") (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2701 ((-3 $ "failed") (-660 |#4|))) (-15 -2690 ((-3 $ "failed") (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2690 ((-3 $ "failed") (-660 |#4|))) (-15 -2678 ((-660 $) (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2678 ((-660 $) (-660 |#4|))))) (-569) (-809) (-865) (-1090 |#1| |#2| |#3|)) (T -1305)) +((-2701 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-660 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1305 *5 *6 *7 *8)))) (-2701 (*1 *1 *2) (|partial| -12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1305 *3 *4 *5 *6)))) (-2690 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-660 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1305 *5 *6 *7 *8)))) (-2690 (*1 *1 *2) (|partial| -12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1305 *3 *4 *5 *6)))) (-2678 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1090 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-809)) (-4 *8 (-865)) (-5 *2 (-660 (-1305 *6 *7 *8 *9))) (-5 *1 (-1305 *6 *7 *8 *9)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 (-1305 *4 *5 *6 *7))) (-5 *1 (-1305 *4 *5 *6 *7))))) +(-13 (-1235 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2701 ((-3 $ "failed") (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2701 ((-3 $ "failed") (-660 |#4|))) (-15 -2690 ((-3 $ "failed") (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2690 ((-3 $ "failed") (-660 |#4|))) (-15 -2678 ((-660 $) (-660 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2678 ((-660 $) (-660 |#4|))))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-1956 (((-3 $ "failed") $ $) 20)) (-1534 (($) 18 T CONST)) (-4187 (((-3 $ "failed") $) 37)) (-2487 (((-112) $) 35)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#1|) 45)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) +(((-1306 |#1|) (-141) (-1074)) (T -1306)) +NIL +(-13 (-1074) (-111 |t#1| |t#1|) (-629 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 |#1|) |has| |#1| (-174)) ((-733 |#1|) |has| |#1| (-174)) ((-742) . T) ((-1076 |#1|) . T) ((-1081 |#1|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T)) +((-3473 (((-112) $ $) 67)) (-3585 (((-112) $) NIL)) (-3435 (((-660 |#1|) $) 52)) (-2877 (($ $ (-787)) 46)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2786 (($ $ (-787)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-1534 (($) NIL T CONST)) (-2821 (($ $ $) 70) (($ $ (-835 |#1|)) 56) (($ $ |#1|) 60)) (-1628 (((-3 (-835 |#1|) "failed") $) NIL)) (-2921 (((-835 |#1|) $) NIL)) (-2248 (($ $) 39)) (-4187 (((-3 $ "failed") $) NIL)) (-2906 (((-112) $) NIL)) (-2896 (($ $) NIL)) (-2487 (((-112) $) NIL)) (-2548 (((-787) $) NIL)) (-4074 (((-660 $) $) NIL)) (-2811 (((-112) $) NIL)) (-3640 (($ (-835 |#1|) |#2|) 38)) (-2799 (($ $) 40)) (-2845 (((-2 (|:| |k| (-835 |#1|)) (|:| |c| |#2|)) $) 12)) (-2926 (((-835 |#1|) $) NIL)) (-2934 (((-835 |#1|) $) 41)) (-4087 (($ (-1 |#2| |#2|) $) NIL)) (-2834 (($ $ $) 69) (($ $ (-835 |#1|)) 58) (($ $ |#1|) 62)) (-3044 (((-2 (|:| |k| (-835 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2209 (((-835 |#1|) $) 35)) (-2221 ((|#2| $) 37)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2887 (((-787) $) 43)) (-2915 (((-112) $) 47)) (-1512 ((|#2| $) NIL)) (-3544 (((-880) $) NIL) (($ (-835 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-577)) NIL)) (-4182 (((-660 |#2|) $) NIL)) (-2322 ((|#2| $ (-835 |#1|)) NIL)) (-1777 ((|#2| $ $) 76) ((|#2| $ (-835 |#1|)) NIL)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 13 T CONST)) (-2816 (($) 19 T CONST)) (-1831 (((-660 (-2 (|:| |k| (-835 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2970 (((-112) $ $) 44)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) 28)) (** (($ $ (-787)) NIL) (($ $ (-944)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-835 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) +(((-1307 |#1| |#2|) (-13 (-394 |#2| (-835 |#1|)) (-1313 |#1| |#2|)) (-865) (-1074)) (T -1307)) +NIL +(-13 (-394 |#2| (-835 |#1|)) (-1313 |#1| |#2|)) +((-3698 ((|#3| |#3| (-787)) 28)) (-4072 ((|#3| |#3| (-787)) 34)) (-2711 ((|#3| |#3| |#3| (-787)) 35))) +(((-1308 |#1| |#2| |#3|) (-10 -7 (-15 -4072 (|#3| |#3| (-787))) (-15 -3698 (|#3| |#3| (-787))) (-15 -2711 (|#3| |#3| |#3| (-787)))) (-13 (-1074) (-733 (-420 (-577)))) (-865) (-1313 |#2| |#1|)) (T -1308)) +((-2711 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-787)) (-4 *4 (-13 (-1074) (-733 (-420 (-577))))) (-4 *5 (-865)) (-5 *1 (-1308 *4 *5 *2)) (-4 *2 (-1313 *5 *4)))) (-3698 (*1 *2 *2 *3) (-12 (-5 *3 (-787)) (-4 *4 (-13 (-1074) (-733 (-420 (-577))))) (-4 *5 (-865)) (-5 *1 (-1308 *4 *5 *2)) (-4 *2 (-1313 *5 *4)))) (-4072 (*1 *2 *2 *3) (-12 (-5 *3 (-787)) (-4 *4 (-13 (-1074) (-733 (-420 (-577))))) (-4 *5 (-865)) (-5 *1 (-1308 *4 *5 *2)) (-4 *2 (-1313 *5 *4))))) +(-10 -7 (-15 -4072 (|#3| |#3| (-787))) (-15 -3698 (|#3| |#3| (-787))) (-15 -2711 (|#3| |#3| |#3| (-787)))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3435 (((-660 |#1|) $) 47)) (-1956 (((-3 $ "failed") $ $) 20)) (-2786 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-787)) 49 (|has| |#2| (-174)))) (-1534 (($) 18 T CONST)) (-2821 (($ $ |#1|) 61) (($ $ (-835 |#1|)) 60) (($ $ $) 59)) (-1628 (((-3 (-835 |#1|) "failed") $) 71)) (-2921 (((-835 |#1|) $) 72)) (-4187 (((-3 $ "failed") $) 37)) (-2906 (((-112) $) 52)) (-2896 (($ $) 51)) (-2487 (((-112) $) 35)) (-2811 (((-112) $) 57)) (-3640 (($ (-835 |#1|) |#2|) 58)) (-2799 (($ $) 56)) (-2845 (((-2 (|:| |k| (-835 |#1|)) (|:| |c| |#2|)) $) 67)) (-2926 (((-835 |#1|) $) 68)) (-4087 (($ (-1 |#2| |#2|) $) 48)) (-2834 (($ $ |#1|) 64) (($ $ (-835 |#1|)) 63) (($ $ $) 62)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2915 (((-112) $) 54)) (-1512 ((|#2| $) 53)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#2|) 75) (($ (-835 |#1|)) 70) (($ |#1|) 55)) (-1777 ((|#2| $ (-835 |#1|)) 66) ((|#2| $ $) 65)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1309 |#1| |#2|) (-141) (-865) (-1074)) (T -1309)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1309 *3 *2)) (-4 *3 (-865)) (-4 *2 (-1074)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) (-2926 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-5 *2 (-835 *3)))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-5 *2 (-2 (|:| |k| (-835 *3)) (|:| |c| *4))))) (-1777 (*1 *2 *1 *3) (-12 (-5 *3 (-835 *4)) (-4 *1 (-1309 *4 *2)) (-4 *4 (-865)) (-4 *2 (-1074)))) (-1777 (*1 *2 *1 *1) (-12 (-4 *1 (-1309 *3 *2)) (-4 *3 (-865)) (-4 *2 (-1074)))) (-2834 (*1 *1 *1 *2) (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) (-2834 (*1 *1 *1 *2) (-12 (-5 *2 (-835 *3)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)))) (-2834 (*1 *1 *1 *1) (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) (-2821 (*1 *1 *1 *2) (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) (-2821 (*1 *1 *1 *2) (-12 (-5 *2 (-835 *3)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)))) (-2821 (*1 *1 *1 *1) (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) (-3640 (*1 *1 *2 *3) (-12 (-5 *2 (-835 *4)) (-4 *4 (-865)) (-4 *1 (-1309 *4 *3)) (-4 *3 (-1074)))) (-2811 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-5 *2 (-112)))) (-2799 (*1 *1 *1) (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) (-3544 (*1 *1 *2) (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) (-2915 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-5 *2 (-112)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *2)) (-4 *3 (-865)) (-4 *2 (-1074)))) (-2906 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-5 *2 (-112)))) (-2896 (*1 *1 *1) (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) (-2786 (*1 *1 *1 *1) (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)) (-4 *3 (-174)))) (-2786 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-4 *4 (-174)))) (-4087 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-5 *2 (-660 *3))))) +(-13 (-1074) (-1306 |t#2|) (-1063 (-835 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2926 ((-835 |t#1|) $)) (-15 -2845 ((-2 (|:| |k| (-835 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1777 (|t#2| $ (-835 |t#1|))) (-15 -1777 (|t#2| $ $)) (-15 -2834 ($ $ |t#1|)) (-15 -2834 ($ $ (-835 |t#1|))) (-15 -2834 ($ $ $)) (-15 -2821 ($ $ |t#1|)) (-15 -2821 ($ $ (-835 |t#1|))) (-15 -2821 ($ $ $)) (-15 -3640 ($ (-835 |t#1|) |t#2|)) (-15 -2811 ((-112) $)) (-15 -2799 ($ $)) (-15 -3544 ($ |t#1|)) (-15 -2915 ((-112) $)) (-15 -1512 (|t#2| $)) (-15 -2906 ((-112) $)) (-15 -2896 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -2786 ($ $ $)) (-15 -2786 ($ $ (-787)))) |%noBranch|) (-15 -4087 ($ (-1 |t#2| |t#2|) $)) (-15 -3435 ((-660 |t#1|) $)) (IF (|has| |t#2| (-6 -4463)) (-6 -4463) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 #0=(-835 |#1|)) . T) ((-629 |#2|) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#2|) . T) ((-662 $) . T) ((-664 |#2|) . T) ((-664 $) . T) ((-656 |#2|) |has| |#2| (-174)) ((-733 |#2|) |has| |#2| (-174)) ((-742) . T) ((-1063 #0#) . T) ((-1076 |#2|) . T) ((-1081 |#2|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1306 |#2|) . T)) +((-2766 (((-112) $) 15)) (-2776 (((-112) $) 14)) (-2721 (($ $) 19) (($ $ (-787)) 21))) +(((-1310 |#1| |#2|) (-10 -8 (-15 -2721 (|#1| |#1| (-787))) (-15 -2721 (|#1| |#1|)) (-15 -2766 ((-112) |#1|)) (-15 -2776 ((-112) |#1|))) (-1311 |#2|) (-375)) (T -1310)) +NIL +(-10 -8 (-15 -2721 (|#1| |#1| (-787))) (-15 -2721 (|#1| |#1|)) (-15 -2766 ((-112) |#1|)) (-15 -2776 ((-112) |#1|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3300 (((-2 (|:| -3294 $) (|:| -4457 $) (|:| |associate| $)) $) 47)) (-3290 (($ $) 46)) (-3271 (((-112) $) 44)) (-2766 (((-112) $) 104)) (-2732 (((-787)) 100)) (-1956 (((-3 $ "failed") $ $) 20)) (-3841 (($ $) 81)) (-3029 (((-431 $) $) 80)) (-1939 (((-112) $ $) 65)) (-1534 (($) 18 T CONST)) (-1628 (((-3 |#1| "failed") $) 111)) (-2921 ((|#1| $) 112)) (-3418 (($ $ $) 61)) (-4187 (((-3 $ "failed") $) 37)) (-3429 (($ $ $) 62)) (-1380 (((-2 (|:| -1777 (-660 $)) (|:| -4101 $)) (-660 $)) 57)) (-3233 (($ $ (-787)) 97 (-2839 (|has| |#1| (-146)) (|has| |#1| (-380)))) (($ $) 96 (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-1522 (((-112) $) 79)) (-3817 (((-849 (-944)) $) 94 (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-2487 (((-112) $) 35)) (-1903 (((-3 (-660 $) "failed") (-660 $) $) 58)) (-3446 (($ $ $) 52) (($ (-660 $)) 51)) (-2810 (((-1183) $) 10)) (-2171 (($ $) 78)) (-2754 (((-112) $) 103)) (-1474 (((-1145) $) 11)) (-2305 (((-1197 $) (-1197 $) (-1197 $)) 50)) (-3480 (($ $ $) 54) (($ (-660 $)) 53)) (-1902 (((-431 $) $) 82)) (-2744 (((-849 (-944))) 101)) (-1915 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4101 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3462 (((-3 $ "failed") $ $) 48)) (-1369 (((-3 (-660 $) "failed") (-660 $) $) 56)) (-1927 (((-787) $) 64)) (-3422 (((-2 (|:| -3637 $) (|:| -2457 $)) $ $) 63)) (-3243 (((-3 (-787) "failed") $ $) 95 (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-2561 (((-135)) 109)) (-2887 (((-849 (-944)) $) 102)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ $) 49) (($ (-420 (-577))) 74) (($ |#1|) 110)) (-2233 (((-3 $ "failed") $) 93 (-2839 (|has| |#1| (-146)) (|has| |#1| (-380))))) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-3281 (((-112) $ $) 45)) (-2776 (((-112) $) 105)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2721 (($ $) 99 (|has| |#1| (-380))) (($ $ (-787)) 98 (|has| |#1| (-380)))) (-2970 (((-112) $ $) 8)) (-3077 (($ $ $) 73) (($ $ |#1|) 108)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36) (($ $ (-577)) 77)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ $ (-420 (-577))) 76) (($ (-420 (-577)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-1311 |#1|) (-141) (-375)) (T -1311)) +((-2776 (*1 *2 *1) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-112)))) (-2766 (*1 *2 *1) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-112)))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-112)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-849 (-944))))) (-2744 (*1 *2) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-849 (-944))))) (-2732 (*1 *2) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-787)))) (-2721 (*1 *1 *1) (-12 (-4 *1 (-1311 *2)) (-4 *2 (-375)) (-4 *2 (-380)))) (-2721 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-4 *3 (-380))))) +(-13 (-375) (-1063 |t#1|) (-1299 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-415)) |%noBranch|) (-15 -2776 ((-112) $)) (-15 -2766 ((-112) $)) (-15 -2754 ((-112) $)) (-15 -2887 ((-849 (-944)) $)) (-15 -2744 ((-849 (-944)))) (-15 -2732 ((-787))) (IF (|has| |t#1| (-380)) (PROGN (-6 (-415)) (-15 -2721 ($ $)) (-15 -2721 ($ $ (-787)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-420 (-577))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2839 (|has| |#1| (-380)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-629 #0#) . T) ((-629 (-577)) . T) ((-629 |#1|) . T) ((-629 $) . T) ((-626 (-880)) . T) ((-174) . T) ((-249) . T) ((-301) . T) ((-318) . T) ((-375) . T) ((-415) -2839 (|has| |#1| (-380)) (|has| |#1| (-146))) ((-465) . T) ((-569) . T) ((-662 #0#) . T) ((-662 (-577)) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-664 #0#) . T) ((-664 |#1|) . T) ((-664 $) . T) ((-656 #0#) . T) ((-656 |#1|) . T) ((-656 $) . T) ((-733 #0#) . T) ((-733 |#1|) . T) ((-733 $) . T) ((-742) . T) ((-943) . T) ((-1063 |#1|) . T) ((-1076 #0#) . T) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1081 #0#) . T) ((-1081 |#1|) . T) ((-1081 $) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1246) . T) ((-1299 |#1|) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3435 (((-660 |#1|) $) 98)) (-2877 (($ $ (-787)) 102)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2786 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-787)) NIL (|has| |#2| (-174)))) (-1534 (($) NIL T CONST)) (-2821 (($ $ |#1|) NIL) (($ $ (-835 |#1|)) NIL) (($ $ $) NIL)) (-1628 (((-3 (-835 |#1|) "failed") $) NIL) (((-3 (-912 |#1|) "failed") $) NIL)) (-2921 (((-835 |#1|) $) NIL) (((-912 |#1|) $) NIL)) (-2248 (($ $) 101)) (-4187 (((-3 $ "failed") $) NIL)) (-2906 (((-112) $) 90)) (-2896 (($ $) 93)) (-2857 (($ $ $ (-787)) 103)) (-2487 (((-112) $) NIL)) (-2548 (((-787) $) NIL)) (-4074 (((-660 $) $) NIL)) (-2811 (((-112) $) NIL)) (-3640 (($ (-835 |#1|) |#2|) NIL) (($ (-912 |#1|) |#2|) 29)) (-2799 (($ $) 119)) (-2845 (((-2 (|:| |k| (-835 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2926 (((-835 |#1|) $) NIL)) (-2934 (((-835 |#1|) $) NIL)) (-4087 (($ (-1 |#2| |#2|) $) NIL)) (-2834 (($ $ |#1|) NIL) (($ $ (-835 |#1|)) NIL) (($ $ $) NIL)) (-3698 (($ $ (-787)) 112 (|has| |#2| (-733 (-420 (-577)))))) (-3044 (((-2 (|:| |k| (-912 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2209 (((-912 |#1|) $) 83)) (-2221 ((|#2| $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-4072 (($ $ (-787)) 109 (|has| |#2| (-733 (-420 (-577)))))) (-2887 (((-787) $) 99)) (-2915 (((-112) $) 84)) (-1512 ((|#2| $) 88)) (-3544 (((-880) $) 69) (($ (-577)) NIL) (($ |#2|) 60) (($ (-835 |#1|)) NIL) (($ |#1|) 71) (($ (-912 |#1|)) NIL) (($ (-680 |#1| |#2|)) 48) (((-1307 |#1| |#2|) $) 76) (((-1316 |#1| |#2|) $) 81)) (-4182 (((-660 |#2|) $) NIL)) (-2322 ((|#2| $ (-912 |#1|)) NIL)) (-1777 ((|#2| $ (-835 |#1|)) NIL) ((|#2| $ $) NIL)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 21 T CONST)) (-2816 (($) 28 T CONST)) (-1831 (((-660 (-2 (|:| |k| (-912 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2867 (((-3 (-680 |#1| |#2|) "failed") $) 118)) (-2970 (((-112) $ $) 77)) (-3066 (($ $) 111) (($ $ $) 110)) (-3055 (($ $ $) 20)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-912 |#1|)) NIL))) +(((-1312 |#1| |#2|) (-13 (-1313 |#1| |#2|) (-394 |#2| (-912 |#1|)) (-10 -8 (-15 -3544 ($ (-680 |#1| |#2|))) (-15 -3544 ((-1307 |#1| |#2|) $)) (-15 -3544 ((-1316 |#1| |#2|) $)) (-15 -2867 ((-3 (-680 |#1| |#2|) "failed") $)) (-15 -2857 ($ $ $ (-787))) (IF (|has| |#2| (-733 (-420 (-577)))) (PROGN (-15 -4072 ($ $ (-787))) (-15 -3698 ($ $ (-787)))) |%noBranch|))) (-865) (-174)) (T -1312)) +((-3544 (*1 *1 *2) (-12 (-5 *2 (-680 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) (-5 *1 (-1312 *3 *4)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-1316 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)))) (-2867 (*1 *2 *1) (|partial| -12 (-5 *2 (-680 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)))) (-2857 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)))) (-4072 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1312 *3 *4)) (-4 *4 (-733 (-420 (-577)))) (-4 *3 (-865)) (-4 *4 (-174)))) (-3698 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1312 *3 *4)) (-4 *4 (-733 (-420 (-577)))) (-4 *3 (-865)) (-4 *4 (-174))))) +(-13 (-1313 |#1| |#2|) (-394 |#2| (-912 |#1|)) (-10 -8 (-15 -3544 ($ (-680 |#1| |#2|))) (-15 -3544 ((-1307 |#1| |#2|) $)) (-15 -3544 ((-1316 |#1| |#2|) $)) (-15 -2867 ((-3 (-680 |#1| |#2|) "failed") $)) (-15 -2857 ($ $ $ (-787))) (IF (|has| |#2| (-733 (-420 (-577)))) (PROGN (-15 -4072 ($ $ (-787))) (-15 -3698 ($ $ (-787)))) |%noBranch|))) +((-3473 (((-112) $ $) 7)) (-3585 (((-112) $) 17)) (-3435 (((-660 |#1|) $) 47)) (-2877 (($ $ (-787)) 80)) (-1956 (((-3 $ "failed") $ $) 20)) (-2786 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-787)) 49 (|has| |#2| (-174)))) (-1534 (($) 18 T CONST)) (-2821 (($ $ |#1|) 61) (($ $ (-835 |#1|)) 60) (($ $ $) 59)) (-1628 (((-3 (-835 |#1|) "failed") $) 71)) (-2921 (((-835 |#1|) $) 72)) (-4187 (((-3 $ "failed") $) 37)) (-2906 (((-112) $) 52)) (-2896 (($ $) 51)) (-2487 (((-112) $) 35)) (-2811 (((-112) $) 57)) (-3640 (($ (-835 |#1|) |#2|) 58)) (-2799 (($ $) 56)) (-2845 (((-2 (|:| |k| (-835 |#1|)) (|:| |c| |#2|)) $) 67)) (-2926 (((-835 |#1|) $) 68)) (-2934 (((-835 |#1|) $) 82)) (-4087 (($ (-1 |#2| |#2|) $) 48)) (-2834 (($ $ |#1|) 64) (($ $ (-835 |#1|)) 63) (($ $ $) 62)) (-2810 (((-1183) $) 10)) (-1474 (((-1145) $) 11)) (-2887 (((-787) $) 81)) (-2915 (((-112) $) 54)) (-1512 ((|#2| $) 53)) (-3544 (((-880) $) 12) (($ (-577)) 33) (($ |#2|) 75) (($ (-835 |#1|)) 70) (($ |#1|) 55)) (-1777 ((|#2| $ (-835 |#1|)) 66) ((|#2| $ $) 65)) (-4068 (((-787)) 32 T CONST)) (-4448 (((-112) $ $) 6)) (-2806 (($) 19 T CONST)) (-2816 (($) 34 T CONST)) (-2970 (((-112) $ $) 8)) (-3066 (($ $) 23) (($ $ $) 22)) (-3055 (($ $ $) 15)) (** (($ $ (-944)) 28) (($ $ (-787)) 36)) (* (($ (-944) $) 14) (($ (-787) $) 16) (($ (-577) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1313 |#1| |#2|) (-141) (-865) (-1074)) (T -1313)) +((-2934 (*1 *2 *1) (-12 (-4 *1 (-1313 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-5 *2 (-835 *3)))) (-2887 (*1 *2 *1) (-12 (-4 *1 (-1313 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-5 *2 (-787)))) (-2877 (*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-4 *1 (-1313 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074))))) +(-13 (-1309 |t#1| |t#2|) (-10 -8 (-15 -2934 ((-835 |t#1|) $)) (-15 -2887 ((-787) $)) (-15 -2877 ($ $ (-787))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-629 (-577)) . T) ((-629 #0=(-835 |#1|)) . T) ((-629 |#2|) . T) ((-626 (-880)) . T) ((-662 (-577)) . T) ((-662 |#2|) . T) ((-662 $) . T) ((-664 |#2|) . T) ((-664 $) . T) ((-656 |#2|) |has| |#2| (-174)) ((-733 |#2|) |has| |#2| (-174)) ((-742) . T) ((-1063 #0#) . T) ((-1076 |#2|) . T) ((-1081 |#2|) . T) ((-1074) . T) ((-1083) . T) ((-1137) . T) ((-1125) . T) ((-1242) . T) ((-1306 |#2|) . T) ((-1309 |#1| |#2|) . T)) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-3435 (((-660 (-1201)) $) NIL)) (-2955 (($ (-1307 (-1201) |#1|)) NIL)) (-2877 (($ $ (-787)) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2786 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-787)) NIL (|has| |#1| (-174)))) (-1534 (($) NIL T CONST)) (-2821 (($ $ (-1201)) NIL) (($ $ (-835 (-1201))) NIL) (($ $ $) NIL)) (-1628 (((-3 (-835 (-1201)) "failed") $) NIL)) (-2921 (((-835 (-1201)) $) NIL)) (-4187 (((-3 $ "failed") $) NIL)) (-2906 (((-112) $) NIL)) (-2896 (($ $) NIL)) (-2487 (((-112) $) NIL)) (-2811 (((-112) $) NIL)) (-3640 (($ (-835 (-1201)) |#1|) NIL)) (-2799 (($ $) NIL)) (-2845 (((-2 (|:| |k| (-835 (-1201))) (|:| |c| |#1|)) $) NIL)) (-2926 (((-835 (-1201)) $) NIL)) (-2934 (((-835 (-1201)) $) NIL)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-2834 (($ $ (-1201)) NIL) (($ $ (-835 (-1201))) NIL) (($ $ $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2027 (((-1307 (-1201) |#1|) $) NIL)) (-2887 (((-787) $) NIL)) (-2915 (((-112) $) NIL)) (-1512 ((|#1| $) NIL)) (-3544 (((-880) $) NIL) (($ (-577)) NIL) (($ |#1|) NIL) (($ (-835 (-1201))) NIL) (($ (-1201)) NIL)) (-1777 ((|#1| $ (-835 (-1201))) NIL) ((|#1| $ $) NIL)) (-4068 (((-787)) NIL T CONST)) (-4448 (((-112) $ $) NIL)) (-2806 (($) NIL T CONST)) (-2945 (((-660 (-2 (|:| |k| (-1201)) (|:| |c| $))) $) NIL)) (-2816 (($) NIL T CONST)) (-2970 (((-112) $ $) NIL)) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) NIL)) (** (($ $ (-944)) NIL) (($ $ (-787)) NIL)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1201) $) NIL))) +(((-1314 |#1|) (-13 (-1313 (-1201) |#1|) (-10 -8 (-15 -2027 ((-1307 (-1201) |#1|) $)) (-15 -2955 ($ (-1307 (-1201) |#1|))) (-15 -2945 ((-660 (-2 (|:| |k| (-1201)) (|:| |c| $))) $)))) (-1074)) (T -1314)) +((-2027 (*1 *2 *1) (-12 (-5 *2 (-1307 (-1201) *3)) (-5 *1 (-1314 *3)) (-4 *3 (-1074)))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-1307 (-1201) *3)) (-4 *3 (-1074)) (-5 *1 (-1314 *3)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |k| (-1201)) (|:| |c| (-1314 *3))))) (-5 *1 (-1314 *3)) (-4 *3 (-1074))))) +(-13 (-1313 (-1201) |#1|) (-10 -8 (-15 -2027 ((-1307 (-1201) |#1|) $)) (-15 -2955 ($ (-1307 (-1201) |#1|))) (-15 -2945 ((-660 (-2 (|:| |k| (-1201)) (|:| |c| $))) $)))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) NIL)) (-1956 (((-3 $ "failed") $ $) NIL)) (-1534 (($) NIL T CONST)) (-1628 (((-3 |#2| "failed") $) NIL)) (-2921 ((|#2| $) NIL)) (-2248 (($ $) NIL)) (-4187 (((-3 $ "failed") $) 42)) (-2906 (((-112) $) 35)) (-2896 (($ $) 37)) (-2487 (((-112) $) NIL)) (-2548 (((-787) $) NIL)) (-4074 (((-660 $) $) NIL)) (-2811 (((-112) $) NIL)) (-3640 (($ |#2| |#1|) NIL)) (-2926 ((|#2| $) 24)) (-2934 ((|#2| $) 22)) (-4087 (($ (-1 |#1| |#1|) $) NIL)) (-3044 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2209 ((|#2| $) NIL)) (-2221 ((|#1| $) NIL)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2915 (((-112) $) 32)) (-1512 ((|#1| $) 33)) (-3544 (((-880) $) 65) (($ (-577)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-4182 (((-660 |#1|) $) NIL)) (-2322 ((|#1| $ |#2|) NIL)) (-1777 ((|#1| $ |#2|) 28)) (-4068 (((-787)) 14 T CONST)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 29 T CONST)) (-2816 (($) 11 T CONST)) (-1831 (((-660 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2970 (((-112) $ $) 30)) (-3077 (($ $ |#1|) 67 (|has| |#1| (-375)))) (-3066 (($ $) NIL) (($ $ $) NIL)) (-3055 (($ $ $) 50)) (** (($ $ (-944)) NIL) (($ $ (-787)) 52)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3484 (((-787) $) 16))) +(((-1315 |#1| |#2|) (-13 (-1074) (-1306 |#1|) (-394 |#1| |#2|) (-629 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3484 ((-787) $)) (-15 -2934 (|#2| $)) (-15 -2926 (|#2| $)) (-15 -2248 ($ $)) (-15 -1777 (|#1| $ |#2|)) (-15 -2915 ((-112) $)) (-15 -1512 (|#1| $)) (-15 -2906 ((-112) $)) (-15 -2896 ($ $)) (-15 -4087 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-375)) (-15 -3077 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4463)) (-6 -4463) |%noBranch|) (IF (|has| |#1| (-6 -4467)) (-6 -4467) |%noBranch|) (IF (|has| |#1| (-6 -4468)) (-6 -4468) |%noBranch|))) (-1074) (-862)) (T -1315)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1315 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-862)))) (-2248 (*1 *1 *1) (-12 (-5 *1 (-1315 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-862)))) (-4087 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-1315 *3 *4)) (-4 *4 (-862)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1315 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-862)))) (-2934 (*1 *2 *1) (-12 (-4 *2 (-862)) (-5 *1 (-1315 *3 *2)) (-4 *3 (-1074)))) (-2926 (*1 *2 *1) (-12 (-4 *2 (-862)) (-5 *1 (-1315 *3 *2)) (-4 *3 (-1074)))) (-1777 (*1 *2 *1 *3) (-12 (-4 *2 (-1074)) (-5 *1 (-1315 *2 *3)) (-4 *3 (-862)))) (-2915 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1315 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-862)))) (-1512 (*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-1315 *2 *3)) (-4 *3 (-862)))) (-2906 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1315 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-862)))) (-2896 (*1 *1 *1) (-12 (-5 *1 (-1315 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-862)))) (-3077 (*1 *1 *1 *2) (-12 (-5 *1 (-1315 *2 *3)) (-4 *2 (-375)) (-4 *2 (-1074)) (-4 *3 (-862))))) +(-13 (-1074) (-1306 |#1|) (-394 |#1| |#2|) (-629 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3484 ((-787) $)) (-15 -2934 (|#2| $)) (-15 -2926 (|#2| $)) (-15 -2248 ($ $)) (-15 -1777 (|#1| $ |#2|)) (-15 -2915 ((-112) $)) (-15 -1512 (|#1| $)) (-15 -2906 ((-112) $)) (-15 -2896 ($ $)) (-15 -4087 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-375)) (-15 -3077 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4463)) (-6 -4463) |%noBranch|) (IF (|has| |#1| (-6 -4467)) (-6 -4467) |%noBranch|) (IF (|has| |#1| (-6 -4468)) (-6 -4468) |%noBranch|))) +((-3473 (((-112) $ $) 27)) (-3585 (((-112) $) NIL)) (-3435 (((-660 |#1|) $) 132)) (-2955 (($ (-1307 |#1| |#2|)) 50)) (-2877 (($ $ (-787)) 38)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2786 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-787)) 52 (|has| |#2| (-174)))) (-1534 (($) NIL T CONST)) (-2821 (($ $ |#1|) 114) (($ $ (-835 |#1|)) 115) (($ $ $) 26)) (-1628 (((-3 (-835 |#1|) "failed") $) NIL)) (-2921 (((-835 |#1|) $) NIL)) (-4187 (((-3 $ "failed") $) 122)) (-2906 (((-112) $) 117)) (-2896 (($ $) 118)) (-2487 (((-112) $) NIL)) (-2811 (((-112) $) NIL)) (-3640 (($ (-835 |#1|) |#2|) 20)) (-2799 (($ $) NIL)) (-2845 (((-2 (|:| |k| (-835 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2926 (((-835 |#1|) $) 123)) (-2934 (((-835 |#1|) $) 126)) (-4087 (($ (-1 |#2| |#2|) $) 131)) (-2834 (($ $ |#1|) 112) (($ $ (-835 |#1|)) 113) (($ $ $) 62)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-2027 (((-1307 |#1| |#2|) $) 94)) (-2887 (((-787) $) 129)) (-2915 (((-112) $) 81)) (-1512 ((|#2| $) 32)) (-3544 (((-880) $) 73) (($ (-577)) 87) (($ |#2|) 85) (($ (-835 |#1|)) 18) (($ |#1|) 84)) (-1777 ((|#2| $ (-835 |#1|)) 116) ((|#2| $ $) 28)) (-4068 (((-787)) 120 T CONST)) (-4448 (((-112) $ $) NIL)) (-2806 (($) 15 T CONST)) (-2945 (((-660 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2816 (($) 33 T CONST)) (-2970 (((-112) $ $) 14)) (-3066 (($ $) 98) (($ $ $) 101)) (-3055 (($ $ $) 61)) (** (($ $ (-944)) NIL) (($ $ (-787)) 55)) (* (($ (-944) $) NIL) (($ (-787) $) 53) (($ (-577) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) +(((-1316 |#1| |#2|) (-13 (-1313 |#1| |#2|) (-10 -8 (-15 -2027 ((-1307 |#1| |#2|) $)) (-15 -2955 ($ (-1307 |#1| |#2|))) (-15 -2945 ((-660 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-865) (-1074)) (T -1316)) +((-2027 (*1 *2 *1) (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-1316 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-1307 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) (-5 *1 (-1316 *3 *4)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |k| *3) (|:| |c| (-1316 *3 *4))))) (-5 *1 (-1316 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074))))) +(-13 (-1313 |#1| |#2|) (-10 -8 (-15 -2027 ((-1307 |#1| |#2|) $)) (-15 -2955 ($ (-1307 |#1| |#2|))) (-15 -2945 ((-660 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-3473 (((-112) $ $) NIL)) (-2974 (($ (-660 (-944))) 10)) (-2964 (((-996) $) 12)) (-2810 (((-1183) $) NIL)) (-1474 (((-1145) $) NIL)) (-3544 (((-880) $) 25) (($ (-996)) 14) (((-996) $) 13)) (-4448 (((-112) $ $) NIL)) (-2970 (((-112) $ $) 17))) +(((-1317) (-13 (-1125) (-503 (-996)) (-10 -8 (-15 -2974 ($ (-660 (-944)))) (-15 -2964 ((-996) $))))) (T -1317)) +((-2974 (*1 *1 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1317)))) (-2964 (*1 *2 *1) (-12 (-5 *2 (-996)) (-5 *1 (-1317))))) +(-13 (-1125) (-503 (-996)) (-10 -8 (-15 -2974 ($ (-660 (-944)))) (-15 -2964 ((-996) $)))) +((-2575 (((-660 (-1182 |#1|)) (-1 (-660 (-1182 |#1|)) (-660 (-1182 |#1|))) (-577)) 16) (((-1182 |#1|) (-1 (-1182 |#1|) (-1182 |#1|))) 13))) +(((-1318 |#1|) (-10 -7 (-15 -2575 ((-1182 |#1|) (-1 (-1182 |#1|) (-1182 |#1|)))) (-15 -2575 ((-660 (-1182 |#1|)) (-1 (-660 (-1182 |#1|)) (-660 (-1182 |#1|))) (-577)))) (-1242)) (T -1318)) +((-2575 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-660 (-1182 *5)) (-660 (-1182 *5)))) (-5 *4 (-577)) (-5 *2 (-660 (-1182 *5))) (-5 *1 (-1318 *5)) (-4 *5 (-1242)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-1 (-1182 *4) (-1182 *4))) (-5 *2 (-1182 *4)) (-5 *1 (-1318 *4)) (-4 *4 (-1242))))) +(-10 -7 (-15 -2575 ((-1182 |#1|) (-1 (-1182 |#1|) (-1182 |#1|)))) (-15 -2575 ((-660 (-1182 |#1|)) (-1 (-660 (-1182 |#1|)) (-660 (-1182 |#1|))) (-577)))) +((-2994 (((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|))) 174) (((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112)) 173) (((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112) (-112)) 172) (((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112) (-112) (-112)) 171) (((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-1071 |#1| |#2|)) 156)) (-2984 (((-660 (-1071 |#1| |#2|)) (-660 (-975 |#1|))) 85) (((-660 (-1071 |#1| |#2|)) (-660 (-975 |#1|)) (-112)) 84) (((-660 (-1071 |#1| |#2|)) (-660 (-975 |#1|)) (-112) (-112)) 83)) (-3029 (((-660 (-1171 |#1| (-544 (-882 |#3|)) (-882 |#3|) (-796 |#1| (-882 |#3|)))) (-1071 |#1| |#2|)) 73)) (-3004 (((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|))) 140) (((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112)) 139) (((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112) (-112)) 138) (((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112) (-112) (-112)) 137) (((-660 (-660 (-1049 (-420 |#1|)))) (-1071 |#1| |#2|)) 132)) (-3018 (((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|))) 145) (((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112)) 144) (((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112) (-112)) 143) (((-660 (-660 (-1049 (-420 |#1|)))) (-1071 |#1| |#2|)) 142)) (-4152 (((-660 (-796 |#1| (-882 |#3|))) (-1171 |#1| (-544 (-882 |#3|)) (-882 |#3|) (-796 |#1| (-882 |#3|)))) 111) (((-1197 (-1049 (-420 |#1|))) (-1197 |#1|)) 102) (((-975 (-1049 (-420 |#1|))) (-796 |#1| (-882 |#3|))) 109) (((-975 (-1049 (-420 |#1|))) (-975 |#1|)) 107) (((-796 |#1| (-882 |#3|)) (-796 |#1| (-882 |#2|))) 33))) +(((-1319 |#1| |#2| |#3|) (-10 -7 (-15 -2984 ((-660 (-1071 |#1| |#2|)) (-660 (-975 |#1|)) (-112) (-112))) (-15 -2984 ((-660 (-1071 |#1| |#2|)) (-660 (-975 |#1|)) (-112))) (-15 -2984 ((-660 (-1071 |#1| |#2|)) (-660 (-975 |#1|)))) (-15 -2994 ((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-1071 |#1| |#2|))) (-15 -2994 ((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112) (-112) (-112))) (-15 -2994 ((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112) (-112))) (-15 -2994 ((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112))) (-15 -2994 ((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)))) (-15 -3004 ((-660 (-660 (-1049 (-420 |#1|)))) (-1071 |#1| |#2|))) (-15 -3004 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112) (-112) (-112))) (-15 -3004 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112) (-112))) (-15 -3004 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112))) (-15 -3004 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)))) (-15 -3018 ((-660 (-660 (-1049 (-420 |#1|)))) (-1071 |#1| |#2|))) (-15 -3018 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112) (-112))) (-15 -3018 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112))) (-15 -3018 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)))) (-15 -3029 ((-660 (-1171 |#1| (-544 (-882 |#3|)) (-882 |#3|) (-796 |#1| (-882 |#3|)))) (-1071 |#1| |#2|))) (-15 -4152 ((-796 |#1| (-882 |#3|)) (-796 |#1| (-882 |#2|)))) (-15 -4152 ((-975 (-1049 (-420 |#1|))) (-975 |#1|))) (-15 -4152 ((-975 (-1049 (-420 |#1|))) (-796 |#1| (-882 |#3|)))) (-15 -4152 ((-1197 (-1049 (-420 |#1|))) (-1197 |#1|))) (-15 -4152 ((-660 (-796 |#1| (-882 |#3|))) (-1171 |#1| (-544 (-882 |#3|)) (-882 |#3|) (-796 |#1| (-882 |#3|)))))) (-13 (-864) (-318) (-148) (-1047)) (-660 (-1201)) (-660 (-1201))) (T -1319)) +((-4152 (*1 *2 *3) (-12 (-5 *3 (-1171 *4 (-544 (-882 *6)) (-882 *6) (-796 *4 (-882 *6)))) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *6 (-660 (-1201))) (-5 *2 (-660 (-796 *4 (-882 *6)))) (-5 *1 (-1319 *4 *5 *6)) (-14 *5 (-660 (-1201))))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-1197 *4)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-1197 (-1049 (-420 *4)))) (-5 *1 (-1319 *4 *5 *6)) (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201))))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-796 *4 (-882 *6))) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *6 (-660 (-1201))) (-5 *2 (-975 (-1049 (-420 *4)))) (-5 *1 (-1319 *4 *5 *6)) (-14 *5 (-660 (-1201))))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-975 *4)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-975 (-1049 (-420 *4)))) (-5 *1 (-1319 *4 *5 *6)) (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201))))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-796 *4 (-882 *5))) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *5 (-660 (-1201))) (-5 *2 (-796 *4 (-882 *6))) (-5 *1 (-1319 *4 *5 *6)) (-14 *6 (-660 (-1201))))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-1071 *4 *5)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *5 (-660 (-1201))) (-5 *2 (-660 (-1171 *4 (-544 (-882 *6)) (-882 *6) (-796 *4 (-882 *6))))) (-5 *1 (-1319 *4 *5 *6)) (-14 *6 (-660 (-1201))))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-660 (-1049 (-420 *4))))) (-5 *1 (-1319 *4 *5 *6)) (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) (-3018 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-1071 *4 *5)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *5 (-660 (-1201))) (-5 *2 (-660 (-660 (-1049 (-420 *4))))) (-5 *1 (-1319 *4 *5 *6)) (-14 *6 (-660 (-1201))))) (-3004 (*1 *2 *3) (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-660 (-1049 (-420 *4))))) (-5 *1 (-1319 *4 *5 *6)) (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201))))) (-3004 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) (-3004 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) (-3004 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) (-3004 (*1 *2 *3) (-12 (-5 *3 (-1071 *4 *5)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *5 (-660 (-1201))) (-5 *2 (-660 (-660 (-1049 (-420 *4))))) (-5 *1 (-1319 *4 *5 *6)) (-14 *6 (-660 (-1201))))) (-2994 (*1 *2 *3) (-12 (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-2 (|:| -3024 (-1197 *4)) (|:| -2710 (-660 (-975 *4)))))) (-5 *1 (-1319 *4 *5 *6)) (-5 *3 (-660 (-975 *4))) (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201))))) (-2994 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-2 (|:| -3024 (-1197 *5)) (|:| -2710 (-660 (-975 *5)))))) (-5 *1 (-1319 *5 *6 *7)) (-5 *3 (-660 (-975 *5))) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) (-2994 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-2 (|:| -3024 (-1197 *5)) (|:| -2710 (-660 (-975 *5)))))) (-5 *1 (-1319 *5 *6 *7)) (-5 *3 (-660 (-975 *5))) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) (-2994 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-2 (|:| -3024 (-1197 *5)) (|:| -2710 (-660 (-975 *5)))))) (-5 *1 (-1319 *5 *6 *7)) (-5 *3 (-660 (-975 *5))) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) (-2994 (*1 *2 *3) (-12 (-5 *3 (-1071 *4 *5)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *5 (-660 (-1201))) (-5 *2 (-660 (-2 (|:| -3024 (-1197 *4)) (|:| -2710 (-660 (-975 *4)))))) (-5 *1 (-1319 *4 *5 *6)) (-14 *6 (-660 (-1201))))) (-2984 (*1 *2 *3) (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-1071 *4 *5))) (-5 *1 (-1319 *4 *5 *6)) (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201))))) (-2984 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-1071 *5 *6))) (-5 *1 (-1319 *5 *6 *7)) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) (-2984 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 (-660 (-1071 *5 *6))) (-5 *1 (-1319 *5 *6 *7)) (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201)))))) +(-10 -7 (-15 -2984 ((-660 (-1071 |#1| |#2|)) (-660 (-975 |#1|)) (-112) (-112))) (-15 -2984 ((-660 (-1071 |#1| |#2|)) (-660 (-975 |#1|)) (-112))) (-15 -2984 ((-660 (-1071 |#1| |#2|)) (-660 (-975 |#1|)))) (-15 -2994 ((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-1071 |#1| |#2|))) (-15 -2994 ((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112) (-112) (-112))) (-15 -2994 ((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112) (-112))) (-15 -2994 ((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)) (-112))) (-15 -2994 ((-660 (-2 (|:| -3024 (-1197 |#1|)) (|:| -2710 (-660 (-975 |#1|))))) (-660 (-975 |#1|)))) (-15 -3004 ((-660 (-660 (-1049 (-420 |#1|)))) (-1071 |#1| |#2|))) (-15 -3004 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112) (-112) (-112))) (-15 -3004 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112) (-112))) (-15 -3004 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112))) (-15 -3004 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)))) (-15 -3018 ((-660 (-660 (-1049 (-420 |#1|)))) (-1071 |#1| |#2|))) (-15 -3018 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112) (-112))) (-15 -3018 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)) (-112))) (-15 -3018 ((-660 (-660 (-1049 (-420 |#1|)))) (-660 (-975 |#1|)))) (-15 -3029 ((-660 (-1171 |#1| (-544 (-882 |#3|)) (-882 |#3|) (-796 |#1| (-882 |#3|)))) (-1071 |#1| |#2|))) (-15 -4152 ((-796 |#1| (-882 |#3|)) (-796 |#1| (-882 |#2|)))) (-15 -4152 ((-975 (-1049 (-420 |#1|))) (-975 |#1|))) (-15 -4152 ((-975 (-1049 (-420 |#1|))) (-796 |#1| (-882 |#3|)))) (-15 -4152 ((-1197 (-1049 (-420 |#1|))) (-1197 |#1|))) (-15 -4152 ((-660 (-796 |#1| (-882 |#3|))) (-1171 |#1| (-544 (-882 |#3|)) (-882 |#3|) (-796 |#1| (-882 |#3|)))))) +((-3059 (((-3 (-1292 (-420 (-577))) "failed") (-1292 |#1|) |#1|) 21)) (-3038 (((-112) (-1292 |#1|)) 12)) (-3048 (((-3 (-1292 (-577)) "failed") (-1292 |#1|)) 16))) +(((-1320 |#1|) (-10 -7 (-15 -3038 ((-112) (-1292 |#1|))) (-15 -3048 ((-3 (-1292 (-577)) "failed") (-1292 |#1|))) (-15 -3059 ((-3 (-1292 (-420 (-577))) "failed") (-1292 |#1|) |#1|))) (-13 (-1074) (-654 (-577)))) (T -1320)) +((-3059 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 (-577)))) (-5 *2 (-1292 (-420 (-577)))) (-5 *1 (-1320 *4)))) (-3048 (*1 *2 *3) (|partial| -12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 (-577)))) (-5 *2 (-1292 (-577))) (-5 *1 (-1320 *4)))) (-3038 (*1 *2 *3) (-12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 (-577)))) (-5 *2 (-112)) (-5 *1 (-1320 *4))))) +(-10 -7 (-15 -3038 ((-112) (-1292 |#1|))) (-15 -3048 ((-3 (-1292 (-577)) "failed") (-1292 |#1|))) (-15 -3059 ((-3 (-1292 (-420 (-577))) "failed") (-1292 |#1|) |#1|))) +((-3473 (((-112) $ $) NIL)) (-3585 (((-112) $) 11)) (-1956 (((-3 $ "failed") $ $) NIL)) (-2229 (((-787)) 8)) (-1534 (($) NIL T CONST)) (-4187 (((-3 $ "failed") $) 58)) (-1910 (($) 49)) (-2487 (((-112) $) 57)) (-4021 (((-3 $ "failed") $) 40)) (-4038 (((-944) $) 15)) (-2810 (((-1183) $) NIL)) (-1709 (($) 32 T CONST)) (-3222 (($ (-944)) 50)) (-1474 (((-1145) $) NIL)) (-4152 (((-577) $) 13)) (-3544 (((-880) $) 27) (($ (-577)) 24)) (-4068 (((-787)) 9 T CONST)) (-4448 (((-112) $ $) 60)) (-2806 (($) 29 T CONST)) (-2816 (($) 31 T CONST)) (-2970 (((-112) $ $) 38)) (-3066 (($ $) 52) (($ $ $) 47)) (-3055 (($ $ $) 35)) (** (($ $ (-944)) NIL) (($ $ (-787)) 54)) (* (($ (-944) $) NIL) (($ (-787) $) NIL) (($ (-577) $) 44) (($ $ $) 43))) +(((-1321 |#1|) (-13 (-174) (-380) (-627 (-577)) (-1177)) (-944)) (T -1321)) +NIL +(-13 (-174) (-380) (-627 (-577)) (-1177)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3266845 3266850 3266855 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3266830 3266835 3266840 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3266815 3266820 3266825 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3266800 3266805 3266810 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1321 3265943 3266675 3266752 "ZMOD" 3266757 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1320 3264997 3265161 3265384 "ZLINDEP" 3265775 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1319 3254297 3256065 3258037 "ZDSOLVE" 3263127 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1318 3253543 3253684 3253873 "YSTREAM" 3254143 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1317 3252971 3253217 3253330 "YDIAGRAM" 3253452 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1316 3250745 3252272 3252476 "XRPOLY" 3252814 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1315 3247298 3248616 3249191 "XPR" 3250217 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1314 3245019 3246629 3246833 "XPOLY" 3247129 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1313 3242658 3244026 3244081 "XPOLYC" 3244369 NIL XPOLYC (NIL T T) -9 NIL 3244482 NIL) (-1312 3239034 3241175 3241563 "XPBWPOLY" 3242316 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1311 3234715 3237010 3237052 "XF" 3237673 NIL XF (NIL T) -9 NIL 3238073 NIL) (-1310 3234336 3234424 3234593 "XF-" 3234598 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1309 3229518 3230807 3230862 "XFALG" 3233034 NIL XFALG (NIL T T) -9 NIL 3233823 NIL) (-1308 3228651 3228755 3228960 "XEXPPKG" 3229410 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1307 3226760 3228501 3228597 "XDPOLY" 3228602 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1306 3225553 3226153 3226196 "XALG" 3226201 NIL XALG (NIL T) -9 NIL 3226312 NIL) (-1305 3218995 3223530 3224024 "WUTSET" 3225145 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1304 3217251 3218047 3218370 "WP" 3218806 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1303 3216853 3217073 3217143 "WHILEAST" 3217203 T WHILEAST (NIL) -8 NIL NIL NIL) (-1302 3216325 3216570 3216664 "WHEREAST" 3216781 T WHEREAST (NIL) -8 NIL NIL NIL) (-1301 3215211 3215409 3215704 "WFFINTBS" 3216122 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1300 3213115 3213542 3214004 "WEIER" 3214783 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1299 3212147 3212597 3212639 "VSPACE" 3212775 NIL VSPACE (NIL T) -9 NIL 3212849 NIL) (-1298 3211985 3212012 3212103 "VSPACE-" 3212108 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1297 3211794 3211836 3211904 "VOID" 3211939 T VOID (NIL) -8 NIL NIL NIL) (-1296 3209930 3210289 3210695 "VIEW" 3211410 T VIEW (NIL) -7 NIL NIL NIL) (-1295 3206354 3206993 3207730 "VIEWDEF" 3209215 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1294 3195658 3197902 3200075 "VIEW3D" 3204203 T VIEW3D (NIL) -8 NIL NIL NIL) (-1293 3187909 3189569 3191148 "VIEW2D" 3194101 T VIEW2D (NIL) -8 NIL NIL NIL) (-1292 3183265 3187679 3187771 "VECTOR" 3187852 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1291 3181842 3182101 3182419 "VECTOR2" 3182995 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1290 3175240 3179546 3179589 "VECTCAT" 3180584 NIL VECTCAT (NIL T) -9 NIL 3181171 NIL) (-1289 3174254 3174508 3174898 "VECTCAT-" 3174903 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1288 3173708 3173905 3174025 "VARIABLE" 3174169 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1287 3173641 3173646 3173676 "UTYPE" 3173681 T UTYPE (NIL) -9 NIL NIL NIL) (-1286 3172471 3172625 3172887 "UTSODETL" 3173467 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1285 3169911 3170371 3170895 "UTSODE" 3172012 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1284 3161859 3167672 3168152 "UTS" 3169489 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1283 3152423 3157793 3157836 "UTSCAT" 3158948 NIL UTSCAT (NIL T) -9 NIL 3159706 NIL) (-1282 3149771 3150493 3151482 "UTSCAT-" 3151487 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1281 3149398 3149441 3149574 "UTS2" 3149722 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1280 3143599 3146208 3146251 "URAGG" 3148321 NIL URAGG (NIL T) -9 NIL 3149044 NIL) (-1279 3140538 3141401 3142524 "URAGG-" 3142529 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1278 3136247 3139173 3139638 "UPXSSING" 3140202 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1277 3128423 3135629 3135893 "UPXS" 3136041 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1276 3121496 3128327 3128399 "UPXSCONS" 3128404 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1275 3110903 3117699 3117761 "UPXSCCA" 3118335 NIL UPXSCCA (NIL T T) -9 NIL 3118568 NIL) (-1274 3110541 3110626 3110800 "UPXSCCA-" 3110805 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1273 3099800 3106369 3106412 "UPXSCAT" 3107060 NIL UPXSCAT (NIL T) -9 NIL 3107669 NIL) (-1272 3099230 3099309 3099488 "UPXS2" 3099715 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1271 3097884 3098137 3098488 "UPSQFREE" 3098973 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1270 3091092 3094152 3094207 "UPSCAT" 3095287 NIL UPSCAT (NIL T T) -9 NIL 3096052 NIL) (-1269 3090296 3090503 3090830 "UPSCAT-" 3090835 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1268 3075378 3083423 3083466 "UPOLYC" 3085567 NIL UPOLYC (NIL T) -9 NIL 3086788 NIL) (-1267 3066706 3069132 3072279 "UPOLYC-" 3072284 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1266 3066333 3066376 3066509 "UPOLYC2" 3066657 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1265 3057868 3066016 3066145 "UP" 3066252 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1264 3057207 3057314 3057478 "UPMP" 3057757 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1263 3056760 3056841 3056980 "UPDIVP" 3057120 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1262 3055328 3055577 3055893 "UPDECOMP" 3056509 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1261 3054559 3054671 3054857 "UPCDEN" 3055212 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1260 3054078 3054147 3054296 "UP2" 3054484 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1259 3052545 3053282 3053559 "UNISEG" 3053836 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1258 3051760 3051887 3052092 "UNISEG2" 3052388 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1257 3050820 3051000 3051226 "UNIFACT" 3051576 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1256 3033572 3050132 3050374 "ULS" 3050636 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1255 3021202 3033476 3033548 "ULSCONS" 3033553 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1254 3001923 3014283 3014345 "ULSCCAT" 3014983 NIL ULSCCAT (NIL T T) -9 NIL 3015272 NIL) (-1253 3000973 3001218 3001606 "ULSCCAT-" 3001611 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1252 2990037 2996520 2996563 "ULSCAT" 2997426 NIL ULSCAT (NIL T) -9 NIL 2998157 NIL) (-1251 2989467 2989546 2989725 "ULS2" 2989952 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1250 2988586 2989096 2989203 "UINT8" 2989314 T UINT8 (NIL) -8 NIL NIL 2989399) (-1249 2987704 2988214 2988321 "UINT64" 2988432 T UINT64 (NIL) -8 NIL NIL 2988517) (-1248 2986822 2987332 2987439 "UINT32" 2987550 T UINT32 (NIL) -8 NIL NIL 2987635) (-1247 2985940 2986450 2986557 "UINT16" 2986668 T UINT16 (NIL) -8 NIL NIL 2986753) (-1246 2984229 2985186 2985216 "UFD" 2985428 T UFD (NIL) -9 NIL 2985542 NIL) (-1245 2984023 2984069 2984164 "UFD-" 2984169 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1244 2983105 2983288 2983504 "UDVO" 2983829 T UDVO (NIL) -7 NIL NIL NIL) (-1243 2980921 2981330 2981801 "UDPO" 2982669 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1242 2980854 2980859 2980889 "TYPE" 2980894 T TYPE (NIL) -9 NIL NIL NIL) (-1241 2980614 2980809 2980840 "TYPEAST" 2980845 T TYPEAST (NIL) -8 NIL NIL NIL) (-1240 2979585 2979787 2980027 "TWOFACT" 2980408 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1239 2978608 2978994 2979229 "TUPLE" 2979385 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1238 2976299 2976818 2977357 "TUBETOOL" 2978091 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1237 2975148 2975353 2975594 "TUBE" 2976092 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1236 2969877 2974120 2974403 "TS" 2974900 NIL TS (NIL T) -8 NIL NIL NIL) (-1235 2958515 2962634 2962731 "TSETCAT" 2968000 NIL TSETCAT (NIL T T T T) -9 NIL 2969532 NIL) (-1234 2953247 2954847 2956738 "TSETCAT-" 2956743 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1233 2947886 2948733 2949662 "TRMANIP" 2952383 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1232 2947327 2947390 2947553 "TRIMAT" 2947818 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1231 2945193 2945430 2945787 "TRIGMNIP" 2947076 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1230 2944713 2944826 2944856 "TRIGCAT" 2945069 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1229 2944382 2944461 2944602 "TRIGCAT-" 2944607 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1228 2941230 2943240 2943521 "TREE" 2944136 NIL TREE (NIL T) -8 NIL NIL NIL) (-1227 2940504 2941032 2941062 "TRANFUN" 2941097 T TRANFUN (NIL) -9 NIL 2941163 NIL) (-1226 2939783 2939974 2940254 "TRANFUN-" 2940259 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1225 2939587 2939619 2939680 "TOPSP" 2939744 T TOPSP (NIL) -7 NIL NIL NIL) (-1224 2938935 2939050 2939204 "TOOLSIGN" 2939468 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1223 2937569 2938112 2938351 "TEXTFILE" 2938718 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1222 2935481 2936022 2936451 "TEX" 2937162 T TEX (NIL) -8 NIL NIL NIL) (-1221 2935262 2935293 2935365 "TEX1" 2935444 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1220 2934910 2934973 2935063 "TEMUTL" 2935194 T TEMUTL (NIL) -7 NIL NIL NIL) (-1219 2933064 2933344 2933669 "TBCMPPK" 2934633 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1218 2924773 2931150 2931206 "TBAGG" 2931606 NIL TBAGG (NIL T T) -9 NIL 2931817 NIL) (-1217 2919843 2921331 2923085 "TBAGG-" 2923090 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1216 2919227 2919334 2919479 "TANEXP" 2919732 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1215 2918738 2919002 2919092 "TALGOP" 2919172 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1214 2912134 2918595 2918688 "TABLE" 2918693 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1213 2911546 2911645 2911783 "TABLEAU" 2912031 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1212 2906154 2907374 2908622 "TABLBUMP" 2910332 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1211 2905376 2905523 2905704 "SYSTEM" 2905995 T SYSTEM (NIL) -8 NIL NIL NIL) (-1210 2901835 2902534 2903317 "SYSSOLP" 2904627 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1209 2901633 2901790 2901821 "SYSPTR" 2901826 T SYSPTR (NIL) -8 NIL NIL NIL) (-1208 2900669 2901174 2901293 "SYSNNI" 2901479 NIL SYSNNI (NIL NIL) -8 NIL NIL 2901564) (-1207 2899968 2900427 2900506 "SYSINT" 2900566 NIL SYSINT (NIL NIL) -8 NIL NIL 2900611) (-1206 2896300 2897246 2897956 "SYNTAX" 2899280 T SYNTAX (NIL) -8 NIL NIL NIL) (-1205 2893458 2894060 2894692 "SYMTAB" 2895690 T SYMTAB (NIL) -8 NIL NIL NIL) (-1204 2888707 2889609 2890592 "SYMS" 2892497 T SYMS (NIL) -8 NIL NIL NIL) (-1203 2885942 2888165 2888395 "SYMPOLY" 2888512 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1202 2885459 2885534 2885657 "SYMFUNC" 2885854 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1201 2881479 2882771 2883584 "SYMBOL" 2884668 T SYMBOL (NIL) -8 NIL NIL NIL) (-1200 2875018 2876707 2878427 "SWITCH" 2879781 T SWITCH (NIL) -8 NIL NIL NIL) (-1199 2868362 2873974 2874268 "SUTS" 2874782 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1198 2860538 2867744 2868008 "SUPXS" 2868156 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1197 2852021 2860156 2860282 "SUP" 2860447 NIL SUP (NIL T) -8 NIL NIL NIL) (-1196 2851180 2851307 2851524 "SUPFRACF" 2851889 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1195 2850801 2850860 2850973 "SUP2" 2851115 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1194 2849249 2849523 2849879 "SUMRF" 2850500 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1193 2848584 2848650 2848842 "SUMFS" 2849170 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1192 2831371 2847896 2848138 "SULS" 2848400 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1191 2830973 2831193 2831263 "SUCHTAST" 2831323 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1190 2830268 2830498 2830638 "SUCH" 2830881 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1189 2824135 2825174 2826133 "SUBSPACE" 2829356 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1188 2823565 2823655 2823819 "SUBRESP" 2824023 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1187 2816933 2818230 2819541 "STTF" 2822301 NIL STTF (NIL T) -7 NIL NIL NIL) (-1186 2811106 2812226 2813373 "STTFNC" 2815833 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1185 2802419 2804288 2806082 "STTAYLOR" 2809347 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1184 2795555 2802283 2802366 "STRTBL" 2802371 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1183 2790516 2795264 2795363 "STRING" 2795478 T STRING (NIL) -8 NIL NIL NIL) (-1182 2783272 2788135 2788746 "STREAM" 2789940 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1181 2782782 2782859 2783003 "STREAM3" 2783189 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1180 2781764 2781947 2782182 "STREAM2" 2782595 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1179 2781452 2781504 2781597 "STREAM1" 2781706 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1178 2780468 2780649 2780880 "STINPROD" 2781268 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1177 2780006 2780216 2780246 "STEP" 2780326 T STEP (NIL) -9 NIL 2780404 NIL) (-1176 2779193 2779495 2779643 "STEPAST" 2779880 T STEPAST (NIL) -8 NIL NIL NIL) (-1175 2772631 2779092 2779169 "STBL" 2779174 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1174 2767701 2771794 2771837 "STAGG" 2771990 NIL STAGG (NIL T) -9 NIL 2772079 NIL) (-1173 2765403 2766005 2766877 "STAGG-" 2766882 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1172 2763553 2765173 2765265 "STACK" 2765346 NIL STACK (NIL T) -8 NIL NIL NIL) (-1171 2756248 2761694 2762150 "SREGSET" 2763183 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1170 2748673 2750042 2751555 "SRDCMPK" 2754854 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1169 2741510 2746032 2746062 "SRAGG" 2747365 T SRAGG (NIL) -9 NIL 2747973 NIL) (-1168 2740527 2740782 2741161 "SRAGG-" 2741166 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1167 2734711 2739474 2739895 "SQMATRIX" 2740153 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1166 2728399 2731429 2732156 "SPLTREE" 2734056 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1165 2724362 2725055 2725701 "SPLNODE" 2727825 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1164 2723409 2723642 2723672 "SPFCAT" 2724116 T SPFCAT (NIL) -9 NIL NIL NIL) (-1163 2722146 2722356 2722620 "SPECOUT" 2723167 T SPECOUT (NIL) -7 NIL NIL NIL) (-1162 2713242 2715114 2715144 "SPADXPT" 2719820 T SPADXPT (NIL) -9 NIL 2721984 NIL) (-1161 2713003 2713043 2713112 "SPADPRSR" 2713195 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1160 2711052 2712958 2712989 "SPADAST" 2712994 T SPADAST (NIL) -8 NIL NIL NIL) (-1159 2702983 2704756 2704799 "SPACEC" 2709172 NIL SPACEC (NIL T) -9 NIL 2710988 NIL) (-1158 2701113 2702915 2702964 "SPACE3" 2702969 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1157 2699865 2700036 2700327 "SORTPAK" 2700918 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1156 2697957 2698260 2698672 "SOLVETRA" 2699529 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1155 2697007 2697229 2697490 "SOLVESER" 2697730 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1154 2692311 2693199 2694194 "SOLVERAD" 2696059 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1153 2688126 2688735 2689464 "SOLVEFOR" 2691678 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1152 2682395 2687474 2687571 "SNTSCAT" 2687576 NIL SNTSCAT (NIL T T T T) -9 NIL 2687646 NIL) (-1151 2676501 2680718 2681109 "SMTS" 2682085 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1150 2670910 2676389 2676466 "SMP" 2676471 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1149 2669069 2669370 2669768 "SMITH" 2670607 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1148 2661173 2665648 2665751 "SMATCAT" 2667102 NIL SMATCAT (NIL NIL T T T) -9 NIL 2667652 NIL) (-1147 2658113 2658936 2660114 "SMATCAT-" 2660119 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1146 2655754 2657321 2657364 "SKAGG" 2657625 NIL SKAGG (NIL T) -9 NIL 2657760 NIL) (-1145 2651944 2655227 2655411 "SINT" 2655563 T SINT (NIL) -8 NIL NIL 2655725) (-1144 2651716 2651754 2651820 "SIMPAN" 2651900 T SIMPAN (NIL) -7 NIL NIL NIL) (-1143 2650995 2651251 2651391 "SIG" 2651598 T SIG (NIL) -8 NIL NIL NIL) (-1142 2649833 2650054 2650329 "SIGNRF" 2650754 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1141 2648666 2648817 2649101 "SIGNEF" 2649662 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1140 2647972 2648249 2648373 "SIGAST" 2648564 T SIGAST (NIL) -8 NIL NIL NIL) (-1139 2645662 2646116 2646622 "SHP" 2647513 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1138 2639491 2645563 2645639 "SHDP" 2645644 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1137 2639050 2639242 2639272 "SGROUP" 2639365 T SGROUP (NIL) -9 NIL 2639427 NIL) (-1136 2638908 2638934 2639007 "SGROUP-" 2639012 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1135 2635699 2636397 2637120 "SGCF" 2638207 T SGCF (NIL) -7 NIL NIL NIL) (-1134 2630066 2635145 2635242 "SFRTCAT" 2635247 NIL SFRTCAT (NIL T T T T) -9 NIL 2635286 NIL) (-1133 2623487 2624505 2625641 "SFRGCD" 2629049 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1132 2616613 2617686 2618872 "SFQCMPK" 2622420 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1131 2616233 2616322 2616433 "SFORT" 2616554 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1130 2615351 2616073 2616194 "SEXOF" 2616199 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1129 2614458 2615232 2615300 "SEX" 2615305 T SEX (NIL) -8 NIL NIL NIL) (-1128 2610239 2610954 2611049 "SEXCAT" 2613671 NIL SEXCAT (NIL T T T T T) -9 NIL 2614231 NIL) (-1127 2607392 2610173 2610221 "SET" 2610226 NIL SET (NIL T) -8 NIL NIL NIL) (-1126 2605616 2606105 2606410 "SETMN" 2607133 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1125 2605182 2605334 2605364 "SETCAT" 2605481 T SETCAT (NIL) -9 NIL 2605566 NIL) (-1124 2604962 2605014 2605113 "SETCAT-" 2605118 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1123 2601323 2603423 2603466 "SETAGG" 2604336 NIL SETAGG (NIL T) -9 NIL 2604676 NIL) (-1122 2600781 2600897 2601134 "SETAGG-" 2601139 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1121 2600224 2600477 2600578 "SEQAST" 2600702 T SEQAST (NIL) -8 NIL NIL NIL) (-1120 2599423 2599717 2599778 "SEGXCAT" 2600064 NIL SEGXCAT (NIL T T) -9 NIL 2600184 NIL) (-1119 2598429 2599089 2599271 "SEG" 2599276 NIL SEG (NIL T) -8 NIL NIL NIL) (-1118 2597408 2597622 2597665 "SEGCAT" 2598187 NIL SEGCAT (NIL T) -9 NIL 2598408 NIL) (-1117 2596340 2596771 2596979 "SEGBIND" 2597235 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1116 2595961 2596020 2596133 "SEGBIND2" 2596275 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1115 2595534 2595762 2595839 "SEGAST" 2595906 T SEGAST (NIL) -8 NIL NIL NIL) (-1114 2594753 2594879 2595083 "SEG2" 2595378 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1113 2594124 2594688 2594735 "SDVAR" 2594740 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1112 2586375 2593894 2594024 "SDPOL" 2594029 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1111 2584968 2585234 2585553 "SCPKG" 2586090 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1110 2584132 2584304 2584496 "SCOPE" 2584798 T SCOPE (NIL) -8 NIL NIL NIL) (-1109 2583352 2583486 2583665 "SCACHE" 2583987 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1108 2582984 2583170 2583200 "SASTCAT" 2583205 T SASTCAT (NIL) -9 NIL 2583218 NIL) (-1107 2582471 2582819 2582895 "SAOS" 2582930 T SAOS (NIL) -8 NIL NIL NIL) (-1106 2582036 2582071 2582244 "SAERFFC" 2582430 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1105 2575699 2581933 2582013 "SAE" 2582018 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1104 2575292 2575327 2575486 "SAEFACT" 2575658 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1103 2573613 2573927 2574328 "RURPK" 2574958 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1102 2572250 2572556 2572861 "RULESET" 2573447 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1101 2569473 2570003 2570461 "RULE" 2571931 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1100 2569085 2569267 2569350 "RULECOLD" 2569425 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1099 2568875 2568903 2568974 "RTVALUE" 2569036 T RTVALUE (NIL) -8 NIL NIL NIL) (-1098 2568346 2568592 2568686 "RSTRCAST" 2568803 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1097 2563194 2563989 2564909 "RSETGCD" 2567545 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1096 2552423 2557502 2557599 "RSETCAT" 2561718 NIL RSETCAT (NIL T T T T) -9 NIL 2562815 NIL) (-1095 2550350 2550889 2551713 "RSETCAT-" 2551718 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1094 2542736 2544112 2545632 "RSDCMPK" 2548949 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1093 2540701 2541168 2541242 "RRCC" 2542328 NIL RRCC (NIL T T) -9 NIL 2542672 NIL) (-1092 2540052 2540226 2540505 "RRCC-" 2540510 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1091 2539495 2539748 2539849 "RPTAST" 2539973 T RPTAST (NIL) -8 NIL NIL NIL) (-1090 2512971 2522607 2522674 "RPOLCAT" 2533340 NIL RPOLCAT (NIL T T T) -9 NIL 2536500 NIL) (-1089 2504469 2506809 2509931 "RPOLCAT-" 2509936 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1088 2495406 2502680 2503162 "ROUTINE" 2504009 T ROUTINE (NIL) -8 NIL NIL NIL) (-1087 2492067 2495032 2495172 "ROMAN" 2495288 T ROMAN (NIL) -8 NIL NIL NIL) (-1086 2490311 2490927 2491187 "ROIRC" 2491872 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1085 2486515 2488800 2488830 "RNS" 2489134 T RNS (NIL) -9 NIL 2489408 NIL) (-1084 2485024 2485407 2485941 "RNS-" 2486016 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1083 2484413 2484821 2484851 "RNG" 2484856 T RNG (NIL) -9 NIL 2484877 NIL) (-1082 2483416 2483778 2483980 "RNGBIND" 2484264 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1081 2482801 2483189 2483232 "RMODULE" 2483237 NIL RMODULE (NIL T) -9 NIL 2483264 NIL) (-1080 2481637 2481731 2482067 "RMCAT2" 2482702 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1079 2478487 2480983 2481280 "RMATRIX" 2481399 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1078 2471314 2473574 2473689 "RMATCAT" 2477048 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2478030 NIL) (-1077 2470689 2470836 2471143 "RMATCAT-" 2471148 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1076 2470304 2470476 2470519 "RLINSET" 2470581 NIL RLINSET (NIL T) -9 NIL 2470625 NIL) (-1075 2469871 2469946 2470074 "RINTERP" 2470223 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1074 2468915 2469469 2469499 "RING" 2469555 T RING (NIL) -9 NIL 2469647 NIL) (-1073 2468707 2468751 2468848 "RING-" 2468853 NIL RING- (NIL T) -8 NIL NIL NIL) (-1072 2467548 2467785 2468043 "RIDIST" 2468471 T RIDIST (NIL) -7 NIL NIL NIL) (-1071 2458837 2467016 2467222 "RGCHAIN" 2467396 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1070 2458173 2458579 2458620 "RGBCSPC" 2458678 NIL RGBCSPC (NIL T) -9 NIL 2458730 NIL) (-1069 2457317 2457698 2457739 "RGBCMDL" 2457971 NIL RGBCMDL (NIL T) -9 NIL 2458085 NIL) (-1068 2454311 2454925 2455595 "RF" 2456681 NIL RF (NIL T) -7 NIL NIL NIL) (-1067 2453957 2454020 2454123 "RFFACTOR" 2454242 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1066 2453682 2453717 2453814 "RFFACT" 2453916 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1065 2451799 2452163 2452545 "RFDIST" 2453322 T RFDIST (NIL) -7 NIL NIL NIL) (-1064 2451252 2451344 2451507 "RETSOL" 2451701 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1063 2450888 2450968 2451011 "RETRACT" 2451144 NIL RETRACT (NIL T) -9 NIL 2451231 NIL) (-1062 2450737 2450762 2450849 "RETRACT-" 2450854 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1061 2450339 2450559 2450629 "RETAST" 2450689 T RETAST (NIL) -8 NIL NIL NIL) (-1060 2443083 2449992 2450119 "RESULT" 2450234 T RESULT (NIL) -8 NIL NIL NIL) (-1059 2441674 2442352 2442551 "RESRING" 2442986 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1058 2441310 2441359 2441457 "RESLATC" 2441611 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1057 2441015 2441050 2441157 "REPSQ" 2441269 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1056 2438437 2439017 2439619 "REP" 2440435 T REP (NIL) -7 NIL NIL NIL) (-1055 2438134 2438169 2438280 "REPDB" 2438396 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1054 2432034 2433423 2434646 "REP2" 2436946 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1053 2428411 2429092 2429900 "REP1" 2431261 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1052 2421107 2426552 2427008 "REGSET" 2428041 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1051 2419872 2420255 2420505 "REF" 2420892 NIL REF (NIL T) -8 NIL NIL NIL) (-1050 2419249 2419352 2419519 "REDORDER" 2419756 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1049 2415217 2418462 2418689 "RECLOS" 2419077 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1048 2414269 2414450 2414665 "REALSOLV" 2415024 T REALSOLV (NIL) -7 NIL NIL NIL) (-1047 2414115 2414156 2414186 "REAL" 2414191 T REAL (NIL) -9 NIL 2414226 NIL) (-1046 2410598 2411400 2412284 "REAL0Q" 2413280 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1045 2406199 2407187 2408248 "REAL0" 2409579 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1044 2405670 2405916 2406010 "RDUCEAST" 2406127 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1043 2405075 2405147 2405354 "RDIV" 2405592 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1042 2404143 2404317 2404530 "RDIST" 2404897 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1041 2402740 2403027 2403399 "RDETRS" 2403851 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1040 2400552 2401006 2401544 "RDETR" 2402282 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1039 2399177 2399455 2399852 "RDEEFS" 2400268 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1038 2397686 2397992 2398417 "RDEEF" 2398865 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1037 2391719 2394640 2394670 "RCFIELD" 2395965 T RCFIELD (NIL) -9 NIL 2396696 NIL) (-1036 2389783 2390287 2390983 "RCFIELD-" 2391058 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1035 2386027 2387856 2387899 "RCAGG" 2388983 NIL RCAGG (NIL T) -9 NIL 2389448 NIL) (-1034 2385655 2385749 2385912 "RCAGG-" 2385917 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1033 2384990 2385102 2385267 "RATRET" 2385539 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1032 2384543 2384610 2384731 "RATFACT" 2384918 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1031 2383851 2383971 2384123 "RANDSRC" 2384413 T RANDSRC (NIL) -7 NIL NIL NIL) (-1030 2383585 2383629 2383702 "RADUTIL" 2383800 T RADUTIL (NIL) -7 NIL NIL NIL) (-1029 2376413 2382416 2382727 "RADIX" 2383308 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1028 2366873 2376255 2376385 "RADFF" 2376390 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1027 2366520 2366595 2366625 "RADCAT" 2366785 T RADCAT (NIL) -9 NIL NIL NIL) (-1026 2366302 2366350 2366450 "RADCAT-" 2366455 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1025 2364403 2366072 2366164 "QUEUE" 2366245 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1024 2360664 2364336 2364384 "QUAT" 2364389 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1023 2360295 2360338 2360469 "QUATCT2" 2360615 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1022 2353093 2356718 2356760 "QUATCAT" 2357551 NIL QUATCAT (NIL T) -9 NIL 2358317 NIL) (-1021 2349232 2350269 2351659 "QUATCAT-" 2351755 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1020 2346672 2348280 2348323 "QUAGG" 2348704 NIL QUAGG (NIL T) -9 NIL 2348879 NIL) (-1019 2346274 2346494 2346564 "QQUTAST" 2346624 T QQUTAST (NIL) -8 NIL NIL NIL) (-1018 2345287 2345787 2345952 "QFORM" 2346155 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1017 2335619 2341134 2341176 "QFCAT" 2341844 NIL QFCAT (NIL T) -9 NIL 2342845 NIL) (-1016 2331186 2332387 2333981 "QFCAT-" 2334077 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1015 2330817 2330860 2330991 "QFCAT2" 2331137 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1014 2330272 2330382 2330514 "QEQUAT" 2330707 T QEQUAT (NIL) -8 NIL NIL NIL) (-1013 2323398 2324471 2325657 "QCMPACK" 2329205 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1012 2320936 2321384 2321814 "QALGSET" 2323053 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1011 2320171 2320347 2320583 "QALGSET2" 2320754 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1010 2318856 2319080 2319399 "PWFFINTB" 2319944 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1009 2317031 2317199 2317555 "PUSHVAR" 2318670 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1008 2312920 2313974 2314017 "PTRANFN" 2315928 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1007 2311311 2311602 2311926 "PTPACK" 2312631 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1006 2310940 2310997 2311108 "PTFUNC2" 2311248 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-1005 2305335 2309729 2309772 "PTCAT" 2310072 NIL PTCAT (NIL T) -9 NIL 2310225 NIL) (-1004 2304990 2305025 2305151 "PSQFR" 2305294 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-1003 2303580 2303878 2304214 "PSEUDLIN" 2304688 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-1002 2290304 2292675 2295001 "PSETPK" 2301340 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-1001 2283300 2286040 2286138 "PSETCAT" 2289179 NIL PSETCAT (NIL T T T T) -9 NIL 2289993 NIL) (-1000 2281133 2281767 2282591 "PSETCAT-" 2282596 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-999 2280482 2280647 2280675 "PSCURVE" 2280943 T PSCURVE (NIL) -9 NIL 2281110 NIL) (-998 2276466 2277982 2278047 "PSCAT" 2278891 NIL PSCAT (NIL T T T) -9 NIL 2279131 NIL) (-997 2275529 2275745 2276145 "PSCAT-" 2276150 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-996 2273888 2274598 2274861 "PRTITION" 2275286 T PRTITION (NIL) -8 NIL NIL NIL) (-995 2273363 2273609 2273701 "PRTDAST" 2273816 T PRTDAST (NIL) -8 NIL NIL NIL) (-994 2262453 2264667 2266855 "PRS" 2271225 NIL PRS (NIL T T) -7 NIL NIL NIL) (-993 2260239 2261775 2261815 "PRQAGG" 2261998 NIL PRQAGG (NIL T) -9 NIL 2262100 NIL) (-992 2259575 2259880 2259908 "PROPLOG" 2260047 T PROPLOG (NIL) -9 NIL 2260162 NIL) (-991 2259179 2259236 2259359 "PROPFUN2" 2259498 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-990 2258494 2258615 2258787 "PROPFUN1" 2259040 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-989 2256675 2257241 2257538 "PROPFRML" 2258230 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-988 2256144 2256251 2256379 "PROPERTY" 2256567 T PROPERTY (NIL) -8 NIL NIL NIL) (-987 2250202 2254310 2255130 "PRODUCT" 2255370 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-986 2247480 2249660 2249894 "PR" 2250013 NIL PR (NIL T T) -8 NIL NIL NIL) (-985 2247276 2247308 2247367 "PRINT" 2247441 T PRINT (NIL) -7 NIL NIL NIL) (-984 2246616 2246733 2246885 "PRIMES" 2247156 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-983 2244681 2245082 2245548 "PRIMELT" 2246195 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-982 2244410 2244459 2244487 "PRIMCAT" 2244611 T PRIMCAT (NIL) -9 NIL NIL NIL) (-981 2240528 2244348 2244393 "PRIMARR" 2244398 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-980 2239535 2239713 2239941 "PRIMARR2" 2240346 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-979 2239178 2239234 2239345 "PREASSOC" 2239473 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-978 2238653 2238786 2238814 "PPCURVE" 2239019 T PPCURVE (NIL) -9 NIL 2239155 NIL) (-977 2238248 2238448 2238531 "PORTNUM" 2238590 T PORTNUM (NIL) -8 NIL NIL NIL) (-976 2235607 2236006 2236598 "POLYROOT" 2237829 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-975 2229513 2235211 2235371 "POLY" 2235480 NIL POLY (NIL T) -8 NIL NIL NIL) (-974 2228896 2228954 2229188 "POLYLIFT" 2229449 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-973 2225171 2225620 2226249 "POLYCATQ" 2228441 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-972 2211513 2216918 2216983 "POLYCAT" 2220497 NIL POLYCAT (NIL T T T) -9 NIL 2222375 NIL) (-971 2204962 2206824 2209208 "POLYCAT-" 2209213 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-970 2204549 2204617 2204737 "POLY2UP" 2204888 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-969 2204181 2204238 2204347 "POLY2" 2204486 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-968 2202866 2203105 2203381 "POLUTIL" 2203955 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-967 2201221 2201498 2201829 "POLTOPOL" 2202588 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-966 2196687 2201155 2201202 "POINT" 2201207 NIL POINT (NIL T) -8 NIL NIL NIL) (-965 2194874 2195231 2195606 "PNTHEORY" 2196332 T PNTHEORY (NIL) -7 NIL NIL NIL) (-964 2193332 2193629 2194028 "PMTOOLS" 2194572 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-963 2192925 2193003 2193120 "PMSYM" 2193248 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-962 2192433 2192502 2192677 "PMQFCAT" 2192850 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-961 2191788 2191898 2192054 "PMPRED" 2192310 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-960 2191181 2191267 2191429 "PMPREDFS" 2191689 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-959 2189845 2190053 2190431 "PMPLCAT" 2190943 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-958 2189377 2189456 2189608 "PMLSAGG" 2189760 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-957 2188850 2188926 2189108 "PMKERNEL" 2189295 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-956 2188467 2188542 2188655 "PMINS" 2188769 NIL PMINS (NIL T) -7 NIL NIL NIL) (-955 2187909 2187978 2188187 "PMFS" 2188392 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-954 2187137 2187255 2187460 "PMDOWN" 2187786 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-953 2186304 2186462 2186643 "PMASS" 2186976 T PMASS (NIL) -7 NIL NIL NIL) (-952 2185577 2185687 2185850 "PMASSFS" 2186191 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-951 2185232 2185300 2185394 "PLOTTOOL" 2185503 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-950 2179839 2181043 2182191 "PLOT" 2184104 T PLOT (NIL) -8 NIL NIL NIL) (-949 2175643 2176687 2177608 "PLOT3D" 2178938 T PLOT3D (NIL) -8 NIL NIL NIL) (-948 2174555 2174732 2174967 "PLOT1" 2175447 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-947 2149946 2154621 2159472 "PLEQN" 2169821 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-946 2149264 2149386 2149566 "PINTERP" 2149811 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-945 2148957 2149004 2149107 "PINTERPA" 2149211 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-944 2148173 2148721 2148808 "PI" 2148848 T PI (NIL) -8 NIL NIL 2148915) (-943 2146456 2147431 2147459 "PID" 2147641 T PID (NIL) -9 NIL 2147775 NIL) (-942 2146207 2146244 2146319 "PICOERCE" 2146413 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-941 2145527 2145666 2145842 "PGROEB" 2146063 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-940 2141114 2141928 2142833 "PGE" 2144642 T PGE (NIL) -7 NIL NIL NIL) (-939 2139237 2139484 2139850 "PGCD" 2140831 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-938 2138575 2138678 2138839 "PFRPAC" 2139121 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-937 2135215 2137123 2137476 "PFR" 2138254 NIL PFR (NIL T) -8 NIL NIL NIL) (-936 2133604 2133848 2134173 "PFOTOOLS" 2134962 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-935 2132137 2132376 2132727 "PFOQ" 2133361 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-934 2130638 2130850 2131206 "PFO" 2131921 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-933 2127191 2130527 2130596 "PF" 2130601 NIL PF (NIL NIL) -8 NIL NIL NIL) (-932 2124511 2125782 2125810 "PFECAT" 2126395 T PFECAT (NIL) -9 NIL 2126779 NIL) (-931 2123956 2124110 2124324 "PFECAT-" 2124329 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-930 2122559 2122811 2123112 "PFBRU" 2123705 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-929 2120425 2120777 2121209 "PFBR" 2122210 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-928 2116471 2117937 2118584 "PERM" 2119811 NIL PERM (NIL T) -8 NIL NIL NIL) (-927 2111705 2112678 2113548 "PERMGRP" 2115634 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-926 2109769 2110729 2110770 "PERMCAT" 2111170 NIL PERMCAT (NIL T) -9 NIL 2111468 NIL) (-925 2109422 2109463 2109587 "PERMAN" 2109722 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-924 2106913 2109087 2109209 "PENDTREE" 2109333 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-923 2105842 2106057 2106098 "PDSPC" 2106631 NIL PDSPC (NIL T) -9 NIL 2106876 NIL) (-922 2104945 2105163 2105525 "PDSPC-" 2105530 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-921 2103827 2104595 2104636 "PDRING" 2104641 NIL PDRING (NIL T) -9 NIL 2104669 NIL) (-920 2102714 2103332 2103386 "PDMOD" 2103391 NIL PDMOD (NIL T T) -9 NIL 2103495 NIL) (-919 2099929 2100707 2101375 "PDEPROB" 2102066 T PDEPROB (NIL) -8 NIL NIL NIL) (-918 2097474 2097978 2098533 "PDEPACK" 2099394 T PDEPACK (NIL) -7 NIL NIL NIL) (-917 2096386 2096576 2096827 "PDECOMP" 2097273 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-916 2093951 2094794 2094822 "PDECAT" 2095609 T PDECAT (NIL) -9 NIL 2096322 NIL) (-915 2093580 2093635 2093689 "PDDOM" 2093854 NIL PDDOM (NIL T T) -9 NIL 2093934 NIL) (-914 2093399 2093429 2093536 "PDDOM-" 2093541 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-913 2093150 2093183 2093273 "PCOMP" 2093360 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-912 2091328 2091951 2092248 "PBWLB" 2092879 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-911 2083801 2085401 2086739 "PATTERN" 2090011 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-910 2083433 2083490 2083599 "PATTERN2" 2083738 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-909 2081190 2081578 2082035 "PATTERN1" 2083022 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-908 2078558 2079139 2079620 "PATRES" 2080755 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-907 2078122 2078189 2078321 "PATRES2" 2078485 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-906 2076005 2076410 2076817 "PATMATCH" 2077789 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-905 2075501 2075710 2075751 "PATMAB" 2075858 NIL PATMAB (NIL T) -9 NIL 2075941 NIL) (-904 2074019 2074355 2074613 "PATLRES" 2075306 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-903 2073565 2073688 2073729 "PATAB" 2073734 NIL PATAB (NIL T) -9 NIL 2073906 NIL) (-902 2071747 2072142 2072565 "PARTPERM" 2073162 T PARTPERM (NIL) -7 NIL NIL NIL) (-901 2071368 2071431 2071533 "PARSURF" 2071678 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-900 2071000 2071057 2071166 "PARSU2" 2071305 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-899 2070764 2070804 2070871 "PARSER" 2070953 T PARSER (NIL) -7 NIL NIL NIL) (-898 2070385 2070448 2070550 "PARSCURV" 2070695 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-897 2070017 2070074 2070183 "PARSC2" 2070322 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-896 2069656 2069714 2069811 "PARPCURV" 2069953 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-895 2069288 2069345 2069454 "PARPC2" 2069593 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-894 2068349 2068661 2068843 "PARAMAST" 2069126 T PARAMAST (NIL) -8 NIL NIL NIL) (-893 2067869 2067955 2068074 "PAN2EXPR" 2068250 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-892 2066646 2066990 2067218 "PALETTE" 2067661 T PALETTE (NIL) -8 NIL NIL NIL) (-891 2065039 2065651 2066011 "PAIR" 2066332 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-890 2058631 2064296 2064491 "PADICRC" 2064893 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-889 2051547 2057975 2058160 "PADICRAT" 2058478 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-888 2049862 2051484 2051529 "PADIC" 2051534 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-887 2046958 2048522 2048562 "PADICCT" 2049143 NIL PADICCT (NIL NIL) -9 NIL 2049425 NIL) (-886 2045915 2046115 2046383 "PADEPAC" 2046745 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-885 2045127 2045260 2045466 "PADE" 2045777 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-884 2043514 2044335 2044615 "OWP" 2044931 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-883 2043007 2043220 2043317 "OVERSET" 2043437 T OVERSET (NIL) -8 NIL NIL NIL) (-882 2042053 2042612 2042784 "OVAR" 2042875 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-881 2041317 2041438 2041599 "OUT" 2041912 T OUT (NIL) -7 NIL NIL NIL) (-880 2030189 2032426 2034626 "OUTFORM" 2039137 T OUTFORM (NIL) -8 NIL NIL NIL) (-879 2029525 2029786 2029913 "OUTBFILE" 2030082 T OUTBFILE (NIL) -8 NIL NIL NIL) (-878 2028832 2028997 2029025 "OUTBCON" 2029343 T OUTBCON (NIL) -9 NIL 2029509 NIL) (-877 2028433 2028545 2028702 "OUTBCON-" 2028707 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-876 2027813 2028162 2028251 "OSI" 2028364 T OSI (NIL) -8 NIL NIL NIL) (-875 2027316 2027654 2027682 "OSGROUP" 2027687 T OSGROUP (NIL) -9 NIL 2027709 NIL) (-874 2026061 2026288 2026573 "ORTHPOL" 2027063 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-873 2023612 2025896 2026017 "OREUP" 2026022 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-872 2021015 2023303 2023430 "ORESUP" 2023554 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-871 2018543 2019043 2019604 "OREPCTO" 2020504 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-870 2012215 2014416 2014457 "OREPCAT" 2016805 NIL OREPCAT (NIL T) -9 NIL 2017909 NIL) (-869 2009362 2010144 2011202 "OREPCAT-" 2011207 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-868 2008609 2008832 2008860 "ORDTYPE" 2009169 T ORDTYPE (NIL) -9 NIL 2009332 NIL) (-867 2007952 2008126 2008381 "ORDTYPE-" 2008386 NIL ORDTYPE- (NIL T) -8 NIL NIL NIL) (-866 2007378 2007691 2007849 "ORDSTRCT" 2007854 NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-865 2006948 2007246 2007274 "ORDSET" 2007279 T ORDSET (NIL) -9 NIL 2007301 NIL) (-864 2005486 2006277 2006305 "ORDRING" 2006507 T ORDRING (NIL) -9 NIL 2006632 NIL) (-863 2005131 2005225 2005369 "ORDRING-" 2005374 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-862 2004484 2004947 2004975 "ORDMON" 2004980 T ORDMON (NIL) -9 NIL 2005001 NIL) (-861 2003646 2003793 2003988 "ORDFUNS" 2004333 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-860 2002957 2003376 2003404 "ORDFIN" 2003469 T ORDFIN (NIL) -9 NIL 2003543 NIL) (-859 1999516 2001543 2001952 "ORDCOMP" 2002581 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-858 1998782 1998909 1999095 "ORDCOMP2" 1999376 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-857 1995363 1996273 1997087 "OPTPROB" 1997988 T OPTPROB (NIL) -8 NIL NIL NIL) (-856 1992165 1992804 1993508 "OPTPACK" 1994679 T OPTPACK (NIL) -7 NIL NIL NIL) (-855 1989838 1990604 1990632 "OPTCAT" 1991451 T OPTCAT (NIL) -9 NIL 1992101 NIL) (-854 1989222 1989515 1989620 "OPSIG" 1989753 T OPSIG (NIL) -8 NIL NIL NIL) (-853 1988990 1989029 1989095 "OPQUERY" 1989176 T OPQUERY (NIL) -7 NIL NIL NIL) (-852 1986121 1987301 1987805 "OP" 1988519 NIL OP (NIL T) -8 NIL NIL NIL) (-851 1985481 1985707 1985748 "OPERCAT" 1985960 NIL OPERCAT (NIL T) -9 NIL 1986057 NIL) (-850 1985236 1985292 1985409 "OPERCAT-" 1985414 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-849 1982049 1984033 1984402 "ONECOMP" 1984900 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-848 1981354 1981469 1981643 "ONECOMP2" 1981921 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-847 1980773 1980879 1981009 "OMSERVER" 1981244 T OMSERVER (NIL) -7 NIL NIL NIL) (-846 1977635 1980213 1980253 "OMSAGG" 1980314 NIL OMSAGG (NIL T) -9 NIL 1980378 NIL) (-845 1976258 1976521 1976803 "OMPKG" 1977373 T OMPKG (NIL) -7 NIL NIL NIL) (-844 1975688 1975791 1975819 "OM" 1976118 T OM (NIL) -9 NIL NIL NIL) (-843 1974235 1975237 1975406 "OMLO" 1975569 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-842 1973195 1973342 1973562 "OMEXPR" 1974061 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-841 1972486 1972741 1972877 "OMERR" 1973079 T OMERR (NIL) -8 NIL NIL NIL) (-840 1971637 1971907 1972067 "OMERRK" 1972346 T OMERRK (NIL) -8 NIL NIL NIL) (-839 1971088 1971314 1971422 "OMENC" 1971549 T OMENC (NIL) -8 NIL NIL NIL) (-838 1964983 1966168 1967339 "OMDEV" 1969937 T OMDEV (NIL) -8 NIL NIL NIL) (-837 1964052 1964223 1964417 "OMCONN" 1964809 T OMCONN (NIL) -8 NIL NIL NIL) (-836 1962546 1963522 1963550 "OINTDOM" 1963555 T OINTDOM (NIL) -9 NIL 1963576 NIL) (-835 1959884 1961234 1961571 "OFMONOID" 1962241 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-834 1959256 1959821 1959866 "ODVAR" 1959871 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-833 1956679 1959001 1959156 "ODR" 1959161 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-832 1948984 1956455 1956581 "ODPOL" 1956586 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-831 1942783 1948856 1948961 "ODP" 1948966 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-830 1941549 1941764 1942039 "ODETOOLS" 1942557 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-829 1938516 1939174 1939890 "ODESYS" 1940882 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-828 1933398 1934306 1935331 "ODERTRIC" 1937591 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-827 1932824 1932906 1933100 "ODERED" 1933310 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-826 1929712 1930260 1930937 "ODERAT" 1932247 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-825 1926671 1927136 1927733 "ODEPRRIC" 1929241 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-824 1924614 1925210 1925696 "ODEPROB" 1926205 T ODEPROB (NIL) -8 NIL NIL NIL) (-823 1921134 1921619 1922266 "ODEPRIM" 1924093 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-822 1920383 1920485 1920745 "ODEPAL" 1921026 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-821 1916545 1917336 1918200 "ODEPACK" 1919539 T ODEPACK (NIL) -7 NIL NIL NIL) (-820 1915606 1915713 1915935 "ODEINT" 1916434 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-819 1909707 1911132 1912579 "ODEIFTBL" 1914179 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-818 1905105 1905891 1906843 "ODEEF" 1908866 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-817 1904454 1904543 1904766 "ODECONST" 1905010 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-816 1902565 1903226 1903254 "ODECAT" 1903859 T ODECAT (NIL) -9 NIL 1904390 NIL) (-815 1899420 1902270 1902392 "OCT" 1902475 NIL OCT (NIL T) -8 NIL NIL NIL) (-814 1899058 1899101 1899228 "OCTCT2" 1899371 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-813 1893665 1896101 1896141 "OC" 1897238 NIL OC (NIL T) -9 NIL 1898096 NIL) (-812 1890892 1891640 1892630 "OC-" 1892724 NIL OC- (NIL T T) -8 NIL NIL NIL) (-811 1890217 1890685 1890713 "OCAMON" 1890718 T OCAMON (NIL) -9 NIL 1890739 NIL) (-810 1889721 1890062 1890090 "OASGP" 1890095 T OASGP (NIL) -9 NIL 1890115 NIL) (-809 1888955 1889444 1889472 "OAMONS" 1889512 T OAMONS (NIL) -9 NIL 1889555 NIL) (-808 1888342 1888775 1888803 "OAMON" 1888808 T OAMON (NIL) -9 NIL 1888828 NIL) (-807 1887573 1888091 1888119 "OAGROUP" 1888124 T OAGROUP (NIL) -9 NIL 1888144 NIL) (-806 1887263 1887313 1887401 "NUMTUBE" 1887517 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-805 1880836 1882354 1883890 "NUMQUAD" 1885747 T NUMQUAD (NIL) -7 NIL NIL NIL) (-804 1876592 1877580 1878605 "NUMODE" 1879831 T NUMODE (NIL) -7 NIL NIL NIL) (-803 1873933 1874813 1874841 "NUMINT" 1875764 T NUMINT (NIL) -9 NIL 1876528 NIL) (-802 1872881 1873078 1873296 "NUMFMT" 1873735 T NUMFMT (NIL) -7 NIL NIL NIL) (-801 1859240 1862185 1864717 "NUMERIC" 1870388 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-800 1853609 1858688 1858783 "NTSCAT" 1858788 NIL NTSCAT (NIL T T T T) -9 NIL 1858827 NIL) (-799 1852803 1852968 1853161 "NTPOLFN" 1853448 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-798 1840604 1849628 1850440 "NSUP" 1852024 NIL NSUP (NIL T) -8 NIL NIL NIL) (-797 1840236 1840293 1840402 "NSUP2" 1840541 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-796 1830186 1840010 1840143 "NSMP" 1840148 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-795 1828618 1828919 1829276 "NREP" 1829874 NIL NREP (NIL T) -7 NIL NIL NIL) (-794 1827209 1827461 1827819 "NPCOEF" 1828361 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-793 1826275 1826390 1826606 "NORMRETR" 1827090 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-792 1824316 1824606 1825015 "NORMPK" 1825983 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-791 1824001 1824029 1824153 "NORMMA" 1824282 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-790 1823801 1823958 1823987 "NONE" 1823992 T NONE (NIL) -8 NIL NIL NIL) (-789 1823590 1823619 1823688 "NONE1" 1823765 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-788 1823087 1823149 1823328 "NODE1" 1823522 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-787 1821368 1822219 1822474 "NNI" 1822821 T NNI (NIL) -8 NIL NIL 1823056) (-786 1819788 1820101 1820465 "NLINSOL" 1821036 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-785 1816029 1817024 1817923 "NIPROB" 1818909 T NIPROB (NIL) -8 NIL NIL NIL) (-784 1814786 1815020 1815322 "NFINTBAS" 1815791 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-783 1813960 1814436 1814477 "NETCLT" 1814649 NIL NETCLT (NIL T) -9 NIL 1814731 NIL) (-782 1812668 1812899 1813180 "NCODIV" 1813728 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-781 1812430 1812467 1812542 "NCNTFRAC" 1812625 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-780 1810610 1810974 1811394 "NCEP" 1812055 NIL NCEP (NIL T) -7 NIL NIL NIL) (-779 1809447 1810220 1810248 "NASRING" 1810358 T NASRING (NIL) -9 NIL 1810438 NIL) (-778 1809242 1809286 1809380 "NASRING-" 1809385 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-777 1808335 1808860 1808888 "NARNG" 1809005 T NARNG (NIL) -9 NIL 1809096 NIL) (-776 1808027 1808094 1808228 "NARNG-" 1808233 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-775 1806906 1807113 1807348 "NAGSP" 1807812 T NAGSP (NIL) -7 NIL NIL NIL) (-774 1798178 1799862 1801535 "NAGS" 1805253 T NAGS (NIL) -7 NIL NIL NIL) (-773 1796726 1797034 1797365 "NAGF07" 1797867 T NAGF07 (NIL) -7 NIL NIL NIL) (-772 1791264 1792555 1793862 "NAGF04" 1795439 T NAGF04 (NIL) -7 NIL NIL NIL) (-771 1784232 1785846 1787479 "NAGF02" 1789651 T NAGF02 (NIL) -7 NIL NIL NIL) (-770 1779456 1780556 1781673 "NAGF01" 1783135 T NAGF01 (NIL) -7 NIL NIL NIL) (-769 1773084 1774650 1776235 "NAGE04" 1777891 T NAGE04 (NIL) -7 NIL NIL NIL) (-768 1764253 1766374 1768504 "NAGE02" 1770974 T NAGE02 (NIL) -7 NIL NIL NIL) (-767 1760206 1761153 1762117 "NAGE01" 1763309 T NAGE01 (NIL) -7 NIL NIL NIL) (-766 1758001 1758535 1759093 "NAGD03" 1759668 T NAGD03 (NIL) -7 NIL NIL NIL) (-765 1749751 1751679 1753633 "NAGD02" 1756067 T NAGD02 (NIL) -7 NIL NIL NIL) (-764 1743562 1744987 1746427 "NAGD01" 1748331 T NAGD01 (NIL) -7 NIL NIL NIL) (-763 1739771 1740593 1741430 "NAGC06" 1742745 T NAGC06 (NIL) -7 NIL NIL NIL) (-762 1738236 1738568 1738924 "NAGC05" 1739435 T NAGC05 (NIL) -7 NIL NIL NIL) (-761 1737612 1737731 1737875 "NAGC02" 1738112 T NAGC02 (NIL) -7 NIL NIL NIL) (-760 1736557 1737140 1737180 "NAALG" 1737259 NIL NAALG (NIL T) -9 NIL 1737320 NIL) (-759 1736392 1736421 1736511 "NAALG-" 1736516 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-758 1730342 1731450 1732637 "MULTSQFR" 1735288 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-757 1729661 1729736 1729920 "MULTFACT" 1730254 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-756 1722332 1726246 1726299 "MTSCAT" 1727369 NIL MTSCAT (NIL T T) -9 NIL 1727884 NIL) (-755 1722044 1722098 1722190 "MTHING" 1722272 NIL MTHING (NIL T) -7 NIL NIL NIL) (-754 1721836 1721869 1721929 "MSYSCMD" 1722004 T MSYSCMD (NIL) -7 NIL NIL NIL) (-753 1717918 1720591 1720911 "MSET" 1721549 NIL MSET (NIL T) -8 NIL NIL NIL) (-752 1714987 1717479 1717520 "MSETAGG" 1717525 NIL MSETAGG (NIL T) -9 NIL 1717559 NIL) (-751 1710829 1712366 1713111 "MRING" 1714287 NIL MRING (NIL T T) -8 NIL NIL NIL) (-750 1710395 1710462 1710593 "MRF2" 1710756 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-749 1710013 1710048 1710192 "MRATFAC" 1710354 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-748 1707625 1707920 1708351 "MPRFF" 1709718 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-747 1701646 1707479 1707576 "MPOLY" 1707581 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-746 1701136 1701171 1701379 "MPCPF" 1701605 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-745 1700650 1700693 1700877 "MPC3" 1701087 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-744 1699845 1699926 1700147 "MPC2" 1700565 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-743 1698146 1698483 1698873 "MONOTOOL" 1699505 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-742 1697357 1697674 1697702 "MONOID" 1697921 T MONOID (NIL) -9 NIL 1698068 NIL) (-741 1696903 1697022 1697203 "MONOID-" 1697208 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-740 1686493 1692723 1692782 "MONOGEN" 1693456 NIL MONOGEN (NIL T T) -9 NIL 1693912 NIL) (-739 1683711 1684446 1685446 "MONOGEN-" 1685565 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-738 1682530 1682976 1683004 "MONADWU" 1683396 T MONADWU (NIL) -9 NIL 1683634 NIL) (-737 1681902 1682061 1682309 "MONADWU-" 1682314 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-736 1681247 1681491 1681519 "MONAD" 1681726 T MONAD (NIL) -9 NIL 1681838 NIL) (-735 1680932 1681010 1681142 "MONAD-" 1681147 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-734 1679221 1679845 1680124 "MOEBIUS" 1680685 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-733 1678485 1678889 1678929 "MODULE" 1678934 NIL MODULE (NIL T) -9 NIL 1678973 NIL) (-732 1678053 1678149 1678339 "MODULE-" 1678344 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-731 1675733 1676417 1676744 "MODRING" 1677877 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-730 1672677 1673838 1674359 "MODOP" 1675262 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-729 1671265 1671744 1672021 "MODMONOM" 1672540 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-728 1661033 1669556 1669970 "MODMON" 1670902 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-727 1658189 1659877 1660153 "MODFIELD" 1660908 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-726 1657166 1657470 1657660 "MMLFORM" 1658019 T MMLFORM (NIL) -8 NIL NIL NIL) (-725 1656692 1656735 1656914 "MMAP" 1657117 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-724 1654757 1655524 1655565 "MLO" 1655988 NIL MLO (NIL T) -9 NIL 1656230 NIL) (-723 1652123 1652639 1653241 "MLIFT" 1654238 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-722 1651514 1651598 1651752 "MKUCFUNC" 1652034 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-721 1651113 1651183 1651306 "MKRECORD" 1651437 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-720 1650160 1650322 1650550 "MKFUNC" 1650924 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-719 1649548 1649652 1649808 "MKFLCFN" 1650043 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-718 1648825 1648927 1649112 "MKBCFUNC" 1649441 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-717 1645414 1648379 1648515 "MINT" 1648709 T MINT (NIL) -8 NIL NIL NIL) (-716 1644226 1644469 1644746 "MHROWRED" 1645169 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-715 1639606 1642761 1643166 "MFLOAT" 1643841 T MFLOAT (NIL) -8 NIL NIL NIL) (-714 1638963 1639039 1639210 "MFINFACT" 1639518 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-713 1635278 1636126 1637010 "MESH" 1638099 T MESH (NIL) -7 NIL NIL NIL) (-712 1633668 1633980 1634333 "MDDFACT" 1634965 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-711 1630438 1632799 1632840 "MDAGG" 1633095 NIL MDAGG (NIL T) -9 NIL 1633238 NIL) (-710 1619132 1629731 1629938 "MCMPLX" 1630251 T MCMPLX (NIL) -8 NIL NIL NIL) (-709 1618269 1618415 1618616 "MCDEN" 1618981 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-708 1616159 1616429 1616809 "MCALCFN" 1617999 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-707 1615084 1615324 1615557 "MAYBE" 1615965 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-706 1612696 1613219 1613781 "MATSTOR" 1614555 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-705 1608608 1612068 1612316 "MATRIX" 1612481 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-704 1604374 1605081 1605817 "MATLIN" 1607965 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-703 1594200 1597431 1597508 "MATCAT" 1602540 NIL MATCAT (NIL T T T) -9 NIL 1604012 NIL) (-702 1590393 1591463 1592876 "MATCAT-" 1592881 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-701 1588987 1589140 1589473 "MATCAT2" 1590228 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-700 1587099 1587423 1587807 "MAPPKG3" 1588662 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-699 1586080 1586253 1586475 "MAPPKG2" 1586923 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-698 1584579 1584863 1585190 "MAPPKG1" 1585786 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-697 1583658 1583985 1584162 "MAPPAST" 1584422 T MAPPAST (NIL) -8 NIL NIL NIL) (-696 1583269 1583327 1583450 "MAPHACK3" 1583594 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-695 1582861 1582922 1583036 "MAPHACK2" 1583201 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-694 1582299 1582402 1582544 "MAPHACK1" 1582752 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-693 1580378 1580999 1581303 "MAGMA" 1582027 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-692 1579857 1580102 1580193 "MACROAST" 1580307 T MACROAST (NIL) -8 NIL NIL NIL) (-691 1576278 1578096 1578557 "M3D" 1579429 NIL M3D (NIL T) -8 NIL NIL NIL) (-690 1570328 1574589 1574630 "LZSTAGG" 1575412 NIL LZSTAGG (NIL T) -9 NIL 1575707 NIL) (-689 1566286 1567459 1568916 "LZSTAGG-" 1568921 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-688 1563373 1564177 1564664 "LWORD" 1565831 NIL LWORD (NIL T) -8 NIL NIL NIL) (-687 1562949 1563177 1563252 "LSTAST" 1563318 T LSTAST (NIL) -8 NIL NIL NIL) (-686 1555839 1562720 1562854 "LSQM" 1562859 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-685 1555063 1555202 1555430 "LSPP" 1555694 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-684 1552875 1553176 1553632 "LSMP" 1554752 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-683 1549654 1550328 1551058 "LSMP1" 1552177 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-682 1543456 1548744 1548785 "LSAGG" 1548847 NIL LSAGG (NIL T) -9 NIL 1548925 NIL) (-681 1540151 1541075 1542288 "LSAGG-" 1542293 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-680 1537750 1539295 1539544 "LPOLY" 1539946 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-679 1537332 1537417 1537540 "LPEFRAC" 1537659 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-678 1535653 1536426 1536679 "LO" 1537164 NIL LO (NIL T T T) -8 NIL NIL NIL) (-677 1535265 1535403 1535431 "LOGIC" 1535542 T LOGIC (NIL) -9 NIL 1535623 NIL) (-676 1535127 1535150 1535221 "LOGIC-" 1535226 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-675 1534320 1534460 1534653 "LODOOPS" 1534983 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-674 1531743 1534236 1534302 "LODO" 1534307 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-673 1530281 1530516 1530869 "LODOF" 1531490 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-672 1526485 1528916 1528957 "LODOCAT" 1529395 NIL LODOCAT (NIL T) -9 NIL 1529606 NIL) (-671 1526218 1526276 1526403 "LODOCAT-" 1526408 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-670 1523538 1526059 1526177 "LODO2" 1526182 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-669 1520973 1523475 1523520 "LODO1" 1523525 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-668 1519854 1520019 1520324 "LODEEF" 1520796 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-667 1515132 1518020 1518061 "LNAGG" 1518923 NIL LNAGG (NIL T) -9 NIL 1519358 NIL) (-666 1514279 1514493 1514835 "LNAGG-" 1514840 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-665 1510415 1511204 1511843 "LMOPS" 1513694 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-664 1509804 1510192 1510233 "LMODULE" 1510238 NIL LMODULE (NIL T) -9 NIL 1510264 NIL) (-663 1507005 1509449 1509572 "LMDICT" 1509714 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-662 1506623 1506795 1506836 "LLINSET" 1506897 NIL LLINSET (NIL T) -9 NIL 1506941 NIL) (-661 1506322 1506531 1506591 "LITERAL" 1506596 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-660 1499488 1505256 1505560 "LIST" 1506051 NIL LIST (NIL T) -8 NIL NIL NIL) (-659 1499013 1499087 1499226 "LIST3" 1499408 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-658 1498020 1498198 1498426 "LIST2" 1498831 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-657 1496154 1496466 1496865 "LIST2MAP" 1497667 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-656 1495785 1495973 1496014 "LINSET" 1496019 NIL LINSET (NIL T) -9 NIL 1496053 NIL) (-655 1494725 1495293 1495460 "LINFORM" 1495670 NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-654 1493138 1493752 1493793 "LINEXP" 1494283 NIL LINEXP (NIL T) -9 NIL 1494556 NIL) (-653 1491876 1492618 1492799 "LINELT" 1493009 NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-652 1490453 1490713 1491024 "LINDEP" 1491628 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-651 1489697 1490185 1490295 "LINBASIS" 1490383 NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-650 1486464 1487183 1487960 "LIMITRF" 1488952 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-649 1484767 1485063 1485472 "LIMITPS" 1486159 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-648 1479195 1484278 1484506 "LIE" 1484588 NIL LIE (NIL T T) -8 NIL NIL NIL) (-647 1478129 1478598 1478638 "LIECAT" 1478778 NIL LIECAT (NIL T) -9 NIL 1478929 NIL) (-646 1477970 1477997 1478085 "LIECAT-" 1478090 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-645 1470563 1477510 1477666 "LIB" 1477834 T LIB (NIL) -8 NIL NIL NIL) (-644 1466198 1467081 1468016 "LGROBP" 1469680 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-643 1464196 1464470 1464820 "LF" 1465919 NIL LF (NIL T T) -7 NIL NIL NIL) (-642 1463036 1463728 1463756 "LFCAT" 1463963 T LFCAT (NIL) -9 NIL 1464102 NIL) (-641 1459938 1460568 1461256 "LEXTRIPK" 1462400 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-640 1456682 1457508 1458011 "LEXP" 1459518 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-639 1456158 1456403 1456495 "LETAST" 1456610 T LETAST (NIL) -8 NIL NIL NIL) (-638 1454556 1454869 1455270 "LEADCDET" 1455840 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-637 1453746 1453820 1454049 "LAZM3PK" 1454477 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-636 1448663 1451823 1452361 "LAUPOL" 1453258 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-635 1448242 1448286 1448447 "LAPLACE" 1448613 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-634 1446181 1447343 1447594 "LA" 1448075 NIL LA (NIL T T T) -8 NIL NIL NIL) (-633 1445161 1445745 1445786 "LALG" 1445848 NIL LALG (NIL T) -9 NIL 1445907 NIL) (-632 1444875 1444934 1445070 "LALG-" 1445075 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-631 1444710 1444734 1444775 "KVTFROM" 1444837 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-630 1443633 1444077 1444262 "KTVLOGIC" 1444545 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-629 1443468 1443492 1443533 "KRCFROM" 1443595 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-628 1442372 1442559 1442858 "KOVACIC" 1443268 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-627 1442207 1442231 1442272 "KONVERT" 1442334 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-626 1442042 1442066 1442107 "KOERCE" 1442169 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-625 1439873 1440635 1441012 "KERNEL" 1441698 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-624 1439369 1439450 1439582 "KERNEL2" 1439787 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-623 1433080 1437846 1437900 "KDAGG" 1438277 NIL KDAGG (NIL T T) -9 NIL 1438483 NIL) (-622 1432609 1432733 1432938 "KDAGG-" 1432943 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-621 1425757 1432270 1432425 "KAFILE" 1432487 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-620 1420185 1425268 1425496 "JORDAN" 1425578 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-619 1419564 1419834 1419955 "JOINAST" 1420084 T JOINAST (NIL) -8 NIL NIL NIL) (-618 1419410 1419469 1419524 "JAVACODE" 1419529 T JAVACODE (NIL) -8 NIL NIL NIL) (-617 1415637 1417587 1417641 "IXAGG" 1418570 NIL IXAGG (NIL T T) -9 NIL 1419029 NIL) (-616 1414556 1414862 1415281 "IXAGG-" 1415286 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-615 1410089 1414478 1414537 "IVECTOR" 1414542 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-614 1408855 1409092 1409358 "ITUPLE" 1409856 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-613 1407357 1407534 1407829 "ITRIGMNP" 1408677 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-612 1406102 1406306 1406589 "ITFUN3" 1407133 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-611 1405734 1405791 1405900 "ITFUN2" 1406039 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-610 1404893 1405214 1405388 "ITFORM" 1405580 T ITFORM (NIL) -8 NIL NIL NIL) (-609 1402854 1403913 1404191 "ITAYLOR" 1404648 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-608 1391799 1396991 1398154 "ISUPS" 1401724 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-607 1390903 1391043 1391279 "ISUMP" 1391646 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-606 1386281 1390848 1390889 "ISTRING" 1390894 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-605 1385757 1386002 1386094 "ISAST" 1386209 T ISAST (NIL) -8 NIL NIL NIL) (-604 1384966 1385048 1385264 "IRURPK" 1385671 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-603 1383902 1384103 1384343 "IRSN" 1384746 T IRSN (NIL) -7 NIL NIL NIL) (-602 1381973 1382328 1382757 "IRRF2F" 1383540 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-601 1381720 1381758 1381834 "IRREDFFX" 1381929 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-600 1380335 1380594 1380893 "IROOT" 1381453 NIL IROOT (NIL T) -7 NIL NIL NIL) (-599 1376939 1378019 1378711 "IR" 1379675 NIL IR (NIL T) -8 NIL NIL NIL) (-598 1376144 1376432 1376583 "IRFORM" 1376808 T IRFORM (NIL) -8 NIL NIL NIL) (-597 1373757 1374252 1374818 "IR2" 1375622 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-596 1372857 1372970 1373184 "IR2F" 1373640 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-595 1372648 1372682 1372742 "IPRNTPK" 1372817 T IPRNTPK (NIL) -7 NIL NIL NIL) (-594 1369229 1372537 1372606 "IPF" 1372611 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-593 1367556 1369154 1369211 "IPADIC" 1369216 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-592 1366868 1367116 1367246 "IP4ADDR" 1367446 T IP4ADDR (NIL) -8 NIL NIL NIL) (-591 1366242 1366497 1366629 "IOMODE" 1366756 T IOMODE (NIL) -8 NIL NIL NIL) (-590 1365315 1365839 1365966 "IOBFILE" 1366135 T IOBFILE (NIL) -8 NIL NIL NIL) (-589 1364803 1365219 1365247 "IOBCON" 1365252 T IOBCON (NIL) -9 NIL 1365273 NIL) (-588 1364314 1364372 1364555 "INVLAPLA" 1364739 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-587 1353962 1356316 1358702 "INTTR" 1361978 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-586 1350297 1351039 1351904 "INTTOOLS" 1353147 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-585 1349883 1349974 1350091 "INTSLPE" 1350200 T INTSLPE (NIL) -7 NIL NIL NIL) (-584 1347836 1349806 1349865 "INTRVL" 1349870 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-583 1345438 1345950 1346525 "INTRF" 1347321 NIL INTRF (NIL T) -7 NIL NIL NIL) (-582 1344849 1344946 1345088 "INTRET" 1345336 NIL INTRET (NIL T) -7 NIL NIL NIL) (-581 1342846 1343235 1343705 "INTRAT" 1344457 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-580 1340109 1340692 1341311 "INTPM" 1342331 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-579 1336854 1337453 1338191 "INTPAF" 1339495 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-578 1332033 1332995 1334046 "INTPACK" 1335823 T INTPACK (NIL) -7 NIL NIL NIL) (-577 1328845 1331830 1331939 "INT" 1331944 T INT (NIL) -8 NIL NIL NIL) (-576 1328097 1328249 1328457 "INTHERTR" 1328687 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-575 1327536 1327616 1327804 "INTHERAL" 1328011 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-574 1325382 1325825 1326282 "INTHEORY" 1327099 T INTHEORY (NIL) -7 NIL NIL NIL) (-573 1316788 1318409 1320181 "INTG0" 1323734 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-572 1297361 1302151 1306961 "INTFTBL" 1311998 T INTFTBL (NIL) -8 NIL NIL NIL) (-571 1296610 1296748 1296921 "INTFACT" 1297220 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-570 1294037 1294483 1295040 "INTEF" 1296164 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-569 1292390 1293129 1293157 "INTDOM" 1293458 T INTDOM (NIL) -9 NIL 1293665 NIL) (-568 1291759 1291933 1292175 "INTDOM-" 1292180 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-567 1288119 1290048 1290102 "INTCAT" 1290901 NIL INTCAT (NIL T) -9 NIL 1291222 NIL) (-566 1287591 1287694 1287822 "INTBIT" 1288011 T INTBIT (NIL) -7 NIL NIL NIL) (-565 1286290 1286444 1286751 "INTALG" 1287436 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-564 1285773 1285863 1286020 "INTAF" 1286194 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-563 1279122 1285583 1285723 "INTABL" 1285728 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-562 1278455 1278921 1278986 "INT8" 1279020 T INT8 (NIL) -8 NIL NIL 1279065) (-561 1277787 1278253 1278318 "INT64" 1278352 T INT64 (NIL) -8 NIL NIL 1278397) (-560 1277119 1277585 1277650 "INT32" 1277684 T INT32 (NIL) -8 NIL NIL 1277729) (-559 1276451 1276917 1276982 "INT16" 1277016 T INT16 (NIL) -8 NIL NIL 1277061) (-558 1271146 1273999 1274027 "INS" 1274961 T INS (NIL) -9 NIL 1275626 NIL) (-557 1268386 1269157 1270131 "INS-" 1270204 NIL INS- (NIL T) -8 NIL NIL NIL) (-556 1267161 1267388 1267686 "INPSIGN" 1268139 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-555 1266279 1266396 1266593 "INPRODPF" 1267041 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-554 1265173 1265290 1265527 "INPRODFF" 1266159 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-553 1264173 1264325 1264585 "INNMFACT" 1265009 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-552 1263370 1263467 1263655 "INMODGCD" 1264072 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-551 1261878 1262123 1262447 "INFSP" 1263115 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-550 1261062 1261179 1261362 "INFPROD0" 1261758 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-549 1257917 1259127 1259642 "INFORM" 1260555 T INFORM (NIL) -8 NIL NIL NIL) (-548 1257527 1257587 1257685 "INFORM1" 1257852 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-547 1257050 1257139 1257253 "INFINITY" 1257433 T INFINITY (NIL) -7 NIL NIL NIL) (-546 1256226 1256770 1256871 "INETCLTS" 1256969 T INETCLTS (NIL) -8 NIL NIL NIL) (-545 1254842 1255092 1255413 "INEP" 1255974 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-544 1254047 1254739 1254804 "INDE" 1254809 NIL INDE (NIL T) -8 NIL NIL NIL) (-543 1253611 1253679 1253796 "INCRMAPS" 1253974 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-542 1252429 1252880 1253086 "INBFILE" 1253425 T INBFILE (NIL) -8 NIL NIL NIL) (-541 1247728 1248665 1249609 "INBFF" 1251517 NIL INBFF (NIL T) -7 NIL NIL NIL) (-540 1246636 1246905 1246933 "INBCON" 1247446 T INBCON (NIL) -9 NIL 1247712 NIL) (-539 1245888 1246111 1246387 "INBCON-" 1246392 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-538 1245367 1245612 1245703 "INAST" 1245817 T INAST (NIL) -8 NIL NIL NIL) (-537 1244794 1245046 1245152 "IMPTAST" 1245281 T IMPTAST (NIL) -8 NIL NIL NIL) (-536 1241195 1244638 1244742 "IMATRIX" 1244747 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-535 1239903 1240026 1240342 "IMATQF" 1241051 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-534 1238123 1238350 1238687 "IMATLIN" 1239659 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-533 1232704 1238047 1238105 "ILIST" 1238110 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-532 1230612 1232564 1232677 "IIARRAY2" 1232682 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-531 1226010 1230523 1230587 "IFF" 1230592 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-530 1225357 1225627 1225743 "IFAST" 1225914 T IFAST (NIL) -8 NIL NIL NIL) (-529 1220355 1224649 1224837 "IFARRAY" 1225214 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-528 1219535 1220259 1220332 "IFAMON" 1220337 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-527 1219119 1219184 1219238 "IEVALAB" 1219445 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-526 1218794 1218862 1219022 "IEVALAB-" 1219027 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-525 1218241 1218709 1218771 "IDPO" 1218776 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-524 1217449 1218130 1218205 "IDPOAMS" 1218210 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-523 1216714 1217338 1217413 "IDPOAM" 1217418 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-522 1215260 1215721 1215773 "IDPC" 1216285 NIL IDPC (NIL T T) -9 NIL 1216566 NIL) (-521 1214688 1215152 1215225 "IDPAM" 1215230 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-520 1214023 1214580 1214653 "IDPAG" 1214658 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-519 1213668 1213859 1213934 "IDENT" 1213968 T IDENT (NIL) -8 NIL NIL NIL) (-518 1209923 1210771 1211666 "IDECOMP" 1212825 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-517 1202760 1203846 1204893 "IDEAL" 1208959 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-516 1201920 1202032 1202232 "ICDEN" 1202644 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-515 1200991 1201400 1201547 "ICARD" 1201793 T ICARD (NIL) -8 NIL NIL NIL) (-514 1199051 1199364 1199769 "IBPTOOLS" 1200668 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-513 1194658 1198671 1198784 "IBITS" 1198970 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-512 1191381 1191957 1192652 "IBATOOL" 1194075 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-511 1189160 1189622 1190155 "IBACHIN" 1190916 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-510 1186992 1189006 1189109 "IARRAY2" 1189114 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-509 1183101 1186918 1186975 "IARRAY1" 1186980 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-508 1176961 1181513 1181994 "IAN" 1182640 T IAN (NIL) -8 NIL NIL NIL) (-507 1176472 1176529 1176702 "IALGFACT" 1176898 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-506 1176000 1176113 1176141 "HYPCAT" 1176348 T HYPCAT (NIL) -9 NIL NIL NIL) (-505 1175538 1175655 1175841 "HYPCAT-" 1175846 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-504 1175133 1175333 1175416 "HOSTNAME" 1175475 T HOSTNAME (NIL) -8 NIL NIL NIL) (-503 1174978 1175015 1175056 "HOMOTOP" 1175061 NIL HOMOTOP (NIL T) -9 NIL 1175094 NIL) (-502 1171535 1172910 1172951 "HOAGG" 1173932 NIL HOAGG (NIL T) -9 NIL 1174661 NIL) (-501 1170129 1170528 1171054 "HOAGG-" 1171059 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-500 1163845 1169722 1169872 "HEXADEC" 1169999 T HEXADEC (NIL) -8 NIL NIL NIL) (-499 1162593 1162815 1163078 "HEUGCD" 1163622 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-498 1161669 1162430 1162560 "HELLFDIV" 1162565 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-497 1159851 1161446 1161534 "HEAP" 1161613 NIL HEAP (NIL T) -8 NIL NIL NIL) (-496 1159114 1159403 1159537 "HEADAST" 1159737 T HEADAST (NIL) -8 NIL NIL NIL) (-495 1152957 1159029 1159091 "HDP" 1159096 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-494 1146669 1152592 1152744 "HDMP" 1152858 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-493 1145993 1146133 1146297 "HB" 1146525 T HB (NIL) -7 NIL NIL NIL) (-492 1139385 1145839 1145943 "HASHTBL" 1145948 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-491 1138861 1139106 1139198 "HASAST" 1139313 T HASAST (NIL) -8 NIL NIL NIL) (-490 1136639 1138483 1138665 "HACKPI" 1138699 T HACKPI (NIL) -8 NIL NIL NIL) (-489 1132307 1136492 1136605 "GTSET" 1136610 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-488 1125728 1132185 1132283 "GSTBL" 1132288 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-487 1118115 1124893 1125149 "GSERIES" 1125528 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-486 1117242 1117659 1117687 "GROUP" 1117890 T GROUP (NIL) -9 NIL 1118024 NIL) (-485 1116608 1116767 1117018 "GROUP-" 1117023 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-484 1114975 1115296 1115683 "GROEBSOL" 1116285 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-483 1113875 1114163 1114214 "GRMOD" 1114743 NIL GRMOD (NIL T T) -9 NIL 1114911 NIL) (-482 1113643 1113679 1113807 "GRMOD-" 1113812 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-481 1108933 1109997 1110997 "GRIMAGE" 1112663 T GRIMAGE (NIL) -8 NIL NIL NIL) (-480 1107399 1107660 1107984 "GRDEF" 1108629 T GRDEF (NIL) -7 NIL NIL NIL) (-479 1106843 1106959 1107100 "GRAY" 1107278 T GRAY (NIL) -7 NIL NIL NIL) (-478 1106016 1106422 1106473 "GRALG" 1106626 NIL GRALG (NIL T T) -9 NIL 1106719 NIL) (-477 1105677 1105750 1105913 "GRALG-" 1105918 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-476 1102452 1105260 1105439 "GPOLSET" 1105583 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-475 1101806 1101863 1102121 "GOSPER" 1102389 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-474 1097538 1098244 1098770 "GMODPOL" 1101505 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-473 1096543 1096727 1096965 "GHENSEL" 1097350 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-472 1090699 1091542 1092562 "GENUPS" 1095627 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-471 1090396 1090447 1090536 "GENUFACT" 1090642 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-470 1089808 1089885 1090050 "GENPGCD" 1090314 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-469 1089282 1089317 1089530 "GENMFACT" 1089767 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-468 1087848 1088105 1088412 "GENEEZ" 1089025 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-467 1081720 1087459 1087621 "GDMP" 1087771 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-466 1071063 1075491 1076597 "GCNAALG" 1080703 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-465 1069376 1070238 1070266 "GCDDOM" 1070521 T GCDDOM (NIL) -9 NIL 1070678 NIL) (-464 1068846 1068973 1069188 "GCDDOM-" 1069193 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-463 1067518 1067703 1068007 "GB" 1068625 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-462 1056134 1058464 1060856 "GBINTERN" 1065209 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-461 1053971 1054263 1054684 "GBF" 1055809 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-460 1052752 1052917 1053184 "GBEUCLID" 1053787 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-459 1052101 1052226 1052375 "GAUSSFAC" 1052623 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-458 1050468 1050770 1051084 "GALUTIL" 1051820 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-457 1048776 1049050 1049374 "GALPOLYU" 1050195 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-456 1046141 1046431 1046838 "GALFACTU" 1048473 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-455 1037947 1039446 1041054 "GALFACT" 1044573 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-454 1035335 1035993 1036021 "FVFUN" 1037177 T FVFUN (NIL) -9 NIL 1037897 NIL) (-453 1034601 1034783 1034811 "FVC" 1035102 T FVC (NIL) -9 NIL 1035285 NIL) (-452 1034244 1034426 1034494 "FUNDESC" 1034553 T FUNDESC (NIL) -8 NIL NIL NIL) (-451 1033859 1034041 1034122 "FUNCTION" 1034196 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-450 1031603 1032181 1032647 "FT" 1033413 T FT (NIL) -8 NIL NIL NIL) (-449 1030394 1030904 1031107 "FTEM" 1031420 T FTEM (NIL) -8 NIL NIL NIL) (-448 1028685 1028974 1029371 "FSUPFACT" 1030085 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-447 1027082 1027371 1027703 "FST" 1028373 T FST (NIL) -8 NIL NIL NIL) (-446 1026281 1026387 1026575 "FSRED" 1026964 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-445 1024980 1025236 1025583 "FSPRMELT" 1025996 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-444 1022286 1022724 1023210 "FSPECF" 1024543 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-443 1003351 1012060 1012101 "FS" 1015985 NIL FS (NIL T) -9 NIL 1018274 NIL) (-442 991994 994987 999044 "FS-" 999344 NIL FS- (NIL T T) -8 NIL NIL NIL) (-441 991522 991576 991746 "FSINT" 991935 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-440 989814 990515 990818 "FSERIES" 991301 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-439 988856 988972 989196 "FSCINT" 989694 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-438 985064 987800 987841 "FSAGG" 988211 NIL FSAGG (NIL T) -9 NIL 988470 NIL) (-437 982826 983427 984223 "FSAGG-" 984318 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-436 981868 982011 982238 "FSAGG2" 982679 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-435 979546 979826 980374 "FS2UPS" 981586 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-434 979180 979223 979352 "FS2" 979497 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-433 978058 978229 978531 "FS2EXPXP" 979005 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-432 977484 977599 977751 "FRUTIL" 977938 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-431 968897 972979 974337 "FR" 976158 NIL FR (NIL T) -8 NIL NIL NIL) (-430 963911 966586 966626 "FRNAALG" 967946 NIL FRNAALG (NIL T) -9 NIL 968544 NIL) (-429 959584 960660 961935 "FRNAALG-" 962685 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-428 959222 959265 959392 "FRNAAF2" 959535 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-427 957597 958071 958367 "FRMOD" 959034 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-426 955340 955972 956290 "FRIDEAL" 957388 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-425 954531 954618 954909 "FRIDEAL2" 955247 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-424 953664 954078 954119 "FRETRCT" 954124 NIL FRETRCT (NIL T) -9 NIL 954300 NIL) (-423 952776 953007 953358 "FRETRCT-" 953363 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-422 949850 951060 951119 "FRAMALG" 952001 NIL FRAMALG (NIL T T) -9 NIL 952293 NIL) (-421 947984 948439 949069 "FRAMALG-" 949292 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-420 941627 947457 947734 "FRAC" 947739 NIL FRAC (NIL T) -8 NIL NIL NIL) (-419 941263 941320 941427 "FRAC2" 941564 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-418 940899 940956 941063 "FR2" 941200 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-417 935384 938278 938306 "FPS" 939425 T FPS (NIL) -9 NIL 939982 NIL) (-416 934833 934942 935106 "FPS-" 935252 NIL FPS- (NIL T) -8 NIL NIL NIL) (-415 932121 933790 933818 "FPC" 934043 T FPC (NIL) -9 NIL 934185 NIL) (-414 931914 931954 932051 "FPC-" 932056 NIL FPC- (NIL T) -8 NIL NIL NIL) (-413 930704 931402 931443 "FPATMAB" 931448 NIL FPATMAB (NIL T) -9 NIL 931600 NIL) (-412 928943 929446 929793 "FPARFRAC" 930420 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-411 924337 924835 925517 "FORTRAN" 928375 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-410 922053 922553 923092 "FORT" 923818 T FORT (NIL) -7 NIL NIL NIL) (-409 919729 920291 920319 "FORTFN" 921379 T FORTFN (NIL) -9 NIL 922003 NIL) (-408 919493 919543 919571 "FORTCAT" 919630 T FORTCAT (NIL) -9 NIL 919692 NIL) (-407 917599 918109 918499 "FORMULA" 919123 T FORMULA (NIL) -8 NIL NIL NIL) (-406 917387 917417 917486 "FORMULA1" 917563 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-405 916910 916962 917135 "FORDER" 917329 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-404 916006 916170 916363 "FOP" 916737 T FOP (NIL) -7 NIL NIL NIL) (-403 914587 915286 915460 "FNLA" 915888 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-402 913302 913717 913745 "FNCAT" 914205 T FNCAT (NIL) -9 NIL 914465 NIL) (-401 912841 913261 913289 "FNAME" 913294 T FNAME (NIL) -8 NIL NIL NIL) (-400 911377 912340 912368 "FMTC" 912373 T FMTC (NIL) -9 NIL 912409 NIL) (-399 910123 911313 911359 "FMONOID" 911364 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-398 906910 908078 908119 "FMONCAT" 909336 NIL FMONCAT (NIL T) -9 NIL 909941 NIL) (-397 906060 906652 906801 "FM" 906806 NIL FM (NIL T T) -8 NIL NIL NIL) (-396 903484 904130 904158 "FMFUN" 905302 T FMFUN (NIL) -9 NIL 906010 NIL) (-395 902753 902934 902962 "FMC" 903252 T FMC (NIL) -9 NIL 903434 NIL) (-394 899818 900678 900732 "FMCAT" 901927 NIL FMCAT (NIL T T) -9 NIL 902422 NIL) (-393 898684 899584 899684 "FM1" 899763 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-392 896458 896874 897368 "FLOATRP" 898235 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-391 890036 894187 894808 "FLOAT" 895857 T FLOAT (NIL) -8 NIL NIL NIL) (-390 887474 887974 888552 "FLOATCP" 889503 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-389 886122 887066 887107 "FLINEXP" 887112 NIL FLINEXP (NIL T) -9 NIL 887205 NIL) (-388 885276 885511 885839 "FLINEXP-" 885844 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-387 884352 884496 884720 "FLASORT" 885128 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-386 881454 882322 882374 "FLALG" 883601 NIL FLALG (NIL T T) -9 NIL 884068 NIL) (-385 875114 878863 878904 "FLAGG" 880166 NIL FLAGG (NIL T) -9 NIL 880818 NIL) (-384 873840 874179 874669 "FLAGG-" 874674 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-383 872882 873025 873252 "FLAGG2" 873693 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-382 869719 870727 870786 "FINRALG" 871914 NIL FINRALG (NIL T T) -9 NIL 872422 NIL) (-381 868879 869108 869447 "FINRALG-" 869452 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-380 868245 868484 868512 "FINITE" 868708 T FINITE (NIL) -9 NIL 868815 NIL) (-379 860588 862775 862815 "FINAALG" 866482 NIL FINAALG (NIL T) -9 NIL 867935 NIL) (-378 855920 856970 858114 "FINAALG-" 859493 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-377 855288 855675 855778 "FILE" 855850 NIL FILE (NIL T) -8 NIL NIL NIL) (-376 853932 854270 854324 "FILECAT" 855008 NIL FILECAT (NIL T T) -9 NIL 855224 NIL) (-375 851634 853162 853190 "FIELD" 853230 T FIELD (NIL) -9 NIL 853310 NIL) (-374 850254 850639 851150 "FIELD-" 851155 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-373 848104 848889 849236 "FGROUP" 849940 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-372 847194 847358 847578 "FGLMICPK" 847936 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-371 843026 847119 847176 "FFX" 847181 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-370 842627 842688 842823 "FFSLPE" 842959 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-369 838617 839399 840195 "FFPOLY" 841863 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-368 838121 838157 838366 "FFPOLY2" 838575 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-367 833967 838040 838103 "FFP" 838108 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-366 829365 833878 833942 "FF" 833947 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-365 824491 828708 828898 "FFNBX" 829219 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-364 819419 823626 823884 "FFNBP" 824345 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-363 814052 818703 818914 "FFNB" 819252 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-362 812884 813082 813397 "FFINTBAS" 813849 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-361 808910 811131 811159 "FFIELDC" 811779 T FFIELDC (NIL) -9 NIL 812155 NIL) (-360 807572 807943 808440 "FFIELDC-" 808445 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-359 807141 807187 807311 "FFHOM" 807514 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-358 804836 805323 805840 "FFF" 806656 NIL FFF (NIL T) -7 NIL NIL NIL) (-357 800454 804578 804679 "FFCGX" 804779 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-356 796076 800186 800293 "FFCGP" 800397 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-355 791259 795803 795911 "FFCG" 796012 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-354 770788 780991 781077 "FFCAT" 786242 NIL FFCAT (NIL T T T) -9 NIL 787693 NIL) (-353 765985 767033 768347 "FFCAT-" 769577 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-352 765396 765439 765674 "FFCAT2" 765936 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-351 754719 758368 759588 "FEXPR" 764248 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-350 753681 754116 754157 "FEVALAB" 754241 NIL FEVALAB (NIL T) -9 NIL 754502 NIL) (-349 752840 753050 753388 "FEVALAB-" 753393 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-348 751406 752223 752426 "FDIV" 752739 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-347 748412 749153 749268 "FDIVCAT" 750836 NIL FDIVCAT (NIL T T T T) -9 NIL 751273 NIL) (-346 748174 748201 748371 "FDIVCAT-" 748376 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-345 747394 747481 747758 "FDIV2" 748081 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-344 746368 746689 746891 "FCTRDATA" 747212 T FCTRDATA (NIL) -8 NIL NIL NIL) (-343 745054 745313 745602 "FCPAK1" 746099 T FCPAK1 (NIL) -7 NIL NIL NIL) (-342 744153 744554 744695 "FCOMP" 744945 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-341 727858 731303 734841 "FC" 740635 T FC (NIL) -8 NIL NIL NIL) (-340 720151 724179 724219 "FAXF" 726021 NIL FAXF (NIL T) -9 NIL 726713 NIL) (-339 717428 718085 718910 "FAXF-" 719375 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-338 712483 716804 716980 "FARRAY" 717285 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-337 707363 709430 709483 "FAMR" 710506 NIL FAMR (NIL T T) -9 NIL 710966 NIL) (-336 706253 706555 706990 "FAMR-" 706995 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-335 705422 706175 706228 "FAMONOID" 706233 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-334 703194 703904 703957 "FAMONC" 704898 NIL FAMONC (NIL T T) -9 NIL 705284 NIL) (-333 701858 702948 703085 "FAGROUP" 703090 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-332 699653 699972 700375 "FACUTIL" 701539 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-331 698752 698937 699159 "FACTFUNC" 699463 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-330 691174 698055 698254 "EXPUPXS" 698608 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-329 688657 689197 689783 "EXPRTUBE" 690608 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-328 684928 685520 686250 "EXPRODE" 687996 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-327 670412 683577 684006 "EXPR" 684532 NIL EXPR (NIL T) -8 NIL NIL NIL) (-326 664966 665553 666359 "EXPR2UPS" 669710 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-325 664598 664655 664764 "EXPR2" 664903 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-324 655595 663749 664040 "EXPEXPAN" 664434 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-323 655395 655552 655581 "EXIT" 655586 T EXIT (NIL) -8 NIL NIL NIL) (-322 654875 655119 655210 "EXITAST" 655324 T EXITAST (NIL) -8 NIL NIL NIL) (-321 654502 654564 654677 "EVALCYC" 654807 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-320 654043 654161 654202 "EVALAB" 654372 NIL EVALAB (NIL T) -9 NIL 654476 NIL) (-319 653524 653646 653867 "EVALAB-" 653872 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-318 650878 652180 652208 "EUCDOM" 652763 T EUCDOM (NIL) -9 NIL 653113 NIL) (-317 649283 649725 650315 "EUCDOM-" 650320 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-316 636822 639581 642331 "ESTOOLS" 646553 T ESTOOLS (NIL) -7 NIL NIL NIL) (-315 636454 636511 636620 "ESTOOLS2" 636759 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-314 636205 636247 636327 "ESTOOLS1" 636406 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-313 630228 631836 631864 "ES" 634632 T ES (NIL) -9 NIL 636042 NIL) (-312 625175 626462 628279 "ES-" 628443 NIL ES- (NIL T) -8 NIL NIL NIL) (-311 621549 622310 623090 "ESCONT" 624415 T ESCONT (NIL) -7 NIL NIL NIL) (-310 621294 621326 621408 "ESCONT1" 621511 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-309 620969 621019 621119 "ES2" 621238 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-308 620599 620657 620766 "ES1" 620905 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-307 619815 619944 620120 "ERROR" 620443 T ERROR (NIL) -7 NIL NIL NIL) (-306 613213 619674 619765 "EQTBL" 619770 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-305 605716 608527 609976 "EQ" 611797 NIL -2155 (NIL T) -8 NIL NIL NIL) (-304 605348 605405 605514 "EQ2" 605653 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-303 600639 601686 602779 "EP" 604287 NIL EP (NIL T) -7 NIL NIL NIL) (-302 599239 599530 599836 "ENV" 600353 T ENV (NIL) -8 NIL NIL NIL) (-301 598319 598873 598901 "ENTIRER" 598906 T ENTIRER (NIL) -9 NIL 598952 NIL) (-300 595013 596501 596862 "EMR" 598127 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-299 594143 594328 594382 "ELTAGG" 594762 NIL ELTAGG (NIL T T) -9 NIL 594973 NIL) (-298 593862 593924 594065 "ELTAGG-" 594070 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-297 593626 593655 593709 "ELTAB" 593793 NIL ELTAB (NIL T T) -9 NIL 593845 NIL) (-296 592752 592898 593097 "ELFUTS" 593477 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-295 592494 592550 592578 "ELEMFUN" 592683 T ELEMFUN (NIL) -9 NIL NIL NIL) (-294 592364 592385 592453 "ELEMFUN-" 592458 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-293 587153 590406 590447 "ELAGG" 591387 NIL ELAGG (NIL T) -9 NIL 591850 NIL) (-292 585438 585872 586535 "ELAGG-" 586540 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-291 584750 584887 585043 "ELABOR" 585302 T ELABOR (NIL) -8 NIL NIL NIL) (-290 583411 583690 583984 "ELABEXPR" 584476 T ELABEXPR (NIL) -8 NIL NIL NIL) (-289 576245 578048 578877 "EFUPXS" 582686 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-288 569693 571494 572305 "EFULS" 575520 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-287 567178 567536 568008 "EFSTRUC" 569325 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-286 556969 558535 560083 "EF" 565693 NIL EF (NIL T T) -7 NIL NIL NIL) (-285 556043 556454 556603 "EAB" 556840 T EAB (NIL) -8 NIL NIL NIL) (-284 555225 556002 556030 "E04UCFA" 556035 T E04UCFA (NIL) -8 NIL NIL NIL) (-283 554407 555184 555212 "E04NAFA" 555217 T E04NAFA (NIL) -8 NIL NIL NIL) (-282 553589 554366 554394 "E04MBFA" 554399 T E04MBFA (NIL) -8 NIL NIL NIL) (-281 552771 553548 553576 "E04JAFA" 553581 T E04JAFA (NIL) -8 NIL NIL NIL) (-280 551955 552730 552758 "E04GCFA" 552763 T E04GCFA (NIL) -8 NIL NIL NIL) (-279 551139 551914 551942 "E04FDFA" 551947 T E04FDFA (NIL) -8 NIL NIL NIL) (-278 550321 551098 551126 "E04DGFA" 551131 T E04DGFA (NIL) -8 NIL NIL NIL) (-277 544494 545846 547210 "E04AGNT" 548977 T E04AGNT (NIL) -7 NIL NIL NIL) (-276 543252 543795 543835 "DVARCAT" 544176 NIL DVARCAT (NIL T) -9 NIL 544339 NIL) (-275 542456 542668 542982 "DVARCAT-" 542987 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-274 535317 542255 542384 "DSMP" 542389 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-273 533740 534459 534500 "DSEXT" 534863 NIL DSEXT (NIL T) -9 NIL 535157 NIL) (-272 532025 532453 533119 "DSEXT-" 533124 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-271 526806 527970 529038 "DROPT" 530977 T DROPT (NIL) -8 NIL NIL NIL) (-270 526471 526530 526628 "DROPT1" 526741 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-269 521586 522712 523849 "DROPT0" 525354 T DROPT0 (NIL) -7 NIL NIL NIL) (-268 519931 520256 520642 "DRAWPT" 521220 T DRAWPT (NIL) -7 NIL NIL NIL) (-267 514518 515441 516520 "DRAW" 518905 NIL DRAW (NIL T) -7 NIL NIL NIL) (-266 514151 514204 514322 "DRAWHACK" 514459 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-265 512882 513151 513442 "DRAWCX" 513880 T DRAWCX (NIL) -7 NIL NIL NIL) (-264 512397 512466 512617 "DRAWCURV" 512808 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-263 502865 504827 506942 "DRAWCFUN" 510302 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-262 499604 501530 501571 "DQAGG" 502200 NIL DQAGG (NIL T) -9 NIL 502474 NIL) (-261 487069 493815 493898 "DPOLCAT" 495750 NIL DPOLCAT (NIL T T T T) -9 NIL 496295 NIL) (-260 481906 483254 485212 "DPOLCAT-" 485217 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-259 475253 481767 481865 "DPMO" 481870 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-258 468503 475033 475200 "DPMM" 475205 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-257 468073 468287 468376 "DOMTMPLT" 468434 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-256 467506 467875 467955 "DOMCTOR" 468013 T DOMCTOR (NIL) -8 NIL NIL NIL) (-255 466718 466986 467137 "DOMAIN" 467375 T DOMAIN (NIL) -8 NIL NIL NIL) (-254 460430 466353 466505 "DMP" 466619 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-253 458375 459497 459538 "DMEXT" 459543 NIL DMEXT (NIL T) -9 NIL 459719 NIL) (-252 457975 458031 458175 "DLP" 458313 NIL DLP (NIL T) -7 NIL NIL NIL) (-251 451800 457302 457492 "DLIST" 457817 NIL DLIST (NIL T) -8 NIL NIL NIL) (-250 448572 450625 450666 "DLAGG" 451216 NIL DLAGG (NIL T) -9 NIL 451446 NIL) (-249 447234 447898 447926 "DIVRING" 448018 T DIVRING (NIL) -9 NIL 448101 NIL) (-248 446471 446661 446961 "DIVRING-" 446966 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-247 444573 444930 445336 "DISPLAY" 446085 T DISPLAY (NIL) -7 NIL NIL NIL) (-246 438436 444487 444550 "DIRPROD" 444555 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 437284 437487 437752 "DIRPROD2" 438229 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-244 425959 431995 432048 "DIRPCAT" 432306 NIL DIRPCAT (NIL NIL T) -9 NIL 433181 NIL) (-243 423285 423927 424808 "DIRPCAT-" 425145 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-242 422572 422732 422918 "DIOSP" 423119 T DIOSP (NIL) -7 NIL NIL NIL) (-241 419202 421456 421497 "DIOPS" 421931 NIL DIOPS (NIL T) -9 NIL 422160 NIL) (-240 418751 418865 419056 "DIOPS-" 419061 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-239 417802 418430 418458 "DIFRING" 418463 T DIFRING (NIL) -9 NIL 418485 NIL) (-238 417474 417548 417576 "DIFFSPC" 417695 T DIFFSPC (NIL) -9 NIL 417770 NIL) (-237 417119 417197 417349 "DIFFSPC-" 417354 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-236 416175 416653 416694 "DIFFMOD" 416699 NIL DIFFMOD (NIL T) -9 NIL 416797 NIL) (-235 415883 415928 415969 "DIFFDOM" 416090 NIL DIFFDOM (NIL T) -9 NIL 416158 NIL) (-234 415736 415760 415844 "DIFFDOM-" 415849 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-233 413668 414940 414981 "DIFEXT" 414986 NIL DIFEXT (NIL T) -9 NIL 415139 NIL) (-232 410918 413172 413213 "DIAGG" 413218 NIL DIAGG (NIL T) -9 NIL 413238 NIL) (-231 410302 410459 410711 "DIAGG-" 410716 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-230 405674 409261 409538 "DHMATRIX" 410071 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-229 401286 402195 403205 "DFSFUN" 404684 T DFSFUN (NIL) -7 NIL NIL NIL) (-228 396364 400217 400529 "DFLOAT" 400994 T DFLOAT (NIL) -8 NIL NIL NIL) (-227 394627 394908 395297 "DFINTTLS" 396072 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-226 391656 392648 393048 "DERHAM" 394293 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-225 389460 391431 391520 "DEQUEUE" 391600 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-224 388714 388847 389030 "DEGRED" 389322 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-223 385144 385889 386735 "DEFINTRF" 387942 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-222 382699 383168 383760 "DEFINTEF" 384663 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-221 382049 382319 382434 "DEFAST" 382604 T DEFAST (NIL) -8 NIL NIL NIL) (-220 375765 381642 381792 "DECIMAL" 381919 T DECIMAL (NIL) -8 NIL NIL NIL) (-219 373277 373735 374241 "DDFACT" 375309 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-218 372873 372916 373067 "DBLRESP" 373228 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-217 372176 372643 372734 "DBASIS" 372822 NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-216 370044 370406 370767 "DBASE" 371942 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 369286 369524 369670 "DATAARY" 369943 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 368392 369245 369273 "D03FAFA" 369278 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 367499 368351 368379 "D03EEFA" 368384 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 365449 365915 366404 "D03AGNT" 367030 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 364738 365408 365436 "D02EJFA" 365441 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 364027 364697 364725 "D02CJFA" 364730 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 363316 363986 364014 "D02BHFA" 364019 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 362605 363275 363303 "D02BBFA" 363308 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 355802 357391 358997 "D02AGNT" 361019 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 353570 354093 354639 "D01WGTS" 355276 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 352637 353529 353557 "D01TRNS" 353562 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 351705 352596 352624 "D01GBFA" 352629 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 350773 351664 351692 "D01FCFA" 351697 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 349841 350732 350760 "D01ASFA" 350765 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 348909 349800 349828 "D01AQFA" 349833 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 347977 348868 348896 "D01APFA" 348901 T D01APFA (NIL) -8 NIL NIL NIL) (-199 347045 347936 347964 "D01ANFA" 347969 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 346113 347004 347032 "D01AMFA" 347037 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 345181 346072 346100 "D01ALFA" 346105 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 344249 345140 345168 "D01AKFA" 345173 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 343317 344208 344236 "D01AJFA" 344241 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 336612 338165 339726 "D01AGNT" 341776 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 335949 336077 336229 "CYCLOTOM" 336480 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 332682 333397 334124 "CYCLES" 335242 T CYCLES (NIL) -7 NIL NIL NIL) (-191 331994 332128 332299 "CVMP" 332543 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 329835 330093 330462 "CTRIGMNP" 331722 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 329271 329629 329702 "CTOR" 329782 T CTOR (NIL) -8 NIL NIL NIL) (-188 328780 329002 329103 "CTORKIND" 329190 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 328057 328373 328401 "CTORCAT" 328583 T CTORCAT (NIL) -9 NIL 328696 NIL) (-186 327655 327766 327925 "CTORCAT-" 327930 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 327117 327329 327437 "CTORCALL" 327579 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 326491 326590 326743 "CSTTOOLS" 327014 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 322290 322947 323705 "CRFP" 325803 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 321765 322011 322103 "CRCEAST" 322218 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 320812 320997 321225 "CRAPACK" 321569 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 320196 320297 320501 "CPMATCH" 320688 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 319921 319949 320055 "CPIMA" 320162 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 316269 316941 317660 "COORDSYS" 319256 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 315681 315802 315944 "CONTOUR" 316147 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 311572 313684 314176 "CONTFRAC" 315221 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 311452 311473 311501 "CONDUIT" 311538 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 310526 311080 311108 "COMRING" 311113 T COMRING (NIL) -9 NIL 311165 NIL) (-173 309580 309884 310068 "COMPPROP" 310362 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 309241 309276 309404 "COMPLPAT" 309539 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 298544 309050 309159 "COMPLEX" 309164 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 298180 298237 298344 "COMPLEX2" 298481 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 297519 297640 297800 "COMPILER" 298040 T COMPILER (NIL) -8 NIL NIL NIL) (-168 297237 297272 297370 "COMPFACT" 297478 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 279516 290941 290981 "COMPCAT" 291985 NIL COMPCAT (NIL T) -9 NIL 293333 NIL) (-166 269028 271955 275582 "COMPCAT-" 275938 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 268757 268785 268888 "COMMUPC" 268994 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 268551 268585 268644 "COMMONOP" 268718 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 268107 268302 268389 "COMM" 268484 T COMM (NIL) -8 NIL NIL NIL) (-162 267683 267911 267986 "COMMAAST" 268052 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 266932 267126 267154 "COMBOPC" 267492 T COMBOPC (NIL) -9 NIL 267667 NIL) (-160 265828 266038 266280 "COMBINAT" 266722 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 262285 262859 263486 "COMBF" 265250 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 261043 261401 261636 "COLOR" 262070 T COLOR (NIL) -8 NIL NIL NIL) (-157 260519 260764 260856 "COLONAST" 260971 T COLONAST (NIL) -8 NIL NIL NIL) (-156 260159 260206 260331 "CMPLXRT" 260466 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 259607 259859 259958 "CLLCTAST" 260080 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 255109 256137 257217 "CLIP" 258547 T CLIP (NIL) -7 NIL NIL NIL) (-153 253450 254210 254450 "CLIF" 254936 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 249600 251568 251609 "CLAGG" 252538 NIL CLAGG (NIL T) -9 NIL 253074 NIL) (-151 248022 248479 249062 "CLAGG-" 249067 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 247566 247651 247791 "CINTSLPE" 247931 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 245067 245538 246086 "CHVAR" 247094 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 244227 244781 244809 "CHARZ" 244814 T CHARZ (NIL) -9 NIL 244829 NIL) (-147 243981 244021 244099 "CHARPOL" 244181 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 243025 243612 243640 "CHARNZ" 243687 T CHARNZ (NIL) -9 NIL 243743 NIL) (-145 240931 241679 242032 "CHAR" 242692 T CHAR (NIL) -8 NIL NIL NIL) (-144 240657 240718 240746 "CFCAT" 240857 T CFCAT (NIL) -9 NIL NIL NIL) (-143 239898 240009 240192 "CDEN" 240541 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 235863 239051 239331 "CCLASS" 239638 T CCLASS (NIL) -8 NIL NIL NIL) (-141 235114 235271 235448 "CATEGORY" 235706 T -10 (NIL) -8 NIL NIL NIL) (-140 234687 235033 235081 "CATCTOR" 235086 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 234138 234390 234488 "CATAST" 234609 T CATAST (NIL) -8 NIL NIL NIL) (-138 233614 233859 233951 "CASEAST" 234066 T CASEAST (NIL) -8 NIL NIL NIL) (-137 228752 229771 230515 "CARTEN" 232926 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 227860 228008 228229 "CARTEN2" 228599 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 226176 227010 227267 "CARD" 227623 T CARD (NIL) -8 NIL NIL NIL) (-134 225752 225980 226055 "CAPSLAST" 226121 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 225242 225450 225478 "CACHSET" 225610 T CACHSET (NIL) -9 NIL 225688 NIL) (-132 224698 225020 225048 "CABMON" 225098 T CABMON (NIL) -9 NIL 225154 NIL) (-131 224171 224402 224512 "BYTEORD" 224608 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 223148 223700 223842 "BYTE" 224005 T BYTE (NIL) -8 NIL NIL 224127) (-129 218501 222653 222825 "BYTEBUF" 222996 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 216013 218193 218300 "BTREE" 218427 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 213465 215661 215783 "BTOURN" 215923 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 210810 212907 212948 "BTCAT" 213016 NIL BTCAT (NIL T) -9 NIL 213093 NIL) (-125 210477 210557 210706 "BTCAT-" 210711 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 205842 209723 209751 "BTAGG" 209865 T BTAGG (NIL) -9 NIL 209975 NIL) (-123 205332 205457 205663 "BTAGG-" 205668 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 202330 204610 204825 "BSTREE" 205149 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 201468 201594 201778 "BRILL" 202186 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 198095 200166 200207 "BRAGG" 200856 NIL BRAGG (NIL T) -9 NIL 201114 NIL) (-119 196624 197030 197585 "BRAGG-" 197590 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 189540 195968 196153 "BPADICRT" 196471 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 187855 189477 189522 "BPADIC" 189527 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 187553 187583 187697 "BOUNDZRO" 187819 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 182781 183979 184891 "BOP" 186661 T BOP (NIL) -8 NIL NIL NIL) (-114 180562 180966 181441 "BOP1" 182339 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 180263 180324 180352 "BOOLE" 180463 T BOOLE (NIL) -9 NIL 180545 NIL) (-112 179088 179837 179986 "BOOLEAN" 180134 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 178353 178757 178811 "BMODULE" 178816 NIL BMODULE (NIL T T) -9 NIL 178881 NIL) (-110 174154 178151 178224 "BITS" 178300 T BITS (NIL) -8 NIL NIL NIL) (-109 173575 173694 173834 "BINDING" 174034 T BINDING (NIL) -8 NIL NIL NIL) (-108 167294 173170 173319 "BINARY" 173446 T BINARY (NIL) -8 NIL NIL NIL) (-107 165049 166521 166562 "BGAGG" 166822 NIL BGAGG (NIL T) -9 NIL 166959 NIL) (-106 164880 164912 165003 "BGAGG-" 165008 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 163951 164264 164469 "BFUNCT" 164695 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 162641 162819 163107 "BEZOUT" 163775 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 159113 161493 161823 "BBTREE" 162344 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 158714 158792 158820 "BASTYPE" 158997 T BASTYPE (NIL) -9 NIL 159096 NIL) (-101 158390 158471 158606 "BASTYPE-" 158611 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 157824 157900 158052 "BALFACT" 158301 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 156680 157239 157425 "AUTOMOR" 157669 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 156406 156411 156437 "ATTREG" 156442 T ATTREG (NIL) -9 NIL NIL NIL) (-97 154658 155103 155455 "ATTRBUT" 156072 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 154266 154486 154552 "ATTRAST" 154610 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 153802 153915 153941 "ATRIG" 154142 T ATRIG (NIL) -9 NIL NIL NIL) (-94 153611 153652 153739 "ATRIG-" 153744 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 153242 153428 153454 "ASTCAT" 153459 T ASTCAT (NIL) -9 NIL 153489 NIL) (-92 152969 153028 153147 "ASTCAT-" 153152 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 151121 152745 152833 "ASTACK" 152912 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 149626 149923 150288 "ASSOCEQ" 150803 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 148658 149285 149409 "ASP9" 149533 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 148421 148606 148645 "ASP8" 148650 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 147289 148026 148168 "ASP80" 148310 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 146187 146924 147056 "ASP7" 147188 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 145141 145864 145982 "ASP78" 146100 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 144110 144821 144938 "ASP77" 145055 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 143022 143748 143879 "ASP74" 144010 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 141922 142657 142789 "ASP73" 142921 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 141026 141748 141848 "ASP6" 141853 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 139973 140703 140821 "ASP55" 140939 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 138922 139647 139766 "ASP50" 139885 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 138010 138623 138733 "ASP4" 138843 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 137098 137711 137821 "ASP49" 137931 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 135882 136637 136805 "ASP42" 136987 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 134659 135415 135585 "ASP41" 135769 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 133609 134336 134454 "ASP35" 134572 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 133374 133557 133596 "ASP34" 133601 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 133111 133178 133254 "ASP33" 133329 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 132005 132746 132878 "ASP31" 133010 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 131770 131953 131992 "ASP30" 131997 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 131505 131574 131650 "ASP29" 131725 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 131270 131453 131492 "ASP28" 131497 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 131035 131218 131257 "ASP27" 131262 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 130119 130733 130844 "ASP24" 130955 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 129196 129921 130033 "ASP20" 130038 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 128284 128897 129007 "ASP1" 129117 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 127227 127958 128077 "ASP19" 128196 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 126964 127031 127107 "ASP12" 127182 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 125816 126563 126707 "ASP10" 126851 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 123670 125660 125751 "ARRAY2" 125756 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 119438 123318 123432 "ARRAY1" 123587 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 118470 118643 118864 "ARRAY12" 119261 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 112757 114672 114747 "ARR2CAT" 117377 NIL ARR2CAT (NIL T T T) -9 NIL 118135 NIL) (-56 110191 110935 111889 "ARR2CAT-" 111894 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 109508 109818 109943 "ARITY" 110084 T ARITY (NIL) -8 NIL NIL NIL) (-54 108284 108436 108735 "APPRULE" 109344 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 107935 107983 108102 "APPLYORE" 108230 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 107289 107528 107648 "ANY" 107833 T ANY (NIL) -8 NIL NIL NIL) (-51 106567 106690 106847 "ANY1" 107163 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 104097 105004 105331 "ANTISYM" 106291 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 103589 103804 103900 "ANON" 104019 T ANON (NIL) -8 NIL NIL NIL) (-48 97589 102128 102582 "AN" 103153 T AN (NIL) -8 NIL NIL NIL) (-47 93473 94861 94912 "AMR" 95660 NIL AMR (NIL T T) -9 NIL 96260 NIL) (-46 92585 92806 93169 "AMR-" 93174 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 77030 92502 92563 "ALIST" 92568 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73835 76624 76793 "ALGSC" 76948 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70391 70945 71552 "ALGPKG" 73275 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 69668 69769 69953 "ALGMFACT" 70277 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 65703 66282 66876 "ALGMANIP" 69252 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55914 65329 65479 "ALGFF" 65636 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55110 55241 55420 "ALGFACT" 55772 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54037 54637 54675 "ALGEBRA" 54680 NIL ALGEBRA (NIL T) -9 NIL 54721 NIL) (-37 53755 53814 53946 "ALGEBRA-" 53951 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35692 51592 51644 "ALAGG" 51780 NIL ALAGG (NIL T T) -9 NIL 51941 NIL) (-35 35228 35341 35367 "AHYP" 35568 T AHYP (NIL) -9 NIL NIL NIL) (-34 34159 34407 34433 "AGG" 34932 T AGG (NIL) -9 NIL 35211 NIL) (-33 33593 33755 33969 "AGG-" 33974 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 31399 31822 32227 "AF" 33235 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30879 31124 31214 "ADDAST" 31327 T ADDAST (NIL) -8 NIL NIL NIL) (-30 30147 30406 30562 "ACPLOT" 30741 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18770 27079 27117 "ACFS" 27724 NIL ACFS (NIL T) -9 NIL 27963 NIL) (-28 16797 17287 18049 "ACFS-" 18054 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12901 14830 14856 "ACF" 15735 T ACF (NIL) -9 NIL 16148 NIL) (-26 11605 11939 12432 "ACF-" 12437 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11163 11358 11384 "ABELSG" 11476 T ABELSG (NIL) -9 NIL 11541 NIL) (-24 11030 11055 11121 "ABELSG-" 11126 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10359 10646 10672 "ABELMON" 10842 T ABELMON (NIL) -9 NIL 10954 NIL) (-22 10023 10107 10245 "ABELMON-" 10250 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9357 9729 9755 "ABELGRP" 9827 T ABELGRP (NIL) -9 NIL 9902 NIL) (-20 8820 8949 9165 "ABELGRP-" 9170 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8082 8121 "A1AGG" 8126 NIL A1AGG (NIL T) -9 NIL 8166 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 436640d0..94992f9d 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,31 +1,54 @@ -(731775 . 3486967789) +(732177 . 3487133929) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1701 *4))) - (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-657 *4)) (-4 *4 (-374)) (-4 *2 (-1265 *4)) - (-5 *1 (-942 *4 *2))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-816)))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1071))))) + (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) + (-4 *5 (-1268 *4)) + (-5 *2 (-660 (-2 (|:| |deg| (-787)) (|:| -3994 *5)))) + (-5 *1 (-825 *4 *5 *3 *6)) (-4 *3 (-672 *5)) + (-4 *6 (-672 (-420 *5)))))) +(((*1 *2) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-5 *2 (-705 (-420 *4)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) + (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-305 (-327 *5)))) + (-5 *1 (-1154 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-13 (-318) (-148))) + (-5 *2 (-660 (-305 (-327 *4)))) (-5 *1 (-1154 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-305 (-420 (-975 *5)))) (-5 *4 (-1201)) + (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-305 (-327 *5)))) + (-5 *1 (-1154 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-305 (-420 (-975 *4)))) (-4 *4 (-13 (-318) (-148))) + (-5 *2 (-660 (-305 (-327 *4)))) (-5 *1 (-1154 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-420 (-975 *5)))) (-5 *4 (-660 (-1201))) + (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-660 (-305 (-327 *5))))) + (-5 *1 (-1154 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-420 (-975 *4)))) (-4 *4 (-13 (-318) (-148))) + (-5 *2 (-660 (-660 (-305 (-327 *4))))) (-5 *1 (-1154 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-305 (-420 (-975 *5))))) (-5 *4 (-660 (-1201))) + (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-660 (-305 (-327 *5))))) + (-5 *1 (-1154 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-305 (-420 (-975 *4))))) + (-4 *4 (-13 (-318) (-148))) (-5 *2 (-660 (-660 (-305 (-327 *4))))) + (-5 *1 (-1154 *4))))) (((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-769))))) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-772))))) +(((*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| |endPointContinuity| @@ -39,10476 +62,9980 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1179 (-227))) + (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1685 + (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-571))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1180)) (-5 *5 (-702 (-227))) - (-5 *2 (-1057)) (-5 *1 (-760))))) + (-5 *1 (-572))))) (((*1 *2 *2 *3) - (-12 (-5 *1 (-692 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) - ((*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) - ((*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-657 *6)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1071)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 (-784))))) + (-12 (-5 *1 (-695 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *3 (-660 (-271))) + (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-271)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-481)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-481))))) +(((*1 *2 *3) + (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-999))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1037)) (-5 *2 (-880))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-660 (-305 *4))) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) + (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1268 *4)) (-5 *1 (-825 *4 *2 *3 *5)) + (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *3 (-672 *2)) + (-4 *5 (-672 (-420 *2)))))) +(((*1 *2) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-5 *2 (-705 (-420 *4)))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-171 (-228)))) (-5 *2 (-1060)) + (-5 *1 (-772))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) + ((*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-966 (-228))) (-5 *4 (-892)) (-5 *5 (-944)) + (-5 *2 (-1297)) (-5 *1 (-481)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-969 *4 *5 *3)) (-4 *4 (-1071)) (-4 *5 (-806)) - (-4 *3 (-862)) (-5 *2 (-784))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) - (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *1 (-1302 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-657 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1302 *5 *6 *7 *8))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-765))))) + (-12 (-5 *3 (-966 (-228))) (-5 *2 (-1297)) (-5 *1 (-481)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-660 (-966 (-228)))) (-5 *4 (-892)) (-5 *5 (-944)) + (-5 *2 (-1297)) (-5 *1 (-481))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1292 (-705 *4))) (-4 *4 (-174)) + (-5 *2 (-1292 (-705 (-975 *4)))) (-5 *1 (-191 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1129)) (-5 *3 (-790)) (-5 *1 (-52))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-52))))) +(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)))) + ((*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-999))))) (((*1 *2 *1) - (-12 (-4 *2 (-969 *3 *5 *4)) (-5 *1 (-1009 *3 *4 *5 *2)) - (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-806))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) -(((*1 *2 *3) - (-12 (-5 *3 (-419 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-568)) - (-4 *4 (-1071)) (-4 *2 (-1280 *4)) (-5 *1 (-1283 *4 *5 *6 *2)) - (-4 *6 (-669 *5))))) + (-12 (-4 *3 (-1242)) (-5 *2 (-660 *1)) (-4 *1 (-1035 *3))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -3363 (-660 (-2 (|:| |irr| *10) (|:| -3504 (-577))))))) + (-5 *6 (-660 *3)) (-5 *7 (-660 *8)) (-4 *8 (-865)) (-4 *3 (-318)) + (-4 *10 (-972 *3 *9 *8)) (-4 *9 (-809)) + (-5 *2 + (-2 (|:| |polfac| (-660 *10)) (|:| |correct| *3) + (|:| |corrfact| (-660 (-1197 *3))))) + (-5 *1 (-638 *8 *9 *3 *10)) (-5 *4 (-660 (-1197 *3)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) - (-5 *2 - (-2 (|:| A (-702 *5)) - (|:| |eqs| - (-657 - (-2 (|:| C (-702 *5)) (|:| |g| (-1289 *5)) (|:| -3989 *6) - (|:| |rh| *5)))))) - (-5 *1 (-826 *5 *6)) (-5 *3 (-702 *5)) (-5 *4 (-1289 *5)) - (-4 *6 (-669 *5)))) + (-12 (-4 *2 (-1268 *4)) (-5 *1 (-823 *4 *2 *3 *5)) + (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *3 (-672 *2)) + (-4 *5 (-672 (-420 *2))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-669 *5)) - (-5 *2 (-2 (|:| -3750 (-702 *6)) (|:| |vec| (-1289 *5)))) - (-5 *1 (-826 *5 *6)) (-5 *3 (-702 *6)) (-5 *4 (-1289 *5))))) + (-12 (-4 *2 (-1268 *4)) (-5 *1 (-823 *4 *2 *5 *3)) + (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *5 (-672 *2)) + (-4 *3 (-672 (-420 *2)))))) +(((*1 *2) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-5 *2 (-705 (-420 *4)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-271))) (-5 *1 (-1293)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-271))) (-5 *1 (-1293)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-271))) (-5 *1 (-1294)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-271))) (-5 *1 (-1294))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-702 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-702 *4)) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-702 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1126)) (-5 *3 (-787)) (-5 *1 (-52))))) -(((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-52))))) -(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)))) - ((*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-442 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1114 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1114 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1198))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-480)) (-5 *3 (-657 (-270))) (-5 *1 (-1290)))) - ((*1 *1 *1) (-5 *1 (-1290)))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) - (-5 *5 (-1116 (-227))) (-5 *6 (-657 (-270))) (-5 *2 (-1155 (-227))) - (-5 *1 (-710)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-227))) - (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-710)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1155 (-227))) (-5 *3 (-1 (-963 (-227)) (-227) (-227))) - (-5 *4 (-1116 (-227))) (-5 *5 (-657 (-270))) (-5 *1 (-710))))) -(((*1 *1 *1 *1) (-4 *1 (-989)))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-270))) (-5 *1 (-1290)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 (-270))) (-5 *1 (-1290)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-270))) (-5 *1 (-1291)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 (-270))) (-5 *1 (-1291))))) + (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) + ((*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-112)) (-5 *5 (-705 (-171 (-228)))) + (-5 *2 (-1060)) (-5 *1 (-771))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-966 (-228))) (-5 *2 (-1297)) (-5 *1 (-481))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-660 (-112)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *1 (-1237 *3)) + (-4 *3 (-999))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-5 *2 (-577))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1239)) - (-4 *5 (-1239)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-784)) - (-4 *7 (-1239)) (-4 *5 (-1239)) (-5 *2 (-245 *6 *5)) - (-5 *1 (-244 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1239)) (-4 *5 (-1239)) - (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1122)) (-4 *5 (-1122)) - (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-657 *6)) (-4 *6 (-1239)) - (-4 *5 (-1239)) (-5 *2 (-657 *5)) (-5 *1 (-655 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-978 *6)) (-4 *6 (-1239)) - (-4 *5 (-1239)) (-5 *2 (-978 *5)) (-5 *1 (-977 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1179 *6)) (-4 *6 (-1239)) - (-4 *3 (-1239)) (-5 *2 (-1179 *3)) (-5 *1 (-1177 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1289 *6)) (-4 *6 (-1239)) - (-4 *5 (-1239)) (-5 *2 (-1289 *5)) (-5 *1 (-1288 *6 *5))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) - (-5 *2 (-1057)) (-5 *1 (-765))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-712)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-712))))) + (-12 (-5 *4 (-787)) (-5 *5 (-660 *3)) (-4 *3 (-318)) (-4 *6 (-865)) + (-4 *7 (-809)) (-5 *2 (-112)) (-5 *1 (-638 *6 *7 *3 *8)) + (-4 *8 (-972 *3 *7 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) + (-4 *5 (-1268 *4)) (-5 *2 (-660 (-2 (|:| -3693 *5) (|:| -2448 *5)))) + (-5 *1 (-823 *4 *5 *3 *6)) (-4 *3 (-672 *5)) + (-4 *6 (-672 (-420 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) + (-4 *4 (-1268 *5)) (-5 *2 (-660 (-2 (|:| -3693 *4) (|:| -2448 *4)))) + (-5 *1 (-823 *5 *4 *3 *6)) (-4 *3 (-672 *4)) + (-4 *6 (-672 (-420 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) + (-4 *5 (-1268 *4)) (-5 *2 (-660 (-2 (|:| -3693 *5) (|:| -2448 *5)))) + (-5 *1 (-823 *4 *5 *6 *3)) (-4 *6 (-672 *5)) + (-4 *3 (-672 (-420 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) + (-4 *4 (-1268 *5)) (-5 *2 (-660 (-2 (|:| -3693 *4) (|:| -2448 *4)))) + (-5 *1 (-823 *5 *4 *6 *3)) (-4 *6 (-672 *4)) + (-4 *3 (-672 (-420 *4)))))) +(((*1 *2) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-5 *2 (-705 (-420 *4)))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-112)) (-5 *5 (-705 (-228))) + (-5 *2 (-1060)) (-5 *1 (-771))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) + ((*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *3 (-660 (-892))) + (-5 *1 (-481))))) +(((*1 *2 *3) (-12 (-5 *3 (-519)) (-5 *2 (-707 (-189))) (-5 *1 (-189))))) +(((*1 *2 *1) (-12 (-5 *1 (-1237 *2)) (-4 *2 (-999))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-4 *3 (-1125)) + (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 (-1198))) - (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 (-1198))) - (-14 *4 (-657 (-1198))) (-4 *5 (-399))))) + (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) + (-4 *6 (-1090 *3 *4 *5)) (-5 *1 (-637 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *2 (-1134 *3 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-326 (-227)))) (-5 *4 (-784)) - (-5 *2 (-702 (-227))) (-5 *1 (-276))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1198)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1198)) (-5 *2 (-112)) (-5 *1 (-624 *4)) - (-4 *4 (-1122)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1122)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1122)) (-5 *2 (-112)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1122)) (-5 *2 (-112)) (-5 *1 (-903 *5 *3 *4)) - (-4 *3 (-902 *5)) (-4 *4 (-626 (-908 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *6)) (-4 *6 (-902 *5)) (-4 *5 (-1122)) - (-5 *2 (-112)) (-5 *1 (-903 *5 *6 *4)) (-4 *4 (-626 (-908 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) + (|partial| -12 (-5 *4 (-420 *2)) (-4 *2 (-1268 *5)) + (-5 *1 (-823 *5 *2 *3 *6)) + (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) + (-4 *3 (-672 *2)) (-4 *6 (-672 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-660 (-420 *2))) (-4 *2 (-1268 *5)) + (-5 *1 (-823 *5 *2 *3 *6)) + (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *3 (-672 *2)) + (-4 *6 (-672 (-420 *2)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) + (-5 *2 (-2 (|:| |num| (-1292 *4)) (|:| |den| *4)))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-228)) + (-5 *2 (-1060)) (-5 *1 (-771)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-401)) + (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-771))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) - (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) + ((*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *2 (-660 (-228))) + (-5 *1 (-481))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1242)) (-5 *1 (-184 *3 *2)) (-4 *2 (-690 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) + (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) + (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -3952 *9)))) + (-5 *4 (-787)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) + (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-1297)) + (-5 *1 (-1094 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -3952 *9)))) + (-5 *4 (-787)) (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1134 *5 *6 *7 *8)) + (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-1297)) + (-5 *1 (-1170 *5 *6 *7 *8 *9))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-4 *3 (-1125)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-669 *4)) (-4 *4 (-354 *5 *6 *7)) + (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-5 *2 - (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) - (-5 *1 (-207))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4060 (-660 *4)))) + (-5 *1 (-822 *5 *6 *7 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-569)) (-5 *1 (-636 *2 *3)) (-4 *3 (-1268 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) + (-5 *2 (-2 (|:| |num| (-1292 *4)) (|:| |den| *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1071)) (-4 *5 (-1265 *4)) (-5 *2 (-1 *6 (-657 *6))) - (-5 *1 (-1283 *4 *5 *3 *6)) (-4 *3 (-669 *5)) (-4 *6 (-1280 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) - ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1021 *3)) (-4 *3 (-174)) (-5 *1 (-812 *3))))) + (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 (-660 *3)) (-5 *1 (-1153 *4 *3)) (-4 *4 (-1268 *3))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-112)) (-5 *6 (-705 (-228))) + (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-771))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) + ((*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1242)) (-5 *2 (-787)) (-5 *1 (-184 *4 *3)) + (-4 *3 (-690 *4))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1090 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-809)) + (-4 *8 (-865)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1436 (-660 *9)))) + (-5 *3 (-660 *9)) (-4 *1 (-1235 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1090 *5 *6 *7)) + (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -1436 (-660 *8)))) + (-5 *3 (-660 *8)) (-4 *1 (-1235 *5 *6 *7 *8))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-660 *1)) (|has| *1 (-6 -4471)) (-4 *1 (-1035 *3)) + (-4 *3 (-1242))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1201)) + (-4 *4 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-635 *4 *2)) (-4 *2 (-13 (-1227) (-982) (-29 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1201)) + (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-820 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1227) (-982)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1292 *3)) (-4 *3 (-1268 *4)) (-4 *4 (-1246)) + (-4 *1 (-354 *4 *3 *5)) (-4 *5 (-1268 (-420 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 (-660 *3)) (-5 *1 (-1153 *4 *3)) (-4 *4 (-1268 *3))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) + (-5 *2 (-1060)) (-5 *1 (-771))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) + ((*1 *2) (-12 (-5 *2 (-927 (-577))) (-5 *1 (-940))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1060 (-576)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1224) (-442 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-568) (-1060 (-576)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) - (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-1228 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-941)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-735)) (-5 *2 (-784))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-1 (-227) (-227) (-227) (-227))) - (-5 *2 (-1 (-963 (-227)) (-227) (-227))) (-5 *1 (-710))))) -(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) - ((*1 *2 *3) - (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) - (-5 *1 (-755 *4 *5 *6 *3)) (-4 *3 (-969 *6 *4 *5)))) + (|partial| -12 (-4 *3 (-1242)) (-5 *1 (-184 *3 *2)) + (-4 *2 (-690 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-660 *6))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1035 *2)) (-4 *2 (-1242))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-148) (-27) (-1063 (-577)) (-1063 (-420 (-577))))) + (-4 *5 (-1268 *4)) (-5 *2 (-1197 (-420 *5))) (-5 *1 (-628 *4 *5)) + (-5 *3 (-420 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1268 *5)) + (-4 *5 (-13 (-148) (-27) (-1063 (-577)) (-1063 (-420 (-577))))) + (-5 *2 (-1197 (-420 *6))) (-5 *1 (-628 *5 *6)) (-5 *3 (-420 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1201)) + (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) + (-5 *1 (-820 *4 *2)) (-4 *2 (-13 (-29 *4) (-1227) (-982)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-354 *4 *5 *6)) (-4 *4 (-1246)) + (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) + (-5 *2 (-2 (|:| |num| (-705 *5)) (|:| |den| *5)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-543 *3)) (-4 *3 (-13 (-742) (-25)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 (-660 *3)) (-5 *1 (-1153 *4 *3)) (-4 *4 (-1268 *3))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) + (-5 *1 (-771))))) +(((*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) ((*1 *2 *3) - (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)) - (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-430 (-1194 *7))) - (-5 *1 (-755 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) + (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-480))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-375) (-864))) + (-5 *2 (-2 (|:| |start| *3) (|:| -3363 (-431 *3)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) + (-5 *2 (-2 (|:| -2045 (-660 *6)) (|:| -3253 (-660 *6))))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) + (-5 *2 (-420 (-577))))) ((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *2 (-430 *1)) (-4 *1 (-969 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-464)) (-5 *2 (-430 *3)) - (-5 *1 (-1001 *4 *5 *6 *3)) (-4 *3 (-969 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-464)) - (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-430 (-1194 (-419 *7)))) - (-5 *1 (-1193 *4 *5 *6 *7)) (-5 *3 (-1194 (-419 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1243)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1268 *4 *3)) - (-4 *3 (-13 (-1265 *4) (-568) (-10 -8 (-15 -3436 ($ $ $))))))) + (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-431 *3)) (-4 *3 (-558)) + (-4 *3 (-569)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-558)) (-5 *2 (-420 (-577))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-813 *3)) (-4 *3 (-174)) (-4 *3 (-558)) + (-5 *2 (-420 (-577))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-849 *3)) (-4 *3 (-558)) + (-4 *3 (-1125)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-859 *3)) (-4 *3 (-558)) + (-4 *3 (-1125)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1022 *3)) (-4 *3 (-174)) (-4 *3 (-558)) + (-5 *2 (-420 (-577))))) ((*1 *2 *3) - (-12 (-5 *3 (-1068 *4 *5)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) - (-14 *5 (-657 (-1198))) - (-5 *2 - (-657 (-1168 *4 (-543 (-879 *6)) (-879 *6) (-793 *4 (-879 *6))))) - (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-657 (-1198)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-972 (-576))) (-5 *3 (-1198)) - (-5 *4 (-1116 (-419 (-576)))) (-5 *1 (-30))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-784)) (-5 *1 (-228)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-171 (-227))) (-5 *3 (-784)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1161)))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1057)) - (-5 *1 (-761))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) - (-4 *5 (-13 (-1060 (-576)) (-464) (-652 (-576)))) - (-5 *2 (-2 (|:| -3974 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) - (-4 *3 (-13 (-27) (-1224) (-442 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1265 (-419 *2))) - (-4 *2 (-1265 *5)) (-5 *1 (-217 *5 *2 *6 *3)) - (-4 *3 (-353 *5 *2 *6))))) + (|partial| -12 (-5 *2 (-420 (-577))) (-5 *1 (-1033 *3)) + (-4 *3 (-1063 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-657 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-310)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-315))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-657 (-1198))) (-4 *2 (-174)) - (-4 *3 (-243 (-3440 *4) (-784))) - (-14 *6 - (-1 (-112) (-2 (|:| -3178 *5) (|:| -1801 *3)) - (-2 (|:| -3178 *5) (|:| -1801 *3)))) - (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-862)) - (-4 *7 (-969 *2 *3 (-879 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-2 (|:| |val| (-657 *8)) (|:| -3946 *9)))) - (-5 *4 (-784)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1093 *5 *6 *7 *8)) - (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-1294)) - (-5 *1 (-1091 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-2 (|:| |val| (-657 *8)) (|:| -3946 *9)))) - (-5 *4 (-784)) (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1131 *5 *6 *7 *8)) - (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-1294)) - (-5 *1 (-1167 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-704 (-109))) (-5 *1 (-177)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-704 (-109))) (-5 *1 (-1107))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) - (-4 *6 (-384 *3)) (-5 *1 (-701 *3 *5 *6 *2)) - (-4 *2 (-700 *3 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-97))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-697 *4 *5 *6)) (-4 *4 (-1122))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-1202))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1164 *4 *2)) (-14 *4 (-941)) - (-4 *2 (-13 (-1071) (-10 -7 (-6 (-4468 "*"))))) - (-5 *1 (-922 *4 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *1 *1) (-4 *1 (-1166)))) -(((*1 *2 *1) - (-12 (-5 *2 (-704 (-888 (-986 *3) (-986 *3)))) (-5 *1 (-986 *3)) - (-4 *3 (-1122))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1166)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1071))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-764))))) + (|partial| -12 (-5 *3 (-625 *4)) (-4 *4 (-1125)) (-4 *2 (-1125)) + (-5 *1 (-624 *2 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) - (-4 *5 (-1265 *4)) (-5 *2 (-657 (-666 (-419 *5)))) - (-5 *1 (-670 *4 *5)) (-5 *3 (-666 (-419 *5)))))) -(((*1 *1 *1) (-4 *1 (-1082))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-836)) (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-799))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-986 *2)) (-4 *2 (-1122))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) + (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (-5 *2 + (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) + (|:| |expense| (-391)) (|:| |accuracy| (-391)) + (|:| |intermediateResults| (-391)))) + (-5 *1 (-819))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-375) (-1227) (-1027))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1246)) (-4 *5 (-1268 (-420 *2))) + (-4 *2 (-1268 *4)) (-5 *1 (-353 *3 *4 *2 *5)) + (-4 *3 (-354 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-354 *3 *2 *4)) (-4 *3 (-1246)) + (-4 *4 (-1268 (-420 *2))) (-4 *2 (-1268 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-657 *3)) (-4 *3 (-1131 *5 *6 *7 *8)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *8 (-1087 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-603 *5 *6 *7 *8 *3))))) -(((*1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-340))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-739) (-25)))))) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 + (-2 (|:| |solns| (-660 *5)) + (|:| |maps| (-660 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1153 *3 *5)) (-4 *3 (-1268 *5))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-771))))) +(((*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940))))) +(((*1 *2 *3) + (-12 (-5 *3 (-944)) (-5 *2 (-1292 (-1292 (-577)))) (-5 *1 (-479))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-375) (-864))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1268 (-171 *2)))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-657 *1)) (-4 *1 (-1087 *4 *5 *6)) (-4 *4 (-1071)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)))) + (-12 (-5 *3 (-660 *1)) (-4 *1 (-1090 *4 *5 *6)) (-4 *4 (-1074)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-806)) - (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1060 *4)) (-4 *3 (-568))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-784)) (-4 *4 (-1071)) (-5 *1 (-1261 *4 *2)) - (-4 *2 (-1265 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-132)) - (-4 *3 (-805))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-112)) (-5 *1 (-842))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-130))) - ((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) - (-4 *4 (-174)))) - ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559))) - ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561))) - ((*1 *1) (-4 *1 (-739))) ((*1 *1) (-5 *1 (-1198))) - ((*1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-941)))) - ((*1 *1) (-12 (-5 *1 (-1205 *2)) (-14 *2 (-941)))) - ((*1 *1) (-5 *1 (-1244))) ((*1 *1) (-5 *1 (-1245))) - ((*1 *1) (-5 *1 (-1246))) ((*1 *1) (-5 *1 (-1247)))) -(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-390))) - ((*1 *1) (-5 *1 (-390)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179 (-1179 *4))) (-5 *2 (-1179 *4)) (-5 *1 (-1182 *4)) - (-4 *4 (-1071))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1060 (-576)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1224) (-442 (-171 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3)))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4467)) (-4 *1 (-249 *2)) (-4 *2 (-1239))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1985 (-657 *4)))) - (-5 *1 (-1146 *5 *6 *4 *3)) (-4 *3 (-700 *5 *6 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1132)) (-5 *3 (-576))))) -(((*1 *1) (-5 *1 (-571)))) + (-12 (-4 *1 (-1235 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-809)) + (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) - (-5 *2 (-1194 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-129))))) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-431 *3)) (-4 *3 (-558)) (-4 *3 (-569)))) + ((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-813 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-558)) (-4 *3 (-1125)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-859 *3)) (-4 *3 (-558)) (-4 *3 (-1125)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1022 *3)) (-4 *3 (-174)) (-4 *3 (-558)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1033 *3)) (-4 *3 (-1063 (-420 (-577))))))) (((*1 *2 *3) - (-12 (-5 *3 (-657 *2)) (-4 *2 (-1265 *4)) (-5 *1 (-551 *4 *2 *5 *6)) - (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-784)))))) -(((*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1122)) (-5 *2 (-784))))) + (-12 (-5 *2 (-625 *4)) (-5 *1 (-624 *3 *4)) (-4 *3 (-1125)) + (-4 *4 (-1125))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-660 + (-2 + (|:| -4295 + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1292 (-327 (-228)))) + (|:| |yinit| (-660 (-228))) (|:| |intvals| (-660 (-228))) + (|:| |g| (-327 (-228))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (|:| -4444 + (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) + (|:| |expense| (-391)) (|:| |accuracy| (-391)) + (|:| |intermediateResults| (-391))))))) + (-5 *1 (-819))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1246)) (-4 *5 (-1268 (-420 *2))) + (-4 *2 (-1268 *4)) (-5 *1 (-353 *3 *4 *2 *5)) + (-4 *3 (-354 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-354 *3 *2 *4)) (-4 *3 (-1246)) + (-4 *4 (-1268 (-420 *2))) (-4 *2 (-1268 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-1289 (-657 (-576)))) (-5 *1 (-492)))) + (-12 (-5 *3 (-787)) (-5 *2 (-1292 (-660 (-577)))) (-5 *1 (-493)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -3071 *4) (|:| -3265 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-802)) (-5 *5 (-576))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1292 *4)) (-5 *3 (-705 *4)) (-4 *4 (-375)) + (-5 *1 (-683 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-375)) + (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4471)))) + (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4471)))) + (-5 *1 (-684 *4 *5 *2 *3)) (-4 *3 (-703 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-660 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-375)) + (-5 *1 (-830 *2 *3)) (-4 *3 (-672 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *1 (-1153 *3 *2)) (-4 *3 (-1268 *2))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-771))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 (-944))) (-5 *2 (-927 (-577))) (-5 *1 (-940))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1292 (-1292 (-577)))) (-5 *3 (-944)) (-5 *1 (-479))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-549))))) (((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| - (-2 (|:| |var| (-1198)) - (|:| |arrayIndex| (-657 (-972 (-576)))) + (-2 (|:| |var| (-1201)) + (|:| |arrayIndex| (-660 (-975 (-577)))) (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -2994 (-877)))))) + (-2 (|:| |ints2Floats?| (-112)) (|:| -3035 (-880)))))) (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1198)) (|:| |rand| (-877)) + (-2 (|:| |var| (-1201)) (|:| |rand| (-880)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| - (-2 (|:| |switch| (-1197)) (|:| |thenClause| (-340)) - (|:| |elseClause| (-340)))) + (-2 (|:| |switch| (-1200)) (|:| |thenClause| (-341)) + (|:| |elseClause| (-341)))) (|:| |returnBranch| - (-2 (|:| -3387 (-112)) - (|:| -3071 - (-2 (|:| |ints2Floats?| (-112)) (|:| -2994 (-877)))))) - (|:| |blockBranch| (-657 (-340))) - (|:| |commentBranch| (-657 (-1180))) (|:| |callBranch| (-1180)) + (-2 (|:| -3697 (-112)) + (|:| -3115 + (-2 (|:| |ints2Floats?| (-112)) (|:| -3035 (-880)))))) + (|:| |blockBranch| (-660 (-341))) + (|:| |commentBranch| (-660 (-1183))) (|:| |callBranch| (-1183)) (|:| |forBranch| - (-2 (|:| -1685 (-1114 (-972 (-576)))) - (|:| |span| (-972 (-576))) (|:| -2687 (-340)))) - (|:| |labelBranch| (-1142)) - (|:| |loopBranch| (-2 (|:| |switch| (-1197)) (|:| -2687 (-340)))) + (-2 (|:| -4071 (-1117 (-975 (-577)))) + (|:| |span| (-975 (-577))) (|:| -2724 (-341)))) + (|:| |labelBranch| (-1145)) + (|:| |loopBranch| (-2 (|:| |switch| (-1200)) (|:| -2724 (-341)))) (|:| |commonBranch| - (-2 (|:| -2676 (-1198)) (|:| |contents| (-657 (-1198))))) - (|:| |printBranch| (-657 (-877))))) - (-5 *1 (-340))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1265 *4)) (-5 *1 (-820 *4 *2 *3 *5)) - (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *3 (-669 *2)) - (-4 *5 (-669 (-419 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1265 *4)) (-5 *1 (-820 *4 *2 *5 *3)) - (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *5 (-669 *2)) - (-4 *3 (-669 (-419 *2)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-548))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-963 (-227)) (-227) (-227))) - (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-784)) (-4 *1 (-1265 *3)) (-4 *3 (-1071))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1122)) (-5 *2 (-55))))) + (-2 (|:| -2713 (-1201)) (|:| |contents| (-660 (-1201))))) + (|:| |printBranch| (-660 (-880))))) + (-5 *1 (-341))))) +(((*1 *2 *3) + (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) + (-4 *4 (-13 (-375) (-864))) (-4 *3 (-1268 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) - (-5 *2 (-784)))) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-558)) + (-5 *2 (-420 (-577))))) ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) - (-5 *2 (-784)))) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-431 *3)) (-4 *3 (-558)) + (-4 *3 (-569)))) + ((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-420 (-577))))) ((*1 *2 *1) - (-12 (-5 *2 (-784)) (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) - (-4 *4 (-739))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-5 *2 (-657 (-1203))) (-5 *1 (-1158))))) + (-12 (-4 *1 (-813 *3)) (-4 *3 (-174)) (-4 *3 (-558)) + (-5 *2 (-420 (-577))))) + ((*1 *2 *1) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-849 *3)) (-4 *3 (-558)) + (-4 *3 (-1125)))) + ((*1 *2 *1) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-859 *3)) (-4 *3 (-558)) + (-4 *3 (-1125)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1022 *3)) (-4 *3 (-174)) (-4 *3 (-558)) + (-5 *2 (-420 (-577))))) + ((*1 *2 *3) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1033 *3)) (-4 *3 (-1063 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1227)))) + ((*1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-865)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1125))))) +(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-819))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1268 *4)) (-4 *4 (-1246)) + (-4 *6 (-1268 (-420 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-354 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1122)) (-4 *5 (-1122)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-696 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-657 (-390))) (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) - (-14 *4 *2)))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-657 (-112))) (-5 *7 (-702 (-227))) - (-5 *8 (-702 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) - (-5 *2 (-1057)) (-5 *1 (-767))))) + (-12 (-5 *3 (-1183)) (-5 *2 (-660 (-1206))) (-5 *1 (-1161))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-503)) (-5 *4 (-974)) (-5 *2 (-704 (-545))) - (-5 *1 (-545)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-974)) (-4 *3 (-1122)) (-5 *2 (-704 *1)) - (-4 *1 (-780 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 (-430 (-1194 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) - (-4 *3 (-1265 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-5 *2 (-1294)) (-5 *1 (-1201)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) - (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-5 *2 (-1294)) - (-5 *1 (-1201)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1198)) - (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-5 *2 (-1294)) - (-5 *1 (-1201))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-764))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-657 (-1194 *11))) (-5 *3 (-1194 *11)) - (-5 *4 (-657 *10)) (-5 *5 (-657 *8)) (-5 *6 (-657 (-784))) - (-5 *7 (-1289 (-657 (-1194 *8)))) (-4 *10 (-862)) - (-4 *8 (-317)) (-4 *11 (-969 *8 *9 *10)) (-4 *9 (-806)) - (-5 *1 (-720 *9 *10 *8 *11))))) -(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) + (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 (-1182 *7))) (-4 *6 (-865)) + (-4 *7 (-972 *5 (-544 *6) *6)) (-4 *5 (-1074)) + (-5 *2 (-1 (-1182 *7) *7)) (-5 *1 (-1151 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-771))))) +(((*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-865)) (-4 *5 (-809)) + (-4 *6 (-569)) (-4 *7 (-972 *6 *5 *3)) + (-5 *1 (-475 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1063 (-420 (-577))) (-375) + (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) + (-15 -1637 (*7 $)))))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-375) (-864))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1268 (-171 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-375) (-864))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1268 (-171 *2)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-1074)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-1074))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1242))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1031))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1083 (-1046 *3) (-1194 (-1046 *3)))) - (-5 *1 (-1046 *3)) (-4 *3 (-13 (-861) (-374) (-1044)))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-888 (-941) (-941)))) (-5 *1 (-993))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) - (-5 *2 (-657 (-2 (|:| C (-702 *5)) (|:| |g| (-1289 *5))))) - (-5 *1 (-1000 *5)) (-5 *3 (-702 *5)) (-5 *4 (-1289 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-1116 (-856 (-227)))) (-5 *1 (-315))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1122))))) -(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1208))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-5 *2 (-702 (-419 *4)))))) + (|partial| -12 (-5 *2 (-1201)) (-5 *1 (-625 *3)) (-4 *3 (-1125))))) +(((*1 *1) (-5 *1 (-819)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1201)) (-4 *5 (-1246)) (-4 *6 (-1268 *5)) + (-4 *7 (-1268 (-420 *6))) (-5 *2 (-660 (-975 *5))) + (-5 *1 (-353 *4 *5 *6 *7)) (-4 *4 (-354 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1201)) (-4 *1 (-354 *4 *5 *6)) (-4 *4 (-1246)) + (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) (-4 *4 (-375)) + (-5 *2 (-660 (-975 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-702 *8)) (-4 *8 (-969 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) - (-4 *7 (-806)) + (-12 (-4 *5 (-318)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5)) (-5 *2 - (-657 - (-2 (|:| |eqzro| (-657 *8)) (|:| |neqzro| (-657 *8)) - (|:| |wcond| (-657 (-972 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1289 (-419 (-972 *5)))) - (|:| -1985 (-657 (-1289 (-419 (-972 *5)))))))))) - (-5 *1 (-944 *5 *6 *7 *8)) (-5 *4 (-657 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-702 *8)) (-5 *4 (-657 (-1198))) (-4 *8 (-969 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) - (-4 *7 (-806)) - (-5 *2 - (-657 - (-2 (|:| |eqzro| (-657 *8)) (|:| |neqzro| (-657 *8)) - (|:| |wcond| (-657 (-972 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1289 (-419 (-972 *5)))) - (|:| -1985 (-657 (-1289 (-419 (-972 *5)))))))))) - (-5 *1 (-944 *5 *6 *7 *8)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4060 (-660 *4)))) + (-5 *1 (-1149 *5 *6 *4 *3)) (-4 *3 (-703 *5 *6 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-771))))) +(((*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) ((*1 *2 *3) - (-12 (-5 *3 (-702 *7)) (-4 *7 (-969 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) - (-4 *6 (-806)) - (-5 *2 - (-657 - (-2 (|:| |eqzro| (-657 *7)) (|:| |neqzro| (-657 *7)) - (|:| |wcond| (-657 (-972 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1289 (-419 (-972 *4)))) - (|:| -1985 (-657 (-1289 (-419 (-972 *4)))))))))) - (-5 *1 (-944 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-702 *9)) (-5 *5 (-941)) (-4 *9 (-969 *6 *8 *7)) - (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1198)))) - (-4 *8 (-806)) - (-5 *2 - (-657 - (-2 (|:| |eqzro| (-657 *9)) (|:| |neqzro| (-657 *9)) - (|:| |wcond| (-657 (-972 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1289 (-419 (-972 *6)))) - (|:| -1985 (-657 (-1289 (-419 (-972 *6)))))))))) - (-5 *1 (-944 *6 *7 *8 *9)) (-5 *4 (-657 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-702 *9)) (-5 *4 (-657 (-1198))) (-5 *5 (-941)) - (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-862) (-626 (-1198)))) (-4 *8 (-806)) - (-5 *2 - (-657 - (-2 (|:| |eqzro| (-657 *9)) (|:| |neqzro| (-657 *9)) - (|:| |wcond| (-657 (-972 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1289 (-419 (-972 *6)))) - (|:| -1985 (-657 (-1289 (-419 (-972 *6)))))))))) - (-5 *1 (-944 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-702 *8)) (-5 *4 (-941)) (-4 *8 (-969 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) - (-4 *7 (-806)) - (-5 *2 - (-657 - (-2 (|:| |eqzro| (-657 *8)) (|:| |neqzro| (-657 *8)) - (|:| |wcond| (-657 (-972 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1289 (-419 (-972 *5)))) - (|:| -1985 (-657 (-1289 (-419 (-972 *5)))))))))) - (-5 *1 (-944 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-702 *9)) (-5 *4 (-657 *9)) (-5 *5 (-1180)) - (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-862) (-626 (-1198)))) (-4 *8 (-806)) (-5 *2 (-576)) - (-5 *1 (-944 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-702 *9)) (-5 *4 (-657 (-1198))) (-5 *5 (-1180)) - (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-862) (-626 (-1198)))) (-4 *8 (-806)) (-5 *2 (-576)) - (-5 *1 (-944 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-702 *8)) (-5 *4 (-1180)) (-4 *8 (-969 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) - (-4 *7 (-806)) (-5 *2 (-576)) (-5 *1 (-944 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-702 *10)) (-5 *4 (-657 *10)) (-5 *5 (-941)) - (-5 *6 (-1180)) (-4 *10 (-969 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) - (-4 *8 (-13 (-862) (-626 (-1198)))) (-4 *9 (-806)) (-5 *2 (-576)) - (-5 *1 (-944 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-702 *10)) (-5 *4 (-657 (-1198))) (-5 *5 (-941)) - (-5 *6 (-1180)) (-4 *10 (-969 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) - (-4 *8 (-13 (-862) (-626 (-1198)))) (-4 *9 (-806)) (-5 *2 (-576)) - (-5 *1 (-944 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-702 *9)) (-5 *4 (-941)) (-5 *5 (-1180)) - (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-862) (-626 (-1198)))) (-4 *8 (-806)) (-5 *2 (-576)) - (-5 *1 (-944 *6 *7 *8 *9))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4467)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) - (-4 *4 (-1239)) (-5 *2 (-1294))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-760))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-401))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1071))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-657 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) - (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) - (-5 *2 (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))) - (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-941))) (-5 *4 (-657 (-576))) - (-5 *2 (-702 (-576))) (-5 *1 (-1132))))) + (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940))))) +(((*1 *2 *1) + (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) + (-14 *6 + (-1 (-112) (-2 (|:| -3222 *5) (|:| -3556 *2)) + (-2 (|:| -3222 *5) (|:| -3556 *2)))) + (-4 *2 (-244 (-3484 *3) (-787))) (-5 *1 (-474 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-865)) (-4 *7 (-972 *4 *2 (-882 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-375) (-864))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1268 (-171 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-1027)) + (-4 *2 (-1074))))) +(((*1 *2) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-105))))) +(((*1 *2 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-1031))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-623 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-5 *2 (-112))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1194 *9)) (-5 *4 (-657 *7)) (-5 *5 (-657 (-657 *8))) - (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-969 *8 *6 *7)) (-4 *6 (-806)) + (-12 (-5 *5 (-1201)) + (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) + (-4 *4 (-13 (-29 *6) (-1227) (-982))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -4060 (-660 *4)))) + (-5 *1 (-817 *6 *4 *3)) (-4 *3 (-672 *4))))) +(((*1 *2) + (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) + (-5 *2 (-660 (-660 *4))) (-5 *1 (-353 *3 *4 *5 *6)) + (-4 *3 (-354 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-4 *3 (-380)) (-5 *2 (-660 (-660 *3)))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-402))))) +(((*1 *2 *3) + (-12 (-4 *4 (-318)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 - (-2 (|:| |upol| (-1194 *8)) (|:| |Lval| (-657 *8)) - (|:| |Lfact| - (-657 (-2 (|:| -1885 (-1194 *8)) (|:| -1801 (-576))))) - (|:| |ctpol| *8))) - (-5 *1 (-755 *6 *7 *8 *9))))) + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1149 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-771))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-318)) + (-5 *1 (-939 *3 *4 *5 *2)) (-4 *2 (-972 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1197 *6)) (-4 *6 (-972 *5 *3 *4)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *5 (-318)) (-5 *1 (-939 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *6 *4 *5)) + (-5 *1 (-939 *4 *5 *6 *2)) (-4 *4 (-809)) (-4 *5 (-865)) + (-4 *6 (-318))))) (((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) - (-14 *4 (-1198)) (-14 *5 *3)))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-784)) (-5 *1 (-599 *2)) (-4 *2 (-557))))) + (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) + (-4 *5 (-244 (-3484 *3) (-787))) + (-14 *6 + (-1 (-112) (-2 (|:| -3222 *2) (|:| -3556 *5)) + (-2 (|:| -3222 *2) (|:| -3556 *5)))) + (-4 *2 (-865)) (-5 *1 (-474 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-972 *4 *5 (-882 *3)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-420 *5)) (-4 *5 (-1268 *4)) (-4 *4 (-569)) + (-4 *4 (-1074)) (-4 *2 (-1283 *4)) (-5 *1 (-1286 *4 *5 *6 *2)) + (-4 *6 (-672 *5))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1031)))) + ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1031))))) (((*1 *2 *1) - (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) + (-12 + (-5 *2 + (-660 + (-2 + (|:| -4295 + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (|:| -4444 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1182 (-228))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4071 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-572)))) ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *3 (-657 (-889))) - (-5 *1 (-480))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) - (-5 *2 (-1057)) (-5 *1 (-768))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)) (-4 *2 (-1122)))) - ((*1 *1 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1122))))) + (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1242)) + (-5 *2 (-660 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-784)) (-4 *5 (-360)) (-4 *6 (-1265 *5)) - (-5 *2 - (-657 - (-2 (|:| -1985 (-702 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-702 *6))))) - (-5 *1 (-510 *5 *6 *7)) + (-12 (-4 *1 (-816)) (-5 *3 - (-2 (|:| -1985 (-702 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-702 *6)))) - (-4 *7 (-1265 *6))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1243)) (-4 *5 (-1265 (-419 *2))) - (-4 *2 (-1265 *4)) (-5 *1 (-352 *3 *4 *2 *5)) - (-4 *3 (-353 *4 *2 *5)))) + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) + (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (-5 *2 (-1060))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 (-1201))) + (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) ((*1 *2) - (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1243)) - (-4 *4 (-1265 (-419 *2))) (-4 *2 (-1265 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1290)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1291))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-657 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) - (-5 *1 (-212))))) -(((*1 *2 *2) (-12 (-5 *2 (-941)) (|has| *1 (-6 -4457)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-941)))) - ((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-712)))) - ((*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-712))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-586 *5 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-1239)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-340))))) -(((*1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) - ((*1 *2 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292))))) -(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1289 *4)) (-4 *4 (-360)) (-5 *2 (-1194 *4)) - (-5 *1 (-540 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) + (-12 (-5 *2 (-112)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 (-1201))) + (-14 *4 (-660 (-1201))) (-4 *5 (-400))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-431 *2)) (-4 *2 (-318)) (-5 *1 (-937 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) + (-4 *5 (-13 (-318) (-148))) (-5 *2 (-52)) (-5 *1 (-938 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-431 (-975 *6))) (-5 *5 (-1201)) (-5 *3 (-975 *6)) + (-4 *6 (-13 (-318) (-148))) (-5 *2 (-52)) (-5 *1 (-938 *6))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-660 (-1201))) (-4 *2 (-174)) + (-4 *4 (-244 (-3484 *5) (-787))) + (-14 *6 + (-1 (-112) (-2 (|:| -3222 *3) (|:| -3556 *4)) + (-2 (|:| -3222 *3) (|:| -3556 *4)))) + (-5 *1 (-474 *5 *2 *3 *4 *6 *7)) (-4 *3 (-865)) + (-4 *7 (-972 *2 *4 (-882 *5)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *1 *2) - (-12 (-5 *2 (-657 *1)) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-4 *3 (-13 (-375) (-864))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1268 (-171 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1074)) (-4 *5 (-1268 *4)) (-5 *2 (-1 *6 (-660 *6))) + (-5 *1 (-1286 *4 *5 *3 *6)) (-4 *3 (-672 *5)) (-4 *6 (-1283 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-577))) (-5 *4 (-577)) (-5 *2 (-52)) + (-5 *1 (-1030))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1242)) + (-5 *2 (-112))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1024 *3)) (-4 *3 (-174)) (-5 *1 (-815 *3))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-375)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 (-420 *3))) + (-4 *1 (-347 *4 *3 *5 *2)) (-4 *2 (-354 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-577)) (-4 *2 (-375)) (-4 *4 (-1268 *2)) + (-4 *5 (-1268 (-420 *4))) (-4 *1 (-347 *2 *4 *5 *6)) + (-4 *6 (-354 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-375)) (-4 *3 (-1268 *2)) (-4 *4 (-1268 (-420 *3))) + (-4 *1 (-347 *2 *3 *4 *5)) (-4 *5 (-354 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1289 *3)) (-4 *3 (-1071)) (-5 *1 (-702 *3)))) + (-12 (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) + (-4 *1 (-347 *3 *4 *5 *2)) (-4 *2 (-354 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-657 *4)) (-4 *4 (-1071)) (-4 *1 (-1145 *3 *4 *5 *6)) - (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1071)) (-4 *3 (-862)) - (-4 *4 (-275 *3)) (-4 *5 (-806))))) + (-12 (-5 *2 (-426 *4 (-420 *4) *5 *6)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-4 *3 (-375)) + (-4 *1 (-347 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-481)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1293)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1294))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1182 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1074)) + (-5 *3 (-420 (-577))) (-5 *1 (-1185 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-5 *2 + (-2 (|:| -3115 *4) (|:| -3310 *4) (|:| |totalpts| (-577)) + (|:| |success| (-112)))) + (-5 *1 (-805)) (-5 *5 (-577))))) +(((*1 *1 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-318))))) +(((*1 *2 *2) (-12 (-5 *2 (-944)) (|has| *1 (-6 -4461)) (-4 *1 (-417)))) + ((*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-944)))) + ((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-715)))) + ((*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-715))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-660 (-1201))) (-4 *2 (-174)) + (-4 *3 (-244 (-3484 *4) (-787))) + (-14 *6 + (-1 (-112) (-2 (|:| -3222 *5) (|:| -3556 *3)) + (-2 (|:| -3222 *5) (|:| -3556 *3)))) + (-5 *1 (-474 *4 *2 *5 *3 *6 *7)) (-4 *5 (-865)) + (-4 *7 (-972 *2 *3 (-882 *4)))))) +(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-787)) (-4 *5 (-1074)) (-4 *2 (-1268 *5)) + (-5 *1 (-1286 *5 *2 *6 *3)) (-4 *6 (-672 *2)) (-4 *3 (-1283 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-375) (-864))) + (-5 *2 (-660 (-2 (|:| -3363 (-660 *3)) (|:| -3310 *5)))) + (-5 *1 (-183 *5 *3)) (-4 *3 (-1268 (-171 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-375) (-864))) + (-5 *2 (-660 (-2 (|:| -3363 (-660 *3)) (|:| -3310 *4)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577))))) +(((*1 *2 *1) + (-12 (-4 *1 (-617 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1242)) + (-5 *2 (-660 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) + (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1182 (-1182 *4))) (-5 *2 (-1182 *4)) (-5 *1 (-1185 *4)) + (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1074))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-5 *2 + (-2 (|:| -3115 *4) (|:| -3310 *4) (|:| |totalpts| (-577)) + (|:| |success| (-112)))) + (-5 *1 (-805)) (-5 *5 (-577))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-4 *1 (-261 *2 *3 *4 *5)) (-4 *2 (-1074)) (-4 *3 (-865)) + (-4 *4 (-276 *3)) (-4 *5 (-809))))) +(((*1 *2 *1) (-12 (-5 *2 (-431 *3)) (-5 *1 (-937 *3)) (-4 *3 (-318))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-660 *3)) (-5 *5 (-944)) (-4 *3 (-1268 *4)) + (-4 *4 (-318)) (-5 *1 (-473 *4 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-660 (-171 *4))) (-5 *1 (-156 *3 *4)) + (-4 *3 (-1268 (-171 (-577)))) (-4 *4 (-13 (-375) (-864))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-660 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-660 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3203 *4))) - (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3203 *3) (|:| |coef2| (-795 *3)))) - (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071))))) + (-12 (-4 *4 (-1074)) (-4 *3 (-1268 *4)) (-4 *2 (-1283 *4)) + (-5 *1 (-1286 *4 *3 *5 *2)) (-4 *5 (-672 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1182 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4470)) (-4 *1 (-617 *4 *3)) (-4 *4 (-1125)) + (-4 *3 (-1242)) (-4 *3 (-1125)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) + (-12 (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) + (-5 *2 (-1292 *6)) (-5 *1 (-348 *3 *4 *5 *6)) + (-4 *6 (-354 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) - (-4 *5 (-13 (-568) (-1060 (-576)) (-652 (-576)))) + (-12 (-5 *4 (-1 (-1182 *3))) (-5 *2 (-1182 *3)) (-5 *1 (-1185 *3)) + (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-657 (-624 *3))) - (|:| |vals| (-657 *3)))) - (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) -(((*1 *2) (-12 (-5 *2 (-1169 (-1180))) (-5 *1 (-403))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| -1771 *4) (|:| -2335 *3) (|:| -3644 *3))) - (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *2 (-2 (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-1087 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1071)) - (-5 *2 (-2 (|:| -1771 *3) (|:| -2335 *1) (|:| -3644 *1))) - (-4 *1 (-1265 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-576)) (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-317)) - (-4 *9 (-969 *8 *6 *7)) - (-5 *2 (-2 (|:| -4281 (-1194 *9)) (|:| |polval| (-1194 *8)))) - (-5 *1 (-755 *6 *7 *8 *9)) (-5 *3 (-1194 *9)) (-5 *4 (-1194 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1243)) - (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) - (-5 *2 (-2 (|:| |num| (-702 *5)) (|:| |den| *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1179 *4)) (-5 *3 (-576)) (-4 *4 (-1071)) - (-5 *1 (-1182 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-1281 *3 *4 *5)) (-4 *3 (-1071)) - (-14 *4 (-1198)) (-14 *5 *3)))) + (-2 (|:| -3115 *4) (|:| -3310 *4) (|:| |totalpts| (-577)) + (|:| |success| (-112)))) + (-5 *1 (-805)) (-5 *5 (-577))))) +(((*1 *2 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-318))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-944)) (-4 *5 (-318)) (-4 *3 (-1268 *5)) + (-5 *2 (-2 (|:| |plist| (-660 *3)) (|:| |modulo| *5))) + (-5 *1 (-473 *5 *3)) (-5 *4 (-660 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-784)) (-5 *1 (-1123 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-944)) (-5 *2 (-787)) (-5 *1 (-1126 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-784)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1240 *3)) (-4 *3 (-1122)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1122)) (-5 *2 (-112)) - (-5 *1 (-1240 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *6 (-626 (-1198))) - (-4 *4 (-374)) (-4 *5 (-806)) (-4 *6 (-862)) - (-5 *2 (-1187 (-657 (-972 *4)) (-657 (-304 (-972 *4))))) - (-5 *1 (-516 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1071))))) -(((*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) - (-253 *4 (-419 (-576))))) - (-14 *4 (-657 (-1198))) (-14 *5 (-784)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-981 *3)) (-4 *3 (-557)))) - ((*1 *2 *1) (-12 (-4 *1 (-1243)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-1160)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-877))) (-5 *2 (-1294)) (-5 *1 (-1160))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-774)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-318)) (-5 *1 (-181 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 (-1 *6 (-660 *6)))) + (-4 *5 (-38 (-420 (-577)))) (-4 *6 (-1283 *5)) (-5 *2 (-660 *6)) + (-5 *1 (-1285 *5 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242))))) +(((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174))))) (((*1 *2 *1) - (-12 (-4 *1 (-1272 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1249 *3)) - (-5 *2 (-419 (-576)))))) + (-12 (-4 *3 (-375)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) + (-5 *2 (-1292 *6)) (-5 *1 (-348 *3 *4 *5 *6)) + (-4 *6 (-354 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1071)) - (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-969 *2 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-889)))) - ((*1 *2 *3) - (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) -(((*1 *2 *3) - (-12 (-5 *2 (-430 (-1194 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1194 *1)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1122)))) - ((*1 *2 *3) - (-12 (-4 *1 (-929)) (-5 *2 (-430 (-1194 *1))) (-5 *3 (-1194 *1))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *2 (-568))))) -(((*1 *2 *2) (-12 (-5 *2 (-702 *3)) (-4 *3 (-317)) (-5 *1 (-713 *3))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) - (-4 *5 (-13 (-374) (-148) (-1060 (-576)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) - (|:| -2785 *6))) - (-5 *1 (-1037 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-877))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2322 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-374)) (-4 *7 (-1265 *6)) + (-12 (-5 *3 (-1182 (-1182 *4))) (-5 *2 (-1182 *4)) (-5 *1 (-1185 *4)) + (-4 *4 (-1074))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) - (-2 (|:| -2322 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-624 *3)) - (-4 *3 (-13 (-442 *5) (-27) (-1224))) - (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) - (-5 *2 (-2 (|:| -2322 *3) (|:| |coeff| *3))) - (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1122))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1198)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-657 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-657 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2322 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1224) (-27) (-442 *8))) - (-4 *8 (-13 (-464) (-148) (-1060 *3) (-652 *3))) (-5 *3 (-576)) - (-5 *2 (-657 *4)) (-5 *1 (-1036 *8 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1239)) - (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-657 *5))) (-4 *5 (-1280 *4)) - (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-1 (-1179 *4) (-657 (-1179 *4)))) (-5 *1 (-1282 *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) - (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (-12 (-4 *1 (-810 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-846 *3)) (-4 *3 (-557)) - (-4 *3 (-1122)))) - ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-856 *3)) (-4 *3 (-557)) - (-4 *3 (-1122)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *3) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1030 *3)) (-4 *3 (-1060 *2))))) + (-2 (|:| -3115 *4) (|:| -3310 *4) (|:| |totalpts| (-577)) + (|:| |success| (-112)))) + (-5 *1 (-805)) (-5 *5 (-577))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-937 *3)) (-4 *3 (-318))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-419 (-972 *5)) (-1187 (-1198) (-972 *5)))) - (-4 *5 (-464)) (-5 *2 (-657 (-702 (-419 (-972 *5))))) - (-5 *1 (-302 *5)) (-5 *4 (-702 (-419 (-972 *5))))))) + (-12 (-5 *4 (-660 *5)) (-4 *5 (-1268 *3)) (-4 *3 (-318)) + (-5 *2 (-112)) (-5 *1 (-468 *3 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-318)) (-5 *1 (-181 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-660 *2))) (-5 *4 (-660 *5)) + (-4 *5 (-38 (-420 (-577)))) (-4 *2 (-1283 *5)) + (-5 *1 (-1285 *5 *2))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-391)) (-5 *1 (-1088))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-4 *3 (-174)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *1 (-704 *3 *4 *5 *2)) + (-4 *2 (-703 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-344))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1074)) (-5 *1 (-913 *2 *3)) (-4 *2 (-1268 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-5 *2 + (-2 (|:| -3115 *4) (|:| -3310 *4) (|:| |totalpts| (-577)) + (|:| |success| (-112)))) + (-5 *1 (-805)) (-5 *5 (-577))))) +(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-937 *3)) (-4 *3 (-318))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1292 (-660 *3))) (-4 *4 (-318)) + (-5 *2 (-660 *3)) (-5 *1 (-468 *4 *3)) (-4 *3 (-1268 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-375) (-1227) (-1027)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1283 *4)) (-5 *1 (-1285 *4 *2)) + (-4 *4 (-38 (-420 (-577))))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-391)) (-5 *1 (-1088))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-577)) (-4 *3 (-174)) (-4 *5 (-385 *3)) + (-4 *6 (-385 *3)) (-5 *1 (-704 *3 *5 *6 *2)) + (-4 *2 (-703 *3 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227))))) + ((*1 *1 *1 *1) (-4 *1 (-809)))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-891 (-1206) (-787)))) (-5 *1 (-344))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-908 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1122)) - (-4 *5 (-1239)) (-5 *1 (-906 *4 *5)))) + (-12 (-5 *2 (-911 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1125)) + (-4 *5 (-1242)) (-5 *1 (-909 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-908 *4)) (-5 *3 (-657 (-1 (-112) *5))) (-4 *4 (-1122)) - (-4 *5 (-1239)) (-5 *1 (-906 *4 *5)))) + (-12 (-5 *2 (-911 *4)) (-5 *3 (-660 (-1 (-112) *5))) (-4 *4 (-1125)) + (-4 *5 (-1242)) (-5 *1 (-909 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-908 *5)) (-5 *3 (-657 (-1198))) - (-5 *4 (-1 (-112) (-657 *6))) (-4 *5 (-1122)) (-4 *6 (-1239)) - (-5 *1 (-906 *5 *6)))) + (-12 (-5 *2 (-911 *5)) (-5 *3 (-660 (-1201))) + (-5 *4 (-1 (-112) (-660 *6))) (-4 *5 (-1125)) (-4 *6 (-1242)) + (-5 *1 (-909 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1239)) (-4 *4 (-1122)) - (-5 *1 (-957 *4 *2 *5)) (-4 *2 (-442 *4)))) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1242)) (-4 *4 (-1125)) + (-5 *1 (-960 *4 *2 *5)) (-4 *2 (-443 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-657 (-1 (-112) *5))) (-4 *5 (-1239)) (-4 *4 (-1122)) - (-5 *1 (-957 *4 *2 *5)) (-4 *2 (-442 *4)))) + (-12 (-5 *3 (-660 (-1 (-112) *5))) (-4 *5 (-1242)) (-4 *4 (-1125)) + (-5 *1 (-960 *4 *2 *5)) (-4 *2 (-443 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1239)) - (-5 *2 (-326 (-576))) (-5 *1 (-958 *5)))) + (-12 (-5 *3 (-1201)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1242)) + (-5 *2 (-327 (-577))) (-5 *1 (-961 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-657 (-1 (-112) *5))) (-4 *5 (-1239)) - (-5 *2 (-326 (-576))) (-5 *1 (-958 *5)))) + (-12 (-5 *3 (-1201)) (-5 *4 (-660 (-1 (-112) *5))) (-4 *5 (-1242)) + (-5 *2 (-327 (-577))) (-5 *1 (-961 *5)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-1 (-112) (-657 *6))) - (-4 *6 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))) (-4 *4 (-1122)) - (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) - (-5 *1 (-1098 *4 *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1239)))) - ((*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) + (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-1 (-112) (-660 *6))) + (-4 *6 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))) (-4 *4 (-1125)) + (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) + (-5 *1 (-1101 *4 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1182 *4)) (-5 *3 (-1 *4 (-577))) (-4 *4 (-1074)) + (-5 *1 (-1185 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1242)))) + ((*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-865)))) + ((*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) + ((*1 *1 *1) (-5 *1 (-880))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) - (-4 *3 (-1265 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1198)))) - (-4 *5 (-806)) (-5 *1 (-944 *3 *4 *5 *2)) (-4 *2 (-969 *3 *5 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) - (-5 *2 (-1194 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1163 *2 *3)) (-4 *2 (-13 (-1122) (-34))) - (-4 *3 (-13 (-1122) (-34)))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1180)) (-5 *1 (-315))))) -(((*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) - ((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239)))) - ((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-689)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) - (-4 *4 (-806)) (-4 *5 (-862)) (-4 *3 (-568))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1289 *4)) (-5 *3 (-576)) (-4 *4 (-360)) - (-5 *1 (-540 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1179 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) + (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) + (-4 *3 (-1268 *2))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) + (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) + (-5 *1 (-804))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1197 *3)) (-5 *1 (-937 *3)) (-4 *3 (-318))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-787)) (-4 *4 (-318)) (-4 *6 (-1268 *4)) + (-5 *2 (-1292 (-660 *6))) (-5 *1 (-468 *4 *6)) (-5 *5 (-660 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-375) (-1227) (-1027)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) - (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3946 *4)))) - (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1239)))) - ((*1 *1 *1) (-12 (-5 *1 (-685 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1283 *4)) (-5 *1 (-1285 *4 *2)) + (-4 *4 (-38 (-420 (-577))))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1088)) (-5 *3 (-1183))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-577)) (-4 *3 (-174)) (-4 *5 (-385 *3)) + (-4 *6 (-385 *3)) (-5 *1 (-704 *3 *5 *6 *2)) + (-4 *2 (-703 *3 *5 *6))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) + (-5 *2 + (-2 (|:| -3115 *4) (|:| -3310 *4) (|:| |totalpts| (-577)) + (|:| |success| (-112)))) + (-5 *1 (-805)) (-5 *5 (-577))))) +(((*1 *2 *1) (-12 (-5 *2 (-981 (-787))) (-5 *1 (-344))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1242)))) + ((*1 *1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-865)))) + ((*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) + ((*1 *1 *1) (-5 *1 (-880))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) - (-4 *3 (-1265 *2))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-657 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-657 (-657 *4))) (-5 *2 (-657 *4)) (-4 *4 (-317)) - (-5 *1 (-181 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-657 *8)) - (-5 *4 - (-657 - (-2 (|:| -1985 (-702 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-702 *7))))) - (-5 *5 (-784)) (-4 *8 (-1265 *7)) (-4 *7 (-1265 *6)) (-4 *6 (-360)) + (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) + (-4 *3 (-1268 *2))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-577)) + (-5 *6 + (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4289 (-391)))) + (-5 *7 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) + (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) + (-5 *1 (-804)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-577)) + (-5 *6 + (-2 (|:| |try| (-391)) (|:| |did| (-391)) (|:| -4289 (-391)))) + (-5 *7 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) + (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) + (-5 *1 (-804))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-375) (-1227) (-1027)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-420 (-577)))) (-5 *1 (-1285 *3 *2)) + (-4 *2 (-1283 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1088))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-577)) (-4 *4 (-174)) (-4 *5 (-385 *4)) + (-4 *6 (-385 *4)) (-5 *1 (-704 *4 *5 *6 *2)) + (-4 *2 (-703 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -1985 (-702 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-702 *7)))) - (-5 *1 (-510 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *2 (-1087 *4 *5 *6)) (-5 *1 (-789 *4 *5 *6 *2 *3)) - (-4 *3 (-1093 *4 *5 *6 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1122)) (-5 *1 (-984 *2 *3)) (-4 *3 (-1122))))) + (-2 (|:| -3115 *4) (|:| -3310 *4) (|:| |totalpts| (-577)) + (|:| |success| (-112)))) + (-5 *1 (-805)) (-5 *5 (-577))))) +(((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-344))))) +(((*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) + (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) + (-5 *1 (-804))))) +(((*1 *2 *2) (-12 (-5 *1 (-984 *2)) (-4 *2 (-558))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-657 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-626 (-908 (-576)))) - (-4 *5 (-902 (-576))) - (-4 *5 (-13 (-1060 (-576)) (-464) (-652 (-576)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) - (-4 *3 (-13 (-27) (-1224) (-442 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) - (-5 *2 (-1057)) (-5 *1 (-767))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) + (-12 (-5 *3 (-1201)) (-5 *2 (-549)) (-5 *1 (-548 *4)) + (-4 *4 (-1242))))) (((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-464)) - (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) - (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-859))))) + (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-375) (-1227) (-1027)))))) (((*1 *2 *3) - (-12 (-5 *3 (-782)) + (-12 (-5 *3 (-1 *5 (-660 *5))) (-4 *5 (-1283 *4)) + (-4 *4 (-38 (-420 (-577)))) + (-5 *2 (-1 (-1182 *4) (-660 (-1182 *4)))) (-5 *1 (-1285 *4 *5))))) +(((*1 *1) (-5 *1 (-1088)))) +(((*1 *1 *1) + (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) - (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057)))) - (-5 *1 (-577)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-782)) (-5 *4 (-1085)) + (-2 (|:| -3115 *4) (|:| -3310 *4) (|:| |totalpts| (-577)) + (|:| |success| (-112)))) + (-5 *1 (-805)) (-5 *5 (-577))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1201)) (-5 *4 (-975 (-577))) (-5 *2 (-341)) + (-5 *1 (-343))))) +(((*1 *2 *1) (-12 (-4 *1 (-1118 *3)) (-4 *3 (-1242)) (-5 *2 (-577))))) +(((*1 *1 *2) + (-12 (-5 *2 (-660 (-1101 *3 *4 *5))) (-4 *3 (-1125)) + (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))) + (-4 *5 (-13 (-443 *4) (-905 *3) (-627 (-911 *3)))) + (-5 *1 (-1102 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1182 (-577))) (-5 *1 (-1185 *4)) (-4 *4 (-1074)) + (-5 *3 (-577))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) + (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) + (-5 *1 (-804)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-577)) (-5 *6 (-1 (-1297) (-1292 *5) (-1292 *5) (-391))) + (-5 *3 (-1292 (-391))) (-5 *5 (-391)) (-5 *2 (-1297)) + (-5 *1 (-804))))) +(((*1 *1) (-4 *1 (-361))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 *5)) (-4 *5 (-443 *4)) (-4 *4 (-13 (-569) (-148))) (-5 *2 - (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) - (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057)))) - (-5 *1 (-577)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-800)) (-5 *3 (-1085)) - (-5 *4 - (-2 (|:| |fn| (-326 (-227))) - (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) + (-2 (|:| |primelt| *5) (|:| |poly| (-660 (-1197 *5))) + (|:| |prim| (-1197 *5)))) + (-5 *1 (-445 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-569) (-148))) (-5 *2 - (-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) - (|:| |extra| (-1057)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-800)) (-5 *3 (-1085)) - (-5 *4 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1197 *3)) + (|:| |pol2| (-1197 *3)) (|:| |prim| (-1197 *3)))) + (-5 *1 (-445 *4 *3)) (-4 *3 (-27)) (-4 *3 (-443 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-975 *5)) (-5 *4 (-1201)) (-4 *5 (-13 (-375) (-148))) (-5 *2 - (-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)) - (|:| |extra| (-1057)))))) + (-2 (|:| |coef1| (-577)) (|:| |coef2| (-577)) + (|:| |prim| (-1197 *5)))) + (-5 *1 (-983 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-813)) (-5 *3 (-1085)) - (-5 *4 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) - (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-821)) + (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-660 (-1201))) + (-4 *5 (-13 (-375) (-148))) (-5 *2 - (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) - (|:| |explanations| (-657 (-1180))))) - (-5 *1 (-818)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-821)) (-5 *4 (-1085)) + (-2 (|:| -1777 (-660 (-577))) (|:| |poly| (-660 (-1197 *5))) + (|:| |prim| (-1197 *5)))) + (-5 *1 (-983 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-660 (-975 *6))) (-5 *4 (-660 (-1201))) (-5 *5 (-1201)) + (-4 *6 (-13 (-375) (-148))) (-5 *2 - (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) - (|:| |explanations| (-657 (-1180))))) - (-5 *1 (-818)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-852)) (-5 *3 (-1085)) - (-5 *4 - (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) - (-5 *2 (-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-852)) (-5 *3 (-1085)) - (-5 *4 - (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) - (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) - (|:| |ub| (-657 (-856 (-227)))))) - (-5 *2 (-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-854)) + (-2 (|:| -1777 (-660 (-577))) (|:| |poly| (-660 (-1197 *6))) + (|:| |prim| (-1197 *6)))) + (-5 *1 (-983 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-549))) (-5 *1 (-549))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-375) (-1227) (-1027)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1283 *4)) + (-4 *4 (-38 (-420 (-577)))) + (-5 *2 (-1 (-1182 *4) (-1182 *4) (-1182 *4))) (-5 *1 (-1285 *4 *5))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1183)) (-5 *3 (-577)) (-5 *1 (-1088))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2))))) +(((*1 *1 *1) (-4 *1 (-558)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) - (|:| |explanations| (-657 (-1180))))) - (-5 *1 (-853)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-854)) (-5 *4 (-1085)) + (-2 (|:| -3115 *4) (|:| -3310 *4) (|:| |totalpts| (-577)) + (|:| |success| (-112)))) + (-5 *1 (-805)) (-5 *5 (-577))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1201)) (-5 *4 (-975 (-577))) (-5 *2 (-341)) + (-5 *1 (-343))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1182 (-577))) (-5 *1 (-1185 *4)) (-4 *4 (-1074)) + (-5 *3 (-577))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-803)) (-5 *2 (-1060)) + (-5 *3 + (-2 (|:| |fn| (-327 (-228))) + (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-803)) (-5 *2 (-1060)) + (-5 *3 + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228))))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1201)) (-5 *1 (-599 *2)) (-4 *2 (-1063 *3)) + (-4 *2 (-375)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-375)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *1 (-643 *4 *2)) + (-4 *2 (-13 (-443 *4) (-1027) (-1227))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1117 *2)) (-4 *2 (-13 (-443 *4) (-1027) (-1227))) + (-4 *4 (-569)) (-5 *1 (-643 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-982)) (-5 *2 (-1201)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-982))))) +(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-549))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-375) (-1227) (-1027)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1283 *4)) + (-4 *4 (-38 (-420 (-577)))) (-5 *2 (-1 (-1182 *4) (-1182 *4))) + (-5 *1 (-1285 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1087)))) + ((*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1087))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-880))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-944)) (-4 *3 (-375)) + (-14 *4 (-1018 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1268 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) + ((*1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) + ((*1 *1 *1) (|partial| -4 *1 (-738))) + ((*1 *1 *1) (|partial| -4 *1 (-742))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-792 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1093 *3 *2)) (-4 *3 (-13 (-864) (-375))) + (-4 *2 (-1268 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-802))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-944)) (-4 *5 (-569)) (-5 *2 (-705 *5)) + (-5 *1 (-979 *5 *3)) (-4 *3 (-672 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-549))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-966 *3) (-966 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-375) (-1227) (-1027)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) + (-5 *2 (-660 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) + (-5 *2 (-660 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1182 *3)) (-5 *1 (-609 *3)) (-4 *3 (-1074)))) + ((*1 *2 *1) + (-12 (-5 *2 (-660 *3)) (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) + (-4 *4 (-742)))) + ((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-4 *3 (-1074)) (-5 *2 (-660 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1283 *3)) (-4 *3 (-1074)) (-5 *2 (-1182 *3))))) +(((*1 *1) + (-12 (-4 *3 (-1125)) (-5 *1 (-904 *2 *3 *4)) (-4 *2 (-1125)) + (-4 *4 (-682 *3)))) + ((*1 *1) (-12 (-5 *1 (-908 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) + (-4 *3 (-1268 *2))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-115)) (-4 *4 (-1074)) (-5 *1 (-730 *4 *2)) + (-4 *2 (-664 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-852 *2)) (-4 *2 (-1074))))) +(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-391)))) + ((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-391))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-660 *1)) (-4 *1 (-443 *4)) + (-4 *4 (-1125)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125))))) +(((*1 *1 *2) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-802))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-569)) + (-4 *3 (-972 *7 *5 *6)) (-5 *2 - (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) - (|:| |explanations| (-657 (-1180))))) - (-5 *1 (-853)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-913)) (-5 *3 (-1085)) - (-5 *4 - (-2 (|:| |pde| (-657 (-326 (-227)))) - (|:| |constraints| - (-657 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-784)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) - (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) - (|:| |tol| (-227)))) - (-5 *2 (-2 (|:| -4209 (-390)) (|:| |explanations| (-1180)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-916)) + (-2 (|:| -3556 (-787)) (|:| -1777 *3) (|:| |radicand| (-660 *3)))) + (-5 *1 (-976 *5 *6 *7 *3 *8)) (-5 *4 (-787)) + (-4 *8 + (-13 (-375) + (-10 -8 (-15 -3544 ($ *3)) (-15 -1623 (*3 $)) (-15 -1637 (*3 $)))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-705 *6)) (-5 *5 (-1 (-431 (-1197 *6)) (-1197 *6))) + (-4 *6 (-375)) (-5 *2 - (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) - (|:| |explanations| (-657 (-1180))))) - (-5 *1 (-915)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-916)) (-5 *4 (-1085)) + (-660 + (-2 (|:| |outval| *7) (|:| |outmult| (-577)) + (|:| |outvect| (-660 (-705 *7)))))) + (-5 *1 (-545 *6 *7 *4)) (-4 *7 (-375)) (-4 *4 (-13 (-375) (-864)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) + (-5 *1 (-178 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1074))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-431 *4) *4)) (-4 *4 (-569)) (-5 *2 (-431 *4)) + (-5 *1 (-432 *4)))) + ((*1 *1 *1) (-5 *1 (-949))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-949)))) + ((*1 *1 *1) (-5 *1 (-950))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) + (-5 *4 (-420 (-577))) (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) + (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) + (-5 *4 (-420 (-577))) (-5 *1 (-1046 *3)) (-4 *3 (-1268 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) + (-5 *1 (-1046 *3)) (-4 *3 (-1268 (-420 (-577)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) + (-4 *3 (-1268 *2))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-373 (-115))) (-4 *2 (-1074)) (-5 *1 (-730 *2 *4)) + (-4 *4 (-664 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-373 (-115))) (-5 *1 (-852 *2)) (-4 *2 (-1074))))) +(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-391)))) + ((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-391))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1125)) (-5 *1 (-952 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1201)) (-5 *2 (-327 (-577))) (-5 *1 (-953))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-660 *4)) (-4 *4 (-1125)) (-4 *4 (-1242)) (-5 *2 (-112)) + (-5 *1 (-1182 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-944)) (-5 *1 (-802))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-4 *7 (-569)) + (-4 *8 (-972 *7 *5 *6)) + (-5 *2 (-2 (|:| -3556 (-787)) (|:| -1777 *3) (|:| |radicand| *3))) + (-5 *1 (-976 *5 *6 *7 *8 *3)) (-5 *4 (-787)) + (-4 *3 + (-13 (-375) + (-10 -8 (-15 -3544 ($ *8)) (-15 -1623 (*8 $)) (-15 -1637 (*8 $)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1197 *5)) (-4 *5 (-375)) (-5 *2 (-660 *6)) + (-5 *1 (-545 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-864)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) + (-5 *1 (-178 *3))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-577))) (-4 *3 (-1074)) (-5 *1 (-608 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-577))) (-4 *1 (-1252 *3)) (-4 *3 (-1074)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-577))) (-4 *1 (-1283 *3)) (-4 *3 (-1074))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-864) (-375))) (-5 *2 (-112)) (-5 *1 (-1086 *4 *3)) + (-4 *3 (-1268 *4))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-1297)) (-5 *1 (-847))))) +(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-391)))) + ((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-391))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 - (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) - (|:| |explanations| (-657 (-1180))))) - (-5 *1 (-915))))) + (-2 (|:| |cycle?| (-112)) (|:| -3970 (-787)) (|:| |period| (-787)))) + (-5 *1 (-1182 *4)) (-4 *4 (-1242)) (-5 *3 (-787))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-796 *2)) (-4 *2 (-174)))) + (-12 (-4 *5 (-13 (-627 *2) (-174))) (-5 *2 (-911 *4)) + (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1125)) (-4 *3 (-167 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-784)) (-5 *2 (-1294))))) -(((*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1239)) (-5 *2 (-576))))) -(((*1 *1 *2) - (-12 (-5 *2 (-657 (-1098 *3 *4 *5))) (-4 *3 (-1122)) - (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))) - (-4 *5 (-13 (-442 *4) (-902 *3) (-626 (-908 *3)))) - (-5 *1 (-1099 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *1 (-701 *4 *5 *6 *2)) - (-4 *2 (-700 *4 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) - ((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291))))) + (-12 (-5 *3 (-660 (-1119 (-859 (-391))))) + (-5 *2 (-660 (-1119 (-859 (-228))))) (-5 *1 (-316)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-880)) (-5 *3 (-577)) (-5 *1 (-407)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1292 *3)) (-4 *3 (-174)) (-4 *1 (-422 *3 *4)) + (-4 *4 (-1268 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) + (-5 *2 (-1292 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-174)) (-4 *1 (-430 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1292 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-431 *1)) (-4 *1 (-443 *3)) (-4 *3 (-569)) + (-4 *3 (-1125)))) + ((*1 *1 *2) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-1074)) + (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-476 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-549)))) + ((*1 *2 *1) (-12 (-4 *1 (-627 *2)) (-4 *2 (-1242)))) + ((*1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1242)))) + ((*1 *1 *2) + (-12 (-4 *3 (-174)) (-4 *1 (-740 *3 *2)) (-4 *2 (-1268 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) + ((*1 *1 *2) + (-12 (-5 *2 (-975 *3)) (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) + (-4 *5 (-627 (-1201))) (-4 *4 (-809)) (-4 *5 (-865)))) + ((*1 *1 *2) + (-2839 + (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) + (-12 (-2749 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) + (-4 *5 (-627 (-1201)))) + (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))) + (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201)))) + (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))))) + ((*1 *1 *2) + (-12 (-5 *2 (-975 (-420 (-577)))) (-4 *1 (-1090 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201))) (-4 *3 (-1074)) + (-4 *4 (-809)) (-4 *5 (-865)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -3952 *8))) + (-4 *7 (-1090 *4 *5 *6)) (-4 *8 (-1096 *4 *5 *6 *7)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1183)) + (-5 *1 (-1094 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -3952 *8))) + (-4 *7 (-1090 *4 *5 *6)) (-4 *8 (-1134 *4 *5 *6 *7)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1183)) + (-5 *1 (-1170 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1206)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1206)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-880)) (-5 *3 (-577)) (-5 *1 (-1222)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-880)) (-5 *3 (-577)) (-5 *1 (-1222)))) + ((*1 *2 *3) + (-12 (-5 *3 (-796 *4 (-882 *5))) + (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *5 (-660 (-1201))) + (-5 *2 (-796 *4 (-882 *6))) (-5 *1 (-1319 *4 *5 *6)) + (-14 *6 (-660 (-1201))))) + ((*1 *2 *3) + (-12 (-5 *3 (-975 *4)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) + (-5 *2 (-975 (-1049 (-420 *4)))) (-5 *1 (-1319 *4 *5 *6)) + (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201))))) + ((*1 *2 *3) + (-12 (-5 *3 (-796 *4 (-882 *6))) + (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *6 (-660 (-1201))) + (-5 *2 (-975 (-1049 (-420 *4)))) (-5 *1 (-1319 *4 *5 *6)) + (-14 *5 (-660 (-1201))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1197 *4)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) + (-5 *2 (-1197 (-1049 (-420 *4)))) (-5 *1 (-1319 *4 *5 *6)) + (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201))))) + ((*1 *2 *3) + (-12 + (-5 *3 (-1171 *4 (-544 (-882 *6)) (-882 *6) (-796 *4 (-882 *6)))) + (-4 *4 (-13 (-864) (-318) (-148) (-1047))) (-14 *6 (-660 (-1201))) + (-5 *2 (-660 (-796 *4 (-882 *6)))) (-5 *1 (-1319 *4 *5 *6)) + (-14 *5 (-660 (-1201)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-577))) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-569)) (-4 *8 (-972 *7 *5 *6)) + (-5 *2 (-2 (|:| -3556 (-787)) (|:| -1777 *9) (|:| |radicand| *9))) + (-5 *1 (-976 *5 *6 *7 *8 *9)) (-5 *4 (-787)) + (-4 *9 + (-13 (-375) + (-10 -8 (-15 -3544 ($ *8)) (-15 -1623 (*8 $)) (-15 -1637 (*8 $)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1183)) (-5 *1 (-802))))) +(((*1 *2 *3) + (-12 (-5 *3 (-705 *4)) (-4 *4 (-375)) (-5 *2 (-1197 *4)) + (-5 *1 (-545 *4 *5 *6)) (-4 *5 (-375)) (-4 *6 (-13 (-375) (-864)))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-908 *4)) (-4 *4 (-1122)) (-5 *2 (-112)) - (-5 *1 (-905 *4 *5)) (-4 *5 (-1122)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-908 *5)) (-4 *5 (-1122)) (-5 *2 (-112)) - (-5 *1 (-906 *5 *3)) (-4 *3 (-1239)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *6)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) - (-4 *6 (-1239)) (-5 *2 (-112)) (-5 *1 (-906 *5 *6))))) -(((*1 *1 *1) (-4 *1 (-557)))) -(((*1 *1 *1) (-12 (-5 *1 (-934 *2)) (-4 *2 (-317))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1265 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-657 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-13 (-464) (-148))) - (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-993)) (-5 *1 (-925 *3)) (-4 *3 (-1122))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-118 *4)) (-14 *4 *3) + (-5 *3 (-577)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-889 *4)) (-14 *4 *3) + (-5 *3 (-577)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-420 (-577))) (-5 *1 (-890 *4 *5)) + (-5 *3 (-577)) (-4 *5 (-887 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-420 (-577))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1093 *2 *3)) (-4 *2 (-13 (-864) (-375))) + (-4 *3 (-1268 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1270 *2 *3)) (-4 *3 (-808)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3544 (*2 (-1201)))) + (-4 *2 (-1074))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1114 (-856 *3))) (-4 *3 (-13 (-1224) (-979) (-29 *5))) - (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) + (-12 (-5 *4 (-1117 (-859 *3))) (-4 *3 (-13 (-1227) (-982) (-29 *5))) + (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 - (-3 (|:| |f1| (-856 *3)) (|:| |f2| (-657 (-856 *3))) + (-3 (|:| |f1| (-859 *3)) (|:| |f2| (-660 (-859 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *5 *3)))) + (-5 *1 (-222 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1114 (-856 *3))) (-5 *5 (-1180)) - (-4 *3 (-13 (-1224) (-979) (-29 *6))) - (-4 *6 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) + (-12 (-5 *4 (-1117 (-859 *3))) (-5 *5 (-1183)) + (-4 *3 (-13 (-1227) (-982) (-29 *6))) + (-4 *6 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 - (-3 (|:| |f1| (-856 *3)) (|:| |f2| (-657 (-856 *3))) + (-3 (|:| |f1| (-859 *3)) (|:| |f2| (-660 (-859 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *6 *3)))) + (-5 *1 (-222 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1114 (-856 (-326 *5)))) - (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) + (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1117 (-859 (-327 *5)))) + (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 - (-3 (|:| |f1| (-856 (-326 *5))) (|:| |f2| (-657 (-856 (-326 *5)))) + (-3 (|:| |f1| (-859 (-327 *5))) (|:| |f2| (-660 (-859 (-327 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *5)))) + (-5 *1 (-223 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-419 (-972 *6))) (-5 *4 (-1114 (-856 (-326 *6)))) - (-5 *5 (-1180)) - (-4 *6 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) + (-12 (-5 *3 (-420 (-975 *6))) (-5 *4 (-1117 (-859 (-327 *6)))) + (-5 *5 (-1183)) + (-4 *6 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 - (-3 (|:| |f1| (-856 (-326 *6))) (|:| |f2| (-657 (-856 (-326 *6)))) + (-3 (|:| |f1| (-859 (-327 *6))) (|:| |f2| (-660 (-859 (-327 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *6)))) + (-5 *1 (-223 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1114 (-856 (-419 (-972 *5))))) (-5 *3 (-419 (-972 *5))) - (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) + (-12 (-5 *4 (-1117 (-859 (-420 (-975 *5))))) (-5 *3 (-420 (-975 *5))) + (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 - (-3 (|:| |f1| (-856 (-326 *5))) (|:| |f2| (-657 (-856 (-326 *5)))) + (-3 (|:| |f1| (-859 (-327 *5))) (|:| |f2| (-660 (-859 (-327 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *5)))) + (-5 *1 (-223 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1114 (-856 (-419 (-972 *6))))) (-5 *5 (-1180)) - (-5 *3 (-419 (-972 *6))) - (-4 *6 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) + (-12 (-5 *4 (-1117 (-859 (-420 (-975 *6))))) (-5 *5 (-1183)) + (-5 *3 (-420 (-975 *6))) + (-4 *6 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) (-5 *2 - (-3 (|:| |f1| (-856 (-326 *6))) (|:| |f2| (-657 (-856 (-326 *6)))) + (-3 (|:| |f1| (-859 (-327 *6))) (|:| |f2| (-660 (-859 (-327 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *6)))) + (-5 *1 (-223 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) - (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) - (-5 *2 (-3 *3 (-657 *3))) (-5 *1 (-440 *5 *3)) - (-4 *3 (-13 (-1224) (-979) (-29 *5))))) + (-12 (-5 *4 (-1201)) + (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) + (-5 *2 (-3 *3 (-660 *3))) (-5 *1 (-441 *5 *3)) + (-4 *3 (-13 (-1227) (-982) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-486 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3))) + (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-487 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3))) ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1116 (-856 (-390)))) - (-5 *5 (-390)) (-5 *6 (-1085)) (-5 *2 (-1057)) (-5 *1 (-577)))) - ((*1 *2 *3) (-12 (-5 *3 (-782)) (-5 *2 (-1057)) (-5 *1 (-577)))) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1119 (-859 (-391)))) + (-5 *5 (-391)) (-5 *6 (-1088)) (-5 *2 (-1060)) (-5 *1 (-578)))) + ((*1 *2 *3) (-12 (-5 *3 (-785)) (-5 *2 (-1060)) (-5 *1 (-578)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1116 (-856 (-390)))) - (-5 *5 (-390)) (-5 *2 (-1057)) (-5 *1 (-577)))) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1119 (-859 (-391)))) + (-5 *5 (-391)) (-5 *2 (-1060)) (-5 *1 (-578)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1116 (-856 (-390)))) - (-5 *5 (-390)) (-5 *2 (-1057)) (-5 *1 (-577)))) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1119 (-859 (-391)))) + (-5 *5 (-391)) (-5 *2 (-1060)) (-5 *1 (-578)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1116 (-856 (-390)))) - (-5 *2 (-1057)) (-5 *1 (-577)))) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-1119 (-859 (-391)))) + (-5 *2 (-1060)) (-5 *1 (-578)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-1116 (-856 (-390))))) - (-5 *2 (-1057)) (-5 *1 (-577)))) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-1119 (-859 (-391))))) + (-5 *2 (-1060)) (-5 *1 (-578)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-1116 (-856 (-390))))) - (-5 *5 (-390)) (-5 *2 (-1057)) (-5 *1 (-577)))) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-1119 (-859 (-391))))) + (-5 *5 (-391)) (-5 *2 (-1060)) (-5 *1 (-578)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-1116 (-856 (-390))))) - (-5 *5 (-390)) (-5 *2 (-1057)) (-5 *1 (-577)))) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-1119 (-859 (-391))))) + (-5 *5 (-391)) (-5 *2 (-1060)) (-5 *1 (-578)))) ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-1116 (-856 (-390))))) - (-5 *5 (-390)) (-5 *6 (-1085)) (-5 *2 (-1057)) (-5 *1 (-577)))) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-1119 (-859 (-391))))) + (-5 *5 (-391)) (-5 *6 (-1088)) (-5 *2 (-1060)) (-5 *1 (-578)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1114 (-856 (-390)))) - (-5 *5 (-1180)) (-5 *2 (-1057)) (-5 *1 (-577)))) + (|partial| -12 (-5 *3 (-327 (-391))) (-5 *4 (-1117 (-859 (-391)))) + (-5 *5 (-1183)) (-5 *2 (-1060)) (-5 *1 (-578)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1114 (-856 (-390)))) - (-5 *5 (-1198)) (-5 *2 (-1057)) (-5 *1 (-577)))) + (|partial| -12 (-5 *3 (-327 (-391))) (-5 *4 (-1117 (-859 (-391)))) + (-5 *5 (-1201)) (-5 *2 (-1060)) (-5 *1 (-578)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-576)))) (-4 *5 (-1265 *4)) - (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) + (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-577)))) (-4 *5 (-1268 *4)) + (-5 *2 (-599 (-420 *5))) (-5 *1 (-581 *4 *5)) (-5 *3 (-420 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) (-4 *5 (-148)) - (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *2 (-3 (-326 *5) (-657 (-326 *5)))) (-5 *1 (-601 *5)))) + (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) (-4 *5 (-148)) + (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *2 (-3 (-327 *5) (-660 (-327 *5)))) (-5 *1 (-602 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071)))) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-753 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-862)) - (-4 *3 (-38 (-419 (-576)))))) + (-12 (-4 *1 (-756 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-865)) + (-4 *3 (-38 (-420 (-577)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1198)) (-5 *1 (-972 *3)) (-4 *3 (-38 (-419 (-576)))) - (-4 *3 (-1071)))) + (-12 (-5 *2 (-1201)) (-5 *1 (-975 *3)) (-4 *3 (-38 (-420 (-577)))) + (-4 *3 (-1074)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-4 *2 (-862)) - (-5 *1 (-1148 *3 *2 *4)) (-4 *4 (-969 *3 (-543 *2) *2)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-4 *2 (-865)) + (-5 *1 (-1151 *3 *2 *4)) (-4 *4 (-972 *3 (-544 *2) *2)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) - (-5 *1 (-1182 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) + (-5 *1 (-1185 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1189 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3))) + (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1192 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1195 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3))) + (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1198 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1196 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3))) + (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1199 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *1 (-1233 *3)) (-4 *3 (-38 (-419 (-576)))) - (-4 *3 (-1071)))) + (-12 (-5 *2 (-1201)) (-5 *1 (-1236 *3)) (-4 *3 (-38 (-420 (-577)))) + (-4 *3 (-1074)))) ((*1 *1 *1 *2) - (-2802 - (-12 (-5 *2 (-1198)) (-4 *1 (-1249 *3)) (-4 *3 (-1071)) - (-12 (-4 *3 (-29 (-576))) (-4 *3 (-979)) (-4 *3 (-1224)) - (-4 *3 (-38 (-419 (-576)))))) - (-12 (-5 *2 (-1198)) (-4 *1 (-1249 *3)) (-4 *3 (-1071)) - (-12 (|has| *3 (-15 -2029 ((-657 *2) *3))) - (|has| *3 (-15 -4190 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) + (-2839 + (-12 (-5 *2 (-1201)) (-4 *1 (-1252 *3)) (-4 *3 (-1074)) + (-12 (-4 *3 (-29 (-577))) (-4 *3 (-982)) (-4 *3 (-1227)) + (-4 *3 (-38 (-420 (-577)))))) + (-12 (-5 *2 (-1201)) (-4 *1 (-1252 *3)) (-4 *3 (-1074)) + (-12 (|has| *3 (-15 -2058 ((-660 *2) *3))) + (|has| *3 (-15 -4147 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1071)) (-4 *2 (-38 (-419 (-576)))))) + (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1074)) (-4 *2 (-38 (-420 (-577)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1253 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3))) + (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1256 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3))) ((*1 *1 *1) - (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-38 (-419 (-576)))))) + (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-38 (-420 (-577)))))) ((*1 *1 *1 *2) - (-2802 - (-12 (-5 *2 (-1198)) (-4 *1 (-1270 *3)) (-4 *3 (-1071)) - (-12 (-4 *3 (-29 (-576))) (-4 *3 (-979)) (-4 *3 (-1224)) - (-4 *3 (-38 (-419 (-576)))))) - (-12 (-5 *2 (-1198)) (-4 *1 (-1270 *3)) (-4 *3 (-1071)) - (-12 (|has| *3 (-15 -2029 ((-657 *2) *3))) - (|has| *3 (-15 -4190 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) + (-2839 + (-12 (-5 *2 (-1201)) (-4 *1 (-1273 *3)) (-4 *3 (-1074)) + (-12 (-4 *3 (-29 (-577))) (-4 *3 (-982)) (-4 *3 (-1227)) + (-4 *3 (-38 (-420 (-577)))))) + (-12 (-5 *2 (-1201)) (-4 *1 (-1273 *3)) (-4 *3 (-1074)) + (-12 (|has| *3 (-15 -2058 ((-660 *2) *3))) + (|has| *3 (-15 -4147 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1270 *2)) (-4 *2 (-1071)) (-4 *2 (-38 (-419 (-576)))))) + (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1074)) (-4 *2 (-38 (-420 (-577)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1274 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3))) + (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1277 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-2802 - (-12 (-5 *2 (-1198)) (-4 *1 (-1280 *3)) (-4 *3 (-1071)) - (-12 (-4 *3 (-29 (-576))) (-4 *3 (-979)) (-4 *3 (-1224)) - (-4 *3 (-38 (-419 (-576)))))) - (-12 (-5 *2 (-1198)) (-4 *1 (-1280 *3)) (-4 *3 (-1071)) - (-12 (|has| *3 (-15 -2029 ((-657 *2) *3))) - (|has| *3 (-15 -4190 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) + (-2839 + (-12 (-5 *2 (-1201)) (-4 *1 (-1283 *3)) (-4 *3 (-1074)) + (-12 (-4 *3 (-29 (-577))) (-4 *3 (-982)) (-4 *3 (-1227)) + (-4 *3 (-38 (-420 (-577)))))) + (-12 (-5 *2 (-1201)) (-4 *1 (-1283 *3)) (-4 *3 (-1074)) + (-12 (|has| *3 (-15 -2058 ((-660 *2) *3))) + (|has| *3 (-15 -4147 (*3 *3 *2))) (-4 *3 (-38 (-420 (-577)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1071)) (-4 *2 (-38 (-419 (-576)))))) + (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1074)) (-4 *2 (-38 (-420 (-577)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1281 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071)) (-14 *5 *3)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))) + (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1284 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *3 (-1074)) (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-944)))) ((*1 *1) (-4 *1 (-558))) + ((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-715)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-625 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-48))) (-5 *1 (-48)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) - (-5 *1 (-431 *4)))) - ((*1 *1 *1) (-5 *1 (-946))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-946)))) - ((*1 *1 *1) (-5 *1 (-947))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) - (-5 *4 (-419 (-576))) (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) - (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) - (-5 *4 (-419 (-576))) (-5 *1 (-1043 *3)) (-4 *3 (-1265 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) - (-5 *1 (-1043 *3)) (-4 *3 (-1265 (-419 (-576)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) - (-4 *3 (-1265 *2))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-317)) - (-5 *1 (-936 *3 *4 *5 *2)) (-4 *2 (-969 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1194 *6)) (-4 *6 (-969 *5 *3 *4)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-936 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *6 *4 *5)) - (-5 *1 (-936 *4 *5 *6 *2)) (-4 *4 (-806)) (-4 *5 (-862)) - (-4 *6 (-317))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1224))) - (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-877))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) - (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *3 (-1087 *4 *5 *6)) - (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3946 *1)))) - (-4 *1 (-1093 *4 *5 *6 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-702 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-174)) (-4 *2 (-1265 *4)) (-5 *1 (-179 *4 *2 *3)) - (-4 *3 (-737 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-702 (-419 (-972 *5)))) (-5 *4 (-1198)) - (-5 *2 (-972 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464)))) + (-12 (-5 *2 (-1197 (-48))) (-5 *3 (-660 (-625 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1197 (-48))) (-5 *3 (-625 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-5 *3 (-702 (-419 (-972 *4)))) (-5 *2 (-972 *4)) - (-5 *1 (-302 *4)) (-4 *4 (-464)))) + (-12 (-4 *2 (-13 (-375) (-864))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1268 (-171 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-944)) (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) + ((*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-375)))) ((*1 *2 *1) - (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1265 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-702 (-171 (-419 (-576))))) - (-5 *2 (-972 (-171 (-419 (-576))))) (-5 *1 (-777 *4)) - (-4 *4 (-13 (-374) (-861))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-702 (-171 (-419 (-576))))) (-5 *4 (-1198)) - (-5 *2 (-972 (-171 (-419 (-576))))) (-5 *1 (-777 *5)) - (-4 *5 (-13 (-374) (-861))))) - ((*1 *2 *3) - (-12 (-5 *3 (-702 (-419 (-576)))) (-5 *2 (-972 (-419 (-576)))) - (-5 *1 (-792 *4)) (-4 *4 (-13 (-374) (-861))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-702 (-419 (-576)))) (-5 *4 (-1198)) - (-5 *2 (-972 (-419 (-576)))) (-5 *1 (-792 *5)) - (-4 *5 (-13 (-374) (-861)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-576)))) (-4 *5 (-1265 *4)) - (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1037 *4 *5)) (-5 *3 (-419 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-1122)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-397 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-657 (-493 *4 *5))) (-5 *3 (-657 (-879 *4))) - (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) - (-4 *6 (-464))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1289 *4)) (-5 *3 (-702 *4)) (-4 *4 (-374)) - (-5 *1 (-680 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-374)) - (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4467)))) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4467)))) - (-5 *1 (-681 *4 *5 *2 *3)) (-4 *3 (-700 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-657 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) - (-5 *1 (-827 *2 *3)) (-4 *3 (-669 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2))))) -(((*1 *1) - (-12 (-4 *3 (-1122)) (-5 *1 (-901 *2 *3 *4)) (-4 *2 (-1122)) - (-4 *4 (-679 *3)))) - ((*1 *1) (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1071)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-568)) - (-4 *7 (-969 *3 *5 *6)) - (-5 *2 (-2 (|:| -1801 (-784)) (|:| -1771 *8) (|:| |radicand| *8))) - (-5 *1 (-973 *5 *6 *3 *7 *8)) (-5 *4 (-784)) - (-4 *8 - (-13 (-374) - (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $)))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) - ((*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937))))) -(((*1 *2) - (-12 (-4 *1 (-360)) - (-5 *2 (-657 (-2 (|:| -1885 (-576)) (|:| -1801 (-576)))))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-657 *1)) (-4 *1 (-442 *4)) - (-4 *4 (-1122)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122))))) -(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1208))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) - (|:| |lb| (-657 (-856 (-227)))) - (|:| |cf| (-657 (-326 (-227)))) - (|:| |ub| (-657 (-856 (-227)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-657 (-326 (-227)))) - (|:| -1706 (-657 (-227))))))) - (-5 *2 (-657 (-1180))) (-5 *1 (-276))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-739) (-25)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-173)))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022)))) - (-5 *2 (-1057)) (-5 *1 (-761))))) -(((*1 *2 *3) (-12 (-5 *3 (-657 (-941))) (-5 *2 (-784)) (-5 *1 (-602))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) - (-4 *2 (-13 (-862) (-21)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-806)) (-4 *4 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) - (-5 *1 (-755 *5 *4 *6 *3)) (-4 *3 (-969 *6 *5 *4))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1116 (-227))) - (-5 *2 (-1291)) (-5 *1 (-264))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1122)) (-5 *1 (-949 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-5 *2 (-326 (-576))) (-5 *1 (-950))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1057)) (-5 *1 (-761))))) -(((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-442 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1024))))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312)))) - ((*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *5 (-1122)) (-5 *2 (-112)) - (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1024) (-1224)))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) - (-4 *5 (-13 (-374) (-148) (-1060 (-576)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) - (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -2785 *6))) - (-5 *1 (-1038 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-856 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1224) (-29 *6))) - (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-226 *6 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-5 *1 (-925 *3))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) -(((*1 *1 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-625 (-877)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1060 (-576))) - (-4 *4 (-568)) (-5 *2 (-1194 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-624 *1)) (-4 *1 (-1071)) (-4 *1 (-312)) - (-5 *2 (-1194 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-972 (-419 (-576)))) (-5 *4 (-1198)) - (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-657 (-227))) (-5 *1 (-310))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1224) (-1024)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862))))) -(((*1 *2 *3) - (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-908 *4)) - (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1122)) (-4 *3 (-167 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-1116 (-856 (-390))))) - (-5 *2 (-657 (-1116 (-856 (-227))))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-877)) (-5 *3 (-576)) (-5 *1 (-406)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1289 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) - (-4 *4 (-1265 *3)))) + (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1268 *2)) (-4 *2 (-174)))) ((*1 *2 *1) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) - (-5 *2 (-1289 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1289 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) - (-4 *3 (-1122)))) - ((*1 *1 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-1071)) - (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-475 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-548)))) - ((*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1239)))) - ((*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1239)))) - ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-737 *3 *2)) (-4 *2 (-1265 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2) - (-12 (-5 *2 (-972 *3)) (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) - (-4 *5 (-626 (-1198))) (-4 *4 (-806)) (-4 *5 (-862)))) - ((*1 *1 *2) - (-2802 - (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) - (-12 (-2712 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) - (-4 *5 (-626 (-1198)))) - (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))) - (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198)))) - (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))))) - ((*1 *1 *2) - (-12 (-5 *2 (-972 (-419 (-576)))) (-4 *1 (-1087 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198))) (-4 *3 (-1071)) - (-4 *4 (-806)) (-4 *5 (-862)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-657 *7)) (|:| -3946 *8))) - (-4 *7 (-1087 *4 *5 *6)) (-4 *8 (-1093 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1180)) - (-5 *1 (-1091 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-657 *7)) (|:| -3946 *8))) - (-4 *7 (-1087 *4 *5 *6)) (-4 *8 (-1131 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1180)) - (-5 *1 (-1167 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-1203)))) - ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1203)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-877)) (-5 *3 (-576)) (-5 *1 (-1219)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-877)) (-5 *3 (-576)) (-5 *1 (-1219)))) - ((*1 *2 *3) - (-12 (-5 *3 (-793 *4 (-879 *5))) - (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *5 (-657 (-1198))) - (-5 *2 (-793 *4 (-879 *6))) (-5 *1 (-1316 *4 *5 *6)) - (-14 *6 (-657 (-1198))))) - ((*1 *2 *3) - (-12 (-5 *3 (-972 *4)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) - (-5 *2 (-972 (-1046 (-419 *4)))) (-5 *1 (-1316 *4 *5 *6)) - (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198))))) - ((*1 *2 *3) - (-12 (-5 *3 (-793 *4 (-879 *6))) - (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *6 (-657 (-1198))) - (-5 *2 (-972 (-1046 (-419 *4)))) (-5 *1 (-1316 *4 *5 *6)) - (-14 *5 (-657 (-1198))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1194 *4)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) - (-5 *2 (-1194 (-1046 (-419 *4)))) (-5 *1 (-1316 *4 *5 *6)) - (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198))))) - ((*1 *2 *3) - (-12 - (-5 *3 (-1168 *4 (-543 (-879 *6)) (-879 *6) (-793 *4 (-879 *6)))) - (-4 *4 (-13 (-861) (-317) (-148) (-1044))) (-14 *6 (-657 (-1198))) - (-5 *2 (-657 (-793 *4 (-879 *6)))) (-5 *1 (-1316 *4 *5 *6)) - (-14 *5 (-657 (-1198)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1122)) (-4 *2 (-1122)) - (-5 *1 (-623 *2 *4))))) -(((*1 *1) (-5 *1 (-145))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1155 (-227))) (-5 *1 (-270))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) - (-5 *3 (-576)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-886 *4)) (-14 *4 *3) - (-5 *3 (-576)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-887 *4 *5)) - (-5 *3 (-576)) (-4 *5 (-884 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1034)) (-5 *2 (-419 (-576))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1090 *2 *3)) (-4 *2 (-13 (-861) (-374))) - (-4 *3 (-1265 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1267 *2 *3)) (-4 *3 (-805)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3501 (*2 (-1198)))) - (-4 *2 (-1071))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-941)))) ((*1 *1) (-4 *1 (-557))) - ((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-712)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) -(((*1 *2 *3) - (-12 (-5 *3 (-972 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3436 (-795 *3)) (|:| |coef1| (-795 *3)))) - (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *2 (-2 (|:| -3436 *1) (|:| |coef1| *1))) - (-4 *1 (-1087 *3 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877))))) + (-12 (-4 *4 (-1268 *2)) (-4 *2 (-1017 *3)) (-5 *1 (-426 *3 *2 *4 *5)) + (-4 *3 (-318)) (-4 *5 (-13 (-422 *2 *4) (-1063 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1268 *2)) (-4 *2 (-1017 *3)) + (-5 *1 (-427 *3 *2 *4 *5 *6)) (-4 *3 (-318)) (-4 *5 (-422 *2 *4)) + (-14 *6 (-1292 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-944)) (-4 *5 (-1074)) + (-4 *2 (-13 (-417) (-1063 *5) (-375) (-1227) (-295))) + (-5 *1 (-456 *5 *3 *2)) (-4 *3 (-1268 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-625 (-508)))) (-5 *1 (-508)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-508))) (-5 *1 (-508)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1197 (-508))) (-5 *3 (-660 (-625 (-508)))) + (-5 *1 (-508)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1197 (-508))) (-5 *3 (-625 (-508))) (-5 *1 (-508)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1292 *4)) (-5 *3 (-944)) (-4 *4 (-361)) + (-5 *1 (-541 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-465)) (-4 *5 (-740 *4 *2)) (-4 *2 (-1268 *4)) + (-5 *1 (-791 *4 *2 *5 *3)) (-4 *3 (-1268 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)))) + ((*1 *1 *1) (-4 *1 (-1085)))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-784)) (-5 *4 (-1289 *2)) (-4 *5 (-317)) - (-4 *6 (-1014 *5)) (-4 *2 (-13 (-421 *6 *7) (-1060 *6))) - (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1265 *6))))) -(((*1 *2) - (-12 (-5 *2 (-784)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576))))) - ((*1 *2 *2) - (-12 (-5 *2 (-784)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576)))))) + (-12 (-5 *3 (-837)) (-5 *4 (-52)) (-5 *2 (-1297)) (-5 *1 (-847))))) +(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-391))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576))))) -(((*1 *2 *1) - (-12 (-5 *2 (-657 (-52))) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1182 *3))) (-5 *1 (-1182 *3)) (-4 *3 (-1242))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-944)) (-5 *1 (-802))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) - (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3946 *4)))) - (-5 *1 (-789 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-760))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-672 *4 *2)) - (-4 *2 (-669 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) + (-12 (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-569)) + (-4 *7 (-972 *3 *5 *6)) + (-5 *2 (-2 (|:| -3556 (-787)) (|:| -1777 *8) (|:| |radicand| *8))) + (-5 *1 (-976 *5 *6 *3 *7 *8)) (-5 *4 (-787)) + (-4 *8 + (-13 (-375) + (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) (-15 -1637 (*7 $)))))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-543 *3)) (-4 *3 (-13 (-742) (-25)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-660 (-271))) (-5 *1 (-269))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-91 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-787)) (-5 *2 (-1265 *5 *4)) (-5 *1 (-1199 *4 *5 *6)) + (-4 *4 (-1074)) (-14 *5 (-1201)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-787)) (-5 *2 (-1265 *5 *4)) (-5 *1 (-1284 *4 *5 *6)) + (-4 *4 (-1074)) (-14 *5 (-1201)) (-14 *6 *4)))) (((*1 *2 *1) - (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) + (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 - (-2 (|:| -2047 (-784)) (|:| |curves| (-784)) - (|:| |polygons| (-784)) (|:| |constructs| (-784))))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-374)) (-5 *2 (-657 (-1179 *4))) (-5 *1 (-295 *4 *5)) - (-5 *3 (-1179 *4)) (-4 *5 (-1280 *4))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) - (-5 *2 (-1057)) (-5 *1 (-766))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 *4)) (-4 *4 (-862)) (-5 *2 (-657 (-677 *4 *5))) - (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-730 (-419 (-576))))) - (-14 *6 (-941))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-657 *4)) (-4 *4 (-1122)) (-4 *4 (-1239)) (-5 *2 (-112)) - (-5 *1 (-1179 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) - ((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6))))) + (-2 (|:| -3189 (-787)) (|:| |curves| (-787)) + (|:| |polygons| (-787)) (|:| |constructs| (-787))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)) (-4 *2 (-558)))) + ((*1 *1 *1) (-4 *1 (-1085)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1125)) (-4 *5 (-1125)) + (-4 *6 (-1125)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-700 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-52)) (-5 *1 (-847))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-387 *4 *2)) + (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4471))))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-834))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *1 (-940)) (-5 *2 (-2 (|:| -1771 (-657 *1)) (|:| -4097 *1))) - (-5 *3 (-657 *1))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1198)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-657 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-657 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2322 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1224) (-27) (-442 *8))) - (-4 *8 (-13 (-464) (-148) (-1060 *3) (-652 *3))) (-5 *3 (-576)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -4236 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1035 *8 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) - (-4 *4 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1224) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) (-4 *5 (-148)) - (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-326 *5)) - (-5 *1 (-601 *5))))) + (-12 (-5 *2 (-880)) (-5 *1 (-1182 *3)) (-4 *3 (-1125)) + (-4 *3 (-1242))))) +(((*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-1183)) (-5 *1 (-802))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1074)) (-4 *3 (-1125)) + (-5 *2 (-2 (|:| |val| *1) (|:| -3556 (-577)))) (-4 *1 (-443 *3)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-911 *3)) (|:| -3556 (-911 *3)))) + (-5 *1 (-911 *3)) (-4 *3 (-1125)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) + (-4 *7 (-972 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -3556 (-577)))) + (-5 *1 (-973 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-375) + (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) + (-15 -1637 (*7 $)))))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-548))) (-5 *1 (-548))))) -(((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-835))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-978 (-784))) (-5 *1 (-343))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-112)) (-5 *1 (-842))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1166)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) + (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-549))) (-5 *1 (-549))))) +(((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-542)))) + ((*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-542))))) +(((*1 *2 *3) + (-12 (-5 *3 (-950)) + (-5 *2 + (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) + (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-950)) (-5 *4 (-420 (-577))) + (-5 *2 + (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) + (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) + (-5 *1 (-154)))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) + (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) + (-5 *1 (-154)) (-5 *3 (-660 (-966 (-228)))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) + (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) + (-5 *1 (-154)) (-5 *3 (-660 (-660 (-966 (-228))))))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-271)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-375)) (-4 *5 (-569)) + (-5 *2 + (-2 (|:| |minor| (-660 (-944))) (|:| -3994 *3) + (|:| |minors| (-660 (-660 (-944)))) (|:| |ops| (-660 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-944)) (-4 *3 (-672 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)) (-4 *2 (-558)))) + ((*1 *1 *1) (-4 *1 (-1085)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-700 *4 *5 *6)) (-4 *4 (-1125))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-323)) (-5 *1 (-845))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-387 *4 *2)) + (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4471))))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-784)) (-4 *3 (-1239)) (-4 *1 (-57 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-787)) (-4 *3 (-1242)) (-4 *1 (-57 *3 *4 *5)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1) (-5 *1 (-173))) - ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1122)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-401)))) - ((*1 *1) (-5 *1 (-406))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) + ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1125)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1183)) (-4 *1 (-402)))) + ((*1 *1) (-5 *1 (-407))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) ((*1 *1) - (-12 (-4 *3 (-1122)) (-5 *1 (-901 *2 *3 *4)) (-4 *2 (-1122)) - (-4 *4 (-679 *3)))) - ((*1 *1) (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) + (-12 (-4 *3 (-1125)) (-5 *1 (-904 *2 *3 *4)) (-4 *2 (-1125)) + (-4 *4 (-682 *3)))) + ((*1 *1) (-12 (-5 *1 (-908 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) ((*1 *1 *2) - (-12 (-5 *1 (-1164 *3 *2)) (-14 *3 (-784)) (-4 *2 (-1071)))) - ((*1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071)))) - ((*1 *1 *1) (-5 *1 (-1198))) ((*1 *1) (-5 *1 (-1198))) - ((*1 *1) (-5 *1 (-1219)))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) - (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) - (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-925 *4)) (-4 *4 (-1122)) (-5 *2 (-657 (-784))) - (-5 *1 (-924 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877))))) -(((*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1239)) (-5 *2 (-112))))) -(((*1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1239))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-1180)) (-5 *1 (-194)))) - ((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) + (-12 (-5 *1 (-1167 *3 *2)) (-14 *3 (-787)) (-4 *2 (-1074)))) + ((*1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074)))) + ((*1 *1 *1) (-5 *1 (-1201))) ((*1 *1) (-5 *1 (-1201))) + ((*1 *1) (-5 *1 (-1222)))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1182 *3)) (-4 *3 (-1125)) + (-4 *3 (-1242))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1085)) (-5 *3 (-1180))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-624 *4)) (-5 *6 (-1194 *4)) - (-4 *4 (-13 (-442 *7) (-27) (-1224))) - (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1985 (-657 *4)))) - (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-669 *4)) (-4 *3 (-1122)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1194 *4))) - (-4 *4 (-13 (-442 *7) (-27) (-1224))) - (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1985 (-657 *4)))) - (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-669 *4)) (-4 *3 (-1122))))) + (|partial| -12 (-5 *3 (-1201)) (-4 *4 (-1074)) (-4 *4 (-1125)) + (-5 *2 (-2 (|:| |var| (-625 *1)) (|:| -3556 (-577)))) + (-4 *1 (-443 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1074)) (-4 *4 (-1125)) + (-5 *2 (-2 (|:| |var| (-625 *1)) (|:| -3556 (-577)))) + (-4 *1 (-443 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1137)) (-4 *3 (-1125)) + (-5 *2 (-2 (|:| |var| (-625 *1)) (|:| -3556 (-577)))) + (-4 *1 (-443 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-911 *3)) (|:| -3556 (-787)))) + (-5 *1 (-911 *3)) (-4 *3 (-1125)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-5 *2 (-2 (|:| |var| *5) (|:| -3556 (-787)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) + (-4 *7 (-972 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -3556 (-577)))) + (-5 *1 (-973 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-375) + (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) + (-15 -1637 (*7 $)))))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-975 (-171 *4))) (-4 *4 (-174)) + (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-975 (-171 *5))) (-5 *4 (-944)) (-4 *5 (-174)) + (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-975 *4)) (-4 *4 (-1074)) + (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-975 *5)) (-5 *4 (-944)) (-4 *5 (-1074)) + (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) + (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-944)) (-4 *5 (-569)) + (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-420 (-975 (-171 *4)))) (-4 *4 (-569)) + (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-420 (-975 (-171 *5)))) (-5 *4 (-944)) + (-4 *5 (-569)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) + (-5 *1 (-801 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-865)) + (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-327 *5)) (-5 *4 (-944)) (-4 *5 (-569)) + (-4 *5 (-865)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) + (-5 *1 (-801 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-327 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-865)) + (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-327 (-171 *5))) (-5 *4 (-944)) (-4 *5 (-569)) + (-4 *5 (-865)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) + (-5 *1 (-801 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-542))))) +(((*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-271)))) + ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271))))) +(((*1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1242))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318)))) + ((*1 *2 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-318)))) + ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)) (-4 *2 (-318)))) + ((*1 *2 *1) (-12 (-4 *1 (-1085)) (-5 *2 (-577))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1125)) (-4 *6 (-1125)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-700 *4 *5 *6)) (-4 *5 (-1125))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-112)) (-5 *1 (-845))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-387 *4 *2)) + (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4471))))))) (((*1 *1 *2) - (-12 (-5 *2 (-784)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) - (-14 *4 (-657 (-1198))))) + (-12 (-5 *2 (-787)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) + (-14 *4 (-660 (-1201))))) ((*1 *1 *2) - (-12 (-5 *2 (-784)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) - (-14 *4 (-657 (-1198))))) - ((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) + (-12 (-5 *2 (-787)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) + (-14 *4 (-660 (-1201))))) + ((*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) - (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) - (-4 *2 (-353 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-347 *3 *4 *5 *2)) (-4 *3 (-375)) + (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) + (-4 *2 (-354 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-784)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-787)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) - ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-737 *2 *3)) (-4 *3 (-1265 *2))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-784)) (-4 *4 (-13 (-1071) (-730 (-419 (-576))))) - (-4 *5 (-862)) (-5 *1 (-1305 *4 *5 *2)) (-4 *2 (-1310 *5 *4))))) + ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-740 *2 *3)) (-4 *3 (-1268 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-657 (-2 (|:| -4291 *3) (|:| -4440 *4)))) - (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *1 (-1215 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1215 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + (-12 (-5 *2 (-660 (-2 (|:| -4295 *3) (|:| -4444 *4)))) + (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *1 (-1218 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1218 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-577)) (-4 *4 (-13 (-569) (-148))) (-5 *1 (-550 *4 *2)) + (-4 *2 (-1283 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-577)) (-4 *4 (-13 (-375) (-380) (-627 *3))) + (-4 *5 (-1268 *4)) (-4 *6 (-740 *4 *5)) (-5 *1 (-554 *4 *5 *6 *2)) + (-4 *2 (-1283 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-577)) (-4 *4 (-13 (-375) (-380) (-627 *3))) + (-5 *1 (-555 *4 *2)) (-4 *2 (-1283 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1182 *4)) (-5 *3 (-577)) (-4 *4 (-13 (-569) (-148))) + (-5 *1 (-1178 *4))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-1137)) (-4 *3 (-1125)) (-5 *2 (-660 *1)) + (-4 *1 (-443 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-735)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-739)) (-5 *2 (-112))))) + (|partial| -12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) + (-4 *3 (-1125)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *2 (-660 *1)) (-4 *1 (-972 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) + (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-660 *3)) + (-5 *1 (-973 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-375) + (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) + (-15 -1637 (*7 $)))))))) (((*1 *2 *3) - (-12 (-5 *3 (-832 *4)) (-4 *4 (-862)) (-5 *2 (-112)) - (-5 *1 (-685 *4))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-657 (-1194 *13))) (-5 *3 (-1194 *13)) - (-5 *4 (-657 *12)) (-5 *5 (-657 *10)) (-5 *6 (-657 *13)) - (-5 *7 (-657 (-657 (-2 (|:| -2096 (-784)) (|:| |pcoef| *13))))) - (-5 *8 (-657 (-784))) (-5 *9 (-1289 (-657 (-1194 *10)))) - (-4 *12 (-862)) (-4 *10 (-317)) (-4 *13 (-969 *10 *11 *12)) - (-4 *11 (-806)) (-5 *1 (-720 *11 *12 *10 *13))))) -(((*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-941)) (-5 *1 (-799))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-998 *4 *5 *3 *6)) (-4 *4 (-1071)) (-4 *5 (-806)) - (-4 *3 (-862)) (-4 *6 (-1087 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) + (|partial| -12 (-5 *3 (-975 *4)) (-4 *4 (-1074)) (-4 *4 (-627 *2)) + (-5 *2 (-391)) (-5 *1 (-801 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-975 *5)) (-5 *4 (-944)) (-4 *5 (-1074)) + (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) + (-4 *4 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-944)) (-4 *5 (-569)) + (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-865)) + (-4 *4 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-327 *5)) (-5 *4 (-944)) (-4 *5 (-569)) + (-4 *5 (-865)) (-4 *5 (-627 *2)) (-5 *2 (-391)) + (-5 *1 (-801 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-542))))) +(((*1 *1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-271)))) + ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-220)))) + ((*1 *2 *1) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-500)))) + ((*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)) (-4 *2 (-318)))) + ((*1 *2 *1) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577)))) + ((*1 *1 *1) (-4 *1 (-1085)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-657 (-657 *8))) (-5 *3 (-657 *8)) - (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) - (-4 *7 (-862)) (-5 *2 (-112)) (-5 *1 (-999 *5 *6 *7 *8))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1166)) (-5 *2 (-112))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) (-4 *2 (-1265 *3))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1125)) (-4 *5 (-1125)) + (-4 *6 (-1125)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-112)) (-5 *1 (-845))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-688 *3)) (-4 *3 (-865)) (-4 *1 (-386 *3 *4)) + (-4 *4 (-174))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) + (-4 *2 (-1283 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-4 *4 (-1268 *3)) + (-4 *5 (-740 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1283 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-5 *1 (-555 *3 *2)) + (-4 *2 (-1283 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-13 (-569) (-148))) + (-5 *1 (-1178 *3))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1071)) - (-4 *4 (-805)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1074)) + (-4 *4 (-808)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-657 (-1198))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-660 (-1201))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1239)) - (-4 *6 (-1239)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1242)) + (-4 *6 (-1242)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) - (-14 *6 (-784)) (-4 *7 (-174)) (-4 *8 (-174)) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-577)) + (-14 *6 (-787)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1071) (-862))) - (-5 *1 (-225 *3 *4)) (-14 *4 (-657 (-1198))))) + (-12 (-5 *2 (-1 (-327 *3) (-327 *3))) (-4 *3 (-13 (-1074) (-865))) + (-5 *1 (-226 *3 *4)) (-14 *4 (-660 (-1201))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-784)) - (-4 *6 (-1239)) (-4 *7 (-1239)) (-5 *2 (-245 *5 *7)) - (-5 *1 (-244 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-787)) + (-4 *6 (-1242)) (-4 *7 (-1242)) (-5 *2 (-246 *5 *7)) + (-5 *1 (-245 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1239)) - (-4 *6 (-1239)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1242)) + (-4 *6 (-1242)) (-5 *2 (-305 *6)) (-5 *1 (-304 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1239)) (-5 *1 (-304 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1242)) (-5 *1 (-305 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1180)) (-5 *5 (-624 *6)) - (-4 *6 (-312)) (-4 *2 (-1239)) (-5 *1 (-307 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1183)) (-5 *5 (-625 *6)) + (-4 *6 (-313)) (-4 *2 (-1242)) (-5 *1 (-308 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) - (-4 *2 (-312)) (-5 *1 (-308 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-625 *5)) (-4 *5 (-313)) + (-4 *2 (-313)) (-5 *1 (-309 *5 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312)))) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-625 *1)) (-4 *1 (-313)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-702 *5)) (-4 *5 (-1071)) - (-4 *6 (-1071)) (-5 *2 (-702 *6)) (-5 *1 (-314 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-705 *5)) (-4 *5 (-1074)) + (-4 *6 (-1074)) (-5 *2 (-705 *6)) (-5 *1 (-315 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-327 *5)) (-4 *5 (-1125)) + (-4 *6 (-1125)) (-5 *2 (-327 *6)) (-5 *1 (-325 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) - (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) - (-4 *9 (-374)) (-4 *10 (-1265 *9)) (-4 *11 (-1265 (-419 *10))) - (-5 *2 (-347 *9 *10 *11 *12)) - (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-353 *9 *10 *11)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-348 *5 *6 *7 *8)) (-4 *5 (-375)) + (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) + (-4 *9 (-375)) (-4 *10 (-1268 *9)) (-4 *11 (-1268 (-420 *10))) + (-5 *2 (-348 *9 *10 *11 *12)) + (-5 *1 (-345 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-354 *9 *10 *11)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-350 *3)) (-4 *3 (-1125)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1243)) (-4 *8 (-1243)) - (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) (-4 *9 (-1265 *8)) - (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1265 (-419 *9))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1246)) (-4 *8 (-1246)) + (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) (-4 *9 (-1268 *8)) + (-4 *2 (-354 *8 *9 *10)) (-5 *1 (-352 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-354 *5 *6 *7)) (-4 *10 (-1268 (-420 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1239)) (-4 *6 (-1239)) - (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1242)) (-4 *6 (-1242)) + (-4 *2 (-385 *6)) (-5 *1 (-383 *5 *4 *6 *2)) (-4 *4 (-385 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) - (-4 *4 (-1122)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) + (-4 *4 (-1125)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568)) - (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-431 *5)) (-4 *5 (-569)) + (-4 *6 (-569)) (-5 *2 (-431 *6)) (-5 *1 (-418 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) - (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-420 *5)) (-4 *5 (-569)) + (-4 *6 (-569)) (-5 *2 (-420 *6)) (-5 *1 (-419 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) - (-4 *6 (-1014 *5)) (-4 *7 (-1265 *6)) - (-4 *8 (-13 (-421 *6 *7) (-1060 *6))) (-4 *9 (-317)) - (-4 *10 (-1014 *9)) (-4 *11 (-1265 *10)) - (-5 *2 (-425 *9 *10 *11 *12)) - (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-421 *10 *11) (-1060 *10))))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-426 *5 *6 *7 *8)) (-4 *5 (-318)) + (-4 *6 (-1017 *5)) (-4 *7 (-1268 *6)) + (-4 *8 (-13 (-422 *6 *7) (-1063 *6))) (-4 *9 (-318)) + (-4 *10 (-1017 *9)) (-4 *11 (-1268 *10)) + (-5 *2 (-426 *9 *10 *11 *12)) + (-5 *1 (-425 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-422 *10 *11) (-1063 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5)))) + (-4 *2 (-430 *6)) (-5 *1 (-428 *4 *5 *2 *6)) (-4 *4 (-430 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-569)) (-5 *1 (-431 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) - (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) + (-4 *2 (-443 *6)) (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-443 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) - (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1125)) (-4 *6 (-1125)) + (-4 *2 (-438 *6)) (-5 *1 (-436 *5 *4 *6 *2)) (-4 *4 (-438 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1239)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-502 *3)) (-4 *3 (-1242)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) - (-4 *4 (-865)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-522 *3 *4)) (-4 *3 (-102)) + (-4 *4 (-868)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374)) - (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-375)) + (-4 *6 (-375)) (-5 *2 (-599 *6)) (-5 *1 (-597 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2322 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-374)) (-4 *6 (-374)) - (-5 *2 (-2 (|:| -2322 *6) (|:| |coeff| *6))) - (-5 *1 (-596 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -2898 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-375)) (-4 *6 (-375)) + (-5 *2 (-2 (|:| -2898 *6) (|:| |coeff| *6))) + (-5 *1 (-597 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2)))) + (-4 *5 (-375)) (-4 *2 (-375)) (-5 *1 (-597 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| - (-657 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (-660 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) - (-4 *5 (-374)) (-4 *6 (-374)) + (-4 *5 (-375)) (-4 *6 (-375)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| - (-657 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-596 *5 *6)))) + (-660 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-597 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1239)) - (-4 *6 (-1239)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-614 *5)) (-4 *5 (-1242)) + (-4 *6 (-1242)) (-5 *2 (-614 *6)) (-5 *1 (-611 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) - (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-613 *8)) - (-5 *1 (-611 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-614 *6)) (-5 *5 (-614 *7)) + (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-614 *8)) + (-5 *1 (-612 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1179 *6)) (-5 *5 (-613 *7)) - (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-1179 *8)) - (-5 *1 (-611 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1182 *6)) (-5 *5 (-614 *7)) + (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-1182 *8)) + (-5 *1 (-612 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1179 *7)) - (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-1179 *8)) - (-5 *1 (-611 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-614 *6)) (-5 *5 (-1182 *7)) + (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-1182 *8)) + (-5 *1 (-612 *6 *7 *8)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-657 *5)) (-4 *5 (-1239)) - (-4 *6 (-1239)) (-5 *2 (-657 *6)) (-5 *1 (-655 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-660 *5)) (-4 *5 (-1242)) + (-4 *6 (-1242)) (-5 *2 (-660 *6)) (-5 *1 (-658 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-657 *6)) (-5 *5 (-657 *7)) - (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-657 *8)) - (-5 *1 (-656 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-660 *6)) (-5 *5 (-660 *7)) + (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-660 *8)) + (-5 *1 (-659 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1071)) (-4 *8 (-1071)) - (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-700 *8 *9 *10)) - (-5 *1 (-698 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-700 *5 *6 *7)) - (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1071)) - (-4 *8 (-1071)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) - (-4 *2 (-700 *8 *9 *10)) (-5 *1 (-698 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-700 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) - (-4 *6 (-1265 *5)) (-4 *2 (-1265 (-419 *8))) - (-5 *1 (-722 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1265 (-419 *6))) - (-4 *8 (-1265 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1071)) (-4 *9 (-1071)) - (-4 *5 (-862)) (-4 *6 (-806)) (-4 *2 (-969 *9 *7 *5)) - (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-806)) - (-4 *4 (-969 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-862)) (-4 *6 (-862)) (-4 *7 (-806)) - (-4 *9 (-1071)) (-4 *2 (-969 *9 *8 *6)) - (-5 *1 (-742 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-806)) - (-4 *4 (-969 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-748 *5 *7)) (-4 *5 (-1071)) - (-4 *6 (-1071)) (-4 *7 (-739)) (-5 *2 (-748 *6 *7)) - (-5 *1 (-747 *5 *6 *7)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1074)) (-4 *8 (-1074)) + (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-703 *8 *9 *10)) + (-5 *1 (-701 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-703 *5 *6 *7)) + (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1074)) + (-4 *8 (-1074)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) + (-4 *2 (-703 *8 *9 *10)) (-5 *1 (-701 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-703 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-569)) (-4 *7 (-569)) + (-4 *6 (-1268 *5)) (-4 *2 (-1268 (-420 *8))) + (-5 *1 (-725 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1268 (-420 *6))) + (-4 *8 (-1268 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1074)) (-4 *9 (-1074)) + (-4 *5 (-865)) (-4 *6 (-809)) (-4 *2 (-972 *9 *7 *5)) + (-5 *1 (-744 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-809)) + (-4 *4 (-972 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-865)) (-4 *6 (-865)) (-4 *7 (-809)) + (-4 *9 (-1074)) (-4 *2 (-972 *9 *8 *6)) + (-5 *1 (-745 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-809)) + (-4 *4 (-972 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5 *7)) (-4 *5 (-1074)) + (-4 *6 (-1074)) (-4 *7 (-742)) (-5 *2 (-751 *6 *7)) + (-5 *1 (-750 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-748 *3 *4)) - (-4 *4 (-739)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-751 *3 *4)) + (-4 *4 (-742)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-795 *5)) (-4 *5 (-1071)) - (-4 *6 (-1071)) (-5 *2 (-795 *6)) (-5 *1 (-794 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-798 *5)) (-4 *5 (-1074)) + (-4 *6 (-1074)) (-5 *2 (-798 *6)) (-5 *1 (-797 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-810 *6)) (-5 *1 (-811 *4 *5 *2 *6)) (-4 *4 (-810 *5)))) + (-4 *2 (-813 *6)) (-5 *1 (-814 *4 *5 *2 *6)) (-4 *4 (-813 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-846 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-846 *6)) (-5 *1 (-845 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) (-4 *5 (-1125)) + (-4 *6 (-1125)) (-5 *2 (-849 *6)) (-5 *1 (-848 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-846 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-846 *5)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *1 (-845 *5 *6)))) + (-12 (-5 *2 (-849 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) + (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *1 (-848 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-856 *6)) (-5 *1 (-855 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-859 *5)) (-4 *5 (-1125)) + (-4 *6 (-1125)) (-5 *2 (-859 *6)) (-5 *1 (-858 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-856 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *1 (-855 *5 *6)))) + (-12 (-5 *2 (-859 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-859 *5)) + (-4 *5 (-1125)) (-4 *6 (-1125)) (-5 *1 (-858 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1239)) - (-4 *6 (-1239)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-1242)) + (-4 *6 (-1242)) (-5 *2 (-896 *6)) (-5 *1 (-895 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-1239)) - (-4 *6 (-1239)) (-5 *2 (-895 *6)) (-5 *1 (-894 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-898 *5)) (-4 *5 (-1242)) + (-4 *6 (-1242)) (-5 *2 (-898 *6)) (-5 *1 (-897 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-898 *5)) (-4 *5 (-1239)) - (-4 *6 (-1239)) (-5 *2 (-898 *6)) (-5 *1 (-897 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-901 *5)) (-4 *5 (-1242)) + (-4 *6 (-1242)) (-5 *2 (-901 *6)) (-5 *1 (-900 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-905 *5 *6)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-905 *5 *7)) - (-5 *1 (-904 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-908 *5 *6)) (-4 *5 (-1125)) + (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-908 *5 *7)) + (-5 *1 (-907 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-908 *6)) (-5 *1 (-907 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) + (-4 *6 (-1125)) (-5 *2 (-911 *6)) (-5 *1 (-910 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-972 *5)) (-4 *5 (-1071)) - (-4 *6 (-1071)) (-5 *2 (-972 *6)) (-5 *1 (-966 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1074)) + (-4 *6 (-1074)) (-5 *2 (-975 *6)) (-5 *1 (-969 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-862)) - (-4 *8 (-1071)) (-4 *6 (-806)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-865)) + (-4 *8 (-1074)) (-4 *6 (-809)) (-4 *2 - (-13 (-1122) - (-10 -8 (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-784)))))) - (-5 *1 (-971 *6 *7 *8 *5 *2)) (-4 *5 (-969 *8 *6 *7)))) + (-13 (-1125) + (-10 -8 (-15 -3055 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-787)))))) + (-5 *1 (-974 *6 *7 *8 *5 *2)) (-4 *5 (-972 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-978 *5)) (-4 *5 (-1239)) - (-4 *6 (-1239)) (-5 *2 (-978 *6)) (-5 *1 (-977 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-981 *5)) (-4 *5 (-1242)) + (-4 *6 (-1242)) (-5 *2 (-981 *6)) (-5 *1 (-980 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-986 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-986 *6)) (-5 *1 (-988 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-989 *5)) (-4 *5 (-1125)) + (-4 *6 (-1125)) (-5 *2 (-989 *6)) (-5 *1 (-991 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-963 *5)) (-4 *5 (-1071)) - (-4 *6 (-1071)) (-5 *2 (-963 *6)) (-5 *1 (-1003 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-966 *5)) (-4 *5 (-1074)) + (-4 *6 (-1074)) (-5 *2 (-966 *6)) (-5 *1 (-1006 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-972 *4))) (-4 *4 (-1071)) - (-4 *2 (-969 (-972 *4) *5 *6)) (-4 *5 (-806)) + (-12 (-5 *3 (-1 *2 (-975 *4))) (-4 *4 (-1074)) + (-4 *2 (-972 (-975 *4) *5 *6)) (-4 *5 (-809)) (-4 *6 - (-13 (-862) - (-10 -8 (-15 -4148 ((-1198) $)) - (-15 -3032 ((-3 $ "failed") (-1198)))))) - (-5 *1 (-1006 *4 *5 *6 *2)))) + (-13 (-865) + (-10 -8 (-15 -4152 ((-1201) $)) + (-15 -3076 ((-3 $ "failed") (-1201)))))) + (-5 *1 (-1009 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) - (-4 *2 (-1014 *6)) (-5 *1 (-1012 *5 *6 *4 *2)) (-4 *4 (-1014 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-569)) (-4 *6 (-569)) + (-4 *2 (-1017 *6)) (-5 *1 (-1015 *5 *6 *4 *2)) (-4 *4 (-1017 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) - (-4 *2 (-1019 *6)) (-5 *1 (-1020 *4 *5 *2 *6)) (-4 *4 (-1019 *5)))) + (-4 *2 (-1022 *6)) (-5 *1 (-1023 *4 *5 *2 *6)) (-4 *4 (-1022 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1075 *3 *4 *5 *6 *7)) - (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1078 *3 *4 *5 *6 *7)) + (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1075 *3 *4 *5 *6 *7)) - (-4 *5 (-1071)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1078 *3 *4 *5 *6 *7)) + (-4 *5 (-1074)) (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1071)) (-4 *10 (-1071)) - (-14 *5 (-784)) (-14 *6 (-784)) (-4 *8 (-243 *6 *7)) - (-4 *9 (-243 *5 *7)) (-4 *2 (-1075 *5 *6 *10 *11 *12)) - (-5 *1 (-1077 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1075 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) - (-4 *12 (-243 *5 *10)))) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1074)) (-4 *10 (-1074)) + (-14 *5 (-787)) (-14 *6 (-787)) (-4 *8 (-244 *6 *7)) + (-4 *9 (-244 *5 *7)) (-4 *2 (-1078 *5 *6 *10 *11 *12)) + (-5 *1 (-1080 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1078 *5 *6 *7 *8 *9)) (-4 *11 (-244 *6 *10)) + (-4 *12 (-244 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-1239)) - (-4 *6 (-1239)) (-5 *2 (-1116 *6)) (-5 *1 (-1111 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5)) (-4 *5 (-1242)) + (-4 *6 (-1242)) (-5 *2 (-1119 *6)) (-5 *1 (-1114 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-861)) - (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-657 *6)) - (-5 *1 (-1111 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1119 *5)) (-4 *5 (-864)) + (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-660 *6)) + (-5 *1 (-1114 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1114 *5)) (-4 *5 (-1239)) - (-4 *6 (-1239)) (-5 *2 (-1114 *6)) (-5 *1 (-1113 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1117 *5)) (-4 *5 (-1242)) + (-4 *6 (-1242)) (-5 *2 (-1117 *6)) (-5 *1 (-1116 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1117 *4 *2)) (-4 *4 (-861)) - (-4 *2 (-1171 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1120 *4 *2)) (-4 *4 (-864)) + (-4 *2 (-1174 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1239)) - (-4 *6 (-1239)) (-5 *2 (-1179 *6)) (-5 *1 (-1177 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1182 *5)) (-4 *5 (-1242)) + (-4 *6 (-1242)) (-5 *2 (-1182 *6)) (-5 *1 (-1180 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1179 *6)) (-5 *5 (-1179 *7)) - (-4 *6 (-1239)) (-4 *7 (-1239)) (-4 *8 (-1239)) (-5 *2 (-1179 *8)) - (-5 *1 (-1178 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1182 *6)) (-5 *5 (-1182 *7)) + (-4 *6 (-1242)) (-4 *7 (-1242)) (-4 *8 (-1242)) (-5 *2 (-1182 *8)) + (-5 *1 (-1181 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1194 *5)) (-4 *5 (-1071)) - (-4 *6 (-1071)) (-5 *2 (-1194 *6)) (-5 *1 (-1192 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1197 *5)) (-4 *5 (-1074)) + (-4 *6 (-1074)) (-5 *2 (-1197 *6)) (-5 *1 (-1195 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1215 *3 *4)) (-4 *3 (-1122)) - (-4 *4 (-1122)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1218 *3 *4)) (-4 *3 (-1125)) + (-4 *4 (-1125)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5 *7 *9)) (-4 *5 (-1071)) - (-4 *6 (-1071)) (-14 *7 (-1198)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1253 *6 *8 *10)) (-5 *1 (-1248 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1198)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1256 *5 *7 *9)) (-4 *5 (-1074)) + (-4 *6 (-1074)) (-14 *7 (-1201)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1256 *6 *8 *10)) (-5 *1 (-1251 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1201)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-1239)) - (-4 *6 (-1239)) (-5 *2 (-1256 *6)) (-5 *1 (-1255 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1242)) + (-4 *6 (-1242)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1256 *5)) (-4 *5 (-861)) - (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-1179 *6)) - (-5 *1 (-1255 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-864)) + (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-1182 *6)) + (-5 *1 (-1258 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1262 *5 *6)) (-14 *5 (-1198)) - (-4 *6 (-1071)) (-4 *8 (-1071)) (-5 *2 (-1262 *7 *8)) - (-5 *1 (-1257 *5 *6 *7 *8)) (-14 *7 (-1198)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1265 *5 *6)) (-14 *5 (-1201)) + (-4 *6 (-1074)) (-4 *8 (-1074)) (-5 *2 (-1265 *7 *8)) + (-5 *1 (-1260 *5 *6 *7 *8)) (-14 *7 (-1201)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) - (-4 *2 (-1265 *6)) (-5 *1 (-1263 *5 *4 *6 *2)) (-4 *4 (-1265 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) + (-4 *2 (-1268 *6)) (-5 *1 (-1266 *5 *4 *6 *2)) (-4 *4 (-1268 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1274 *5 *7 *9)) (-4 *5 (-1071)) - (-4 *6 (-1071)) (-14 *7 (-1198)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1274 *6 *8 *10)) (-5 *1 (-1269 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1198)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1277 *5 *7 *9)) (-4 *5 (-1074)) + (-4 *6 (-1074)) (-14 *7 (-1201)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1277 *6 *8 *10)) (-5 *1 (-1272 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1201)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1071)) (-4 *6 (-1071)) - (-4 *2 (-1280 *6)) (-5 *1 (-1278 *5 *6 *4 *2)) (-4 *4 (-1280 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) + (-4 *2 (-1283 *6)) (-5 *1 (-1281 *5 *6 *4 *2)) (-4 *4 (-1283 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1289 *5)) (-4 *5 (-1239)) - (-4 *6 (-1239)) (-5 *2 (-1289 *6)) (-5 *1 (-1288 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1292 *5)) (-4 *5 (-1242)) + (-4 *6 (-1242)) (-5 *2 (-1292 *6)) (-5 *1 (-1291 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1289 *5)) - (-4 *5 (-1239)) (-4 *6 (-1239)) (-5 *2 (-1289 *6)) - (-5 *1 (-1288 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1292 *5)) + (-4 *5 (-1242)) (-4 *6 (-1242)) (-5 *2 (-1292 *6)) + (-5 *1 (-1291 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-1071)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) + (-4 *4 (-1074)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-1312 *3 *4)) - (-4 *4 (-859))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-889)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-1315 *3 *4)) + (-4 *4 (-862))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1125)) (-5 *2 (-660 *1)) + (-4 *1 (-443 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) + (-4 *3 (-1125)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *2 (-660 *1)) (-4 *1 (-972 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022)))) - (-5 *2 (-1057)) (-5 *1 (-761))))) + (|partial| -12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) + (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-660 *3)) + (-5 *1 (-973 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-375) + (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) + (-15 -1637 (*7 $)))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-386 *4 *2)) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4467))))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-4 *1 (-107 *3))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1241))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-227)) - (-5 *2 - (-2 (|:| |brans| (-657 (-657 (-963 *4)))) - (|:| |xValues| (-1116 *4)) (|:| |yValues| (-1116 *4)))) - (-5 *1 (-154)) (-5 *3 (-657 (-657 (-963 *4))))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-568)) - (-4 *8 (-969 *7 *5 *6)) - (-5 *2 (-2 (|:| -1801 (-784)) (|:| -1771 *3) (|:| |radicand| *3))) - (-5 *1 (-973 *5 *6 *7 *8 *3)) (-5 *4 (-784)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -3501 ($ *8)) (-15 -1621 (*8 $)) (-15 -1635 (*8 $)))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1164 *3 *4)) (-14 *3 (-941)) (-4 *4 (-374)) - (-5 *1 (-1015 *3 *4))))) + (-12 (-5 *3 (-787)) (-5 *1 (-799 *2)) (-4 *2 (-38 (-420 (-577)))) + (-4 *2 (-174))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1122)) - (-4 *2 (-132))))) -(((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-723))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-657 (-1098 *4 *5 *2))) (-4 *4 (-1122)) - (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) - (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-657 (-1098 *5 *6 *2))) (-5 *4 (-941)) (-4 *5 (-1122)) - (-4 *6 (-13 (-1071) (-902 *5) (-626 (-908 *5)))) - (-4 *2 (-13 (-442 *6) (-902 *5) (-626 (-908 *5)))) - (-5 *1 (-54 *5 *6 *2))))) + (-12 (-5 *3 (-944)) (-4 *4 (-380)) (-4 *4 (-375)) (-5 *2 (-1197 *1)) + (-4 *1 (-340 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1197 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-174)) (-4 *3 (-375)) + (-4 *2 (-1268 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1292 *4)) (-4 *4 (-361)) (-5 *2 (-1197 *4)) + (-5 *1 (-541 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-228) (-228) (-228) (-228))) (-5 *1 (-271)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228) (-228))) (-5 *1 (-271)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-271))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) + (-14 *4 *2)))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-430 *4))))) +(((*1 *1 *1) (-4 *1 (-1085)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1125)) (-4 *4 (-1125)) + (-4 *6 (-1125)) (-5 *2 (-1 *6 *5)) (-5 *1 (-700 *5 *4 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) + (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-845)) (-5 *3 (-1183))))) +(((*1 *2 *1) + (-12 (-4 *1 (-385 *3)) (-4 *3 (-1242)) (-4 *3 (-865)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1242)) + (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) + (-4 *2 (-1283 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-4 *4 (-1268 *3)) + (-4 *5 (-740 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1283 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-5 *1 (-555 *3 *2)) + (-4 *2 (-1283 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-13 (-569) (-148))) + (-5 *1 (-1178 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-787)) (-5 *1 (-799 *2)) (-4 *2 (-38 (-420 (-577)))) + (-4 *2 (-174))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1074)) (-4 *4 (-1125)) (-5 *2 (-660 *1)) + (-4 *1 (-394 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-660 (-751 *3 *4))) (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) + (-4 *4 (-742)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) + (-4 *1 (-972 *3 *4 *5))))) +(((*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375)))) + ((*1 *2 *3) + (-12 (-5 *3 (-944)) (-5 *2 (-1292 *4)) (-5 *1 (-541 *4)) + (-4 *4 (-361))))) (((*1 *1 *2) - (-12 (-5 *2 (-657 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) - (-14 *4 (-657 (-1198))))) + (-12 (-5 *2 (-660 (-577))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) + (-14 *4 (-660 (-1201))))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) - ((*1 *1 *1) (-4 *1 (-294))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) + ((*1 *1 *1) (-4 *1 (-295))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) - (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) + (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) ((*1 *1 *2) - (-12 (-5 *2 (-677 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) - (-14 *5 (-941)))) + (-12 (-5 *2 (-680 *3 *4)) (-4 *3 (-865)) + (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-5 *1 (-640 *3 *4 *5)) + (-14 *5 (-944)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-784)) (-4 *4 (-13 (-1071) (-730 (-419 (-576))))) - (-4 *5 (-862)) (-5 *1 (-1305 *4 *5 *2)) (-4 *2 (-1310 *5 *4)))) + (-12 (-5 *3 (-787)) (-4 *4 (-13 (-1074) (-733 (-420 (-577))))) + (-4 *5 (-865)) (-5 *1 (-1308 *4 *5 *2)) (-4 *2 (-1313 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-5 *1 (-1309 *3 *4)) - (-4 *4 (-730 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-666 (-419 *6))) (-5 *4 (-1 (-657 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) - (-4 *6 (-1265 *5)) (-5 *2 (-657 (-419 *6))) (-5 *1 (-825 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-666 (-419 *7))) (-5 *4 (-1 (-657 *6) *7)) - (-5 *5 (-1 (-430 *7) *7)) - (-4 *6 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) - (-4 *7 (-1265 *6)) (-5 *2 (-657 (-419 *7))) (-5 *1 (-825 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *6 (-419 *6))) (-5 *4 (-1 (-657 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) - (-4 *6 (-1265 *5)) (-5 *2 (-657 (-419 *6))) (-5 *1 (-825 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-667 *7 (-419 *7))) (-5 *4 (-1 (-657 *6) *7)) - (-5 *5 (-1 (-430 *7) *7)) - (-4 *6 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) - (-4 *7 (-1265 *6)) (-5 *2 (-657 (-419 *7))) (-5 *1 (-825 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-666 (-419 *5))) (-4 *5 (-1265 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) - (-5 *2 (-657 (-419 *5))) (-5 *1 (-825 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) - (-4 *6 (-1265 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) - (-5 *2 (-657 (-419 *6))) (-5 *1 (-825 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-667 *5 (-419 *5))) (-4 *5 (-1265 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) - (-5 *2 (-657 (-419 *5))) (-5 *1 (-825 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) - (-4 *6 (-1265 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) - (-5 *2 (-657 (-419 *6))) (-5 *1 (-825 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-5 *2 (-548)) (-5 *1 (-547 *4)) - (-4 *4 (-1239))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1071)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) - (-4 *3 (-1265 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-5 *2 (-657 (-1049 *5 *6 *7 *3))) (-5 *1 (-1049 *5 *6 *7 *3)) - (-4 *3 (-1087 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-657 *6)) (-4 *1 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1093 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-5 *2 (-657 (-1168 *5 *6 *7 *3))) (-5 *1 (-1168 *5 *6 *7 *3)) - (-4 *3 (-1087 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-947))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1166)) (-5 *3 (-576)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) - (-4 *4 (-805))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1180)) (-5 *1 (-315))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1239)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 (-624 *1))) (-5 *3 (-657 *1)) (-4 *1 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-304 *1))) (-4 *1 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-1289 (-702 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-702 *4)) (-4 *5 (-669 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1239))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-702 (-419 (-972 (-576))))) - (-5 *2 (-657 (-702 (-326 (-576))))) (-5 *1 (-1053)) - (-5 *3 (-326 (-576)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-835))))) + (-12 (-5 *2 (-787)) (-5 *1 (-1312 *3 *4)) + (-4 *4 (-733 (-420 (-577)))) (-4 *3 (-865)) (-4 *4 (-174))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-1119 (-420 (-577))))) (-5 *1 (-271)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-1119 (-391)))) (-5 *1 (-271))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1182 *4)) (-5 *3 (-577)) (-4 *4 (-1074)) + (-5 *1 (-1185 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-577)) (-5 *1 (-1284 *3 *4 *5)) (-4 *3 (-1074)) + (-14 *4 (-1201)) (-14 *5 *3)))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) - (-5 *1 (-677 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-677 *3 *4)) (-5 *1 (-1309 *3 *4)) - (-4 *3 (-862)) (-4 *4 (-174))))) + (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-430 *4))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-787)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1242)) (-5 *2 (-787)) + (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-1125)) (-5 *2 (-787)) (-5 *1 (-442 *3 *4)) + (-4 *3 (-443 *4)))) + ((*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-557 *3)) (-4 *3 (-558)))) + ((*1 *2) (-12 (-4 *1 (-779)) (-5 *2 (-787)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-787)) (-5 *1 (-812 *3 *4)) + (-4 *3 (-813 *4)))) + ((*1 *2) + (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-1016 *3 *4)) + (-4 *3 (-1017 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-787)) (-5 *1 (-1021 *3 *4)) + (-4 *3 (-1022 *4)))) + ((*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1036 *3)) (-4 *3 (-1037)))) + ((*1 *2) (-12 (-4 *1 (-1074)) (-5 *2 (-787)))) + ((*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1084 *3)) (-4 *3 (-1085))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1125)) (-4 *5 (-1125)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-699 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-845))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (-577)) (-5 *2 (-112))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-577)) (|has| *1 (-6 -4471)) (-4 *1 (-385 *3)) + (-4 *3 (-1242))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) - (-4 *6 (-1087 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *2 (-1131 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-171 (-227)))) (-5 *2 (-1057)) - (-5 *1 (-767))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) - (-5 *2 (-1057)) (-5 *1 (-770))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-702 *5))) (-5 *4 (-576)) (-4 *5 (-374)) - (-4 *5 (-1071)) (-5 *2 (-112)) (-5 *1 (-1051 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-702 *4))) (-4 *4 (-374)) (-4 *4 (-1071)) - (-5 *2 (-112)) (-5 *1 (-1051 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) - ((*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) - ((*1 *2 *2) (-12 (-5 *2 (-941)) (|has| *1 (-6 -4457)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-941)))) - ((*1 *2 *1) (-12 (-4 *1 (-884 *3)) (-5 *2 (-1179 (-576)))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-695 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) - (-5 *2 (-657 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) - (-5 *2 (-657 *3)))) + (-12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-550 *3 *2)) + (-4 *2 (-1283 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-4 *4 (-1268 *3)) + (-4 *5 (-740 *3 *4)) (-5 *1 (-554 *3 *4 *5 *2)) (-4 *2 (-1283 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-375) (-380) (-627 (-577)))) (-5 *1 (-555 *3 *2)) + (-4 *2 (-1283 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-13 (-569) (-148))) + (-5 *1 (-1178 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-1074))))) +(((*1 *2 *1) (-12 (-4 *1 (-337 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) + ((*1 *2 *1) (-12 (-4 *1 (-724 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) + ((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-660 *6)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-1074)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 (-787))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-972 *4 *5 *3)) (-4 *4 (-1074)) (-4 *5 (-809)) + (-4 *3 (-865)) (-5 *2 (-787))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1292 *4)) (-4 *4 (-430 *3)) (-4 *3 (-318)) + (-4 *3 (-569)) (-5 *1 (-43 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-944)) (-4 *4 (-375)) (-5 *2 (-1292 *1)) + (-4 *1 (-340 *4)))) + ((*1 *2) (-12 (-4 *3 (-375)) (-5 *2 (-1292 *1)) (-4 *1 (-340 *3)))) + ((*1 *2) + (-12 (-4 *3 (-174)) (-4 *4 (-1268 *3)) (-5 *2 (-1292 *1)) + (-4 *1 (-422 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-1179 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1071)))) + (-12 (-4 *3 (-318)) (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) + (-5 *2 (-1292 *6)) (-5 *1 (-426 *3 *4 *5 *6)) + (-4 *6 (-13 (-422 *4 *5) (-1063 *4))))) ((*1 *2 *1) - (-12 (-5 *2 (-657 *3)) (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) - (-4 *4 (-739)))) - ((*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-4 *3 (-1071)) (-5 *2 (-657 *3)))) + (-12 (-4 *3 (-318)) (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) + (-5 *2 (-1292 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)) + (-4 *6 (-422 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1292 *1)) (-4 *1 (-430 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-944)) (-5 *2 (-1292 (-1292 *4))) (-5 *1 (-541 *4)) + (-4 *4 (-361))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-271))) (-5 *4 (-1201)) (-5 *2 (-112)) + (-5 *1 (-271))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1284 *2 *3 *4)) (-4 *2 (-1074)) (-14 *3 (-1201)) + (-14 *4 *2)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-313)) (-4 *2 (-1242)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-660 (-625 *1))) (-5 *3 (-660 *1)) (-4 *1 (-313)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-305 *1))) (-4 *1 (-313)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-313))))) +(((*1 *1 *2) + (-12 (-5 *2 (-705 *5)) (-4 *5 (-1074)) (-5 *1 (-1079 *3 *4 *5)) + (-14 *3 (-787)) (-14 *4 (-787))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1125)) (-4 *5 (-1125)) + (-5 *2 (-1 *5)) (-5 *1 (-699 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-52)) (-5 *1 (-845))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4471)) (-4 *1 (-385 *2)) (-4 *2 (-1242)) + (-4 *2 (-865)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4471)) + (-4 *1 (-385 *3)) (-4 *3 (-1242))))) +(((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-538)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1176))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-1074))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-660 *6)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-1074)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-787)))) ((*1 *2 *1) - (-12 (-4 *1 (-1280 *3)) (-4 *3 (-1071)) (-5 *2 (-1179 *3))))) + (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-5 *2 (-787))))) (((*1 *2 *1) - (-12 (-4 *3 (-13 (-374) (-148))) - (-5 *2 (-657 (-2 (|:| -1801 (-784)) (|:| -3665 *4) (|:| |num| *4)))) - (-5 *1 (-411 *3 *4)) (-4 *4 (-1265 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1071)) (-5 *1 (-910 *2 *3)) (-4 *2 (-1265 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1289 (-1289 (-576)))) (-5 *1 (-478))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)) (-4 *2 (-862)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-862))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-657 (-52))) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) + (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) (-5 *2 (-112)) + (-5 *1 (-369 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1292 *4)) (-4 *4 (-361)) (-5 *2 (-112)) + (-5 *1 (-541 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-265))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1182 *4)) (-5 *3 (-577)) (-4 *4 (-1074)) + (-5 *1 (-1185 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-577)) (-5 *1 (-1284 *3 *4 *5)) (-4 *3 (-1074)) + (-14 *4 (-1201)) (-14 *5 *3)))) (((*1 *2 *1) - (-12 (-5 *2 (-657 (-2 (|:| |k| (-1198)) (|:| |c| (-1311 *3))))) - (-5 *1 (-1311 *3)) (-4 *3 (-1071)))) + (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-657 (-2 (|:| |k| *3) (|:| |c| (-1313 *3 *4))))) - (-5 *1 (-1313 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-657 (-576))) (-5 *2 (-702 (-576))) (-5 *1 (-1132))))) + (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *1 (-899)) (-5 *3 (-576))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) - (-5 *2 (-1057)) (-5 *1 (-765))))) -(((*1 *2 *1) (-12 (-4 *1 (-1277 *3)) (-4 *3 (-1239)) (-5 *2 (-784))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-784)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-699 *4 *3)) (-4 *4 (-1125)) + (-4 *3 (-1125))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-52)) (-5 *1 (-845))))) +(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1292 *1)) (-4 *1 (-379 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1176))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-660 (-798 *3))) (-5 *1 (-798 *3)) (-4 *3 (-569)) + (-4 *3 (-1074))))) +(((*1 *2 *1) + (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074)) + (-4 *2 (-465)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 *4)) (-4 *4 (-1268 (-577))) (-5 *2 (-660 (-577))) + (-5 *1 (-499 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-465)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *2 (-865)) (-4 *3 (-465))))) +(((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-944)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -4143 *3) (|:| -1801 (-784)))) (-5 *1 (-599 *3)) - (-4 *3 (-557))))) + (-12 (-5 *3 (-1292 *4)) (-4 *4 (-361)) (-5 *2 (-944)) + (-5 *1 (-541 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-265))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1182 *4)) (-5 *3 (-577)) (-4 *4 (-1074)) + (-5 *1 (-1185 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-577)) (-5 *1 (-1284 *3 *4 *5)) (-4 *3 (-1074)) + (-14 *4 (-1201)) (-14 *5 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-787) *2)) (-5 *4 (-787)) (-4 *2 (-1125)) + (-5 *1 (-694 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-787) *3)) (-4 *3 (-1125)) (-5 *1 (-698 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-52)) (-5 *1 (-845))))) +(((*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-707 (-1160))) (-5 *1 (-1176))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -1816 *3) (|:| |coef1| (-798 *3)) (|:| |coef2| (-798 *3)))) + (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-660 *5)) (-5 *4 (-577)) (-4 *5 (-864)) (-4 *5 (-375)) + (-5 *2 (-787)) (-5 *1 (-968 *5 *6)) (-4 *6 (-1268 *5))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-1071)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1265 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290))))) + (-12 (-5 *2 (-1292 *4)) (-5 *3 (-577)) (-4 *4 (-361)) + (-5 *1 (-541 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-265))))) +(((*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) +(((*1 *2 *1) + (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1289 (-657 (-2 (|:| -3071 *4) (|:| -3178 (-1142)))))) - (-4 *4 (-360)) (-5 *2 (-784)) (-5 *1 (-357 *4)))) - ((*1 *2) - (-12 (-5 *2 (-784)) (-5 *1 (-362 *3 *4)) (-14 *3 (-941)) - (-14 *4 (-941)))) - ((*1 *2) - (-12 (-5 *2 (-784)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) - (-14 *4 - (-3 (-1194 *3) - (-1289 (-657 (-2 (|:| -3071 *3) (|:| -3178 (-1142))))))))) - ((*1 *2) - (-12 (-5 *2 (-784)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-941))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1114 (-972 (-576)))) (-5 *3 (-972 (-576))) - (-5 *1 (-340)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1114 (-972 (-576)))) (-5 *1 (-340))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-698 *2)) (-4 *2 (-1125)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-660 *5) (-660 *5))) (-5 *4 (-577)) + (-5 *2 (-660 *5)) (-5 *1 (-698 *5)) (-4 *5 (-1125))))) (((*1 *2 *1) - (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-806)) - (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1198)) - (-4 *4 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4)))))) -(((*1 *1 *1) (|partial| -4 *1 (-1174)))) -(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-496 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-657 (-1198))) (-4 *5 (-568)) - (-5 *2 (-657 (-657 (-304 (-419 (-972 *5)))))) (-5 *1 (-783 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-568)) - (-5 *2 (-657 (-657 (-304 (-419 (-972 *4)))))) (-5 *1 (-783 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-702 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1985 (-657 *6))) - *7 *6)) - (-4 *6 (-374)) (-4 *7 (-669 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1289 *6) "failed")) - (|:| -1985 (-657 (-1289 *6))))) - (-5 *1 (-826 *6 *7)) (-5 *4 (-1289 *6))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-657 (-657 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-657 (-3 (|:| |array| (-657 *3)) (|:| |scalar| (-1198))))) - (-5 *6 (-657 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1126)) - (-5 *1 (-409)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-657 (-657 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-657 (-3 (|:| |array| (-657 *3)) (|:| |scalar| (-1198))))) - (-5 *6 (-657 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1126)) - (-5 *1 (-409)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-657 (-1198))) (-5 *5 (-1201)) (-5 *3 (-1198)) - (-5 *2 (-1126)) (-5 *1 (-409))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) + (-12 (-4 *2 (-724 *3)) (-5 *1 (-843 *2 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174))))) +(((*1 *1 *1) (|partial| -4 *1 (-1177)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1816 *3) (|:| |coef1| (-798 *3)))) + (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 *4)) (-4 *4 (-864)) (-4 *4 (-375)) (-5 *2 (-787)) + (-5 *1 (-968 *4 *5)) (-4 *5 (-1268 *4))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1292 *4)) (-5 *3 (-1145)) (-4 *4 (-361)) + (-5 *1 (-541 *4))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-171 (-228)) (-171 (-228)))) (-5 *4 (-1119 (-228))) + (-5 *2 (-1294)) (-5 *1 (-265))))) +(((*1 *2 *1) (-12 (-4 *1 (-1280 *3)) (-4 *3 (-1242)) (-5 *2 (-787))))) (((*1 *2 *1) - (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *1 (-1234 *3)) - (-4 *3 (-996))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-764))))) + (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-698 *3)) (-4 *3 (-1125))))) (((*1 *2 *3) - (-12 (-5 *3 (-1194 *7)) (-4 *7 (-969 *6 *4 *5)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1071)) (-5 *2 (-1194 *6)) - (-5 *1 (-331 *4 *5 *6 *7))))) + (-12 (-5 *3 (-327 *4)) (-4 *4 (-13 (-844) (-1074))) (-5 *2 (-1183)) + (-5 *1 (-842 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-327 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-1074))) + (-5 *2 (-1183)) (-5 *1 (-842 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-838)) (-5 *4 (-327 *5)) (-4 *5 (-13 (-844) (-1074))) + (-5 *2 (-1297)) (-5 *1 (-842 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-838)) (-5 *4 (-327 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-844) (-1074))) (-5 *2 (-1297)) (-5 *1 (-842 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-1183)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-844)) (-5 *3 (-112)) (-5 *2 (-1183)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-844)) (-5 *3 (-838)) (-5 *2 (-1297)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-844)) (-5 *3 (-838)) (-5 *4 (-112)) (-5 *2 (-1297))))) +(((*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174))))) (((*1 *2 *3) - (-12 (-5 *2 (-171 (-390))) (-5 *1 (-798 *3)) (-4 *3 (-626 (-390))))) + (-12 (-5 *2 (-171 (-391))) (-5 *1 (-801 *3)) (-4 *3 (-627 (-391))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-941)) (-5 *2 (-171 (-390))) (-5 *1 (-798 *3)) - (-4 *3 (-626 (-390))))) + (-12 (-5 *4 (-944)) (-5 *2 (-171 (-391))) (-5 *1 (-801 *3)) + (-4 *3 (-627 (-391))))) ((*1 *2 *3) - (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) + (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-627 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-171 *5)) (-5 *4 (-941)) (-4 *5 (-174)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) + (-12 (-5 *3 (-171 *5)) (-5 *4 (-944)) (-4 *5 (-174)) + (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-972 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) + (-12 (-5 *3 (-975 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-627 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-972 (-171 *5))) (-5 *4 (-941)) (-4 *5 (-174)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) + (-12 (-5 *3 (-975 (-171 *5))) (-5 *4 (-944)) (-4 *5 (-174)) + (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-972 *4)) (-4 *4 (-1071)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) + (-12 (-5 *3 (-975 *4)) (-4 *4 (-1074)) (-4 *4 (-627 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-972 *5)) (-5 *4 (-941)) (-4 *5 (-1071)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) + (-12 (-5 *3 (-975 *5)) (-5 *4 (-944)) (-4 *5 (-1074)) + (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) + (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) (-4 *4 (-627 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-941)) (-4 *5 (-568)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) + (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-944)) (-4 *5 (-569)) + (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-972 (-171 *4)))) (-4 *4 (-568)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) + (-12 (-5 *3 (-420 (-975 (-171 *4)))) (-4 *4 (-569)) + (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-972 (-171 *5)))) (-5 *4 (-941)) (-4 *5 (-568)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) + (-12 (-5 *3 (-420 (-975 (-171 *5)))) (-5 *4 (-944)) (-4 *5 (-569)) + (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) + (-12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-865)) + (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-862)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) + (-12 (-5 *3 (-327 *5)) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-865)) + (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) + (-12 (-5 *3 (-327 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-865)) + (-4 *4 (-627 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-801 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-941)) (-4 *5 (-568)) - (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-798 *5))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024) (-1224)))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-657 *2)) (-4 *2 (-1122)) (-4 *2 (-1239))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1122)) - (-5 *2 (-2 (|:| -1771 (-576)) (|:| |var| (-624 *1)))) - (-4 *1 (-442 *3))))) + (-12 (-5 *3 (-327 (-171 *5))) (-5 *4 (-944)) (-4 *5 (-569)) + (-4 *5 (-865)) (-4 *5 (-627 (-391))) (-5 *2 (-171 (-391))) + (-5 *1 (-801 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-1242)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1816 *3) (|:| |coef2| (-798 *3)))) + (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074))))) +(((*1 *2 *3) + (-12 (-4 *2 (-375)) (-4 *2 (-864)) (-5 *1 (-968 *2 *3)) + (-4 *3 (-1268 *2))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1292 *4)) (-5 *3 (-787)) (-4 *4 (-361)) + (-5 *1 (-541 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-784)) (-4 *2 (-1122)) - (-5 *1 (-691 *2))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-787)) (-4 *2 (-1125)) + (-5 *1 (-694 *2))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-171 (-228)) (-171 (-228)))) (-5 *4 (-1119 (-228))) + (-5 *5 (-112)) (-5 *2 (-1294)) (-5 *1 (-265))))) +(((*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) +(((*1 *2) (-12 (-5 *2 (-660 *3)) (-5 *1 (-1109 *3)) (-4 *3 (-133))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-577)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-660 (-1241))) (-5 *3 (-1241)) (-5 *1 (-697))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840))))) +(((*1 *2 *1) (-12 (-4 *1 (-379 *2)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-4 *1 (-1174 *3)) (-4 *3 (-1242)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) + (-12 (-5 *3 (-705 (-420 (-577)))) (-5 *2 - (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) - (|:| |polypart| *6))) - (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2) (-12 (-5 *2 (-657 *3)) (-5 *1 (-1106 *3)) (-4 *3 (-133))))) -(((*1 *2 *2) - (-12 (-4 *2 (-174)) (-4 *2 (-1071)) (-5 *1 (-727 *2 *3)) - (-4 *3 (-661 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-849 *2)) (-4 *2 (-174)) (-4 *2 (-1071))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-784)) (-4 *5 (-374)) (-5 *2 (-419 *6)) - (-5 *1 (-882 *5 *4 *6)) (-4 *4 (-1280 *5)) (-4 *6 (-1265 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-784)) (-5 *4 (-1281 *5 *6 *7)) (-4 *5 (-374)) - (-14 *6 (-1198)) (-14 *7 *5) (-5 *2 (-419 (-1262 *6 *5))) - (-5 *1 (-883 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-784)) (-5 *4 (-1281 *5 *6 *7)) (-4 *5 (-374)) - (-14 *6 (-1198)) (-14 *7 *5) (-5 *2 (-419 (-1262 *6 *5))) - (-5 *1 (-883 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-270))) (-5 *4 (-1198)) (-5 *2 (-112)) - (-5 *1 (-270))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1180)) (-5 *5 (-702 (-227))) (-5 *6 (-227)) - (-5 *7 (-702 (-576))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-765))))) -(((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-723))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-941)) (-5 *2 (-1294)) (-5 *1 (-1290))))) -(((*1 *1) (-5 *1 (-55)))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) - (-5 *5 (-1116 (-227))) (-5 *6 (-657 (-270))) (-5 *2 (-1155 (-227))) - (-5 *1 (-710))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) - (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1124 (-1124 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1096)))) + (-660 + (-2 (|:| |outval| *4) (|:| |outmult| (-577)) + (|:| |outvect| (-660 (-705 *4)))))) + (-5 *1 (-795 *4)) (-4 *4 (-13 (-375) (-864)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-375)) (-5 *2 (-660 *3)) (-5 *1 (-968 *4 *3)) + (-4 *3 (-1268 *4))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1292 *5)) (-5 *3 (-787)) (-5 *4 (-1145)) (-4 *5 (-361)) + (-5 *1 (-541 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1099)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1289 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) - (-4 *1 (-737 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1265 *5)) - (-5 *2 (-702 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-52))))) + (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-966 (-228)) (-228) (-228))) + (-5 *3 (-1 (-228) (-228) (-228) (-228))) (-5 *1 (-263))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4471)) (-4 *1 (-250 *2)) (-4 *2 (-1242)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) +(((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-52))))) (((*1 *2 *1) - (-12 (-4 *1 (-1272 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1249 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-657 (-227)))) (-5 *1 (-946))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-577)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1201)) (-5 *4 (-975 (-577))) (-5 *2 (-341)) + (-5 *1 (-343)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1201)) (-5 *4 (-1117 (-975 (-577)))) (-5 *2 (-341)) + (-5 *1 (-343)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-787)) (-5 *1 (-691 *3)) (-4 *3 (-1074)) + (-4 *3 (-1125))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840))))) +(((*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-1197 *3))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-5 *2 (-660 (-1052 *5 *6 *7 *3))) (-5 *1 (-1052 *5 *6 *7 *3)) + (-4 *3 (-1090 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-660 *6)) (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) + (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1096 *3 *4 *5 *2)) (-4 *3 (-465)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-5 *2 (-660 (-1171 *5 *6 *7 *3))) (-5 *1 (-1171 *5 *6 *7 *3)) + (-4 *3 (-1090 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-705 (-420 (-577)))) (-5 *2 (-660 *4)) (-5 *1 (-795 *4)) + (-4 *4 (-13 (-375) (-864)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-375)) (-5 *2 (-660 *3)) (-5 *1 (-968 *4 *3)) + (-4 *3 (-1268 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-787)) (-5 *2 (-1197 *4)) (-5 *1 (-541 *4)) + (-4 *4 (-361))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-225 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-4 *1 (-262 *3)))) + ((*1 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) - (-4 *4 (-1265 *3)) - (-5 *2 - (-2 (|:| -1985 (-702 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-702 *3)))) - (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-1265 *3)) - (-5 *2 - (-2 (|:| -1985 (-702 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-702 *3)))) - (-5 *1 (-781 *4 *5)) (-4 *5 (-421 *3 *4)))) + (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-430 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-577)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577))))) +(((*1 *1 *2) + (-12 (-5 *2 (-787)) (-5 *1 (-691 *3)) (-4 *3 (-1074)) + (-4 *3 (-1125))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840))))) +(((*1 *2 *1) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-1197 *3))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) + (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-5 *2 (-660 (-1052 *5 *6 *7 *8))) (-5 *1 (-1052 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) + (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-5 *2 (-660 (-1171 *5 *6 *7 *8))) (-5 *1 (-1171 *5 *6 *7 *8))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-705 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 *3)) - (-5 *2 - (-2 (|:| -1985 (-702 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-702 *3)))) - (-5 *1 (-1007 *4 *3 *5 *6)) (-4 *6 (-737 *3 *5)))) + (-12 (-4 *4 (-174)) (-4 *2 (-1268 *4)) (-5 *1 (-179 *4 *2 *3)) + (-4 *3 (-740 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-705 (-420 (-975 *5)))) (-5 *4 (-1201)) + (-5 *2 (-975 *5)) (-5 *1 (-303 *5)) (-4 *5 (-465)))) ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 *3)) - (-5 *2 - (-2 (|:| -1985 (-702 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-702 *3)))) - (-5 *1 (-1298 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-115)))) - ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1071)) (-4 *3 (-862)) - (-4 *5 (-275 *3)) (-4 *6 (-806)) (-5 *2 (-784)))) + (-12 (-5 *3 (-705 (-420 (-975 *4)))) (-5 *2 (-975 *4)) + (-5 *1 (-303 *4)) (-4 *4 (-465)))) ((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) - (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-784)))) - ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-784))))) -(((*1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) - ((*1 *2 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-657 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) - (-5 *2 (-657 (-2 (|:| |poly| *6) (|:| -3989 *3)))) - (-5 *1 (-822 *5 *6 *3 *7)) (-4 *3 (-669 *6)) - (-4 *7 (-669 (-419 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-657 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) - (-4 *6 (-1265 *5)) - (-5 *2 (-657 (-2 (|:| |poly| *6) (|:| -3989 (-667 *6 (-419 *6)))))) - (-5 *1 (-825 *5 *6)) (-5 *3 (-667 *6 (-419 *6)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-996))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-548))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1071)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4097 *1))) - (-4 *1 (-867 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1289 (-1198))) (-5 *3 (-1289 (-465 *4 *5 *6 *7))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-941)) - (-14 *6 (-657 (-1198))) (-14 *7 (-1289 (-702 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-465 *4 *5 *6 *7))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-941)) - (-14 *6 (-657 *2)) (-14 *7 (-1289 (-702 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1289 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) - (-14 *6 (-1289 (-702 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1289 (-1198))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))) - (-14 *6 (-1289 (-702 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1198)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-941)) (-14 *5 (-657 *2)) (-14 *6 (-1289 (-702 *3))))) - ((*1 *1) - (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-941)) - (-14 *4 (-657 (-1198))) (-14 *5 (-1289 (-702 *2)))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-518)) (-5 *3 (-657 (-985))) (-5 *1 (-301))))) -(((*1 *2 *3 *4) - (-12 - (-5 *3 - (-657 - (-2 (|:| |eqzro| (-657 *8)) (|:| |neqzro| (-657 *8)) - (|:| |wcond| (-657 (-972 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1289 (-419 (-972 *5)))) - (|:| -1985 (-657 (-1289 (-419 (-972 *5)))))))))) - (-5 *4 (-1180)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-969 *5 *7 *6)) - (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-576)) - (-5 *1 (-944 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-696 *4 *3)) (-4 *4 (-1122)) - (-4 *3 (-1122))))) -(((*1 *1 *1) (-12 (-5 *1 (-1225 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1124 *4)) (-4 *4 (-1122)) (-5 *2 (-1 *4)) - (-5 *1 (-1039 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1062)) (-5 *3 (-390)))) + (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1268 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1116 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1069))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-856 *3))) (-4 *3 (-13 (-27) (-1224) (-442 *5))) - (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *2 - (-3 (-856 *3) - (-2 (|:| |leftHandLimit| (-3 (-856 *3) "failed")) - (|:| |rightHandLimit| (-3 (-856 *3) "failed"))) - "failed")) - (-5 *1 (-648 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1180)) - (-4 *3 (-13 (-27) (-1224) (-442 *6))) - (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *2 (-856 *3)) (-5 *1 (-648 *6 *3)))) + (-12 (-5 *3 (-705 (-171 (-420 (-577))))) + (-5 *2 (-975 (-171 (-420 (-577))))) (-5 *1 (-780 *4)) + (-4 *4 (-13 (-375) (-864))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-856 (-972 *5)))) (-4 *5 (-464)) - (-5 *2 - (-3 (-856 (-419 (-972 *5))) - (-2 (|:| |leftHandLimit| (-3 (-856 (-419 (-972 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-856 (-419 (-972 *5))) "failed"))) - "failed")) - (-5 *1 (-649 *5)) (-5 *3 (-419 (-972 *5))))) + (-12 (-5 *3 (-705 (-171 (-420 (-577))))) (-5 *4 (-1201)) + (-5 *2 (-975 (-171 (-420 (-577))))) (-5 *1 (-780 *5)) + (-4 *5 (-13 (-375) (-864))))) + ((*1 *2 *3) + (-12 (-5 *3 (-705 (-420 (-577)))) (-5 *2 (-975 (-420 (-577)))) + (-5 *1 (-795 *4)) (-4 *4 (-13 (-375) (-864))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-419 (-972 *5)))) (-5 *3 (-419 (-972 *5))) - (-4 *5 (-464)) + (-12 (-5 *3 (-705 (-420 (-577)))) (-5 *4 (-1201)) + (-5 *2 (-975 (-420 (-577)))) (-5 *1 (-795 *5)) + (-4 *5 (-13 (-375) (-864)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-975 *5)) (-4 *5 (-1074)) (-5 *2 (-254 *4 *5)) + (-5 *1 (-967 *4 *5)) (-14 *4 (-660 (-1201)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1292 *4)) (-4 *4 (-361)) (-5 *2 (-1197 *4)) + (-5 *1 (-541 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-577)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-577))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-787)) (-5 *1 (-691 *2)) (-4 *2 (-1125))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-430 *4))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *8 (-1090 *5 *6 *7)) (-5 *2 - (-3 (-856 *3) - (-2 (|:| |leftHandLimit| (-3 (-856 *3) "failed")) - (|:| |rightHandLimit| (-3 (-856 *3) "failed"))) - "failed")) - (-5 *1 (-649 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-304 (-419 (-972 *6)))) (-5 *5 (-1180)) - (-5 *3 (-419 (-972 *6))) (-4 *6 (-464)) (-5 *2 (-856 *3)) - (-5 *1 (-649 *6))))) + (-2 (|:| |val| (-660 *8)) + (|:| |towers| (-660 (-1052 *5 *6 *7 *8))))) + (-5 *1 (-1052 *5 *6 *7 *8)) (-5 *3 (-660 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *8 (-1090 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-660 *8)) + (|:| |towers| (-660 (-1171 *5 *6 *7 *8))))) + (-5 *1 (-1171 *5 *6 *7 *8)) (-5 *3 (-660 *8))))) +(((*1 *2 *3) + (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)) + (-5 *2 (-660 (-787))) (-5 *1 (-794 *3 *4 *5 *6 *7)) + (-4 *3 (-1268 *6)) (-4 *7 (-972 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-1074)) + (-5 *2 (-975 *5)) (-5 *1 (-967 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 *4)) - (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-1112))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877))))) + (-12 (-5 *3 (-1292 (-660 (-2 (|:| -3115 *4) (|:| -3222 (-1145)))))) + (-4 *4 (-361)) (-5 *2 (-1297)) (-5 *1 (-541 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-577)) (-5 *1 (-1182 *3)) (-4 *3 (-1242)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-787)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-430 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-657 *1)) (-4 *1 (-1087 *4 *5 *6)) (-4 *4 (-1071)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-5 *2 (-112)))) + (-12 (-5 *3 (-577)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1242)) + (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *6 *2 *7)) (-4 *6 (-1074)) + (-4 *7 (-244 *4 *6)) (-4 *2 (-244 *5 *6))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1201)) (-5 *1 (-691 *3)) (-4 *3 (-1125))))) +(((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-841))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-625 *1))) (-4 *1 (-313))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-660 *11)) + (|:| |todo| (-660 (-2 (|:| |val| *3) (|:| -3952 *11)))))) + (-5 *6 (-787)) + (-5 *2 (-660 (-2 (|:| |val| (-660 *10)) (|:| -3952 *11)))) + (-5 *3 (-660 *10)) (-5 *4 (-660 *11)) (-4 *10 (-1090 *7 *8 *9)) + (-4 *11 (-1096 *7 *8 *9 *10)) (-4 *7 (-465)) (-4 *8 (-809)) + (-4 *9 (-865)) (-5 *1 (-1094 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-660 *11)) + (|:| |todo| (-660 (-2 (|:| |val| *3) (|:| -3952 *11)))))) + (-5 *6 (-787)) + (-5 *2 (-660 (-2 (|:| |val| (-660 *10)) (|:| -3952 *11)))) + (-5 *3 (-660 *10)) (-5 *4 (-660 *11)) (-4 *10 (-1090 *7 *8 *9)) + (-4 *11 (-1134 *7 *8 *9 *10)) (-4 *7 (-465)) (-4 *8 (-809)) + (-4 *9 (-865)) (-5 *1 (-1170 *7 *8 *9 *10 *11))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1268 *9)) (-4 *7 (-809)) (-4 *8 (-865)) (-4 *9 (-318)) + (-4 *10 (-972 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-660 (-1197 *10))) + (|:| |dterm| + (-660 (-660 (-2 (|:| -3646 (-787)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-660 *6)) (|:| |nlead| (-660 *10)))) + (-5 *1 (-794 *6 *7 *8 *9 *10)) (-5 *3 (-1197 *10)) (-5 *4 (-660 *6)) + (-5 *5 (-660 *10))))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-530)))) ((*1 *2 *1) - (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-806)) - (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-784)) (-4 *4 (-568)) (-5 *1 (-991 *4 *2)) - (-4 *2 (-1265 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) - (-5 *2 (-1057)) (-5 *1 (-764))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-941)) (|has| *1 (-6 -4457)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-941))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1122) (-34))) (-4 *6 (-13 (-1122) (-34))) - (-5 *2 (-112)) (-5 *1 (-1162 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) - (-5 *1 (-178 *3))))) -(((*1 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-23))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -2322 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1265 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-657 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-784)) (-4 *4 (-374)) (-5 *1 (-914 *2 *4)) - (-4 *2 (-1265 *4))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-624 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1198))) - (-4 *2 (-13 (-442 *5) (-27) (-1224))) - (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) - (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-947))))) + (-12 (-4 *2 (-13 (-1125) (-34))) (-5 *1 (-1165 *3 *2)) + (-4 *3 (-13 (-1125) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1303))))) +(((*1 *2 *3) + (-12 (-5 *3 (-494 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-1074)) + (-5 *2 (-975 *5)) (-5 *1 (-967 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-130)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-115)) (-5 *4 (-787)) + (-4 *5 (-13 (-465) (-1063 (-577)))) (-4 *5 (-569)) + (-5 *1 (-41 *5 *2)) (-4 *2 (-443 *5)) + (-4 *2 + (-13 (-375) (-313) + (-10 -8 (-15 -1623 ((-1150 *5 (-625 $)) $)) + (-15 -1637 ((-1150 *5 (-625 $)) $)) + (-15 -3544 ($ (-1150 *5 (-625 $)))))))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-875)) (-5 *2 (-704 (-1247))) (-5 *3 (-1247))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-657 *7)) (-5 *3 (-112)) (-4 *7 (-1087 *4 *5 *6)) - (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) - (-5 *1 (-999 *4 *5 *6 *7))))) + (-12 (-5 *3 (-577)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1242)) + (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *6 *7 *2)) (-4 *6 (-1074)) + (-4 *7 (-244 *5 *6)) (-4 *2 (-244 *4 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) - (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-624 *1))) (-4 *1 (-312))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-784)) (-5 *4 (-941)) (-5 *2 (-1294)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-784)) (-5 *4 (-941)) (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-317)))) - ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1122)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2335 (-784)) (|:| -3644 (-784)))) - (-5 *1 (-784)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -2335 *3) (|:| -3644 *3))) - (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-529)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1122) (-34))) (-5 *1 (-1162 *3 *2)) - (-4 *3 (-13 (-1122) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1300))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-657 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1087 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-806)) - (-4 *8 (-862)) (-5 *1 (-999 *6 *7 *8 *9))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-1047 *3 *2)) (-4 *2 (-669 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -3989 *3) (|:| -1812 (-657 *5)))) - (-5 *1 (-1047 *5 *3)) (-5 *4 (-657 *5)) (-4 *3 (-669 *5))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) - (-5 *2 (-1057)) (-5 *1 (-758))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) - (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) - (-5 *4 (-326 (-390))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) - (-5 *4 (-326 (-576))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-171 (-390))))) - (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-576)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-171 (-390))))) - (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-576)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) - (-5 *4 (-326 (-707))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) - (-5 *4 (-326 (-712))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1198)) (-5 *3 (-657 (-972 (-576)))) - (-5 *4 (-326 (-714))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-707)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-712)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-326 (-714)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-707)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-712)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-326 (-714)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-707))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-712))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1289 (-714))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-707))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-712))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-702 (-714))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-707))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-712))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-714))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1180)) (-5 *1 (-340)))) - ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-760))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1265 *5)) - (-5 *1 (-740 *5 *2)) (-4 *5 (-374))))) -(((*1 *2 *1) (-12 (-5 *2 (-837)) (-5 *1 (-838))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-969 *7 *5 *6)) - (-5 *1 (-755 *5 *6 *7 *2)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-317))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2))))) + (-12 (-5 *2 (-1292 (-787))) (-5 *1 (-691 *3)) (-4 *3 (-1125))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-841))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-5 *2 (-2 (|:| -4291 *3) (|:| -4440 *4)))))) -(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) - ((*1 *2 *1) (-12 (-5 *1 (-934 *2)) (-4 *2 (-317)))) - ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) - ((*1 *2 *1) (-12 (-4 *1 (-1082)) (-5 *2 (-576))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-816))))) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-5 *2 (-2 (|:| -4295 *3) (|:| -4444 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) - (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-657 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-702 *5))) (-4 *5 (-317)) (-4 *5 (-1071)) - (-5 *2 (-1289 (-1289 *5))) (-5 *1 (-1051 *5)) (-5 *4 (-1289 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-687 *3)) (-4 *3 (-1239)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-753 *3 *4)) (-4 *3 (-1071)) - (-4 *4 (-862)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-657 *3)) (-4 *1 (-1002 *3)) (-4 *3 (-1071)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-657 *1)) (-5 *3 (-657 *7)) (-4 *1 (-1093 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *1)) - (-4 *1 (-1093 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 *1)) - (-4 *1 (-1093 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-702 (-227))) (-5 *6 (-112)) (-5 *7 (-702 (-576))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) - (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-766))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1265 *2)) (-4 *2 (-1265 *4)) - (-5 *1 (-1007 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-737 *2 *3))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-657 (-624 *6))) (-5 *4 (-1198)) (-5 *2 (-624 *6)) - (-4 *6 (-442 *5)) (-4 *5 (-1122)) (-5 *1 (-585 *5 *6))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-112)) (-5 *1 (-908 *4)) - (-4 *4 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1239)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1118)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) - (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-1277 *3)) (-4 *3 (-1239)))) - ((*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-908 *4)) (-4 *4 (-1122)) (-5 *1 (-905 *4 *3)) - (-4 *3 (-1122))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1289 *5)) (-5 *3 (-784)) (-5 *4 (-1142)) (-4 *5 (-360)) - (-5 *1 (-540 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-657 *7)) (|:| |badPols| (-657 *7)))) - (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7))))) + (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) + (-5 *2 + (-2 (|:| -3110 (-426 *4 (-420 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -3042 (-420 *6)) + (|:| |special| (-420 *6)))) + (-5 *1 (-743 *5 *6)) (-5 *3 (-420 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-375)) (-5 *2 (-660 *3)) (-5 *1 (-917 *3 *4)) + (-4 *3 (-1268 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-787)) (-4 *5 (-375)) + (-5 *2 (-2 (|:| -4228 *3) (|:| -4239 *3))) (-5 *1 (-917 *3 *5)) + (-4 *3 (-1268 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-112)) + (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) + (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1094 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-112)) + (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) + (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1094 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-112)) + (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1134 *5 *6 *7 *8)) (-4 *5 (-465)) + (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1170 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-112)) + (-4 *8 (-1090 *5 *6 *7)) (-4 *9 (-1134 *5 *6 *7 *8)) (-4 *5 (-465)) + (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1170 *5 *6 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-4 *4 (-361)) (-4 *5 (-340 *4)) (-4 *6 (-1268 *5)) + (-5 *2 (-660 *3)) (-5 *1 (-793 *4 *5 *6 *3 *7)) (-4 *3 (-1268 *6)) + (-14 *7 (-944))))) +(((*1 *2 *3) + (-12 (-5 *3 (-975 *5)) (-4 *5 (-1074)) (-5 *2 (-494 *4 *5)) + (-5 *1 (-967 *4 *5)) (-14 *4 (-660 (-1201)))))) +(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-562)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-577)) (|has| *1 (-6 -4471)) (-4 *1 (-1280 *3)) + (-4 *3 (-1242))))) (((*1 *2 *2) - (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) - (-5 *1 (-178 *3))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-152 *2)) (-4 *2 (-1239)) - (-4 *2 (-1122))))) + (-12 (-4 *3 (-13 (-465) (-1063 (-577)))) (-4 *3 (-569)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) + (-4 *2 + (-13 (-375) (-313) + (-10 -8 (-15 -1623 ((-1150 *3 (-625 $)) $)) + (-15 -1637 ((-1150 *3 (-625 $)) $)) + (-15 -3544 ($ (-1150 *3 (-625 $)))))))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) + (-12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) + (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-4 *7 (-1014 *4)) (-4 *2 (-700 *7 *8 *9)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-700 *4 *5 *6)) - (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) + (-12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-4 *7 (-1017 *4)) (-4 *2 (-703 *7 *8 *9)) + (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-703 *4 *5 *6)) + (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) - (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) + (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2)) (-4 *2 (-318)))) ((*1 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-701 *3 *4 *5 *2)) - (-4 *2 (-700 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-702 *2)) (-4 *2 (-374)) (-4 *2 (-1071)))) + (-12 (-4 *3 (-318)) (-4 *3 (-174)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *1 (-704 *3 *4 *5 *2)) + (-4 *2 (-703 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-705 *3)) (-4 *3 (-318)) (-5 *1 (-716 *3)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1145 *2 *3 *4 *5)) (-4 *3 (-1071)) - (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) - ((*1 *2 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-1209 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-941)) (-5 *2 (-1194 *3)) (-5 *1 (-1213 *3)) - (-4 *3 (-374))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) - (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-194))))) -(((*1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-148) (-27) (-1060 (-576)) (-1060 (-419 (-576))))) - (-4 *5 (-1265 *4)) (-5 *2 (-1194 (-419 *5))) (-5 *1 (-627 *4 *5)) - (-5 *3 (-419 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1265 *5)) - (-4 *5 (-13 (-148) (-27) (-1060 (-576)) (-1060 (-419 (-576))))) - (-5 *2 (-1194 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-941)) (-5 *4 (-430 *6)) (-4 *6 (-1265 *5)) - (-4 *5 (-1071)) (-5 *2 (-657 *6)) (-5 *1 (-456 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-657 (-657 *4)))) (-5 *2 (-657 (-657 *4))) - (-5 *1 (-1209 *4)) (-4 *4 (-862))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-999 *4 *5 *6 *7))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-1201)) (-5 *3 (-1198))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-657 *3)) (-5 *1 (-981 *3)) (-4 *3 (-557))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-503))))) + (-12 (-4 *1 (-1078 *2 *3 *4 *5 *6)) (-4 *4 (-1074)) + (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *2 *4)) (-4 *4 (-318))))) +(((*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1242)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-840)) (-5 *3 (-660 (-1201))) (-5 *1 (-841))))) (((*1 *2) - (-12 (-5 *2 (-941)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) - ((*1 *2 *2) - (-12 (-5 *2 (-941)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-374)) (-4 *3 (-1071)) - (-5 *1 (-1182 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-448))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-152 *2)) (-4 *2 (-1239)) - (-4 *2 (-1122)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4466)) (-4 *1 (-152 *3)) - (-4 *3 (-1239)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-687 *3)) (-4 *3 (-1239)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1122)) - (-5 *1 (-750 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-750 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) - (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1163 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-657 (-1194 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) -(((*1 *1) (-5 *1 (-480)))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-386 *4 *2)) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4467))))))) -(((*1 *2 *3 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-704 (-1126))) (-5 *1 (-301))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-284))))) -(((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) - (-4 *3 (-1087 *6 *7 *8)) - (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) - (-5 *1 (-1130 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1121)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) + (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-787)) (-4 *1 (-1280 *3)) (-4 *3 (-1242)))) + ((*1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-787)) (-5 *6 (-112)) (-4 *7 (-465)) (-4 *8 (-809)) + (-4 *9 (-865)) (-4 *3 (-1090 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) + (-5 *1 (-1094 *7 *8 *9 *3 *4)) (-4 *4 (-1096 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-657 (-2 (|:| |val| (-657 *8)) (|:| -3946 *9)))) - (-5 *5 (-112)) (-4 *8 (-1087 *6 *7 *4)) (-4 *9 (-1093 *6 *7 *4 *8)) - (-4 *6 (-464)) (-4 *7 (-806)) (-4 *4 (-862)) - (-5 *2 (-657 (-2 (|:| |val| *8) (|:| -3946 *9)))) - (-5 *1 (-1130 *6 *7 *4 *8 *9))))) -(((*1 *1 *2) - (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) - (-4 *3 (-13 (-416) (-1224))))) - ((*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224)))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-657 (-657 (-227)))) (-5 *4 (-227)) - (-5 *2 (-657 (-963 *4))) (-5 *1 (-1235)) (-5 *3 (-963 *4))))) -(((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) - (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) - (-5 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) - (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) - (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-5 *2 (-576))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-784)) - (-4 *3 (-13 (-739) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) - (-5 *1 (-251 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-835)) (-5 *2 (-52)) (-5 *1 (-842))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-784)) (-4 *2 (-568)) (-5 *1 (-991 *2 *4)) - (-4 *4 (-1265 *2))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-576)) - (-5 *6 - (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4283 (-390)))) - (-5 *7 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) - (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) - (-5 *1 (-801)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-576)) - (-5 *6 - (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4283 (-390)))) - (-5 *7 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) - (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) - (-5 *1 (-801))))) -(((*1 *1 *2) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) - (-5 *1 (-768))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) - ((*1 *1 *1 *1) (-5 *1 (-877))) + (-12 (-5 *5 (-787)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) + (-4 *3 (-1090 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) + (-5 *1 (-1094 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1069)) - (-5 *3 (-576))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-657 (-972 *6))) (-5 *4 (-657 (-1198))) (-4 *6 (-464)) - (-5 *2 (-657 (-657 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) - (-4 *5 (-13 (-374) (-861)))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-888 (-1203) (-784)))) (-5 *1 (-343))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-991 *2 *3)) - (-4 *3 (-1265 *2))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-765))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-442 *3) (-1024))) (-5 *1 (-285 *3 *2)) - (-4 *3 (-568))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) + (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-787)) (-5 *6 (-112)) (-4 *7 (-465)) (-4 *8 (-809)) + (-4 *9 (-865)) (-4 *3 (-1090 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) + (-5 *1 (-1170 *7 *8 *9 *3 *4)) (-4 *4 (-1134 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-787)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) + (-4 *3 (-1090 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) + (-5 *1 (-1170 *6 *7 *8 *3 *4)) (-4 *4 (-1134 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) + (-5 *1 (-1170 *5 *6 *7 *3 *4)) (-4 *4 (-1134 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -3952 *4)))) + (-5 *1 (-792 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-494 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-1074)) + (-5 *2 (-254 *4 *5)) (-5 *1 (-967 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-1250)))))) +(((*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242))))) (((*1 *2 *1) - (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-14 *4 (-784)) (-4 *5 (-1239)) (-5 *2 (-135)) - (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) - (-12 (-5 *2 (-784)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-174)))) + (|partial| -12 (-4 *3 (-13 (-1063 (-577)) (-654 (-577)) (-465))) + (-5 *2 (-859 *4)) (-5 *1 (-324 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1227) (-443 *3))) (-14 *5 (-1201)) + (-14 *6 *4))) ((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-576)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-657 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-806)) - (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1002 *3)) (-4 *3 (-1071)) (-5 *2 (-941)))) - ((*1 *2) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1122)) (-4 *3 (-918 *5)) (-5 *2 (-1289 *3)) - (-5 *1 (-705 *5 *3 *6 *4)) (-4 *6 (-384 *3)) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466))))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *3 (-576)) - (-5 *2 (-1057)) (-5 *1 (-767))))) + (|partial| -12 (-4 *3 (-13 (-1063 (-577)) (-654 (-577)) (-465))) + (-5 *2 (-859 *4)) (-5 *1 (-1278 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1227) (-443 *3))) (-14 *5 (-1201)) + (-14 *6 *4)))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) + (-12 (-4 *3 (-13 (-465) (-1063 (-577)))) (-4 *3 (-569)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) + (-4 *2 + (-13 (-375) (-313) + (-10 -8 (-15 -1623 ((-1150 *3 (-625 $)) $)) + (-15 -1637 ((-1150 *3 (-625 $)) $)) + (-15 -3544 ($ (-1150 *3 (-625 $)))))))))) (((*1 *2 *3) - (-12 - (-5 *2 - (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) - (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))))) - ((*1 *2 *3 *4) - (-12 + (-12 (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-5 *2 (-787)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-787)))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) + (-4 *6 (-385 *4)) (-5 *2 (-787)) (-5 *1 (-704 *4 *5 *6 *3)) + (-4 *3 (-703 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) + (-5 *2 (-787))))) +(((*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1242)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-839)))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-787)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) + (-4 *3 (-1090 *6 *7 *8)) (-5 *2 - (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) - (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))) - (-5 *4 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))))) + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) + (-5 *1 (-1094 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) (-5 *2 - (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) - (-5 *1 (-1042 *3)) (-4 *3 (-1265 (-576))) (-5 *4 (-419 (-576))))) + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) + (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-419 (-576))) - (-5 *2 (-657 (-2 (|:| -4224 *5) (|:| -4236 *5)))) (-5 *1 (-1042 *3)) - (-4 *3 (-1265 (-576))) (-5 *4 (-2 (|:| -4224 *5) (|:| -4236 *5))))) - ((*1 *2 *3) - (-12 + (-12 (-5 *5 (-787)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) + (-4 *3 (-1090 *6 *7 *8)) (-5 *2 - (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) - (-5 *1 (-1043 *3)) (-4 *3 (-1265 (-419 (-576)))))) + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) + (-5 *1 (-1170 *6 *7 *8 *3 *4)) (-4 *4 (-1134 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) (-5 *2 - (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) - (-5 *1 (-1043 *3)) (-4 *3 (-1265 (-419 (-576)))) - (-5 *4 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-576))) - (-5 *2 (-657 (-2 (|:| -4224 *4) (|:| -4236 *4)))) (-5 *1 (-1043 *3)) - (-4 *3 (-1265 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-419 (-576))) - (-5 *2 (-657 (-2 (|:| -4224 *5) (|:| -4236 *5)))) (-5 *1 (-1043 *3)) - (-4 *3 (-1265 *5)) (-5 *4 (-2 (|:| -4224 *5) (|:| -4236 *5)))))) + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) + (-5 *1 (-1170 *5 *6 *7 *3 *4)) (-4 *4 (-1134 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1183)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) + (-4 *4 (-1090 *6 *7 *8)) (-5 *2 (-1297)) + (-5 *1 (-792 *6 *7 *8 *4 *5)) (-4 *5 (-1096 *6 *7 *8 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-1074)) + (-5 *2 (-494 *4 *5)) (-5 *1 (-967 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-559)))))) +(((*1 *2 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1063 (-577)) (-654 (-577)) (-465))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1277 *4 *5 *6)) + (|:| |%expon| (-330 *4 *5 *6)) + (|:| |%expTerms| + (-660 (-2 (|:| |k| (-420 (-577))) (|:| |c| *4)))))) + (|:| |%type| (-1183)))) + (-5 *1 (-1278 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1227) (-443 *3))) + (-14 *5 (-1201)) (-14 *6 *4)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1224) (-442 *3))) - (-14 *4 (-1198)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-4 *2 (-13 (-27) (-1224) (-442 *3) (-10 -8 (-15 -3501 ($ *4))))) - (-4 *4 (-861)) - (-4 *5 - (-13 (-1267 *2 *4) (-374) (-1224) - (-10 -8 (-15 -2815 ($ $)) (-15 -4190 ($ $))))) - (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1005 *5)) - (-14 *7 (-1198))))) + (-12 (-4 *3 (-13 (-465) (-1063 (-577)))) (-4 *3 (-569)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-443 *3)) + (-4 *2 + (-13 (-375) (-313) + (-10 -8 (-15 -1623 ((-1150 *3 (-625 $)) $)) + (-15 -1637 ((-1150 *3 (-625 $)) $)) + (-15 -3544 ($ (-1150 *3 (-625 $)))))))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4471)) (-4 *4 (-375)) (-4 *5 (-385 *4)) + (-4 *6 (-385 *4)) (-5 *2 (-660 *6)) (-5 *1 (-534 *4 *5 *6 *3)) + (-4 *3 (-703 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4471)) (-4 *4 (-569)) (-4 *5 (-385 *4)) + (-4 *6 (-385 *4)) (-4 *7 (-1017 *4)) (-4 *8 (-385 *7)) + (-4 *9 (-385 *7)) (-5 *2 (-660 *6)) + (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-703 *4 *5 *6)) + (-4 *10 (-703 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-660 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) + (-4 *6 (-385 *4)) (-5 *2 (-660 *6)) (-5 *1 (-704 *4 *5 *6 *3)) + (-4 *3 (-703 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) + (-5 *2 (-660 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1242)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-839)))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-835))))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4470)) (-4 *1 (-152 *2)) (-4 *2 (-1242)) + (-4 *2 (-1125)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4470)) (-4 *1 (-152 *3)) + (-4 *3 (-1242)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-690 *3)) (-4 *3 (-1242)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-577)) (-4 *4 (-1125)) + (-5 *1 (-753 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-5 *1 (-753 *2)) (-4 *2 (-1125)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) + (-4 *4 (-13 (-1125) (-34))) (-5 *1 (-1166 *3 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) + (-4 *3 (-1090 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) + (-5 *1 (-1094 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))))) + (-5 *1 (-1170 *5 *6 *7 *3 *4)) (-4 *4 (-1134 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) - (-5 *1 (-178 *3))))) + (-12 (-4 *3 (-13 (-569) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1201)) + (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4))))) + ((*1 *1 *1) (-5 *1 (-391))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) + (-5 *1 (-792 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1197 (-420 (-577)))) (-5 *1 (-965)) (-5 *3 (-577))))) +(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-1247)))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) - (-4 *4 (-1071))))) + (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) + (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-660 *4))))) +(((*1 *1 *1) (-5 *1 (-112)))) (((*1 *2 *1) - (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1239)) (-4 *2 (-1122)) - (-4 *2 (-862))))) + (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1252 *3)) + (-5 *2 (-420 (-577)))))) (((*1 *2 *3) - (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-317)) - (-5 *2 (-419 (-430 (-972 *4)))) (-5 *1 (-1064 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-877))))) + (-12 (-4 *4 (-569)) (-5 *2 (-1197 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-375) (-313) + (-10 -8 (-15 -1623 ((-1150 *4 (-625 $)) $)) + (-15 -1637 ((-1150 *4 (-625 $)) $)) + (-15 -3544 ($ (-1150 *4 (-625 $)))))))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1265 *4 *5)) (-5 *3 (-660 *5)) (-14 *4 (-1201)) + (-4 *5 (-375)) (-5 *1 (-946 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-660 *5)) (-4 *5 (-375)) (-5 *2 (-1197 *5)) + (-5 *1 (-946 *4 *5)) (-14 *4 (-1201)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-660 *6)) (-5 *4 (-787)) (-4 *6 (-375)) + (-5 *2 (-420 (-975 *6))) (-5 *1 (-1075 *5 *6)) (-14 *5 (-1201))))) +(((*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1242))))) +(((*1 *1) (-5 *1 (-839)))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1090 *5 *6 *7)) + (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) + (-4 *7 (-865)) (-5 *2 (-787)) (-5 *1 (-1094 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1090 *5 *6 *7)) + (-4 *9 (-1134 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) + (-4 *7 (-865)) (-5 *2 (-787)) (-5 *1 (-1170 *5 *6 *7 *8 *9))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *2 (-1090 *4 *5 *6)) (-5 *1 (-792 *4 *5 *6 *2 *3)) + (-4 *3 (-1096 *4 *5 *6 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-657 (-941))) (-5 *2 (-657 (-702 (-576)))) - (-5 *1 (-1132))))) + (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577))))) +(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-560)))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1074)) (-4 *3 (-865)) + (-4 *5 (-276 *3)) (-4 *6 (-809)) (-5 *2 (-660 (-787))))) + ((*1 *2 *1) + (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) + (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-660 (-787)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1252 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) - ((*1 *2 *3) - (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) - (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-5 *1 (-817 *4 *2)) (-4 *2 (-13 (-29 *4) (-1224) (-979))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1) (-5 *1 (-877))) - ((*1 *2 *3) - (-12 (-5 *2 (-1179 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-1071))))) + (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-375) (-313) + (-10 -8 (-15 -1623 ((-1150 *3 (-625 $)) $)) + (-15 -1637 ((-1150 *3 (-625 $)) $)) + (-15 -3544 ($ (-1150 *3 (-625 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-375) (-313) + (-10 -8 (-15 -1623 ((-1150 *3 (-625 $)) $)) + (-15 -1637 ((-1150 *3 (-625 $)) $)) + (-15 -3544 ($ (-1150 *3 (-625 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-660 *2)) + (-4 *2 + (-13 (-375) (-313) + (-10 -8 (-15 -1623 ((-1150 *4 (-625 $)) $)) + (-15 -1637 ((-1150 *4 (-625 $)) $)) + (-15 -3544 ($ (-1150 *4 (-625 $))))))) + (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-660 (-625 *2))) + (-4 *2 + (-13 (-375) (-313) + (-10 -8 (-15 -1623 ((-1150 *4 (-625 $)) $)) + (-15 -1637 ((-1150 *4 (-625 $)) $)) + (-15 -3544 ($ (-1150 *4 (-625 $))))))) + (-4 *4 (-569)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1072))))) +(((*1 *2 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1242))))) +(((*1 *1) (-5 *1 (-839)))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1090 *5 *6 *7)) + (-4 *9 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) + (-4 *7 (-865)) (-5 *2 (-787)) (-5 *1 (-1094 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1090 *5 *6 *7)) + (-4 *9 (-1134 *5 *6 *7 *8)) (-4 *5 (-465)) (-4 *6 (-809)) + (-4 *7 (-865)) (-5 *2 (-787)) (-5 *1 (-1170 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-504)) (-5 *4 (-977)) (-5 *2 (-707 (-546))) + (-5 *1 (-546)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-977)) (-4 *3 (-1125)) (-5 *2 (-707 *1)) + (-4 *1 (-783 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) - (-4 *3 (-13 (-442 *4) (-1024)))))) + (-12 (-5 *3 (-1197 (-577))) (-5 *2 (-577)) (-5 *1 (-965))))) +(((*1 *2 *1) (-12 (-4 *1 (-540)) (-5 *2 (-707 (-1248)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) + (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-112))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1074)) + (-4 *2 (-1252 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-375) (-313) + (-10 -8 (-15 -1623 ((-1150 *3 (-625 $)) $)) + (-15 -1637 ((-1150 *3 (-625 $)) $)) + (-15 -3544 ($ (-1150 *3 (-625 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1072))))) +(((*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1242))))) +(((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-838))))) +(((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1169)))) +(((*1 *2 *1) (-12 (-4 *1 (-783 *3)) (-4 *3 (-1125)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1197 (-420 (-577)))) (-5 *1 (-965)) (-5 *3 (-577))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-540)) (-5 *3 (-129)) (-5 *2 (-787))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-941)) (-4 *3 (-374)) - (-14 *4 (-1015 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1265 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) - ((*1 *1) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) - ((*1 *1 *1) (|partial| -4 *1 (-735))) - ((*1 *1 *1) (|partial| -4 *1 (-739))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-789 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1090 *3 *2)) (-4 *3 (-13 (-861) (-374))) - (-4 *2 (-1265 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-702 *11)) (-5 *4 (-657 (-419 (-972 *8)))) - (-5 *5 (-784)) (-5 *6 (-1180)) (-4 *8 (-13 (-317) (-148))) - (-4 *11 (-969 *8 *10 *9)) (-4 *9 (-13 (-862) (-626 (-1198)))) - (-4 *10 (-806)) - (-5 *2 - (-2 - (|:| |rgl| - (-657 - (-2 (|:| |eqzro| (-657 *11)) (|:| |neqzro| (-657 *11)) - (|:| |wcond| (-657 (-972 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1289 (-419 (-972 *8)))) - (|:| -1985 (-657 (-1289 (-419 (-972 *8)))))))))) - (|:| |rgsz| (-576)))) - (-5 *1 (-944 *8 *9 *10 *11)) (-5 *7 (-576))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-784)) (-5 *3 (-963 *5)) (-4 *5 (-1071)) - (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 (-784))) (-5 *3 (-784)) (-5 *1 (-1186 *4 *5)) - (-14 *4 (-941)) (-4 *5 (-1071)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 (-784))) (-5 *3 (-963 *5)) (-4 *5 (-1071)) - (-5 *1 (-1186 *4 *5)) (-14 *4 (-941))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-2 (|:| -3071 *4) (|:| -3983 (-576))))) - (-4 *4 (-1122)) (-5 *2 (-1 *4)) (-5 *1 (-1039 *4))))) + (-12 (-4 *1 (-261 *2 *3 *4 *5)) (-4 *2 (-1074)) (-4 *3 (-865)) + (-4 *4 (-276 *3)) (-4 *5 (-809))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-787)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-944)) (-4 *1 (-1270 *3 *4)) (-4 *3 (-1074)) + (-4 *4 (-808)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-420 (-577))) (-4 *1 (-1273 *3)) (-4 *3 (-1074))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1024) (-1224))) - (-5 *1 (-612 *4 *2 *3)) - (-4 *3 (-13 (-442 (-171 *4)) (-1024) (-1224)))))) + (-12 (-5 *3 (-787)) (-4 *4 (-375)) (-4 *5 (-1268 *4)) (-5 *2 (-1297)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1268 (-420 *5))) (-14 *7 *6)))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576))))) - (-5 *2 (-419 (-576))) (-5 *1 (-1042 *4)) (-4 *4 (-1265 (-576)))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1072))))) +(((*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1242)) (-5 *2 (-787))))) (((*1 *2 *1) - (-12 (-5 *2 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *3)))) - (-5 *1 (-607 *3)) (-4 *3 (-1071))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-1198))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-541))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022)))) - (-5 *2 (-1057)) (-5 *1 (-761))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-304 (-846 *3))) - (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *2 (-846 *3)) (-5 *1 (-648 *5 *3)) - (-4 *3 (-13 (-27) (-1224) (-442 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-846 (-972 *5)))) (-4 *5 (-464)) - (-5 *2 (-846 (-419 (-972 *5)))) (-5 *1 (-649 *5)) - (-5 *3 (-419 (-972 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-419 (-972 *5)))) (-5 *3 (-419 (-972 *5))) - (-4 *5 (-464)) (-5 *2 (-846 *3)) (-5 *1 (-649 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *1 (-480))))) + (-12 (-5 *2 (-2 (|:| |cd| (-1183)) (|:| -2713 (-1183)))) + (-5 *1 (-838))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1201)) + (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) + (-5 *1 (-820 *4 *2)) (-4 *2 (-13 (-29 *4) (-1227) (-982))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-880))) ((*1 *1 *1 *1) (-5 *1 (-880))) + ((*1 *1 *1) (-5 *1 (-880))) + ((*1 *2 *3) + (-12 (-5 *2 (-1182 *3)) (-5 *1 (-1185 *3)) (-4 *3 (-1074))))) +(((*1 *1 *1) (-4 *1 (-1169)))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-941)) (-4 *5 (-568)) (-5 *2 (-702 *5)) - (-5 *1 (-976 *5 *3)) (-4 *3 (-669 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-657 (-52))) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) - (-4 *1 (-1087 *3 *4 *5))))) + (-12 (-5 *3 (-705 (-171 (-420 (-577))))) + (-5 *2 + (-660 + (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-577)) + (|:| |outvect| (-660 (-705 (-171 *4))))))) + (-5 *1 (-780 *4)) (-4 *4 (-13 (-375) (-864)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-193)) (-5 *3 (-577)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-799 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577))))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-538))))) +(((*1 *2 *1) (-12 (-5 *2 (-344)) (-5 *1 (-256))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-1239)) (-5 *1 (-184 *3 *2)) - (-4 *2 (-687 *3))))) -(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-846 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856 *3)) (-4 *3 (-1122))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1140)) (-5 *1 (-1137))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-984 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) -(((*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-657 (-1198))) (-4 *2 (-174)) - (-4 *4 (-243 (-3440 *5) (-784))) - (-14 *6 - (-1 (-112) (-2 (|:| -3178 *3) (|:| -1801 *4)) - (-2 (|:| -3178 *3) (|:| -1801 *4)))) - (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-862)) - (-4 *7 (-969 *2 *4 (-879 *5)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1071)) (-4 *2 (-700 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1265 *4)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1179 *4)) (-5 *3 (-576)) (-4 *4 (-1071)) - (-5 *1 (-1182 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-1281 *3 *4 *5)) (-4 *3 (-1071)) - (-14 *4 (-1198)) (-14 *5 *3)))) -(((*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) - ((*1 *1 *1) (-5 *1 (-1142)))) -(((*1 *2 *3 *1) (-12 (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -3966 (-784)) (|:| |period| (-784)))) - (-5 *1 (-1179 *4)) (-4 *4 (-1239)) (-5 *3 (-784))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1239)) - (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *6 *7 *2)) (-4 *6 (-1071)) - (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1157)) (-5 *2 (-704 (-290))) (-5 *1 (-169))))) -(((*1 *1 *1) - (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)) - (-4 *2 (-464)))) - ((*1 *1 *1) - (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1243)) (-4 *3 (-1265 *2)) - (-4 *4 (-1265 (-419 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-464)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *2 (-862)) (-4 *3 (-464)))) - ((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *2 (-464)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1185 *3 *2)) - (-4 *2 (-1265 *3))))) -(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-390)))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) -(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1239))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3))))) + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-577)))) + (-4 *4 (-13 (-1268 *3) (-569) (-10 -8 (-15 -3480 ($ $ $))))) + (-4 *3 (-569)) (-5 *1 (-1271 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-657 *4)) (-4 *4 (-861)) (-4 *4 (-374)) (-5 *2 (-784)) - (-5 *1 (-965 *4 *5)) (-4 *5 (-1265 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1179 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1268 (-48)))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1161)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) - ((*1 *1 *1 *1) (-5 *1 (-1142)))) -(((*1 *2 *3) - (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) + (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) + ((*1 *1 *1 *1) (-5 *1 (-880))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-577))) (-5 *1 (-1072)) + (-5 *3 (-577))))) (((*1 *2 *3) - (-12 (-5 *3 (-576)) (|has| *1 (-6 -4457)) (-4 *1 (-416)) - (-5 *2 (-941))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947))))) -(((*1 *2 *1) - (-12 (-4 *3 (-238)) (-4 *3 (-1071)) (-4 *4 (-862)) (-4 *5 (-275 *4)) - (-4 *6 (-806)) (-5 *2 (-1 *1 (-784))) (-4 *1 (-260 *3 *4 *5 *6)))) + (-12 (-5 *3 (-835 *4)) (-4 *4 (-865)) (-5 *2 (-112)) + (-5 *1 (-688 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-838))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1169)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-705 (-171 (-420 (-577))))) (-5 *2 (-660 (-171 *4))) + (-5 *1 (-780 *4)) (-4 *4 (-13 (-375) (-864)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-4 *4 (-1071)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-806)) - (-5 *2 (-1 *1 (-784))) (-4 *1 (-260 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-275 *2)) (-4 *2 (-862))))) + (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-537))))) +(((*1 *2 *1) (-12 (-5 *2 (-185 (-256))) (-5 *1 (-255))))) +(((*1 *1 *1) + (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *2 (-465)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *3 (-1090 *4 *5 *6)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *1)))) + (-4 *1 (-1096 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1246))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-1271 *3 *2)) + (-4 *2 (-13 (-1268 *3) (-569) (-10 -8 (-15 -3480 ($ $ $)))))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1069))))) -(((*1 *1) (-5 *1 (-629)))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-784)) (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) - (-4 *2 (-1265 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-548))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 - (-2 (|:| |solns| (-657 *5)) - (|:| |maps| (-657 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1150 *3 *5)) (-4 *3 (-1265 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-784)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-1291)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) - ((*1 *1 *1 *1) (-5 *1 (-1142)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-836)) (-5 *1 (-835))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) + (-12 (-5 *3 (-1127 *4)) (-4 *4 (-1125)) (-5 *2 (-1 *4)) + (-5 *1 (-1042 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1065)) (-5 *3 (-391)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1119 (-577))) (-5 *2 (-1 (-577))) (-5 *1 (-1072))))) +(((*1 *1 *2) (-12 (-5 *2 (-835 *3)) (-4 *3 (-865)) (-5 *1 (-688 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-838))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *1) (-4 *1 (-1169)))) +(((*1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) + ((*1 *1 *1) (-5 *1 (-1145)))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-777)))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024) (-1224)))))) + (-12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) + (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-185 (-256))) (-5 *1 (-255))))) +(((*1 *2 *1) + (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-132)) + (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4072 *4)))))) + ((*1 *2 *1) + (-12 (-4 *1 (-522 *3 *4)) (-4 *3 (-102)) (-4 *4 (-868)) + (-5 *2 (-660 (-891 *4 *3))))) + ((*1 *2 *1) + (-12 (-5 *2 (-660 (-2 (|:| -1777 *3) (|:| -3640 *4)))) + (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-742)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) + (-5 *2 (-1182 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-787)) (-5 *2 (-112))))) +(((*1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-23))))) (((*1 *1 *2) - (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1123 *3 *4)) (-14 *3 (-941)) - (-14 *4 (-941))))) + (|partial| -12 (-5 *2 (-835 *3)) (-4 *3 (-865)) (-5 *1 (-688 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-838))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1169)) (-5 *2 (-1259 (-577)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) + ((*1 *1 *1 *1) (-5 *1 (-1145)))) +(((*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-574)) (-5 *3 (-577)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1197 (-420 (-577)))) (-5 *1 (-965)) (-5 *3 (-577))))) +(((*1 *1 *1 *1) (-4 *1 (-486))) ((*1 *1 *1 *1) (-4 *1 (-777)))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-530))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-787)) + (-4 *3 (-13 (-742) (-380) (-10 -7 (-15 ** (*3 *3 (-577)))))) + (-5 *1 (-252 *3))))) (((*1 *2 *1) - (-12 (-4 *2 (-1265 *3)) (-5 *1 (-411 *3 *2)) - (-4 *3 (-13 (-374) (-148)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-1291)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291))))) + (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) + (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-787)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1074)) (-4 *3 (-865)) + (-4 *5 (-276 *3)) (-4 *6 (-809)) (-5 *2 (-787)))) + ((*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-865)) (-5 *2 (-787)))) + ((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-944)))) + ((*1 *2 *3) + (-12 (-5 *3 (-348 *4 *5 *6 *7)) (-4 *4 (-13 (-380) (-375))) + (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) (-4 *7 (-354 *4 *5 *6)) + (-5 *2 (-787)) (-5 *1 (-405 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-415)) (-5 *2 (-849 (-944))))) + ((*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-609 *3)) (-4 *3 (-1074)))) + ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-609 *3)) (-4 *3 (-1074)))) + ((*1 *2 *1) + (-12 (-4 *3 (-569)) (-5 *2 (-577)) (-5 *1 (-636 *3 *4)) + (-4 *4 (-1268 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-787)) (-4 *1 (-756 *4 *3)) (-4 *4 (-1074)) + (-4 *3 (-865)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-756 *4 *3)) (-4 *4 (-1074)) (-4 *3 (-865)) + (-5 *2 (-787)))) + ((*1 *2 *1) (-12 (-4 *1 (-887 *3)) (-5 *2 (-787)))) + ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) + ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) + (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) + (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1063 (-577)))) + (-5 *2 (-787)) (-5 *1 (-934 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) + (-4 *4 (-1268 (-420 (-577)))) (-4 *5 (-1268 (-420 *4))) + (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-787)) + (-5 *1 (-935 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-348 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-375)) + (-4 *7 (-1268 *6)) (-4 *4 (-1268 (-420 *7))) (-4 *8 (-354 *6 *7 *4)) + (-4 *9 (-13 (-380) (-375))) (-5 *2 (-787)) + (-5 *1 (-1043 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1268 *3)) (-4 *3 (-1074)) (-4 *3 (-569)) + (-5 *2 (-787)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808))))) +(((*1 *1) (-5 *1 (-630)))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-23))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *9)) (-4 *8 (-1087 *5 *6 *7)) - (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) - (-4 *7 (-862)) (-5 *2 (-784)) (-5 *1 (-1091 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *9)) (-4 *8 (-1087 *5 *6 *7)) - (-4 *9 (-1131 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) - (-4 *7 (-862)) (-5 *2 (-784)) (-5 *1 (-1167 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-660 *5)) (-5 *4 (-944)) (-4 *5 (-865)) + (-5 *2 (-59 (-660 (-688 *5)))) (-5 *1 (-688 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-838))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-577)) (-4 *2 (-443 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1063 *4)) (-4 *3 (-569))))) (((*1 *2 *3) - (-12 (-5 *3 (-657 (-227))) (-5 *2 (-1289 (-712))) (-5 *1 (-315))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1239)) - (-4 *3 (-384 *4)) (-4 *5 (-384 *4))))) + (-12 (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1268 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) + (-5 *1 (-122 *3)) (-4 *3 (-865)))) + ((*1 *2 *2) + (-12 (-5 *2 (-599 *4)) (-4 *4 (-13 (-29 *3) (-1227))) + (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-596 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-599 (-420 (-975 *3)))) + (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *1 (-602 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-375)) + (-5 *2 (-2 (|:| -3042 *3) (|:| |special| *3))) (-5 *1 (-743 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1292 *5)) (-4 *5 (-375)) (-4 *5 (-1074)) + (-5 *2 (-660 (-660 (-705 *5)))) (-5 *1 (-1054 *5)) + (-5 *3 (-660 (-705 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1292 (-1292 *5))) (-4 *5 (-375)) (-4 *5 (-1074)) + (-5 *2 (-660 (-660 (-705 *5)))) (-5 *1 (-1054 *5)) + (-5 *3 (-660 (-705 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-660 *1)) (-4 *1 (-1169)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-660 *1)) (-4 *1 (-1169))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-513 *2)) (-14 *2 (-577)))) + ((*1 *1 *1 *1) (-5 *1 (-1145)))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 (-911 *6))) + (-5 *5 (-1 (-908 *6 *8) *8 (-911 *6) (-908 *6 *8))) (-4 *6 (-1125)) + (-4 *8 (-13 (-1074) (-627 (-911 *6)) (-1063 *7))) + (-5 *2 (-908 *6 *8)) (-4 *7 (-1074)) (-5 *1 (-964 *6 *7 *8))))) +(((*1 *1 *1 *1) (-4 *1 (-777)))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-530))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) - (-4 *4 (-174)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-442 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1114 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1114 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1198)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-972 *5)) (-4 *5 (-1071)) (-5 *2 (-253 *4 *5)) - (-5 *1 (-964 *4 *5)) (-14 *4 (-657 (-1198)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1194 *9)) (-5 *4 (-657 *7)) (-4 *7 (-862)) - (-4 *9 (-969 *8 *6 *7)) (-4 *6 (-806)) (-4 *8 (-317)) - (-5 *2 (-657 (-784))) (-5 *1 (-755 *6 *7 *8 *9)) (-5 *5 (-784))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1294)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-340))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1194 *1)) (-4 *1 (-1034))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) - (-4 *3 (-1087 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-657 *4)) - (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) - (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) + (-12 (|has| *1 (-6 -4471)) (-4 *1 (-250 *2)) (-4 *2 (-1242))))) +(((*1 *1 *1) (-4 *1 (-1085))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808))))) +(((*1 *1 *1) (-4 *1 (-642))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027) (-1227)))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-23))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *5)) (-5 *4 (-944)) (-4 *5 (-865)) + (-5 *2 (-660 (-688 *5))) (-5 *1 (-688 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 *5)) (-4 *5 (-443 *4)) (-4 *4 (-569)) + (-5 *2 (-880)) (-5 *1 (-32 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-145))))) +(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-775))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-908 *5 *3)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) + (-4 *3 (-167 *6)) (-4 (-975 *6) (-905 *5)) + (-4 *6 (-13 (-905 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-908 *4 *1)) (-5 *3 (-911 *4)) (-4 *1 (-905 *4)) + (-4 *4 (-1125)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-908 *5 *6)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) + (-4 *6 (-13 (-1125) (-1063 *3))) (-4 *3 (-905 *5)) + (-5 *1 (-954 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-908 *5 *3)) (-4 *5 (-1125)) + (-4 *3 (-13 (-443 *6) (-627 *4) (-905 *5) (-1063 (-625 $)))) + (-5 *4 (-911 *5)) (-4 *6 (-13 (-569) (-905 *5))) + (-5 *1 (-955 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-908 (-577) *3)) (-5 *4 (-911 (-577))) (-4 *3 (-558)) + (-5 *1 (-956 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-908 *5 *6)) (-5 *3 (-625 *6)) (-4 *5 (-1125)) + (-4 *6 (-13 (-1125) (-1063 (-625 $)) (-627 *4) (-905 *5))) + (-5 *4 (-911 *5)) (-5 *1 (-957 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-904 *5 *6 *3)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) + (-4 *6 (-905 *5)) (-4 *3 (-682 *6)) (-5 *1 (-958 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-908 *6 *3) *8 (-911 *6) (-908 *6 *3))) + (-4 *8 (-865)) (-5 *2 (-908 *6 *3)) (-5 *4 (-911 *6)) + (-4 *6 (-1125)) (-4 *3 (-13 (-972 *9 *7 *8) (-627 *4))) + (-4 *7 (-809)) (-4 *9 (-13 (-1074) (-905 *6))) + (-5 *1 (-959 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-908 *5 *3)) (-4 *5 (-1125)) + (-4 *3 (-13 (-972 *8 *6 *7) (-627 *4))) (-5 *4 (-911 *5)) + (-4 *7 (-905 *5)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *8 (-13 (-1074) (-905 *5))) (-5 *1 (-959 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-908 *5 *3)) (-4 *5 (-1125)) (-4 *3 (-1017 *6)) + (-4 *6 (-13 (-569) (-905 *5) (-627 *4))) (-5 *4 (-911 *5)) + (-5 *1 (-962 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-908 *5 (-1201))) (-5 *3 (-1201)) (-5 *4 (-911 *5)) + (-4 *5 (-1125)) (-5 *1 (-963 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-660 (-911 *7))) (-5 *5 (-1 *9 (-660 *9))) + (-5 *6 (-1 (-908 *7 *9) *9 (-911 *7) (-908 *7 *9))) (-4 *7 (-1125)) + (-4 *9 (-13 (-1074) (-627 (-911 *7)) (-1063 *8))) + (-5 *2 (-908 *7 *9)) (-5 *3 (-660 *9)) (-4 *8 (-1074)) + (-5 *1 (-964 *7 *8 *9))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-338 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-529 *3 *4)) + (-14 *4 (-577))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4471)) (-4 *1 (-250 *2)) (-4 *2 (-1242))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-176 *3)) (-4 *3 (-318)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-690 *3)) (-4 *3 (-1242)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-787)) (-4 *1 (-756 *3 *4)) (-4 *3 (-1074)) + (-4 *4 (-865)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-660 *3)) (-4 *1 (-1005 *3)) (-4 *3 (-1074)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-660 *1)) (-5 *3 (-660 *7)) (-4 *1 (-1096 *4 *5 *6 *7)) + (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *1)) + (-4 *1 (-1096 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 *1)) + (-4 *1 (-1096 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1197 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) + (-5 *1 (-32 *4 *2))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-23))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *7)) (-4 *7 (-865)) + (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) (-5 *2 - (-2 (|:| |done| (-657 *4)) - (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) - (-5 *1 (-1167 *5 *6 *7 *3 *4)) (-4 *4 (-1131 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-2 (|:| -2150 (-1179 *4)) (|:| -2163 (-1179 *4)))) - (-5 *1 (-1184 *4)) (-5 *3 (-1179 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1239)))) + (-2 (|:| |particular| (-3 (-1292 (-420 *8)) "failed")) + (|:| -4060 (-660 (-1292 (-420 *8)))))) + (-5 *1 (-685 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1242)))) ((*1 *2 *2) - (-12 (-4 *3 (-1071)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1265 *3)))) + (-12 (-4 *3 (-1074)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1268 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) + (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-660 (-1292 *4))) (-5 *1 (-378 *3 *4)) + (-4 *3 (-379 *4)))) + ((*1 *2) + (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) + (-5 *2 (-660 (-1292 *3)))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-784)) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-787)) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-1287 *3)) (-4 *3 (-23)) (-4 *3 (-1239))))) -(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1208))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-838))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) - (-4 *6 (-1071)) (-5 *2 (-657 (-657 (-702 *6)))) (-5 *1 (-1051 *6)) - (-5 *3 (-657 (-702 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1071)) - (-5 *2 (-657 (-657 (-702 *4)))) (-5 *1 (-1051 *4)) - (-5 *3 (-657 (-702 *4))))) + (-12 (-5 *2 (-787)) (-4 *1 (-1290 *3)) (-4 *3 (-23)) (-4 *3 (-1242))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-787)) (-4 *5 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) + (-4 *4 (-174)))) + ((*1 *1 *1) + (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1074)) (-4 *1 (-703 *3 *2 *4)) (-4 *2 (-385 *3)) + (-4 *4 (-385 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1167 *2 *3)) (-14 *2 (-787)) (-4 *3 (-1074))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1125) (-1063 *5))) + (-4 *5 (-905 *4)) (-4 *4 (-1125)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-954 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-975 (-577)))) (-5 *1 (-450)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1071)) - (-5 *2 (-657 (-657 (-702 *5)))) (-5 *1 (-1051 *5)) - (-5 *3 (-657 (-702 *5))))) + (-12 (-5 *3 (-1201)) (-5 *4 (-705 (-228))) (-5 *2 (-1129)) + (-5 *1 (-775)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-941)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1071)) - (-5 *2 (-657 (-657 (-702 *5)))) (-5 *1 (-1051 *5)) - (-5 *3 (-657 (-702 *5)))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1265 (-419 (-576)))) - (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) - (-5 *1 (-933 *3 *4)) (-4 *4 (-1265 (-419 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1265 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-933 *4 *3)) - (-4 *3 (-1265 (-419 *4)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1265 *4)) - (-5 *2 (-2 (|:| -3783 (-635 *4 *5)) (|:| -4036 (-419 *5)))) - (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5)))) + (-12 (-5 *3 (-1201)) (-5 *4 (-705 (-577))) (-5 *2 (-1129)) + (-5 *1 (-775))))) +(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-338 *3)) (-4 *3 (-1242)))) ((*1 *2 *1) - (-12 (-5 *2 (-657 (-1186 *3 *4))) (-5 *1 (-1186 *3 *4)) - (-14 *3 (-941)) (-4 *4 (-1071)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-464)) (-4 *3 (-1071)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1265 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-837)) (-5 *3 (-657 (-1198))) (-5 *1 (-838))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1057))))) -(((*1 *2 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1265 *2)) (-4 *2 (-1243)) (-5 *1 (-149 *2 *4 *3)) - (-4 *3 (-1265 (-419 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-130))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-576)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-784)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-806)) (-4 *4 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) - (-5 *1 (-461 *5 *6 *7 *4))))) + (-12 (-5 *2 (-787)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1242)) + (-14 *4 (-577))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-577)) (-5 *1 (-247)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-577)) (-5 *1 (-247))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-787)) (-4 *1 (-1268 *4)) (-4 *4 (-1074)) + (-5 *2 (-1292 *4))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-975 (-577))) (-5 *3 (-1201)) + (-5 *4 (-1119 (-420 (-577)))) (-5 *1 (-30))))) +(((*1 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-23))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-227))) (-5 *4 (-784)) (-5 *2 (-702 (-227))) - (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-925 *3)) (-4 *3 (-1122))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1180)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1057)) - (-5 *1 (-763))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-657 (-112))) (-5 *5 (-702 (-227))) - (-5 *6 (-702 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1057)) - (-5 *1 (-767))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1304 (-1198) *3)) (-4 *3 (-1071)) (-5 *1 (-1311 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) - (-5 *1 (-1313 *3 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1194 *3)) (-4 *3 (-1071)) (-4 *1 (-1265 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-784)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) - (-4 *3 (-1087 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-657 *4)) - (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) - (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) + (-12 (-5 *3 (-705 *5)) (-5 *4 (-1292 *5)) (-4 *5 (-375)) + (-5 *2 (-112)) (-5 *1 (-683 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-657 *4)) - (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) - (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-784)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) - (-4 *3 (-1087 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-657 *4)) - (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) - (-5 *1 (-1167 *6 *7 *8 *3 *4)) (-4 *4 (-1131 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-657 *4)) - (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) - (-5 *1 (-1167 *5 *6 *7 *3 *4)) (-4 *4 (-1131 *5 *6 *7 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-518)) (-5 *2 (-704 (-787))) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1180)) (-5 *2 (-787)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1126)) (-5 *1 (-985))))) -(((*1 *2 *3) - (-12 (-4 *4 (-929)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-430 (-1194 *7))) - (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-929)) (-4 *5 (-1265 *4)) (-5 *2 (-430 (-1194 *5))) - (-5 *1 (-927 *4 *5)) (-5 *3 (-1194 *5))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-702 (-576))) (-5 *5 (-112)) (-5 *7 (-702 (-227))) - (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1057)) (-5 *1 (-767))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *2 (-657 (-227))) - (-5 *1 (-480))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1060 (-576)))) (-4 *3 (-568)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1621 ((-1147 *3 (-624 $)) $)) - (-15 -1635 ((-1147 *3 (-624 $)) $)) - (-15 -3501 ($ (-1147 *3 (-624 $)))))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-657 *7)) (|:| |badPols| (-657 *7)))) - (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-4 *3 (-13 (-27) (-1224) (-442 *6) (-10 -8 (-15 -3501 ($ *7))))) - (-4 *7 (-861)) - (-4 *8 - (-13 (-1267 *3 *7) (-374) (-1224) - (-10 -8 (-15 -2815 ($ $)) (-15 -4190 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180)))))) - (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1180)) (-4 *9 (-1005 *8)) - (-14 *10 (-1198))))) -(((*1 *2 *3) - (-12 (-4 *4 (-806)) - (-4 *5 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $))))) (-4 *6 (-568)) - (-5 *2 (-2 (|:| -3733 (-972 *6)) (|:| -3408 (-972 *6)))) - (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-969 (-419 (-972 *6)) *4 *5))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1032 *2)) (-4 *2 (-1239))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224))))) - ((*1 *1 *1 *1) (-4 *1 (-806)))) + (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4471)))) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-5 *2 (-112)) + (-5 *1 (-684 *5 *6 *4 *3)) (-4 *3 (-703 *5 *6 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-657 *3)) (|:| |image| (-657 *3)))) - (-5 *1 (-925 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) - (|:| |explanations| (-657 (-1180))))) - (-5 *2 (-1057)) (-5 *1 (-315)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4209 (-390)) (|:| -2676 (-1180)) - (|:| |explanations| (-657 (-1180))) (|:| |extra| (-1057)))) - (-5 *2 (-1057)) (-5 *1 (-315))))) + (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) + (-5 *2 (-1197 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-130))))) +(((*1 *1 *2) + (-12 (-5 *2 (-705 *4)) (-4 *4 (-1074)) (-5 *1 (-1167 *3 *4)) + (-14 *3 (-787))))) +(((*1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-775))))) (((*1 *2 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1239)) - (-4 *5 (-384 *4)) (-4 *3 (-384 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-657 (-1225 *3))) (-5 *1 (-1225 *3)) (-4 *3 (-1122))))) + (-12 (-5 *3 (-660 (-660 (-966 (-228))))) + (-5 *2 (-660 (-1119 (-228)))) (-5 *1 (-951))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-338 *3)) (-4 *3 (-1242)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-577)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1242)) (-14 *4 *2)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1183)) (-5 *3 (-577)) (-5 *1 (-247))))) (((*1 *2 *1) - (-12 (-4 *3 (-1071)) (-4 *4 (-1122)) (-5 *2 (-657 *1)) - (-4 *1 (-393 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-657 (-748 *3 *4))) (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) - (-4 *4 (-739)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) - (-4 *1 (-969 *3 *4 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-963 (-227))) (-5 *2 (-1294)) (-5 *1 (-480))))) + (-12 (-4 *1 (-1268 *3)) (-4 *3 (-1074)) (-5 *2 (-1197 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1179 *3))) (-5 *2 (-1179 *3)) (-5 *1 (-1182 *3)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1071))))) + (-12 (-5 *3 (-1197 *1)) (-5 *4 (-1201)) (-4 *1 (-27)) + (-5 *2 (-660 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1197 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *2 (-660 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) - (-5 *2 (-1289 (-657 (-2 (|:| -3071 *4) (|:| -3178 (-1142)))))) - (-5 *1 (-357 *4))))) + (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-318)) + (-5 *2 (-420 (-431 (-975 *4)))) (-5 *1 (-1067 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-660 (-1197 *4))) (-5 *3 (-1197 *4)) + (-4 *4 (-932)) (-5 *1 (-679 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) (((*1 *2 *1) - (-12 (-5 *2 (-1124 *3)) (-5 *1 (-925 *3)) (-4 *3 (-379)) - (-4 *3 (-1122))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) - (-5 *2 (-1057)) (-5 *1 (-758))))) -(((*1 *2 *3) - (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-877) (-877) (-877))) (-5 *4 (-576)) (-5 *2 (-877)) - (-5 *1 (-662 *5 *6 *7)) (-4 *5 (-1122)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-877)) (-5 *1 (-869 *3 *4 *5)) (-4 *3 (-1071)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-877)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-877)))) - ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-877)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-877)) (-5 *1 (-1194 *3)) (-4 *3 (-1071))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1071)) - (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) - (-4 *5 (-1265 *4)) - (-5 *2 (-657 (-2 (|:| |deg| (-784)) (|:| -3989 *5)))) - (-5 *1 (-822 *4 *5 *3 *6)) (-4 *3 (-669 *5)) - (-4 *6 (-669 (-419 *5)))))) + (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-4 *3 (-569)) + (-5 *2 (-1197 *3))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1166 *2 *3)) (-4 *2 (-13 (-1125) (-34))) + (-4 *3 (-13 (-1125) (-34)))))) +(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-775))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-966 (-228)) (-228))) (-5 *3 (-1119 (-228))) + (-5 *1 (-949)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-966 (-228)) (-228))) (-5 *3 (-1119 (-228))) + (-5 *1 (-949)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-966 (-228)) (-228))) (-5 *3 (-1119 (-228))) + (-5 *1 (-950)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-966 (-228)) (-228))) (-5 *3 (-1119 (-228))) + (-5 *1 (-950))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-338 *3)) (-4 *3 (-1242)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-529 *3 *4)) (-4 *3 (-1242)) + (-14 *4 (-577))))) +(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-247))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1197 *3)) (-4 *3 (-1074)) (-4 *1 (-1268 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1197 *1)) (-5 *3 (-1201)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-975 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1201)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569))))) +(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1 (-391))) (-5 *1 (-1065))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-375)) (-5 *1 (-675 *4 *2)) + (-4 *2 (-672 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1166 *2 *3)) (-4 *2 (-13 (-1125) (-34))) + (-4 *3 (-13 (-1125) (-34)))))) +(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-775))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1201)) (-5 *5 (-1119 (-228))) (-5 *2 (-950)) + (-5 *1 (-948 *3)) (-4 *3 (-627 (-549))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1201)) (-5 *5 (-1119 (-228))) (-5 *2 (-950)) + (-5 *1 (-948 *3)) (-4 *3 (-627 (-549))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-949)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) + (-5 *1 (-949)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) + (-5 *1 (-949)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) + (-5 *1 (-950)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) + (-5 *1 (-950)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-660 (-1 (-228) (-228)))) (-5 *3 (-1119 (-228))) + (-5 *1 (-950)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-660 (-1 (-228) (-228)))) (-5 *3 (-1119 (-228))) + (-5 *1 (-950)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) + (-5 *1 (-950)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) + (-5 *1 (-950))))) +(((*1 *2 *1) (-12 (-4 *1 (-522 *3 *2)) (-4 *3 (-102)) (-4 *2 (-868))))) (((*1 *2 *3) - (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-702 *5)) (-5 *4 (-1289 *5)) (-4 *5 (-374)) - (-5 *2 (-112)) (-5 *1 (-680 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4467)))) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-5 *2 (-112)) - (-5 *1 (-681 *5 *6 *4 *3)) (-4 *3 (-700 *5 *6 *4))))) -(((*1 *2 *2) (-12 (-5 *1 (-981 *2)) (-4 *2 (-557))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-624 *4)) (-5 *6 (-1198)) - (-4 *4 (-13 (-442 *7) (-27) (-1224))) - (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) + (-12 (-5 *3 (-305 (-975 (-577)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1985 (-657 *4)))) - (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-669 *4)) (-4 *3 (-1122))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3203 *3) (|:| |coef1| (-795 *3)))) - (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071))))) -(((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-390)))) - ((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-390))))) + (-2 (|:| |varOrder| (-660 (-1201))) + (|:| |inhom| (-3 (-660 (-1292 (-787))) "failed")) + (|:| |hom| (-660 (-1292 (-787)))))) + (-5 *1 (-242))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-787)) (-4 *1 (-1268 *3)) (-4 *3 (-1074))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1277 *3 *4 *5)) (-4 *3 (-375)) (-14 *4 (-1201)) + (-14 *5 *3) (-5 *1 (-330 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1065)) (-5 *3 (-391))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-787)) (-4 *1 (-672 *3)) (-4 *3 (-1074)) (-4 *3 (-375)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-787)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) + (-5 *1 (-675 *5 *2)) (-4 *2 (-672 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) (((*1 *1) - (-12 (-4 *1 (-416)) (-2712 (|has| *1 (-6 -4457))) - (-2712 (|has| *1 (-6 -4449))))) - ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1122)) (-4 *2 (-862)))) - ((*1 *2 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-862)))) - ((*1 *1) (-4 *1 (-857))) ((*1 *1 *1 *1) (-4 *1 (-865)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3868 *4))) - (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *1 *1) - (-12 (-4 *2 (-317)) (-4 *3 (-1014 *2)) (-4 *4 (-1265 *3)) - (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1060 *3)))))) + (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1165 *4 *5)) (-4 *4 (-13 (-1125) (-34))) + (-4 *5 (-13 (-1125) (-34))) (-5 *2 (-112)) (-5 *1 (-1166 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-949)))) + ((*1 *2 *1) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950))))) +(((*1 *1) (-5 *1 (-519)))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-4 *1 (-241 *3)))) + ((*1 *1) (-12 (-4 *1 (-241 *2)) (-4 *2 (-1125))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) + (-5 *2 (-2 (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-972 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1074)) (-5 *2 (-2 (|:| -3637 *1) (|:| -2457 *1))) + (-4 *1 (-1268 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-391)) (-5 *1 (-1065))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)) (-4 *2 (-375)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-375)) (-5 *1 (-675 *4 *2)) + (-4 *2 (-672 *4))))) +(((*1 *1) + (-12 (-4 *1 (-417)) (-2749 (|has| *1 (-6 -4461))) + (-2749 (|has| *1 (-6 -4453))))) + ((*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1125)) (-4 *2 (-865)))) + ((*1 *2 *1) (-12 (-4 *1 (-846 *2)) (-4 *2 (-865)))) + ((*1 *1) (-4 *1 (-860))) ((*1 *1 *1 *1) (-4 *1 (-868)))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1183)) (-4 *1 (-376 *3 *4)) (-4 *3 (-1125)) + (-4 *4 (-1125))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1165 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1125) (-34))) (-4 *6 (-13 (-1125) (-34))) + (-5 *2 (-112)) (-5 *1 (-1166 *5 *6))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-228)))) (-5 *1 (-949))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-784)) (-4 *5 (-174)))) + (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-787)) (-4 *5 (-174)))) ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-784)) (-4 *5 (-174)))) + (-12 (-5 *2 (-577)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-787)) (-4 *5 (-174)))) ((*1 *2 *2 *3) (-12 (-5 *2 - (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) - (-253 *4 (-419 (-576))))) - (-5 *3 (-657 (-879 *4))) (-14 *4 (-657 (-1198))) (-14 *5 (-784)) - (-5 *1 (-517 *4 *5))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1057)) (-5 *3 (-1198)) (-5 *1 (-194))))) -(((*1 *2 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1265 *4)) - (-4 *5 (-1265 (-419 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) - (-4 *1 (-1087 *3 *4 *5))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1198)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-806)) (-4 *7 (-862)) - (-5 *2 (-2 (|:| |goodPols| (-657 *8)) (|:| |badPols| (-657 *8)))) - (-5 *1 (-999 *5 *6 *7 *8)) (-5 *4 (-657 *8))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1071)) (-4 *4 (-1265 *3)) (-5 *1 (-165 *3 *4 *2)) - (-4 *2 (-1265 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239))))) -(((*1 *1 *2) - (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1060 *4)) (-4 *3 (-317)) - (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) (-4 *6 (-421 *4 *5)) - (-14 *7 (-1289 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1289 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1014 *3)) - (-4 *5 (-1265 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174))))) + (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) + (-254 *4 (-420 (-577))))) + (-5 *3 (-660 (-882 *4))) (-14 *4 (-660 (-1201))) (-14 *5 (-787)) + (-5 *1 (-518 *4 *5))))) +(((*1 *1) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227)))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-430 *4)) (-4 *4 (-568))))) -(((*1 *2 *1) - (-12 (-5 *2 (-963 *4)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) - (-4 *4 (-1071))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-4 *3 (-1122)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1180)) - (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-657 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-999 *5 *6 *7 *8))))) + (-12 (-5 *3 (-787)) (-4 *4 (-1074)) + (-5 *2 (-2 (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-1268 *4))))) +(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1065))))) (((*1 *2 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) - (-4 *4 (-1071))))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-4 *5 (-1268 *4)) (-5 *2 (-660 (-669 (-420 *5)))) + (-5 *1 (-673 *4 *5)) (-5 *3 (-669 (-420 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *1 *1) (-4 *1 (-175))) + ((*1 *1 *1) + (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4470)) (-4 *1 (-241 *3)) + (-4 *3 (-1125)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4470)) (-4 *1 (-241 *2)) (-4 *2 (-1125)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)) (-4 *2 (-1125)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-623 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-577)) (-4 *4 (-1125)) + (-5 *1 (-753 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-5 *1 (-753 *2)) (-4 *2 (-1125)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) + (-4 *4 (-13 (-1125) (-34))) (-5 *1 (-1166 *3 *4))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949))))) (((*1 *2 *3) - (-12 (-5 *3 (-1179 (-1179 *4))) (-5 *2 (-1179 *4)) (-5 *1 (-1182 *4)) - (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1071))))) + (-12 (-14 *4 (-660 (-1201))) (-14 *5 (-787)) + (-5 *2 + (-660 + (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) + (-254 *4 (-420 (-577)))))) + (-5 *1 (-518 *4 *5)) + (-5 *3 + (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) + (-254 *4 (-420 (-577)))))))) +(((*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-787)) (-4 *1 (-1268 *3)) (-4 *3 (-1074))))) +(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1065))))) +(((*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *2 *1) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-5 *2 (-1183))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1239)) - (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) + (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1242)) + (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4467)) (-4 *1 (-120 *3)) - (-4 *3 (-1239)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -4471)) (-4 *1 (-120 *3)) + (-4 *3 (-1242)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4467)) (-4 *1 (-120 *3)) - (-4 *3 (-1239)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4471)) (-4 *1 (-120 *3)) + (-4 *3 (-1242)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4467)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1122)) - (-4 *2 (-1239)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1198)) (-5 *1 (-644)))) + (-12 (|has| *1 (-6 -4471)) (-4 *1 (-299 *3 *2)) (-4 *3 (-1125)) + (-4 *2 (-1242)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1201)) (-5 *1 (-645)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1256 (-576))) (|has| *1 (-6 -4467)) (-4 *1 (-664 *2)) - (-4 *2 (-1239)))) + (-12 (-5 *3 (-1259 (-577))) (|has| *1 (-6 -4471)) (-4 *1 (-667 *2)) + (-4 *2 (-1242)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-657 (-576))) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-660 (-577))) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4467)) (-4 *1 (-1032 *2)) - (-4 *2 (-1239)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -4471)) (-4 *1 (-1035 *2)) + (-4 *2 (-1242)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122)))) + (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) - (-4 *2 (-1239)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) + (-4 *2 (-1242)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4467)) (-4 *1 (-1277 *3)) - (-4 *3 (-1239)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4471)) (-4 *1 (-1280 *3)) + (-4 *3 (-1242)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) - (-4 *2 (-1239))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-657 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-442 *4) (-1024))) (-4 *4 (-568)) - (-5 *1 (-285 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1122)) (-4 *2 (-379))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-3 *3 (-657 *1))) - (-4 *1 (-1093 *4 *5 *6 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1289 *4)) (-5 *3 (-1142)) (-4 *4 (-360)) - (-5 *1 (-540 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-925 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-568)) (-4 *2 (-969 *3 *5 *4)) - (-5 *1 (-745 *5 *4 *6 *2)) (-5 *3 (-419 (-972 *6))) (-4 *5 (-806)) - (-4 *4 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $)))))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -4471)) (-4 *1 (-1280 *2)) + (-4 *2 (-1242))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-660 (-1165 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1125) (-34))) (-4 *5 (-13 (-1125) (-34))) + (-5 *1 (-1166 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-660 (-1165 *3 *4))) (-4 *3 (-13 (-1125) (-34))) + (-4 *4 (-13 (-1125) (-34))) (-5 *1 (-1166 *3 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) + (-254 *4 (-420 (-577))))) + (-14 *4 (-660 (-1201))) (-14 *5 (-787)) (-5 *2 (-112)) + (-5 *1 (-518 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-787)) (-4 *1 (-1268 *3)) (-4 *3 (-1074))))) +(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1065))))) +(((*1 *2 *1) + (-12 (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4072 *4)))) + (-5 *1 (-665 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *2 *1) + (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) - ((*1 *1 *1) (-4 *1 (-294))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) + ((*1 *1 *1) (-4 *1 (-295))) ((*1 *2 *3) - (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) - (-5 *2 (-657 (-2 (|:| -1771 (-784)) (|:| |logand| *4)))) - (-5 *1 (-330 *4)))) + (-12 (-5 *3 (-431 *4)) (-4 *4 (-569)) + (-5 *2 (-660 (-2 (|:| -1777 (-787)) (|:| |logand| *4)))) + (-5 *1 (-331 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) - (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) + (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) ((*1 *2 *1) - (-12 (-5 *2 (-677 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) + (-12 (-5 *2 (-680 *3 *4)) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) + (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-784)) (-4 *4 (-13 (-1071) (-730 (-419 (-576))))) - (-4 *5 (-862)) (-5 *1 (-1305 *4 *5 *2)) (-4 *2 (-1310 *5 *4)))) + (-12 (-5 *3 (-787)) (-4 *4 (-13 (-1074) (-733 (-420 (-577))))) + (-4 *5 (-865)) (-5 *1 (-1308 *4 *5 *2)) (-4 *2 (-1313 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-5 *1 (-1309 *3 *4)) - (-4 *4 (-730 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1265 *3)) - (-4 *3 (-13 (-374) (-148) (-1060 (-576)))) (-5 *1 (-580 *3 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-1060 (-419 *2)))) (-5 *2 (-576)) - (-5 *1 (-116 *4 *3)) (-4 *3 (-1265 *4))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *1 (-999 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-768))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-576)) (-5 *1 (-246)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-657 (-1180))) (-5 *3 (-576)) (-5 *4 (-1180)) - (-5 *1 (-246)))) - ((*1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) + (-12 (-5 *2 (-787)) (-5 *1 (-1312 *3 *4)) + (-4 *4 (-733 (-420 (-577)))) (-4 *3 (-865)) (-4 *4 (-174))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1267 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-934 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-935 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-430 (-972 *6))) (-5 *5 (-1198)) (-5 *3 (-972 *6)) - (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-935 *6))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *1 (-999 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 (-784)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) + (-12 (-4 *3 (-465)) (-4 *4 (-865)) (-4 *5 (-809)) (-5 *2 (-112)) + (-5 *1 (-1012 *3 *4 *5 *6)) (-4 *6 (-972 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-784)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-784)) (-5 *1 (-701 *4 *5 *6 *3)) - (-4 *3 (-700 *4 *5 *6)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) + (-4 *4 (-13 (-1125) (-34)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) + (-254 *4 (-420 (-577))))) + (-14 *4 (-660 (-1201))) (-14 *5 (-787)) (-5 *2 (-112)) + (-5 *1 (-518 *4 *5))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1183)) (-5 *3 (-577)) (-5 *1 (-247)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-660 (-1183))) (-5 *3 (-577)) (-5 *4 (-1183)) + (-5 *1 (-247)))) + ((*1 *1 *1) (-5 *1 (-880))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) - (-5 *2 (-784))))) + (-12 (-4 *1 (-1270 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074))))) +(((*1 *1 *2) (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227)))))) (((*1 *2 *1) - (-12 (-5 *2 (-657 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) - (-4 *3 (-1239))))) + (|partial| -12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *2 (-865)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-809)) (-4 *5 (-1074)) (-4 *6 (-972 *5 *4 *2)) + (-4 *2 (-865)) (-5 *1 (-973 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-375) + (-10 -8 (-15 -3544 ($ *6)) (-15 -1623 (*6 $)) + (-15 -1637 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) + (-5 *2 (-1201)) (-5 *1 (-1068 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *3) - (-12 (-5 *3 (-1198)) - (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-442 *4))))) + (-12 (-5 *3 (-1201)) + (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1227) (-443 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) + (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-576))) - (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) + (-12 (-5 *4 (-420 (-577))) + (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) - (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)))) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) + (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) - (-4 *3 (-13 (-27) (-1224) (-442 *6))) - (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) - (-4 *6 (-13 (-27) (-1224) (-442 *5))) - (-4 *5 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *5 *6)))) + (-12 (-5 *4 (-305 *3)) (-5 *5 (-420 (-577))) + (-4 *3 (-13 (-27) (-1227) (-443 *6))) + (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-577))) (-5 *4 (-305 *6)) + (-4 *6 (-13 (-27) (-1227) (-443 *5))) + (-4 *5 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) - (-4 *3 (-13 (-27) (-1224) (-442 *6))) - (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *3)))) + (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) + (-4 *3 (-13 (-27) (-1227) (-443 *6))) + (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1256 (-576))) - (-4 *7 (-13 (-27) (-1224) (-442 *6))) - (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1259 (-577))) + (-4 *7 (-13 (-27) (-1227) (-443 *6))) + (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-576))) - (-4 *3 (-13 (-27) (-1224) (-442 *7))) - (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *3)))) + (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-577))) + (-4 *3 (-13 (-27) (-1227) (-443 *7))) + (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) - (-5 *5 (-1256 (-419 (-576)))) (-5 *6 (-419 (-576))) - (-4 *8 (-13 (-27) (-1224) (-442 *7))) - (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-420 (-577)))) (-5 *4 (-305 *8)) + (-5 *5 (-1259 (-420 (-577)))) (-5 *6 (-420 (-577))) + (-4 *8 (-13 (-27) (-1227) (-443 *7))) + (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-419 (-576)))) - (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1224) (-442 *8))) - (-4 *8 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *8 *3)))) + (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-420 (-577)))) + (-5 *7 (-420 (-577))) (-4 *3 (-13 (-27) (-1227) (-443 *8))) + (-4 *8 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *3)))) - (-4 *3 (-1071)) (-5 *1 (-607 *3)))) + (-12 (-5 *2 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *3)))) + (-4 *3 (-1074)) (-5 *1 (-608 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-608 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-609 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *3)))) - (-4 *3 (-1071)) (-4 *1 (-1249 *3)))) + (-12 (-5 *2 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *3)))) + (-4 *3 (-1074)) (-4 *1 (-1252 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-784)) - (-5 *3 (-1179 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) - (-4 *4 (-1071)) (-4 *1 (-1270 *4)))) + (-12 (-5 *2 (-787)) + (-5 *3 (-1182 (-2 (|:| |k| (-420 (-577))) (|:| |c| *4)))) + (-4 *4 (-1074)) (-4 *1 (-1273 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-4 *1 (-1280 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-4 *1 (-1283 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1179 (-2 (|:| |k| (-784)) (|:| |c| *3)))) - (-4 *3 (-1071)) (-4 *1 (-1280 *3))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-784)) (-4 *5 (-374)) (-5 *2 (-176 *6)) - (-5 *1 (-882 *5 *4 *6)) (-4 *4 (-1280 *5)) (-4 *6 (-1265 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-340))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-972 (-576))) (-5 *2 (-340)) - (-5 *1 (-342)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-1114 (-972 (-576)))) (-5 *2 (-340)) - (-5 *1 (-342)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-784)) (-5 *1 (-688 *3)) (-4 *3 (-1071)) - (-4 *3 (-1122))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-657 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-806)) - (-5 *2 - (-2 (|:| |mval| (-702 *4)) (|:| |invmval| (-702 *4)) - (|:| |genIdeal| (-516 *4 *5 *6 *7)))) - (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) - (-5 *2 (-1057)) (-5 *1 (-769))))) + (-12 (-5 *2 (-1182 (-2 (|:| |k| (-787)) (|:| |c| *3)))) + (-4 *3 (-1074)) (-4 *1 (-1283 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-341)))) + ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-341))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-465)) (-4 *4 (-865)) (-4 *5 (-809)) + (-5 *2 (-112)) (-5 *1 (-1012 *3 *4 *5 *6)) + (-4 *6 (-972 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) + (-4 *4 (-13 (-1125) (-34)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1194 *7)) (-4 *5 (-1071)) - (-4 *7 (-1071)) (-4 *2 (-1265 *5)) (-5 *1 (-513 *5 *2 *6 *7)) - (-4 *6 (-1265 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1071)) (-4 *7 (-1071)) - (-4 *4 (-1265 *5)) (-5 *2 (-1194 *7)) (-5 *1 (-513 *5 *4 *6 *7)) - (-4 *6 (-1265 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-784)) (-4 *5 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-991 *5 *3)) (-4 *3 (-1265 *5))))) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-375)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) + (-5 *1 (-517 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229))))) +(((*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) + ((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-975 *6))) (-5 *4 (-660 (-1201))) + (-4 *6 (-13 (-569) (-1063 *5))) (-4 *5 (-569)) + (-5 *2 (-660 (-660 (-305 (-420 (-975 *6)))))) (-5 *1 (-1064 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4072 *4)))) + (-4 *3 (-1125)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-665 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) (((*1 *2 *3) - (-12 (-5 *3 (-1068 *4 *5)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) - (-14 *5 (-657 (-1198))) (-5 *2 (-657 (-657 (-1046 (-419 *4))))) - (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-657 (-1198))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-861) (-317) (-148) (-1044))) - (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) - (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-861) (-317) (-148) (-1044))) - (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) - (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-972 *4))) - (-4 *4 (-13 (-861) (-317) (-148) (-1044))) - (-5 *2 (-657 (-657 (-1046 (-419 *4))))) (-5 *1 (-1316 *4 *5 *6)) - (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4466)) (-4 *1 (-240 *3)) - (-4 *3 (-1122)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-240 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)) (-4 *2 (-1122)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1122)) - (-5 *1 (-750 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-750 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) - (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1163 *3 *4))))) -(((*1 *1 *1) - (-12 (-4 *2 (-360)) (-4 *2 (-1071)) (-5 *1 (-725 *2 *3)) - (-4 *3 (-1265 *2))))) + (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) + (-4 *2 + (-13 (-415) + (-10 -7 (-15 -3544 (*2 *4)) (-15 -4038 ((-944) *2)) + (-15 -4060 ((-1292 *2) (-944))) (-15 -2721 (*2 *2))))) + (-5 *1 (-368 *2 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) + (-4 *3 (-13 (-1125) (-34)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1221 *3)) (-4 *3 (-1071))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-998 *4 *5 *6 *3)) (-4 *4 (-1071)) (-4 *5 (-806)) - (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) - (-5 *2 (-2 (|:| |num| (-1289 *4)) (|:| |den| *4)))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-795 *3)) (|:| |polden| *3) (|:| -3897 (-784)))) - (-5 *1 (-795 *3)) (-4 *3 (-1071)))) + (-12 (-5 *3 (-228)) (-5 *2 (-112)) (-5 *1 (-310 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1119 (-859 (-228)))) (-5 *3 (-228)) (-5 *2 (-112)) + (-5 *1 (-316)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3897 (-784)))) - (-4 *1 (-1087 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) - (-5 *2 (-2 (|:| |num| (-1289 *4)) (|:| |den| *4)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-784)) (-4 *6 (-374)) (-5 *4 (-1233 *6)) - (-5 *2 (-1 (-1179 *4) (-1179 *4))) (-5 *1 (-1297 *6)) - (-5 *5 (-1179 *4))))) + (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) + (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229))))) +(((*1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1295))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1060))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-373 *3)) (-4 *3 (-1125)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-398 *4)) (-4 *4 (-1125)) (-5 *2 (-787)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *2 (-23)) (-5 *1 (-665 *4 *2 *5)) + (-4 *4 (-1125)) (-14 *5 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) (((*1 *2 *3) - (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) - (-4 *2 - (-13 (-414) - (-10 -7 (-15 -3501 (*2 *4)) (-15 -3007 ((-941) *2)) - (-15 -1985 ((-1289 *2) (-941))) (-15 -1508 (*2 *2))))) - (-5 *1 (-367 *2 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1126)) (-5 *1 (-289))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1122)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-784)) (-5 *5 (-657 *3)) (-4 *3 (-317)) (-4 *6 (-862)) - (-4 *7 (-806)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) - (-4 *8 (-969 *3 *7 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-657 (-925 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) -(((*1 *1 *1) (-4 *1 (-175))) - ((*1 *1 *1) - (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) + (-12 (-4 *4 (-361)) (-5 *2 (-981 (-1197 *4))) (-5 *1 (-369 *4)) + (-5 *3 (-1197 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1194 (-1194 *4)))) - (-5 *1 (-1237 *4)) (-5 *3 (-1194 (-1194 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-657 (-702 *6))) (-5 *4 (-112)) (-5 *5 (-576)) - (-5 *2 (-702 *6)) (-5 *1 (-1051 *6)) (-4 *6 (-374)) (-4 *6 (-1071)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-657 (-702 *4))) (-5 *2 (-702 *4)) (-5 *1 (-1051 *4)) - (-4 *4 (-374)) (-4 *4 (-1071)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-657 (-702 *5))) (-5 *4 (-576)) (-5 *2 (-702 *5)) - (-5 *1 (-1051 *5)) (-4 *5 (-374)) (-4 *5 (-1071))))) -(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) - (-12 (-4 *1 (-998 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-1087 *3 *4 *2)) (-4 *2 (-862)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *2 (-862))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1179 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1071)) - (-5 *3 (-419 (-576))) (-5 *1 (-1182 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1071) (-862))) - (-14 *3 (-657 (-1198)))))) + (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1125))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1165 *3 *2)) (-4 *3 (-13 (-1125) (-34))) + (-4 *2 (-13 (-1125) (-34)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-375)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) + (-5 *1 (-517 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-975 *6)) (-5 *4 (-1201)) + (-5 *5 (-859 *7)) + (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-4 *7 (-13 (-1227) (-29 *6))) (-5 *1 (-227 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1197 *6)) (-5 *4 (-859 *6)) + (-4 *6 (-13 (-1227) (-29 *5))) + (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-227 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1295)))) + ((*1 *2 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1295))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1060))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-334 *2 *4)) (-4 *4 (-132)) + (-4 *2 (-1125)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-373 *2)) (-4 *2 (-1125)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-4 *1 (-398 *2)) (-4 *2 (-1125)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *2 (-1125)) (-5 *1 (-665 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-963 (-227))) (-5 *4 (-889)) (-5 *2 (-1294)) - (-5 *1 (-480)))) + (-12 (-5 *3 (-966 (-228))) (-5 *4 (-892)) (-5 *2 (-1297)) + (-5 *1 (-481)))) ((*1 *1 *2) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-1071)) (-4 *1 (-1002 *3)))) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-1074)) (-4 *1 (-1005 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-963 *3)))) + (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-966 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-963 *3)) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) + (-12 (-5 *2 (-966 *3)) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) + (-12 (-5 *2 (-787)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-657 *3)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) + (-12 (-5 *2 (-660 *3)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-963 *3)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) + (-12 (-5 *2 (-966 *3)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235)) (-5 *3 (-227))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-702 *4)) (-5 *3 (-784)) (-4 *4 (-1071)) - (-5 *1 (-703 *4))))) + (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238)) (-5 *3 (-228))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1239)) - (-4 *2 (-1239)) (-5 *1 (-58 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1242)) + (-4 *2 (-1242)) (-5 *1 (-58 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1122)) (|has| *1 (-6 -4466)) - (-4 *1 (-152 *2)) (-4 *2 (-1239)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1125)) (|has| *1 (-6 -4470)) + (-4 *1 (-152 *2)) (-4 *2 (-1242)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4466)) (-4 *1 (-152 *2)) - (-4 *2 (-1239)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4470)) (-4 *1 (-152 *2)) + (-4 *2 (-1242)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4466)) (-4 *1 (-152 *2)) - (-4 *2 (-1239)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4470)) (-4 *1 (-152 *2)) + (-4 *2 (-1242)))) ((*1 *2 *3) - (-12 (-4 *4 (-1071)) - (-5 *2 (-2 (|:| -4281 (-1194 *4)) (|:| |deg| (-941)))) - (-5 *1 (-223 *4 *5)) (-5 *3 (-1194 *4)) (-4 *5 (-568)))) + (-12 (-4 *4 (-1074)) + (-5 *2 (-2 (|:| -3972 (-1197 *4)) (|:| |deg| (-944)))) + (-5 *1 (-224 *4 *5)) (-5 *3 (-1197 *4)) (-4 *5 (-569)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-784)) - (-4 *6 (-1239)) (-4 *2 (-1239)) (-5 *1 (-244 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-787)) + (-4 *6 (-1242)) (-4 *2 (-1242)) (-5 *1 (-245 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1265 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-12 (-4 *4 (-174)) (-5 *1 (-300 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1268 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1122)))) + ((*1 *1 *1) (-12 (-5 *1 (-327 *2)) (-4 *2 (-569)) (-4 *2 (-1125)))) ((*1 *1 *1) - (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1265 *2)) - (-4 *4 (-1265 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) + (-12 (-4 *1 (-347 *2 *3 *4 *5)) (-4 *2 (-375)) (-4 *3 (-1268 *2)) + (-4 *4 (-1268 (-420 *3))) (-4 *5 (-354 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1239)) (-4 *2 (-1239)) - (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1242)) (-4 *2 (-1242)) + (-5 *1 (-383 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1122)) (-4 *2 (-1122)) - (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) - ((*1 *1 *1) (-5 *1 (-507))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1125)) (-4 *2 (-1125)) + (-5 *1 (-436 *5 *4 *2 *6)) (-4 *4 (-438 *5)) (-4 *6 (-438 *2)))) + ((*1 *1 *1) (-5 *1 (-508))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-657 *5)) (-4 *5 (-1239)) - (-4 *2 (-1239)) (-5 *1 (-655 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-660 *5)) (-4 *5 (-1242)) + (-4 *2 (-1242)) (-5 *1 (-658 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1071)) (-4 *2 (-1071)) - (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) - (-4 *9 (-384 *2)) (-5 *1 (-698 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-700 *5 *6 *7)) (-4 *10 (-700 *2 *8 *9)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1074)) (-4 *2 (-1074)) + (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2)) + (-4 *9 (-385 *2)) (-5 *1 (-701 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-703 *5 *6 *7)) (-4 *10 (-703 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-1071)) (-5 *1 (-725 *3 *2)) (-4 *2 (-1265 *3)))) + (-12 (-4 *3 (-1074)) (-5 *1 (-728 *3 *2)) (-4 *2 (-1268 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1265 *3)) (-4 *3 (-374)) - (-4 *3 (-174)) (-4 *1 (-737 *3 *4)))) + (|partial| -12 (-5 *2 (-420 *4)) (-4 *4 (-1268 *3)) (-4 *3 (-375)) + (-4 *3 (-174)) (-4 *1 (-740 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-737 *3 *2)) (-4 *2 (-1265 *3)))) + (-12 (-4 *3 (-174)) (-4 *1 (-740 *3 *2)) (-4 *2 (-1268 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-978 *5)) (-4 *5 (-1239)) - (-4 *2 (-1239)) (-5 *1 (-977 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-981 *5)) (-4 *5 (-1242)) + (-4 *2 (-1242)) (-5 *1 (-980 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *1 (-1056 *3 *4 *5 *2 *6)) (-4 *2 (-969 *3 *4 *5)) - (-14 *6 (-657 *2)))) + (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *1 (-1059 *3 *4 *5 *2 *6)) (-4 *2 (-972 *3 *4 *5)) + (-14 *6 (-660 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1071)) (-4 *2 (-1071)) - (-14 *5 (-784)) (-14 *6 (-784)) (-4 *8 (-243 *6 *7)) - (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) - (-5 *1 (-1077 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1075 *5 *6 *7 *8 *9)) (-4 *12 (-1075 *5 *6 *2 *10 *11)))) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1074)) (-4 *2 (-1074)) + (-14 *5 (-787)) (-14 *6 (-787)) (-4 *8 (-244 *6 *7)) + (-4 *9 (-244 *5 *7)) (-4 *10 (-244 *6 *2)) (-4 *11 (-244 *5 *2)) + (-5 *1 (-1080 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1078 *5 *6 *7 *8 *9)) (-4 *12 (-1078 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1179 *5)) (-4 *5 (-1239)) - (-4 *2 (-1239)) (-5 *1 (-1177 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1182 *5)) (-4 *5 (-1242)) + (-4 *2 (-1242)) (-5 *1 (-1180 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1232 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-806)) - (-4 *7 (-862)) (-4 *2 (-1087 *5 *6 *7)))) + (-4 *1 (-1235 *5 *6 *7 *2)) (-4 *5 (-569)) (-4 *6 (-809)) + (-4 *7 (-865)) (-4 *2 (-1090 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1289 *5)) (-4 *5 (-1239)) - (-4 *2 (-1239)) (-5 *1 (-1288 *5 *2))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-457 *3)) (-4 *3 (-1071))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1208))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1179 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1179 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-310)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1179 (-227))) (-5 *2 (-657 (-1180))) (-5 *1 (-315))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 *4)) - (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-536))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-390)) (-5 *1 (-1085))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1132)) (-5 *3 (-576))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1292 *5)) (-4 *5 (-1242)) + (-4 *2 (-1242)) (-5 *1 (-1291 *5 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1211))))) +(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1125))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-949))))) (((*1 *2 *1) - (-12 (-4 *4 (-1122)) (-5 *2 (-112)) (-5 *1 (-901 *3 *4 *5)) - (-4 *3 (-1122)) (-4 *5 (-679 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-905 *3 *4)) (-4 *3 (-1122)) - (-4 *4 (-1122))))) -(((*1 *2 *3) - (-12 (-4 *4 (-862)) (-5 *2 (-1210 (-657 *4))) (-5 *1 (-1209 *4)) - (-5 *3 (-657 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *1 (-899)) - (-5 *3 (-657 (-576))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *1 (-899)) - (-5 *3 (-657 (-576)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-702 *1)) (-4 *1 (-360)) (-5 *2 (-1289 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-702 *1)) (-4 *1 (-146)) (-4 *1 (-929)) - (-5 *2 (-1289 *1))))) + (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) + (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-660 *6)) (-4 *6 (-865)) (-4 *4 (-375)) (-4 *5 (-809)) + (-5 *2 (-112)) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-972 *4 *5 *6))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-859 *4)) (-5 *3 (-625 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1227) (-29 *6))) + (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-227 *6 *4))))) +(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1295))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-944)) (-5 *1 (-1057 *2)) + (-4 *2 (-13 (-1125) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *1 *1) (-12 (-4 *1 (-262 *2)) (-4 *2 (-1242)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4471)) (-4 *1 (-385 *2)) (-4 *2 (-1242)))) + ((*1 *1 *1) + (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1224))) - (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) - (-5 *2 (-1194 (-419 (-1194 *6)))) (-5 *1 (-572 *5 *6 *7)) - (-5 *3 (-1194 *6)) (-4 *7 (-1122)))) + (-12 (-5 *4 (-625 *6)) (-4 *6 (-13 (-443 *5) (-27) (-1227))) + (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) + (-5 *2 (-1197 (-420 (-1197 *6)))) (-5 *1 (-573 *5 *6 *7)) + (-5 *3 (-1197 *6)) (-4 *7 (-1125)))) ((*1 *2 *1) - (-12 (-4 *2 (-1265 *3)) (-5 *1 (-725 *3 *2)) (-4 *3 (-1071)))) + (-12 (-4 *2 (-1268 *3)) (-5 *1 (-728 *3 *2)) (-4 *3 (-1074)))) ((*1 *2 *1) - (-12 (-4 *1 (-737 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1265 *3)))) + (-12 (-4 *1 (-740 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1268 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1194 *11)) (-5 *6 (-657 *10)) - (-5 *7 (-657 (-784))) (-5 *8 (-657 *11)) (-4 *10 (-862)) - (-4 *11 (-317)) (-4 *9 (-806)) (-4 *5 (-969 *11 *9 *10)) - (-5 *2 (-657 (-1194 *5))) (-5 *1 (-755 *9 *10 *11 *5)) - (-5 *3 (-1194 *5)))) + (|partial| -12 (-5 *4 (-1197 *11)) (-5 *6 (-660 *10)) + (-5 *7 (-660 (-787))) (-5 *8 (-660 *11)) (-4 *10 (-865)) + (-4 *11 (-318)) (-4 *9 (-809)) (-4 *5 (-972 *11 *9 *10)) + (-5 *2 (-660 (-1197 *5))) (-5 *1 (-758 *9 *10 *11 *5)) + (-5 *3 (-1197 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-969 *3 *4 *5)) (-5 *1 (-1056 *3 *4 *5 *2 *6)) - (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-14 *6 (-657 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1621 ((-1147 *3 (-624 $)) $)) - (-15 -1635 ((-1147 *3 (-624 $)) $)) - (-15 -3501 ($ (-1147 *3 (-624 $)))))))))) + (-12 (-4 *2 (-972 *3 *4 *5)) (-5 *1 (-1059 *3 *4 *5 *2 *6)) + (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-14 *6 (-660 *2))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-660 (-1 *4 (-660 *4)))) (-4 *4 (-1125)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1125)) + (-5 *1 (-114 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-660 (-1 *4 (-660 *4)))) + (-5 *1 (-114 *4)) (-4 *4 (-1125))))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1122)))) + (-12 (-4 *1 (-394 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1125)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-5 *2 (-1179 *3)) (-5 *1 (-1182 *3)) - (-4 *3 (-1071)))) + (-12 (-5 *4 (-577)) (-5 *2 (-1182 *3)) (-5 *1 (-1185 *3)) + (-4 *3 (-1074)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-832 *4)) (-4 *4 (-862)) (-4 *1 (-1306 *4 *3)) - (-4 *3 (-1071))))) -(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4467)) (-4 *1 (-384 *2)) (-4 *2 (-1239)))) - ((*1 *1 *1) - (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (|has| *1 (-6 -4467)) (-4 *1 (-1277 *3)) - (-4 *3 (-1239))))) + (-12 (-5 *2 (-835 *4)) (-4 *4 (-865)) (-4 *1 (-1309 *4 *3)) + (-4 *3 (-1074))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-302))) + ((*1 *1) (-5 *1 (-880))) + ((*1 *1) + (-12 (-4 *2 (-465)) (-4 *3 (-865)) (-4 *4 (-809)) + (-5 *1 (-1012 *2 *3 *4 *5)) (-4 *5 (-972 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1110))) + ((*1 *1) + (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) + (-4 *3 (-13 (-1125) (-34))))) + ((*1 *1) (-5 *1 (-1204))) ((*1 *1) (-5 *1 (-1205)))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-949))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-998 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *2 (-862)) (-4 *5 (-1087 *3 *4 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-5 *2 (-657 (-1049 *5 *6 *7 *8))) (-5 *1 (-1049 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-5 *2 (-657 (-1168 *5 *6 *7 *8))) (-5 *1 (-1168 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1265 (-48)))))) -(((*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) -(((*1 *1 *1 *1) (-4 *1 (-774)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-322)) (-5 *1 (-842))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-702 (-419 (-972 (-576))))) - (-5 *2 (-702 (-326 (-576)))) (-5 *1 (-1053))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-784) *2)) (-5 *4 (-784)) (-4 *2 (-1122)) - (-5 *1 (-691 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-784) *3)) (-4 *3 (-1122)) (-5 *1 (-695 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-626 (-908 *3))) (-4 *3 (-902 *3)) (-4 *3 (-464)) - (-5 *1 (-1230 *3 *2)) (-4 *2 (-626 (-908 *3))) (-4 *2 (-902 *3)) - (-4 *2 (-13 (-442 *3) (-1224)))))) + (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *1 (-517 *3 *4 *5 *2)) (-4 *2 (-972 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) + (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1183)) + (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-112)) + (-5 *1 (-227 *4 *5)) (-4 *5 (-13 (-1227) (-29 *4)))))) +(((*1 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1295)))) + ((*1 *2 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1295))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-304 (-326 *5)))) - (-5 *1 (-1151 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-13 (-317) (-148))) - (-5 *2 (-657 (-304 (-326 *4)))) (-5 *1 (-1151 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-972 *5)))) (-5 *4 (-1198)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-304 (-326 *5)))) - (-5 *1 (-1151 *5)))) + (-12 (-5 *3 (-660 (-1292 *5))) (-5 *4 (-577)) (-5 *2 (-1292 *5)) + (-5 *1 (-1054 *5)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1074))))) +(((*1 *1) + (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1201)) (-5 *2 (-450)) (-5 *1 (-1205))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1183) (-790))) (-5 *1 (-115))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-949))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-660 *6)) (-4 *6 (-865)) (-4 *4 (-375)) (-4 *5 (-809)) + (-5 *2 + (-2 (|:| |mval| (-705 *4)) (|:| |invmval| (-705 *4)) + (|:| |genIdeal| (-517 *4 *5 *6 *7)))) + (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-972 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1074)) (-14 *3 (-660 (-1201))))) + ((*1 *1 *1) + (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1074) (-865))) + (-14 *3 (-660 (-1201)))))) +(((*1 *2) (-12 (-5 *2 (-660 (-787))) (-5 *1 (-1295)))) + ((*1 *2 *2) (-12 (-5 *2 (-660 (-787))) (-5 *1 (-1295))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-577)) (-4 *6 (-375)) (-4 *6 (-380)) + (-4 *6 (-1074)) (-5 *2 (-660 (-660 (-705 *6)))) (-5 *1 (-1054 *6)) + (-5 *3 (-660 (-705 *6))))) ((*1 *2 *3) - (-12 (-5 *3 (-304 (-419 (-972 *4)))) (-4 *4 (-13 (-317) (-148))) - (-5 *2 (-657 (-304 (-326 *4)))) (-5 *1 (-1151 *4)))) + (-12 (-4 *4 (-375)) (-4 *4 (-380)) (-4 *4 (-1074)) + (-5 *2 (-660 (-660 (-705 *4)))) (-5 *1 (-1054 *4)) + (-5 *3 (-660 (-705 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-419 (-972 *5)))) (-5 *4 (-657 (-1198))) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-657 (-304 (-326 *5))))) - (-5 *1 (-1151 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-419 (-972 *4)))) (-4 *4 (-13 (-317) (-148))) - (-5 *2 (-657 (-657 (-304 (-326 *4))))) (-5 *1 (-1151 *4)))) + (-12 (-5 *4 (-112)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1074)) + (-5 *2 (-660 (-660 (-705 *5)))) (-5 *1 (-1054 *5)) + (-5 *3 (-660 (-705 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-304 (-419 (-972 *5))))) (-5 *4 (-657 (-1198))) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-657 (-304 (-326 *5))))) - (-5 *1 (-1151 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-304 (-419 (-972 *4))))) - (-4 *4 (-13 (-317) (-148))) (-5 *2 (-657 (-657 (-304 (-326 *4))))) - (-5 *1 (-1151 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1060 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-925 *3)) (-4 *3 (-1122))))) -(((*1 *2 *3) - (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1211 (-941) (-784)))))) -(((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-657 (-657 (-963 (-227))))))) - ((*1 *2 *1) (-12 (-4 *1 (-996)) (-5 *2 (-657 (-657 (-963 (-227)))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-4 *7 (-1014 *4)) (-4 *2 (-700 *7 *8 *9)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-700 *4 *5 *6)) - (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)) (-4 *2 (-317)))) - ((*1 *2 *2) - (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-701 *3 *4 *5 *2)) - (-4 *2 (-700 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-702 *3)) (-4 *3 (-317)) (-5 *1 (-713 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *4 (-1071)) - (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1249 *4)) (-4 *4 (-1071)) (-4 *4 (-568)) - (-5 *2 (-419 (-972 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1249 *4)) (-4 *4 (-1071)) (-4 *4 (-568)) - (-5 *2 (-419 (-972 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1180)) - (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-340))))) + (-12 (-5 *4 (-944)) (-4 *5 (-375)) (-4 *5 (-380)) (-4 *5 (-1074)) + (-5 *2 (-660 (-660 (-705 *5)))) (-5 *1 (-1054 *5)) + (-5 *3 (-660 (-705 *5)))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-838))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-657 *3)) (-4 *3 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1010 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-657 *3)) (-4 *3 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1129 *5 *6 *7 *8 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-784)))) + (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-1205))))) +(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-787)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1239)) - (-4 *3 (-1122)))) + (-12 (-5 *2 (-577)) (-4 *1 (-385 *3)) (-4 *3 (-1242)) + (-4 *3 (-1125)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-384 *3)) (-4 *3 (-1239)) (-4 *3 (-1122)) - (-5 *2 (-576)))) + (-12 (-4 *1 (-385 *3)) (-4 *3 (-1242)) (-4 *3 (-1125)) + (-5 *2 (-577)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1239)) - (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-541)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-576)) (-5 *3 (-142)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-576))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-301))) - ((*1 *1) (-5 *1 (-877))) - ((*1 *1) - (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-806)) - (-5 *1 (-1009 *2 *3 *4 *5)) (-4 *5 (-969 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1107))) - ((*1 *1) - (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) - (-4 *3 (-13 (-1122) (-34))))) - ((*1 *1) (-5 *1 (-1201))) ((*1 *1) (-5 *1 (-1202)))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-702 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) - ((*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-770))))) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1242)) + (-5 *2 (-577)))) + ((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-542)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-577)) (-5 *3 (-142)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-577))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-519)) (-5 *3 (-660 (-988))) (-5 *1 (-109))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-949))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |mval| (-705 *3)) (|:| |invmval| (-705 *3)) + (|:| |genIdeal| (-517 *3 *4 *5 *6)))) + (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-5 *1 (-449))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-963 *5)) (-5 *3 (-784)) (-4 *5 (-1071)) - (-5 *1 (-1186 *4 *5)) (-14 *4 (-941))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1) (-5 *1 (-1085)))) -(((*1 *2) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-105))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-760))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1198)) - (-4 *5 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) - (-5 *2 (-2 (|:| -2322 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) - (-4 *3 (-13 (-27) (-1224) (-442 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *2 *3) - (-12 (-4 *4 (-862)) (-5 *2 (-657 (-657 *4))) (-5 *1 (-1209 *4)) - (-5 *3 (-657 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1194 *1)) (-5 *3 (-1198)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1194 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-972 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1194 *2)) (-5 *4 (-1198)) (-4 *2 (-442 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-568)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1194 *1)) (-5 *3 (-941)) (-4 *1 (-1034)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1194 *1)) (-5 *3 (-941)) (-5 *4 (-877)) - (-4 *1 (-1034)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-941)) (-4 *4 (-13 (-861) (-374))) - (-4 *1 (-1090 *4 *2)) (-4 *2 (-1265 *4))))) -(((*1 *1 *1) (-5 *1 (-1085)))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1071)) - (-5 *1 (-868 *5 *2)) (-4 *2 (-867 *5))))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) + (-14 *4 (-660 (-1201))))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) + (-14 *4 (-660 (-1201)))))) +(((*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) + ((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-447)) + (-5 *2 + (-660 + (-3 (|:| -2713 (-1201)) + (|:| -2720 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577))))))))) + (-5 *1 (-1205))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1198)) (-5 *5 (-1116 (-227))) (-5 *2 (-947)) - (-5 *1 (-945 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1198)) (-5 *5 (-1116 (-227))) (-5 *2 (-947)) - (-5 *1 (-945 *3)) (-4 *3 (-626 (-548))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-946)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) - (-5 *1 (-946)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) - (-5 *1 (-946)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) - (-5 *1 (-947)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) - (-5 *1 (-947)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-657 (-1 (-227) (-227)))) (-5 *3 (-1116 (-227))) - (-5 *1 (-947)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-657 (-1 (-227) (-227)))) (-5 *3 (-1116 (-227))) - (-5 *1 (-947)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) - (-5 *1 (-947)))) + (-12 (-5 *4 (-1201)) (-5 *5 (-1119 (-228))) (-5 *2 (-950)) + (-5 *1 (-948 *3)) (-4 *3 (-627 (-549))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1201)) (-5 *2 (-950)) (-5 *1 (-948 *3)) + (-4 *3 (-627 (-549))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-950)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) - (-5 *1 (-947))))) -(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1071)) (-4 *3 (-1122)) - (-5 *2 (-2 (|:| |val| *1) (|:| -1801 (-576)))) (-4 *1 (-442 *3)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-908 *3)) (|:| -1801 (-908 *3)))) - (-5 *1 (-908 *3)) (-4 *3 (-1122)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) - (-4 *7 (-969 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -1801 (-576)))) - (-5 *1 (-970 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) - (-15 -1635 (*7 $)))))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) (-5 *6 (-688 (-227))) - (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-763))))) -(((*1 *1) (-5 *1 (-1201)))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-657 *3)) - (-4 *3 (-13 (-442 *6) (-27) (-1224))) - (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1122))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2))))) + (-12 (-5 *2 (-1 (-228) (-228))) (-5 *3 (-1119 (-228))) + (-5 *1 (-950))))) +(((*1 *1 *1) + (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) + (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-1274 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1198)) - (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1062)) (-5 *3 (-390))))) -(((*1 *2) - (-12 (-4 *3 (-1071)) (-5 *2 (-978 (-725 *3 *4))) (-5 *1 (-725 *3 *4)) - (-4 *4 (-1265 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591))))) + (-12 (-5 *2 (-327 *3)) (-4 *3 (-13 (-1074) (-865))) + (-5 *1 (-226 *3 *4)) (-14 *4 (-660 (-1201)))))) +(((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) + ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-569)) (-4 *2 (-1074)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) (-4 *2 (-1268 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *2 (-569)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *3 (-1090 *4 *5 *6)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *1)))) + (-4 *1 (-1096 *4 *5 *6 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-944)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-185 (-140)))) (-5 *1 (-141))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-838))))) (((*1 *2 *2) - (-12 (-5 *2 (-657 *7)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) - (-5 *1 (-1010 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-657 *7)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) - (-5 *1 (-1129 *3 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *1 *1 *1) (-4 *1 (-485))) - ((*1 *1 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) - ((*1 *2 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-899)))) - ((*1 *1 *1) (-5 *1 (-993))) - ((*1 *1 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1146 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1116 (-227))) (-5 *6 (-657 (-270))) (-5 *2 (-1155 (-227))) - (-5 *1 (-710))))) + (|partial| -12 (-5 *2 (-1197 *3)) (-4 *3 (-361)) (-5 *1 (-369 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-1205))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1074)) + (-5 *1 (-871 *5 *2)) (-4 *2 (-870 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-950))))) +(((*1 *2 *1) + (-12 (-4 *1 (-347 *3 *4 *5 *6)) (-4 *3 (-375)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-4 *6 (-354 *3 *4 *5)) + (-5 *2 (-426 *4 (-420 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1292 *6)) (-4 *6 (-13 (-422 *4 *5) (-1063 *4))) + (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) (-4 *3 (-318)) + (-5 *1 (-426 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-375)) + (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1074) (-865))) + (-14 *3 (-660 (-1201)))))) +(((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) + ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295))))) (((*1 *2 *3 *2) - (-12 - (-5 *2 - (-657 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-784)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-806)) (-4 *3 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) - (-5 *1 (-461 *4 *5 *6 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-194))))) -(((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *1 *1 *1) (-4 *1 (-774)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-657 (-879 *5))) (-14 *5 (-657 (-1198))) (-4 *6 (-464)) - (-5 *2 (-657 (-657 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) - (-5 *3 (-657 (-253 *5 *6))) (-4 *7 (-464))))) + (-12 (-5 *2 (-660 *1)) (-5 *3 (-660 *7)) (-4 *1 (-1096 *4 *5 *6 *7)) + (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *1)) + (-4 *1 (-1096 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 *1)) + (-4 *1 (-1096 *4 *5 *6 *3))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) + ((*1 *1 *1) (|partial| -4 *1 (-738)))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) (((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-1071)) - (-5 *2 (-493 *4 *5)) (-5 *1 (-964 *4 *5))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492))))) + (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) + (-4 *4 (-361))))) (((*1 *2 *1) - (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *5 (-379)) - (-5 *2 (-784))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1289 *4)) (-4 *4 (-1071)) (-4 *2 (-1265 *4)) - (-5 *1 (-456 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-419 (-1194 (-326 *5)))) (-5 *3 (-1289 (-326 *5))) - (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1152 *5))))) -(((*1 *1 *2 *3 *4) (-12 - (-5 *3 - (-657 - (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 *2)) - (|:| |logand| (-1194 *2))))) - (-5 *4 (-657 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-374)) (-5 *1 (-598 *2))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1198)) - (-4 *4 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-587 *4 *2)) - (-4 *2 (-13 (-1224) (-979) (-1161) (-29 *4)))))) + (-5 *2 + (-660 + (-660 + (-3 (|:| -2713 (-1201)) + (|:| -2720 (-660 (-3 (|:| S (-1201)) (|:| P (-975 (-577)))))))))) + (-5 *1 (-1205))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) + ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) + ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950))))) +(((*1 *1 *2) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-375)) + (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1201)) (-5 *6 (-112)) + (-4 *7 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) + (-4 *3 (-13 (-1227) (-982) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-859 *3)) (|:| |f2| (-660 (-859 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *7 *3)) (-5 *5 (-859 *3))))) +(((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) + ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) + (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1093 *4 *3)) (-4 *4 (-13 (-864) (-375))) + (-4 *3 (-1268 *4)) (-5 *2 (-112))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) + ((*1 *1 *1) (|partial| -4 *1 (-738)))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *2 *3) + (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) + (-4 *4 (-361))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1205))))) +(((*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-220))))) +(((*1 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295)))) + ((*1 *2 *2) (-12 (-5 *2 (-892)) (-5 *1 (-1295))))) (((*1 *2 *1) - (-12 (-4 *4 (-1122)) (-5 *2 (-905 *3 *4)) (-5 *1 (-901 *3 *4 *5)) - (-4 *3 (-1122)) (-4 *5 (-679 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-986 *4)) (-4 *4 (-1122)) (-5 *2 (-1124 *4)) - (-5 *1 (-987 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) + (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1227))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1093 *4 *3)) (-4 *4 (-13 (-864) (-375))) + (-4 *3 (-1268 *4)) (-5 *2 (-112))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *2 *3) + (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) + (-4 *4 (-361))))) +(((*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) + ((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1205))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-941)) (-5 *2 (-1294)) (-5 *1 (-1290))))) + (-12 (-5 *3 (-481)) (-5 *4 (-944)) (-5 *2 (-1297)) (-5 *1 (-1293))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) + (-5 *2 (-112))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) + (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) + (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-688 *2)) (-4 *2 (-1071)) (-4 *2 (-1122))))) -(((*1 *2 *1) - (-12 (-5 *2 (-784)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) - (-4 *4 (-1071))))) + (-12 (-5 *1 (-691 *2)) (-4 *2 (-1074)) (-4 *2 (-1125))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-702 *8)) (-5 *4 (-784)) (-4 *8 (-969 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) - (-4 *7 (-806)) - (-5 *2 - (-657 - (-2 (|:| |det| *8) (|:| |rows| (-657 (-576))) - (|:| |cols| (-657 (-576)))))) - (-5 *1 (-944 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) - (-5 *2 (-702 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1057))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) + (-4 *7 (-1268 (-420 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -2889 *3))) + (-5 *1 (-575 *5 *6 *7 *3)) (-4 *3 (-354 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) (-5 *2 - (-657 - (-2 (|:| |eqzro| (-657 *7)) (|:| |neqzro| (-657 *7)) - (|:| |wcond| (-657 (-972 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1289 (-419 (-972 *4)))) - (|:| -1985 (-657 (-1289 (-419 (-972 *4)))))))))) - (-5 *1 (-944 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) - (-5 *2 (-1057)) (-5 *1 (-770))))) + (-2 (|:| |answer| (-420 *6)) (|:| -2889 (-420 *6)) + (|:| |specpart| (-420 *6)) (|:| |polypart| *6))) + (-5 *1 (-576 *5 *6)) (-5 *3 (-420 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-361)) (-5 *2 (-112)) (-5 *1 (-219 *4 *3)) + (-4 *3 (-1268 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294))))) +(((*1 *2 *1) + (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1227))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-864)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1093 *4 *3)) (-4 *4 (-13 (-864) (-375))) + (-4 *3 (-1268 *4)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1268 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) (((*1 *2 *3) - (|partial| -12 (-4 *5 (-1060 (-48))) - (-4 *4 (-13 (-568) (-1060 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 (-430 (-1194 (-48)))) (-5 *1 (-447 *4 *5 *3)) - (-4 *3 (-1265 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-972 *5)))) (-5 *4 (-1198)) - (-4 *5 (-13 (-317) (-148))) - (-5 *2 (-1187 (-657 (-326 *5)) (-657 (-304 (-326 *5))))) - (-5 *1 (-1151 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) - (-4 *5 (-13 (-317) (-148))) - (-5 *2 (-1187 (-657 (-326 *5)) (-657 (-304 (-326 *5))))) - (-5 *1 (-1151 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1200 (-419 (-576)))) (-5 *2 (-419 (-576))) - (-5 *1 (-192))))) -(((*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-862)))) + (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) + (-4 *4 (-361))))) +(((*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) + ((*1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) + ((*1 *1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-865)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1232 *2 *3 *4 *5)) (-4 *2 (-568)) - (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-1087 *2 *3 *4)))) + (|partial| -12 (-4 *1 (-1235 *2 *3 *4 *5)) (-4 *2 (-569)) + (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-1090 *2 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-1277 *3)) (-4 *3 (-1239)))) - ((*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1280 *4)) - (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-1 (-1179 *4) (-1179 *4) (-1179 *4))) (-5 *1 (-1282 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1216 *4 *5)) - (-4 *4 (-1122)) (-4 *5 (-1122))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *3 (-576)) - (-5 *2 (-1057)) (-5 *1 (-769))))) + (-12 (-5 *2 (-787)) (-4 *1 (-1280 *3)) (-4 *3 (-1242)))) + ((*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) +(((*1 *1) (-5 *1 (-1204)))) +(((*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-660 (-660 (-966 (-228))))))) + ((*1 *2 *1) (-12 (-4 *1 (-999)) (-5 *2 (-660 (-660 (-966 (-228)))))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-787)) (-5 *1 (-574))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-787)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) + (-4 *2 (-1268 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1063 (-577))) (-4 *3 (-569)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-443 *3)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1197 *4)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1074)) (-4 *1 (-313)))) + ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1197 *3)))) + ((*1 *2) (-12 (-4 *1 (-740 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1268 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1093 *3 *2)) (-4 *3 (-13 (-864) (-375))) + (-4 *2 (-1268 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1277 *3 *4 *5)) (-5 *1 (-330 *3 *4 *5)) (-4 *3 (-375)) + (-14 *4 (-1201)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-715)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1125)) (-5 *1 (-729 *3 *2 *4)) (-4 *3 (-865)) + (-14 *4 + (-1 (-112) (-2 (|:| -3222 *3) (|:| -3556 *2)) + (-2 (|:| -3222 *3) (|:| -3556 *2))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) (((*1 *2 *3) - (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)) - (-5 *2 (-657 (-784))) (-5 *1 (-791 *3 *4 *5 *6 *7)) - (-4 *3 (-1265 *6)) (-4 *7 (-969 *6 *4 *5))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-657 *10)) (-5 *5 (-112)) (-4 *10 (-1093 *6 *7 *8 *9)) - (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) - (-4 *9 (-1087 *6 *7 *8)) - (-5 *2 - (-657 - (-2 (|:| -3989 (-657 *9)) (|:| -3946 *10) (|:| |ineq| (-657 *9))))) - (-5 *1 (-1010 *6 *7 *8 *9 *10)) (-5 *3 (-657 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-657 *10)) (-5 *5 (-112)) (-4 *10 (-1093 *6 *7 *8 *9)) - (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) - (-4 *9 (-1087 *6 *7 *8)) - (-5 *2 - (-657 - (-2 (|:| -3989 (-657 *9)) (|:| -3946 *10) (|:| |ineq| (-657 *9))))) - (-5 *1 (-1129 *6 *7 *8 *9 *10)) (-5 *3 (-657 *9))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1034)) (-5 *2 (-877))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-702 *3)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) - (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-702 *3)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) - (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-657 (-624 *5))) (-5 *3 (-1198)) (-4 *5 (-442 *4)) - (-4 *4 (-1122)) (-5 *1 (-585 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-409))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-4 *1 (-152 *3)))) + (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) + (-4 *4 (-361))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-4 *1 (-152 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-657 (-2 (|:| -1801 (-784)) (|:| -3665 *4) (|:| |num| *4)))) - (-4 *4 (-1265 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) + (-5 *2 (-660 (-2 (|:| -3556 (-787)) (|:| -3693 *4) (|:| |num| *4)))) + (-4 *4 (-1268 *3)) (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) + (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-112)) (-5 *1 (-450)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-5 *3 (-657 (-1198))) (-5 *4 (-112)) (-5 *1 (-449)))) + (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-5 *3 (-660 (-1201))) (-5 *4 (-112)) (-5 *1 (-450)))) ((*1 *2 *1) - (-12 (-5 *2 (-1179 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1239)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) + (-12 (-5 *2 (-1182 *3)) (-5 *1 (-614 *3)) (-4 *3 (-1242)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-174)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-685 *3)) (-4 *3 (-862)) (-5 *1 (-677 *3 *4)) + (-12 (-5 *2 (-688 *3)) (-4 *3 (-865)) (-5 *1 (-680 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-685 *3)) (-4 *3 (-862)) (-5 *1 (-677 *3 *4)) + (-12 (-5 *2 (-688 *3)) (-4 *3 (-865)) (-5 *1 (-680 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-685 *3)) (-4 *3 (-862)) (-5 *1 (-677 *3 *4)) + (-12 (-5 *2 (-688 *3)) (-4 *3 (-865)) (-5 *1 (-680 *3 *4)) (-4 *4 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-657 (-657 (-657 *3)))) (-4 *3 (-1122)) - (-5 *1 (-688 *3)))) + (-12 (-5 *2 (-660 (-660 (-660 *3)))) (-4 *3 (-1125)) + (-5 *1 (-691 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-726 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-1122)) + (-12 (-5 *1 (-729 *2 *3 *4)) (-4 *2 (-865)) (-4 *3 (-1125)) (-14 *4 - (-1 (-112) (-2 (|:| -3178 *2) (|:| -1801 *3)) - (-2 (|:| -3178 *2) (|:| -1801 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1140)) (-5 *1 (-851)))) + (-1 (-112) (-2 (|:| -3222 *2) (|:| -3556 *3)) + (-2 (|:| -3222 *2) (|:| -3556 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1143)) (-5 *1 (-854)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-888 *2 *3)) (-4 *2 (-1239)) (-4 *3 (-1239)))) + (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1242)) (-4 *3 (-1242)))) ((*1 *1 *2) - (-12 (-5 *2 (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 *4)))) - (-4 *4 (-1122)) (-5 *1 (-905 *3 *4)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 *4)))) + (-4 *4 (-1125)) (-5 *1 (-908 *3 *4)) (-4 *3 (-1125)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-657 *5)) (-4 *5 (-13 (-1122) (-34))) - (-5 *2 (-657 (-1162 *3 *5))) (-5 *1 (-1162 *3 *5)) - (-4 *3 (-13 (-1122) (-34))))) + (-12 (-5 *4 (-660 *5)) (-4 *5 (-13 (-1125) (-34))) + (-5 *2 (-660 (-1165 *3 *5))) (-5 *1 (-1165 *3 *5)) + (-4 *3 (-13 (-1125) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-657 (-2 (|:| |val| *4) (|:| -3946 *5)))) - (-4 *4 (-13 (-1122) (-34))) (-4 *5 (-13 (-1122) (-34))) - (-5 *2 (-657 (-1162 *4 *5))) (-5 *1 (-1162 *4 *5)))) + (-12 (-5 *3 (-660 (-2 (|:| |val| *4) (|:| -3952 *5)))) + (-4 *4 (-13 (-1125) (-34))) (-4 *5 (-13 (-1125) (-34))) + (-5 *2 (-660 (-1165 *4 *5))) (-5 *1 (-1165 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3946 *4))) - (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))) - (-5 *1 (-1162 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3952 *4))) + (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34))) + (-5 *1 (-1165 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) - (-4 *3 (-13 (-1122) (-34))))) + (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) + (-4 *3 (-13 (-1125) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) - (-4 *3 (-13 (-1122) (-34))))) + (-12 (-5 *4 (-112)) (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) + (-4 *3 (-13 (-1125) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-657 *3)) (-4 *3 (-13 (-1122) (-34))) - (-5 *1 (-1163 *2 *3)) (-4 *2 (-13 (-1122) (-34))))) + (-12 (-5 *4 (-660 *3)) (-4 *3 (-13 (-1125) (-34))) + (-5 *1 (-1166 *2 *3)) (-4 *2 (-13 (-1125) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-657 (-1162 *2 *3))) (-4 *2 (-13 (-1122) (-34))) - (-4 *3 (-13 (-1122) (-34))) (-5 *1 (-1163 *2 *3)))) + (-12 (-5 *4 (-660 (-1165 *2 *3))) (-4 *2 (-13 (-1125) (-34))) + (-4 *3 (-13 (-1125) (-34))) (-5 *1 (-1166 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-657 (-1163 *2 *3))) (-5 *1 (-1163 *2 *3)) - (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) + (-12 (-5 *4 (-660 (-1166 *2 *3))) (-5 *1 (-1166 *2 *3)) + (-4 *2 (-13 (-1125) (-34))) (-4 *3 (-13 (-1125) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) - (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1163 *3 *4)))) + (-12 (-5 *2 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) + (-4 *4 (-13 (-1125) (-34))) (-5 *1 (-1166 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) + (-12 (-5 *1 (-1190 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125))))) (((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1122)) (-4 *3 (-862)) - (-4 *2 (-1239)))) - ((*1 *2 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) - ((*1 *2 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) + (-12 (-4 *1 (-617 *3 *2)) (-4 *3 (-1125)) (-4 *3 (-865)) + (-4 *2 (-1242)))) + ((*1 *2 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) + ((*1 *2 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) ((*1 *2 *1) - (-12 (-4 *2 (-1239)) (-5 *1 (-888 *2 *3)) (-4 *3 (-1239)))) - ((*1 *2 *1) (-12 (-5 *2 (-685 *3)) (-5 *1 (-909 *3)) (-4 *3 (-862)))) + (-12 (-4 *2 (-1242)) (-5 *1 (-891 *2 *3)) (-4 *3 (-1242)))) + ((*1 *2 *1) (-12 (-5 *2 (-688 *3)) (-5 *1 (-912 *3)) (-4 *3 (-865)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) - (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) + (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-1277 *3)) (-4 *3 (-1239)))) - ((*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1057)) (-5 *1 (-761))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *1) (-5 *1 (-590)))) -(((*1 *2 *1) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-946)))) - ((*1 *2 *1) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-337 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-528 *3 *4)) - (-14 *4 (-576))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1194 (-419 (-972 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) - (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) + (-12 (-5 *2 (-787)) (-4 *1 (-1280 *3)) (-4 *3 (-1242)))) + ((*1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) +(((*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) + ((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1204))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-609 *3)) (-4 *3 (-1074)))) + ((*1 *2 *1) + (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-808)) + (-4 *5 (-865)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-787)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) + (-4 *2 (-1268 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294))))) +(((*1 *2 *3) + (-12 (-5 *3 (-975 (-577))) (-5 *2 (-660 *1)) (-4 *1 (-1037)))) + ((*1 *2 *3) + (-12 (-5 *3 (-975 (-420 (-577)))) (-5 *2 (-660 *1)) (-4 *1 (-1037)))) + ((*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-1037)) (-5 *2 (-660 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1197 (-577))) (-5 *2 (-660 *1)) (-4 *1 (-1037)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1197 (-420 (-577)))) (-5 *2 (-660 *1)) (-4 *1 (-1037)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1197 *1)) (-4 *1 (-1037)) (-5 *2 (-660 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-864) (-375))) (-4 *3 (-1268 *4)) (-5 *2 (-660 *1)) + (-4 *1 (-1093 *4 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1074)) (-5 *1 (-728 *3 *2)) (-4 *2 (-1268 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-1289 *3)) (-4 *3 (-374)) (-14 *6 (-1289 (-702 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-941)) (-14 *5 (-657 (-1198))))) - ((*1 *1 *2) (-12 (-5 *2 (-1147 (-576) (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1239)))) + (-12 (-5 *2 (-1292 *3)) (-4 *3 (-375)) (-14 *6 (-1292 (-705 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))))) + ((*1 *1 *2) (-12 (-5 *2 (-1150 (-577) (-625 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1242)))) ((*1 *1 *2) - (-12 (-5 *2 (-1289 (-350 (-3511 'JINT 'X 'ELAM) (-3511) (-712)))) - (-5 *1 (-61 *3)) (-14 *3 (-1198)))) + (-12 (-5 *2 (-1292 (-351 (-3553 'JINT 'X 'ELAM) (-3553) (-715)))) + (-5 *1 (-61 *3)) (-14 *3 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-1289 (-350 (-3511) (-3511 'XC) (-712)))) - (-5 *1 (-63 *3)) (-14 *3 (-1198)))) + (-12 (-5 *2 (-1292 (-351 (-3553) (-3553 'XC) (-715)))) + (-5 *1 (-63 *3)) (-14 *3 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-3511 'X) (-3511) (-712))) (-5 *1 (-64 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-351 (-3553 'X) (-3553) (-715))) (-5 *1 (-64 *3)) + (-14 *3 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-3511) (-3511 'XC) (-712))) (-5 *1 (-66 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-351 (-3553) (-3553 'XC) (-715))) (-5 *1 (-66 *3)) + (-14 *3 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-1289 (-350 (-3511 'X) (-3511 '-2538) (-712)))) - (-5 *1 (-71 *3)) (-14 *3 (-1198)))) + (-12 (-5 *2 (-1292 (-351 (-3553 'X) (-3553 '-2575) (-715)))) + (-5 *1 (-71 *3)) (-14 *3 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-1289 (-350 (-3511) (-3511 'X) (-712)))) - (-5 *1 (-74 *3)) (-14 *3 (-1198)))) + (-12 (-5 *2 (-1292 (-351 (-3553) (-3553 'X) (-715)))) + (-5 *1 (-74 *3)) (-14 *3 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-1289 (-350 (-3511 'X 'EPS) (-3511 '-2538) (-712)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1198)) (-14 *4 (-1198)) - (-14 *5 (-1198)))) + (-12 (-5 *2 (-1292 (-351 (-3553 'X 'EPS) (-3553 '-2575) (-715)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1201)) (-14 *4 (-1201)) + (-14 *5 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-1289 (-350 (-3511 'EPS) (-3511 'YA 'YB) (-712)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1198)) (-14 *4 (-1198)) - (-14 *5 (-1198)))) + (-12 (-5 *2 (-1292 (-351 (-3553 'EPS) (-3553 'YA 'YB) (-715)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1201)) (-14 *4 (-1201)) + (-14 *5 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-3511) (-3511 'X) (-712))) (-5 *1 (-77 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-351 (-3553) (-3553 'X) (-715))) (-5 *1 (-77 *3)) + (-14 *3 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-3511) (-3511 'X) (-712))) (-5 *1 (-78 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-351 (-3553) (-3553 'X) (-715))) (-5 *1 (-78 *3)) + (-14 *3 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-1289 (-350 (-3511) (-3511 'XC) (-712)))) - (-5 *1 (-79 *3)) (-14 *3 (-1198)))) + (-12 (-5 *2 (-1292 (-351 (-3553) (-3553 'XC) (-715)))) + (-5 *1 (-79 *3)) (-14 *3 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-1289 (-350 (-3511) (-3511 'X) (-712)))) - (-5 *1 (-80 *3)) (-14 *3 (-1198)))) + (-12 (-5 *2 (-1292 (-351 (-3553) (-3553 'X) (-715)))) + (-5 *1 (-80 *3)) (-14 *3 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-1289 (-350 (-3511 'X '-2538) (-3511) (-712)))) - (-5 *1 (-82 *3)) (-14 *3 (-1198)))) + (-12 (-5 *2 (-1292 (-351 (-3553 'X '-2575) (-3553) (-715)))) + (-5 *1 (-82 *3)) (-14 *3 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-702 (-350 (-3511 'X '-2538) (-3511) (-712)))) - (-5 *1 (-83 *3)) (-14 *3 (-1198)))) + (-12 (-5 *2 (-705 (-351 (-3553 'X '-2575) (-3553) (-715)))) + (-5 *1 (-83 *3)) (-14 *3 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-702 (-350 (-3511 'X) (-3511) (-712)))) (-5 *1 (-84 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-705 (-351 (-3553 'X) (-3553) (-715)))) (-5 *1 (-84 *3)) + (-14 *3 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-1289 (-350 (-3511 'X) (-3511) (-712)))) - (-5 *1 (-85 *3)) (-14 *3 (-1198)))) + (-12 (-5 *2 (-1292 (-351 (-3553 'X) (-3553) (-715)))) + (-5 *1 (-85 *3)) (-14 *3 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-1289 (-350 (-3511 'X) (-3511 '-2538) (-712)))) - (-5 *1 (-86 *3)) (-14 *3 (-1198)))) + (-12 (-5 *2 (-1292 (-351 (-3553 'X) (-3553 '-2575) (-715)))) + (-5 *1 (-86 *3)) (-14 *3 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-702 (-350 (-3511 'XL 'XR 'ELAM) (-3511) (-712)))) - (-5 *1 (-87 *3)) (-14 *3 (-1198)))) + (-12 (-5 *2 (-705 (-351 (-3553 'XL 'XR 'ELAM) (-3553) (-715)))) + (-5 *1 (-87 *3)) (-14 *3 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-3511 'X) (-3511 '-2538) (-712))) (-5 *1 (-89 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-351 (-3553 'X) (-3553 '-2575) (-715))) (-5 *1 (-89 *3)) + (-14 *3 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-657 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-576)) (-14 *4 (-784)) (-4 *5 (-174)))) + (-12 (-5 *2 (-660 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-577)) (-14 *4 (-787)) (-4 *5 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-657 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-576)) (-14 *4 (-784)))) + (-12 (-5 *2 (-660 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-577)) (-14 *4 (-787)))) ((*1 *1 *2) - (-12 (-5 *2 (-1164 *4 *5)) (-14 *4 (-784)) (-4 *5 (-174)) - (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) + (-12 (-5 *2 (-1167 *4 *5)) (-14 *4 (-787)) (-4 *5 (-174)) + (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)))) ((*1 *1 *2) - (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-784)) (-4 *5 (-174)) - (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) + (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-787)) (-4 *5 (-174)) + (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)))) ((*1 *2 *3) - (-12 (-5 *3 (-1289 (-702 *4))) (-4 *4 (-174)) - (-5 *2 (-1289 (-702 (-419 (-972 *4))))) (-5 *1 (-191 *4)))) + (-12 (-5 *3 (-1292 (-705 *4))) (-4 *4 (-174)) + (-5 *2 (-1292 (-705 (-420 (-975 *4))))) (-5 *1 (-191 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1114 (-326 *4))) - (-4 *4 (-13 (-862) (-568) (-626 (-390)))) (-5 *2 (-1114 (-390))) - (-5 *1 (-265 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) - ((*1 *1 *2) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-284)))) + (-12 (-5 *3 (-1117 (-327 *4))) + (-4 *4 (-13 (-865) (-569) (-627 (-391)))) (-5 *2 (-1117 (-391))) + (-5 *1 (-266 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-276 *2)) (-4 *2 (-865)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-285)))) ((*1 *2 *1) - (-12 (-4 *2 (-1265 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) + (-12 (-4 *2 (-1268 *3)) (-5 *1 (-300 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1274 *4 *5 *6)) (-4 *4 (-13 (-27) (-1224) (-442 *3))) - (-14 *5 (-1198)) (-14 *6 *4) - (-4 *3 (-13 (-1060 (-576)) (-652 (-576)) (-464))) - (-5 *1 (-323 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1277 *4 *5 *6)) (-4 *4 (-13 (-27) (-1227) (-443 *3))) + (-14 *5 (-1201)) (-14 *6 *4) + (-4 *3 (-13 (-1063 (-577)) (-654 (-577)) (-465))) + (-5 *1 (-324 *3 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5)) - (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + (-12 (-5 *2 (-327 *5)) (-5 *1 (-351 *3 *4 *5)) + (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2)) - (-4 *3 (-339 *4)))) + (-12 (-4 *4 (-361)) (-4 *2 (-340 *4)) (-5 *1 (-359 *3 *4 *2)) + (-4 *3 (-340 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3)) - (-4 *3 (-339 *4)))) + (-12 (-4 *4 (-361)) (-4 *2 (-340 *4)) (-5 *1 (-359 *2 *4 *3)) + (-4 *3 (-340 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) - (-5 *2 (-1313 *3 *4)))) + (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) + (-5 *2 (-1316 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) - (-5 *2 (-1304 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) + (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) + (-5 *2 (-1307 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-865)) (-4 *3 (-174)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) - (-4 *1 (-394)))) - ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) - ((*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-394)))) - ((*1 *1 *2) (-12 (-5 *2 (-702 (-712))) (-4 *1 (-394)))) + (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) + (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-705 (-715))) (-4 *1 (-395)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) - (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-395)))) - ((*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1122)))) + (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) + (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-396)))) + ((*1 *2 *3) (-12 (-5 *2 (-407)) (-5 *1 (-406 *3)) (-4 *3 (-1125)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) - (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-408)))) + (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) + (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-409)))) ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) + (-12 (-5 *2 (-305 (-327 (-171 (-391))))) (-5 *1 (-411 *3 *4 *5 *6)) + (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) + (-12 (-5 *2 (-305 (-327 (-391)))) (-5 *1 (-411 *3 *4 *5 *6)) + (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) + (-12 (-5 *2 (-305 (-327 (-577)))) (-5 *1 (-411 *3 *4 *5 *6)) + (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) + (-12 (-5 *2 (-327 (-171 (-391)))) (-5 *1 (-411 *3 *4 *5 *6)) + (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) + (-12 (-5 *2 (-327 (-391))) (-5 *1 (-411 *3 *4 *5 *6)) + (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) + (-12 (-5 *2 (-327 (-577))) (-5 *1 (-411 *3 *4 *5 *6)) + (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-707)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) + (-12 (-5 *2 (-305 (-327 (-710)))) (-5 *1 (-411 *3 *4 *5 *6)) + (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-712)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) + (-12 (-5 *2 (-305 (-327 (-715)))) (-5 *1 (-411 *3 *4 *5 *6)) + (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) ((*1 *1 *2) - (-12 (-5 *2 (-304 (-326 (-714)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) + (-12 (-5 *2 (-305 (-327 (-717)))) (-5 *1 (-411 *3 *4 *5 *6)) + (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-707))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) + (-12 (-5 *2 (-327 (-710))) (-5 *1 (-411 *3 *4 *5 *6)) + (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-712))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) + (-12 (-5 *2 (-327 (-715))) (-5 *1 (-411 *3 *4 *5 *6)) + (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-714))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) + (-12 (-5 *2 (-327 (-717))) (-5 *1 (-411 *3 *4 *5 *6)) + (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) - (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) + (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) + (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) + (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) ((*1 *1 *2) - (-12 (-5 *2 (-657 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) + (-12 (-5 *2 (-660 (-341))) (-5 *1 (-411 *3 *4 *5 *6)) + (-14 *3 (-1201)) (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) ((*1 *1 *2) - (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) - (-14 *5 (-657 (-1198))) (-14 *6 (-1202)))) + (-12 (-5 *2 (-341)) (-5 *1 (-411 *3 *4 *5 *6)) (-14 *3 (-1201)) + (-14 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-14 *5 (-660 (-1201))) (-14 *6 (-1205)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-862) (-21))) - (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))))) + (-12 (-5 *2 (-342 *4)) (-4 *4 (-13 (-865) (-21))) + (-5 *1 (-440 *3 *4)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))))) ((*1 *1 *2) - (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576))))) - (-4 *3 (-13 (-862) (-21))))) + (-12 (-5 *1 (-440 *2 *3)) (-4 *2 (-13 (-174) (-38 (-420 (-577))))) + (-4 *3 (-13 (-865) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-419 (-972 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1122)) - (-4 *1 (-442 *3)))) + (-12 (-5 *2 (-420 (-975 (-420 *3)))) (-4 *3 (-569)) (-4 *3 (-1125)) + (-4 *1 (-443 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-972 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1122)) - (-4 *1 (-442 *3)))) + (-12 (-5 *2 (-975 (-420 *3))) (-4 *3 (-569)) (-4 *3 (-1125)) + (-4 *1 (-443 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1122)) - (-4 *1 (-442 *3)))) + (-12 (-5 *2 (-420 *3)) (-4 *3 (-569)) (-4 *3 (-1125)) + (-4 *1 (-443 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1147 *3 (-624 *1))) (-4 *3 (-1071)) (-4 *3 (-1122)) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-446)))) - ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) + (-12 (-5 *2 (-1150 *3 (-625 *1))) (-4 *3 (-1074)) (-4 *3 (-1125)) + (-4 *1 (-443 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-447)))) + ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-447)))) + ((*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-447)))) + ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-447)))) + ((*1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-450)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) - (-4 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-1289 (-712))) (-4 *1 (-452)))) + (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) + (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1292 (-715))) (-4 *1 (-453)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -4343 (-657 (-340))))) - (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-4 *1 (-453)))) + (-5 *2 (-2 (|:| |localSymbols| (-1205)) (|:| -4343 (-660 (-341))))) + (-4 *1 (-454)))) + ((*1 *1 *2) (-12 (-5 *2 (-341)) (-4 *1 (-454)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-4 *1 (-454)))) ((*1 *1 *2) - (-12 (-5 *2 (-1289 (-419 (-972 *3)))) (-4 *3 (-174)) - (-14 *6 (-1289 (-702 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-14 *4 (-941)) (-14 *5 (-657 (-1198))))) - ((*1 *1 *2) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-480)))) + (-12 (-5 *2 (-1292 (-420 (-975 *3)))) (-4 *3 (-174)) + (-14 *6 (-1292 (-705 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-14 *4 (-944)) (-14 *5 (-660 (-1201))))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *1 (-481)))) + ((*1 *2 *1) (-12 (-5 *2 (-880)) (-5 *1 (-481)))) ((*1 *1 *2) - (-12 (-5 *2 (-1274 *3 *4 *5)) (-4 *3 (-1071)) (-14 *4 (-1198)) - (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) + (-12 (-5 *2 (-1277 *3 *4 *5)) (-4 *3 (-1074)) (-14 *4 (-1201)) + (-14 *5 *3) (-5 *1 (-487 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-486 *3 *4 *5)) - (-4 *3 (-1071)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1147 (-576) (-624 (-507)))) (-5 *1 (-507)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-514)))) + (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-487 *3 *4 *5)) + (-4 *3 (-1074)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1150 (-577) (-625 (-508)))) (-5 *1 (-508)))) + ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-515)))) ((*1 *1 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-374)) - (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-536)))) - ((*1 *1 *2) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-618)))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-375)) + (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-537)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-619)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-757 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1239)))) - ((*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1239)))) - ((*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1071)))) + (-12 (-4 *3 (-174)) (-5 *1 (-620 *3 *2)) (-4 *2 (-760 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1242)))) + ((*1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1242)))) + ((*1 *1 *2) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1074)))) ((*1 *2 *1) - (-12 (-5 *2 (-1309 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) + (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) + (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) ((*1 *2 *1) - (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) + (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) + (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-757 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-690 *3)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-832 *3)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) + (-12 (-4 *3 (-174)) (-5 *1 (-648 *3 *2)) (-4 *2 (-760 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-693 *3)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) + ((*1 *2 *1) (-12 (-5 *2 (-835 *3)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) ((*1 *2 *1) - (-12 (-5 *2 (-978 (-978 (-978 *3)))) (-5 *1 (-688 *3)) - (-4 *3 (-1122)))) + (-12 (-5 *2 (-981 (-981 (-981 *3)))) (-5 *1 (-691 *3)) + (-4 *3 (-1125)))) ((*1 *1 *2) - (-12 (-5 *2 (-978 (-978 (-978 *3)))) (-4 *3 (-1122)) - (-5 *1 (-688 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-832 *3)) (-5 *1 (-690 *3)) (-4 *3 (-862)))) - ((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-694)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-695 *3)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-981 (-981 (-981 *3)))) (-4 *3 (-1125)) + (-5 *1 (-691 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-835 *3)) (-5 *1 (-693 *3)) (-4 *3 (-865)))) + ((*1 *1 *2) (-12 (-5 *2 (-1143)) (-5 *1 (-697)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-698 *3)) (-4 *3 (-1125)))) ((*1 *1 *2) - (-12 (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *2)) (-4 *4 (-384 *3)) - (-4 *2 (-384 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-707)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-714))) (-5 *1 (-707)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-712))) (-5 *1 (-707)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-707)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-707)))) - ((*1 *1 *2) (-12 (-5 *2 (-714)) (-5 *1 (-712)))) - ((*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-712)))) - ((*1 *2 *3) - (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-714))) (-5 *1 (-714)))) - ((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-723)))) + (-12 (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *2)) (-4 *4 (-385 *3)) + (-4 *2 (-385 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-710)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-717))) (-5 *1 (-710)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-715))) (-5 *1 (-710)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-577))) (-5 *1 (-710)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-710)))) + ((*1 *1 *2) (-12 (-5 *2 (-717)) (-5 *1 (-715)))) + ((*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-715)))) + ((*1 *2 *3) + (-12 (-5 *3 (-327 (-577))) (-5 *2 (-327 (-717))) (-5 *1 (-717)))) + ((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1183)) (-5 *1 (-726)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-174)) (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-657 (-2 (|:| -1771 *3) (|:| -3607 *4)))) - (-4 *3 (-1071)) (-4 *4 (-739)) (-5 *1 (-748 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-776)))) + (-12 (-5 *2 (-660 (-2 (|:| -1777 *3) (|:| -3640 *4)))) + (-4 *3 (-1074)) (-4 *4 (-742)) (-5 *1 (-751 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) (|:| |mdnia| - (-2 (|:| |fn| (-326 (-227))) - (|:| -1685 (-657 (-1116 (-856 (-227))))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) - (-5 *1 (-782)))) + (-2 (|:| |fn| (-327 (-228))) + (|:| -4071 (-660 (-1119 (-859 (-228))))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) + (-5 *1 (-785)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-326 (-227))) - (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *1 (-782)))) + (-2 (|:| |fn| (-327 (-228))) + (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *1 (-785)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *1 (-782)))) - ((*1 *2 *3) (-12 (-5 *2 (-787)) (-5 *1 (-786 *3)) (-4 *3 (-1239)))) + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *1 (-785)))) + ((*1 *2 *3) (-12 (-5 *2 (-790)) (-5 *1 (-789 *3)) (-4 *3 (-1242)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) - (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-821)))) - ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-837)))) + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) + (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (-5 *1 (-824)))) + ((*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-840)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) - (|:| |lb| (-657 (-856 (-227)))) - (|:| |cf| (-657 (-326 (-227)))) - (|:| |ub| (-657 (-856 (-227)))))) + (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) + (|:| |lb| (-660 (-859 (-228)))) + (|:| |cf| (-660 (-327 (-228)))) + (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| - (-2 (|:| |lfn| (-657 (-326 (-227)))) - (|:| -1706 (-657 (-227))))))) - (-5 *1 (-854)))) + (-2 (|:| |lfn| (-660 (-327 (-228)))) + (|:| -1709 (-660 (-228))))))) + (-5 *1 (-857)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) - (-5 *1 (-854)))) + (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) + (-5 *1 (-857)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) - (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) - (|:| |ub| (-657 (-856 (-227)))))) - (-5 *1 (-854)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-873)))) - ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889)))) - ((*1 *2 *3) - (-12 (-5 *3 (-972 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-890)))) - ((*1 *2 *3) - (-12 (-5 *3 (-419 (-972 (-48)))) (-5 *2 (-326 (-576))) - (-5 *1 (-890)))) - ((*1 *1 *2) (-12 (-5 *1 (-909 *2)) (-4 *2 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-832 *3)) (-5 *1 (-909 *3)) (-4 *3 (-862)))) + (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) + (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) + (|:| |ub| (-660 (-859 (-228)))))) + (-5 *1 (-857)))) + ((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-876)))) + ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892)))) + ((*1 *2 *3) + (-12 (-5 *3 (-975 (-48))) (-5 *2 (-327 (-577))) (-5 *1 (-893)))) + ((*1 *2 *3) + (-12 (-5 *3 (-420 (-975 (-48)))) (-5 *2 (-327 (-577))) + (-5 *1 (-893)))) + ((*1 *1 *2) (-12 (-5 *1 (-912 *2)) (-4 *2 (-865)))) + ((*1 *2 *1) (-12 (-5 *2 (-835 *3)) (-5 *1 (-912 *3)) (-4 *3 (-865)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-657 (-326 (-227)))) + (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| - (-657 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-784)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) - (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) - (|:| |tol| (-227)))) - (-5 *1 (-916)))) + (-660 + (-2 (|:| |start| (-228)) (|:| |finish| (-228)) + (|:| |grid| (-787)) (|:| |boundaryType| (-577)) + (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) + (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) + (|:| |tol| (-228)))) + (-5 *1 (-919)))) ((*1 *1 *2) - (-12 (-5 *2 (-657 (-925 *3))) (-4 *3 (-1122)) (-5 *1 (-924 *3)))) + (-12 (-5 *2 (-660 (-928 *3))) (-4 *3 (-1125)) (-5 *1 (-927 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-657 (-925 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-925 *3)))) + (-12 (-5 *2 (-660 (-928 *3))) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-928 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-5 *1 (-925 *3)))) + (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-5 *1 (-928 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-934 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-934 *3)) (-4 *3 (-317)))) + (-12 (-5 *2 (-420 (-431 *3))) (-4 *3 (-318)) (-5 *1 (-937 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-420 *3)) (-5 *1 (-937 *3)) (-4 *3 (-318)))) ((*1 *2 *3) - (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-939 *4)) - (-4 *4 (-568)))) - ((*1 *2 *3) (-12 (-5 *2 (-1294)) (-5 *1 (-1055 *3)) (-4 *3 (-1239)))) - ((*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1055 *2)) (-4 *2 (-1239)))) + (-12 (-5 *3 (-490)) (-5 *2 (-327 *4)) (-5 *1 (-942 *4)) + (-4 *4 (-569)))) + ((*1 *2 *3) (-12 (-5 *2 (-1297)) (-5 *1 (-1058 *3)) (-4 *3 (-1242)))) + ((*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1058 *2)) (-4 *2 (-1242)))) ((*1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *1 (-1056 *3 *4 *5 *2 *6)) (-4 *2 (-969 *3 *4 *5)) - (-14 *6 (-657 *2)))) + (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *1 (-1059 *3 *4 *5 *2 *6)) (-4 *2 (-972 *3 *4 *5)) + (-14 *6 (-660 *2)))) ((*1 *2 *3) - (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-1065 *3)) (-4 *3 (-568)))) + (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-1068 *3)) (-4 *3 (-569)))) ((*1 *1 *2) - (-12 (-4 *3 (-1071)) (-4 *4 (-862)) (-5 *1 (-1148 *3 *4 *2)) - (-4 *2 (-969 *3 (-543 *4) *4)))) + (-12 (-4 *3 (-1074)) (-4 *4 (-865)) (-5 *1 (-1151 *3 *4 *2)) + (-4 *2 (-972 *3 (-544 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-1071)) (-4 *2 (-862)) (-5 *1 (-1148 *3 *2 *4)) - (-4 *4 (-969 *3 (-543 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-877)))) - ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1166)))) + (-12 (-4 *3 (-1074)) (-4 *2 (-865)) (-5 *1 (-1151 *3 *2 *4)) + (-4 *4 (-972 *3 (-544 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-880)))) + ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1169)))) ((*1 *2 *3) - (-12 (-5 *2 (-1179 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-1071)))) + (-12 (-5 *2 (-1182 *3)) (-5 *1 (-1185 *3)) (-4 *3 (-1074)))) ((*1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1189 *3 *4 *5)) - (-4 *3 (-1071)) (-14 *5 *3))) + (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1192 *3 *4 *5)) + (-4 *3 (-1074)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1196 *3 *4 *5)) - (-4 *3 (-1071)) (-14 *5 *3))) + (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1199 *3 *4 *5)) + (-4 *3 (-1074)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1262 *4 *3)) (-4 *3 (-1071)) (-14 *4 (-1198)) - (-14 *5 *3) (-5 *1 (-1196 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1197)))) - ((*1 *2 *1) (-12 (-5 *2 (-1211 (-1198) (-449))) (-5 *1 (-1202)))) - ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1203)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1203)))) - ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1203)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1203)))) - ((*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1210 *3)) (-4 *3 (-1122)))) - ((*1 *2 *3) (-12 (-5 *2 (-1219)) (-5 *1 (-1218 *3)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-1265 *4 *3)) (-4 *3 (-1074)) (-14 *4 (-1201)) + (-14 *5 *3) (-5 *1 (-1199 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1200)))) + ((*1 *2 *1) (-12 (-5 *2 (-1214 (-1201) (-450))) (-5 *1 (-1205)))) + ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1206)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1206)))) + ((*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-1206)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1206)))) + ((*1 *2 *1) (-12 (-5 *2 (-880)) (-5 *1 (-1213 *3)) (-4 *3 (-1125)))) + ((*1 *2 *3) (-12 (-5 *2 (-1222)) (-5 *1 (-1221 *3)) (-4 *3 (-1125)))) ((*1 *1 *2) - (-12 (-5 *2 (-972 *3)) (-4 *3 (-1071)) (-5 *1 (-1233 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1233 *3)) (-4 *3 (-1071)))) + (-12 (-5 *2 (-975 *3)) (-4 *3 (-1074)) (-5 *1 (-1236 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1236 *3)) (-4 *3 (-1074)))) ((*1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1253 *3 *4 *5)) - (-4 *3 (-1071)) (-14 *5 *3))) + (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1256 *3 *4 *5)) + (-4 *3 (-1074)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1116 *3)) (-4 *3 (-1239)) (-5 *1 (-1256 *3)))) + (-12 (-5 *2 (-1119 *3)) (-4 *3 (-1242)) (-5 *1 (-1259 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1281 *3 *4 *5)) - (-4 *3 (-1071)) (-14 *5 *3))) + (-12 (-5 *2 (-1288 *4)) (-14 *4 (-1201)) (-5 *1 (-1284 *3 *4 *5)) + (-4 *3 (-1074)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1262 *4 *3)) (-4 *3 (-1071)) (-14 *4 (-1198)) - (-14 *5 *3) (-5 *1 (-1281 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1285 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1290)))) - ((*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1290)) (-5 *1 (-1293)))) + (-12 (-5 *2 (-1265 *4 *3)) (-4 *3 (-1074)) (-14 *4 (-1201)) + (-14 *5 *3) (-5 *1 (-1284 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1288 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-880)) (-5 *1 (-1293)))) + ((*1 *2 *3) (-12 (-5 *3 (-481)) (-5 *2 (-1293)) (-5 *1 (-1296)))) ((*1 *1 *2) - (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) + (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) ((*1 *2 *1) - (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-862)) + (-12 (-5 *2 (-1316 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)))) ((*1 *2 *1) - (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-862)) + (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-677 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) - (-5 *1 (-1309 *3 *4))))) + (-12 (-5 *2 (-680 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) + (-5 *1 (-1312 *3 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-661 *5)) (-4 *5 (-1071)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-867 *5)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-664 *5)) (-4 *5 (-1074)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-870 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-702 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)))) + (-12 (-5 *2 (-705 *3)) (-4 *1 (-430 *3)) (-4 *3 (-174)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1071)) - (-5 *1 (-868 *2 *3)) (-4 *3 (-867 *2))))) -(((*1 *2) (-12 (-5 *2 (-657 (-784))) (-5 *1 (-1292)))) - ((*1 *2 *2) (-12 (-5 *2 (-657 (-784))) (-5 *1 (-1292))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1194 *5)) (-4 *5 (-464)) (-5 *2 (-657 *6)) - (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-861))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-972 *5)) (-4 *5 (-464)) (-5 *2 (-657 *6)) - (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-861)))))) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1074)) + (-5 *1 (-871 *2 *3)) (-4 *3 (-870 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-4 *1 (-107 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318)))) + ((*1 *2 *3) + (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) + ((*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1242)))) + ((*1 *1 *1) (-4 *1 (-887 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-808)) + (-4 *4 (-865))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) +(((*1 *1 *1 *1) (-4 *1 (-677)))) +(((*1 *2 *3) + (-12 (-4 *4 (-361)) + (-5 *2 (-660 (-2 (|:| |deg| (-787)) (|:| -3425 *3)))) + (-5 *1 (-219 *4 *3)) (-4 *3 (-1268 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1197 *1)) (-5 *3 (-1201)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-975 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1201)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1197 *2)) (-5 *4 (-1201)) (-4 *2 (-443 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-569)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1197 *1)) (-5 *3 (-944)) (-4 *1 (-1037)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1197 *1)) (-5 *3 (-944)) (-5 *4 (-880)) + (-4 *1 (-1037)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-944)) (-4 *4 (-13 (-864) (-375))) + (-4 *1 (-1093 *4 *2)) (-4 *2 (-1268 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-1194 (-419 (-972 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) - (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1060 (-576)))) (-4 *3 (-568)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1621 ((-1147 *3 (-624 $)) $)) - (-15 -1635 ((-1147 *3 (-624 $)) $)) - (-15 -3501 ($ (-1147 *3 (-624 $)))))))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-657 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *6 (-1265 *5)) - (-5 *2 (-657 (-2 (|:| -1509 *5) (|:| -3989 *3)))) - (-5 *1 (-822 *5 *6 *3 *7)) (-4 *3 (-669 *6)) - (-4 *7 (-669 (-419 *6)))))) -(((*1 *1 *1 *1) (-4 *1 (-674)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) - (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) - (-5 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) - (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) - (-5 *1 (-1130 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 *2)) (-4 *2 (-1265 *4)) (-5 *1 (-551 *4 *2 *5 *6)) - (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-784)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-941)) (-4 *1 (-757 *3)) (-4 *3 (-174))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *3 (-576)) - (-5 *2 (-1057)) (-5 *1 (-769))))) -(((*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448))))) -(((*1 *1 *1) (-5 *1 (-1085)))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1210 (-657 *4))) (-4 *4 (-862)) - (-5 *2 (-657 (-657 *4))) (-5 *1 (-1209 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-674)))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1161)))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4467)) (-4 *1 (-249 *2)) (-4 *2 (-1239))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1180)) (-5 *5 (-702 (-227))) (-5 *6 (-227)) - (-5 *7 (-702 (-576))) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-765))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1179 (-576))) (-5 *1 (-1182 *4)) (-4 *4 (-1071)) - (-5 *3 (-576))))) + (-12 (-4 *3 (-1074)) (-5 *2 (-1292 *3)) (-5 *1 (-728 *3 *4)) + (-4 *4 (-1268 *3))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) + (-5 *4 (-327 (-171 (-391)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) + (-5 *4 (-327 (-391))) (-5 *1 (-341)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) + (-5 *4 (-327 (-577))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-171 (-391))))) + (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-391)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-577)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-171 (-391))))) + (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-391)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-577)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-171 (-391)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-391))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-577))) (-5 *1 (-341)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) + (-5 *4 (-327 (-710))) (-5 *1 (-341)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) + (-5 *4 (-327 (-715))) (-5 *1 (-341)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1201)) (-5 *3 (-660 (-975 (-577)))) + (-5 *4 (-327 (-717))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-710)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-715)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-327 (-717)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-710)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-715)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-327 (-717)))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-710))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-715))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-717))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-710))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-715))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-705 (-717))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-710))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-715))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-327 (-717))) (-5 *1 (-341)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1183)) (-5 *1 (-341)))) + ((*1 *1 *1 *1) (-5 *1 (-880)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) - (-14 *6 (-784)) (-4 *7 (-174)) (-4 *8 (-174)) - (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *9)) (-4 *9 (-1071)) (-4 *5 (-862)) (-4 *6 (-806)) - (-4 *8 (-1071)) (-4 *2 (-969 *9 *7 *5)) - (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-806)) - (-4 *4 (-969 *8 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1084)))) - ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1084))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) - (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) - (-5 *1 (-801))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *2 + (-3 (|:| |%expansion| (-324 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183)))))) + (-5 *1 (-433 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) + (-14 *6 (-1201)) (-14 *7 *3)))) +(((*1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1204))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1242))))) +(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-996))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) +(((*1 *1 *1 *1) (-4 *1 (-677)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 *10)) - (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1093 *5 *6 *7 *8)) - (-4 *10 (-1131 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-657 (-1198))) (-5 *2 (-657 (-1068 *5 *6))) - (-5 *1 (-640 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-657 (-1198))) + (-12 (-5 *4 (-112)) (-4 *5 (-361)) (-5 *2 - (-657 (-1168 *5 (-543 (-879 *6)) (-879 *6) (-793 *5 (-879 *6))))) - (-5 *1 (-640 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-5 *2 (-657 (-1049 *5 *6 *7 *8))) (-5 *1 (-1049 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-5 *2 (-657 (-1049 *5 *6 *7 *8))) (-5 *1 (-1049 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-657 (-1198))) (-5 *2 (-657 (-1068 *5 *6))) - (-5 *1 (-1068 *5 *6)))) + (-2 (|:| |cont| *5) + (|:| -3363 (-660 (-2 (|:| |irr| *3) (|:| -3504 (-577))))))) + (-5 *1 (-219 *5 *3)) (-4 *3 (-1268 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1294))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-1049 *3)) + (-4 *3 (-13 (-864) (-375) (-1047))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) + (-4 *3 (-1268 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1093 *2 *3)) (-4 *2 (-13 (-864) (-375))) + (-4 *3 (-1268 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1292 *3)) (-4 *3 (-1074)) (-5 *1 (-728 *3 *4)) + (-4 *4 (-1268 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1125)) + (-5 *2 (-2 (|:| -1777 (-577)) (|:| |var| (-625 *1)))) + (-4 *1 (-443 *3))))) +(((*1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1204))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-577)) + (-14 *6 (-787)) (-4 *7 (-174)) (-4 *8 (-174)) + (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) (-5 *2 (-657 *1)) - (-4 *1 (-1093 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-5 *2 (-657 (-1168 *5 *6 *7 *8))) (-5 *1 (-1168 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-657 *8)) (-5 *4 (-112)) (-4 *8 (-1087 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-5 *2 (-657 (-1168 *5 *6 *7 *8))) (-5 *1 (-1168 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *1)) - (-4 *1 (-1232 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-702 (-227))) (-5 *6 (-702 (-576))) (-5 *3 (-576)) - (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-765))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) - (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4)))))) + (-12 (-5 *3 (-660 *9)) (-4 *9 (-1074)) (-4 *5 (-865)) (-4 *6 (-809)) + (-4 *8 (-1074)) (-4 *2 (-972 *9 *7 *5)) + (-5 *1 (-744 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-809)) + (-4 *4 (-972 *8 *6 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-787)) (-5 *2 (-1182 (-996))) (-5 *1 (-996))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-702 (-171 (-419 (-576))))) - (-5 *2 - (-657 - (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) - (|:| |outvect| (-657 (-702 (-171 *4))))))) - (-5 *1 (-777 *4)) (-4 *4 (-13 (-374) (-861)))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-375)) (-4 *6 (-1268 (-420 *2))) + (-4 *2 (-1268 *5)) (-5 *1 (-218 *5 *2 *6 *3)) + (-4 *3 (-354 *5 *2 *6))))) +(((*1 *1) (-5 *1 (-1294)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1001 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-1090 *3 *4 *2)) (-4 *2 (-865)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *2 (-865))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1074)) (-5 *2 (-1292 *3)) (-5 *1 (-728 *3 *4)) + (-4 *4 (-1268 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-431 *3)) (-4 *3 (-569)) (-5 *1 (-432 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1179 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1685 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1057)) (-5 *1 (-315))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-702 *3)) (-4 *3 (-317)) (-5 *1 (-713 *3))))) + (-12 (-5 *3 (-660 (-1201))) (-5 *2 (-1297)) (-5 *1 (-1204)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-660 (-1201))) (-5 *3 (-1201)) (-5 *2 (-1297)) + (-5 *1 (-1204)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-660 (-1201))) (-5 *3 (-1201)) (-5 *2 (-1297)) + (-5 *1 (-1204))))) (((*1 *2 *1) - (-12 (-5 *2 (-657 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) - (-14 *4 (-784)) (-4 *5 (-174))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-862)) (-5 *4 (-657 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-657 *4)))) - (-5 *1 (-1209 *6)) (-5 *5 (-657 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-657 (-576))) (-5 *1 (-253 *3 *4)) - (-14 *3 (-657 (-1198))) (-4 *4 (-1071)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-657 (-576))) (-14 *3 (-657 (-1198))) - (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1071)) - (-4 *5 (-243 (-3440 *3) (-784))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-657 (-576))) (-5 *1 (-493 *3 *4)) - (-14 *3 (-657 (-1198))) (-4 *4 (-1071))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1002 *2)) (-4 *2 (-1071)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-1071))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1124 (-784))) (-5 *6 (-784)) - (-5 *2 - (-2 (|:| |contp| (-576)) - (|:| -2067 (-657 (-2 (|:| |irr| *3) (|:| -1439 (-576))))))) - (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1232 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *5 (-1087 *2 *3 *4))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1028)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1028))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-657 (-879 *5))) (-14 *5 (-657 (-1198))) (-4 *6 (-464)) - (-5 *2 - (-2 (|:| |dpolys| (-657 (-253 *5 *6))) - (|:| |coords| (-657 (-576))))) - (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-657 (-253 *5 *6))) (-4 *7 (-464))))) + (-12 (-5 *2 (-660 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) + (-14 *4 (-787)) (-4 *5 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-891 (-944) (-944)))) (-5 *1 (-996))))) +(((*1 *2 *3) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-574)) (-5 *3 (-577))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-657 (-1238))) (-5 *3 (-1238)) (-5 *1 (-694))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-702 (-419 (-576)))) (-5 *2 (-657 *4)) (-5 *1 (-792 *4)) - (-4 *4 (-13 (-374) (-861)))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-558)))))) -(((*1 *1 *1) (-4 *1 (-674)))) + (-12 (-5 *2 (-1158 (-228))) (-5 *3 (-660 (-271))) (-5 *1 (-1294)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1158 (-228))) (-5 *3 (-1183)) (-5 *1 (-1294)))) + ((*1 *1 *1) (-5 *1 (-1294)))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) - (-4 *4 (-1071))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-941)) (-5 *1 (-454 *2)) - (-4 *2 (-1265 (-576))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-941)) (-5 *4 (-784)) (-5 *1 (-454 *2)) - (-4 *2 (-1265 (-576))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-941)) (-5 *4 (-657 (-784))) (-5 *1 (-454 *2)) - (-4 *2 (-1265 (-576))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-941)) (-5 *4 (-657 (-784))) (-5 *5 (-784)) - (-5 *1 (-454 *2)) (-4 *2 (-1265 (-576))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-941)) (-5 *4 (-657 (-784))) (-5 *5 (-784)) - (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1265 (-576))))) + (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-5 *2 (-787))))) +(((*1 *2) + (-12 (-4 *3 (-1074)) (-5 *2 (-981 (-728 *3 *4))) (-5 *1 (-728 *3 *4)) + (-4 *4 (-1268 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-375)) (-4 *1 (-340 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1292 *3)) (-4 *3 (-1268 *4)) (-4 *4 (-1246)) + (-4 *1 (-354 *4 *3 *5)) (-4 *5 (-1268 (-420 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1292 *4)) (-5 *3 (-1292 *1)) (-4 *4 (-174)) + (-4 *1 (-379 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1292 *4)) (-5 *3 (-1292 *1)) (-4 *4 (-174)) + (-4 *1 (-382 *4 *5)) (-4 *5 (-1268 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1292 *3)) (-4 *3 (-174)) (-4 *1 (-422 *3 *4)) + (-4 *4 (-1268 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-174)) (-4 *1 (-430 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-5 *2 (-1297)) (-5 *1 (-1204)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-941)) (-5 *4 (-430 *2)) (-4 *2 (-1265 *5)) - (-5 *1 (-456 *5 *2)) (-4 *5 (-1071))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1256 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1239))))) + (-12 (-5 *3 (-1201)) + (-5 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-5 *2 (-1297)) + (-5 *1 (-1204)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1201)) + (-5 *4 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-5 *2 (-1297)) + (-5 *1 (-1204))))) +(((*1 *2 *1) (-12 (-5 *2 (-944)) (-5 *1 (-996))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-569) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1201)) + (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4)))))) +(((*1 *1 *1) (-4 *1 (-677)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-806)) - (-5 *2 (-112)) (-5 *1 (-1009 *3 *4 *5 *6)) - (-4 *6 (-969 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) - (-4 *4 (-13 (-1122) (-34)))))) -(((*1 *1) (-4 *1 (-989)))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-657 (-657 *7))) - (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) - (-4 *7 (-862)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-657 (-657 *8))) - (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-657 *8))))) + (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-1189 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1158 (-228))) (-5 *1 (-1294)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158 (-228))) (-5 *1 (-1294))))) +(((*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-221)))) + ((*1 *1 *1) (-12 (-4 *1 (-250 *2)) (-4 *2 (-1242)))) + ((*1 *2 *1) (-12 (-5 *2 (-496)) (-5 *1 (-692)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865))))) +(((*1 *2) + (-12 (-4 *3 (-1074)) (-5 *2 (-981 (-728 *3 *4))) (-5 *1 (-728 *3 *4)) + (-4 *4 (-1268 *3))))) +(((*1 *1) (-4 *1 (-992)))) +(((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) + ((*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-174))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) +(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1204)))) + ((*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1201)) (-5 *2 (-1297)) (-5 *1 (-1204))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3436 *3))) - (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1816 *4))) + (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1122) (-34))) - (-5 *2 (-112)) (-5 *1 (-1162 *4 *5)) (-4 *4 (-13 (-1122) (-34)))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4466)) (-4 *1 (-34)) (-5 *2 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-256)))) - ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-993)))) + (-12 (-5 *4 (-1201)) + (-4 *5 (-13 (-569) (-1063 (-577)) (-654 (-577)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-660 (-625 *3))) + (|:| |vals| (-660 *3)))) + (-5 *1 (-287 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5)))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4470)) (-4 *1 (-34)) (-5 *2 (-787)))) + ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-257)))) + ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-996)))) ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-576)))) + (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-577)))) ((*1 *2 *1) - (-12 (-5 *2 (-784)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-1071)) - (-4 *4 (-859))))) -(((*1 *2) - (-12 (-4 *1 (-360)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1272 *3 *2)) (-4 *3 (-1071)) - (-4 *2 (-1249 *3))))) -(((*1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-842))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-464)))) - ((*1 *1 *1 *1) (-4 *1 (-464))) + (-12 (-5 *2 (-787)) (-5 *1 (-1315 *3 *4)) (-4 *3 (-1074)) + (-4 *4 (-862))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-787)) (-5 *3 (-966 *4)) (-4 *1 (-1159 *4)) + (-4 *4 (-1074)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-787)) (-5 *4 (-966 (-228))) (-5 *2 (-1297)) + (-5 *1 (-1294))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865))))) +(((*1 *1 *1) + (-12 (-4 *2 (-361)) (-4 *2 (-1074)) (-5 *1 (-728 *2 *3)) + (-4 *3 (-1268 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-465)))) + ((*1 *1 *1 *1) (-4 *1 (-465))) ((*1 *2 *3) - (-12 (-5 *3 (-657 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1265 (-576))))) + (-12 (-5 *3 (-660 *2)) (-5 *1 (-499 *2)) (-4 *2 (-1268 (-577))))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-709 *2)) (-4 *2 (-1265 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-784))) + (-12 (-5 *3 (-577)) (-5 *1 (-712 *2)) (-4 *2 (-1268 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-806)) (-4 *4 (-862)) (-4 *5 (-317)) - (-5 *1 (-936 *3 *4 *5 *2)) (-4 *2 (-969 *5 *3 *4)))) + (-12 (-4 *3 (-809)) (-4 *4 (-865)) (-4 *5 (-318)) + (-5 *1 (-939 *3 *4 *5 *2)) (-4 *2 (-972 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *6 *4 *5)) - (-5 *1 (-936 *4 *5 *6 *2)) (-4 *4 (-806)) (-4 *5 (-862)) - (-4 *6 (-317)))) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *6 *4 *5)) + (-5 *1 (-939 *4 *5 *6 *2)) (-4 *4 (-809)) (-4 *5 (-865)) + (-4 *6 (-318)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1194 *6)) (-4 *6 (-969 *5 *3 *4)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-936 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1197 *6)) (-4 *6 (-972 *5 *3 *4)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *5 (-318)) (-5 *1 (-939 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-657 (-1194 *7))) (-4 *4 (-806)) (-4 *5 (-862)) - (-4 *6 (-317)) (-5 *2 (-1194 *7)) (-5 *1 (-936 *4 *5 *6 *7)) - (-4 *7 (-969 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-941))) + (-12 (-5 *3 (-660 (-1197 *7))) (-4 *4 (-809)) (-4 *5 (-865)) + (-4 *6 (-318)) (-5 *2 (-1197 *7)) (-5 *1 (-939 *4 *5 *6 *7)) + (-4 *7 (-972 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-944))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) - (-4 *2 (-1265 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *2 (-464))))) -(((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(((*1 *2 *1) - (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576))))) -(((*1 *1 *2) - (-12 (-5 *2 (-657 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) + (-12 (-4 *3 (-465)) (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) + (-4 *2 (-1268 *3)))) ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)) - (-4 *3 (-568)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-568))))) -(((*1 *2 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) - (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1071)) - (-5 *2 (-2 (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-867 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1071)) - (-5 *2 (-2 (|:| -2335 *3) (|:| -3644 *3))) (-5 *1 (-868 *5 *3)) - (-4 *3 (-867 *5))))) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *2 (-465))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880))))) +(((*1 *2 *3) (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) + ((*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1201)) + (-5 *2 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) (-5 *1 (-1204))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1816 *4))) + (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-574)) (-5 *3 (-577))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-286 *4 *3)) + (-4 *3 (-13 (-443 *4) (-1027)))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-877)))) + ((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-1293)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-1294))))) (((*1 *2 *1) - (-12 (-5 *2 (-657 (-963 *4))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) - (-4 *4 (-1071))))) -(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) - ((*1 *1 *1) (-4 *1 (-1082)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1194 *7)) (-5 *3 (-576)) (-4 *7 (-969 *6 *4 *5)) - (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) - (-5 *1 (-331 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1239))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1116 (-227))) - (-5 *5 (-112)) (-5 *2 (-1291)) (-5 *1 (-264))))) + (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) + (-4 *1 (-1090 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1183)) (-5 *1 (-726))))) +(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-880)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1242))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) + (-5 *2 (-705 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-705 *4)) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-705 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) - (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1046 *3)) - (-4 *3 (-13 (-861) (-374) (-1044))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) - (-4 *3 (-1265 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1090 *2 *3)) (-4 *2 (-13 (-861) (-374))) - (-4 *3 (-1265 *2))))) + (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-1204)) (-5 *3 (-1201))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-569)) (-5 *1 (-994 *2 *3)) (-4 *3 (-1268 *2))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-660 *2)) (-5 *1 (-181 *2)) (-4 *2 (-318)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-660 (-660 *4))) (-5 *2 (-660 *4)) (-4 *4 (-318)) + (-5 *1 (-181 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-660 *8)) + (-5 *4 + (-660 + (-2 (|:| -4060 (-705 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-705 *7))))) + (-5 *5 (-787)) (-4 *8 (-1268 *7)) (-4 *7 (-1268 *6)) (-4 *6 (-361)) + (-5 *2 + (-2 (|:| -4060 (-705 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-705 *7)))) + (-5 *1 (-511 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-574))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-660 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-443 *4) (-1027))) (-4 *4 (-569)) + (-5 *1 (-286 *4 *2))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) + (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-569)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)) - (-4 *2 (-568)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-568))) + (|partial| -12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)) + (-4 *2 (-569)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-569))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) - (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-784))) + (|partial| -12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) + (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-569)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-787))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-568)))) - ((*1 *1 *1 *1) (-5 *1 (-877))) + (|partial| -12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-569)))) + ((*1 *1 *1 *1) (-5 *1 (-880))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1289 *4)) (-4 *4 (-1265 *3)) (-4 *3 (-568)) - (-5 *1 (-991 *3 *4)))) + (-12 (-5 *2 (-1292 *4)) (-4 *4 (-1268 *3)) (-4 *3 (-569)) + (-5 *1 (-994 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1075 *3 *4 *2 *5 *6)) (-4 *2 (-1071)) - (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568)))) + (|partial| -12 (-4 *1 (-1078 *3 *4 *2 *5 *6)) (-4 *2 (-1074)) + (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-569)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) - (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3946 *4)))) - (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-571))))) + (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-944)) (-5 *2 (-1297)) (-5 *1 (-1293)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-944)) (-5 *2 (-1297)) (-5 *1 (-1294))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865))))) +(((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1183)) (-5 *1 (-726))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-880)))) + ((*1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) + (-5 *2 (-705 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-705 *4)) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-705 *3))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1201)) (-5 *2 (-1205)) (-5 *1 (-1204))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) (-4 *2 (-1268 *3))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-625 *4)) (-5 *6 (-1197 *4)) + (-4 *4 (-13 (-443 *7) (-27) (-1227))) + (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4060 (-660 *4)))) + (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-672 *4)) (-4 *3 (-1125)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-625 *4)) (-5 *6 (-420 (-1197 *4))) + (-4 *4 (-13 (-443 *7) (-27) (-1227))) + (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4060 (-660 *4)))) + (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-672 *4)) (-4 *3 (-1125))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1259 (-577))) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-667 *3)) (-4 *3 (-1242))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) - (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-835 *3)) (|:| |rm| (-835 *3)))) + (-5 *1 (-835 *3)) (-4 *3 (-865)))) + ((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-787)) (-5 *4 (-944)) (-5 *2 (-1297)) (-5 *1 (-1293)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-787)) (-5 *4 (-944)) (-5 *2 (-1297)) (-5 *1 (-1294))))) (((*1 *2 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) + (-12 (-4 *4 (-1074)) (-5 *2 (-112)) (-5 *1 (-457 *4 *3)) + (-4 *3 (-1268 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-1289 (-3 (-480) "undefined"))) (-5 *1 (-1290))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) - (-4 *3 (-1122))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) - ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1256 (-576))) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-664 *3)) (-4 *3 (-1239))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224)))))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-832 *3)) (|:| |rm| (-832 *3)))) - (-5 *1 (-832 *3)) (-4 *3 (-862)))) - ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) - ((*1 *2 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292))))) -(((*1 *2 *2) (-12 (-5 *2 (-702 (-326 (-576)))) (-5 *1 (-1053))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-998 *4 *5 *6 *3)) (-4 *4 (-1071)) (-4 *5 (-806)) - (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-464)))) - ((*1 *1 *1 *1) (-4 *1 (-464)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *1 *2) - (-12 (-5 *2 (-685 *3)) (-4 *3 (-862)) (-4 *1 (-385 *3 *4)) - (-4 *4 (-174))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4466)) (-4 *1 (-501 *4)) - (-4 *4 (-1239)) (-5 *2 (-112))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-657 (-493 *4 *5))) (-5 *3 (-879 *4)) - (-14 *4 (-657 (-1198))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) - (-5 *2 (-1057)) (-5 *1 (-765))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-419 (-972 *4))) (-5 *3 (-1198)) - (-4 *4 (-13 (-568) (-1060 (-576)) (-148))) (-5 *1 (-582 *4))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1198)) (-5 *6 (-657 (-624 *3))) - (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *7))) - (-4 *7 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) - (-5 *2 (-2 (|:| -2322 *3) (|:| |coeff| *3))) - (-5 *1 (-569 *7 *3))))) + (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1183)) (-5 *1 (-726))))) +(((*1 *1 *1) (-5 *1 (-880)))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-465)))) + ((*1 *1 *1 *1) (-4 *1 (-465)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) + (-5 *2 (-705 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-705 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 *4)) (-4 *4 (-1074)) (-5 *2 (-1292 *4)) + (-5 *1 (-1202 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-944)) (-5 *2 (-1292 *3)) (-5 *1 (-1202 *3)) + (-4 *3 (-1074))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-787)) (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) + (-4 *2 (-1268 *3))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-625 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1201))) (-5 *5 (-1197 *2)) + (-4 *2 (-13 (-443 *6) (-27) (-1227))) + (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) + (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1125)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-625 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1201))) + (-5 *5 (-420 (-1197 *2))) (-4 *2 (-13 (-443 *6) (-27) (-1227))) + (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) + (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1125))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1062))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) + (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) + (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) + (-5 *3 (-660 (-271))) (-5 *1 (-269)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) + (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) + (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) + (-5 *1 (-271)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-577)) (-5 *4 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) + (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) + (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) + (-5 *2 (-1297)) (-5 *1 (-1294)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |theta| (-228)) (|:| |phi| (-228)) (|:| -3160 (-228)) + (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) (|:| |scaleZ| (-228)) + (|:| |deltaX| (-228)) (|:| |deltaY| (-228)))) + (-5 *1 (-1294)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-660 (-1197 *13))) (-5 *3 (-1197 *13)) + (-5 *4 (-660 *12)) (-5 *5 (-660 *10)) (-5 *6 (-660 *13)) + (-5 *7 (-660 (-660 (-2 (|:| -3646 (-787)) (|:| |pcoef| *13))))) + (-5 *8 (-660 (-787))) (-5 *9 (-1292 (-660 (-1197 *10)))) + (-4 *12 (-865)) (-4 *10 (-318)) (-4 *13 (-972 *10 *11 *12)) + (-4 *11 (-809)) (-5 *1 (-723 *11 *12 *10 *13))))) +(((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) + (-5 *2 (-705 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-705 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-784)) (-5 *2 (-657 (-1198))) (-5 *1 (-212)) - (-5 *3 (-1198)))) + (-12 (-5 *4 (-787)) (-5 *2 (-660 (-1201))) (-5 *1 (-212)) + (-5 *3 (-1201)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-784)) (-5 *2 (-657 (-1198))) - (-5 *1 (-276)))) + (-12 (-5 *3 (-327 (-228))) (-5 *4 (-787)) (-5 *2 (-660 (-1201))) + (-5 *1 (-277)))) ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) - (-5 *2 (-657 *3)))) + (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) + (-5 *2 (-660 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-657 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-690 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-832 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-909 *3)) (-4 *3 (-862)))) + (-12 (-5 *2 (-660 *3)) (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) + (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-693 *3)) (-4 *3 (-865)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-835 *3)) (-4 *3 (-865)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-912 *3)) (-4 *3 (-865)))) ((*1 *2 *1) - (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) - (-5 *2 (-657 *3))))) + (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) + (-5 *2 (-660 *3))))) +(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1201))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-787)) (-4 *2 (-569)) (-5 *1 (-994 *2 *4)) + (-4 *4 (-1268 *2))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-660 *3)) (-5 *6 (-1197 *3)) + (-4 *3 (-13 (-443 *7) (-27) (-1227))) + (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1125)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-660 *3)) + (-5 *6 (-420 (-1197 *3))) (-4 *3 (-13 (-443 *7) (-27) (-1227))) + (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1125))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *1 (-59 *3)) (-4 *3 (-1242)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-59 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-318))) ((*1 *1 *1 *1) (-5 *1 (-787))) + ((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-1203))) (-5 *1 (-1203)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-518)) (-5 *3 (-657 (-1203))) (-5 *1 (-1203))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-1198))) (-5 *2 (-1294)) (-5 *1 (-1201)))) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-660 *11)) (-5 *5 (-660 (-1197 *9))) + (-5 *6 (-660 *9)) (-5 *7 (-660 *12)) (-5 *8 (-660 (-787))) + (-4 *11 (-865)) (-4 *9 (-318)) (-4 *12 (-972 *9 *10 *11)) + (-4 *10 (-809)) (-5 *2 (-660 (-1197 *12))) + (-5 *1 (-723 *10 *11 *9 *12)) (-5 *3 (-1197 *12))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-880))) ((*1 *1 *1 *1) (-5 *1 (-880))) + ((*1 *1 *1) (-5 *1 (-880)))) +(((*1 *1 *2) + (-12 (-5 *2 (-426 *3 *4 *5 *6)) (-4 *6 (-1063 *4)) (-4 *3 (-318)) + (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) (-4 *6 (-422 *4 *5)) + (-14 *7 (-1292 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1292 *6)) (-4 *6 (-422 *4 *5)) (-4 *4 (-1017 *3)) + (-4 *5 (-1268 *4)) (-4 *3 (-318)) (-5 *1 (-427 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-318)))) + ((*1 *2 *1 *1) + (|partial| -12 (-4 *3 (-1125)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-398 *3)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3637 (-787)) (|:| -2457 (-787)))) + (-5 *1 (-787)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -3637 *3) (|:| -2457 *3))) + (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-1197 *3)) + (-4 *3 (-13 (-443 *6) (-27) (-1227))) + (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) + (-5 *2 (-2 (|:| -2898 *3) (|:| |coeff| *3))) + (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1125)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-420 (-1197 *3))) + (-4 *3 (-13 (-443 *6) (-27) (-1227))) + (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) + (-5 *2 (-2 (|:| -2898 *3) (|:| |coeff| *3))) + (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1125))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-577)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1242)) + (-4 *3 (-385 *4)) (-4 *5 (-385 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-318))) ((*1 *1 *1 *1) (-5 *1 (-787))) + ((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-465) (-148))) (-5 *2 (-431 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1268 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-657 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1294)) - (-5 *1 (-1201)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-657 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1294)) - (-5 *1 (-1201))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-806)) (-5 *2 (-112)) - (-5 *1 (-1009 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4)))) + (-12 (-5 *4 (-660 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-13 (-465) (-148))) + (-5 *2 (-431 *3)) (-5 *1 (-100 *5 *3))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-944)) (-5 *4 (-892)) (-5 *2 (-1297)) (-5 *1 (-1293)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-660 (-1197 *11))) (-5 *3 (-1197 *11)) + (-5 *4 (-660 *10)) (-5 *5 (-660 *8)) (-5 *6 (-660 (-787))) + (-5 *7 (-1292 (-660 (-1197 *8)))) (-4 *10 (-865)) + (-4 *8 (-318)) (-4 *11 (-972 *8 *9 *10)) (-4 *9 (-809)) + (-5 *1 (-723 *9 *10 *8 *11))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) - (-4 *4 (-13 (-1122) (-34)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-784))) - ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-657 *11)) - (|:| |todo| (-657 (-2 (|:| |val| *3) (|:| -3946 *11)))))) - (-5 *6 (-784)) - (-5 *2 (-657 (-2 (|:| |val| (-657 *10)) (|:| -3946 *11)))) - (-5 *3 (-657 *10)) (-5 *4 (-657 *11)) (-4 *10 (-1087 *7 *8 *9)) - (-4 *11 (-1093 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-806)) - (-4 *9 (-862)) (-5 *1 (-1091 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) (-12 - (-5 *5 - (-2 (|:| |done| (-657 *11)) - (|:| |todo| (-657 (-2 (|:| |val| *3) (|:| -3946 *11)))))) - (-5 *6 (-784)) - (-5 *2 (-657 (-2 (|:| |val| (-657 *10)) (|:| -3946 *11)))) - (-5 *3 (-657 *10)) (-5 *4 (-657 *11)) (-4 *10 (-1087 *7 *8 *9)) - (-4 *11 (-1131 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-806)) - (-4 *9 (-862)) (-5 *1 (-1167 *7 *8 *9 *10 *11))))) -(((*1 *1 *1) (-5 *1 (-1085)))) -(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-4 *1 (-923 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-1289 *5))) (-5 *4 (-576)) (-5 *2 (-1289 *5)) - (-5 *1 (-1051 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1071))))) -(((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-806)) (-5 *2 (-657 *6)) - (-5 *1 (-1009 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1265 *9)) (-4 *7 (-806)) (-4 *8 (-862)) (-4 *9 (-317)) - (-4 *10 (-969 *9 *7 *8)) (-5 *2 - (-2 (|:| |deter| (-657 (-1194 *10))) - (|:| |dterm| - (-657 (-657 (-2 (|:| -2096 (-784)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-657 *6)) (|:| |nlead| (-657 *10)))) - (-5 *1 (-791 *6 *7 *8 *9 *10)) (-5 *3 (-1194 *10)) (-5 *4 (-657 *6)) - (-5 *5 (-657 *10))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-317)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112))))) + (-2 (|:| -3512 (-660 (-880))) (|:| -4243 (-660 (-880))) + (|:| |presup| (-660 (-880))) (|:| -3503 (-660 (-880))) + (|:| |args| (-660 (-880))))) + (-5 *1 (-1201))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) + ((*1 *1 *1) (-5 *1 (-880)))) +(((*1 *1 *1) + (-12 (-4 *2 (-318)) (-4 *3 (-1017 *2)) (-4 *4 (-1268 *3)) + (-5 *1 (-426 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1063 *3)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-1201))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-465)) (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-994 *4 *3)) + (-4 *3 (-1268 *4))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-625 *3)) (-5 *5 (-1197 *3)) + (-4 *3 (-13 (-443 *6) (-27) (-1227))) + (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) + (-5 *2 (-599 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1125)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-625 *3)) (-5 *5 (-420 (-1197 *3))) + (-4 *3 (-13 (-443 *6) (-27) (-1227))) + (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) + (-5 *2 (-599 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1125))))) (((*1 *2 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *3)) - (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-1087 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-999 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-657 *7) (-657 *7))) (-5 *2 (-657 *7)) - (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-806)) - (-4 *6 (-862)) (-5 *1 (-999 *4 *5 *6 *7))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) - (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-784))) - ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *2 (-862)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-577))) (-4 *3 (-1074)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-99 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) + (-4 *1 (-1090 *3 *4 *5))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *8 (-1087 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-657 *8)) - (|:| |towers| (-657 (-1049 *5 *6 *7 *8))))) - (-5 *1 (-1049 *5 *6 *7 *8)) (-5 *3 (-657 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *8 (-1087 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-657 *8)) - (|:| |towers| (-657 (-1168 *5 *6 *7 *8))))) - (-5 *1 (-1168 *5 *6 *7 *8)) (-5 *3 (-657 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-941))) (-5 *4 (-925 (-576))) - (-5 *2 (-702 (-576))) (-5 *1 (-602)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-941))) (-5 *2 (-657 (-702 (-576)))) - (-5 *1 (-602)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-941))) (-5 *4 (-657 (-925 (-576)))) - (-5 *2 (-657 (-702 (-576)))) (-5 *1 (-602))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) + (-12 (-5 *4 (-1201)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-718 *3 *5 *6 *7)) + (-4 *3 (-627 (-549))) (-4 *5 (-1242)) (-4 *6 (-1242)) + (-4 *7 (-1242)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1201)) (-5 *2 (-1 *6 *5)) (-5 *1 (-722 *3 *5 *6)) + (-4 *3 (-627 (-549))) (-4 *5 (-1242)) (-4 *6 (-1242))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1074)) + (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) + (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4)))) + ((*1 *1 *1) (-4 *1 (-558))) + ((*1 *2 *1) (-12 (-5 *2 (-944)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) + ((*1 *2 *1) (-12 (-5 *2 (-944)) (-5 *1 (-693 *3)) (-4 *3 (-865)))) + ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-835 *3)) (-4 *3 (-865)))) + ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-912 *3)) (-4 *3 (-865)))) + ((*1 *2 *1) (-12 (-4 *1 (-1020 *3)) (-4 *3 (-1242)) (-5 *2 (-787)))) + ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1239 *3)) (-4 *3 (-1242)))) ((*1 *2 *1) + (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-1027)) + (-4 *2 (-1074))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-313)))) + ((*1 *1 *1) (-4 *1 (-313))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) + ((*1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-787)) (-5 *4 (-1292 *2)) (-4 *5 (-318)) + (-4 *6 (-1017 *5)) (-4 *2 (-13 (-422 *6 *7) (-1063 *6))) + (-5 *1 (-426 *5 *6 *7 *2)) (-4 *7 (-1268 *6))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-1201))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-465)) (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4))) + (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) +(((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| -4240 (-657 (-877))) (|:| -3733 (-657 (-877))) - (|:| |presup| (-657 (-877))) (|:| -2773 (-657 (-877))) - (|:| |args| (-657 (-877))))) - (-5 *1 (-1198))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-390)) (-5 *1 (-1085))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-1194 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-374) (-312) - (-10 -8 (-15 -1621 ((-1147 *4 (-624 $)) $)) - (-15 -1635 ((-1147 *4 (-624 $)) $)) - (-15 -3501 ($ (-1147 *4 (-624 $)))))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-881 *4 *5 *6 *7)) - (-4 *4 (-1071)) (-14 *5 (-657 (-1198))) (-14 *6 (-657 *3)) - (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-784)) (-4 *4 (-1071)) (-4 *5 (-862)) (-4 *6 (-806)) - (-14 *8 (-657 *5)) (-5 *2 (-1294)) - (-5 *1 (-1301 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-969 *4 *6 *5)) - (-14 *9 (-657 *3)) (-14 *10 *3)))) + (-660 + (-2 + (|:| -4295 + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (|:| -4444 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1182 (-228))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4071 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-572))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) (((*1 *2 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-1194 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 *6)) (-4 *5 (-1243)) (-4 *6 (-1265 *5)) - (-5 *2 (-2 (|:| -1801 (-784)) (|:| -1771 *3) (|:| |radicand| *6))) - (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-784)) (-4 *7 (-1265 *3))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4467)) (-4 *1 (-384 *2)) (-4 *2 (-1239)) - (-4 *2 (-862)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4467)) - (-4 *1 (-384 *3)) (-4 *3 (-1239))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) + (-12 (-4 *4 (-865)) + (-5 *2 + (-2 (|:| |f1| (-660 *4)) (|:| |f2| (-660 (-660 (-660 *4)))) + (|:| |f3| (-660 (-660 *4))) (|:| |f4| (-660 (-660 (-660 *4)))))) + (-5 *1 (-1212 *4)) (-5 *3 (-660 (-660 (-660 *4))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-702 *7)) (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) - (-4 *6 (-806)) (-5 *1 (-944 *4 *5 *6 *7))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1071)) - (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4)))) - ((*1 *1 *1) (-4 *1 (-557))) - ((*1 *2 *1) (-12 (-5 *2 (-941)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-941)) (-5 *1 (-690 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-832 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-909 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-4 *1 (-1017 *3)) (-4 *3 (-1239)) (-5 *2 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-1236 *3)) (-4 *3 (-1239)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-1024)) - (-4 *2 (-1071))))) + (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) + (-4 *1 (-1090 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 (-1302 *4 *5 *6 *7))) - (-5 *1 (-1302 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-657 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1087 *6 *7 *8)) (-4 *6 (-568)) - (-4 *7 (-806)) (-4 *8 (-862)) (-5 *2 (-657 (-1302 *6 *7 *8 *9))) - (-5 *1 (-1302 *6 *7 *8 *9))))) + (-12 (-5 *3 (-1201)) (-5 *2 (-1 *6 *5)) (-5 *1 (-722 *4 *5 *6)) + (-4 *4 (-627 (-549))) (-4 *5 (-1242)) (-4 *6 (-1242))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-112)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 (-171 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-112)) - (-5 *1 (-1228 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) - (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) + (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)) + (-5 *1 (-421 *3 *4 *5)) (-4 *3 (-422 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) + (-5 *2 (-705 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-1201))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-569)) (-4 *2 (-465)) (-5 *1 (-994 *2 *3)) + (-4 *3 (-1268 *2))))) +(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-572))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1122)) (-5 *1 (-984 *3 *2)) (-4 *3 (-1122))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-1198))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) + (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1201)) (-5 *2 (-1 (-228) (-228))) (-5 *1 (-719 *3)) + (-4 *3 (-627 (-549))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1201)) (-5 *2 (-1 (-228) (-228) (-228))) + (-5 *1 (-719 *3)) (-4 *3 (-627 (-549)))))) (((*1 *2 *3) - (-12 (-4 *4 (-862)) - (-5 *2 - (-2 (|:| |f1| (-657 *4)) (|:| |f2| (-657 (-657 (-657 *4)))) - (|:| |f3| (-657 (-657 *4))) (|:| |f4| (-657 (-657 (-657 *4)))))) - (-5 *1 (-1209 *4)) (-5 *3 (-657 (-657 (-657 *4))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-340))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-657 - (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1194 *3)) - (|:| |logand| (-1194 *3))))) - (-5 *1 (-598 *3)) (-4 *3 (-374))))) -(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1289 *1)) (-4 *1 (-378 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-1022 *3))))) + (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-1183)) (-5 *1 (-194)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-702 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-702 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1146 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *3)) - (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-657 (-1194 *4))) (-5 *3 (-1194 *4)) - (-4 *4 (-929)) (-5 *1 (-676 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-833)) (-14 *5 (-1198)) - (-5 *2 (-576)) (-5 *1 (-1136 *4 *5))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-1142)) (-5 *2 (-112)) (-5 *1 (-834))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-784)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1265 *4))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1060 (-576)))) - (-4 *5 (-1265 *4)) (-5 *2 (-657 (-419 *5))) (-5 *1 (-1038 *4 *5)) - (-5 *3 (-419 *5))))) + (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) + (-5 *2 (-705 *3))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-880) (-880) (-880))) (-5 *4 (-577)) (-5 *2 (-880)) + (-5 *1 (-665 *5 *6 *7)) (-4 *5 (-1125)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-880)) (-5 *1 (-872 *3 *4 *5)) (-4 *3 (-1074)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-880)))) + ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-880)))) + ((*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-880)))) + ((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-880)) (-5 *1 (-1197 *3)) (-4 *3 (-1074))))) (((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4468 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) - (-4 *2 (-1071)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1265 *2)) - (-4 *4 (-700 *2 *5 *6))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) - (-5 *2 (-1057)) (-5 *1 (-765))))) + (-12 (-4 *4 (-569)) (-5 *2 (-660 (-787))) (-5 *1 (-994 *4 *3)) + (-4 *3 (-1268 *4))))) +(((*1 *1) (-5 *1 (-572)))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-1294)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294))))) (((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -3436 (-795 *3)) (|:| |coef1| (-795 *3)) - (|:| |coef2| (-795 *3)))) - (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *2 (-2 (|:| -3436 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1087 *3 *4 *5))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-784)) (-4 *4 (-568)) (-5 *1 (-991 *4 *2)) - (-4 *2 (-1265 *4))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1116 (-227))) (-5 *6 (-576)) (-5 *2 (-1234 (-946))) - (-5 *1 (-328)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1116 (-227))) (-5 *6 (-576)) (-5 *7 (-1180)) - (-5 *2 (-1234 (-946))) (-5 *1 (-328)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1116 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) - (-5 *2 (-1234 (-946))) (-5 *1 (-328)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1116 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1180)) - (-5 *2 (-1234 (-946))) (-5 *1 (-328))))) -(((*1 *2) - (-12 (-5 *2 (-702 (-930 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-941)) - (-14 *4 (-941)))) - ((*1 *2) - (-12 (-5 *2 (-702 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) - (-14 *4 - (-3 (-1194 *3) - (-1289 (-657 (-2 (|:| -3071 *3) (|:| -3178 (-1142))))))))) - ((*1 *2) - (-12 (-5 *2 (-702 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-941))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| -2335 *3) (|:| -3644 *3))) (-5 *1 (-1260 *4 *3)) - (-4 *3 (-1265 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-862)) (-5 *3 (-657 *6)) (-5 *5 (-657 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-657 *5)) (|:| |f3| *5) - (|:| |f4| (-657 *5)))) - (-5 *1 (-1209 *6)) (-5 *4 (-657 *5))))) -(((*1 *1 *1) (-4 *1 (-568)))) -(((*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1239)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1201)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-718 *4 *5 *6 *7)) + (-4 *4 (-627 (-549))) (-4 *5 (-1242)) (-4 *6 (-1242)) + (-4 *7 (-1242))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) + (-4 *4 (-1074))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *3 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-969 *4 *3 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-702 *5)) (-4 *5 (-1071)) (-5 *1 (-1076 *3 *4 *5)) - (-14 *3 (-784)) (-14 *4 (-784))))) -(((*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-657 *3)) (-5 *1 (-1150 *4 *3)) (-4 *4 (-1265 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2322 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-374)) (-4 *7 (-1265 *6)) - (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-772))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) - (-5 *2 (-2 (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-969 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1071)) (-5 *2 (-2 (|:| -2335 *1) (|:| -3644 *1))) - (-4 *1 (-1265 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-657 (-1198))) (|:| |pred| (-52)))) - (-5 *1 (-908 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))) - (-5 *2 (-657 (-1098 *3 *4 *5))) (-5 *1 (-1099 *3 *4 *5)) - (-4 *5 (-13 (-442 *4) (-902 *3) (-626 (-908 *3))))))) + (-12 (-4 *4 (-569)) (-5 *2 (-660 *3)) (-5 *1 (-994 *4 *3)) + (-4 *3 (-1268 *4))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-571 *2)) (-4 *2 (-558))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) -(((*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937))))) -(((*1 *1) - (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-589)))) - ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224))))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-877))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-949)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1119 (-228))) (-5 *1 (-950)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *2 (-865)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865))))) +(((*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-717)))) + ((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-717))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880))))) (((*1 *2 *1) - (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-657 (-173))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-702 *1)) (-5 *4 (-1289 *1)) (-4 *1 (-652 *5)) - (-4 *5 (-1071)) - (-5 *2 (-2 (|:| -3750 (-702 *5)) (|:| |vec| (-1289 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-702 *1)) (-4 *1 (-652 *4)) (-4 *4 (-1071)) - (-5 *2 (-702 *4))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) - (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-657 *7)) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-657 (-304 *7))) (-5 *4 (-657 (-115))) (-5 *5 (-304 *7)) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-657 (-304 *8))) (-5 *4 (-657 (-115))) (-5 *5 (-304 *8)) - (-5 *6 (-657 *8)) (-4 *8 (-442 *7)) - (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-657 *7)) (-5 *4 (-657 (-115))) (-5 *5 (-304 *7)) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 (-115))) (-5 *6 (-657 (-304 *8))) - (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) - (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) - (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) - (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) - (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-657 *3)) - (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) - (-5 *1 (-327 *7 *3))))) + (-12 (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4072 (-577))))) + (-5 *1 (-373 *3)) (-4 *3 (-1125)))) + ((*1 *2 *1) + (-12 (-4 *1 (-398 *3)) (-4 *3 (-1125)) + (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4072 (-787))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-660 (-2 (|:| -1902 *3) (|:| -3556 (-577))))) + (-5 *1 (-431 *3)) (-4 *3 (-569))))) (((*1 *2 *1) - (-12 (-5 *2 (-1289 (-784))) (-5 *1 (-688 *3)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) + (-4 *4 (-1074))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1827 *4))) + (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1198)) (-5 *1 (-624 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-657 *7))) (-4 *1 (-1232 *4 *5 *6 *7)) - (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-877))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1292)))) - ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1292))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-657 *3)) - (-4 *3 (-13 (-27) (-1224) (-442 *6))) - (-4 *6 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-569 *6 *3))))) -(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-1202)) (-5 *1 (-1201))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-739)) (-4 *2 (-1239))))) + (-12 (-4 *3 (-1125)) (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))) + (-5 *2 (-660 (-1101 *3 *4 *5))) (-5 *1 (-1102 *3 *4 *5)) + (-4 *5 (-13 (-443 *4) (-905 *3) (-627 (-911 *3))))))) +(((*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *2 (-865)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-318)) (-4 *3 (-174)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-2 (|:| -3637 *3) (|:| -2457 *3))) + (-5 *1 (-704 *3 *4 *5 *6)) (-4 *6 (-703 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -3637 *3) (|:| -2457 *3))) (-5 *1 (-716 *3)) + (-4 *3 (-318))))) +(((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-879)))) + ((*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-879))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569))))) +(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227))))) + ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-880))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) + (-4 *4 (-1074))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1827 *4))) + (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1201)) (-5 *6 (-660 (-625 *3))) + (-5 *5 (-625 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *7))) + (-4 *7 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) + (-5 *2 (-2 (|:| -2898 *3) (|:| |coeff| *3))) + (-5 *1 (-570 *7 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *2 (-865)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-705 *3)) (-4 *3 (-318)) (-5 *1 (-716 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-542)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-590)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-879))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-431 *3)) (-4 *3 (-569))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-59 *3)) (-4 *3 (-1239)))) - ((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-59 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-834))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)) (-4 *2 (-374)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-672 *4 *2)) - (-4 *2 (-669 *4))))) + (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3480 *3))) + (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 *4)) - (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) + (-12 (-5 *4 (-1201)) + (-4 *5 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) + (-5 *2 (-599 *3)) (-5 *1 (-570 *5 *3)) + (-4 *3 (-13 (-27) (-1227) (-443 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *2 (-865)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-705 *3)) (-4 *3 (-318)) (-5 *1 (-716 *3))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-878)) (-5 *2 (-707 (-130))) (-5 *3 (-130))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-1198)) (-5 *1 (-548)))) + (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-1201)) (-5 *1 (-549)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1198)) (-5 *1 (-717 *3)) (-4 *3 (-626 (-548))))) + (-12 (-5 *2 (-1201)) (-5 *1 (-720 *3)) (-4 *3 (-627 (-549))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1198)) (-5 *1 (-717 *3)) (-4 *3 (-626 (-548))))) + (-12 (-5 *2 (-1201)) (-5 *1 (-720 *3)) (-4 *3 (-627 (-549))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1198)) (-5 *1 (-717 *3)) (-4 *3 (-626 (-548))))) + (-12 (-5 *2 (-1201)) (-5 *1 (-720 *3)) (-4 *3 (-627 (-549))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-657 (-1198))) (-5 *2 (-1198)) (-5 *1 (-717 *3)) - (-4 *3 (-626 (-548)))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-537))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1083 (-1046 *4) (-1194 (-1046 *4)))) (-5 *3 (-877)) - (-5 *1 (-1046 *4)) (-4 *4 (-13 (-861) (-374) (-1044)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-702 *5))) (-5 *4 (-1289 *5)) (-4 *5 (-317)) - (-4 *5 (-1071)) (-5 *2 (-702 *5)) (-5 *1 (-1051 *5))))) + (-12 (-5 *4 (-660 (-1201))) (-5 *2 (-1201)) (-5 *1 (-720 *3)) + (-4 *3 (-627 (-549)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-431 *4)) (-4 *4 (-569))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-787)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) + (-4 *4 (-1074))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3480 *3))) + (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1201)) + (-4 *4 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-854)) (-5 *4 (-1085)) (-5 *2 (-1057)) (-5 *1 (-853)))) - ((*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1057)) (-5 *1 (-853)))) + (-12 (-5 *3 (-857)) (-5 *4 (-1088)) (-5 *2 (-1060)) (-5 *1 (-856)))) + ((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1060)) (-5 *1 (-856)))) ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-657 (-390))) (-5 *5 (-657 (-856 (-390)))) - (-5 *6 (-657 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1057)) - (-5 *1 (-853)))) + (-12 (-5 *4 (-660 (-391))) (-5 *5 (-660 (-859 (-391)))) + (-5 *6 (-660 (-327 (-391)))) (-5 *3 (-327 (-391))) (-5 *2 (-1060)) + (-5 *1 (-856)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-390))) - (-5 *5 (-657 (-856 (-390)))) (-5 *2 (-1057)) (-5 *1 (-853)))) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-391))) + (-5 *5 (-660 (-859 (-391)))) (-5 *2 (-1060)) (-5 *1 (-856)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-657 (-390))) (-5 *2 (-1057)) - (-5 *1 (-853)))) + (-12 (-5 *3 (-327 (-391))) (-5 *4 (-660 (-391))) (-5 *2 (-1060)) + (-5 *1 (-856)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-326 (-390)))) (-5 *4 (-657 (-390))) - (-5 *2 (-1057)) (-5 *1 (-853))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-5 *2 (-576)) (-5 *1 (-1221 *4)) - (-4 *4 (-1071))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-576)) (-5 *1 (-246)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-576)) (-5 *1 (-246))))) -(((*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) - ((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-657 (-1198))) (-5 *2 (-657 (-1068 *5 *6))) - (-5 *1 (-640 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) - (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4))))) - ((*1 *1 *1) (-5 *1 (-390))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) - (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) - (-5 *1 (-789 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) + (-12 (-5 *3 (-660 (-327 (-391)))) (-5 *4 (-660 (-391))) + (-5 *2 (-1060)) (-5 *1 (-856))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) + (-5 *2 (-2 (|:| -1777 *1) (|:| |gap| (-787)) (|:| -2457 *1))) + (-4 *1 (-1090 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *2 (-2 (|:| -1777 *1) (|:| |gap| (-787)) (|:| -2457 *1))) + (-4 *1 (-1090 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-705 *3)) (-4 *3 (-318)) (-5 *1 (-716 *3))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-878)) (-5 *2 (-707 (-562))) (-5 *3 (-562))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1242)) (-5 *2 (-660 *1)) (-4 *1 (-1035 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-660 (-1189 *3 *4))) (-5 *1 (-1189 *3 *4)) + (-14 *3 (-944)) (-4 *4 (-1074))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3480 *3))) + (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-660 *3)) + (-4 *3 (-13 (-27) (-1227) (-443 *6))) + (-4 *6 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-570 *6 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-657 (-972 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) - (-14 *4 (-657 (-1198))))) - ((*1 *2 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) - (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-462 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-657 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) - (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-5 *1 (-462 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-657 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) - (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-5 *1 (-462 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-657 (-793 *3 (-879 *4)))) (-4 *3 (-464)) - (-14 *4 (-657 (-1198))) (-5 *1 (-640 *3 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-862)) - (-4 *5 (-806)) (-5 *1 (-1009 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4))))) -(((*1 *1 *2) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *2) - (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) - (-4 *4 (-1122))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1161)))) -(((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174))))) -(((*1 *1 *1) (-5 *1 (-1085)))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1224))) - (-5 *1 (-595 *4 *2)) - (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-419 (-972 *4)))) - (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-326 *4)) - (-5 *1 (-601 *4))))) -(((*1 *2 *3) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) +(((*1 *2 *1 *1) (-12 - (-5 *3 - (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) - (-5 *2 (-657 (-419 (-576)))) (-5 *1 (-1042 *4)) - (-4 *4 (-1265 (-576)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-322)) (-5 *1 (-306)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-322)) (-5 *1 (-306)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-322)) (-5 *1 (-306)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-657 (-1180))) (-5 *3 (-1180)) (-5 *2 (-322)) - (-5 *1 (-306))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-986 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1239)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-52)) (-5 *1 (-842))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1289 (-657 *3))) (-4 *4 (-317)) - (-5 *2 (-657 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1265 *4))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-112)) - (-5 *2 (-1057)) (-5 *1 (-766))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-784)) (-4 *6 (-1122)) (-4 *7 (-918 *6)) - (-5 *2 (-702 *7)) (-5 *1 (-705 *6 *7 *3 *4)) (-4 *3 (-384 *7)) - (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4466))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1173))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-784)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-806)) - (-4 *9 (-862)) (-4 *3 (-1087 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-657 *4)) - (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) - (-5 *1 (-1091 *7 *8 *9 *3 *4)) (-4 *4 (-1093 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-784)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) - (-4 *3 (-1087 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-657 *4)) - (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) - (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-657 *4)) - (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) - (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-784)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-806)) - (-4 *9 (-862)) (-4 *3 (-1087 *7 *8 *9)) + (-2 (|:| -1777 *3) (|:| |gap| (-787)) (|:| -3637 (-798 *3)) + (|:| -2457 (-798 *3)))) + (-5 *1 (-798 *3)) (-4 *3 (-1074)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-5 *2 - (-2 (|:| |done| (-657 *4)) - (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) - (-5 *1 (-1167 *7 *8 *9 *3 *4)) (-4 *4 (-1131 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-784)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) - (-4 *3 (-1087 *6 *7 *8)) + (-2 (|:| -1777 *1) (|:| |gap| (-787)) (|:| -3637 *1) + (|:| -2457 *1))) + (-4 *1 (-1090 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 - (-2 (|:| |done| (-657 *4)) - (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) - (-5 *1 (-1167 *6 *7 *8 *3 *4)) (-4 *4 (-1131 *6 *7 *8 *3)))) + (-2 (|:| -1777 *1) (|:| |gap| (-787)) (|:| -3637 *1) + (|:| -2457 *1))) + (-4 *1 (-1090 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-715)))) + ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-715))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-878)) (-5 *2 (-707 (-1250))) (-5 *3 (-1250))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-431 *2)) (-4 *2 (-569))))) +(((*1 *2 *1) + (-12 (-5 *2 (-787)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) + (-4 *4 (-1074))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1201)) + (-4 *5 (-13 (-465) (-148) (-1063 (-577)) (-654 (-577)))) + (-5 *2 (-2 (|:| -2898 *3) (|:| |coeff| *3))) (-5 *1 (-570 *5 *3)) + (-4 *3 (-13 (-27) (-1227) (-443 *5)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-323)) (-5 *1 (-307)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-323)) (-5 *1 (-307)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-323)) (-5 *1 (-307)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) + (-12 (-5 *4 (-660 (-1183))) (-5 *3 (-1183)) (-5 *2 (-323)) + (-5 *1 (-307))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) +(((*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-548 *2)) (-4 *2 (-1242)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-549))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-798 *2)) (-4 *2 (-1074)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-715)))) + ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-715))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-878)) (-5 *3 (-129)) (-5 *2 (-787))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-577)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-431 *2)) (-4 *2 (-569))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) (-5 *2 - (-2 (|:| |done| (-657 *4)) - (|:| |todo| (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))))) - (-5 *1 (-1167 *5 *6 *7 *3 *4)) (-4 *4 (-1131 *5 *6 *7 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1240 *2)) - (-4 *2 (-1122)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 *2)) (-4 *2 (-1122)) (-4 *2 (-862)) - (-5 *1 (-1240 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1265 *5)) - (-4 *7 (-1265 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) - (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-112)) - (-5 *1 (-931 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) - (-4 *4 (-1265 (-419 (-576)))) (-4 *5 (-1265 (-419 *4))) - (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-932 *4 *5 *6))))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -3294 *1) (|:| -4457 *1) (|:| |associate| *1))) + (-4 *1 (-569))))) (((*1 *2 *2) - (-12 (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) - (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4)))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-972 *6)) (-5 *4 (-1198)) - (-5 *5 (-856 *7)) - (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-4 *7 (-13 (-1224) (-29 *6))) (-5 *1 (-226 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1194 *6)) (-5 *4 (-856 *6)) - (-4 *6 (-13 (-1224) (-29 *5))) - (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-226 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-1 (-112) *8))) (-4 *8 (-1087 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) - (-5 *2 (-2 (|:| |goodPols| (-657 *8)) (|:| |badPols| (-657 *8)))) - (-5 *1 (-999 *5 *6 *7 *8)) (-5 *4 (-657 *8))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-702 (-1194 *8))) (-4 *5 (-1071)) (-4 *8 (-1071)) - (-4 *6 (-1265 *5)) (-5 *2 (-702 *6)) (-5 *1 (-513 *5 *6 *7 *8)) - (-4 *7 (-1265 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-657 (-880)))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 (-1162 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1122) (-34))) (-4 *5 (-13 (-1122) (-34))) - (-5 *1 (-1163 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-657 (-1162 *3 *4))) (-4 *3 (-13 (-1122) (-34))) - (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1163 *3 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-701 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-798 *3)) (|:| |polden| *3) (|:| -3101 (-787)))) + (-5 *1 (-798 *3)) (-4 *3 (-1074)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3101 (-787)))) + (-4 *1 (-1090 *3 *4 *5))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-228) (-228) (-228))) + (-5 *4 (-1 (-228) (-228) (-228) (-228))) + (-5 *2 (-1 (-966 (-228)) (-228) (-228))) (-5 *1 (-713))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-38 (-420 (-577)))) + (-4 *2 (-174))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-391))) (-5 *1 (-271)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-379 *2)) (-4 *2 (-569)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-660 (-883)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-787)) (-4 *5 (-569)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-994 *5 *3)) (-4 *3 (-1268 *5))))) +(((*1 *1 *1) (-4 *1 (-569)))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *2 (-569))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) + (-5 *5 (-1119 (-228))) (-5 *6 (-660 (-271))) (-5 *2 (-1158 (-228))) + (-5 *1 (-713))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174))))) +(((*1 *1 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1242)) (-4 *2 (-865)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1242)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-865)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1074)))) + ((*1 *1 *2) + (-12 (-5 *2 (-660 *1)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) + ((*1 *1 *2) + (-12 (-5 *2 (-660 (-1189 *3 *4))) (-5 *1 (-1189 *3 *4)) + (-14 *3 (-944)) (-4 *4 (-1074)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1071)) (-5 *1 (-727 *2 *3)) - (-4 *3 (-661 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1071)) (-5 *1 (-727 *2 *3)) - (-4 *3 (-661 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-174)) (-4 *2 (-1071)))) - ((*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-174)) (-4 *2 (-1071))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -4236 *6) (|:| |sol?| (-112))) (-576) - *6)) - (-4 *6 (-374)) (-4 *7 (-1265 *6)) - (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-875)) (-5 *2 (-704 (-130))) (-5 *3 (-130))))) -(((*1 *2 *3) - (-12 (-5 *3 (-666 (-419 *2))) (-4 *2 (-1265 *4)) (-5 *1 (-823 *4 *2)) - (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-667 *2 (-419 *2))) (-4 *2 (-1265 *4)) - (-5 *1 (-823 *4 *2)) - (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576)))))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) - ((*1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-941)) (-5 *4 (-390)) (-5 *2 (-1294)) (-5 *1 (-1290))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1280 *4)) - (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1179 *4) (-1179 *4))) - (-5 *1 (-1282 *4 *5))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-657 *2)) (-4 *2 (-1122)) (-4 *2 (-1239))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *1 (-999 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1280 *4)) (-5 *1 (-1282 *4 *2)) - (-4 *4 (-38 (-419 (-576))))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-716 *3)) - (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1198)) (-5 *2 (-1 (-227) (-227) (-227))) - (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))) + (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-787)) (-4 *5 (-569)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-994 *5 *3)) (-4 *3 (-1268 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-569)) (-5 *2 (-112))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-419 *5)) (-4 *4 (-1243)) (-4 *5 (-1265 *4)) - (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1265 *3)))) + (-12 (-5 *3 (-420 *5)) (-4 *4 (-1246)) (-4 *5 (-1268 *4)) + (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1268 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1200 (-419 (-576)))) (-5 *2 (-419 (-576))) + (-12 (-5 *3 (-1203 (-420 (-577)))) (-5 *2 (-420 (-577))) (-5 *1 (-192)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-702 (-326 (-227)))) (-5 *3 (-657 (-1198))) - (-5 *4 (-1289 (-326 (-227)))) (-5 *1 (-207)))) + (-12 (-5 *2 (-705 (-327 (-228)))) (-5 *3 (-660 (-1201))) + (-5 *4 (-1292 (-327 (-228)))) (-5 *1 (-207)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-657 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1122)) - (-4 *3 (-1239)) (-5 *1 (-304 *3)))) + (-12 (-5 *2 (-660 (-305 *3))) (-4 *3 (-320 *3)) (-4 *3 (-1125)) + (-4 *3 (-1242)) (-5 *1 (-305 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-319 *2)) (-4 *2 (-1122)) (-4 *2 (-1239)) - (-5 *1 (-304 *2)))) + (-12 (-4 *2 (-320 *2)) (-4 *2 (-1125)) (-4 *2 (-1242)) + (-5 *1 (-305 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-313)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-657 *1))) (-4 *1 (-312)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-660 *1))) (-4 *1 (-313)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 (-115))) (-5 *3 (-657 (-1 *1 (-657 *1)))) - (-4 *1 (-312)))) + (-12 (-5 *2 (-660 (-115))) (-5 *3 (-660 (-1 *1 (-660 *1)))) + (-4 *1 (-313)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 (-115))) (-5 *3 (-657 (-1 *1 *1))) (-4 *1 (-312)))) + (-12 (-5 *2 (-660 (-115))) (-5 *3 (-660 (-1 *1 *1))) (-4 *1 (-313)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) + (-12 (-5 *2 (-1201)) (-5 *3 (-1 *1 *1)) (-4 *1 (-313)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1 *1 (-657 *1))) (-4 *1 (-312)))) + (-12 (-5 *2 (-1201)) (-5 *3 (-1 *1 (-660 *1))) (-4 *1 (-313)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-657 (-1 *1 (-657 *1)))) - (-4 *1 (-312)))) + (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-660 (-1 *1 (-660 *1)))) + (-4 *1 (-313)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-657 (-1 *1 *1))) (-4 *1 (-312)))) + (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-660 (-1 *1 *1))) (-4 *1 (-313)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-657 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-660 (-305 *3))) (-4 *1 (-320 *3)) (-4 *3 (-1125)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-305 *3)) (-4 *1 (-320 *3)) (-4 *3 (-1125)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1200 (-419 (-576)))) - (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576)))))) + (-12 (-5 *3 (-1 *2 (-577))) (-5 *4 (-1203 (-420 (-577)))) + (-5 *1 (-321 *2)) (-4 *2 (-38 (-420 (-577)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 *1)) (-4 *1 (-385 *4 *5)) - (-4 *4 (-862)) (-4 *5 (-174)))) + (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 *1)) (-4 *1 (-386 *4 *5)) + (-4 *4 (-865)) (-4 *5 (-174)))) ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) + (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-865)) (-4 *3 (-174)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1198)) (-5 *3 (-784)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-442 *5)) (-4 *5 (-1122)) (-4 *5 (-1071)))) + (-12 (-5 *2 (-1201)) (-5 *3 (-787)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-443 *5)) (-4 *5 (-1125)) (-4 *5 (-1074)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1198)) (-5 *3 (-784)) (-5 *4 (-1 *1 (-657 *1))) - (-4 *1 (-442 *5)) (-4 *5 (-1122)) (-4 *5 (-1071)))) + (-12 (-5 *2 (-1201)) (-5 *3 (-787)) (-5 *4 (-1 *1 (-660 *1))) + (-4 *1 (-443 *5)) (-4 *5 (-1125)) (-4 *5 (-1074)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-657 (-784))) - (-5 *4 (-657 (-1 *1 (-657 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1122)) - (-4 *5 (-1071)))) + (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-660 (-787))) + (-5 *4 (-660 (-1 *1 (-660 *1)))) (-4 *1 (-443 *5)) (-4 *5 (-1125)) + (-4 *5 (-1074)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-657 (-784))) - (-5 *4 (-657 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1122)) - (-4 *5 (-1071)))) + (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-660 (-787))) + (-5 *4 (-660 (-1 *1 *1))) (-4 *1 (-443 *5)) (-4 *5 (-1125)) + (-4 *5 (-1074)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-657 (-115))) (-5 *3 (-657 *1)) (-5 *4 (-1198)) - (-4 *1 (-442 *5)) (-4 *5 (-1122)) (-4 *5 (-626 (-548))))) + (-12 (-5 *2 (-660 (-115))) (-5 *3 (-660 *1)) (-5 *4 (-1201)) + (-4 *1 (-443 *5)) (-4 *5 (-1125)) (-4 *5 (-627 (-549))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1198)) (-4 *1 (-442 *4)) (-4 *4 (-1122)) - (-4 *4 (-626 (-548))))) + (-12 (-5 *2 (-115)) (-5 *3 (-1201)) (-4 *1 (-443 *4)) (-4 *4 (-1125)) + (-4 *4 (-627 (-549))))) ((*1 *1 *1) - (-12 (-4 *1 (-442 *2)) (-4 *2 (-1122)) (-4 *2 (-626 (-548))))) + (-12 (-4 *1 (-443 *2)) (-4 *2 (-1125)) (-4 *2 (-627 (-549))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-657 (-1198))) (-4 *1 (-442 *3)) (-4 *3 (-1122)) - (-4 *3 (-626 (-548))))) + (-12 (-5 *2 (-660 (-1201))) (-4 *1 (-443 *3)) (-4 *3 (-1125)) + (-4 *3 (-627 (-549))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1198)) (-4 *1 (-442 *3)) (-4 *3 (-1122)) - (-4 *3 (-626 (-548))))) + (-12 (-5 *2 (-1201)) (-4 *1 (-443 *3)) (-4 *3 (-1125)) + (-4 *3 (-627 (-549))))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1239)))) + (-12 (-4 *1 (-527 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1242)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 *5)) (-4 *1 (-526 *4 *5)) - (-4 *4 (-1122)) (-4 *5 (-1239)))) + (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 *5)) (-4 *1 (-527 *4 *5)) + (-4 *4 (-1125)) (-4 *5 (-1242)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-846 *3)) (-4 *3 (-374)) (-5 *1 (-731 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) + (-12 (-5 *2 (-849 *3)) (-4 *3 (-375)) (-5 *1 (-734 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-419 (-972 *4))) (-5 *3 (-1198)) (-4 *4 (-568)) - (-5 *1 (-1065 *4)))) + (-12 (-5 *2 (-420 (-975 *4))) (-5 *3 (-1201)) (-4 *4 (-569)) + (-5 *1 (-1068 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-657 (-1198))) (-5 *4 (-657 (-419 (-972 *5)))) - (-5 *2 (-419 (-972 *5))) (-4 *5 (-568)) (-5 *1 (-1065 *5)))) + (-12 (-5 *3 (-660 (-1201))) (-5 *4 (-660 (-420 (-975 *5)))) + (-5 *2 (-420 (-975 *5))) (-4 *5 (-569)) (-5 *1 (-1068 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-304 (-419 (-972 *4)))) (-5 *2 (-419 (-972 *4))) - (-4 *4 (-568)) (-5 *1 (-1065 *4)))) + (-12 (-5 *3 (-305 (-420 (-975 *4)))) (-5 *2 (-420 (-975 *4))) + (-4 *4 (-569)) (-5 *1 (-1068 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-657 (-304 (-419 (-972 *4))))) (-5 *2 (-419 (-972 *4))) - (-4 *4 (-568)) (-5 *1 (-1065 *4)))) + (-12 (-5 *3 (-660 (-305 (-420 (-975 *4))))) (-5 *2 (-420 (-975 *4))) + (-4 *4 (-569)) (-5 *1 (-1068 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1179 *3))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) - (-4 *4 (-1122))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1057)) (-5 *1 (-766))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *4)) (-4 *4 (-353 *5 *6 *7)) - (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) - (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1985 (-657 *4)))) - (-5 *1 (-819 *5 *6 *7 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1048 (-856 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1071))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-464)) (-4 *3 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-969 *4 *3 *5))))) + (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1182 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) -(((*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1180)) (-5 *1 (-799))))) -(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-772))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1229 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1201))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-529))))) -(((*1 *2 *1) - (-12 (-5 *2 (-784)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) - (-4 *4 (-1071))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-419 (-576))) - (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4)))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-1289 - (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2047 (-576)) - (|:| -3146 (-576)) (|:| |spline| (-576)) (|:| -2383 (-576)) - (|:| |axesColor| (-889)) (|:| -2405 (-576)) - (|:| |unitsColor| (-889)) (|:| |showing| (-576))))) - (-5 *1 (-1290))))) -(((*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1239))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) -(((*1 *2 *3) - (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-246)) (-5 *3 (-1180)))) - ((*1 *2 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-246)))) - ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-624 *5))) (-4 *4 (-1122)) (-5 *2 (-624 *5)) - (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1239)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-1239)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-963 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-657 (-963 *3))) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-158)) (-5 *2 (-1297)) (-5 *1 (-1294))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *2 (-569))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-228) (-228) (-228))) + (-5 *4 (-3 (-1 (-228) (-228) (-228) (-228)) "undefined")) + (-5 *5 (-1119 (-228))) (-5 *6 (-660 (-271))) (-5 *2 (-1158 (-228))) + (-5 *1 (-713))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-787)) (-5 *1 (-874 *2)) (-4 *2 (-174))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-944)) (|has| *1 (-6 -4461)) (-4 *1 (-417)))) + ((*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-944))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-966 *5)) (-4 *5 (-1074)) (-5 *2 (-787)) + (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-660 (-787))) (-5 *3 (-787)) (-5 *1 (-1189 *4 *5)) + (-14 *4 (-944)) (-4 *5 (-1074)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-660 (-787))) (-5 *3 (-966 *5)) (-4 *5 (-1074)) + (-5 *1 (-1189 *4 *5)) (-14 *4 (-944))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-787)) (-4 *4 (-569)) (-5 *1 (-994 *4 *2)) + (-4 *2 (-1268 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-569)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-966 (-228)))) (-5 *1 (-1293))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *2 (-569)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-657 (-657 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *2 (-569))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-228) (-228) (-228))) + (-5 *4 (-3 (-1 (-228) (-228) (-228) (-228)) "undefined")) + (-5 *5 (-1119 (-228))) (-5 *6 (-660 (-271))) (-5 *2 (-1158 (-228))) + (-5 *1 (-713)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-228))) + (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-713)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1158 (-228))) (-5 *3 (-1 (-966 (-228)) (-228) (-228))) + (-5 *4 (-1119 (-228))) (-5 *5 (-660 (-271))) (-5 *1 (-713))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-375)) (-4 *3 (-1074)) + (-5 *2 (-2 (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-870 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-375)) (-4 *5 (-1074)) + (-5 *2 (-2 (|:| -3637 *3) (|:| -2457 *3))) (-5 *1 (-871 *5 *3)) + (-4 *3 (-870 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-577)) (|has| *1 (-6 -4461)) (-4 *1 (-417)) + (-5 *2 (-944))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-966 *4)) (-4 *4 (-1074)) (-5 *1 (-1189 *3 *4)) + (-14 *3 (-944))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-787)) (-4 *5 (-569)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-994 *5 *3)) (-4 *3 (-1268 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-420 (-577))) (-4 *1 (-567 *3)) + (-4 *3 (-13 (-417) (-1227))))) + ((*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-247)) (-5 *3 (-1183)))) + ((*1 *2 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-247)))) + ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *1) (-5 *1 (-1293)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *2 (-569)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-657 (-963 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *2 (-569))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-787)) (-4 *4 (-361)) (-5 *1 (-219 *4 *2)) + (-4 *2 (-1268 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-577)) (-5 *1 (-712 *2)) (-4 *2 (-1268 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-375)) (-5 *2 (-2 (|:| -3637 *3) (|:| -2457 *3))) + (-5 *1 (-782 *3 *4)) (-4 *3 (-724 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-375)) (-4 *3 (-1074)) + (-5 *2 (-2 (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-870 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-375)) (-4 *5 (-1074)) + (-5 *2 (-2 (|:| -3637 *3) (|:| -2457 *3))) (-5 *1 (-871 *5 *3)) + (-4 *3 (-870 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-1289 (-702 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1289 (-702 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1289 (-702 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-1198))) (-4 *5 (-374)) - (-5 *2 (-1289 (-702 (-419 (-972 *5))))) (-5 *1 (-1108 *5)) - (-5 *4 (-702 (-419 (-972 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-1198))) (-4 *5 (-374)) - (-5 *2 (-1289 (-702 (-972 *5)))) (-5 *1 (-1108 *5)) - (-5 *4 (-702 (-972 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-702 *4))) (-4 *4 (-374)) - (-5 *2 (-1289 (-702 *4))) (-5 *1 (-1108 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *2 (-568))))) -(((*1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *1 *2) (-12 (-5 *1 (-1225 *2)) (-4 *2 (-1122)))) + (-12 (-5 *3 (-577)) (|has| *1 (-6 -4461)) (-4 *1 (-417)) + (-5 *2 (-944))))) +(((*1 *1 *2) (-12 (-5 *1 (-1228 *2)) (-4 *2 (-1125)))) ((*1 *1 *2) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-1225 *3)))) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-1228 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-657 (-1225 *2))) (-5 *1 (-1225 *2)) (-4 *2 (-1122))))) + (-12 (-5 *3 (-660 (-1228 *2))) (-5 *1 (-1228 *2)) (-4 *2 (-1125))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1122)) - (-4 *4 (-1122)))) + (-12 (-5 *3 (-1183)) (-4 *1 (-376 *2 *4)) (-4 *2 (-1125)) + (-4 *4 (-1125)))) ((*1 *1 *2) - (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) + (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-888 *2 *3)) (-4 *2 (-1239)) (-4 *3 (-1239))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-657 *1)) (-4 *1 (-1087 *4 *5 *6)) (-4 *4 (-1071)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1232 *5 *6 *7 *3)) - (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-112))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-657 (-1194 *7))) (-5 *3 (-1194 *7)) - (-4 *7 (-969 *5 *6 *4)) (-4 *5 (-929)) (-4 *6 (-806)) - (-4 *4 (-862)) (-5 *1 (-926 *5 *6 *4 *7))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *2 (-862)) (-4 *3 (-174)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-5 *1 (-991 *2 *3)) (-4 *3 (-1265 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *2 (-568)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-174))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1282 *3 *2)) - (-4 *2 (-1280 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-905 *5 *3)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) - (-4 *3 (-167 *6)) (-4 (-972 *6) (-902 *5)) - (-4 *6 (-13 (-902 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-905 *4 *1)) (-5 *3 (-908 *4)) (-4 *1 (-902 *4)) - (-4 *4 (-1122)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-905 *5 *6)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) - (-4 *6 (-13 (-1122) (-1060 *3))) (-4 *3 (-902 *5)) - (-5 *1 (-951 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-905 *5 *3)) (-4 *5 (-1122)) - (-4 *3 (-13 (-442 *6) (-626 *4) (-902 *5) (-1060 (-624 $)))) - (-5 *4 (-908 *5)) (-4 *6 (-13 (-568) (-902 *5))) - (-5 *1 (-952 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-905 (-576) *3)) (-5 *4 (-908 (-576))) (-4 *3 (-557)) - (-5 *1 (-953 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-905 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1122)) - (-4 *6 (-13 (-1122) (-1060 (-624 $)) (-626 *4) (-902 *5))) - (-5 *4 (-908 *5)) (-5 *1 (-954 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-901 *5 *6 *3)) (-5 *4 (-908 *5)) (-4 *5 (-1122)) - (-4 *6 (-902 *5)) (-4 *3 (-679 *6)) (-5 *1 (-955 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-905 *6 *3) *8 (-908 *6) (-905 *6 *3))) - (-4 *8 (-862)) (-5 *2 (-905 *6 *3)) (-5 *4 (-908 *6)) - (-4 *6 (-1122)) (-4 *3 (-13 (-969 *9 *7 *8) (-626 *4))) - (-4 *7 (-806)) (-4 *9 (-13 (-1071) (-902 *6))) - (-5 *1 (-956 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-905 *5 *3)) (-4 *5 (-1122)) - (-4 *3 (-13 (-969 *8 *6 *7) (-626 *4))) (-5 *4 (-908 *5)) - (-4 *7 (-902 *5)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *8 (-13 (-1071) (-902 *5))) (-5 *1 (-956 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-905 *5 *3)) (-4 *5 (-1122)) (-4 *3 (-1014 *6)) - (-4 *6 (-13 (-568) (-902 *5) (-626 *4))) (-5 *4 (-908 *5)) - (-5 *1 (-959 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-905 *5 (-1198))) (-5 *3 (-1198)) (-5 *4 (-908 *5)) - (-4 *5 (-1122)) (-5 *1 (-960 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-657 (-908 *7))) (-5 *5 (-1 *9 (-657 *9))) - (-5 *6 (-1 (-905 *7 *9) *9 (-908 *7) (-905 *7 *9))) (-4 *7 (-1122)) - (-4 *9 (-13 (-1071) (-626 (-908 *7)) (-1060 *8))) - (-5 *2 (-905 *7 *9)) (-5 *3 (-657 *9)) (-4 *8 (-1071)) - (-5 *1 (-961 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) + (-12 (-5 *1 (-891 *2 *3)) (-4 *2 (-1242)) (-4 *3 (-1242))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-966 *5)) (-5 *3 (-787)) (-4 *5 (-1074)) + (-5 *1 (-1189 *4 *5)) (-14 *4 (-944))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-787)) (-4 *5 (-569)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-994 *5 *3)) (-4 *3 (-1268 *5))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227)))))) (((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-481)) (-5 *3 (-660 (-271))) (-5 *1 (-1293)))) + ((*1 *1 *1) (-5 *1 (-1293)))) +(((*1 *2 *1 *1) (-12 (-5 *2 - (-516 (-419 (-576)) (-245 *4 (-784)) (-879 *3) - (-253 *3 (-419 (-576))))) - (-14 *3 (-657 (-1198))) (-14 *4 (-784)) (-5 *1 (-517 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-657 *3)) (-4 *3 (-969 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-806)) (-4 *7 (-862)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-461 *5 *6 *7 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1071)) - (-5 *1 (-1182 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) + (-2 (|:| -3480 (-798 *3)) (|:| |coef1| (-798 *3)) + (|:| |coef2| (-798 *3)))) + (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *2 (-2 (|:| -3480 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1090 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-1071)) - (-5 *2 (-253 *4 *5)) (-5 *1 (-964 *4 *5))))) + (-12 (-5 *3 (-660 (-2 (|:| |deg| (-787)) (|:| -3425 *5)))) + (-4 *5 (-1268 *4)) (-4 *4 (-361)) (-5 *2 (-660 *5)) + (-5 *1 (-219 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-2 (|:| -1902 *5) (|:| -2887 (-577))))) + (-5 *4 (-577)) (-4 *5 (-1268 *4)) (-5 *2 (-660 *5)) + (-5 *1 (-712 *5))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-569)) (-4 *3 (-1074)) + (-5 *2 (-2 (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-870 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1074)) + (-5 *2 (-2 (|:| -3637 *3) (|:| -2457 *3))) (-5 *1 (-871 *5 *3)) + (-4 *3 (-870 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-787)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-415)) (-5 *2 (-787))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-787)) (-5 *3 (-966 *5)) (-4 *5 (-1074)) + (-5 *1 (-1189 *4 *5)) (-14 *4 (-944)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-660 (-787))) (-5 *3 (-787)) (-5 *1 (-1189 *4 *5)) + (-14 *4 (-944)) (-4 *5 (-1074)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-660 (-787))) (-5 *3 (-966 *5)) (-4 *5 (-1074)) + (-5 *1 (-1189 *4 *5)) (-14 *4 (-944))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-517 (-420 (-577)) (-246 *4 (-787)) (-882 *3) + (-254 *3 (-420 (-577))))) + (-14 *3 (-660 (-1201))) (-14 *4 (-787)) (-5 *1 (-518 *3 *4))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-787)) (-4 *4 (-569)) (-5 *1 (-994 *4 *2)) + (-4 *2 (-1268 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-417) (-1227)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-944)) (-5 *4 (-228)) (-5 *5 (-577)) (-5 *6 (-892)) + (-5 *2 (-1297)) (-5 *1 (-1293))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3480 (-798 *3)) (|:| |coef1| (-798 *3)))) + (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *2 (-2 (|:| -3480 *1) (|:| |coef1| *1))) + (-4 *1 (-1090 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1194 *2)) (-4 *2 (-969 (-419 (-972 *6)) *5 *4)) - (-5 *1 (-745 *5 *4 *6 *2)) (-4 *5 (-806)) - (-4 *4 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $))))) - (-4 *6 (-568))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-963 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-657 (-963 *3))) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-657 (-657 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-657 (-963 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *1 (-899)) - (-5 *3 (-657 (-576)))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1180)) - (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-798 *3)) (-4 *3 (-626 *2)))) + (-12 (-5 *4 (-577)) (-5 *2 (-660 (-2 (|:| -1902 *3) (|:| -2887 *4)))) + (-5 *1 (-712 *3)) (-4 *3 (-1268 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-569)) (-4 *3 (-1074)) + (-5 *2 (-2 (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-870 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1074)) + (-5 *2 (-2 (|:| -3637 *3) (|:| -2457 *3))) (-5 *1 (-871 *5 *3)) + (-4 *3 (-870 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-415)) (-5 *2 (-787)))) + ((*1 *1 *1) (-4 *1 (-415)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-660 (-787))) (-5 *3 (-112)) (-5 *1 (-1189 *4 *5)) + (-14 *4 (-944)) (-4 *5 (-1074))))) +(((*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-801 *3)) (-4 *3 (-627 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-941)) (-5 *2 (-390)) (-5 *1 (-798 *3)) - (-4 *3 (-626 *2)))) + (-12 (-5 *4 (-944)) (-5 *2 (-391)) (-5 *1 (-801 *3)) + (-4 *3 (-627 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-972 *4)) (-4 *4 (-1071)) (-4 *4 (-626 *2)) - (-5 *2 (-390)) (-5 *1 (-798 *4)))) + (-12 (-5 *3 (-975 *4)) (-4 *4 (-1074)) (-4 *4 (-627 *2)) + (-5 *2 (-391)) (-5 *1 (-801 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-972 *5)) (-5 *4 (-941)) (-4 *5 (-1071)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) + (-12 (-5 *3 (-975 *5)) (-5 *4 (-944)) (-4 *5 (-1074)) + (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) - (-5 *2 (-390)) (-5 *1 (-798 *4)))) + (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) (-4 *4 (-627 *2)) + (-5 *2 (-391)) (-5 *1 (-801 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-941)) (-4 *5 (-568)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) + (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-944)) (-4 *5 (-569)) + (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) - (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *4)))) + (-12 (-5 *3 (-327 *4)) (-4 *4 (-569)) (-4 *4 (-865)) + (-4 *4 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-941)) (-4 *5 (-568)) (-4 *5 (-862)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5))))) + (-12 (-5 *3 (-327 *5)) (-5 *4 (-944)) (-4 *5 (-569)) (-4 *5 (-865)) + (-4 *5 (-627 *2)) (-5 *2 (-391)) (-5 *1 (-801 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1816 *4))) + (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-417) (-1227))) (-5 *2 (-112))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) (((*1 *2 *1) - (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-340))))) -(((*1 *1) (-5 *1 (-836)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-419 (-972 *5)))) (-5 *4 (-657 (-1198))) - (-4 *5 (-568)) (-5 *2 (-657 (-657 (-972 *5)))) (-5 *1 (-1207 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) - (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-784)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1071)) (-4 *3 (-862)) - (-4 *5 (-275 *3)) (-4 *6 (-806)) (-5 *2 (-784)))) - ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-784)))) - ((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-941)))) - ((*1 *2 *3) - (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) - (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) - (-5 *2 (-784)) (-5 *1 (-404 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-846 (-941))))) - ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-608 *3)) (-4 *3 (-1071)))) - ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-608 *3)) (-4 *3 (-1071)))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-1265 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-753 *4 *3)) (-4 *4 (-1071)) - (-4 *3 (-862)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-753 *4 *3)) (-4 *4 (-1071)) (-4 *3 (-862)) - (-5 *2 (-784)))) - ((*1 *2 *1) (-12 (-4 *1 (-884 *3)) (-5 *2 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) - (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) - (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1060 (-576)))) - (-5 *2 (-784)) (-5 *1 (-931 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) - (-4 *4 (-1265 (-419 (-576)))) (-4 *5 (-1265 (-419 *4))) - (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-784)) - (-5 *1 (-932 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) - (-4 *7 (-1265 *6)) (-4 *4 (-1265 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) - (-4 *9 (-13 (-379) (-374))) (-5 *2 (-784)) - (-5 *1 (-1040 *6 *7 *4 *8 *9)))) + (-12 + (-5 *2 + (-1292 + (-2 (|:| |scaleX| (-228)) (|:| |scaleY| (-228)) + (|:| |deltaX| (-228)) (|:| |deltaY| (-228)) (|:| -3189 (-577)) + (|:| -3170 (-577)) (|:| |spline| (-577)) (|:| -3416 (-577)) + (|:| |axesColor| (-892)) (|:| -2442 (-577)) + (|:| |unitsColor| (-892)) (|:| |showing| (-577))))) + (-5 *1 (-1293))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3480 (-798 *3)) (|:| |coef2| (-798 *3)))) + (-5 *1 (-798 *3)) (-4 *3 (-569)) (-4 *3 (-1074)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1265 *3)) (-4 *3 (-1071)) (-4 *3 (-568)) - (-5 *2 (-784)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805))))) -(((*1 *2) - (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) - (-5 *2 (-784)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-5 *2 (-784)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-784))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1060 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-442 *3)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1194 *4)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1071)) (-4 *1 (-312)))) - ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1194 *3)))) - ((*1 *2) (-12 (-4 *1 (-737 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1265 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1090 *3 *2)) (-4 *3 (-13 (-861) (-374))) - (-4 *2 (-1265 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *6)) (-5 *4 (-657 (-1198))) (-4 *6 (-374)) - (-5 *2 (-657 (-304 (-972 *6)))) (-5 *1 (-550 *5 *6 *7)) - (-4 *5 (-464)) (-4 *7 (-13 (-374) (-861)))))) -(((*1 *1 *2) (-12 (-5 *2 (-941)) (-4 *1 (-379)))) + (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *2 (-2 (|:| -3480 *1) (|:| |coef2| *1))) + (-4 *1 (-1090 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-577)) (-5 *1 (-712 *2)) (-4 *2 (-1268 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) +(((*1 *1 *2) + (-12 (-5 *2 (-420 *4)) (-4 *4 (-1268 *3)) (-4 *3 (-13 (-375) (-148))) + (-5 *1 (-412 *3 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-944)) (-4 *1 (-380)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1289 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360)))) + (-12 (-5 *3 (-944)) (-5 *2 (-1292 *4)) (-5 *1 (-541 *4)) + (-4 *4 (-361)))) ((*1 *2 *1) - (-12 (-4 *2 (-862)) (-5 *1 (-726 *2 *3 *4)) (-4 *3 (-1122)) + (-12 (-4 *2 (-865)) (-5 *1 (-729 *2 *3 *4)) (-4 *3 (-1125)) (-14 *4 - (-1 (-112) (-2 (|:| -3178 *2) (|:| -1801 *3)) - (-2 (|:| -3178 *2) (|:| -1801 *3))))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -2322 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-657 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1265 *7)) - (-5 *3 (-419 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-586 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-835))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) - (-4 *4 (-174))))) -(((*1 *2 *1) - (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) - (-5 *2 (-1194 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) - (-5 *2 (-1194 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-657 *7) *7 (-1194 *7))) (-5 *5 (-1 (-430 *7) *7)) - (-4 *7 (-1265 *6)) (-4 *6 (-13 (-374) (-148) (-1060 (-419 (-576))))) - (-5 *2 (-657 (-2 (|:| |frac| (-419 *7)) (|:| -3989 *3)))) - (-5 *1 (-822 *6 *7 *3 *8)) (-4 *3 (-669 *7)) - (-4 *8 (-669 (-419 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1265 *5)) - (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) - (-5 *2 - (-657 (-2 (|:| |frac| (-419 *6)) (|:| -3989 (-667 *6 (-419 *6)))))) - (-5 *1 (-825 *5 *6)) (-5 *3 (-667 *6 (-419 *6)))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-832 *3)) (-4 *3 (-862)) (-5 *1 (-685 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1289 (-326 (-227)))) - (-5 *2 - (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) - (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) - (-5 *1 (-315))))) + (-1 (-112) (-2 (|:| -3222 *2) (|:| -3556 *3)) + (-2 (|:| -3222 *2) (|:| -3556 *3))))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-660 (-787))) (-5 *3 (-173)) (-5 *1 (-1189 *4 *5)) + (-14 *4 (-944)) (-4 *5 (-1074))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1816 *4))) + (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-577)) (-5 *2 (-112)) (-5 *1 (-566))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) - (-5 *2 (-657 (-2 (|:| |deg| (-784)) (|:| -2863 *3)))) - (-5 *1 (-218 *4 *3)) (-4 *3 (-1265 *4))))) + (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1292 (-3 (-481) "undefined"))) (-5 *1 (-1293))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-569)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *2 (-660 *1)) (-4 *1 (-1090 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)) (-4 *2 (-1125)))) + ((*1 *1 *1) (-12 (-4 *1 (-711 *2)) (-4 *2 (-1125))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2824 *1) (|:| -4453 *1) (|:| |associate| *1))) - (-4 *1 (-568))))) -(((*1 *1) (-5 *1 (-131)))) + (-12 (-4 *2 (-1268 *3)) (-5 *1 (-412 *3 *2)) + (-4 *3 (-13 (-375) (-148)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-660 (-787))) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) + (-4 *4 (-1074))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1816 *4))) + (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-566))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *1) (-5 *1 (-590)))) -(((*1 *2 *3) - (-12 (-4 *4 (-1071)) - (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-941)) (-4 *5 (-1071)) - (-4 *2 (-13 (-416) (-1060 *5) (-374) (-1224) (-294))) - (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1265 *5))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4466)) (-4 *1 (-240 *3)) - (-4 *3 (-1122)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1239))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-657 *1)) (-4 *1 (-940))))) -(((*1 *2 *3) - (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) - (-5 *1 (-315))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-481)) (-5 *4 (-944)) (-5 *2 (-1297)) (-5 *1 (-1293))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-787)) (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) + (-4 *4 (-809)) (-4 *5 (-865)) (-4 *3 (-569))))) +(((*1 *2 *1) + (-12 (-4 *1 (-711 *3)) (-4 *3 (-1125)) + (-5 *2 (-660 (-2 (|:| -4444 *3) (|:| -1485 (-787)))))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-375) (-148))) + (-5 *2 (-660 (-2 (|:| -3556 (-787)) (|:| -3693 *4) (|:| |num| *4)))) + (-5 *1 (-412 *3 *4)) (-4 *4 (-1268 *3))))) (((*1 *2 *1) (-12 (-5 *2 - (-657 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227))))) - (-5 *1 (-571)))) + (-660 + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228))))) + (-5 *1 (-572)))) ((*1 *2 *1) - (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-5 *2 (-657 *3)))) + (-12 (-4 *1 (-623 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-5 *2 (-660 *3)))) ((*1 *2 *1) (-12 (-5 *2 - (-657 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) - (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227))))) - (-5 *1 (-816))))) -(((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-784)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-784))))) + (-660 + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) + (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228))))) + (-5 *1 (-819))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1071)))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-1265 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) - (-4 *4 (-739)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-112)) (-5 *1 (-834))))) + (-12 (-5 *2 (-966 *4)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) + (-4 *4 (-1074))))) +(((*1 *1) + (-12 (-4 *1 (-417)) (-2749 (|has| *1 (-6 -4461))) + (-2749 (|has| *1 (-6 -4453))))) + ((*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1125)) (-4 *2 (-865)))) + ((*1 *1) (-4 *1 (-860))) ((*1 *1 *1 *1) (-4 *1 (-868))) + ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-865))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-566))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-944)) (-5 *2 (-481)) (-5 *1 (-1293))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-787)) (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) + (-4 *4 (-809)) (-4 *5 (-865)) (-4 *3 (-569))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-787)) (-4 *6 (-1125)) (-4 *7 (-921 *6)) + (-5 *2 (-705 *7)) (-5 *1 (-708 *6 *7 *3 *4)) (-4 *3 (-385 *7)) + (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4470))))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) +(((*1 *2 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-410))))) +(((*1 *2 *1) + (-12 (-5 *2 (-787)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) + (-4 *4 (-1074))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-293 *2)) (-4 *2 (-1242)) (-4 *2 (-865)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-865))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1268 *5)) + (-4 *5 (-13 (-27) (-443 *4))) (-4 *4 (-13 (-569) (-1063 (-577)))) + (-4 *7 (-1268 (-420 *6))) (-5 *1 (-565 *4 *5 *6 *7 *2)) + (-4 *2 (-354 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-5 *2 (-702 (-419 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1239)) (-5 *2 (-784)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-687 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-934 *3)) (-4 *3 (-317))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 *1)) - (-4 *1 (-1093 *4 *5 *6 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-702 *4)) (-4 *4 (-1071)) (-5 *1 (-1164 *3 *4)) - (-14 *3 (-784))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) + (-12 (-4 *2 (-13 (-443 *3) (-1027))) (-5 *1 (-286 *3 *2)) + (-4 *3 (-569))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1229 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5))))) + (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *2 (-569))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1292 (-327 (-228)))) (-5 *4 (-660 (-1201))) + (-5 *2 (-705 (-327 (-228)))) (-5 *1 (-207)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1125)) (-4 *6 (-921 *5)) (-5 *2 (-705 *6)) + (-5 *1 (-708 *5 *6 *3 *4)) (-4 *3 (-385 *6)) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4470))))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-375)) (-4 *3 (-1074)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4101 *1))) + (-4 *1 (-870 *3))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-660 (-660 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-660 (-3 (|:| |array| (-660 *3)) (|:| |scalar| (-1201))))) + (-5 *6 (-660 (-1201))) (-5 *3 (-1201)) (-5 *2 (-1129)) + (-5 *1 (-410)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-660 (-660 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-660 (-3 (|:| |array| (-660 *3)) (|:| |scalar| (-1201))))) + (-5 *6 (-660 (-1201))) (-5 *3 (-1201)) (-5 *2 (-1129)) + (-5 *1 (-410)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-660 (-1201))) (-5 *5 (-1204)) (-5 *3 (-1201)) + (-5 *2 (-1129)) (-5 *1 (-410))))) (((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1173))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1116 (-856 (-390)))) (-5 *2 (-1116 (-856 (-227)))) - (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-1 (-1179 (-972 *4)) (-1179 (-972 *4)))) - (-5 *1 (-1297 *4)) (-4 *4 (-374))))) -(((*1 *2) - (-12 - (-5 *2 - (-1289 (-657 (-2 (|:| -3071 (-930 *3)) (|:| -3178 (-1142)))))) - (-5 *1 (-362 *3 *4)) (-14 *3 (-941)) (-14 *4 (-941)))) - ((*1 *2) - (-12 (-5 *2 (-1289 (-657 (-2 (|:| -3071 *3) (|:| -3178 (-1142)))))) - (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1194 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1289 (-657 (-2 (|:| -3071 *3) (|:| -3178 (-1142)))))) - (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-941))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-419 (-1194 (-326 *3)))) (-4 *3 (-568)) - (-5 *1 (-1152 *3))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -2067 (-657 (-2 (|:| |irr| *10) (|:| -1439 (-576))))))) - (-5 *6 (-657 *3)) (-5 *7 (-657 *8)) (-4 *8 (-862)) (-4 *3 (-317)) - (-4 *10 (-969 *3 *9 *8)) (-4 *9 (-806)) - (-5 *2 - (-2 (|:| |polfac| (-657 *10)) (|:| |correct| *3) - (|:| |corrfact| (-657 (-1194 *3))))) - (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-657 (-1194 *3)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) + (-4 *4 (-1074))))) +(((*1 *1 *1 *1) (-4 *1 (-992)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1268 *6)) + (-4 *6 (-13 (-27) (-443 *5))) (-4 *5 (-13 (-569) (-1063 (-577)))) + (-4 *8 (-1268 (-420 *7))) (-5 *2 (-599 *3)) + (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-354 *6 *7 *8))))) (((*1 *2) - (-12 (-5 *2 (-941)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) - ((*1 *2 *2) - (-12 (-5 *2 (-941)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224)))))) + (-12 (-4 *2 (-13 (-443 *3) (-1027))) (-5 *1 (-286 *3 *2)) + (-4 *3 (-569))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *2 (-465))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-787)) (-4 *6 (-1125)) (-4 *3 (-921 *6)) + (-5 *2 (-705 *3)) (-5 *1 (-708 *6 *3 *7 *4)) (-4 *7 (-385 *3)) + (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4470))))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) - (-5 *1 (-1197))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1289 *5)) (-4 *5 (-805)) (-5 *2 (-112)) - (-5 *1 (-858 *4 *5)) (-14 *4 (-784))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-784)) (-5 *1 (-688 *2)) (-4 *2 (-1122))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) - (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-941)) - (-5 *2 (-1289 (-657 (-2 (|:| -3071 *4) (|:| -3178 (-1142)))))) - (-5 *1 (-357 *4)) (-4 *4 (-360))))) + (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) + (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) + (-5 *1 (-1200))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407))))) +(((*1 *2 *1) + (-12 (-5 *2 (-173)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) + (-4 *4 (-1074))))) +(((*1 *1 *1 *1) (-4 *1 (-992)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1194 *1)) (-5 *4 (-1198)) (-4 *1 (-27)) - (-5 *2 (-657 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1194 *1)) (-4 *1 (-27)) (-5 *2 (-657 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-972 *1)) (-4 *1 (-27)) (-5 *2 (-657 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *2 (-657 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-657 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-657 (-1198))) - (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-1179 (-227))) (-5 *1 (-310))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-657 (-702 *4))) (-5 *2 (-702 *4)) (-4 *4 (-1071)) - (-5 *1 (-1051 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) - (-5 *2 (-1057)) (-5 *1 (-765))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1268 *6)) + (-4 *6 (-13 (-27) (-443 *5))) (-4 *5 (-13 (-569) (-1063 (-577)))) + (-4 *8 (-1268 (-420 *7))) (-5 *2 (-599 *3)) + (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-354 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-285))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *2 (-465))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1125)) (-4 *3 (-921 *5)) (-5 *2 (-705 *3)) + (-5 *1 (-708 *5 *3 *6 *4)) (-4 *6 (-385 *3)) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4470))))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) - (-5 *1 (-1197))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) - (-5 *2 - (-657 - (-2 (|:| |eigval| (-3 (-419 (-972 *4)) (-1187 (-1198) (-972 *4)))) - (|:| |eigmult| (-784)) - (|:| |eigvec| (-657 (-702 (-419 (-972 *4)))))))) - (-5 *1 (-302 *4)) (-5 *3 (-702 (-419 (-972 *4))))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1180)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-270))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576)))) - ((*1 *2 *2) - (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1146 *3 *4 *5 *2)) (-4 *2 (-700 *3 *4 *5))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-657 *4)) (-4 *4 (-374)) (-5 *2 (-1289 *4)) - (-5 *1 (-827 *4 *3)) (-4 *3 (-669 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-767))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) - (-5 *2 (-1289 *6)) (-5 *1 (-347 *3 *4 *5 *6)) - (-4 *6 (-353 *3 *4 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565))))) + (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) + (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) + (-5 *1 (-1200))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) +(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-404))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1189 *2 *3)) (-14 *2 (-944)) (-4 *3 (-1074))))) +(((*1 *1 *2) + (-12 (-5 *2 (-651 *3)) (-14 *3 (-660 (-1201))) (-5 *1 (-217 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-217 *3)) (-14 *3 (-660 (-1201))) (-5 *1 (-651 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-989 *3)) (-4 *3 (-1125)) (-5 *1 (-990 *3))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-625 *3)) (-5 *5 (-1 (-1197 *3) (-1197 *3))) + (-4 *3 (-13 (-27) (-443 *6))) (-4 *6 (-569)) (-5 *2 (-599 *3)) + (-5 *1 (-564 *6 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-285))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) + ((*1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-944)) (-5 *4 (-391)) (-5 *2 (-1297)) (-5 *1 (-1293))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *2 (-465))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1125)) (-4 *2 (-921 *4)) (-5 *1 (-708 *4 *2 *5 *3)) + (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4470))))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) - (-5 *1 (-1197))))) + (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) + (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) + (-5 *1 (-1200))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) +(((*1 *2) (-12 (-5 *2 (-1172 (-1183))) (-5 *1 (-404))))) (((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-810 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-846 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-856 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) + (-12 (-5 *2 (-660 (-966 *4))) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) + (-4 *4 (-1074))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1125)) (-5 *2 (-908 *3 *4)) (-5 *1 (-904 *3 *4 *5)) + (-4 *3 (-1125)) (-4 *5 (-682 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1030 *3)) (-4 *3 (-1060 (-419 (-576))))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1224))) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-941)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1071)) - (-4 *4 (-1239)))) - ((*1 *1 *2) - (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) - (-4 *5 (-243 (-3440 *3) (-784))) - (-14 *6 - (-1 (-112) (-2 (|:| -3178 *2) (|:| -1801 *5)) - (-2 (|:| -3178 *2) (|:| -1801 *5)))) - (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-862)) - (-4 *7 (-969 *4 *5 (-879 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1071)) (-5 *1 (-725 *3 *2)) (-4 *2 (-1265 *3))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) - (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *1 (-1302 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-657 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1087 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1302 *5 *6 *7 *8))))) -(((*1 *1 *2) - (-12 (-5 *2 (-657 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-806)) - (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-657 *1)) (-5 *3 (-657 *7)) (-4 *1 (-1093 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *1)) - (-4 *1 (-1093 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 *1)) - (-4 *1 (-1093 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-886 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-886 *2)) (-14 *2 (-576)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-887 *3 *4)) - (-4 *4 (-884 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-576)) (-5 *1 (-887 *2 *3)) (-4 *3 (-884 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-1071)) - (-4 *4 (-1280 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-1280 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1129 *4 *5 *6 *7 *3)) (-4 *3 (-1093 *4 *5 *6 *7))))) + (-12 (-5 *3 (-989 *4)) (-4 *4 (-1125)) (-5 *2 (-1127 *4)) + (-5 *1 (-990 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112))))) (((*1 *2 *3) (-12 (-5 *3 - (-657 - (-2 (|:| -1542 (-784)) - (|:| |eqns| - (-657 - (-2 (|:| |det| *7) (|:| |rows| (-657 (-576))) - (|:| |cols| (-657 (-576)))))) - (|:| |fgb| (-657 *7))))) - (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-784)) - (-5 *1 (-944 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) + (-3 + (|:| |noa| + (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) + (|:| |lb| (-660 (-859 (-228)))) + (|:| |cf| (-660 (-327 (-228)))) + (|:| |ub| (-660 (-859 (-228)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-660 (-327 (-228)))) + (|:| -1709 (-660 (-228))))))) + (-5 *2 (-660 (-1183))) (-5 *1 (-277))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-892)) + (-5 *5 (-944)) (-5 *6 (-660 (-271))) (-5 *2 (-1293)) + (-5 *1 (-1296)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-660 (-271))) + (-5 *2 (-1293)) (-5 *1 (-1296))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *2 (-465))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1125)) (-4 *2 (-921 *5)) (-5 *1 (-708 *5 *2 *3 *4)) + (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4470))))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) - (-5 *1 (-1197))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1289 *1)) (-4 *1 (-652 *4)) (-4 *4 (-1071)) - (-5 *2 (-2 (|:| -3750 (-702 *4)) (|:| |vec| (-1289 *4)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1289 *1)) (-4 *1 (-652 *4)) (-4 *4 (-1071)) - (-5 *2 (-702 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1060 (-576))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1060 *2)))) + (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) + (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) + (-5 *1 (-1200))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) +(((*1 *2) (-12 (-5 *2 (-1172 (-1183))) (-5 *1 (-404))))) +(((*1 *1 *1) + (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)) + (-4 *2 (-465)))) + ((*1 *1 *1) + (-12 (-4 *1 (-354 *2 *3 *4)) (-4 *2 (-1246)) (-4 *3 (-1268 *2)) + (-4 *4 (-1268 (-420 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-465)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *2 (-865)) (-4 *3 (-465)))) + ((*1 *1 *1) + (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *2 (-465)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-318)) (-4 *3 (-569)) (-5 *1 (-1188 *3 *2)) + (-4 *2 (-1268 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-577)) (-5 *1 (-582 *3)) (-4 *3 (-1063 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *2 *5 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-657 (-963 (-227))))) - (-5 *2 (-657 (-1116 (-227)))) (-5 *1 (-948))))) -(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-360))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-929))))) -(((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-841) (-1071))) (-5 *2 (-1180)) - (-5 *1 (-839 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-841) (-1071))) - (-5 *2 (-1180)) (-5 *1 (-839 *5)))) + (-12 (-4 *1 (-1128 *3 *4 *2 *5 *6)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125))))) +(((*1 *2 *1) (-12 (-5 *2 (-707 *3)) (-5 *1 (-989 *3)) (-4 *3 (-1125))))) +(((*1 *1 *1 *1) (-4 *1 (-558)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1060)) (-5 *3 (-1201)) (-5 *1 (-277))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1183)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1183)) (-5 *1 (-97))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-892)) + (-5 *5 (-944)) (-5 *6 (-660 (-271))) (-5 *2 (-481)) (-5 *1 (-1296)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *2 (-481)) + (-5 *1 (-1296)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-835)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-841) (-1071))) - (-5 *2 (-1294)) (-5 *1 (-839 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-835)) (-5 *4 (-326 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-841) (-1071))) (-5 *2 (-1294)) (-5 *1 (-839 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-841)) (-5 *2 (-1180)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-841)) (-5 *3 (-112)) (-5 *2 (-1180)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-841)) (-5 *3 (-835)) (-5 *2 (-1294)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-841)) (-5 *3 (-835)) (-5 *4 (-112)) (-5 *2 (-1294))))) + (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-660 (-271))) + (-5 *2 (-481)) (-5 *1 (-1296))))) +(((*1 *1) (-5 *1 (-1088)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-657 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1265 *5)) - (-5 *1 (-820 *5 *2 *3 *6)) - (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) - (-4 *3 (-669 *2)) (-4 *6 (-669 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-657 (-419 *2))) (-4 *2 (-1265 *5)) - (-5 *1 (-820 *5 *2 *3 *6)) - (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *3 (-669 *2)) - (-4 *6 (-669 (-419 *2)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -1985 (-657 *1)))) - (-4 *1 (-378 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-465 *3 *4 *5 *6)) - (|:| -1985 (-657 (-465 *3 *4 *5 *6))))) - (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-941)) - (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-321)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-992)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1016)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1058)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1095))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-702 (-227))) - (-5 *2 (-1057)) (-5 *1 (-768))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1198)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-715 *3 *5 *6 *7)) - (-4 *3 (-626 (-548))) (-4 *5 (-1239)) (-4 *6 (-1239)) - (-4 *7 (-1239)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-5 *2 (-1 *6 *5)) (-5 *1 (-719 *3 *5 *6)) - (-4 *3 (-626 (-548))) (-4 *5 (-1239)) (-4 *6 (-1239))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-833)) (-14 *5 (-1198)) - (-5 *2 (-657 *4)) (-5 *1 (-1136 *4 *5))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) - (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) - (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2899 (-576)) (|:| -2067 (-657 *3)))) - (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239))))) + (-12 (-4 *5 (-1125)) (-4 *3 (-921 *5)) (-5 *2 (-1292 *3)) + (-5 *1 (-708 *5 *3 *6 *4)) (-4 *6 (-385 *3)) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4470))))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) (((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *2 *4 *5 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-657 (-2 (|:| |totdeg| (-784)) (|:| -4281 *3)))) - (-5 *4 (-784)) (-4 *3 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-806)) - (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-600 *4)) - (-4 *4 (-360))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1239)) (-4 *2 (-862)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1239)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-862)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1071)))) - ((*1 *1 *2) - (-12 (-5 *2 (-657 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) - ((*1 *1 *2) - (-12 (-5 *2 (-657 (-1186 *3 *4))) (-5 *1 (-1186 *3 *4)) - (-14 *3 (-941)) (-4 *4 (-1071)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071))))) -(((*1 *2 *1) - (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-873)))) - ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-985)))) - ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1011)))) - ((*1 *2 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-1239)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1122) (-34))) (-5 *1 (-1162 *2 *3)) - (-4 *3 (-13 (-1122) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-177))) (-5 *1 (-1107))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) - ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-576)) (-5 *1 (-246))))) -(((*1 *2 *2) (-12 (-5 *1 (-695 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1082)) (-4 *3 (-1224)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-861) (-374))) (-5 *2 (-112)) (-5 *1 (-1083 *4 *3)) - (-4 *3 (-1265 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-374)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-941)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-270))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) - (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1220))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-518)) (-5 *3 (-657 (-891))) (-5 *1 (-495))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 (-576)))) - (-5 *2 (-1289 (-419 (-576)))) (-5 *1 (-1317 *4))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) -(((*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-714)))) - ((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-714))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1239))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-862))))) + (-12 (-5 *2 (-880)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 (-787)) + (-14 *4 (-787)) (-4 *5 (-174))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-978 *3)) (-5 *1 (-1185 *4 *3)) - (-4 *3 (-1265 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-419 *4)) (-4 *4 (-1265 *3)) (-4 *3 (-13 (-374) (-148))) - (-5 *1 (-411 *3 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-541)))) - ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541))))) -(((*1 *2 *1) (-12 (-5 *2 (-941)) (-5 *1 (-993))))) -(((*1 *2 *3) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-1088))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) - (-14 *4 *2)))) + (-12 (-4 *4 (-569)) (-5 *2 (-981 *3)) (-5 *1 (-1188 *4 *3)) + (-4 *3 (-1268 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-322)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-995)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1019)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1061)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1098))))) (((*1 *2 *1) - (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-657 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -1433 (-657 *7)))) - (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-419 (-972 (-576))))) - (-5 *2 (-657 (-657 (-304 (-972 *4))))) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-861) (-374))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-304 (-419 (-972 (-576)))))) - (-5 *2 (-657 (-657 (-304 (-972 *4))))) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-861) (-374))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-972 (-576)))) (-5 *2 (-657 (-304 (-972 *4)))) - (-5 *1 (-391 *4)) (-4 *4 (-13 (-861) (-374))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-972 (-576))))) - (-5 *2 (-657 (-304 (-972 *4)))) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-861) (-374))))) + (-12 (-5 *2 (-707 (-989 *3))) (-5 *1 (-989 *3)) (-4 *3 (-1125))))) +(((*1 *1 *1 *1) (-4 *1 (-558)))) +(((*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-112)) (-5 *1 (-277))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1242)) + (-4 *5 (-1242)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1198)) - (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-4 *4 (-13 (-29 *6) (-1224) (-979))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -1985 (-657 *4)))) - (-5 *1 (-665 *6 *4 *3)) (-4 *3 (-669 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-657 *2)) - (-4 *2 (-13 (-29 *6) (-1224) (-979))) - (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-5 *1 (-665 *6 *2 *3)) (-4 *3 (-669 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-702 *5)) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1289 *5) "failed")) - (|:| -1985 (-657 (-1289 *5))))) - (-5 *1 (-680 *5)) (-5 *4 (-1289 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-657 *5))) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1289 *5) "failed")) - (|:| -1985 (-657 (-1289 *5))))) - (-5 *1 (-680 *5)) (-5 *4 (-1289 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-702 *5)) (-4 *5 (-374)) - (-5 *2 - (-657 - (-2 (|:| |particular| (-3 (-1289 *5) "failed")) - (|:| -1985 (-657 (-1289 *5)))))) - (-5 *1 (-680 *5)) (-5 *4 (-657 (-1289 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-657 *5))) (-4 *5 (-374)) - (-5 *2 - (-657 - (-2 (|:| |particular| (-3 (-1289 *5) "failed")) - (|:| -1985 (-657 (-1289 *5)))))) - (-5 *1 (-680 *5)) (-5 *4 (-657 (-1289 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4467)))) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4467)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1985 (-657 *4)))) - (-5 *1 (-681 *5 *6 *4 *3)) (-4 *3 (-700 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4467)))) - (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4467)))) - (-5 *2 - (-657 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1985 (-657 *7))))) - (-5 *1 (-681 *5 *6 *7 *3)) (-5 *4 (-657 *7)) - (-4 *3 (-700 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-657 (-1198))) (-4 *5 (-568)) - (-5 *2 (-657 (-657 (-304 (-419 (-972 *5)))))) (-5 *1 (-783 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-568)) - (-5 *2 (-657 (-657 (-304 (-419 (-972 *4)))))) (-5 *1 (-783 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1198)) - (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-5 *1 (-785 *5 *2)) (-4 *2 (-13 (-29 *5) (-1224) (-979))))) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-787)) + (-4 *7 (-1242)) (-4 *5 (-1242)) (-5 *2 (-246 *6 *5)) + (-5 *1 (-245 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-702 *7)) (-5 *5 (-1198)) - (-4 *7 (-13 (-29 *6) (-1224) (-979))) - (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1289 *7)) (|:| -1985 (-657 (-1289 *7))))) - (-5 *1 (-815 *6 *7)) (-5 *4 (-1289 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-702 *6)) (-5 *4 (-1198)) - (-4 *6 (-13 (-29 *5) (-1224) (-979))) - (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-5 *2 (-657 (-1289 *6))) (-5 *1 (-815 *5 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1242)) (-4 *5 (-1242)) + (-4 *2 (-385 *5)) (-5 *1 (-383 *6 *4 *5 *2)) (-4 *4 (-385 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-657 (-304 *7))) (-5 *4 (-657 (-115))) - (-5 *5 (-1198)) (-4 *7 (-13 (-29 *6) (-1224) (-979))) - (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1289 *7)) (|:| -1985 (-657 (-1289 *7))))) - (-5 *1 (-815 *6 *7)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1125)) (-4 *5 (-1125)) + (-4 *2 (-438 *5)) (-5 *1 (-436 *6 *4 *5 *2)) (-4 *4 (-438 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-657 *7)) (-5 *4 (-657 (-115))) - (-5 *5 (-1198)) (-4 *7 (-13 (-29 *6) (-1224) (-979))) - (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1289 *7)) (|:| -1985 (-657 (-1289 *7))))) - (-5 *1 (-815 *6 *7)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-660 *6)) (-4 *6 (-1242)) + (-4 *5 (-1242)) (-5 *2 (-660 *5)) (-5 *1 (-658 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1198)) - (-4 *7 (-13 (-29 *6) (-1224) (-979))) - (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -1985 (-657 *7))) *7 "failed")) - (-5 *1 (-815 *6 *7)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-981 *6)) (-4 *6 (-1242)) + (-4 *5 (-1242)) (-5 *2 (-981 *5)) (-5 *1 (-980 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-1198)) - (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -1985 (-657 *3))) *3 "failed")) - (-5 *1 (-815 *6 *3)) (-4 *3 (-13 (-29 *6) (-1224) (-979))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-657 *2)) - (-4 *2 (-13 (-29 *6) (-1224) (-979))) (-5 *1 (-815 *6 *2)) - (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-657 *2)) - (-4 *2 (-13 (-29 *6) (-1224) (-979))) - (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-5 *1 (-815 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-1057)) (-5 *1 (-818)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-821)) (-5 *4 (-1085)) (-5 *2 (-1057)) (-5 *1 (-818)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1289 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-657 *4)) - (-5 *2 (-1057)) (-5 *1 (-818)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1289 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-657 *4)) - (-5 *2 (-1057)) (-5 *1 (-818)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1289 (-326 *4))) (-5 *5 (-657 (-390))) - (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1057)) (-5 *1 (-818)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1289 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-657 *4)) - (-5 *2 (-1057)) (-5 *1 (-818)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1289 (-326 *4))) (-5 *5 (-657 (-390))) - (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1057)) (-5 *1 (-818)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1289 (-326 *4))) (-5 *5 (-657 (-390))) - (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1057)) (-5 *1 (-818)))) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1182 *6)) (-4 *6 (-1242)) + (-4 *3 (-1242)) (-5 *2 (-1182 *3)) (-5 *1 (-1180 *6 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -1985 (-657 *6))) "failed") - *7 *6)) - (-4 *6 (-374)) (-4 *7 (-669 *6)) - (-5 *2 (-2 (|:| |particular| (-1289 *6)) (|:| -1985 (-702 *6)))) - (-5 *1 (-826 *6 *7)) (-5 *3 (-702 *6)) (-5 *4 (-1289 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-916)) (-5 *2 (-1057)) (-5 *1 (-915)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-916)) (-5 *4 (-1085)) (-5 *2 (-1057)) (-5 *1 (-915)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-784)) (-5 *6 (-657 (-657 (-326 *3)))) (-5 *7 (-1180)) - (-5 *8 (-227)) (-5 *5 (-657 (-326 (-390)))) (-5 *3 (-390)) - (-5 *2 (-1057)) (-5 *1 (-915)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-784)) (-5 *6 (-657 (-657 (-326 *3)))) (-5 *7 (-1180)) - (-5 *5 (-657 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1057)) - (-5 *1 (-915)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-972 (-419 (-576)))) (-5 *2 (-657 (-390))) - (-5 *1 (-1045)) (-5 *4 (-390)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-972 (-576))) (-5 *2 (-657 (-390))) (-5 *1 (-1045)) - (-5 *4 (-390)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-5 *2 (-657 (-304 (-326 *4)))) (-5 *1 (-1153 *4)) - (-5 *3 (-326 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-5 *2 (-657 (-304 (-326 *4)))) (-5 *1 (-1153 *4)) - (-5 *3 (-304 (-326 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) - (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-5 *2 (-657 (-304 (-326 *5)))) (-5 *1 (-1153 *5)) - (-5 *3 (-304 (-326 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) - (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-5 *2 (-657 (-304 (-326 *5)))) (-5 *1 (-1153 *5)) - (-5 *3 (-326 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-657 (-1198))) - (-4 *5 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-5 *2 (-657 (-657 (-304 (-326 *5))))) (-5 *1 (-1153 *5)) - (-5 *3 (-657 (-304 (-326 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-419 (-972 *5)))) (-5 *4 (-657 (-1198))) - (-4 *5 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *5)))))) - (-5 *1 (-1207 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-657 (-1198))) (-4 *5 (-568)) - (-5 *2 (-657 (-657 (-304 (-419 (-972 *5)))))) (-5 *1 (-1207 *5)) - (-5 *3 (-657 (-304 (-419 (-972 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-419 (-972 *4)))) (-4 *4 (-568)) - (-5 *2 (-657 (-657 (-304 (-419 (-972 *4)))))) (-5 *1 (-1207 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-657 (-657 (-304 (-419 (-972 *4)))))) - (-5 *1 (-1207 *4)) (-5 *3 (-657 (-304 (-419 (-972 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-568)) - (-5 *2 (-657 (-304 (-419 (-972 *5))))) (-5 *1 (-1207 *5)) - (-5 *3 (-419 (-972 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-568)) - (-5 *2 (-657 (-304 (-419 (-972 *5))))) (-5 *1 (-1207 *5)) - (-5 *3 (-304 (-419 (-972 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-657 (-304 (-419 (-972 *4))))) - (-5 *1 (-1207 *4)) (-5 *3 (-419 (-972 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-657 (-304 (-419 (-972 *4))))) - (-5 *1 (-1207 *4)) (-5 *3 (-304 (-419 (-972 *4))))))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1292 *6)) (-4 *6 (-1242)) + (-4 *5 (-1242)) (-5 *2 (-1292 *5)) (-5 *1 (-1291 *6 *5))))) +(((*1 *1 *1) (-5 *1 (-1088)))) +(((*1 *1 *2) (-12 (-5 *1 (-707 *2)) (-4 *2 (-626 (-880)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-375)) (-4 *3 (-1074)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4101 *1))) + (-4 *1 (-870 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-880)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 (-787)) + (-14 *4 (-787)) (-4 *5 (-174))))) +(((*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242))))) (((*1 *2 *3) - (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) + (-12 (-4 *4 (-38 (-420 (-577)))) + (-5 *2 (-2 (|:| -2186 (-1182 *4)) (|:| -2199 (-1182 *4)))) + (-5 *1 (-1187 *4)) (-5 *3 (-1182 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1128 *3 *2 *4 *5 *6)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125))))) +(((*1 *2 *1) + (-12 (-5 *2 (-707 (-891 (-989 *3) (-989 *3)))) (-5 *1 (-989 *3)) + (-4 *3 (-1125))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-558)))) +(((*1 *2 *2) (-12 (-5 *2 (-660 (-327 (-228)))) (-5 *1 (-277))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-244 *3 *2)) (-4 *2 (-1242)) (-4 *2 (-1074)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-880)))) + ((*1 *1 *1) (-5 *1 (-880))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-966 (-228))) (-5 *2 (-228)) (-5 *1 (-1238)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-876)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-988)))) + ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1014)))) + ((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1242)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1125) (-34))) (-5 *1 (-1165 *2 *3)) + (-4 *3 (-13 (-1125) (-34)))))) +(((*1 *1 *1) (-5 *1 (-1088)))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-705 *4)) (-5 *3 (-787)) (-4 *4 (-1074)) + (-5 *1 (-706 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-375)) (-5 *1 (-782 *2 *3)) (-4 *2 (-724 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) +(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1183))))) +(((*1 *2 *2) (-12 (-5 *1 (-698 *2)) (-4 *2 (-1125))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-420 (-577)))) + (-5 *2 (-2 (|:| -2032 (-1182 *4)) (|:| -2046 (-1182 *4)))) + (-5 *1 (-1187 *4)) (-5 *3 (-1182 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-707 (-891 (-989 *3) (-989 *3)))) (-5 *1 (-989 *3)) + (-4 *3 (-1125))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-558)))) +(((*1 *2 *2) (-12 (-5 *2 (-660 (-327 (-228)))) (-5 *1 (-277))))) +(((*1 *1 *1) (-5 *1 (-1088)))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1292 *5)) (-4 *5 (-808)) (-5 *2 (-112)) + (-5 *1 (-861 *4 *5)) (-14 *4 (-787))))) +(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-375)) (-4 *3 (-1074)) + (-5 *1 (-1185 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-707 (-891 (-989 *3) (-989 *3)))) (-5 *1 (-989 *3)) + (-4 *3 (-1125))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-558)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-327 (-228)))) (-5 *4 (-787)) + (-5 *2 (-705 (-228))) (-5 *1 (-277))))) +(((*1 *1 *1) (-5 *1 (-1088)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1292 *5)) (-4 *5 (-808)) (-5 *2 (-112)) + (-5 *1 (-861 *4 *5)) (-14 *4 (-787))))) +(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-577))) (-5 *5 (-1 (-1182 *4))) (-4 *4 (-375)) + (-4 *4 (-1074)) (-5 *2 (-1182 *4)) (-5 *1 (-1185 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-707 (-891 (-989 *3) (-989 *3)))) (-5 *1 (-989 *3)) + (-4 *3 (-1125))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-558)))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 (-327 (-228)))) (-5 *2 (-112)) (-5 *1 (-277))))) +(((*1 *1 *1) (-5 *1 (-1088)))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1292 *5)) (-4 *5 (-808)) (-5 *2 (-112)) + (-5 *1 (-861 *4 *5)) (-14 *4 (-787))))) +(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-1091))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-375)) (-4 *3 (-1074)) + (-5 *1 (-1185 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-989 *2)) (-4 *2 (-1125))))) +(((*1 *1 *1 *1) (-4 *1 (-558)))) +(((*1 *2 *2) (-12 (-5 *2 (-327 (-228))) (-5 *1 (-277))))) +(((*1 *1 *1) (-5 *1 (-1088)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-1125)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859 *3)) (-4 *3 (-1125))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)) - (-4 *2 (-374)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)) + (-4 *2 (-375)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-228)))) ((*1 *1 *1 *1) - (-2802 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1239))) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1239))))) - ((*1 *1 *1 *1) (-4 *1 (-374))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) + (-2839 (-12 (-5 *1 (-305 *2)) (-4 *2 (-375)) (-4 *2 (-1242))) + (-12 (-5 *1 (-305 *2)) (-4 *2 (-486)) (-4 *2 (-1242))))) + ((*1 *1 *1 *1) (-4 *1 (-375))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1147 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1122)) - (-4 *1 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-485))) + (-12 (-5 *2 (-1150 *3 (-625 *1))) (-4 *3 (-569)) (-4 *3 (-1125)) + (-4 *1 (-443 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-486))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1289 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-548))) + (-12 (-5 *2 (-1292 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-549))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-739) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-634 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-742) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-739) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374)))) + (-12 (-4 *4 (-174)) (-5 *1 (-634 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-742) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-647 *2)) (-4 *2 (-174)) (-4 *2 (-375)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-675 *2 *4 *3)) (-4 *2 (-730 *4)) - (-4 *3 (|SubsetCategory| (-739) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-678 *2 *4 *3)) (-4 *2 (-733 *4)) + (-4 *3 (|SubsetCategory| (-742) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-174)) (-5 *1 (-675 *3 *4 *2)) (-4 *3 (-730 *4)) - (-4 *2 (|SubsetCategory| (-739) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-678 *3 *4 *2)) (-4 *3 (-733 *4)) + (-4 *2 (|SubsetCategory| (-742) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)) (-4 *2 (-374)))) - ((*1 *1 *1 *1) (-5 *1 (-877))) + (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2)) (-4 *2 (-375)))) + ((*1 *1 *1 *1) (-5 *1 (-880))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-881 *2 *3 *4 *5)) (-4 *2 (-374)) - (-4 *2 (-1071)) (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-784))) - (-14 *5 (-784)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)))) + (|partial| -12 (-5 *1 (-884 *2 *3 *4 *5)) (-4 *2 (-375)) + (-4 *2 (-1074)) (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-787))) + (-14 *5 (-787)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1075 *3 *4 *2 *5 *6)) (-4 *2 (-1071)) - (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-374)))) + (-12 (-4 *1 (-1078 *3 *4 *2 *5 *6)) (-4 *2 (-1074)) + (-4 *5 (-244 *4 *2)) (-4 *6 (-244 *3 *2)) (-4 *2 (-375)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-374)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1299 *2)) (-4 *2 (-375)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1071)) (-4 *3 (-862)) - (-4 *4 (-806)) (-14 *6 (-657 *3)) - (-5 *1 (-1301 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-969 *2 *4 *3)) - (-14 *7 (-657 (-784))) (-14 *8 (-784)))) + (|partial| -12 (-4 *2 (-375)) (-4 *2 (-1074)) (-4 *3 (-865)) + (-4 *4 (-809)) (-14 *6 (-660 *3)) + (-5 *1 (-1304 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-972 *2 *4 *3)) + (-14 *7 (-660 (-787))) (-14 *8 (-787)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1071)) - (-4 *3 (-859))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1289 *4)) (-5 *3 (-784)) (-4 *4 (-360)) - (-5 *1 (-540 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) + (-12 (-5 *1 (-1315 *2 *3)) (-4 *2 (-375)) (-4 *2 (-1074)) + (-4 *3 (-862))))) +(((*1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-865)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1198)) (-5 *1 (-879 *3)) (-14 *3 (-657 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1011)))) + (|partial| -12 (-5 *2 (-1201)) (-5 *1 (-882 *3)) (-14 *3 (-660 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1014)))) ((*1 *2 *1) - (-12 (-4 *4 (-1239)) (-5 *2 (-1198)) (-5 *1 (-1079 *3 *4)) - (-4 *3 (-1115 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1114 *3)) (-4 *3 (-1239)))) + (-12 (-4 *4 (-1242)) (-5 *2 (-1201)) (-5 *1 (-1082 *3 *4)) + (-4 *3 (-1118 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1117 *3)) (-4 *3 (-1242)))) ((*1 *2 *1) - (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) - (-5 *2 (-1198)))) - ((*1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1285 *3)) (-14 *3 *2)))) -(((*1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4))))) + (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) + (-5 *2 (-1201)))) + ((*1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-1288 *3)) (-14 *3 *2)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1125))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-784)) (-4 *1 (-753 *4 *5)) (-4 *4 (-1071)) - (-4 *5 (-862)) (-5 *2 (-972 *4)))) + (-12 (-5 *3 (-787)) (-4 *1 (-756 *4 *5)) (-4 *4 (-1074)) + (-4 *5 (-865)) (-5 *2 (-975 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-784)) (-4 *1 (-753 *4 *5)) (-4 *4 (-1071)) - (-4 *5 (-862)) (-5 *2 (-972 *4)))) + (-12 (-5 *3 (-787)) (-4 *1 (-756 *4 *5)) (-4 *4 (-1074)) + (-4 *5 (-865)) (-5 *2 (-975 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-784)) (-4 *1 (-1280 *4)) (-4 *4 (-1071)) - (-5 *2 (-972 *4)))) + (-12 (-5 *3 (-787)) (-4 *1 (-1283 *4)) (-4 *4 (-1074)) + (-5 *2 (-975 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-784)) (-4 *1 (-1280 *4)) (-4 *4 (-1071)) - (-5 *2 (-972 *4))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-702 (-227))) - (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-768))))) + (-12 (-5 *3 (-787)) (-4 *1 (-1283 *4)) (-4 *4 (-1074)) + (-5 *2 (-975 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-989 *2)) (-4 *2 (-1125))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-115)) (-5 *4 (-784)) - (-4 *5 (-13 (-464) (-1060 (-576)))) (-4 *5 (-568)) - (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1621 ((-1147 *5 (-624 $)) $)) - (-15 -1635 ((-1147 *5 (-624 $)) $)) - (-15 -3501 ($ (-1147 *5 (-624 $)))))))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) - (-4 *2 (-1122)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1122)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1122)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-1122)) (-5 *1 (-662 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-999 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) - ((*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-941)) (-4 *1 (-416)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) + (|partial| -12 (-5 *4 (-1 (-3 (-577) "failed") *5)) (-4 *5 (-1074)) + (-5 *2 (-577)) (-5 *1 (-556 *5 *3)) (-4 *3 (-1268 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-577) "failed") *4)) (-4 *4 (-1074)) + (-5 *2 (-577)) (-5 *1 (-556 *4 *3)) (-4 *3 (-1268 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-577) "failed") *4)) (-4 *4 (-1074)) + (-5 *2 (-577)) (-5 *1 (-556 *4 *3)) (-4 *3 (-1268 *4))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-327 (-228))) (-5 *1 (-277))))) +(((*1 *1 *1) (-5 *1 (-1088)))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-944)) (-4 *1 (-417)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-577)) (-4 *1 (-417)))) ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *2 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122))))) + (-12 (-4 *1 (-1128 *3 *4 *5 *2 *6)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-1125)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859 *3)) (-4 *3 (-1125))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-135))) ((*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 - (-13 (-862) - (-10 -8 (-15 -2835 ((-1180) $ (-1198))) (-15 -2041 ((-1294) $)) - (-15 -1729 ((-1294) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1239)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1239)))) + (-13 (-865) + (-10 -8 (-15 -2872 ((-1183) $ (-1201))) (-15 -2072 ((-1297) $)) + (-15 -1696 ((-1297) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1242)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1242)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) + (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1 *1) (-5 *1 (-877))) + (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2)))) + ((*1 *1 *1) (-5 *1 (-880))) ((*1 *1 *1 *1) (-5 *1 (-880))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-21))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1180)) - (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1265 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-724 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *2 (-568)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *2 (-568))))) -(((*1 *2 *1) (-12 (-5 *1 (-934 *2)) (-4 *2 (-317))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -4059 (-657 *3)) (|:| -2698 (-657 *3)))) - (-5 *1 (-1240 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-1203)) (-5 *1 (-289))))) -(((*1 *2 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-21))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1125))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-1125))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-519)) (-5 *2 (-707 (-790))) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1183)) (-5 *2 (-790)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1129)) (-5 *1 (-988))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-318)) (-5 *1 (-468 *3 *2)) (-4 *2 (-1268 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-318)) (-5 *1 (-473 *3 *2)) (-4 *2 (-1268 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-318)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-787))) + (-5 *1 (-552 *3 *2 *4 *5)) (-4 *2 (-1268 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-290))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) - (-4 *2 (-1280 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1265 *3)) - (-4 *5 (-737 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1280 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1280 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-13 (-568) (-148))) - (-5 *1 (-1175 *3))))) + (-12 + (-5 *2 + (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) + (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) + (|:| |ub| (-660 (-859 (-228)))))) + (-5 *1 (-277))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 (-577)))) + (-5 *2 (-1292 (-420 (-577)))) (-5 *1 (-1320 *4))))) +(((*1 *1 *1) (-5 *1 (-1088)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-706 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1145)) (-5 *1 (-859 *3)) (-4 *3 (-1125))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-158))) ((*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 - (-13 (-862) - (-10 -8 (-15 -2835 ((-1180) $ (-1198))) (-15 -2041 ((-1294) $)) - (-15 -1729 ((-1294) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1239)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1239)))) + (-13 (-865) + (-10 -8 (-15 -2872 ((-1183) $ (-1201))) (-15 -2072 ((-1297) $)) + (-15 -1696 ((-1297) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1242)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1242)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-132)))) + (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-132)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2)) - (-4 *2 (-1265 *3)))) + (-12 (-4 *3 (-13 (-375) (-148))) (-5 *1 (-412 *3 *2)) + (-4 *2 (-1268 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-548))) + (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) + (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-549))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) + (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-880))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-963 (-227))) (-5 *1 (-1235)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-25))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-972 (-171 (-576))))) (-5 *2 (-657 (-171 *4))) - (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-861))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-657 (-419 (-972 (-171 (-576)))))) - (-5 *4 (-657 (-1198))) (-5 *2 (-657 (-657 (-171 *5)))) - (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-861)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1122)) (-4 *6 (-1122)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-697 *4 *5 *6)) (-4 *5 (-1122))))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-25))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-1125)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-398 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-660 (-1228 *3))) (-5 *1 (-1228 *3)) (-4 *3 (-1125))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4)))) + (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-657 *3)) (-5 *1 (-1150 *4 *3)) (-4 *4 (-1265 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-704 *3)) (-5 *1 (-986 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-941)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1289 *4)) (-4 *4 (-360)) (-5 *2 (-941)) - (-5 *1 (-540 *4))))) + (-12 (-4 *3 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 (-660 *3)) (-5 *1 (-1153 *4 *3)) (-4 *4 (-1268 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-987 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125))))) (((*1 *2 *3) - (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-1268 *4)) (-5 *1 (-552 *4 *2 *5 *6)) + (-4 *4 (-318)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-787)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-925 (-576))) (-5 *4 (-576)) (-5 *2 (-702 *4)) - (-5 *1 (-1050 *5)) (-4 *5 (-1071)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-576))) (-5 *2 (-702 (-576))) (-5 *1 (-1050 *4)) - (-4 *4 (-1071)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-925 (-576)))) (-5 *4 (-576)) - (-5 *2 (-657 (-702 *4))) (-5 *1 (-1050 *5)) (-4 *5 (-1071)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-657 (-576)))) (-5 *2 (-657 (-702 (-576)))) - (-5 *1 (-1050 *4)) (-4 *4 (-1071))))) + (-12 (-5 *3 (-660 (-859 (-228)))) (-5 *4 (-228)) (-5 *2 (-660 *4)) + (-5 *1 (-277))))) (((*1 *2 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1265 *4)) - (-4 *5 (-1265 (-419 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) - (-4 *3 (-1265 *4)) (-5 *1 (-822 *4 *3 *2 *5)) (-4 *2 (-669 *3)) - (-4 *5 (-669 (-419 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 *5)) - (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *5 (-1265 *4)) - (-5 *1 (-822 *4 *5 *2 *6)) (-4 *2 (-669 *5)) (-4 *6 (-669 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1062)) (-5 *3 (-390))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1198)) (-4 *4 (-1071)) (-4 *4 (-1122)) - (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -1801 (-576)))) - (-4 *1 (-442 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1071)) (-4 *4 (-1122)) - (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -1801 (-576)))) - (-4 *1 (-442 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1134)) (-4 *3 (-1122)) - (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -1801 (-576)))) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-908 *3)) (|:| -1801 (-784)))) - (-5 *1 (-908 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-5 *2 (-2 (|:| |var| *5) (|:| -1801 (-784)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) - (-4 *7 (-969 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -1801 (-576)))) - (-5 *1 (-970 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) - (-15 -1635 (*7 $)))))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-464)) (-4 *4 (-1122)) - (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1125 *2 *3 *4 *5 *6)) (-4 *2 (-1122)) (-4 *3 (-1122)) - (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122))))) + (|partial| -12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 (-577)))) + (-5 *2 (-1292 (-577))) (-5 *1 (-1320 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-391)) (-5 *1 (-1088))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *1 (-704 *3 *4 *5 *2)) + (-4 *2 (-703 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-857)) (-5 *2 (-1060)) (-5 *1 (-856)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-327 (-391)))) (-5 *4 (-660 (-391))) + (-5 *2 (-1060)) (-5 *1 (-856))))) (((*1 *2 *1) - (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) + (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2) (-12 (-5 *2 (-1158 (-228))) (-5 *1 (-1225))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1065)) (-5 *3 (-391))))) (((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *2)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-972 (-576))) (-5 *2 (-340)) - (-5 *1 (-342))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-889)) (-5 *3 (-657 (-270))) (-5 *1 (-268))))) + (-12 (-4 *2 (-1125)) (-5 *1 (-987 *2 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-1268 *4)) (-5 *1 (-552 *4 *2 *5 *6)) + (-4 *4 (-318)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-787)))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) - (-14 *4 (-657 (-1198))))) + (-12 (-4 *3 (-239)) (-4 *3 (-1074)) (-4 *4 (-865)) (-4 *5 (-276 *4)) + (-4 *6 (-809)) (-5 *2 (-1 *1 (-787))) (-4 *1 (-261 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1239)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) - (-14 *4 (-657 (-1198))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-690 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-909 *3)) (-4 *3 (-862))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-568) (-1060 (-576)))) (-5 *2 (-1294)) - (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3))))) + (-12 (-4 *4 (-1074)) (-4 *3 (-865)) (-4 *5 (-276 *3)) (-4 *6 (-809)) + (-5 *2 (-1 *1 (-787))) (-4 *1 (-261 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-276 *2)) (-4 *2 (-865))))) (((*1 *2 *3) - (-12 (-5 *3 (-972 *4)) (-4 *4 (-13 (-317) (-148))) - (-4 *2 (-969 *4 *6 *5)) (-5 *1 (-944 *4 *5 *6 *2)) - (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806))))) + (-12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 (-577)))) + (-5 *2 (-112)) (-5 *1 (-1320 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-430 (-1194 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1194 *1)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1122)))) + (-12 (-4 *1 (-855)) + (-5 *3 + (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) + (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) + (|:| |ub| (-660 (-859 (-228)))))) + (-5 *2 (-1060)))) ((*1 *2 *3) - (-12 (-4 *1 (-929)) (-5 *2 (-430 (-1194 *1))) (-5 *3 (-1194 *1))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1265 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-865)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-877)))) + (-12 (-4 *1 (-855)) + (-5 *3 + (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) + (-5 *2 (-1060))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-660 (-420 (-975 (-577))))) (-5 *4 (-660 (-1201))) + (-5 *2 (-660 (-660 *5))) (-5 *1 (-392 *5)) + (-4 *5 (-13 (-864) (-375))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-975 (-577)))) (-5 *2 (-660 *4)) (-5 *1 (-392 *4)) + (-4 *4 (-13 (-864) (-375)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1128 *3 *4 *5 *6 *2)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) + (-12 (-5 *3 (-1183)) (-5 *2 (-577)) (-5 *1 (-1224 *4)) + (-4 *4 (-1074))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-657 *1)) (|has| *1 (-6 -4467)) (-4 *1 (-1032 *3)) - (-4 *3 (-1239))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-657 (-576))) (-5 *3 (-702 (-576))) (-5 *1 (-1132))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1224)))))) -(((*1 *1) (-5 *1 (-836)))) -(((*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-694)))) - ((*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-992)))) - ((*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-1095)))) - ((*1 *2 *1) (-12 (-5 *2 (-1203)) (-5 *1 (-1140))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1291))))) -(((*1 *2 *1) (-12 (-5 *2 (-1142)) (-5 *1 (-856 *3)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-103 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1122)) (-5 *2 (-657 *1)) - (-4 *1 (-442 *3)))) + (-12 (-4 *2 (-1125)) (-5 *1 (-987 *3 *2)) (-4 *3 (-1125))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 (-1201))) (-4 *6 (-375)) + (-5 *2 (-660 (-305 (-975 *6)))) (-5 *1 (-551 *5 *6 *7)) + (-4 *5 (-465)) (-4 *7 (-13 (-375) (-864)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-115)))) + ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1074)) (-4 *3 (-865)) + (-4 *5 (-276 *3)) (-4 *6 (-809)) (-5 *2 (-787)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) - (-4 *3 (-1122)))) + (-12 (-4 *1 (-261 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-865)) + (-4 *5 (-276 *4)) (-4 *6 (-809)) (-5 *2 (-787)))) + ((*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-865)) (-5 *2 (-787))))) +(((*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558)))) + ((*1 *2 *3) + (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)) (-5 *2 (-431 *3)) + (-5 *1 (-758 *4 *5 *6 *3)) (-4 *3 (-972 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)) + (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-431 (-1197 *7))) + (-5 *1 (-758 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *2 (-657 *1)) (-4 *1 (-969 *3 *4 *5)))) + (-12 (-4 *3 (-465)) (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *2 (-431 *1)) (-4 *1 (-972 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) - (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-657 *3)) - (-5 *1 (-970 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) - (-15 -1635 (*7 $)))))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-865)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-493 *4 *5))) (-14 *4 (-657 (-1198))) - (-4 *5 (-464)) (-5 *2 (-657 (-253 *4 *5))) (-5 *1 (-643 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-751))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1180)) - (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *1) - (-12 (-5 *2 (-704 (-888 (-986 *3) (-986 *3)))) (-5 *1 (-986 *3)) - (-4 *3 (-1122))))) -(((*1 *2) (-12 (-5 *2 (-856 (-576))) (-5 *1 (-546)))) - ((*1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) - (-5 *2 (-1057)) (-5 *1 (-762))))) + (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-465)) (-5 *2 (-431 *3)) + (-5 *1 (-1004 *4 *5 *6 *3)) (-4 *3 (-972 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-465)) + (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-431 (-1197 (-420 *7)))) + (-5 *1 (-1196 *4 *5 *6 *7)) (-5 *3 (-1197 (-420 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-431 *1)) (-4 *1 (-1246)))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-431 *3)) (-5 *1 (-1271 *4 *3)) + (-4 *3 (-13 (-1268 *4) (-569) (-10 -8 (-15 -3480 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1071 *4 *5)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) + (-14 *5 (-660 (-1201))) + (-5 *2 + (-660 (-1171 *4 (-544 (-882 *6)) (-882 *6) (-796 *4 (-882 *6))))) + (-5 *1 (-1319 *4 *5 *6)) (-14 *6 (-660 (-1201)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1060)) + (-5 *1 (-765))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1183)) (-5 *2 (-216 (-515))) (-5 *1 (-853))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-868)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-975 (-171 (-577))))) (-5 *2 (-660 (-171 *4))) + (-5 *1 (-390 *4)) (-4 *4 (-13 (-375) (-864))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-660 (-420 (-975 (-171 (-577)))))) + (-5 *4 (-660 (-1201))) (-5 *2 (-660 (-660 (-171 *5)))) + (-5 *1 (-390 *5)) (-4 *5 (-13 (-375) (-864)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-577)) (-5 *1 (-1224 *3)) (-4 *3 (-1074))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1125))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-660 *3)) (-5 *1 (-984 *3)) (-4 *3 (-558))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-660 (-975 *6))) (-5 *4 (-660 (-1201))) (-4 *6 (-465)) + (-5 *2 (-660 (-660 *7))) (-5 *1 (-551 *6 *7 *5)) (-4 *7 (-375)) + (-4 *5 (-13 (-375) (-864)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-391)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-271))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1071 *4 *5)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) + (-14 *5 (-660 (-1201))) (-5 *2 (-660 (-660 (-1049 (-420 *4))))) + (-5 *1 (-1319 *4 *5 *6)) (-14 *6 (-660 (-1201))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-864) (-318) (-148) (-1047))) + (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) + (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-864) (-318) (-148) (-1047))) + (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) + (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-975 *4))) + (-4 *4 (-13 (-864) (-318) (-148) (-1047))) + (-5 *2 (-660 (-660 (-1049 (-420 *4))))) (-5 *1 (-1319 *4 *5 *6)) + (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-697)))) + ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-995)))) + ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-1098)))) + ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-1143))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-865)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1071))))) -(((*1 *2 *1) - (-12 (-5 *2 (-877)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-784)) - (-14 *4 (-784)) (-4 *5 (-174))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-145)))) - ((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-145))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-924 *4)) - (-4 *4 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) -(((*1 *2) (-12 (-5 *2 (-856 (-576))) (-5 *1 (-546)))) - ((*1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-704 (-189))) (-5 *1 (-189))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-998 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *2 (-862)) (-4 *5 (-1087 *3 *4 *2))))) + (-12 (-5 *2 (-660 *7)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) + (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) + (-5 *1 (-1013 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-660 *7)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) + (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) + (-5 *1 (-1132 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-577)) (-5 *5 (-1183)) (-5 *6 (-705 (-228))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-765))))) +(((*1 *2 *1) (-12 (-4 *1 (-851 *3)) (-4 *3 (-1125)) (-5 *2 (-55))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-868)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-880))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-420 (-975 (-171 (-577)))))) + (-5 *2 (-660 (-660 (-305 (-975 (-171 *4)))))) (-5 *1 (-390 *4)) + (-4 *4 (-13 (-375) (-864))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-305 (-420 (-975 (-171 (-577))))))) + (-5 *2 (-660 (-660 (-305 (-975 (-171 *4)))))) (-5 *1 (-390 *4)) + (-4 *4 (-13 (-375) (-864))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-975 (-171 (-577))))) + (-5 *2 (-660 (-305 (-975 (-171 *4))))) (-5 *1 (-390 *4)) + (-4 *4 (-13 (-375) (-864))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-305 (-420 (-975 (-171 (-577)))))) + (-5 *2 (-660 (-305 (-975 (-171 *4))))) (-5 *1 (-390 *4)) + (-4 *4 (-13 (-375) (-864)))))) +(((*1 *2 *1) (-12 (-4 *1 (-864)) (-5 *2 (-577)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1093 *4 *3)) (-4 *4 (-13 (-864) (-375))) + (-4 *3 (-1268 *4)) (-5 *2 (-577)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-569) (-1063 *2) (-654 *2) (-465))) + (-5 *2 (-577)) (-5 *1 (-1141 *4 *3)) + (-4 *3 (-13 (-27) (-1227) (-443 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-859 *3)) + (-4 *3 (-13 (-27) (-1227) (-443 *6))) + (-4 *6 (-13 (-569) (-1063 *2) (-654 *2) (-465))) (-5 *2 (-577)) + (-5 *1 (-1141 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-1183)) + (-4 *6 (-13 (-569) (-1063 *2) (-654 *2) (-465))) (-5 *2 (-577)) + (-5 *1 (-1141 *6 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-465)) (-5 *2 (-577)) + (-5 *1 (-1142 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-859 (-420 (-975 *6)))) + (-5 *3 (-420 (-975 *6))) (-4 *6 (-465)) (-5 *2 (-577)) + (-5 *1 (-1142 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-420 (-975 *6))) (-5 *4 (-1201)) + (-5 *5 (-1183)) (-4 *6 (-465)) (-5 *2 (-577)) (-5 *1 (-1142 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-577)) (-5 *1 (-1224 *3)) (-4 *3 (-1074))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-754))))) +(((*1 *2 *2) (-12 (-5 *1 (-984 *2)) (-4 *2 (-558))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1197 *5)) (-4 *5 (-465)) (-5 *2 (-660 *6)) + (-5 *1 (-551 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-864))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-975 *5)) (-4 *5 (-465)) (-5 *2 (-660 *6)) + (-5 *1 (-551 *5 *6 *4)) (-4 *6 (-375)) (-4 *4 (-13 (-375) (-864)))))) +(((*1 *2) (-12 (-5 *2 (-859 (-577))) (-5 *1 (-547)))) + ((*1 *1) (-12 (-5 *1 (-859 *2)) (-4 *2 (-1125))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-944)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-271))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1194 *9)) (-5 *4 (-657 *7)) (-5 *5 (-657 *8)) - (-4 *7 (-862)) (-4 *8 (-1071)) (-4 *9 (-969 *8 *6 *7)) - (-4 *6 (-806)) (-5 *2 (-1194 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-865)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-1245)))))) + (-12 (-5 *3 (-660 (-975 (-577)))) (-5 *4 (-660 (-1201))) + (-5 *2 (-660 (-660 (-391)))) (-5 *1 (-1048)) (-5 *5 (-391)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1071 *4 *5)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) + (-14 *5 (-660 (-1201))) (-5 *2 (-660 (-660 (-1049 (-420 *4))))) + (-5 *1 (-1319 *4 *5 *6)) (-14 *6 (-660 (-1201))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-864) (-318) (-148) (-1047))) + (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) + (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-864) (-318) (-148) (-1047))) + (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) + (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-864) (-318) (-148) (-1047))) + (-5 *2 (-660 (-660 (-1049 (-420 *5))))) (-5 *1 (-1319 *5 *6 *7)) + (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-975 *4))) + (-4 *4 (-13 (-864) (-318) (-148) (-1047))) + (-5 *2 (-660 (-660 (-1049 (-420 *4))))) (-5 *1 (-1319 *4 *5 *6)) + (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201)))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-1243)) (-4 *5 (-1265 *3)) (-4 *6 (-1265 (-419 *5))) - (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) - (-4 *2 (-1239))))) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-577)) (-5 *5 (-1183)) (-5 *6 (-705 (-228))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-765))))) +(((*1 *1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) + (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-704 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1074)) (-5 *1 (-730 *2 *3)) + (-4 *3 (-664 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1074)) (-5 *1 (-730 *2 *3)) + (-4 *3 (-664 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-174)) (-4 *2 (-1074)))) + ((*1 *1 *1) (-12 (-5 *1 (-852 *2)) (-4 *2 (-174)) (-4 *2 (-1074))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-868)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-577)) (-5 *1 (-391))))) +(((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-145)))) + ((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-145))))) +(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1223)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1223))))) +(((*1 *2) (-12 (-5 *2 (-859 (-577))) (-5 *1 (-547)))) + ((*1 *1) (-12 (-5 *1 (-859 *2)) (-4 *2 (-1125))))) +(((*1 *1) (-5 *1 (-145))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-1158 (-228))) (-5 *1 (-271))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-657 - (-2 (|:| -1542 (-784)) - (|:| |eqns| - (-657 - (-2 (|:| |det| *7) (|:| |rows| (-657 (-576))) - (|:| |cols| (-657 (-576)))))) - (|:| |fgb| (-657 *7))))) - (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-784)) - (-5 *1 (-944 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-609))) (-5 *1 (-609))))) -(((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1265 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-724 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1265 *3)) (-5 *1 (-725 *3 *2)) (-4 *3 (-1071)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-728 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1194 *3))))) -(((*1 *1 *1 *2) - (-12 + (-12 (-5 *3 (-1071 *4 *5)) (-4 *4 (-13 (-864) (-318) (-148) (-1047))) + (-14 *5 (-660 (-1201))) (-5 *2 - (-2 (|:| -4240 (-657 (-877))) (|:| -3733 (-657 (-877))) - (|:| |presup| (-657 (-877))) (|:| -2773 (-657 (-877))) - (|:| |args| (-657 (-877))))) - (-5 *1 (-1198)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-657 (-877)))) (-5 *1 (-1198))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-669 *3)) (-4 *3 (-1071)) (-4 *3 (-374)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-784)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) - (-5 *1 (-672 *5 *2)) (-4 *2 (-669 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) + (-660 (-2 (|:| -3024 (-1197 *4)) (|:| -2710 (-660 (-975 *4)))))) + (-5 *1 (-1319 *4 *5 *6)) (-14 *6 (-660 (-1201))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) - (|:| |c2| (-419 *5)) (|:| |deg| (-784)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1265 (-419 *5)))))) -(((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) -(((*1 *2 *3) - (-12 (-5 *3 (-941)) + (-660 (-2 (|:| -3024 (-1197 *5)) (|:| -2710 (-660 (-975 *5)))))) + (-5 *1 (-1319 *5 *6 *7)) (-5 *3 (-660 (-975 *5))) + (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 - (-3 (-1194 *4) - (-1289 (-657 (-2 (|:| -3071 *4) (|:| -3178 (-1142))))))) - (-5 *1 (-357 *4)) (-4 *4 (-360))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-657 *1)) (-4 *1 (-317))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) - (-4 *4 (-1265 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-933 *4 *5)) - (-4 *5 (-1265 (-419 *4)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1071)) (-5 *1 (-727 *2 *4)) - (-4 *4 (-661 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-372 (-115))) (-5 *1 (-849 *2)) (-4 *2 (-1071))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-702 (-227))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-766))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) - (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) - (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1060 (-576)) (-652 (-576)) (-464))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1274 *4 *5 *6)) - (|:| |%expon| (-329 *4 *5 *6)) - (|:| |%expTerms| - (-657 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) - (|:| |%type| (-1180)))) - (-5 *1 (-1275 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1224) (-442 *3))) - (-14 *5 (-1198)) (-14 *6 *4)))) -(((*1 *2) - (-12 (-5 *2 (-1289 (-1123 *3 *4))) (-5 *1 (-1123 *3 *4)) - (-14 *3 (-941)) (-14 *4 (-941))))) -(((*1 *2) - (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) - (-4 *4 (-1122))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) - ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1048 *3)) (-4 *3 (-1239))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) - (-4 *5 (-13 (-442 *4) (-1024) (-1224))) - (-4 *3 (-13 (-442 (-171 *4)) (-1024) (-1224)))))) -(((*1 *2 *2) - (-12 + (-660 (-2 (|:| -3024 (-1197 *5)) (|:| -2710 (-660 (-975 *5)))))) + (-5 *1 (-1319 *5 *6 *7)) (-5 *3 (-660 (-975 *5))) + (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-864) (-318) (-148) (-1047))) (-5 *2 - (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) - (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) - (|:| |ub| (-657 (-856 (-227)))))) - (-5 *1 (-276))))) -(((*1 *1) (-5 *1 (-518)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-657 (-972 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-657 (-972 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-657 (-972 *3))))) + (-660 (-2 (|:| -3024 (-1197 *5)) (|:| -2710 (-660 (-975 *5)))))) + (-5 *1 (-1319 *5 *6 *7)) (-5 *3 (-660 (-975 *5))) + (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-864) (-318) (-148) (-1047))) + (-5 *2 + (-660 (-2 (|:| -3024 (-1197 *4)) (|:| -2710 (-660 (-975 *4)))))) + (-5 *1 (-1319 *4 *5 *6)) (-5 *3 (-660 (-975 *4))) + (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201)))))) +(((*1 *2) + (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) + (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) + (-5 *1 (-1013 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-5 *2 (-657 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) - (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3))))) + (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) + (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) + (-5 *1 (-1132 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) (-5 *3 (-228)) + (-5 *2 (-1060)) (-5 *1 (-765))))) +(((*1 *2 *2) + (-12 (-4 *2 (-174)) (-4 *2 (-1074)) (-5 *1 (-730 *2 *3)) + (-4 *3 (-664 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-852 *2)) (-4 *2 (-174)) (-4 *2 (-1074))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-868)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-880))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1125)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-787)) (-5 *2 (-420 (-577))) (-5 *1 (-228)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-787)) (-5 *2 (-420 (-577))) (-5 *1 (-228)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-787)) (-5 *2 (-420 (-577))) (-5 *1 (-391)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-787)) (-5 *2 (-420 (-577))) (-5 *1 (-391))))) +(((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1223))))) +(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-892)))) ((*1 *2 *3) - (-12 (-5 *3 (-1289 (-465 *4 *5 *6 *7))) (-5 *2 (-657 (-972 *4))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) - (-14 *5 (-941)) (-14 *6 (-657 (-1198))) (-14 *7 (-1289 (-702 *4)))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-806)) - (-4 *3 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $))))) (-4 *5 (-568)) - (-5 *1 (-745 *4 *3 *5 *2)) (-4 *2 (-969 (-419 (-972 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1071)) (-4 *5 (-806)) - (-4 *3 - (-13 (-862) - (-10 -8 (-15 -4148 ((-1198) $)) - (-15 -3032 ((-3 $ "failed") (-1198)))))) - (-5 *1 (-1006 *4 *5 *3 *2)) (-4 *2 (-969 (-972 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-657 *6)) - (-4 *6 - (-13 (-862) - (-10 -8 (-15 -4148 ((-1198) $)) - (-15 -3032 ((-3 $ "failed") (-1198)))))) - (-4 *4 (-1071)) (-4 *5 (-806)) (-5 *1 (-1006 *4 *5 *6 *2)) - (-4 *2 (-969 (-972 *4) *5 *6))))) -(((*1 *1) (-5 *1 (-1294)))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-694)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 (-1203))) (-5 *1 (-1140))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3436 *3))) - (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-518)) (-5 *3 (-1126)) (-5 *1 (-301))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-446)) + (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-600 *2)) (-4 *2 (-558))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-944)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-271))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-864) (-318) (-148) (-1047))) + (-5 *2 (-660 (-1071 *5 *6))) (-5 *1 (-1319 *5 *6 *7)) + (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-864) (-318) (-148) (-1047))) + (-5 *2 (-660 (-1071 *5 *6))) (-5 *1 (-1319 *5 *6 *7)) + (-14 *6 (-660 (-1201))) (-14 *7 (-660 (-1201))))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-975 *4))) + (-4 *4 (-13 (-864) (-318) (-148) (-1047))) + (-5 *2 (-660 (-1071 *4 *5))) (-5 *1 (-1319 *4 *5 *6)) + (-14 *5 (-660 (-1201))) (-14 *6 (-660 (-1201)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 - (-657 - (-3 (|:| -2676 (-1198)) - (|:| -3968 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576))))))))) - (-5 *1 (-1202))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1265 *3)))) + (-2 (|:| -3512 (-660 (-880))) (|:| -4243 (-660 (-880))) + (|:| |presup| (-660 (-880))) (|:| -3503 (-660 (-880))) + (|:| |args| (-660 (-880))))) + (-5 *1 (-1201)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-660 (-880)))) (-5 *1 (-1201))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) + (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) + (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-765))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-660 *2)) (-5 *1 (-114 *2)) + (-4 *2 (-1125)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1265 *3)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-660 *4))) (-4 *4 (-1125)) + (-5 *1 (-114 *4)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-784))) - (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1265 *3))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4467)) (-4 *1 (-120 *2)) (-4 *2 (-1239))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-784)) (-5 *1 (-688 *3)) (-4 *3 (-1071)) - (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-657 (-702 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1198)) - (-5 *2 - (-2 (|:| |zeros| (-1179 (-227))) (|:| |ones| (-1179 (-227))) - (|:| |singularities| (-1179 (-227))))) - (-5 *1 (-105))))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1125)) + (-5 *1 (-114 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-660 *4))) + (-5 *1 (-114 *4)) (-4 *4 (-1125)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-664 *3)) (-4 *3 (-1074)) + (-5 *1 (-730 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-852 *3))))) +(((*1 *1 *1) (-5 *1 (-228))) ((*1 *1 *1) (-5 *1 (-391))) + ((*1 *1) (-5 *1 (-391)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-1223))))) +(((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-158)))) + ((*1 *2 *3) + (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-558))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1194 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) - (-5 *1 (-32 *4 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-963 *5)) (-4 *5 (-1071)) (-5 *2 (-784)) - (-5 *1 (-1186 *4 *5)) (-14 *4 (-941)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 (-784))) (-5 *3 (-784)) (-5 *1 (-1186 *4 *5)) - (-14 *4 (-941)) (-4 *5 (-1071)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 (-784))) (-5 *3 (-963 *5)) (-4 *5 (-1071)) - (-5 *1 (-1186 *4 *5)) (-14 *4 (-941))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1239)) - (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *6 *2 *7)) (-4 *6 (-1071)) - (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-701 *3 *4 *5 *2)) - (-4 *2 (-700 *3 *4 *5))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1069))))) + (-12 (-5 *2 (-944)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-271))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1317))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1060)) (-5 *1 (-764))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-664 *3)) (-4 *3 (-1074)) + (-5 *1 (-730 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-852 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) + ((*1 *1 *1 *1) (-5 *1 (-880))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1051 *3)) (-4 *3 (-1242))))) +(((*1 *1) (-5 *1 (-228))) ((*1 *1) (-5 *1 (-391)))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1125)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1183)) (-5 *1 (-1223))))) +(((*1 *2 *3) + (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-787)) (-5 *1 (-600 *2)) (-4 *2 (-558))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-941)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-270))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-889)) - (-5 *5 (-941)) (-5 *6 (-657 (-270))) (-5 *2 (-480)) (-5 *1 (-1293)))) + (-12 (-5 *2 (-892)) (-5 *3 (-660 (-271))) (-5 *1 (-269))))) +(((*1 *2 *1) (-12 (-5 *2 (-996)) (-5 *1 (-1317))))) +(((*1 *1) (-5 *1 (-1297)))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-697)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1206))) (-5 *1 (-1143))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) + (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223))))) +(((*1 *2 *3) + (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-787)) (-5 *1 (-600 *2)) (-4 *2 (-558)))) ((*1 *2 *3) - (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *2 (-480)) - (-5 *1 (-1293)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-657 (-270))) - (-5 *2 (-480)) (-5 *1 (-1293))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1179 *4)) (-5 *3 (-576)) (-4 *4 (-1071)) - (-5 *1 (-1182 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-1281 *3 *4 *5)) (-4 *3 (-1071)) - (-14 *4 (-1198)) (-14 *5 *3)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-657 (-795 *3))) (-5 *1 (-795 *3)) (-4 *3 (-568)) - (-4 *3 (-1071))))) + (-12 (-5 *2 (-2 (|:| -4146 *3) (|:| -3556 (-787)))) (-5 *1 (-600 *3)) + (-4 *3 (-558))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-892)) (-5 *3 (-660 (-271))) (-5 *1 (-269))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1307 (-1201) *3)) (-4 *3 (-1074)) (-5 *1 (-1314 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1307 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) + (-5 *1 (-1316 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1060)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1074)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1268 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222))))) +(((*1 *2 *3) + (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-784)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-941)))) + (-12 (-5 *4 (-787)) (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-558))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-271))))) +(((*1 *2 *1) + (-12 (-5 *2 (-660 (-2 (|:| |k| (-1201)) (|:| |c| (-1314 *3))))) + (-5 *1 (-1314 *3)) (-4 *3 (-1074)))) + ((*1 *2 *1) + (-12 (-5 *2 (-660 (-2 (|:| |k| *3) (|:| |c| (-1316 *3 *4))))) + (-5 *1 (-1316 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1074)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1268 *3))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-787)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-944)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) (-4 *4 (-174)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-941)) (-5 *1 (-158)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-158)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-944)) (-5 *1 (-158)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224))) - (-5 *1 (-229 *3)))) + (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227))) + (-5 *1 (-230 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-1134)) (-4 *2 (-1239)))) + (-12 (-5 *1 (-305 *2)) (-4 *2 (-1137)) (-4 *2 (-1242)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-1134)) (-4 *2 (-1239)))) + (-12 (-5 *1 (-305 *2)) (-4 *2 (-1137)) (-4 *2 (-1242)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-132)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1122)))) + (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-132)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-373 *2)) (-4 *2 (-1125)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-1125)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-392 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-862)))) + (-12 (-5 *1 (-393 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-865)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-1122)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) + (-12 (-4 *1 (-394 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1125)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) - (-4 *6 (-243 (-3440 *3) (-784))) + (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) + (-4 *6 (-244 (-3484 *3) (-787))) (-14 *7 - (-1 (-112) (-2 (|:| -3178 *5) (|:| -1801 *6)) - (-2 (|:| -3178 *5) (|:| -1801 *6)))) - (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-862)) - (-4 *2 (-969 *4 *6 (-879 *3))))) + (-1 (-112) (-2 (|:| -3222 *5) (|:| -3556 *6)) + (-2 (|:| -3222 *5) (|:| -3556 *6)))) + (-5 *1 (-474 *3 *4 *5 *6 *7 *2)) (-4 *5 (-865)) + (-4 *2 (-972 *4 *6 (-882 *3))))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) + (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) + (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1289 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-548))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1071)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-1134)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-697 *5 *6 *7)))) + (-12 (-5 *2 (-1292 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-549))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-609 *3)) (-4 *3 (-1074)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1137)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1125)) + (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-700 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-700 *3 *2 *4)) (-4 *3 (-1071)) (-4 *2 (-384 *3)) - (-4 *4 (-384 *3)))) + (-12 (-4 *1 (-703 *3 *2 *4)) (-4 *3 (-1074)) (-4 *2 (-385 *3)) + (-4 *4 (-385 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-700 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) - (-4 *2 (-384 *3)))) + (-12 (-4 *1 (-703 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) + (-4 *2 (-385 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) + (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) + (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-733))) ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) + (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-736))) ((*1 *1 *1 *1) (-5 *1 (-880))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1289 *4)) (-4 *4 (-1265 *3)) (-4 *3 (-568)) - (-5 *1 (-991 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1073 *2)) (-4 *2 (-1134)))) - ((*1 *1 *1 *1) (-4 *1 (-1134))) + (-12 (-5 *2 (-1292 *4)) (-4 *4 (-1268 *3)) (-4 *3 (-569)) + (-5 *1 (-994 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-1137)))) + ((*1 *1 *1 *1) (-4 *1 (-1137))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1145 *3 *4 *2 *5)) (-4 *4 (-1071)) (-4 *2 (-243 *3 *4)) - (-4 *5 (-243 *3 *4)))) + (-12 (-4 *1 (-1148 *3 *4 *2 *5)) (-4 *4 (-1074)) (-4 *2 (-244 *3 *4)) + (-4 *5 (-244 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1145 *3 *4 *5 *2)) (-4 *4 (-1071)) (-4 *5 (-243 *3 *4)) - (-4 *2 (-243 *3 *4)))) + (-12 (-4 *1 (-1148 *3 *4 *5 *2)) (-4 *4 (-1074)) (-4 *5 (-244 *3 *4)) + (-4 *2 (-244 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1071)) (-4 *4 (-862)) (-5 *1 (-1148 *3 *4 *2)) - (-4 *2 (-969 *3 (-543 *4) *4)))) + (-12 (-4 *3 (-1074)) (-4 *4 (-865)) (-5 *1 (-1151 *3 *4 *2)) + (-4 *2 (-972 *3 (-544 *4) *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1074)) (-5 *1 (-1185 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-963 (-227))) (-5 *3 (-227)) (-5 *1 (-1235)))) + (-12 (-5 *2 (-966 (-228))) (-5 *3 (-228)) (-5 *1 (-1238)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-739)))) + (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-742)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-739)))) + (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1242)) (-4 *2 (-742)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-1287 *3)) (-4 *3 (-1239)) (-4 *3 (-21)))) + (-12 (-5 *2 (-577)) (-4 *1 (-1290 *3)) (-4 *3 (-1242)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) + (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1306 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1071)))) + (-12 (-4 *1 (-1309 *3 *2)) (-4 *3 (-865)) (-4 *2 (-1074)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-859))))) + (-12 (-5 *1 (-1315 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-862))))) (((*1 *2 *1) - (-12 (-4 *2 (-1239)) (-5 *1 (-888 *3 *2)) (-4 *3 (-1239)))) - ((*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) -(((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) - ((*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) - ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576)))) - ((*1 *1 *1) (-4 *1 (-1082)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-877)))) - ((*1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1262 *4 *5)) (-5 *3 (-657 *5)) (-14 *4 (-1198)) - (-4 *5 (-374)) (-5 *1 (-943 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-657 *5)) (-4 *5 (-374)) (-5 *2 (-1194 *5)) - (-5 *1 (-943 *4 *5)) (-14 *4 (-1198)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-657 *6)) (-5 *4 (-784)) (-4 *6 (-374)) - (-5 *2 (-419 (-972 *6))) (-5 *1 (-1072 *5 *6)) (-14 *5 (-1198))))) + (-12 (-4 *2 (-1242)) (-5 *1 (-891 *3 *2)) (-4 *3 (-1242)))) + ((*1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222))))) +(((*1 *2 *3) + (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1183)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-271))))) (((*1 *2 *1) - (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-1124 *3)))) + (-12 (-4 *1 (-1313 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) + (-5 *2 (-835 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1124 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-1186 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1155 (-227))) (-5 *1 (-1291)))) - ((*1 *2 *1) (-12 (-5 *2 (-1155 (-227))) (-5 *1 (-1291))))) -(((*1 *2 *1) - (-12 (-5 *2 (-173)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) - (-4 *4 (-1071))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-374)) - (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) + (-12 (-4 *2 (-862)) (-5 *1 (-1315 *3 *2)) (-4 *3 (-1074))))) (((*1 *2 *1) - (-12 (-4 *1 (-1265 *3)) (-4 *3 (-1071)) (-5 *2 (-1194 *3))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-657 *3)) (-5 *5 (-941)) (-4 *3 (-1265 *4)) - (-4 *4 (-317)) (-5 *1 (-472 *4 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-312)))) - ((*1 *1 *1) (-4 *1 (-312))) - ((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) - ((*1 *1 *1) (-5 *1 (-877)))) + (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1060)) + (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1074)) + (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) + (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222))))) +(((*1 *2 *3) + (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598))))) (((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-132)) - (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4067 *4)))))) - ((*1 *2 *1) - (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-865)) - (-5 *2 (-657 (-888 *4 *3))))) + (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) + (-5 *2 (-835 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-657 (-2 (|:| -1771 *3) (|:| -3607 *4)))) - (-5 *1 (-748 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-739)))) + (-12 (-4 *2 (-862)) (-5 *1 (-1315 *3 *2)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) ((*1 *2 *1) - (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) - (-5 *2 (-1179 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1239)))) + (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1060)) + (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1074)) + (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) + (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1242)))) ((*1 *1 *2) - (-12 (-5 *2 (-972 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) - (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + (-12 (-5 *2 (-975 (-391))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) + (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) ((*1 *1 *2) - (-12 (-5 *2 (-419 (-972 (-390)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) - (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + (-12 (-5 *2 (-420 (-975 (-391)))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) + (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) - (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + (-12 (-5 *2 (-327 (-391))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) + (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) ((*1 *1 *2) - (-12 (-5 *2 (-972 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) - (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + (-12 (-5 *2 (-975 (-577))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) + (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) ((*1 *1 *2) - (-12 (-5 *2 (-419 (-972 (-576)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) - (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + (-12 (-5 *2 (-420 (-975 (-577)))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) + (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) - (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + (-12 (-5 *2 (-327 (-577))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) + (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) ((*1 *1 *2) - (-12 (-5 *2 (-1198)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 *2)) - (-14 *4 (-657 *2)) (-4 *5 (-399)))) + (-12 (-5 *2 (-1201)) (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 *2)) + (-14 *4 (-660 *2)) (-4 *5 (-400)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) - (-14 *3 (-657 (-1198))) (-14 *4 (-657 (-1198))))) - ((*1 *1 *2) (-12 (-5 *2 (-702 (-419 (-972 (-576))))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-702 (-419 (-972 (-390))))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-702 (-972 (-576)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-702 (-972 (-390)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-702 (-326 (-576)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-702 (-326 (-390)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-972 (-576)))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-972 (-390)))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-972 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-972 (-390))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-1289 (-419 (-972 (-576))))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1289 (-419 (-972 (-390))))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1289 (-972 (-576)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1289 (-972 (-390)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1289 (-326 (-576)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1289 (-326 (-390)))) (-4 *1 (-453)))) + (-12 (-5 *2 (-327 *5)) (-4 *5 (-400)) (-5 *1 (-351 *3 *4 *5)) + (-14 *3 (-660 (-1201))) (-14 *4 (-660 (-1201))))) + ((*1 *1 *2) (-12 (-5 *2 (-705 (-420 (-975 (-577))))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-705 (-420 (-975 (-391))))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-705 (-975 (-577)))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-705 (-975 (-391)))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-705 (-327 (-577)))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-705 (-327 (-391)))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-420 (-975 (-577)))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-420 (-975 (-391)))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-975 (-577))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-975 (-391))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-1292 (-420 (-975 (-577))))) (-4 *1 (-454)))) + ((*1 *1 *2) (-12 (-5 *2 (-1292 (-420 (-975 (-391))))) (-4 *1 (-454)))) + ((*1 *1 *2) (-12 (-5 *2 (-1292 (-975 (-577)))) (-4 *1 (-454)))) + ((*1 *1 *2) (-12 (-5 *2 (-1292 (-975 (-391)))) (-4 *1 (-454)))) + ((*1 *1 *2) (-12 (-5 *2 (-1292 (-327 (-577)))) (-4 *1 (-454)))) + ((*1 *1 *2) (-12 (-5 *2 (-1292 (-327 (-391)))) (-4 *1 (-454)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) (|:| |mdnia| - (-2 (|:| |fn| (-326 (-227))) - (|:| -1685 (-657 (-1116 (-856 (-227))))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) - (-5 *1 (-782)))) + (-2 (|:| |fn| (-327 (-228))) + (|:| -4071 (-660 (-1119 (-859 (-228))))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))))) + (-5 *1 (-785)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) - (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-821)))) + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) + (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (-5 *1 (-824)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) - (|:| |lb| (-657 (-856 (-227)))) - (|:| |cf| (-657 (-326 (-227)))) - (|:| |ub| (-657 (-856 (-227)))))) + (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) + (|:| |lb| (-660 (-859 (-228)))) + (|:| |cf| (-660 (-327 (-228)))) + (|:| |ub| (-660 (-859 (-228)))))) (|:| |lsa| - (-2 (|:| |lfn| (-657 (-326 (-227)))) - (|:| -1706 (-657 (-227))))))) - (-5 *1 (-854)))) + (-2 (|:| |lfn| (-660 (-327 (-228)))) + (|:| -1709 (-660 (-228))))))) + (-5 *1 (-857)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |pde| (-657 (-326 (-227)))) + (-2 (|:| |pde| (-660 (-327 (-228)))) (|:| |constraints| - (-657 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-784)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) - (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) - (|:| |tol| (-227)))) - (-5 *1 (-916)))) + (-660 + (-2 (|:| |start| (-228)) (|:| |finish| (-228)) + (|:| |grid| (-787)) (|:| |boundaryType| (-577)) + (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) + (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) + (|:| |tol| (-228)))) + (-5 *1 (-919)))) ((*1 *1 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-1071)) - (-4 *4 (-806)) (-4 *5 (-862)) (-4 *1 (-998 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1239)))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-1074)) + (-4 *4 (-809)) (-4 *5 (-865)) (-4 *1 (-1001 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-1242)))) ((*1 *1 *2) - (-2802 - (-12 (-5 *2 (-972 *3)) - (-12 (-2712 (-4 *3 (-38 (-419 (-576))))) - (-2712 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1198)))) - (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) - (-4 *5 (-862))) - (-12 (-5 *2 (-972 *3)) - (-12 (-2712 (-4 *3 (-557))) (-2712 (-4 *3 (-38 (-419 (-576))))) - (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1198)))) - (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) - (-4 *5 (-862))) - (-12 (-5 *2 (-972 *3)) - (-12 (-2712 (-4 *3 (-1014 (-576)))) (-4 *3 (-38 (-419 (-576)))) - (-4 *5 (-626 (-1198)))) - (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) - (-4 *5 (-862))))) + (-2839 + (-12 (-5 *2 (-975 *3)) + (-12 (-2749 (-4 *3 (-38 (-420 (-577))))) + (-2749 (-4 *3 (-38 (-577)))) (-4 *5 (-627 (-1201)))) + (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) + (-4 *5 (-865))) + (-12 (-5 *2 (-975 *3)) + (-12 (-2749 (-4 *3 (-558))) (-2749 (-4 *3 (-38 (-420 (-577))))) + (-4 *3 (-38 (-577))) (-4 *5 (-627 (-1201)))) + (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) + (-4 *5 (-865))) + (-12 (-5 *2 (-975 *3)) + (-12 (-2749 (-4 *3 (-1017 (-577)))) (-4 *3 (-38 (-420 (-577)))) + (-4 *5 (-627 (-1201)))) + (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) + (-4 *5 (-865))))) ((*1 *1 *2) - (-2802 - (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) - (-12 (-2712 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) - (-4 *5 (-626 (-1198)))) - (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))) - (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198)))) - (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))))) + (-2839 + (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) + (-12 (-2749 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) + (-4 *5 (-627 (-1201)))) + (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))) + (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201)))) + (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))))) ((*1 *1 *2) - (-12 (-5 *2 (-972 (-419 (-576)))) (-4 *1 (-1087 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198))) (-4 *3 (-1071)) - (-4 *4 (-806)) (-4 *5 (-862))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) - (-4 *3 (-13 (-1122) (-34)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-657 *3)) (-5 *1 (-1150 *4 *3)) (-4 *4 (-1265 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1224))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1090 *4 *3)) (-4 *4 (-13 (-861) (-374))) - (-4 *3 (-1265 *4)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1146 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-340)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-340))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) + (-12 (-5 *2 (-975 (-420 (-577)))) (-4 *1 (-1090 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201))) (-4 *3 (-1074)) + (-4 *4 (-809)) (-4 *5 (-865))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222))))) +(((*1 *2 *3) + (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-519)) (-5 *3 (-610)) (-5 *1 (-598))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-341)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-341))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 (-228))) (-5 *2 (-1292 (-715))) (-5 *1 (-316))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1315 *3 *4)) (-4 *3 (-1074)) + (-4 *4 (-862))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-582 *3)) (-4 *3 (-1063 (-577))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1060)) + (-5 *1 (-764))))) (((*1 *2 *1) - (-12 (-4 *3 (-1239)) (-5 *2 (-657 *1)) (-4 *1 (-1032 *3))))) + (-12 (-5 *2 (-660 (-52))) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) - (-5 *1 (-771))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1299))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-963 *4)) (-4 *4 (-1071)) (-5 *1 (-1186 *3 *4)) - (-14 *3 (-941))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1194 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-806)) - (-4 *5 (-862)) (-5 *1 (-755 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-657 (-576))) (-5 *1 (-458)) (-5 *3 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *1 *1) (-5 *1 (-1085)))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1239)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1179 *2)) (-4 *2 (-1239))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-963 (-227)) (-963 (-227)))) (-5 *3 (-657 (-270))) - (-5 *1 (-268)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-963 (-227)) (-963 (-227)))) (-5 *1 (-270)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-657 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) - (-14 *5 (-657 (-1198))) (-4 *6 (-464)) (-5 *2 (-1289 *6)) - (-5 *1 (-643 *5 *6))))) + (-12 (-5 *4 (-787)) (-4 *5 (-1074)) (-5 *2 (-577)) + (-5 *1 (-456 *5 *3 *6)) (-4 *3 (-1268 *5)) + (-4 *6 (-13 (-417) (-1063 *5) (-375) (-1227) (-295))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1074)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) + (-4 *3 (-1268 *4)) + (-4 *5 (-13 (-417) (-1063 *4) (-375) (-1227) (-295)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-1222))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1265 *6)) - (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1060 (-576)))) - (-4 *8 (-1265 (-419 *7))) (-5 *2 (-598 *3)) - (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1265 *4)) - (-4 *5 (-1265 (-419 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-657 (-2 (|:| |val| (-657 *6)) (|:| -3946 *7)))) - (-4 *6 (-1087 *3 *4 *5)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-657 (-2 (|:| |val| (-657 *6)) (|:| -3946 *7)))) - (-4 *6 (-1087 *3 *4 *5)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-1129 *3 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239))))) -(((*1 *2 *3) - (-12 (-4 *1 (-929)) (-5 *2 (-430 (-1194 *1))) (-5 *3 (-1194 *1))))) -(((*1 *2 *3) - (-12 (-4 *1 (-852)) - (-5 *3 - (-2 (|:| |fn| (-326 (-227))) (|:| -1706 (-657 (-227))) - (|:| |lb| (-657 (-856 (-227)))) (|:| |cf| (-657 (-326 (-227)))) - (|:| |ub| (-657 (-856 (-227)))))) - (-5 *2 (-1057)))) - ((*1 *2 *3) - (-12 (-4 *1 (-852)) + (-12 (-4 *5 (-375)) + (-5 *2 (-660 (-2 (|:| C (-705 *5)) (|:| |g| (-1292 *5))))) + (-5 *1 (-1003 *5)) (-5 *3 (-705 *5)) (-5 *4 (-1292 *5))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 - (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) - (-5 *2 (-1057))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-158)) (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4467)) (-4 *1 (-249 *2)) (-4 *2 (-1239)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1239)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) + (-660 + (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 *2)) + (|:| |logand| (-1197 *2))))) + (-5 *4 (-660 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-375)) (-5 *1 (-599 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-715)) (-5 *1 (-316))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1315 *3 *4)) (-4 *3 (-1074)) + (-4 *4 (-862))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1242)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1182 *2)) (-4 *2 (-1242))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *7 (-1125)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 G)))) (-5 *2 (-1060)) + (-5 *1 (-764))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-660 (-52))) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1216 *4 *5)) - (-4 *4 (-1122)) (-4 *5 (-1122))))) + (-12 (-4 *4 (-1074)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) + (-4 *3 (-1268 *4)) + (-4 *5 (-13 (-417) (-1063 *4) (-375) (-1227) (-295)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1220))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-577)) (-5 *3 (-944)) (-5 *1 (-715)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-705 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-375)) (-5 *1 (-1003 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-599 *2)) (-4 *2 (-375))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) - (-5 *2 (-657 (-2 (|:| -2016 *1) (|:| -3209 (-657 *7))))) - (-5 *3 (-657 *7)) (-4 *1 (-1232 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-876)))) - ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-876))))) -(((*1 *2 *1) - (-12 (-5 *2 (-657 (-2 (|:| |k| (-685 *3)) (|:| |c| *4)))) - (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-996))))) -(((*1 *1 *2) - (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-5 *1 (-925 *3))))) + (-12 + (-5 *3 + (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) + (-5 *2 (-660 (-228))) (-5 *1 (-316))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1315 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-862))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1128 *2 *3 *4 *5 *6)) (-4 *2 (-1125)) (-4 *3 (-1125)) + (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051)))) + (-5 *2 (-1060)) (-5 *1 (-764))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-660 (-52))) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1194 (-1194 *4)))) - (-5 *1 (-1237 *4)) (-5 *3 (-1194 (-1194 *4)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-784)) (-4 *5 (-568)) + (-12 (-4 *4 (-1074)) + (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) + (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-944)) (-4 *5 (-1074)) + (-4 *2 (-13 (-417) (-1063 *5) (-375) (-1227) (-295))) + (-5 *1 (-456 *5 *3 *2)) (-4 *3 (-1268 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-52)) (-5 *1 (-1220))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-375)) + (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-5 *1 (-463 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-375)) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-991 *5 *3)) (-4 *3 (-1265 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321)))) - ((*1 *2 *1) - (-12 (-5 *2 (-784)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) - (-4 *4 (-1071))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-908 *4)) (-4 *4 (-1122)) (-5 *1 (-905 *4 *3)) - (-4 *3 (-1122))))) + (-2 (|:| R (-705 *6)) (|:| A (-705 *6)) (|:| |Ainv| (-705 *6)))) + (-5 *1 (-1003 *6)) (-5 *3 (-705 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-1071)) (-5 *2 (-1289 *3)) (-5 *1 (-725 *3 *4)) - (-4 *4 (-1265 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1166)) (-5 *2 (-1256 (-576)))))) -(((*1 *1 *2) (-12 (-5 *2 - (-657 - (-2 - (|:| -4291 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1289 (-326 (-227)))) - (|:| |yinit| (-657 (-227))) (|:| |intvals| (-657 (-227))) - (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -4440 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390))))))) - (-5 *1 (-816))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1122) (-1060 *5))) - (-4 *5 (-902 *4)) (-4 *4 (-1122)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-951 *4 *5 *6))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) - (-5 *2 (-1289 *6)) (-5 *1 (-347 *3 *4 *5 *6)) - (-4 *6 (-353 *3 *4 *5))))) + (-660 + (-2 (|:| |scalar| (-420 (-577))) (|:| |coeff| (-1197 *3)) + (|:| |logand| (-1197 *3))))) + (-5 *1 (-599 *3)) (-4 *3 (-375))))) +(((*1 *2 *2) (-12 (-5 *2 (-1119 (-859 (-228)))) (-5 *1 (-316))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-808)))) + ((*1 *2 *1) + (-12 (-5 *2 (-787)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) + (-14 *4 (-660 (-1201))))) + ((*1 *2 *1) + (-12 (-5 *2 (-577)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) + (-14 *4 (-660 (-1201))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-261 *4 *3 *5 *6)) (-4 *4 (-1074)) (-4 *3 (-865)) + (-4 *5 (-276 *3)) (-4 *6 (-809)) (-5 *2 (-787)))) + ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-285)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1197 *8)) (-5 *4 (-660 *6)) (-4 *6 (-865)) + (-4 *8 (-972 *7 *5 *6)) (-4 *5 (-809)) (-4 *7 (-1074)) + (-5 *2 (-660 (-787))) (-5 *1 (-332 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-944)))) + ((*1 *2 *1) + (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) + (-5 *2 (-787)))) + ((*1 *2 *1) (-12 (-4 *1 (-483 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-569)) (-5 *2 (-577)) (-5 *1 (-636 *3 *4)) + (-4 *4 (-1268 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-724 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) + ((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-4 *3 (-1074)) (-5 *2 (-787)))) + ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) + ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-660 *6)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-1074)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 (-787))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-972 *4 *5 *3)) (-4 *4 (-1074)) (-4 *5 (-809)) + (-4 *3 (-865)) (-5 *2 (-787)))) + ((*1 *2 *1) + (-12 (-4 *1 (-998 *3 *2 *4)) (-4 *3 (-1074)) (-4 *4 (-865)) + (-4 *2 (-808)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-787)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1283 *3)) + (-5 *2 (-577)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1275 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1252 *3)) + (-5 *2 (-420 (-577))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-849 (-944))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1313 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) + (-5 *2 (-787))))) +(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-322)))) + ((*1 *2 *1) + (-12 (-5 *2 (-787)) (-5 *1 (-1189 *3 *4)) (-14 *3 (-944)) + (-4 *4 (-1074))))) (((*1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *2 (-464))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) + (-12 (-4 *1 (-1128 *2 *3 *4 *5 *6)) (-4 *2 (-1125)) (-4 *3 (-1125)) + (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051)))) (-5 *3 (-228)) + (-5 *2 (-1060)) (-5 *1 (-764))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-112)) (-5 *1 (-911 *4)) + (-4 *4 (-1125))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1074)) (-5 *2 (-577)) (-5 *1 (-456 *4 *3 *5)) + (-4 *3 (-1268 *4)) + (-4 *5 (-13 (-417) (-1063 *4) (-375) (-1227) (-295)))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1242)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-865)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-865)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-577)) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-293 *2)) (-4 *2 (-1242)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |contp| (-576)) - (|:| -2067 (-657 (-2 (|:| |irr| *3) (|:| -1439 (-576))))))) - (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) + (-2 + (|:| -4295 + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (|:| -4444 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1182 (-228))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4071 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-572)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-787)) (-4 *1 (-711 *2)) (-4 *2 (-1125)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |contp| (-576)) - (|:| -2067 (-657 (-2 (|:| |irr| *3) (|:| -1439 (-576))))))) - (-5 *1 (-1254 *3)) (-4 *3 (-1265 (-576)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-969 *3 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1213 *2)) (-4 *2 (-374))))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) + (-2 + (|:| -4295 + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) + (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (|:| -4444 + (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) + (|:| |expense| (-391)) (|:| |accuracy| (-391)) + (|:| |intermediateResults| (-391)))))) + (-5 *1 (-819)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1297)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) + (-4 *4 (-1125))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *1 (-1002 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-660 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-599 *3)) (-4 *3 (-375))))) +(((*1 *2 *3) + (-12 (-5 *3 (-327 (-228))) (-5 *2 (-327 (-420 (-577)))) + (-5 *1 (-316))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-787)) (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) + (-4 *4 (-174)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-787)) (-4 *1 (-1313 *3 *4)) (-4 *3 (-865)) + (-4 *4 (-1074))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-944)) (-5 *1 (-1126 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051)))) + (-5 *2 (-1060)) (-5 *1 (-764))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-660 (-1201))) (-5 *3 (-52)) (-5 *1 (-911 *4)) + (-4 *4 (-1125))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1127 (-787))) (-5 *6 (-787)) + (-5 *2 + (-2 (|:| |contp| (-577)) + (|:| -3363 (-660 (-2 (|:| |irr| *3) (|:| -3504 (-577))))))) + (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1239)) - (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) + (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1242)) + (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) - (-4 *5 (-384 *2)) (-4 *2 (-1239)))) + (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) + (-4 *5 (-385 *2)) (-4 *2 (-1242)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1239)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1239)))) + (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1242)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1242)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-657 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 (-576)) (-14 *5 (-784)))) + (-12 (-5 *3 (-660 (-577))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 (-577)) (-14 *5 (-787)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-784)))) + (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-787)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-784)))) + (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-787)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-784)))) + (-12 (-5 *3 (-577)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-787)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) - (-14 *4 (-784)))) + (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-577)) + (-14 *4 (-787)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1198)) (-5 *2 (-250 (-1180))) (-5 *1 (-216 *4)) + (-12 (-5 *3 (-1201)) (-5 *2 (-251 (-1183))) (-5 *1 (-216 *4)) (-4 *4 - (-13 (-862) - (-10 -8 (-15 -2835 ((-1180) $ *3)) (-15 -2041 ((-1294) $)) - (-15 -1729 ((-1294) $))))))) + (-13 (-865) + (-10 -8 (-15 -2872 ((-1183) $ *3)) (-15 -2072 ((-1297) $)) + (-15 -1696 ((-1297) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1011)) (-5 *1 (-216 *3)) + (-12 (-5 *2 (-1014)) (-5 *1 (-216 *3)) (-4 *3 - (-13 (-862) - (-10 -8 (-15 -2835 ((-1180) $ (-1198))) (-15 -2041 ((-1294) $)) - (-15 -1729 ((-1294) $))))))) + (-13 (-865) + (-10 -8 (-15 -2872 ((-1183) $ (-1201))) (-15 -2072 ((-1297) $)) + (-15 -1696 ((-1297) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-784)) (-5 *1 (-250 *4)) (-4 *4 (-862)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-862)))) + (-12 (-5 *3 "count") (-5 *2 (-787)) (-5 *1 (-251 *4)) (-4 *4 (-865)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-251 *3)) (-4 *3 (-865)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-862)))) + (-12 (-5 *2 "unique") (-5 *1 (-251 *3)) (-4 *3 (-865)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1239)) (-4 *2 (-1239)))) + (-12 (-4 *1 (-297 *3 *2)) (-4 *3 (-1242)) (-4 *2 (-1242)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1239)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-657 *1)) (-4 *1 (-312)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1242)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-660 *1)) (-4 *1 (-313)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1243)) (-4 *3 (-1265 *2)) - (-4 *4 (-1265 (-419 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1180)) (-5 *1 (-514)))) + (-12 (-4 *1 (-354 *2 *3 *4)) (-4 *2 (-1246)) (-4 *3 (-1268 *2)) + (-4 *4 (-1268 (-420 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-1183)) (-5 *1 (-515)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-784)) (-5 *1 (-688 *2)) (-4 *2 (-1122)))) + (-12 (-5 *3 (-787)) (-5 *1 (-691 *2)) (-4 *2 (-1125)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-657 (-576))) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) + (-12 (-5 *2 (-660 (-577))) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-657 (-908 *4))) (-5 *1 (-908 *4)) - (-4 *4 (-1122)))) + (-12 (-5 *2 (-115)) (-5 *3 (-660 (-911 *4))) (-5 *1 (-911 *4)) + (-4 *4 (-1125)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-925 *4)) (-5 *1 (-924 *4)) - (-4 *4 (-1122)))) + (-12 (-5 *3 (-787)) (-5 *2 (-928 *4)) (-5 *1 (-927 *4)) + (-4 *4 (-1125)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-1032 *2)) (-4 *2 (-1239)))) - ((*1 *2 *1) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239)))) + (-12 (-5 *3 "value") (-4 *1 (-1035 *2)) (-4 *2 (-1242)))) + ((*1 *2 *1) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *2 *6 *7)) (-4 *2 (-1071)) - (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) + (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *2 *6 *7)) (-4 *2 (-1074)) + (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *2 *6 *7)) - (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1071)))) + (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *2 *6 *7)) + (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1074)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-941)) (-4 *4 (-1122)) - (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) - (-5 *1 (-1098 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))))) + (-12 (-5 *3 (-944)) (-4 *4 (-1125)) + (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) + (-5 *1 (-1101 *4 *5 *2)) + (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-941)) (-4 *4 (-1122)) - (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) - (-5 *1 (-1099 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1166))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-1198)))) + (-12 (-5 *3 (-944)) (-4 *4 (-1125)) + (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) + (-5 *1 (-1102 *4 *5 *2)) + (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1169))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-1201)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-419 *1)) (-4 *1 (-1265 *2)) (-4 *2 (-1071)) - (-4 *2 (-374)))) + (-12 (-5 *3 (-420 *1)) (-4 *1 (-1268 *2)) (-4 *2 (-1074)) + (-4 *2 (-375)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-419 *1)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)) - (-4 *3 (-568)))) + (-12 (-5 *2 (-420 *1)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)) + (-4 *3 (-569)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) + (-12 (-5 *3 "last") (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1277 *3)) (-4 *3 (-1239)))) + (-12 (-5 *2 "rest") (-4 *1 (-1280 *3)) (-4 *3 (-1242)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *7 (-1265 *5)) (-4 *4 (-737 *5 *7)) - (-5 *2 (-2 (|:| -3750 (-702 *6)) (|:| |vec| (-1289 *5)))) - (-5 *1 (-824 *5 *6 *7 *4 *3)) (-4 *6 (-669 *5)) (-4 *3 (-669 *4))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5))))) + (-12 (-5 *3 "first") (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1125)) (-5 *1 (-1219 *3 *2)) (-4 *3 (-1125))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *1 (-1002 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-375))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1292 (-327 (-228)))) + (-5 *2 + (-2 (|:| |additions| (-577)) (|:| |multiplications| (-577)) + (|:| |exponentiations| (-577)) (|:| |functionCalls| (-577)))) + (-5 *1 (-316))))) (((*1 *1 *2) - (-12 (-5 *2 (-1 (-1179 *3))) (-5 *1 (-1179 *3)) (-4 *3 (-1239))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1122)) (-4 *5 (-1122)) - (-5 *2 (-1 *5)) (-5 *1 (-696 *4 *5))))) + (|partial| -12 (-5 *2 (-1307 *3 *4)) (-4 *3 (-865)) (-4 *4 (-174)) + (-5 *1 (-680 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-680 *3 *4)) (-5 *1 (-1312 *3 *4)) + (-4 *3 (-865)) (-4 *4 (-174))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1198)) (-5 *3 (-446)) (-4 *5 (-1122)) - (-5 *1 (-1128 *5 *4)) (-4 *4 (-442 *5))))) + (-12 (-5 *2 (-1201)) (-5 *3 (-447)) (-4 *5 (-1125)) + (-5 *1 (-1131 *5 *4)) (-4 *4 (-443 *5))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-944)) (-5 *1 (-1126 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) (((*1 *2 *1) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1224))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-861)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1090 *4 *3)) (-4 *4 (-13 (-861) (-374))) - (-4 *3 (-1265 *4)) (-5 *2 (-112))))) + (-12 (-5 *2 (-2 (|:| |var| (-660 (-1201))) (|:| |pred| (-52)))) + (-5 *1 (-911 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051)))) + (-5 *2 (-1060)) (-5 *1 (-764))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) (((*1 *2) - (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) - (-4 *4 (-1122))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *2 (-862)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 (-390))) (-5 *1 (-270)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-1179 *3)) (-4 *3 (-1239)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) + (-4 *4 (-1125))))) +(((*1 *2 *2) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-318)) (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *1 (-1002 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-595))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) + (-5 *2 (-391)) (-5 *1 (-277)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1292 (-327 (-228)))) (-5 *2 (-391)) (-5 *1 (-316))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) + (-4 *4 (-174)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-443 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1117 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1201)))) ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1180)) (|:| -2676 (-1180)))) - (-5 *1 (-835))))) -(((*1 *2) - (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) - (-5 *2 (-784)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-5 *2 (-784))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-750 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1122)))) - ((*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1122))))) + (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-787)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-865)) + (-4 *4 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-687)))) + ((*1 *2 *1) + (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1126 *3 *4)) (-14 *3 (-944)) + (-14 *4 (-944))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-763))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) (((*1 *2) - (-12 (-5 *2 (-978 (-1142))) (-5 *1 (-354 *3 *4)) (-14 *3 (-941)) - (-14 *4 (-941)))) - ((*1 *2) - (-12 (-5 *2 (-978 (-1142))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-1194 *3)))) - ((*1 *2) - (-12 (-5 *2 (-978 (-1142))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-941))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1060 *2))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1122)) - (-4 *4 (-132))))) -(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1239)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-784)))) + (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) +(((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1242)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-787)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-784)) (-4 *1 (-272 *4)) - (-4 *4 (-1239)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-787)) (-4 *1 (-273 *4)) + (-4 *4 (-1242)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1239)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1242)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) - (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) + (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-374)) (-4 *2 (-918 *3)) (-5 *1 (-598 *2)) - (-5 *3 (-1198)))) + (-12 (-4 *2 (-375)) (-4 *2 (-921 *3)) (-5 *1 (-599 *2)) + (-5 *3 (-1201)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-877)))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-599 *2)) (-4 *2 (-375)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-880)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-912 *2 *3)) (-4 *3 (-1239)) (-4 *2 (-1239)))) + (-12 (-4 *1 (-915 *2 *3)) (-4 *3 (-1242)) (-4 *2 (-1242)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 (-784))) (-4 *1 (-920 *4)) - (-4 *4 (-1122)))) + (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 (-787))) (-4 *1 (-923 *4)) + (-4 *4 (-1125)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-784)) (-4 *1 (-920 *2)) (-4 *2 (-1122)))) + (-12 (-5 *3 (-787)) (-4 *1 (-923 *2)) (-4 *2 (-1125)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-657 *3)) (-4 *1 (-920 *3)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-660 *3)) (-4 *1 (-923 *3)) (-4 *3 (-1125)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1265 *3)) (-4 *3 (-1071))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1268 *3)) (-4 *3 (-1074))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) - (-5 *1 (-1197))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-877))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1198)) - (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-657 (-227))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1198)) - (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-657 (-227))) (-5 *1 (-310))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1265 (-419 (-576)))) (-5 *1 (-933 *3 *2)) - (-4 *2 (-1265 (-419 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) - ((*1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-877))))) + (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) + (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) + (-5 *1 (-1200))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) + (-4 *4 (-1125))))) +(((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-880))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-465)) + (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *1 (-1002 *3 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-592))))) +(((*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-228)) (-5 *1 (-316))))) (((*1 *2 *1) - (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) - (-4 *5 (-243 (-3440 *3) (-784))) - (-14 *6 - (-1 (-112) (-2 (|:| -3178 *2) (|:| -1801 *5)) - (-2 (|:| -3178 *2) (|:| -1801 *5)))) - (-4 *2 (-862)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-969 *4 *5 (-879 *3)))))) + (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) + (-5 *2 (-2 (|:| |k| (-835 *3)) (|:| |c| *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-660 (-944))) (-5 *1 (-1126 *3 *4)) (-14 *3 (-944)) + (-14 *4 (-944))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-763))))) +(((*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) (((*1 *1 *2) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-1289 *3))))) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-1292 *3))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) - (-5 *1 (-1197))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1162 *4 *5)) (-4 *4 (-13 (-1122) (-34))) - (-4 *5 (-13 (-1122) (-34))) (-5 *2 (-112)) (-5 *1 (-1163 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-657 *3)) (-5 *1 (-991 *4 *3)) - (-4 *3 (-1265 *4))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *3 (-576)) - (-5 *2 (-1057)) (-5 *1 (-769))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-657 *3)) (-5 *6 (-1194 *3)) - (-4 *3 (-13 (-442 *7) (-27) (-1224))) - (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1122)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-657 *3)) - (-5 *6 (-419 (-1194 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1224))) - (-4 *7 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1122))))) -(((*1 *1) (-5 *1 (-590))) - ((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-878)))) - ((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-878)))) + (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) + (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) + (-5 *1 (-1200))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) + (-4 *4 (-1125))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-465)) + (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *1 (-1002 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-592))))) +(((*1 *2 *3) + (-12 (-5 *3 (-327 (-228))) (-5 *2 (-420 (-577))) (-5 *1 (-316))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1316 *3 *4)) (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-835 *3)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) + (-4 *4 (-1074)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074))))) +(((*1 *1) (-5 *1 (-591))) + ((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-881)))) + ((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-881)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-877)) (-5 *2 (-1294)) (-5 *1 (-878)))) + (-12 (-5 *3 (-1183)) (-5 *4 (-880)) (-5 *2 (-1297)) (-5 *1 (-881)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-1179 *4)) - (-4 *4 (-1122)) (-4 *4 (-1239))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-963 (-227)) (-963 (-227)))) (-5 *1 (-270)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1289 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) - (-5 *2 (-702 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1289 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-702 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-1289 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1265 *4)) (-5 *2 (-1289 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1289 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) - (-5 *2 (-1289 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1289 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) - (-5 *2 (-702 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1289 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1289 *3)) (-5 *1 (-651 *3 *4)) (-4 *3 (-374)) - (-14 *4 (-657 (-1198))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-657 (-702 *5))) (-5 *3 (-702 *5)) (-4 *5 (-374)) - (-5 *2 (-1289 *5)) (-5 *1 (-1108 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-1265 *3)) (-4 *3 (-1071))))) -(((*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-1180)) (-5 *1 (-799))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *5)) (-5 *4 (-941)) (-4 *5 (-862)) - (-5 *2 (-59 (-657 (-685 *5)))) (-5 *1 (-685 *5))))) -(((*1 *1 *1) (-5 *1 (-1197))) + (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-1182 *4)) + (-4 *4 (-1125)) (-4 *4 (-1242))))) +(((*1 *2) + (-12 (-5 *2 (-1292 (-1126 *3 *4))) (-5 *1 (-1126 *3 *4)) + (-14 *3 (-944)) (-14 *4 (-944))))) +(((*1 *2 *1) + (-12 (-5 *2 (-660 (-52))) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-763))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) +(((*1 *1 *1) (-5 *1 (-1200))) ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) - (-5 *1 (-1197))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) - ((*1 *1 *1 *1) (-4 *1 (-557))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) - ((*1 *1 *2) (-12 (-5 *1 (-731 *2)) (-4 *2 (-374)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-784))))) + (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) + (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) + (-5 *1 (-1200))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-941)) (-5 *1 (-799))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *1 *1) (-5 *1 (-1085)))) -(((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1 (-390))) (-5 *1 (-1062))))) -(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 (-908 *6))) - (-5 *5 (-1 (-905 *6 *8) *8 (-908 *6) (-905 *6 *8))) (-4 *6 (-1122)) - (-4 *8 (-13 (-1071) (-626 (-908 *6)) (-1060 *7))) - (-5 *2 (-905 *6 *8)) (-4 *7 (-1071)) (-5 *1 (-961 *6 *7 *8))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -1771 *3) (|:| |gap| (-784)) (|:| -2335 (-795 *3)) - (|:| -3644 (-795 *3)))) - (-5 *1 (-795 *3)) (-4 *3 (-1071)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) - (-5 *2 - (-2 (|:| -1771 *1) (|:| |gap| (-784)) (|:| -2335 *1) - (|:| -3644 *1))) - (-4 *1 (-1087 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *2 - (-2 (|:| -1771 *1) (|:| |gap| (-784)) (|:| -2335 *1) - (|:| -3644 *1))) - (-4 *1 (-1087 *3 *4 *5))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-419 (-576))) (-5 *1 (-390))))) -(((*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-4 *1 (-735))) - ((*1 *1) (-4 *1 (-739))) - ((*1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) - ((*1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-862))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *6)) (-5 *4 (-657 (-1179 *7))) (-4 *6 (-862)) - (-4 *7 (-969 *5 (-543 *6) *6)) (-4 *5 (-1071)) - (-5 *2 (-1 (-1179 *7) *7)) (-5 *1 (-1148 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -3071 *4) (|:| -3265 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-802)) (-5 *5 (-576))))) + (-12 (-5 *2 (-1297)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) + (-4 *4 (-1125))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-391)))) + ((*1 *1 *1 *1) (-4 *1 (-558))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) + ((*1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-375)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-787))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-465)) + (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *1 (-1002 *3 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-591)))) +(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1 (-391))) (-5 *1 (-1065))))) +(((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-420 (-577))) (-5 *1 (-316))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1316 *3 *4)) (-4 *1 (-386 *3 *4)) (-4 *3 (-865)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-398 *2)) (-4 *2 (-1125)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-835 *3)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) + (-4 *4 (-1074)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4470)) (-4 *1 (-502 *3)) (-4 *3 (-1242)) + (-4 *3 (-1125)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-928 *4)) (-4 *4 (-1125)) (-5 *2 (-112)) + (-5 *1 (-927 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-944)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-763))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) + (-4 *3 (-1125))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) +(((*1 *1) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-549))) ((*1 *1) (-4 *1 (-738))) + ((*1 *1) (-4 *1 (-742))) + ((*1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) + ((*1 *1) (-12 (-5 *1 (-912 *2)) (-4 *2 (-865))))) +(((*1 *2) + (-12 (-5 *2 (-1297)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) + (-4 *4 (-1125))))) +(((*1 *2 *2) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-465)) + (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *1 (-1002 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-660 *7)) (-5 *3 (-112)) (-4 *7 (-1090 *4 *5 *6)) + (-4 *4 (-465)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) + (-5 *1 (-1002 *4 *5 *6 *7))))) +(((*1 *1) (-5 *1 (-591)))) (((*1 *2 *3) - (-12 (-5 *3 (-657 (-941))) (-5 *2 (-1200 (-419 (-576)))) - (-5 *1 (-192))))) + (-12 (-5 *3 (-1119 (-859 (-391)))) (-5 *2 (-1119 (-859 (-228)))) + (-5 *1 (-316))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) + (-5 *2 (-112)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) - (-4 *3 (-568)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) + (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1074)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-810 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) + (-12 (-4 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-636 *3 *4)) + (-4 *4 (-1268 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-846 *3)) (-4 *3 (-557)) - (-4 *3 (-1122)))) + (-12 (-5 *2 (-112)) (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) + (-4 *4 (-742)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-856 *3)) (-4 *3 (-557)) - (-4 *3 (-1122)))) + (-12 (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) (-4 *4 (-1074)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1125)) (-5 *2 (-1183))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-1183)) (-5 *5 (-705 (-228))) + (-5 *2 (-1060)) (-5 *1 (-763))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1125)) (-5 *2 (-112)) (-5 *1 (-904 *3 *4 *5)) + (-4 *3 (-1125)) (-4 *5 (-682 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1019 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1030 *3)) - (-4 *3 (-1060 *2))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1198)) (-5 *1 (-598 *2)) (-4 *2 (-1060 *3)) - (-4 *2 (-374)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) - (-4 *2 (-13 (-442 *4) (-1024) (-1224))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1114 *2)) (-4 *2 (-13 (-442 *4) (-1024) (-1224))) - (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-979)) (-5 *2 (-1198)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1114 *1)) (-4 *1 (-979))))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-657 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941))))) -(((*1 *2 *3) - (-12 (-5 *3 (-702 (-419 (-972 (-576))))) - (-5 *2 (-657 (-702 (-326 (-576))))) (-5 *1 (-1053))))) + (-12 (-5 *2 (-112)) (-5 *1 (-908 *3 *4)) (-4 *3 (-1125)) + (-4 *4 (-1125))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) (((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-548))) - ((*1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1071) (-902 *3) (-626 *2))) - (-5 *2 (-908 *3)) (-5 *1 (-1098 *3 *4 *5)) - (-4 *5 (-13 (-442 *4) (-902 *3) (-626 *2)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4067 *4)))) - (-4 *3 (-1122)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-662 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -1985 (-657 *1)))) - (-4 *1 (-378 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-465 *3 *4 *5 *6)) - (|:| -1985 (-657 (-465 *3 *4 *5 *6))))) - (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-941)) - (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) - (-4 *2 (-1280 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1265 *3)) - (-4 *5 (-737 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1280 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1280 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-13 (-568) (-148))) - (-5 *1 (-1175 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-974))))) -(((*1 *2 *1) - (-12 (-4 *2 (-721 *3)) (-5 *1 (-840 *2 *3)) (-4 *3 (-1071))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) - (-4 *6 (-806)) (-4 *7 (-969 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-657 *7)) (|:| |n0| (-657 *7)))) - (-5 *1 (-944 *4 *5 *6 *7)) (-5 *3 (-657 *7))))) + ((*1 *1) (-12 (-4 *1 (-483 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-549))) + ((*1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125))))) (((*1 *2 *3) - (-12 (-4 *4 (-929)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-430 (-1194 *7))) - (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-929)) (-4 *5 (-1265 *4)) (-5 *2 (-430 (-1194 *5))) - (-5 *1 (-927 *4 *5)) (-5 *3 (-1194 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) + (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1219 *4 *5)) + (-4 *4 (-1125)) (-4 *5 (-1125))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1125)) (-4 *4 (-13 (-1074) (-905 *3) (-627 *2))) + (-5 *2 (-911 *3)) (-5 *1 (-1101 *3 *4 *5)) + (-4 *5 (-13 (-443 *4) (-905 *3) (-627 *2)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-465)) (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) + (-5 *2 (-660 *3)) (-5 *1 (-1002 *4 *5 *6 *3)) + (-4 *3 (-1090 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-590)))) + ((*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-590))))) +(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-977))))) +(((*1 *2 *3) + (-12 (-5 *3 (-859 (-391))) (-5 *2 (-859 (-228))) (-5 *1 (-316))))) +(((*1 *1 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-865)) (-4 *3 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-640 *2 *3 *4)) (-4 *2 (-865)) + (-4 *3 (-13 (-174) (-733 (-420 (-577))))) (-14 *4 (-944)))) + ((*1 *1 *1) (-12 (-5 *1 (-693 *2)) (-4 *2 (-865)))) + ((*1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-865)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1125)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-1183)) (-5 *5 (-705 (-228))) + (-5 *2 (-1060)) (-5 *1 (-763))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-115)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-518)) (-4 *4 (-1122)) (-5 *1 (-949 *4 *2)) - (-4 *2 (-442 *4)))) + (-12 (-5 *3 (-519)) (-4 *4 (-1125)) (-5 *1 (-952 *4 *2)) + (-4 *2 (-443 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) - (-5 *1 (-950))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *2) - (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) - (-5 *1 (-178 *3))))) + (-12 (-5 *3 (-1201)) (-5 *4 (-519)) (-5 *2 (-327 (-577))) + (-5 *1 (-953))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-911 *4)) (-4 *4 (-1125)) (-4 *2 (-1125)) + (-5 *1 (-908 *4 *2))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2236)) (-5 *2 (-112)) (-5 *1 (-629)))) + (-12 (-5 *3 (|[\|\|]| -2274)) (-5 *2 (-112)) (-5 *1 (-630)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3799)) (-5 *2 (-112)) (-5 *1 (-629)))) + (-12 (-5 *3 (|[\|\|]| -3816)) (-5 *2 (-112)) (-5 *1 (-630)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3447)) (-5 *2 (-112)) (-5 *1 (-629)))) + (-12 (-5 *3 (|[\|\|]| -3492)) (-5 *2 (-112)) (-5 *1 (-630)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1410)) (-5 *2 (-112)) (-5 *1 (-704 *4)) - (-4 *4 (-625 (-877))))) + (-12 (-5 *3 (|[\|\|]| -1414)) (-5 *2 (-112)) (-5 *1 (-707 *4)) + (-4 *4 (-626 (-880))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-877))) (-5 *2 (-112)) - (-5 *1 (-704 *4)))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-626 (-880))) (-5 *2 (-112)) + (-5 *1 (-707 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-112)) (-5 *1 (-891)))) + (-12 (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-112)) (-5 *1 (-894)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-891)))) + (-12 (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)) (-5 *1 (-894)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-605))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-491))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-639))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1118))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1121))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1112))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1115))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1095))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1098))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-992))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-995))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1058))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1061))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-322))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-684))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-687))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1173))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1300))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1303))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1088))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1091))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-694))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-697))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1137))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1140))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-1299))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-1302))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-689))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-692))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1159)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1162)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-112)) (-5 *1 (-1203)))) + (-12 (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-112)) (-5 *1 (-1206)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1203)))) + (-12 (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)) (-5 *1 (-1206)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1203)))) + (-12 (-5 *3 (|[\|\|]| (-228))) (-5 *2 (-112)) (-5 *1 (-1206)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1203))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -2322 (-419 *6)) (|:| |coeff| (-419 *6)))) - (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-220)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-451)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-851)))) - ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-1137)))) + (-12 (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)) (-5 *1 (-1206))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1219 *4 *5)) + (-4 *4 (-1125)) (-4 *5 (-1125))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892))))) +(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-221)))) + ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-452)))) + ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-854)))) + ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1140)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-657 (-1203))) (-5 *3 (-1203)) (-5 *1 (-1140))))) -(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1122)) (-4 *2 (-1071)))) - ((*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1161)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-702 *6)) (-5 *5 (-1 (-430 (-1194 *6)) (-1194 *6))) - (-4 *6 (-374)) - (-5 *2 - (-657 - (-2 (|:| |outval| *7) (|:| |outmult| (-576)) - (|:| |outvect| (-657 (-702 *7)))))) - (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-861)))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1314))))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1265 *5)) - (-5 *2 (-657 *3)) (-5 *1 (-790 *4 *5 *6 *3 *7)) (-4 *3 (-1265 *6)) - (-14 *7 (-941))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *2 *3) (-12 (-5 *3 (-972 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) - ((*1 *1 *1 *1) (-5 *1 (-1142)))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-115)) (-4 *4 (-1071)) (-5 *1 (-727 *4 *2)) - (-4 *2 (-661 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-849 *2)) (-4 *2 (-1071))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-1024)) - (-4 *2 (-1071))))) -(((*1 *2 *3) - (-12 (-5 *3 (-702 (-419 (-972 *4)))) (-4 *4 (-464)) - (-5 *2 (-657 (-3 (-419 (-972 *4)) (-1187 (-1198) (-972 *4))))) - (-5 *1 (-302 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-657 (-657 *8))) (-5 *3 (-657 *8)) - (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) - (-4 *6 (-13 (-862) (-626 (-1198)))) (-4 *7 (-806)) (-5 *2 (-112)) - (-5 *1 (-944 *5 *6 *7 *8))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1122)) (-4 *4 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-1 *6 *5)) (-5 *1 (-697 *5 *4 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-972 (-576))) (-5 *2 (-340)) - (-5 *1 (-342))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 (-1 *6 (-657 *6)))) - (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1280 *5)) (-5 *2 (-657 *6)) - (-5 *1 (-1282 *5 *6))))) + (-12 (-5 *2 (-660 (-1206))) (-5 *3 (-1206)) (-5 *1 (-1143))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-660 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) + (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1002 *5 *6 *7 *8))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1201)) + (-4 *4 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-588 *4 *2)) + (-4 *2 (-13 (-1227) (-982) (-1164) (-29 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-5 *2 (-657 (-1203))) (-5 *1 (-896))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1071)) - (-5 *2 (-2 (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-867 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1071)) - (-5 *2 (-2 (|:| -2335 *3) (|:| -3644 *3))) (-5 *1 (-868 *5 *3)) - (-4 *3 (-867 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1145 *3 *4 *2 *5)) (-4 *4 (-1071)) (-4 *5 (-243 *3 *4)) - (-4 *2 (-243 *3 *4))))) -(((*1 *1) (-5 *1 (-301)))) + (-12 (-5 *3 (-327 (-391))) (-5 *2 (-327 (-228))) (-5 *1 (-316))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1122))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-576)) (-5 *5 (-1180)) (-5 *6 (-702 (-227))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-762))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1071)) (-4 *3 (-862)) - (-4 *5 (-275 *3)) (-4 *6 (-806)) (-5 *2 (-657 (-784))))) - ((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-862)) - (-4 *5 (-275 *4)) (-4 *6 (-806)) (-5 *2 (-657 (-784)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1180) (-787))) (-5 *1 (-115))))) + (-12 (-5 *2 (-787)) (-4 *1 (-1309 *3 *4)) (-4 *3 (-865)) + (-4 *4 (-1074)) (-4 *4 (-174)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1309 *2 *3)) (-4 *2 (-865)) (-4 *3 (-1074)) + (-4 *3 (-174))))) +(((*1 *1 *2) + (-12 (-5 *2 (-660 (-517 *3 *4 *5 *6))) (-4 *3 (-375)) (-4 *4 (-809)) + (-4 *5 (-865)) (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) + (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-660 *1)) (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-660 *1)) (-5 *3 (-660 *7)) (-4 *1 (-1096 *4 *5 *6 *7)) + (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *1)) + (-4 *1 (-1096 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 *1)) + (-4 *1 (-1096 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-1183)) (-5 *5 (-705 (-228))) + (-5 *2 (-1060)) (-5 *1 (-763))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-911 *4)) (-4 *4 (-1125)) (-5 *1 (-908 *4 *3)) + (-4 *3 (-1125))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3458 (-577)) (|:| -3363 (-660 *3)))) + (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) + ((*1 *1 *1 *1) (-5 *1 (-1145)))) +(((*1 *2) + (-12 (-5 *2 (-1297)) (-5 *1 (-1219 *3 *4)) (-4 *3 (-1125)) + (-4 *4 (-1125))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-660 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1090 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-809)) + (-4 *8 (-865)) (-5 *1 (-1002 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-375)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-587 *5 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-228)) (-5 *1 (-316))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1235 *4 *5 *3 *6)) (-4 *4 (-569)) (-4 *5 (-809)) + (-4 *3 (-865)) (-4 *6 (-1090 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-1183)) (-5 *5 (-705 (-228))) + (-5 *2 (-1060)) (-5 *1 (-763))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-911 *4)) (-4 *4 (-1125)) (-5 *1 (-908 *4 *3)) + (-4 *3 (-1125))))) +(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-431 *3)) (-4 *3 (-569)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-2 (|:| -1902 *4) (|:| -2887 (-577))))) + (-4 *4 (-1268 (-577))) (-5 *2 (-787)) (-5 *1 (-455 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-1216 *2)) (-4 *2 (-375))))) (((*1 *2 *2) - (-12 (-5 *2 (-657 *7)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) - (-5 *1 (-1010 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) + (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) + (-5 *2 + (-2 (|:| |ir| (-599 (-420 *6))) (|:| |specpart| (-420 *6)) + (|:| |polypart| *6))) + (-5 *1 (-587 *5 *6)) (-5 *3 (-420 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-975 (-420 (-577)))) (-5 *4 (-1201)) + (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-660 (-228))) (-5 *1 (-311))))) +(((*1 *2 *1) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-763))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-911 *4)) (-4 *4 (-1125)) (-5 *1 (-908 *4 *3)) + (-4 *3 (-1125))))) +(((*1 *2) + (-12 (-5 *2 (-944)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) ((*1 *2 *2) - (-12 (-5 *2 (-657 *7)) (-4 *7 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) - (-5 *1 (-1129 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-944)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-880)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1194 *5)) (-4 *5 (-374)) (-5 *2 (-657 *6)) - (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-861)))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947))))) -(((*1 *2 *3) - (-12 (-4 *1 (-813)) + (-12 (-5 *4 (-944)) (-5 *2 (-1197 *3)) (-5 *1 (-1216 *3)) + (-4 *3 (-375))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-489 *4 *5 *6 *7)) (|:| -1436 (-660 *7)))) + (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-636 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -4239 *4) (|:| |sol?| (-112))) + (-577) *4)) + (-4 *4 (-375)) (-4 *5 (-1268 *4)) (-5 *1 (-587 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) - (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-1057))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239))))) + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *2 (-1182 (-228))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-327 (-228))) (-5 *4 (-660 (-1201))) + (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-1182 (-228))) (-5 *1 (-311)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1292 (-327 (-228)))) (-5 *4 (-660 (-1201))) + (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-1182 (-228))) (-5 *1 (-311))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1280 *3))))) + (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1283 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-1115 *3)) (-4 *3 (-1239))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) - (-14 *4 (-657 (-1198))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) - (-14 *4 (-657 (-1198)))))) + (-12 (-5 *2 (-577)) (-4 *1 (-1118 *3)) (-4 *3 (-1242))))) +(((*1 *2 *1) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1123 *3)) (-4 *3 (-1125)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-763))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *2 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *1 (-999 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) - ((*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937))))) -(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-877)))) + (-12 (-4 *5 (-1125)) (-4 *6 (-905 *5)) (-5 *2 (-904 *5 *6 (-660 *6))) + (-5 *1 (-906 *5 *6 *4)) (-5 *3 (-660 *6)) (-4 *4 (-627 (-911 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1125)) (-5 *2 (-660 (-305 *3))) (-5 *1 (-906 *5 *3 *4)) + (-4 *3 (-1063 (-1201))) (-4 *3 (-905 *5)) (-4 *4 (-627 (-911 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1125)) (-5 *2 (-660 (-305 (-975 *3)))) + (-5 *1 (-906 *5 *3 *4)) (-4 *3 (-1074)) + (-2749 (-4 *3 (-1063 (-1201)))) (-4 *3 (-905 *5)) + (-4 *4 (-627 (-911 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1125)) (-5 *2 (-908 *5 *3)) (-5 *1 (-906 *5 *3 *4)) + (-2749 (-4 *3 (-1063 (-1201)))) (-2749 (-4 *3 (-1074))) + (-4 *3 (-905 *5)) (-4 *4 (-627 (-911 *5)))))) +(((*1 *2) + (-12 (-5 *2 (-944)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) + ((*1 *2 *2) + (-12 (-5 *2 (-944)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577)))))) +(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-5 *1 (-1216 *2)) (-4 *2 (-375))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-969 *4 *6 *5)) (-4 *4 (-464)) - (-4 *5 (-862)) (-4 *6 (-806)) (-5 *1 (-1009 *4 *5 *6 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-493 *4 *5))) (-14 *4 (-657 (-1198))) - (-4 *5 (-464)) - (-5 *2 - (-2 (|:| |gblist| (-657 (-253 *4 *5))) - (|:| |gvlist| (-657 (-576))))) - (-5 *1 (-643 *4 *5))))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) + (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -2898 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-375)) (-5 *1 (-587 *4 *2)) (-4 *2 (-1268 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1194 *1)) (-5 *4 (-1198)) (-4 *1 (-27)) - (-5 *2 (-657 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1194 *1)) (-4 *1 (-27)) (-5 *2 (-657 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-972 *1)) (-4 *1 (-27)) (-5 *2 (-657 *1)))) + (-12 (-5 *3 (-1197 *1)) (-5 *4 (-1201)) (-4 *1 (-27)) + (-5 *2 (-660 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1197 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *2 (-657 *1)) + (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-657 *1)) (-4 *1 (-29 *3))))) + ((*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-327 (-228))) (-5 *4 (-660 (-1201))) + (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-1182 (-228))) (-5 *1 (-311))))) +(((*1 *2) + (-12 (-4 *4 (-375)) (-5 *2 (-944)) (-5 *1 (-339 *3 *4)) + (-4 *3 (-340 *4)))) + ((*1 *2) + (-12 (-4 *4 (-375)) (-5 *2 (-849 (-944))) (-5 *1 (-339 *3 *4)) + (-4 *3 (-340 *4)))) + ((*1 *2) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-944)))) + ((*1 *2) + (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-849 (-944)))))) (((*1 *1 *2) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-5 *1 (-1169 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-657 (-1194 *7))) (-5 *3 (-1194 *7)) - (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-929)) (-4 *5 (-806)) - (-4 *6 (-862)) (-5 *1 (-926 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-657 (-1194 *5))) (-5 *3 (-1194 *5)) - (-4 *5 (-1265 *4)) (-4 *4 (-929)) (-5 *1 (-927 *4 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1179 (-657 (-576)))) (-5 *3 (-657 (-576))) - (-5 *1 (-899))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1057)) (-5 *1 (-766))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1071)) (-5 *1 (-1261 *3 *2)) (-4 *2 (-1265 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) - (-4 *4 (-805)) (-4 *3 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-1239))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4468 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) - (-4 *2 (-1071)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1265 *2)) - (-4 *4 (-700 *2 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-1160)))) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-1242)) (-5 *1 (-1172 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-763))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-1201)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1201)) (-5 *2 (-112)) (-5 *1 (-625 *4)) + (-4 *4 (-1125)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-625 *4)) (-4 *4 (-1125)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-851 *3)) (-4 *3 (-1125)) (-5 *2 (-112)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1125)) (-5 *2 (-112)) (-5 *1 (-906 *5 *3 *4)) + (-4 *3 (-905 *5)) (-4 *4 (-627 (-911 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *6)) (-4 *6 (-905 *5)) (-4 *5 (-1125)) + (-5 *2 (-112)) (-5 *1 (-906 *5 *6 *4)) (-4 *4 (-627 (-911 *5)))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-660 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-577))))) + (-4 *2 (-569)) (-5 *1 (-431 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-657 (-877))) (-5 *2 (-1294)) (-5 *1 (-1160))))) -(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-657 (-657 (-657 *4)))) (-5 *2 (-657 (-657 *4))) - (-4 *4 (-862)) (-5 *1 (-1209 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-145))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-765))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) - (-4 *4 (-174))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-833)) (-14 *5 (-1198)) (-5 *2 (-657 (-1262 *5 *4))) - (-5 *1 (-1136 *4 *5)) (-5 *3 (-1262 *5 *4))))) + (-12 + (-5 *3 + (-2 (|:| |contp| (-577)) + (|:| -3363 (-660 (-2 (|:| |irr| *4) (|:| -3504 (-577))))))) + (-4 *4 (-1268 (-577))) (-5 *2 (-431 *4)) (-5 *1 (-455 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-660 *3)) (-4 *3 (-1242))))) (((*1 *2 *1) - (-12 (-4 *1 (-708 *3)) (-4 *3 (-1122)) - (-5 *2 (-657 (-2 (|:| -4440 *3) (|:| -1482 (-784)))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) - (-4 *5 (-1265 *4)) (-5 *2 (-657 (-2 (|:| -3665 *5) (|:| -2411 *5)))) - (-5 *1 (-820 *4 *5 *3 *6)) (-4 *3 (-669 *5)) - (-4 *6 (-669 (-419 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) - (-4 *4 (-1265 *5)) (-5 *2 (-657 (-2 (|:| -3665 *4) (|:| -2411 *4)))) - (-5 *1 (-820 *5 *4 *3 *6)) (-4 *3 (-669 *4)) - (-4 *6 (-669 (-419 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) - (-4 *5 (-1265 *4)) (-5 *2 (-657 (-2 (|:| -3665 *5) (|:| -2411 *5)))) - (-5 *1 (-820 *4 *5 *6 *3)) (-4 *6 (-669 *5)) - (-4 *3 (-669 (-419 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) - (-4 *4 (-1265 *5)) (-5 *2 (-657 (-2 (|:| -3665 *4) (|:| -2411 *4)))) - (-5 *1 (-820 *5 *4 *6 *3)) (-4 *6 (-669 *4)) - (-4 *3 (-669 (-419 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-1 (-112) *8))) (-4 *8 (-1087 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) - (-5 *2 (-2 (|:| |goodPols| (-657 *8)) (|:| |badPols| (-657 *8)))) - (-5 *1 (-999 *5 *6 *7 *8)) (-5 *4 (-657 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-5 *2 (-1294)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1203)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-134)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-162)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-220)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-689)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1041)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1088)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-1118))))) + (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-660 (-660 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-660 (-660 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-660 (-660 *3))) (-5 *1 (-1213 *3)) (-4 *3 (-1125))))) (((*1 *2 *2 *3) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-1090 *4 *5 *6)) (-4 *4 (-569)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-1002 *4 *5 *6 *2))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-660 (-420 *7))) + (-4 *7 (-1268 *6)) (-5 *3 (-420 *7)) (-4 *6 (-375)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-587 *6 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-327 (-228))) (-5 *4 (-1201)) + (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-660 (-228))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-327 (-228))) (-5 *4 (-1201)) + (-5 *5 (-1119 (-859 (-228)))) (-5 *2 (-660 (-228))) (-5 *1 (-311))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-145))))) +(((*1 *2) + (-12 (-4 *4 (-375)) (-5 *2 (-787)) (-5 *1 (-339 *3 *4)) + (-4 *3 (-340 *4)))) + ((*1 *2) (-12 (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-5 *2 (-787))))) +(((*1 *2 *1) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-763))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-908 *4 *5)) (-5 *3 (-908 *4 *6)) (-4 *4 (-1125)) + (-4 *5 (-1125)) (-4 *6 (-682 *5)) (-5 *1 (-904 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-401)) (-5 *1 (-449)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-401)) (-5 *1 (-449))))) +(((*1 *1 *2) + (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-5 *1 (-1213 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) + (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-660 *7)) (-5 *3 (-112)) (-4 *7 (-1090 *4 *5 *6)) + (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) + (-5 *1 (-1002 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) + (-5 *2 (-2 (|:| -2898 (-420 *6)) (|:| |coeff| (-420 *6)))) + (-5 *1 (-587 *5 *6)) (-5 *3 (-420 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-134)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-221)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-692)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1044)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1091)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-1121))))) +(((*1 *2 *3) (-12 - (-5 *2 - (-2 (|:| |partsol| (-1289 (-419 (-972 *4)))) - (|:| -1985 (-657 (-1289 (-419 (-972 *4))))))) - (-5 *3 (-657 *7)) (-4 *4 (-13 (-317) (-148))) - (-4 *7 (-969 *4 *6 *5)) (-4 *5 (-13 (-862) (-626 (-1198)))) - (-4 *6 (-806)) (-5 *1 (-944 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-145))))) -(((*1 *1) (-5 *1 (-1107)))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-702 *2)) (-5 *4 (-784)) - (-4 *2 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) - (-4 *5 (-1265 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) + (-5 *3 + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *2 (-112)) (-5 *1 (-311))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1169)) (-5 *2 (-145))))) (((*1 *2 *2) - (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) - (-5 *1 (-178 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-752 *3))))) -(((*1 *2) - (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) - (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1057)) - (-5 *1 (-761))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) - ((*1 *2 *1) - (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1122)))) - ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-450 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) - ((*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-880)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-985)))) - ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1097 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1137)))) - ((*1 *1 *1) (-5 *1 (-1198)))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-835))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-660 *3)) (-4 *3 (-1122))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-1294)) - (-5 *1 (-461 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-62 *3)) (-14 *3 (-1198)))) - ((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-69 *3)) (-14 *3 (-1198)))) - ((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-72 *3)) (-14 *3 (-1198)))) - ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1294)))) - ((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1294)) (-5 *1 (-409)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-877)) (-5 *2 (-1294)) (-5 *1 (-1160)))) - ((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-1160)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-877))) (-5 *2 (-1294)) (-5 *1 (-1160))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-657 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-806)) - (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-969 *4 *5 *6)))) + (-12 (-4 *3 (-361)) (-4 *4 (-340 *3)) (-4 *5 (-1268 *4)) + (-5 *1 (-793 *3 *4 *5 *2 *6)) (-4 *2 (-1268 *5)) (-14 *6 (-944)))) ((*1 *1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-969 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-419 (-972 (-171 (-576)))))) - (-5 *2 (-657 (-657 (-304 (-972 (-171 *4)))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-861))))) + (-12 (-5 *2 (-787)) (-4 *1 (-1311 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) + ((*1 *1 *1) (-12 (-4 *1 (-1311 *2)) (-4 *2 (-375)) (-4 *2 (-380))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1160))) (-5 *1 (-1115))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1060)) + (-5 *1 (-762))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *1 (-902)) (-5 *3 (-577))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-449))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-865)) (-5 *3 (-660 *6)) (-5 *5 (-660 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-660 *5)) (|:| |f3| *5) + (|:| |f4| (-660 *5)))) + (-5 *1 (-1212 *6)) (-5 *4 (-660 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) + (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -4239 *7) (|:| |sol?| (-112))) + (-577) *7)) + (-5 *6 (-660 (-420 *8))) (-4 *7 (-375)) (-4 *8 (-1268 *7)) + (-5 *3 (-420 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-587 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-109)))) + ((*1 *2 *1) + (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1125)) (-4 *2 (-1125)))) + ((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-451 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-496)))) + ((*1 *2 *1) (-12 (-4 *1 (-851 *2)) (-4 *2 (-1125)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-883)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-988)))) + ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1100 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1140)))) + ((*1 *1 *1) (-5 *1 (-1201)))) +(((*1 *1 *1 *1) (-4 *1 (-313))) ((*1 *1 *1) (-4 *1 (-313)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-787)) (-4 *4 (-13 (-1074) (-733 (-420 (-577))))) + (-4 *5 (-865)) (-5 *1 (-1308 *4 *5 *2)) (-4 *2 (-1313 *5 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-966 (-228)) (-966 (-228)))) (-5 *1 (-271)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1292 *1)) (-4 *1 (-340 *4)) (-4 *4 (-375)) + (-5 *2 (-705 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-5 *2 (-1292 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) + (-5 *2 (-705 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) + (-5 *2 (-1292 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1268 *4)) (-5 *2 (-1292 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1292 *1)) (-4 *1 (-422 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1268 *4)) (-5 *2 (-705 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) + (-5 *2 (-1292 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1292 *1)) (-4 *1 (-430 *4)) (-4 *4 (-174)) + (-5 *2 (-705 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1292 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1292 *3)) (-5 *1 (-653 *3 *4)) (-4 *3 (-375)) + (-14 *4 (-660 (-1201))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1292 *3)) (-5 *1 (-655 *3 *4)) (-4 *3 (-375)) + (-14 *4 (-660 (-1201))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-304 (-419 (-972 (-171 (-576))))))) - (-5 *2 (-657 (-657 (-304 (-972 (-171 *4)))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-861))))) + (-12 (-5 *4 (-660 (-705 *5))) (-5 *3 (-705 *5)) (-4 *5 (-375)) + (-5 *2 (-1292 *5)) (-5 *1 (-1111 *5))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1060)) + (-5 *1 (-762))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *1 (-902)) + (-5 *3 (-660 (-577))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *1 (-902)) + (-5 *3 (-660 (-577)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-449))))) +(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-62 *3)) (-14 *3 (-1201)))) + ((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-69 *3)) (-14 *3 (-1201)))) + ((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-72 *3)) (-14 *3 (-1201)))) + ((*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-1297)))) + ((*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1297)) (-5 *1 (-410)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1183)) (-5 *4 (-880)) (-5 *2 (-1297)) (-5 *1 (-1163)))) + ((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-1163)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-880))) (-5 *2 (-1297)) (-5 *1 (-1163))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-375)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) + (-5 *1 (-534 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-4 *7 (-1017 *4)) (-4 *2 (-703 *7 *8 *9)) + (-5 *1 (-535 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-703 *4 *5 *6)) + (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-703 *2 *3 *4)) (-4 *2 (-1074)) + (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-375)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-375)) (-4 *3 (-174)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *1 (-704 *3 *4 *5 *2)) + (-4 *2 (-703 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-705 *2)) (-4 *2 (-375)) (-4 *2 (-1074)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1148 *2 *3 *4 *5)) (-4 *3 (-1074)) + (-4 *4 (-244 *2 *3)) (-4 *5 (-244 *2 *3)) (-4 *3 (-375)))) + ((*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-1212 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) + (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -2898 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-660 (-420 *8))) (-4 *7 (-375)) (-4 *8 (-1268 *7)) + (-5 *3 (-420 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-587 *7 *8))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-625 *1)) (-4 *1 (-313))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) + (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *1 (-1305 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-660 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) + (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1305 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) + (-5 *2 (-1292 (-705 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1292 (-705 *4))) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2) + (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-1292 (-705 *3))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-972 (-171 (-576))))) - (-5 *2 (-657 (-304 (-972 (-171 *4))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-861))))) + (-12 (-5 *3 (-660 (-1201))) (-4 *5 (-375)) + (-5 *2 (-1292 (-705 (-420 (-975 *5))))) (-5 *1 (-1111 *5)) + (-5 *4 (-705 (-420 (-975 *5)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-972 (-171 (-576)))))) - (-5 *2 (-657 (-304 (-972 (-171 *4))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-861)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-657 (-972 (-576)))) (-5 *4 (-657 (-1198))) - (-5 *2 (-657 (-657 (-390)))) (-5 *1 (-1045)) (-5 *5 (-390)))) + (-12 (-5 *3 (-660 (-1201))) (-4 *5 (-375)) + (-5 *2 (-1292 (-705 (-975 *5)))) (-5 *1 (-1111 *5)) + (-5 *4 (-705 (-975 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-1068 *4 *5)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) - (-14 *5 (-657 (-1198))) (-5 *2 (-657 (-657 (-1046 (-419 *4))))) - (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-657 (-1198))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-861) (-317) (-148) (-1044))) - (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) - (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-861) (-317) (-148) (-1044))) - (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) - (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-861) (-317) (-148) (-1044))) - (-5 *2 (-657 (-657 (-1046 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) - (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-972 *4))) - (-4 *4 (-13 (-861) (-317) (-148) (-1044))) - (-5 *2 (-657 (-657 (-1046 (-419 *4))))) (-5 *1 (-1316 *4 *5 *6)) - (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-862)) (-5 *2 (-657 (-657 (-657 *4)))) - (-5 *1 (-1209 *4)) (-5 *3 (-657 (-657 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) - (-5 *2 (-657 (-657 (-657 (-963 *3)))))))) + (-12 (-5 *3 (-660 (-705 *4))) (-4 *4 (-375)) + (-5 *2 (-1292 (-705 *4))) (-5 *1 (-1111 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-64 -2051)))) + (-5 *2 (-1060)) (-5 *1 (-762))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *3 (-660 (-577))) + (-5 *1 (-902))))) +(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-449))))) +(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-404))))) (((*1 *2 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-657 *3)) (-5 *1 (-965 *4 *3)) - (-4 *3 (-1265 *4))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-403))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-657 (-576))) - (|:| |cols| (-657 (-576))))) - (-5 *4 (-702 *12)) (-5 *5 (-657 (-419 (-972 *9)))) - (-5 *6 (-657 (-657 *12))) (-5 *7 (-784)) (-5 *8 (-576)) - (-4 *9 (-13 (-317) (-148))) (-4 *12 (-969 *9 *11 *10)) - (-4 *10 (-13 (-862) (-626 (-1198)))) (-4 *11 (-806)) - (-5 *2 - (-2 (|:| |eqzro| (-657 *12)) (|:| |neqzro| (-657 *12)) - (|:| |wcond| (-657 (-972 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1289 (-419 (-972 *9)))) - (|:| -1985 (-657 (-1289 (-419 (-972 *9))))))))) - (-5 *1 (-944 *9 *10 *11 *12))))) + (-12 (-4 *4 (-865)) (-5 *2 (-660 (-660 *4))) (-5 *1 (-1212 *4)) + (-5 *3 (-660 *4))))) (((*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-718 *3 *4)) (-4 *3 (-1239)) (-4 *4 (-1239))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -1985 (-702 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-702 *3)))) - (-4 *3 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) - (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-5 *2 (-657 (-704 (-290)))) (-5 *1 (-169))))) -(((*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -2698 (-657 (-1198))) (|:| -4059 (-657 (-1198))))) - (-5 *1 (-1241))))) -(((*1 *2 *1) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1239))))) + (-5 *1 (-721 *3 *4)) (-4 *3 (-1242)) (-4 *4 (-1242))))) (((*1 *2 *3) - (-12 (-5 *3 (-908 *4)) (-4 *4 (-1122)) (-5 *2 (-657 *5)) - (-5 *1 (-906 *4 *5)) (-4 *5 (-1239))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1069))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) - (-5 *1 (-761))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-963 *3)))))) + (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) + (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -4239 *6) (|:| |sol?| (-112))) (-577) + *6)) + (-4 *6 (-375)) (-4 *7 (-1268 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-420 *7)) (|:| |a0| *6)) + (-2 (|:| -2898 (-420 *7)) (|:| |coeff| (-420 *7))) "failed")) + (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-660 (-115)))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) + (-4 *3 (-569)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *1 (-1305 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-660 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) + (-4 *6 (-809)) (-4 *7 (-865)) (-5 *1 (-1305 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-177))) (-5 *1 (-1110))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-112)) + (-5 *2 (-1060)) (-5 *1 (-761))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1182 (-660 (-577)))) (-5 *1 (-902)) + (-5 *3 (-660 (-577)))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) (-5 *2 (-2 (|:| |endPointContinuity| @@ -10522,4734 +10049,5003 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1179 (-227))) + (-3 (|:| |str| (-1182 (-228))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1685 + (|:| -4071 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-571))))) -(((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1294)) (-5 *1 (-403)))) - ((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-403))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1224) (-1024))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1243)) (-4 *5 (-1265 (-419 *2))) - (-4 *2 (-1265 *4)) (-5 *1 (-352 *3 *4 *2 *5)) - (-4 *3 (-353 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1243)) - (-4 *4 (-1265 (-419 *2))) (-4 *2 (-1265 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 *4)) (-4 *4 (-1071)) (-5 *2 (-1289 *4)) - (-5 *1 (-1199 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-941)) (-5 *2 (-1289 *3)) (-5 *1 (-1199 *3)) - (-4 *3 (-1071))))) + (-5 *1 (-572))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-966 *3)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-447)) (|:| -2963 "void"))) + (-5 *1 (-450))))) +(((*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1297)) (-5 *1 (-404)))) + ((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-404))))) +(((*1 *2 *2) + (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-865)) (-5 *1 (-1212 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) - (-5 *1 (-755 *4 *5 *6 *3)) (-4 *3 (-969 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239))))) + (-12 (-5 *3 (-660 (-327 (-228)))) (-5 *2 (-112)) (-5 *1 (-277)))) + ((*1 *2 *3) (-12 (-5 *3 (-327 (-228))) (-5 *2 (-112)) (-5 *1 (-277)))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) + (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -2898 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-375)) (-4 *7 (-1268 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-420 *7)) (|:| |a0| *6)) + (-2 (|:| -2898 (-420 *7)) (|:| |coeff| (-420 *7))) "failed")) + (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-313)) (-5 *3 (-1201)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-313)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 (-1305 *4 *5 *6 *7))) + (-5 *1 (-1305 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-660 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1090 *6 *7 *8)) (-4 *6 (-569)) + (-4 *7 (-809)) (-4 *8 (-865)) (-5 *2 (-660 (-1305 *6 *7 *8 *9))) + (-5 *1 (-1305 *6 *7 *8 *9))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-908 *4)) (-4 *4 (-1122)) (-4 *2 (-1122)) - (-5 *1 (-905 *4 *2))))) -(((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *2 (-464)))) + (-12 (-5 *3 (-519)) (-5 *2 (-707 (-109))) (-5 *1 (-177)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *3 (-1087 *4 *5 *6)) - (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *1)))) - (-4 *1 (-1093 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1243))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-1268 *3 *2)) - (-4 *2 (-13 (-1265 *3) (-568) (-10 -8 (-15 -3436 ($ $ $)))))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-889)) (-5 *3 (-657 (-270))) (-5 *1 (-268))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-862)) (-4 *5 (-806)) - (-4 *6 (-568)) (-4 *7 (-969 *6 *5 *3)) - (-5 *1 (-474 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1060 (-419 (-576))) (-374) - (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) - (-15 -1635 (*7 $)))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1289 *6)) (-5 *4 (-1289 (-576))) (-5 *5 (-576)) - (-4 *6 (-1122)) (-5 *2 (-1 *6)) (-5 *1 (-1039 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) - (-4 *4 (-1071))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-835))))) + (-12 (-5 *3 (-519)) (-5 *2 (-707 (-109))) (-5 *1 (-1110))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-112)) + (-5 *2 (-1060)) (-5 *1 (-761))))) +(((*1 *2 *2) (-12 (-5 *2 (-1182 (-660 (-944)))) (-5 *1 (-902))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-450))))) +(((*1 *2 *3) + (-12 (-4 *4 (-865)) (-5 *2 (-1213 (-660 *4))) (-5 *1 (-1212 *4)) + (-5 *3 (-660 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) + (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1087 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-806)) - (-4 *8 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1433 (-657 *9)))) - (-5 *3 (-657 *9)) (-4 *1 (-1232 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1087 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-806)) (-4 *7 (-862)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -1433 (-657 *8)))) - (-5 *3 (-657 *8)) (-4 *1 (-1232 *5 *6 *7 *8))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1057)) (-5 *1 (-766))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) - (-5 *6 (-227)) (-5 *2 (-1057)) (-5 *1 (-765))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) - (-4 *2 (-13 (-862) (-21)))))) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-660 *6) "failed") (-577) *6 *6)) (-4 *6 (-375)) + (-4 *7 (-1268 *6)) + (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) + (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-625 *5)) (-4 *5 (-443 *4)) (-4 *4 (-1063 (-577))) + (-4 *4 (-569)) (-5 *2 (-1197 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-625 *1)) (-4 *1 (-1074)) (-4 *1 (-313)) + (-5 *2 (-1197 *1))))) +(((*1 *2 *3) + (-12 (-5 *3 (-787)) (-5 *2 (-1297)) (-5 *1 (-884 *4 *5 *6 *7)) + (-4 *4 (-1074)) (-14 *5 (-660 (-1201))) (-14 *6 (-660 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-787)) (-4 *4 (-1074)) (-4 *5 (-865)) (-4 *6 (-809)) + (-14 *8 (-660 *5)) (-5 *2 (-1297)) + (-5 *1 (-1304 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-972 *4 *6 *5)) + (-14 *9 (-660 *3)) (-14 *10 *3)))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1110))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-944)) (-4 *1 (-760 *3)) (-4 *3 (-174))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *1 (-896 *2)) (-4 *2 (-1242)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *1 (-898 *2)) (-4 *2 (-1242)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-5 *1 (-901 *2)) (-4 *2 (-1242))))) +(((*1 *1) (-5 *1 (-450)))) (((*1 *1 *2) - (-12 (-5 *2 (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 (-449))))) - (-5 *1 (-1202))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-254))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-769))))) + (-12 (-5 *2 (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 (-450))))) + (-5 *1 (-1205))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-255))))) +(((*1 *2 *3) + (-12 (-4 *4 (-865)) (-5 *2 (-660 (-660 (-660 *4)))) + (-5 *1 (-1212 *4)) (-5 *3 (-660 (-660 *4)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-657 (-270))) (-5 *4 (-1198)) - (-5 *1 (-269 *2)) (-4 *2 (-1239)))) + (|partial| -12 (-5 *3 (-660 (-271))) (-5 *4 (-1201)) + (-5 *1 (-270 *2)) (-4 *2 (-1242)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-657 (-270))) (-5 *4 (-1198)) (-5 *2 (-52)) - (-5 *1 (-270))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-109))) (-5 *1 (-177))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1289 *5)) (-4 *5 (-805)) (-5 *2 (-112)) - (-5 *1 (-858 *4 *5)) (-14 *4 (-784))))) + (|partial| -12 (-5 *3 (-660 (-271))) (-5 *4 (-1201)) (-5 *2 (-52)) + (-5 *1 (-271))))) (((*1 *2 *3) - (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) + (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) + (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -4239 *6) (|:| |sol?| (-112))) (-577) + *6)) + (-4 *6 (-375)) (-4 *7 (-1268 *6)) + (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) + (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1074)) (-4 *4 (-1268 *3)) (-5 *1 (-165 *3 *4 *2)) + (-4 *2 (-1268 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-109))) (-5 *1 (-177))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1116 *3)) (-4 *3 (-969 *7 *6 *4)) (-4 *6 (-806)) - (-4 *4 (-862)) (-4 *7 (-568)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) - (-5 *1 (-606 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-806)) (-4 *4 (-862)) (-4 *6 (-568)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) - (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-969 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1) (-5 *1 (-877))) + (-12 (-5 *5 (-1119 *3)) (-4 *3 (-972 *7 *6 *4)) (-4 *6 (-809)) + (-4 *4 (-865)) (-4 *7 (-569)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-577)))) + (-5 *1 (-607 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-809)) (-4 *4 (-865)) (-4 *6 (-569)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-577)))) + (-5 *1 (-607 *5 *4 *6 *3)) (-4 *3 (-972 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-880))) ((*1 *1 *1 *1) (-5 *1 (-880))) + ((*1 *1 *1) (-5 *1 (-880))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) - (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-1190 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1224))))) + (-12 (-5 *3 (-1201)) + (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-1193 *4 *2)) (-4 *2 (-13 (-443 *4) (-161) (-27) (-1227))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1114 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1224))) - (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-1190 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-568) (-1060 (-576)))) - (-5 *2 (-419 (-972 *5))) (-5 *1 (-1191 *5)) (-5 *3 (-972 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-568) (-1060 (-576)))) - (-5 *2 (-3 (-419 (-972 *5)) (-326 *5))) (-5 *1 (-1191 *5)) - (-5 *3 (-419 (-972 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1114 (-972 *5))) (-5 *3 (-972 *5)) - (-4 *5 (-13 (-568) (-1060 (-576)))) (-5 *2 (-419 *3)) - (-5 *1 (-1191 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1114 (-419 (-972 *5)))) (-5 *3 (-419 (-972 *5))) - (-4 *5 (-13 (-568) (-1060 (-576)))) (-5 *2 (-3 *3 (-326 *5))) - (-5 *1 (-1191 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1122))))) -(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) - ((*1 *2 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1289 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1179 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1289 *3)) (-4 *3 (-1265 *4)) (-4 *4 (-1243)) - (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1265 (-419 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1289 *4)) (-5 *3 (-1289 *1)) (-4 *4 (-174)) - (-4 *1 (-378 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1289 *4)) (-5 *3 (-1289 *1)) (-4 *4 (-174)) - (-4 *1 (-381 *4 *5)) (-4 *5 (-1265 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1289 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) - (-4 *4 (-1265 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-941)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-889)) - (-5 *2 (-1294)) (-5 *1 (-1290))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1122)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-1220))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-5 *2 (-702 (-419 *4)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-941)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-735)) (-5 *2 (-784))))) + (-12 (-5 *3 (-1117 *2)) (-4 *2 (-13 (-443 *4) (-161) (-27) (-1227))) + (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-1193 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-569) (-1063 (-577)))) + (-5 *2 (-420 (-975 *5))) (-5 *1 (-1194 *5)) (-5 *3 (-975 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-569) (-1063 (-577)))) + (-5 *2 (-3 (-420 (-975 *5)) (-327 *5))) (-5 *1 (-1194 *5)) + (-5 *3 (-420 (-975 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1117 (-975 *5))) (-5 *3 (-975 *5)) + (-4 *5 (-13 (-569) (-1063 (-577)))) (-5 *2 (-420 *3)) + (-5 *1 (-1194 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1117 (-420 (-975 *5)))) (-5 *3 (-420 (-975 *5))) + (-4 *5 (-13 (-569) (-1063 (-577)))) (-5 *2 (-3 *3 (-327 *5))) + (-5 *1 (-1194 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1302))))) +(((*1 *1) (-5 *1 (-1110)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1197 *6)) (-5 *3 (-577)) (-4 *6 (-318)) (-4 *4 (-809)) + (-4 *5 (-865)) (-5 *1 (-758 *4 *5 *6 *7)) (-4 *7 (-972 *6 *4 *5))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1242))))) +(((*1 *1) (-5 *1 (-450)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1213 (-660 *4))) (-4 *4 (-865)) + (-5 *2 (-660 (-660 *4))) (-5 *1 (-1212 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) + (-5 *1 (-1002 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -2898 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-375)) (-4 *7 (-1268 *6)) + (-5 *2 (-2 (|:| |answer| (-599 (-420 *7))) (|:| |a0| *6))) + (-5 *1 (-587 *6 *7)) (-5 *3 (-420 *7))))) +(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1242))))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1302))))) (((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) - ((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-129))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1180)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) - (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1122))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1162 *3 *2)) (-4 *3 (-13 (-1122) (-34))) - (-4 *2 (-13 (-1122) (-34)))))) + ((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-255))))) +(((*1 *1) (-5 *1 (-1110)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1197 *9)) (-5 *4 (-660 *7)) (-4 *7 (-865)) + (-4 *9 (-972 *8 *6 *7)) (-4 *6 (-809)) (-4 *8 (-318)) + (-5 *2 (-660 (-787))) (-5 *1 (-758 *6 *7 *8 *9)) (-5 *5 (-787))))) (((*1 *2 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1180)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1180)) (-5 *1 (-97))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1179 *3)) (-4 *3 (-1122)) - (-4 *3 (-1239))))) + (-12 (-5 *3 (-1183)) (-5 *2 (-660 (-1206))) (-5 *1 (-899))))) +(((*1 *1) (-5 *1 (-450)))) (((*1 *2 *3) - (-12 (-5 *3 (-657 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1265 (-576)))))) -(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) + (-12 (-5 *3 (-660 (-660 (-660 *4)))) (-5 *2 (-660 (-660 *4))) + (-5 *1 (-1212 *4)) (-4 *4 (-865))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-1 (-112) *8))) (-4 *8 (-1090 *5 *6 *7)) + (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) + (-5 *2 (-2 (|:| |goodPols| (-660 *8)) (|:| |badPols| (-660 *8)))) + (-5 *1 (-1002 *5 *6 *7 *8)) (-5 *4 (-660 *8))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-599 *3) *3 (-1201))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1201))) + (-4 *3 (-295)) (-4 *3 (-642)) (-4 *3 (-1063 *4)) (-4 *3 (-443 *7)) + (-5 *4 (-1201)) (-4 *7 (-627 (-911 (-577)))) (-4 *7 (-465)) + (-4 *7 (-905 (-577))) (-4 *7 (-1125)) (-5 *2 (-599 *3)) + (-5 *1 (-586 *7 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1242))))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) + (-4 *4 (-1268 *3)) + (-5 *2 + (-2 (|:| -4060 (-705 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-705 *3)))) + (-5 *1 (-362 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-1194 (-419 (-576)))) (-5 *1 (-962)) (-5 *3 (-576))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-761))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1194 (-576))) (-5 *2 (-576)) (-5 *1 (-962))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-657 (-624 *2))) (-5 *4 (-1198)) - (-4 *2 (-13 (-27) (-1224) (-442 *5))) - (-4 *5 (-13 (-568) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-286 *5 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1057)) (-5 *3 (-1198)) (-5 *1 (-276))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) - (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-5 *1 (-817 *4 *2)) (-4 *2 (-13 (-29 *4) (-1224) (-979)))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) - (-5 *2 (-1057)) (-5 *1 (-768)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) - (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-768))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) + (-12 (-5 *3 (-577)) (-4 *4 (-1268 *3)) + (-5 *2 + (-2 (|:| -4060 (-705 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-705 *3)))) + (-5 *1 (-784 *4 *5)) (-4 *5 (-422 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-361)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 *3)) + (-5 *2 + (-2 (|:| -4060 (-705 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-705 *3)))) + (-5 *1 (-1010 *4 *3 *5 *6)) (-4 *6 (-740 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-361)) (-4 *3 (-1268 *4)) (-4 *5 (-1268 *3)) + (-5 *2 + (-2 (|:| -4060 (-705 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-705 *3)))) + (-5 *1 (-1301 *4 *3 *5 *6)) (-4 *6 (-422 *3 *5))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-1122)) (-4 *2 (-918 *4)) (-5 *1 (-705 *4 *2 *5 *3)) - (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4466))))))) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1109 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-577) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1109 *2))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-568)) - (-5 *2 (-2 (|:| -3750 (-702 *5)) (|:| |vec| (-1289 (-657 (-941)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-941)) (-4 *3 (-669 *5))))) + (-12 (-5 *3 (-577)) (-5 *4 (-431 *2)) (-4 *2 (-972 *7 *5 *6)) + (-5 *1 (-758 *5 *6 *7 *2)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-318))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892))))) +(((*1 *1) (-5 *1 (-450)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1106 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1106 *2))))) + (-12 (-5 *3 (-660 (-660 (-660 *4)))) (-5 *2 (-660 (-660 *4))) + (-4 *4 (-865)) (-5 *1 (-1212 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *6)) (-5 *4 (-1198)) (-4 *6 (-442 *5)) - (-4 *5 (-1122)) (-5 *2 (-657 (-624 *6))) (-5 *1 (-585 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-227)) (-5 *2 (-1057)) (-5 *1 (-762))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1280 *3))))) + (-12 (-5 *3 (-660 (-1 (-112) *8))) (-4 *8 (-1090 *5 *6 *7)) + (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) + (-5 *2 (-2 (|:| |goodPols| (-660 *8)) (|:| |badPols| (-660 *8)))) + (-5 *1 (-1002 *5 *6 *7 *8)) (-5 *4 (-660 *8))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1201)) (-4 *4 (-465)) (-4 *4 (-1125)) + (-5 *1 (-586 *4 *2)) (-4 *2 (-295)) (-4 *2 (-443 *4))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) - (-5 *2 (-2 (|:| -1771 (-419 *5)) (|:| |poly| *3))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1265 (-419 *5)))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1060 (-576)))) - (-4 *5 (-1265 *4)) - (-5 *2 (-2 (|:| -2322 (-419 *5)) (|:| |coeff| (-419 *5)))) - (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-1087 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *2 *1) - (-12 (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4067 *4)))) - (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) - (-253 *4 (-419 (-576))))) - (-14 *4 (-657 (-1198))) (-14 *5 (-784)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) - (-5 *1 (-1163 *3 *4)) (-4 *3 (-13 (-1122) (-34))) - (-4 *4 (-13 (-1122) (-34)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1071)) (-5 *2 (-657 *1)) (-4 *1 (-1156 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1068 *4 *5)) (-4 *4 (-13 (-861) (-317) (-148) (-1044))) - (-14 *5 (-657 (-1198))) + (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-742)) (-4 *2 (-1242))))) +(((*1 *2) + (-12 (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) + (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) + (-4 *4 (-1268 *3)) (-5 *2 - (-657 (-2 (|:| -3011 (-1194 *4)) (|:| -2795 (-657 (-972 *4)))))) - (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-657 (-1198))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) + (-2 (|:| -4060 (-705 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-705 *3)))) + (-5 *1 (-362 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1268 (-577))) (-5 *2 - (-657 (-2 (|:| -3011 (-1194 *5)) (|:| -2795 (-657 (-972 *5)))))) - (-5 *1 (-1316 *5 *6 *7)) (-5 *3 (-657 (-972 *5))) - (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) + (-2 (|:| -4060 (-705 (-577))) (|:| |basisDen| (-577)) + (|:| |basisInv| (-705 (-577))))) + (-5 *1 (-784 *3 *4)) (-4 *4 (-422 (-577) *3)))) + ((*1 *2) + (-12 (-4 *3 (-361)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 *4)) + (-5 *2 + (-2 (|:| -4060 (-705 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-705 *4)))) + (-5 *1 (-1010 *3 *4 *5 *6)) (-4 *6 (-740 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-361)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 *4)) (-5 *2 - (-657 (-2 (|:| -3011 (-1194 *5)) (|:| -2795 (-657 (-972 *5)))))) - (-5 *1 (-1316 *5 *6 *7)) (-5 *3 (-657 (-972 *5))) - (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) + (-2 (|:| -4060 (-705 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-705 *4)))) + (-5 *1 (-1301 *3 *4 *5 *6)) (-4 *6 (-422 *4 *5))))) +(((*1 *1) (-5 *1 (-1107)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1197 *9)) (-5 *4 (-660 *7)) (-5 *5 (-660 (-660 *8))) + (-4 *7 (-865)) (-4 *8 (-318)) (-4 *9 (-972 *8 *6 *7)) (-4 *6 (-809)) + (-5 *2 + (-2 (|:| |upol| (-1197 *8)) (|:| |Lval| (-660 *8)) + (|:| |Lfact| + (-660 (-2 (|:| -1902 (-1197 *8)) (|:| -3556 (-577))))) + (|:| |ctpol| *8))) + (-5 *1 (-758 *6 *7 *8 *9))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892))))) +(((*1 *1) (-5 *1 (-450)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-660 (-660 (-660 *4)))) (-5 *3 (-660 *4)) (-4 *4 (-865)) + (-5 *1 (-1212 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) + (-4 *6 (-809)) (-4 *7 (-865)) + (-5 *2 (-2 (|:| |goodPols| (-660 *8)) (|:| |badPols| (-660 *8)))) + (-5 *1 (-1002 *5 *6 *7 *8)) (-5 *4 (-660 *8))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-4 *4 (-1125)) + (-5 *1 (-586 *4 *2)) (-4 *2 (-443 *4))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-742)) (-4 *2 (-1242))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-787)) (-4 *6 (-375)) (-5 *4 (-1236 *6)) + (-5 *2 (-1 (-1182 *4) (-1182 *4))) (-5 *1 (-1300 *6)) + (-5 *5 (-1182 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) + (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)) (-5 *2 (-660 *3)) + (-5 *1 (-604 *5 *6 *7 *8 *3)) (-4 *3 (-1134 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-861) (-317) (-148) (-1044))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-5 *2 - (-657 (-2 (|:| -3011 (-1194 *5)) (|:| -2795 (-657 (-972 *5)))))) - (-5 *1 (-1316 *5 *6 *7)) (-5 *3 (-657 (-972 *5))) - (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) + (-660 (-2 (|:| -3024 (-1197 *5)) (|:| -2710 (-660 (-975 *5)))))) + (-5 *1 (-1103 *5 *6)) (-5 *3 (-660 (-975 *5))) + (-14 *6 (-660 (-1201))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-861) (-317) (-148) (-1044))) + (-12 (-4 *4 (-13 (-318) (-148))) (-5 *2 - (-657 (-2 (|:| -3011 (-1194 *4)) (|:| -2795 (-657 (-972 *4)))))) - (-5 *1 (-1316 *4 *5 *6)) (-5 *3 (-657 (-972 *4))) - (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198)))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1194 (-972 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) - (-5 *2 (-1194 (-972 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1194 (-419 (-972 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) - (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-657 (-493 *5 *6))) (-5 *4 (-879 *5)) - (-14 *5 (-657 (-1198))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) - (-4 *6 (-464)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-493 *5 *6))) (-5 *4 (-879 *5)) - (-14 *5 (-657 (-1198))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) - (-4 *6 (-464))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-624 *3)) (-5 *5 (-1194 *3)) - (-4 *3 (-13 (-442 *6) (-27) (-1224))) - (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1122)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1194 *3))) - (-4 *3 (-13 (-442 *6) (-27) (-1224))) - (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1122))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-1071)))) - ((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-1071))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1194 *1)) (-4 *1 (-1034))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1132))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1289 (-702 *4))) (-4 *4 (-174)) - (-5 *2 (-1289 (-702 (-972 *4)))) (-5 *1 (-191 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071))))) -(((*1 *2 *2) (-12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1071)) (-5 *2 (-657 *1)) (-4 *1 (-1156 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-702 (-326 (-227)))) + (-660 (-2 (|:| -3024 (-1197 *4)) (|:| -2710 (-660 (-975 *4)))))) + (-5 *1 (-1103 *4 *5)) (-5 *3 (-660 (-975 *4))) + (-14 *5 (-660 (-1201))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-5 *2 - (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) - (-5 *1 (-207))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *1) (-5 *1 (-145)))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-712)) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -3750 (-702 (-419 (-972 *4)))) - (|:| |vec| (-657 (-419 (-972 *4)))) (|:| -1542 (-784)) - (|:| |rows| (-657 (-576))) (|:| |cols| (-657 (-576))))) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) - (-4 *6 (-806)) + (-660 (-2 (|:| -3024 (-1197 *5)) (|:| -2710 (-660 (-975 *5)))))) + (-5 *1 (-1103 *5 *6)) (-5 *3 (-660 (-975 *5))) + (-14 *6 (-660 (-1201)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-660 *7)) (-5 *5 (-660 (-660 *8))) (-4 *7 (-865)) + (-4 *8 (-318)) (-4 *6 (-809)) (-4 *9 (-972 *8 *6 *7)) (-5 *2 - (-2 (|:| |partsol| (-1289 (-419 (-972 *4)))) - (|:| -1985 (-657 (-1289 (-419 (-972 *4))))))) - (-5 *1 (-944 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *3 (-657 (-889))) - (-5 *4 (-657 (-941))) (-5 *5 (-657 (-270))) (-5 *1 (-480)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *3 (-657 (-889))) - (-5 *4 (-657 (-941))) (-5 *1 (-480)))) - ((*1 *1 *2) (-12 (-5 *2 (-657 (-657 (-963 (-227))))) (-5 *1 (-480)))) - ((*1 *1 *1) (-5 *1 (-480)))) + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-660 (-2 (|:| -1902 (-1197 *9)) (|:| -3556 (-577))))))) + (-5 *1 (-758 *6 *7 *8 *9)) (-5 *3 (-1197 *9))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-892))))) +(((*1 *1) (-5 *1 (-450)))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-660 (-660 (-660 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-660 *5)) (-4 *5 (-865)) (-5 *1 (-1212 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) + (-5 *1 (-1166 *3 *4)) (-4 *3 (-13 (-1125) (-34))) + (-4 *4 (-13 (-1125) (-34)))))) (((*1 *2 *3) - (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1071))))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) + (-5 *1 (-1002 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *5 (-568)) - (-5 *2 - (-2 (|:| |minor| (-657 (-941))) (|:| -3989 *3) - (|:| |minors| (-657 (-657 (-941)))) (|:| |ops| (-657 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-941)) (-4 *3 (-669 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) -(((*1 *2 *3) - (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-702 *2)) (-4 *4 (-1265 *2)) - (-4 *2 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) - (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (-4 *2 (-1071))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) - (-4 *3 (-1087 *6 *7 *8)) - (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) - (-5 *1 (-1094 *6 *7 *8 *3 *4)) (-4 *4 (-1093 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-657 (-2 (|:| |val| (-657 *8)) (|:| -3946 *9)))) - (-5 *5 (-112)) (-4 *8 (-1087 *6 *7 *4)) (-4 *9 (-1093 *6 *7 *4 *8)) - (-4 *6 (-464)) (-4 *7 (-806)) (-4 *4 (-862)) - (-5 *2 (-657 (-2 (|:| |val| *8) (|:| -3946 *9)))) - (-5 *1 (-1094 *6 *7 *4 *8 *9))))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *2) (-12 (-5 *2 (-657 (-326 (-227)))) (-5 *1 (-276))))) + (-12 (-5 *3 (-660 *6)) (-5 *4 (-1201)) (-4 *6 (-443 *5)) + (-4 *5 (-1125)) (-5 *2 (-660 (-625 *6))) (-5 *1 (-586 *5 *6))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1060 (-576)) (-652 (-576)) (-464))) - (-5 *2 (-856 *4)) (-5 *1 (-323 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1224) (-442 *3))) (-14 *5 (-1198)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1060 (-576)) (-652 (-576)) (-464))) - (-5 *2 (-856 *4)) (-5 *1 (-1275 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1224) (-442 *3))) (-14 *5 (-1198)) - (-14 *6 *4)))) + (-12 (-5 *2 (-660 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-569)) + (-4 *3 (-1242))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1201)) (-4 *5 (-375)) (-5 *2 (-660 (-1236 *5))) + (-5 *1 (-1300 *5)) (-5 *4 (-1236 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-704 (-888 (-986 *3) (-986 *3)))) (-5 *1 (-986 *3)) - (-4 *3 (-1122))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1198)) - (-4 *5 (-13 (-568) (-1060 (-576)) (-148))) - (-5 *2 - (-2 (|:| -2322 (-419 (-972 *5))) (|:| |coeff| (-419 (-972 *5))))) - (-5 *1 (-582 *5)) (-5 *3 (-419 (-972 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-529))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *2 *3) (-12 (-5 *3 (-657 *2)) (-5 *1 (-1213 *2)) (-4 *2 (-374))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-12 (-4 *3 (-1125)) (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))) + (-5 *2 (-660 (-1201))) (-5 *1 (-1101 *3 *4 *5)) + (-4 *5 (-13 (-443 *4) (-905 *3) (-627 (-911 *3))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-577)) (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-318)) + (-4 *9 (-972 *8 *6 *7)) + (-5 *2 (-2 (|:| -3972 (-1197 *9)) (|:| |polval| (-1197 *8)))) + (-5 *1 (-758 *6 *7 *8 *9)) (-5 *3 (-1197 *9)) (-5 *4 (-1197 *8))))) +(((*1 *2 *1) + (-12 (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-118 *3)) (-14 *3 (-577)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1182 *2)) (-4 *2 (-318)) (-5 *1 (-176 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-420 *3)) (-4 *3 (-318)) (-5 *1 (-176 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-176 (-577))) (-5 *1 (-781 *3)) (-4 *3 (-417)))) + ((*1 *2 *1) + (-12 (-5 *2 (-176 (-420 (-577)))) (-5 *1 (-889 *3)) (-14 *3 (-577)))) + ((*1 *2 *1) + (-12 (-14 *3 (-577)) (-5 *2 (-176 (-420 (-577)))) + (-5 *1 (-890 *3 *4)) (-4 *4 (-887 *3))))) +(((*1 *1) (-5 *1 (-450)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-865)) (-5 *4 (-660 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-660 *4)))) + (-5 *1 (-1212 *6)) (-5 *5 (-660 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-660 (-660 *8))) (-5 *3 (-660 *8)) + (-4 *8 (-1090 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-809)) + (-4 *7 (-865)) (-5 *2 (-112)) (-5 *1 (-1002 *5 *6 *7 *8))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-660 (-625 *6))) (-5 *4 (-1201)) (-5 *2 (-625 *6)) + (-4 *6 (-443 *5)) (-4 *5 (-1125)) (-5 *1 (-586 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-465)) (-5 *2 - (-2 (|:| -3071 *4) (|:| -3265 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-802)) (-5 *5 (-576))))) + (-660 + (-2 (|:| |eigval| (-3 (-420 (-975 *4)) (-1190 (-1201) (-975 *4)))) + (|:| |eigmult| (-787)) + (|:| |eigvec| (-660 (-705 (-420 (-975 *4)))))))) + (-5 *1 (-303 *4)) (-5 *3 (-705 (-420 (-975 *4))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1201)) (-5 *2 (-1 (-1197 (-975 *4)) (-975 *4))) + (-5 *1 (-1300 *4)) (-4 *4 (-375))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) + (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-809)) (-4 *4 (-865)) (-4 *6 (-318)) (-5 *2 (-431 *3)) + (-5 *1 (-758 *5 *4 *6 *3)) (-4 *3 (-972 *6 *5 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-416 *3)) (-4 *3 (-417)))) + ((*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-416 *3)) (-4 *3 (-417)))) + ((*1 *2 *2) (-12 (-5 *2 (-944)) (|has| *1 (-6 -4461)) (-4 *1 (-417)))) + ((*1 *2) (-12 (-4 *1 (-417)) (-5 *2 (-944)))) + ((*1 *2 *1) (-12 (-4 *1 (-887 *3)) (-5 *2 (-1182 (-577)))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1063 (-48))) + (-4 *4 (-13 (-569) (-1063 (-577)))) (-4 *5 (-443 *4)) + (-5 *2 (-431 (-1197 (-48)))) (-5 *1 (-448 *4 *5 *3)) + (-4 *3 (-1268 *5))))) +(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1211))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) + (-5 *1 (-1002 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1179 *4) (-1179 *4))) (-5 *2 (-1179 *4)) - (-5 *1 (-1315 *4)) (-4 *4 (-1239)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-657 (-1179 *5)) (-657 (-1179 *5)))) (-5 *4 (-576)) - (-5 *2 (-657 (-1179 *5))) (-5 *1 (-1315 *5)) (-4 *5 (-1239))))) + (-12 (-5 *3 (-660 (-625 *5))) (-4 *4 (-1125)) (-5 *2 (-625 *5)) + (-5 *1 (-586 *4 *5)) (-4 *5 (-443 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) - (-5 *2 (-657 *3)) (-5 *1 (-999 *4 *5 *6 *3)) - (-4 *3 (-1087 *4 *5 *6))))) + (-12 (-4 *4 (-465)) + (-5 *2 + (-660 + (-2 (|:| |eigval| (-3 (-420 (-975 *4)) (-1190 (-1201) (-975 *4)))) + (|:| |geneigvec| (-660 (-705 (-420 (-975 *4)))))))) + (-5 *1 (-303 *4)) (-5 *3 (-705 (-420 (-975 *4))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1201)) (-4 *5 (-375)) (-5 *2 (-1182 (-1182 (-975 *5)))) + (-5 *1 (-1300 *5)) (-5 *4 (-1182 (-975 *5)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 *4)) + (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 (-2 (|:| -1902 (-1197 *6)) (|:| -3556 (-577))))) + (-4 *6 (-318)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-577)) + (-5 *1 (-758 *4 *5 *6 *7)) (-4 *7 (-972 *6 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *6)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) + (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-300 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1268 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-5 *2 (-657 (-925 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-224 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1239)) (-4 *1 (-261 *3)))) - ((*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5))))) + (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1268 *3)) (-5 *1 (-728 *3 *2)) (-4 *3 (-1074)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-731 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577))))) (((*1 *2 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *2 *2) (-12 (-5 *1 (-981 *2)) (-4 *2 (-557))))) + (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-4 *5 (-443 *4)) + (-5 *2 + (-3 (|:| |overq| (-1197 (-420 (-577)))) + (|:| |overan| (-1197 (-48))) (|:| -4181 (-112)))) + (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1268 *5))))) +(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1211))))) +(((*1 *1 *1 *1) (-5 *1 (-880)))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1621 ((-1147 *3 (-624 $)) $)) - (-15 -1635 ((-1147 *3 (-624 $)) $)) - (-15 -3501 ($ (-1147 *3 (-624 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1621 ((-1147 *3 (-624 $)) $)) - (-15 -1635 ((-1147 *3 (-624 $)) $)) - (-15 -3501 ($ (-1147 *3 (-624 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-657 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1621 ((-1147 *4 (-624 $)) $)) - (-15 -1635 ((-1147 *4 (-624 $)) $)) - (-15 -3501 ($ (-1147 *4 (-624 $))))))) - (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) + (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *3)) + (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-657 (-624 *2))) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1621 ((-1147 *4 (-624 $)) $)) - (-15 -1635 ((-1147 *4 (-624 $)) $)) - (-15 -3501 ($ (-1147 *4 (-624 $))))))) - (-4 *4 (-568)) (-5 *1 (-41 *4 *2))))) -(((*1 *1 *1) (-4 *1 (-884 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024) (-1224)))))) -(((*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292)))) - ((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-1292))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-765))))) -(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-145))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-1090 *4 *5 *6)) (-4 *4 (-569)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-1002 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) + (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-660 *7) (-660 *7))) (-5 *2 (-660 *7)) + (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-809)) + (-4 *6 (-865)) (-5 *1 (-1002 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-660 (-625 *5))) (-5 *3 (-1201)) (-4 *5 (-443 *4)) + (-4 *4 (-1125)) (-5 *1 (-586 *4 *5))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-420 (-975 *6)) (-1190 (-1201) (-975 *6)))) + (-5 *5 (-787)) (-4 *6 (-465)) (-5 *2 (-660 (-705 (-420 (-975 *6))))) + (-5 *1 (-303 *6)) (-5 *4 (-705 (-420 (-975 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-420 (-975 *5)) (-1190 (-1201) (-975 *5)))) + (|:| |eigmult| (-787)) (|:| |eigvec| (-660 *4)))) + (-4 *5 (-465)) (-5 *2 (-660 (-705 (-420 (-975 *5))))) + (-5 *1 (-303 *5)) (-5 *4 (-705 (-420 (-975 *5))))))) (((*1 *2 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-1179 (-993))) (-5 *1 (-993))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-1244)))))) + (-12 (-5 *3 (-787)) (-5 *2 (-1 (-1182 (-975 *4)) (-1182 (-975 *4)))) + (-5 *1 (-1300 *4)) (-4 *4 (-375))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -3952 *4)))) + (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) -(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-284))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-1243)) - (-4 *6 (-1265 (-419 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-353 *4 *5 *6))))) + (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-318)) (-5 *2 (-431 *3)) + (-5 *1 (-758 *4 *5 *6 *3)) (-4 *3 (-972 *6 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-697 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) - (-4 *7 (-1265 (-419 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -3349 *3))) - (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7)))) + (|partial| -12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-4 *5 (-443 *4)) + (-5 *2 (-431 (-1197 (-420 (-577))))) (-5 *1 (-448 *4 *5 *3)) + (-4 *3 (-1268 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-1182 *4) (-1182 *4))) (-5 *2 (-1182 *4)) + (-5 *1 (-1318 *4)) (-4 *4 (-1242)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |answer| (-419 *6)) (|:| -3349 (-419 *6)) - (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) - (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) + (-12 (-5 *3 (-1 (-660 (-1182 *5)) (-660 (-1182 *5)))) (-5 *4 (-577)) + (-5 *2 (-660 (-1182 *5))) (-5 *1 (-1318 *5)) (-4 *5 (-1242))))) +(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1211))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *3)) + (-5 *1 (-1002 *4 *5 *6 *3)) (-4 *3 (-1090 *4 *5 *6))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1201)) + (-4 *5 (-13 (-569) (-1063 (-577)) (-148))) + (-5 *2 + (-2 (|:| -2898 (-420 (-975 *5))) (|:| |coeff| (-420 (-975 *5))))) + (-5 *1 (-583 *5)) (-5 *3 (-420 (-975 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-420 (-975 *5)) (-1190 (-1201) (-975 *5)))) + (-4 *5 (-465)) (-5 *2 (-660 (-705 (-420 (-975 *5))))) + (-5 *1 (-303 *5)) (-5 *4 (-705 (-420 (-975 *5))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-787)) (-5 *2 (-1 (-1182 (-975 *4)) (-1182 (-975 *4)))) + (-5 *1 (-1300 *4)) (-4 *4 (-375))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) + (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-755 *3))))) +(((*1 *1 *1) (-4 *1 (-887 *2)))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-4 *5 (-443 *4)) + (-5 *2 (-431 *3)) (-5 *1 (-448 *4 *5 *3)) (-4 *3 (-1268 *5))))) +(((*1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1211))))) +(((*1 *2 *2) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) + (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1002 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-660 (-420 (-975 *6)))) + (-5 *3 (-420 (-975 *6))) + (-4 *6 (-13 (-569) (-1063 (-577)) (-148))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-583 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-705 (-420 (-975 *4)))) (-4 *4 (-465)) + (-5 *2 (-660 (-3 (-420 (-975 *4)) (-1190 (-1201) (-975 *4))))) + (-5 *1 (-303 *4))))) +(((*1 *2) + (-12 (-14 *4 (-787)) (-4 *5 (-1242)) (-5 *2 (-135)) + (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-375)) (-5 *2 (-135)) (-5 *1 (-339 *3 *4)) + (-4 *3 (-340 *4)))) + ((*1 *2) + (-12 (-5 *2 (-787)) (-5 *1 (-403 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-174)))) ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112))))) + (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-577)) + (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-660 *6)) (-4 *6 (-865)) (-4 *4 (-375)) (-4 *5 (-809)) + (-5 *2 (-577)) (-5 *1 (-517 *4 *5 *6 *7)) (-4 *7 (-972 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-1074)) (-5 *2 (-944)))) + ((*1 *2) (-12 (-4 *1 (-1299 *3)) (-4 *3 (-375)) (-5 *2 (-135))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) + (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-753 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-753 *2)) (-4 *2 (-1125)))) + ((*1 *1) (-12 (-5 *1 (-753 *2)) (-4 *2 (-1125))))) +(((*1 *1 *1 *1) (-5 *1 (-880))) ((*1 *1 *1) (-5 *1 (-880))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1197 (-577))) (-5 *3 (-577)) (-4 *1 (-887 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-420 (-975 *5)))) (-5 *4 (-660 (-1201))) + (-4 *5 (-569)) (-5 *2 (-660 (-660 (-975 *5)))) (-5 *1 (-1210 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-660 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-420 (-975 *4))) (-5 *3 (-1201)) + (-4 *4 (-13 (-569) (-1063 (-577)) (-148))) (-5 *1 (-583 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1110))) (-5 *1 (-302))))) +(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-228)) (-5 *1 (-1295)))) + ((*1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-1295))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) + (-4 *3 (-1090 *6 *7 *8)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) + (-5 *1 (-1097 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -3952 *9)))) + (-5 *5 (-112)) (-4 *8 (-1090 *6 *7 *4)) (-4 *9 (-1096 *6 *7 *4 *8)) + (-4 *6 (-465)) (-4 *7 (-809)) (-4 *4 (-865)) + (-5 *2 (-660 (-2 (|:| |val| *8) (|:| -3952 *9)))) + (-5 *1 (-1097 *6 *7 *4 *8 *9))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-784)) (-5 *3 (-1 *4 (-576) (-576))) (-4 *4 (-1071)) - (-4 *1 (-700 *4 *5 *6)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) + (-12 (-5 *2 (-787)) (-5 *3 (-1 *4 (-577) (-577))) (-4 *4 (-1074)) + (-4 *1 (-703 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-657 (-657 (-877)))) (-5 *1 (-877)))) + (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-880)))) (-5 *1 (-880)))) ((*1 *2 *1) - (-12 (-5 *2 (-1164 *3 *4)) (-5 *1 (-1015 *3 *4)) (-14 *3 (-941)) - (-4 *4 (-374)))) + (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-1018 *3 *4)) (-14 *3 (-944)) + (-4 *4 (-375)))) ((*1 *1 *2) - (-12 (-5 *2 (-657 (-657 *5))) (-4 *5 (-1071)) - (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) - (-4 *7 (-243 *3 *5))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1057)) (-5 *1 (-762)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-400)) (-5 *2 (-1057)) (-5 *1 (-762))))) + (-12 (-5 *2 (-660 (-660 *5))) (-4 *5 (-1074)) + (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *6 (-244 *4 *5)) + (-4 *7 (-244 *3 *5))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-787)) (-4 *5 (-375)) (-5 *2 (-420 *6)) + (-5 *1 (-885 *5 *4 *6)) (-4 *4 (-1283 *5)) (-4 *6 (-1268 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-787)) (-5 *4 (-1284 *5 *6 *7)) (-4 *5 (-375)) + (-14 *6 (-1201)) (-14 *7 *5) (-5 *2 (-420 (-1265 *6 *5))) + (-5 *1 (-886 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-787)) (-5 *4 (-1284 *5 *6 *7)) (-4 *5 (-375)) + (-14 *6 (-1201)) (-14 *7 *5) (-5 *2 (-420 (-1265 *6 *5))) + (-5 *1 (-886 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) - (-14 *6 - (-1 (-112) (-2 (|:| -3178 *5) (|:| -1801 *2)) - (-2 (|:| -3178 *5) (|:| -1801 *2)))) - (-4 *2 (-243 (-3440 *3) (-784))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-862)) (-4 *7 (-969 *4 *2 (-879 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) - (-4 *8 (-862)) (-4 *9 (-1087 *6 *7 *8)) + (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) + (-5 *2 (-787)))) + ((*1 *2 *1) + (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) + (-5 *2 (-787)))) + ((*1 *2 *1) + (-12 (-5 *2 (-787)) (-5 *1 (-751 *3 *4)) (-4 *3 (-1074)) + (-4 *4 (-742))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-420 (-975 (-577))))) + (-5 *2 (-660 (-660 (-305 (-975 *4))))) (-5 *1 (-392 *4)) + (-4 *4 (-13 (-864) (-375))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-305 (-420 (-975 (-577)))))) + (-5 *2 (-660 (-660 (-305 (-975 *4))))) (-5 *1 (-392 *4)) + (-4 *4 (-13 (-864) (-375))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-975 (-577)))) (-5 *2 (-660 (-305 (-975 *4)))) + (-5 *1 (-392 *4)) (-4 *4 (-13 (-864) (-375))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-305 (-420 (-975 (-577))))) + (-5 *2 (-660 (-305 (-975 *4)))) (-5 *1 (-392 *4)) + (-4 *4 (-13 (-864) (-375))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1201)) + (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) + (-4 *4 (-13 (-29 *6) (-1227) (-982))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -4060 (-660 *4)))) + (-5 *1 (-668 *6 *4 *3)) (-4 *3 (-672 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1201)) (-5 *5 (-660 *2)) + (-4 *2 (-13 (-29 *6) (-1227) (-982))) + (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) + (-5 *1 (-668 *6 *2 *3)) (-4 *3 (-672 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-705 *5)) (-4 *5 (-375)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1292 *5) "failed")) + (|:| -4060 (-660 (-1292 *5))))) + (-5 *1 (-683 *5)) (-5 *4 (-1292 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-660 *5))) (-4 *5 (-375)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1292 *5) "failed")) + (|:| -4060 (-660 (-1292 *5))))) + (-5 *1 (-683 *5)) (-5 *4 (-1292 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-705 *5)) (-4 *5 (-375)) + (-5 *2 + (-660 + (-2 (|:| |particular| (-3 (-1292 *5) "failed")) + (|:| -4060 (-660 (-1292 *5)))))) + (-5 *1 (-683 *5)) (-5 *4 (-660 (-1292 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-660 *5))) (-4 *5 (-375)) + (-5 *2 + (-660 + (-2 (|:| |particular| (-3 (-1292 *5) "failed")) + (|:| -4060 (-660 (-1292 *5)))))) + (-5 *1 (-683 *5)) (-5 *4 (-660 (-1292 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4471)))) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4471)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4060 (-660 *4)))) + (-5 *1 (-684 *5 *6 *4 *3)) (-4 *3 (-703 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4471)))) + (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4471)))) + (-5 *2 + (-660 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4060 (-660 *7))))) + (-5 *1 (-684 *5 *6 *7 *3)) (-5 *4 (-660 *7)) + (-4 *3 (-703 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-660 (-1201))) (-4 *5 (-569)) + (-5 *2 (-660 (-660 (-305 (-420 (-975 *5)))))) (-5 *1 (-786 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-569)) + (-5 *2 (-660 (-660 (-305 (-420 (-975 *4)))))) (-5 *1 (-786 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1201)) + (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) + (-5 *1 (-788 *5 *2)) (-4 *2 (-13 (-29 *5) (-1227) (-982))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-705 *7)) (-5 *5 (-1201)) + (-4 *7 (-13 (-29 *6) (-1227) (-982))) + (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 - (-2 (|:| -3989 (-657 *9)) (|:| -3946 *4) (|:| |ineq| (-657 *9)))) - (-5 *1 (-1010 *6 *7 *8 *9 *4)) (-5 *3 (-657 *9)) - (-4 *4 (-1093 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-806)) - (-4 *8 (-862)) (-4 *9 (-1087 *6 *7 *8)) + (-2 (|:| |particular| (-1292 *7)) (|:| -4060 (-660 (-1292 *7))))) + (-5 *1 (-818 *6 *7)) (-5 *4 (-1292 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-705 *6)) (-5 *4 (-1201)) + (-4 *6 (-13 (-29 *5) (-1227) (-982))) + (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) + (-5 *2 (-660 (-1292 *6))) (-5 *1 (-818 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-660 (-305 *7))) (-5 *4 (-660 (-115))) + (-5 *5 (-1201)) (-4 *7 (-13 (-29 *6) (-1227) (-982))) + (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 - (-2 (|:| -3989 (-657 *9)) (|:| -3946 *4) (|:| |ineq| (-657 *9)))) - (-5 *1 (-1129 *6 *7 *8 *9 *4)) (-5 *3 (-657 *9)) - (-4 *4 (-1093 *6 *7 *8 *9))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) - (-4 *6 (-384 *3)) (-5 *1 (-701 *3 *5 *6 *2)) - (-4 *2 (-700 *3 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1239)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) - (-4 *4 (-1265 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-702 (-419 (-576)))) + (-2 (|:| |particular| (-1292 *7)) (|:| -4060 (-660 (-1292 *7))))) + (-5 *1 (-818 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-660 *7)) (-5 *4 (-660 (-115))) + (-5 *5 (-1201)) (-4 *7 (-13 (-29 *6) (-1227) (-982))) + (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1292 *7)) (|:| -4060 (-660 (-1292 *7))))) + (-5 *1 (-818 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1201)) + (-4 *7 (-13 (-29 *6) (-1227) (-982))) + (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) (-5 *2 - (-657 - (-2 (|:| |outval| *4) (|:| |outmult| (-576)) - (|:| |outvect| (-657 (-702 *4)))))) - (-5 *1 (-792 *4)) (-4 *4 (-13 (-374) (-861)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-115))))) -(((*1 *2 *3) (-12 (-5 *3 (-941)) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-760))))) -(((*1 *2 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-999 *3 *4 *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557))))) -(((*1 *2 *2) (-12 (-5 *2 (-941)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) + (-3 (-2 (|:| |particular| *7) (|:| -4060 (-660 *7))) *7 "failed")) + (-5 *1 (-818 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-1201)) + (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -4060 (-660 *3))) *3 "failed")) + (-5 *1 (-818 *6 *3)) (-4 *3 (-13 (-29 *6) (-1227) (-982))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-660 *2)) + (-4 *2 (-13 (-29 *6) (-1227) (-982))) (-5 *1 (-818 *6 *2)) + (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-660 *2)) + (-4 *2 (-13 (-29 *6) (-1227) (-982))) + (-4 *6 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) + (-5 *1 (-818 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1060)) (-5 *1 (-821)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-824)) (-5 *4 (-1088)) (-5 *2 (-1060)) (-5 *1 (-821)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1292 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-660 *4)) + (-5 *2 (-1060)) (-5 *1 (-821)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1292 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-660 *4)) + (-5 *2 (-1060)) (-5 *1 (-821)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1292 (-327 *4))) (-5 *5 (-660 (-391))) + (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1060)) (-5 *1 (-821)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1292 (-327 (-391)))) (-5 *4 (-391)) (-5 *5 (-660 *4)) + (-5 *2 (-1060)) (-5 *1 (-821)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1292 (-327 *4))) (-5 *5 (-660 (-391))) + (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1060)) (-5 *1 (-821)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1292 (-327 *4))) (-5 *5 (-660 (-391))) + (-5 *6 (-327 (-391))) (-5 *4 (-391)) (-5 *2 (-1060)) (-5 *1 (-821)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -4060 (-660 *6))) "failed") + *7 *6)) + (-4 *6 (-375)) (-4 *7 (-672 *6)) + (-5 *2 (-2 (|:| |particular| (-1292 *6)) (|:| -4060 (-705 *6)))) + (-5 *1 (-829 *6 *7)) (-5 *3 (-705 *6)) (-5 *4 (-1292 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-919)) (-5 *2 (-1060)) (-5 *1 (-918)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-919)) (-5 *4 (-1088)) (-5 *2 (-1060)) (-5 *1 (-918)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-787)) (-5 *6 (-660 (-660 (-327 *3)))) (-5 *7 (-1183)) + (-5 *8 (-228)) (-5 *5 (-660 (-327 (-391)))) (-5 *3 (-391)) + (-5 *2 (-1060)) (-5 *1 (-918)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-787)) (-5 *6 (-660 (-660 (-327 *3)))) (-5 *7 (-1183)) + (-5 *5 (-660 (-327 (-391)))) (-5 *3 (-391)) (-5 *2 (-1060)) + (-5 *1 (-918)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-975 (-420 (-577)))) (-5 *2 (-660 (-391))) + (-5 *1 (-1048)) (-5 *4 (-391)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-975 (-577))) (-5 *2 (-660 (-391))) (-5 *1 (-1048)) + (-5 *4 (-391)))) ((*1 *2 *3) - (-12 (-5 *2 (-1194 (-419 (-576)))) (-5 *1 (-962)) (-5 *3 (-576))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-946)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-227))) (-5 *1 (-947)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) - (-5 *2 (-1057)) (-5 *1 (-762))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-784)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1265 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-709 *2)) (-4 *2 (-1265 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-442 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1198)))) - ((*1 *1 *1) (-4 *1 (-161)))) + (-12 (-4 *4 (-13 (-375) (-10 -8 (-15 ** ($ $ (-420 (-577))))))) + (-5 *2 (-660 *4)) (-5 *1 (-1153 *3 *4)) (-4 *3 (-1268 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) + (-5 *2 (-660 (-305 (-327 *4)))) (-5 *1 (-1156 *4)) + (-5 *3 (-327 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) + (-5 *2 (-660 (-305 (-327 *4)))) (-5 *1 (-1156 *4)) + (-5 *3 (-305 (-327 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1201)) + (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) + (-5 *2 (-660 (-305 (-327 *5)))) (-5 *1 (-1156 *5)) + (-5 *3 (-305 (-327 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1201)) + (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) + (-5 *2 (-660 (-305 (-327 *5)))) (-5 *1 (-1156 *5)) + (-5 *3 (-327 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-660 (-1201))) + (-4 *5 (-13 (-318) (-1063 (-577)) (-654 (-577)) (-148))) + (-5 *2 (-660 (-660 (-305 (-327 *5))))) (-5 *1 (-1156 *5)) + (-5 *3 (-660 (-305 (-327 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-420 (-975 *5)))) (-5 *4 (-660 (-1201))) + (-4 *5 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *5)))))) + (-5 *1 (-1210 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-660 (-1201))) (-4 *5 (-569)) + (-5 *2 (-660 (-660 (-305 (-420 (-975 *5)))))) (-5 *1 (-1210 *5)) + (-5 *3 (-660 (-305 (-420 (-975 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-420 (-975 *4)))) (-4 *4 (-569)) + (-5 *2 (-660 (-660 (-305 (-420 (-975 *4)))))) (-5 *1 (-1210 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-660 (-660 (-305 (-420 (-975 *4)))))) + (-5 *1 (-1210 *4)) (-5 *3 (-660 (-305 (-420 (-975 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1201)) (-4 *5 (-569)) + (-5 *2 (-660 (-305 (-420 (-975 *5))))) (-5 *1 (-1210 *5)) + (-5 *3 (-420 (-975 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1201)) (-4 *5 (-569)) + (-5 *2 (-660 (-305 (-420 (-975 *5))))) (-5 *1 (-1210 *5)) + (-5 *3 (-305 (-420 (-975 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-660 (-305 (-420 (-975 *4))))) + (-5 *1 (-1210 *4)) (-5 *3 (-420 (-975 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-660 (-305 (-420 (-975 *4))))) + (-5 *1 (-1210 *4)) (-5 *3 (-305 (-420 (-975 *4))))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1001 *4 *5 *3 *6)) (-4 *4 (-1074)) (-4 *5 (-809)) + (-4 *3 (-865)) (-4 *6 (-1090 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1201)) + (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) + (-5 *2 (-599 *3)) (-5 *1 (-439 *5 *3)) + (-4 *3 (-13 (-1227) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1201)) (-4 *5 (-13 (-569) (-1063 (-577)) (-148))) + (-5 *2 (-599 (-420 (-975 *5)))) (-5 *1 (-583 *5)) + (-5 *3 (-420 (-975 *5)))))) +(((*1 *2 *3 *3 *1) + (-12 (-5 *3 (-519)) (-5 *2 (-707 (-1129))) (-5 *1 (-302))))) +(((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) + ((*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))) + (-5 *1 (-1097 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *6 (-569)) (-4 *2 (-972 *3 *5 *4)) + (-5 *1 (-748 *5 *4 *6 *2)) (-5 *3 (-420 (-975 *6))) (-4 *5 (-809)) + (-4 *4 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $)))))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-787)) (-4 *5 (-375)) (-5 *2 (-176 *6)) + (-5 *1 (-885 *5 *4 *6)) (-4 *4 (-1283 *5)) (-4 *6 (-1268 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-1206))) (-5 *1 (-1206)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-519)) (-5 *3 (-660 (-1206))) (-5 *1 (-1206))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-1001 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *2 (-865)) (-4 *5 (-1090 *3 *4 *2))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-577)) (-5 *1 (-582 *3)) (-4 *3 (-1063 *2))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-519)) (-5 *3 (-1129)) (-5 *1 (-302))))) +(((*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295)))) + ((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-1295))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) + (-12 (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) + (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1197 (-975 *6))) (-4 *6 (-569)) + (-4 *2 (-972 (-420 (-975 *6)) *5 *4)) (-5 *1 (-748 *5 *4 *6 *2)) + (-4 *5 (-809)) + (-4 *4 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $)))))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4470)) (-4 *1 (-502 *3)) (-4 *3 (-1242)) + (-5 *2 (-660 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-753 *3)) (-4 *3 (-1125)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-452))) (-5 *1 (-883))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-1001 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *2 (-865)) (-4 *5 (-1090 *3 *4 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-660 (-420 *6))) (-5 *3 (-420 *6)) + (-4 *6 (-1268 *5)) (-4 *5 (-13 (-375) (-148) (-1063 (-577)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-581 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-519)) (-5 *2 (-660 (-988))) (-5 *1 (-302))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) + (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1197 *2)) (-4 *2 (-972 (-420 (-975 *6)) *5 *4)) + (-5 *1 (-748 *5 *4 *6 *2)) (-4 *5 (-809)) + (-4 *4 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $))))) + (-4 *6 (-569))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-880))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-290)))) ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1220)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1220))))) -(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1122))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1289 *5)) (-4 *5 (-13 (-1071) (-652 *4))) - (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1071)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1265 *4)) - (-4 *5 (-13 (-416) (-1060 *4) (-374) (-1224) (-294)))))) + (-12 (-5 *2 (-3 (-577) (-228) (-519) (-1183) (-1206))) + (-5 *1 (-1206))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-657 (-1198))) (-5 *2 (-1198)) (-5 *1 (-340))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -3000 (-430 *3)) (|:| |special| (-430 *3)))) - (-5 *1 (-740 *5 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1224) (-1024)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1294)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1294)) (-5 *1 (-1291))))) + (-12 (-5 *3 (-660 (-1201))) (-5 *2 (-1201)) (-5 *1 (-341))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-1001 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *2 (-865)) (-4 *5 (-1090 *3 *4 *2))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-375) (-148) (-1063 (-577)))) + (-4 *5 (-1268 *4)) + (-5 *2 (-2 (|:| -2898 (-420 *5)) (|:| |coeff| (-420 *5)))) + (-5 *1 (-581 *4 *5)) (-5 *3 (-420 *5))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-519)) (-5 *3 (-660 (-988))) (-5 *1 (-302))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-374)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-784)) (|:| -4281 *4))) (-5 *5 (-784)) - (-4 *4 (-969 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) - (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-461 *6 *7 *8 *4))))) + (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) + (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-657 (-548))) (-5 *2 (-1198)) (-5 *1 (-548))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-576)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-784)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-806)) (-4 *4 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) - (-5 *1 (-461 *5 *6 *7 *4))))) + (-12 (-4 *4 (-809)) + (-4 *5 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $))))) (-4 *6 (-569)) + (-5 *2 (-2 (|:| -4243 (-975 *6)) (|:| -3239 (-975 *6)))) + (-5 *1 (-748 *4 *5 *6 *3)) (-4 *3 (-972 (-420 (-975 *6)) *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-880))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 (-549))) (-5 *2 (-1201)) (-5 *1 (-549))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) + (-12 (-4 *3 (-13 (-569) (-1063 (-577)))) (-5 *2 (-1297)) + (-5 *1 (-446 *3 *4)) (-4 *4 (-443 *3))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-657 (-1198))) (-4 *4 (-1122)) - (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) - (-5 *1 (-1098 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4)))))) + (-12 (-5 *3 (-660 (-1201))) (-4 *4 (-1125)) + (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) + (-5 *1 (-1101 *4 *5 *2)) + (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))) - (-5 *1 (-1098 *3 *4 *2)) - (-4 *2 (-13 (-442 *4) (-902 *3) (-626 (-908 *3))))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-657 (-289))) (-5 *1 (-289)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 (-1203))) (-5 *1 (-1203))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-784)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1071))))) -(((*1 *2 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1239)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-862)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1239)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1239)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -4291 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -4440 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1179 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1685 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-571)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-784)) (-4 *1 (-708 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -4291 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) - (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (|:| -4440 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390)))))) - (-5 *1 (-816)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) - (-4 *4 (-1122))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1161)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1256 *3)) (-4 *3 (-1239))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-390)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) + (-12 (-4 *3 (-1125)) (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))) + (-5 *1 (-1101 *3 *4 *2)) + (-4 *2 (-13 (-443 *4) (-905 *3) (-627 (-911 *3))))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-660 (-290))) (-5 *1 (-290)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1206))) (-5 *1 (-1206))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) - ((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1201))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-2 (|:| -1885 (-1194 *6)) (|:| -1801 (-576))))) - (-4 *6 (-317)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-576)) - (-5 *1 (-755 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5))))) + (|partial| -12 (-5 *2 (-420 *4)) (-4 *4 (-1268 *3)) + (-4 *3 (-13 (-375) (-148) (-1063 (-577)))) (-5 *1 (-581 *3 *4))))) +(((*1 *1) (-5 *1 (-302)))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) + (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *9)) (-4 *8 (-1087 *5 *6 *7)) - (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) - (-4 *7 (-862)) (-5 *2 (-784)) (-5 *1 (-1091 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-420 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1268 *5)) + (-5 *1 (-743 *5 *2)) (-4 *5 (-375))))) +(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-880))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-420 (-577))) + (-5 *1 (-446 *4 *3)) (-4 *3 (-443 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *9)) (-4 *8 (-1087 *5 *6 *7)) - (-4 *9 (-1131 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-806)) - (-4 *7 (-862)) (-5 *2 (-784)) (-5 *1 (-1167 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) - (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) - (-5 *1 (-1130 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -4236 *7) (|:| |sol?| (-112))) - (-576) *7)) - (-5 *6 (-657 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1265 *7)) - (-5 *3 (-419 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-586 *7 *8))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1071)) - (-5 *2 (-2 (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-867 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1071)) - (-5 *2 (-2 (|:| -2335 *3) (|:| -3644 *3))) (-5 *1 (-868 *5 *3)) - (-4 *3 (-867 *5))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-784))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1162 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1122) (-34))) (-4 *6 (-13 (-1122) (-34))) - (-5 *2 (-112)) (-5 *1 (-1163 *5 *6))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-941)) (-5 *1 (-1123 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) + (-12 (-5 *4 (-625 *3)) (-4 *3 (-443 *5)) + (-4 *5 (-13 (-569) (-1063 (-577)))) (-5 *2 (-1197 (-420 (-577)))) + (-5 *1 (-446 *5 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206))))) (((*1 *2 *1) - (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-657 (-963 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-657 (-963 *3))) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-657 (-657 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-657 (-963 *3))) (-4 *1 (-1156 *3)) (-4 *3 (-1071))))) + (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) + (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *8)) (-5 *4 (-657 *7)) (-4 *7 (-862)) - (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-806)) + (|partial| -12 (-5 *4 (-1201)) (-4 *5 (-627 (-911 (-577)))) + (-4 *5 (-905 (-577))) + (-4 *5 (-13 (-1063 (-577)) (-465) (-654 (-577)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-580 *5 *3)) (-4 *3 (-642)) + (-4 *3 (-13 (-27) (-1227) (-443 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1201)) (-5 *4 (-859 *2)) (-4 *2 (-1164)) + (-4 *2 (-13 (-27) (-1227) (-443 *5))) + (-4 *5 (-627 (-911 (-577)))) (-4 *5 (-905 (-577))) + (-4 *5 (-13 (-1063 (-577)) (-465) (-654 (-577)))) + (-5 *1 (-580 *5 *2))))) +(((*1 *1) (-5 *1 (-302)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1201)) (-5 *2 - (-2 (|:| |particular| (-3 (-1289 (-419 *8)) "failed")) - (|:| -1985 (-657 (-1289 (-419 *8)))))) - (-5 *1 (-682 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-657 (-657 (-657 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-657 *5)) (-4 *5 (-862)) (-5 *1 (-1209 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-1157))) (-5 *1 (-684)))) - ((*1 *2 *1) - (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1123 *3 *4)) (-14 *3 (-941)) - (-14 *4 (-941))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-657 *6)) (-5 *4 (-657 (-253 *5 *6))) (-4 *6 (-464)) - (-5 *2 (-253 *5 *6)) (-14 *5 (-657 (-1198))) (-5 *1 (-643 *5 *6))))) + (-2 (|:| |zeros| (-1182 (-228))) (|:| |ones| (-1182 (-228))) + (|:| |singularities| (-1182 (-228))))) + (-5 *1 (-105))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-3 (-112) (-660 *1))) + (-4 *1 (-1096 *4 *5 *6 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1122)) (-4 *6 (-902 *5)) (-5 *2 (-901 *5 *6 (-657 *6))) - (-5 *1 (-903 *5 *6 *4)) (-5 *3 (-657 *6)) (-4 *4 (-626 (-908 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1122)) (-5 *2 (-657 (-304 *3))) (-5 *1 (-903 *5 *3 *4)) - (-4 *3 (-1060 (-1198))) (-4 *3 (-902 *5)) (-4 *4 (-626 (-908 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1122)) (-5 *2 (-657 (-304 (-972 *3)))) - (-5 *1 (-903 *5 *3 *4)) (-4 *3 (-1071)) - (-2712 (-4 *3 (-1060 (-1198)))) (-4 *3 (-902 *5)) - (-4 *4 (-626 (-908 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1122)) (-5 *2 (-905 *5 *3)) (-5 *1 (-903 *5 *3 *4)) - (-2712 (-4 *3 (-1060 (-1198)))) (-2712 (-4 *3 (-1071))) - (-4 *3 (-902 *5)) (-4 *4 (-626 (-908 *5)))))) -(((*1 *1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-4 *1 (-312)))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1194 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-301)) (-5 *1 (-169))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-375)) + (-5 *2 (-2 (|:| -3042 (-431 *3)) (|:| |special| (-431 *3)))) + (-5 *1 (-743 *5 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-880))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) + (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1289 (-326 (-227)))) (-5 *4 (-657 (-1198))) - (-5 *2 (-702 (-326 (-227)))) (-5 *1 (-207)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1122)) (-4 *6 (-918 *5)) (-5 *2 (-702 *6)) - (-5 *1 (-705 *5 *6 *3 *4)) (-4 *3 (-384 *6)) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-877)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-784)) - (-14 *4 (-784)) (-4 *5 (-174))))) + (|partial| -12 (-5 *4 (-1201)) (-4 *5 (-627 (-911 (-577)))) + (-4 *5 (-905 (-577))) + (-4 *5 (-13 (-1063 (-577)) (-465) (-654 (-577)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-580 *5 *3)) (-4 *3 (-642)) + (-4 *3 (-13 (-27) (-1227) (-443 *5)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1122)) (-4 *2 (-918 *5)) (-5 *1 (-705 *5 *2 *3 *4)) - (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466))))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024) (-1224)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-861) (-317) (-148) (-1044))) - (-5 *2 (-657 (-1068 *5 *6))) (-5 *1 (-1316 *5 *6 *7)) - (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-861) (-317) (-148) (-1044))) - (-5 *2 (-657 (-1068 *5 *6))) (-5 *1 (-1316 *5 *6 *7)) - (-14 *6 (-657 (-1198))) (-14 *7 (-657 (-1198))))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-972 *4))) - (-4 *4 (-13 (-861) (-317) (-148) (-1044))) - (-5 *2 (-657 (-1068 *4 *5))) (-5 *1 (-1316 *4 *5 *6)) - (-14 *5 (-657 (-1198))) (-14 *6 (-657 (-1198)))))) + (-12 (-4 *4 (-375)) (-5 *2 (-660 (-1182 *4))) (-5 *1 (-296 *4 *5)) + (-5 *3 (-1182 *4)) (-4 *5 (-1283 *4))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4472 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) + (-4 *2 (-1074)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1268 *2)) + (-4 *4 (-703 *2 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1096 *4 *5 *6 *3)) (-4 *4 (-465)) (-4 *5 (-809)) + (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *3 (-1090 *4 *5 *6)) + (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -3952 *1)))) + (-4 *1 (-1096 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) + (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-742)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-660 *1)) (-4 *1 (-1090 *4 *5 *6)) (-4 *4 (-1074)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1235 *5 *6 *7 *3)) + (-4 *5 (-569)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) + (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-1198)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-326 *5))) - (-5 *1 (-1151 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-419 (-972 *5)))) (-5 *4 (-657 (-1198))) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-657 (-657 (-326 *5)))) - (-5 *1 (-1151 *5))))) + (-12 (-5 *4 (-1201)) + (-4 *5 (-13 (-1063 (-577)) (-465) (-654 (-577)))) + (-5 *2 (-2 (|:| -4045 *3) (|:| |nconst| *3))) (-5 *1 (-580 *5 *3)) + (-4 *3 (-13 (-27) (-1227) (-443 *5)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1283 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1160)) (-5 *3 (-302)) (-5 *1 (-169))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-660 *1)) + (-4 *1 (-1096 *4 *5 *6 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) - (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3946 *4)))) - (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-993)) (-5 *1 (-1314))))) + (-12 (-5 *3 (-1292 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-375)) + (-4 *1 (-740 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1268 *5)) + (-5 *2 (-705 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-440 *3 *2)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))) + (-4 *2 (-13 (-865) (-21)))))) (((*1 *2 *1) - (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-568))))) + (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1235 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-809)) + (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) - (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 *4)) (-4 *4 (-1122)) (-5 *2 (-1294)) - (-5 *1 (-1240 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-657 *4)) (-4 *4 (-1122)) (-5 *2 (-1294)) - (-5 *1 (-1240 *4))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-576)) (-5 *5 (-1180)) (-5 *6 (-702 (-227))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-762))))) + (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *3 (-569)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-625 *4)) (-5 *6 (-1201)) + (-4 *4 (-13 (-443 *7) (-27) (-1227))) + (-4 *7 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4060 (-660 *4)))) + (-5 *1 (-579 *7 *4 *3)) (-4 *3 (-672 *4)) (-4 *3 (-1125))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1259 (-577))) (-4 *1 (-293 *3)) (-4 *3 (-1242)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-293 *3)) (-4 *3 (-1242))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-3 *3 (-660 *1))) + (-4 *1 (-1096 *4 *5 *6 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-944)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-787))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-440 *3 *2)) (-4 *3 (-13 (-174) (-38 (-420 (-577))))) + (-4 *2 (-13 (-865) (-21)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-660 *1)) (-4 *1 (-1090 *4 *5 *6)) (-4 *4 (-1074)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1235 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-809)) + (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1001 *4 *5 *6 *3)) (-4 *4 (-1074)) (-4 *5 (-809)) + (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-4 *4 (-569)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-625 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1201))) + (-4 *2 (-13 (-443 *5) (-27) (-1227))) + (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) + (-5 *1 (-579 *5 *2 *6)) (-4 *6 (-1125))))) (((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1205 *2)) (-14 *2 (-941)))) - ((*1 *1 *1 *1) (-5 *1 (-1244))) ((*1 *1 *1 *1) (-5 *1 (-1245))) - ((*1 *1 *1 *1) (-5 *1 (-1246))) ((*1 *1 *1 *1) (-5 *1 (-1247)))) -(((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3))))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1208 *2)) (-14 *2 (-944)))) + ((*1 *1 *1 *1) (-5 *1 (-1247))) ((*1 *1 *1 *1) (-5 *1 (-1248))) + ((*1 *1 *1 *1) (-5 *1 (-1249))) ((*1 *1 *1 *1) (-5 *1 (-1250)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4470)) (-4 *1 (-241 *3)) + (-4 *3 (-1125)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-293 *3)) (-4 *3 (-1242))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1287 *3)) (-4 *3 (-1239)) (-4 *3 (-1071)) - (-5 *2 (-702 *3))))) + (-12 (-4 *1 (-1290 *3)) (-4 *3 (-1242)) (-4 *3 (-1074)) + (-5 *2 (-705 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-5 *2 (-657 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) - (-4 *3 (-1122))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1142)) (-5 *2 (-1294)) (-5 *1 (-844))))) + (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-5 *2 (-660 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) + ((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1201)) + (-4 *5 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) + (-5 *2 (-599 *3)) (-5 *1 (-439 *5 *3)) + (-4 *3 (-13 (-1227) (-29 *5)))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-1262 *5 *4)) (-5 *1 (-1196 *4 *5 *6)) - (-4 *4 (-1071)) (-14 *5 (-1198)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-1262 *5 *4)) (-5 *1 (-1281 *4 *5 *6)) - (-4 *4 (-1071)) (-14 *5 (-1198)) (-14 *6 *4)))) -(((*1 *2) - (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) - (-5 *2 (-657 (-657 *4))) (-5 *1 (-352 *3 *4 *5 *6)) - (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-657 (-657 *3)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1205 *2)) (-14 *2 (-941)))) - ((*1 *1 *1 *1) (-5 *1 (-1244))) ((*1 *1 *1 *1) (-5 *1 (-1245))) - ((*1 *1 *1 *1) (-5 *1 (-1246))) ((*1 *1 *1 *1) (-5 *1 (-1247)))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-657 (-702 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) - (-5 *2 (-832 *3)))) + (-12 (-5 *3 (-660 *1)) (-4 *1 (-1090 *4 *5 *6)) (-4 *4 (-1074)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1090 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *2 (-859)) (-5 *1 (-1312 *3 *2)) (-4 *3 (-1071))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1180)) (-5 *1 (-1011)))) + (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1235 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-809)) + (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1001 *4 *5 *6 *3)) (-4 *4 (-1074)) (-4 *5 (-809)) + (-4 *6 (-865)) (-4 *3 (-1090 *4 *5 *6)) (-4 *4 (-569)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-625 *3)) (-5 *5 (-660 *3)) + (-4 *3 (-13 (-443 *6) (-27) (-1227))) + (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-579 *6 *3 *7)) (-4 *7 (-1125))))) +(((*1 *1 *1 *1) (-5 *1 (-130))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1208 *2)) (-14 *2 (-944)))) + ((*1 *1 *1 *1) (-5 *1 (-1247))) ((*1 *1 *1 *1) (-5 *1 (-1248))) + ((*1 *1 *1 *1) (-5 *1 (-1249))) ((*1 *1 *1 *1) (-5 *1 (-1250)))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-598)) (-5 *3 (-610)) (-5 *4 (-302)) (-5 *1 (-291))))) +(((*1 *2 *2) + (-12 (-4 *3 (-318)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) + (-5 *1 (-1149 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-771))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-577)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1242)) + (-4 *5 (-385 *4)) (-4 *3 (-385 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) + ((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1125)) (-5 *2 (-787))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-1183)) (-5 *1 (-1014)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-4 *4 (-1239)) (-5 *1 (-1079 *3 *4)) - (-4 *3 (-1115 *4)))) + (-12 (-5 *2 (-1201)) (-4 *4 (-1242)) (-5 *1 (-1082 *3 *4)) + (-4 *3 (-1118 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1116 *4)) (-4 *4 (-1239)) - (-5 *1 (-1114 *4))))) + (-12 (-5 *2 (-1201)) (-5 *3 (-1119 *4)) (-4 *4 (-1242)) + (-5 *1 (-1117 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-660 *7))) (-4 *1 (-1235 *4 *5 *6 *7)) + (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-657 *6)) (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) - (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) - (-4 *3 (-568))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-862)) (-4 *5 (-929)) (-4 *6 (-806)) - (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-430 (-1194 *8))) - (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-1194 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-929)) (-4 *5 (-1265 *4)) (-5 *2 (-430 (-1194 *5))) - (-5 *1 (-927 *4 *5)) (-5 *3 (-1194 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 (-1198))) (-5 *3 (-52)) (-5 *1 (-908 *4)) - (-4 *4 (-1122))))) -(((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112))))) -(((*1 *1 *1) (-5 *1 (-227))) + (-12 (-5 *2 (-660 *6)) (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) + (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) + (-4 *3 (-569))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-625 *3)) + (-4 *3 (-13 (-443 *5) (-27) (-1227))) + (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) + (-5 *2 (-2 (|:| -2898 *3) (|:| |coeff| *3))) + (-5 *1 (-579 *5 *3 *6)) (-4 *6 (-1125))))) +(((*1 *1 *1) (-5 *1 (-228))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) - (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) - ((*1 *1 *1) (-5 *1 (-390))) ((*1 *1) (-5 *1 (-390)))) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) + (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) + ((*1 *1 *1) (-5 *1 (-391))) ((*1 *1) (-5 *1 (-391)))) +(((*1 *2 *1) (-12 (-5 *2 (-598)) (-5 *1 (-291))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-657 (-390))) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-657 (-390))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 (-390))) (-5 *1 (-480)))) + (-12 (-5 *2 (-660 (-391))) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-391))) (-5 *1 (-481)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-391))) (-5 *1 (-481)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-941)) (-5 *4 (-889)) (-5 *2 (-1294)) (-5 *1 (-1290)))) + (-12 (-5 *3 (-944)) (-5 *4 (-892)) (-5 *2 (-1297)) (-5 *1 (-1293)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1239)) (-5 *2 (-784)))) - ((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-784)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1071)) - (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-624 *3)) (-4 *3 (-1122)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-877)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-877))))) -(((*1 *2 *2) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-1265 (-576))) (-5 *1 (-498 *3))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-448))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1194 *7)) - (-4 *5 (-1071)) (-4 *7 (-1071)) (-4 *2 (-1265 *5)) - (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1265 *2))))) + (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180)) - (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-112)) - (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1224) (-29 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-360)) - (-5 *2 - (-2 (|:| |cont| *5) - (|:| -2067 (-657 (-2 (|:| |irr| *3) (|:| -1439 (-576))))))) - (-5 *1 (-218 *5 *3)) (-4 *3 (-1265 *5))))) + (-12 (-4 *4 (-318)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1149 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-262 *3)) (-4 *3 (-1242)) (-5 *2 (-787)))) + ((*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-787)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1074)) + (-4 *2 (-13 (-417) (-1063 *4) (-375) (-1227) (-295))) + (-5 *1 (-456 *4 *3 *2)) (-4 *3 (-1268 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-625 *3)) (-4 *3 (-1125)))) + ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-880)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-880))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-771))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-880))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880))))) +(((*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1125)) (-4 *2 (-380))))) +(((*1 *1) (-5 *1 (-55)))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-660 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1235 *5 *6 *7 *8)) (-4 *5 (-569)) + (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-660 *6)) (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) + (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) + (-4 *3 (-569))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-625 *3)) (-4 *3 (-13 (-443 *5) (-27) (-1227))) + (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) + (-5 *2 (-599 *3)) (-5 *1 (-579 *5 *3 *6)) (-4 *6 (-1125))))) +(((*1 *2 *1) (-12 (-5 *2 (-302)) (-5 *1 (-291))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1180)) (-5 *2 (-390)) (-5 *1 (-799))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-657 *2)) (-4 *2 (-1122)) (-4 *2 (-1239))))) -(((*1 *2 *2) (-12 (-5 *2 (-1179 (-657 (-941)))) (-5 *1 (-899))))) -(((*1 *2 *2) (-12 (-5 *2 (-986 *3)) (-4 *3 (-1122)) (-5 *1 (-987 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-862)) - (-4 *4 (-806)) (-5 *1 (-1009 *2 *3 *4 *5)) (-4 *5 (-969 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1141)))) + (-12 (-5 *2 (-1197 (-577))) (-5 *1 (-965)) (-5 *3 (-577)))) ((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-941)) (-5 *1 (-1123 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-941)) (-5 *1 (-712)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-702 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-374)) (-5 *1 (-1000 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) - ((*1 *1 *1) (|partial| -4 *1 (-735)))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1180)) (-5 *5 (-702 (-227))) - (-5 *2 (-1057)) (-5 *1 (-760))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 - (-3 (|:| |overq| (-1194 (-419 (-576)))) - (|:| |overan| (-1194 (-48))) (|:| -4177 (-112)))) - (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1265 *5))))) + (-12 (-4 *3 (-318)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) + (-5 *1 (-1149 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) + (-5 *1 (-771))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-660 (-1201))) (-4 *4 (-1125)) + (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4))))))) +(((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-380)) (-4 *2 (-1125))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1129)) (-5 *1 (-290))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-784)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-787)))) ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-784))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *2 (-862)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-576)) (-5 *1 (-206))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-941)) (-5 *4 (-889)) (-5 *2 (-1294)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-568)) (-4 *2 (-1071)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) (-4 *2 (-1265 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *2 (-568)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *3 (-1087 *4 *5 *6)) - (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *1)))) - (-4 *1 (-1093 *4 *5 *6 *3))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-657 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-784)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-806)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) - (-5 *1 (-461 *3 *4 *5 *6))))) + (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-787))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-787)) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1074)) (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-771))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-660 (-1101 *4 *5 *2))) (-4 *4 (-1125)) + (-4 *5 (-13 (-1074) (-905 *4) (-627 (-911 *4)))) + (-4 *2 (-13 (-443 *5) (-905 *4) (-627 (-911 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-660 (-1101 *5 *6 *2))) (-5 *4 (-944)) (-4 *5 (-1125)) + (-4 *6 (-13 (-1074) (-905 *5) (-627 (-911 *5)))) + (-4 *2 (-13 (-443 *6) (-905 *5) (-627 (-911 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-433 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1227) (-443 *3))) + (-14 *4 (-1201)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-4 *2 (-13 (-27) (-1227) (-443 *3) (-10 -8 (-15 -3544 ($ *4))))) + (-4 *4 (-864)) + (-4 *5 + (-13 (-1270 *2 *4) (-375) (-1227) + (-10 -8 (-15 -2852 ($ $)) (-15 -4147 ($ $))))) + (-5 *1 (-435 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1008 *5)) + (-14 *7 (-1201))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-657 - (-2 - (|:| -4291 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -4440 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1179 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1685 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-571)))) - ((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1239)) - (-5 *2 (-657 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) - (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837))))) + (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-784)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-784))))) + (-12 (-4 *1 (-617 *2 *3)) (-4 *3 (-1242)) (-4 *2 (-1125)) + (-4 *2 (-865))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290))))) (((*1 *2 *1) - (-12 (-4 *1 (-1093 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-806)) - (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-657 *1)) (-5 *3 (-657 *7)) (-4 *1 (-1093 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 *1)) - (-4 *1 (-1093 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-657 *1)) (-4 *1 (-1093 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-657 *1)) - (-4 *1 (-1093 *4 *5 *6 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-657 (-326 (-227)))) - (|:| |constraints| - (-657 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-784)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) - (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) - (|:| |tol| (-227)))) - (-5 *2 (-112)) (-5 *1 (-212))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1071)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-787)))) ((*1 *2 *1) - (-12 (-4 *1 (-995 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *1 *2) (-12 (-5 *2 (-832 *3)) (-4 *3 (-862)) (-5 *1 (-685 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) -(((*1 *2 *3) - (-12 (-5 *3 (-304 (-972 (-576)))) - (-5 *2 - (-2 (|:| |varOrder| (-657 (-1198))) - (|:| |inhom| (-3 (-657 (-1289 (-784))) "failed")) - (|:| |hom| (-657 (-1289 (-784)))))) - (-5 *1 (-241))))) -(((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) - (-5 *2 (-425 *4 (-419 *4) *5 *6)))) + (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-5 *2 (-787))))) +(((*1 *1 *2) + (-12 (-5 *2 (-660 *1)) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1289 *6)) (-4 *6 (-13 (-421 *4 *5) (-1060 *4))) - (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) (-4 *3 (-317)) - (-5 *1 (-425 *3 *4 *5 *6)))) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-1074)) (-4 *1 (-703 *3 *4 *5)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-374)) - (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) + (-12 (-5 *2 (-1292 *3)) (-4 *3 (-1074)) (-5 *1 (-705 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-660 *4)) (-4 *4 (-1074)) (-4 *1 (-1148 *3 *4 *5 *6)) + (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-171 (-228)))) + (-5 *2 (-1060)) (-5 *1 (-770))))) +(((*1 *2) + (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-4 *3 (-13 (-27) (-1227) (-443 *6) (-10 -8 (-15 -3544 ($ *7))))) + (-4 *7 (-864)) + (-4 *8 + (-13 (-1270 *3 *7) (-375) (-1227) + (-10 -8 (-15 -2852 ($ $)) (-15 -4147 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183)))))) + (-5 *1 (-435 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1183)) (-4 *9 (-1008 *8)) + (-14 *10 (-1201))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577))))) +(((*1 *2 *1) + (-12 (-4 *1 (-617 *2 *3)) (-4 *3 (-1242)) (-4 *2 (-1125)) + (-4 *2 (-865))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-519)) (-5 *1 (-290))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1148 *3 *4 *2 *5)) (-4 *4 (-1074)) (-4 *5 (-244 *3 *4)) + (-4 *2 (-244 *3 *4))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-171 (-228)))) + (-5 *2 (-1060)) (-5 *1 (-770))))) +(((*1 *2) + (-12 (-4 *3 (-569)) (-5 *2 (-660 (-705 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-4 *3 (-13 (-27) (-1227) (-443 *6) (-10 -8 (-15 -3544 ($ *7))))) + (-4 *7 (-864)) + (-4 *8 + (-13 (-1270 *3 *7) (-375) (-1227) + (-10 -8 (-15 -2852 ($ $)) (-15 -4147 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1183)) (|:| |prob| (-1183)))))) + (-5 *1 (-435 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1183)) (-4 *9 (-1008 *8)) + (-14 *10 (-1201))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-385 *2)) + (-4 *4 (-385 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4471)) (-4 *1 (-617 *3 *2)) (-4 *3 (-1125)) + (-4 *2 (-1242))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-290))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) - (-253 *4 (-419 (-576))))) - (-14 *4 (-657 (-1198))) (-14 *5 (-784)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-784)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1265 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + (-12 (-5 *3 (-705 *2)) (-4 *4 (-1268 *2)) + (-4 *2 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) + (-5 *1 (-512 *2 *4 *5)) (-4 *5 (-422 *2 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1090 *4 *3)) (-4 *4 (-13 (-861) (-374))) - (-4 *3 (-1265 *4)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-576)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) + (-12 (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2)) (-4 *2 (-1074))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-327 (-228))) (-5 *1 (-316)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-911 *3)) (|:| |den| (-911 *3)))) + (-5 *1 (-911 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-171 (-228)))) (-5 *2 (-1060)) + (-5 *1 (-770))))) +(((*1 *2) + (-12 (-4 *3 (-569)) (-5 *2 (-660 (-705 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1235 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *5 (-1090 *2 *3 *4))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1029 *3)) (-14 *3 (-577))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4471)) (-4 *1 (-617 *3 *4)) (-4 *3 (-1125)) + (-4 *4 (-1242)) (-5 *2 (-1297))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-420 (-577))) + (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-287 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) + (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-375)) + (-5 *1 (-534 *2 *4 *5 *3)) (-4 *3 (-703 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) + (|has| *2 (-6 (-4472 "*"))) (-4 *2 (-1074)))) ((*1 *2 *3) - (-12 (-5 *3 (-1116 (-856 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-875)) (-5 *2 (-704 (-561))) (-5 *3 (-561))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-784)) (-4 *4 (-13 (-568) (-148))) - (-5 *1 (-1259 *4 *2)) (-4 *2 (-1265 *4))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) + (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-174)) + (-5 *1 (-704 *2 *4 *5 *3)) (-4 *3 (-703 *2 *4 *5)))) ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-908 *3)) (|:| |den| (-908 *3)))) - (-5 *1 (-908 *3)) (-4 *3 (-1122))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-861))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1265 (-171 *3)))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) + (-12 (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4472 "*"))) (-4 *2 (-1074))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) + (-5 *2 (-1060)) (-5 *1 (-770))))) +(((*1 *1 *1) (-12 (-5 *1 (-937 *2)) (-4 *2 (-318))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-660 *3)) (-4 *3 (-1268 *5)) (-4 *5 (-318)) + (-5 *2 (-787)) (-5 *1 (-468 *5 *3))))) +(((*1 *2) + (-12 (-4 *3 (-569)) (-5 *2 (-660 (-705 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-431 *5)) (-4 *5 (-569)) + (-5 *2 + (-2 (|:| -3556 (-787)) (|:| -1777 *5) (|:| |radicand| (-660 *5)))) + (-5 *1 (-331 *5)) (-5 *4 (-787)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-577))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-784)) (-4 *4 (-13 (-568) (-148))) - (-5 *1 (-1259 *4 *2)) (-4 *2 (-1265 *4))))) + (-12 (-5 *3 (-660 (-625 *2))) (-5 *4 (-660 (-1201))) + (-4 *2 (-13 (-443 (-171 *5)) (-1027) (-1227))) (-4 *5 (-569)) + (-5 *1 (-613 *5 *6 *2)) (-4 *6 (-13 (-443 *5) (-1027) (-1227)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-625 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4))) + (-4 *4 (-13 (-569) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-287 *4 *2))))) +(((*1 *1 *1) (-5 *1 (-549)))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1183))) (-5 *1 (-407))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *2 (-862)))) + (-12 (-4 *1 (-703 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) + (|has| *2 (-6 (-4472 "*"))) (-4 *2 (-1074)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-806)) (-4 *5 (-1071)) (-4 *6 (-969 *5 *4 *2)) - (-4 *2 (-862)) (-5 *1 (-970 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -3501 ($ *6)) (-15 -1621 (*6 $)) - (-15 -1635 (*6 $))))))) + (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-174)) + (-5 *1 (-704 *2 *4 *5 *3)) (-4 *3 (-703 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2)) (|has| *2 (-6 (-4472 "*"))) (-4 *2 (-1074))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) + (-5 *2 (-1060)) (-5 *1 (-770))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1268 (-420 (-577)))) (-5 *1 (-936 *3 *2)) + (-4 *2 (-1268 (-420 *3)))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -4060 (-660 *1)))) + (-4 *1 (-379 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-466 *3 *4 *5 *6)) + (|:| -4060 (-660 (-466 *3 *4 *5 *6))))) + (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-944)) + (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) +(((*1 *2) + (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) + (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 *10)) + (-5 *1 (-637 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1096 *5 *6 *7 *8)) + (-4 *10 (-1134 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) + (-14 *6 (-660 (-1201))) (-5 *2 (-660 (-1071 *5 *6))) + (-5 *1 (-641 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) + (-14 *6 (-660 (-1201))) + (-5 *2 + (-660 (-1171 *5 (-544 (-882 *6)) (-882 *6) (-796 *5 (-882 *6))))) + (-5 *1 (-641 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) + (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-5 *2 (-660 (-1052 *5 *6 *7 *8))) (-5 *1 (-1052 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) + (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-5 *2 (-660 (-1052 *5 *6 *7 *8))) (-5 *1 (-1052 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) + (-14 *6 (-660 (-1201))) (-5 *2 (-660 (-1071 *5 *6))) + (-5 *1 (-1071 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) + (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) (-5 *2 (-660 *1)) + (-4 *1 (-1096 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) + (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-5 *2 (-660 (-1171 *5 *6 *7 *8))) (-5 *1 (-1171 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-112)) (-4 *8 (-1090 *5 *6 *7)) + (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-5 *2 (-660 (-1171 *5 *6 *7 *8))) (-5 *1 (-1171 *5 *6 *7 *8)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) - (-5 *2 (-1198)) (-5 *1 (-1065 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) - (-5 *2 (-657 (-657 (-657 (-784)))))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1057)) - (-5 *1 (-762))))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-569)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-660 *1)) + (-4 *1 (-1235 *4 *5 *6 *7))))) +(((*1 *1 *2) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-1025 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-702 *4)) (-4 *4 (-374)) (-5 *2 (-1194 *4)) - (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-861)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4))) - (-4 *4 (-13 (-568) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-286 *4 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) - (-5 *1 (-178 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1179 *4))) (-4 *4 (-374)) - (-4 *4 (-1071)) (-5 *2 (-1179 *4)) (-5 *1 (-1182 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-657 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) - (-4 *7 (-1265 *6)) - (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-1180))))) -(((*1 *1 *1) (-5 *1 (-548)))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406))))) + (-12 (-4 *4 (-569)) (-5 *2 (-171 *5)) (-5 *1 (-613 *4 *5 *3)) + (-4 *5 (-13 (-443 *4) (-1027) (-1227))) + (-4 *3 (-13 (-443 (-171 *4)) (-1027) (-1227)))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-660 (-625 *2))) (-5 *4 (-1201)) + (-4 *2 (-13 (-27) (-1227) (-443 *5))) + (-4 *5 (-13 (-569) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-287 *5 *2))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1242))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-770))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1268 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-936 *4 *3)) + (-4 *3 (-1268 (-420 *4)))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-569)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -4060 (-660 *1)))) + (-4 *1 (-379 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-466 *3 *4 *5 *6)) + (|:| -4060 (-660 (-466 *3 *4 *5 *6))))) + (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-944)) + (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) +(((*1 *2) + (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-657 (-657 *3))))) + (-12 (-4 *2 (-1118 *3)) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1242)))) ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-657 (-657 *5))))) - ((*1 *2 *1) - (-12 (-5 *2 (-657 (-657 *3))) (-5 *1 (-1210 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) - (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-969 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-806)) (-4 *4 (-862)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1122)) (-5 *1 (-1216 *3 *2)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-1119 *3)) (-5 *1 (-1117 *3)) (-4 *3 (-1242)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242)))) + ((*1 *1 *2) (-12 (-5 *1 (-1259 *2)) (-4 *2 (-1242))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) + (-5 *2 (-660 (-2 (|:| -2045 *1) (|:| -3253 (-660 *7))))) + (-5 *3 (-660 *7)) (-4 *1 (-1235 *4 *5 *6 *7))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *1 *1 *1) (-4 *1 (-486))) + ((*1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) + ((*1 *2 *2) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-902)))) + ((*1 *1 *1) (-5 *1 (-996))) + ((*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *2 (-13 (-443 (-171 *4)) (-1027) (-1227))) + (-5 *1 (-613 *4 *3 *2)) (-4 *3 (-13 (-443 *4) (-1027) (-1227)))))) +(((*1 *1) (-5 *1 (-341)))) +(((*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1242))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *3 (-577)) + (-5 *2 (-1060)) (-5 *1 (-770))))) (((*1 *2 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219))))) + (-12 (-5 *3 (-660 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577))))) + (-4 *4 (-1268 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-936 *4 *5)) + (-4 *5 (-1268 (-420 *4)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1292 (-1201))) (-5 *3 (-1292 (-466 *4 *5 *6 *7))) + (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-944)) + (-14 *6 (-660 (-1201))) (-14 *7 (-1292 (-705 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1201)) (-5 *3 (-1292 (-466 *4 *5 *6 *7))) + (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-944)) + (-14 *6 (-660 *2)) (-14 *7 (-1292 (-705 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1292 (-466 *3 *4 *5 *6))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) + (-14 *6 (-1292 (-705 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1292 (-1201))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-944)) (-14 *5 (-660 (-1201))) + (-14 *6 (-1292 (-705 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1201)) (-5 *1 (-466 *3 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-944)) (-14 *5 (-660 *2)) (-14 *6 (-1292 (-705 *3))))) + ((*1 *1) + (-12 (-5 *1 (-466 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-944)) + (-14 *4 (-660 (-1201))) (-14 *5 (-1292 (-705 *2)))))) +(((*1 *2) + (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1122)) - (-5 *2 (-657 (-2 (|:| |k| *4) (|:| |c| *3)))))) + (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-660 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *2 (-13 (-443 *4) (-1027) (-1227))) + (-5 *1 (-613 *4 *2 *3)) + (-4 *3 (-13 (-443 (-171 *4)) (-1027) (-1227)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1201)) (-5 *4 (-975 (-577))) (-5 *2 (-341)) + (-5 *1 (-343))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-1143)) (-5 *1 (-1140))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-660 (-112))) (-5 *5 (-705 (-228))) + (-5 *6 (-705 (-577))) (-5 *7 (-228)) (-5 *3 (-577)) (-5 *2 (-1060)) + (-5 *1 (-770))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1268 (-420 (-577)))) + (-5 *2 (-2 (|:| |den| (-577)) (|:| |gcdnum| (-577)))) + (-5 *1 (-936 *3 *4)) (-4 *4 (-1268 (-420 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1268 (-420 *2))) (-5 *2 (-577)) (-5 *1 (-936 *4 *3)) + (-4 *3 (-1268 (-420 *4)))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1197 (-975 *4))) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2) + (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-4 *3 (-375)) + (-5 *2 (-1197 (-975 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1197 (-420 (-975 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) + (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) +(((*1 *2) + (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1235 *3 *4 *5 *2)) (-4 *3 (-569)) + (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1090 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-443 *4) (-1027) (-1227))) + (-4 *4 (-569)) (-4 *2 (-13 (-443 (-171 *4)) (-1027) (-1227))) + (-5 *1 (-613 *4 *5 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-342 *3)) (-4 *3 (-865))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-944)) (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)))) + ((*1 *2 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-375)))) ((*1 *2 *1) - (-12 (-5 *2 (-657 (-2 (|:| |k| (-909 *3)) (|:| |c| *4)))) - (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-730 (-419 (-576))))) (-14 *5 (-941)))) + (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1268 *2)) (-4 *2 (-174)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1292 *4)) (-5 *3 (-944)) (-4 *4 (-361)) + (-5 *1 (-541 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-657 (-685 *3))) (-5 *1 (-909 *3)) (-4 *3 (-862))))) -(((*1 *1 *1) - (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-806)) - (-5 *1 (-1009 *2 *3 *4 *5)) (-4 *5 (-969 *2 *4 *3))))) + (-12 (-4 *1 (-1148 *3 *2 *4 *5)) (-4 *4 (-244 *3 *2)) + (-4 *5 (-244 *3 *2)) (-4 *2 (-1074))))) (((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *5 (-1243)) (-4 *6 (-1265 *5)) - (-4 *7 (-1265 (-419 *6))) (-5 *2 (-657 (-972 *5))) - (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1243)) - (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) (-4 *4 (-374)) - (-5 *2 (-657 (-972 *4)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1071)) (-4 *2 (-700 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1265 *4)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4))))) + (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-465)) (-4 *4 (-836)) + (-14 *5 (-1201)) (-5 *2 (-577)) (-5 *1 (-1139 *4 *5))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-705 (-577))) (-5 *5 (-112)) (-5 *7 (-705 (-228))) + (-5 *3 (-577)) (-5 *6 (-228)) (-5 *2 (-1060)) (-5 *1 (-770))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-657 *3)) - (-5 *1 (-1259 *4 *3)) (-4 *3 (-1265 *4))))) + (-12 (-5 *3 (-577)) (-4 *4 (-1268 (-420 *3))) (-5 *2 (-944)) + (-5 *1 (-936 *4 *5)) (-4 *5 (-1268 (-420 *4)))))) (((*1 *2 *1) - (-12 (-4 *2 (-1115 *3)) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1239)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1116 *3)) (-5 *1 (-1114 *3)) (-4 *3 (-1239)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239)))) - ((*1 *1 *2) (-12 (-5 *1 (-1256 *2)) (-4 *2 (-1239))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-947))))) -(((*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374))))) -(((*1 *1) (-5 *1 (-340)))) + (-12 (-5 *2 (-1197 (-420 (-975 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) + (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) +(((*1 *2) + (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1125))))) (((*1 *2 *1) - (-12 (-4 *1 (-1060 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-925 *3)) (-4 *3 (-1122))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *6 (-227)) - (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-764))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-374)) (-4 *3 (-1071)) - (-5 *1 (-1182 *3))))) -(((*1 *1) (-5 *1 (-836)))) + (-12 (-4 *1 (-1235 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-4 *5 (-380)) + (-5 *2 (-787))))) +(((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174))))) +(((*1 *1) (-5 *1 (-610)))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1117 (-975 (-577)))) (-5 *3 (-975 (-577))) + (-5 *1 (-341)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1117 (-975 (-577)))) (-5 *1 (-341))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-465)) (-4 *4 (-836)) + (-14 *5 (-1201)) (-5 *2 (-577)) (-5 *1 (-1139 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-660 (-112))) (-5 *7 (-705 (-228))) + (-5 *8 (-705 (-577))) (-5 *3 (-577)) (-5 *4 (-228)) (-5 *5 (-112)) + (-5 *2 (-1060)) (-5 *1 (-770))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) + (-4 *6 (-1268 *5)) (-4 *7 (-1268 (-420 *6))) + (-4 *8 (-354 *5 *6 *7)) (-4 *4 (-13 (-569) (-1063 (-577)))) + (-5 *2 (-2 (|:| -3817 (-787)) (|:| -3334 *8))) + (-5 *1 (-934 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) + (-4 *4 (-1268 (-420 (-577)))) (-4 *5 (-1268 (-420 *4))) + (-4 *6 (-354 (-420 (-577)) *4 *5)) + (-5 *2 (-2 (|:| -3817 (-787)) (|:| -3334 *6))) + (-5 *1 (-935 *4 *5 *6))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-623 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125))))) (((*1 *2 *1) - (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-5 *2 (-1180))))) + (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) + (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-657 (-2 (|:| -1885 *4) (|:| -1770 (-576))))) - (-4 *4 (-1265 (-576))) (-5 *2 (-750 (-784))) (-5 *1 (-454 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-430 *5)) (-4 *5 (-1265 *4)) (-4 *4 (-1071)) - (-5 *2 (-750 (-784))) (-5 *1 (-456 *4 *5))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290))))) + (-12 (-4 *4 (-569)) (-5 *2 (-660 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-430 *4))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074)))) ((*1 *2 *1 *1) - (-12 (-4 *2 (-1071)) (-5 *1 (-50 *2 *3)) (-14 *3 (-657 (-1198))))) + (-12 (-4 *2 (-1074)) (-5 *1 (-50 *2 *3)) (-14 *3 (-660 (-1201))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-657 (-941))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) - (-14 *4 (-941)) (-14 *5 (-1015 *4 *2)))) + (-12 (-5 *3 (-660 (-944))) (-4 *2 (-375)) (-5 *1 (-153 *4 *2 *5)) + (-14 *4 (-944)) (-14 *5 (-1018 *4 *2)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) - (-4 *3 (-13 (-1071) (-862))) (-14 *4 (-657 (-1198))))) + (-12 (-5 *2 (-327 *3)) (-5 *1 (-226 *3 *4)) + (-4 *3 (-13 (-1074) (-865))) (-14 *4 (-660 (-1201))))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-132)))) + (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-132)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1071)))) + (-12 (-4 *1 (-394 *2 *3)) (-4 *3 (-1125)) (-4 *2 (-1074)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) - (-4 *4 (-1265 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *1 (-721 *2)) (-4 *2 (-1071)))) + (-12 (-5 *3 (-577)) (-4 *2 (-569)) (-5 *1 (-636 *2 *4)) + (-4 *4 (-1268 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *1 (-724 *2)) (-4 *2 (-1074)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-1071)) (-5 *1 (-748 *2 *3)) (-4 *3 (-739)))) + (-12 (-4 *2 (-1074)) (-5 *1 (-751 *2 *3)) (-4 *3 (-742)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 *5)) (-5 *3 (-657 (-784))) (-4 *1 (-753 *4 *5)) - (-4 *4 (-1071)) (-4 *5 (-862)))) + (-12 (-5 *2 (-660 *5)) (-5 *3 (-660 (-787))) (-4 *1 (-756 *4 *5)) + (-4 *4 (-1074)) (-4 *5 (-865)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-784)) (-4 *1 (-753 *4 *2)) (-4 *4 (-1071)) - (-4 *2 (-862)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-4 *1 (-867 *2)) (-4 *2 (-1071)))) + (-12 (-5 *3 (-787)) (-4 *1 (-756 *4 *2)) (-4 *4 (-1074)) + (-4 *2 (-865)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-787)) (-4 *1 (-870 *2)) (-4 *2 (-1074)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 *6)) (-5 *3 (-657 (-784))) (-4 *1 (-969 *4 *5 *6)) - (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)))) + (-12 (-5 *2 (-660 *6)) (-5 *3 (-660 (-787))) (-4 *1 (-972 *4 *5 *6)) + (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-784)) (-4 *1 (-969 *4 *5 *2)) (-4 *4 (-1071)) - (-4 *5 (-806)) (-4 *2 (-862)))) + (-12 (-5 *3 (-787)) (-4 *1 (-972 *4 *5 *2)) (-4 *4 (-1074)) + (-4 *5 (-809)) (-4 *2 (-865)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-784)) (-4 *2 (-969 *4 (-543 *5) *5)) - (-5 *1 (-1148 *4 *5 *2)) (-4 *4 (-1071)) (-4 *5 (-862)))) + (-12 (-5 *3 (-787)) (-4 *2 (-972 *4 (-544 *5) *5)) + (-5 *1 (-1151 *4 *5 *2)) (-4 *4 (-1074)) (-4 *5 (-865)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-972 *4)) (-5 *1 (-1233 *4)) - (-4 *4 (-1071))))) -(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-129))))) + (-12 (-5 *3 (-787)) (-5 *2 (-975 *4)) (-5 *1 (-1236 *4)) + (-4 *4 (-1074))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174))))) +(((*1 *1) (-5 *1 (-610)))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-341))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-944)) (-5 *4 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293))))) (((*1 *2 *3) - (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-464)) (-5 *2 (-112)) - (-5 *1 (-371 *4 *5)) (-14 *5 (-657 (-1198))))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-793 *4 (-879 *5)))) (-4 *4 (-464)) - (-14 *5 (-657 (-1198))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) + (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-836)) (-14 *5 (-1201)) + (-5 *2 (-577)) (-5 *1 (-1139 *4 *5))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) + (-5 *2 (-1060)) (-5 *1 (-769))))) +(((*1 *2 *3) + (-12 (-5 *3 (-348 *5 *6 *7 *8)) (-4 *5 (-443 *4)) (-4 *6 (-1268 *5)) + (-4 *7 (-1268 (-420 *6))) (-4 *8 (-354 *5 *6 *7)) + (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-112)) + (-5 *1 (-934 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-348 (-420 (-577)) *4 *5 *6)) + (-4 *4 (-1268 (-420 (-577)))) (-4 *5 (-1268 (-420 *4))) + (-4 *6 (-354 (-420 (-577)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-935 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) + (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115))))) + (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) + (-5 *1 (-178 *3))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1151 *4 *3 *5))) (-4 *4 (-38 (-420 (-577)))) + (-4 *4 (-1074)) (-4 *3 (-865)) (-5 *1 (-1151 *4 *3 *5)) + (-4 *5 (-972 *4 (-544 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1236 *4))) (-5 *3 (-1201)) (-5 *1 (-1236 *4)) + (-4 *4 (-38 (-420 (-577)))) (-4 *4 (-1074))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242))))) +(((*1 *1) (-5 *1 (-610)))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-341))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-577)) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-667 *2)) (-4 *2 (-1242))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1224) (-1024)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-784)) (-5 *1 (-795 *3)) (-4 *3 (-1071)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-983 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) - (-4 *3 (-1071)) (-4 *2 (-805)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-784)) (-5 *1 (-1194 *3)) (-4 *3 (-1071)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-993)) (-4 *2 (-132)) (-5 *1 (-1200 *3)) (-4 *3 (-568)) - (-4 *3 (-1071)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-784)) (-5 *1 (-1262 *4 *3)) (-14 *4 (-1198)) - (-4 *3 (-1071))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-941)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1265 *2)) (-4 *2 (-174)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1289 *4)) (-5 *3 (-941)) (-4 *4 (-360)) - (-5 *1 (-540 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (-4 *2 (-1071))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1180)) (-5 *5 (-702 (-227))) - (-5 *2 (-1057)) (-5 *1 (-760))))) -(((*1 *1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1313 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-832 *3)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-1071)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-702 *4)) (-5 *3 (-941)) (-4 *4 (-1071)) - (-5 *1 (-1050 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-657 (-702 *4))) (-5 *3 (-941)) (-4 *4 (-1071)) - (-5 *1 (-1050 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1122))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-784)) (-4 *5 (-1071)) (-4 *2 (-1265 *5)) - (-5 *1 (-1283 *5 *2 *6 *3)) (-4 *6 (-669 *2)) (-4 *3 (-1280 *5))))) + (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-836)) (-14 *5 (-1201)) + (-5 *2 (-577)) (-5 *1 (-1139 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-705 (-228))) (-5 *5 (-112)) (-5 *6 (-228)) + (-5 *7 (-705 (-577))) + (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-769))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1197 *1)) (-4 *1 (-465)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1197 *6)) (-4 *6 (-972 *5 *3 *4)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *5 (-932)) (-5 *1 (-470 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1197 *1)) (-4 *1 (-932))))) (((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) - (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) - (-5 *1 (-1094 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6)))) + (-12 (-4 *4 (-174)) (-5 *2 (-1197 (-975 *4))) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-806)) (-4 *5 (-862)) - (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-1294)) - (-5 *1 (-1130 *3 *4 *5 *6 *7)) (-4 *7 (-1093 *3 *4 *5 *6))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-657 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1232 *5 *6 *7 *8)) (-4 *5 (-568)) - (-4 *6 (-806)) (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) - (-5 *2 (-2 (|:| -1771 *1) (|:| |gap| (-784)) (|:| -3644 *1))) - (-4 *1 (-1087 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *2 (-2 (|:| -1771 *1) (|:| |gap| (-784)) (|:| -3644 *1))) - (-4 *1 (-1087 *3 *4 *5))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-657 *5)) (-5 *4 (-576)) (-4 *5 (-861)) (-4 *5 (-374)) - (-5 *2 (-784)) (-5 *1 (-965 *5 *6)) (-4 *6 (-1265 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-1071)) - (-5 *2 (-972 *5)) (-5 *1 (-964 *4 *5))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) - (-5 *2 (-1057)) (-5 *1 (-769))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-1179 (-227))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-657 (-1198))) - (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-1179 (-227))) (-5 *1 (-310)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1289 (-326 (-227)))) (-5 *4 (-657 (-1198))) - (-5 *5 (-1116 (-856 (-227)))) (-5 *2 (-1179 (-227))) (-5 *1 (-310))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1180)) (-4 *6 (-464)) (-4 *7 (-806)) (-4 *8 (-862)) - (-4 *4 (-1087 *6 *7 *8)) (-5 *2 (-1294)) - (-5 *1 (-789 *6 *7 *8 *4 *5)) (-4 *5 (-1093 *6 *7 *8 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-784)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-784))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-657 (-227))) (-5 *1 (-206))))) + (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-4 *3 (-375)) + (-5 *2 (-1197 (-975 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1197 (-420 (-975 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) + (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1180)) (-5 *3 (-576)) (-5 *1 (-1085))))) -(((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-657 (-657 (-227)))) (-5 *1 (-1235))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1239))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-559)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-657 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) - (-14 *4 (-784)) (-4 *5 (-174))))) -(((*1 *2 *1) - (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1239)) (-4 *2 (-1122)) - (-4 *2 (-862))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-664 *2)) (-4 *2 (-1239))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-846 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-856 *3)) (-4 *3 (-1122))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -3071 *4) (|:| -3265 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-802)) (-5 *5 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-340))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-784)) (-4 *1 (-1265 *4)) (-4 *4 (-1071)) - (-5 *2 (-1289 *4))))) + (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) + (-5 *1 (-178 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) + (-12 (-4 *3 (-627 (-911 *3))) (-4 *3 (-905 *3)) (-4 *3 (-465)) + (-5 *1 (-1233 *3 *2)) (-4 *2 (-627 (-911 *3))) (-4 *2 (-905 *3)) + (-4 *2 (-13 (-443 *3) (-1227)))))) (((*1 *1) (-5 *1 (-188)))) +(((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242))))) +(((*1 *1) (-5 *1 (-610)))) +(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-341))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4472 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) + (-4 *2 (-1074)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1268 *2)) + (-4 *4 (-703 *2 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1265 *5 *4)) (-4 *4 (-836)) (-14 *5 (-1201)) + (-5 *2 (-660 *4)) (-5 *1 (-1139 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-705 (-228))) (-5 *6 (-112)) (-5 *7 (-705 (-577))) + (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-577)) (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-769))))) (((*1 *2 *3) - (-12 (-5 *2 (-1179 (-576))) (-5 *1 (-1182 *4)) (-4 *4 (-1071)) - (-5 *3 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-834))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-5 *2 (-1 (-1194 (-972 *4)) (-972 *4))) - (-5 *1 (-1297 *4)) (-4 *4 (-374))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-657 *7)) (|:| |badPols| (-657 *7)))) - (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) - (-4 *6 (-806)) (-5 *2 (-657 *3)) (-5 *1 (-944 *4 *5 *6 *3)) - (-4 *3 (-969 *4 *6 *5))))) + (-12 (-5 *2 (-431 (-1197 *1))) (-5 *1 (-327 *4)) (-5 *3 (-1197 *1)) + (-4 *4 (-465)) (-4 *4 (-569)) (-4 *4 (-1125)))) + ((*1 *2 *3) + (-12 (-4 *1 (-932)) (-5 *2 (-431 (-1197 *1))) (-5 *3 (-1197 *1))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1197 (-420 (-975 *3)))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) + (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-1154 *4 *2)) - (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4466) (-6 -4467)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-862)) (-4 *3 (-1239)) (-5 *1 (-1154 *3 *2)) - (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4466) (-6 -4467))))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862))))) + (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) + (-5 *1 (-178 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) (((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-449)) (-5 *3 (-1198)) (-5 *1 (-1201)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1198)) (-5 *1 (-1201)))) + (-12 (-5 *2 (-450)) (-5 *3 (-1201)) (-5 *1 (-1204)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-450)) (-5 *3 (-1201)) (-5 *1 (-1204)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-657 (-1198))) (-5 *4 (-1198)) - (-5 *1 (-1201)))) + (-12 (-5 *2 (-450)) (-5 *3 (-660 (-1201))) (-5 *4 (-1201)) + (-5 *1 (-1204)))) ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-1198)) (-5 *1 (-1201)))) + (-12 (-5 *2 (-450)) (-5 *3 (-1201)) (-5 *1 (-1204)))) ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-1198)) (-5 *1 (-1202)))) + (-12 (-5 *2 (-450)) (-5 *3 (-1201)) (-5 *1 (-1205)))) ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-657 (-1198))) (-5 *1 (-1202))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) - (-4 *6 (-806)) (-5 *2 (-419 (-972 *4))) (-5 *1 (-944 *4 *5 *6 *3)) - (-4 *3 (-969 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-702 *7)) (-4 *7 (-969 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) - (-4 *6 (-806)) (-5 *2 (-702 (-419 (-972 *4)))) - (-5 *1 (-944 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) - (-4 *6 (-806)) (-5 *2 (-657 (-419 (-972 *4)))) - (-5 *1 (-944 *4 *5 *6 *7))))) + (-12 (-5 *2 (-450)) (-5 *3 (-660 (-1201))) (-5 *1 (-1205))))) +(((*1 *1 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242))))) (((*1 *2 *2) - (-12 (-4 *3 (-1122)) (-5 *1 (-949 *3 *2)) (-4 *2 (-442 *3)))) + (-12 (-4 *3 (-1125)) (-5 *1 (-952 *3 *2)) (-4 *2 (-443 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-5 *2 (-326 (-576))) (-5 *1 (-950))))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) + (-12 (-5 *3 (-1201)) (-5 *2 (-327 (-577))) (-5 *1 (-953))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-610))) (-5 *1 (-610))))) +(((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-341))))) (((*1 *1) (-5 *1 (-188)))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-769))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1180)) (-5 *5 (-702 (-227))) (-5 *6 (-702 (-576))) - (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-657 (-419 (-972 *6)))) - (-5 *3 (-419 (-972 *6))) - (-4 *6 (-13 (-568) (-1060 (-576)) (-148))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-582 *6))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3436 (-795 *3)) (|:| |coef2| (-795 *3)))) - (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *2 (-2 (|:| -3436 *1) (|:| |coef2| *1))) - (-4 *1 (-1087 *3 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1198)) - (-4 *6 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-4 *4 (-13 (-29 *6) (-1224) (-979))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -1985 (-657 *4)))) - (-5 *1 (-814 *6 *4 *3)) (-4 *3 (-669 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1074)) (-4 *2 (-703 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1268 *4)) (-4 *5 (-385 *4)) + (-4 *6 (-385 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-836)) (-14 *5 (-1201)) (-5 *2 (-660 (-1265 *5 *4))) + (-5 *1 (-1139 *4 *5)) (-5 *3 (-1265 *5 *4))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-112)) + (-5 *2 (-1060)) (-5 *1 (-769))))) +(((*1 *2 *3) + (-12 (-5 *2 (-431 (-1197 *1))) (-5 *1 (-327 *4)) (-5 *3 (-1197 *1)) + (-4 *4 (-465)) (-4 *4 (-569)) (-4 *4 (-1125)))) + ((*1 *2 *3) + (-12 (-4 *1 (-932)) (-5 *2 (-431 (-1197 *1))) (-5 *3 (-1197 *1))))) +(((*1 *2 *1) + (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) + (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) + (-5 *1 (-178 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1028))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) (((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1161)))) -(((*1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1161))) ((*1 *1 *1 *1) (-4 *1 (-1161)))) -(((*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1071))))) -(((*1 *1) (-4 *1 (-989)))) +(((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1051 (-859 (-577)))) + (-5 *3 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *4)))) (-4 *4 (-1074)) + (-5 *1 (-608 *4))))) +(((*1 *1) (-4 *1 (-992)))) +(((*1 *1 *2) (-12 (-5 *2 (-327 (-171 (-391)))) (-5 *1 (-341)))) + ((*1 *1 *2) (-12 (-5 *2 (-327 (-577))) (-5 *1 (-341)))) + ((*1 *1 *2) (-12 (-5 *2 (-327 (-391))) (-5 *1 (-341)))) + ((*1 *1 *2) (-12 (-5 *2 (-327 (-710))) (-5 *1 (-341)))) + ((*1 *1 *2) (-12 (-5 *2 (-327 (-717))) (-5 *1 (-341)))) + ((*1 *1 *2) (-12 (-5 *2 (-327 (-715))) (-5 *1 (-341)))) + ((*1 *1) (-5 *1 (-341)))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1194 (-48))) (-5 *3 (-657 (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1194 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-374) (-861))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1265 (-171 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-941)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1265 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1265 *2)) (-4 *2 (-1014 *3)) (-5 *1 (-425 *3 *2 *4 *5)) - (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1060 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1265 *2)) (-4 *2 (-1014 *3)) - (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) - (-14 *6 (-1289 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-941)) (-4 *5 (-1071)) - (-4 *2 (-13 (-416) (-1060 *5) (-374) (-1224) (-294))) - (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1265 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-624 (-507)))) (-5 *1 (-507)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1194 (-507))) (-5 *3 (-657 (-624 (-507)))) - (-5 *1 (-507)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1194 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1289 *4)) (-5 *3 (-941)) (-4 *4 (-360)) - (-5 *1 (-540 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-737 *4 *2)) (-4 *2 (-1265 *4)) - (-5 *1 (-788 *4 *2 *5 *3)) (-4 *3 (-1265 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)))) - ((*1 *1 *1) (-4 *1 (-1082)))) -(((*1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837))))) -(((*1 *1) (-5 *1 (-449)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-657 (-576))) (-5 *2 (-1200 (-419 (-576)))) - (-5 *1 (-192))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-1124 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1122)) (-5 *2 (-1124 (-657 *4))) (-5 *1 (-924 *4)) - (-5 *3 (-657 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1122)) (-5 *2 (-1124 (-1124 *4))) (-5 *1 (-924 *4)) - (-5 *3 (-1124 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1124 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) + (-12 (-4 *4 (-836)) (-14 *5 (-1201)) (-5 *2 (-660 (-1265 *5 *4))) + (-5 *1 (-1139 *4 *5)) (-5 *3 (-1265 *5 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1060)) (-5 *1 (-769))))) +(((*1 *2 *3) + (-12 (-4 *1 (-932)) (-5 *2 (-431 (-1197 *1))) (-5 *3 (-1197 *1))))) (((*1 *2 *1) - (-12 (-5 *2 (-657 (-1225 *3))) (-5 *1 (-1225 *3)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) + (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-657 (-972 *3))) (-4 *3 (-464)) - (-5 *1 (-371 *3 *4)) (-14 *4 (-657 (-1198))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-657 (-793 *3 (-879 *4)))) (-4 *3 (-464)) - (-14 *4 (-657 (-1198))) (-5 *1 (-640 *3 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1194 *1)) (-4 *1 (-464)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1194 *6)) (-4 *6 (-969 *5 *3 *4)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *5 (-929)) (-5 *1 (-469 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1194 *1)) (-4 *1 (-929))))) + (-12 (-5 *2 (-966 *3)) (-4 *3 (-13 (-375) (-1227) (-1027))) + (-5 *1 (-178 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-1242))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1051 (-859 (-577)))) (-5 *1 (-608 *3)) (-4 *3 (-1074))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-341))) (-5 *1 (-341))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-657 *7)) (|:| -3946 *8))) - (-4 *7 (-1087 *4 *5 *6)) (-4 *8 (-1093 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1010 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-657 *7)) (|:| -3946 *8))) - (-4 *7 (-1087 *4 *5 *6)) (-4 *8 (-1093 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1129 *4 *5 *6 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-704 (-591))) (-5 *1 (-591))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *2 (-1 *6 *5)) (-5 *1 (-697 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-598 *3) *3 (-1198))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1198))) - (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1060 *4)) (-4 *3 (-442 *7)) - (-5 *4 (-1198)) (-4 *7 (-626 (-908 (-576)))) (-4 *7 (-464)) - (-4 *7 (-902 (-576))) (-4 *7 (-1122)) (-5 *2 (-598 *3)) - (-5 *1 (-585 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-856 (-227)))) (-5 *4 (-227)) (-5 *2 (-657 *4)) - (-5 *1 (-276))))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1135)) (-5 *3 (-577))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-660 (-1197 *5))) (-5 *3 (-1197 *5)) + (-4 *5 (-167 *4)) (-4 *4 (-558)) (-5 *1 (-150 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-660 *3)) (-4 *3 (-1268 *5)) + (-4 *5 (-1268 *4)) (-4 *4 (-361)) (-5 *1 (-370 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-660 (-1197 (-577)))) (-5 *3 (-1197 (-577))) + (-5 *1 (-585)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-660 (-1197 *1))) (-5 *3 (-1197 *1)) + (-4 *1 (-932))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1060)) (-5 *1 (-769))))) +(((*1 *2 *3) (-12 (-5 *3 (-504)) (-5 *2 (-707 (-592))) (-5 *1 (-592))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) + (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1167 *3 *4)) (-14 *3 (-944)) (-4 *4 (-375)) + (-5 *1 (-1018 *3 *4))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-657 - (-657 - (-3 (|:| -2676 (-1198)) - (|:| -3968 (-657 (-3 (|:| S (-1198)) (|:| P (-972 (-576)))))))))) - (-5 *1 (-1202))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-661 *3)) (-4 *3 (-1071)) - (-5 *1 (-727 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-849 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-702 (-227))) (-5 *5 (-702 (-576))) (-5 *6 (-227)) - (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-765))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1071)) (-4 *7 (-1071)) - (-4 *6 (-1265 *5)) (-5 *2 (-1194 (-1194 *7))) - (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1265 *6))))) + (-12 (-5 *2 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *3)))) + (-5 *1 (-608 *3)) (-4 *3 (-1074))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-313)))) + ((*1 *1 *1) (-4 *1 (-313))) ((*1 *1 *1) (-5 *1 (-880)))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-341))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) - ((*1 *1 *1) (-4 *1 (-505))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) + ((*1 *1 *1) (-4 *1 (-506))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)))) ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1071)) (-14 *3 (-657 (-1198))))) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1074)) (-14 *3 (-660 (-1201))))) ((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1071) (-862))) - (-14 *3 (-657 (-1198))))) + (-12 (-5 *1 (-226 *2 *3)) (-4 *2 (-13 (-1074) (-865))) + (-14 *3 (-660 (-1201))))) ((*1 *1 *1) - (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-1122)))) + (-12 (-4 *1 (-394 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1125)))) ((*1 *1 *1) - (-12 (-14 *2 (-657 (-1198))) (-4 *3 (-174)) - (-4 *5 (-243 (-3440 *2) (-784))) + (-12 (-14 *2 (-660 (-1201))) (-4 *3 (-174)) + (-4 *5 (-244 (-3484 *2) (-787))) (-14 *6 - (-1 (-112) (-2 (|:| -3178 *4) (|:| -1801 *5)) - (-2 (|:| -3178 *4) (|:| -1801 *5)))) - (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-862)) - (-4 *7 (-969 *3 *5 (-879 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-865)))) + (-1 (-112) (-2 (|:| -3222 *4) (|:| -3556 *5)) + (-2 (|:| -3222 *4) (|:| -3556 *5)))) + (-5 *1 (-474 *2 *3 *4 *5 *6 *7)) (-4 *4 (-865)) + (-4 *7 (-972 *3 *5 (-882 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-102)) (-4 *3 (-868)))) ((*1 *1 *1) - (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1265 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-1071)))) + (-12 (-4 *2 (-569)) (-5 *1 (-636 *2 *3)) (-4 *3 (-1268 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-1074)))) ((*1 *1 *1) - (-12 (-5 *1 (-748 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1071)) - (-4 *3 (-739)))) - ((*1 *1 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)))) + (-12 (-5 *1 (-751 *2 *3)) (-4 *3 (-865)) (-4 *2 (-1074)) + (-4 *3 (-742)))) + ((*1 *1 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *2 (-862)))) + (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *2 (-865)))) ((*1 *1 *1) - (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-859))))) -(((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1 (-390))) (-5 *1 (-1062))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-877)))) - ((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-982))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1057)) - (-5 *1 (-761))))) + (-12 (-5 *1 (-1315 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-862))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1135)) (-5 *3 (-577))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-880)))) + ((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-985))))) (((*1 *2 *3) - (-12 (-14 *4 (-657 (-1198))) (-4 *5 (-464)) - (-5 *2 - (-2 (|:| |glbase| (-657 (-253 *4 *5))) (|:| |glval| (-657 (-576))))) - (-5 *1 (-643 *4 *5)) (-5 *3 (-657 (-253 *4 *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 (-340))) (-5 *1 (-340))))) -(((*1 *1 *1 *1) (-5 *1 (-163))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4467)) (-4 *1 (-120 *2)) (-4 *2 (-1239))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-5 *1 (-914 *2 *3)) - (-4 *2 (-1265 *3))))) + (|partial| -12 (-5 *3 (-705 *1)) (-4 *1 (-361)) (-5 *2 (-1292 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-705 *1)) (-4 *1 (-146)) (-4 *1 (-932)) + (-5 *2 (-1292 *1))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) + (-5 *5 (-3 (|:| |fn| (-401)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1060)) (-5 *1 (-769))))) +(((*1 *2) + (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) + (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1182 *2)) (-4 *2 (-318)) (-5 *1 (-176 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1125)) (-4 *2 (-1074)))) + ((*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-341))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) - ((*1 *1 *1) (-4 *1 (-505))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) + ((*1 *1 *1) (-4 *1 (-506))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-518))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 (-891))) (-5 *1 (-495))))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-519))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-894))) (-5 *1 (-496))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-660 (-577))) (-5 *1 (-1135)) (-5 *3 (-577))))) (((*1 *2 *1) - (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) - (-4 *1 (-969 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937))))) + (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *1)) + (-4 *1 (-972 *3 *4 *5))))) +(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-361))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-932))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-577)) (-5 *5 (-112)) (-5 *6 (-705 (-228))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-769))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1122)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1224)))) - ((*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1122))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-657 (-419 (-972 (-576))))) (-5 *4 (-657 (-1198))) - (-5 *2 (-657 (-657 *5))) (-5 *1 (-391 *5)) - (-4 *5 (-13 (-861) (-374))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-972 (-576)))) (-5 *2 (-657 *4)) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-861) (-374)))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) + (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) + (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1239)) (-5 *2 (-784)) - (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1242)) (-5 *2 (-787)) + (-5 *1 (-243 *3 *4 *5)) (-4 *3 (-244 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-132)) - (-5 *2 (-784)))) + (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-132)) + (-5 *2 (-787)))) ((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-784)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-372 *3)) (-4 *3 (-1122)))) - ((*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-784)))) - ((*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1122)) (-5 *2 (-784)))) + (-12 (-4 *4 (-375)) (-5 *2 (-787)) (-5 *1 (-339 *3 *4)) + (-4 *3 (-340 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-373 *3)) (-4 *3 (-1125)))) + ((*1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-787)))) + ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-1125)) (-5 *2 (-787)))) ((*1 *2) - (-12 (-4 *4 (-1122)) (-5 *2 (-784)) (-5 *1 (-436 *3 *4)) - (-4 *3 (-437 *4)))) + (-12 (-4 *4 (-1125)) (-5 *2 (-787)) (-5 *1 (-437 *3 *4)) + (-4 *3 (-438 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-784)) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-1122)) + (-12 (-5 *2 (-787)) (-5 *1 (-665 *3 *4 *5)) (-4 *3 (-1125)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1265 *4)) (-5 *2 (-784)) - (-5 *1 (-736 *3 *4 *5)) (-4 *3 (-737 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1028)))) + (-12 (-4 *4 (-174)) (-4 *5 (-1268 *4)) (-5 *2 (-787)) + (-5 *1 (-739 *3 *4 *5)) (-4 *3 (-740 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1031)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) - (-4 *3 (-1265 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-657 (-1198))) (-4 *4 (-1122)) - (-4 *5 (-13 (-1071) (-902 *4) (-626 (-908 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-902 *4) (-626 (-908 *4))))))) -(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1062))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1048 (-856 (-576)))) - (-5 *3 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1071)) - (-5 *1 (-607 *4))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -4236 *6) (|:| |sol?| (-112))) (-576) - *6)) - (-4 *6 (-374)) (-4 *7 (-1265 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) - (-2 (|:| -2322 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) + (-12 (-4 *2 (-13 (-864) (-375))) (-5 *1 (-1086 *2 *3)) + (-4 *3 (-1268 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *1 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1125)) (-4 *2 (-569)))) + ((*1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569))))) +(((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-341))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) - ((*1 *1 *1) (-4 *1 (-505))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) + ((*1 *1 *1) (-4 *1 (-506))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-390))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1074)) (-4 *2 (-703 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1268 *4)) (-4 *5 (-385 *4)) + (-4 *6 (-385 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1135))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074)))) ((*1 *2 *1) - (-12 (-4 *2 (-1071)) (-5 *1 (-50 *2 *3)) (-14 *3 (-657 (-1198))))) + (-12 (-4 *2 (-1074)) (-5 *1 (-50 *2 *3)) (-14 *3 (-660 (-1201))))) ((*1 *2 *1) - (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) - (-4 *3 (-13 (-1071) (-862))) (-14 *4 (-657 (-1198))))) + (-12 (-5 *2 (-327 *3)) (-5 *1 (-226 *3 *4)) + (-4 *3 (-13 (-1074) (-865))) (-14 *4 (-660 (-1201))))) ((*1 *2 *1) - (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1071)))) + (-12 (-4 *1 (-394 *2 *3)) (-4 *3 (-1125)) (-4 *2 (-1074)))) ((*1 *2 *1) - (-12 (-14 *3 (-657 (-1198))) (-4 *5 (-243 (-3440 *3) (-784))) + (-12 (-14 *3 (-660 (-1201))) (-4 *5 (-244 (-3484 *3) (-787))) (-14 *6 - (-1 (-112) (-2 (|:| -3178 *4) (|:| -1801 *5)) - (-2 (|:| -3178 *4) (|:| -1801 *5)))) - (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-862)) - (-4 *7 (-969 *2 *5 (-879 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-865)) (-4 *2 (-102)))) + (-1 (-112) (-2 (|:| -3222 *4) (|:| -3556 *5)) + (-2 (|:| -3222 *4) (|:| -3556 *5)))) + (-4 *2 (-174)) (-5 *1 (-474 *3 *2 *4 *5 *6 *7)) (-4 *4 (-865)) + (-4 *7 (-972 *2 *5 (-882 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-522 *2 *3)) (-4 *3 (-868)) (-4 *2 (-102)))) ((*1 *2 *1) - (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1265 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-1071)))) + (-12 (-4 *2 (-569)) (-5 *1 (-636 *2 *3)) (-4 *3 (-1268 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-724 *2)) (-4 *2 (-1074)))) ((*1 *2 *1) - (-12 (-4 *2 (-1071)) (-5 *1 (-748 *2 *3)) (-4 *3 (-862)) - (-4 *3 (-739)))) - ((*1 *2 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)))) + (-12 (-4 *2 (-1074)) (-5 *1 (-751 *2 *3)) (-4 *3 (-865)) + (-4 *3 (-742)))) + ((*1 *2 *1) (-12 (-4 *1 (-870 *2)) (-4 *2 (-1074)))) ((*1 *2 *1) - (-12 (-4 *1 (-995 *2 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) - (-4 *2 (-1071)))) + (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *3 (-808)) (-4 *4 (-865)) + (-4 *2 (-1074)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *2 (-862))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-695 *2)) (-4 *2 (-1122)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-657 *5) (-657 *5))) (-5 *4 (-576)) - (-5 *2 (-657 *5)) (-5 *1 (-695 *5)) (-4 *5 (-1122))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1122)) - (-4 *4 (-132)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-372 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-662 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1071)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1265 *3))))) -(((*1 *1) (-5 *1 (-158)))) + (-12 (-4 *1 (-1090 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *2 (-865))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-865)) (-4 *5 (-932)) (-4 *6 (-809)) + (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-431 (-1197 *8))) + (-5 *1 (-929 *5 *6 *7 *8)) (-5 *4 (-1197 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-932)) (-4 *5 (-1268 *4)) (-5 *2 (-431 (-1197 *5))) + (-5 *1 (-930 *4 *5)) (-5 *3 (-1197 *5))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-768))))) +(((*1 *2) + (-12 (-5 *2 (-420 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) + (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) (((*1 *2 *2) (-12 (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-576)))) - (-4 *4 (-13 (-1265 *3) (-568) (-10 -8 (-15 -3436 ($ $ $))))) - (-4 *3 (-568)) (-5 *1 (-1268 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) - ((*1 *1 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-993))))) -(((*1 *1 *2) - (-12 (-5 *2 (-657 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-576)) (-14 *4 (-784))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-657 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-317)) - (-5 *2 (-784)) (-5 *1 (-467 *5 *3))))) + (-1012 (-420 (-577)) (-882 *3) (-246 *4 (-787)) + (-254 *3 (-420 (-577))))) + (-14 *3 (-660 (-1201))) (-14 *4 (-787)) (-5 *1 (-1011 *3 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1074))))) +(((*1 *2 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-341))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) - (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) - ((*1 *1 *1) (-4 *1 (-505))) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) + (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) + ((*1 *1 *1) (-4 *1 (-506))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *1 (-103 *3)) (-4 *3 (-1125))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1292 (-577))) (-5 *3 (-577)) (-5 *1 (-1135)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1292 (-577))) (-5 *3 (-660 (-577))) (-5 *4 (-577)) + (-5 *1 (-1135))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)))) ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1122)))) + (-12 (-4 *1 (-394 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1125)))) ((*1 *2 *1) - (-12 (-14 *3 (-657 (-1198))) (-4 *4 (-174)) - (-4 *6 (-243 (-3440 *3) (-784))) + (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) + (-4 *6 (-244 (-3484 *3) (-787))) (-14 *7 - (-1 (-112) (-2 (|:| -3178 *5) (|:| -1801 *6)) - (-2 (|:| -3178 *5) (|:| -1801 *6)))) - (-5 *2 (-726 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-862)) (-4 *8 (-969 *4 *6 (-879 *3))))) + (-1 (-112) (-2 (|:| -3222 *5) (|:| -3556 *6)) + (-2 (|:| -3222 *5) (|:| -3556 *6)))) + (-5 *2 (-729 *5 *6 *7)) (-5 *1 (-474 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-865)) (-4 *8 (-972 *4 *6 (-882 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-739)) (-4 *2 (-862)) (-5 *1 (-748 *3 *2)) - (-4 *3 (-1071)))) + (-12 (-4 *2 (-742)) (-4 *2 (-865)) (-5 *1 (-751 *3 *2)) + (-4 *3 (-1074)))) ((*1 *1 *1) - (-12 (-4 *1 (-995 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-805)) - (-4 *4 (-862))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) - (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-2 (|:| -2004 (-1179 *4)) (|:| -2017 (-1179 *4)))) - (-5 *1 (-1184 *4)) (-5 *3 (-1179 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-657 (-171 *4))) (-5 *1 (-156 *3 *4)) - (-4 *3 (-1265 (-171 (-576)))) (-4 *4 (-13 (-374) (-861))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-657 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-657 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1071)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4097 *1))) - (-4 *1 (-867 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-657 *2) *2 *2 *2)) (-4 *2 (-1122)) - (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1122)) (-5 *1 (-103 *2))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-941)) (-5 *1 (-1052 *2)) - (-4 *2 (-13 (-1122) (-10 -8 (-15 -3012 ($ $ $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-784)) (-4 *5 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-991 *5 *3)) (-4 *3 (-1265 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) - (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) - (-4 *3 (-13 (-1224) (-29 *5)))))) + (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-808)) + (-4 *4 (-865))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1194 (-972 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) + (-12 (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-932)) + (-5 *1 (-470 *3 *4 *2 *5)) (-4 *5 (-972 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-809)) (-4 *4 (-865)) (-4 *2 (-932)) + (-5 *1 (-929 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-932)) (-5 *1 (-930 *2 *3)) (-4 *3 (-1268 *2))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) + (-5 *2 (-1060)) (-5 *1 (-768))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1292 *1)) (-4 *1 (-379 *4)) (-4 *4 (-174)) + (-5 *2 (-660 (-975 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-660 (-975 *4))) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) - (-5 *2 (-1194 (-972 *3))))) + (-12 (-4 *1 (-430 *3)) (-4 *3 (-174)) (-5 *2 (-660 (-975 *3))))) ((*1 *2) - (-12 (-5 *2 (-1194 (-419 (-972 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) - (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) + (-12 (-5 *2 (-660 (-975 *3))) (-5 *1 (-466 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-174)) (-14 *4 (-944)) + (-14 *5 (-660 (-1201))) (-14 *6 (-1292 (-705 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1292 (-466 *4 *5 *6 *7))) (-5 *2 (-660 (-975 *4))) + (-5 *1 (-466 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *4 (-174)) + (-14 *5 (-944)) (-14 *6 (-660 (-1201))) (-14 *7 (-1292 (-705 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-944)) (-5 *1 (-1055 *2)) + (-4 *2 (-13 (-1125) (-10 -8 (-15 -3055 ($ $ $)))))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-972 *4 *6 *5)) (-4 *4 (-465)) + (-4 *5 (-865)) (-4 *6 (-809)) (-5 *1 (-1012 *4 *5 *6 *3))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1182 (-2 (|:| |k| (-577)) (|:| |c| *6)))) + (-5 *4 (-1051 (-859 (-577)))) (-5 *5 (-1201)) (-5 *7 (-420 (-577))) + (-4 *6 (-1074)) (-5 *2 (-880)) (-5 *1 (-608 *6))))) +(((*1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-380)) (-4 *2 (-375))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) - (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) - ((*1 *1 *1) (-4 *1 (-505))) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) + (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) + ((*1 *1 *1) (-4 *1 (-506))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-4 *1 (-1120 *3)))) - ((*1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) -(((*1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071)))) - ((*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1239)) - (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4467)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1122)) - (-4 *2 (-1239))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-764))))) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-4 *1 (-1123 *3)))) + ((*1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-660 (-577))) (-5 *3 (-660 (-944))) (-5 *4 (-112)) + (-5 *1 (-1135))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-768))))) (((*1 *2 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-657 (-112)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-784)) (-4 *5 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-784)) - (-4 *4 (-174)))) - ((*1 *1 *1) - (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1071)) (-4 *1 (-700 *3 *2 *4)) (-4 *2 (-384 *3)) - (-4 *4 (-384 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1164 *2 *3)) (-14 *2 (-784)) (-4 *3 (-1071))))) + (-12 (-4 *4 (-932)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-431 (-1197 *7))) + (-5 *1 (-929 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-932)) (-4 *5 (-1268 *4)) (-5 *2 (-431 (-1197 *5))) + (-5 *1 (-930 *4 *5)) (-5 *3 (-1197 *5))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-784)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-806)) (-4 *2 (-969 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) - (-4 *4 (-464)) (-4 *6 (-862))))) -(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-835))))) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-787)) + (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-337 *2 *3)) (-4 *3 (-808)) (-4 *2 (-1074)))) + ((*1 *2 *1) (-12 (-4 *1 (-443 *2)) (-4 *2 (-1125))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1242)) + (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4471)) (-4 *1 (-299 *3 *2)) (-4 *3 (-1125)) + (-4 *2 (-1242))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-318))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-465)) (-4 *4 (-865)) + (-4 *5 (-809)) (-5 *1 (-1012 *3 *4 *5 *6)) (-4 *6 (-972 *3 *5 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1197 *3)) (-4 *3 (-380)) (-4 *1 (-340 *3)) + (-4 *3 (-375))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) - (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) - ((*1 *1 *1) (-4 *1 (-505))) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) + (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) + ((*1 *1 *1) (-4 *1 (-506))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-844))))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-705 (-577))) (-5 *3 (-660 (-577))) (-5 *1 (-1135))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-768))))) +(((*1 *2 *3) + (-12 (-4 *4 (-932)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-431 (-1197 *7))) + (-5 *1 (-929 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-932)) (-4 *5 (-1268 *4)) (-5 *2 (-431 (-1197 *5))) + (-5 *1 (-930 *4 *5)) (-5 *3 (-1197 *5))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4467)) (-4 *1 (-501 *3)) - (-4 *3 (-1239))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4466)) (-4 *1 (-501 *4)) - (-4 *4 (-1239)) (-5 *2 (-112))))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4471)) (-4 *1 (-502 *3)) + (-4 *3 (-1242))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-787)) (|:| -3972 *4))) (-5 *5 (-787)) + (-4 *4 (-972 *6 *7 *8)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-462 *6 *7 *8 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-805)) + (-12 (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-808)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1122)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) + ((*1 *2 *1) (-12 (-4 *1 (-443 *3)) (-4 *3 (-1125)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-317)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4097 *1))) - (-4 *1 (-317))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1224) (-1024)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-657 (-972 *4))) (-5 *3 (-657 (-1198))) (-4 *4 (-464)) - (-5 *1 (-938 *4))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1057)) - (-5 *1 (-759))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-312)))) - ((*1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-787)) (-5 *1 (-115)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-787)) (-5 *1 (-115))))) + (-12 (-5 *2 (-1182 (-420 *3))) (-5 *1 (-176 *3)) (-4 *3 (-318))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-465)) (-4 *4 (-865)) (-4 *5 (-809)) (-5 *2 (-660 *6)) + (-5 *1 (-1012 *3 *4 *5 *6)) (-4 *6 (-972 *3 *5 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-608 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1074))))) +(((*1 *2 *1) + (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) + (-5 *2 (-1197 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-996)) (-5 *2 (-1116 (-227)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-972 *5)) (-4 *5 (-1071)) (-5 *2 (-493 *4 *5)) - (-5 *1 (-964 *4 *5)) (-14 *4 (-657 (-1198)))))) -(((*1 *1 *1) (-4 *1 (-248))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-944))) (-5 *4 (-660 (-577))) + (-5 *2 (-705 (-577))) (-5 *1 (-1135))))) +(((*1 *2 *1) (-12 (-4 *1 (-999)) (-5 *2 (-1119 (-228)))))) +(((*1 *1 *1) (-4 *1 (-249))) ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1265 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-12 (-4 *2 (-174)) (-5 *1 (-300 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1268 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-2802 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1239))) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1239))))) - ((*1 *1 *1) (-4 *1 (-485))) - ((*1 *2 *2) (-12 (-5 *2 (-1289 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) + (-2839 (-12 (-5 *1 (-305 *2)) (-4 *2 (-375)) (-4 *2 (-1242))) + (-12 (-5 *1 (-305 *2)) (-4 *2 (-486)) (-4 *2 (-1242))))) + ((*1 *1 *1) (-4 *1 (-486))) + ((*1 *2 *2) (-12 (-5 *2 (-1292 *3)) (-4 *3 (-361)) (-5 *1 (-541 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-728 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) + ((*1 *1 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)) (-4 *2 (-375))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-660 (-1197 *7))) (-5 *3 (-1197 *7)) + (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-932)) (-4 *5 (-809)) + (-4 *6 (-865)) (-5 *1 (-929 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-660 (-1197 *5))) (-5 *3 (-1197 *5)) + (-4 *5 (-1268 *4)) (-4 *4 (-932)) (-5 *1 (-930 *4 *5))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) + (-5 *6 (-228)) (-5 *2 (-1060)) (-5 *1 (-768))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-787)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-809)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-865)) + (-5 *2 (-112)) (-5 *1 (-462 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1182 (-420 *3))) (-5 *1 (-176 *3)) (-4 *3 (-318))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-972 *3 *5 *4)) (-5 *1 (-1012 *3 *4 *5 *2)) + (-4 *3 (-465)) (-4 *4 (-865)) (-4 *5 (-809))))) (((*1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *2 (-464))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1234 *3)) - (-5 *1 (-803 *3)) (-4 *3 (-996)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-112)) - (-5 *1 (-1234 *2)) (-4 *2 (-996))))) -(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-772))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1289 (-657 (-2 (|:| -3071 *4) (|:| -3178 (-1142)))))) - (-4 *4 (-360)) (-5 *2 (-1294)) (-5 *1 (-540 *4))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-5 *1 (-779 *2 *3)) (-4 *2 (-721 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-707))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-714))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-712))) (-5 *1 (-340)))) - ((*1 *1) (-5 *1 (-340)))) -(((*1 *1) (-5 *1 (-609)))) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) + (-5 *2 (-1197 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-340 *3)) (-4 *3 (-375)) (-4 *3 (-380)) + (-5 *2 (-1197 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1116 (-227))))) - ((*1 *2 *1) (-12 (-4 *1 (-996)) (-5 *2 (-1116 (-227)))))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) - ((*1 *2 *3) (-12 (-5 *3 (-993)) (-5 *2 (-924 (-576))) (-5 *1 (-937))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-657 (-657 *7))) - (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) - (-4 *7 (-862)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-657 (-657 *8))) - (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-657 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-657 (-657 *7))) - (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-657 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) - (-4 *7 (-862)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-657 (-657 *8))) - (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-657 *8))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-657 *2)) (-4 *2 (-1087 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *1 (-999 *4 *5 *6 *2))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) + (-12 (-5 *3 (-660 (-944))) (-5 *2 (-660 (-705 (-577)))) + (-5 *1 (-1135))))) +(((*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-1119 (-228))))) + ((*1 *2 *1) (-12 (-4 *1 (-999)) (-5 *2 (-1119 (-228)))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-660 (-1197 *7))) (-5 *3 (-1197 *7)) + (-4 *7 (-972 *5 *6 *4)) (-4 *5 (-932)) (-4 *6 (-809)) + (-4 *4 (-865)) (-5 *1 (-929 *5 *6 *4 *7))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1183)) (-5 *5 (-705 (-228))) (-5 *6 (-228)) + (-5 *7 (-705 (-577))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-768))))) +(((*1 *2 *3) + (-12 (-5 *3 (-577)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-5 *2 (-1297)) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *7 (-972 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2022 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1197)))) - (-5 *1 (-1197))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1202))))) -(((*1 *1) (-5 *1 (-836)))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-576)) (|has| *1 (-6 -4467)) (-4 *1 (-384 *3)) - (-4 *3 (-1239))))) + (-3 (|:| I (-327 (-577))) (|:| -2051 (-327 (-391))) + (|:| CF (-327 (-171 (-391)))) (|:| |switch| (-1200)))) + (-5 *1 (-1200))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *1 *1) + (-12 (-4 *2 (-465)) (-4 *3 (-865)) (-4 *4 (-809)) + (-5 *1 (-1012 *2 *3 *4 *5)) (-4 *5 (-972 *2 *4 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) + (-4 *4 (-808))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644))))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-401)) (-5 *1 (-645))))) (((*1 *2 *3) - (-12 (-5 *3 (-1198)) - (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-442 *4))))) + (-12 (-5 *3 (-1201)) + (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1227) (-443 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) + (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-576))) - (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))))) + (-12 (-5 *4 (-420 (-577))) + (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *5 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) - (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)))) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) + (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) - (-4 *3 (-13 (-27) (-1224) (-442 *6))) - (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *3)))) + (-12 (-5 *4 (-305 *3)) (-5 *5 (-420 (-577))) + (-4 *3 (-13 (-27) (-1227) (-443 *6))) + (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) - (-5 *5 (-1256 (-419 (-576)))) (-5 *6 (-419 (-576))) - (-4 *8 (-13 (-27) (-1224) (-442 *7))) - (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-420 (-577)))) (-5 *4 (-305 *8)) + (-5 *5 (-1259 (-420 (-577)))) (-5 *6 (-420 (-577))) + (-4 *8 (-13 (-27) (-1227) (-443 *7))) + (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-419 (-576)))) - (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1224) (-442 *8))) - (-4 *8 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *8 *3)))) + (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-420 (-577)))) + (-5 *7 (-420 (-577))) (-4 *3 (-13 (-27) (-1227) (-443 *8))) + (-4 *8 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1071)) (-4 *1 (-1272 *4 *3)) - (-4 *3 (-1249 *4))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-702 (-576))) (-5 *3 (-657 (-576))) (-5 *1 (-1132))))) -(((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1116 (-227))))) - ((*1 *2 *1) (-12 (-4 *1 (-996)) (-5 *2 (-1116 (-227)))))) + (-12 (-5 *2 (-420 (-577))) (-4 *4 (-1074)) (-4 *1 (-1275 *4 *3)) + (-4 *3 (-1252 *4))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-660 (-577))) (-5 *3 (-705 (-577))) (-5 *1 (-1135))))) +(((*1 *2 *1) (-12 (-4 *1 (-978)) (-5 *2 (-1119 (-228))))) + ((*1 *2 *1) (-12 (-4 *1 (-999)) (-5 *2 (-1119 (-228)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-660 *6)) + (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-660 (-928 *3))) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *6 (-228)) + (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-768))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-171 (-326 *4))) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 (-171 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *2 (-171 *3)) (-5 *1 (-1228 *4 *3)) - (-4 *3 (-13 (-27) (-1224) (-442 *4)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-657 (-784))) (-5 *1 (-991 *4 *3)) - (-4 *3 (-1265 *4))))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1297)) + (-5 *1 (-462 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-176 *3)) (-4 *3 (-318))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *3) + (-12 (-4 *3 (-1268 *2)) (-4 *2 (-1268 *4)) + (-5 *1 (-1010 *4 *2 *3 *5)) (-4 *4 (-361)) (-4 *5 (-740 *2 *3))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) (-5 *2 (-112)) - (-5 *1 (-368 *4))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-702 (-171 (-227)))) - (-5 *2 (-1057)) (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-657 *2))) (-5 *4 (-657 *5)) - (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1280 *5)) - (-5 *1 (-1282 *5 *2))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-227))) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-337 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-228))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) - (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) - ((*1 *1 *1 *1) (-5 *1 (-390))) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) + (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) + ((*1 *1 *1 *1) (-5 *1 (-391))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-548) (-657 (-548)))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-657 (-548)))) (-5 *1 (-115)))) - ((*1 *1) (-5 *1 (-590)))) + (|partial| -12 (-5 *2 (-1 (-549) (-660 (-549)))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-549) (-660 (-549)))) (-5 *1 (-115)))) + ((*1 *1) (-5 *1 (-591)))) (((*1 *2 *3) - (-12 (-5 *3 (-1198)) - (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-442 *4))))) + (-12 (-5 *3 (-1201)) + (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1227) (-443 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) + (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1060 *4) (-652 *4))) - (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) - (-4 *3 (-13 (-27) (-1224) (-442 *5))))) + (-12 (-5 *4 (-577)) (-4 *5 (-13 (-465) (-1063 *4) (-654 *4))) + (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) + (-4 *3 (-13 (-27) (-1227) (-443 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) - (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)))) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) + (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *6))) - (-4 *6 (-13 (-464) (-1060 *5) (-652 *5))) (-5 *5 (-576)) - (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *6))) + (-4 *6 (-13 (-465) (-1063 *5) (-654 *5))) (-5 *5 (-577)) + (-5 *2 (-52)) (-5 *1 (-326 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1256 (-576))) - (-4 *7 (-13 (-27) (-1224) (-442 *6))) - (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1259 (-577))) + (-4 *7 (-13 (-27) (-1227) (-443 *6))) + (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-576))) - (-4 *3 (-13 (-27) (-1224) (-442 *7))) - (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *3)))) + (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-577))) + (-4 *3 (-13 (-27) (-1227) (-443 *7))) + (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-576)) (-4 *4 (-1071)) (-4 *1 (-1251 *4 *3)) - (-4 *3 (-1280 *4)))) + (-12 (-5 *2 (-577)) (-4 *4 (-1074)) (-4 *1 (-1254 *4 *3)) + (-4 *3 (-1283 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1272 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1249 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1239)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-784)))) + (-12 (-4 *1 (-1275 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1252 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-660 (-577))) (-5 *2 (-705 (-577))) (-5 *1 (-1135))))) +(((*1 *2 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1242)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-787)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-784)) (-4 *1 (-272 *4)) - (-4 *4 (-1239)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-787)) (-4 *1 (-273 *4)) + (-4 *4 (-1242)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1239)))) - ((*1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-273 *3)) (-4 *3 (-1242)))) + ((*1 *1) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1074)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-912 *2 *3)) (-4 *3 (-1239)) (-4 *2 (-1239)))) + (-12 (-4 *1 (-915 *2 *3)) (-4 *3 (-1242)) (-4 *2 (-1242)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 (-784))) (-4 *1 (-920 *4)) - (-4 *4 (-1122)))) + (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 (-787))) (-4 *1 (-923 *4)) + (-4 *4 (-1125)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-784)) (-4 *1 (-920 *2)) (-4 *2 (-1122)))) + (-12 (-5 *3 (-787)) (-4 *1 (-923 *2)) (-4 *2 (-1125)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-657 *3)) (-4 *1 (-920 *3)) (-4 *3 (-1122))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-941)) (-5 *1 (-1054 *2)) - (-4 *2 (-13 (-1122) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1289 (-326 (-227)))) (-5 *2 (-1289 (-326 (-390)))) - (-5 *1 (-315))))) + (-12 (-5 *2 (-660 *3)) (-4 *1 (-923 *3)) (-4 *3 (-1125))))) +(((*1 *2 *1) + (-12 (-5 *2 (-660 (-928 *3))) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1183)) (-5 *5 (-705 (-228))) (-5 *6 (-228)) + (-5 *7 (-705 (-577))) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-768))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-577)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-787)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-809)) (-4 *4 (-972 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-865)) + (-5 *1 (-462 *5 *6 *7 *4))))) (((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-784)) (-5 *1 (-215 *4 *2)) (-14 *4 (-941)) - (-4 *2 (-1122))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-861))) - (-5 *2 (-2 (|:| |start| *3) (|:| -2067 (-430 *3)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-127 *3))))) -(((*1 *1) (-4 *1 (-360)))) -(((*1 *2 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-702 (-972 *4))) (-5 *1 (-1050 *4)) - (-4 *4 (-1071))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-657 - (-2 - (|:| -4291 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -4440 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1179 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -1685 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-571))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-784)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) + (-12 (-5 *3 (-787)) (-5 *1 (-215 *4 *2)) (-14 *4 (-944)) + (-4 *2 (-1125))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-809)) + (-4 *3 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $))))) (-4 *5 (-569)) + (-5 *1 (-748 *4 *3 *5 *2)) (-4 *2 (-972 (-420 (-975 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1074)) (-4 *5 (-809)) + (-4 *3 + (-13 (-865) + (-10 -8 (-15 -4152 ((-1201) $)) + (-15 -3076 ((-3 $ "failed") (-1201)))))) + (-5 *1 (-1009 *4 *5 *3 *2)) (-4 *2 (-972 (-975 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-660 *6)) + (-4 *6 + (-13 (-865) + (-10 -8 (-15 -4152 ((-1201) $)) + (-15 -3076 ((-3 $ "failed") (-1201)))))) + (-4 *4 (-1074)) (-4 *5 (-809)) (-5 *1 (-1009 *4 *5 *6 *2)) + (-4 *2 (-972 (-975 *4) *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-787)) (-4 *1 (-337 *3 *4)) (-4 *3 (-1074)) + (-4 *4 (-808)) (-4 *3 (-174))))) (((*1 *2 *3) - (-12 (-5 *3 (-908 *4)) (-4 *4 (-1122)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-906 *4 *5)) (-4 *5 (-1239)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1188))))) + (-12 (-5 *3 (-911 *4)) (-4 *4 (-1125)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-909 *4 *5)) (-4 *5 (-1242)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1191))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) - (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) + (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1198)) - (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-442 *4))))) + (-12 (-5 *3 (-1201)) + (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *4 *5)) (-4 *5 (-13 (-27) (-1227) (-443 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *4))))) + (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-784)) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) - (-4 *3 (-13 (-27) (-1224) (-442 *5))))) + (-12 (-5 *4 (-787)) (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *2 (-52)) (-5 *1 (-326 *5 *3)) + (-4 *3 (-13 (-27) (-1227) (-443 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) - (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)))) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *5))) + (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-304 *3)) (-5 *5 (-784)) - (-4 *3 (-13 (-27) (-1224) (-442 *6))) - (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) - (-4 *6 (-13 (-27) (-1224) (-442 *5))) - (-4 *5 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *5 *6)))) + (-12 (-5 *4 (-305 *3)) (-5 *5 (-787)) + (-4 *3 (-13 (-27) (-1227) (-443 *6))) + (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-326 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-577))) (-5 *4 (-305 *6)) + (-4 *6 (-13 (-27) (-1227) (-443 *5))) + (-4 *5 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) - (-4 *3 (-13 (-27) (-1224) (-442 *6))) - (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *3)))) + (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) + (-4 *3 (-13 (-27) (-1227) (-443 *6))) + (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1256 (-784))) - (-4 *7 (-13 (-27) (-1224) (-442 *6))) - (-4 *6 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-577))) (-5 *4 (-305 *7)) (-5 *5 (-1259 (-787))) + (-4 *7 (-13 (-27) (-1227) (-443 *6))) + (-4 *6 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1198)) (-5 *5 (-304 *3)) (-5 *6 (-1256 (-784))) - (-4 *3 (-13 (-27) (-1224) (-442 *7))) - (-4 *7 (-13 (-568) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *3)))) + (-12 (-5 *4 (-1201)) (-5 *5 (-305 *3)) (-5 *6 (-1259 (-787))) + (-4 *3 (-13 (-27) (-1227) (-443 *7))) + (-4 *7 (-13 (-569) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-52)) + (-5 *1 (-472 *7 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-1280 *3))))) + (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1283 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) + (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) - (-4 *5 (-384 *2)) (-4 *2 (-1239)))) + (-12 (-5 *3 (-577)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) + (-4 *5 (-385 *2)) (-4 *2 (-1242)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-784)) (-4 *2 (-1122)) (-5 *1 (-215 *4 *2)) - (-14 *4 (-941)))) + (-12 (-5 *3 (-787)) (-4 *2 (-1125)) (-5 *1 (-215 *4 *2)) + (-14 *4 (-944)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1239)))) + (-12 (-4 *1 (-299 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1242)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1075 *4 *5 *2 *6 *7)) - (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1071))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) - (-5 *2 - (-2 (|:| -1801 (-784)) (|:| -1771 *5) (|:| |radicand| (-657 *5)))) - (-5 *1 (-330 *5)) (-5 *4 (-784)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-576))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-947))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1299))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-963 (-227)))) (-5 *1 (-1290))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-52)) (-5 *1 (-1217))))) -(((*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1239))))) + (-12 (-5 *3 (-577)) (-4 *1 (-1078 *4 *5 *2 *6 *7)) + (-4 *6 (-244 *5 *2)) (-4 *7 (-244 *4 *2)) (-4 *2 (-1074))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-950))))) +(((*1 *2 *1) + (-12 (-5 *2 (-660 (-660 (-787)))) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-768))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-577)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-787)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-809)) (-4 *4 (-972 *5 *6 *7)) (-4 *5 (-465)) (-4 *7 (-865)) + (-5 *1 (-462 *5 *6 *7 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) (((*1 *2 *2) - (-12 - (-5 *2 - (-657 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-784)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-806)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) - (-5 *1 (-461 *3 *4 *5 *6))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-809)) + (-4 *3 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $))))) (-4 *5 (-569)) + (-5 *1 (-748 *4 *3 *5 *2)) (-4 *2 (-972 (-420 (-975 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1074)) (-4 *5 (-809)) + (-4 *3 + (-13 (-865) + (-10 -8 (-15 -4152 ((-1201) $)) + (-15 -3076 ((-3 $ "failed") (-1201)))))) + (-5 *1 (-1009 *4 *5 *3 *2)) (-4 *2 (-972 (-975 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-660 *6)) + (-4 *6 + (-13 (-865) + (-10 -8 (-15 -4152 ((-1201) $)) + (-15 -3076 ((-3 $ "failed") (-1201)))))) + (-4 *4 (-1074)) (-4 *5 (-809)) (-5 *1 (-1009 *4 *5 *6 *2)) + (-4 *2 (-972 (-975 *4) *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-334 *4 *2)) (-4 *4 (-1125)) + (-4 *2 (-132))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) - (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-1050 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-657 (-702 *3))) (-4 *3 (-1071)) (-5 *1 (-1050 *3)))) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) + (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) ((*1 *2 *2) - (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-1050 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-657 (-702 *3))) (-4 *3 (-1071)) (-5 *1 (-1050 *3))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-501 *3)) (-4 *3 (-1239)) - (-5 *2 (-657 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-750 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 (-451))) (-5 *1 (-880))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1239)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1239)) - (-14 *4 (-576))))) -(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *2 *1) - (-12 (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4067 (-576))))) - (-5 *1 (-372 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) - (-12 (-4 *1 (-397 *3)) (-4 *3 (-1122)) - (-5 *2 (-657 (-2 (|:| |gen| *3) (|:| -4067 (-784))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-657 (-2 (|:| -1885 *3) (|:| -1801 (-576))))) - (-5 *1 (-430 *3)) (-4 *3 (-568))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3))))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 *4)) + (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) + (-5 *2 (-1060)) (-5 *1 (-768))))) +(((*1 *1 *2) + (-12 (-5 *2 (-660 (-928 *3))) (-4 *3 (-1125)) (-5 *1 (-927 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1224) (-1024)))))) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-1297)) + (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) - (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) + (-12 (-5 *3 (-1160)) (-5 *2 (-707 (-291))) (-5 *1 (-169))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1125)) + (-4 *4 (-132))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3)))) - ((*1 *1 *1) (-4 *1 (-1227)))) -(((*1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-4 *3 (-13 (-27) (-1224) (-442 *6) (-10 -8 (-15 -3501 ($ *7))))) - (-4 *7 (-861)) - (-4 *8 - (-13 (-1267 *3 *7) (-374) (-1224) - (-10 -8 (-15 -2815 ($ $)) (-15 -4190 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180)))))) - (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1180)) (-4 *9 (-1005 *8)) - (-14 *10 (-1198))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071))))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3)))) + ((*1 *1 *1) (-4 *1 (-1230)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -3952 *4)))) + (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) + (-5 *2 (-1060)) (-5 *1 (-768))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-926 *3)) (-4 *3 (-1125)) (-5 *2 (-1127 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1125)) (-5 *2 (-1127 (-660 *4))) (-5 *1 (-927 *4)) + (-5 *3 (-660 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1125)) (-5 *2 (-1127 (-1127 *4))) (-5 *1 (-927 *4)) + (-5 *3 (-1127 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1127 *3)) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) (((*1 *2 *3) - (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) (-5 *2 (-978 (-1142))) - (-5 *1 (-357 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-784)) (-5 *1 (-573))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 (-784))) (-5 *3 (-173)) (-5 *1 (-1186 *4 *5)) - (-14 *4 (-941)) (-4 *5 (-1071))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-806)) - (-4 *3 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $))))) (-4 *5 (-568)) - (-5 *1 (-745 *4 *3 *5 *2)) (-4 *2 (-969 (-419 (-972 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1071)) (-4 *5 (-806)) - (-4 *3 - (-13 (-862) - (-10 -8 (-15 -4148 ((-1198) $)) - (-15 -3032 ((-3 $ "failed") (-1198)))))) - (-5 *1 (-1006 *4 *5 *3 *2)) (-4 *2 (-969 (-972 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-657 *6)) - (-4 *6 - (-13 (-862) - (-10 -8 (-15 -4148 ((-1198) $)) - (-15 -3032 ((-3 $ "failed") (-1198)))))) - (-4 *4 (-1071)) (-4 *5 (-806)) (-5 *1 (-1006 *4 *5 *6 *2)) - (-4 *2 (-969 (-972 *4) *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1289 *3)) (-4 *3 (-1071)) (-5 *1 (-725 *3 *4)) - (-4 *4 (-1265 *3))))) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-577)) + (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1183)) (-5 *2 (-660 (-707 (-291)))) (-5 *1 (-169))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-854))) (-5 *1 (-141))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-132)) + (-4 *3 (-808))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3)))) - ((*1 *1 *1) (-4 *1 (-1227)))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1198)) (-5 *6 (-112)) - (-4 *7 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) - (-4 *3 (-13 (-1224) (-979) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-856 *3)) (|:| |f2| (-657 (-856 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *7 *3)) (-5 *5 (-856 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-103 *3))))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3)))) + ((*1 *1 *1) (-4 *1 (-1230)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 *4)) + (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-768))))) (((*1 *2 *1) - (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-374) (-861))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1265 (-171 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-374) (-861))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1265 (-171 *2)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-941)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-548))) (-5 *1 (-548))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-1127 (-1127 *3))) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) +(((*1 *2 *2) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-465)) + (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-462 *3 *4 *5 *6))))) +(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-185 (-140)))) (-5 *1 (-141))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *2 *3) + (-12 (-5 *3 (-577)) (-4 *4 (-809)) (-4 *5 (-865)) (-4 *2 (-1074)) + (-5 *1 (-332 *4 *5 *2 *6)) (-4 *6 (-972 *2 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3)))) - ((*1 *1 *1) (-4 *1 (-1227)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-877) (-877))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-877) (-657 (-877)))) (-5 *1 (-115)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3)))) + ((*1 *1 *1) (-4 *1 (-1230)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-880) (-880))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-880) (-660 (-880)))) (-5 *1 (-115)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-877) (-657 (-877)))) (-5 *1 (-115)))) + (|partial| -12 (-5 *2 (-1 (-880) (-660 (-880)))) (-5 *1 (-115)))) ((*1 *2 *1) - (-12 (-5 *2 (-1294)) (-5 *1 (-216 *3)) + (-12 (-5 *2 (-1297)) (-5 *1 (-216 *3)) (-4 *3 - (-13 (-862) - (-10 -8 (-15 -2835 ((-1180) $ (-1198))) (-15 -2041 (*2 $)) - (-15 -1729 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-406)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-514)))) - ((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-723)))) - ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1219)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-1219))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-941)) (-4 *5 (-317)) (-4 *3 (-1265 *5)) - (-5 *2 (-2 (|:| |plist| (-657 *3)) (|:| |modulo| *5))) - (-5 *1 (-472 *5 *3)) (-5 *4 (-657 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-1107))) (-5 *1 (-301))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-715 *4 *5 *6 *7)) - (-4 *4 (-626 (-548))) (-4 *5 (-1239)) (-4 *6 (-1239)) - (-4 *7 (-1239))))) -(((*1 *2 *3) - (-12 (-4 *1 (-913)) - (-5 *3 - (-2 (|:| |pde| (-657 (-326 (-227)))) - (|:| |constraints| - (-657 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-784)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-702 (-227))) (|:| |dFinish| (-702 (-227)))))) - (|:| |f| (-657 (-657 (-326 (-227))))) (|:| |st| (-1180)) - (|:| |tol| (-227)))) - (-5 *2 (-1057))))) + (-13 (-865) + (-10 -8 (-15 -2872 ((-1183) $ (-1201))) (-15 -2072 (*2 $)) + (-15 -1696 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-407)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-407)))) + ((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-515)))) + ((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-726)))) + ((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1222)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-1222))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -3952 *4)))) + (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) + (-5 *2 (-1060)) (-5 *1 (-768))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-928 *4)) (-4 *4 (-1125)) (-5 *2 (-660 (-787))) + (-5 *1 (-927 *4))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-660 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-787)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-809)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-465)) (-4 *5 (-865)) + (-5 *1 (-462 *3 *4 *5 *6))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4466)) (-4 *1 (-152 *3)) - (-4 *3 (-1239)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4470)) (-4 *1 (-152 *3)) + (-4 *3 (-1242)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-687 *3)) (-4 *3 (-1239)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-690 *3)) (-4 *3 (-1242)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1232 *4 *5 *3 *2)) (-4 *4 (-568)) - (-4 *5 (-806)) (-4 *3 (-862)) (-4 *2 (-1087 *4 *5 *3)))) + (|partial| -12 (-4 *1 (-1235 *4 *5 *3 *2)) (-4 *4 (-569)) + (-4 *5 (-809)) (-4 *3 (-865)) (-4 *2 (-1090 *4 *5 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-784)) (-5 *1 (-1236 *2)) (-4 *2 (-1239))))) -(((*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-784))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) - (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) - (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-5 *3 (-787)) (-5 *1 (-1239 *2)) (-4 *2 (-1242))))) +(((*1 *2 *1) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1085)) (-4 *3 (-1227)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-660 (-577))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) + (-14 *4 (-787)) (-4 *5 (-174))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-657 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-374)) - (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-5 *1 (-462 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) - (-5 *2 - (-2 (|:| R (-702 *6)) (|:| A (-702 *6)) (|:| |Ainv| (-702 *6)))) - (-5 *1 (-1000 *6)) (-5 *3 (-702 *6))))) + (-12 (-5 *2 (-1197 *7)) (-5 *3 (-577)) (-4 *7 (-972 *6 *4 *5)) + (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) + (-5 *1 (-332 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) - (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) + (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3)))) - ((*1 *1 *1) (-4 *1 (-1227)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3)))) + ((*1 *1 *1) (-4 *1 (-1230)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) (-5 *2 (-660 *4)) + (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) - (-5 *2 (-657 (-1198))) (-5 *1 (-276)))) + (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) + (-5 *2 (-660 (-1201))) (-5 *1 (-277)))) ((*1 *2 *3) - (-12 (-5 *3 (-1194 *7)) (-4 *7 (-969 *6 *4 *5)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1071)) (-5 *2 (-657 *5)) - (-5 *1 (-331 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1197 *7)) (-4 *7 (-972 *6 *4 *5)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1074)) (-5 *2 (-660 *5)) + (-5 *1 (-332 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-399)))) + (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-351 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-400)))) ((*1 *2 *1) - (-12 (-4 *1 (-442 *3)) (-4 *3 (-1122)) (-5 *2 (-657 (-1198))))) + (-12 (-4 *1 (-443 *3)) (-4 *3 (-1125)) (-5 *2 (-660 (-1201))))) ((*1 *2 *1) - (-12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) ((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-5 *2 (-657 *5)))) + (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-5 *2 (-660 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) - (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-657 *5)) - (-5 *1 (-970 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1074)) + (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-660 *5)) + (-5 *1 (-973 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-374) - (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))))) + (-13 (-375) + (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) (-15 -1637 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-995 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-657 *5)))) + (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-808)) + (-4 *5 (-865)) (-5 *2 (-660 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-657 *5)))) + (-12 (-4 *1 (-1001 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-660 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) (-5 *2 (-657 (-1198))) - (-5 *1 (-1065 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1179 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1701 *4))) - (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -2335 *3) (|:| -3644 *3))) - (-5 *1 (-779 *3 *4)) (-4 *3 (-721 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1071)) - (-5 *2 (-2 (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-867 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1071)) - (-5 *2 (-2 (|:| -2335 *3) (|:| -3644 *3))) (-5 *1 (-868 *5 *3)) - (-4 *3 (-867 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-784)) (-4 *4 (-1071)) - (-5 *2 (-2 (|:| -2335 *1) (|:| -3644 *1))) (-4 *1 (-1265 *4))))) + (-12 (-5 *3 (-420 (-975 *4))) (-4 *4 (-569)) (-5 *2 (-660 (-1201))) + (-5 *1 (-1068 *4))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-928 *4)) (-4 *4 (-1125)) (-5 *2 (-660 (-787))) + (-5 *1 (-927 *4))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) + (-5 *2 (-1060)) (-5 *1 (-768))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-1 (-390))) (-5 *1 (-1062))))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) - (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-1071)) - (-4 *4 (-859))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1186 3 *3)) (-4 *3 (-1071)) (-4 *1 (-1156 *3)))) - ((*1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1071))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-795 *2)) (-4 *2 (-1071))))) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-787)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-809)) (-4 *2 (-972 *4 *5 *6)) (-5 *1 (-462 *4 *5 *6 *2)) + (-4 *4 (-465)) (-4 *6 (-865))))) +(((*1 *1 *1 *1) (-5 *1 (-163))) + ((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-163))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-787)) (-5 *2 (-1 (-391))) (-5 *1 (-1065))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1197 *6)) (-4 *6 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *2 (-1197 *7)) (-5 *1 (-332 *4 *5 *6 *7)) + (-4 *7 (-972 *6 *4 *5))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) + (-4 *4 (-174))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-865)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) - (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) + (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3)))) - ((*1 *1 *1) (-4 *1 (-1227)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3)))) + ((*1 *1 *1) (-4 *1 (-1230)))) (((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1290)))) - ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1291))))) + ((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1293)))) + ((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1294))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) (-5 *2 (-657 *4)) - (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| (-112)) (|:| -3952 *4)))) + (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1194 (-419 (-1194 *2)))) (-5 *4 (-624 *2)) - (-4 *2 (-13 (-442 *5) (-27) (-1224))) - (-4 *5 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) - (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1122)))) + (-12 (-5 *3 (-1197 (-420 (-1197 *2)))) (-5 *4 (-625 *2)) + (-4 *2 (-13 (-443 *5) (-27) (-1227))) + (-4 *5 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) + (-5 *1 (-573 *5 *2 *6)) (-4 *6 (-1125)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1194 *1)) (-4 *1 (-969 *4 *5 *3)) (-4 *4 (-1071)) - (-4 *5 (-806)) (-4 *3 (-862)))) + (-12 (-5 *2 (-1197 *1)) (-4 *1 (-972 *4 *5 *3)) (-4 *4 (-1074)) + (-4 *5 (-809)) (-4 *3 (-865)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1194 *4)) (-4 *4 (-1071)) (-4 *1 (-969 *4 *5 *3)) - (-4 *5 (-806)) (-4 *3 (-862)))) + (-12 (-5 *2 (-1197 *4)) (-4 *4 (-1074)) (-4 *1 (-972 *4 *5 *3)) + (-4 *5 (-809)) (-4 *3 (-865)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-1194 *2))) (-4 *5 (-806)) (-4 *4 (-862)) - (-4 *6 (-1071)) + (-12 (-5 *3 (-420 (-1197 *2))) (-4 *5 (-809)) (-4 *4 (-865)) + (-4 *6 (-1074)) (-4 *2 - (-13 (-374) - (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))) - (-5 *1 (-970 *5 *4 *6 *7 *2)) (-4 *7 (-969 *6 *5 *4)))) + (-13 (-375) + (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) (-15 -1637 (*7 $))))) + (-5 *1 (-973 *5 *4 *6 *7 *2)) (-4 *7 (-972 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-1194 (-419 (-972 *5))))) (-5 *4 (-1198)) - (-5 *2 (-419 (-972 *5))) (-5 *1 (-1065 *5)) (-4 *5 (-568))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) - (-4 *4 (-1122))))) -(((*1 *1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1194 (-576))) (-5 *3 (-576)) (-4 *1 (-884 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-613 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1239)) (-5 *1 (-1179 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-702 *3)) (-4 *3 (-317)) (-5 *1 (-713 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1239)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1239)) (-14 *4 *2)))) + (-12 (-5 *3 (-420 (-1197 (-420 (-975 *5))))) (-5 *4 (-1201)) + (-5 *2 (-420 (-975 *5))) (-5 *1 (-1068 *5)) (-4 *5 (-569))))) +(((*1 *2 *1) + (-12 (-4 *1 (-926 *3)) (-4 *3 (-1125)) (-5 *2 (-1127 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1127 *3)) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) + (-5 *2 (-1060)) (-5 *1 (-768))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1071)) (-5 *1 (-607 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-614 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1249 *3)) (-4 *3 (-1071)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1280 *3)) (-4 *3 (-1071))))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1242)) (-5 *1 (-1182 *3))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-660 (-2 (|:| |totdeg| (-787)) (|:| -3972 *3)))) + (-5 *4 (-787)) (-4 *3 (-972 *5 *6 *7)) (-4 *5 (-465)) (-4 *6 (-809)) + (-4 *7 (-865)) (-5 *1 (-462 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 - (-5 *2 - (-1009 (-419 (-576)) (-879 *3) (-245 *4 (-784)) - (-253 *3 (-419 (-576))))) - (-14 *3 (-657 (-1198))) (-14 *4 (-784)) (-5 *1 (-1008 *3 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *3 (-657 (-270))) - (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-270)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-480))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-1071)) - (-4 *4 (-859))))) + (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-443 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1201)))) + ((*1 *1 *1) (-4 *1 (-161)))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) + (-4 *4 (-174))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1197 *7)) (-4 *7 (-972 *6 *4 *5)) (-4 *4 (-809)) + (-4 *5 (-865)) (-4 *6 (-1074)) (-5 *2 (-1197 *6)) + (-5 *1 (-332 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024))))) + (-12 (-4 *3 (-569)) (-5 *1 (-286 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1280 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1283 *3)) + (-5 *1 (-288 *3 *4 *2)) (-4 *2 (-1254 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1249 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1005 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *4 (-1252 *3)) + (-5 *1 (-289 *3 *4 *2 *5)) (-4 *2 (-1275 *3 *4)) (-4 *5 (-1008 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-865)))) ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) - (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) + (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3)))) - ((*1 *1 *1) (-4 *1 (-1227)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3)))) + ((*1 *1 *1) (-4 *1 (-1230)))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) + (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-805)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-808)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-657 (-941))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-941)) - (-4 *2 (-374)) (-14 *5 (-1015 *4 *2)))) + (-12 (-5 *3 (-660 (-944))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-944)) + (-4 *2 (-375)) (-14 *5 (-1018 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-726 *5 *6 *7)) (-4 *5 (-862)) - (-4 *6 (-243 (-3440 *4) (-784))) + (-12 (-5 *3 (-729 *5 *6 *7)) (-4 *5 (-865)) + (-4 *6 (-244 (-3484 *4) (-787))) (-14 *7 - (-1 (-112) (-2 (|:| -3178 *5) (|:| -1801 *6)) - (-2 (|:| -3178 *5) (|:| -1801 *6)))) - (-14 *4 (-657 (-1198))) (-4 *2 (-174)) - (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-969 *2 *6 (-879 *4))))) + (-1 (-112) (-2 (|:| -3222 *5) (|:| -3556 *6)) + (-2 (|:| -3222 *5) (|:| -3556 *6)))) + (-14 *4 (-660 (-1201))) (-4 *2 (-174)) + (-5 *1 (-474 *4 *2 *5 *6 *7 *8)) (-4 *8 (-972 *2 *6 (-882 *4))))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-865)))) + (-12 (-4 *1 (-522 *2 *3)) (-4 *2 (-102)) (-4 *3 (-868)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) - (-4 *4 (-1265 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-721 *2)) (-4 *2 (-1071)))) + (-12 (-5 *3 (-577)) (-4 *2 (-569)) (-5 *1 (-636 *2 *4)) + (-4 *4 (-1268 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-724 *2)) (-4 *2 (-1074)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-748 *2 *3)) (-4 *2 (-1071)) (-4 *3 (-739)))) + (-12 (-5 *1 (-751 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-742)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 *5)) (-5 *3 (-657 (-784))) (-4 *1 (-753 *4 *5)) - (-4 *4 (-1071)) (-4 *5 (-862)))) + (-12 (-5 *2 (-660 *5)) (-5 *3 (-660 (-787))) (-4 *1 (-756 *4 *5)) + (-4 *4 (-1074)) (-4 *5 (-865)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-784)) (-4 *1 (-753 *4 *2)) (-4 *4 (-1071)) - (-4 *2 (-862)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-867 *2)) (-4 *2 (-1071)))) + (-12 (-5 *3 (-787)) (-4 *1 (-756 *4 *2)) (-4 *4 (-1074)) + (-4 *2 (-865)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-870 *2)) (-4 *2 (-1074)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 *6)) (-5 *3 (-657 (-784))) (-4 *1 (-969 *4 *5 *6)) - (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *6 (-862)))) + (-12 (-5 *2 (-660 *6)) (-5 *3 (-660 (-787))) (-4 *1 (-972 *4 *5 *6)) + (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *6 (-865)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-784)) (-4 *1 (-969 *4 *5 *2)) (-4 *4 (-1071)) - (-4 *5 (-806)) (-4 *2 (-862)))) + (-12 (-5 *3 (-787)) (-4 *1 (-972 *4 *5 *2)) (-4 *4 (-1074)) + (-4 *5 (-809)) (-4 *2 (-865)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 *6)) (-5 *3 (-657 *5)) (-4 *1 (-995 *4 *5 *6)) - (-4 *4 (-1071)) (-4 *5 (-805)) (-4 *6 (-862)))) + (-12 (-5 *2 (-660 *6)) (-5 *3 (-660 *5)) (-4 *1 (-998 *4 *5 *6)) + (-4 *4 (-1074)) (-4 *5 (-808)) (-4 *6 (-865)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-995 *4 *3 *2)) (-4 *4 (-1071)) (-4 *3 (-805)) - (-4 *2 (-862))))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1265 *4))))) -(((*1 *2 *3) - (-12 (-4 *2 (-374)) (-4 *2 (-861)) (-5 *1 (-965 *2 *3)) - (-4 *3 (-1265 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1057)) (-5 *1 (-853)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-326 (-390)))) (-5 *4 (-657 (-390))) - (-5 *2 (-1057)) (-5 *1 (-853))))) + (-12 (-4 *1 (-998 *4 *3 *2)) (-4 *4 (-1074)) (-4 *3 (-808)) + (-4 *2 (-865))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-577)) (-5 *2 (-1297)) (-5 *1 (-927 *4)) + (-4 *4 (-1125)))) + ((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-927 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-705 (-228))) (-5 *6 (-705 (-577))) (-5 *3 (-577)) + (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-768))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-941)) (-4 *6 (-568)) (-5 *2 (-657 (-326 *6))) - (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1071)))) - ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) + (-12 (-5 *4 (-944)) (-4 *6 (-569)) (-5 *2 (-660 (-327 *6))) + (-5 *1 (-224 *5 *6)) (-5 *3 (-327 *6)) (-4 *5 (-1074)))) + ((*1 *2 *1) (-12 (-5 *1 (-431 *2)) (-4 *2 (-569)))) ((*1 *2 *3) - (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1224))) - (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *2 (-657 *5)) - (-5 *1 (-595 *4 *5)))) + (-12 (-5 *3 (-599 *5)) (-4 *5 (-13 (-29 *4) (-1227))) + (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-660 *5)) + (-5 *1 (-596 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-598 (-419 (-972 *4)))) - (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *2 (-657 (-326 *4))) (-5 *1 (-601 *4)))) + (-12 (-5 *3 (-599 (-420 (-975 *4)))) + (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *2 (-660 (-327 *4))) (-5 *1 (-602 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1117 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1171 *3)))) + (-12 (-4 *1 (-1120 *3 *2)) (-4 *3 (-864)) (-4 *2 (-1174 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-657 *1)) (-4 *1 (-1117 *4 *2)) (-4 *4 (-861)) - (-4 *2 (-1171 *4)))) + (-12 (-5 *3 (-660 *1)) (-4 *1 (-1120 *4 *2)) (-4 *4 (-864)) + (-4 *2 (-1174 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227))))) ((*1 *2 *1) - (-12 (-5 *2 (-1304 (-1198) *3)) (-5 *1 (-1311 *3)) (-4 *3 (-1071)))) + (-12 (-5 *2 (-1307 (-1201) *3)) (-5 *1 (-1314 *3)) (-4 *3 (-1074)))) ((*1 *2 *1) - (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-1313 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-1071))))) -(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1239))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) - ((*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1180)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) - (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-194))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024) (-1224)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1225 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-704 (-1157))) (-5 *1 (-1173))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220))))) + (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-1316 *3 *4)) (-4 *3 (-865)) + (-4 *4 (-1074))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-972 *3 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1289 (-1289 (-576)))) (-5 *3 (-941)) (-5 *1 (-478))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1239)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4467)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1122)) - (-4 *2 (-1239))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1239)) (-5 *2 (-657 *1)) (-4 *1 (-1032 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-657 (-1186 *3 *4))) (-5 *1 (-1186 *3 *4)) - (-14 *3 (-941)) (-4 *4 (-1071))))) + (-12 (-5 *3 (-1201)) (-4 *4 (-569)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-443 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1117 *2)) (-4 *2 (-443 *4)) (-4 *4 (-569)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1117 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1201))))) (((*1 *2 *2) - (-12 (-5 *2 (-1289 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) - (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-941)) (-4 *4 (-374)) (-5 *2 (-1289 *1)) - (-4 *1 (-339 *4)))) - ((*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1289 *1)) (-4 *1 (-339 *3)))) - ((*1 *2) - (-12 (-4 *3 (-174)) (-4 *4 (-1265 *3)) (-5 *2 (-1289 *1)) - (-4 *1 (-421 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-317)) (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) - (-5 *2 (-1289 *6)) (-5 *1 (-425 *3 *4 *5 *6)) - (-4 *6 (-13 (-421 *4 *5) (-1060 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-317)) (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) - (-5 *2 (-1289 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) - (-4 *6 (-421 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1289 *1)) (-4 *1 (-429 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1289 (-1289 *4))) (-5 *1 (-540 *4)) - (-4 *4 (-360))))) -(((*1 *1) (-5 *1 (-301)))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1289 (-576))) (-5 *3 (-576)) (-5 *1 (-1132)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1289 (-576))) (-5 *3 (-657 (-576))) (-5 *4 (-576)) - (-5 *1 (-1132))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) - (-5 *2 (-1057)) (-5 *1 (-763))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-660 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-577)) (-14 *4 (-787))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1197 *9)) (-5 *4 (-660 *7)) (-5 *5 (-660 *8)) + (-4 *7 (-865)) (-4 *8 (-1074)) (-4 *9 (-972 *8 *6 *7)) + (-4 *6 (-809)) (-5 *2 (-1197 *8)) (-5 *1 (-332 *6 *7 *8 *9))))) +(((*1 *1 *1) (-4 *1 (-642))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027) (-1227)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) + (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) + (-5 *2 (-1060)) (-5 *1 (-768))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-4 *1 (-926 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-660 *3)) (-4 *3 (-972 *5 *6 *7)) (-4 *5 (-465)) + (-4 *6 (-809)) (-4 *7 (-865)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-462 *5 *6 *7 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-701 *3 *4 *5 *2)) - (-4 *2 (-700 *3 *4 *5))))) -(((*1 *1) (-5 *1 (-1107)))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-875)) (-5 *3 (-129)) (-5 *2 (-784))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-657 *6)) (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) - (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) - (-4 *3 (-568))))) -(((*1 *2 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-625 (-877))))) - ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-891)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-891)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1180)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-518)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-604)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-490)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-157)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1188)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-638)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1118)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1095)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-992)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-182)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1058)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-321)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-684)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-155)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1173)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-537)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1300)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1088)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-529)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-694)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1137)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-134)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-618)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-1299)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-689)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-220)))) - ((*1 *2 *1) (-12 (-4 *1 (-1159)) (-5 *2 (-536)))) - ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1203)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1203)))) - ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1203)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1203))))) -(((*1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-158))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -3071 *4) (|:| -3265 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-802)) (-5 *5 (-576))))) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-135))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) (((*1 *2 *1) - (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1194 *4)) (-4 *4 (-360)) (-5 *2 (-112)) - (-5 *1 (-368 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1289 *4)) (-4 *4 (-360)) (-5 *2 (-112)) - (-5 *1 (-540 *4))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1166)))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1166)) (-5 *3 (-145)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-3 (-112) (-657 *1))) - (-4 *1 (-1093 *4 *5 *6 *3))))) + (-12 (-5 *2 (-420 (-577))) (-5 *1 (-330 *3 *4 *5)) (-4 *3 (-375)) + (-14 *4 (-1201)) (-14 *5 *3)))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) + (-4 *3 (-1090 *6 *7 *8)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -3952 *4)))) + (-5 *1 (-1133 *6 *7 *8 *3 *4)) (-4 *4 (-1096 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -3952 *9)))) + (-5 *5 (-112)) (-4 *8 (-1090 *6 *7 *4)) (-4 *9 (-1096 *6 *7 *4 *8)) + (-4 *6 (-465)) (-4 *7 (-809)) (-4 *4 (-865)) + (-5 *2 (-660 (-2 (|:| |val| *8) (|:| -3952 *9)))) + (-5 *1 (-1133 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-768))))) +(((*1 *1 *2) + (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-4 *1 (-926 *3))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-660 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-787)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-809)) (-4 *6 (-972 *4 *3 *5)) (-4 *4 (-465)) (-4 *5 (-865)) + (-5 *1 (-462 *4 *3 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) +(((*1 *2 *1) (-12 (-5 *1 (-707 *2)) (-4 *2 (-626 (-880))))) + ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-894)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-894)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-577)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1183)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-519)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-605)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-491)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-157)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1191)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-639)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1121)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1115)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1098)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-995)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-182)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1061)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-322)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-687)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-155)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1176)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-538)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1303)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1091)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-530)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-697)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1140)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-134)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-619)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-1302)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-692)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-221)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162)) (-5 *2 (-537)))) + ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1206)))) + ((*1 *2 *1) (-12 (-5 *2 (-519)) (-5 *1 (-1206)))) + ((*1 *2 *1) (-12 (-5 *2 (-228)) (-5 *1 (-1206)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-1206))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) + (-5 *5 (-1119 (-228))) (-5 *6 (-577)) (-5 *2 (-1237 (-949))) + (-5 *1 (-329)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) + (-5 *5 (-1119 (-228))) (-5 *6 (-577)) (-5 *7 (-1183)) + (-5 *2 (-1237 (-949))) (-5 *1 (-329)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) + (-5 *5 (-1119 (-228))) (-5 *6 (-228)) (-5 *7 (-577)) + (-5 *2 (-1237 (-949))) (-5 *1 (-329)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-327 (-577))) (-5 *4 (-1 (-228) (-228))) + (-5 *5 (-1119 (-228))) (-5 *6 (-228)) (-5 *7 (-577)) (-5 *8 (-1183)) + (-5 *2 (-1237 (-949))) (-5 *1 (-329))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (-145)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-465)) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *3 (-1090 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| (-660 *3)) (|:| -3952 *4)))) + (-5 *1 (-1133 *5 *6 *7 *3 *4)) (-4 *4 (-1096 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) + (-5 *2 (-1060)) (-5 *1 (-767))))) (((*1 *2 *3) - (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-842)) (-5 *3 (-1180))))) -(((*1 *2 *1) - (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) - (|has| *2 (-6 (-4468 "*"))) (-4 *2 (-1071)))) - ((*1 *2 *3) - (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) - (-5 *1 (-701 *2 *4 *5 *3)) (-4 *3 (-700 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4468 "*"))) (-4 *2 (-1071))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1265 *6)) - (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1060 (-576)))) - (-4 *8 (-1265 (-419 *7))) (-5 *2 (-598 *3)) - (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-390)))) - ((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-390))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-765))))) -(((*1 *2 *3 *3) + (-12 (-5 *3 (-1167 *4 *2)) (-14 *4 (-944)) + (-4 *2 (-13 (-1074) (-10 -7 (-6 (-4472 "*"))))) + (-5 *1 (-925 *4 *2))))) +(((*1 *2 *2) (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-784)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-806)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) - (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 - (-2 (|:| -3071 *4) (|:| -3265 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-802)) (-5 *5 (-576))))) -(((*1 *1 *1) (-4 *1 (-641))) + (-660 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-787)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-809)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-465)) (-4 *5 (-865)) + (-5 *1 (-462 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) +(((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-228) (-228))) (-5 *1 (-329)) (-5 *3 (-228))))) +(((*1 *1 *1) (-4 *1 (-642))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024) (-1224)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-657 (-2 (|:| -4291 (-1198)) (|:| -4440 *4)))) - (-5 *1 (-905 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) - (-4 *7 (-1122)) (-5 *2 (-657 *1)) (-4 *1 (-1125 *3 *4 *5 *6 *7))))) + (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027) (-1227)))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-784)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) + (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) + (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) + (-5 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1239)) (-5 *2 (-784)) - (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-1122)) (-5 *2 (-784)) (-5 *1 (-441 *3 *4)) - (-4 *3 (-442 *4)))) - ((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-556 *3)) (-4 *3 (-557)))) - ((*1 *2) (-12 (-4 *1 (-776)) (-5 *2 (-784)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-784)) (-5 *1 (-809 *3 *4)) - (-4 *3 (-810 *4)))) - ((*1 *2) - (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-1013 *3 *4)) - (-4 *3 (-1014 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-784)) (-5 *1 (-1018 *3 *4)) - (-4 *3 (-1019 *4)))) - ((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1033 *3)) (-4 *3 (-1034)))) - ((*1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-784)))) - ((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1081 *3)) (-4 *3 (-1082))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1060 (-576)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1224) (-442 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-568) (-1060 (-576)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) - (-4 *4 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-1228 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *4)))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022)))) (-5 *3 (-227)) - (-5 *2 (-1057)) (-5 *1 (-761))))) + (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) + (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) + (-5 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) - (-5 *2 (-2 (|:| -2016 (-657 *6)) (|:| -3209 (-657 *6))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576)))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) -(((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) - (-5 *2 - (-2 (|:| -3066 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -3000 (-419 *6)) - (|:| |special| (-419 *6)))) - (-5 *1 (-740 *5 *6)) (-5 *3 (-419 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-657 *3)) (-5 *1 (-914 *3 *4)) - (-4 *3 (-1265 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-784)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -4224 *3) (|:| -4236 *3))) (-5 *1 (-914 *3 *5)) - (-4 *3 (-1265 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-657 *9)) (-5 *3 (-657 *8)) (-5 *4 (-112)) - (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1091 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-657 *9)) (-5 *3 (-657 *8)) (-5 *4 (-112)) - (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1093 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1091 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-657 *9)) (-5 *3 (-657 *8)) (-5 *4 (-112)) - (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1131 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1167 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-657 *9)) (-5 *3 (-657 *8)) (-5 *4 (-112)) - (-4 *8 (-1087 *5 *6 *7)) (-4 *9 (-1131 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-806)) (-4 *7 (-862)) (-5 *1 (-1167 *5 *6 *7 *8 *9))))) + (-12 (-5 *2 (-660 (-2 (|:| -4295 (-1201)) (|:| -4444 *4)))) + (-5 *1 (-908 *3 *4)) (-4 *3 (-1125)) (-4 *4 (-1125)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1125)) (-4 *4 (-1125)) (-4 *5 (-1125)) (-4 *6 (-1125)) + (-4 *7 (-1125)) (-5 *2 (-660 *1)) (-4 *1 (-1128 *3 *4 *5 *6 *7))))) (((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-660 *3)) (|:| |image| (-660 *3)))) + (-5 *1 (-928 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) + (-5 *2 (-1060)) (-5 *1 (-767))))) +(((*1 *2 *3 *2) (-12 (-5 *2 - (-657 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-576))))) - (-5 *1 (-430 *3)) (-4 *3 (-568)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-784)) (-4 *3 (-360)) (-4 *5 (-1265 *3)) - (-5 *2 (-657 (-1194 *3))) (-5 *1 (-510 *3 *5 *6)) - (-4 *6 (-1265 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-877)))) - ((*1 *1 *1) (-5 *1 (-877))) + (-660 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-787)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-809)) (-4 *3 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-865)) + (-5 *1 (-462 *4 *5 *6 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-558)) (-5 *1 (-160 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-989 *3)) (-4 *3 (-1125)) (-5 *1 (-990 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-148)) (-4 *2 (-318)) (-4 *2 (-465)) (-4 *3 (-865)) + (-4 *4 (-809)) (-5 *1 (-1012 *2 *3 *4 *5)) (-4 *5 (-972 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-327 (-577))) (-5 *1 (-1144)))) + ((*1 *2 *2) + (-12 (-4 *3 (-465)) (-5 *1 (-1233 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1227)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-443 *5)) + (-4 *5 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-660 *7)) + (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-660 (-305 *7))) (-5 *4 (-660 (-115))) (-5 *5 (-305 *7)) + (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-660 (-305 *8))) (-5 *4 (-660 (-115))) (-5 *5 (-305 *8)) + (-5 *6 (-660 *8)) (-4 *8 (-443 *7)) + (-4 *7 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-660 *7)) (-5 *4 (-660 (-115))) (-5 *5 (-305 *7)) + (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 (-115))) (-5 *6 (-660 (-305 *8))) + (-4 *8 (-443 *7)) (-5 *5 (-305 *8)) + (-4 *7 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-443 *6)) + (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-443 *6)) + (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-443 *6)) + (-4 *6 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-660 *3)) + (-4 *3 (-443 *7)) (-4 *7 (-13 (-569) (-627 (-549)))) (-5 *2 (-52)) + (-5 *1 (-328 *7 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) + (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) + (-5 *1 (-1133 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-880))) (-5 *1 (-880)))) + ((*1 *1 *1) (-5 *1 (-880))) ((*1 *1 *2) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-4 *1 (-1120 *3)))) - ((*1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-4 *1 (-1123 *3)))) + ((*1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125))))) +(((*1 *1 *2) + (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-5 *1 (-928 *3))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *6 (-228)) + (-5 *3 (-577)) (-5 *2 (-1060)) (-5 *1 (-767))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-465)) (-4 *3 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) + (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-972 *4 *3 *5))))) +(((*1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-558))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) + (-5 *1 (-1232 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-787)) (-5 *2 (-1297))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146 *3)) (-4 *3 (-1242)) (-5 *2 (-787))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-569)) (-4 *3 (-1125))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1239))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-941))) (-5 *2 (-924 (-576))) (-5 *1 (-937))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(((*1 *2 *3) - (-12 (-5 *3 (-784)) (-4 *4 (-374)) (-4 *5 (-1265 *4)) (-5 *2 (-1294)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1265 (-419 *5))) (-14 *7 *6)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-406)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1219))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 *4)) (-4 *4 (-374)) (-5 *2 (-702 *4)) - (-5 *1 (-827 *4 *5)) (-4 *5 (-669 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *5)) (-5 *4 (-784)) (-4 *5 (-374)) - (-5 *2 (-702 *5)) (-5 *1 (-827 *5 *6)) (-4 *6 (-669 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1239)) (-5 *2 (-784))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-449)) (-5 *1 (-1202))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-768))))) -(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-135))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-889)) - (-5 *5 (-941)) (-5 *6 (-657 (-270))) (-5 *2 (-1290)) - (-5 *1 (-1293)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-657 (-963 (-227))))) (-5 *4 (-657 (-270))) - (-5 *2 (-1290)) (-5 *1 (-1293))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224)))))) + (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) + (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) + (-5 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-465)) (-4 *4 (-809)) (-4 *5 (-865)) + (-4 *6 (-1090 *3 *4 *5)) (-5 *2 (-1297)) + (-5 *1 (-1133 *3 *4 *5 *6 *7)) (-4 *7 (-1096 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-767))))) +(((*1 *1 *2) + (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1125)) (-5 *1 (-928 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1194 *3)) (-5 *1 (-934 *3)) (-4 *3 (-317))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) + (-12 (-4 *4 (-465)) (-4 *3 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) + (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-972 *4 *3 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-569))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) + (-5 *1 (-1232 *3 *4 *5 *2)) (-4 *2 (-703 *3 *4 *5))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) (((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224))))) + (-12 (-5 *1 (-230 *2)) (-4 *2 (-13 (-375) (-1227))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-941)) (-5 *4 (-390)) (-5 *2 (-1294)) (-5 *1 (-1290)))) + (-12 (-5 *3 (-944)) (-5 *4 (-391)) (-5 *2 (-1297)) (-5 *1 (-1293)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-941)) (-5 *2 (-480)) (-5 *1 (-1290))))) + (-12 (-5 *3 (-391)) (-5 *2 (-1297)) (-5 *1 (-1294))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-577)) (-5 *1 (-327 *3)) (-4 *3 (-569)) (-4 *3 (-1125))))) +(((*1 *1 *1 *1) (-5 *1 (-880)))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) + (-5 *1 (-1097 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1183)) (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-1297)) + (-5 *1 (-1133 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-767))))) +(((*1 *2 *1) (-12 (-5 *2 (-996)) (-5 *1 (-928 *3)) (-4 *3 (-1125))))) (((*1 *2 *3) - (-12 (-5 *3 (-856 (-390))) (-5 *2 (-856 (-227))) (-5 *1 (-315))))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) - (-5 *1 (-1027))))) -(((*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-784)) (-5 *3 (-963 *4)) (-4 *1 (-1156 *4)) - (-4 *4 (-1071)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-784)) (-5 *4 (-963 (-227))) (-5 *2 (-1294)) - (-5 *1 (-1291))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-806)) - (-4 *7 (-862)) (-4 *8 (-1087 *5 *6 *7)) (-5 *2 (-657 *3)) - (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1131 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) - (-5 *2 - (-657 (-2 (|:| -3011 (-1194 *5)) (|:| -2795 (-657 (-972 *5)))))) - (-5 *1 (-1100 *5 *6)) (-5 *3 (-657 (-972 *5))) - (-14 *6 (-657 (-1198))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) - (-5 *2 - (-657 (-2 (|:| -3011 (-1194 *4)) (|:| -2795 (-657 (-972 *4)))))) - (-5 *1 (-1100 *4 *5)) (-5 *3 (-657 (-972 *4))) - (-14 *5 (-657 (-1198))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) - (-5 *2 - (-657 (-2 (|:| -3011 (-1194 *5)) (|:| -2795 (-657 (-972 *5)))))) - (-5 *1 (-1100 *5 *6)) (-5 *3 (-657 (-972 *5))) - (-14 *6 (-657 (-1198)))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-787)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-809)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-465)) (-4 *6 (-865)) + (-5 *2 (-112)) (-5 *1 (-462 *4 *5 *6 *7))))) (((*1 *1 *2) - (-12 (-5 *2 (-1289 *4)) (-4 *4 (-1239)) (-4 *1 (-243 *3 *4))))) + (-12 (-5 *2 (-1292 *4)) (-4 *4 (-1242)) (-4 *1 (-244 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-569))))) (((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) - ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-557))) - ((*1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1071)))) + ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-558))) + ((*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) + ((*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1074)))) ((*1 *1 *1) - (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) - (-4 *3 (-13 (-1122) (-34)))))) + (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) + (-4 *3 (-13 (-1125) (-34)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1265 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-933 *4 *3)) - (-4 *3 (-1265 (-419 *4)))))) + (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-171 (-327 *4))) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 (-171 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *2 (-171 *3)) (-5 *1 (-1231 *4 *3)) + (-4 *3 (-13 (-27) (-1227) (-443 *4)))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4467)) (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-657 *7)) (|:| |badPols| (-657 *7)))) - (-5 *1 (-999 *4 *5 *6 *7)) (-5 *3 (-657 *7))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1179 (-2 (|:| |k| (-576)) (|:| |c| *6)))) - (-5 *4 (-1048 (-856 (-576)))) (-5 *5 (-1198)) (-5 *7 (-419 (-576))) - (-4 *6 (-1071)) (-5 *2 (-877)) (-5 *1 (-607 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-985))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1180) (-787))) (-5 *1 (-115))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 (-576)))) - (-5 *2 (-112)) (-5 *1 (-1317 *4))))) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-318)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-988))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1183) (-790))) (-5 *1 (-115))))) (((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-326 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 (-171 *4)))))) + (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-327 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 (-171 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-835)) (-5 *1 (-834))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-934 *3)) (-4 *3 (-317))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1224)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1194 *1)) (-5 *3 (-1198)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1194 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-972 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-764))))) -(((*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315))))) + (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3)))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) + (-4 *8 (-865)) (-4 *9 (-1090 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3994 (-660 *9)) (|:| -3952 *4) (|:| |ineq| (-660 *9)))) + (-5 *1 (-1013 *6 *7 *8 *9 *4)) (-5 *3 (-660 *9)) + (-4 *4 (-1096 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-465)) (-4 *7 (-809)) + (-4 *8 (-865)) (-4 *9 (-1090 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3994 (-660 *9)) (|:| -3952 *4) (|:| |ineq| (-660 *9)))) + (-5 *1 (-1132 *6 *7 *8 *9 *4)) (-5 *3 (-660 *9)) + (-4 *4 (-1096 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-928 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-228)) + (-5 *2 (-1060)) (-5 *1 (-767))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-660 *7)) (-5 *3 (-577)) (-4 *7 (-972 *4 *5 *6)) + (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-5 *1 (-462 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-569))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1224) (-1024)))))) + (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-112)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 (-171 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-447)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-112)) + (-5 *1 (-1231 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 *4)))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-787))))) (((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-326 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-442 (-171 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)))) + (-12 (-4 *4 (-13 (-569) (-1063 (-577)))) (-5 *2 (-327 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1227) (-443 (-171 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-442 *3)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1166)) (-5 *2 (-145))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) - (-4 *2 (-1280 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) - (-4 *5 (-1265 *4)) (-4 *6 (-737 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) - (-4 *2 (-1280 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) - (-5 *1 (-554 *4 *2)) (-4 *2 (-1280 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1179 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) - (-5 *1 (-1175 *4))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-657 *11)) (-5 *5 (-657 (-1194 *9))) - (-5 *6 (-657 *9)) (-5 *7 (-657 *12)) (-5 *8 (-657 (-784))) - (-4 *11 (-862)) (-4 *9 (-317)) (-4 *12 (-969 *9 *10 *11)) - (-4 *10 (-806)) (-5 *2 (-657 (-1194 *12))) - (-5 *1 (-720 *10 *11 *9 *12)) (-5 *3 (-1194 *12))))) -(((*1 *2 *1 *1) - (-12 + (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3)))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-660 *10)) (-5 *5 (-112)) (-4 *10 (-1096 *6 *7 *8 *9)) + (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) + (-4 *9 (-1090 *6 *7 *8)) + (-5 *2 + (-660 + (-2 (|:| -3994 (-660 *9)) (|:| -3952 *10) (|:| |ineq| (-660 *9))))) + (-5 *1 (-1013 *6 *7 *8 *9 *10)) (-5 *3 (-660 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-660 *10)) (-5 *5 (-112)) (-4 *10 (-1096 *6 *7 *8 *9)) + (-4 *6 (-465)) (-4 *7 (-809)) (-4 *8 (-865)) + (-4 *9 (-1090 *6 *7 *8)) (-5 *2 - (-2 (|:| -3203 *3) (|:| |coef1| (-795 *3)) (|:| |coef2| (-795 *3)))) - (-5 *1 (-795 *3)) (-4 *3 (-568)) (-4 *3 (-1071))))) -(((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1) (-5 *1 (-644)))) + (-660 + (-2 (|:| -3994 (-660 *9)) (|:| -3952 *10) (|:| |ineq| (-660 *9))))) + (-5 *1 (-1132 *6 *7 *8 *9 *10)) (-5 *3 (-660 *9))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1063 (-577))) (-4 *1 (-313)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-928 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-767))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-462 *4 *5 *6 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-569))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-4 *2 (-1122)) (-5 *1 (-693 *5 *6 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *1) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-996))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1125)) + (-4 *6 (-1125)) (-4 *2 (-1125)) (-5 *1 (-696 *5 *6 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-569) (-1063 (-577)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1227) (-443 (-171 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3)))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) (((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) - (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-576)))) - ((*1 *1 *1) (-4 *1 (-1024))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1034)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1034)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-941)))) - ((*1 *1 *1) (-4 *1 (-1034)))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889))))) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-318)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4101 *1))) + (-4 *1 (-318))))) +(((*1 *2 *2) + (-12 (-5 *2 (-660 (-2 (|:| |val| (-660 *6)) (|:| -3952 *7)))) + (-4 *6 (-1090 *3 *4 *5)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) + (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1013 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-660 (-2 (|:| |val| (-660 *6)) (|:| -3952 *7)))) + (-4 *6 (-1090 *3 *4 *5)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) + (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-1132 *3 *4 *5 *6 *7))))) +(((*1 *1 *1) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) + (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-887 *3)) (-5 *2 (-577)))) + ((*1 *1 *1) (-4 *1 (-1027))) + ((*1 *1 *2) (-12 (-5 *2 (-577)) (-4 *1 (-1037)))) + ((*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-4 *1 (-1037)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1037)) (-5 *2 (-944)))) + ((*1 *1 *1) (-4 *1 (-1037)))) (((*1 *2 *1) - (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) - (-5 *2 (-657 (-657 (-963 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-657 (-657 (-963 *4)))) (-5 *3 (-112)) (-4 *4 (-1071)) - (-4 *1 (-1156 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-657 (-657 (-963 *3)))) (-4 *3 (-1071)) - (-4 *1 (-1156 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-657 (-657 (-657 *4)))) (-5 *3 (-112)) - (-4 *1 (-1156 *4)) (-4 *4 (-1071)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-657 (-657 (-963 *4)))) (-5 *3 (-112)) - (-4 *1 (-1156 *4)) (-4 *4 (-1071)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-657 (-657 (-657 *5)))) (-5 *3 (-657 (-173))) - (-5 *4 (-173)) (-4 *1 (-1156 *5)) (-4 *5 (-1071)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-657 (-657 (-963 *5)))) (-5 *3 (-657 (-173))) - (-5 *4 (-173)) (-4 *1 (-1156 *5)) (-4 *5 (-1071))))) -(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) - ((*1 *1 *1) (-4 *1 (-1082)))) + (-12 (-4 *1 (-1063 (-577))) (-4 *1 (-313)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-928 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-767))))) (((*1 *2 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360)))) + (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) + (-4 *4 (-361)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360)))) - ((*1 *1) (-4 *1 (-379))) - ((*1 *2 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1289 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360)))) - ((*1 *1 *1) (-4 *1 (-557))) ((*1 *1) (-4 *1 (-557))) - ((*1 *1 *1) (-5 *1 (-784))) - ((*1 *2 *1) (-12 (-5 *2 (-925 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) + (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-369 *4)) + (-4 *4 (-361)))) + ((*1 *1) (-4 *1 (-380))) + ((*1 *2 *3) + (-12 (-5 *3 (-944)) (-5 *2 (-1292 *4)) (-5 *1 (-541 *4)) + (-4 *4 (-361)))) + ((*1 *1 *1) (-4 *1 (-558))) ((*1 *1) (-4 *1 (-558))) + ((*1 *1 *1) (-5 *1 (-787))) + ((*1 *2 *1) (-12 (-5 *2 (-928 *3)) (-5 *1 (-927 *3)) (-4 *3 (-1125)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-925 *4)) (-5 *1 (-924 *4)) - (-4 *4 (-1122)))) - ((*1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-557)) (-4 *2 (-568))))) -(((*1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1292)))) - ((*1 *2 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1292))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-561)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) - (-4 *5 (-13 (-464) (-148) (-1060 (-576)) (-652 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) - (-4 *3 (-13 (-27) (-1224) (-442 *5)))))) + (-12 (-5 *3 (-577)) (-5 *2 (-928 *4)) (-5 *1 (-927 *4)) + (-4 *4 (-1125)))) + ((*1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-558)) (-4 *2 (-569))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-462 *4 *5 *6 *2))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) - (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390)))) - (-5 *1 (-816))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-784)) (-5 *1 (-796 *2)) (-4 *2 (-38 (-419 (-576)))) - (-4 *2 (-174))))) -(((*1 *1 *1) (-4 *1 (-1082)))) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-569))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-569) (-1063 (-577)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1227) (-443 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-569) (-1063 (-577)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1201)) + (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-1231 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-129))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-660 *1)) (-4 *1 (-318))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-657 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1265 (-48))))) + (-12 (-5 *4 (-660 (-48))) (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1268 (-48))))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1265 (-48))))) + (-12 (-5 *2 (-431 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1268 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-657 (-48))) (-4 *5 (-862)) (-4 *6 (-806)) - (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-969 (-48) *6 *5)))) + (-12 (-5 *4 (-660 (-48))) (-4 *5 (-865)) (-4 *6 (-809)) + (-5 *2 (-431 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-972 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-657 (-48))) (-4 *5 (-862)) (-4 *6 (-806)) - (-4 *7 (-969 (-48) *6 *5)) (-5 *2 (-430 (-1194 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1194 *7)))) + (-12 (-5 *4 (-660 (-48))) (-4 *5 (-865)) (-4 *6 (-809)) + (-4 *7 (-972 (-48) *6 *5)) (-5 *2 (-431 (-1197 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1197 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3)) - (-4 *3 (-1265 (-171 *4))))) + (-12 (-4 *4 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-168 *4 *3)) + (-4 *3 (-1268 (-171 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) + (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) + (-12 (-4 *4 (-13 (-375) (-864))) (-5 *2 (-431 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1268 (-171 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1265 *4)))) + (-12 (-4 *4 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-219 *4 *3)) + (-4 *3 (-1268 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) + (-12 (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1265 (-576))))) + (-12 (-5 *4 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) + (-4 *3 (-1268 (-577))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-657 (-784))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1265 (-576))))) + (-12 (-5 *4 (-660 (-787))) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) + (-4 *3 (-1268 (-577))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-657 (-784))) (-5 *5 (-784)) (-5 *2 (-430 *3)) - (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) + (-12 (-5 *4 (-660 (-787))) (-5 *5 (-787)) (-5 *2 (-431 *3)) + (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1265 (-576))))) + (-12 (-5 *4 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) + (-4 *3 (-1268 (-577))))) ((*1 *2 *3) - (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) - (-5 *3 (-171 (-576))))) + (-12 (-5 *2 (-431 (-171 (-577)))) (-5 *1 (-459)) + (-5 *3 (-171 (-577))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-862) - (-10 -8 (-15 -4148 ((-1198) $)) - (-15 -3032 ((-3 $ "failed") (-1198)))))) - (-4 *5 (-806)) (-4 *7 (-568)) (-5 *2 (-430 *3)) - (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) - (-4 *3 (-969 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1194 *4))) (-5 *1 (-470 *4)) - (-5 *3 (-1194 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1265 *5)) (-4 *5 (-374)) - (-4 *7 (-13 (-374) (-148) (-737 *5 *6))) (-5 *2 (-430 *3)) - (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1265 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 (-1194 *7)) (-1194 *7))) - (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-806)) - (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3)) - (-4 *3 (-969 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 (-1194 *7)) (-1194 *7))) - (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-806)) - (-4 *8 (-969 *7 *6 *5)) (-5 *2 (-430 (-1194 *8))) - (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1194 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-657 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) - (-4 *6 (-1265 *5)) (-5 *2 (-657 (-666 (-419 *6)))) - (-5 *1 (-670 *5 *6)) (-5 *3 (-666 (-419 *6))))) + (-13 (-865) + (-10 -8 (-15 -4152 ((-1201) $)) + (-15 -3076 ((-3 $ "failed") (-1201)))))) + (-4 *5 (-809)) (-4 *7 (-569)) (-5 *2 (-431 *3)) + (-5 *1 (-469 *4 *5 *6 *7 *3)) (-4 *6 (-569)) + (-4 *3 (-972 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-318)) (-5 *2 (-431 (-1197 *4))) (-5 *1 (-471 *4)) + (-5 *3 (-1197 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1268 *5)) (-4 *5 (-375)) + (-4 *7 (-13 (-375) (-148) (-740 *5 *6))) (-5 *2 (-431 *3)) + (-5 *1 (-507 *5 *6 *7 *3)) (-4 *3 (-1268 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-431 (-1197 *7)) (-1197 *7))) + (-4 *7 (-13 (-318) (-148))) (-4 *5 (-865)) (-4 *6 (-809)) + (-5 *2 (-431 *3)) (-5 *1 (-553 *5 *6 *7 *3)) + (-4 *3 (-972 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-431 (-1197 *7)) (-1197 *7))) + (-4 *7 (-13 (-318) (-148))) (-4 *5 (-865)) (-4 *6 (-809)) + (-4 *8 (-972 *7 *6 *5)) (-5 *2 (-431 (-1197 *8))) + (-5 *1 (-553 *5 *6 *7 *8)) (-5 *3 (-1197 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-431 *3)) (-5 *1 (-571 *3)) (-4 *3 (-558)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-660 *5) *6)) + (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-4 *6 (-1268 *5)) (-5 *2 (-660 (-669 (-420 *6)))) + (-5 *1 (-673 *5 *6)) (-5 *3 (-669 (-420 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) - (-4 *5 (-1265 *4)) (-5 *2 (-657 (-666 (-419 *5)))) - (-5 *1 (-670 *4 *5)) (-5 *3 (-666 (-419 *5))))) + (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-4 *5 (-1268 *4)) (-5 *2 (-660 (-669 (-420 *5)))) + (-5 *1 (-673 *4 *5)) (-5 *3 (-669 (-420 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-832 *4)) (-4 *4 (-862)) (-5 *2 (-657 (-685 *4))) - (-5 *1 (-685 *4)))) + (-12 (-5 *3 (-835 *4)) (-4 *4 (-865)) (-5 *2 (-660 (-688 *4))) + (-5 *1 (-688 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-5 *2 (-657 *3)) (-5 *1 (-709 *3)) - (-4 *3 (-1265 *4)))) + (-12 (-5 *4 (-577)) (-5 *2 (-660 *3)) (-5 *1 (-712 *3)) + (-4 *3 (-1268 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-360)) (-5 *2 (-430 *3)) - (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-969 *6 *5 *4)))) + (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-361)) (-5 *2 (-431 *3)) + (-5 *1 (-714 *4 *5 *6 *3)) (-4 *3 (-972 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-360)) - (-4 *7 (-969 *6 *5 *4)) (-5 *2 (-430 (-1194 *7))) - (-5 *1 (-711 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) + (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-361)) + (-4 *7 (-972 *6 *5 *4)) (-5 *2 (-431 (-1197 *7))) + (-5 *1 (-714 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-806)) + (-12 (-4 *4 (-809)) (-4 *5 - (-13 (-862) - (-10 -8 (-15 -4148 ((-1198) $)) - (-15 -3032 ((-3 $ "failed") (-1198)))))) - (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-743 *4 *5 *6 *3)) - (-4 *3 (-969 (-972 *6) *4 *5)))) + (-13 (-865) + (-10 -8 (-15 -4152 ((-1201) $)) + (-15 -3076 ((-3 $ "failed") (-1201)))))) + (-4 *6 (-318)) (-5 *2 (-431 *3)) (-5 *1 (-746 *4 *5 *6 *3)) + (-4 *3 (-972 (-975 *6) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-806)) - (-4 *5 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $))))) (-4 *6 (-568)) - (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3)) - (-4 *3 (-969 (-419 (-972 *6)) *4 *5)))) + (-12 (-4 *4 (-809)) + (-4 *5 (-13 (-865) (-10 -8 (-15 -4152 ((-1201) $))))) (-4 *6 (-569)) + (-5 *2 (-431 *3)) (-5 *1 (-748 *4 *5 *6 *3)) + (-4 *3 (-972 (-420 (-975 *6)) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-13 (-317) (-148))) - (-5 *2 (-430 *3)) (-5 *1 (-746 *4 *5 *6 *3)) - (-4 *3 (-969 (-419 *6) *4 *5)))) + (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-13 (-318) (-148))) + (-5 *2 (-431 *3)) (-5 *1 (-749 *4 *5 *6 *3)) + (-4 *3 (-972 (-420 *6) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-13 (-317) (-148))) - (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) - (-4 *3 (-969 *6 *5 *4)))) + (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-13 (-318) (-148))) + (-5 *2 (-431 *3)) (-5 *1 (-757 *4 *5 *6 *3)) + (-4 *3 (-972 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-806)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-969 *6 *5 *4)) (-5 *2 (-430 (-1194 *7))) - (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1194 *7)))) + (-12 (-4 *4 (-865)) (-4 *5 (-809)) (-4 *6 (-13 (-318) (-148))) + (-4 *7 (-972 *6 *5 *4)) (-5 *2 (-431 (-1197 *7))) + (-5 *1 (-757 *4 *5 *6 *7)) (-5 *3 (-1197 *7)))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1029 *3)) - (-4 *3 (-1265 (-419 (-576)))))) + (-12 (-5 *2 (-431 *3)) (-5 *1 (-1032 *3)) + (-4 *3 (-1268 (-420 (-577)))))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1063 *3)) - (-4 *3 (-1265 (-419 (-972 (-576))))))) + (-12 (-5 *2 (-431 *3)) (-5 *1 (-1066 *3)) + (-4 *3 (-1268 (-420 (-975 (-577))))))) ((*1 *2 *3) - (-12 (-4 *4 (-1265 (-419 (-576)))) - (-4 *5 (-13 (-374) (-148) (-737 (-419 (-576)) *4))) - (-5 *2 (-430 *3)) (-5 *1 (-1101 *4 *5 *3)) (-4 *3 (-1265 *5)))) + (-12 (-4 *4 (-1268 (-420 (-577)))) + (-4 *5 (-13 (-375) (-148) (-740 (-420 (-577)) *4))) + (-5 *2 (-431 *3)) (-5 *1 (-1104 *4 *5 *3)) (-4 *3 (-1268 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-1265 (-419 (-972 (-576))))) - (-4 *5 (-13 (-374) (-148) (-737 (-419 (-972 (-576))) *4))) - (-5 *2 (-430 *3)) (-5 *1 (-1103 *4 *5 *3)) (-4 *3 (-1265 *5)))) + (-12 (-4 *4 (-1268 (-420 (-975 (-577))))) + (-4 *5 (-13 (-375) (-148) (-740 (-420 (-975 (-577))) *4))) + (-5 *2 (-431 *3)) (-5 *1 (-1106 *4 *5 *3)) (-4 *3 (-1268 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-464)) - (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-430 (-1194 (-419 *7)))) - (-5 *1 (-1193 *4 *5 *6 *7)) (-5 *3 (-1194 (-419 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1243)))) + (-12 (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-465)) + (-4 *7 (-972 *6 *4 *5)) (-5 *2 (-431 (-1197 (-420 *7)))) + (-5 *1 (-1196 *4 *5 *6 *7)) (-5 *3 (-1197 (-420 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-431 *1)) (-4 *1 (-1246)))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1254 *3)) (-4 *3 (-1265 (-576)))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1057)) - (-5 *1 (-759))))) -(((*1 *2) - (-12 (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-929)) - (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-969 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-806)) (-4 *4 (-862)) (-4 *2 (-929)) - (-5 *1 (-926 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-929)) (-5 *1 (-927 *2 *3)) (-4 *3 (-1265 *2))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-657 (-985))) (-5 *1 (-301))))) -(((*1 *1) (-5 *1 (-1085)))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-861))) - (-5 *2 (-657 (-2 (|:| -2067 (-657 *3)) (|:| -3265 *5)))) - (-5 *1 (-183 *5 *3)) (-4 *3 (-1265 (-171 *5))))) + (-12 (-5 *2 (-431 *3)) (-5 *1 (-1257 *3)) (-4 *3 (-1268 (-577)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -3952 *8))) + (-4 *7 (-1090 *4 *5 *6)) (-4 *8 (-1096 *4 *5 *6 *7)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) + (-5 *1 (-1013 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-374) (-861))) - (-5 *2 (-657 (-2 (|:| -2067 (-657 *3)) (|:| -3265 *4)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4)))))) -(((*1 *1) (-5 *1 (-1104)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-657 *1)) (-4 *1 (-1087 *4 *5 *6)) (-4 *4 (-1071)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-806)) - (-4 *6 (-862)) (-4 *3 (-1087 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-594))))) + (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -3952 *8))) + (-4 *7 (-1090 *4 *5 *6)) (-4 *8 (-1096 *4 *5 *6 *7)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) + (-5 *1 (-1132 *4 *5 *6 *7 *8))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1127 *3)) (-5 *1 (-928 *3)) (-4 *3 (-380)) + (-4 *3 (-1125))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-767))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-660 (-660 *7))) + (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) + (-4 *7 (-865)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-660 (-660 *8))) + (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-660 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-660 (-660 *7))) + (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) + (-4 *7 (-865)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-660 (-660 *8))) + (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-660 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-443 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-569))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-569) (-1063 (-577)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1227) (-443 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1201)) (-4 *4 (-13 (-569) (-1063 (-577)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-1231 *3 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1201)) + (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-1231 *4 *2)) (-4 *2 (-13 (-27) (-1227) (-443 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-129))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-657 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1122)) - (-5 *1 (-585 *3 *4)))) + (-12 (-5 *2 (-660 (-625 *4))) (-4 *4 (-443 *3)) (-4 *3 (-1125)) + (-5 *1 (-586 *3 *4)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-862)) - (-4 *3 (-13 (-174) (-730 (-419 (-576))))) (-14 *4 (-941)))) - ((*1 *1 *1) (-12 (-5 *1 (-690 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *5)) (-5 *4 (-941)) (-4 *5 (-862)) - (-5 *2 (-657 (-685 *5))) (-5 *1 (-685 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) - ((*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937))))) -(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-835))))) -(((*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1239)) (-5 *2 (-784))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-925 *4)) (-4 *4 (-1122)) (-5 *2 (-657 (-784))) - (-5 *1 (-924 *4))))) + (-12 (-5 *1 (-908 *2 *3)) (-4 *2 (-1125)) (-4 *3 (-1125)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1123 *2)) (-4 *2 (-1125))))) +(((*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-864)) (-5 *1 (-314 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-130)))))) -(((*1 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292)))) - ((*1 *2 *2) (-12 (-5 *2 (-889)) (-5 *1 (-1292))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-784)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1232 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-806)) - (-4 *3 (-862)) (-4 *6 (-1087 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-557)))) + (-12 (-5 *2 (-660 *7)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) + (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) + (-5 *1 (-1013 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-660 *7)) (-4 *7 (-1096 *3 *4 *5 *6)) (-4 *3 (-465)) + (-4 *4 (-809)) (-4 *5 (-865)) (-4 *6 (-1090 *3 *4 *5)) + (-5 *1 (-1132 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-767))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1125)) (-5 *1 (-928 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-660 (-660 *7))) + (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) + (-4 *7 (-865)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-660 (-660 *8))) + (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-660 *8))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1242)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1228 *3)) (-4 *3 (-1125))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-129))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-228))) (-5 *4 (-787)) (-5 *2 (-705 (-228))) + (-5 *1 (-316))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-660 *3)) (-4 *3 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) + (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1013 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-660 *3)) (-4 *3 (-1096 *5 *6 *7 *8)) (-4 *5 (-465)) + (-4 *6 (-809)) (-4 *7 (-865)) (-4 *8 (-1090 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1132 *5 *6 *7 *8 *3))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) (-5 *6 (-691 (-228))) + (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-766))))) (((*1 *2 *3) - (-12 (-5 *3 (-702 (-419 (-972 (-576))))) + (-12 (-5 *3 (-785)) (-5 *2 - (-657 - (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) - (|:| |radvect| (-657 (-702 (-326 (-576)))))))) - (-5 *1 (-1053))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4))))) + (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) + (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060)))) + (-5 *1 (-578)))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-374) (-861))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1265 (-171 *4)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-1071)) (-4 *4 (-174)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)) - (-4 *3 (-174))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) - (-4 *4 (-1071))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-419 (-972 *6)) (-1187 (-1198) (-972 *6)))) - (-5 *5 (-784)) (-4 *6 (-464)) (-5 *2 (-657 (-702 (-419 (-972 *6))))) - (-5 *1 (-302 *6)) (-5 *4 (-702 (-419 (-972 *6)))))) + (-12 (-5 *3 (-785)) (-5 *4 (-1088)) + (-5 *2 + (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) + (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060)))) + (-5 *1 (-578)))) ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-419 (-972 *5)) (-1187 (-1198) (-972 *5)))) - (|:| |eigmult| (-784)) (|:| |eigvec| (-657 *4)))) - (-4 *5 (-464)) (-5 *2 (-657 (-702 (-419 (-972 *5))))) - (-5 *1 (-302 *5)) (-5 *4 (-702 (-419 (-972 *5))))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1280 *3))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1071)) - (-4 *2 (-1280 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-702 *4)) (-5 *3 (-941)) (|has| *4 (-6 (-4468 "*"))) - (-4 *4 (-1071)) (-5 *1 (-1050 *4)))) + (-12 (-4 *1 (-803)) (-5 *3 (-1088)) + (-5 *4 + (-2 (|:| |fn| (-327 (-228))) + (|:| -4071 (-660 (-1119 (-859 (-228))))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *2 + (-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) + (|:| |extra| (-1060)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-803)) (-5 *3 (-1088)) + (-5 *4 + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *2 + (-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)) + (|:| |extra| (-1060)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-816)) (-5 *3 (-1088)) + (-5 *4 + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) + (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (-5 *2 (-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-824)) + (-5 *2 + (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) + (|:| |explanations| (-660 (-1183))))) + (-5 *1 (-821)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-824)) (-5 *4 (-1088)) + (-5 *2 + (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) + (|:| |explanations| (-660 (-1183))))) + (-5 *1 (-821)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-855)) (-5 *3 (-1088)) + (-5 *4 + (-2 (|:| |lfn| (-660 (-327 (-228)))) (|:| -1709 (-660 (-228))))) + (-5 *2 (-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-855)) (-5 *3 (-1088)) + (-5 *4 + (-2 (|:| |fn| (-327 (-228))) (|:| -1709 (-660 (-228))) + (|:| |lb| (-660 (-859 (-228)))) (|:| |cf| (-660 (-327 (-228)))) + (|:| |ub| (-660 (-859 (-228)))))) + (-5 *2 (-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-857)) + (-5 *2 + (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) + (|:| |explanations| (-660 (-1183))))) + (-5 *1 (-856)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-857)) (-5 *4 (-1088)) + (-5 *2 + (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) + (|:| |explanations| (-660 (-1183))))) + (-5 *1 (-856)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-916)) (-5 *3 (-1088)) + (-5 *4 + (-2 (|:| |pde| (-660 (-327 (-228)))) + (|:| |constraints| + (-660 + (-2 (|:| |start| (-228)) (|:| |finish| (-228)) + (|:| |grid| (-787)) (|:| |boundaryType| (-577)) + (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) + (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) + (|:| |tol| (-228)))) + (-5 *2 (-2 (|:| -1878 (-391)) (|:| |explanations| (-1183)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-919)) + (-5 *2 + (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) + (|:| |explanations| (-660 (-1183))))) + (-5 *1 (-918)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-919)) (-5 *4 (-1088)) + (-5 *2 + (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) + (|:| |explanations| (-660 (-1183))))) + (-5 *1 (-918))))) +(((*1 *1 *1) (-4 *1 (-558)))) +(((*1 *2 *2) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-318)) + (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-460 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-657 (-702 *4))) (-5 *3 (-941)) - (|has| *4 (-6 (-4468 "*"))) (-4 *4 (-1071)) (-5 *1 (-1050 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1239)) (-4 *2 (-862)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1239)))) - ((*1 *2 *2) - (-12 (-5 *2 (-657 (-925 *3))) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) - (-4 *6 (-1087 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3427 *1) (|:| |upper| *1))) - (-4 *1 (-998 *4 *5 *3 *6))))) + (-12 (-5 *2 (-660 *7)) (-5 *3 (-1183)) (-4 *7 (-972 *4 *5 *6)) + (-4 *4 (-318)) (-4 *5 (-809)) (-4 *6 (-865)) + (-5 *1 (-460 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-660 *7)) (-5 *3 (-1183)) (-4 *7 (-972 *4 *5 *6)) + (-4 *4 (-318)) (-4 *5 (-809)) (-4 *6 (-865)) + (-5 *1 (-460 *4 *5 *6 *7))))) +(((*1 *1) (-5 *1 (-158)))) +(((*1 *1 *1) (-12 (-5 *1 (-1228 *2)) (-4 *2 (-1125))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1125)))) + ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1125))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *1 *1) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *2 *3) (-12 (-5 *3 (-420 (-577))) (-5 *2 (-228)) (-5 *1 (-316))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1122)) - (-4 *4 (-568)) (-5 *2 (-419 (-1194 *1))))) + (-12 (-5 *3 (-625 *1)) (-4 *1 (-443 *4)) (-4 *4 (-1125)) + (-4 *4 (-569)) (-5 *2 (-420 (-1197 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1224))) - (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) - (-5 *2 (-1194 (-419 (-1194 *3)))) (-5 *1 (-572 *6 *3 *7)) - (-5 *5 (-1194 *3)) (-4 *7 (-1122)))) + (-12 (-5 *4 (-625 *3)) (-4 *3 (-13 (-443 *6) (-27) (-1227))) + (-4 *6 (-13 (-465) (-1063 (-577)) (-148) (-654 (-577)))) + (-5 *2 (-1197 (-420 (-1197 *3)))) (-5 *1 (-573 *6 *3 *7)) + (-5 *5 (-1197 *3)) (-4 *7 (-1125)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1285 *5)) (-14 *5 (-1198)) (-4 *6 (-1071)) - (-5 *2 (-1262 *5 (-972 *6))) (-5 *1 (-967 *5 *6)) (-5 *3 (-972 *6)))) + (-12 (-5 *4 (-1288 *5)) (-14 *5 (-1201)) (-4 *6 (-1074)) + (-5 *2 (-1265 *5 (-975 *6))) (-5 *1 (-970 *5 *6)) (-5 *3 (-975 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-5 *2 (-1194 *3)))) + (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *5 (-865)) (-5 *2 (-1197 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1071)) (-4 *5 (-806)) (-4 *3 (-862)) (-5 *2 (-1194 *1)) - (-4 *1 (-969 *4 *5 *3)))) + (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) (-5 *2 (-1197 *1)) + (-4 *1 (-972 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-806)) (-4 *4 (-862)) (-4 *6 (-1071)) - (-4 *7 (-969 *6 *5 *4)) (-5 *2 (-419 (-1194 *3))) - (-5 *1 (-970 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-809)) (-4 *4 (-865)) (-4 *6 (-1074)) + (-4 *7 (-972 *6 *5 *4)) (-5 *2 (-420 (-1197 *3))) + (-5 *1 (-973 *5 *4 *6 *7 *3)) (-4 *3 - (-13 (-374) - (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))))) + (-13 (-375) + (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) (-15 -1637 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1194 *3)) + (-12 (-5 *2 (-1197 *3)) (-4 *3 - (-13 (-374) - (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) (-15 -1635 (*7 $))))) - (-4 *7 (-969 *6 *5 *4)) (-4 *5 (-806)) (-4 *4 (-862)) - (-4 *6 (-1071)) (-5 *1 (-970 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-568)) - (-5 *2 (-419 (-1194 (-419 (-972 *5))))) (-5 *1 (-1065 *5)) - (-5 *3 (-419 (-972 *5)))))) -(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1208))))) + (-13 (-375) + (-10 -8 (-15 -3544 ($ *7)) (-15 -1623 (*7 $)) (-15 -1637 (*7 $))))) + (-4 *7 (-972 *6 *5 *4)) (-4 *5 (-809)) (-4 *4 (-865)) + (-4 *6 (-1074)) (-5 *1 (-973 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1201)) (-4 *5 (-569)) + (-5 *2 (-420 (-1197 (-420 (-975 *5))))) (-5 *1 (-1068 *5)) + (-5 *3 (-420 (-975 *5)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-787)) (-4 *4 (-375)) (-5 *1 (-917 *2 *4)) + (-4 *2 (-1268 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *5 (-1183)) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1060)) + (-5 *1 (-766))))) +(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1242)) (-4 *2 (-865)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1242)))) + ((*1 *2 *2) + (-12 (-5 *2 (-660 (-928 *3))) (-5 *1 (-928 *3)) (-4 *3 (-1125)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1074)) (-4 *5 (-809)) (-4 *3 (-865)) + (-4 *6 (-1090 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -4119 *1) (|:| |upper| *1))) + (-4 *1 (-1001 *4 *5 *3 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-318)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *1 (-460 *4 *5 *6 *2))))) +(((*1 *2) (-12 (-5 *2 (-944)) (-5 *1 (-158))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-657 (-2 (|:| -4224 (-419 (-576))) (|:| -4236 (-419 (-576)))))) - (-5 *2 (-657 (-227))) (-5 *1 (-315))))) + (-12 (-4 *4 (-569)) (-5 *2 (-660 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-430 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-660 (-1228 *3))) (-5 *1 (-1228 *3)) (-4 *3 (-1125))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-127 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1198)) (-5 *5 (-1116 (-227))) (-5 *2 (-947)) - (-5 *1 (-945 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-5 *2 (-947)) (-5 *1 (-945 *3)) - (-4 *3 (-626 (-548))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-947)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1116 (-227))) - (-5 *1 (-947))))) + (-12 (-5 *1 (-608 *2)) (-4 *2 (-38 (-420 (-577)))) (-4 *2 (-1074))))) +(((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-327 (-391))) (-5 *1 (-316))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) + (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) + (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) + (-5 *2 (-1060)) (-5 *1 (-766))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-375)) (-5 *1 (-917 *2 *3)) + (-4 *2 (-1268 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-660 (-577))) (-5 *1 (-459)) (-5 *3 (-577))))) +(((*1 *1 *1) (-5 *1 (-880))) ((*1 *1 *1 *1) (-5 *1 (-880))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1118 *2)) (-4 *2 (-1242)))) + ((*1 *1 *2) (-12 (-5 *1 (-1259 *2)) (-4 *2 (-1242))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-228)) + (-5 *2 + (-2 (|:| |brans| (-660 (-660 (-966 *4)))) + (|:| |xValues| (-1119 *4)) (|:| |yValues| (-1119 *4)))) + (-5 *1 (-154)) (-5 *3 (-660 (-660 (-966 *4))))))) (((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1224)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-464)) (-4 *4 (-833)) - (-14 *5 (-1198)) (-5 *2 (-576)) (-5 *1 (-1136 *4 *5))))) + (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-430 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *1) - (-12 (-5 *2 (-657 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-598 *3)) (-4 *3 (-374))))) -(((*1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1239)))) - ((*1 *1 *2) (-12 (-5 *1 (-1256 *2)) (-4 *2 (-1239))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-657 (-326 (-227)))) (|:| -1706 (-657 (-227))))) - (-5 *2 (-390)) (-5 *1 (-276)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1289 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-390)))) - ((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-390))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-784)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1240 *3)) (-4 *3 (-862)) - (-4 *3 (-1122))))) + (-12 (-5 *4 (-660 *3)) (-4 *3 (-1134 *5 *6 *7 *8)) + (-4 *5 (-13 (-318) (-148))) (-4 *6 (-809)) (-4 *7 (-865)) + (-4 *8 (-1090 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-604 *5 *6 *7 *8 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-975 (-228))) (-5 *2 (-228)) (-5 *1 (-316))))) (((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) - (-4 *4 (-442 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-55)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-784)) (-5 *1 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-115)))) + (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-32 *3 *4)) + (-4 *4 (-443 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-55)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1201)) (-5 *3 (-787)) (-5 *1 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-115)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) - (-4 *4 (-442 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-115)) (-5 *1 (-164)))) + (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-159 *3 *4)) + (-4 *4 (-443 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1201)) (-5 *2 (-115)) (-5 *1 (-164)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) - (-4 *4 (-13 (-442 *3) (-1024))))) - ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) - ((*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-286 *3 *4)) + (-4 *4 (-13 (-443 *3) (-1027))))) + ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-312 *3)) (-4 *3 (-313)))) + ((*1 *2 *2) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *4 (-1122)) (-5 *1 (-441 *3 *4)) - (-4 *3 (-442 *4)))) + (-12 (-5 *2 (-115)) (-4 *4 (-1125)) (-5 *1 (-442 *3 *4)) + (-4 *3 (-443 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) - (-4 *4 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-444 *3 *4)) + (-4 *4 (-443 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-625 *3)) (-4 *3 (-1125)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) - (-4 *4 (-13 (-442 *3) (-1024) (-1224))))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1041)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1212 *2)) (-4 *2 (-1122))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) - (-4 *4 (-806)) (-4 *5 (-862)) (-4 *3 (-568))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1259 *3 *2)) - (-4 *2 (-1265 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2022)))) - (-5 *2 (-1057)) (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-337 *3)) (-4 *3 (-1239)))) - ((*1 *2 *1) - (-12 (-5 *2 (-784)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1239)) - (-14 *4 (-576))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1313 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-832 *2)) (-4 *2 (-862)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-832 *3)) (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-1071)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1306 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1071))))) -(((*1 *2 *2) - (-12 (-5 *2 (-657 (-657 *6))) (-4 *6 (-969 *3 *5 *4)) - (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1198)))) - (-4 *5 (-806)) (-5 *1 (-944 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837))))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3203 *4))) - (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) + (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-643 *3 *4)) + (-4 *4 (-13 (-443 *3) (-1027) (-1227))))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1044)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1215 *2)) (-4 *2 (-1125))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-624 *1))) (-4 *1 (-312))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-889))))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) + (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) + (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *1 (-916)) + (-5 *3 + (-2 (|:| |pde| (-660 (-327 (-228)))) + (|:| |constraints| + (-660 + (-2 (|:| |start| (-228)) (|:| |finish| (-228)) + (|:| |grid| (-787)) (|:| |boundaryType| (-577)) + (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) + (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) + (|:| |tol| (-228)))) + (-5 *2 (-1060))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-765))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-946))))) -(((*1 *1 *2) - (-12 (-4 *3 (-1071)) (-5 *1 (-840 *2 *3)) (-4 *2 (-721 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) - (-5 *2 (-657 (-2 (|:| |val| (-657 *3)) (|:| -3946 *4)))) - (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) + (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1074)))) + ((*1 *2) + (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1074))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-972 *4)) (-4 *4 (-1071)) (-4 *4 (-626 *2)) - (-5 *2 (-390)) (-5 *1 (-798 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-972 *5)) (-5 *4 (-941)) (-4 *5 (-1071)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) - (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-941)) (-4 *5 (-568)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *5)))) + (-12 (-5 *3 (-950)) + (-5 *2 + (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) + (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-950)) (-5 *4 (-420 (-577))) + (-5 *2 + (-2 (|:| |brans| (-660 (-660 (-966 (-228))))) + (|:| |xValues| (-1119 (-228))) (|:| |yValues| (-1119 (-228))))) + (-5 *1 (-154))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-944))) (-5 *4 (-928 (-577))) + (-5 *2 (-705 (-577))) (-5 *1 (-603)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) - (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-798 *4)))) + (-12 (-5 *3 (-660 (-944))) (-5 *2 (-660 (-705 (-577)))) + (-5 *1 (-603)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-941)) (-4 *5 (-568)) - (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) - (-5 *1 (-798 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-657 *3)) (-5 *1 (-965 *4 *3)) - (-4 *3 (-1265 *4))))) + (-12 (-5 *3 (-660 (-944))) (-5 *4 (-660 (-928 (-577)))) + (-5 *2 (-660 (-705 (-577)))) (-5 *1 (-603))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-2 (|:| -1812 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *2 (-568))))) + (-12 (-5 *3 (-975 (-228))) (-5 *2 (-327 (-391))) (-5 *1 (-316))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) + (-5 *1 (-1013 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1090 *4 *5 *6)) (-4 *4 (-465)) + (-4 *5 (-809)) (-4 *6 (-865)) (-5 *2 (-112)) + (-5 *1 (-1132 *4 *5 *6 *7 *8)) (-4 *8 (-1096 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1060)) (-5 *1 (-765)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *5 (-228)) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-401)) (-5 *2 (-1060)) (-5 *1 (-765))))) (((*1 *2 *1) - (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) - (-5 *2 (-1194 *3))))) -(((*1 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1292)))) - ((*1 *2 *2) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-1292))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-374) (-861))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1265 (-171 *2)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-657 *2)) (-5 *1 (-114 *2)) - (-4 *2 (-1122)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-657 *4))) (-4 *4 (-1122)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1122)) - (-5 *1 (-114 *4)))) + (-12 (-4 *1 (-394 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1125)) + (-5 *2 (-660 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-660 (-2 (|:| |k| (-912 *3)) (|:| |c| *4)))) + (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) + (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944)))) + ((*1 *2 *1) + (-12 (-5 *2 (-660 (-688 *3))) (-5 *1 (-912 *3)) (-4 *3 (-865))))) +(((*1 *2 *3) + (-12 (-5 *2 (-577)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-625 *1))) (-4 *1 (-313))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) + (-4 *2 (-1242))))) +(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-657 *4))) - (-5 *1 (-114 *4)) (-4 *4 (-1122)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-661 *3)) (-4 *3 (-1071)) - (-5 *1 (-727 *3 *4)))) + (-12 (-5 *3 (-1292 *1)) (-4 *1 (-382 *2 *4)) (-4 *4 (-1268 *2)) + (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *4 (-1268 *2)) (-4 *2 (-174)) (-5 *1 (-421 *3 *2 *4)) + (-4 *3 (-422 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-422 *2 *3)) (-4 *3 (-1268 *2)) (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *3 (-1268 *2)) (-5 *2 (-577)) (-5 *1 (-784 *3 *4)) + (-4 *4 (-422 *2 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-849 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) + (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *2 (-865)) (-4 *3 (-174)))) + ((*1 *2 *3) + (-12 (-4 *2 (-569)) (-5 *1 (-994 *2 *3)) (-4 *3 (-1268 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-174))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-122 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-944))) (-5 *2 (-787)) (-5 *1 (-603))))) +(((*1 *1 *2) + (-12 (-4 *3 (-1074)) (-5 *1 (-843 *2 *3)) (-4 *2 (-724 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) + (|:| |expense| (-391)) (|:| |accuracy| (-391)) + (|:| |intermediateResults| (-391)))) + (-5 *2 (-1060)) (-5 *1 (-316))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1013 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-4 *7 (-1090 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1132 *4 *5 *6 *7 *3)) (-4 *3 (-1096 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-577)) (-5 *5 (-705 (-228))) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-228)) + (-5 *2 (-1060)) (-5 *1 (-765))))) (((*1 *2 *1) - (-12 (-5 *2 (-1274 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) - (-14 *4 (-1198)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-712)))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1074)) + (-14 *4 (-660 (-1201))))) + ((*1 *2 *3) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1242)))) ((*1 *2 *1) - (-12 (-4 *2 (-1122)) (-5 *1 (-726 *3 *2 *4)) (-4 *3 (-862)) - (-14 *4 - (-1 (-112) (-2 (|:| -3178 *3) (|:| -1801 *2)) - (-2 (|:| -3178 *3) (|:| -1801 *2))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-861))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1265 (-171 *3)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) - (-4 *6 (-1265 *5)) (-4 *7 (-1265 (-419 *6))) - (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1060 (-576)))) - (-5 *2 (-2 (|:| -3182 (-784)) (|:| -3290 *8))) - (-5 *1 (-931 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) - (-4 *4 (-1265 (-419 (-576)))) (-4 *5 (-1265 (-419 *4))) - (-4 *6 (-353 (-419 (-576)) *4 *5)) - (-5 *2 (-2 (|:| -3182 (-784)) (|:| -3290 *6))) - (-5 *1 (-932 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1180)) (-5 *1 (-194)))) - ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1180)) (-5 *1 (-310)))) - ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1180)) (-5 *1 (-315))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1280 *4)) (-5 *1 (-1282 *4 *2)) - (-4 *4 (-38 (-419 (-576))))))) + (-12 (-5 *2 (-112)) (-5 *1 (-226 *3 *4)) (-4 *3 (-13 (-1074) (-865))) + (-14 *4 (-660 (-1201))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-693 *3)) (-4 *3 (-865)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-912 *3)) (-4 *3 (-865))))) +(((*1 *2 *3) + (-12 (-5 *2 (-577)) (-5 *1 (-458 *3)) (-4 *3 (-417)) (-4 *3 (-1074))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4470)) (-4 *1 (-152 *2)) (-4 *2 (-1242)) + (-4 *2 (-1125))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-1074)) (-4 *4 (-809)) + (-4 *2 (-865)) (-4 *3 (-174)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-569)) (-5 *1 (-994 *2 *3)) (-4 *3 (-1268 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *2 (-569)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-174))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-865))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1201)) + (-4 *4 (-13 (-318) (-148) (-1063 (-577)) (-654 (-577)))) + (-5 *1 (-439 *4 *2)) (-4 *2 (-13 (-1227) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) (-4 *5 (-148)) + (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-327 *5)) + (-5 *1 (-602 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-969 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) - (-4 *6 (-806)) (-5 *2 (-112)) (-5 *1 (-944 *4 *5 *6 *7)))) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1182 (-228))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -4071 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1060)) (-5 *1 (-316))))) +(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) +(((*1 *2 *3) + (-12 (-5 *3 (-911 *4)) (-4 *4 (-1125)) (-5 *2 (-660 *5)) + (-5 *1 (-909 *4 *5)) (-4 *5 (-1242))))) +(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-458 *3)) (-4 *3 (-1074))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-420 *5)) + (|:| |c2| (-420 *5)) (|:| |deg| (-787)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1268 (-420 *5)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-994 *3 *2)) (-4 *2 (-1268 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)) (-4 *2 (-569)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-569))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *2 *3) + (-12 (-5 *3 (-599 *2)) (-4 *2 (-13 (-29 *4) (-1227))) + (-5 *1 (-596 *4 *2)) + (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-599 (-420 (-975 *4)))) + (-4 *4 (-13 (-465) (-1063 (-577)) (-654 (-577)))) (-5 *2 (-327 *4)) + (-5 *1 (-602 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) + (|:| |explanations| (-660 (-1183))))) + (-5 *2 (-1060)) (-5 *1 (-316)))) ((*1 *2 *3) - (-12 (-5 *3 (-657 (-972 *4))) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) (-5 *2 (-112)) - (-5 *1 (-944 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5))))) + (-12 + (-5 *3 + (-2 (|:| -1878 (-391)) (|:| -2713 (-1183)) + (|:| |explanations| (-660 (-1183))) (|:| |extra| (-1060)))) + (-5 *2 (-1060)) (-5 *1 (-316))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3 *4)) (-4 *3 (-13 (-1125) (-34))) + (-4 *4 (-13 (-1125) (-34)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-1154 *4 *2)) - (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4466) (-6 -4467)))))) + (-12 (-5 *2 (-911 *4)) (-4 *4 (-1125)) (-5 *1 (-909 *4 *3)) + (-4 *3 (-1242)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) +(((*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-1074))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1268 *2)) (-4 *2 (-1246)) (-5 *1 (-149 *2 *4 *3)) + (-4 *3 (-1268 (-420 *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-660 *1)) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-420 *1)) (-4 *1 (-1268 *3)) (-4 *3 (-1074)) + (-4 *3 (-569)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-569))))) +(((*1 *2) + (-12 (-5 *2 (-787)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577))))) ((*1 *2 *2) - (-12 (-4 *3 (-862)) (-4 *3 (-1239)) (-5 *1 (-1154 *3 *2)) - (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4466) (-6 -4467))))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1107))))) + (-12 (-5 *2 (-787)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-787)) (-4 *1 (-1008 *2)) (-4 *2 (-1227))))) +(((*1 *2 *3) + (-12 (-5 *3 (-944)) (-5 *2 (-1197 *4)) (-5 *1 (-601 *4)) + (-4 *4 (-361))))) +(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1183)) (-5 *1 (-316))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-13 (-1125) (-34))) + (-4 *3 (-13 (-1125) (-34)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-657 (-419 *6))) (-5 *3 (-419 *6)) - (-4 *6 (-1265 *5)) (-4 *5 (-13 (-374) (-148) (-1060 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-580 *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1082)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) - (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174)) (-4 *2 (-1082)))) - ((*1 *1 *1) (-4 *1 (-861))) - ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-174)) (-4 *2 (-1082)))) - ((*1 *1 *1) (-4 *1 (-1082))) ((*1 *1 *1) (-4 *1 (-1161)))) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-911 *4)) (-4 *4 (-1125)) (-5 *2 (-112)) + (-5 *1 (-908 *4 *5)) (-4 *5 (-1125)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-911 *5)) (-4 *5 (-1125)) (-5 *2 (-112)) + (-5 *1 (-909 *5 *3)) (-4 *3 (-1242)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *6)) (-5 *4 (-911 *5)) (-4 *5 (-1125)) + (-4 *6 (-1242)) (-5 *2 (-112)) (-5 *1 (-909 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-1074)))) + ((*1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-458 *3)) (-4 *3 (-1074))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) - (-5 *2 (-657 (-2 (|:| |val| (-112)) (|:| -3946 *4)))) - (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) + (-12 (-5 *3 (-420 *6)) (-4 *5 (-1246)) (-4 *6 (-1268 *5)) + (-5 *2 (-2 (|:| -3556 (-787)) (|:| -1777 *3) (|:| |radicand| *6))) + (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-787)) (-4 *7 (-1268 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1074)) (-4 *2 (-569))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-978 (-1194 *4))) (-5 *1 (-368 *4)) - (-5 *3 (-1194 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1026 *3)) (-14 *3 (-576))))) -(((*1 *1) (-5 *1 (-449)))) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1268 (-577)))))) +(((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-892)))) + ((*1 *2 *3) + (-12 (-5 *3 (-966 *2)) (-5 *1 (-1007 *2)) (-4 *2 (-1074))))) +(((*1 *2 *2) (-12 (-5 *1 (-600 *2)) (-4 *2 (-558))))) (((*1 *2 *3) - (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) - (-4 *4 (-13 (-374) (-861))) (-4 *3 (-1265 *2))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-772))))) -(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) -(((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-657 (-115)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-963 (-227)) (-227))) (-5 *3 (-1116 (-227))) - (-5 *1 (-946)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-963 (-227)) (-227))) (-5 *3 (-1116 (-227))) - (-5 *1 (-946)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-963 (-227)) (-227))) (-5 *3 (-1116 (-227))) - (-5 *1 (-947)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-963 (-227)) (-227))) (-5 *3 (-1116 (-227))) - (-5 *1 (-947))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-784)))) - ((*1 *1 *1) (-4 *1 (-414)))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1240 *3)) (-4 *3 (-1122))))) -(((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-635 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -4236 *4) (|:| |sol?| (-112))) - (-576) *4)) - (-4 *4 (-374)) (-4 *5 (-1265 *4)) (-5 *1 (-586 *4 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1180) (-1203))) - (-5 *1 (-1203))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-657 *6)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1071)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-784)))) - ((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-5 *2 (-784))))) + (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-311)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-316))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1125) (-34))) (-4 *6 (-13 (-1125) (-34))) + (-5 *2 (-112)) (-5 *1 (-1165 *5 *6))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1183)) + (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -1823 (-115)) (|:| |arg| (-660 (-911 *3))))) + (-5 *1 (-911 *3)) (-4 *3 (-1125)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-660 (-911 *4))) + (-5 *1 (-911 *4)) (-4 *4 (-1125))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) - (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) - (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *2 (-568)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *2 (-568))))) -(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-1071))))) + (-12 (-5 *3 (-787)) (-5 *4 (-577)) (-5 *1 (-458 *2)) (-4 *2 (-1074))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) + (-5 *2 (-2 (|:| |radicand| (-420 *5)) (|:| |deg| (-787)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1268 (-420 *5)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1313 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-862)) + (-12 (-5 *3 (-1316 *4 *2)) (-4 *1 (-386 *4 *2)) (-4 *4 (-865)) (-4 *2 (-174)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1306 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1071)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-832 *4)) (-4 *1 (-1306 *4 *2)) (-4 *4 (-862)) - (-4 *2 (-1071)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1071)) (-5 *1 (-1312 *2 *3)) (-4 *3 (-859))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1071)) (-4 *2 (-805)))) - ((*1 *2 *1) - (-12 (-5 *2 (-784)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1071)) - (-14 *4 (-657 (-1198))))) - ((*1 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1071) (-862))) - (-14 *4 (-657 (-1198))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1071)) (-4 *3 (-862)) - (-4 *5 (-275 *3)) (-4 *6 (-806)) (-5 *2 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-284)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1194 *8)) (-5 *4 (-657 *6)) (-4 *6 (-862)) - (-4 *8 (-969 *7 *5 *6)) (-4 *5 (-806)) (-4 *7 (-1071)) - (-5 *2 (-657 (-784))) (-5 *1 (-331 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-941)))) - ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) - (-5 *2 (-784)))) - ((*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-1265 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) - ((*1 *2 *1) (-12 (-4 *1 (-867 *3)) (-4 *3 (-1071)) (-5 *2 (-784)))) - ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) + (-12 (-4 *1 (-1309 *3 *2)) (-4 *3 (-865)) (-4 *2 (-1074)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-657 *6)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1071)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-657 (-784))))) + (-12 (-5 *3 (-835 *4)) (-4 *1 (-1309 *4 *2)) (-4 *4 (-865)) + (-4 *2 (-1074)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-969 *4 *5 *3)) (-4 *4 (-1071)) (-4 *5 (-806)) - (-4 *3 (-862)) (-5 *2 (-784)))) - ((*1 *2 *1) - (-12 (-4 *1 (-995 *3 *2 *4)) (-4 *3 (-1071)) (-4 *4 (-862)) - (-4 *2 (-805)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-784)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1280 *3)) - (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1272 *3 *4)) (-4 *3 (-1071)) (-4 *4 (-1249 *3)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-846 (-941))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) - (-5 *2 (-784))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1180))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-861) (-374))) (-5 *1 (-1083 *2 *3)) - (-4 *3 (-1265 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-657 (-702 (-326 (-576))))) (-5 *1 (-1053))))) -(((*1 *2 *2) - (-12 (-5 *2 (-657 (-493 *3 *4))) (-14 *3 (-657 (-1198))) - (-4 *4 (-464)) (-5 *1 (-643 *3 *4))))) + (-12 (-4 *2 (-1074)) (-5 *1 (-1315 *2 *3)) (-4 *3 (-862))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-569)) + (-5 *2 (-2 (|:| -1777 *4) (|:| -3637 *3) (|:| -2457 *3))) + (-5 *1 (-994 *4 *3)) (-4 *3 (-1268 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *2 (-2 (|:| -3637 *1) (|:| -2457 *1))) (-4 *1 (-1090 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-569)) (-4 *3 (-1074)) + (-5 *2 (-2 (|:| -1777 *3) (|:| -3637 *1) (|:| -2457 *1))) + (-4 *1 (-1268 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-1183))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4471)) (-4 *1 (-120 *2)) (-4 *2 (-1242))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-311)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1119 (-859 (-228)))) (-5 *2 (-228)) (-5 *1 (-316))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1125) (-34))) + (-5 *2 (-112)) (-5 *1 (-1165 *4 *5)) (-4 *4 (-13 (-1125) (-34)))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1183)) + (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-774))))) (((*1 *2 *1) - (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-657 *6))))) + (|partial| -12 (-5 *2 (-660 (-911 *3))) (-5 *1 (-911 *3)) + (-4 *3 (-1125))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-972 *6))) (-5 *4 (-657 (-1198))) - (-4 *6 (-13 (-568) (-1060 *5))) (-4 *5 (-568)) - (-5 *2 (-657 (-657 (-304 (-419 (-972 *6)))))) (-5 *1 (-1061 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-1202))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-657 *7)) (-5 *3 (-576)) (-4 *7 (-969 *4 *5 *6)) - (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-5 *1 (-461 *4 *5 *6 *7))))) + (-12 (-5 *3 (-944)) (-5 *4 (-431 *6)) (-4 *6 (-1268 *5)) + (-4 *5 (-1074)) (-5 *2 (-660 *6)) (-5 *1 (-457 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) + (-5 *2 (-2 (|:| -1777 (-420 *5)) (|:| |poly| *3))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1268 (-420 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-375)) (-4 *4 (-569)) (-4 *5 (-1268 *4)) + (-5 *2 (-2 (|:| -3213 (-636 *4 *5)) (|:| -3204 (-420 *5)))) + (-5 *1 (-636 *4 *5)) (-5 *3 (-420 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-660 (-1189 *3 *4))) (-5 *1 (-1189 *3 *4)) + (-14 *3 (-944)) (-4 *4 (-1074)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-465)) (-4 *3 (-1074)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1268 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-895 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) - (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-898 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) + (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-895 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) - (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-898 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-963 (-227)) (-227))) (-5 *4 (-1116 (-390))) - (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-966 (-228)) (-228))) (-5 *4 (-1119 (-391))) + (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-963 (-227)) (-227))) (-5 *4 (-1116 (-390))) - (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-966 (-228)) (-228))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1116 (-390))) - (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1119 (-391))) + (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1116 (-390))) - (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-390))) - (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-391))) + (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-390))) - (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-898 (-1 (-227) (-227) (-227)))) (-5 *4 (-1116 (-390))) - (-5 *5 (-657 (-270))) (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-901 (-1 (-228) (-228) (-228)))) (-5 *4 (-1119 (-391))) + (-5 *5 (-660 (-271))) (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-898 (-1 (-227) (-227) (-227)))) (-5 *4 (-1116 (-390))) - (-5 *2 (-1155 (-227))) (-5 *1 (-262)))) + (-12 (-5 *3 (-901 (-1 (-228) (-228) (-228)))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1158 (-228))) (-5 *1 (-263)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-895 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1155 (-227))) - (-5 *1 (-266 *6)))) + (-12 (-5 *3 (-898 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) + (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1158 (-228))) + (-5 *1 (-267 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-895 *5)) (-5 *4 (-1114 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1155 (-227))) - (-5 *1 (-266 *5)))) + (-12 (-5 *3 (-898 *5)) (-5 *4 (-1117 (-391))) + (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1158 (-228))) + (-5 *1 (-267 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) - (-5 *2 (-1155 (-227))) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1122))))) + (-12 (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) + (-5 *2 (-1158 (-228))) (-5 *1 (-267 *3)) + (-4 *3 (-13 (-627 (-549)) (-1125))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1114 (-390))) (-5 *2 (-1155 (-227))) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1122))))) + (-12 (-5 *4 (-1117 (-391))) (-5 *2 (-1158 (-228))) (-5 *1 (-267 *3)) + (-4 *3 (-13 (-627 (-549)) (-1125))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-898 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1155 (-227))) - (-5 *1 (-266 *6)))) + (-12 (-5 *3 (-901 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) + (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1158 (-228))) + (-5 *1 (-267 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-898 *5)) (-5 *4 (-1114 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1155 (-227))) - (-5 *1 (-266 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *1 (-999 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 (-145))) (-5 *1 (-142)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-142))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-5 *1 (-991 *2 *3)) (-4 *3 (-1265 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-464)) (-4 *4 (-833)) - (-14 *5 (-1198)) (-5 *2 (-576)) (-5 *1 (-1136 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1155 (-227))) (-5 *3 (-657 (-270))) (-5 *1 (-1291)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1155 (-227))) (-5 *3 (-1180)) (-5 *1 (-1291)))) - ((*1 *1 *1) (-5 *1 (-1291)))) + (-12 (-5 *3 (-901 *5)) (-5 *4 (-1117 (-391))) + (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1158 (-228))) + (-5 *1 (-267 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-972 (-576))) (-5 *2 (-340)) - (-5 *1 (-342))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-657 (-784))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-941)) - (-4 *4 (-1071))))) + (-12 (-5 *3 (-660 (-705 *5))) (-5 *4 (-577)) (-4 *5 (-375)) + (-4 *5 (-1074)) (-5 *2 (-112)) (-5 *1 (-1054 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-705 *4))) (-4 *4 (-375)) (-4 *4 (-1074)) + (-5 *2 (-112)) (-5 *1 (-1054 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-665 *2 *3 *4)) (-4 *2 (-1125)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4471)) (-4 *1 (-120 *2)) (-4 *2 (-1242))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1182 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1182 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-311)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1182 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-316))))) +(((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1) (-4 *1 (-1164)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-944)) (-5 *1 (-455 *2)) + (-4 *2 (-1268 (-577))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-944)) (-5 *4 (-787)) (-5 *1 (-455 *2)) + (-4 *2 (-1268 (-577))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-944)) (-5 *4 (-660 (-787))) (-5 *1 (-455 *2)) + (-4 *2 (-1268 (-577))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-944)) (-5 *4 (-660 (-787))) (-5 *5 (-787)) + (-5 *1 (-455 *2)) (-4 *2 (-1268 (-577))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-944)) (-5 *4 (-660 (-787))) (-5 *5 (-787)) + (-5 *6 (-112)) (-5 *1 (-455 *2)) (-4 *2 (-1268 (-577))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-944)) (-5 *4 (-431 *2)) (-4 *2 (-1268 *5)) + (-5 *1 (-457 *5 *2)) (-4 *5 (-1074))))) (((*1 *2 *1) (-12 (-5 *2 @@ -15261,3046 +15057,3260 @@ (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-340))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(((*1 *1 *2) - (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-5 *1 (-1210 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1150 *3 *2)) (-4 *3 (-1265 *2))))) + (-5 *1 (-341))))) +(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-145))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-787)) (-4 *4 (-1074)) (-5 *1 (-1264 *4 *2)) + (-4 *2 (-1268 *4))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-660 (-705 *6))) (-5 *4 (-112)) (-5 *5 (-577)) + (-5 *2 (-705 *6)) (-5 *1 (-1054 *6)) (-4 *6 (-375)) (-4 *6 (-1074)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-660 (-705 *4))) (-5 *2 (-705 *4)) (-5 *1 (-1054 *4)) + (-4 *4 (-375)) (-4 *4 (-1074)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-660 (-705 *5))) (-5 *4 (-577)) (-5 *2 (-705 *5)) + (-5 *1 (-1054 *5)) (-4 *5 (-375)) (-4 *5 (-1074))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-665 *3 *4 *5)) (-4 *3 (-1125)) + (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1289 (-326 (-227)))) (|:| |yinit| (-657 (-227))) - (|:| |intvals| (-657 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *1) (-5 *1 (-301)))) -(((*1 *2 *1) - (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-657 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-666 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1265 *5)) - (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1985 (-657 *4)))) - (-5 *1 (-823 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 (-419 *6))) (-4 *6 (-1265 *5)) - (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) - (-5 *2 (-2 (|:| -1985 (-657 (-419 *6))) (|:| -3750 (-702 *5)))) - (-5 *1 (-823 *5 *6)) (-5 *4 (-657 (-419 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1265 *5)) - (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1985 (-657 *4)))) - (-5 *1 (-823 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *6 (-419 *6))) (-4 *6 (-1265 *5)) - (-4 *5 (-13 (-374) (-148) (-1060 (-576)) (-1060 (-419 (-576))))) - (-5 *2 (-2 (|:| -1985 (-657 (-419 *6))) (|:| -3750 (-702 *5)))) - (-5 *1 (-823 *5 *6)) (-5 *4 (-657 (-419 *6)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3203 *4))) - (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1265 *4)) - (-4 *5 (-1265 (-419 *3))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) + (-12 (-4 *4 (-13 (-375) (-1063 (-420 *2)))) (-5 *2 (-577)) + (-5 *1 (-116 *4 *3)) (-4 *3 (-1268 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-311)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-228))) (-5 *2 (-660 (-1183))) (-5 *1 (-316))))) +(((*1 *1) (-5 *1 (-302)))) +(((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) + ((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1) (-4 *1 (-1164)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-576))) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-568)) (-4 *8 (-969 *7 *5 *6)) - (-5 *2 (-2 (|:| -1801 (-784)) (|:| -1771 *9) (|:| |radicand| *9))) - (-5 *1 (-973 *5 *6 *7 *8 *9)) (-5 *4 (-784)) - (-4 *9 - (-13 (-374) - (-10 -8 (-15 -3501 ($ *8)) (-15 -1621 (*8 $)) (-15 -1635 (*8 $)))))))) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1125))))) (((*1 *2 *3) - (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1122)) - (-4 *4 (-1122))))) -(((*1 *2 *1) - (-12 (-5 *2 (-704 (-888 (-986 *3) (-986 *3)))) (-5 *1 (-986 *3)) - (-4 *3 (-1122))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-946))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-657 (-1 *4 (-657 *4)))) (-4 *4 (-1122)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1122)) - (-5 *1 (-114 *4)))) + (-12 (-5 *3 (-660 (-2 (|:| -1902 *4) (|:| -2887 (-577))))) + (-4 *4 (-1268 (-577))) (-5 *2 (-753 (-787))) (-5 *1 (-455 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-657 (-1 *4 (-657 *4)))) - (-5 *1 (-114 *4)) (-4 *4 (-1122))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-833)) (-14 *5 (-1198)) (-5 *2 (-657 (-1262 *5 *4))) - (-5 *1 (-1136 *4 *5)) (-5 *3 (-1262 *5 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1085))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1060 (-576)))) (-4 *3 (-568)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -1621 ((-1147 *3 (-624 $)) $)) - (-15 -1635 ((-1147 *3 (-624 $)) $)) - (-15 -3501 ($ (-1147 *3 (-624 $)))))))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-709 *2)) (-4 *2 (-1265 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-657 *1)) - (-4 *1 (-1087 *3 *4 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1122)) (-5 *2 (-784)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-662 *4 *2 *5)) - (-4 *4 (-1122)) (-14 *5 *2)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-171 (-227)))) - (-5 *2 (-1057)) (-5 *1 (-767))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-490)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-604)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-638)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1122)) - (-4 *2 (-13 (-442 *4) (-902 *3) (-626 (-908 *3)))) - (-5 *1 (-1098 *3 *4 *2)) - (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))))) + (-12 (-5 *3 (-431 *5)) (-4 *5 (-1268 *4)) (-4 *4 (-1074)) + (-5 *2 (-753 (-787))) (-5 *1 (-457 *4 *5))))) +(((*1 *1) (-5 *1 (-145)))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1074)) (-5 *1 (-1264 *3 *2)) (-4 *2 (-1268 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-705 *5))) (-5 *4 (-1292 *5)) (-4 *5 (-318)) + (-4 *5 (-1074)) (-5 *2 (-705 *5)) (-5 *1 (-1054 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-577) (-577))) (-5 *1 (-373 *3)) (-4 *3 (-1125)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-787) (-787))) (-4 *1 (-398 *3)) (-4 *3 (-1125)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-665 *3 *4 *5)) (-4 *3 (-1125))))) +(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1183)) (-5 *1 (-316))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1164)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1074)) (-5 *1 (-1264 *3 *2)) (-4 *2 (-1268 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-705 *5))) (-4 *5 (-318)) (-4 *5 (-1074)) + (-5 *2 (-1292 (-1292 *5))) (-5 *1 (-1054 *5)) (-5 *4 (-1292 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1125)) + (-4 *4 (-132)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-373 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-398 *3)) (-4 *3 (-1125)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1125)) (-5 *1 (-665 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1183)) (-5 *1 (-194)))) + ((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1183)) (-5 *1 (-311)))) + ((*1 *2 *3) (-12 (-5 *3 (-228)) (-5 *2 (-1183)) (-5 *1 (-316))))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1241)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-491)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-605)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-639)))) ((*1 *2 *1) - (-12 (-4 *2 (-1122)) (-5 *1 (-1187 *3 *2)) (-4 *3 (-1122))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1294)) (-5 *1 (-216 *4)) - (-4 *4 - (-13 (-862) - (-10 -8 (-15 -2835 ((-1180) $ (-1198))) (-15 -2041 (*2 $)) - (-15 -1729 (*2 $))))))) + (-12 (-4 *3 (-1125)) + (-4 *2 (-13 (-443 *4) (-905 *3) (-627 (-911 *3)))) + (-5 *1 (-1101 *3 *4 *2)) + (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))))) ((*1 *2 *1) - (-12 (-5 *2 (-1294)) (-5 *1 (-216 *3)) - (-4 *3 - (-13 (-862) - (-10 -8 (-15 -2835 ((-1180) $ (-1198))) (-15 -2041 (*2 $)) - (-15 -1729 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-514))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1060 (-576)))) (-5 *2 (-419 (-576))) - (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) - (-4 *5 (-13 (-568) (-1060 (-576)))) (-5 *2 (-1194 (-419 (-576)))) - (-5 *1 (-445 *5 *3))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1106 *3)) (-4 *3 (-133))))) + (-12 (-4 *2 (-1125)) (-5 *1 (-1190 *3 *2)) (-4 *3 (-1125))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1164)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1071)) (-14 *3 (-657 (-1198))))) - ((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1071) (-862))) - (-14 *3 (-657 (-1198)))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1265 *6)) - (-4 *6 (-13 (-374) (-148) (-1060 *4))) (-5 *4 (-576)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -3989 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1037 *6 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1109 *3)) (-4 *3 (-133))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950))))) +(((*1 *2 *1) + (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) + (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-569)) + (-5 *2 (-2 (|:| -3637 *3) (|:| -2457 *3))) (-5 *1 (-1263 *4 *3)) + (-4 *3 (-1268 *4))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1116 (-390))) - (-5 *5 (-657 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-228) (-228))) (-5 *4 (-1119 (-391))) + (-5 *5 (-660 (-271))) (-5 *2 (-1293)) (-5 *1 (-263)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1116 (-390))) - (-5 *2 (-1290)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-228) (-228))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1293)) (-5 *1 (-263)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-893 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) - (-5 *5 (-657 (-270))) (-5 *2 (-1290)) (-5 *1 (-262)))) + (-12 (-5 *3 (-896 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) + (-5 *5 (-660 (-271))) (-5 *2 (-1293)) (-5 *1 (-263)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-893 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) - (-5 *2 (-1290)) (-5 *1 (-262)))) + (-12 (-5 *3 (-896 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1293)) (-5 *1 (-263)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-895 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) - (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) + (-12 (-5 *3 (-898 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) + (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-895 (-1 (-227) (-227)))) (-5 *4 (-1116 (-390))) - (-5 *2 (-1291)) (-5 *1 (-262)))) + (-12 (-5 *3 (-898 (-1 (-228) (-228)))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1294)) (-5 *1 (-263)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-963 (-227)) (-227))) (-5 *4 (-1116 (-390))) - (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-966 (-228)) (-228))) (-5 *4 (-1119 (-391))) + (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-963 (-227)) (-227))) (-5 *4 (-1116 (-390))) - (-5 *2 (-1291)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-966 (-228)) (-228))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1294)) (-5 *1 (-263)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1116 (-390))) - (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1119 (-391))) + (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1116 (-390))) - (-5 *2 (-1291)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-228) (-228) (-228))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1294)) (-5 *1 (-263)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-390))) - (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-391))) + (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-963 (-227)) (-227) (-227))) (-5 *4 (-1116 (-390))) - (-5 *2 (-1291)) (-5 *1 (-262)))) + (-12 (-5 *3 (-1 (-966 (-228)) (-228) (-228))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1294)) (-5 *1 (-263)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-898 (-1 (-227) (-227) (-227)))) (-5 *4 (-1116 (-390))) - (-5 *5 (-657 (-270))) (-5 *2 (-1291)) (-5 *1 (-262)))) + (-12 (-5 *3 (-901 (-1 (-228) (-228) (-228)))) (-5 *4 (-1119 (-391))) + (-5 *5 (-660 (-271))) (-5 *2 (-1294)) (-5 *1 (-263)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-898 (-1 (-227) (-227) (-227)))) (-5 *4 (-1116 (-390))) - (-5 *2 (-1291)) (-5 *1 (-262)))) + (-12 (-5 *3 (-901 (-1 (-228) (-228) (-228)))) (-5 *4 (-1119 (-391))) + (-5 *2 (-1294)) (-5 *1 (-263)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-304 *7)) (-5 *4 (-1198)) (-5 *5 (-657 (-270))) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-862) (-1060 (-576)))) - (-5 *2 (-1290)) (-5 *1 (-263 *6 *7)))) + (-12 (-5 *3 (-305 *7)) (-5 *4 (-1201)) (-5 *5 (-660 (-271))) + (-4 *7 (-443 *6)) (-4 *6 (-13 (-569) (-865) (-1063 (-577)))) + (-5 *2 (-1293)) (-5 *1 (-264 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1290)) - (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1122))))) + (-12 (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1293)) + (-5 *1 (-267 *3)) (-4 *3 (-13 (-627 (-549)) (-1125))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1114 (-390))) (-5 *2 (-1290)) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1122))))) + (-12 (-5 *4 (-1117 (-391))) (-5 *2 (-1293)) (-5 *1 (-267 *3)) + (-4 *3 (-13 (-627 (-549)) (-1125))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-893 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1290)) - (-5 *1 (-266 *6)))) + (-12 (-5 *3 (-896 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) + (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1293)) + (-5 *1 (-267 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-893 *5)) (-5 *4 (-1114 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1290)) - (-5 *1 (-266 *5)))) + (-12 (-5 *3 (-896 *5)) (-5 *4 (-1117 (-391))) + (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1293)) + (-5 *1 (-267 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-895 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1291)) - (-5 *1 (-266 *6)))) + (-12 (-5 *3 (-898 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) + (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1294)) + (-5 *1 (-267 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-895 *5)) (-5 *4 (-1114 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1291)) - (-5 *1 (-266 *5)))) + (-12 (-5 *3 (-898 *5)) (-5 *4 (-1117 (-391))) + (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1294)) + (-5 *1 (-267 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) (-5 *2 (-1291)) - (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1122))))) + (-12 (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) (-5 *2 (-1294)) + (-5 *1 (-267 *3)) (-4 *3 (-13 (-627 (-549)) (-1125))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1114 (-390))) (-5 *2 (-1291)) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1122))))) + (-12 (-5 *4 (-1117 (-391))) (-5 *2 (-1294)) (-5 *1 (-267 *3)) + (-4 *3 (-13 (-627 (-549)) (-1125))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-898 *6)) (-5 *4 (-1114 (-390))) (-5 *5 (-657 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1291)) - (-5 *1 (-266 *6)))) + (-12 (-5 *3 (-901 *6)) (-5 *4 (-1117 (-391))) (-5 *5 (-660 (-271))) + (-4 *6 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1294)) + (-5 *1 (-267 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-898 *5)) (-5 *4 (-1114 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1122))) (-5 *2 (-1291)) - (-5 *1 (-266 *5)))) + (-12 (-5 *3 (-901 *5)) (-5 *4 (-1117 (-391))) + (-4 *5 (-13 (-627 (-549)) (-1125))) (-5 *2 (-1294)) + (-5 *1 (-267 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-657 (-227))) (-5 *2 (-1290)) (-5 *1 (-267)))) + (-12 (-5 *3 (-660 (-228))) (-5 *2 (-1293)) (-5 *1 (-268)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-657 (-227))) (-5 *4 (-657 (-270))) (-5 *2 (-1290)) - (-5 *1 (-267)))) + (-12 (-5 *3 (-660 (-228))) (-5 *4 (-660 (-271))) (-5 *2 (-1293)) + (-5 *1 (-268)))) ((*1 *2 *3) - (-12 (-5 *3 (-657 (-963 (-227)))) (-5 *2 (-1290)) (-5 *1 (-267)))) + (-12 (-5 *3 (-660 (-966 (-228)))) (-5 *2 (-1293)) (-5 *1 (-268)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-963 (-227)))) (-5 *4 (-657 (-270))) - (-5 *2 (-1290)) (-5 *1 (-267)))) + (-12 (-5 *3 (-660 (-966 (-228)))) (-5 *4 (-660 (-271))) + (-5 *2 (-1293)) (-5 *1 (-268)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-657 (-227))) (-5 *2 (-1291)) (-5 *1 (-267)))) + (-12 (-5 *3 (-660 (-228))) (-5 *2 (-1294)) (-5 *1 (-268)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-657 (-227))) (-5 *4 (-657 (-270))) (-5 *2 (-1291)) - (-5 *1 (-267))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) - (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) - (-5 *1 (-801)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) - (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) - (-5 *1 (-801))))) -(((*1 *2) (-12 (-5 *2 (-1169 (-1180))) (-5 *1 (-403))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-784)) (-5 *1 (-103 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1239)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-490)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-604)))) - ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-638)))) + (-12 (-5 *3 (-660 (-228))) (-5 *4 (-660 (-271))) (-5 *2 (-1294)) + (-5 *1 (-268))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-660 (-705 *4))) (-5 *2 (-705 *4)) (-4 *4 (-1074)) + (-5 *1 (-1054 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-663 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1292 (-327 (-228)))) (-5 *2 (-1292 (-327 (-391)))) + (-5 *1 (-316))))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1242)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-491)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-605)))) + ((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-639)))) ((*1 *2 *1) - (-12 (-4 *3 (-1122)) - (-4 *2 (-13 (-442 *4) (-902 *3) (-626 (-908 *3)))) - (-5 *1 (-1098 *3 *4 *2)) - (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))))) + (-12 (-4 *3 (-1125)) + (-4 *2 (-13 (-443 *4) (-905 *3) (-627 (-911 *3)))) + (-5 *1 (-1101 *3 *4 *2)) + (-4 *4 (-13 (-1074) (-905 *3) (-627 (-911 *3)))))) ((*1 *2 *1) - (-12 (-4 *2 (-1122)) (-5 *1 (-1187 *2 *3)) (-4 *3 (-1122))))) -(((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + (-12 (-4 *2 (-1125)) (-5 *1 (-1190 *2 *3)) (-4 *3 (-1125))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-1 (-390))) (-5 *1 (-1062)))) - ((*1 *1 *1 *1) (-4 *1 (-1161)))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1122))))) -(((*1 *1) (-5 *1 (-1290)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-568)) (-4 *4 (-1122)) - (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4))))) -(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-403))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2) (-12 (-5 *1 (-921 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-657 (-657 (-657 *4)))) (-5 *3 (-657 *4)) (-4 *4 (-862)) - (-5 *1 (-1209 *4))))) -(((*1 *1 *2) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1239)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 (-1198))) (-5 *1 (-1198))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-112)) - (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1057)) (-5 *1 (-769))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1198)))) - (-4 *6 (-806)) (-5 *2 (-657 (-657 (-576)))) - (-5 *1 (-944 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-969 *4 *6 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)))) - ((*1 *1) (-4 *1 (-1174)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-657 *7)) (-4 *7 (-1087 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-806)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1087 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *2 (-862)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862))))) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1164)))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-171 (-228))) (-5 *6 (-1183)) + (-5 *4 (-228)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) + ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) + ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-660 *6)) (-4 *6 (-865)) (-4 *4 (-375)) (-4 *5 (-809)) + (-5 *1 (-517 *4 *5 *6 *2)) (-4 *2 (-972 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *1 (-517 *3 *4 *5 *2)) (-4 *2 (-972 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-924 *2)) (-4 *2 (-1125)))) + ((*1 *1 *2) (-12 (-5 *1 (-924 *2)) (-4 *2 (-1125))))) (((*1 *2 *3) - (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-702 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-702 *4)) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-702 *3))))) + (-12 (-4 *4 (-13 (-569) (-148))) (-5 *2 (-660 *3)) + (-5 *1 (-1262 *4 *3)) (-4 *3 (-1268 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-657 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276))))) -(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1265 *2)) - (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *4 (-1265 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) - (-4 *3 (-421 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1265 *2)) (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *3 (-1265 *2)) (-5 *2 (-576)) (-5 *1 (-781 *3 *4)) - (-4 *4 (-421 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *2 (-862)) (-4 *3 (-174)))) - ((*1 *2 *3) - (-12 (-4 *2 (-568)) (-5 *1 (-991 *2 *3)) (-4 *3 (-1265 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-174))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-4 *3 (-1122)) - (-5 *2 (-112))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-657 *1)) (-4 *1 (-312)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-624 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-115)) (-5 *3 (-657 *5)) (-5 *4 (-784)) (-4 *5 (-1122)) - (-5 *1 (-624 *5))))) + (-12 (-5 *3 (-1292 (-1292 *4))) (-4 *4 (-1074)) (-5 *2 (-705 *4)) + (-5 *1 (-1054 *4))))) +(((*1 *1 *2) (-12 (-4 *1 (-682 *2)) (-4 *2 (-1242)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1201))) (-5 *1 (-1201))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1125))))) (((*1 *2 *3) - (-12 (-4 *2 (-1265 *4)) (-5 *1 (-822 *4 *2 *3 *5)) - (-4 *4 (-13 (-374) (-148) (-1060 (-419 (-576))))) (-4 *3 (-669 *2)) - (-4 *5 (-669 (-419 *2)))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *1 (-999 *3 *4 *5 *6))))) + (-12 (-5 *3 (-327 (-228))) (-5 *2 (-327 (-391))) (-5 *1 (-316))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1090 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-809)) + (-4 *4 (-865)))) + ((*1 *1) (-4 *1 (-1177)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1164)))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1183)) (-5 *4 (-171 (-228))) (-5 *5 (-577)) + (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *6 (-627 (-1201))) + (-4 *4 (-375)) (-4 *5 (-809)) (-4 *6 (-865)) + (-5 *2 (-1190 (-660 (-975 *4)) (-660 (-305 (-975 *4))))) + (-5 *1 (-517 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) (((*1 *2 *3) - (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-657 (-1198))) (-4 *5 (-1071)) - (-5 *2 (-972 *5)) (-5 *1 (-964 *4 *5))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-657 (-576))) (-5 *3 (-657 (-941))) (-5 *4 (-112)) - (-5 *1 (-1132))))) + (|partial| -12 (-4 *4 (-13 (-569) (-148))) + (-5 *2 (-2 (|:| -4228 *3) (|:| -4239 *3))) (-5 *1 (-1262 *4 *3)) + (-4 *3 (-1268 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-660 *1)) (-4 *1 (-313)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1201)) (-5 *1 (-625 *3)) (-4 *3 (-1125)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-115)) (-5 *3 (-660 *5)) (-5 *4 (-787)) (-4 *5 (-1125)) + (-5 *1 (-625 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) - (-4 *5 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) - (-4 *3 (-13 (-1224) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-568) (-1060 (-576)) (-148))) - (-5 *2 (-598 (-419 (-972 *5)))) (-5 *1 (-582 *5)) - (-5 *3 (-419 (-972 *5)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *1 (-893 *2)) (-4 *2 (-1239)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *1 (-895 *2)) (-4 *2 (-1239)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-784)) (-5 *1 (-898 *2)) (-4 *2 (-1239))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *2 (-464))))) -(((*1 *2 *1) - (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1179 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) + (-12 (-5 *3 (-928 (-577))) (-5 *4 (-577)) (-5 *2 (-705 *4)) + (-5 *1 (-1053 *5)) (-4 *5 (-1074)))) ((*1 *2 *3) - (-12 (-5 *2 (-176 (-576))) (-5 *1 (-778 *3)) (-4 *3 (-416)))) - ((*1 *2 *1) - (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-886 *3)) (-14 *3 (-576)))) + (-12 (-5 *3 (-660 (-577))) (-5 *2 (-705 (-577))) (-5 *1 (-1053 *4)) + (-4 *4 (-1074)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-928 (-577)))) (-5 *4 (-577)) + (-5 *2 (-660 (-705 *4))) (-5 *1 (-1053 *5)) (-4 *5 (-1074)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-660 (-577)))) (-5 *2 (-660 (-705 (-577)))) + (-5 *1 (-1053 *4)) (-4 *4 (-1074))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-660 *2)) (-4 *2 (-1125)) (-4 *2 (-1242))))) +(((*1 *1 *1) (-5 *1 (-228))) + ((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1) (-4 *1 (-1164))) ((*1 *1 *1 *1) (-4 *1 (-1164)))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1183)) (-5 *4 (-171 (-228))) (-5 *5 (-577)) + (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) + ((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-480)))) + ((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-944)) (-5 *2 (-1297)) (-5 *1 (-216 *4)) + (-4 *4 + (-13 (-865) + (-10 -8 (-15 -2872 ((-1183) $ (-1201))) (-15 -2072 (*2 $)) + (-15 -1696 (*2 $))))))) ((*1 *2 *1) - (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) - (-5 *1 (-887 *3 *4)) (-4 *4 (-884 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-784)) (-5 *1 (-796 *2)) (-4 *2 (-38 (-419 (-576)))) - (-4 *2 (-174))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) - (-5 *2 (-877)) (-5 *1 (-32 *4 *5))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-657 (-576))) (-5 *1 (-1132)) (-5 *3 (-576))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 (-1116 (-419 (-576))))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-270))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3203 *4))) - (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) + (-12 (-5 *2 (-1297)) (-5 *1 (-216 *3)) + (-4 *3 + (-13 (-865) + (-10 -8 (-15 -2872 ((-1183) $ (-1201))) (-15 -2072 (*2 $)) + (-15 -1696 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-515))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-569) (-148))) (-5 *1 (-1262 *3 *2)) + (-4 *2 (-1268 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-1053 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-660 (-705 *3))) (-4 *3 (-1074)) (-5 *1 (-1053 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-705 *3)) (-4 *3 (-1074)) (-5 *1 (-1053 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-660 (-705 *3))) (-4 *3 (-1074)) (-5 *1 (-1053 *3))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-660 *2)) (-4 *2 (-1125)) (-4 *2 (-1242))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-369 *3)) (-4 *3 (-361))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-228)) (-5 *3 (-787)) (-5 *1 (-229)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-171 (-228))) (-5 *3 (-787)) (-5 *1 (-229)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1164)))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1183)) + (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1074)) (-4 *7 (-1074)) + (-4 *6 (-1268 *5)) (-5 *2 (-1197 (-1197 *7))) + (-5 *1 (-514 *5 *6 *4 *7)) (-4 *4 (-1268 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) (((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-5 *2 (-1 *6 *5)) (-5 *1 (-719 *4 *5 *6)) - (-4 *4 (-626 (-548))) (-4 *5 (-1239)) (-4 *6 (-1239))))) + (-12 (-4 *4 (-569)) (-5 *2 (-1292 (-705 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-705 *4)) (-4 *5 (-672 *4))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-787)) (-4 *4 (-13 (-569) (-148))) + (-5 *1 (-1262 *4 *2)) (-4 *2 (-1268 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-705 *4)) (-5 *3 (-944)) (-4 *4 (-1074)) + (-5 *1 (-1053 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-660 (-705 *4))) (-5 *3 (-944)) (-4 *4 (-1074)) + (-5 *1 (-1053 *4))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-660 *2)) (-4 *2 (-1125)) (-4 *2 (-1242))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-369 *3)) (-4 *3 (-361))))) +(((*1 *2 *1) (-12 (-5 *2 (-1160)) (-5 *1 (-1176))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1060)) (-5 *1 (-316)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-1060))) (-5 *2 (-1060)) (-5 *1 (-316)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-667 *3)) (-4 *3 (-1242)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1242)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1242)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1242)))) + ((*1 *1 *1 *1) (-5 *1 (-1088))) + ((*1 *2 *3) + (-12 (-5 *3 (-1182 (-1182 *4))) (-5 *2 (-1182 *4)) (-5 *1 (-1179 *4)) + (-4 *4 (-1242)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1242))))) +(((*1 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1) (-4 *1 (-1164)))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-228))) (-5 *5 (-577)) (-5 *6 (-1183)) + (-5 *3 (-228)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-950))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-705 (-1197 *8))) (-4 *5 (-1074)) (-4 *8 (-1074)) + (-4 *6 (-1268 *5)) (-5 *2 (-705 *6)) (-5 *1 (-514 *5 *6 *7 *8)) + (-4 *7 (-1268 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-145))) (-5 *1 (-142)))) + ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-142))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-569)) + (-5 *2 (-2 (|:| -1881 (-705 *5)) (|:| |vec| (-1292 (-660 (-944)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-944)) (-4 *3 (-672 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-787)) (-4 *4 (-13 (-569) (-148))) + (-5 *1 (-1262 *4 *2)) (-4 *2 (-1268 *4))))) +(((*1 *2) (-12 (-5 *2 (-849 (-577))) (-5 *1 (-547)))) + ((*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1125))))) (((*1 *2 *3) - (-12 (-5 *3 (-947)) - (-5 *2 - (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) - (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-947)) (-5 *4 (-419 (-576))) - (-5 *2 - (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) - (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) - (-5 *1 (-154))))) + (-12 (-5 *3 (-787)) (-5 *2 (-705 (-975 *4))) (-5 *1 (-1053 *4)) + (-4 *4 (-1074))))) +(((*1 *1 *2) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-375)) (-5 *1 (-655 *3 *4)) + (-14 *4 (-660 (-1201)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *2 *2) (-12 (-5 *2 (-944)) (-5 *1 (-369 *3)) (-4 *3 (-361))))) +(((*1 *1 *1 *1) (-5 *1 (-228))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-228)) (-5 *1 (-229)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-228))) (-5 *1 (-229)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-787)) (-5 *2 (-1 (-391))) (-5 *1 (-1065)))) + ((*1 *1 *1 *1) (-4 *1 (-1164)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *2 - (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180)))))) - (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1224) (-442 *5))) - (-14 *6 (-1198)) (-14 *7 *3)))) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-950))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1197 *7)) + (-4 *5 (-1074)) (-4 *7 (-1074)) (-4 *2 (-1268 *5)) + (-5 *1 (-514 *5 *2 *6 *7)) (-4 *6 (-1268 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1265 *4)))) + (-12 (-4 *4 (-569)) (-4 *5 (-1017 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) + (-4 *3 (-385 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1265 (-576))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-657 (-784))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1265 (-576))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-657 (-784))) (-5 *5 (-784)) (-5 *2 (-430 *3)) - (-5 *1 (-454 *3)) (-4 *3 (-1265 (-576))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-784)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1265 (-576))))) + (-12 (-4 *4 (-569)) (-4 *5 (-1017 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-516 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1029 *3)) - (-4 *3 (-1265 (-419 (-576)))))) + (-12 (-5 *3 (-705 *5)) (-4 *5 (-1017 *4)) (-4 *4 (-569)) + (-5 *2 (-2 (|:| |num| (-705 *4)) (|:| |den| *4))) + (-5 *1 (-709 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) + (-4 *6 (-1268 *5)) + (-5 *2 (-2 (|:| -3994 *7) (|:| |rh| (-660 (-420 *6))))) + (-5 *1 (-823 *5 *6 *7 *3)) (-5 *4 (-660 (-420 *6))) + (-4 *7 (-672 *6)) (-4 *3 (-672 (-420 *6))))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1254 *3)) (-4 *3 (-1265 (-576)))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-442 *3) (-1024))) (-5 *1 (-285 *3 *2)) - (-4 *3 (-568))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-800)) (-5 *2 (-1057)) - (-5 *3 - (-2 (|:| |fn| (-326 (-227))) - (|:| -1685 (-657 (-1116 (-856 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-800)) (-5 *2 (-1057)) - (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-430 (-1194 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1173))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1057)) (-5 *1 (-315)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-1057))) (-5 *2 (-1057)) (-5 *1 (-315)))) - ((*1 *1 *2) (-12 (-5 *2 (-657 *1)) (-4 *1 (-664 *3)) (-4 *3 (-1239)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1239)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1239)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-664 *2)) (-4 *2 (-1239)))) - ((*1 *1 *1 *1) (-5 *1 (-1085))) - ((*1 *2 *3) - (-12 (-5 *3 (-1179 (-1179 *4))) (-5 *2 (-1179 *4)) (-5 *1 (-1176 *4)) - (-4 *4 (-1239)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1239))))) + (-12 (-4 *4 (-569)) (-4 *5 (-1017 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1261 *4 *5 *3)) + (-4 *3 (-1268 *5))))) (((*1 *2) - (-12 (-5 *2 (-419 (-972 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-941)) - (-14 *5 (-657 (-1198))) (-14 *6 (-1289 (-702 *3)))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-657 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-784)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-806)) (-4 *6 (-969 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-862)) - (-5 *1 (-461 *4 *3 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *4 (-1014 *3)) (-5 *1 (-143 *3 *4 *2)) - (-4 *2 (-384 *4)))) + (-12 (-4 *2 (-13 (-443 *3) (-1027))) (-5 *1 (-286 *3 *2)) + (-4 *3 (-569)))) + ((*1 *1) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) + (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) + ((*1 *1) (-5 *1 (-490))) ((*1 *1) (-4 *1 (-1227)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-705 *4)) (-5 *3 (-944)) (|has| *4 (-6 (-4472 "*"))) + (-4 *4 (-1074)) (-5 *1 (-1053 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-660 (-705 *4))) (-5 *3 (-944)) + (|has| *4 (-6 (-4472 "*"))) (-4 *4 (-1074)) (-5 *1 (-1053 *4))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1292 *1)) (-4 *1 (-654 *4)) (-4 *4 (-1074)) + (-5 *2 (-2 (|:| -1881 (-705 *4)) (|:| |vec| (-1292 *4)))))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1014 *4)) (-4 *2 (-384 *4)) - (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) + (-12 (-5 *3 (-1292 *1)) (-4 *1 (-654 *4)) (-4 *4 (-1074)) + (-5 *2 (-705 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-702 *5)) (-4 *5 (-1014 *4)) (-4 *4 (-568)) - (-5 *2 (-702 *4)) (-5 *1 (-706 *4 *5)))) + (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) (-5 *2 (-112)) + (-5 *1 (-369 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1085)))) + ((*1 *1 *1) + (-12 (-5 *1 (-351 *2 *3 *4)) (-14 *2 (-660 (-1201))) + (-14 *3 (-660 (-1201))) (-4 *4 (-400)))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *4 (-1014 *3)) (-5 *1 (-1258 *3 *4 *2)) - (-4 *2 (-1265 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-972 (-171 *4))) (-4 *4 (-174)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-972 (-171 *5))) (-5 *4 (-941)) (-4 *5 (-174)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-972 *4)) (-4 *4 (-1071)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-972 *5)) (-5 *4 (-941)) (-4 *5 (-1071)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-568)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-972 *5))) (-5 *4 (-941)) (-4 *5 (-568)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-972 (-171 *4)))) (-4 *4 (-568)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) + (-12 (-4 *3 (-569)) (-5 *1 (-444 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-174)) (-4 *2 (-1085)))) + ((*1 *1 *1) (-4 *1 (-864))) + ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-174)) (-4 *2 (-1085)))) + ((*1 *1 *1) (-4 *1 (-1085))) ((*1 *1 *1) (-4 *1 (-1164)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-950))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1197 *7)) (-4 *5 (-1074)) + (-4 *7 (-1074)) (-4 *2 (-1268 *5)) (-5 *1 (-514 *5 *2 *6 *7)) + (-4 *6 (-1268 *2)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-972 (-171 *5)))) (-5 *4 (-941)) - (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-798 *5)))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1074)) (-4 *7 (-1074)) + (-4 *4 (-1268 *5)) (-5 *2 (-1197 *7)) (-5 *1 (-514 *5 *4 *6 *7)) + (-4 *6 (-1268 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |pde| (-660 (-327 (-228)))) + (|:| |constraints| + (-660 + (-2 (|:| |start| (-228)) (|:| |finish| (-228)) + (|:| |grid| (-787)) (|:| |boundaryType| (-577)) + (|:| |dStart| (-705 (-228))) (|:| |dFinish| (-705 (-228)))))) + (|:| |f| (-660 (-660 (-327 (-228))))) (|:| |st| (-1183)) + (|:| |tol| (-228)))) + (-5 *2 (-112)) (-5 *1 (-212))))) +(((*1 *2 *2) + (-12 (-4 *3 (-569)) (-4 *4 (-1017 *3)) (-5 *1 (-143 *3 *4 *2)) + (-4 *2 (-385 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-941)) (-4 *5 (-568)) - (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-798 *5)))) + (-12 (-4 *4 (-569)) (-4 *5 (-1017 *4)) (-4 *2 (-385 *4)) + (-5 *1 (-516 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-798 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-941)) (-4 *5 (-568)) - (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-798 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-877))))) -(((*1 *2) (-12 (-5 *2 (-846 (-576))) (-5 *1 (-546)))) - ((*1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) - (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) - (-5 *1 (-1094 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-998 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *2 (-862)) (-4 *5 (-1087 *3 *4 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-317)) - (-4 *4 (-806)) (-4 *5 (-862)) (-5 *1 (-459 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-657 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) - (-4 *4 (-317)) (-4 *5 (-806)) (-4 *6 (-862)) - (-5 *1 (-459 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-657 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) - (-4 *4 (-317)) (-4 *5 (-806)) (-4 *6 (-862)) - (-5 *1 (-459 *4 *5 *6 *7))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) -(((*1 *2) - (-12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) (-4 *6 (-1265 (-419 *5))) - (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-657 (-784))) (-5 *3 (-112)) (-5 *1 (-1186 *4 *5)) - (-14 *4 (-941)) (-4 *5 (-1071))))) + (-12 (-5 *3 (-705 *5)) (-4 *5 (-1017 *4)) (-4 *4 (-569)) + (-5 *2 (-705 *4)) (-5 *1 (-709 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-4 *4 (-1017 *3)) (-5 *1 (-1261 *3 *4 *2)) + (-4 *2 (-1268 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1116 (-856 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) - (-5 *1 (-315)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5))))) + (-12 (-5 *3 (-705 (-420 (-975 (-577))))) + (-5 *2 (-660 (-705 (-327 (-577))))) (-5 *1 (-1056))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-705 *1)) (-5 *4 (-1292 *1)) (-4 *1 (-654 *5)) + (-4 *5 (-1074)) + (-5 *2 (-2 (|:| -1881 (-705 *5)) (|:| |vec| (-1292 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-705 *1)) (-4 *1 (-654 *4)) (-4 *4 (-1074)) + (-5 *2 (-705 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) (((*1 *2) - (-12 (-4 *2 (-13 (-442 *3) (-1024))) (-5 *1 (-285 *3 *2)) - (-4 *3 (-568)))) - ((*1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-657 (-1198))) - (-14 *3 (-657 (-1198))) (-4 *4 (-399)))) - ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-1224)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-657 *7)) (-5 *5 (-657 (-657 *8))) (-4 *7 (-862)) - (-4 *8 (-317)) (-4 *6 (-806)) (-4 *9 (-969 *8 *6 *7)) + (-12 (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-657 (-2 (|:| -1885 (-1194 *9)) (|:| -1801 (-576))))))) - (-5 *1 (-755 *6 *7 *8 *9)) (-5 *3 (-1194 *9))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-947))))) -(((*1 *2 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1194 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) + (-1292 (-660 (-2 (|:| -3115 (-933 *3)) (|:| -3222 (-1145)))))) + (-5 *1 (-363 *3 *4)) (-14 *3 (-944)) (-14 *4 (-944)))) + ((*1 *2) + (-12 (-5 *2 (-1292 (-660 (-2 (|:| -3115 *3) (|:| -3222 (-1145)))))) + (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) (-14 *4 (-3 (-1197 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1292 (-660 (-2 (|:| -3115 *3) (|:| -3222 (-1145)))))) + (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) (-14 *4 (-944))))) +(((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-1163)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-880))) (-5 *2 (-1297)) (-5 *1 (-1163))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1194 (-972 *6))) (-4 *6 (-568)) - (-4 *2 (-969 (-419 (-972 *6)) *5 *4)) (-5 *1 (-745 *5 *4 *6 *2)) - (-4 *5 (-806)) - (-4 *4 (-13 (-862) (-10 -8 (-15 -4148 ((-1198) $)))))))) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) (((*1 *2 *3) - (-12 (-5 *3 (-1289 (-657 (-2 (|:| -3071 *4) (|:| -3178 (-1142)))))) - (-4 *4 (-360)) (-5 *2 (-702 *4)) (-5 *1 (-357 *4))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-657 (-624 *2))) (-5 *4 (-657 (-1198))) - (-4 *2 (-13 (-442 (-171 *5)) (-1024) (-1224))) (-4 *5 (-568)) - (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1024) (-1224)))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1194 *3) (-1194 *3))) - (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) - (-5 *1 (-563 *6 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *6 *5)) + (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) + (-4 *6 (-809)) (-5 *2 (-112)) (-5 *1 (-947 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-13 (-318) (-148))) + (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-112)) + (-5 *1 (-947 *4 *5 *6 *7)) (-4 *7 (-972 *4 *6 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 - (-2 (|:| -3071 *4) (|:| -3265 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-802)) (-5 *5 (-576))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-576))) (-5 *2 (-924 (-576))) (-5 *1 (-937)))) - ((*1 *2) (-12 (-5 *2 (-924 (-576))) (-5 *1 (-937))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-38 (-419 (-576)))) - (-4 *2 (-174))))) -(((*1 *2 *2) - (-12 (-5 *2 (-657 *3)) (-4 *3 (-1265 (-576))) (-5 *1 (-498 *3))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) - (-5 *1 (-1094 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-806)) (-4 *6 (-862)) - (-4 *7 (-1087 *4 *5 *6)) (-5 *2 (-1294)) - (-5 *1 (-1130 *4 *5 *6 *7 *8)) (-4 *8 (-1093 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-5 *2 (-963 *3)) (-4 *3 (-13 (-374) (-1224) (-1024))) - (-5 *1 (-178 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) + (-2 (|:| -4060 (-705 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-705 *3)))) + (-4 *3 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) + (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-660 (-327 (-228)))) (-5 *3 (-228)) (-5 *2 (-112)) + (-5 *1 (-212))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97))))) (((*1 *2 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -3868 *4))) (-5 *1 (-991 *4 *3)) - (-4 *3 (-1265 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1180))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-702 (-171 (-419 (-576))))) (-5 *2 (-657 (-171 *4))) - (-5 *1 (-777 *4)) (-4 *4 (-13 (-374) (-861)))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147 (-576) (-624 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *4 (-1017 *2)) (-4 *2 (-569)) (-5 *1 (-143 *2 *4 *3)) + (-4 *3 (-385 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1017 *2)) (-4 *2 (-569)) (-5 *1 (-516 *2 *4 *5 *3)) + (-4 *5 (-385 *2)) (-4 *3 (-385 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-705 *4)) (-4 *4 (-1017 *2)) (-4 *2 (-569)) + (-5 *1 (-709 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1017 *2)) (-4 *2 (-569)) (-5 *1 (-1261 *2 *4 *3)) + (-4 *3 (-1268 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150 (-577) (-625 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-1014 *2)) (-4 *4 (-1265 *3)) (-4 *2 (-317)) - (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1060 *3))))) + (-12 (-4 *3 (-1017 *2)) (-4 *4 (-1268 *3)) (-4 *2 (-318)) + (-5 *1 (-426 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1063 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1122)) (-5 *2 (-1147 *3 (-624 *1))) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147 (-576) (-624 (-507)))) (-5 *1 (-507)))) + (-12 (-4 *3 (-569)) (-4 *3 (-1125)) (-5 *2 (-1150 *3 (-625 *1))) + (-4 *1 (-443 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150 (-577) (-625 (-508)))) (-5 *1 (-508)))) ((*1 *2 *1) - (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-739) *4)) - (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-742) *4)) + (-5 *1 (-634 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-739) *4)) - (-5 *1 (-675 *3 *4 *2)) (-4 *3 (-730 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1071))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1032 *3)) (-4 *3 (-1239)) (-4 *3 (-1122)) - (-5 *2 (-112))))) + (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-742) *4)) + (-5 *1 (-678 *3 *4 *2)) (-4 *3 (-733 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569))))) +(((*1 *2 *2) (-12 (-5 *2 (-660 (-705 (-327 (-577))))) (-5 *1 (-1056))))) (((*1 *1 *2) - (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1071) (-862))) - (-5 *1 (-225 *3 *4)) (-14 *4 (-657 (-1198)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-390)) (-5 *1 (-1085))))) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-375)) (-5 *1 (-653 *3 *4)) + (-14 *4 (-660 (-1201)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-657 (-1289 *4))) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) + (-12 (-5 *2 (-705 (-933 *3))) (-5 *1 (-363 *3 *4)) (-14 *3 (-944)) + (-14 *4 (-944)))) ((*1 *2) - (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) - (-5 *2 (-657 (-1289 *3)))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1148 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) - (-4 *4 (-1071)) (-4 *3 (-862)) (-5 *1 (-1148 *4 *3 *5)) - (-4 *5 (-969 *4 (-543 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1233 *4))) (-5 *3 (-1198)) (-5 *1 (-1233 *4)) - (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1071))))) -(((*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-1239)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-501 *3)) (-4 *3 (-1239)) - (-4 *3 (-1122)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-925 *4)) (-4 *4 (-1122)) (-5 *2 (-112)) - (-5 *1 (-924 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-941)) (-5 *2 (-112)) (-5 *1 (-1123 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-998 *3 *4 *5 *6)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *6 (-1087 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) - (-4 *4 (-1122))))) + (-12 (-5 *2 (-705 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) + (-14 *4 + (-3 (-1197 *3) + (-1292 (-660 (-2 (|:| -3115 *3) (|:| -3222 (-1145))))))))) + ((*1 *2) + (-12 (-5 *2 (-705 *3)) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) + (-14 *4 (-944))))) +(((*1 *2 *3) (-12 (-5 *3 (-880)) (-5 *2 (-1297)) (-5 *1 (-1163)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-880))) (-5 *2 (-1297)) (-5 *1 (-1163))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-318) (-148))) (-4 *4 (-13 (-865) (-627 (-1201)))) + (-4 *5 (-809)) (-5 *1 (-947 *3 *4 *5 *2)) (-4 *2 (-972 *3 *5 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-705 *3)) + (-4 *3 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) + (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1239)))) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1242)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-972 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) - (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-975 (-391))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) + (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-972 (-390)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) - (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-420 (-975 (-391)))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) + (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1060 (-390))) (-14 *3 (-657 (-1198))) - (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-327 (-391))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1063 (-391))) (-14 *3 (-660 (-1201))) + (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-972 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) - (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-975 (-577))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) + (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-972 (-576)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) - (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-420 (-975 (-577)))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) + (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1060 (-576))) (-14 *3 (-657 (-1198))) - (-14 *4 (-657 (-1198))) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-327 (-577))) (-5 *1 (-351 *3 *4 *5)) + (-4 *5 (-1063 (-577))) (-14 *3 (-660 (-1201))) + (-14 *4 (-660 (-1201))) (-4 *5 (-400)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1198)) (-5 *1 (-350 *3 *4 *5)) - (-14 *3 (-657 *2)) (-14 *4 (-657 *2)) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-1201)) (-5 *1 (-351 *3 *4 *5)) + (-14 *3 (-660 *2)) (-14 *4 (-660 *2)) (-4 *5 (-400)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) - (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-657 (-1198))) - (-14 *4 (-657 (-1198))))) + (|partial| -12 (-5 *2 (-327 *5)) (-4 *5 (-400)) + (-5 *1 (-351 *3 *4 *5)) (-14 *3 (-660 (-1201))) + (-14 *4 (-660 (-1201))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-702 (-419 (-972 (-576))))) (-4 *1 (-395)))) + (|partial| -12 (-5 *2 (-705 (-420 (-975 (-577))))) (-4 *1 (-396)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-702 (-419 (-972 (-390))))) (-4 *1 (-395)))) + (|partial| -12 (-5 *2 (-705 (-420 (-975 (-391))))) (-4 *1 (-396)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-702 (-972 (-576)))) (-4 *1 (-395)))) + (|partial| -12 (-5 *2 (-705 (-975 (-577)))) (-4 *1 (-396)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-702 (-972 (-390)))) (-4 *1 (-395)))) + (|partial| -12 (-5 *2 (-705 (-975 (-391)))) (-4 *1 (-396)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-702 (-326 (-576)))) (-4 *1 (-395)))) + (|partial| -12 (-5 *2 (-705 (-327 (-577)))) (-4 *1 (-396)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-702 (-326 (-390)))) (-4 *1 (-395)))) + (|partial| -12 (-5 *2 (-705 (-327 (-391)))) (-4 *1 (-396)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-972 (-576)))) (-4 *1 (-408)))) + (|partial| -12 (-5 *2 (-420 (-975 (-577)))) (-4 *1 (-409)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-972 (-390)))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-972 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-972 (-390))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) + (|partial| -12 (-5 *2 (-420 (-975 (-391)))) (-4 *1 (-409)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-577))) (-4 *1 (-409)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-391))) (-4 *1 (-409)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-577))) (-4 *1 (-409)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-327 (-391))) (-4 *1 (-409)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1289 (-419 (-972 (-576))))) (-4 *1 (-453)))) + (|partial| -12 (-5 *2 (-1292 (-420 (-975 (-577))))) (-4 *1 (-454)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1289 (-419 (-972 (-390))))) (-4 *1 (-453)))) + (|partial| -12 (-5 *2 (-1292 (-420 (-975 (-391))))) (-4 *1 (-454)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1289 (-972 (-576)))) (-4 *1 (-453)))) + (|partial| -12 (-5 *2 (-1292 (-975 (-577)))) (-4 *1 (-454)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1289 (-972 (-390)))) (-4 *1 (-453)))) + (|partial| -12 (-5 *2 (-1292 (-975 (-391)))) (-4 *1 (-454)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1289 (-326 (-576)))) (-4 *1 (-453)))) + (|partial| -12 (-5 *2 (-1292 (-327 (-577)))) (-4 *1 (-454)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1289 (-326 (-390)))) (-4 *1 (-453)))) + (|partial| -12 (-5 *2 (-1292 (-327 (-391)))) (-4 *1 (-454)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1265 *5)) - (-5 *2 (-1194 (-1194 *4))) (-5 *1 (-790 *4 *5 *6 *3 *7)) - (-4 *3 (-1265 *6)) (-14 *7 (-941)))) + (|partial| -12 (-4 *4 (-361)) (-4 *5 (-340 *4)) (-4 *6 (-1268 *5)) + (-5 *2 (-1197 (-1197 *4))) (-5 *1 (-793 *4 *5 *6 *3 *7)) + (-4 *3 (-1268 *6)) (-14 *7 (-944)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) - (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) - (-4 *1 (-998 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1060 *2)) (-4 *2 (-1239)))) + (|partial| -12 (-5 *2 (-660 *6)) (-4 *6 (-1090 *3 *4 *5)) + (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865)) + (-4 *1 (-1001 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1063 *2)) (-4 *2 (-1242)))) ((*1 *1 *2) - (|partial| -2802 - (-12 (-5 *2 (-972 *3)) - (-12 (-2712 (-4 *3 (-38 (-419 (-576))))) - (-2712 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1198)))) - (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) - (-4 *5 (-862))) - (-12 (-5 *2 (-972 *3)) - (-12 (-2712 (-4 *3 (-557))) (-2712 (-4 *3 (-38 (-419 (-576))))) - (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1198)))) - (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) - (-4 *5 (-862))) - (-12 (-5 *2 (-972 *3)) - (-12 (-2712 (-4 *3 (-1014 (-576)))) (-4 *3 (-38 (-419 (-576)))) - (-4 *5 (-626 (-1198)))) - (-4 *3 (-1071)) (-4 *1 (-1087 *3 *4 *5)) (-4 *4 (-806)) - (-4 *5 (-862))))) + (|partial| -2839 + (-12 (-5 *2 (-975 *3)) + (-12 (-2749 (-4 *3 (-38 (-420 (-577))))) + (-2749 (-4 *3 (-38 (-577)))) (-4 *5 (-627 (-1201)))) + (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) + (-4 *5 (-865))) + (-12 (-5 *2 (-975 *3)) + (-12 (-2749 (-4 *3 (-558))) (-2749 (-4 *3 (-38 (-420 (-577))))) + (-4 *3 (-38 (-577))) (-4 *5 (-627 (-1201)))) + (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) + (-4 *5 (-865))) + (-12 (-5 *2 (-975 *3)) + (-12 (-2749 (-4 *3 (-1017 (-577)))) (-4 *3 (-38 (-420 (-577)))) + (-4 *5 (-627 (-1201)))) + (-4 *3 (-1074)) (-4 *1 (-1090 *3 *4 *5)) (-4 *4 (-809)) + (-4 *5 (-865))))) ((*1 *1 *2) - (|partial| -2802 - (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) - (-12 (-2712 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) - (-4 *5 (-626 (-1198)))) - (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))) - (-12 (-5 *2 (-972 (-576))) (-4 *1 (-1087 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198)))) - (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))))) + (|partial| -2839 + (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) + (-12 (-2749 (-4 *3 (-38 (-420 (-577))))) (-4 *3 (-38 (-577))) + (-4 *5 (-627 (-1201)))) + (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))) + (-12 (-5 *2 (-975 (-577))) (-4 *1 (-1090 *3 *4 *5)) + (-12 (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201)))) + (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-972 (-419 (-576)))) (-4 *1 (-1087 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1198))) - (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862))))) + (|partial| -12 (-5 *2 (-975 (-420 (-577)))) (-4 *1 (-1090 *3 *4 *5)) + (-4 *3 (-38 (-420 (-577)))) (-4 *5 (-627 (-1201))) + (-4 *3 (-1074)) (-4 *4 (-809)) (-4 *5 (-865))))) +(((*1 *2 *2) (-12 (-5 *2 (-327 (-228))) (-5 *1 (-212))))) (((*1 *2 *1) - (-12 (-4 *4 (-1122)) (-5 *2 (-905 *3 *5)) (-5 *1 (-901 *3 *4 *5)) - (-4 *3 (-1122)) (-4 *5 (-679 *4))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1198)) - (-4 *4 (-13 (-317) (-148) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1224) (-979) (-29 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147 (-576) (-624 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *4 (-1125)) (-5 *2 (-908 *3 *5)) (-5 *1 (-904 *3 *4 *5)) + (-4 *3 (-1125)) (-4 *5 (-682 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-787)) (-5 *1 (-798 *3)) (-4 *3 (-1074)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-986 *3 *2)) (-4 *2 (-132)) (-4 *3 (-569)) + (-4 *3 (-1074)) (-4 *2 (-808)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-787)) (-5 *1 (-1197 *3)) (-4 *3 (-1074)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-996)) (-4 *2 (-132)) (-5 *1 (-1203 *3)) (-4 *3 (-569)) + (-4 *3 (-1074)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-787)) (-5 *1 (-1265 *4 *3)) (-14 *4 (-1201)) + (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150 (-577) (-625 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-317)) (-4 *4 (-1014 *3)) (-4 *5 (-1265 *4)) - (-5 *2 (-1289 *6)) (-5 *1 (-425 *3 *4 *5 *6)) - (-4 *6 (-13 (-421 *4 *5) (-1060 *4))))) + (-12 (-4 *3 (-318)) (-4 *4 (-1017 *3)) (-4 *5 (-1268 *4)) + (-5 *2 (-1292 *6)) (-5 *1 (-426 *3 *4 *5 *6)) + (-4 *6 (-13 (-422 *4 *5) (-1063 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-1071)) (-4 *3 (-1122)) (-5 *2 (-1147 *3 (-624 *1))) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147 (-576) (-624 (-507)))) (-5 *1 (-507)))) + (-12 (-4 *3 (-1074)) (-4 *3 (-1125)) (-5 *2 (-1150 *3 (-625 *1))) + (-4 *1 (-443 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1150 (-577) (-625 (-508)))) (-5 *1 (-508)))) ((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-739) *3)))) + (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-634 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-742) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-730 *3)) (-5 *1 (-675 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-739) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568))))) -(((*1 *1 *1) (-12 (-5 *1 (-934 *2)) (-4 *2 (-317))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-685 *3)) (-4 *3 (-862)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-690 *3)) (-4 *3 (-862)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-832 *3)) (-4 *3 (-862))))) -(((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-723))))) -(((*1 *2 *3) - (-12 (-5 *3 (-784)) (-5 *2 (-1 (-1179 (-972 *4)) (-1179 (-972 *4)))) - (-5 *1 (-1297 *4)) (-4 *4 (-374))))) -(((*1 *2 *1) - (-12 (-5 *2 (-657 (-657 (-784)))) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-978 (-185 (-140)))) (-5 *1 (-343)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 (-1238))) (-5 *1 (-618))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-122 *3))))) -(((*1 *2) - (-12 (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) - (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5)))) + (-12 (-4 *3 (-174)) (-4 *2 (-733 *3)) (-5 *1 (-678 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-742) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-569))))) +(((*1 *2 *2) (-12 (-5 *2 (-705 (-327 (-577)))) (-5 *1 (-1056))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 *5))) + (-4 *5 (-375)) (-4 *5 (-569)) (-5 *2 (-1292 *5)) + (-5 *1 (-652 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1292 *4)) (-4 *4 (-13 (-1074) (-654 *5))) + (-2749 (-4 *5 (-375))) (-4 *5 (-569)) (-5 *2 (-1292 (-420 *5))) + (-5 *1 (-652 *5 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *2 *1) (-12 (-5 *2 (-981 (-185 (-140)))) (-5 *1 (-344)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1241))) (-5 *1 (-619))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1292 (-660 (-2 (|:| -3115 *4) (|:| -3222 (-1145)))))) + (-4 *4 (-361)) (-5 *2 (-787)) (-5 *1 (-358 *4)))) ((*1 *2) - (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) - (-4 *4 (-1265 *3)) - (-5 *2 - (-2 (|:| -1985 (-702 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-702 *3)))) - (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) + (-12 (-5 *2 (-787)) (-5 *1 (-363 *3 *4)) (-14 *3 (-944)) + (-14 *4 (-944)))) ((*1 *2) - (-12 (-4 *3 (-1265 (-576))) - (-5 *2 - (-2 (|:| -1985 (-702 (-576))) (|:| |basisDen| (-576)) - (|:| |basisInv| (-702 (-576))))) - (-5 *1 (-781 *3 *4)) (-4 *4 (-421 (-576) *3)))) + (-12 (-5 *2 (-787)) (-5 *1 (-364 *3 *4)) (-4 *3 (-361)) + (-14 *4 + (-3 (-1197 *3) + (-1292 (-660 (-2 (|:| -3115 *3) (|:| -3222 (-1145))))))))) ((*1 *2) - (-12 (-4 *3 (-360)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 *4)) + (-12 (-5 *2 (-787)) (-5 *1 (-365 *3 *4)) (-4 *3 (-361)) + (-14 *4 (-944))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-391)) (-5 *1 (-97))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1189 3 *3)) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) + ((*1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1074))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-660 (-577))) + (|:| |cols| (-660 (-577))))) + (-5 *4 (-705 *12)) (-5 *5 (-660 (-420 (-975 *9)))) + (-5 *6 (-660 (-660 *12))) (-5 *7 (-787)) (-5 *8 (-577)) + (-4 *9 (-13 (-318) (-148))) (-4 *12 (-972 *9 *11 *10)) + (-4 *10 (-13 (-865) (-627 (-1201)))) (-4 *11 (-809)) (-5 *2 - (-2 (|:| -1985 (-702 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-702 *4)))) - (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-737 *4 *5)))) + (-2 (|:| |eqzro| (-660 *12)) (|:| |neqzro| (-660 *12)) + (|:| |wcond| (-660 (-975 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1292 (-420 (-975 *9)))) + (|:| -4060 (-660 (-1292 (-420 (-975 *9))))))))) + (-5 *1 (-947 *9 *10 *11 *12))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-705 *3)) + (-4 *3 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) + (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-705 *3)) + (-4 *3 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) + (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) + (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (-5 *2 (-391)) (-5 *1 (-207))))) +(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-97))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1259 *3)) (-4 *3 (-1242))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-705 (-420 (-975 (-577))))) + (-5 *2 (-705 (-327 (-577)))) (-5 *1 (-1056))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1292 *5)) (-4 *5 (-13 (-1074) (-654 *4))) + (-4 *4 (-569)) (-5 *2 (-1292 *4)) (-5 *1 (-652 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *2) + (-12 (-4 *1 (-361)) + (-5 *2 (-660 (-2 (|:| -1902 (-577)) (|:| -3556 (-577)))))))) +(((*1 *2) + (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) + (-5 *2 (-787)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-360)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 *4)) - (-5 *2 - (-2 (|:| -1985 (-702 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-702 *4)))) - (-5 *1 (-1298 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1034)) (-5 *2 (-877))))) -(((*1 *1) - (-12 (-4 *1 (-416)) (-2712 (|has| *1 (-6 -4457))) - (-2712 (|has| *1 (-6 -4449))))) - ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1122)) (-4 *2 (-862)))) - ((*1 *1) (-4 *1 (-857))) ((*1 *1 *1 *1) (-4 *1 (-865))) - ((*1 *2 *1) (-12 (-4 *1 (-990 *2)) (-4 *2 (-862))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) - (-4 *3 (-13 (-1122) (-34)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) - (-4 *2 (-1280 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1265 *3)) - (-4 *5 (-737 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1280 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1280 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-13 (-568) (-148))) - (-5 *1 (-1175 *3))))) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-5 *2 (-787)))) + ((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-787))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-705 *7)) (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *6 *5)) + (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) + (-4 *6 (-809)) (-5 *1 (-947 *4 *5 *6 *7))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-787)) + (-4 *3 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) + (-4 *4 (-1268 *3)) (-5 *1 (-512 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-261 *3 *4 *2 *5)) (-4 *3 (-1074)) (-4 *4 (-865)) + (-4 *5 (-809)) (-4 *2 (-276 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-947)) - (-5 *2 - (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) - (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-947)) (-5 *4 (-419 (-576))) - (-5 *2 - (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) - (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3) (-12 + (-5 *3 + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) + (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (-5 *2 (-391)) (-5 *1 (-207))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-5 *2 - (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) - (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) - (-5 *1 (-154)) (-5 *3 (-657 (-963 (-227)))))) - ((*1 *2 *3) - (-12 + (-2 (|:| |contp| (-577)) + (|:| -3363 (-660 (-2 (|:| |irr| *3) (|:| -3504 (-577))))))) + (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-5 *2 - (-2 (|:| |brans| (-657 (-657 (-963 (-227))))) - (|:| |xValues| (-1116 (-227))) (|:| |yValues| (-1116 (-227))))) - (-5 *1 (-154)) (-5 *3 (-657 (-657 (-963 (-227))))))) - ((*1 *1 *2) (-12 (-5 *2 (-657 (-1116 (-390)))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1239))))) -(((*1 *1 *1) (-5 *1 (-1085)))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-784)) (-4 *1 (-1005 *2)) (-4 *2 (-1224))))) + (-2 (|:| |contp| (-577)) + (|:| -3363 (-660 (-2 (|:| |irr| *3) (|:| -3504 (-577))))))) + (-5 *1 (-1257 *3)) (-4 *3 (-1268 (-577)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1071)) (-4 *3 (-1265 *4)) (-4 *2 (-1280 *4)) - (-5 *1 (-1283 *4 *3 *5 *2)) (-4 *5 (-669 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-986 *3)) (-4 *3 (-1122)) (-5 *1 (-987 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-657 (-52))) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1289 *3)) (-4 *3 (-1265 *4)) (-4 *4 (-1243)) - (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1265 (-419 *3)))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-765))))) -(((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1071)) (-4 *4 (-862)) - (-4 *5 (-806)) (-4 *2 (-275 *4))))) + (-12 (-5 *3 (-705 (-420 (-975 (-577))))) (-5 *2 (-660 (-327 (-577)))) + (-5 *1 (-1056))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-657 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-1265 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-657 *3)) (-5 *1 (-1150 *4 *3)) (-4 *4 (-1265 *3))))) + (-12 (-5 *3 (-1292 *5)) (-4 *5 (-13 (-1074) (-654 *4))) + (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-652 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *2 *3) + (-12 (-4 *1 (-361)) (-5 *3 (-577)) (-5 *2 (-1214 (-944) (-787)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-787))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-806)) (-4 *6 (-862)) (-4 *7 (-568)) - (-4 *3 (-969 *7 *5 *6)) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-705 *8)) (-5 *4 (-787)) (-4 *8 (-972 *5 *7 *6)) + (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) + (-4 *7 (-809)) (-5 *2 - (-2 (|:| -1801 (-784)) (|:| -1771 *3) (|:| |radicand| (-657 *3)))) - (-5 *1 (-973 *5 *6 *7 *3 *8)) (-5 *4 (-784)) - (-4 *8 - (-13 (-374) - (-10 -8 (-15 -3501 ($ *3)) (-15 -1621 (*3 $)) (-15 -1635 (*3 $)))))))) -(((*1 *1 *1) - (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1071)) (-4 *3 (-862)) - (-4 *4 (-275 *3)) (-4 *5 (-806))))) -(((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -1812 (-115)) (|:| |arg| (-657 (-908 *3))))) - (-5 *1 (-908 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-657 (-908 *4))) - (-5 *1 (-908 *4)) (-4 *4 (-1122))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-5 *1 (-91 *3))))) + (-660 + (-2 (|:| |det| *8) (|:| |rows| (-660 (-577))) + (|:| |cols| (-660 (-577)))))) + (-5 *1 (-947 *5 *6 *7 *8))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-705 *2)) (-5 *4 (-577)) + (-4 *2 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) + (-4 *5 (-1268 *2)) (-5 *1 (-512 *2 *5 *6)) (-4 *6 (-422 *2 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1014 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) - (-4 *3 (-384 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1014 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) - (-4 *5 (-384 *2)) (-4 *3 (-384 *4)))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) + (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (-5 *2 (-391)) (-5 *1 (-207))))) +(((*1 *2 *3) + (-12 (-4 *4 (-361)) (-5 *2 (-431 *3)) (-5 *1 (-219 *4 *3)) + (-4 *3 (-1268 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-702 *4)) (-4 *4 (-1014 *2)) (-4 *2 (-568)) - (-5 *1 (-706 *2 *4)))) + (-12 (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) + (-4 *3 (-1268 (-577))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-660 (-787))) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) + (-4 *3 (-1268 (-577))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-660 (-787))) (-5 *5 (-787)) (-5 *2 (-431 *3)) + (-5 *1 (-455 *3)) (-4 *3 (-1268 (-577))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-787)) (-5 *2 (-431 *3)) (-5 *1 (-455 *3)) + (-4 *3 (-1268 (-577))))) ((*1 *2 *3) - (-12 (-4 *4 (-1014 *2)) (-4 *2 (-568)) (-5 *1 (-1258 *2 *4 *3)) - (-4 *3 (-1265 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1071))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-227))) - (-5 *2 (-1057)) (-5 *1 (-767))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1239)) (-5 *1 (-386 *4 *2)) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4467))))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1071)) - (-4 *2 (-13 (-416) (-1060 *4) (-374) (-1224) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1265 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-934 *3)) (-4 *3 (-317))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-448))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1071)) (-5 *1 (-1261 *3 *2)) (-4 *2 (-1265 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-772))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -2335 *3) (|:| -3644 *3))) - (-5 *1 (-701 *3 *4 *5 *6)) (-4 *6 (-700 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2335 *3) (|:| -3644 *3))) (-5 *1 (-713 *3)) - (-4 *3 (-317))))) -(((*1 *2 *3) - (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1024) (-1224))) - (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1024) (-1224))) - (-5 *1 (-612 *4 *5 *2))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174)))) + (-12 (-5 *2 (-431 *3)) (-5 *1 (-1032 *3)) + (-4 *3 (-1268 (-420 (-577)))))) ((*1 *2 *3) - (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-702 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-702 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *2 (-657 *1)) (-4 *1 (-1087 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-768))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (|has| *1 (-6 -4457)) (-4 *1 (-416)) - (-5 *2 (-941))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1024) (-1224))) - (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1024) (-1224)))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-963 (-227))) (-5 *4 (-889)) (-5 *5 (-941)) - (-5 *2 (-1294)) (-5 *1 (-480)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-963 (-227))) (-5 *2 (-1294)) (-5 *1 (-480)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-657 (-963 (-227)))) (-5 *4 (-889)) (-5 *5 (-941)) - (-5 *2 (-1294)) (-5 *1 (-480))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1198))))) + (-12 (-5 *2 (-431 *3)) (-5 *1 (-1257 *3)) (-4 *3 (-1268 (-577)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-705 (-420 (-975 (-577))))) + (-5 *2 (-660 (-705 (-327 (-577))))) (-5 *1 (-1056)) + (-5 *3 (-327 (-577)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-305 (-859 *3))) (-4 *3 (-13 (-27) (-1227) (-443 *5))) + (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *2 + (-3 (-859 *3) + (-2 (|:| |leftHandLimit| (-3 (-859 *3) "failed")) + (|:| |rightHandLimit| (-3 (-859 *3) "failed"))) + "failed")) + (-5 *1 (-649 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1183)) + (-4 *3 (-13 (-27) (-1227) (-443 *6))) + (-4 *6 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *2 (-859 *3)) (-5 *1 (-649 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-305 (-859 (-975 *5)))) (-4 *5 (-465)) + (-5 *2 + (-3 (-859 (-420 (-975 *5))) + (-2 (|:| |leftHandLimit| (-3 (-859 (-420 (-975 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-859 (-420 (-975 *5))) "failed"))) + "failed")) + (-5 *1 (-650 *5)) (-5 *3 (-420 (-975 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-305 (-420 (-975 *5)))) (-5 *3 (-420 (-975 *5))) + (-4 *5 (-465)) + (-5 *2 + (-3 (-859 *3) + (-2 (|:| |leftHandLimit| (-3 (-859 *3) "failed")) + (|:| |rightHandLimit| (-3 (-859 *3) "failed"))) + "failed")) + (-5 *1 (-650 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-305 (-420 (-975 *6)))) (-5 *5 (-1183)) + (-5 *3 (-420 (-975 *6))) (-4 *6 (-465)) (-5 *2 (-859 *3)) + (-5 *1 (-650 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *1) (-4 *1 (-361)))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-775))))) (((*1 *2 *1) - (-12 (-4 *1 (-384 *3)) (-4 *3 (-1239)) (-4 *3 (-862)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1239)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1194 (-419 (-576)))) (-5 *1 (-962)) (-5 *3 (-576))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-657 (-702 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1071)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1071)) (-5 *1 (-99 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1234 *3)) (-4 *3 (-996))))) -(((*1 *2 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-861)) (-5 *1 (-313 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-148))) - (-5 *2 (-2 (|:| -4224 *3) (|:| -4236 *3))) (-5 *1 (-1259 *4 *3)) - (-4 *3 (-1265 *4))))) + (-12 (-4 *3 (-1074)) (-5 *2 (-660 *1)) (-4 *1 (-1159 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-834)) (-5 *4 (-52)) (-5 *2 (-1294)) (-5 *1 (-844))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-991 *3 *2)) (-4 *2 (-1265 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *2 (-568)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1265 *2)) (-4 *2 (-1071)) (-4 *2 (-568))))) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-660 (-660 *8))) (-5 *3 (-660 *8)) + (-4 *8 (-972 *5 *7 *6)) (-4 *5 (-13 (-318) (-148))) + (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-112)) + (-5 *1 (-947 *5 *6 *7 *8))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-705 *2)) (-5 *4 (-787)) + (-4 *2 (-13 (-318) (-10 -8 (-15 -3029 ((-431 $) $))))) + (-4 *5 (-1268 *2)) (-5 *1 (-512 *2 *5 *6)) (-4 *6 (-422 *2 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1289 (-1289 *4))) (-4 *4 (-1071)) (-5 *2 (-702 *4)) - (-5 *1 (-1051 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1262 *5 *4)) (-4 *4 (-833)) (-14 *5 (-1198)) - (-5 *2 (-576)) (-5 *1 (-1136 *4 *5))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) + (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (-5 *2 (-391)) (-5 *1 (-207))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-519)) (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1283 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-705 (-420 (-975 (-577))))) + (-5 *2 + (-660 + (-2 (|:| |radval| (-327 (-577))) (|:| |radmult| (-577)) + (|:| |radvect| (-660 (-705 (-327 (-577)))))))) + (-5 *1 (-1056))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-305 (-849 *3))) + (-4 *5 (-13 (-465) (-1063 (-577)) (-654 (-577)))) + (-5 *2 (-849 *3)) (-5 *1 (-649 *5 *3)) + (-4 *3 (-13 (-27) (-1227) (-443 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-305 (-849 (-975 *5)))) (-4 *5 (-465)) + (-5 *2 (-849 (-420 (-975 *5)))) (-5 *1 (-650 *5)) + (-5 *3 (-420 (-975 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-305 (-420 (-975 *5)))) (-5 *3 (-420 (-975 *5))) + (-4 *5 (-465)) (-5 *2 (-849 *3)) (-5 *1 (-650 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-838))))) +(((*1 *2) + (-12 (-4 *1 (-361)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *1) - (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1071) (-902 *3) (-626 (-908 *3)))) - (-5 *2 (-657 (-1198))) (-5 *1 (-1098 *3 *4 *5)) - (-4 *5 (-13 (-442 *4) (-902 *3) (-626 (-908 *3))))))) + (-12 (-4 *3 (-1074)) (-5 *2 (-660 *1)) (-4 *1 (-1159 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-657 (-2 (|:| -1885 (-1194 *6)) (|:| -1801 (-576))))) - (-4 *6 (-317)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-755 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-1071))))) -(((*1 *1) (-5 *1 (-1085)))) -(((*1 *1 *1 *1) (-4 *1 (-989)))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1265 (-576)))))) + (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) + (-4 *6 (-809)) (-5 *2 (-660 (-660 (-577)))) + (-5 *1 (-947 *4 *5 *6 *7)) (-5 *3 (-577)) (-4 *7 (-972 *4 *6 *5))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-787)) (-4 *5 (-361)) (-4 *6 (-1268 *5)) + (-5 *2 + (-660 + (-2 (|:| -4060 (-705 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-705 *6))))) + (-5 *1 (-511 *5 *6 *7)) + (-5 *3 + (-2 (|:| -4060 (-705 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-705 *6)))) + (-4 *7 (-1268 *6))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-228)) (|:| |xend| (-228)) + (|:| |fn| (-1292 (-327 (-228)))) (|:| |yinit| (-660 (-228))) + (|:| |intvals| (-660 (-228))) (|:| |g| (-327 (-228))) + (|:| |abserr| (-228)) (|:| |relerr| (-228)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) + (-5 *1 (-207))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-519)) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-115))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-118 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-577)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-889 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-14 *2 (-577)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-577)) (-14 *3 *2) (-5 *1 (-890 *3 *4)) + (-4 *4 (-887 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-577)) (-5 *1 (-890 *2 *3)) (-4 *3 (-887 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-577)) (-4 *1 (-1254 *3 *4)) (-4 *3 (-1074)) + (-4 *4 (-1283 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1254 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1283 *2))))) +(((*1 *1 *2) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242))))) +(((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-1125)))) + ((*1 *1 *1) (-5 *1 (-645)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-839)) (-5 *1 (-838))))) +(((*1 *2 *3) + (-12 (-5 *3 (-944)) + (-5 *2 + (-3 (-1197 *4) + (-1292 (-660 (-2 (|:| -3115 *4) (|:| -3222 (-1145))))))) + (-5 *1 (-358 *4)) (-4 *4 (-361))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-660 (-966 *4))) (-4 *1 (-1159 *4)) (-4 *4 (-1074)) + (-5 *2 (-787))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *2) + (-12 (-5 *2 (-660 (-660 *6))) (-4 *6 (-972 *3 *5 *4)) + (-4 *3 (-13 (-318) (-148))) (-4 *4 (-13 (-865) (-627 (-1201)))) + (-4 *5 (-809)) (-5 *1 (-947 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) - (-5 *2 (-832 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-859)) (-5 *1 (-1312 *3 *2)) (-4 *3 (-1071))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-12 (-5 *2 - (-2 (|:| -3071 *4) (|:| -3265 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-802)) (-5 *5 (-576))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) - (-4 *4 (-806)) (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-657 (-972 *4))) (-5 *3 (-657 (-1198))) (-4 *4 (-464)) - (-5 *1 (-938 *4))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-764))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-760))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) - (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-657 (-270))) (-5 *1 (-268))))) + (-660 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-577))))) + (-5 *1 (-431 *3)) (-4 *3 (-569)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-787)) (-4 *3 (-361)) (-4 *5 (-1268 *3)) + (-5 *2 (-660 (-1197 *3))) (-5 *1 (-511 *3 *5 *6)) + (-4 *6 (-1268 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-705 (-327 (-228)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) + (-5 *1 (-207))))) (((*1 *2 *1) - (-12 (-5 *2 (-784)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) + (|partial| -12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1074)) + (-4 *2 (-1283 *3))))) +(((*1 *2 *1) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242))))) +(((*1 *2 *3) + (-12 (-5 *3 (-254 *4 *5)) (-14 *4 (-660 (-1201))) (-4 *5 (-465)) + (-5 *2 (-494 *4 *5)) (-5 *1 (-644 *4 *5))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-839)) (-5 *1 (-838))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-944)) + (-5 *2 (-1292 (-660 (-2 (|:| -3115 *4) (|:| -3222 (-1145)))))) + (-5 *1 (-358 *4)) (-4 *4 (-361))))) +(((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-660 + (-2 (|:| -1545 (-787)) + (|:| |eqns| + (-660 + (-2 (|:| |det| *7) (|:| |rows| (-660 (-577))) + (|:| |cols| (-660 (-577)))))) + (|:| |fgb| (-660 *7))))) + (-4 *7 (-972 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) + (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-787)) + (-5 *1 (-947 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-508))))) +(((*1 *2 *3) + (-12 (-5 *3 (-705 (-327 (-228)))) (-5 *2 (-391)) (-5 *1 (-207))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-519)) (-5 *3 (-790)) (-5 *1 (-115)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1183)) (-5 *3 (-790)) (-5 *1 (-115))))) +(((*1 *2 *1) + (-12 (-5 *2 (-787)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-577)) (-14 *4 *2) (-4 *5 (-174)))) ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-941)) (-5 *1 (-166 *3 *4)) + (-12 (-4 *4 (-174)) (-5 *2 (-944)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-941)))) + ((*1 *2) (-12 (-4 *1 (-379 *3)) (-4 *3 (-174)) (-5 *2 (-944)))) ((*1 *2) - (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) - (-5 *2 (-941)))) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1268 *3)) + (-5 *2 (-944)))) ((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 (-784)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-700 *4 *5 *6)))) + (-12 (-4 *4 (-375)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-5 *2 (-787)) (-5 *1 (-534 *4 *5 *6 *3)) (-4 *3 (-703 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-702 *5)) (-5 *4 (-1289 *5)) (-4 *5 (-374)) - (-5 *2 (-784)) (-5 *1 (-680 *5)))) + (-12 (-5 *3 (-705 *5)) (-5 *4 (-1292 *5)) (-4 *5 (-375)) + (-5 *2 (-787)) (-5 *1 (-683 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4467)))) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4467)))) (-5 *2 (-784)) - (-5 *1 (-681 *5 *6 *4 *3)) (-4 *3 (-700 *5 *6 *4)))) + (-12 (-4 *5 (-375)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4471)))) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4471)))) (-5 *2 (-787)) + (-5 *1 (-684 *5 *6 *4 *3)) (-4 *3 (-703 *5 *6 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-784)))) + (-12 (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-787)))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-784)) (-5 *1 (-701 *4 *5 *6 *3)) - (-4 *3 (-700 *4 *5 *6)))) + (-12 (-4 *4 (-569)) (-4 *4 (-174)) (-4 *5 (-385 *4)) + (-4 *6 (-385 *4)) (-5 *2 (-787)) (-5 *1 (-704 *4 *5 *6 *3)) + (-4 *3 (-703 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) - (-5 *2 (-784))))) + (-12 (-4 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *5 (-1074)) + (-4 *6 (-244 *4 *5)) (-4 *7 (-244 *3 *5)) (-4 *5 (-569)) + (-5 *2 (-787))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-1252 *4)) (-4 *4 (-1074)) (-4 *4 (-569)) + (-5 *2 (-420 (-975 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-577)) (-4 *1 (-1252 *4)) (-4 *4 (-1074)) (-4 *4 (-569)) + (-5 *2 (-420 (-975 *4)))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1051 *2)) (-4 *2 (-1242))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-660 (-254 *4 *5))) (-5 *2 (-254 *4 *5)) + (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *1 (-644 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1145)) (-5 *2 (-112)) (-5 *1 (-837))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1292 (-660 (-2 (|:| -3115 *4) (|:| -3222 (-1145)))))) + (-4 *4 (-361)) (-5 *2 (-705 *4)) (-5 *1 (-358 *4))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1242)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1242)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-966 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-660 (-966 *3))) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-660 (-660 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-660 (-966 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) (((*1 *2 *3) - (-12 (-14 *4 (-657 (-1198))) (-14 *5 (-784)) - (-5 *2 - (-657 - (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) - (-253 *4 (-419 (-576)))))) - (-5 *1 (-517 *4 *5)) + (-12 (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-784)) (-879 *4) - (-253 *4 (-419 (-576)))))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1201)))) - ((*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201))))) -(((*1 *2 *1) (-12 (-5 *2 (-784)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-2 (|:| -1885 *4) (|:| -1770 (-576))))) - (-4 *4 (-1265 (-576))) (-5 *2 (-784)) (-5 *1 (-454 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -3071 *4) (|:| -3265 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-802)) (-5 *5 (-576))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1180)) (-5 *5 (-702 (-227))) - (-5 *2 (-1057)) (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-4 *1 (-861)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-925 *3)) (-4 *3 (-1122)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1090 *4 *3)) (-4 *4 (-13 (-861) (-374))) - (-4 *3 (-1265 *4)) (-5 *2 (-576)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-1060 *2) (-652 *2) (-464))) - (-5 *2 (-576)) (-5 *1 (-1138 *4 *3)) - (-4 *3 (-13 (-27) (-1224) (-442 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-856 *3)) - (-4 *3 (-13 (-27) (-1224) (-442 *6))) - (-4 *6 (-13 (-568) (-1060 *2) (-652 *2) (-464))) (-5 *2 (-576)) - (-5 *1 (-1138 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-1180)) - (-4 *6 (-13 (-568) (-1060 *2) (-652 *2) (-464))) (-5 *2 (-576)) - (-5 *1 (-1138 *6 *3)) (-4 *3 (-13 (-27) (-1224) (-442 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-972 *4))) (-4 *4 (-464)) (-5 *2 (-576)) - (-5 *1 (-1139 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-856 (-419 (-972 *6)))) - (-5 *3 (-419 (-972 *6))) (-4 *6 (-464)) (-5 *2 (-576)) - (-5 *1 (-1139 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-419 (-972 *6))) (-5 *4 (-1198)) - (-5 *5 (-1180)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1139 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1221 *3)) (-4 *3 (-1071))))) -(((*1 *1 *2 *3) + (-660 + (-2 (|:| -1545 (-787)) + (|:| |eqns| + (-660 + (-2 (|:| |det| *7) (|:| |rows| (-660 (-577))) + (|:| |cols| (-660 (-577)))))) + (|:| |fgb| (-660 *7))))) + (-4 *7 (-972 *4 *6 *5)) (-4 *4 (-13 (-318) (-148))) + (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) (-5 *2 (-787)) + (-5 *1 (-947 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-504))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-207)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-660 (-391))) (-5 *2 (-391)) (-5 *1 (-207))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-130))) + ((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-577)) (-14 *3 (-787)) + (-4 *4 (-174)))) + ((*1 *1) (-5 *1 (-559))) ((*1 *1) (-5 *1 (-560))) + ((*1 *1) (-5 *1 (-561))) ((*1 *1) (-5 *1 (-562))) + ((*1 *1) (-4 *1 (-742))) ((*1 *1) (-5 *1 (-1201))) + ((*1 *1) (-12 (-5 *1 (-1207 *2)) (-14 *2 (-944)))) + ((*1 *1) (-12 (-5 *1 (-1208 *2)) (-14 *2 (-944)))) + ((*1 *1) (-5 *1 (-1247))) ((*1 *1) (-5 *1 (-1248))) + ((*1 *1) (-5 *1 (-1249))) ((*1 *1) (-5 *1 (-1250)))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-375)) (-5 *1 (-1050 *3 *2)) (-4 *2 (-672 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-375)) (-5 *2 (-2 (|:| -3994 *3) (|:| -1823 (-660 *5)))) + (-5 *1 (-1050 *5 *3)) (-5 *4 (-660 *5)) (-4 *3 (-672 *5))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-660 (-494 *4 *5))) (-5 *3 (-882 *4)) + (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *1 (-644 *4 *5))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1183)) (-5 *4 (-1145)) (-5 *2 (-112)) (-5 *1 (-837))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) + (-5 *2 (-1292 (-660 (-2 (|:| -3115 *4) (|:| -3222 (-1145)))))) + (-5 *1 (-358 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-52))) (-5 *2 (-1297)) (-5 *1 (-881))))) +(((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) + (-4 *6 (-809)) (-5 *2 (-660 *3)) (-5 *1 (-947 *4 *5 *6 *3)) + (-4 *3 (-972 *4 *6 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-417)) (-5 *2 (-577)))) + ((*1 *2 *1) (-12 (-5 *2 (-577)) (-5 *1 (-715))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4470)) (-4 *1 (-502 *4)) + (-4 *4 (-1242)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 - (-657 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-576))))) - (-4 *2 (-568)) (-5 *1 (-430 *2)))) + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *2 (-577)) (-5 *1 (-206))))) +(((*1 *2 *3) (-12 (-5 *3 (-171 (-577))) (-5 *2 (-112)) (-5 *1 (-459)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |contp| (-576)) - (|:| -2067 (-657 (-2 (|:| |irr| *4) (|:| -1439 (-576))))))) - (-4 *4 (-1265 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-4 *5 (-374)) (-5 *2 (-1179 (-1179 (-972 *5)))) - (-5 *1 (-1297 *5)) (-5 *4 (-1179 (-972 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1239))))) -(((*1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1217))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-784)) (-4 *5 (-568)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-991 *5 *3)) (-4 *3 (-1265 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-908 *4)) (-4 *4 (-1122)) (-5 *1 (-906 *4 *3)) - (-4 *3 (-1239)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-908 *3)) (-4 *3 (-1122))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-739)) (-4 *2 (-1239))))) -(((*1 *2 *3) (-12 (-5 *3 (-784)) (-5 *2 (-390)) (-5 *1 (-1062))))) + (-517 (-420 (-577)) (-246 *5 (-787)) (-882 *4) + (-254 *4 (-420 (-577))))) + (-14 *4 (-660 (-1201))) (-14 *5 (-787)) (-5 *2 (-112)) + (-5 *1 (-518 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-984 *3)) (-4 *3 (-558)))) + ((*1 *2 *1) (-12 (-4 *1 (-1246)) (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1086 (-1049 *4) (-1197 (-1049 *4)))) (-5 *3 (-880)) + (-5 *1 (-1049 *4)) (-4 *4 (-13 (-864) (-375) (-1047)))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 (-254 *5 *6))) (-4 *6 (-465)) + (-5 *2 (-254 *5 *6)) (-14 *5 (-660 (-1201))) (-5 *1 (-644 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-837))))) (((*1 *2 *3) - (-12 (-5 *3 (-1289 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1265 *4)) (-5 *2 (-702 *4)) - (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1265 *3)) - (-5 *2 (-702 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-657 (-52))) (-5 *2 (-1294)) (-5 *1 (-878))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-1265 *3)) (-4 *3 (-1071)))) + (-12 (-5 *3 (-1197 *4)) (-4 *4 (-361)) (-5 *2 (-981 (-1145))) + (-5 *1 (-358 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-966 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-660 (-966 *3))) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-941)) (-4 *1 (-1267 *3 *4)) (-4 *3 (-1071)) - (-4 *4 (-805)))) + (-12 (-5 *2 (-660 (-660 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1270 *3)) (-4 *3 (-1071))))) -(((*1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1201))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-52)) (-5 *1 (-842))))) -(((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-712))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1198)) - (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2927 "void"))) (-5 *1 (-1201))))) -(((*1 *2) - (-12 (-4 *3 (-1243)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) - (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-784)) (-5 *1 (-871 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-1122)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-972 (-576)))) (-5 *1 (-449)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-702 (-227))) (-5 *2 (-1126)) - (-5 *1 (-772)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-702 (-576))) (-5 *2 (-1126)) - (-5 *1 (-772))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1122)) - (-4 *3 (-1239)) (-4 *3 (-1122)) (-5 *2 (-112))))) + (-12 (-5 *2 (-660 (-966 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-702 *8)) (-4 *8 (-969 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1198)))) - (-4 *7 (-806)) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -1881 (-705 (-420 (-975 *4)))) + (|:| |vec| (-660 (-420 (-975 *4)))) (|:| -1545 (-787)) + (|:| |rows| (-660 (-577))) (|:| |cols| (-660 (-577))))) + (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) + (-4 *6 (-809)) (-5 *2 - (-657 - (-2 (|:| -1542 (-784)) - (|:| |eqns| - (-657 - (-2 (|:| |det| *8) (|:| |rows| (-657 (-576))) - (|:| |cols| (-657 (-576)))))) - (|:| |fgb| (-657 *8))))) - (-5 *1 (-944 *5 *6 *7 *8)) (-5 *4 (-784))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-784)) (-4 *4 (-317)) (-4 *6 (-1265 *4)) - (-5 *2 (-1289 (-657 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-657 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-4 *5 (-374)) (-5 *2 (-657 (-1233 *5))) - (-5 *1 (-1297 *5)) (-5 *4 (-1233 *5))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) + (-2 (|:| |partsol| (-1292 (-420 (-975 *4)))) + (|:| -4060 (-660 (-1292 (-420 (-975 *4))))))) + (-5 *1 (-947 *4 *5 *6 *7)) (-4 *7 (-972 *4 *6 *5))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4470)) (-4 *1 (-502 *4)) + (-4 *4 (-1242)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-1265 (-419 *3))) (-5 *2 (-941)) - (-5 *1 (-933 *4 *5)) (-4 *5 (-1265 (-419 *4)))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *2 (-660 (-228))) (-5 *1 (-206))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1122)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-696 *4 *5)) (-4 *4 (-1122)))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1125)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-699 *4 *5)) (-4 *4 (-1125)))) ((*1 *2 *2) - (-12 (-4 *3 (-1122)) (-5 *1 (-949 *3 *2)) (-4 *2 (-442 *3)))) + (-12 (-4 *3 (-1125)) (-5 *1 (-952 *3 *2)) (-4 *2 (-443 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-5 *2 (-326 (-576))) (-5 *1 (-950)))) + (-12 (-5 *3 (-1201)) (-5 *2 (-327 (-577))) (-5 *1 (-953)))) ((*1 *2 *1) - (-12 (-4 *1 (-1306 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1071)))) + (-12 (-4 *1 (-1309 *3 *2)) (-4 *3 (-865)) (-4 *2 (-1074)))) ((*1 *2 *1) - (-12 (-4 *2 (-1071)) (-5 *1 (-1312 *2 *3)) (-4 *3 (-859))))) -(((*1 *2 *2) - (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1265 *4)) - (-5 *1 (-790 *3 *4 *5 *2 *6)) (-4 *2 (-1265 *5)) (-14 *6 (-941)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) - ((*1 *1 *1) (-12 (-4 *1 (-1308 *2)) (-4 *2 (-374)) (-4 *2 (-379))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1194 (-576))) (-5 *1 (-962)) (-5 *3 (-576))))) -(((*1 *1 *1) - (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-591))))) -(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-1122)) (-4 *1 (-240 *3)))) - ((*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-5 *2 (-216 (-514))) (-5 *1 (-850))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1243)) (-4 *5 (-1265 *4)) - (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-784)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1265 (-419 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-835))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-963 *3) (-963 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1224) (-1024)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-657 (-419 *7))) - (-4 *7 (-1265 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-657 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-586 *6 *7))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) - ((*1 *1 *1) (|partial| -4 *1 (-735)))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-702 (-227))) (-5 *4 (-576)) (-5 *2 (-1057)) - (-5 *1 (-769))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-702 *3)) (-4 *3 (-1071)) (-5 *1 (-703 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1125 *2 *3 *4 *5 *6)) (-4 *2 (-1122)) (-4 *3 (-1122)) - (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-374)) (-4 *3 (-1265 *4)) (-4 *5 (-1265 (-419 *3))) - (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1265 *2)) - (-4 *5 (-1265 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) - (-4 *6 (-353 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-374)) (-4 *3 (-1265 *2)) (-4 *4 (-1265 (-419 *3))) - (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4))) - (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) + (-12 (-4 *2 (-1074)) (-5 *1 (-1315 *2 *3)) (-4 *3 (-862))))) +(((*1 *2) (-12 (-5 *2 (-1297)) (-5 *1 (-1244))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1086 (-1049 *3) (-1197 (-1049 *3)))) + (-5 *1 (-1049 *3)) (-4 *3 (-13 (-864) (-375) (-1047)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-966 (-228)) (-966 (-228)))) (-5 *3 (-660 (-271))) + (-5 *1 (-269)))) ((*1 *1 *2) - (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) - (-4 *1 (-346 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) - (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-700 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) - (|has| *2 (-6 (-4468 "*"))) (-4 *2 (-1071)))) - ((*1 *2 *3) - (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) - (-5 *1 (-701 *2 *4 *5 *3)) (-4 *3 (-700 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4468 "*"))) (-4 *2 (-1071))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-784)) (-4 *6 (-1122)) (-4 *3 (-918 *6)) - (-5 *2 (-702 *3)) (-5 *1 (-705 *6 *3 *7 *4)) (-4 *7 (-384 *3)) - (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4466))))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) - (-14 *4 *2)))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-4 *3 (-862)) (-5 *1 (-250 *3))))) + (-12 (-5 *2 (-1 (-966 (-228)) (-966 (-228)))) (-5 *1 (-271)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-660 (-494 *5 *6))) (-5 *3 (-494 *5 *6)) + (-14 *5 (-660 (-1201))) (-4 *6 (-465)) (-5 *2 (-1292 *6)) + (-5 *1 (-644 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-837))))) +(((*1 *2) + (-12 (-5 *2 (-981 (-1145))) (-5 *1 (-355 *3 *4)) (-14 *3 (-944)) + (-14 *4 (-944)))) + ((*1 *2) + (-12 (-5 *2 (-981 (-1145))) (-5 *1 (-356 *3 *4)) (-4 *3 (-361)) + (-14 *4 (-1197 *3)))) + ((*1 *2) + (-12 (-5 *2 (-981 (-1145))) (-5 *1 (-357 *3 *4)) (-4 *3 (-361)) + (-14 *4 (-944))))) +(((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-784)) (-4 *5 (-1071)) (-5 *2 (-576)) - (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1265 *5)) - (-4 *6 (-13 (-416) (-1060 *5) (-374) (-1224) (-294))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1071)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1265 *4)) - (-4 *5 (-13 (-416) (-1060 *4) (-374) (-1224) (-294)))))) -(((*1 *2) (-12 (-5 *2 (-1155 (-227))) (-5 *1 (-1222))))) -(((*1 *2 *3) - (-12 (-5 *3 (-657 (-2 (|:| |deg| (-784)) (|:| -2863 *5)))) - (-4 *5 (-1265 *4)) (-4 *4 (-360)) (-5 *2 (-657 *5)) - (-5 *1 (-218 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-2 (|:| -1885 *5) (|:| -1770 (-576))))) - (-5 *4 (-576)) (-4 *5 (-1265 *4)) (-5 *2 (-657 *5)) - (-5 *1 (-709 *5))))) -(((*1 *2 *3 *2) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *3 (-657 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) + (-2 (|:| |partsol| (-1292 (-420 (-975 *4)))) + (|:| -4060 (-660 (-1292 (-420 (-975 *4))))))) + (-5 *3 (-660 *7)) (-4 *4 (-13 (-318) (-148))) + (-4 *7 (-972 *4 *6 *5)) (-4 *5 (-13 (-865) (-627 (-1201)))) + (-4 *6 (-809)) (-5 *1 (-947 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-420 (-577))) (-5 *1 (-500))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *2 (-2 (|:| -1823 (-115)) (|:| |w| (-228)))) (-5 *1 (-206))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -2731 (-660 (-1201))) (|:| -2742 (-660 (-1201))))) + (-5 *1 (-1244))))) +(((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *1 (-270)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291)))) - ((*1 *2 *1 *3) + (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) + (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))))) + ((*1 *2 *3 *4) (-12 - (-5 *3 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *2 (-1294)) (-5 *1 (-1291)))) - ((*1 *2 *1) + (-5 *2 + (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) + (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))) + (-5 *4 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))))) + ((*1 *2 *3 *4) (-12 (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -3243 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *1 (-1291)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-657 *4)) (-5 *3 (-657 (-879 *5))) (-4 *4 (-374)) - (-14 *5 (-657 (-1198))) (-5 *1 (-651 *4 *5))))) + (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) + (-5 *1 (-1045 *3)) (-4 *3 (-1268 (-577))) (-5 *4 (-420 (-577))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-420 (-577))) + (-5 *2 (-660 (-2 (|:| -4228 *5) (|:| -4239 *5)))) (-5 *1 (-1045 *3)) + (-4 *3 (-1268 (-577))) (-5 *4 (-2 (|:| -4228 *5) (|:| -4239 *5))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) + (-5 *1 (-1046 *3)) (-4 *3 (-1268 (-420 (-577)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) + (-5 *1 (-1046 *3)) (-4 *3 (-1268 (-420 (-577)))) + (-5 *4 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-420 (-577))) + (-5 *2 (-660 (-2 (|:| -4228 *4) (|:| -4239 *4)))) (-5 *1 (-1046 *3)) + (-4 *3 (-1268 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-420 (-577))) + (-5 *2 (-660 (-2 (|:| -4228 *5) (|:| -4239 *5)))) (-5 *1 (-1046 *3)) + (-4 *3 (-1268 *5)) (-5 *4 (-2 (|:| -4228 *5) (|:| -4239 *5)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-660 (-494 *3 *4))) (-14 *3 (-660 (-1201))) + (-4 *4 (-465)) (-5 *1 (-644 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-837))))) +(((*1 *2) + (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) + (-5 *2 (-787)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-5 *2 (-787))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-966 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-660 (-966 *3))) (-4 *3 (-1074)) (-4 *1 (-1159 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-660 (-660 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-660 (-966 *3))) (-4 *1 (-1159 *3)) (-4 *3 (-1074))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-228)) (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-774))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-705 *8)) (-4 *8 (-972 *5 *7 *6)) + (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) + (-4 *7 (-809)) + (-5 *2 + (-660 + (-2 (|:| -1545 (-787)) + (|:| |eqns| + (-660 + (-2 (|:| |det| *8) (|:| |rows| (-660 (-577))) + (|:| |cols| (-660 (-577)))))) + (|:| |fgb| (-660 *8))))) + (-5 *1 (-947 *5 *6 *7 *8)) (-5 *4 (-787))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 (-577))) (-5 *2 (-577)) (-5 *1 (-499 *4)) + (-4 *4 (-1268 *2))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1060)) (-5 *3 (-1201)) (-5 *1 (-194))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-251 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 (-1201))) (-5 *2 (-1297)) (-5 *1 (-1244)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-660 (-1201))) (-5 *2 (-1297)) (-5 *1 (-1244))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-660 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577)))))) + (-5 *2 (-660 (-420 (-577)))) (-5 *1 (-1045 *4)) + (-4 *4 (-1268 (-577)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-660 (-494 *5 *6))) (-5 *4 (-882 *5)) + (-14 *5 (-660 (-1201))) (-5 *2 (-494 *5 *6)) (-5 *1 (-644 *5 *6)) + (-4 *6 (-465)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-494 *5 *6))) (-5 *4 (-882 *5)) + (-14 *5 (-660 (-1201))) (-5 *2 (-494 *5 *6)) (-5 *1 (-644 *5 *6)) + (-4 *6 (-465))))) +(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-837))))) +(((*1 *2) + (-12 (-4 *4 (-1246)) (-4 *5 (-1268 *4)) (-4 *6 (-1268 (-420 *5))) + (-5 *2 (-112)) (-5 *1 (-353 *3 *4 *5 *6)) (-4 *3 (-354 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-501 *3)) (-4 *3 (-1239)) - (-4 *3 (-1122)) (-5 *2 (-784)))) + (-12 (|has| *1 (-6 -4470)) (-4 *1 (-502 *3)) (-4 *3 (-1242)) + (-4 *3 (-1125)) (-5 *2 (-787)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4466)) (-4 *1 (-501 *4)) - (-4 *4 (-1239)) (-5 *2 (-784))))) -(((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-1071)) (-5 *2 (-784))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-784)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4470)) (-4 *1 (-502 *4)) + (-4 *4 (-1242)) (-5 *2 (-787))))) +(((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-793 *5 (-879 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-657 (-1198))) + (-12 (-5 *3 (-171 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) + (-5 *1 (-774))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) + (-4 *6 (-809)) (-4 *7 (-972 *4 *6 *5)) (-5 *2 - (-657 (-1168 *5 (-543 (-879 *6)) (-879 *6) (-793 *5 (-879 *6))))) - (-5 *1 (-640 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-657 (-326 (-227)))) (-5 *1 (-276))))) -(((*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1122))))) -(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-246))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-700 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-963 *2)) (-5 *1 (-1004 *2)) (-4 *2 (-1071))))) + (-2 (|:| |sysok| (-112)) (|:| |z0| (-660 *7)) (|:| |n0| (-660 *7)))) + (-5 *1 (-947 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-1268 (-577))) (-5 *1 (-499 *3))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-227))) - (|:| -1685 (-1116 (-856 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-112)) (-5 *1 (-310))))) -(((*1 *2 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-1142))))) + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *2 (-391)) (-5 *1 (-194))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-787)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-865)) + (-4 *3 (-1125))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -4228 (-420 (-577))) (|:| -4239 (-420 (-577))))) + (-5 *2 (-420 (-577))) (-5 *1 (-1045 *4)) (-4 *4 (-1268 (-577)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 (-494 *4 *5))) (-14 *4 (-660 (-1201))) + (-4 *5 (-465)) (-5 *2 (-660 (-254 *4 *5))) (-5 *1 (-644 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-688 *3)) (-4 *3 (-865)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-693 *3)) (-4 *3 (-865)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-835 *3)) (-4 *3 (-865))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1246)) (-4 *5 (-1268 *3)) (-4 *6 (-1268 (-420 *5))) + (-5 *2 (-112)) (-5 *1 (-353 *4 *3 *5 *6)) (-4 *4 (-354 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1125)) (-5 *2 (-1145))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1060 (-576))) (-4 *4 (-568)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) + (-12 (-5 *3 (-420 (-577))) (-4 *4 (-1063 (-577))) (-4 *4 (-569)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-443 *4)))) ((*1 *1 *1 *1) (-5 *1 (-135))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-576)))) + (-12 (-4 *3 (-569)) (-5 *1 (-159 *3 *2)) (-4 *2 (-443 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-228))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-249)) (-5 *2 (-577)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) - (-4 *5 (-1280 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1251 *4 *5)))) + (-12 (-5 *3 (-420 (-577))) (-4 *4 (-375)) (-4 *4 (-38 *3)) + (-4 *5 (-1283 *4)) (-5 *1 (-288 *4 *5 *2)) (-4 *2 (-1254 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) - (-4 *5 (-1249 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1272 *4 *5)) - (-4 *6 (-1005 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-294))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *1) (-5 *1 (-390))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-784)) (-4 *1 (-397 *2)) (-4 *2 (-1122)))) + (-12 (-5 *3 (-420 (-577))) (-4 *4 (-375)) (-4 *4 (-38 *3)) + (-4 *5 (-1252 *4)) (-5 *1 (-289 *4 *5 *2 *6)) (-4 *2 (-1275 *4 *5)) + (-4 *6 (-1008 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-295))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-577)) (-5 *1 (-373 *2)) (-4 *2 (-1125)))) + ((*1 *1 *1 *1) (-5 *1 (-391))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-787)) (-4 *1 (-398 *2)) (-4 *2 (-1125)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-442 *3)) (-4 *3 (-1122)) - (-4 *3 (-1134)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) + (-12 (-5 *2 (-787)) (-4 *1 (-443 *3)) (-4 *3 (-1125)) + (-4 *3 (-1137)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-486)) (-5 *2 (-577)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) + (-12 (-5 *2 (-787)) (-4 *3 (-375)) (-4 *4 (-809)) (-4 *5 (-865)) + (-5 *1 (-517 *3 *4 *5 *6)) (-4 *6 (-972 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1289 *4)) (-5 *3 (-576)) (-4 *4 (-360)) - (-5 *1 (-540 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-548)))) + (-12 (-5 *2 (-1292 *4)) (-5 *3 (-577)) (-4 *4 (-361)) + (-5 *1 (-541 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-549)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-549)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-784)) (-4 *4 (-1122)) - (-5 *1 (-695 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-787)) (-4 *4 (-1125)) + (-5 *1 (-698 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374)))) + (-12 (-5 *2 (-577)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-375)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-787)) (-4 *1 (-703 *3 *4 *5)) (-4 *3 (-1074)) + (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-702 *4)) (-5 *3 (-784)) (-4 *4 (-1071)) - (-5 *1 (-703 *4)))) + (-12 (-5 *2 (-705 *4)) (-5 *3 (-787)) (-4 *4 (-1074)) + (-5 *1 (-706 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *3 (-1071)) (-5 *1 (-727 *3 *4)) - (-4 *4 (-661 *3)))) + (-12 (-5 *2 (-577)) (-4 *3 (-1074)) (-5 *1 (-730 *3 *4)) + (-4 *4 (-664 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1071)) - (-5 *1 (-727 *4 *5)) (-4 *5 (-661 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-733)) (-5 *2 (-941)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-735)) (-5 *2 (-784)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-739)) (-5 *2 (-784)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-849 *3)) (-4 *3 (-1071)))) + (-12 (-5 *2 (-115)) (-5 *3 (-577)) (-4 *4 (-1074)) + (-5 *1 (-730 *4 *5)) (-4 *5 (-664 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-736)) (-5 *2 (-944)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-787)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-787)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-852 *3)) (-4 *3 (-1074)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-849 *4)) (-4 *4 (-1071)))) - ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-908 *3)) (-4 *3 (-1122)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1024)) (-5 *2 (-419 (-576))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1134)) (-5 *2 (-941)))) + (-12 (-5 *2 (-115)) (-5 *3 (-577)) (-5 *1 (-852 *4)) (-4 *4 (-1074)))) + ((*1 *1 *1 *1) (-5 *1 (-880))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-1125)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-911 *3)) (-4 *3 (-1125)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1027)) (-5 *2 (-420 (-577))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-944)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-1145 *3 *4 *5 *6)) (-4 *4 (-1071)) - (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-374)))) + (-12 (-5 *2 (-577)) (-4 *1 (-1148 *3 *4 *5 *6)) (-4 *4 (-1074)) + (-4 *5 (-244 *3 *4)) (-4 *6 (-244 *3 *4)) (-4 *4 (-375)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1186 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1184 *3)))) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-38 (-420 (-577)))) + (-5 *1 (-1187 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1071)) (-4 *2 (-374))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1057)) - (-5 *1 (-761))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1194 *3)) - (-4 *3 (-13 (-442 *6) (-27) (-1224))) - (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) - (-5 *2 (-2 (|:| -2322 *3) (|:| |coeff| *3))) - (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1122)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1194 *3))) - (-4 *3 (-13 (-442 *6) (-27) (-1224))) - (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) - (-5 *2 (-2 (|:| -2322 *3) (|:| |coeff| *3))) - (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1122))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1289 *5)) (-4 *5 (-805)) (-5 *2 (-112)) - (-5 *1 (-858 *4 *5)) (-14 *4 (-784))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1180)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1122)) - (-4 *4 (-1122))))) + (-12 (-4 *1 (-1283 *2)) (-4 *2 (-1074)) (-4 *2 (-375))))) (((*1 *2 *1) - (-12 (-4 *1 (-1087 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *5 (-862)) (-5 *2 (-784))))) -(((*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290))))) -(((*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1202))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-1265 *3)) (-4 *3 (-1071))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-657 (-963 *4))) (-4 *1 (-1156 *4)) (-4 *4 (-1071)) - (-5 *2 (-784))))) + (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) + (-5 *2 (-660 (-660 (-966 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-660 (-660 (-966 *4)))) (-5 *3 (-112)) (-4 *4 (-1074)) + (-4 *1 (-1159 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-660 (-660 (-966 *3)))) (-4 *3 (-1074)) + (-4 *1 (-1159 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-660 (-660 (-660 *4)))) (-5 *3 (-112)) + (-4 *1 (-1159 *4)) (-4 *4 (-1074)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-660 (-660 (-966 *4)))) (-5 *3 (-112)) + (-4 *1 (-1159 *4)) (-4 *4 (-1074)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-660 (-660 (-660 *5)))) (-5 *3 (-660 (-173))) + (-5 *4 (-173)) (-4 *1 (-1159 *5)) (-4 *5 (-1074)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-660 (-660 (-966 *5)))) (-5 *3 (-660 (-173))) + (-5 *4 (-173)) (-4 *1 (-1159 *5)) (-4 *5 (-1074))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) + (-5 *2 (-1060)) (-5 *1 (-773))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1014 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) - (-4 *3 (-384 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1014 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-702 *5)) (-4 *5 (-1014 *4)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |num| (-702 *4)) (|:| |den| *4))) - (-5 *1 (-706 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-374) (-148) (-1060 (-419 (-576))))) - (-4 *6 (-1265 *5)) - (-5 *2 (-2 (|:| -3989 *7) (|:| |rh| (-657 (-419 *6))))) - (-5 *1 (-820 *5 *6 *7 *3)) (-5 *4 (-657 (-419 *6))) - (-4 *7 (-669 *6)) (-4 *3 (-669 (-419 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1014 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1258 *4 *5 *3)) - (-4 *3 (-1265 *5))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-768))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-657 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4466)) (-4 *1 (-501 *3)) (-4 *3 (-1239)) - (-5 *2 (-657 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 (-941))) (-5 *1 (-993))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-5 *2 (-702 (-419 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112))))) + (-12 (-5 *3 (-975 *4)) (-4 *4 (-13 (-318) (-148))) + (-4 *2 (-972 *4 *6 *5)) (-5 *1 (-947 *4 *5 *6 *2)) + (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809))))) (((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) - (-14 *4 *2)))) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-1268 (-577))) (-5 *1 (-499 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-610)) (-5 *1 (-291))))) (((*1 *2 *3) - (-12 (-5 *3 (-657 (-1198))) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-862) (-626 (-1198)))) (-4 *6 (-806)) - (-5 *2 (-657 (-419 (-972 *4)))) (-5 *1 (-944 *4 *5 *6 *7)) - (-4 *7 (-969 *4 *6 *5))))) -(((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-941)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-846 (-941))) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-941)))) - ((*1 *2) - (-12 (-4 *1 (-1308 *3)) (-4 *3 (-374)) (-5 *2 (-846 (-941)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1280 *3))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) - (-4 *4 (-13 (-1122) (-34)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-805)) (-4 *2 (-1071)) - (-4 *2 (-464)))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1243 *2)) + (-4 *2 (-1125)))) ((*1 *2 *3) - (-12 (-5 *3 (-657 *4)) (-4 *4 (-1265 (-576))) (-5 *2 (-657 (-576))) - (-5 *1 (-498 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-867 *2)) (-4 *2 (-1071)) (-4 *2 (-464)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1071)) (-4 *4 (-806)) - (-4 *2 (-862)) (-4 *3 (-464))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1265 *5)) - (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1060 (-576)))) - (-4 *7 (-1265 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) - (-4 *2 (-353 *5 *6 *7))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1289 *5)) (-4 *5 (-13 (-1071) (-652 *4))) - (-4 *4 (-568)) (-5 *2 (-1289 *4)) (-5 *1 (-650 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-704 (-1247)))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) - (-5 *2 (-1057)) (-5 *1 (-764))))) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-1125)) (-4 *2 (-865)) + (-5 *1 (-1243 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1292 *6)) (-5 *4 (-1292 (-577))) (-5 *5 (-577)) + (-4 *6 (-1125)) (-5 *2 (-1 *6)) (-5 *1 (-1042 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) + (-12 (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *2 - (-657 - (-2 (|:| |eigval| (-3 (-419 (-972 *4)) (-1187 (-1198) (-972 *4)))) - (|:| |geneigvec| (-657 (-702 (-419 (-972 *4)))))))) - (-5 *1 (-302 *4)) (-5 *3 (-702 (-419 (-972 *4))))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-657 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-806)) - (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) - (-5 *2 (-1057)) (-5 *1 (-765))))) -(((*1 *1 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-340))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 (-576)))) - (-5 *2 (-1289 (-576))) (-5 *1 (-1317 *4))))) + (-2 (|:| |glbase| (-660 (-254 *4 *5))) (|:| |glval| (-660 (-577))))) + (-5 *1 (-644 *4 *5)) (-5 *3 (-660 (-254 *4 *5)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-660 *4)) (-4 *4 (-375)) (-5 *2 (-1292 *4)) + (-5 *1 (-830 *4 *3)) (-4 *3 (-672 *4))))) (((*1 *2) - (-12 (-4 *3 (-1071)) (-5 *2 (-978 (-725 *3 *4))) (-5 *1 (-725 *3 *4)) - (-4 *4 (-1265 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-784)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) - (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-702 *2)) (-5 *4 (-576)) - (-4 *2 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) - (-4 *5 (-1265 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1071)))) - ((*1 *2) - (-12 (-5 *2 (-784)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1071))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1071)) (-5 *2 (-1289 *3)) (-5 *1 (-725 *3 *4)) - (-4 *4 (-1265 *3))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1194 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1239))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-171 (-227)))) (-5 *2 (-1057)) - (-5 *1 (-769))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) - ((*1 *2 *3) - (-12 (-5 *3 (-941)) (-5 *2 (-1200 (-419 (-576)))) (-5 *1 (-192)))) - ((*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1239)))) - ((*1 *1 *1) (-4 *1 (-884 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-995 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-805)) - (-4 *4 (-862))))) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1239)) - (-5 *2 (-657 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1239)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-660 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *2 *1) - (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1265 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-1289 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) - ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1071)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1265 *4)) - (-4 *5 (-13 (-416) (-1060 *4) (-374) (-1224) (-294)))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1294)) (-5 *1 (-1028))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-941)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-941)) (-5 *1 (-270))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1071)) - (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1265 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1071)) - (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1265 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1071)) - (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1265 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-518)) (-5 *3 (-657 (-985))) (-5 *1 (-109))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-576)) (-5 *5 (-702 (-171 (-227)))) - (-5 *2 (-1057)) (-5 *1 (-767))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-626 (-908 (-576)))) - (-4 *5 (-902 (-576))) - (-4 *5 (-13 (-1060 (-576)) (-464) (-652 (-576)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) - (-4 *3 (-13 (-27) (-1224) (-442 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1198)) (-5 *4 (-856 *2)) (-4 *2 (-1161)) - (-4 *2 (-13 (-27) (-1224) (-442 *5))) - (-4 *5 (-626 (-908 (-576)))) (-4 *5 (-902 (-576))) - (-4 *5 (-13 (-1060 (-576)) (-464) (-652 (-576)))) - (-5 *1 (-579 *5 *2))))) + (-12 (|has| *1 (-6 -4470)) (-4 *1 (-502 *3)) (-4 *3 (-1242)) + (-5 *2 (-660 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-944))) (-5 *1 (-996))))) +(((*1 *2 *1) (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1183)) (-5 *4 (-577)) (-5 *5 (-705 (-228))) + (-5 *2 (-1060)) (-5 *1 (-773))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 (-1201))) (-4 *4 (-13 (-318) (-148))) + (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) + (-5 *2 (-660 (-420 (-975 *4)))) (-5 *1 (-947 *4 *5 *6 *7)) + (-4 *7 (-972 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 *2)) (-5 *1 (-499 *2)) (-4 *2 (-1268 (-577)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-375)) (-5 *1 (-296 *3 *2)) (-4 *2 (-1283 *3))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390)))) - (-5 *2 (-1057)) (-5 *1 (-315))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-657 (-877))) (-5 *1 (-1198))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-702 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) - (-5 *7 (-702 (-576))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-576)) (-5 *2 (-1057)) (-5 *1 (-766))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1071)) - (-5 *2 (-2 (|:| |k| (-832 *3)) (|:| |c| *4)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-1122)) (-4 *1 (-923 *3))))) + (-2 (|:| |var| (-1201)) (|:| |fn| (-327 (-228))) + (|:| -4071 (-1119 (-859 (-228)))) (|:| |abserr| (-228)) + (|:| |relerr| (-228)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-1125))))) (((*1 *2 *3) - (-12 (-5 *3 (-702 (-419 (-972 (-576))))) (-5 *2 (-657 (-326 (-576)))) - (-5 *1 (-1053))))) + (-12 (-5 *3 (-660 (-2 (|:| -3115 *4) (|:| -3030 (-577))))) + (-4 *4 (-1125)) (-5 *2 (-1 *4)) (-5 *1 (-1042 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1198)) - (-4 *4 (-13 (-317) (-1060 (-576)) (-652 (-576)) (-148))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-817 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1224) (-979)))))) -(((*1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-625 (-877)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-784) (-784))) (-4 *1 (-397 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-1122))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-5 *2 (-657 (-2 (|:| -1885 *3) (|:| -1770 *4)))) - (-5 *1 (-709 *3)) (-4 *3 (-1265 *4))))) + (-12 (-5 *3 (-660 (-494 *4 *5))) (-14 *4 (-660 (-1201))) + (-4 *5 (-465)) + (-5 *2 + (-2 (|:| |gblist| (-660 (-254 *4 *5))) + (|:| |gvlist| (-660 (-577))))) + (-5 *1 (-644 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1265 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) - (-5 *1 (-122 *3)) (-4 *3 (-862)))) + (-12 (-5 *3 (-660 *4)) (-4 *4 (-375)) (-5 *2 (-705 *4)) + (-5 *1 (-830 *4 *5)) (-4 *5 (-672 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *5)) (-5 *4 (-787)) (-4 *5 (-375)) + (-5 *2 (-705 *5)) (-5 *1 (-830 *5 *6)) (-4 *6 (-672 *5))))) +(((*1 *2 *3) + (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1246)) (-4 *3 (-1268 *4)) + (-4 *5 (-1268 (-420 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) + (-5 *2 (-660 (-660 (-660 (-787)))))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1183)) (-5 *5 (-705 (-228))) (-5 *6 (-705 (-577))) + (-5 *4 (-577)) (-5 *2 (-1060)) (-5 *1 (-773))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) + (-4 *6 (-809)) (-5 *2 (-420 (-975 *4))) (-5 *1 (-947 *4 *5 *6 *3)) + (-4 *3 (-972 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-705 *7)) (-4 *7 (-972 *4 *6 *5)) + (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) + (-4 *6 (-809)) (-5 *2 (-705 (-420 (-975 *4)))) + (-5 *1 (-947 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-972 *4 *6 *5)) + (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) + (-4 *6 (-809)) (-5 *2 (-660 (-420 (-975 *4)))) + (-5 *1 (-947 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-865)) (-5 *1 (-497 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1145)) (-5 *1 (-341))))) +(((*1 *2 *3) + (-12 (-5 *2 (-431 (-1197 (-577)))) (-5 *1 (-193)) (-5 *3 (-577))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-787)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-1125)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1125)) (-5 *2 (-112)) + (-5 *1 (-1243 *3))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-375) (-148) (-1063 (-577)))) + (-4 *5 (-1268 *4)) (-5 *2 (-660 (-420 *5))) (-5 *1 (-1041 *4 *5)) + (-5 *3 (-420 *5))))) +(((*1 *1 *1) (-4 *1 (-642))) ((*1 *2 *2) - (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1224))) - (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) - (-5 *1 (-595 *3 *4)))) + (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027) (-1227)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-975 *5))) (-5 *4 (-660 (-1201))) (-4 *5 (-569)) + (-5 *2 (-660 (-660 (-305 (-420 (-975 *5)))))) (-5 *1 (-786 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-569)) + (-5 *2 (-660 (-660 (-305 (-420 (-975 *4)))))) (-5 *1 (-786 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-705 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4060 (-660 *6))) + *7 *6)) + (-4 *6 (-375)) (-4 *7 (-672 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1292 *6) "failed")) + (|:| -4060 (-660 (-1292 *6))))) + (-5 *1 (-829 *6 *7)) (-5 *4 (-1292 *6))))) +(((*1 *2) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) + (-5 *2 (-660 (-660 (-660 (-966 *3)))))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-773))))) +(((*1 *2 *1) (-12 (-4 *1 (-1146 *2)) (-4 *2 (-1242))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-705 *11)) (-5 *4 (-660 (-420 (-975 *8)))) + (-5 *5 (-787)) (-5 *6 (-1183)) (-4 *8 (-13 (-318) (-148))) + (-4 *11 (-972 *8 *10 *9)) (-4 *9 (-13 (-865) (-627 (-1201)))) + (-4 *10 (-809)) + (-5 *2 + (-2 + (|:| |rgl| + (-660 + (-2 (|:| |eqzro| (-660 *11)) (|:| |neqzro| (-660 *11)) + (|:| |wcond| (-660 (-975 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1292 (-420 (-975 *8)))) + (|:| -4060 (-660 (-1292 (-420 (-975 *8)))))))))) + (|:| |rgsz| (-577)))) + (-5 *1 (-947 *8 *9 *10 *11)) (-5 *7 (-577))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-519)) (-5 *3 (-660 (-894))) (-5 *1 (-496))))) +(((*1 *2 *3) + (-12 (-5 *2 (-660 (-1197 (-577)))) (-5 *1 (-193)) (-5 *3 (-577))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -2742 (-660 *3)) (|:| -2731 (-660 *3)))) + (-5 *1 (-1243 *3)) (-4 *3 (-1125))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) + (-4 *5 (-13 (-375) (-148) (-1063 (-577)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-420 *6)) (|:| |h| *6) + (|:| |c1| (-420 *6)) (|:| |c2| (-420 *6)) (|:| -2823 *6))) + (-5 *1 (-1041 *5 *6)) (-5 *3 (-420 *6))))) +(((*1 *1 *1) (-4 *1 (-642))) ((*1 *2 *2) - (-12 (-5 *2 (-598 (-419 (-972 *3)))) - (-4 *3 (-13 (-464) (-1060 (-576)) (-652 (-576)))) (-5 *1 (-601 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1265 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -3000 *3) (|:| |special| *3))) (-5 *1 (-740 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1289 *5)) (-4 *5 (-374)) (-4 *5 (-1071)) - (-5 *2 (-657 (-657 (-702 *5)))) (-5 *1 (-1051 *5)) - (-5 *3 (-657 (-702 *5))))) + (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027) (-1227)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-375)) + (-5 *2 + (-2 (|:| A (-705 *5)) + (|:| |eqs| + (-660 + (-2 (|:| C (-705 *5)) (|:| |g| (-1292 *5)) (|:| -3994 *6) + (|:| |rh| *5)))))) + (-5 *1 (-829 *5 *6)) (-5 *3 (-705 *5)) (-5 *4 (-1292 *5)) + (-4 *6 (-672 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1289 (-1289 *5))) (-4 *5 (-374)) (-4 *5 (-1071)) - (-5 *2 (-657 (-657 (-702 *5)))) (-5 *1 (-1051 *5)) - (-5 *3 (-657 (-702 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-657 *1)) (-4 *1 (-1166)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-657 *1)) (-4 *1 (-1166))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *5 (-227)) - (-5 *2 (-1057)) (-5 *1 (-764))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1163 *2 *3)) (-4 *2 (-13 (-1122) (-34))) - (-4 *3 (-13 (-1122) (-34)))))) + (-12 (-4 *5 (-375)) (-4 *6 (-672 *5)) + (-5 *2 (-2 (|:| -1881 (-705 *6)) (|:| |vec| (-1292 *5)))) + (-5 *1 (-829 *5 *6)) (-5 *3 (-705 *6)) (-5 *4 (-1292 *5))))) (((*1 *2 *3) + (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1246)) (-4 *3 (-1268 *4)) + (-4 *5 (-1268 (-420 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-660 (-173))))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) + (-5 *6 (-3 (|:| |fn| (-401)) (|:| |fp| (-70 APROD)))) (-5 *4 (-228)) + (-5 *2 (-1060)) (-5 *1 (-772))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1183)) (-4 *4 (-13 (-318) (-148))) + (-4 *5 (-13 (-865) (-627 (-1201)))) (-4 *6 (-809)) + (-5 *2 + (-660 + (-2 (|:| |eqzro| (-660 *7)) (|:| |neqzro| (-660 *7)) + (|:| |wcond| (-660 (-975 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1292 (-420 (-975 *4)))) + (|:| -4060 (-660 (-1292 (-420 (-975 *4)))))))))) + (-5 *1 (-947 *4 *5 *6 *7)) (-4 *7 (-972 *4 *6 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-660 (-577))) (-5 *1 (-254 *3 *4)) + (-14 *3 (-660 (-1201))) (-4 *4 (-1074)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-660 (-577))) (-14 *3 (-660 (-1201))) + (-5 *1 (-467 *3 *4 *5)) (-4 *4 (-1074)) + (-4 *5 (-244 (-3484 *3) (-787))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-660 (-577))) (-5 *1 (-494 *3 *4)) + (-14 *3 (-660 (-1201))) (-4 *4 (-1074))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-660 (-577))) (-5 *2 (-1203 (-420 (-577)))) + (-5 *1 (-192))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 *4)) (-4 *4 (-1125)) (-5 *2 (-1297)) + (-5 *1 (-1243 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-660 *4)) (-4 *4 (-1125)) (-5 *2 (-1297)) + (-5 *1 (-1243 *4))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1268 *6)) + (-4 *6 (-13 (-375) (-148) (-1063 *4))) (-5 *4 (-577)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -3994 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1040 *6 *3))))) +(((*1 *1 *1) (-4 *1 (-642))) + ((*1 *2 *2) + (-12 (-4 *3 (-569)) (-5 *1 (-643 *3 *2)) + (-4 *2 (-13 (-443 *3) (-1027) (-1227)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-669 (-420 *6))) (-5 *4 (-1 (-660 *5) *6)) + (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-4 *6 (-1268 *5)) (-5 *2 (-660 (-420 *6))) (-5 *1 (-828 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-669 (-420 *7))) (-5 *4 (-1 (-660 *6) *7)) + (-5 *5 (-1 (-431 *7) *7)) + (-4 *6 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-4 *7 (-1268 *6)) (-5 *2 (-660 (-420 *7))) (-5 *1 (-828 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-670 *6 (-420 *6))) (-5 *4 (-1 (-660 *5) *6)) + (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-4 *6 (-1268 *5)) (-5 *2 (-660 (-420 *6))) (-5 *1 (-828 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-670 *7 (-420 *7))) (-5 *4 (-1 (-660 *6) *7)) + (-5 *5 (-1 (-431 *7) *7)) + (-4 *6 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-4 *7 (-1268 *6)) (-5 *2 (-660 (-420 *7))) (-5 *1 (-828 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-669 (-420 *5))) (-4 *5 (-1268 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-5 *2 (-660 (-420 *5))) (-5 *1 (-828 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-669 (-420 *6))) (-5 *4 (-1 (-431 *6) *6)) + (-4 *6 (-1268 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-5 *2 (-660 (-420 *6))) (-5 *1 (-828 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-670 *5 (-420 *5))) (-4 *5 (-1268 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-5 *2 (-660 (-420 *5))) (-5 *1 (-828 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-670 *6 (-420 *6))) (-5 *4 (-1 (-431 *6) *6)) + (-4 *6 (-1268 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-5 *2 (-660 (-420 *6))) (-5 *1 (-828 *5 *6))))) +(((*1 *2) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1159 *3)) (-4 *3 (-1074)) (-5 *2 (-660 (-173)))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *3 (-577)) + (-5 *2 (-1060)) (-5 *1 (-772))))) +(((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-784)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-806)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) - (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) + (-660 + (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) + (|:| |wcond| (-660 (-975 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1292 (-420 (-975 *5)))) + (|:| -4060 (-660 (-1292 (-420 (-975 *5)))))))))) + (-5 *4 (-1183)) (-4 *5 (-13 (-318) (-148))) (-4 *8 (-972 *5 *7 *6)) + (-4 *6 (-13 (-865) (-627 (-1201)))) (-4 *7 (-809)) (-5 *2 (-577)) + (-5 *1 (-947 *5 *6 *7 *8))))) +(((*1 *1) (-12 (-5 *1 (-707 *2)) (-4 *2 (-626 (-880)))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-577)) (-5 *2 (-112)) (-5 *1 (-493))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 (-944))) (-5 *2 (-1203 (-420 (-577)))) + (-5 *1 (-192))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-768))))) -(((*1 *1) (-5 *1 (-340)))) -(((*1 *2 *1) - (-12 (-5 *2 (-704 (-986 *3))) (-5 *1 (-986 *3)) (-4 *3 (-1122))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1024)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-941)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-374)) (-14 *5 (-1015 *3 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1122)) (-4 *2 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-568))))) + (-12 (-5 *4 (-577)) (-4 *5 (-361)) (-5 *2 (-431 (-1197 (-1197 *5)))) + (-5 *1 (-1240 *5)) (-5 *3 (-1197 (-1197 *5)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-577)))) (-4 *5 (-1268 *4)) + (-5 *2 (-2 (|:| |ans| (-420 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1040 *4 *5)) (-5 *3 (-420 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-443 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) + (-5 *1 (-159 *4 *5)) (-4 *5 (-443 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) + (-5 *1 (-286 *4 *5)) (-4 *5 (-13 (-443 *4) (-1027))))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-312 *4)) (-4 *4 (-313)))) + ((*1 *2 *3) (-12 (-4 *1 (-313)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *5 (-1125)) (-5 *2 (-112)) + (-5 *1 (-442 *4 *5)) (-4 *4 (-443 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) + (-5 *1 (-444 *4 *5)) (-4 *5 (-443 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-112)) + (-5 *1 (-643 *4 *5)) (-4 *5 (-13 (-443 *4) (-1027) (-1227)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1122)) (-4 *3 (-918 *5)) (-5 *2 (-702 *3)) - (-5 *1 (-705 *5 *3 *6 *4)) (-4 *6 (-384 *3)) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4466))))))) + (-12 (-5 *4 (-1 (-660 *5) *6)) + (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) + (-5 *2 (-660 (-2 (|:| |poly| *6) (|:| -3994 *3)))) + (-5 *1 (-825 *5 *6 *3 *7)) (-4 *3 (-672 *6)) + (-4 *7 (-672 (-420 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-660 *5) *6)) + (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-4 *6 (-1268 *5)) + (-5 *2 (-660 (-2 (|:| |poly| *6) (|:| -3994 (-670 *6 (-420 *6)))))) + (-5 *1 (-828 *5 *6)) (-5 *3 (-670 *6 (-420 *6)))))) +(((*1 *2 *3) + (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1246)) (-4 *3 (-1268 *4)) + (-4 *5 (-1268 (-420 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-660 (-2 (|:| -1902 (-1197 *6)) (|:| -3556 (-577))))) + (-4 *6 (-318)) (-4 *4 (-809)) (-4 *5 (-865)) (-5 *2 (-112)) + (-5 *1 (-758 *4 *5 *6 *7)) (-4 *7 (-972 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1159 *2)) (-4 *2 (-1074))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *5 (-112)) + (-5 *6 (-228)) (-5 *7 (-3 (|:| |fn| (-401)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-401)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1060)) (-5 *1 (-772))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-657 *5)) (-4 *5 (-1265 *3)) (-4 *3 (-317)) - (-5 *2 (-112)) (-5 *1 (-467 *3 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1134)) (-4 *3 (-1122)) (-5 *2 (-657 *1)) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-657 (-908 *3))) (-5 *1 (-908 *3)) - (-4 *3 (-1122)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *2 (-657 *1)) (-4 *1 (-969 *3 *4 *5)))) + (-12 (-5 *3 (-705 *8)) (-4 *8 (-972 *5 *7 *6)) + (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) + (-4 *7 (-809)) + (-5 *2 + (-660 + (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) + (|:| |wcond| (-660 (-975 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1292 (-420 (-975 *5)))) + (|:| -4060 (-660 (-1292 (-420 (-975 *5)))))))))) + (-5 *1 (-947 *5 *6 *7 *8)) (-5 *4 (-660 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-705 *8)) (-5 *4 (-660 (-1201))) (-4 *8 (-972 *5 *7 *6)) + (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) + (-4 *7 (-809)) + (-5 *2 + (-660 + (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) + (|:| |wcond| (-660 (-975 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1292 (-420 (-975 *5)))) + (|:| -4060 (-660 (-1292 (-420 (-975 *5)))))))))) + (-5 *1 (-947 *5 *6 *7 *8)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-806)) (-4 *5 (-862)) (-4 *6 (-1071)) - (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-657 *3)) - (-5 *1 (-970 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -3501 ($ *7)) (-15 -1621 (*7 $)) - (-15 -1635 (*7 $)))))))) + (-12 (-5 *3 (-705 *7)) (-4 *7 (-972 *4 *6 *5)) + (-4 *4 (-13 (-318) (-148))) (-4 *5 (-13 (-865) (-627 (-1201)))) + (-4 *6 (-809)) + (-5 *2 + (-660 + (-2 (|:| |eqzro| (-660 *7)) (|:| |neqzro| (-660 *7)) + (|:| |wcond| (-660 (-975 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1292 (-420 (-975 *4)))) + (|:| -4060 (-660 (-1292 (-420 (-975 *4)))))))))) + (-5 *1 (-947 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-705 *9)) (-5 *5 (-944)) (-4 *9 (-972 *6 *8 *7)) + (-4 *6 (-13 (-318) (-148))) (-4 *7 (-13 (-865) (-627 (-1201)))) + (-4 *8 (-809)) + (-5 *2 + (-660 + (-2 (|:| |eqzro| (-660 *9)) (|:| |neqzro| (-660 *9)) + (|:| |wcond| (-660 (-975 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1292 (-420 (-975 *6)))) + (|:| -4060 (-660 (-1292 (-420 (-975 *6)))))))))) + (-5 *1 (-947 *6 *7 *8 *9)) (-5 *4 (-660 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-705 *9)) (-5 *4 (-660 (-1201))) (-5 *5 (-944)) + (-4 *9 (-972 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) + (-4 *7 (-13 (-865) (-627 (-1201)))) (-4 *8 (-809)) + (-5 *2 + (-660 + (-2 (|:| |eqzro| (-660 *9)) (|:| |neqzro| (-660 *9)) + (|:| |wcond| (-660 (-975 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1292 (-420 (-975 *6)))) + (|:| -4060 (-660 (-1292 (-420 (-975 *6)))))))))) + (-5 *1 (-947 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-705 *8)) (-5 *4 (-944)) (-4 *8 (-972 *5 *7 *6)) + (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) + (-4 *7 (-809)) + (-5 *2 + (-660 + (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) + (|:| |wcond| (-660 (-975 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1292 (-420 (-975 *5)))) + (|:| -4060 (-660 (-1292 (-420 (-975 *5)))))))))) + (-5 *1 (-947 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-705 *9)) (-5 *4 (-660 *9)) (-5 *5 (-1183)) + (-4 *9 (-972 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) + (-4 *7 (-13 (-865) (-627 (-1201)))) (-4 *8 (-809)) (-5 *2 (-577)) + (-5 *1 (-947 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-705 *9)) (-5 *4 (-660 (-1201))) (-5 *5 (-1183)) + (-4 *9 (-972 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) + (-4 *7 (-13 (-865) (-627 (-1201)))) (-4 *8 (-809)) (-5 *2 (-577)) + (-5 *1 (-947 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-705 *8)) (-5 *4 (-1183)) (-4 *8 (-972 *5 *7 *6)) + (-4 *5 (-13 (-318) (-148))) (-4 *6 (-13 (-865) (-627 (-1201)))) + (-4 *7 (-809)) (-5 *2 (-577)) (-5 *1 (-947 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-705 *10)) (-5 *4 (-660 *10)) (-5 *5 (-944)) + (-5 *6 (-1183)) (-4 *10 (-972 *7 *9 *8)) (-4 *7 (-13 (-318) (-148))) + (-4 *8 (-13 (-865) (-627 (-1201)))) (-4 *9 (-809)) (-5 *2 (-577)) + (-5 *1 (-947 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-705 *10)) (-5 *4 (-660 (-1201))) (-5 *5 (-944)) + (-5 *6 (-1183)) (-4 *10 (-972 *7 *9 *8)) (-4 *7 (-13 (-318) (-148))) + (-4 *8 (-13 (-865) (-627 (-1201)))) (-4 *9 (-809)) (-5 *2 (-577)) + (-5 *1 (-947 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-705 *9)) (-5 *4 (-944)) (-5 *5 (-1183)) + (-4 *9 (-972 *6 *8 *7)) (-4 *6 (-13 (-318) (-148))) + (-4 *7 (-13 (-865) (-627 (-1201)))) (-4 *8 (-809)) (-5 *2 (-577)) + (-5 *1 (-947 *6 *7 *8 *9))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-577)) (-5 *1 (-493))))) +(((*1 *1) (-5 *1 (-341)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192))))) +(((*1 *1 *2) + (-12 (-5 *2 (-944)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-375)) (-14 *5 (-1018 *3 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-361)) (-5 *2 (-431 (-1197 (-1197 *4)))) + (-5 *1 (-1240 *4)) (-5 *3 (-1197 (-1197 *4)))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1268 *5)) + (-4 *5 (-13 (-375) (-148) (-1063 (-577)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-420 *6)) (|:| |c| (-420 *6)) + (|:| -2823 *6))) + (-5 *1 (-1040 *5 *6)) (-5 *3 (-420 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) + (-14 *6 (-660 (-1201))) + (-5 *2 + (-660 (-1171 *5 (-544 (-882 *6)) (-882 *6) (-796 *5 (-882 *6))))) + (-5 *1 (-641 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-660 *7) *7 (-1197 *7))) (-5 *5 (-1 (-431 *7) *7)) + (-4 *7 (-1268 *6)) (-4 *6 (-13 (-375) (-148) (-1063 (-420 (-577))))) + (-5 *2 (-660 (-2 (|:| |frac| (-420 *7)) (|:| -3994 *3)))) + (-5 *1 (-825 *6 *7 *3 *8)) (-4 *3 (-672 *7)) + (-4 *8 (-672 (-420 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-431 *6) *6)) (-4 *6 (-1268 *5)) + (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-5 *2 + (-660 (-2 (|:| |frac| (-420 *6)) (|:| -3994 (-670 *6 (-420 *6)))))) + (-5 *1 (-828 *5 *6)) (-5 *3 (-670 *6 (-420 *6)))))) +(((*1 *2) + (-12 (-4 *3 (-1246)) (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4))) + (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-1180)) (-5 *1 (-1290)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1290)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1290)))) + (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-1183)) (-5 *1 (-1293)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1293)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1293)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-1180)) (-5 *1 (-1291)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1291)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1291))))) -(((*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-102)) (-4 *2 (-865))))) -(((*1 *2 *2) - (-12 (-5 *2 (-657 (-657 *3))) (-4 *3 (-862)) (-5 *1 (-1209 *3))))) + (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-1183)) (-5 *1 (-1294)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1294)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-1294))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-1157 *4 *2)) + (-4 *2 (-13 (-617 (-577) *4) (-10 -7 (-6 -4470) (-6 -4471)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-865)) (-4 *3 (-1242)) (-5 *1 (-1157 *3 *2)) + (-4 *2 (-13 (-617 (-577) *3) (-10 -7 (-6 -4470) (-6 -4471))))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-660 *4)) (-4 *4 (-375)) (-4 *2 (-1268 *4)) + (-5 *1 (-945 *4 *2))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *3 (-577)) + (-5 *2 (-1060)) (-5 *1 (-772))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1057)) (-5 *1 (-771))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-702 *3)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -4402 ((-430 $) $))))) - (-4 *4 (-1265 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *1 *2) - (-12 + (-12 (-5 *4 (-660 (-882 *5))) (-14 *5 (-660 (-1201))) (-4 *6 (-465)) (-5 *2 - (-2 (|:| |mval| (-702 *3)) (|:| |invmval| (-702 *3)) - (|:| |genIdeal| (-516 *3 *4 *5 *6)))) - (-4 *3 (-374)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1239))))) -(((*1 *2 *2) (-12 (-5 *2 (-1142)) (-5 *1 (-340))))) + (-2 (|:| |dpolys| (-660 (-254 *5 *6))) + (|:| |coords| (-660 (-577))))) + (-5 *1 (-484 *5 *6 *7)) (-5 *3 (-660 (-254 *5 *6))) (-4 *7 (-465))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192))))) +(((*1 *2 *3) + (-12 (-4 *4 (-361)) (-5 *2 (-431 (-1197 (-1197 *4)))) + (-5 *1 (-1240 *4)) (-5 *3 (-1197 (-1197 *4)))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1201)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-660 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-660 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -2898 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1227) (-27) (-443 *8))) + (-4 *8 (-13 (-465) (-148) (-1063 *3) (-654 *3))) (-5 *3 (-577)) + (-5 *2 (-660 *4)) (-5 *1 (-1039 *8 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1194 (-1194 *5)))) - (-5 *1 (-1237 *5)) (-5 *3 (-1194 (-1194 *5)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-657 (-925 *3))) (-4 *3 (-1122)) (-5 *1 (-924 *3))))) -(((*1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + (-12 (-5 *3 (-660 (-796 *5 (-882 *6)))) (-5 *4 (-112)) (-4 *5 (-465)) + (-14 *6 (-660 (-1201))) (-5 *2 (-660 (-1071 *5 *6))) + (-5 *1 (-641 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-375)) (-4 *7 (-1268 *5)) (-4 *4 (-740 *5 *7)) + (-5 *2 (-2 (|:| -1881 (-705 *6)) (|:| |vec| (-1292 *5)))) + (-5 *1 (-827 *5 *6 *7 *4 *3)) (-4 *6 (-672 *5)) (-4 *3 (-672 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) +(((*1 *1 *1) (-4 *1 (-558)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1242)) (-5 *1 (-1157 *4 *2)) + (-4 *2 (-13 (-617 (-577) *4) (-10 -7 (-6 -4470) (-6 -4471)))))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1161)))) + (-12 (-4 *3 (-865)) (-4 *3 (-1242)) (-5 *1 (-1157 *3 *2)) + (-4 *2 (-13 (-617 (-577) *3) (-10 -7 (-6 -4470) (-6 -4471))))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-577)) (-5 *5 (-705 (-228))) (-5 *4 (-228)) + (-5 *2 (-1060)) (-5 *1 (-772))))) +(((*1 *2 *3) + (-12 (-4 *1 (-943)) (-5 *2 (-2 (|:| -1777 (-660 *1)) (|:| -4101 *1))) + (-5 *3 (-660 *1))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-660 (-494 *4 *5))) (-5 *3 (-660 (-882 *4))) + (-14 *4 (-660 (-1201))) (-4 *5 (-465)) (-5 *1 (-484 *4 *5 *6)) + (-4 *6 (-465))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1203 (-420 (-577)))) (-5 *2 (-420 (-577))) + (-5 *1 (-192))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-660 (-660 (-228)))) (-5 *4 (-228)) + (-5 *2 (-660 (-966 *4))) (-5 *1 (-1238)) (-5 *3 (-966 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-660 (-1206))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1201)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-660 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-660 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -2898 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1227) (-27) (-443 *8))) + (-4 *8 (-13 (-465) (-148) (-1063 *3) (-654 *3))) (-5 *3 (-577)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -4239 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1038 *8 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-657 *6)) (-4 *6 (-1087 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *1 (-999 *3 *4 *5 *6)))) + (-12 (-5 *2 (-660 (-975 *3))) (-4 *3 (-465)) (-5 *1 (-372 *3 *4)) + (-14 *4 (-660 (-1201))))) + ((*1 *2 *2) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-465)) + (-4 *4 (-809)) (-4 *5 (-865)) (-5 *1 (-463 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-657 *7)) (-5 *3 (-112)) (-4 *7 (-1087 *4 *5 *6)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-806)) (-4 *6 (-862)) - (-5 *1 (-999 *4 *5 *6 *7))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1087 *2 *3 *4)) (-4 *2 (-1071)) (-4 *3 (-806)) - (-4 *4 (-862)) (-4 *2 (-464))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-702 (-227))) (-5 *4 (-227)) - (-5 *2 (-1057)) (-5 *1 (-765))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-712)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-712))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1239)) (-4 *2 (-1071)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-877)))) - ((*1 *1 *1) (-5 *1 (-877))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-963 (-227))) (-5 *2 (-227)) (-5 *1 (-1235)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1239)) (-4 *2 (-1071))))) -(((*1 *2 *1) - (-12 (-5 *2 (-657 (-1203))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1294) (-1289 *5) (-1289 *5) (-390))) - (-5 *3 (-1289 (-390))) (-5 *5 (-390)) (-5 *2 (-1294)) - (-5 *1 (-801))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-941)) (-4 *3 (-1071))))) + (-12 (-5 *2 (-660 *7)) (-5 *3 (-1183)) (-4 *7 (-972 *4 *5 *6)) + (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-5 *1 (-463 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-660 *7)) (-5 *3 (-1183)) (-4 *7 (-972 *4 *5 *6)) + (-4 *4 (-465)) (-4 *5 (-809)) (-4 *6 (-865)) + (-5 *1 (-463 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-375)) (-4 *3 (-809)) (-4 *4 (-865)) + (-5 *1 (-517 *2 *3 *4 *5)) (-4 *5 (-972 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-660 (-796 *3 (-882 *4)))) (-4 *3 (-465)) + (-14 *4 (-660 (-1201))) (-5 *1 (-641 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1194 *6)) (-4 *6 (-1071)) (-4 *4 (-806)) (-4 *5 (-862)) - (-5 *2 (-1194 *7)) (-5 *1 (-331 *4 *5 *6 *7)) - (-4 *7 (-969 *6 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1290)))) - ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *1) (-4 *1 (-360))) + (-12 (-5 *3 (-669 (-420 *2))) (-4 *2 (-1268 *4)) (-5 *1 (-826 *4 *2)) + (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))))) ((*1 *2 *3) - (-12 (-5 *3 (-657 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-657 (-1194 *5))) - (|:| |prim| (-1194 *5)))) - (-5 *1 (-444 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-568) (-148))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1194 *3)) - (|:| |pol2| (-1194 *3)) (|:| |prim| (-1194 *3)))) - (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-972 *5)) (-5 *4 (-1198)) (-4 *5 (-13 (-374) (-148))) - (-5 *2 - (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) - (|:| |prim| (-1194 *5)))) - (-5 *1 (-980 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-657 (-972 *5))) (-5 *4 (-657 (-1198))) - (-4 *5 (-13 (-374) (-148))) - (-5 *2 - (-2 (|:| -1771 (-657 (-576))) (|:| |poly| (-657 (-1194 *5))) - (|:| |prim| (-1194 *5)))) - (-5 *1 (-980 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-657 (-972 *6))) (-5 *4 (-657 (-1198))) (-5 *5 (-1198)) - (-4 *6 (-13 (-374) (-148))) - (-5 *2 - (-2 (|:| -1771 (-657 (-576))) (|:| |poly| (-657 (-1194 *6))) - (|:| |prim| (-1194 *6)))) - (-5 *1 (-980 *6))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-908 *4)) (-4 *4 (-1122)) (-5 *1 (-905 *4 *3)) - (-4 *3 (-1122))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-836)) (-5 *1 (-835))))) + (-12 (-5 *3 (-670 *2 (-420 *2))) (-4 *2 (-1268 *4)) + (-5 *1 (-826 *4 *2)) + (-4 *4 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577)))))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-354 *4 *3 *5)) (-4 *4 (-1246)) (-4 *3 (-1268 *4)) + (-4 *5 (-1268 (-420 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) (-4 *4 (-1268 *3)) + (-4 *5 (-1268 (-420 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1293)))) + ((*1 *2 *1) (-12 (-5 *2 (-1297)) (-5 *1 (-1294))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1292 *4)) (-4 *4 (-1074)) (-4 *2 (-1268 *4)) + (-5 *1 (-457 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-420 (-1197 (-327 *5)))) (-5 *3 (-1292 (-327 *5))) + (-5 *4 (-577)) (-4 *5 (-569)) (-5 *1 (-1155 *5))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-660 *1)) (-4 *1 (-943))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-772))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 *6)) (-4 *5 (-1122)) - (-4 *6 (-1239)) (-5 *2 (-1 *6 *5)) (-5 *1 (-654 *5 *6)))) + (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *6)) (-4 *5 (-1125)) + (-4 *6 (-1242)) (-5 *2 (-1 *6 *5)) (-5 *1 (-657 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 *2)) (-4 *5 (-1122)) - (-4 *2 (-1239)) (-5 *1 (-654 *5 *2)))) + (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *2)) (-4 *5 (-1125)) + (-4 *2 (-1242)) (-5 *1 (-657 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-657 *6)) (-5 *4 (-657 *5)) (-4 *6 (-1122)) - (-4 *5 (-1239)) (-5 *2 (-1 *5 *6)) (-5 *1 (-654 *6 *5)))) + (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 *5)) (-4 *6 (-1125)) + (-4 *5 (-1242)) (-5 *2 (-1 *5 *6)) (-5 *1 (-657 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 *2)) (-4 *5 (-1122)) - (-4 *2 (-1239)) (-5 *1 (-654 *5 *2)))) + (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *2)) (-4 *5 (-1125)) + (-4 *2 (-1242)) (-5 *1 (-657 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-657 *5)) (-5 *4 (-657 *6)) - (-4 *5 (-1122)) (-4 *6 (-1239)) (-5 *1 (-654 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-660 *5)) (-5 *4 (-660 *6)) + (-4 *5 (-1125)) (-4 *6 (-1242)) (-5 *1 (-657 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-657 *5)) (-5 *4 (-657 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1122)) (-4 *2 (-1239)) (-5 *1 (-654 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1166)) (-5 *3 (-145)) (-5 *2 (-784))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-768))))) + (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1125)) (-4 *2 (-1242)) (-5 *1 (-657 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1169)) (-5 *3 (-145)) (-5 *2 (-787))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-660 (-882 *5))) (-14 *5 (-660 (-1201))) (-4 *6 (-465)) + (-5 *2 (-660 (-660 (-254 *5 *6)))) (-5 *1 (-484 *5 *6 *7)) + (-5 *3 (-660 (-254 *5 *6))) (-4 *7 (-465))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1180)) (-5 *3 (-657 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-270)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1290)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) + (-12 (-5 *2 (-1183)) (-5 *3 (-660 (-271))) (-5 *1 (-269)))) + ((*1 *1 *2) (-12 (-5 *2 (-1183)) (-5 *1 (-271)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1293)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-1294))))) +(((*1 *2 *3) + (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192))))) +(((*1 *2 *3) + (-12 (-5 *3 (-577)) (-5 *2 (-660 (-660 (-228)))) (-5 *1 (-1238))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1037)) (-5 *2 (-880))))) (((*1 *2 *2) - (-12 (-5 *2 (-1289 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) - (-4 *4 (-1265 *3)) (-4 *5 (-1265 (-419 *4)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289))))) + (|partial| -12 (-5 *2 (-660 (-975 *3))) (-4 *3 (-465)) + (-5 *1 (-372 *3 *4)) (-14 *4 (-660 (-1201))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-660 (-796 *3 (-882 *4)))) (-4 *3 (-465)) + (-14 *4 (-660 (-1201))) (-5 *1 (-641 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-669 (-420 *6))) (-5 *4 (-420 *6)) (-4 *6 (-1268 *5)) + (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4060 (-660 *4)))) + (-5 *1 (-826 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-669 (-420 *6))) (-4 *6 (-1268 *5)) + (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-5 *2 (-2 (|:| -4060 (-660 (-420 *6))) (|:| -1881 (-705 *5)))) + (-5 *1 (-826 *5 *6)) (-5 *4 (-660 (-420 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-670 *6 (-420 *6))) (-5 *4 (-420 *6)) (-4 *6 (-1268 *5)) + (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4060 (-660 *4)))) + (-5 *1 (-826 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-670 *6 (-420 *6))) (-4 *6 (-1268 *5)) + (-4 *5 (-13 (-375) (-148) (-1063 (-577)) (-1063 (-420 (-577))))) + (-5 *2 (-2 (|:| -4060 (-660 (-420 *6))) (|:| -1881 (-705 *5)))) + (-5 *1 (-826 *5 *6)) (-5 *4 (-660 (-420 *6)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) + (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4)))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-420 (-1197 (-327 *3)))) (-4 *3 (-569)) + (-5 *1 (-1155 *3))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-705 (-228))) (-5 *5 (-705 (-577))) (-5 *3 (-577)) + (-5 *2 (-1060)) (-5 *1 (-772))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-657 (-1194 *5))) (-5 *3 (-1194 *5)) - (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-657 *3)) (-4 *3 (-1265 *5)) - (-4 *5 (-1265 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-657 (-1194 (-576)))) (-5 *3 (-1194 (-576))) - (-5 *1 (-584)))) + (-12 (-5 *2 (-660 (-975 *4))) (-5 *3 (-660 (-1201))) (-4 *4 (-465)) + (-5 *1 (-941 *4))))) +(((*1 *1) (-5 *1 (-481)))) +(((*1 *2 *1) + (-12 (-5 *2 (-660 *4)) (-5 *1 (-1166 *3 *4)) + (-4 *3 (-13 (-1125) (-34))) (-4 *4 (-13 (-1125) (-34)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192))))) +(((*1 *1 *2) + (-12 (-5 *2 (-944)) (-4 *1 (-244 *3 *4)) (-4 *4 (-1074)) + (-4 *4 (-1242)))) + ((*1 *1 *2) + (-12 (-14 *3 (-660 (-1201))) (-4 *4 (-174)) + (-4 *5 (-244 (-3484 *3) (-787))) + (-14 *6 + (-1 (-112) (-2 (|:| -3222 *2) (|:| -3556 *5)) + (-2 (|:| -3222 *2) (|:| -3556 *5)))) + (-5 *1 (-474 *3 *4 *2 *5 *6 *7)) (-4 *2 (-865)) + (-4 *7 (-972 *4 *5 (-882 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-966 (-228))) (-5 *1 (-1238))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1197 *1)) (-4 *1 (-1037))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 (-975 *4))) (-4 *4 (-465)) (-5 *2 (-112)) + (-5 *1 (-372 *4 *5)) (-14 *5 (-660 (-1201))))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-796 *4 (-882 *5)))) (-4 *4 (-465)) + (-14 *5 (-660 (-1201))) (-5 *2 (-112)) (-5 *1 (-641 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) + (-4 *3 (-1268 *4)) (-5 *1 (-825 *4 *3 *2 *5)) (-4 *2 (-672 *3)) + (-4 *5 (-672 (-420 *3))))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-657 (-1194 *1))) (-5 *3 (-1194 *1)) - (-4 *1 (-929))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-576)) (-5 *5 (-702 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1057)) (-5 *1 (-762))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-624 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1198))) (-5 *5 (-1194 *2)) - (-4 *2 (-13 (-442 *6) (-27) (-1224))) - (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) - (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1122)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-624 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1198))) - (-5 *5 (-419 (-1194 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1224))) - (-4 *6 (-13 (-464) (-1060 (-576)) (-148) (-652 (-576)))) - (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1122))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-657 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1062))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1194 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) - (-4 *3 (-374))))) + (-12 (-5 *3 (-420 *5)) + (-4 *4 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *5 (-1268 *4)) + (-5 *1 (-825 *4 *5 *2 *6)) (-4 *2 (-672 *5)) (-4 *6 (-672 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) + (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1183)) (-5 *2 (-1297)) (-5 *1 (-247)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-1183))) (-5 *2 (-1297)) (-5 *1 (-247))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-305 (-420 (-975 *5)))) (-5 *4 (-1201)) + (-4 *5 (-13 (-318) (-148))) + (-5 *2 (-1190 (-660 (-327 *5)) (-660 (-305 (-327 *5))))) + (-5 *1 (-1154 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) + (-4 *5 (-13 (-318) (-148))) + (-5 *2 (-1190 (-660 (-327 *5)) (-660 (-305 (-327 *5))))) + (-5 *1 (-1154 *5))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-705 (-228))) (-5 *4 (-577)) (-5 *2 (-1060)) + (-5 *1 (-772))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-660 (-975 *4))) (-5 *3 (-660 (-1201))) (-4 *4 (-465)) + (-5 *1 (-941 *4))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *3 (-660 (-892))) + (-5 *4 (-660 (-944))) (-5 *5 (-660 (-271))) (-5 *1 (-481)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *3 (-660 (-892))) + (-5 *4 (-660 (-944))) (-5 *1 (-481)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *1 (-481)))) + ((*1 *1 *1) (-5 *1 (-481)))) (((*1 *2 *3) - (-12 (-5 *3 (-657 (-1198))) (-5 *2 (-1294)) (-5 *1 (-1241)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-657 (-1198))) (-5 *2 (-1294)) (-5 *1 (-1241))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1198)) (-5 *1 (-688 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) - (-12 (-5 *2 (-657 *4)) (-5 *1 (-1163 *3 *4)) - (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34)))))) + (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-228)) (-5 *5 (-577)) (-5 *2 (-1237 *3)) + (-5 *1 (-806 *3)) (-4 *3 (-999)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-660 (-660 (-966 (-228))))) (-5 *4 (-112)) + (-5 *1 (-1237 *2)) (-4 *2 (-999))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1197 *1)) (-4 *1 (-1037))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 *4)) (-4 *4 (-865)) (-5 *2 (-660 (-680 *4 *5))) + (-5 *1 (-640 *4 *5 *6)) (-4 *5 (-13 (-174) (-733 (-420 (-577))))) + (-14 *6 (-944))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-660 *5) *6)) + (-4 *5 (-13 (-375) (-148) (-1063 (-420 (-577))))) (-4 *6 (-1268 *5)) + (-5 *2 (-660 (-2 (|:| -1512 *5) (|:| -3994 *3)))) + (-5 *1 (-825 *5 *6 *3 *7)) (-4 *3 (-672 *6)) + (-4 *7 (-672 (-420 *6)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1292 *1)) (-4 *1 (-354 *3 *4 *5)) (-4 *3 (-1246)) + (-4 *4 (-1268 *3)) (-4 *5 (-1268 (-420 *4)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-660 *2) *2 *2 *2)) (-4 *2 (-1125)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1125)) (-5 *1 (-103 *2))))) +(((*1 *1 *1) (-5 *1 (-880))) + ((*1 *2 *1) + (-12 (-4 *1 (-1128 *2 *3 *4 *5 *6)) (-4 *3 (-1125)) (-4 *4 (-1125)) + (-4 *5 (-1125)) (-4 *6 (-1125)) (-4 *2 (-1125)))) + ((*1 *1 *2) (-12 (-5 *2 (-228)) (-5 *1 (-1183)))) + ((*1 *1 *2) (-12 (-5 *2 (-577)) (-5 *1 (-1183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1183)) (-5 *1 (-1201))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 *5))) - (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1289 *5)) - (-5 *1 (-650 *5 *4)))) + (-12 (-5 *3 (-420 (-975 *5))) (-5 *4 (-1201)) + (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-327 *5))) + (-5 *1 (-1154 *5)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1289 *4)) (-4 *4 (-13 (-1071) (-652 *5))) - (-2712 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1289 (-419 *5))) - (-5 *1 (-650 *5 *4))))) + (-12 (-5 *3 (-660 (-420 (-975 *5)))) (-5 *4 (-660 (-1201))) + (-4 *5 (-13 (-318) (-148))) (-5 *2 (-660 (-660 (-327 *5)))) + (-5 *1 (-1154 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-972 (-576))) (-5 *2 (-657 *1)) (-4 *1 (-1034)))) - ((*1 *2 *3) - (-12 (-5 *3 (-972 (-419 (-576)))) (-5 *2 (-657 *1)) (-4 *1 (-1034)))) - ((*1 *2 *3) (-12 (-5 *3 (-972 *1)) (-4 *1 (-1034)) (-5 *2 (-657 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1194 (-576))) (-5 *2 (-657 *1)) (-4 *1 (-1034)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1194 (-419 (-576)))) (-5 *2 (-657 *1)) (-4 *1 (-1034)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1194 *1)) (-4 *1 (-1034)) (-5 *2 (-657 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-861) (-374))) (-4 *3 (-1265 *4)) (-5 *2 (-657 *1)) - (-4 *1 (-1090 *4 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-174))))) + (-12 (-5 *3 (-660 (-577))) (-5 *2 (-927 (-577))) (-5 *1 (-940)))) + ((*1 *2 *3) (-12 (-5 *3 (-996)) (-5 *2 (-927 (-577))) (-5 *1 (-940))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-577)) (-5 *4 (-705 (-228))) (-5 *2 (-1060)) + (-5 *1 (-772))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-695 *3 *2)) (-4 *3 (-1125)) (-4 *2 (-1125))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-966 (-228))))) (-5 *1 (-481))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-784)) (-4 *3 (-1071)) (-4 *1 (-700 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1071)) (-4 *1 (-1145 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4467)) (-4 *4 (-374)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-657 *6)) (-5 *1 (-533 *4 *5 *6 *3)) - (-4 *3 (-700 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4467)) (-4 *4 (-568)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-4 *7 (-1014 *4)) (-4 *8 (-384 *7)) - (-4 *9 (-384 *7)) (-5 *2 (-657 *6)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-700 *4 *5 *6)) - (-4 *10 (-700 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-700 *3 *4 *5)) (-4 *3 (-1071)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-657 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-657 *6)) (-5 *1 (-701 *4 *5 *6 *3)) - (-4 *3 (-700 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *5 (-1071)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) - (-5 *2 (-657 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-246)))) - ((*1 *2 *3) - (-12 (-5 *3 (-657 (-1180))) (-5 *2 (-1294)) (-5 *1 (-246))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-657 (-851))) (-5 *1 (-141))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-1220))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) + (-12 (-5 *3 (-944)) (-5 *2 (-1203 (-420 (-577)))) (-5 *1 (-192))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-999))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1037)) (-5 *2 (-880))))) (((*1 *2 *1) - (-12 (-5 *2 (-877)) (-5 *1 (-1179 *3)) (-4 *3 (-1122)) - (-4 *3 (-1239))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3436 *3))) - (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3203 *4))) - (-5 *1 (-991 *4 *3)) (-4 *3 (-1265 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-941)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1194 *1)) - (-4 *1 (-339 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1194 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) - (-4 *2 (-1265 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1289 *4)) (-4 *4 (-360)) (-5 *2 (-1194 *4)) - (-5 *1 (-540 *4))))) -(((*1 *1 *1) (-4 *1 (-1166)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-905 *4 *5)) (-5 *3 (-905 *4 *6)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-679 *5)) (-5 *1 (-901 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1265 *3)) - (-4 *5 (-1265 (-419 *4))) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-174)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-784)) (-4 *1 (-1310 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-1071))))) -(((*1 *1 *1) (-5 *1 (-877))) - ((*1 *2 *1) - (-12 (-4 *1 (-1125 *2 *3 *4 *5 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)))) - ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1180)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1198))))) -(((*1 *2) (-12 (-5 *2 (-657 (-1180))) (-5 *1 (-1292))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-806)) - (-4 *5 (-862)) (-4 *2 (-1087 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-702 (-227))) (-5 *2 (-1057)) - (-5 *1 (-768))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-692 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1239))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1071)) (-5 *1 (-1182 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1281 *2 *3 *4)) (-4 *2 (-1071)) (-14 *3 (-1198)) - (-14 *4 *2)))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-806)) (-4 *7 (-862)) - (-4 *3 (-1087 *5 *6 *7)) - (-5 *2 (-657 (-2 (|:| |val| *3) (|:| -3946 *4)))) - (-5 *1 (-1130 *5 *6 *7 *3 *4)) (-4 *4 (-1093 *5 *6 *7 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1239)) (-5 *1 (-184 *3 *2)) (-4 *2 (-687 *3))))) -((-1323 . 731693) (-1324 . 731475) (-1325 . 731302) (-1326 . 731243) - (-1327 . 731163) (-1328 . 731053) (-1329 . 730925) (-1330 . 730867) - (-1331 . 730546) (-1332 . 730354) (-1333 . 730227) (-1334 . 730081) - (-1335 . 730049) (-1336 . 729674) (-1337 . 729544) (-1338 . 729394) - (-1339 . 729301) (-1340 . 729236) (-1341 . 729172) (-1342 . 729113) - (-1343 . 729061) (-1344 . 728916) (-1345 . 728028) (-1346 . 727796) - (-1347 . 727715) (-1348 . 727660) (-1349 . 727071) (-1350 . 726718) - (-1351 . 726595) (-1352 . 726515) (-1353 . 726356) (-1354 . 726259) - (-1355 . 726209) (-1356 . 726114) (-1357 . 725522) (-1358 . 725272) - (-1359 . 724784) (-1360 . 724722) (-1361 . 724591) (-1362 . 724318) - (-1363 . 724205) (-1364 . 723332) (-1365 . 723261) (-1366 . 723157) - (-1367 . 722009) (-1368 . 721903) (-1369 . 721738) (-1370 . 721660) - (-1371 . 721536) (-1372 . 721351) (-1373 . 721271) (-1374 . 720955) - (-1375 . 720856) (-1376 . 720719) (-1377 . 720606) (-1378 . 720270) - (-1379 . 720055) (-1380 . 720024) (-1381 . 719941) (-1382 . 719801) - (-1383 . 719748) (-1384 . 719691) (-1385 . 719455) (-1386 . 719285) - (-1387 . 719205) (-1388 . 719117) (-1389 . 719034) (-1390 . 718961) - (-1391 . 718567) (-1392 . 717957) (-1393 . 717884) (-1394 . 717766) - (-1395 . 717592) (-1396 . 717467) (-1397 . 717351) (-1398 . 717256) - (-1399 . 717173) (-1400 . 717145) (-1401 . 717029) (-1402 . 716803) - (-1403 . 716715) (-1404 . 716477) (-1405 . 716359) (-1406 . 716231) - (-1407 . 715139) (-1408 . 715007) (-1409 . 714720) (-1410 . 714661) - (-1411 . 714477) (-1412 . 714369) (-1413 . 714286) (-1414 . 714160) - (-1415 . 713756) (-1416 . 713693) (-1417 . 713473) (-1418 . 712887) - (-1419 . 712739) (-1420 . 712644) (-1421 . 712565) (-1422 . 712104) - (-1423 . 711975) (-1424 . 711906) (-1425 . 711851) (-1426 . 711693) - (-1427 . 711498) (-1428 . 711419) (-1429 . 711173) (-1430 . 711075) - (-1431 . 710757) (-1432 . 710634) (-1433 . 710577) (-1434 . 710491) - (-1435 . 710389) (-1436 . 710218) (-1437 . 710027) (-1438 . 709860) - (-1439 . 709752) (-1440 . 709615) (-1441 . 709562) (-1442 . 709431) - (-1443 . 709403) (-1444 . 709108) (-1445 . 708866) (-1446 . 708732) - (-1447 . 708672) (-1448 . 708526) (-1449 . 708287) (-1450 . 707905) - (-1451 . 707782) (-1452 . 707700) (-1453 . 707369) (-1454 . 707151) - (-1455 . 706978) (-1456 . 706825) (-1457 . 706691) (-1458 . 706415) - (-1459 . 706311) (-1460 . 705437) (-1461 . 705332) (-1462 . 705255) - (-1463 . 705133) (-1464 . 705081) (-1465 . 704968) (-1466 . 704869) - (-1467 . 704753) (-1468 . 704165) (-1469 . 704000) (** . 701005) - (-1471 . 700951) (-1472 . 700741) (-1473 . 700664) (-1474 . 700558) - (-1475 . 700470) (-1476 . 700420) (-1477 . 700352) (-1478 . 700286) - (-1479 . 700063) (-1480 . 699968) (-1481 . 699896) (-1482 . 699657) - (-1483 . 699524) (-1484 . 698184) (-1485 . 697872) (-1486 . 697814) - (-1487 . 697482) (-1488 . 697409) (-1489 . 697313) (-1490 . 697285) - (-1491 . 697112) (-1492 . 696920) (-1493 . 696396) (-1494 . 695638) - (-1495 . 695500) (-1496 . 695421) (-1497 . 695311) (-1498 . 695190) - (-1499 . 694887) (-1500 . 694772) (-1501 . 694719) (-1502 . 694529) - (-1503 . 694452) (-1504 . 694327) (-1505 . 694274) (-1506 . 694171) - (-1507 . 694094) (-1508 . 693792) (-1509 . 693375) (-1510 . 693245) - (-1511 . 693164) (-1512 . 693039) (-1513 . 692879) (-1514 . 692465) - (-1515 . 692329) (-1516 . 692069) (-1517 . 691991) (-1518 . 691880) - (-1519 . 691732) (-1520 . 691604) (-1521 . 691491) (-1522 . 691389) - (-1523 . 691322) (-1524 . 691271) (-1525 . 691016) (-1526 . 690942) - (-1527 . 690609) (-1528 . 690541) (-1529 . 690458) (-1530 . 690286) - (-1531 . 690105) (-1532 . 690051) (-1533 . 689995) (-1534 . 689855) - (-1535 . 689484) (-1536 . 688141) (-1537 . 688015) (-1538 . 687796) - (-1539 . 687591) (-1540 . 687401) (-1541 . 687116) (-1542 . 685866) - (-1543 . 685787) (-1544 . 685658) (-1545 . 685557) (-1546 . 685450) - (-1547 . 685339) (-1548 . 685198) (-1549 . 684976) (-1550 . 684803) - (-1551 . 684642) (-1552 . 684608) (-1553 . 684579) (-1554 . 684318) - (-1555 . 684124) (-1556 . 684003) (-1557 . 683896) (-1558 . 683625) - (-1559 . 683538) (-1560 . 683380) (-1561 . 683307) (-1562 . 683236) - (-1563 . 683004) (-1564 . 682902) (-1565 . 682765) (-1566 . 682706) - (-1567 . 682653) (-1568 . 682462) (-1569 . 682411) (-1570 . 682084) - (-1571 . 681931) (-1572 . 681837) (-1573 . 681727) (-1574 . 681593) - (-1575 . 681422) (-1576 . 681274) (-1577 . 681222) (-1578 . 681141) - (-1579 . 680967) (-1580 . 680670) (-1581 . 680621) (-1582 . 680550) - (-1583 . 680466) (-1584 . 680397) (-1585 . 680324) (-1586 . 680181) - (-1587 . 680108) (-1588 . 679971) (-1589 . 679830) (-1590 . 679741) - (-1591 . 679315) (-1592 . 679242) (-1593 . 678986) (-1594 . 678868) - (-1595 . 678541) (-1596 . 678241) (-1597 . 678123) (-1598 . 678019) - (-1599 . 677885) (-1600 . 677806) (-1601 . 677732) (-1602 . 677605) - (-1603 . 677518) (-1604 . 677486) (-1605 . 677430) (-1606 . 677306) - (-1607 . 676390) (-1608 . 675944) (-1609 . 675839) (-1610 . 675784) - (-1611 . 675506) (-1612 . 675450) (-1613 . 674451) (-1614 . 674378) - (-1615 . 674254) (-1616 . 674167) (-1617 . 674042) (-1618 . 673974) - (-1619 . 673759) (-1620 . 673704) (-1621 . 673000) (-1622 . 672832) - (-1623 . 672710) (-1624 . 668167) (-1625 . 668074) (-1626 . 667934) - (-1627 . 667618) (-1628 . 667546) (-1629 . 667231) (-1630 . 667031) - (-1631 . 666954) (-1632 . 666835) (-1633 . 666739) (-1634 . 666636) - (-1635 . 665955) (-1636 . 665861) (-1637 . 665724) (-1638 . 665671) - (-1639 . 665523) (-1640 . 665439) (-1641 . 665384) (-1642 . 665284) - (-1643 . 664892) (-1644 . 664809) (-1645 . 664703) (-1646 . 664622) - (-1647 . 664485) (-1648 . 664263) (-1649 . 664210) (-1650 . 664034) - (-1651 . 663824) (-1652 . 663683) (-1653 . 663472) (-1654 . 663378) - (-1655 . 663326) (-1656 . 663008) (-1657 . 662755) (-1658 . 662411) - (-1659 . 662287) (-1660 . 662014) (-1661 . 661947) (-1662 . 661481) - (-1663 . 661409) (-1664 . 661281) (-1665 . 661063) (-1666 . 660956) - (-1667 . 660900) (-1668 . 660845) (-1669 . 658989) (-1670 . 658898) - (-1671 . 658454) (-1672 . 658215) (-1673 . 658039) (-1674 . 657409) - (-1675 . 657355) (-1676 . 657271) (-1677 . 656864) (-1678 . 656772) - (-1679 . 655974) (-1680 . 655655) (-1681 . 655257) (-1682 . 655117) - (-1683 . 655031) (-1684 . 654901) (-1685 . 654762) (-1686 . 654679) - (-1687 . 654566) (-1688 . 654405) (-1689 . 654299) (-1690 . 653790) - (-1691 . 653677) (-1692 . 653459) (-1693 . 653115) (-1694 . 653007) - (-1695 . 652880) (-1696 . 652702) (-1697 . 652625) (-1698 . 652456) - (-1699 . 652147) (-1700 . 652051) (-1701 . 651348) (-1702 . 651265) - (-1703 . 651006) (-1704 . 650803) (-1705 . 650415) (-1706 . 650290) - (-1707 . 650083) (-1708 . 649985) (-1709 . 649712) (-1710 . 649597) - (-1711 . 649483) (-1712 . 649370) (-1713 . 649320) (-1714 . 649204) - (-1715 . 649175) (-1716 . 649087) (-1717 . 648752) (-1718 . 648193) - (-1719 . 648119) (-1720 . 648061) (-1721 . 647699) (-1722 . 643636) - (-1723 . 643584) (-1724 . 643240) (-1725 . 643057) (-1726 . 642969) - (-1727 . 642900) (-1728 . 642622) (-1729 . 642200) (-1730 . 641641) - (-1731 . 641502) (-1732 . 641230) (-1733 . 641114) (-1734 . 641035) - (-1735 . 640750) (-1736 . 640693) (-1737 . 640558) (-1738 . 640230) - (-1739 . 640181) (-1740 . 640078) (-1741 . 639980) (-1742 . 639642) - (-1743 . 639259) (-1744 . 639129) (-1745 . 638101) (-1746 . 637958) - (-1747 . 637930) (-1748 . 637638) (-1749 . 637508) (-1750 . 637424) - (-1751 . 637366) (-1752 . 636851) (-1753 . 636745) (-1754 . 636647) - (-1755 . 636449) (-1756 . 636313) (-1757 . 636235) (-1758 . 636153) - (-1759 . 636043) (-1760 . 635868) (-1761 . 633523) (-1762 . 633358) - (-1763 . 633297) (-1764 . 633101) (-1765 . 632958) (-1766 . 632843) - (-1767 . 632769) (-1768 . 632673) (-1769 . 632620) (-1770 . 630506) - (-1771 . 630148) (-1772 . 630080) (-1773 . 629850) (-1774 . 629635) - (-1775 . 629392) (-1776 . 629239) (-1777 . 629021) (-1778 . 628954) - (-1779 . 628885) (-1780 . 628801) (-1781 . 628384) (-1782 . 628329) - (-1783 . 628270) (-1784 . 628211) (-1785 . 628137) (-1786 . 628087) - (-1787 . 627974) (-1788 . 627946) (-1789 . 627865) (-1790 . 627760) - (-1791 . 627541) (-1792 . 627055) (-1793 . 626746) (-1794 . 626690) - (-1795 . 626394) (-1796 . 626003) (-1797 . 625879) (-1798 . 625679) - (-1799 . 625138) (-1800 . 625036) (-1801 . 624568) (-1802 . 624466) - (-1803 . 623864) (-1804 . 623762) (-1805 . 623647) (-1806 . 623553) - (-1807 . 623440) (-1808 . 623171) (-1809 . 623068) (-1810 . 622228) - (-1811 . 622003) (-1812 . 621924) (-1813 . 621875) (-1814 . 621664) - (-1815 . 621569) (-1816 . 621517) (-1817 . 621455) (-1818 . 621331) - (-1819 . 621168) (-1820 . 621018) (-1821 . 620932) (-1822 . 620898) - (-1823 . 620846) (-1824 . 620661) (-1825 . 620170) (-1826 . 620018) - (-1827 . 619854) (-1828 . 619694) (-1829 . 619608) (-1830 . 619496) - (-1831 . 619359) (-1832 . 618192) (-1833 . 618030) (-1834 . 617947) - (-1835 . 617831) (-1836 . 617715) (-1837 . 617497) (-1838 . 617322) - (-1839 . 617203) (-1840 . 617115) (-1841 . 616982) (-1842 . 616886) - (-1843 . 616815) (-1844 . 616691) (-1845 . 616310) (-1846 . 616224) - (-1847 . 616081) (-1848 . 616030) (-1849 . 614628) (-1850 . 614197) - (-1851 . 614126) (-1852 . 613869) (-1853 . 613816) (-1854 . 613719) - (-1855 . 613561) (-1856 . 613479) (-1857 . 612994) (-1858 . 612895) - (-1859 . 612686) (-1860 . 612424) (-1861 . 612211) (-1862 . 612180) - (-1863 . 611968) (-1864 . 611830) (-1865 . 611729) (-1866 . 611670) - (-1867 . 611575) (-1868 . 611471) (-1869 . 611400) (-1870 . 611329) - (-1871 . 611277) (-1872 . 611140) (-1873 . 611019) (-1874 . 610643) - (-1875 . 610547) (-1876 . 610185) (-1877 . 610116) (-1878 . 609589) - (-1879 . 609560) (-1880 . 609214) (-1881 . 609185) (-1882 . 609106) - (-1883 . 608796) (-1884 . 608616) (-1885 . 603102) (-1886 . 603070) - (-1887 . 602964) (-1888 . 602485) (-1889 . 602299) (-1890 . 602240) - (-1891 . 602123) (-1892 . 601500) (-1893 . 601399) (-1894 . 600592) - (-1895 . 600540) (-1896 . 600147) (-1897 . 600095) (-1898 . 600042) - (-1899 . 599986) (-1900 . 599898) (-1901 . 599755) (-1902 . 599670) - (-1903 . 599508) (-1904 . 599177) (-1905 . 598652) (-1906 . 598542) - (-1907 . 598100) (-1908 . 597985) (-1909 . 597911) (-1910 . 597798) - (-1911 . 597496) (-1912 . 597427) (-1913 . 597350) (-1914 . 597277) - (-1915 . 597225) (-1916 . 596890) (-1917 . 596774) (-1918 . 596651) - (-1919 . 596441) (-1920 . 596227) (-1921 . 596146) (-1922 . 596031) - (-1923 . 595704) (-1924 . 595624) (-1925 . 594760) (-1926 . 594707) - (-1927 . 594506) (-1928 . 594451) (-1929 . 594354) (-1930 . 594320) - (-1931 . 594237) (-1932 . 594166) (-1933 . 593921) (-1934 . 593868) - (-1935 . 593789) (-1936 . 593720) (-1937 . 593668) (-1938 . 593388) - (-1939 . 593336) (-1940 . 593232) (-1941 . 593137) (-1942 . 593065) - (-1943 . 592924) (-1944 . 592674) (-1945 . 592549) (-1946 . 592393) - (-1947 . 592294) (-1948 . 592211) (-1949 . 592151) (-1950 . 591993) - (-1951 . 591778) (-1952 . 591707) (-1953 . 591372) (-1954 . 589795) - (-1955 . 589730) (-1956 . 589650) (-1957 . 589465) (-1958 . 589271) - (-1959 . 588704) (-1960 . 587838) (-1961 . 587549) (-1962 . 587417) - (-1963 . 587198) (-1964 . 586957) (-1965 . 586829) (-1966 . 586801) - (-1967 . 586685) (-1968 . 586447) (-1969 . 586050) (-1970 . 585972) - (-1971 . 585811) (-1972 . 585737) (-1973 . 585651) (-1974 . 585380) - (-1975 . 585161) (-1976 . 585112) (-1977 . 583051) (-1978 . 582887) - (-1979 . 582817) (-1980 . 582788) (-1981 . 582641) (-1982 . 582504) - (-1983 . 582313) (-1984 . 582285) (-1985 . 581417) (-1986 . 581232) - (-1987 . 581024) (-1988 . 580936) (-1989 . 580883) (-1990 . 580822) - (-1991 . 580745) (-1992 . 580613) (-1993 . 580122) (-1994 . 580070) - (-1995 . 579950) (-1996 . 579813) (-1997 . 579785) (-1998 . 579715) - (-1999 . 578748) (-2000 . 578570) (-2001 . 578473) (-2002 . 578376) - (-2003 . 576747) (-2004 . 576017) (-2005 . 575710) (-2006 . 575415) - (-2007 . 575233) (-2008 . 574983) (-2009 . 574820) (-2010 . 574739) - (-2011 . 574572) (-2012 . 574429) (-2013 . 574336) (-2014 . 573477) - (-2015 . 573297) (-2016 . 573138) (-2017 . 572408) (-2018 . 572349) - (-2019 . 572217) (-2020 . 572029) (-2021 . 571737) (-2022 . 571659) - (-2023 . 571580) (-2024 . 571413) (-2025 . 571290) (-2026 . 570879) - (-2027 . 570732) (-2028 . 570650) (-2029 . 569354) (-2030 . 568677) - (-2031 . 568317) (-2032 . 568159) (-2033 . 567944) (-2034 . 567892) - (-2035 . 567405) (-2036 . 566976) (-2037 . 566811) (-2038 . 566713) - (-2039 . 566653) (-2040 . 566471) (-2041 . 565717) (-2042 . 565152) - (-2043 . 565081) (-2044 . 564962) (-2045 . 564878) (-2046 . 564823) - (-2047 . 564730) (-2048 . 564525) (-2049 . 564278) (-2050 . 564199) - (-2051 . 563864) (-2052 . 563299) (-2053 . 563204) (-2054 . 563102) - (-2055 . 562443) (-2056 . 562319) (-2057 . 562249) (-2058 . 562147) - (-2059 . 562069) (-2060 . 561586) (-2061 . 561552) (-2062 . 560987) - (-2063 . 560695) (-2064 . 560580) (-2065 . 560421) (-2066 . 560368) - (-2067 . 560028) (-2068 . 559954) (-2069 . 559790) (-2070 . 559560) - (-2071 . 559238) (-2072 . 558563) (-2073 . 558435) (-2074 . 558199) - (-2075 . 558142) (-2076 . 558074) (-2077 . 558023) (-2078 . 557995) - (-2079 . 557928) (-2080 . 557874) (-2081 . 557822) (-2082 . 557591) - (-2083 . 557159) (-2084 . 555393) (-2085 . 554718) (-2086 . 554545) - (-2087 . 554455) (-2088 . 553009) (-2089 . 552907) (-2090 . 552879) - (-2091 . 552806) (-2092 . 552649) (-2093 . 552548) (-2094 . 552446) - (-2095 . 552373) (-2096 . 552262) (-2097 . 551588) (-2098 . 550133) - (-2099 . 549952) (-2100 . 549214) (-2101 . 549186) (-2102 . 549028) - (-2103 . 548882) (-2104 . 548732) (-2105 . 548588) (-2106 . 548502) - (-2107 . 548395) (-2108 . 548085) (-2109 . 547967) (-2110 . 547877) - (-2111 . 546387) (-2112 . 546335) (-2113 . 545772) (-2114 . 545668) - (-2115 . 545640) (-2116 . 545586) (-2117 . 545534) (-2118 . 545362) - (-2119 . 545284) (-2120 . 545139) (-2121 . 545059) (-2122 . 544295) - (-2123 . 544140) (-2124 . 544022) (-2125 . 543459) (-2126 . 543431) - (-2127 . 543054) (-2128 . 542981) (-2129 . 542806) (-2130 . 542664) - (-2131 . 542614) (-2132 . 542383) (-2133 . 542270) (-2134 . 541534) - (-2135 . 541407) (-2136 . 541347) (-2137 . 540784) (-2138 . 540639) - (-2139 . 540527) (-2140 . 540344) (-2141 . 540233) (-2142 . 540118) - (-2143 . 539905) (-2144 . 539828) (-2145 . 539742) (-2146 . 539579) - (-2147 . 539455) (-2148 . 539228) (-2149 . 539162) (-2150 . 538486) - (-2151 . 538433) (-2152 . 538210) (-2153 . 537721) (-2154 . 537635) - (-2155 . 537576) (-2156 . 537492) (-2157 . 537382) (-2158 . 537150) - (-2159 . 537080) (-2160 . 536952) (-2161 . 536896) (-2162 . 536767) - (-2163 . 536091) (-2164 . 535709) (-2165 . 535530) (-2166 . 535370) - (-2167 . 535318) (-2168 . 535203) (-2169 . 535020) (-2170 . 534876) - (-2171 . 534489) (-2172 . 534334) (-2173 . 534042) (-2174 . 533398) - (-2175 . 533327) (-2176 . 532651) (-2177 . 532533) (-2178 . 532417) - (-2179 . 532305) (-2180 . 532070) (-2181 . 532042) (-2182 . 531959) - (-2183 . 531589) (-2184 . 531384) (-2185 . 531331) (-2186 . 530160) - (-2187 . 530092) (-2188 . 529528) (-2189 . 529178) (-2190 . 529030) - (-2191 . 528980) (-2192 . 528782) (-2193 . 527846) (-2194 . 527677) - (-2195 . 527390) (-2196 . 527194) (-2197 . 527117) (-2198 . 527061) - (-2199 . 526946) (-2200 . 526831) (-2201 . 526267) (-2202 . 526169) - (-2203 . 526086) (-2204 . 525998) (-2205 . 525946) (-2206 . 525862) - (-2207 . 525803) (-2208 . 525605) (-2209 . 525437) (-2210 . 525318) - (-2211 . 525245) (-2212 . 524109) (-2213 . 523545) (-2214 . 523369) - (-2215 . 523195) (-2216 . 523013) (-2217 . 522836) (-2218 . 522729) - (-2219 . 522351) (-2220 . 522208) (-2221 . 522134) (-2222 . 521676) - (-2223 . 521590) (-2224 . 521027) (-2225 . 520464) (-2226 . 520205) - (-2227 . 519947) (-2228 . 519862) (-2229 . 519490) (-2230 . 519393) - (-2231 . 519365) (-2232 . 519313) (-2233 . 519279) (-2234 . 517493) - (-2235 . 516930) (-2236 . 516902) (-2237 . 516845) (-2238 . 516490) - (-2239 . 516263) (-9 . 516235) (-2241 . 516185) (-2242 . 516107) - (-2243 . 515855) (-2244 . 515555) (-2245 . 515229) (-2246 . 515075) - (-2247 . 514968) (-2248 . 514873) (-8 . 514845) (-2250 . 514811) - (-2251 . 514657) (-2252 . 514050) (-2253 . 513564) (-2254 . 513468) - (-2255 . 513370) (-2256 . 513074) (-2257 . 512978) (-2258 . 512800) - (-2259 . 512681) (-2260 . 512467) (-2261 . 512349) (-2262 . 512296) - (-2263 . 512196) (-7 . 512168) (-2265 . 512073) (-2266 . 511974) - (-2267 . 511918) (-2268 . 511865) (-2269 . 511643) (-2270 . 511503) - (-2271 . 511347) (-2272 . 511252) (-2273 . 511129) (-2274 . 511077) - (-2275 . 511005) (-2276 . 510946) (-2277 . 510890) (-2278 . 510806) - (-2279 . 510751) (-2280 . 510664) (-2281 . 510571) (-2282 . 510476) - (-2283 . 510234) (-2284 . 510119) (-2285 . 509920) (-2286 . 509406) - (-2287 . 509316) (-2288 . 509113) (-2289 . 508986) (-2290 . 508835) - (-2291 . 508502) (-2292 . 508299) (-2293 . 507957) (-2294 . 507812) - (-2295 . 507745) (-2296 . 507683) (-2297 . 507631) (-2298 . 507430) - (-2299 . 506939) (-2300 . 506837) (-2301 . 506705) (-2302 . 506279) - (-2303 . 505782) (-2304 . 505696) (-2305 . 505644) (-2306 . 505526) - (-2307 . 505456) (-2308 . 505382) (-2309 . 505315) (-2310 . 505220) - (-2311 . 504958) (-2312 . 504906) (-2313 . 503317) (-2314 . 503224) - (-2315 . 502959) (-2316 . 502863) (-2317 . 502835) (-2318 . 502736) - (-2319 . 502580) (-2320 . 502384) (-2321 . 502356) (-2322 . 502301) - (-2323 . 502252) (-2324 . 501982) (-2325 . 501868) (-2326 . 501710) - (-2327 . 501358) (-2328 . 501234) (-2329 . 500850) (-2330 . 500786) - (-2331 . 500733) (-2332 . 500649) (-2333 . 500561) (-2334 . 500442) - (-2335 . 500192) (-2336 . 500164) (-2337 . 500037) (-2338 . 499956) - (-2339 . 499607) (-2340 . 499547) (-2341 . 499516) (-2342 . 499462) - (-2343 . 499219) (-2344 . 499167) (-2345 . 499018) (-2346 . 498918) - (-2347 . 498758) (-2348 . 498612) (-2349 . 498411) (-2350 . 498313) - (-2351 . 498183) (-2352 . 498127) (-2353 . 497649) (-2354 . 497519) - (-2355 . 497464) (-2356 . 497362) (-2357 . 497158) (-2358 . 497031) - (-2359 . 496952) (-2360 . 496704) (-2361 . 496652) (-2362 . 496514) - (-2363 . 496447) (-2364 . 496099) (-2365 . 495996) (-2366 . 495798) - (-2367 . 495710) (-2368 . 495231) (-2369 . 495014) (-2370 . 494955) - (-2371 . 494882) (-2372 . 494796) (-2373 . 494615) (-2374 . 494187) - (-2375 . 493564) (-2376 . 493283) (-2377 . 493037) (-2378 . 492985) - (-2379 . 492803) (-2380 . 491261) (-2381 . 491022) (-2382 . 490569) - (-2383 . 490315) (-2384 . 490105) (-2385 . 490033) (-2386 . 489830) - (-2387 . 489584) (-2388 . 489351) (-2389 . 489225) (-2390 . 489104) - (-2391 . 488960) (-2392 . 488765) (-2393 . 488661) (-2394 . 488269) - (-2395 . 488202) (-2396 . 488125) (-2397 . 488045) (-2398 . 487846) - (-2399 . 487794) (-2400 . 487631) (-2401 . 487433) (-2402 . 487383) - (-2403 . 487300) (-2404 . 486872) (-2405 . 486488) (-2406 . 486291) - (-2407 . 486219) (-2408 . 486115) (-2409 . 485798) (-2410 . 485634) - (-2411 . 485305) (-2412 . 485206) (-2413 . 485118) (-2414 . 485051) - (-2415 . 484898) (-2416 . 484725) (-2417 . 484623) (-2418 . 484401) - (-2419 . 484331) (-2420 . 484020) (-2421 . 483748) (-2422 . 483676) - (-2423 . 483577) (-2424 . 483500) (-2425 . 483401) (-2426 . 483323) - (-2427 . 483101) (-2428 . 482713) (-2429 . 482520) (-2430 . 482483) - (-2431 . 482304) (-2432 . 482227) (-2433 . 482069) (-2434 . 482016) - (-2435 . 481622) (-2436 . 481311) (-2437 . 480667) (-2438 . 480535) - (-2439 . 480449) (-2440 . 480296) (-2441 . 480183) (-2442 . 479884) - (-2443 . 479813) (-2444 . 479739) (-2445 . 479677) (-2446 . 478967) - (-2447 . 478807) (-2448 . 478646) (-2449 . 478503) (-2450 . 478225) - (-2451 . 477889) (-2452 . 477782) (-2453 . 477605) (-2454 . 477535) - (-2455 . 477249) (-2456 . 477200) (-2457 . 476714) (-2458 . 476322) - (-2459 . 475898) (-2460 . 475695) (-2461 . 475576) (-2462 . 475502) - (-2463 . 475431) (-2464 . 475336) (-2465 . 475207) (-2466 . 475135) - (-2467 . 474908) (-2468 . 472493) (-2469 . 472399) (-2470 . 472308) - (-2471 . 472198) (-2472 . 472070) (-2473 . 471695) (-2474 . 471618) - (-2475 . 471362) (-2476 . 471285) (-2477 . 470995) (-2478 . 470854) - (-2479 . 470702) (-2480 . 470587) (-2481 . 470419) (-2482 . 470338) - (-2483 . 470180) (-2484 . 470051) (-2485 . 469953) (-2486 . 469886) - (-2487 . 469819) (-2488 . 469646) (-2489 . 469594) (-2490 . 469485) - (-2491 . 469239) (-2492 . 468980) (-2493 . 468794) (-2494 . 468530) - (-2495 . 468188) (-2496 . 468160) (-2497 . 468026) (-2498 . 467956) - (-2499 . 467891) (-2500 . 467749) (-2501 . 467645) (-2502 . 467490) - (-2503 . 467381) (-2504 . 467164) (-2505 . 467063) (-2506 . 466986) - (-2507 . 466915) (-2508 . 466759) (-2509 . 466119) (-2510 . 466045) - (-2511 . 465950) (-2512 . 465666) (-2513 . 465123) (-2514 . 464537) - (-2515 . 464315) (-2516 . 464263) (-2517 . 463812) (-2518 . 463669) - (-2519 . 463443) (-2520 . 463391) (-2521 . 463308) (-2522 . 463248) - (-2523 . 463171) (-2524 . 463075) (-2525 . 463023) (-2526 . 462910) - (-2527 . 462809) (-2528 . 462677) (-2529 . 462525) (-2530 . 462491) - (-2531 . 461527) (-2532 . 461472) (-2533 . 461378) (-2534 . 461240) - (-2535 . 461043) (-2536 . 460821) (-2537 . 460661) (-2538 . 460392) - (-2539 . 460173) (-2540 . 460106) (-2541 . 460032) (-2542 . 459936) - (-2543 . 459883) (-2544 . 459643) (-2545 . 459540) (-2546 . 459113) - (-2547 . 459047) (-2548 . 459013) (-2549 . 458483) (-2550 . 458205) - (-2551 . 458122) (-2552 . 458051) (-2553 . 457812) (-2554 . 457724) - (-2555 . 457339) (-2556 . 456891) (-2557 . 456824) (-2558 . 456796) - (-2559 . 456700) (-2560 . 456547) (-2561 . 456470) (-2562 . 456396) - (-2563 . 456318) (-2564 . 456199) (-2565 . 456143) (-2566 . 456076) - (-2567 . 455939) (-2568 . 455786) (-2569 . 455308) (-2570 . 454987) - (-2571 . 454892) (-2572 . 454510) (-2573 . 453208) (-2574 . 453131) - (-2575 . 452973) (-2576 . 452775) (-2577 . 452676) (-2578 . 452533) - (-2579 . 452505) (-2580 . 452366) (-2581 . 452151) (-2582 . 451985) - (-2583 . 451899) (-2584 . 451818) (-2585 . 451524) (-2586 . 451380) - (-2587 . 451211) (-2588 . 451041) (-2589 . 450888) (-2590 . 450802) - (-2591 . 450644) (-2592 . 450106) (-2593 . 449941) (-2594 . 449869) - (-2595 . 449661) (-2596 . 449584) (-2597 . 449484) (-2598 . 449328) - (-2599 . 449245) (-2600 . 449155) (-2601 . 449014) (-2602 . 448930) - (-2603 . 448822) (-2604 . 448751) (-2605 . 448631) (-2606 . 448576) - (-2607 . 448461) (-2608 . 448306) (-2609 . 448198) (-2610 . 448064) - (-2611 . 447936) (-2612 . 447778) (-2613 . 447181) (-2614 . 447098) - (-2615 . 446939) (-2616 . 446877) (-2617 . 446824) (-2618 . 446772) - (-2619 . 445344) (-2620 . 445245) (-2621 . 445129) (-2622 . 445070) - (-2623 . 444984) (-2624 . 444761) (-2625 . 444651) (-2626 . 444598) - (-2627 . 444496) (-2628 . 444377) (-2629 . 444203) (-2630 . 444032) - (-2631 . 443514) (-2632 . 443437) (-2633 . 443271) (-2634 . 443204) - (-2635 . 443063) (-2636 . 442757) (-2637 . 442678) (-2638 . 442231) - (-2639 . 442117) (-2640 . 442060) (-2641 . 441919) (-2642 . 441723) - (-2643 . 441645) (-2644 . 441557) (-2645 . 441169) (-2646 . 441034) - (-2647 . 439738) (-2648 . 439654) (-2649 . 439550) (-2650 . 439465) - (-2651 . 439349) (-2652 . 439292) (-2653 . 439182) (-2654 . 439112) - (-2655 . 439028) (-2656 . 438782) (-2657 . 438652) (-2658 . 438018) - (-2659 . 437968) (-2660 . 437868) (-2661 . 437767) (-2662 . 437649) - (-2663 . 436387) (-2664 . 435735) (-2665 . 435626) (-2666 . 435355) - (-2667 . 435269) (-2668 . 435116) (-2669 . 434565) (-2670 . 434507) - (-2671 . 434401) (-2672 . 434373) (-2673 . 434213) (-2674 . 434142) - (-2675 . 434090) (-2676 . 433444) (-2677 . 433392) (-2678 . 433227) - (-2679 . 433051) (-2680 . 432973) (-2681 . 432921) (-2682 . 432821) - (-2683 . 432633) (-2684 . 432604) (-2685 . 432494) (-2686 . 432200) - (-2687 . 431608) (-2688 . 431454) (-2689 . 431207) (-2690 . 430319) - (-2691 . 430204) (-2692 . 430069) (-2693 . 429974) (-2694 . 429852) - (-2695 . 429799) (-2696 . 429689) (-2697 . 429568) (-2698 . 429511) - (-2699 . 429366) (-2700 . 429183) (-2701 . 429112) (-2702 . 428997) - (-2703 . 428913) (-2704 . 428742) (-2705 . 428645) (-2706 . 428314) - (-2707 . 428237) (-2708 . 427835) (-2709 . 427628) (-2710 . 427483) - (-2711 . 427388) (-2712 . 427329) (-2713 . 427192) (-2714 . 427017) - (-2715 . 426931) (-2716 . 426843) (-2717 . 426627) (-2718 . 426550) - (-2719 . 426468) (-2720 . 426412) (-2721 . 426368) (-2722 . 426075) - (-2723 . 425929) (-2724 . 425864) (-2725 . 425715) (-2726 . 425363) - (-2727 . 425294) (-2728 . 425013) (-2729 . 424691) (-2730 . 424600) - (-2731 . 424572) (-2732 . 424459) (-2733 . 424173) (-2734 . 424108) - (-2735 . 424030) (-2736 . 423859) (-2737 . 423761) (-2738 . 423618) - (-2739 . 423521) (-2740 . 423297) (-2741 . 423139) (-2742 . 423045) - (-2743 . 422873) (-2744 . 422775) (-2745 . 422701) (-2746 . 422650) - (-2747 . 422485) (-2748 . 422425) (-2749 . 422135) (-2750 . 422047) - (-2751 . 421820) (-2752 . 421694) (-2753 . 421407) (-2754 . 421204) - (-2755 . 421152) (-2756 . 417489) (-2757 . 417389) (-2758 . 417336) - (-2759 . 417087) (-2760 . 416791) (-2761 . 416527) (-2762 . 416448) - (-2763 . 416395) (-2764 . 415949) (-2765 . 415541) (-2766 . 415453) - (-2767 . 415310) (-2768 . 415135) (-2769 . 414964) (-2770 . 414869) - (-2771 . 414754) (-2772 . 414602) (-2773 . 414568) (-2774 . 414060) - (-2775 . 413242) (-2776 . 413148) (-2777 . 412929) (-2778 . 412738) - (-2779 . 412491) (-2780 . 412175) (-2781 . 411629) (-2782 . 411365) - (-2783 . 411298) (-2784 . 411239) (-2785 . 411166) (-2786 . 411134) - (-2787 . 411046) (-2788 . 410978) (-2789 . 410883) (-2790 . 410634) - (-2791 . 410435) (-2792 . 410308) (-2793 . 410240) (-2794 . 410163) - (-2795 . 408867) (-2796 . 408509) (-2797 . 407719) (-2798 . 407682) - (-2799 . 407526) (-2800 . 407423) (-2801 . 407278) (-2802 . 407106) - (-2803 . 407029) (-2804 . 406742) (-2805 . 406673) (-2806 . 406619) - (-2807 . 406531) (-2808 . 406458) (-2809 . 406384) (-2810 . 406280) - (-2811 . 406184) (-2812 . 405910) (-2813 . 405857) (-12 . 405685) - (-2815 . 404623) (-2816 . 404522) (-2817 . 404436) (-2818 . 404138) - (-2819 . 403959) (-2820 . 403881) (-2821 . 403608) (-2822 . 403514) - (-2823 . 403352) (-2824 . 403163) (-2825 . 403077) (-2826 . 402874) - (-2827 . 402780) (-2828 . 402532) (-2829 . 402412) (-2830 . 402294) - (-2831 . 402211) (-2832 . 402116) (-2833 . 401889) (-2834 . 401677) - (-2835 . 397677) (-2836 . 397643) (-2837 . 397569) (-2838 . 397446) - (-2839 . 397067) (-2840 . 396971) (-2841 . 396858) (-2842 . 396698) - (-2843 . 396471) (-2844 . 396304) (-2845 . 395758) (-2846 . 395691) - (-2847 . 395589) (-2848 . 395482) (-2849 . 395336) (-2850 . 395155) - (-2851 . 395033) (-2852 . 394950) (-2853 . 394829) (-2854 . 394649) - (-2855 . 394546) (-2856 . 394340) (-2857 . 394227) (-2858 . 393866) - (-2859 . 393789) (-2860 . 393419) (-2861 . 393335) (-2862 . 393275) - (-2863 . 393178) (-2864 . 393123) (-2865 . 392693) (-2866 . 392441) - (-2867 . 392203) (-2868 . 391858) (-2869 . 391741) (-2870 . 391709) - (-2871 . 391657) (-2872 . 391583) (-2873 . 391423) (-2874 . 391321) - (-2875 . 391267) (-2876 . 391169) (-2877 . 391092) (-2878 . 390996) - (-2879 . 390883) (-2880 . 390701) (-2881 . 390453) (-2882 . 390159) - (-2883 . 390051) (-2884 . 384712) (-2885 . 384657) (-2886 . 384172) - (-2887 . 384002) (-2888 . 383935) (-2889 . 383811) (-2890 . 383733) - (-2891 . 383660) (-2892 . 383574) (-2893 . 383433) (-2894 . 383351) - (-2895 . 383255) (-2896 . 382983) (-2897 . 382831) (-2898 . 382441) - (-2899 . 382357) (-2900 . 382006) (-2901 . 381934) (-2902 . 381802) - (* . 377689) (-2904 . 377601) (-2905 . 377497) (-2906 . 377279) - (-2907 . 376912) (-2908 . 376783) (-2909 . 376721) (-2910 . 376558) - (-2911 . 376306) (-2912 . 375942) (-2913 . 375885) (-2914 . 375783) - (-2915 . 375606) (-2916 . 375504) (-2917 . 375452) (-2918 . 375360) - (-2919 . 375280) (-2920 . 375197) (-2921 . 374907) (-2922 . 374726) - (-2923 . 374591) (-2924 . 374512) (-2925 . 374382) (-2926 . 374263) - (-2927 . 374234) (-2928 . 373575) (-2929 . 372907) (-2930 . 372879) - (-2931 . 372660) (-2932 . 372486) (-2933 . 372214) (-2934 . 372120) - (-2935 . 372012) (-2936 . 371549) (-2937 . 371331) (-2938 . 371106) - (-2939 . 370918) (-2940 . 370739) (-2941 . 370671) (-2942 . 370505) - (-2943 . 370435) (-2944 . 370202) (-2945 . 369992) (-2946 . 369714) - (-2947 . 369640) (-2948 . 368927) (-2949 . 368865) (-2950 . 368472) - (-2951 . 368372) (-2952 . 368087) (-2953 . 368027) (-2954 . 367796) - (-2955 . 367589) (-2956 . 367461) (-2957 . 367387) (-2958 . 367280) - (-2959 . 367112) (-2960 . 367009) (-2961 . 366896) (-2962 . 366837) - (-2963 . 366750) (-2964 . 366655) (-2965 . 366410) (-2966 . 366303) - (-2967 . 366200) (-2968 . 366062) (-2969 . 365995) (-2970 . 365926) - (-2971 . 365771) (-2972 . 365628) (-2973 . 365469) (-2974 . 364861) - (-2975 . 364789) (-2976 . 364688) (-2977 . 364627) (-2978 . 364368) - (-2979 . 364340) (-2980 . 364268) (-2981 . 364178) (-2982 . 364090) - (-2983 . 363985) (-2984 . 363890) (-2985 . 363803) (-2986 . 363694) - (-2987 . 363552) (-2988 . 363334) (-2989 . 363156) (-2990 . 363041) - (-2991 . 362537) (-2992 . 362458) (-2993 . 362360) (-2994 . 362222) - (-2995 . 362064) (-2996 . 361926) (-2997 . 361874) (-2998 . 361743) - (-2999 . 360665) (-3000 . 360587) (-3001 . 360234) (-3002 . 360146) - (-3003 . 360018) (-3004 . 359766) (-3005 . 359292) (-3006 . 359215) - (-3007 . 359071) (-3008 . 358997) (-3009 . 358706) (-3010 . 358566) - (-3011 . 358251) (-3012 . 357065) (-3013 . 356619) (-3014 . 356545) - (-3015 . 356451) (-3016 . 356398) (-3017 . 356282) (-3018 . 356227) - (-3019 . 355997) (-3020 . 355337) (-3021 . 355199) (-3022 . 354017) - (-3023 . 353755) (-3024 . 353367) (-3025 . 353230) (-3026 . 353067) - (-3027 . 352646) (-3028 . 352322) (-3029 . 352173) (-3030 . 351747) - (-3031 . 351624) (-3032 . 351105) (-3033 . 351008) (-3034 . 348800) - (-3035 . 348723) (-3036 . 339273) (-3037 . 339040) (-3038 . 339006) - (-3039 . 338863) (-3040 . 338690) (-3041 . 338571) (-3042 . 338497) - (-3043 . 338445) (-3044 . 338342) (-3045 . 338241) (-3046 . 338167) - (-3047 . 338054) (-3048 . 337950) (-3049 . 337880) (-3050 . 337824) - (-3051 . 337725) (-3052 . 337670) (-3053 . 337523) (-3054 . 337456) - (-3055 . 337377) (-3056 . 337323) (-3057 . 337207) (-3058 . 337154) - (-3059 . 337087) (-3060 . 336958) (-3061 . 336817) (-3062 . 336703) - (-3063 . 336651) (-3064 . 336554) (-3065 . 336421) (-3066 . 336365) - (-3067 . 336294) (-3068 . 336203) (-3069 . 336175) (-3070 . 336115) - (-3071 . 335802) (-3072 . 335644) (-3073 . 335106) (-3074 . 335032) - (-3075 . 334938) (-3076 . 334734) (-3077 . 334596) (-3078 . 334539) - (-3079 . 334381) (-3080 . 334259) (-3081 . 334206) (-3082 . 333814) - (-3083 . 333690) (-3084 . 333378) (-3085 . 333236) (-3086 . 333169) - (-3087 . 333026) (-3088 . 332715) (-3089 . 332557) (-3090 . 332149) - (-3091 . 332094) (-3092 . 331691) (-3093 . 331613) (-3094 . 331525) - (-3095 . 330749) (-3096 . 330620) (-3097 . 330512) (-3098 . 330302) - (-3099 . 330021) (-3100 . 329948) (-3101 . 329711) (-3102 . 329539) - (-3103 . 329480) (-3104 . 329087) (-3105 . 328735) (-3106 . 328139) - (-3107 . 327179) (-3108 . 326803) (-3109 . 326723) (-3110 . 326285) - (-3111 . 326196) (-3112 . 325545) (-3113 . 325373) (-3114 . 325303) - (-3115 . 325230) (-3116 . 325070) (-3117 . 324963) (-3118 . 324897) - (-3119 . 324760) (-3120 . 324555) (-3121 . 324424) (-3122 . 324156) - (-3123 . 323984) (-3124 . 323899) (-3125 . 323771) (-3126 . 323632) - (-3127 . 323524) (-3128 . 322978) (-3129 . 322821) (-3130 . 322690) - (-3131 . 322605) (-3132 . 322489) (-3133 . 322317) (-3134 . 322248) - (-3135 . 322093) (-3136 . 321642) (-3137 . 321542) (-3138 . 321486) - (-3139 . 321046) (-3140 . 320921) (-3141 . 320819) (-3142 . 320716) - (-3143 . 320612) (-3144 . 320459) (-3145 . 320326) (-3146 . 320233) - (-3147 . 320168) (-3148 . 320069) (-3149 . 319920) (-3150 . 319850) - (-3151 . 319778) (-3152 . 319681) (-3153 . 319622) (-3154 . 319488) - (-3155 . 319417) (-3156 . 319343) (-3157 . 318808) (-3158 . 318649) - (-3159 . 318054) (-3160 . 317961) (-3161 . 317893) (-3162 . 317702) - (-3163 . 317400) (-3164 . 317372) (-3165 . 317276) (-3166 . 317248) - (-3167 . 317142) (-3168 . 317003) (-3169 . 316790) (-3170 . 316737) - (-3171 . 316652) (-3172 . 316078) (-3173 . 315876) (-3174 . 315795) - (-3175 . 315700) (-3176 . 315647) (-3177 . 315180) (-3178 . 314853) - (-3179 . 314665) (-3180 . 314181) (-3181 . 313838) (-3182 . 311582) - (-3183 . 311431) (-3184 . 311403) (-3185 . 311347) (-3186 . 311100) - (-3187 . 311014) (-3188 . 310093) (-3189 . 309952) (-3190 . 309855) - (-3191 . 309769) (-3192 . 309433) (-3193 . 309229) (-3194 . 309099) - (-3195 . 309044) (-3196 . 308937) (-3197 . 308742) (-3198 . 308562) - (-3199 . 308509) (-3200 . 306281) (-3201 . 306185) (-3202 . 306086) - (-3203 . 305699) (-3204 . 305671) (-3205 . 305478) (-3206 . 305057) - (-3207 . 304983) (-3208 . 304903) (-3209 . 304729) (-3210 . 304511) - (-3211 . 304477) (-3212 . 304364) (-3213 . 303663) (-3214 . 303590) - (-3215 . 303137) (-3216 . 303012) (-3217 . 302826) (-3218 . 302774) - (-3219 . 302718) (-3220 . 302358) (-3221 . 302194) (-3222 . 302098) - (-3223 . 302045) (-3224 . 301994) (-3225 . 301861) (-3226 . 301779) - (-3227 . 301729) (-3228 . 301661) (-3229 . 301581) (-3230 . 301434) - (-3231 . 301382) (-3232 . 301294) (-3233 . 301001) (-3234 . 300824) - (-3235 . 300731) (-3236 . 296781) (-3237 . 296547) (-3238 . 296429) - (-3239 . 296266) (-3240 . 296189) (-3241 . 296036) (-3242 . 295984) - (-3243 . 295705) (-3244 . 295387) (-3245 . 295308) (-3246 . 295028) - (-3247 . 294444) (-3248 . 294134) (-3249 . 294075) (-3250 . 293846) - (-3251 . 293599) (-3252 . 293153) (-3253 . 293022) (-3254 . 292595) - (-3255 . 292393) (-3256 . 292338) (-3257 . 290608) (-3258 . 290554) - (-3259 . 290359) (-3260 . 290207) (-3261 . 290062) (-3262 . 289995) - (-3263 . 289875) (-3264 . 289816) (-3265 . 289507) (-3266 . 289327) - (-3267 . 289031) (-3268 . 288999) (-3269 . 288890) (-3270 . 288675) - (-3271 . 288581) (-3272 . 288514) (-3273 . 288375) (-3274 . 288318) - (-3275 . 288162) (-3276 . 287345) (-3277 . 286812) (-3278 . 286738) - (-3279 . 286566) (-3280 . 286465) (-3281 . 286322) (-3282 . 286229) - (-3283 . 285550) (-3284 . 285408) (-3285 . 285262) (-3286 . 285203) - (-3287 . 285130) (-3288 . 285077) (-3289 . 284968) (-3290 . 284522) - (-3291 . 284342) (-3292 . 284164) (-3293 . 284111) (-3294 . 283967) - (-3295 . 283881) (-3296 . 283798) (-3297 . 283725) (-3298 . 283658) - (-3299 . 283316) (-3300 . 283200) (-3301 . 283148) (-3302 . 282969) - (-3303 . 282885) (-3304 . 282804) (-3305 . 281023) (-3306 . 280766) - (-3307 . 280678) (-3308 . 280512) (-3309 . 280388) (-3310 . 280285) - (-3311 . 280195) (-3312 . 280040) (-3313 . 279988) (-3314 . 279893) - (-3315 . 279690) (-3316 . 279570) (-3317 . 279318) (-3318 . 279265) - (-3319 . 279005) (-3320 . 278708) (-3321 . 278553) (-3322 . 278435) - (-3323 . 278294) (-3324 . 278223) (-3325 . 278192) (-3326 . 277967) - (-3327 . 277907) (-3328 . 277833) (-3329 . 277685) (-3330 . 277616) - (-3331 . 277530) (-3332 . 277171) (-3333 . 276417) (-3334 . 276314) - (-3335 . 275961) (-3336 . 275839) (-3337 . 275653) (-3338 . 275474) - (-3339 . 275371) (-3340 . 275319) (-3341 . 275227) (-3342 . 275109) - (-3343 . 274988) (-3344 . 274843) (-3345 . 274713) (-3346 . 274542) - (-3347 . 274465) (-3348 . 274394) (-3349 . 274216) (-3350 . 274163) - (-3351 . 273926) (-3352 . 273863) (-3353 . 273786) (-3354 . 273690) - (-3355 . 273511) (-3356 . 273167) (-3357 . 272750) (-3358 . 272074) - (-3359 . 271921) (-3360 . 271722) (-3361 . 271569) (-3362 . 271517) - (-3363 . 271309) (-3364 . 271098) (-3365 . 271004) (-3366 . 270624) - (-3367 . 270377) (-3368 . 270300) (-3369 . 270033) (-3370 . 269708) - (-3371 . 269198) (-3372 . 268995) (-3373 . 268898) (-3374 . 268755) - (-3375 . 268002) (-3376 . 267849) (-3377 . 267705) (-3378 . 267296) - (-3379 . 267226) (-3380 . 267084) (-3381 . 266929) (-3382 . 266855) - (-3383 . 266823) (-3384 . 266021) (-3385 . 265924) (-3386 . 265829) - (-3387 . 265523) (-3388 . 265243) (-3389 . 265100) (-3390 . 265014) - (-3391 . 264198) (-3392 . 264148) (-3393 . 264052) (-3394 . 263765) - (-3395 . 263620) (-3396 . 263486) (-3397 . 263347) (-3398 . 263282) - (-3399 . 263158) (-3400 . 263062) (-3401 . 262992) (-3402 . 262905) - (-3403 . 262838) (-3404 . 262649) (-3405 . 262582) (-3406 . 262481) - (-3407 . 262318) (-3408 . 262249) (-3409 . 262093) (-3410 . 262020) - (-3411 . 261929) (-3412 . 261830) (-3413 . 261778) (-3414 . 261616) - (-3415 . 261434) (-3416 . 261384) (-3417 . 261165) (-3418 . 260304) - (-3419 . 259997) (-3420 . 259945) (-3421 . 259802) (-3422 . 259656) - (-3423 . 259628) (-3424 . 259569) (-3425 . 259423) (-3426 . 259259) - (-3427 . 259158) (-3428 . 259052) (-3429 . 258965) (-3430 . 258679) - (-3431 . 258538) (-3432 . 258267) (-3433 . 258186) (-3434 . 258116) - (-3435 . 258061) (-3436 . 256959) (-3437 . 256902) (-3438 . 256805) - (-3439 . 256714) (-3440 . 256297) (-3441 . 256145) (-3442 . 256057) - (-3443 . 255927) (-3444 . 255547) (-3445 . 255494) (-3446 . 255424) - (-3447 . 255396) (-3448 . 255120) (-3449 . 254964) (-3450 . 254213) - (-3451 . 254117) (-3452 . 254086) (-3453 . 254027) (-3454 . 253904) - (-3455 . 253768) (-3456 . 253687) (-3457 . 253437) (-3458 . 253336) - (-3459 . 253211) (-3460 . 252977) (-3461 . 252780) (-3462 . 252406) - (-3463 . 252354) (-3464 . 252156) (-3465 . 252040) (-3466 . 251962) - (-3467 . 250897) (-3468 . 250659) (-3469 . 250367) (-3470 . 250300) - (-3471 . 250123) (-3472 . 248155) (-3473 . 247976) (-3474 . 247871) - (-3475 . 247470) (-3476 . 247370) (-3477 . 247297) (-3478 . 247098) - (-3479 . 247015) (-3480 . 246800) (-3481 . 246742) (-3482 . 246708) - (-3483 . 246596) (-3484 . 246447) (-3485 . 246415) (-3486 . 246310) - (-3487 . 246172) (-3488 . 246120) (-3489 . 246068) (-3490 . 245995) - (-3491 . 245850) (-3492 . 245508) (-3493 . 245441) (-3494 . 245407) - (-3495 . 245153) (-3496 . 244868) (-3497 . 244681) (-3498 . 244386) - (-3499 . 244271) (-3500 . 243880) (-3501 . 225305) (-3502 . 225118) - (-3503 . 224948) (-3504 . 224860) (-3505 . 224786) (-3506 . 224668) - (-3507 . 224640) (-3508 . 224587) (-3509 . 224395) (-3510 . 223782) - (-3511 . 220961) (-3512 . 220901) (-3513 . 220775) (-3514 . 220434) - (-3515 . 220046) (-3516 . 219983) (-3517 . 219349) (-3518 . 219179) - (-3519 . 219032) (-3520 . 218916) (-3521 . 218749) (-3522 . 218322) - (-3523 . 218225) (-3524 . 217858) (-3525 . 217658) (-3526 . 217538) - (-3527 . 217111) (-3528 . 217058) (-3529 . 216838) (-3530 . 216786) - (-3531 . 216480) (-3532 . 216384) (-3533 . 216116) (-3534 . 216024) - (-3535 . 215954) (-3536 . 215736) (-3537 . 215538) (-3538 . 215292) - (-3539 . 215051) (-3540 . 214893) (-3541 . 214815) (-3542 . 214685) - (-3543 . 214486) (-3544 . 214421) (-3545 . 213848) (-3546 . 213609) - (-3547 . 213432) (-3548 . 213222) (-3549 . 212942) (-3550 . 212890) - (-3551 . 212538) (-3552 . 212477) (-3553 . 212369) (-3554 . 212178) - (-3555 . 212034) (-3556 . 211668) (-3557 . 211639) (-3558 . 211432) - (-3559 . 210846) (-3560 . 210790) (-3561 . 209610) (-3562 . 209483) - (-3563 . 209451) (-3564 . 208714) (-3565 . 208610) (-3566 . 208544) - (-3567 . 208309) (-3568 . 208202) (-3569 . 208147) (-3570 . 208090) - (-3571 . 208058) (-3572 . 207962) (-3573 . 207839) (-3574 . 207746) - (-3575 . 207642) (-3576 . 207541) (-3577 . 207445) (-3578 . 207408) - (-3579 . 207325) (-3580 . 207230) (-3581 . 206853) (-3582 . 206332) - (-3583 . 205594) (-3584 . 205498) (-3585 . 205439) (-3586 . 205301) - (-3587 . 205229) (-3588 . 204988) (-3589 . 204936) (-3590 . 204117) - (-3591 . 203973) (-3592 . 203889) (-3593 . 203693) (-3594 . 202470) - (-3595 . 202285) (-3596 . 202095) (-3597 . 201974) (-3598 . 201903) - (-3599 . 201869) (-3600 . 201812) (-3601 . 201734) (-3602 . 201326) - (-3603 . 201184) (-3604 . 201056) (-3605 . 200954) (-3606 . 200729) - (-3607 . 200453) (-3608 . 200225) (-3609 . 199383) (-3610 . 199192) - (-3611 . 199003) (-3612 . 198908) (-3613 . 198803) (-3614 . 198594) - (-3615 . 198511) (-3616 . 198439) (-3617 . 198379) (-3618 . 198199) - (-3619 . 197948) (-3620 . 197878) (-3621 . 197809) (-3622 . 194200) - (-3623 . 194094) (-3624 . 193453) (-3625 . 193352) (-3626 . 193229) - (-3627 . 193008) (-3628 . 192866) (-3629 . 192447) (-3630 . 192352) - (-3631 . 192230) (-3632 . 192124) (-3633 . 192041) (-3634 . 191861) - (-3635 . 191784) (-3636 . 191688) (-3637 . 191625) (-3638 . 191399) - (-3639 . 191241) (-3640 . 191075) (-3641 . 190759) (-3642 . 190593) - (-3643 . 190241) (-3644 . 190033) (-3645 . 189949) (-3646 . 189851) - (-3647 . 189108) (-3648 . 189055) (-3649 . 188172) (-3650 . 188012) - (-3651 . 187916) (-3652 . 187857) (-3653 . 187523) (-3654 . 187392) - (-3655 . 187138) (-3656 . 186834) (-3657 . 186586) (-3658 . 186475) - (-3659 . 186316) (-3660 . 183475) (-3661 . 183374) (-3662 . 182792) - (-3663 . 182629) (-3664 . 182272) (-3665 . 181941) (-3666 . 181831) - (-3667 . 181668) (-3668 . 181547) (-3669 . 181406) (-3670 . 180179) - (-3671 . 179986) (-3672 . 179912) (-3673 . 179811) (-3674 . 179651) - (-3675 . 179493) (-3676 . 179444) (-3677 . 179373) (-3678 . 179287) - (-3679 . 179234) (-3680 . 179055) (-3681 . 178703) (-3682 . 177399) - (-3683 . 177263) (-3684 . 177167) (-3685 . 177083) (-3686 . 176884) - (-3687 . 176746) (-3688 . 176675) (-3689 . 176622) (-3690 . 176570) - (-3691 . 176471) (-3692 . 176351) (-3693 . 176286) (-3694 . 176207) - (-3695 . 175844) (-3696 . 175685) (-3697 . 175445) (-3698 . 175321) - (-3699 . 175205) (-3700 . 174953) (-3701 . 174876) (-3702 . 174436) - (-3703 . 174291) (-3704 . 174045) (-3705 . 173989) (-3706 . 173824) - (-3707 . 173546) (-3708 . 173430) (-3709 . 173299) (-3710 . 172989) - (-3711 . 172934) (-3712 . 172619) (-3713 . 172520) (-3714 . 172291) - (-3715 . 172148) (-3716 . 171584) (-3717 . 171521) (-3718 . 171444) - (-3719 . 171325) (-3720 . 171230) (-3721 . 171085) (-3722 . 170949) - (-3723 . 170869) (-3724 . 170553) (-3725 . 170468) (-3726 . 170345) - (-3727 . 170251) (-3728 . 169915) (-3729 . 169757) (-3730 . 169634) - (-3731 . 169579) (-3732 . 169454) (-3733 . 169353) (-3734 . 169269) - (-3735 . 169030) (-3736 . 168547) (-3737 . 168333) (-3738 . 168048) - (-3739 . 167953) (-3740 . 167853) (-3741 . 167670) (-3742 . 167374) - (-3743 . 167145) (-3744 . 166027) (-3745 . 165949) (-3746 . 165763) - (-3747 . 165576) (-3748 . 165330) (-3749 . 165259) (-3750 . 165155) - (-3751 . 164902) (-3752 . 164850) (-3753 . 164735) (-3754 . 164606) - (-3755 . 164553) (-3756 . 164473) (-3757 . 164050) (-3758 . 163776) - (-3759 . 163099) (-3760 . 163046) (-3761 . 162979) (-3762 . 162919) - (-3763 . 162859) (-3764 . 162808) (-3765 . 162601) (-3766 . 162549) - (-3767 . 162512) (-3768 . 162287) (-3769 . 162132) (-3770 . 161886) - (-3771 . 161326) (-3772 . 161259) (-3773 . 161192) (-3774 . 161139) - (-3775 . 161000) (-3776 . 160794) (-3777 . 160667) (-3778 . 160083) - (-3779 . 159960) (-3780 . 159876) (-3781 . 159452) (-3782 . 159300) - (-3783 . 159205) (-3784 . 159102) (-3785 . 158970) (-3786 . 158917) - (-3787 . 158822) (-3788 . 158704) (-3789 . 158630) (-3790 . 158559) - (-3791 . 158467) (-3792 . 158438) (-3793 . 158369) (-3794 . 158317) - (-3795 . 158262) (-3796 . 158006) (-3797 . 157953) (-3798 . 157847) - (-3799 . 157819) (-3800 . 157734) (-3801 . 157368) (-3802 . 157316) - (-3803 . 157222) (-3804 . 157145) (-3805 . 157053) (-3806 . 156826) - (-3807 . 156747) (-3808 . 156617) (-3809 . 156536) (-3810 . 156466) - (-3811 . 156417) (-3812 . 156364) (-3813 . 155769) (-3814 . 155692) - (-3815 . 155440) (-3816 . 155358) (-3817 . 155195) (-3818 . 155109) - (-3819 . 154891) (-3820 . 154733) (-3821 . 154440) (-3822 . 154385) - (-3823 . 154305) (-3824 . 154233) (-3825 . 154043) (-3826 . 153890) - (-3827 . 153824) (-3828 . 153729) (-3829 . 153613) (-3830 . 153531) - (-3831 . 153401) (-3832 . 153328) (-3833 . 152832) (-3834 . 152666) - (-3835 . 152610) (-3836 . 152547) (-3837 . 152435) (-3838 . 152279) - (-3839 . 152123) (-3840 . 151991) (-3841 . 151624) (-3842 . 151004) - (-3843 . 149787) (-3844 . 149677) (-3845 . 149341) (-3846 . 149274) - (-3847 . 149221) (-3848 . 149094) (-3849 . 148998) (-3850 . 148904) - (-3851 . 148852) (-3852 . 148734) (-3853 . 148639) (-3854 . 148543) - (-3855 . 148443) (-3856 . 148371) (-3857 . 148276) (-3858 . 147768) - (-3859 . 146336) (-3860 . 146256) (-3861 . 146127) (-3862 . 145952) - (-3863 . 145216) (-3864 . 144969) (-3865 . 144910) (-3866 . 144818) - (-3867 . 144705) (-3868 . 144605) (-3869 . 144531) (-3870 . 144337) - (-3871 . 144032) (-3872 . 143946) (-3873 . 143830) (-3874 . 143723) - (-3875 . 143671) (-3876 . 143594) (-3877 . 143051) (-3878 . 142948) - (-3879 . 142893) (-3880 . 142827) (-3881 . 142681) (-3882 . 142603) - (-3883 . 142526) (-3884 . 142184) (-3885 . 142042) (-3886 . 141809) - (-3887 . 141279) (-3888 . 141248) (-3889 . 141189) (-3890 . 141106) - (-3891 . 140969) (-3892 . 140879) (-3893 . 140851) (-3894 . 140767) - (-3895 . 140168) (-3896 . 140099) (-3897 . 140000) (-3898 . 139914) - (-3899 . 139759) (-3900 . 139706) (-3901 . 139628) (-3902 . 139546) - (-3903 . 139386) (-3904 . 139268) (-3905 . 139131) (-3906 . 138698) - (-3907 . 138538) (-3908 . 138328) (-3909 . 138294) (-3910 . 138115) - (-3911 . 138029) (-3912 . 137931) (-3913 . 136964) (-3914 . 136865) - (-3915 . 136765) (-3916 . 136551) (-3917 . 136435) (-3918 . 136331) - (-3919 . 136261) (-3920 . 135887) (-3921 . 135834) (-3922 . 135733) - (-3923 . 135586) (-3924 . 135457) (-3925 . 135177) (-3926 . 133978) - (-3927 . 133827) (-3928 . 133691) (-3929 . 133641) (-3930 . 133555) - (-3931 . 133327) (-3932 . 133189) (-3933 . 133045) (-3934 . 132883) - (-3935 . 132831) (-3936 . 132709) (-3937 . 132608) (-3938 . 132455) - (-3939 . 129674) (-3940 . 129555) (-3941 . 129322) (-3942 . 129094) - (-3943 . 128886) (-3944 . 128465) (-3945 . 128271) (-3946 . 128209) - (-3947 . 128157) (-3948 . 128024) (-3949 . 127715) (-3950 . 127634) - (-3951 . 127582) (-3952 . 127312) (-3953 . 127212) (-3954 . 127114) - (-3955 . 126933) (-3956 . 126881) (-3957 . 126781) (-3958 . 126597) - (-3959 . 126498) (-3960 . 126309) (-3961 . 126175) (-3962 . 126123) - (-3963 . 126020) (-3964 . 125953) (-3965 . 125426) (-3966 . 125364) - (-3967 . 125291) (-3968 . 125230) (-3969 . 125050) (-3970 . 123752) - (-3971 . 123664) (-3972 . 123410) (-3973 . 123353) (-3974 . 123254) - (-3975 . 122806) (-3976 . 122724) (-3977 . 121728) (-3978 . 121584) - (-3979 . 121531) (-3980 . 121457) (-3981 . 120938) (-3982 . 120837) - (-3983 . 120399) (-3984 . 119519) (-3985 . 119453) (-3986 . 119372) - (-3987 . 119321) (-3988 . 119162) (-3989 . 118952) (-3990 . 118867) - (-3991 . 118688) (-3992 . 118468) (-3993 . 118441) (-3994 . 118349) - (-3995 . 118281) (-3996 . 118097) (-3997 . 117999) (-3998 . 117463) - (-3999 . 117297) (-4000 . 117226) (-4001 . 117004) (-4002 . 116903) - (-4003 . 116755) (-4004 . 116678) (-4005 . 116520) (-4006 . 116388) - (-4007 . 114256) (-4008 . 114091) (-4009 . 113981) (-4010 . 113929) - (-4011 . 113796) (-4012 . 113699) (-4013 . 113615) (-4014 . 113566) - (-4015 . 112923) (-4016 . 112320) (-4017 . 111716) (-4018 . 111643) - (-4019 . 111601) (-4020 . 111420) (-4021 . 111139) (-4022 . 110971) - (-4023 . 110492) (-4024 . 110440) (-4025 . 110357) (-4026 . 110167) - (-4027 . 110095) (-4028 . 109976) (-4029 . 109892) (-4030 . 109802) - (-4031 . 109546) (-4032 . 109464) (-4033 . 109246) (-4034 . 109161) - (-4035 . 108999) (-4036 . 108832) (-4037 . 108321) (-4038 . 108249) - (-4039 . 107934) (-4040 . 107684) (-4041 . 107629) (-4042 . 107500) - (-4043 . 107354) (-4044 . 107240) (-4045 . 107051) (-4046 . 106827) - (-4047 . 106747) (-4048 . 106676) (-4049 . 106605) (-4050 . 106462) - (-4051 . 106400) (-4052 . 106333) (-4053 . 106209) (-4054 . 105930) - (-4055 . 105862) (-4056 . 105761) (-4057 . 105687) (-4058 . 105526) - (-4059 . 105469) (-4060 . 105395) (-4061 . 105343) (-4062 . 104683) - (-4063 . 104564) (-4064 . 104355) (-4065 . 104263) (-4066 . 102485) - (-4067 . 101284) (-4068 . 101232) (-4069 . 101133) (-4070 . 101045) - (-4071 . 100615) (-4072 . 100547) (-4073 . 100450) (-4074 . 100348) - (-4075 . 100017) (-4076 . 99950) (-4077 . 99732) (-4078 . 99681) - (-4079 . 99607) (-4080 . 99470) (-4081 . 99304) (-4082 . 99127) - (-4083 . 84895) (-4084 . 84807) (-4085 . 84751) (-4086 . 84563) - (-4087 . 84506) (-4088 . 84418) (-4089 . 84275) (-4090 . 84207) - (-4091 . 84155) (-4092 . 83734) (-4093 . 83641) (-4094 . 83354) - (-4095 . 83152) (-4096 . 82999) (-4097 . 82388) (-4098 . 81748) - (-4099 . 81666) (-4100 . 81613) (-4101 . 81517) (-4102 . 81382) - (-4103 . 81329) (-4104 . 81258) (-4105 . 81199) (-4106 . 81095) - (-4107 . 81028) (-4108 . 80810) (-4109 . 80040) (-4110 . 79477) - (-4111 . 79382) (-4112 . 79326) (-4113 . 79258) (-4114 . 79199) - (-4115 . 79041) (-4116 . 78988) (-4117 . 78908) (-4118 . 78577) - (-4119 . 78066) (-4120 . 77956) (-4121 . 77843) (-4122 . 77749) - (-4123 . 77697) (-4124 . 77134) (-4125 . 76842) (-4126 . 76728) - (-4127 . 76555) (-4128 . 76424) (-4129 . 76294) (-4130 . 76119) - (-4131 . 76024) (-4132 . 75846) (-4133 . 75742) (-4134 . 75524) - (-4135 . 75445) (-4136 . 75361) (-4137 . 74798) (-4138 . 74643) - (-4139 . 74458) (-4140 . 74396) (-4141 . 74096) (-4142 . 74013) - (-4143 . 73767) (-4144 . 73091) (-4145 . 72923) (-4146 . 72812) - (-4147 . 72716) (-4148 . 69049) (-4149 . 68951) (-4150 . 68836) - (-4151 . 68691) (-4152 . 68639) (-4153 . 68406) (-4154 . 68344) - (-4155 . 68286) (-4156 . 68203) (-4157 . 67986) (-4158 . 67673) - (-4159 . 66831) (-4160 . 66636) (-4161 . 66482) (-4162 . 66354) - (-4163 . 66210) (-4164 . 66091) (-4165 . 66017) (-4166 . 65851) - (-4167 . 65770) (-4168 . 65685) (-4169 . 65599) (-4170 . 65200) - (-4171 . 65150) (-4172 . 64734) (-4173 . 64637) (-4174 . 64500) - (-4175 . 64184) (-4176 . 64026) (-4177 . 63858) (-4178 . 63275) - (-4179 . 63095) (-4180 . 62973) (-4181 . 62782) (-4182 . 61697) - (-4183 . 61368) (-4184 . 61316) (-4185 . 61109) (-4186 . 61013) - (-4187 . 60917) (-4188 . 60506) (-4189 . 59436) (-4190 . 52493) - (-4191 . 52398) (-4192 . 52327) (-4193 . 52079) (-4194 . 52024) - (-4195 . 51993) (-4196 . 51618) (-4197 . 51546) (-4198 . 51451) - (-4199 . 51293) (-4200 . 51192) (-4201 . 51091) (-4202 . 50938) - (-4203 . 50885) (-4204 . 50679) (-4205 . 50607) (-4206 . 50536) - (-4207 . 50313) (-4208 . 50218) (-4209 . 46919) (-4210 . 46767) - (-4211 . 46624) (-4212 . 46495) (-4213 . 46442) (-4214 . 46341) - (-4215 . 46209) (-4216 . 46152) (-4217 . 45841) (-4218 . 45769) - (-4219 . 45671) (-4220 . 45594) (-4221 . 45506) (-4222 . 45345) - (-4223 . 44759) (-4224 . 44421) (-4225 . 44027) (-4226 . 43944) - (-4227 . 43847) (-4228 . 43713) (-4229 . 43461) (-4230 . 43365) - (-4231 . 43308) (-4232 . 43240) (-4233 . 43135) (-4234 . 43041) - (-4235 . 42884) (-4236 . 42546) (-4237 . 41394) (-4238 . 41201) - (-4239 . 40487) (-4240 . 40453) (-4241 . 40286) (-4242 . 40188) - (-4243 . 39673) (-4244 . 39408) (-4245 . 39078) (-4246 . 39025) - (-4247 . 38750) (-4248 . 38677) (-4249 . 38555) (-4250 . 38337) - (-4251 . 38210) (-4252 . 38071) (-4253 . 37965) (-4254 . 37928) - (-4255 . 37875) (-4256 . 37730) (-4257 . 37341) (-4258 . 37253) - (-4259 . 37026) (-4260 . 36970) (-4261 . 36709) (-4262 . 36600) - (-4263 . 36382) (-4264 . 36280) (-4265 . 36096) (-4266 . 35846) - (-4267 . 35419) (-4268 . 35361) (-4269 . 35208) (-4270 . 34956) - (-4271 . 34825) (-4272 . 34675) (-4273 . 34592) (-4274 . 34434) - (-4275 . 34348) (-4276 . 34230) (-4277 . 33786) (-4278 . 33713) - (-4279 . 33618) (-4280 . 33530) (-4281 . 33432) (-4282 . 33365) - (-4283 . 33309) (-4284 . 33208) (-4285 . 33155) (-4286 . 33083) - (-4287 . 32925) (-4288 . 32707) (-4289 . 32600) (-4290 . 32506) - (-4291 . 32352) (-4292 . 32077) (-4293 . 31748) (-4294 . 31649) - (-4295 . 31523) (-4296 . 31427) (-4297 . 31296) (-4298 . 31193) - (-4299 . 30946) (-4300 . 30873) (-4301 . 30839) (-4302 . 30722) - (-4303 . 30356) (-4304 . 30244) (-4305 . 30019) (-4306 . 29967) - (-4307 . 29828) (-4308 . 29772) (-4309 . 29690) (-4310 . 29631) - (-4311 . 29530) (-4312 . 29429) (-4313 . 29305) (-4314 . 25145) - (-4315 . 25011) (-4316 . 24960) (-4317 . 24901) (-4318 . 24834) - (-4319 . 24671) (-4320 . 24598) (-4321 . 24457) (-4322 . 24398) - (-4323 . 24053) (-4324 . 23940) (-4325 . 23567) (-4326 . 23387) - (-4327 . 23262) (-4328 . 23070) (-4329 . 22865) (-4330 . 22692) - (-4331 . 22560) (-4332 . 22439) (-4333 . 22360) (-4334 . 22081) - (-4335 . 22011) (-4336 . 21983) (-4337 . 21896) (-4338 . 21769) - (-4339 . 21706) (-4340 . 21564) (-4341 . 21469) (-4342 . 21127) - (-4343 . 19946) (-4344 . 19727) (-4345 . 19412) (-4346 . 19341) - (-4347 . 19196) (-4348 . 19144) (-4349 . 19050) (-4350 . 19022) - (-4351 . 18939) (-4352 . 18887) (-4353 . 18676) (-4354 . 18593) - (-4355 . 18329) (-4356 . 18269) (-4357 . 18161) (-4358 . 18076) - (-4359 . 17542) (-4360 . 17471) (-4361 . 17374) (-4362 . 17317) - (-4363 . 17209) (-4364 . 17092) (-4365 . 16565) (-4366 . 16477) - (-4367 . 16424) (-4368 . 16393) (-4369 . 16183) (-4370 . 16124) - (-4371 . 16056) (-4372 . 15982) (-4373 . 15911) (-4374 . 15720) - (-4375 . 15511) (-4376 . 15407) (-4377 . 15348) (-4378 . 15262) - (-4379 . 15159) (-4380 . 15127) (-4381 . 15031) (-4382 . 14894) - (-4383 . 14833) (-4384 . 14732) (-4385 . 14592) (-4386 . 14539) - (-4387 . 14490) (-4388 . 14334) (-4389 . 14285) (-4390 . 14128) - (-4391 . 13624) (-4392 . 13331) (-4393 . 13083) (-4394 . 12920) - (-4395 . 12713) (-4396 . 12555) (-4397 . 12384) (-4398 . 12350) - (-4399 . 12091) (-4400 . 11970) (-4401 . 11884) (-4402 . 10610) - (-4403 . 10440) (-4404 . 10332) (-4405 . 9765) (-4406 . 9610) - (-4407 . 9537) (-4408 . 9342) (-4409 . 9189) (-4410 . 8830) - (-4411 . 8735) (-4412 . 8072) (-4413 . 7961) (-4414 . 7708) - (-4415 . 7609) (-4416 . 7484) (-4417 . 6303) (-4418 . 6063) - (-4419 . 5928) (-4420 . 5894) (-4421 . 5349) (-4422 . 5239) - (-4423 . 4927) (-4424 . 4720) (-4425 . 4668) (-4426 . 4598) - (-4427 . 4339) (-4428 . 3867) (-4429 . 3704) (-4430 . 3649) - (-4431 . 3585) (-4432 . 3456) (-4433 . 3332) (-4434 . 3213) - (-4435 . 2837) (-4436 . 2374) (-4437 . 2279) (-4438 . 2199) - (-4439 . 2070) (-4440 . 868) (-4441 . 761) (-4442 . 672) (-4443 . 644) - (-4444 . 260) (-4445 . 157) (-4446 . 30))
\ No newline at end of file + (-12 (-5 *2 (-660 (-2 (|:| |k| (-688 *3)) (|:| |c| *4)))) + (-5 *1 (-640 *3 *4 *5)) (-4 *3 (-865)) + (-4 *4 (-13 (-174) (-733 (-420 (-577))))) (-14 *5 (-944))))) +((-1326 . 731997) (-1327 . 731941) (-1328 . 731867) (-1329 . 731783) + (-1330 . 731710) (-1331 . 731630) (-1332 . 731523) (-1333 . 731368) + (-1334 . 731057) (-1335 . 730736) (-1336 . 730553) (-1337 . 730422) + (-1338 . 730168) (-1339 . 729995) (-1340 . 729928) (-1341 . 729697) + (-1342 . 729613) (-1343 . 729228) (-1344 . 729117) (-1345 . 729007) + (-1346 . 728640) (-1347 . 728495) (-1348 . 728364) (-1349 . 728011) + (-1350 . 727749) (-1351 . 727682) (-1352 . 727244) (-1353 . 727160) + (-1354 . 727037) (-1355 . 727009) (-1356 . 726898) (-1357 . 726760) + (-1358 . 726660) (-1359 . 726529) (-1360 . 725501) (-1361 . 725243) + (-1362 . 725180) (-1363 . 725096) (-1364 . 725012) (-1365 . 724739) + (-1366 . 724540) (-1367 . 723667) (-1368 . 723557) (-1369 . 723489) + (-1370 . 723248) (-1371 . 723142) (-1372 . 722759) (-1373 . 722441) + (-1374 . 721624) (-1375 . 721113) (-1376 . 721033) (-1377 . 720891) + (-1378 . 720794) (-1379 . 720614) (-1380 . 720504) (-1381 . 720373) + (-1382 . 720077) (-1383 . 720046) (-1384 . 719919) (-1385 . 719707) + (-1386 . 719535) (-1387 . 719020) (-1388 . 718898) (-1389 . 718828) + (-1390 . 718578) (-1391 . 718422) (-1392 . 718319) (-1393 . 718023) + (-1394 . 717629) (-1395 . 717501) (-1396 . 716927) (-1397 . 716704) + (-1398 . 716429) (-1399 . 716307) (-1400 . 716191) (-1401 . 716121) + (-1402 . 716093) (-1403 . 716038) (-1404 . 711878) (-1405 . 711605) + (-1406 . 711344) (-1407 . 711092) (-1408 . 710573) (-1409 . 709731) + (-1410 . 709540) (-1411 . 709400) (-1412 . 709306) (-1413 . 709228) + (-1414 . 709169) (-1415 . 708721) (-1416 . 708574) (-1417 . 708493) + (-1418 . 708369) (-1419 . 706591) (-1420 . 706459) (-1421 . 706115) + (-1422 . 705922) (-1423 . 705825) (-1424 . 705451) (-1425 . 705024) + (-1426 . 704821) (-1427 . 704733) (-1428 . 704481) (-1429 . 704009) + (-1430 . 703877) (-1431 . 703564) (-1432 . 703448) (-1433 . 703364) + (-1434 . 703285) (-1435 . 702665) (-1436 . 702608) (-1437 . 702504) + (-1438 . 702403) (-1439 . 702279) (-1440 . 701675) (-1441 . 701543) + (-1442 . 701364) (-1443 . 701103) (-1444 . 701019) (-1445 . 700966) + (-1446 . 700893) (-1447 . 700286) (-1448 . 700132) (-1449 . 700034) + (-1450 . 699782) (-1451 . 699532) (-1452 . 699325) (-1453 . 699193) + (-1454 . 699124) (-1455 . 698633) (-1456 . 698551) (-1457 . 698468) + (-1458 . 698250) (-1459 . 698130) (-1460 . 698058) (-1461 . 697782) + (-1462 . 697658) (-1463 . 697521) (-1464 . 697323) (-1465 . 697182) + (-1466 . 696980) (-1467 . 696407) (-1468 . 696355) (-1469 . 696272) + (-1470 . 696094) (-1471 . 695965) (-1472 . 695158) (** . 692163) + (-1474 . 692109) (-1475 . 691824) (-1476 . 691609) (-1477 . 691466) + (-1478 . 691310) (-1479 . 691148) (-1480 . 690938) (-1481 . 690855) + (-1482 . 690591) (-1483 . 690493) (-1484 . 690421) (-1485 . 690182) + (-1486 . 689909) (-1487 . 689856) (-1488 . 689535) (-1489 . 689355) + (-1490 . 689196) (-1491 . 689123) (-1492 . 689046) (-1493 . 688945) + (-1494 . 688531) (-1495 . 688443) (-1496 . 688107) (-1497 . 687834) + (-1498 . 687781) (-1499 . 687666) (-1500 . 686234) (-1501 . 686124) + (-1502 . 685855) (-1503 . 685796) (-1504 . 685502) (-1505 . 685414) + (-1506 . 685342) (-1507 . 685044) (-1508 . 684992) (-1509 . 684647) + (-1510 . 684506) (-1511 . 684455) (-1512 . 684038) (-1513 . 683796) + (-1514 . 683672) (-1515 . 683224) (-1516 . 683136) (-1517 . 682800) + (-1518 . 682698) (-1519 . 682646) (-1520 . 682486) (-1521 . 682340) + (-1522 . 681951) (-1523 . 681741) (-1524 . 681617) (-1525 . 681515) + (-1526 . 681337) (-1527 . 681249) (-1528 . 681177) (-1529 . 681103) + (-1530 . 680958) (-1531 . 680866) (-1532 . 680727) (-1533 . 680494) + (-1534 . 679960) (-1535 . 679828) (-1536 . 679775) (-1537 . 679382) + (-1538 . 679294) (-1539 . 678841) (-1540 . 678700) (-1541 . 678629) + (-1542 . 678490) (-1543 . 678430) (-1544 . 678189) (-1545 . 676939) + (-1546 . 676794) (-1547 . 676711) (-1548 . 676656) (-1549 . 676263) + (-1550 . 676169) (-1551 . 676097) (-1552 . 675940) (-1553 . 675866) + (-1554 . 675737) (-1555 . 675680) (-1556 . 675583) (-1557 . 675430) + (-1558 . 675095) (-1559 . 674910) (-1560 . 674822) (-1561 . 674717) + (-1562 . 674551) (-1563 . 674480) (-1564 . 674395) (-1565 . 674338) + (-1566 . 673742) (-1567 . 673633) (-1568 . 673274) (-1569 . 672945) + (-1570 . 672738) (-1571 . 672650) (-1572 . 672573) (-1573 . 672482) + (-1574 . 672429) (-1575 . 671933) (-1576 . 671720) (-1577 . 671639) + (-1578 . 671569) (-1579 . 671277) (-1580 . 671089) (-1581 . 670865) + (-1582 . 670777) (-1583 . 670700) (-1584 . 670651) (-1585 . 670623) + (-1586 . 670552) (-1587 . 669254) (-1588 . 669111) (-1589 . 668313) + (-1590 . 668021) (-1591 . 667830) (-1592 . 667524) (-1593 . 667436) + (-1594 . 667364) (-1595 . 667280) (-1596 . 667227) (-1597 . 667098) + (-1598 . 666990) (-1599 . 666611) (-1600 . 666319) (-1601 . 666201) + (-1602 . 666034) (-1603 . 665835) (-1604 . 665747) (-1605 . 665404) + (-1606 . 665307) (-1607 . 665254) (-1608 . 665108) (-1609 . 664987) + (-1610 . 664915) (-1611 . 664866) (-1612 . 664574) (-1613 . 664233) + (-1614 . 663599) (-1615 . 663511) (-1616 . 663379) (-1617 . 663309) + (-1618 . 662830) (-1619 . 662706) (-1620 . 662653) (-1621 . 662300) + (-1622 . 662233) (-1623 . 661529) (-1624 . 661032) (-1625 . 660897) + (-1626 . 660775) (-1627 . 660716) (-1628 . 656172) (-1629 . 656002) + (-1630 . 655845) (-1631 . 655757) (-1632 . 655612) (-1633 . 655253) + (-1634 . 655200) (-1635 . 655095) (-1636 . 655021) (-1637 . 654340) + (-1638 . 653914) (-1639 . 653779) (-1640 . 653672) (-1641 . 653426) + (-1642 . 653035) (-1643 . 652947) (-1644 . 652802) (-1645 . 652362) + (-1646 . 652309) (-1647 . 652052) (-1648 . 651937) (-1649 . 651493) + (-1650 . 651065) (-1651 . 650731) (-1652 . 650682) (-1653 . 650594) + (-1654 . 650108) (-1655 . 649964) (-1656 . 649911) (-1657 . 649674) + (-1658 . 649417) (-1659 . 649164) (-1660 . 648290) (-1661 . 648092) + (-1662 . 648040) (-1663 . 647952) (-1664 . 647617) (-1665 . 647547) + (-1666 . 647494) (-1667 . 647389) (-1668 . 647287) (-1669 . 647180) + (-1670 . 647053) (-1671 . 646883) (-1672 . 646773) (-1673 . 646544) + (-1674 . 646495) (-1675 . 646357) (-1676 . 646142) (-1677 . 645512) + (-1678 . 645458) (-1679 . 645388) (-1680 . 645335) (-1681 . 645258) + (-1682 . 645057) (-1683 . 644927) (-1684 . 644803) (-1685 . 644751) + (-1686 . 644575) (-1687 . 644523) (-1688 . 644385) (-1689 . 644126) + (-1690 . 644056) (-1691 . 644003) (-1692 . 643926) (-1693 . 643604) + (-1694 . 643492) (-1695 . 643440) (-1696 . 643018) (-1697 . 642872) + (-1698 . 642752) (-1699 . 642397) (-1700 . 642320) (-1701 . 641846) + (-1702 . 641537) (-1703 . 641379) (-1704 . 641327) (-1705 . 641100) + (-1706 . 641048) (-1707 . 640928) (-1708 . 640701) (-1709 . 640576) + (-1710 . 640493) (-1711 . 640431) (-1712 . 640316) (-1713 . 640209) + (-1714 . 640095) (-1715 . 639982) (-1716 . 639930) (-1717 . 639659) + (-1718 . 639513) (-1719 . 639372) (-1720 . 639145) (-1721 . 638586) + (-1722 . 638484) (-1723 . 638413) (-1724 . 638305) (-1725 . 634242) + (-1726 . 634094) (-1727 . 634042) (-1728 . 633904) (-1729 . 633852) + (-1730 . 633783) (-1731 . 633695) (-1732 . 633468) (-1733 . 632909) + (-1734 . 632709) (-1735 . 632339) (-1736 . 632188) (-1737 . 632104) + (-1738 . 632052) (-1739 . 631964) (-1740 . 631737) (-1741 . 631669) + (-1742 . 631382) (-1743 . 631240) (-1744 . 631156) (-1745 . 631128) + (-1746 . 630863) (-1747 . 630792) (-1748 . 630704) (-1749 . 630489) + (-1750 . 630461) (-1751 . 630213) (-1752 . 630092) (-1753 . 629981) + (-1754 . 629562) (-1755 . 629454) (-1756 . 629402) (-1757 . 628887) + (-1758 . 628136) (-1759 . 628065) (-1760 . 627977) (-1761 . 627762) + (-1762 . 627511) (-1763 . 627428) (-1764 . 627332) (-1765 . 627082) + (-1766 . 624737) (-1767 . 624314) (-1768 . 624148) (-1769 . 624011) + (-1770 . 623912) (-1771 . 623774) (-1772 . 623622) (-1773 . 623374) + (-1774 . 623291) (-1775 . 623238) (-1776 . 622811) (-1777 . 622453) + (-1778 . 622263) (-1779 . 622172) (-1780 . 621916) (-1781 . 621778) + (-1782 . 621594) (-1783 . 621346) (-1784 . 621291) (-1785 . 621164) + (-1786 . 621003) (-1787 . 620926) (-1788 . 620715) (-1789 . 620578) + (-1790 . 620203) (-1791 . 620115) (-1792 . 620010) (-1793 . 619942) + (-1794 . 619848) (-1795 . 619761) (-1796 . 619606) (-1797 . 619335) + (-1798 . 619220) (-1799 . 619152) (-1800 . 618980) (-1801 . 618892) + (-1802 . 618769) (-1803 . 618433) (-1804 . 618137) (-1805 . 618070) + (-1806 . 617990) (-1807 . 617719) (-1808 . 617486) (-1809 . 617417) + (-1810 . 617301) (-1811 . 617199) (-1812 . 616134) (-1813 . 615803) + (-1814 . 615736) (-1815 . 615678) (-1816 . 615291) (-1817 . 615192) + (-1818 . 615104) (-1819 . 614600) (-1820 . 614336) (-1821 . 613984) + (-1822 . 613764) (-1823 . 613685) (-1824 . 613611) (-1825 . 613544) + (-1826 . 613471) (-1827 . 612768) (-1828 . 612668) (-1829 . 612606) + (-1830 . 612518) (-1831 . 612134) (-1832 . 611591) (-1833 . 611203) + (-1834 . 611120) (-1835 . 610795) (-1836 . 610728) (-1837 . 610663) + (-1838 . 610603) (-1839 . 610205) (-1840 . 610034) (-1841 . 609740) + (-1842 . 609311) (-1843 . 608923) (-1844 . 607756) (-1845 . 607682) + (-1846 . 607472) (-1847 . 607405) (-1848 . 607340) (-1849 . 607245) + (-1850 . 607027) (-1851 . 606852) (-1852 . 606778) (-1853 . 606680) + (-1854 . 606543) (-1855 . 606155) (-1856 . 606081) (-1857 . 605995) + (-1858 . 605928) (-1859 . 605855) (-1860 . 605770) (-1861 . 605672) + (-1862 . 605623) (-1863 . 605479) (-1864 . 605047) (-1865 . 604801) + (-1866 . 604701) (-1867 . 603299) (-1868 . 602915) (-1869 . 602863) + (-1870 . 602789) (-1871 . 602703) (-1872 . 602636) (-1873 . 602520) + (-1874 . 602463) (-1875 . 602435) (-1876 . 601969) (-1877 . 601938) + (-1878 . 598639) (-1879 . 598432) (-1880 . 597694) (-1881 . 597590) + (-1882 . 597504) (-1883 . 597437) (-1884 . 597382) (-1885 . 597240) + (-1886 . 597162) (-1887 . 596782) (-1888 . 596708) (-1889 . 596598) + (-1890 . 596246) (-1891 . 596173) (-1892 . 595811) (-1893 . 595725) + (-1894 . 595658) (-1895 . 595606) (-1896 . 595039) (-1897 . 594940) + (-1898 . 594176) (-1899 . 594072) (-1900 . 593977) (-1901 . 593519) + (-1902 . 588005) (-1903 . 587937) (-1904 . 587851) (-1905 . 587784) + (-1906 . 587732) (-1907 . 587165) (-1908 . 587066) (-1909 . 586922) + (-1910 . 586299) (-1911 . 586186) (-1912 . 585990) (-1913 . 585597) + (-1914 . 585167) (-1915 . 584954) (-1916 . 584868) (-1917 . 584801) + (-1918 . 584773) (-1919 . 584509) (-1920 . 584366) (-1921 . 584267) + (-1922 . 584123) (-1923 . 584010) (-1924 . 583814) (-1925 . 583180) + (-1926 . 582738) (-1927 . 582686) (-1928 . 582600) (-1929 . 582533) + (-1930 . 582505) (-1931 . 582161) (-1932 . 582062) (-1933 . 581897) + (-1934 . 581769) (-1935 . 581698) (-1936 . 581058) (-1937 . 580723) + (-1938 . 580600) (-1939 . 580545) (-1940 . 580459) (-1941 . 580392) + (-1942 . 580364) (-1943 . 580054) (-1944 . 579727) (-1945 . 579628) + (-1946 . 579548) (-1947 . 579310) (-1948 . 579239) (-1949 . 579129) + (-1950 . 578737) (-1951 . 578703) (-1952 . 578612) (-1953 . 578526) + (-1954 . 578281) (-1955 . 578214) (-1956 . 578170) (-1957 . 578037) + (-1958 . 577938) (-1959 . 577797) (-1960 . 577714) (-1961 . 577607) + (-1962 . 577265) (-1963 . 577177) (-1964 . 577091) (-1965 . 576950) + (-1966 . 576883) (-1967 . 576812) (-1968 . 576679) (-1969 . 576519) + (-1970 . 576372) (-1971 . 576216) (-1972 . 576133) (-1973 . 575918) + (-1974 . 575526) (-1975 . 573745) (-1976 . 573659) (-1977 . 573592) + (-1978 . 573540) (-1979 . 573148) (-1980 . 573070) (-1981 . 572831) + (-1982 . 572697) (-1983 . 572572) (-1984 . 572283) (-1985 . 571941) + (-1986 . 571809) (-1987 . 571728) (-1988 . 571642) (-1989 . 571575) + (-1990 . 571526) (-1991 . 571430) (-1992 . 571261) (-1993 . 571025) + (-1994 . 570888) (-1995 . 570754) (-1996 . 570529) (-1997 . 570455) + (-1998 . 569701) (-1999 . 569615) (-2000 . 569548) (-2001 . 569496) + (-2002 . 569400) (-2003 . 567339) (-2004 . 567281) (-2005 . 567042) + (-2006 . 566959) (-2007 . 566846) (-2008 . 566316) (-2009 . 566199) + (-2010 . 566113) (-2011 . 566046) (-2012 . 565994) (-2013 . 565898) + (-2014 . 565840) (-2015 . 565645) (-2016 . 565571) (-2017 . 565452) + (-2018 . 565234) (-2019 . 565102) (-2020 . 564895) (-2021 . 564809) + (-2022 . 564742) (-2023 . 564626) (-2024 . 564530) (-2025 . 564218) + (-2026 . 564095) (-2027 . 563128) (-2028 . 562951) (-2029 . 562783) + (-2030 . 561154) (-2031 . 560936) (-2032 . 560206) (-2033 . 560041) + (-2034 . 559955) (-2035 . 559888) (-2036 . 559793) (-2037 . 559697) + (-2038 . 559438) (-2039 . 559234) (-2040 . 559067) (-2041 . 558933) + (-2042 . 558781) (-2043 . 557922) (-2044 . 557703) (-2045 . 557544) + (-2046 . 556814) (-2047 . 556719) (-2048 . 556554) (-2049 . 556468) + (-2050 . 556401) (-2051 . 556323) (-2052 . 556227) (-2053 . 556143) + (-2054 . 555920) (-2055 . 555753) (-2056 . 555616) (-2057 . 555512) + (-2058 . 554215) (-2059 . 554035) (-2060 . 553358) (-2061 . 553194) + (-2062 . 553108) (-2063 . 553041) (-2064 . 552918) (-2065 . 552822) + (-2066 . 552689) (-2067 . 552202) (-2068 . 551963) (-2069 . 551859) + (-2070 . 551728) (-2071 . 551509) (-2072 . 550755) (-2073 . 550190) + (-2074 . 550051) (-2075 . 549965) (-2076 . 549898) (-2077 . 549832) + (-2078 . 549736) (-2079 . 549684) (-2080 . 549543) (-2081 . 549458) + (-2082 . 549345) (-2083 . 549165) (-2084 . 548600) (-2085 . 548503) + (-2086 . 548417) (-2087 . 548350) (-2088 . 548291) (-2089 . 548195) + (-2090 . 548111) (-2091 . 547973) (-2092 . 547601) (-2093 . 547479) + (-2094 . 547085) (-2095 . 546520) (-2096 . 546419) (-2097 . 546333) + (-2098 . 546266) (-2099 . 546238) (-2100 . 546142) (-2101 . 546065) + (-2102 . 545926) (-2103 . 545843) (-2104 . 545718) (-2105 . 545538) + (-2106 . 544863) (-2107 . 544766) (-2108 . 544680) (-2109 . 544021) + (-2110 . 543993) (-2111 . 543897) (-2112 . 543842) (-2113 . 543589) + (-2114 . 543485) (-2115 . 543398) (-2116 . 543346) (-2117 . 542914) + (-2118 . 542699) (-2119 . 540933) (-2120 . 540258) (-2121 . 540085) + (-2122 . 539970) (-2123 . 539884) (-2124 . 539225) (-2125 . 539197) + (-2126 . 539101) (-2127 . 539049) (-2128 . 538948) (-2129 . 538692) + (-2130 . 538508) (-2131 . 538425) (-2132 . 537751) (-2133 . 537661) + (-2134 . 536206) (-2135 . 536025) (-2136 . 535287) (-2137 . 535202) + (-2138 . 535116) (-2139 . 534987) (-2140 . 534959) (-2141 . 534863) + (-2142 . 534789) (-2143 . 534629) (-2144 . 534455) (-2145 . 534233) + (-2146 . 534115) (-2147 . 534025) (-2148 . 532535) (-2149 . 532483) + (-2150 . 531920) (-2151 . 531819) (-2152 . 531733) (-2153 . 531609) + (-2154 . 531513) (-2155 . 531341) (-2156 . 531267) (-2157 . 531113) + (-2158 . 530914) (-2159 . 530721) (-2160 . 530603) (-2161 . 530509) + (-2162 . 529946) (-2163 . 529744) (-2164 . 529658) (-2165 . 529534) + (-2166 . 529438) (-2167 . 529355) (-2168 . 529114) (-2169 . 528940) + (-2170 . 528609) (-2171 . 527873) (-2172 . 527813) (-2173 . 527701) + (-2174 . 527138) (-2175 . 527044) (-2176 . 526941) (-2177 . 526799) + (-2178 . 526703) (-2179 . 526620) (-2180 . 526457) (-2181 . 526167) + (-2182 . 525940) (-2183 . 525644) (-2184 . 525525) (-2185 . 525435) + (-2186 . 524759) (-2187 . 524662) (-2188 . 524573) (-2189 . 524417) + (-2190 . 524321) (-2191 . 524266) (-2192 . 524034) (-2193 . 523906) + (-2194 . 523768) (-2195 . 523472) (-2196 . 523344) (-2197 . 523236) + (-2198 . 523107) (-2199 . 522431) (-2200 . 522364) (-2201 . 522154) + (-2202 . 522009) (-2203 . 521894) (-2204 . 521798) (-2205 . 521724) + (-2206 . 521056) (-2207 . 520928) (-2208 . 520618) (-2209 . 519974) + (-2210 . 519783) (-2211 . 519709) (-2212 . 519033) (-2213 . 518980) + (-2214 . 518921) (-2215 . 518739) (-2216 . 518643) (-2217 . 518569) + (-2218 . 518393) (-2219 . 518271) (-2220 . 517954) (-2221 . 516783) + (-2222 . 516727) (-2223 . 516569) (-2224 . 516005) (-2225 . 515952) + (-2226 . 515896) (-2227 . 515771) (-2228 . 515675) (-2229 . 514739) + (-2230 . 514665) (-2231 . 514483) (-2232 . 514258) (-2233 . 514129) + (-2234 . 514014) (-2235 . 513931) (-2236 . 513816) (-2237 . 513252) + (-2238 . 513199) (-2239 . 513110) (-2240 . 512984) (-2241 . 512888) + (-2242 . 512809) (-2243 . 512633) (-2244 . 512462) (-2245 . 512271) + (-2246 . 512152) (-2247 . 512069) (-2248 . 510933) (-2249 . 510369) + (-2250 . 510310) (-2251 . 510198) (-2252 . 510086) (-2253 . 509984) + (-2254 . 509888) (-2255 . 509833) (-2256 . 509651) (-2257 . 509577) + (-2258 . 509406) (-2259 . 508918) (-2260 . 508835) (-2261 . 508272) + (-2262 . 507709) (-2263 . 507650) (-2264 . 507562) (-2265 . 507505) + (-2266 . 507409) (-2267 . 507309) (-2268 . 507130) (-2269 . 507046) + (-2270 . 506869) (-2271 . 506734) (-2272 . 506171) (-2273 . 505794) + (-2274 . 505766) (-2275 . 505618) (-2276 . 505561) (-9 . 505533) + (-2278 . 505437) (-2279 . 505337) (-2280 . 505158) (-2281 . 504940) + (-2282 . 504788) (-2283 . 504653) (-2284 . 504495) (-8 . 504467) + (-2286 . 504414) (-2287 . 504352) (-2288 . 504198) (-2289 . 504141) + (-2290 . 503655) (-2291 . 503559) (-2292 . 503459) (-2293 . 503272) + (-2294 . 503054) (-2295 . 502774) (-2296 . 502650) (-2297 . 502464) + (-2298 . 502411) (-2299 . 502383) (-2300 . 502326) (-7 . 502298) + (-2302 . 502113) (-2303 . 502013) (-2304 . 501631) (-2305 . 501372) + (-2306 . 500968) (-2307 . 500847) (-2308 . 500691) (-2309 . 500635) + (-2310 . 500607) (-2311 . 500547) (-2312 . 500232) (-2313 . 500132) + (-2314 . 499953) (-2315 . 499526) (-2316 . 499395) (-2317 . 499277) + (-2318 . 499184) (-2319 . 499128) (-2320 . 499100) (-2321 . 499035) + (-2322 . 497446) (-2323 . 497348) (-2324 . 497169) (-2325 . 497079) + (-2326 . 496538) (-2327 . 496333) (-2328 . 496197) (-2329 . 496029) + (-2330 . 496001) (-2331 . 495892) (-2332 . 495734) (-2333 . 495672) + (-2334 . 495577) (-2335 . 495390) (-2336 . 495260) (-2337 . 495077) + (-2338 . 494944) (-2339 . 494518) (-2340 . 494448) (-2341 . 494274) + (-2342 . 494165) (-2343 . 494024) (-2344 . 493929) (-2345 . 493547) + (-2346 . 493273) (-2347 . 493086) (-2348 . 493014) (-2349 . 492916) + (-2350 . 492760) (-2351 . 492651) (-2352 . 492508) (-2353 . 492413) + (-2354 . 491417) (-2355 . 491238) (-2356 . 491109) (-2357 . 491052) + (-2358 . 491024) (-2359 . 490871) (-2360 . 490591) (-2361 . 490385) + (-2362 . 490115) (-2363 . 490020) (-2364 . 489612) (-2365 . 489497) + (-2366 . 489390) (-2367 . 489330) (-2368 . 489122) (-2369 . 488948) + (-2370 . 488871) (-2371 . 486903) (-2372 . 486808) (-2373 . 486400) + (-2374 . 486296) (-2375 . 486155) (-2376 . 485758) (-2377 . 485698) + (-2378 . 485667) (-2379 . 485507) (-2380 . 485297) (-2381 . 485066) + (-2382 . 484938) (-2383 . 484836) (-2384 . 484718) (-2385 . 484663) + (-2386 . 484531) (-2387 . 484007) (-2388 . 483843) (-2389 . 483719) + (-2390 . 483635) (-2391 . 483510) (-2392 . 483408) (-2393 . 483294) + (-2394 . 483090) (-2395 . 482812) (-2396 . 482760) (-2397 . 482552) + (-2398 . 482471) (-2399 . 482343) (-2400 . 481860) (-2401 . 481826) + (-2402 . 481724) (-2403 . 481576) (-2404 . 481463) (-2405 . 481401) + (-2406 . 481306) (-2407 . 481225) (-2408 . 480998) (-2409 . 480515) + (-2410 . 480481) (-2411 . 480386) (-2412 . 480247) (-2413 . 479803) + (-2414 . 479557) (-2415 . 479505) (-2416 . 479410) (-2417 . 479329) + (-2418 . 479102) (-2419 . 478594) (-2420 . 478560) (-2421 . 478130) + (-2422 . 478026) (-2423 . 477794) (-2424 . 477548) (-2425 . 477485) + (-2426 . 477357) (-2427 . 477289) (-2428 . 477255) (-2429 . 477057) + (-2430 . 476950) (-2431 . 476745) (-2432 . 476693) (-2433 . 476486) + (-2434 . 476321) (-2435 . 476118) (-2436 . 476091) (-2437 . 476020) + (-2438 . 475923) (-2439 . 475813) (-2440 . 475385) (-2441 . 475203) + (-2442 . 474819) (-2443 . 474767) (-2444 . 474570) (-2445 . 474305) + (-2446 . 474140) (-2447 . 473961) (-2448 . 473632) (-2449 . 473561) + (-2450 . 473470) (-2451 . 473347) (-2452 . 473234) (-2453 . 473104) + (-2454 . 473014) (-2455 . 472792) (-2456 . 472426) (-2457 . 472217) + (-2458 . 471690) (-2459 . 471511) (-2460 . 471420) (-2461 . 471343) + (-2462 . 471244) (-2463 . 471053) (-2464 . 470831) (-2465 . 470561) + (-2466 . 470371) (-2467 . 469844) (-2468 . 469725) (-2469 . 469670) + (-2470 . 469562) (-2471 . 469402) (-2472 . 469246) (-2473 . 468936) + (-2474 . 468777) (-2475 . 468496) (-2476 . 468377) (-2477 . 468325) + (-2478 . 468166) (-2479 . 468017) (-2480 . 467946) (-2481 . 467864) + (-2482 . 467657) (-2483 . 467495) (-2484 . 467074) (-2485 . 466996) + (-2486 . 466944) (-2487 . 466657) (-2488 . 466328) (-2489 . 466145) + (-2490 . 466015) (-2491 . 465704) (-2492 . 465542) (-2493 . 465464) + (-2494 . 465412) (-2495 . 465244) (-2496 . 465083) (-2497 . 464906) + (-2498 . 464878) (-2499 . 464292) (-2500 . 464133) (-2501 . 464080) + (-2502 . 463802) (-2503 . 463750) (-2504 . 463628) (-2505 . 463485) + (-2506 . 463457) (-2507 . 463316) (-2508 . 463175) (-2509 . 463047) + (-2510 . 462672) (-2511 . 462557) (-2512 . 462480) (-2513 . 462427) + (-2514 . 462188) (-2515 . 462045) (-2516 . 461963) (-2517 . 461748) + (-2518 . 461619) (-2519 . 461538) (-2520 . 461385) (-2521 . 461333) + (-2522 . 461264) (-2523 . 461060) (-2524 . 460917) (-2525 . 460838) + (-2526 . 460529) (-2527 . 460400) (-2528 . 460347) (-2529 . 460295) + (-2530 . 460065) (-2531 . 459854) (-2532 . 459573) (-2533 . 459472) + (-2534 . 459393) (-2535 . 459307) (-2536 . 459178) (-2537 . 459035) + (-2538 . 458983) (-2539 . 458824) (-2540 . 458631) (-2541 . 458406) + (-2542 . 458305) (-2543 . 458222) (-2544 . 457878) (-2545 . 457734) + (-2546 . 448284) (-2547 . 448232) (-2548 . 447953) (-2549 . 447417) + (-2550 . 446831) (-2551 . 446301) (-2552 . 446185) (-2553 . 446125) + (-2554 . 445980) (-2555 . 445836) (-2556 . 445685) (-2557 . 445633) + (-2558 . 445490) (-2559 . 445311) (-2560 . 445093) (-2561 . 444357) + (-2562 . 444199) (-2563 . 443873) (-2564 . 443730) (-2565 . 443679) + (-2566 . 443537) (-2567 . 443503) (-2568 . 443425) (-2569 . 443207) + (-2570 . 443082) (-2571 . 442889) (-2572 . 442649) (-2573 . 442503) + (-2574 . 442453) (-2575 . 442184) (-2576 . 442004) (-2577 . 441949) + (-2578 . 441808) (-2579 . 441414) (-2580 . 441289) (-2581 . 440804) + (-2582 . 440678) (-2583 . 439920) (-2584 . 439886) (-2585 . 439835) + (-2586 . 439602) (-2587 . 438889) (-2588 . 438686) (-2589 . 438506) + (-2590 . 438366) (-2591 . 438124) (-2592 . 437999) (-2593 . 437835) + (-2594 . 437784) (-2595 . 437584) (-2596 . 437269) (-2597 . 437125) + (-2598 . 436910) (-2599 . 436792) (-2600 . 436524) (-2601 . 436377) + (-2602 . 436188) (-2603 . 435990) (-2604 . 435962) (-2605 . 435453) + (-2606 . 435203) (-2607 . 435009) (-2608 . 434884) (-2609 . 434783) + (-2610 . 434639) (-2611 . 434478) (-2612 . 434320) (-2613 . 434177) + (-2614 . 434149) (-2615 . 434097) (-2616 . 433779) (-2617 . 432915) + (-2618 . 432757) (-2619 . 432674) (-2620 . 432558) (-2621 . 432317) + (-2622 . 432203) (-2623 . 432175) (-2624 . 432123) (-2625 . 431757) + (-2626 . 431728) (-2627 . 430729) (-2628 . 430646) (-2629 . 430515) + (-2630 . 430267) (-2631 . 430146) (-2632 . 430118) (-2633 . 430066) + (-2634 . 429904) (-2635 . 429735) (-2636 . 428855) (-2637 . 428785) + (-2638 . 428407) (-2639 . 428159) (-2640 . 428041) (-2641 . 428013) + (-2642 . 427935) (-2643 . 427729) (-2644 . 427700) (-2645 . 427545) + (-2646 . 427491) (-2647 . 427421) (-2648 . 427161) (-2649 . 426946) + (-2650 . 426834) (-2651 . 426806) (-2652 . 426744) (-2653 . 426584) + (-2654 . 426555) (-2655 . 426501) (-2656 . 425073) (-2657 . 425014) + (-2658 . 424855) (-2659 . 424575) (-2660 . 424435) (-2661 . 424212) + (-2662 . 424094) (-2663 . 424041) (-2664 . 423939) (-2665 . 423911) + (-2666 . 423693) (-2667 . 423620) (-2668 . 423564) (-2669 . 423184) + (-2670 . 422951) (-2671 . 422708) (-2672 . 422493) (-2673 . 422388) + (-2674 . 422336) (-2675 . 422269) (-2676 . 422150) (-2677 . 421993) + (-2678 . 421576) (-2679 . 421452) (-2680 . 421122) (-2681 . 420829) + (-2682 . 420746) (-2683 . 420611) (-2684 . 420518) (-2685 . 420434) + (-2686 . 419138) (-2687 . 419041) (-2688 . 418922) (-2689 . 418862) + (-2690 . 418486) (-2691 . 418427) (-2692 . 418077) (-2693 . 417862) + (-2694 . 417732) (-2695 . 417628) (-2696 . 417578) (-2697 . 417528) + (-2698 . 417431) (-2699 . 417271) (-2700 . 416570) (-2701 . 416194) + (-2702 . 416129) (-2703 . 415662) (-2704 . 415522) (-2705 . 414555) + (-2706 . 414004) (-2707 . 413935) (-2708 . 413746) (-2709 . 413566) + (-2710 . 412166) (-2711 . 412013) (-2712 . 411951) (-2713 . 411305) + (-2714 . 410819) (-2715 . 410604) (-2716 . 410379) (-2717 . 410310) + (-2718 . 410226) (-2719 . 410043) (-2720 . 409982) (-2721 . 409680) + (-2722 . 409570) (-2723 . 409360) (-2724 . 408768) (-2725 . 408565) + (-2726 . 408254) (-2727 . 408170) (-2728 . 408065) (-2729 . 407919) + (-2730 . 407818) (-2731 . 407761) (-2732 . 407602) (-2733 . 407492) + (-2734 . 407218) (-2735 . 406915) (-2736 . 406769) (-2737 . 406420) + (-2738 . 406349) (-2739 . 405978) (-2740 . 405315) (-2741 . 405214) + (-2742 . 405157) (-2743 . 405080) (-2744 . 404749) (-2745 . 404203) + (-2746 . 404022) (-2747 . 403879) (-2748 . 403805) (-2749 . 403746) + (-2750 . 403591) (-2751 . 402881) (-2752 . 402777) (-2753 . 402700) + (-2754 . 402629) (-2755 . 402552) (-2756 . 402470) (-2757 . 401956) + (-2758 . 401738) (-2759 . 401504) (-2760 . 401406) (-2761 . 401341) + (-2762 . 401186) (-2763 . 401079) (-2764 . 400972) (-2765 . 400912) + (-2766 . 400841) (-2767 . 400696) (-2768 . 400474) (-2769 . 400331) + (-2770 . 400257) (-2771 . 400192) (-2772 . 399987) (-2773 . 399883) + (-2774 . 399757) (-2775 . 399639) (-2776 . 399427) (-2777 . 399360) + (-2778 . 399202) (-2779 . 398973) (-2780 . 398879) (-2781 . 398781) + (-2782 . 398659) (-2783 . 398555) (-2784 . 398429) (-2785 . 397469) + (-2786 . 397260) (-2787 . 397177) (-2788 . 396979) (-2789 . 396779) + (-2790 . 396492) (-2791 . 396440) (-2792 . 396324) (-2793 . 392661) + (-2794 . 392584) (-2795 . 392470) (-2796 . 392221) (-2797 . 392092) + (-2798 . 392015) (-2799 . 391639) (-2800 . 391556) (-2801 . 391503) + (-2802 . 391400) (-2803 . 391239) (-2804 . 391064) (-2805 . 390951) + (-2806 . 390780) (-2807 . 390700) (-2808 . 390491) (-2809 . 390359) + (-2810 . 390305) (-2811 . 389770) (-2812 . 389668) (-2813 . 389640) + (-2814 . 389302) (-2815 . 389208) (-2816 . 388961) (-2817 . 388884) + (-2818 . 388785) (-2819 . 388684) (-2820 . 388368) (-2821 . 387877) + (-2822 . 387803) (-2823 . 387730) (-2824 . 387702) (-2825 . 387538) + (-2826 . 387289) (-2827 . 387195) (-2828 . 386996) (-2829 . 386916) + (-2830 . 386815) (-2831 . 386736) (-2832 . 386628) (-2833 . 386270) + (-2834 . 385779) (-2835 . 385696) (-2836 . 385635) (-2837 . 385471) + (-2838 . 385378) (-2839 . 385206) (-2840 . 385129) (-2841 . 385049) + (-2842 . 384993) (-2843 . 384889) (-2844 . 384786) (-2845 . 384660) + (-2846 . 384586) (-2847 . 384533) (-2848 . 384369) (-2849 . 384316) + (-2850 . 384223) (-12 . 384051) (-2852 . 382989) (-2853 . 382912) + (-2854 . 382841) (-2855 . 382737) (-2856 . 382576) (-2857 . 381992) + (-2858 . 381774) (-2859 . 381705) (-2860 . 381529) (-2861 . 381436) + (-2862 . 381356) (-2863 . 381190) (-2864 . 381070) (-2865 . 380963) + (-2866 . 380843) (-2867 . 380619) (-2868 . 380406) (-2869 . 380336) + (-2870 . 380160) (-2871 . 380072) (-2872 . 376072) (-2873 . 375838) + (-2874 . 375734) (-2875 . 375568) (-2876 . 375464) (-2877 . 375272) + (-2878 . 375179) (-2879 . 375060) (-2880 . 374881) (-2881 . 372466) + (-2882 . 372308) (-2883 . 372207) (-2884 . 372013) (-2885 . 371875) + (-2886 . 371729) (-2887 . 369615) (-2888 . 369548) (-2889 . 369370) + (-2890 . 369010) (-2891 . 368942) (-2892 . 368640) (-2893 . 368558) + (-2894 . 368392) (-2895 . 368254) (-2896 . 368102) (-2897 . 367959) + (-2898 . 367904) (-2899 . 367709) (-2900 . 367655) (-2901 . 367497) + (-2902 . 367415) (-2903 . 367247) (-2904 . 367094) (-2905 . 366977) + (-2906 . 366789) (-2907 . 366722) (-2908 . 366476) (-2909 . 366313) + (-2910 . 366188) (-2911 . 365856) (-2912 . 365777) (-2913 . 365606) + (-2914 . 365325) (-2915 . 365018) (-2916 . 364934) (-2917 . 364821) + (-2918 . 364748) (-2919 . 364671) (-2920 . 364607) (-2921 . 359267) + (-2922 . 359124) (-2923 . 359053) (-2924 . 358888) (-2925 . 358666) + (-2926 . 358493) (-2927 . 358423) (-2928 . 358346) (-2929 . 358221) + (-2930 . 358078) (-2931 . 358007) (-2932 . 357842) (-2933 . 357689) + (-2934 . 357516) (-2935 . 357385) (-2936 . 357315) (-2937 . 357238) + (-2938 . 357119) (-2939 . 356987) (* . 352874) (-2941 . 352791) + (-2942 . 352720) (-2943 . 352620) (-2944 . 352467) (-2945 . 352211) + (-2946 . 352082) (-2947 . 351992) (-2948 . 351915) (-2949 . 351796) + (-2950 . 351739) (-2951 . 351656) (-2952 . 351585) (-2953 . 351393) + (-2954 . 351240) (-2955 . 351054) (-2956 . 350975) (-2957 . 350785) + (-2958 . 350708) (-2959 . 350655) (-2960 . 350551) (-2961 . 350398) + (-2962 . 350279) (-2963 . 350250) (-2964 . 350197) (-2965 . 350118) + (-2966 . 350045) (-2967 . 349968) (-2968 . 349840) (-2969 . 349787) + (-2970 . 349515) (-2971 . 349333) (-2972 . 349138) (-2973 . 348985) + (-2974 . 348925) (-2975 . 348796) (-2976 . 348726) (-2977 . 348599) + (-2978 . 348535) (-2979 . 348450) (-2980 . 347848) (-2981 . 347598) + (-2982 . 347206) (-2983 . 346928) (-2984 . 346284) (-2985 . 346155) + (-2986 . 346090) (-2987 . 345913) (-2988 . 345859) (-2989 . 345543) + (-2990 . 345312) (-2991 . 345146) (-2992 . 344901) (-2993 . 344559) + (-2994 . 343257) (-2995 . 343089) (-2996 . 342982) (-2997 . 342873) + (-2998 . 342770) (-2999 . 342715) (-3000 . 342628) (-3001 . 342044) + (-3002 . 341722) (-3003 . 341370) (-3004 . 340108) (-3005 . 339979) + (-3006 . 339872) (-3007 . 339577) (-3008 . 339522) (-3009 . 339453) + (-3010 . 338110) (-3011 . 337458) (-3012 . 337299) (-3013 . 337229) + (-3014 . 336841) (-3015 . 336489) (-3016 . 336428) (-3017 . 336169) + (-3018 . 335286) (-3019 . 335157) (-3020 . 334963) (-3021 . 334885) + (-3022 . 334712) (-3023 . 334628) (-3024 . 334313) (-3025 . 334226) + (-3026 . 334149) (-3027 . 333948) (-3028 . 333596) (-3029 . 332322) + (-3030 . 331884) (-3031 . 331696) (-3032 . 331619) (-3033 . 331540) + (-3034 . 331447) (-3035 . 331309) (-3036 . 331022) (-3037 . 330652) + (-3038 . 330536) (-3039 . 330170) (-3040 . 330025) (-3041 . 329948) + (-3042 . 329870) (-3043 . 329812) (-3044 . 329693) (-3045 . 329515) + (-3046 . 329352) (-3047 . 329275) (-3048 . 329138) (-3049 . 329031) + (-3050 . 328886) (-3051 . 328806) (-3052 . 328515) (-3053 . 328430) + (-3054 . 328308) (-3055 . 327122) (-3056 . 327050) (-3057 . 326971) + (-3058 . 326939) (-3059 . 326792) (-3060 . 326573) (-3061 . 326520) + (-3062 . 326230) (-3063 . 326001) (-3064 . 325924) (-3065 . 325865) + (-3066 . 324683) (-3067 . 324543) (-3068 . 324281) (-3069 . 324199) + (-3070 . 324167) (-3071 . 324098) (-3072 . 323637) (-3073 . 323578) + (-3074 . 323152) (-3075 . 323093) (-3076 . 322574) (-3077 . 320366) + (-3078 . 320176) (-3079 . 320017) (-3080 . 319985) (-3081 . 319926) + (-3082 . 319892) (-3083 . 319833) (-3084 . 319734) (-3085 . 319615) + (-3086 . 319563) (-3087 . 319447) (-3088 . 319365) (-3089 . 319333) + (-3090 . 319250) (-3091 . 319213) (-3092 . 319110) (-3093 . 318961) + (-3094 . 318909) (-3095 . 318793) (-3096 . 318711) (-3097 . 318679) + (-3098 . 318568) (-3099 . 318531) (-3100 . 318428) (-3101 . 318329) + (-3102 . 318277) (-3103 . 318161) (-3104 . 318079) (-3105 . 318047) + (-3106 . 317981) (-3107 . 317944) (-3108 . 317841) (-3109 . 317686) + (-3110 . 317630) (-3111 . 317577) (-3112 . 317424) (-3113 . 317318) + (-3114 . 317286) (-3115 . 316973) (-3116 . 316657) (-3117 . 316591) + (-3118 . 316554) (-3119 . 316451) (-3120 . 316313) (-3121 . 316158) + (-3122 . 316101) (-3123 . 315988) (-3124 . 315844) (-3125 . 315782) + (-3126 . 315750) (-3127 . 314569) (-3128 . 314495) (-3129 . 314461) + (-3130 . 314378) (-3131 . 314067) (-3132 . 313963) (-3133 . 313850) + (-3134 . 313776) (-3135 . 313601) (-3136 . 313572) (-3137 . 313205) + (-3138 . 313064) (-3139 . 312992) (-3140 . 312958) (-3141 . 312884) + (-3142 . 312674) (-3143 . 312079) (-3144 . 312021) (-3145 . 311935) + (-3146 . 311763) (-3147 . 311610) (-3148 . 311497) (-3149 . 311217) + (-3150 . 310818) (-3151 . 310763) (-3152 . 310545) (-3153 . 310494) + (-3154 . 310388) (-3155 . 310330) (-3156 . 310256) (-3157 . 310084) + (-3158 . 309931) (-3159 . 309818) (-3160 . 309539) (-3161 . 309487) + (-3162 . 309311) (-3163 . 309073) (-3164 . 308995) (-3165 . 308945) + (-3166 . 308871) (-3167 . 308699) (-3168 . 308525) (-3169 . 308412) + (-3170 . 308319) (-3171 . 308260) (-3172 . 308022) (-3173 . 307988) + (-3174 . 307892) (-3175 . 307829) (-3176 . 307755) (-3177 . 307583) + (-3178 . 307391) (-3179 . 307278) (-3180 . 307185) (-3181 . 307093) + (-3182 . 306855) (-3183 . 306821) (-3184 . 306725) (-3185 . 306122) + (-3186 . 305978) (-3187 . 305679) (-3188 . 305557) (-3189 . 305464) + (-3190 . 305372) (-3191 . 305133) (-3192 . 304915) (-3193 . 304819) + (-3194 . 304759) (-3195 . 304606) (-3196 . 304411) (-3197 . 304274) + (-3198 . 304203) (-3199 . 304108) (-3200 . 304056) (-3201 . 303778) + (-3202 . 303679) (-3203 . 303084) (-3204 . 302917) (-3205 . 302742) + (-3206 . 302627) (-3207 . 302493) (-3208 . 302401) (-3209 . 302306) + (-3210 . 302251) (-3211 . 302101) (-3212 . 301995) (-3213 . 301900) + (-3214 . 301747) (-3215 . 301621) (-3216 . 301487) (-3217 . 301325) + (-3218 . 301230) (-3219 . 301160) (-3220 . 301030) (-3221 . 300906) + (-3222 . 300579) (-3223 . 300466) (-3224 . 300313) (-3225 . 300234) + (-3226 . 299934) (-3227 . 299574) (-3228 . 299479) (-3229 . 299390) + (-3230 . 299260) (-3231 . 298339) (-3232 . 298215) (-3233 . 298131) + (-3234 . 297845) (-3235 . 297713) (-3236 . 297413) (-3237 . 297255) + (-3238 . 297160) (-3239 . 297091) (-3240 . 296988) (-3241 . 296808) + (-3242 . 296441) (-3243 . 296326) (-3244 . 296040) (-3245 . 295728) + (-3246 . 295375) (-3247 . 295265) (-3248 . 295170) (-3249 . 295098) + (-3250 . 294917) (-3251 . 294794) (-3252 . 294714) (-3253 . 294540) + (-3254 . 294322) (-3255 . 294228) (-3256 . 293817) (-3257 . 293631) + (-3258 . 293401) (-3259 . 293372) (-3260 . 293277) (-3261 . 293091) + (-3262 . 292858) (-3263 . 292698) (-3264 . 292596) (-3265 . 292502) + (-3266 . 292216) (-3267 . 291671) (-3268 . 291441) (-3269 . 291374) + (-3270 . 291279) (-3271 . 291227) (-3272 . 291124) (-3273 . 290760) + (-3274 . 290571) (-3275 . 290498) (-3276 . 290278) (-3277 . 290165) + (-3278 . 290088) (-3279 . 289993) (-3280 . 286043) (-3281 . 285988) + (-3282 . 285807) (-3283 . 285269) (-3284 . 285214) (-3285 . 285065) + (-3286 . 284888) (-3287 . 284775) (-3288 . 284703) (-3289 . 284608) + (-3290 . 284577) (-3291 . 284417) (-3292 . 284339) (-3293 . 284280) + (-3294 . 284091) (-3295 . 283985) (-3296 . 283815) (-3297 . 283499) + (-3298 . 283419) (-3299 . 283324) (-3300 . 283218) (-3301 . 283055) + (-3302 . 282977) (-3303 . 282854) (-3304 . 282784) (-3305 . 282685) + (-3306 . 282527) (-3307 . 282407) (-3308 . 282334) (-3309 . 282239) + (-3310 . 281930) (-3311 . 281695) (-3312 . 281553) (-3313 . 281457) + (-3314 . 281384) (-3315 . 281303) (-3316 . 281204) (-3317 . 280658) + (-3318 . 280585) (-3319 . 280490) (-3320 . 280148) (-3321 . 279998) + (-3322 . 279813) (-3323 . 279740) (-3324 . 279661) (-3325 . 279588) + (-3326 . 279255) (-3327 . 278576) (-3328 . 278503) (-3329 . 278408) + (-3330 . 278227) (-3331 . 278097) (-3332 . 277998) (-3333 . 277878) + (-3334 . 277432) (-3335 . 277353) (-3336 . 277275) (-3337 . 277072) + (-3338 . 277000) (-3339 . 276905) (-3340 . 276719) (-3341 . 276589) + (-3342 . 276511) (-3343 . 276438) (-3344 . 276286) (-3345 . 276205) + (-3346 . 276002) (-3347 . 275930) (-3348 . 275835) (-3349 . 275548) + (-3350 . 275401) (-3351 . 275305) (-3352 . 275139) (-3353 . 275066) + (-3354 . 274963) (-3355 . 274666) (-3356 . 274463) (-3357 . 274390) + (-3358 . 274295) (-3359 . 274222) (-3360 . 274019) (-3361 . 273892) + (-3362 . 273796) (-3363 . 273456) (-3364 . 273397) (-3365 . 273298) + (-3366 . 273095) (-3367 . 272753) (-3368 . 272658) (-3369 . 272593) + (-3370 . 272490) (-3371 . 272324) (-3372 . 272251) (-3373 . 272192) + (-3374 . 272027) (-3375 . 271911) (-3376 . 271759) (-3377 . 271664) + (-3378 . 271636) (-3379 . 271529) (-3380 . 270965) (-3381 . 270745) + (-3382 . 270610) (-3383 . 270376) (-3384 . 270247) (-3385 . 270174) + (-3386 . 270079) (-3387 . 270029) (-3388 . 269929) (-3389 . 269866) + (-3390 . 269533) (-3391 . 269474) (-3392 . 269334) (-3393 . 269218) + (-3394 . 268981) (-3395 . 268908) (-3396 . 268813) (-3397 . 267367) + (-3398 . 267202) (-3399 . 267139) (-3400 . 266954) (-3401 . 266784) + (-3402 . 266108) (-3403 . 265796) (-3404 . 265680) (-3405 . 265607) + (-3406 . 265375) (-3407 . 265280) (-3408 . 264802) (-3409 . 264654) + (-3410 . 264591) (-3411 . 264446) (-3412 . 264358) (-3413 . 264091) + (-3414 . 263746) (-3415 . 263648) (-3416 . 263394) (-3417 . 263146) + (-3418 . 263049) (-3419 . 262926) (-3420 . 262831) (-3421 . 262243) + (-3422 . 261822) (-3423 . 261769) (-3424 . 261406) (-3425 . 261309) + (-3426 . 260978) (-3427 . 260880) (-3428 . 260736) (-3429 . 260639) + (-3430 . 260495) (-3431 . 260400) (-3432 . 259610) (-3433 . 259507) + (-3434 . 259456) (-3435 . 258640) (-3436 . 258469) (-3437 . 258435) + (-3438 . 258014) (-3439 . 257901) (-3440 . 256561) (-3441 . 256466) + (-3442 . 255874) (-3443 . 255768) (-3444 . 255572) (-3445 . 255401) + (-3446 . 255314) (-3447 . 255283) (-3448 . 255215) (-3449 . 255006) + (-3450 . 254812) (-3451 . 254649) (-3452 . 254554) (-3453 . 254398) + (-3454 . 253758) (-3455 . 253670) (-3456 . 253597) (-3457 . 253338) + (-3458 . 253254) (-3459 . 253186) (-3460 . 253088) (-3461 . 252936) + (-3462 . 252075) (-3463 . 251896) (-3464 . 251310) (-3465 . 251228) + (-3466 . 251146) (-3467 . 250887) (-3468 . 250828) (-3469 . 250772) + (-3470 . 250704) (-3471 . 250588) (-3472 . 250436) (-3473 . 250349) + (-3474 . 250239) (-3475 . 250165) (-3476 . 250015) (-3477 . 249902) + (-3478 . 249707) (-3479 . 249645) (-3480 . 248543) (-3481 . 248445) + (-3482 . 248347) (-3483 . 248146) (-3484 . 247729) (-3485 . 247477) + (-3486 . 247425) (-3487 . 247295) (-3488 . 247105) (-3489 . 247031) + (-3490 . 246836) (-3491 . 246802) (-3492 . 246774) (-3493 . 246666) + (-3494 . 246414) (-3495 . 246142) (-3496 . 246111) (-3497 . 245819) + (-3498 . 245767) (-3499 . 245715) (-3500 . 245342) (-3501 . 245268) + (-3502 . 244671) (-3503 . 244637) (-3504 . 244529) (-3505 . 244416) + (-3506 . 244218) (-3507 . 244144) (-3508 . 244071) (-3509 . 243955) + (-3510 . 243675) (-3511 . 243597) (-3512 . 243563) (-3513 . 243461) + (-3514 . 243239) (-3515 . 243210) (-3516 . 243047) (-3517 . 242992) + (-3518 . 242915) (-3519 . 242514) (-3520 . 242463) (-3521 . 242315) + (-3522 . 242281) (-3523 . 242179) (-3524 . 241872) (-3525 . 241771) + (-3526 . 241572) (-3527 . 241538) (-3528 . 241486) (-3529 . 241374) + (-3530 . 241318) (-3531 . 241267) (-3532 . 240948) (-3533 . 238167) + (-3534 . 238065) (-3535 . 237328) (-3536 . 237227) (-3537 . 237088) + (-3538 . 237054) (-3539 . 237002) (-3540 . 236684) (-3541 . 236610) + (-3542 . 236540) (-3543 . 236149) (-3544 . 217574) (-3545 . 217494) + (-3546 . 216905) (-3547 . 216804) (-3548 . 216701) (-3549 . 216649) + (-3550 . 216468) (-3551 . 216349) (-3552 . 215736) (-3553 . 212915) + (-3554 . 212821) (-3555 . 212768) (-3556 . 212300) (-3557 . 211816) + (-3558 . 211715) (-3559 . 211612) (-3560 . 211542) (-3561 . 211398) + (-3562 . 211369) (-3563 . 210942) (-3564 . 210848) (-3565 . 210795) + (-3566 . 210135) (-3567 . 209887) (-3568 . 209786) (-3569 . 209689) + (-3570 . 209238) (-3571 . 208970) (-3572 . 208811) (-3573 . 208719) + (-3574 . 208597) (-3575 . 208503) (-3576 . 208450) (-3577 . 208386) + (-3578 . 208138) (-3579 . 208037) (-3580 . 207978) (-3581 . 207924) + (-3582 . 207830) (-3583 . 207777) (-3584 . 207656) (-3585 . 207308) + (-3586 . 207207) (-3587 . 206872) (-3588 . 206731) (-3589 . 206585) + (-3590 . 206408) (-3591 . 206314) (-3592 . 206261) (-3593 . 206140) + (-3594 . 205517) (-3595 . 205416) (-3596 . 205315) (-3597 . 204836) + (-3598 . 204784) (-3599 . 204657) (-3600 . 204596) (-3601 . 204510) + (-3602 . 204439) (-3603 . 204373) (-3604 . 204265) (-3605 . 203812) + (-3606 . 203711) (-3607 . 203592) (-3608 . 203469) (-3609 . 203088) + (-3610 . 202907) (-3611 . 202821) (-3612 . 202750) (-3613 . 202649) + (-3614 . 202433) (-3615 . 202197) (-3616 . 202145) (-3617 . 202066) + (-3618 . 201545) (-3619 . 201484) (-3620 . 201398) (-3621 . 201326) + (-3622 . 201230) (-3623 . 200553) (-3624 . 200438) (-3625 . 200255) + (-3626 . 200001) (-3627 . 199952) (-3628 . 199883) (-3629 . 199811) + (-3630 . 199759) (-3631 . 199673) (-3632 . 199601) (-3633 . 199511) + (-3634 . 199356) (-3635 . 199241) (-3636 . 199078) (-3637 . 198828) + (-3638 . 198776) (-3639 . 198399) (-3640 . 198123) (-3641 . 197795) + (-3642 . 196953) (-3643 . 196867) (-3644 . 196790) (-3645 . 196565) + (-3646 . 196454) (-3647 . 196403) (-3648 . 196186) (-3649 . 195891) + (-3650 . 195842) (-3651 . 195771) (-3652 . 195701) (-3653 . 195627) + (-3654 . 192018) (-3655 . 191965) (-3656 . 191324) (-3657 . 190903) + (-3658 . 190850) (-3659 . 190733) (-3660 . 190287) (-3661 . 190146) + (-3662 . 190094) (-3663 . 190006) (-3664 . 189898) (-3665 . 189815) + (-3666 . 189710) (-3667 . 189657) (-3668 . 189385) (-3669 . 189332) + (-3670 . 189274) (-3671 . 189165) (-3672 . 188821) (-3673 . 188772) + (-3674 . 188684) (-3675 . 188576) (-3676 . 188350) (-3677 . 188297) + (-3678 . 188154) (-3679 . 187958) (-3680 . 187857) (-3681 . 187742) + (-3682 . 187601) (-3683 . 187549) (-3684 . 187461) (-3685 . 187185) + (-3686 . 187074) (-3687 . 186994) (-3688 . 186941) (-3689 . 184100) + (-3690 . 184004) (-3691 . 183526) (-3692 . 183457) (-3693 . 183126) + (-3694 . 182928) (-3695 . 182879) (-3696 . 182791) (-3697 . 182485) + (-3698 . 181258) (-3699 . 181181) (-3700 . 181128) (-3701 . 180985) + (-3702 . 180935) (-3703 . 180858) (-3704 . 180789) (-3705 . 180591) + (-3706 . 180539) (-3707 . 180448) (-3708 . 180138) (-3709 . 178834) + (-3710 . 178738) (-3711 . 178685) (-3712 . 178614) (-3713 . 178564) + (-3714 . 178487) (-3715 . 178418) (-3716 . 178133) (-3717 . 178084) + (-3718 . 177990) (-3719 . 177247) (-3720 . 177141) (-3721 . 177088) + (-3722 . 176879) (-3723 . 176829) (-3724 . 176706) (-3725 . 176640) + (-3726 . 176200) (-3727 . 176134) (-3728 . 176040) (-3729 . 175863) + (-3730 . 175764) (-3731 . 175711) (-3732 . 175433) (-3733 . 175255) + (-3734 . 175187) (-3735 . 174935) (-3736 . 174810) (-3737 . 174782) + (-3738 . 174664) (-3739 . 174567) (-3740 . 174422) (-3741 . 174343) + (-3742 . 174290) (-3743 . 174080) (-3744 . 173889) (-3745 . 173802) + (-3746 . 173585) (-3747 . 173512) (-3748 . 172332) (-3749 . 172282) + (-3750 . 172177) (-3751 . 172098) (-3752 . 172045) (-3753 . 171867) + (-3754 . 171794) (-3755 . 171492) (-3756 . 171414) (-3757 . 171364) + (-3758 . 171200) (-3759 . 170783) (-3760 . 170733) (-3761 . 170615) + (-3762 . 170521) (-3763 . 170468) (-3764 . 170347) (-3765 . 170229) + (-3766 . 169827) (-3767 . 169749) (-3768 . 169678) (-3769 . 169515) + (-3770 . 169407) (-3771 . 169354) (-3772 . 169255) (-3773 . 169203) + (-3774 . 169109) (-3775 . 169056) (-3776 . 168741) (-3777 . 168689) + (-3778 . 168568) (-3779 . 168469) (-3780 . 168326) (-3781 . 168162) + (-3782 . 167902) (-3783 . 167735) (-3784 . 167246) (-3785 . 167039) + (-3786 . 166839) (-3787 . 166614) (-3788 . 166561) (-3789 . 166283) + (-3790 . 166202) (-3791 . 166100) (-3792 . 164901) (-3793 . 164818) + (-3794 . 164648) (-3795 . 162420) (-3796 . 162370) (-3797 . 162260) + (-3798 . 162147) (-3799 . 161989) (-3800 . 161936) (-3801 . 161815) + (-3802 . 161734) (-3803 . 161602) (-3804 . 161411) (-3805 . 161328) + (-3806 . 161275) (-3807 . 161241) (-3808 . 160977) (-3809 . 160885) + (-3810 . 159793) (-3811 . 159676) (-3812 . 159518) (-3813 . 159466) + (-3814 . 159339) (-3815 . 159258) (-3816 . 159230) (-3817 . 156974) + (-3818 . 156828) (-3819 . 156775) (-3820 . 156710) (-3821 . 156554) + (-3822 . 156462) (-3823 . 156395) (-3824 . 156237) (-3825 . 156185) + (-3826 . 156100) (-3827 . 156048) (-3828 . 155979) (-3829 . 155494) + (-3830 . 155435) (-3831 . 155306) (-3832 . 155269) (-3833 . 155121) + (-3834 . 155035) (-3835 . 155003) (-3836 . 154845) (-3837 . 154792) + (-3838 . 154719) (-3839 . 154465) (-3840 . 154411) (-3841 . 153964) + (-3842 . 153905) (-3843 . 153845) (-3844 . 153697) (-3845 . 153560) + (-3846 . 153474) (-3847 . 153316) (-3848 . 153263) (-3849 . 153170) + (-3850 . 152865) (-3851 . 152787) (-3852 . 152552) (-3853 . 152500) + (-3854 . 152447) (-3855 . 152224) (-3856 . 151986) (-3857 . 151954) + (-3858 . 151618) (-3859 . 151460) (-3860 . 151366) (-3861 . 151295) + (-3862 . 151210) (-3863 . 151054) (-3864 . 150799) (-3865 . 150681) + (-3866 . 150611) (-3867 . 150477) (-3868 . 150406) (-3869 . 150320) + (-3870 . 150253) (-3871 . 150200) (-3872 . 150144) (-3873 . 150059) + (-3874 . 149831) (-3875 . 149734) (-3876 . 149601) (-3877 . 149541) + (-3878 . 149464) (-3879 . 149272) (-3880 . 148848) (-3881 . 148690) + (-3882 . 148662) (-3883 . 148606) (-3884 . 148544) (-3885 . 147580) + (-3886 . 147499) (-3887 . 147218) (-3888 . 147159) (-3889 . 147082) + (-3890 . 146921) (-3891 . 146497) (-3892 . 146339) (-3893 . 146311) + (-3894 . 146255) (-3895 . 145865) (-3896 . 145618) (-3897 . 145512) + (-3898 . 145481) (-3899 . 145345) (-3900 . 145285) (-3901 . 145148) + (-3902 . 144615) (-3903 . 144055) (-3904 . 143456) (-3905 . 143298) + (-3906 . 143270) (-3907 . 143199) (-3908 . 142311) (-3909 . 142026) + (-3910 . 141563) (-3911 . 141507) (-3912 . 141448) (-3913 . 141318) + (-3914 . 141119) (-3915 . 140001) (-3916 . 139843) (-3917 . 139815) + (-3918 . 139744) (-3919 . 139162) (-3920 . 138877) (-3921 . 138450) + (-3922 . 138394) (-3923 . 138334) (-3924 . 138204) (-3925 . 137986) + (-3926 . 136256) (-3927 . 135882) (-3928 . 135724) (-3929 . 135644) + (-3930 . 135573) (-3931 . 134754) (-3932 . 134469) (-3933 . 134367) + (-3934 . 134308) (-3935 . 134249) (-3936 . 134122) (-3937 . 133957) + (-3938 . 132380) (-3939 . 132242) (-3940 . 132084) (-3941 . 132024) + (-3942 . 131943) (-3943 . 131691) (-3944 . 131367) (-3945 . 131283) + (-3946 . 131224) (-3947 . 131165) (-3948 . 131038) (-3949 . 130830) + (-3950 . 130421) (-3951 . 129619) (-3952 . 129557) (-3953 . 129399) + (-3954 . 129347) (-3955 . 129267) (-3956 . 129015) (-3957 . 128920) + (-3958 . 128758) (-3959 . 128702) (-3960 . 128560) (-3961 . 128433) + (-3962 . 128263) (-3963 . 127753) (-3964 . 127658) (-3965 . 127500) + (-3966 . 127448) (-3967 . 127363) (-3968 . 127117) (-3969 . 127033) + (-3970 . 126971) (-3971 . 126915) (-3972 . 126817) (-3973 . 126690) + (-3974 . 125605) (-3975 . 125197) (-3976 . 125123) (-3977 . 125071) + (-3978 . 124979) (-3979 . 124733) (-3980 . 124638) (-3981 . 124557) + (-3982 . 124360) (-3983 . 124266) (-3984 . 124163) (-3985 . 124040) + (-3986 . 123380) (-3987 . 123306) (-3988 . 123254) (-3989 . 122950) + (-3990 . 122704) (-3991 . 122653) (-3992 . 122292) (-3993 . 122165) + (-3994 . 121955) (-3995 . 121839) (-3996 . 121739) (-3997 . 121522) + (-3998 . 121450) (-3999 . 121395) (-4000 . 121343) (-4001 . 121262) + (-4002 . 121016) (-4003 . 120945) (-4004 . 120888) (-4005 . 120742) + (-4006 . 120641) (-4007 . 120544) (-4008 . 120447) (-4009 . 120316) + (-4010 . 120244) (-4011 . 118112) (-4012 . 118057) (-4013 . 117281) + (-4014 . 117209) (-4015 . 116962) (-4016 . 116890) (-4017 . 116762) + (-4018 . 116661) (-4019 . 116531) (-4020 . 116400) (-4021 . 116358) + (-4022 . 116303) (-4023 . 116224) (-4024 . 116019) (-4025 . 115772) + (-4026 . 115715) (-4027 . 115663) (-4028 . 115566) (-4029 . 115415) + (-4030 . 115253) (-4031 . 115192) (-4032 . 115137) (-4033 . 115071) + (-4034 . 114881) (-4035 . 114634) (-4036 . 114416) (-4037 . 114364) + (-4038 . 114220) (-4039 . 113838) (-4040 . 113734) (-4041 . 113680) + (-4042 . 113628) (-4043 . 113557) (-4044 . 113490) (-4045 . 113391) + (-4046 . 113144) (-4047 . 112926) (-4048 . 112874) (-4049 . 112603) + (-4050 . 112360) (-4051 . 112301) (-4052 . 112198) (-4053 . 111990) + (-4054 . 111923) (-4055 . 111805) (-4056 . 111687) (-4057 . 111408) + (-4058 . 111235) (-4059 . 111137) (-4060 . 110269) (-4061 . 109806) + (-4062 . 109747) (-4063 . 109301) (-4064 . 109197) (-4065 . 109123) + (-4066 . 109066) (-4067 . 108945) (-4068 . 108079) (-4069 . 107984) + (-4070 . 107766) (-4071 . 107627) (-4072 . 106426) (-4073 . 106267) + (-4074 . 105951) (-4075 . 105845) (-4076 . 105399) (-4077 . 105208) + (-4078 . 105130) (-4079 . 104987) (-4080 . 104955) (-4081 . 104860) + (-4082 . 104687) (-4083 . 104476) (-4084 . 104101) (-4085 . 103995) + (-4086 . 103387) (-4087 . 89155) (-4088 . 88709) (-4089 . 88613) + (-4090 . 88557) (-4091 . 88489) (-4092 . 88346) (-4093 . 87995) + (-4094 . 87822) (-4095 . 87720) (-4096 . 87664) (-4097 . 86824) + (-4098 . 86214) (-4099 . 85689) (-4100 . 85487) (-4101 . 84876) + (-4102 . 84739) (-4103 . 84668) (-4104 . 84528) (-4105 . 84300) + (-4106 . 84127) (-4107 . 84074) (-4108 . 83972) (-4109 . 83920) + (-4110 . 82064) (-4111 . 80986) (-4112 . 80896) (-4113 . 80126) + (-4114 . 79563) (-4115 . 79426) (-4116 . 79370) (-4117 . 79299) + (-4118 . 79159) (-4119 . 79058) (-4120 . 78885) (-4121 . 78646) + (-4122 . 77730) (-4123 . 77627) (-4124 . 77547) (-4125 . 76961) + (-4126 . 76893) (-4127 . 76800) (-4128 . 76237) (-4129 . 76100) + (-4130 . 76034) (-4131 . 75891) (-4132 . 75790) (-4133 . 75615) + (-4134 . 75343) (-4135 . 75270) (-4136 . 75191) (-4137 . 75106) + (-4138 . 74790) (-4139 . 74722) (-4140 . 74639) (-4141 . 74076) + (-4142 . 74008) (-4143 . 73921) (-4144 . 73794) (-4145 . 72008) + (-4146 . 71762) (-4147 . 64819) (-4148 . 64143) (-4149 . 63997) + (-4150 . 63929) (-4151 . 63591) (-4152 . 59924) (-4153 . 59761) + (-4154 . 59645) (-4155 . 59573) (-4156 . 59443) (-4157 . 59329) + (-4158 . 59079) (-4159 . 59021) (-4160 . 58921) (-4161 . 58772) + (-4162 . 58441) (-4163 . 58373) (-4164 . 58259) (-4165 . 58105) + (-4166 . 57989) (-4167 . 57801) (-4168 . 57677) (-4169 . 56607) + (-4170 . 56550) (-4171 . 56450) (-4172 . 56160) (-4173 . 55833) + (-4174 . 55765) (-4175 . 55688) (-4176 . 55272) (-4177 . 55156) + (-4178 . 54984) (-4179 . 54860) (-4180 . 54764) (-4181 . 54596) + (-4182 . 54085) (-4183 . 53970) (-4184 . 53917) (-4185 . 53787) + (-4186 . 53707) (-4187 . 52490) (-4188 . 52438) (-4189 . 52332) + (-4190 . 52227) (-4191 . 52074) (-4192 . 51959) (-4193 . 51906) + (-4194 . 51398) (-4195 . 50991) (-4196 . 50891) (-4197 . 50793) + (-4198 . 50574) (-4199 . 50543) (-4200 . 50437) (-4201 . 50350) + (-4202 . 50183) (-4203 . 50068) (-4204 . 49949) (-4205 . 48801) + (-4206 . 48439) (-4207 . 48339) (-4208 . 48133) (-4209 . 48061) + (-4210 . 47963) (-4211 . 47744) (-4212 . 47641) (-4213 . 47612) + (-4214 . 47445) (-4215 . 47330) (-4216 . 47238) (-4217 . 47183) + (-4218 . 46998) (-4219 . 46917) (-4220 . 46860) (-4221 . 46808) + (-4222 . 46589) (-4223 . 46436) (-4224 . 46379) (-4225 . 46280) + (-4226 . 46165) (-4227 . 45622) (-4228 . 45284) (-4229 . 45206) + (-4230 . 45147) (-4231 . 44928) (-4232 . 44772) (-4233 . 44690) + (-4234 . 44572) (-4235 . 44457) (-4236 . 44297) (-4237 . 44218) + (-4238 . 44039) (-4239 . 43701) (-4240 . 43594) (-4241 . 42442) + (-4242 . 42368) (-4243 . 42267) (-4244 . 42111) (-4245 . 42039) + (-4246 . 41915) (-4247 . 41797) (-4248 . 41652) (-4249 . 41582) + (-4250 . 41360) (-4251 . 41198) (-4252 . 41146) (-4253 . 41091) + (-4254 . 40944) (-4255 . 40867) (-4256 . 40721) (-4257 . 40643) + (-4258 . 40525) (-4259 . 40452) (-4260 . 40230) (-4261 . 40122) + (-4262 . 39962) (-4263 . 39907) (-4264 . 39851) (-4265 . 39680) + (-4266 . 39602) (-4267 . 39493) (-4268 . 39311) (-4269 . 39256) + (-4270 . 39034) (-4271 . 38898) (-4272 . 38738) (-4273 . 38683) + (-4274 . 38547) (-4275 . 38465) (-4276 . 38338) (-4277 . 37951) + (-4278 . 37827) (-4279 . 37754) (-4280 . 37636) (-4281 . 37417) + (-4282 . 37281) (-4283 . 37128) (-4284 . 37073) (-4285 . 36975) + (-4286 . 36894) (-4287 . 36548) (-4288 . 36403) (-4289 . 36347) + (-4290 . 36054) (-4291 . 35836) (-4292 . 35781) (-4293 . 35562) + (-4294 . 35439) (-4295 . 35285) (-4296 . 34527) (-4297 . 34372) + (-4298 . 34274) (-4299 . 34177) (-4300 . 34024) (-4301 . 33922) + (-4302 . 33629) (-4303 . 33272) (-4304 . 33019) (-4305 . 32726) + (-4306 . 31184) (-4307 . 31083) (-4308 . 30920) (-4309 . 30658) + (-4310 . 30371) (-4311 . 29960) (-4312 . 29856) (-4313 . 29646) + (-4314 . 29587) (-4315 . 29276) (-4316 . 29024) (-4317 . 28926) + (-4318 . 28857) (-4319 . 28800) (-4320 . 28706) (-4321 . 28604) + (-4322 . 28320) (-4323 . 28165) (-4324 . 28055) (-4325 . 27844) + (-4326 . 27492) (-4327 . 27464) (-4328 . 27380) (-4329 . 27330) + (-4330 . 27274) (-4331 . 27077) (-4332 . 26872) (-4333 . 26566) + (-4334 . 26411) (-4335 . 26301) (-4336 . 26110) (-4337 . 26031) + (-4338 . 25805) (-4339 . 25755) (-4340 . 25559) (-4341 . 24845) + (-4342 . 24732) (-4343 . 23551) (-4344 . 23488) (-4345 . 23400) + (-4346 . 23317) (-4347 . 23201) (-4348 . 22618) (-4349 . 22303) + (-4350 . 22028) (-4351 . 21482) (-4352 . 21384) (-4353 . 20733) + (-4354 . 20206) (-4355 . 20104) (-4356 . 20019) (-4357 . 19864) + (-4358 . 19754) (-4359 . 19498) (-4360 . 19110) (-4361 . 18631) + (-4362 . 18520) (-4363 . 17702) (-4364 . 17517) (-4365 . 17360) + (-4366 . 17261) (-4367 . 17106) (-4368 . 16990) (-4369 . 16696) + (-4370 . 16608) (-4371 . 16424) (-4372 . 16259) (-4373 . 15826) + (-4374 . 15742) (-4375 . 15599) (-4376 . 15504) (-4377 . 15405) + (-4378 . 15268) (-4379 . 15137) (-4380 . 14840) (-4381 . 14706) + (-4382 . 14522) (-4383 . 14354) (-4384 . 14249) (-4385 . 13731) + (-4386 . 13634) (-4387 . 13408) (-4388 . 13271) (-4389 . 13122) + (-4390 . 12822) (-4391 . 12656) (-4392 . 12577) (-4393 . 12284) + (-4394 . 12188) (-4395 . 11684) (-4396 . 11041) (-4397 . 10959) + (-4398 . 10859) (-4399 . 10722) (-4400 . 10184) (-4401 . 10054) + (-4402 . 9888) (-4403 . 9485) (-4404 . 9296) (-4405 . 9200) + (-4406 . 9144) (-4407 . 9070) (-4408 . 8967) (-4409 . 8830) + (-4410 . 8687) (-4411 . 8554) (-4412 . 8420) (-4413 . 7532) + (-4414 . 7352) (-4415 . 7275) (-4416 . 7178) (-4417 . 7119) + (-4418 . 7039) (-4419 . 6889) (-4420 . 6752) (-4421 . 6616) + (-4422 . 6376) (-4423 . 6242) (-4424 . 5900) (-4425 . 5449) + (-4426 . 5372) (-4427 . 5251) (-4428 . 5044) (-4429 . 4992) + (-4430 . 4922) (-4431 . 4803) (-4432 . 4476) (-4433 . 4339) + (-4434 . 4216) (-4435 . 4077) (-4436 . 3943) (-4437 . 3774) + (-4438 . 3622) (-4439 . 3566) (-4440 . 3495) (-4441 . 3411) + (-4442 . 3116) (-4443 . 3036) (-4444 . 1834) (-4445 . 1778) + (-4446 . 1671) (-4447 . 448) (-4448 . 393) (-4449 . 259) (-4450 . 30))
\ No newline at end of file |